
Julian Belz

Dissertation

Schriftenreihe der Arbeitsgruppe
Mess- und Regelungstechnik – Mechatronik
Department Maschinenbau

Herausgeber Oliver Nelles

Band 3

Figh�ng the Curse
of Dimensionality
with Local Model Networks



Impressum
Prof. Dr.-Ing. Oliver Nelles
Arbeitsgruppe Mess- und Regelungstechnik
Department Maschinenbau
Universität Siegen
57068 Siegen
ISSN 2193-0538
URN urn:nbn:de:hbz:467-14524
Zugl.: Siegen, Univ., Diss., 2018



Fighting the Curse of Dimensionality
with Local Model Networks

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von
Dipl.-Ing. Julian Belz

aus Siegen

genehmigt durch die Naturwissenschaftlich-Technische Fakultät
der Universität Siegen

Siegen 2018



Betreuer und erster Gutachter
Prof. Dr.-Ing. Oliver Nelles

Universität Siegen

Zweiter Gutachter
Prof. Dr.-Ing. Thomas Carolus

Universität Siegen

Tag der mündlichen Prüfung
21. November 2018





Acknowledgments

This thesis was written during my time as a research assistant at the Institute of
Mechanics and Control Engineering - Mechatronics of the University of Siegen. First
and foremost I would like to thank my Ph.D. advisor Prof. Dr.-Ing. Oliver Nelles for
his extremely valuable and generous support in carrying out this work, the willingness
to discuss and the many motivating suggestions. The pleasant working atmosphere
created by his leadership significantly contributed to the success of my work.

I would like to thank Prof. Dr.-Ing. Thomas Carolus for his interest in my work and
the friendly acceptance of the role as additional reviewer for my Ph.D. thesis.

I am also very grateful to my former colleagues for the great time together, many
fruitful discussions, their support, and their contribution to the very pleasant working
atmosphere. In particular, I thank Diana Klein, DorinaWeichert, Geritt Kampmann,
Tim Oliver Heinz, Tobias Münker, Benjamin Hartmann, Tobias Ebert, Oliver Bänfer,
Hans-Werner Haupt and Torsten Fischer.

I highly appreciated the cooperation with colleagues from other Institutes of the
University of Siegen, from the University of Klagenfurt, the Graz University of
Technology and industrial partners from Bosch Engineering GmbH, Honda R&D
Europe, and Daimler AG. Therefore, many thanks to Prof. Dr.-Ing. Thomas Car-
olus, Prof. Dr.-Ing. Horst Idelberger, Prof. Dr.-Ing. Martin Horn, Konrad Bam-
berger, Michael Horwath, Jakob Rehrl, Daniel Schwingshackl, Jana Schmidt, Mark
Schillinger, Michael Fischer, Philipp Klein, and Frank Kirschbaum.

I would also like to thank all the students that supported me during my time at the
University of Siegen, especially Laura Winkel, Tim Decker, Timm Julian Peter, and
Thomas Levenig.

Last but not least, I would like to thank my whole family, my wife Sarah, and my
friends for their love and unconditional support.

Betzdorf, November 2018
Julian Belz





V

Contents

Acknowledgements III

Symbols and Abbreviations VII

Kurzfassung XI

Abstract XIII

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives and Structure of this Thesis . . . . . . . . . . . . . . . . . 4

2 Nonlinear System Identification 9
2.1 Static and Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Curse of Dimensionality and Bias/Variance Tradeoff . . . . . . . . . . 14
2.3 Local Model Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Static Function Generator . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Input Selection Using Local Model Networks 31
3.1 Test Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Mixed Wrapper-Embedded Input Selection Approach . . . . . . . . . 38
3.3 Regularization-Based Input Selection Approach . . . . . . . . . . . . 56
3.4 Embedded Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Visualization: Partial Dependence Plots . . . . . . . . . . . . . . . . 81

4 Design of Experiments Studies 89
4.1 Order Of Experimentation . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Advisability of Specific Experimental Designs . . . . . . . . . . . . . 102



4.3 Goal-Oriented Active Learning with Local Model Networks . . . . . . 117

5 Applications 123
5.1 Miles Per Gallon Data Set . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Air-Mass Flow Prediction . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Fan Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4 Heating, Ventilating, and Air Conditioning System . . . . . . . . . . 151

6 Conclusions and Outlook 161

A Data Splitting 169

References 173



VII

Symbols and Abbreviations

Latin Symbols

b Offset of an affine model
c Coefficients used for the construction of random functions
D Outer fan diameter
J Objective function value (optimization)
k Discrete time
L Likelihood function
m Number of input filters
ma Slope of an affine model
M Number of local models
Mpoly Number of terms used for the construction of random functions

ns Number of system states
n System order
nθ Number of model parameters
neff Number of effective parameters
np Number of candidate inputs (cadinality of P)

neff,i Effective number of parameters of local model i

nq Number of requested query points

nqLM,i Number of requested query points per local model i

nc Number of optimization constraints
nR Rotational speed
N Number of samples
p Number of physical inputs
pz Number of physical inputs in the premise or z-input space
px Number of physical inputs in the consequent or x-input space
P Set of all potential model inputs



PG Generalization performance
Pshaft Shaft power

q−1 Time shifting operator
Q
i

Validity matrix of the i-th local model

S Smoothing matrix
u System or model inputs
v Sigmoid splitting parameter

V̇ Specific volume flow rate
xs States of a dynamic system
x Local model inputs
y Measured system output
ŷ Model output
ŷi Local model output
z Validity function inputs

Greek Symbols

α Saturation parameter for sigmoidally saturated polynomials origi-
nating from the function generator

γ Random function generator exponents
δ Specific fan diameter
∆p Pressure rise
ζ Importance value for an input in the z-input space
η Efficiency
θ Estimated model parameters
κ Determines the steepness of the validity functions in the transition

between two neighboring local models
λ Regularization parameter (λ ≥ 0)
µ Expected value of the exponential distribution from which expo-

nents of the function generator are drawn
ρ Relevance factor for an input in the z-input space
ρf Fluid density

σn Standard deviation; if squared σ2 it is called variance



σ Specific fan speed
ϕ Dynamic net inputs (filtered physical inputs and outputs)

Φ Validity function
Ψ Sigmoid function

Ψ̃ Complementary sigmoid function
ψ Specific pressure rise

Abbreviations
AICc Corrected version of Akaike’s information criterion
AMF Air-mass flow
ANOVA Analysis of variance
APRBS Amplitude modulated random binary signal
BE Backward elimination
BGS Biggest gap sequence
CD Combined design
CFD Computational fluid dynamics
CV Cross-validation
DoE Design of experiments
DWC Designs without corners
ECU Engine control unit
EDLS Extended deterministic local search
ES Exhaustive search
FEM Finite element method
FIR Finite impulse response
FS Forward selection
GA Genetic algorithm
HILOMOT HIerarchical LOcal MOdel Tree
HilomotDoE HILOMOT for design of experiments
HVAC Heating, ventilating, and air conditioning
IKMS Intelligent k-means sequence
IQR Interquartile range
LASSO Least absolute shrinkage and selection operator
LH Latin Hypercube
LMN Local model network



LOLIMOT LOcal LInear MOdel Tree
LOO Leave-one-out
LS Least squares
MAP Intake manifold air pressure
MBDO Metamodel-based design optimization
MDS Median distance sequence
MIMO Multiple-input multiple-output
MISO Multiple input single output
MPG Miles per gallon
MWEIS Mixed wrapper-embedded input selection
NN Nearest neighbor
NRBF Normalized radial basis function
NRMSE Normalized root mean squared error
PDI Partial dependence input
RBIS Regularization-based input selection
SISO Single-input single-output
SNR Signal-to-noise ratio
TP1 Test process one
TP2 Test process two
TP3 Test process three
TP4 Test process four
VIM Variable intake manifold



XI

Kurzfassung

Das Themengebiet der vorliegenden Arbeit ist die datenbasierte Modellbildung (Iden-
tifikation). Das Hauptaugenmerk liegt auf Verfahren der Eingangsselektion und der
Versuchsplanung, die dazu dienen, Effekte des Fluchs der Dimensionlität abzuschwä-
chen, indem sie spezielle Eigenschaften lokaler Modellnetze ausnutzen.

Der Modelltyp der lokalen Modellnetze ermöglicht die Aufteilung des Eingangsraums
in die sogenannten Regelprämissen und -konklusionen. In dieser Arbeit entwick-
elte Verfahren im Bereich der Eingangsselektion nutzen diese einzigartige Eigen-
schaft lokaler Modellnetze aus. Potentielle Eingangsgrößen können individuell den
Regelprämissen oder -konklusionen zugeteilt werden. Es wird gezeigt, dass sich
ein besserer Bias/Varianz-Kompromiss durch die Ausnutzung dieser individuellen
Zuordnung finden lässt. Des Weiteren eröffnen sich zusätzliche Interpretations-
möglichkeiten, da einer der beiden Eingangsräume direkt mit den Modellnichtlin-
earitäten verknüpft ist.

Der Beitrag der vorliegenden Arbeit im Bereich der Versuchsplanung betrifft sowohl
aktive als auch passive Lernverfahren. Im Rahmen der passiven Lernverfahren wer-
den Empfehlungen auf die folgenden drei Fragestellungen gegeben. Sollten (alle)
Ecken im Versuchsraum vermessen werden? Welcher raumfüllende Versuchsplan
führt voraussichtlich zur höchsten Modellgüte? Welche Reihenfolge sollte beim Ver-
messen eines Versuchsplans eingehalten werden? Der Beitrag im Bereich aktiver
Lernverfahren umfasst eine Erweiterung des bereits bestehenden Algorithmus „Hier-
archical Local Model Tree for Design of Experiments“ (HilomotDoE). Drei Schlüsse-
laspekte der experimentellen Modellbildung werden dabei adressiert: (I) Optimalität,
(II) geringer Bias- und (III) Varianzfehler.

Die entwickelten Methoden zeigen anhand ausgewählter Anwendungsbeispiele ihre
Stärken. Dazu zählen: Die Vorhersage des Verbrauchs von Kraftfahrzeugen, die
Modellierung des Luftmassenstroms für Verbrennungsmotoren, die Metamodellierung



für Ventilatoren und die Erzeugung eines dynamischen Modells zur Regelung eines
Heizungs-, Lüftungs- und Klimatisierungssystems.



XIII

Abstract

This thesis is settled in the field of data-based modeling (identification) and specif-
ically focuses on the weakening of the effects of the curse of dimensionality with
local model networks (LMNs). The methods for fighting the curse of dimensionality
originate from the fields of input selection and design of experiments (DoE).

The model type of LMNs allows the distinction in two input spaces - the rule premises
input space and the rule consequents input space. The developed input selection
techniques exploit this unique property of LMNs and the possibility to assign poten-
tial inputs to each input space individually. It is shown that this additional freedom
enables input selection methods using LMNs to find a better bias/variance trade-
off. Furthermore, one of the two arising input spaces is directly connected to the
nonlinear effects of the model, which allows for more detailed interpretations.

The DoE contributions of this thesis concern passive and active learning schemes.
Recommendations for passive experimental designs are given based on extensive
simulation studies with the help of a function generator. The following three ques-
tions are addressed. Should corners (vertices) be measured? Which space-filling
experimental design is likely to yield the best model accuracy? What order of ex-
perimentation leads to the best model quality in early stages of the measurement
process? Eventually, the contribution regarding active learning is an extension of
the already existing hierarchical local model tree for design of experiments (Hilomot-
DoE), addressing three important issues of modeling simultaneously: (I) optimality,
(II) model bias, and (III) model variance.

All developed methods demonstrate their abilities on selected application examples,
including the prediction of the fuel consumption of cars, the data-based modeling of
the air-mass flow of combustion engines, the metamodeling of fans, and the gener-
ation of a dynamic model of a heating, ventilating, and air conditioning system for
control design.





1

1 Introduction

An increasing amount of modern development methods are based on models. In the
context of this thesis, a model can be seen as a mathematical description of a real-
world process and can be utilized to predict the output of a technical system given
the input values or sequences. Models can save time and resources since extensive
investigations can be done on totally different time-scales compared to real-world
measurements or applications. Besides the time-saving aspect, there are some ad-
vanced techniques in the field of optimization, design of controllers, supervision and
many other fields that would hardly be possible without models. There are basically
two ways to obtain models describing the technical system of interest:

• Using first principles to deduce a model. Insights from physical, chemical,
biological, economical, etc. laws are needed in order to create so-called white-
box models. Here, the term „white“ indicates the usage of available knowledge
to obtain the models.

• Relying solely on measured data to derive a model. Since for the model deriva-
tion only experimental data is used, this approach is called experimental mod-
eling. Other commonly used names are black-box modeling or system identifi-
cation [96].

This thesis is settled in the field of experimental modeling and specifically concen-
trates on the weakening of the effects of the curse of dimensionality with the help
of local model networks (LMNs). The phrase curse of dimensionality describes the
exponential increase in effort with an increasing input space dimensionality. For
example, the number of supporting points upon a grid grows exponentially with the
input space dimensionality. As a result the required amount of data, the required
storage, and eventually the required computation time increases exponentially. Fig-
ure 1.1 illustrates the curse of dimensionality exemplarily with the help of the ratio of
volumes of a small (Vs) and a large (Vl) hypercube. The edge length e belongs to the
smaller hypercube and is just a fraction of the edge length of the larger hypercube.



2

0 e

1 0 e

10
e

1

Vs

Vl

u1
u2

u
3

(a)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
p = 10

p = 4
p = 2

p = 1

Volume fraction Vs/Vl

Ed
ge

le
ng

th
e

(b)

Figure 1.1: Illustration of the curse of dimensionality. (a) The smaller hypercube
with edge length e is shown inside the larger one. (b) The needed edge
length to meet a specific volume fraction Vs/Vl is shown for several input
dimensionalities p.

e has to increase more rapidly with an increasing input dimensionality p in order to
meet a specific volume fraction Vs/Vl. For example, the necessary edge length e to
reach a volume fraction of Vs/Vl = 0.1 is 0.1 for an input space dimensionality of
p = 1, around 0.3 for p = 2, and approximately 0.8 for p = 10.

As a result, the data necessary to cover the whole volume equally dense grows ex-
ponentially with an increasing input space dimensionality. Luckily, in practice, the
curse of dimensionality is typically much less severe due to the following properties
that are often fulfilled for real-world problems:

• Some regions of the input space might be non-reachable. Due to physical
restrictions or user-specified requirements not all combinations of input values
are feasible or desired, respectively [15].

• Real-world problems often fulfill smoothness properties [15]. Small changes in
the input variables usually cause only small changes in the target variables,
leading to at least locally predictable behavior [96].

• Often it is sufficient to describe a technical system only in a small subregion
of the input space with high accuracy while the model performance in other
regions of the input space is not important [96].

However, methods used for experimental modeling have to exploit these real-world
properties that weaken the curse of dimensionality. Crucial procedures in coping
with the curse of dimensionality are input selection and design of experiments (DoE)



3

techniques [29] which are the main topics of this thesis. Alternative approaches which
are not the main topic of this thesis are to exploit some of the above listed points
on the level of the model structure. This can be done explicitly, e.g. with additive
models, or implicitely, e.g. with sparsity induced via regularization. The motivation
for this thesis is given in Section 1.1. Objectives and the structure of it are described
in Section 1.2.

1.1 Motivation

An ongoing trend in the field of experimental modeling is an ever increasing amount
of inputs used to describe technical systems by models [56]. This trend arises mainly
due to the following two reasons:

• Ever increasing process complexities create the demand for higher degrees of
freedom to control them via additional actuators, which leads to potentially
more inputs for the models.

• The demand for higher model accuracies originating from stricter regulations
and market demands, such that potentially more influences (=̂ inputs) have to
be incorporated into models to fulfill them.

The problem with an increasing input dimensionality is, as explained previously, the
curse of dimensionality. The main motivation and topic of this thesis is the develop-
ment and investigation of methods helping to cope with the curse of dimensionality.
Most of the investigated methods exploit unique properties of LMNs. There are
basically two main topics of this thesis, which are input selection and the DoE.

Input selection tackles the curse of dimensionality directly, since inputs are identified
and removed that harm the model accuracy. There might be cases in which no input
can be removed without harming the model accuracy, i.e. when the best bias/variance
tradeoff is achieved with all inputs. DoE techniques specify locations in the input
space at which measurements should be conducted in order to create a data set that
can be used for the generation of a model. Efficient experimental designs keep the
number of necessary measurements as low as possible while the process behavior can
still be identified with the required level of accuracy. Therefore, DoE techniques
help also to weaken the curse of dimensionality through the reduction of the data
necessary to achieve a demanded model quality.



4 1.2 Objectives and Structure of this Thesis

1.2 Objectives and Structure of this Thesis

One main objective of this thesis is the development of algorithms that exploit the
unique property of LMNs to distinguish between linear and nonlinear effects for input
selection tasks. Two different input spaces arise due to this unique property when
using LMNs with local affine models which is the most popular choice. This leads
to more degrees of freedom, because inputs can be assigned to each input space
individually. Potentially, this additional freedom enables input selection methods
using LMNs to better fine-tune the bias/variance tradeoff. Furthermore, one of the
two arising input spaces is directly connected to the nonlinear effects of the model,
which allows a more detailed interpretation. On the other hand, the problem of
finding good input subsets gets harder due to an increased amount of potential
input subsets because each physical input can be assigned to each of the two input
spaces. In this thesis it should be investigated, if the exploitation of the input space
separation brings more advantages or disadvantages. Therefore, one wrapper-like
method is developed that exploits the separation of linear and nonlinear effects fully.
In general, wrapper methods use a system identification algorithm and wrap the
input selection around it, i.e. several input subsets are tried out and the best found
subset is finally used.

Another objective of this thesis regards axis-oblique partitioning strategies for LMNs.
Axis-oblique partitioning strategies have been proposed to more effectively deal
with high-dimensional input spaces compared to much wider spread axis-orthogonal
strategies, weakening the effects of the curse of dimensionality. Usually, the axis-
oblique partitioning is obtained by nonlinear optimization techniques, introducing
additional flexibility together with an increase in variance error. In this thesis a
normalized L1 regularization for optimization-based axis-oblique partitioning strate-
gies is proposed, which only penalizes the amount of obliqueness incorporated in the
partitioning. It is exemplarily implemented for the axis-oblique partitioning strategy
included in the HIerarchical LOcal MOdel Tree (HILOMOT) algorithm. It should be
investigated if the proposed normalized L1 regularization increases the generalization
performance of LMNs and reduces the variance error significantly.

Furthermore, it should be investigated if the final partitioning, i.e. after the training
algorithm has finished, contains sufficient information about the nonlinear influences
of all used LMN inputs. Therefore, a strategy to analyze the partitioning of LMNs
has to be developed and investigated.



5

In addition to exploiting special properties of LMNs, it is tested if the visualiza-
tion technique of partial dependence plots is able to reveal the most relevant inputs
for a model. Partial dependence plots are scientifically not new, but in the expe-
rience of the author seldom used and rather unknown, at least for people with an
engineering background.

In the field of DoE techniques two questions regarding the choice of the experimental
design should be investigated:

Should corners (vertices) be measured? This question should be investigated with
the help of the function generator described in Section 2.7 for several extrap-
olation scenarios and ratios of corner points in relation to the overall data set
size.

Are maximin Latin Hypercube designs superior to Sobol sequences? A compar-
ison of several space-filling designs in terms of the model quality and variations
of it incorporates Sobol sequences, data coming from a uniform distribution,
and several maximin optimized Latin Hypercube (LH) designs. The optimized
LH designs differ in the way they are optimized. In particular maximin op-
timized LH designs generated with the extended deterministic local search
(EDLS) algorithm [35] from phase one and two (see Section 4.2.2 for details)
are used as well as one function implemented in the commercially available
software Matlab.

Another objective of this thesis in the field of DoE deals with an often neglected
aspect which regards the order in which the measurements should be conducted to
yield the best possible model performance with fractions of the whole experimental
design. Good models which require good data in early stages of the measurement
process yield several advantages, e.g. time can be saved because demanded model
qualities can be reached with less data. In addition, the model can be used earlier
while the measurement process is still in progress. Methods to determine the order
of experimentation are intended for passive learning strategies, where the DoE plan
is known and fixed in advance to the measurement process. Therefore, it can be used
in situations in which the degree of automation is not sufficient for active learning
strategies. Additionally, these methods can also be used for the initial experimental
design needed before an active learning strategy can start. Three different strategies
to determine the order of experimentation are developed and compared to each
other.



6 1.2 Objectives and Structure of this Thesis

Eventually, the already existing HILOMOT for design of experiments (HilomotDoE)
algorithm that follows an active learning strategy should be extended to incorporate
a goal-orientation. This goal-oriented active learning strategy addresses three main
goals: (I) The concentration on possibly near-optimum regions and (II) the focus
on areas in the design space where the (meta-)model’s performance is considered to
be worst. Additionally, (III) new measurements should differ from already gathered
data as much as possible. With these goals three important issues in modeling are
addressed simultaneously: (I) optimality, (II) model bias, (III) model variance /
uniformly space-filling property.

In order to fulfill all objectives this thesis is structured in the following chapters.

Chapter 2 provides important theoretical background information about experi-
mental modeling in general, the bias/variance tradeoff, input selection, DoE
techniques, metamodels, and a function generator that is extensively used
throughout the whole thesis.

Chapter 3 presents the developed input selection methods that take advantage of
the input space separation of LMNs. Investigations on artificially created test
processes reveal advantages and shortcomings of the proposed methods. Ad-
ditionally, partial dependence plots are reviewed as tool to find and visualize
the most relevant inputs for an experimental modeling task.

Chapter 4 contains all developed and investigated methods related to DoE. Meth-
ods to determine the order of experimentation are described and compared
with the help of a function generator. Advices about experimental designs
are given based on investigations with the function generator. In particular,
it is examined if measuring corners is advisable and what space-filling design
(maximin LH or Sobol sequence) should be used. Eventually, the goal-oriented
active learning strategy with LMNs is presented.

Chapter 5 provides a selection of examples in which the developed input selection
and DoE techniques proved to be helpful in practice. Several input selection
methods are applied to the auto miles per gallon data set, which is publicly
available from the machine learning repository of the University of California
Irvine (UCI) [80]. Other applications incorporate the prediction of the air-
mass flow into a cylinder of a combustion engine, the metamodeling of fans,
and a heating, ventilating, and air conditioning (HVAC) system. Due to space
restriction not all applications in which the proposed input selection methods



7

were useful could be included in this thesis. An application in which the NOx

emissions are predicted based on 64 potential inputs is omitted as well as the
prediction of cycle times for tugger train systems based on 47 inputs.

Chapter 6 contains the final conclusions of this thesis and an outlook of possible
future research topics.

The main contributions and novelties of this thesis are listed in the following.

• Development of a mixed wrapper-embedded input selection method that fully
exploits the input space separation offered by LMNs.

• Development of the normalized L1 split regularization for axis-oblique parti-
tioning strategies which is implemented for the HILOMOT algorithm.

• Development of a partition analysis method for LMNs.

• Development of several methods that can be used to determine the order of
experimentation for previously determined experimental designs.

• Development of a goal-oriented active learning strategy based on an already
existing active learning strategy, namely HilomotDoE.

• Implementation and application of the mixed wrapper-embedded input selec-
tion to identify a good dynamic model structure for a HVAC system. The
purpose of the identified dynamic model it to be used in a model-based control
strategy. However, the model-based control strategy is not part of this thesis.

• Implementation and application of the goal-oriented active learning strategy
for the generation of a data set used to train computational fluid dynamics
(CFD) metamodels.





9

2 Nonlinear System Identification

In general, a system is a term used for the totality of elements that are related
to each other and organized as delimited outwardly structure. By the definition
of a boundary, the scope of a system as well as its in- and outputs are defined.
For example the engine of a car can be seen as a system, where the motor rotation
speed, the valve timing, and many more inputs influence the outputs, which could be
the available torque, fuel consumption, exhaust fume emissions and so on. Another
boundary might also include the motor control gear as well as parts of the drive train,
leading to other in- and outputs. The scope of this thesis is settled in the field of
nonlinear system identification, i.e. generating models that describe the input/output
relationship of nonlinear systems solely based on measured data. Therefore, a system
is the abstraction of an arbitrary process, that can be from all kinds of technical,
economical, physical, chemical, etc. fields. The term process is synonymously used
for system throughout this thesis.

An increasing amount of modern development methods are based on models. In the
context of this thesis, a model can be seen as a mathematical description of a real-
world process and can be utilized to predict the output of a technical system given
the input values or sequences. Models can save time and resources since extensive
investigations can be done on totally different time-scales compared to real-world
measurements or applications. Besides the time-saving aspect, there are some ad-
vanced techniques in the field of optimization, design of controllers, supervision and
many other fields that would hardly be possible without models. Figure 2.1 shows
some scenarios in which models are utilized.

There are basically two ways to derive models, which are (I) using first principles and
(II) using measured data. When using first principles, insights from physical, chem-
ical, biological, economical, etc. laws are necessary to derive at least the structure of
the model. The parameterization of so called white-box models might be supported
by measurements. A key property of white-box models is the direct interpretability
of all model parameters in terms of first principles [96]. The second way to obtain



10

Optimization

strategy model evaluation
u ŷ

Simulation

model

u(k-1)

ŷ(k)
u(k-2)

Control

process

design

controller
u yr

model

Fault detection

model
(nominal)

y
process

model
(fault 1)

u

ŷ (0) e (0) 

e (1) ŷ (1) 

-

-

d)c)

b)a)

Figure 2.1: Models utilized for a) optimization, b) simulation, c) control and d) fault
detection [96]

models is solely based on measured data. Since for the model derivation only experi-
mental data is used, this approach is called experimental modeling. Other commonly
used names are black-box modeling or system identification [96]. The term system
identification often refers to the generation of dynamic models [126], [96]. Most real-
world processes behave differently depending on the operating point, e.g. there are
changes in the sensitivities of the system. Therefore the identified model structure
should be able to yield nonlinear models to describe that behavior adequately. So-
called gray-box models allow arbitrary nuances in combining white- and black-box
modeling approaches. Additionally, other information sources such as qualitative
knowledge formulated as rules may also contribute to the model generation [96].
Therefore gray-box models are any mixture of process insights and information ex-
tracted from measured data. This thesis focuses on black-box modeling approaches
and a specific model type, namely local model networks.

The next sections provide information necessary to comprehend and acknowledge
the concepts explained in Chapter 3 and 4. In most cases only elementary explana-
tions are given and references to more detailed literature are provided. Section 2.1
describes the differences between static and dynamic models. The curse of dimension-
ality as well as the bias/variance tradeoff are topics of Section 2.2. The extensively



11

used model type of local model networks (LMNs) is described in Section 2.3 together
with two training algorithms to obtain such models from data. Section 2.4 intro-
duces commonly used methods to determine the most beneficial modeling inputs.
Basics about the design of experiments (DoE) are described in Section 2.5. The last
two sections deal with the task of metamodeling (Section 2.6) and a newly designed
function generator to build examples for static regression problems (Section 2.7).

2.1 Static and Dynamic Models

The same real-world process or system might be described either by a static or
dynamic model. For the sake of a simple notation all following explanations do
only consider single-input single-output (SISO) and multiple input single output
(MISO) systems. An extension to systems with multiple outputs is straightforward.
Figure 2.2 visualizes the dynamic relationship as well as the static relationship of one
exemplarily used process. The dynamic relationship, depicted in Fig. 2.2a, shows the
time courses of the input of the system u(t) and the corresponding output y(t). In
Fig. 2.2b the static relationship between the input u and the output y is shown. The
circles and numbers in both figures indicate, where steady states of the process are
reached. For the static relationship only steady states are of interest, no transient
behavior is captured. Which of these two model types, i.e. static or dynamic, is
appropriate depends on the intended use of the model and can not be answered
in general. The error made through the static description of an actually dynamic
process decreases the faster the system reaches its steady states.

For the task of experimental modeling two general cases are distinguished. First,
the generation of a static model and second, the identification of a dynamic model.
If the transient behavior of the (real) system under investigation is not of interest
or the steady states of the system are reached very quickly, a static model may be
used. In this case the relationship between the inputs of the system and the output
of the system can be described by an algebraic equation

y = f(u) , (2.1)

where f(·) is the true function describing the system of interest. The goal of exper-
imental modeling is to find a good approximation f̂ of the true function f based on



12 2.1 Static and Dynamic Models

0 2 4 6 8 10 12 14 16 18 20 22 24

−4

−2

0

2

4

1 2

3

4

5

6

7

8

9

Time t in [s]

u
(t

),
y
(t

)

Input u(t)
Output y(t)

(a) Dynamic relationship

−4 −3 −2 −1 0 1 2 3 4

−4

−2

0

2

4

1 2

3

4

5

6

7

8

9

Input u

O
ut

pu
t

y

Static nonlinearity
Steady states

(b) Static relationship

Figure 2.2: Distinction between the dynamic (a) and static (b) input/output rela-
tionship for the same process. Numbers indicate the steady states of the
dynamic process.



13

a finite data set D = {u(i), y(i)}Ni=1 of N samples [13] with the system output y and
p system inputs u(i) =

[
u1(i) u2(i) · · · up(i)

]
.

A time-invariant, deterministic, nonlinear dynamic system in discrete-time can gen-
erally be described by the state space representation [79]:

xs(k + 1) = h(xs(k), u(k)) (2.2)
y = g(xs) , (2.3)

with the system states xs, discrete-time k as well as the nonlinear mappings h(·)
and g(·). One way to approximate the dynamic system would be to approximate
the functions h(·) =

[
h1(·) h2(·) · · · hns(·)

]
and g(·), with the number of system

states being ns [96]. However, in practice complete state measurements are rarely
realistic. One way to deal with missing states is to estimate them which leads to
so-called internal dynamics approaches. However, no further details are given here,
since this thesis focuses only on the so-called external dynamics approach. Details
about internal dynamic approaches can be found in [2], [78], [116], [133] and [139]. A
comparison between the external and the internal dynamics approach can be found
in [96].

The external dynamics approach is the most frequently applied way to model nonlin-
ear dynamic systems according to [96]. A visualization (for a series-parallel model) of
the external dynamics approach is given in Fig. 2.3. Two parts can be distinguished,
i.e. the external dynamic filter bank followed by a nonlinear static approximator [59].
In Fig. 2.3 general transfer functions for the inputs G(u)

i and outputs G(y)
i are shown.

The works of Casdagli [23] and Poncet et al. [102] have shown that the input/output
behavior of almost any nonlinear system can be approximated arbitrarily precisely
with the external dynamics approach.

G
(u)
1 (q) G

(u)
2 (q) G

(y)
2 (q) G

(y)
1 (q)

y(k)

ŷ(k)

u(k) nonlinear dynamic model

nonlinear static approximator

G(y)
n (q)G(u)

m (q)

Figure 2.3: External dynamics approach for a SISO system with input order m and
output order n



14 2.2 Curse of Dimensionality and Bias/Variance Tradeoff

If simple time delays q−1 are used as filters, the model output ŷ depends on delayed
versions of the physical inputs u and outputs y:

ŷ = f̂(ϕ) with (2.4)
ϕ =

[
u(k) u(k − 1) . . . u(k −m) y(k − 1) . . . y(k − n)

]
, (2.5)

with the maximum delay of the inputs m and outputs n.

Independent of the model type, i.e. static or dynamic, it is common practice to
have one number representing the overall performance of it. Throughout this thesis
usually the normalized root mean squared error (NRMSE)

NRMSE =

√√√√√√√√

N∑
i=1

(y(i)− ŷ(i))2

N∑
i=1

(y(i)− ȳ)2
, (2.6)

with the model predictions ŷ(i) and the measured outputs y(i) is used. This error
measure indicates the improvement (NRMSE < 1) by a model compared to the mean
value of all measured outputs ȳ (NRMSE = 1). Therefore it is independent of the
range of the outputs and can simply be interpreted. Note that the NRMSE value
can be calculated for different data sets, e.g. on training or test data.

2.2 Curse of Dimensionality and Bias/Variance
Tradeoff

Even though the problem was known long before, Bellman coined the phrase curse of
dimensionality in [7]. It describes the exponential increase in effort with an increas-
ing input space dimensionality. For example, if the input space should be covered
by data lying on a grid with four measurements per input dimension, the necessary
amount of data for p = 2 inputs equals 4p = 42 = 16. For p = 3 the needed data
amount is already at 43 = 64 and for an input space dimensionality of p = 10 more
than one million measurements would be necessary. Other illustrations of the curse
of dimensionality can be found, e.g., in [57] and [29]. As a result the task of experi-
mental modeling gets more difficult due to rapidly increasing memory requirements,
computational complexity, model evaluation effort, etc. For real-world problems this
implies that in high-dimensional input spaces all data sets are extremely sparse [29].



15

However, there are techniques that are able to cope with the curse of dimensionality
mainly because of two reasons. The first reason is that data is often confined to spe-
cific regions of the input space. As a result directions in which important variations
in the target variables occur are also often confined, resulting in a lower effective
dimensionality [15]. The second reason originates from a smoothness property that
is often fulfilled for real-world problems [15]. Small changes in the input variables
usually cause only small changes in the target variables, leading to at least locally
predictable behavior [96]. Crucial procedures in coping with the curse of dimension-
ality are input selection and DoE techniques [29] discussed in this thesis.

Input selection techniques try to find a subset of input variables leading to a model
with the best possible generalization performance. This may even imply to omit
inputs that are known to be relevant in a theoretical/first principles way. The reason
for this can be explained by the bias/variance tradeoff. The error of a model can
be decomposed into the bias error and the variance error [48]. The bias error arises
due to a too simple model, that is not able to capture the complexity of the true
functional relationship [53]. The origin of the variance error lies in the uncertainty
of the estimated parameters [96]. Data sets used for training are always finite and
noisy. As a result, there will be deviations of the estimated parameters if different
data sets of one process are used to identify the model parameters. The model error
due to these variations is the variance error and depends for least squares parameter
estimates and large training data sets on the number of model parameters nθ, the
amount of used training data N , and the noise variance σn2 as follows [57]:

variance error ∝ σn
2nθ
N
. (2.7)

Even though (2.7) is only exactly valid for least squares parameter estimates and
large training data sets, it is remarkable that the same tendencies are qualitatively
valid for small data sets and regardless of the special type of model (and estimation
procedure) used [57]. As the variance error of a model increases with an increasing
amount of model parameters according to (2.7), the bias error decreases. Additional
parameters enable a model to describe more complex functional relationships and
therefore increase the model flexibility. In order to minimize the overall model error,
a good tradeoff has to be found given a specific amount of data [143]. Figure 2.4 shows
typical curves for the bias, variance, and overall model error for different amounts
of data. As can be seen from Fig. 2.4 and (2.7), the slope of the variance error
is influenced by the data amount. Considering that each additional input variable
typically increases the number of model parameters, there might be cases in which



16 2.2 Curse of Dimensionality and Bias/Variance Tradeoff

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

optimal
complexity

Model complexity

Bi
as

,v
ar

ia
nc

e,
an

d
ov

er
al

lm
od

el
er

ro
r

Variance error
Bias error
Overall model error

(a) Few data samples

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

optimal
complexity

Model complexity

Bi
as

,v
ar

ia
nc

e,
an

d
ov

er
al

lm
od

el
er

ro
r

Variance error
Bias error
Overall model error

(b) Many data samples

Figure 2.4: Typical curves of the bias, variance, and overall model error for few (a)
and many (b) data samples

the increase in variance error exceeds the improvement of the bias error. In such
cases omitting theoretically important inputs yields benefits for the overall model
error. Mathematical derivations of the model error decomposition into the bias and
variance part can be found in [96], [53], and [15] amongst others.

In practice the variance part of the error cannot be detected on training data alone
because it arises from the uncertainties in the model parameters caused by the par-
ticular noise realization and distribution of the training data. Because of this, spe-
cial techniques are necessary to determine the possibly best model complexity and
avoid an overly complex model that already describes the specific noise realization,
which is called overfitting (low bias, high variance) [96]. Throughout this thesis two
approaches for the model complexity determination are used. Either a separate val-
idation data set or an information criterion is applied. Information criteria add a
complexity penalty term to the training error to approximate the validation error.
The herein used information criterion is a corrected version of Akaike’s information
criterion (AICc):

AICc = −2 lnL(θ|y) + 2neff + 2neff(neff + 1)
N − neff − 1 , (2.8)

with L being the likelihood function of the estimated model parameters θ given
the observations y, the number of effective parameters neff, and the number of data
samples N . The last term of (2.8) corrects the value of the (uncorrected) AIC to



17

account for situations with relatively few data samples [20]. To assess the final
model quality an additional test data set is required as described in more detail
in [96]. Other approaches for the determination of the optimal model complexity are,
among others, cross-validation, multi-objective optimization strategies or statistical
tests, which are also described in [96].

2.3 Local Model Networks

The basic idea of LMNs is based on a divide-and-conquer strategy. One whole
problem is subdivided into smaller problems that can be solved almost indepen-
dently [94, 95]. LMNs employ local models within a basis function network [95]
and can be seen as an extension of normalized radial basis function (NRBF) net-
works that fulfill the partition of unity [70]. See [103, 83, 45] for more details about
NRBF networks. The weights of each basis function are simply replaced by local
models. This idea has been suggested several times in the literature with chang-
ing names and different terminologies. Mixtures of local experts [63, 71], growing
multi-experts networks [82] or receptive field weighted regression [127, 114, 115]
are some of the names that mean basically the same model type. The methods of
Takagi and Sugeno [129, 128, 44] can also be interpreted as LMNs with fuzzy inter-
polation between local affine models. A subcategory of LMNs are piecewise affine
models [124, 41]. As the name indicates, the local models are of affine type and
usually the validity functions are hard-switching, such that discontinuities between
neighboring local models are possible [41]. The terminology in this thesis is geared
mainly to the one used in [94, 95] and [100, 96, 97]. Despite the variety of publica-
tions dedicated to LMNs, one special property of this model type is rarely exploited.
This property concerns the possibility to distinguish two types of input spaces for
LMNs since the input variables on which the local models and the validity functions
operate can be completely different. In [96] implications of the two arising input
spaces are discussed in detail. One main goal of this thesis is to exploit this property
in an input selection context, such that the best subsets of variables for the two input
spaces are determined automatically.

Since LMNs can be expressed in a basis function context, the model output ŷ is
calculated as sum of M so called local models ŷi weighted with their validity func-



18 2.3 Local Model Networks

tions Φ:

ŷ =
M∑

i=1
ŷi(x)Φi(z) . (2.9)

As indicated in (2.9), the local models can depend on other variables than the
validity functions. The vectors x and z consist of subsets of all physical inputs
u = [u1 u2 · · · up], with p being the number of physical inputs:

x ⊆ u and (2.10)
z ⊆ u . (2.11)

The physical inputs contained in x and z are completely independent, i.e. they can
be completely distinct (x ∩ z = ∅), identical (x = z) or anything in between. From
these definitions two independent input spaces arise, i.e. the x-input space and the z-
input space. Figure 2.5 illustrates this separation into two classes of input variables
for LMNs in contrast to a general nonlinear model. In a fuzzy interpretation the
inputs contained in the vector z are in the rule premises (IF part) and the inputs
contained in the vector x are in the rule consequents (THEN part). The previous
explanations only address static models. However, an extension for the modeling
of dynamic systems pursuing the external dynamics approach (see Section 2.1) is
straightforward. Basically the physical inputs u in (2.10) and (2.11) have to be
replaced by the dynamic model inputs ϕ from (2.5).

The local models can in principle be of any model type. Often linearly parameter-
ized local models are chosen such that their parameters can efficiently be estimated

general model

premises

consequents

u1

u2

...

up

ŷ

z1
z2...

zpz

x1
x2...

xpx

ŷ

Φi(z)

Figure 2.5: For LMNs the inputs can be assigned to the premise and/or consequent
input space according to their nonlinear or linear influence on the model
output [97]



19

by some sort of least squares (LS) optimization technique. The validity functions
describe the regions where the local models are valid; they represent the contribution
of each local model to the output [97]. For a reasonable interpretation of LMNs it
is mandatory that the validity functions form a partition of unity [97]:

M∑

i=1
Φi(z) = 1, ∀z . (2.12)

If the partition of unity holds, the fraction contribution for local model i is Φi. To
the knowledge of the author there exists no linearly parameterized mathematical
description of the validity functions. As a result either heuristics or nonlinear opti-
mization techniques have to be applied in order to determine the parameters of the
validity functions. The determination of all parameters, i.e. the local model param-
eters and the validity function parameters, can be achieved via different algorithms.
In this thesis two prominent algorithms are utilized, which are the LOcal LInear
MOdel Tree (LOLIMOT) and the HIerarchical LOcal MOdel Tree (HILOMOT).

The LOLIMOT algorithm [99, 96] uses a heuristic to incrementally grow LMNs. In
each iteration the number of local models is increased by one. Therefore one already
existing local model is divided into two new local models, see Fig. 2.6. The worst
performing local model (gray areas in Fig. 2.6) is determined and chosen for further
subdivisions. All splits orthogonal to one of the input space axes going through the
center of the worst performing local model are tested (dashed lines in Fig. 2.6). The
split leading to the best performance of the global model is conducted and the next
iteration starts again with the determination of the worst performing local model.
Then the procedure continues until some termination criterion is fulfilled, e.g. a de-

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration

u1

u2

initialization best split best split best split

z1 z1

z1

z2 z2

z2

z1

z2

z1

z2

z1

z2

z1

z2

Figure 2.6: LMN structure optimization with LOLIMOT for a 2-dimensional z-input
space



20 2.3 Local Model Networks

manded model quality is reached or the generalization performance deteriorates. All
subdivisions together are also called partitioning of the input space. Each subdivi-
sion creates one new validity function in (2.9). In case of the LOLIMOT algorithm,
the validity functions are normalized Gaussians and the local models are polynomials
of degree one (affine models).

The HILOMOT algorithm [97] is an extension of LOLIMOT in order to deal with
high-dimensional input spaces more effectively. Important preliminary work for
HILOMOT can be found in [18, 105, 37]. In the HILOMOT algorithm, the va-
lidities Φ are constructed by hierarchically linking sigmoid functions Ψi and/or their
complementary functions Ψ̃i in a multiplicative way as visualized in Fig. 2.7. The
resulting structure can be represented by a binary tree, see Fig. 2.7a, where each
circle corresponds to a node; nodes that are not further split are called leafs and
represent the validity functions. Except for the root, each node has a so-called par-
ent to which it is connected and which is located one hierarchy level closer to the
root. Figure 2.7b visualizes the multiplicative construction of the validity functions.
The former validity function Φ2 (and parent node or split) is further split, leading
to the new validity functions Φ4 and Φ5. Details about sigmoid splitting functions
and their mathematical description follow in Chapter 3.

The HILOMOT procedure equals the one of LOLIMOT, but one more split is tested
and subsequently a nonlinear optimization is performed additionally in each itera-
tion. The additional split to be tested goes through the center of the worst performing
local model and has the same orientation as the parent split. Through the nonlinear

1

2 3

4 5

Root

Ψ2

~Ψ1 Ψ1

~Ψ2 Φ3 = Ψ1

Φ4 = Ψ1 Ψ2
~ ~ Φ5 = Ψ1 Ψ2

~

(a) Binary tree
0 1
0

1 Φ2

Φ3Φ4 Φ5

z

Φ i

(b) Validity functions

Figure 2.7: Hierarchical binary tree (a) together with the corresponding validity func-
tions (b)



21

optimization the location and orientation is adjusted in order to improve the model
performance. Only the current split is optimized, all already existing splits are kept
unchanged. Figure 2.8 visualizes the LMN structure optimization with HILOMOT.

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration

u1 u1
u1

u1

u2 u2 u2

u2 u2 u2

initialization

opt.
u1

u2

opt. opt.

z1 z1 z1 z1

z1 z1 z1

z2 z2 z2

z2 z2

z2

z2

Figure 2.8: LMN structure optimization with HILOMOT for a 2-dimensional z-input
space

2.4 Input Selection

To face ever increasing accuracy demands in the real world, the number of variables
that are considered to be important or can be manipulated has grown over the past
decades. In general, a priori there is no information how useful which input variables
are to model a certain kind of process. The term useful is chosen to make clear, that
the best input variable subset regarding to model accuracy might not necessarily
include all physically relevant input variables as stated in [76]. Additional input
variables worsen the effects summarized under the principle „curse of dimensional-
ity“, see Sec. 2.2. The variance error of the model is increased and the coverage of
the input space with data samples becomes sparser. The question is, whether these
negative effects are overcompensated by the information gain obtained through the
corresponding input. However, there might even be input variables that have no
relevance at all or that might be redundant [131]. Irrelevant input variables have no
influence on the target variable at all, because there is no cause-and-effect connec-
tion. Redundant input variables influence the output variable but they are highly
correlated to other input variables, such that the information carried by them is re-
dundant. In this case incorporating just one of all highly correlated input variables



22 2.4 Input Selection

leads to a better bias/variance tradeoff. In summary, the reduction of the input
space dimensionality of the model aims to

• improve the reliability and accuracy of the model by decreasing its variance
error [27, 131, 93],

• reduce the time for model construction [64] and evaluation (once the input di-
mensionality reduction is finished - the determination of the best input variable
subset corresponds to additional effort), and

• make the process under investigation more concise and transparent [29, 50].

There are three common input selection approaches which can be categorized into
filter, wrapper, and embedded methods as stated in [51, 81, 138]. The main difference
between filter and wrapper methods is the criterion used to evaluate merits of specific
input subsets. Wrappers use a training algorithm as a black box and wrap the
input selection around it [74]. The evaluation criterion is directly related to the
performance of the resulting model. In contrast to that, filter methods do not rely
on any model [111, 112, 69]. Often correlation or similarity estimates are used
as mentioned in [52, 131]. Embedded methods utilize model-specific or training-
algorithm-specific properties to find good input subsets as stated in [51, 131].

Formally the problem of input selection can be expressed as an optimization task,
where the generalization performance PG of a model should be maximized over all
possible subsets from potential inputs P:

maximize
u

PG(u) (2.13)

subject to u ⊆ P .

This is a combinatorial, nonlinear, and discrete optimization problem. Wrapper
and embedded methods use criteria suited to measure the predictive power of a
model directly, e.g. cross-validation or as suggested by Sindelar [122] the AICc. Due
to the absence of a model, filter methods need to use an intermediate criterion to
approximate the generalization performance of potential models. In some cases even
an input subset with less predictive power is preferred in favor of a more concise
representation [29].

In order to find the best subset of inputs a feasible search strategy has usually to
be applied. As stated by [131], trying out all possible input subsets would be the
ideal approach but is by no means feasible even for a moderate number of potential



23

inputs p. Prominent search strategies include backward elimination (BE), forward
selection (FS), and genetic algorithms.

A noteworthy approach to input selection that might be categorized as a wrapper
technique is based on regularization methods and does not need a particular search
strategy. The loss function to be minimized is extended by a regularization term, that
penalizes nonzero model parameters associated with specific inputs. By increasing
the regularization parameter, the number of selected inputs decreases automatically.
Well known approaches include, among others, least absolute shrinkage and selection
operator (LASSO) [132] and the elastic net [144].

2.5 Design of Experiments

Measured or simulated data plays the key role in experimental modeling. For the
collection of data there is always effort necessary e.g. time, financial and/or material
resources. The goal of DoE techniques is to use available resources in the most
efficient way [39]. Some terms are defined in the following which are supported by the
illustrations depicted in Fig. 2.9. The design space is spanned by all physical inputs.
There might be infeasible regions in the design space due to restrictions that might
arise from constructive, energy or any other limitations. Figure 2.9a exemplary shows
the feasible region of a two-dimensional design space. A design point specifies values
for each input as depicted in Fig. 2.9b. For this combination of input values, the
target or output values have to be determined through measurements or simulations.
The experimental design contains all design points, see Fig. 2.9c. The final data set

u1

u2

feasible
design
space

(a) Design space

u1

u2

design
point

v1

v2

(b) Design point

u1

u2

(c) Experimental design

Figure 2.9: Exemplary illustration of a design space (a), a design point (b) and a
design of experiments (c)



24 2.5 Design of Experiments

consists of the experimental design together with all measured/simulated output
values. DoE techniques are used to determine the locations of all design points of an
experimental design. Through these techniques the amount of measurements should
be kept at a necessary minimum.

In principle there are two ways for the determination of the DoE which are faced in
Fig. 2.10. If a passive learning strategy is pursued, all points contained in the DoE
are fixed and known before the first measurement is carried out. Typical designs
for passive learning strategies comprise amongst other things (fractional) factorial
and central composite designs, see [90] for more details. Often experimental designs
following the passive learning strategy are optimized according to some optimality
criterion, see [40, 1, 39] for common criteria, like e.g. D-optimality (minimization of
the model’s parameter variance), G-optimality (minimization of the model’s output
variance), etc.

In case of an active learning strategy the experimental design is not known com-
pletely a priori. Information gathered through already obtained measurements is
used to select additional design points. In the context of active learning these adap-
tively determined design points are often called queries. As an example for the
usefulness of active learning strategies, Clarke [29] uses logistic regression. In this
field observations are needed where the sigmoidal functions are steep. Especially in
high-dimensional input spaces hitting such regions is very unlikely if no information
from already existing measurements is utilized. Active learning strategies have the

novel 
input

predicted 
output

Passive learning

Training 
set

Learning 
algorithm

Final 
model

Active learning

Training 
set

Learning 
algorithm

Final 
model

novel 
input

predicted 
output

Process

new output(s)

query or queries

Figure 2.10: Comparison of passive and active learning strategies



25

potential to achieve the same model quality with significantly less data compared to
passive learning strategies, as stated e.g. in [30, 31, 32, 84]. Active learners can be
distinguished by their choice of the model and query strategies, i.e. how they choose
the next query. A good survey on possible query strategies for active learners is
given in [120].

2.6 Metamodeling

Because some of the applications presented in Chapter 5 incorporate metamodels,
a short introduction to metamodeling is given here. As stated in [87], metamodels
try to describe the true input/output relationship of deterministic computer sim-
ulations. Therefore, a metamodel is a computationally inexpensive “model of a
model”, that tries to approximate a computationally expensive simulation with high
accuracy [121]. The decrease of computational complexity offers the possibility to
intensively investigate a wide range of aspects. Typical application scenarios for
metamodels are optimization tasks, where they substitute e.g. finite element method
(FEM) or computational fluid dynamics (CFD) simulations, leading to the research
field of metamodel-based design optimization (MBDO). Furthermore metamodels
can be utilized to collect and visualize information about the process under investi-
gation.

Figure 2.11 shows the process of generating a metamodel. The computationally
expensive CFD simulation for the calculation of the efficiency of different impeller
designs of centrifugal fans is chosen as an example for metamodeling. At first an
experimental design is necessary, specifying which impeller designs should be CFD
simulated in order to generate a training data set. This data set is then passed
to a training algorithm following a black-box modeling approach. Arbitrary model
types can be used for the metamodeling task. Prominent models include different
types of artificial neural networks, Gaussian process models, splines, etc., see [6, 28].
Throughout this thesis only LMNs are used, see Section 2.3 for details.

2.7 Static Function Generator

During the development of methods and algorithms situated in the field of data-
driven techniques it is always difficult to test new ideas. For the demonstration



26 2.7 Static Function Generator

Different impeller designs

CFD simulations

Results
e.g. efficiency

Training
algorithm

Metamodel

Design parameter

Figure 2.11: Metamodeling procedure for the substitution of computationally expen-
sive CFD simulations

of strengths and weaknesses of new algorithms an arbitrary amount of synthetic
examples would be of great help. In contrast to typical real-world or simulation data
of specific applications, this offers the possibility to easily vary important factors
such as:

• amount of data,

• dimensionality (number of inputs),

• strength of nonlinearity,

• data distribution,

• noise level, etc.

Furthermore the generation of multiple data sets of arbitrary size, e.g., for train-
ing, validation, testing is no problem. DoE and active learning strategies can be
investigated nicely which is completely impossible for fixed data sets.



27

Infinite possibilities exist for building a function generator and there exists no overall
“best” solution. Extremely few proposals for a function generator can be found in
the literature. One very primitive approach has been made in the context of the
massive online analysis (MOA) project [14] which is based on a random radial basis
function network. A much more sophisticated approach proposed by Friedman [47]
is based on additive Gaussians which gives an unfair advantage to all algorithms
utilizing Gaussian kernels (typically used in support vector machines, radial basis
function networks, Gaussian process models, etc.). The function generator used
for investigations in this thesis is proposed in [11] and is meant to mimic static
nonlinear regression problems. In contrast to other proposals, it is able to mimic
saturation effects that often naturally arise in physical systems. Additionally a wide
range of nonlinear characteristics can be generated and is controlled by very few
parameters. However, the function generator is not intended to mimic a specific
considered process. It is a generic way to generate test problems.

The function generator is based on randomly generated polynomials. For a p-dimen-
sional input space, a polynomial arises from the sum of Mpoly monomials according
to the following equation:

g(u1, u2, . . . , up) =
Mpoly∑

i=1
ci · (u1 − si1)γi1 · (u2 − si2)γi2 · . . .

· (up − sip)γip . (2.14)

Each monomial is a product of powers of variables with nonnegative integer expo-
nents and a coefficient ci. Here, these variables are the physical inputs uj, j =
1, 2, . . . , p shifted by the randomly generated values sij with i = 1, 2, · · · ,Mpoly. The
shifts sij are drawn from a uniform distribution U [0, 1], whereas the coefficients ci
originate from a normal distribution N (0, 1). The physical input values should be
normalized to the interval [0, 1], such that all bases uj − sij lie in the interval [−1, 1]
after the shifts sij are subtracted. The powers γij are non-negative integer values
that are yielded by taking the floor of values coming from an exponential distribution
with expected value µ. Therefore the strength of the nonlinearity is determined via
two user-specified values Mpoly and µ.

An optional extension is the transformation of the resulting polynomials with a
sigmoid function:

h(u1, u2, . . . , up) = 1
1 + exp(−α · g(u1, u2, . . . , up))

. (2.15)



28 2.7 Static Function Generator

This yields functions that have the potential to possess saturation characteristics,
which might be desired in order to mimic many typical real-world applications. The
tuning parameter α determines the probability of saturation effects. Figure 2.12
shows exemplarily three two-dimensional polynomial functions originating from this
function generator in the left column. The right column of Fig. 2.12 displays the
sigmoidally saturated counterparts with α = 10. As can be seen, the original poly-
nomials are more or less deformed, depending on the output range of g(·). Note that
for Fig. 2.12 all final output ranges have been scaled to the interval [0, 1]. A com-
parison to the function generator proposed by Friedman in 2001 [47] can be found
in [10].

During investigations for this thesis one weakness of the polynomial-based function
generator described in this section was observed. For relatively high-dimensional
input spaces, the way the polynomial functions are created is very likely to lead to
almost constant functions. With an increasing input dimensionality the number of
bases in each of theMpoly monomials increases linearly and therefore more exponents
have to be drawn. This increases the chance to obtain a high value for at least some
of the exponents in each of the Mpoly monomials, see (2.14). High values of the
exponents are critical, because all bases uj − sij lie in the interval [−1, 1] and the
expression (uj−sij)γij tends to zero if |(uj−sij)| < 1. This leads to counter-intuitive
results if the expected value of the exponential distribution is chosen to be µ > 1 in
order to create more complex functions. To circumvent this weakness, the number
of monomials Mpoly has been increased to at least 20 and the standard deviation of
the test function’s output is tested on a large data set (N = 105) originating from a
uniform distribution. The latter step is utilized to detect and discard almost constant
test functions. Through the increased number of terms the probability that allMpoly

terms become zero at the same time is decreased. In the case that the standard
deviation of the output of a generated test function is below 0.01 an alternative test
function is randomly generated.

An idea to improve the function generator in order to overcome the above described
weakness systematically is to use the following modification of (2.14):

g2(u1, u2, . . . , up) =
p∑

i=1



Mpoly∑

j=1
cij

i∏

k=1
b
γijk
ijk


 . (2.16)

Already known symbols from (2.14) maintain their meaning. The only new symbol



29

0 0.5
1

0
0.5

1
0

0.5

1

u1u2

y

0 0.5
1

0
0.5

1
0

0.5

1

u1u2

y

0 0.5
1

0
0.5

1
0

0.5

1

u1u2

y

0 0.5
1

0
0.5

1
0

0.5

1

u1u2
y

0 0.5
1

0
0.5

1
0

0.5

1

u1u2

y

0 0.5
1

0
0.5

1
0

0.5

1

u1u2

y

Figure 2.12: Two-dimensional polynomial example functions (left column) and their
sigmoidally saturated counterparts (right column)

is an abbreviation for the bases:

bijk = ul − sijk , (2.17)

where index l determines which of the p inputs should be used with equal proba-
bility for the particular basis. For one of the Mpoly monomials or a fixed value of
j, respectively, i different inputs are selected by drawing values for l without re-
placement. The number of bases raised to the powers γ that are multiplied within
one monomial is determined by the outer-sum-variable i. Thus, the originally pro-
posed function generator from (2.14) is obtained if the outer-sum would start not at
i = 1 but at i = p. Compared to the original function generator, this incorporates
guaranteed low-order interactions, which are not prone to the weakness described
in the last paragraph. The way the modified function generator works is related to
the structure of functional analysis of variance (ANOVA) models, where the predic-



30 2.7 Static Function Generator

tion is composed of a sum of functions describing the main effects (functions of one
variable) and interactions of two and more variables. More details about ANOVA
models can be found in [46, 58]. Note that the modified function generator is just a
proposal and has not been used for this thesis.



31

3 Input Selection Using Local Model
Networks

The main goal of this thesis is to weaken the effects of the curse of dimensionality.
In this chapter input selection methods in combination with local model networks
(LMNs) are utilized to pursue this goal. As already described in Section 2.4, input
selection methods try to find subsets of input variables that lead to the best possible
bias/variance tradeoff. Advantages due to omitting input variables are:

• Fewer inputs (might) lead to a better bias/variance tradeoff.

• Fewer inputs lead to a better interpretability.

• The curse of dimensionality is weakened. Comparable model accuracies can be
achieved with significantly fewer measurements.

When combined with LMNs additional advantages arise due to the possibility to
automatically separate linear from nonlinear effects (as will be discussed in more
detail in the next paragraph), such as:

• The number of variables contained in the x- and z-input space can be lim-
ited to the necessary minimum individually, leading to a possibly even better
bias/variance tradeoff compared to a general nonlinear model.

• Possibility to separate linear and nonlinear effects when using local affine mod-
els.

• The design of experiments can be adjusted to exploit the knowledge about the
linear and the nonlinear effects.

The main disadvantage caused by the input space separation regards the increased
complexity due to the fact of having two input spaces. Input selection methods have
to find good input subsets for both the x- and z-input space. In fact the number of



32

potential inputs to choose from is virtually doubled because each process input can
be assigned to each input space individually.

The possibility to separate linear from nonlinear effects is a direct consequence of
the ability of LMNs to separate the input space into a x- and a z-input space as
visualized in Fig. 2.5. Variables contained in the x-input space are used for the local
models (rule consequents) whereas variables contained in the z-input space belong
to the validity functions (rule premises). If the local models are of affine type, the
LMN is only able to follow a change in the slope of a process by switching to another
local model. If some variables affect the process output only in an affine way, these
variables are not needed in the z-input space because the local models are able to
capture their effects. To illustrate this, an artificial process following the equation

y(u1, u2) = 0.2
1.2− u1

+ 0.8u2 , (3.1)

is shown in Fig. 3.1a together with three affine local models. From (3.1) it is already
clear, that input u2 only has a linear effect on the process output whereas input u1

contributes to the nonlinear process behavior. This can also be seen in Fig. 3.1. The
affine local models are able to follow the process exactly in the u2-direction. In order
to follow the slope changes along the u1-direction a partitioning along the u1-axis is
necessary. The validity functions Φi belonging to the local models from Fig. 3.1a are
shown in Fig. 3.1b. It is easy to see that input u2 has no influence on the validity
functions and can therefore be omitted for the description of the partitioning. In this
example necessary inputs for the x- and z-input space are x =

[
u1 u2

]
and z = u1,

respectively.

0 10

1
0

1

processlocal
models

u1

u2

y

(a) Process with local models

10

1
0

1

u1

u2

Φ
i

(b) Partitioning

Figure 3.1: Artificial process with one nonlinearly influencing input (u1) and one
linearly influencing input (u2) together with three local models of an
LMN (a) and its partitioning (b)



3 Input Selection Using Local Model Networks 33

Besides the rather academic process from (3.1) a combustion engine with a variable-
length intake manifold can also serve as an example for which the separation into
x- and z-inputs is useful. The position of the swirl flap of the variable-length intake
manifold changes properties of the dynamic system. As shown in Fig. 3.2 the position
of the swirl flap changes the intake path. Through the intake elongation properties
of the system obviously are subject to change, like time constants, gains, dead-times,
etc. However, dynamic models describing the system for either an opened or closed
swirl flap might not explicitly depend on the swirl flap position. As a result of this,
an LMN describing the variable-length intake manifold system needs the swirl flap
position only in the z-input space, not in the x-input space.

Another point of view is the following. The variables contained in the z-input space
define an operating point for which a specific and possibly affine local model is valid.
The variables that define an operating point might not be needed to calculate the
output of the corresponding local model. It is assumed that especially for dynamic
models the number of z-inputs typically can be kept small. In contrast to that, the
number of x-inputs might be relatively large in order to describe the dynamics of
the local model adequately.

Mainly three different methods for input selection using LMNs are developed and
investigated in more detail throughout the rest of this chapter. For all methods
specifically designed test processes serve as benchmarks which are introduced in Sec-
tion 3.1. Section 3.2 deals with a mixed wrapper-embedded input selection method.
It utilizes existing training algorithms and wraps the input selection around it, but
simultaneously exploits the LMN structure to separate the linear from the nonlinear
effects. Section 3.3 elaborates a regularization-based input selection method through
an extension of the HIerarchical LOcal MOdel Tree (HILOMOT) algorithm. Sec-

(a) Swirl flap open (b) Swirl flap closed

Figure 3.2: The position of a swirl flap in a variable-length intake manifold deter-
mines the intake path (gray-shaded regions)



34 3.1 Test Processes

tion 3.4 presents an embedded input selection method that extracts information
about the nonlinearity of a process directly from the partitioning of the z-input
space. Eventually, Section 3.5 deals with a visualization technique that allows to in-
spect dependencies between input variables and the output even for high-dimensional
input spaces. This visualization technique is applicable to any type of model and is
therefore not restricted to the class of LMNs.

3.1 Test Processes

Test processes are used to demonstrate the abilities of presented input selection
approaches. The focus lies on the possibility to distinguish between the x- and z-
input space and the resulting input selection schemes that are depicted in Fig. 3.9.
Throughout this chapter only local affine models are used, such that a distinction
between linearly and nonlinearly influencing inputs is possible. As discussed in the
introduction of Chapter 3, linearly influencing variables have to be included in the
x-input space and nonlinearly influencing variables have to be included in the z-input
space of an LMN in order to describe the corresponding process adequately. The
test processes are designed such that all possible scenarios for the assignment of the
physical inputs occur:

1. Physical inputs that are important only for the x-input space,

2. physical inputs that are important only for the z-input space,

3. physical inputs that are important for both the x- and z-input space, and
finally

4. physical inputs that are not important for any of the two input spaces.

While being able to cover all of the above listed scenarios, the test processes are
kept as simple as possible to enable for an easy understanding. The presented input
selection approaches have to find the correct assignments of the physical inputs to
the two existing input spaces. Specific values in test processes are chosen to illustrate
e.g. variable importance or constraining the gain, etc.



35

Test Process One (TP1)

The first test process depends on four inputs, consists of three single functions that
are summed up and follows the equation:

y(u1, u2, u3, u4) = f1(u1, u2) + f2(u3) + f3(u4)

= 0.1
0.08 + 0.5(1− u1) + 0.5(1− u2) + 0.8u3 + u4 (3.2)

Input u4 corresponds to noise which is normally distributedN (0, 0.025) and therefore
is important for neither the x- nor the z-input space. The values of all other inputs
are assumed to lie in the interval [0, 1]. From (3.2) it is easy to see that inputs u1

and u2 are interacting and influence the output in a nonlinear way. Both inputs are
therefore important for both the x- and z-input space. Because input u3 has just a
linear influence, it is only needed in the x-input space. Functions f1 and f2 as well as
one realization of the output of function f3 are shown in Fig. 3.3. The only scenario
that is missing in test process one (TP1) is scenario 2 - a variable important only
for the z-input space - but this will be covered in the second test process.

0 0.5 10
0.5

1
0

0.5

1

u1
u2

f 1

(a) Function f1(u1, u2)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ui

f 2
,f

3

f2
f3

(b) Functions f2 and f3

Figure 3.3: Function f1 (a) and the single functions f2 as well as f3 (b) of TP1

Test Process Two (TP2)

The second test process consists of two different planes which are shown in Fig. 3.4a
and 3.4b. Which of the two planes is currently valid is defined by the values of



36 3.1 Test Processes

0 0.5
1

0
0.5

1
−2

0
2

u1u2

f 1
(u

1,
u

2)

(a) Function f1

0 0.5
1

0
0.5

1
0
2
4
6

u1u2
f 2

(u
1,

u
2)

(b) Function f2

0 u3

0

u4

1

1

f1 is valid

f2 is valid

(c) Operating point variables

Figure 3.4: Operating points (a) that define when function f1 (b) and function f2
(c) are valid for TP2

two operating point variables as shown in Fig. 3.4c. Note that the operating point
variables and the variables on which functions f1 and f2 depend are different ones.
The operating point variables are discrete and are either equal to 0 or 1. Variables
u1 and u2 are continuous and lie in the interval [0, 1]. Mathematically the output of
test process two (TP2) can be calculated according to the following equation:

y =




f1(u1, u2) for u3 = 1 and u4 = 1

f2(u1, u2) else
(3.3)

with
f1(u1, u2) = −3u1 + 2u2 + 1 and
f2(u1, u2) = 3u1 + 2u2 + 0.5 .

For TP2 the variables u1 and u2 are important to be included only in the x-input
space of an LMN whereas variables u3 and u4 are important to be included only in
the z-input space.

Test Process Three (TP3)

The third process is specifically designed to test the abilities of the embedded input
selection approach presented in Section 3.4. Test process three (TP3) follows the
equation

y(u1, u2) = 0.1
0.08 + 0.73(1− u1) + 0.27(1− u2) (3.4)



37

and is shown in Fig. 3.5. All inputs are important for both the x- and z-input space
of an LMN but can be qualitatively rated regarding their nonlinear influence. The
main direction of the nonlinearity is visualized in Fig. 3.5b and is orthogonal to the
contour lines. From this direction it is obvious that input u1 is more important to
capture the nonlinearity than input u2, because the angle between the u1-axis and
the nonlinearity is smaller than the angle between the u2-axis and the nonlinearity.
If the angle between the u1-axis and the nonlinearity would be zero degrees, there
would be no change in the process output in the u2-direction, meaning that u2 has
no nonlinear influence on the output values at all.

0

1

0

1
0

1

u1
u2

y

(a) TP3 - surface plot

0 10

1

Direction of
nonlinearity

u1

u
2

(b) TP3 - contour plot

Figure 3.5: Surface plot (a) and contour plot (b) of TP3

Test Process Four (TP4)

The fourth test process is a dynamic one and follows the equation:

y(k) =0.1867 arctan[u(k − 1)] + 0.8187y(k − 1) . (3.5)

The input values should be in the interval [−3, 3] in order to create sufficiently strong
saturation effects and therefore lead to fairly nonlinear behavior. Test process four
(TP4) is a so-called Hammerstein process, which is a static nonlinearity followed
by a linear dynamic system, as visualized in Fig. 3.6. Here, the nonlinearity is the
arctangent function succeeded by a first order time-lag system. As can be seen
from (3.5) the nonlinearity only affects the delayed input. Therefore, only this input
should be needed in the z-input space while the delayed output should only be needed



38 3.2 Mixed Wrapper-Embedded Input Selection Approach

arctan(·) 0.1876 q−1
1−0.8187 q−1

u(k) y(k)

Figure 3.6: Block diagram of the Hammerstein system used as TP4

in the x-input space. Figure 3.7a shows an excitation signal for TP4 and Fig. 3.7b
the corresponding process output.

All test processes are used throughout the remaining sections of this chapter to show
strengths and weaknesses of the presented input selection approaches. Whenever
they are used, the number of data samples, possibly added noise, the distribution
of the data, and other test conditions may vary and are mentioned explicitly. Note
that not each test process is investigated for each input selection approach.

0 200 400 600 800 1,000

−2

0

2

Discrete time k

u
(k

)

(a) Excitation signal u(k)

0 200 400 600 800 1,000

−1

0

1

Discrete time k

y
(k

)

(b) Process output y(k)

Figure 3.7: Excitation signal (a) and the response of TP4 (b)

3.2 Mixed Wrapper-Embedded Input Selection
Approach

In order to weaken the effects of the curse of dimensionality, a mixed wrapper-
embedded input selection approach is presented that fully exploits a unique property
of LMNs, namely the input space separation as explained in Section 2.3. As already
stated in Section 2.4, the task of input selection can be formulated as a combina-
torial, nonlinear, and discrete optimization problem. Due to the two arising input



39

spaces for LMNs, formulation (2.13) has to be changed to account for the increased
complexity:

minimize
x,z

J(x, z) (3.6)

subject to x ⊆ P

z ⊆ P .

J denotes an error measure of an LMN and therefore has to be minimized by choosing
good x- and z-input subsets from all potential inputs P. For the sake of simplicity
it should be assumed in the following that all potential inputs P correspond to
the physical inputs u unless otherwise mentioned. Note however, that in case of
dynamic models the potential inputs P actually consist of filtered versions of the
physical inputs u and outputs y combined in variable ϕ, see (2.5) in Section 2.1.
Theoretically (3.6) can be solved by just trying out all possible input subsets for the
x- and z-input space and using the input combination that leads to the best model
quality. Unfortunately this is not feasible even for a relatively moderate number of
candidate inputs. Assuming that this number, equivalent to the cardinality of P, is
np, there are 22np possible input subsets, because each element in P can be assigned
to the x- and z-input space individually. In order to find a solution in acceptable
time, it is quite common to use heuristic search strategies that explore only parts of
all possible input subsets, such as simple forward selection or backward elimination
as described in more detail in Section 3.2.2.2.

The mixed wrapper-embedded approach tackles the optimization problem (3.6) by
utilizing either LOcal LInear MOdel Tree (LOLIMOT) or HILOMOT as training
algorithm and wraps the input selection around it. This is not just a wrapper ap-
proach because the possibility of both training algorithms to cope with the input
space separation of LMNs is exploited. As illustrated in Fig. 3.8, a search strategy
assigns physical inputs u to the x- and z-input space individually. With the chosen
subsets x ⊆ u and z ⊆ u an LMN is trained. An evaluation criterion Jj is used to
assess the model performance that is achieved with the subsets xj and zj, belonging
to model j. The evaluation criterion using measured (y) as well as predicted (ŷ) out-
puts, might incorporate information about the model complexity and can be used to
guide the search for good x- and z-input subsets. Possible choices for the evaluation
criterion that assess the model accuracy are, e.g., the k-fold cross-validation error or
the validation error achieved on a separate data set not used for training.

As a result of the two input spaces, four different selection schemes are possible,



40 3.2 Mixed Wrapper-Embedded Input Selection Approach

consequents

premises

local model network

evaluation 
criterionxx

uu
zz

Φ
ŷ

y

iteration 
number j

j

j
j

j

model complexity

Jj
search 

strategy

Figure 3.8: Block diagram of the mixed wrapper-embedded input selection approach.
Because of the utilization of an LMN the search strategy has the possibil-
ity to assign the physical inputs u to the x- and z-input space individually.

which are visualized in Fig. 3.9 and explained in the following.

Linked x-z-input selection: The x- and z-input space contain the exact same phys-
ical inputs (x = z), which are a subset of all physical inputs as shown in
Fig. 3.9a. This selection scheme does not exploit the input space separability
and can therefore be done with any model type.

Separated x-z-input selection: The x- and z-input space are completely disjunct,
meaning that both might contain arbitrary subsets of the physical inputs (x ⊆
u; z ⊆ u), see Fig. 3.9b. In this case the number of inputs to choose from is
virtually doubled, because each physical input can be assigned to the x- and
z-input space individually.

x-input selection: Subsets of all physical inputs are only sought for the x-input
space, while the inputs contained in the z-input space are kept fixed. Either
the inputs for the z-input space have to be chosen by expert knowledge, a
former z-input selection, or simply all physical inputs are chosen for the z-
input space as shown in Fig. 3.9c.

z-input selection: Subsets of all physical inputs are only sought for the z-input
space, while the inputs contained in the x-input space are kept fixed. Either
the inputs for the x-input space have to be chosen by expert knowledge, a
former x-input selection, or simply all physical inputs are chosen for the x-
input space as shown in Fig. 3.9d.

Which of the presented selection schemes should be used depends on the problem at
hand. The most flexible one is the separated x-z-input selection for which the fewest



41

physical
inputs

search
strategy

consequents

premises

u

z ⊆ u

x = z

(a) Linked x-z-input selection

physical
inputs

search
strategy

consequents

premises

u

x ⊆ u

z ⊆ u

(b) Separated x-z-input selection

physical
inputs

search
strategy

premises

consequents

u

x ⊆ u

z = u

(c) x-input selection

physical
inputs

search
strategy

consequents

premises

u

z ⊆ u

x = u

(d) z-input selection

Figure 3.9: All possible selection schemes for the x- and z-input space

prior knowledge is necessary. For dynamic systems the z-input selection might be
of special interest if the structure of the dynamic (local) models is known from first
principles. In this case the z-input selection is able to reveal important inputs for
the definition of the operating points. The x-input selection as well as the linked
x-z-input selection are of rather low interest for this thesis. In case of the x-input
selection the influence of harmful inputs - in terms of the bias/variance tradeoff -
can be weakened by regularization techniques easily as a promising alternative to
selection. The linked x-z-input selection does not bring anything new scientifically,
because it is just a wrapper method that could be pursued with any model type.

Section 3.2.1 uses the test processes described in Section 3.1 and carries out first
investigations with the separated x-z-input selection. Through the artificial demon-
stration examples the abilities of the mixed embedded-wrapper input selection ap-
proach should be emphasized. In Section 3.2.2 extensive simulation studies based
on the function generator presented in Section 2.7 are performed to compare several



42 3.2 Mixed Wrapper-Embedded Input Selection Approach

search strategies and evaluation criteria.

3.2.1 Investigation with Test Processes

The mixed wrapper-embedded input selection approach is tested with TP1 and TP2
in this section. A separated x-z-input selection is carried out for both test processes
with backward elimination as the search strategy and Akaike’s information criterion
(AICc) as evaluation criterion. More details about backward elimination and the
AICc can be found in Section 3.2.2. HILOMOT serves as training algorithm for the
LMNs, which is described in Section 2.3.

Test Process One

As already described in Section 3.1 it is known a-priori which inputs are important
for the x- and z input space for TP1. In particular, inputs u1 and u2 are important for
both the x- and z-input space. Input u3 is only important for the x-input space, while
input u4 is only noise and is therefore not needed in any of the two input spaces. For
this investigation a maximin optimized Latin Hypercube (LH) design with N = 100
samples is generated. Since input u4 consists only of noise, no additional noise is
added to the outputs. This data set is used to train the LMNs and to calculate the
AICc values.

Figure 3.10 shows the result of the mixed wrapper-embedded input selection ap-
proach for TP1. The evaluation criterion is plotted against the number of inputs,
which is simply the added number of variables contained in the x- and z-input space.
Because the search strategy is a backward elimination, the graph can be read from
right to left. In between two subsequent AICc values the input that is discarded
in the corresponding backward elimination step is denoted. The index of the input
u indicates the removal from the x- or z-input space, respectively. In Fig. 3.10b
the subsets for a specific number of inputs are illustrated explicitly. For example,
if the number of inputs is four, the inputs contained in the x-input space are u1

and u3. The inputs contained in the z-input space are u1 and u2. This illustration
is not necessary for the backward elimination search strategy since the contained
information is already included in Fig. 3.10a. However, for other search strategies,
such as exhaustive search, this figure is necessary to represent the subsets belong-
ing to a specific number of inputs. Since lower AICc values correspond to higher



43

−1 0 1 2 3 4 5 6 7 8 9
−700

−600

−500

−400

−300
u3x

u1z

u2z

u1x
u2xu4z

u3zu4x

Number of Inputs

A
IC

c

(a) Evaluation criterion

1 2 3 4 5 6 7 8
u1x

u2x

u3x

u4x

u1z

u2z

u3z

u4z

Number of Inputs

In
pu

t

(b) Selected inputs

Figure 3.10: Evaluation criterion (a) and selected inputs (b) versus the number of
inputs for test process one

model qualities, the best LMN is obtained if five inputs are chosen. Three of these
inputs are contained in the x-input space (u1, u2, u3) and two are contained in the
z-input space (u1, u2), see Fig. 3.10b. Therefore, the optimal result according to
prior-knowledge is obtained.

Test Process Two

TP2 has also four inputs which are virtually doubled due to the separated x-z-input
selection. For this process u1 and u2 are important to be included only in the x-input
space while u3 and u4 are only necessary in the z-input space. As already described
in Section 3.1, u3 and u4 are discrete operating point variables that are either equal
to 0 or 1. The design of experiments (DoE) consists of four two-dimensional maximin
optimized LH designs, one for each possible combination of the two discrete inputs.
Each LH design contains 25 samples such that the total number of data samples is
N = 100. Zero mean white Gaussian noise is added to the process output such that
the signal-to-noise ratio (SNR) equals 20 dB.

Figure 3.11 shows the results for TP2. Again the expected result is obtained. The
best model quality is achieved with four inputs, yielding exactly the optimal solu-
tion. Remarkable in Fig. 3.11a is the continuous slight model improvement while
discarding superfluous inputs and the sharp drop in performance as soon as impor-
tant inputs are thrown out.



44 3.2 Mixed Wrapper-Embedded Input Selection Approach

−1 0 1 2 3 4 5 6 7 8 9

−600

−500

−400

−300
u4z

u3z

u1x

u2x

u4x u3x u1z u2z

Number of Inputs

A
IC

c

(a) Evaluation criterion

1 2 3 4 5 6 7 8
u1x

u2x

u3x

u4x

u1z

u2z

u3z

u4z

Number of Inputs

In
pu

t

(b) Selected inputs

Figure 3.11: Evaluation criterion (a) and selected inputs (b) versus the number of
inputs for test process two

In summary, it is shown that the mixed wrapper-embedded input selection approach
is able to assign variables to the x- and z-input space correctly for TP1 and TP2.
All types of variables occur in these two test processes. Variables that are important
in both the x- and z-input space, variables that are only important in one of the
two input spaces and variables that are unimportant for both input spaces. The
next section investigates the influence of the chosen search strategy and evaluation
criterion on the input selection result.

3.2.2 Extensive Simulation Studies

The goal of this section is to provide recommendations for the choice of a search strat-
egy in combination with an evaluation criterion. Investigated criteria are described
in more detail in Section 3.2.2.1 and incorporate the error on a distinct validation
data set, cross-validation, and Akaike’s corrected information criterion (AICc). In-
vestigated search strategies are forward selection (FS), backward elimination (BE),
an exhaustive search (ES), and a genetic algorithm (GA). All search strategies are
described in more detail in Section 3.2.2.2. Combinations of these search strategies
with evaluation criteria are compared in terms of the achieved model performance
and the computation time needed to find the presumably best subset of inputs. The
function generator described in Section 2.7 is used to randomly generate several
static test processes. With the help of the test processes training data sets and test
data sets are created. Input selection is performed only with the training data sets.



45

As a result a presumably best subset of inputs is found for each search strategy
in combination with a specific evaluation criterion. With the determined inputs a
model is trained and for reference its model performance is assessed with the help of
the test data set. The assessed model performances can eventually be compared.

The function generator is used to randomly generate 100 static test processes for
input dimensionalities p = 2, 3, . . . , 10 and training sample sizes of N = 100, N =
500, and N = 1000. The used training data sets are created by maximin LH designs
generated with the extended deterministic local search (EDLS) algorithm proposed
in [35] and briefly described in this thesis in Section 4.2.2. Zero mean white Gaussian
noise is added to the outputs of the training data sets such that the SNR equals
30 dB. For each input dimensionality one Sobol sequence is used for creating the test
data sets. The number of test data samples is N t = 105, independent of the input
dimensionality. No noise is added to the outputs in case of the test data sets.

For the investigations herein the most flexible selection scheme is used, which is the
separated x-z-input selection. Since all inputs can be assigned to both the x- and
z-input space, the number of inputs to choose from is virtually doubled as already
discussed in Section 3.2. HILOMOT is used as training algorithm to build the LMNs
with the subset of inputs selected by the particular search strategy, see Fig. 3.8 for a
block diagram of the whole input selection procedure. Local affine models are used
and the model complexities (number of local models) of the LMNs are determined
by Akaike’s corrected information criterion.

3.2.2.1 Evaluation Criteria

As already mentioned, the investigated evaluation criteria that are used to find good
subsets of inputs incorporate the error on validation data, cross-validation (CV), and
the AICc. Each evaluation criterion is shortly explained in the following.

Validation Data

The usage of a separate validation data set to assess the model quality has already
been mentioned in Section 2.2. Here, the error on the validation data set is only used
as evaluation criterion to guide the input selection. The amount of validation data is
chosen to be 20 % of the overall available training data. This means that in the CV



46 3.2 Mixed Wrapper-Embedded Input Selection Approach

and AICc cases, 100% training data is available while for the validation-error-based
criterion only 80% training data remains.

k-fold Cross-Validation

The number of folds for the k-fold CV is chosen to be k = 10 for this investigation
following the recommendations in the publications [19] and [75]. Besides the number
of folds, k represents also the number of runs that are necessary to assess the quality
of a model. In each run one model is trained with N − N/k data points that are
randomly selected. Errors of the trained model are calculated on the left-out N/k
data samples as visualized in Fig. 3.12. It is assured that each data sample is selected
only once for the model quality assessment throughout all runs. When all runs are
finished, all calculated errors on the left-out data points can be used to form a model
quality measure, like the normalized root mean squared error (NRMSE), see (2.6).
Since all data samples have been used for the model training as well as for the model
quality assessment, k-fold CV uses the available data very efficiently. The price to
be paid is the roughly k + 1 times higher computational cost. Note that after the
best subset of inputs is determined according to the 10-fold CV error measure, a
model is trained incorporating all available data.

Akaikes’s Information Criterion

Akaike’s corrected information criterion (AICc) is a combination of the error on
training data and an added complexity penalty as already described in Section 2.2.

1. Run:

2. Run:

k-th Run:

k:    Number of folds

N:   Number of samples 

3. Run:

Left-out data

Training data

Nk Nk Nk Nk

Nk:  Samples per fold (N/k)

Figure 3.12: Schematic procedure of the k-fold CV



47

Note that the complexity penalty is proportional to both the number of local models
and the number of inputs. Therefore, the AICc should be suited to compare models
with different input subsets and should be able find a good bias/variance tradeoff.

The advantage of the AICc and the CV as evaluation criterion compared to the usage
of a separate validation data set is that they use all available data for the training.
In contrast to the 10-fold CV the AICc is computationally much less demanding.

3.2.2.2 Search Strategies

Four different search strategies are compared, which are forward selection (FS), back-
ward elimination (BE), exhaustive search (ES), and a genetic algorithm (GA). FS
starts with an empty subset of inputs and adds one input in each iteration of the
search algorithm. Once one input is added it cannot be removed afterwards. In
each iteration all not yet selected inputs are tentatively tested to be added, a model
is trained, and the input leading to the best evaluation criterion is eventually se-
lected. This is done until all inputs are selected for the presented investigations in
this section.

In contrast to that, BE starts with all inputs and in each iteration of the search
algorithm one of the inputs is discarded from the input subset. Once an input is
removed from the subset, it cannot be added afterwards. To decide which input
variable should be removed at the current iteration, each of the remaining input
variables is tentatively discarded from the input subset and a model is trained.
The evaluation criterion for each removed input is calculated and the input, that
yields the best evaluation criterion is picked for removal at the current iteration.
For the investigations in this section, the search algorithm stops after all inputs are
removed.

The ES simply tries out all possible combinations of inputs. For each possible com-
bination a model is trained and the evaluation criterion is calculated. Because the
number of models that have to be trained grows exponentially with the number of
potential inputs, this search strategy is only used up to p = 5 inputs. Because the
separated x-z-input selection is used, the number of possible input combinations and
therefore the number of necessary models to be trained reaches already 22·5 = 1024.

The GA is a global optimization algorithm, meaning that it is theoretically capable
of finding the globally best solution of a nonlinear optimization problem [96]. The



48 3.2 Mixed Wrapper-Embedded Input Selection Approach

GA is inspired by natural evolution in which life forms evolve over generations in
order to adapt to drastically changing environmental conditions. GAs work with
populations of individuals, where each individual represents one solution to the op-
timization problem [88]. A so-called fitness function rates all individuals such that
better solutions get a higher score. This score is important for the selection process,
in which individuals have better chances to survive or to pass on parts of their genes
to the next generation the higher their fitness score is. In that way individuals evolve
over time to better solutions. Individuals selected to pass on their genes to the next
generation of individuals change because of mutation or recombination - other ge-
netic operators are not used for this investigation. More detailed information about
GAs in general can be found in [88] or [77].

Within this section, each individual represents one subset of inputs. Therefore, each
individual is a bit-string, containing just ones and zeros indicating if an input is
part of the subset (1) or not (0). This GA-typical binary coding is particularly
straightforward for combinatorial optimization tasks like input selection. For the
calculation of the fitness scores the evaluation criteria from Section 3.2.2.1 are used.
Note that for all evaluation criteria lower values are better and therefore get higher
fitness scores. The mutation rate is set to 0.1, while the recombination rate is set to
0.8. The population size is chosen to be five times the number of potential inputs.
The GA stops either after three generations without any improvement in the best
fitness score of all individuals or after a maximum calculation time of 24 hours.

FS and BE both follow a rather simple heuristic and finding the best combination of
inputs is by no means guaranteed. However, these search strategies are often used
because of their tractability and the reasonably good results that are achieved with
them. In case of ES the best combination of inputs is guaranteed to be included in all
subsets that are tried out. Nonetheless, the optimal subset might not be recognized
as the best combination of inputs if the used evaluation criterion fails to do so. As
mentioned in [110], one possible reason is overfitting. This does not mean that each
individual model overfits. It means that the selection itself induces overfitting. If the
number of different input subsets that are compared based on a specific evaluation
criterion becomes huge, chances increase to achieve the best score for an objectively
not optimal subset just by chance. Being a nonlinear global optimizer, the GA has
also the potential to find the best possible combination of inputs for the problem
at hand and should therefore be capable to produce the same results as the ES.
Anyhow, due to time limitations or other user-specified restrictions the results of the
ES and GA do not need to be the same.



49

3.2.2.3 A-Priori Considerations

Before the comparison starts, some thoughts are provided about what can be ex-
pected. Deviations from these expectations are considered to be interesting results
and worth to be discussed in some more detail. At first expectations about the
evaluation criteria are summarized.

Using validation data as evaluation criterion is considered to perform worst in
choosing good subsets of inputs. The number of samples used for the ac-
tual training is the smallest in this case. Additionally, the validation data
set is used very often which increases the danger in the selection procedure of
overfitting. The more models are tested on the validation data set, the more
likely it becomes to assess one of these models as good just by chance and not
because it has a really good generalization performance. This danger increases
with an increasing number of tested models. Therefore the risk of observing
this kind of overfitting is the highest for the ES and the GA search strategy.

The 10-fold cross-validation is considered to perform best in choosing good subsets
of inputs. The available data is utilized in the most efficient way. Because not
only one hold-out data set is used, the danger of overfitting should be far
smaller compared to the validation data set. Additionally, the generalization
performance is measured based on data not used for the training opposed to
just adding some complexity penalty as it is done in case of the AICc.

For the AICc as evaluation criterion it is hard to make an educated guess about
the expected performance in choosing subsets of inputs. On the one hand, the
AICc appears to be rather simple by just augmenting the error on training
data with a complexity penalty. On the other hand, this criterion shows very
good results in choosing an appropriate model complexity for LMNs as shown
in [56].

In case of the used search strategies it is expected that the BE finds on average
better input subsets than the FS, because all interactions between inputs of the test
functions are observable from the start. Especially in early stages of the FS these
interactions might be hidden and more inputs are presumably needed to cover them.
It is not straight away predictable if the rather simple greedy search strategies, which
are FS and BE, perform better than the more extensive ones, which are ES and GA.
On the one hand FS and BE are known to be less prone to overfitting [81], on the
other hand, a lot of possibly good input subsets are never explored. Here, a strong



50 3.2 Mixed Wrapper-Embedded Input Selection Approach

interdependency with the used evaluation criterion is likely to be present. Therefore,
no a-priori guess exists about the ranking of the used search strategies.

3.2.2.4 Comparison Results

The results of the extensive simulation studies are used to compare all possible com-
binations of search strategies and evaluation criteria regarding the obtained model
accuracies and required computation times. Additionally, the benefit of the mixed
wrapper-embedded input selection (MWEIS) approaches compared to using all avail-
able inputs is pointed out. Another result of these studies is the effective dimension-
ality of the used test functions created with the function generator. Therefore the
number of inputs that is actually chosen by the MWEIS approaches is reviewed.

The relative improvement RI defined as

RI = NRMSEall − NRMSEsubset

NRMSEall
, (3.7)

is used to demonstrate the benefit of the MWEIS approach compared to using all
available inputs. The NRMSE values are calculated on the test data, either with
all available inputs (index all) or with the subset suggested by one of the MWEIS
approaches (index subset). Because lower NRMSE values indicate better model
performances, positive RI values indicate improvements gained through the MWEIS
while deteriorations are indicated by negative RI values. The relative improvements
gained through the input selection are also used to compare all possible combinations
of search strategies and evaluation criteria with each other. The reference point is
always the accuracy of a model using all inputs and is therefore the same for all
MWEIS approaches. Thus, the biggest improvement corresponds to the best model
accuracy in absolute terms.

Figure 3.13 shows the median relative improvements of all MWEIS approaches for
all training data sizes and two input dimensionalities, which are p = 6 and p = 10.
The median is determined over the 100 different test functions. The shown input di-
mensionalities are chosen because the advantages of the MWEIS approaches become
clear from p = 6 on and increase with an increasing p until the highest improvements
are obtained with p = 10. For input dimensionalities lower than 6 (p < 6) the median
relative results look like Fig. 3.13c. No significant improvements are observable for
the 10-fold cross-validation and the AICc while the model accuracies with subsets
obtained with the validation error as evaluation criterion are deteriorated. In fact,



51

BE FS GA

AICc

10-fold CV

validation
error

−0.1 −0.05 0 0.05 0.1
Median relative improvement

(a) p = 6, N = 100
BE FS GA

AICc

10-fold CV

validation
error

(b) p = 10, N = 100

BE FS GA

AICc

10-fold CV

validation
error

(c) p = 6, N = 500
BE FS GA

AICc

10-fold CV

validation
error

(d) p = 10, N = 500

BE FS GA

AICc

10-fold CV

validation
error

(e) p = 6, N = 1000
BE FS GA

AICc

10-fold CV

validation
error

(f) p = 10, N = 1000

Figure 3.13: Median relative improvements for all combinations of search strategies
and evaluation criteria for input dimensionalities p = 6 and p = 10 with
training data set sizes N = 100, 500, and 1000



52 3.2 Mixed Wrapper-Embedded Input Selection Approach

subsets chosen by the validation error as evaluation criterion have almost never a
substantial advantage when compared to models using all inputs. The AICc for the
MWEIS turns out to be the best choice as evaluation criterion among the tested
ones. In most cases the model accuracies obtained with input subsets chosen by the
AICc and the 10-fold cross-validation are on the same level. The advantage of the
AICc increases with a decreasing input dimensionality and decreasing training data
sizes.

The BE and the GA are the best search strategies, even if the advantage compared
to the FS is quite small in most cases. No results of the ES are presented in Fig. 3.13,
since ES is only used for smaller input dimensionalities (up to p = 5). The results
obtained by the ES are comparable to the outcomes of the GA for input dimension-
alities p = 2, . . . , 5.

Unfortunately, it is not possible to make meaningful statements about the variations
from the median test errors for different combinations of search strategies and evalu-
ation criteria. There are two sources for the variations in the achieved test errors:

1. The 100 different test functions. Even if all MWEIS approaches would find
the optimal subset of inputs for each of the 100 test functions, there would
still be a certain amount of variation due to various complexities in the test
functions. The exact amount of variation can not be quantified and thus no
reference exists.

2. Possibly suboptimal subsets increase the range of achieved test errors and thus
the degree of variation.

For the comparison of different search strategies with different evaluation criteria only
the second source of variation is of interest. Since there is only one noise realization
for each test process, it is not possible to determine the variation that comes from a
specific combination of a search strategy with an evaluation criterion.

The required computation times of all MWEIS approaches are compared in Fig. 3.14
for input dimensionalities p = 2 and p = 10 with a training data size of N = 1000.
Note that Fig. 3.14a and Fig. 3.14b are both scaled logarithmic but differently.
Again, the median is taken over the number of different test functions. For the
shown data amount the highest computation times occur. In general, the required
computation time increases with an increasing input dimensionality as well as with
an increasing amount of training samples. As expected, the 10-fold CV requires
the highest computation times among all evaluation criteria. In general, using the



53

BE FS ES GA

AICc

10-fold CV

validation
error

1 3.16 10
Median computation time (min.)

(a) p = 2, N = 1000

BE FS ES GA

AICc

10-fold CV

validation
error

10 31.62 100
Median computation time (min.)

(b) p = 10, N = 1000

Figure 3.14: Required median computation times for all combinations of search
strategies and evaluation criteria for input dimensionalities p = 2 (a)
and p = 10 (b) with N = 1000

validation error as evaluation criterion requires slightly less computation time than
the AICc. Note that even though the maximum calculation time is limited to 24
hours, the highest median computation time is only 210 minutes (p = 10, N = 1000,
10-fold CV, GA). Since the maximum required computation time at all is 9.5 hours,
it can be concluded that the stopping criterion for all GA runs is always the number
of generations without any improvement in the best fitness score (chosen to be 3).

Typically the following ordering occurs for the search strategies regarding the re-
quired computation time in ascending order: FS, BE, ES, and GA. A remarkable
exception that can be seen in Fig. 3.14a occurs for p < 4 where the ES search strat-
egy requires the least computation time among all search strategies. This is due
to the fact that LMNs for all possible subsets of inputs can be trained simultane-
ously if enough CPU cores are available. In contrast to that the FS and BE search
strategies add/eliminate one input in each iteration. Until it is known which input is
added/discarded in the current iteration, no further results are calculated in parallel.
Waiting on these intermediate results leads to higher computation times even though
the computational effort is lower compared to the ES search strategy.

Figure 3.15 shows the median input subset size for all MWEIS approaches for selected
input dimensionalities and a training data set size of N = 100. Input dimensionality
p = 4 is selected to be shown because it is the lowest input dimensionality for which
differences in the chosen input subset sizes become clear. Then, the number of



54 3.2 Mixed Wrapper-Embedded Input Selection Approach

BE FS ES GA

AICc

10-fold CV

validation
error

5 6 7 8 9 10
Median input subset size

(a) p = 4, N = 100
BE FS ES GA

AICc

10-fold CV

validation
error

(b) p = 6, N = 100

BE FS ES GA

AICc

10-fold CV

validation
error

(c) p = 7, N = 100
BE FS ES GA

AICc

10-fold CV

validation
error

(d) p = 10, N = 100

Figure 3.15: Median values of the suggested input subset sizes of all combinations
of search strategies and evaluation criteria for input dimensionalities
p = 4, 6, 7, and 10 with N = 100

inputs that are chosen increases with an increasing input dimensionality until input
dimensionality p = 7. It is interesting to see that there is no significant increase
in the number of selected inputs if the input dimensionality is further increased,
compare Fig. 3.15c with Fig. 3.15d. It seems as if the effective dimensionality of
the test functions generated with the function generator saturates. Note that due
to the used separated x-z-input selection there are potentially 20 inputs that can be
selected if the input dimensionality is p = 10.

Qualitatively similar results are obtained for the other two investigated training
data set sizes N = 500 and N = 1000, but with generally bigger input subset sizes.
Figure 3.16 shows how the median subset size increases with the number of samples
for input dimensionalities p = [2, 3, 5, 8, 9, 10]. Median values are taken over the
100 different test functions with BE as search strategy and the AICc as evaluation
criterion. For rather low-dimensional input spaces the subset size does not further
increase with more available training data. For example, with a two-dimensional



55

100 500 1,000
4
5
6
7
8
9

10
11
12
13

Number of samples

M
ed

ia
n

su
bs

et
siz

e

p = 2 p = 3 p = 5 p = 8 p = 9 p = 10

Figure 3.16: Median subset sizes for different input dimensionalities over all 100 test
functions for BE as search strategy and AICc as evaluation criterion

input space (p = 2) a training data set size of N = 100 already covers the input
space well and therefore carries sufficient information such that in terms of a good
bias/variance tradeoff all beneficial LMN inputs could be selected. Therefore, no
more increase in the subset size can be expected if the number of samples is increased.
In contrast to that, the input space for p = 10 is almost empty in case of N = 100
samples. As a result the input subset size is kept rather small in order to achieve a
good bias/variance tradeoff. As more information becomes available, i.e.N increases,
the best bias/variance tradeoff is shifted to more complex models leading to bigger
input subset sizes.

Typically the lowest number of inputs is chosen by the FS and BE search strategies,
while GA chooses more inputs to be included in the suggested subset. The ES search
strategy is typically on the same level as FS and BE. Comparing the investigated
evaluation criteria, the ascending ordering regarding the number of typically chosen
inputs is AICc, 10-fold cross-validation, and the validation error.

In summary, the presented results lead to the recommendation of using the BE search
strategy combined with the AICc as evaluation criterion. The required computation
time is only lower if FS is used, while the achieved model accuracies are typically
among the best of all search strategies when BE is used. In some cases the GA
leads to slightly better model accuracies compared to the BE but therefore typically
chooses more inputs and requires more computation time. The AICc is recommended
as evaluation criterion because it leads to model accuracies that are only seldom



56 3.3 Regularization-Based Input Selection Approach

outperformed by input subsets selected by 10-fold cross-validation. The number
of chosen inputs is typically low compared to the other evaluation criteria and the
required computation time is also among the lowest.

3.3 Regularization-Based Input Selection Approach

A normalized L1 regularization for axis-oblique partitioning strategies is described,
which has been previously proposed by the author [12]. In contrast to commonly
used L1 regularization techniques, only the amount of obliqueness incorporated in
the input space partitioning is penalized. In principle, this approach can be applied
to any axis-oblique partitioning strategy based on nonlinear optimization techniques.
In this section the focus lies on an implementation for HILOMOT.

Axis-oblique partitioning strategies weaken the effects of the curse of dimensionality
significantly compared to axis-orthogonal partitioning strategies. However, the ad-
ditional flexibility comes along with an increased variance error. The normalized L1
regularization should account for the increased variance error and might be able to
determine the most important input variables. Since only the partitioning is affected
by the proposed regularization, only input variables in the z-input space are selected.
Additional effort is necessary to find the best subset of inputs for the x-input space,
e.g. a subsequent x-input selection.

The main idea of regularization-based input selection is to introduce a penalization
of high absolute values of the model parameters θ such that these are pushed towards
zero [132, 57]. Once a model parameter reaches zero, the input associated with it
can be discarded. The whole loss function that has to be minimized is compounded
of a part related to the model error e =

[
e(1) e(2) · · · e(N)

]T
and a part related

to the sum of absolute values of the model parameters θ:

JL1 = 1
N
eT (θ)e(θ) + λ||θ||1 . (3.8)

The regularization strength is determined by λ, with λ ≥ 0. By constantly increasing
the regularization parameter λ more and more inputs are discarded and the model
becomes less flexible. Typically, the regularization parameter λ is tuned such that
the generalization performance of the model is maximized. This corresponds to the
best bias/variance tradeoff.



57

Before details about the normalized L1 regularization are presented in Section 3.3.2,
more details about HILOMOT are provided in Section 3.3.1. These information
incorporate details about the validity construction and the corresponding splitting
parameters. Eventually, Section 3.3.3 demonstrates the abilities of the normalized
L1 regularization implemented for HILOMOT.

3.3.1 More Detailed HILOMOT Fundamentals

In the following some more details about the construction of the validity functions Φ
in HILOMOT are given. These information are necessary to understand the concept
of the regularization-based input selection approach. Note that this approach selects
only inputs in the z-input space. The validity of each local model generated with
HILOMOT is constructed with the help of sigmoid splitting functions:

Ψ(z) = 1
1 + e−κ(zT ·v−v0) . (3.9)

The splitting parameters are the offset term v0 and the vector v =
[
v1 v2 · · · vnz

]T

determining the distance from the origin and the direction of the split, respectively.
The steepness of a sigmoid function in the transition area is usually determined by
the norm of the vector that contains all splitting parameters v∗ =

[
v0 vT

]T
. This

is visualized in Fig. 3.17. In case of HILOMOT the parameter κ is introduced to
control the smoothness explicitly. Therefore the vector v∗ is always normalized to
a length of one. Because of the symmetric properties of Ψ(·), its complementary

0 10

1

increasing values
of κ

z

Ψ

Figure 3.17: Explanation of the smoothness of a sigmoid function



58 3.3 Regularization-Based Input Selection Approach

function can be written as:

Ψ̃(z) = 1−Ψ(z) = Ψ(−z) . (3.10)

The splitting functions and their complementary counterparts are linked in a mul-
tiplicative, hierarchical way in order to generate the validity functions of the LMNs
constructed with HILOMOT:

Φi(z) = 1 ·
∏

j∈Pi
Ψj(z) ·

∏

k∈P̃i

Ψ̃k(z) . (3.11)

The sets Pi and P̃i contain the indices of all splitting and complementary splitting
functions that have to be multiplied in order to get the i-th validity function. Fig-
ure 3.18 illustrates this construction with the help of a binary tree. Each circle
represents a node; nodes that are not further split are called leafs and correspond
to the validity functions with which the local models are weighted. All splitting
functions on the way from the root to a leaf have to be multiplied to obtain the final
validity function. Because of the chosen splitting functions the partition of unity

1

2 3

4 5

Root

Ψ2

~Ψ1 Ψ1

~Ψ2 Φ3 = Ψ1

Φ4 = Ψ1 Ψ2
~ ~ Φ5 = Ψ1 Ψ2

~

0 1
0

1 Φ1

Φ2 Φ3

z

Φ i

0 1
0

1 Φ2

Φ3Φ4 Φ5

z

Φ i

1

2

Root

3

~Ψ1 Ψ1

~Φ2 = Ψ1 Φ3 = Ψ1

Figure 3.18: Construction of the validities of LMNs generated with HILOMOT



59

holds automatically [97]. The first and second split of the input space partitioning
are shown in Fig. 3.18. Note that the validity function Φ1 corresponds to one globally
valid model and is therefore one everywhere in the z-input space.

The meaning of the parameters contained in v is illustrated for a two-dimensional z-
input space in Fig. 3.19. A sigmoid and its complementary counterpart are visualized
in Fig. 3.19a, while Fig. 3.19b shows the top-view on the z1-z2 plane together with the
split and the interpretation of the splitting parameters. The orientation of the split
is determined by the ratio of the splitting parameters v with respect to each other.
The split orientation is important for the LMN since it determines the direction in
which its slope is able to change if local affine models are used. In this case changes
in the slope of the LMN can only be realized by switching to another local model
and vector v points directly to the adjacent model. If one variable contained in
the z-input space has no nonlinear influence its corresponding splitting parameter is
zero. Figure 3.20 shows three splits corresponding to special cases of the splitting
parameters v. Two orthogonal splits are shown in Fig. 3.20a and 3.20c as well as one
split where all splitting parameter values are equal, here v1 = v2 shown in Fig. 3.20b.

If the obliqueness of a split should be penalized - as it is the goal of the normalized
L1 split regularization described in the following section - the sigmoid splitting pa-
rameters v should be pushed towards zero. The offset parameter v0 is not regularized
by this method, which means that the location of the split does not influence the
penalty.

0
1 0

1
0

1

z1

z2

Ψ, Ψ̃

(a) Sigmoid and complementary
function

0 1
0

1

v0
v2

v0
v1

v0√
v2

1+v2
2

split
(Ψ = 0.5)v

v1
v2

z1

z2

(b) Topview on z1-z2 plane

Figure 3.19: Explanation of splitting parameters



60 3.3 Regularization-Based Input Selection Approach

0 10

1

v =
[
0 v2

]T

z1

z 2

(a) Split orientation: 0◦

0 10

1

v with
v1 = v2

z1
(b) Split orientation: 45◦

0 10

1

v =
[
v1 0

]T

z1
(c) Split orientation: 90◦

Figure 3.20: Three special cases of the sigmoid splitting parameters v without the
offset parameter v0

3.3.2 Normalized L1 Split Regularization

The main goal of the split regularization is to reduce the model variance introduced
by the split optimization and to get a low-dimensional z-input space. Therefore
the regularization should favor axis-orthogonal splits, while an oblique partitioning
should only be pursued if there is a significant performance gain. In order to achieve
these goals, the following penalty term is proposed:

Jp(v) = λ√
pz − 1

(∥∥∥∥∥
v

‖v‖2

∥∥∥∥∥
1
− 1

)
. (3.12)

It is a 1-norm, where the splitting parameters v are normalized by their 2-norm. The
regularization parameter is λ. The remaining adjustments, i.e. the subtraction of one
and the division by √pz − 1, lead to the scaling of the penalty term to the interval
[0, 1], if λ = 1. pz is the number of variables contained in the z-input space. The
maximum of the penalty term is reached if all entries in v have the same absolute
value. Its minimum is reached if all but one entries are zero, which corresponds to an
axis-orthogonal split. The penalty term for λ = 1 is visualized for a two-dimensional
z-input space in Fig. 3.21. Note that the splitting parameter vector v does only
include elements determining the orientation of the split, see Section 3.3.1, and
therefore only the amount of obliqueness is penalized. The position in the z-input
space does not affect the penalty term (3.12).

In order to improve the performance of the nonlinear optimization the analytical gra-
dient of the whole loss function is required. Assuming the NRMSE as unregularized



61

−1
0

1

−1
0

1
0

1

v1v2

Jp

Figure 3.21: Penalty term for a two-dimensional z-input space

loss function, the whole objective including the regularization term becomes

J(θLM , v) =

√√√√
∑N
i=1(y(i)− ŷ(i, θLM , v))2
∑N
i=1(y(i)− ȳ)2 + Jp(v) , (3.13)

with the measured outputs y(i), the mean of all measured outputs ȳ, and the LMN
output ŷ(i) depending on the affine local model parameters θLM and the splitting
parameters v. In [42] the analytical gradient for the unregularized case has already
been derived. Therefore only the derivative of Jp with respect to the splitting param-
eters is derived here. A differentiable approximation for the absolute value of a given
number has to be used for the calculation of the 1-norm. We use the smooth approx-
imation proposed in [117]. The absolute value of a number x is approximately:

|x| ≈ 1
α

(
log (1 + e−αx) + log (1 + eαx)

)
. (3.14)

The approximation will be denoted as |x|α. Here, α is a parameter that determines
how close the approximation comes to the true absolute value. As stated in [117]
and demonstrated in Fig. 3.22, |x|α converges to |x| as α approaches infinity. With
this approximation the penalty term becomes:

Jp(v) = λ√
pz − 1

(∥∥∥∥∥
v

‖v‖2

∥∥∥∥∥
1α
− 1

)

= λ√
pz − 1

[ pz∑

i=1

1
α

(
log (1 + e−α

vi
‖v‖2 ) + log (1 + eα

vi
‖v‖2 )

)
− 1

]
, (3.15)

where ‖·‖1α is the sum of approximated absolute values of the corresponding vector
elements. In [117] this is called Smooth L1 Approximation Method. Variable pz
denotes the number of inputs in the z-input space. It follows the detailed derivation



62 3.3 Regularization-Based Input Selection Approach

−1 0 10

1

x

|x|α

α = 5
α = 10
α = 100

Figure 3.22: Approximation |x|α of the absolute value |x| for three different param-
eters of α

of the analytical gradient for splitting parameter vj. At first the derivative of the
SmoothL1 approximation with respect to an arbitrary variable x is derived:

d|x|α
dx = 1

�α

(
−�α · e−αx
1 + e−αx ·

eαx
eαx + �α · eαx

1 + eαx

)

= eαx − 1
eαx + 1 = e 2αx

2 − 1
e 2αx

2 + 1
= tanh

(
αx

2

)
. (3.16)

Another necessary inner derivative concerns the multiplicative inverse of the 2-norm
with respect to one splitting parameter vj:

d
( pz∑
i=1

v2
i

)−1/2

dvj
=− 1

�2

( pz∑

i=1
v2
i

)−3/2

· �2 · vj

= −vj
(‖v‖2)3 . (3.17)

In the following, it is assumed that vj is the last entry in the vector v, i.e. j = pz.
This assumption simplifies the handling of summation indices without the loss of
generality. With the help of (3.16), (3.17), and the chain rule, the partial derivative
with respect to splitting parameter vj equals:

∂Jp
∂vj

= λ√
pz − 1





pz−1∑

i=1
tanh

(
αvi

2‖v‖2

)
vi · (−vj)
‖v‖3

2


+ . . .

. . .+ tanh
(
αvj

2‖v‖2

)(
1
‖v‖2

+ vj · (−vj)
‖v‖3

2

)]

= λ√
pz − 1

[
−vj

( pz∑

i=1
tanh

(
αvi

2‖v‖2

)
vi
‖v‖3

2

)
+ tanh

(
αvj

2‖v‖2

)
1
‖v‖2

]
. (3.18)



63

The proposed penalization might get into trouble if all parameters get close to zero.
In practice this is of minor concern, since it corresponds to a split which would have
an infinite distance to the origin, see Fig. 3.19b. If such a split would result from
the optimization it simply could be omitted.

As already mentioned, the main goal is to get a low-dimensional z-input space and
eliminate all unnecessary variables therein. A shrinkage of the remaining z-inputs
is not desired. Therefore the penalization is only used to determine the unnecessary
z-inputs. Afterwards an unregularized split optimization is done with all left-over
z-inputs. How many splitting variables are kept depends on the size of the regular-
ization parameter λ. Therefore λ can be used to smoothly transform the axis-oblique
(λ→ 0) to an axis-orthogonal (λ→∞) partitioning strategy.

An important task is to find a regularization parameter λ that leads to a good
bias/variance tradeoff. Throughout the training of an LMN several values for λ are
needed since in each iteration of HILOMOT a split optimization is carried out. For
each of these optimizations a different value for λ might be optimal in terms of the
bias/variance tradeoff. Two different approaches for the determination of λ values
are investigated and compared in this thesis.

The first approach follows a simple heuristic. Typically, the model performance
saturates with an increasing amount of local models because each additional split
acts on a smaller subarea of the z-input space. To account for this saturation an
initial regularization parameter λ is weighted with the normalized effective number
of data samples for the current split:

λsplit = λ

N
·
N∑

i=1
ΦworstLM(z(i)) . (3.19)

The effective number of data samples is the number of points contained in the local
model that is currently subdivided by the split. This local model is denoted as
worst local model (index worstLM ), since its local error measure is worst compared
to all other local models. The number of points in the worst local model can be
calculated by the summation of the validity values ΦworstLM of all N training data
points. Through the normalization with N (3.19) measures the fraction of all data
that is inside the local model to be split and it is guaranteed that λsplit = λ in the
first split. Then, for each following split the regularization of the current split is
decreased according to the number of points that are affected by this split. For the
initial regularization parameter λ several values have to be tested. For each of these



64 3.3 Regularization-Based Input Selection Approach

regularization parameters an LMN is trained with activated split regularization using
the heuristic adaption of λ (3.19) for each split. The resulting LMNs can then be
compared in terms of the achieved model quality revealing the best of the tested
regularization parameters.

The second approach for the determination of the regularization parameter optimizes
λ for each split. This is computationally more expensive than the first approach but
has obviously the potential to outperform it. The objective for the optimization is
an approximation of the leave-one-out (LOO) error that has to be minimized. For
the approximative LOO error the partitioning is assumed to be known and fixed.
This simplification helps to decrease the computational load tremendously since the
problem is a linear estimation problem once the partitioning is known. In fact the
LOO error can be calculated directly based on one least squares solution with the
help of the smoothing matrix S as shown in [113]. This matrix describes the direct
relationship between the measured process outputs y and the model outputs ŷ:

ŷ =
︸ ︷︷ ︸

S

X

θLS︷ ︸︸ ︷(
XTX

)−1
XTy , (3.20)

with the regression matrix X and the model parameters θLS obtained by least
squares. Hartmann [56] derived an equation to directly calculate the LOO error
for LMNs under the assumption of a fixed partitioning if the parameters of the local
models are estimated by a locally weighted least squares estimation scheme:

LOOE =
N∑

j=1

y(j)− ŷ(j)

1−
M∑
k=1

Sjj,k

. (3.21)

N denotes the number of training data samples, M is the number of local models.
Sjj,k is the entry in row and column j (diagonal entries) of the smoothing matrix S
belonging to the parameter estimation of local model k. For more details about the
derivation the reader is referred to [56]. The approximative LOO error is chosen as
objective function for the optimization of the regularization parameter λ because it
measures the generalization performance of the LMN while the computational costs
are tolerable.



65

3.3.3 Investigation with Test Processes

Test processes one and four are used to demonstrate the abilities and shortcomings of
the regularization-based input selection (RBIS) approach presented in the previous
section. Both ways to determine the regularization parameter λ are tested, i.e. the
heuristic from (3.19) and the optimization with respect to the approximation of the
LOO error. Since the RBIS approach affects only the z-input space, the results
ideally reveal which inputs influence the output in a nonlinear way.

For the investigation of both test processes, the settings of the identification algo-
rithm are identical. HILOMOT is used, but with the added penalty term for the
split optimization, see (3.13). The smooth L1 approximation method with α = 650
is used, such that an analytic gradient of the objective function can be provided,
see (3.18). For the determination of the model complexity Akaike’s corrected infor-
mation criterion is used. Only affine local models are used. The usage of higher-
order, locally valid polynomials would be counterproductive to the intended goal
of the investigation. It should reveal nonlinearly influencing inputs. Having more
complex local models could make splits along specific axes obsolete even if there
is a nonlinear influence. For the heuristic determination of the split regularization
parameter λ, four different initial values are tested which are 10−4, 10−3, 10−2, and
10−1. In addition to the RBIS approaches, LMNs are trained with the standard
HILOMOT algorithm (no split regularization or λ = 0) and HILOMOT with deacti-
vated split optimization (LOLIMOT-type of splitting). The deactivation of the split
optimization results in an input space partitioning with only axis-orthogonal splits.
Note that this is not equivalent to the RBIS approach with λ =∞. In case the split
regularization parameter is set to infinity, the split position can still be optimized.
In contrast to this, HILOMOT with deactivated split optimization does not optimize
the split position and simply splits the worst local model into two halves that both
contain approximately the same amount of data samples.

Test Process One

TP1 is static and therefore no dynamics have to be represented. The first and
second input (u1 and u2) contribute nonlinearly to the process output, while input
u3 influences it only linearly. Input u4 consists only of noise. Results obtained by
the RBIS approach should indicate inputs u1 and u2 as nonlinear. Note that the



66 3.3 Regularization-Based Input Selection Approach

results of the RBIS approaches contain no information about the input’s usefulness
for the x-input space.

For the investigation of the RBIS approaches, 100 different training data sets are
generated that only differ in the noise realization of the output values. The design of
experiments is a maximin optimized LH design with N = 100 samples. Since input
u4 consists only of noise, no additional noise is added to the outputs. One Sobol
sequence serves as test data set with N t = 105 samples, which is used to assess the
quality of the resulting models. Note that for the generation of the test data set
input u4 is neglected in order to create noise-free samples.

Because of the way the HILOMOT algorithm works, the best initial split does not
necessarily lead to the best overall model performance when the training of the LMN
is finished. In each iteration the worst local model is further split and only this new
split is optimized, see Section 2.3 for a detailed description of HILOMOT. As a result
the current split is optimal with respect to the existing partitioning, not incorporat-
ing any further changes in it. This is the reason why the value of already existing
splits to the overall model performance can change during the training procedure.
Having this in mind, it makes sense to look at the generalization performances with
LMNs having just two local models in order to compare all RBIS approaches directly.
In addition, the benefit of all distinct RBIS approaches for the generalization per-
formance is of interest after the optimal model complexities are chosen (most likely
leading to LMNs having more than just two local models).

Figure 3.23a shows boxplots of the achieved generalization performances of all inves-
tigated scenarios for LMNs with just two local models. Each boxplot contains the
achieved generalization performances of the 100 different noise realizations. The red
lines mark the median values for each method. The best of these median NRMSE
values on test data is achieved with the heuristic and an initial value of the split reg-
ularization parameter of λ = 10−4. The generalization performance achieved with
the standard HILOMOT algorithm is only outperformed by the heuristic with initial
split regularization parameters λ = 10−4 and λ = 10−3. From all RBIS approaches
the optimization of the split regularization parameter turns out to be the second
worst, performing only better than the heuristic with an initial split regularization
parameter of λ = 0.1. The median of all optimized split regularization parameters is
λsplit = 0.09 (not shown in the figure). The worst median NRMSE value on test data
is achieved by HILOMOT with deactivated split optimization, abbreviated with orth.
HILOMOT since all splits are axis-orthogonal. The lowest variations in the achieved



67

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT
Opt. λ

NRMSE on test data
(a) Generalization performances with two local models

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT
Opt. λ

NRMSE on test data
(b) Generalization performances with the optimal complexities

Figure 3.23: Histograms of the generalization performances of all investigated scenar-
ios for two local models (a) and the optimal model complexity according
to the AICc (b)

generalization performances occur for the orthogonal HILOMOT algorithm. The
variations in the model performance are also very low for the heuristic with λ = 0.1.
All other investigated scenarios are comparable in terms of their variations in the
generalization performance.

Figure 3.23b shows boxplots of the achieved generalization performances where the
model complexity of each LMN is set to its optimal value according to the AICc.
All median NRMSE values on test data are very close to each other. The best
values are achieved with the optimized split regularization parameter, the heuristic
with λ = 10−4, and the orthogonal HILOMOT algorithm. The variations in the
generalization performances are the lowest for the orthogonal HILOMOT algorithm,
followed by the heuristic with λ = 0.1 before the heuristic with λ = 0.01. Variations
of the remaining scenarios are on a similar level.

Figure 3.24 shows the convergence of the median test errors over the number of



68 3.3 Regularization-Based Input Selection Approach

2 3 4 5 6 7 8 9 10 11 120.14

0.16

0.18

0.2

Number of local models

M
ed

ia
n

te
st

er
ro

r

HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1
Orth. HILOMOT
Opt. λ

Figure 3.24: Median NRMSE values on test data over the number of local models

local models for all investigated scenarios. The heuristic with λ = 10−4 converges
the fastest, whereas the orthogonal HILOMOT algorithm has the slowest conver-
gence rate.

Besides the generalization performance and the corresponding variations, it is inter-
esting to see the effect of the RBIS approaches on the splitting parameters. Therefore
the median splitting parameter values are shown for the first three splits in Fig. 3.25
for HILOMOT, the heuristic with λ = 10−4 as well as λ = 10−2, and the optimized
λ values. Here, the median of the absolute splitting parameter values ṽi is shown,
such that a value of zero implies that for at least 50 of the 100 noise realizations the
corresponding splitting parameter is zero. The information about how many split-
ting parameters are actually zero is important, since this corresponds to orthogonal
splits. Without taking the absolute values, a zero median value would also result if
the corresponding splitting parameter values would be normally distributed around
zero. As a result of this, no conclusion about how many of the 100 noise realiza-
tions lead to orthogonal splits would be possible. The desired effect of all RBIS
approaches is to push the splitting parameters corresponding to the third and fourth
z-input towards zero. These inputs have no nonlinear influence on the process out-
put and splits in these directions are considered to be harmful for the generalization
performance. Note that the binary trees shown in Fig. 3.25 are just for visualization
purposes. Not all of the binary trees resulting from the 100 noise realizations have
the exact same structure, e.g. split three might as well split node four or five further
instead of node two.

Only small differences are observable when comparing the median absolute splitting
parameter values of HILOMOT and the heuristic with λ = 10−4 shown in Fig. 3.25a



69

1

2

Split 1

3

ṽ1: 0.6
ṽ2: 0.5
ṽ3: 0.1
ṽ4: 0.08

4

Split 2

5

ṽ1: 0.6
ṽ2: 0.5
ṽ3: 0.1
ṽ4: 0.09

6

Split 3

7

ṽ1: 0.3
ṽ2: 0.5
ṽ3: 0.1
ṽ4: 0.1

(a) HILOMOT

1

2

Split 1

3

ṽ1: 0.5
ṽ2: 0.5
ṽ3: 0.09
ṽ4: 0.08

4

Split 2

5

ṽ1: 0.5
ṽ2: 0.6
ṽ3: 0.1
ṽ4: 0.1

6

Split 3

7

ṽ1: 0.3
ṽ2: 0.5
ṽ3: 0.08
ṽ4: 0.1

(b) Heuristic, λ = 10−4

1

2

Split 1

3

ṽ1: 0.6
ṽ2: 0.4
ṽ3: 0
ṽ4: 0

4

Split 2

5

ṽ1: 0.4
ṽ2: 0.7
ṽ3: 0
ṽ4: 0

6

Split 3

7

ṽ1: 0
ṽ2: 0.2
ṽ3: 0
ṽ4: 0

(c) Heuristic, λ = 10−2

1

2

Split 1

3

ṽ1: 0.5
ṽ2: 0.5
ṽ3: 0
ṽ4: 0

4

Split 2

5

ṽ1: 0.5
ṽ2: 0.6
ṽ3: 0
ṽ4: 0

6

Split 3

7

ṽ1: 0.06
ṽ2: 0.5
ṽ3: 0
ṽ4: 0

(d) Optimized λ

Figure 3.25: Binary trees together with the median of the absolute values of the
splitting parameters ṽi for HILOMOT (a), the heuristic with λ = 10−4

(b) as well as λ = 10−2 (c), and the optimized λ values (d) for splits
one to three

and 3.25b, respectively. The desired effect of pushing v3 and v4 towards zero is
only achieved if the initial split regularization parameter of the heuristic is raised
to λ = 10−2 and above. This desired effect is also achieved if the split regulariza-
tion parameter λ is optimized, see Fig. 3.25d. The question arises why achieving
the desired effect does not lead to higher model qualities and a significantly lower
variance.

The variance in the model accuracies is likely not as significantly decreased as ex-
pected by the RBIS approaches due to the fact that there is still much variance
incorporated in the split position. Figure 3.26a shows the first split for all 100 noise
realizations in the u2-u3 subspace for the standard HILOMOT algorithm opposed
to the ones obtained by the RBIS approach with optimized λ values depicted in
Fig. 3.26b. Even though most splits are in fact orthogonal, there are a lot of differ-
ent splits (varying positions) and also oblique splits.

A likely cause for the insignificantly increased generalization performances is visual-
ized in Fig. 3.27. Histograms of the values of all four splitting parameters v1, v2, v3,



70 3.3 Regularization-Based Input Selection Approach

0 10

1

u2

u
3

(a) HILOMOT

0 10

1

u2

u
3

(b) Optimized λ

Figure 3.26: Input space partitionings of LMNs with two local models for all noise
realizations in case of HILOMOT (a) and the RBIS approach with op-
timized λ (b) in the u2-u3 subspace

and v4 are shown for the first split and all 100 noise realizations for HILOMOT and
the RBIS approach with optimized λ. If a splitting parameter is zero, the split is
parallel to the corresponding z-input axis as explained in Section 3.3.1 and visualized
in Fig. 3.20a. From an interpretation point of view this means the corresponding
z-input is irrelevant, since its value has no influence on the splitting function. As can
be seen in Fig 3.26, the number of splits that are parallel to one of the z-input axes
is increased in general through the RBIS approach with optimized λ compared to
the standard HILOMOT algorithm. In case of z-inputs u3 and u4 this is desired and
should improve the generalization performance of the models. However, the number
of splits parallel to the z-input axes u1 and u2 is also increased, which harms the
generalization performance. Considering the interaction between u1 and u2 in TP1,
the partitioning should ideally be oblique in the u1-u2 subspace.

Finally, the required training times of all investigated scenarios for TP1 are com-
pared in Fig. 3.28. As expected, the smallest required training times are needed
by the orthogonal HILOMOT algorithm and the largest ones are needed if the split
regularization parameter is optimized. The higher the initial split regularization pa-
rameter is chosen for the heuristic determination method, the smaller the required
training times are.

Despite the fact that the convergence rate of the heuristic with λ = 10−4 is quite
impressive, a significant advantage of using any of the RBIS approaches is not ob-
servable in case of the optimal model complexities. The median generalization per-
formance as well as the deviations of it are only slightly improved and do not pay



71

−1 −0.5 0 0.5 10

20

40

60

80

100

v1

Fr
eq

ue
nc

y
z-input: u1

HILOMOT
Opt. λ

−1 −0.5 0 0.5 10

20

40

60

80

100

v2

Fr
eq

ue
nc

y

z-input: u2

−1 −0.5 0 0.5 10

20

40

60

80

100

v3

Fr
eq

ue
nc

y

z-input: u3

−1 −0.5 0 0.5 10

20

40

60

80

100

v4

Fr
eq

ue
nc

y

z-input: u4

Figure 3.27: Histograms of the splitting parameter values obtained for the first split
and all 100 noise realization of TP1 in case of HILOMOT and the RBIS
approach with optimized λ

off the additional effort. It seems as if the introduced obliqueness penalty prevents
an oblique input space partitioning in a lot of cases even if it is beneficial for the
model’s generalization performance.

Test Process Four

The dynamic TP4 is modeled with the external dynamics approach as explained in
Section 2.1. Here, only simple delays q−1 are used as external filters and only one
filter for the physical input as well as for the physical output is used, such that the
inputs for the LMNs are u(k − 1) and y(k − 1). Using only simple delays for the
external dynamics approach is known as NARX model. From the description of TP4
it is known that the nonlinearity only affects the delayed input u(k− 1) and not the



72 3.3 Regularization-Based Input Selection Approach

100 101 102

HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT

Opt. λ

Required training time in seconds

Figure 3.28: Boxplots of the required training times for all investigated scenarios of
TP1

delayed output y(k − 1). Therefore, the RBIS approaches should be able to detect
input u(k − 1) as important for the z-input space while the splitting parameters
corresponding to the delayed output y(k − 1) should be pushed to zero.

For the investigation of the RBIS approaches with TP4, 100 different training data
sets are generated that only differ in the noise realization of the output values. The
excitation signal used to obtain the training data sets is an amplitude modulated
random binary signal (APRBS) consisting of N = 250 data samples. The maximum
and minimum amplitude of the excitation signal is −3 and 3, respectively, in order
to create sufficiently strong saturation effects. White Gaussian noise is added to
the undisturbed process output to create the 100 noise realizations such that the
SNR is 20 dB. As test data set serves another APRBS consisting of Nt = 12.000 as
excitation signal with undisturbed process output values.

Again, the achieved generalization performances are for LMNs with just two lo-
cal models and for LMNs with the optimal number of local models are shown in
Fig. 3.29a and Fig. 3.29b, respectively. In case of LMNs with two local models the
median NRMSE values are all pretty similar except for the orthogonal HILOMOT
algorithm. The best values are achieved by the RBIS approaches with optimized λ
as well as with the heuristic with λ = 0.01 and λ = 0.1. The worst median NRMSE
value corresponds to the orthogonal HILOMOT. The variations from the median
NRMSE values are very similar for all investigated scenarios with slightly less mag-
nitude in case of the RBIS approaches with optimized λ, the heuristic with λ = 0.01,
and λ = 0.1. For the LMNs with optimal model complexity the NRMSE values are
again all pretty similar except for the orthogonal HILOMOT algorithm. The best



73

0.1 0.11 0.12 0.13 0.14 0.15 0.16
HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT
Opt. λ

NRMSE on test data
(a) Generalization performances with two local models

0.05 0.1 0.15 0.2 0.25
HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT
Opt. λ

NRMSE on test data
(b) Generalization performances with the optimal complexities

Figure 3.29: Histograms of the generalization performances of all investigated scenar-
ios for two local models (a) and the optimal model complexity according
to the AICc

NRMSE values as well as the smallest variations from it are achieved by the RBIS
approaches with optimized λ and the heuristic with λ = 0.1. A bit surprising is
the high variance of the LMNs obtained by the orthogonal HILOMOT algorithm. It
results from a wider range of different optimal model complexities that are chosen
by the AICc compared to all other training algorithms.

The inspection of the median absolute splitting parameter values reveals that the
RBIS approaches with heuristic need at least an initial split regularization param-
eter of λ = 0.01 to push v2 in the majority of all noise realizations to zero. The
RBIS approach with optimized λ is also able to realize this desired outcome. Fig-
ure 3.30 shows exemplarily the binary trees of HILOMOT and the heuristic with
λ = 0.01 together with the median absolute splitting parameter values over all noise
realizations for the first three splits. Even without any regularization on the splitting
parameters, the values of v2 are very close to zero.



74 3.3 Regularization-Based Input Selection Approach

1

2

Split 1

3

ṽ1: 0.9
ṽ2: 0.04

4

Split 2

5

ṽ1: 1
ṽ2: 0.02

6

Split 3

7

ṽ1: 0.8
ṽ2: 0.03

(a) HILOMOT

1

2

Split 1

3

ṽ1: 0.9
ṽ2: 0

4

Split 2

5

ṽ1: 1
ṽ2: 0

6

Split 3

7

ṽ1: 0.8
ṽ2: 0

(b) Heuristic, λ = 10−2

Figure 3.30: Binary trees together with the median of the absolute values of the
splitting parameters ṽi for HILOMOT (a) and the heuristic with λ =
10−4 (b) for splits one to three

Plots showing the model quality over the model complexity, the input space par-
titioning, and histograms of the splitting parameters over all noise realizations are
omitted here, because they do not reveal any interesting information. Finally, the
required training times are compared in Fig. 3.31. No surprises can be observed.
The smallest training times are required by the orthogonal HILOMOT algorithm,
while the most time-consuming variant is the RBIS approach with optimized λ. The
heuristic RBIS approaches are all on a similar level independent of the used initial
split regularization parameter. The required training times by HILOMOT lie in
between the heuristic RBIS approaches and the orthogonal HILOMOT algorithm.

In summary, none of the RBIS approaches shows convincing results. Neither the

101 102 103

HILOMOT
λ = 0.0001
λ = 0.001
λ = 0.01
λ = 0.1

Orth. HILOMOT

Opt. λ

Computation time in seconds

Figure 3.31: Boxplots of the required training times for all investigated scenarios of
TP4



75

generalization performance of the LMNs nor the variance could be significantly im-
proved independent of the test process under investigation. As shown for TP1, no
good compromise could be found for the split regularization parameter that is able
to keep splits parallel to unimportant z-inputs while being able to reliably produce
oblique splits in the subspace where they are needed. In case of TP4 no oblique splits
are required at all, because only input u(k − 1) influences the output in a nonlinear
way. Even in this scenario none of the RBIS approaches shows significant advantages
compared to the standard HILOMOT algorithm. Based on all obtained results for
TP1 and TP4, the RBIS approach can not be recommended to be used. However,
the investigated scenarios are low-dimensional. For high-dimensional problems as
they would arise e.g. in an nonlinear finite impulse response (FIR) modeling case
this kind of regularization may pay off.

3.4 Embedded Approach

Embedded methods use model-specific or training-algorithm-specific properties to
find good input subsets for the modeling task. In the following, special properties
of LMNs with local affine models trained with HILOMOT are exploited. In this
particular case, the directions of the splits represent the strength and main direction
of the process nonlinearity. Since all local models are affine, changes in the slope
of the process can only be described by the LMN by switching to another local
affine model. If one input influences the process only linearly, all splits performed
by HILOMOT will be approximately parallel to this dimension. The basic idea of
the embedded approach is to exploit the aforementioned behavior of HILOMOT by
analyzing the splitting parameters and evaluate the directions of all splits that are
made. At the end the importance of each input compared to all other dimensions can
be rated. Note that importance here only refers to an input’s nonlinear influence. If
the output of the process depends strongly on one input, but only in a linear way,
this can be described by a large slope in the local model and it will be considered
irrelevant by this embedded approach.

3.4.1 Partition Analysis

At first an LMN is trained and afterwards the partitioning is analyzed. As explained
in detail in Section 3.3.1, the orientation of each split is determined by the relative,



76 3.4 Embedded Approach

absolute magnitude of the splitting parameters vi, i = 1, 2, . . . , pz, see Figs. 3.19 and
3.20. The offset parameter v0 does not influence the split orientation and therefore
plays no role in the subsequent discussion. First only one single split is considered
and the relevance factor ρi for the i-th z-input equals:

ρi = |vi|
pz∑
j=1
|vj|

. (3.22)

For the special cases shown in Figs. 3.20a, 3.20b, and 3.20c the relevance factors turn
out to be ρ

a
=
[
0 1

]T
, ρ

b
=
[
0.5 0.5

]T
, and ρ

c
=
[
1 0

]T
, respectively.

For the determination of the relevance factors for the whole LMN, so-called im-
portance factors are calculated. After normalizing these importance factors, the
relevance factors are obtained. For the determination of the importance factors ζ i of
each input in the z-input space zi, i = 1, 2, . . . , pz, the related splitting parameters
of all splits are weighted and summed up:

ζ i =
M−1∑

j=1
|vij| · PIj · wNj . (3.23)

vij designates the splitting parameter of the j-th split belonging to zi. Weighting
factor PIj is the performance improvement in the loss function achieved through
split j. It is the difference between the loss function value before and after split j
is carried out. Weighting factor wNj equals the number of points that are affected
by split j. It is the number of points within the worst local model and can be
measured by

wNj =
N∑

k=1
Φj(z(k)) , (3.24)

due to the fuzzy nature of the splits. Note that an LMN with M local models pos-
sesses M −1 splits. Through the two weighting factors PIj and wNj it is guaranteed
that splitting parameter vij does only contribute to the importance factor if the
corresponding split contributes to the improvement of the model performance and
enough data points are affected. Finally the relevance factor for the whole LMN is
obtained through the normalization of all importance factors:

ρi = ζ i
pz∑
j=1
|ζj|

. (3.25)



77

A simple example that is shown in Fig. 3.32 should further illustrate the concept of
the relevance factors. The partitioning consists of two axis-orthogonal splits. For
simplicity the performance improvement factors PIj, j = 1, 2, . . . ,M − 1, are all
assumed to be one in this example. Note that usually the performance improvement
is smaller than one and approaches zero with an increasing number of local models (if
the loss function values saturate). The first split possesses the splitting parameters
v1 =

[
1 0

]
and divides 16 data points in two halves such that the weighting factor

becomes wN1 = 16. The second split possesses the splitting parameters v2 =
[
0 1

]

and divides eight data points in two halves leading to a weighting factor of wN2 = 8.
Since the performance improvement factors are assumed to be one, the importance
factors are

ζ1 = v11 · wN1 + v12 · wN2 = 16 and
ζ2 = v21 · wN1 + v22 · wN2 = 8 .

The final relevance factors for this example turn out to be:

ρ1 = ζ1

ζ1 + ζ2
= 2

3 and

ρ2 = ζ2

ζ1 + ζ2
= 1

3 .

The result of the LMN partition analysis is a ranking of all inputs according to
their relevance for the z-input space. In addition to the ranking, the quantitative
relevance is revealed. However, this information is not further used in this thesis.
One idea exists that has not been investigated so far but should be mentioned here.

1

2 3

4 5

Ψ2

~
Ψ1 Ψ1

~
Ψ2 Φ3 = Ψ1

Φ4 = Ψ1 Ψ2
~ ~

Φ5 = Ψ1 Ψ2
~

Root

Split 1

Split 2

z2

z1

a) b)

0

Φ3

Φ4

Φ5

Figure 3.32: Illustration example for the relevance factor calculation: a) Shows the
hierarchical binary tree with highlighted splits, b) shows the partitioning
of the input space with 16 data points as dots



78 3.4 Embedded Approach

In tasks where distance measures are employed, e.g. to determine the largest gap in
an already existing data set, the relevance factors might be used to scale the z-input
axes. Therefore, a weighting matrix

W =




ρ1 0 · · · 0
0 ρ2

. . . ...
... . . . . . . 0
0 · · · 0 ρpz




(3.26)

is created with the relevance factors ρi, i = 1, 2, . . . , pz, as entries on its diagonal.
This matrix can then be used to calculate the Mahalanobis distance between two
points, z(i) and z(j):

dM(z(i), z(j)) =
√

(z(i)− z(j))TW (z(i)− z(j)) . (3.27)

If the identity matrix I is used instead of the weighting matrix W in (3.27), the Ma-
halanobis distance reduces to the Euclidean distance. Using the weighting matrixW
makes distances along more relevant z-inputs appear larger. The larger a relevance
factor of an z-input is compared to the remaining z-inputs, the more the focus lies
on this particular z-input. This might be beneficial for active learning strategies
such as HILOMOT for design of experiments (HilomotDoE), which is described in
more detail in Section 4.3.1. Through the focus on z-inputs that are more relevant
for the nonlinear behavior of a process, the design of experiments is potentially able
to concentrate on the nonlinearity. As a result, the training data carries more infor-
mation about the nonlinearity which can subsequently be exploited by experimental
modeling approaches.

3.4.2 Investigation with Test Processes

TP2 and TP3 are used to demonstrate the abilities of the partition analysis explained
in Section 3.4.1. For both test processes three different training data set sizes, namely
N = 50, 100, and 200, and two different noise levels are part of the investigation.
White Gaussian noise is added to the process outputs such that the SNR equals 20
dB and 25 dB. For each test process and each training data set size, 100 different
noise realizations are generated. Here, neither validation nor test data is produced
because the investigated LMN partition analysis does not affect the model accuracy.
An LMN for each generated data set is trained and subsequently its partitioning



79

is analyzed. HILOMOT is used as training algorithm and the complexity of the
LMNs is determined with the AICc. Only local affine models are used, such that
the resulting relevance factors represent how much each z-input contributes to the
nonlinearity of the process. The evaluation of the results of the partition analysis is
based exclusively on the knowledge about the two test processes.

Test Process Three

First, the split analysis is used for TP3, which has only two inputs. A-priori it
is known that both inputs contribute to the process output in a nonlinear way.
However, input u1 can be rated as more important for the nonlinear process behavior
because the change in the slope in this direction is higher compared to the change in
the slope in u2-direction everywhere in the input space. In fact, the ideal values of the
relevance factors can be determined exactly from prior knowledge. The derivative of
(3.4) with respect to the inputs u1 and u2 is:

∇y(u1, u2) = 0.1
(0.08 + 0.73(1− u1) + 0.27(1− u2))2

[
0.73 0.27

]T
(3.28)

As can be seen from (3.28) the gradient of TP3 points always in the same direction
defined by the ratio of the vector entries 0.73 and 0.27. Since the relevance factors
are scaled such that they all sum up to one, see (3.25), the values 0.73 and 0.27
already correspond to the ideal relevance factors. If the partitioning parameters of
an LMN follow exactly this particular ratio, the local affine models should be able
to adapt to the nonlinearity most efficiently. Deviations from this ratio should only
occur due to noisy data and are likely to deteriorate the generalization performance
of LMNs.

Figure 3.33 shows the median values of the obtained relevance factors together with
the ideal ones for TP3. Additionally, the deviations around the median values are
visualized as interquartile range (IQR), which is the distance between the 25-th and
75-th percentile. For both noise levels the obtained results are pretty similar. The
median value of the relevance factors gets closer to the ideal values and the deviations
shrink as the amount of training data increases. This is exactly the desired and
expected result.



80 3.4 Embedded Approach

50 100 2000

0.2

0.4

0.6

0.8

1

N

R
el

ev
an

ce
fa

ct
or
ρ

i

Ideal values ρ1 ρ2

(a) SNR = 20 dB

50 100 2000

0.2

0.4

0.6

0.8

1

N

R
el

ev
an

ce
fa

ct
or
ρ

i

Ideal values ρ1 ρ2

(b) SNR = 25 dB

Figure 3.33: Relevance factors ρi for all z-inputs of TP3 for two different noise levels
and three different training data set sizes N = 50, 100, and 200. Marker
indicate the median value; vertical lines represent the IQR.

Test Process Two

TP2 is scheduled by the binary input variables u3 and u4, that determine which of
two planes is used to calculate the process output. Both planes depend only on the
input variables u1 and u2. Therefore, u1 and u2 are only relevant for the x-input
space of an LMN while u3 and u4 are only relevant for the z-input space. In case
of TP2, no ideal values for the relevance factors are available. Only the qualitative
relevance is known a-priori. Since the partition analysis does only rate the relevance
for the z-input space, relevance factors ρ1 and ρ2 should have lower values compared
to ρ3 and ρ4.

Figure 3.34 shows the results for TP2. Again, the median relevance factor as well
as a measure of the deviations from it are shown. As expected, the deviations from
the median values can be decreased either by increasing the size of the training data
set or by lowering the noise level. In general, the median relevance factors for the
actually irrelevant z-inputs u1 and u2 get quite high for N < 200. The relative
rating of the relevance of each z-input is in accordance with the knowledge about
TP2. However, by reviewing the obtained results it is not clear that inputs u1 and
u2 are irrelevant for the z-input space. Furthermore, it is not clear why relevance
factor ρ1 has higher values compared to relevance factor ρ2, since both corresponding
inputs should be equally irrelevant.

In summary, it is shown that the LMN partition analysis is able to assign relevance
factors that rank all z-inputs according to their nonlinear influence correctly as



81

50 100 2000

0.2

0.4

N

R
el

ev
an

ce
fa

ct
or
ρ

i

ρ1 ρ2 ρ3 ρ4

(a) SNR = 20 dB

50 100 2000

0.2

0.4

N

R
el

ev
an

ce
fa

ct
or
ρ

i

ρ1 ρ2 ρ3 ρ4

(b) SNR = 25 dB

Figure 3.34: Relevance factors ρi for all z-inputs of TP2 for two different noise levels
and three different training data set sizes N = 50, 100, and 200. Marker
indicate the median value; vertical lines represent the IQR.

long as there is an influence at all. The results obtained for TP3 are excellent.
Even for relatively low training data set sizes the a-priori known ideal relevance
factors are obtained through the LMN partition analysis with good accuracy. For
TP2 it is recognized that inputs u3 and u4 are most relevant for the description
of the nonlinearity. On the downside, it is not clear from which relevance factor
value on an z-input should be considered as irrelevant. As shown in Fig. 3.34a, a
median relevance factor of almost 0.2 is obtained for input u1. This is a rather high
value from which one might conclude wrongly a significant nonlinear influence of u1.
The problem of having no specific threshold value from which on an input can be
considered relevant for the z-input space is currently unsolved.

3.5 Visualization: Partial Dependence Plots

Another idea to find relevant inputs for data-based models is the visualization of
dependencies between the inputs and the output. Apparently, visualizations of data
or models resulting from the data are restricted to low-dimensional views. For input
space dimensions of one and two, the dependencies can easily be visualized with
the help of a model. As the number of input variables increases, it gets harder to
obtain this information. One popular way to deal with this problem is by examining
slices through the model, i.e., fixing all inputs except for one or two. However, such
slices can be very misleading since the effect of the fixed variables is completely
concealed. Even worse, not feasible input combinations can artificially be generated.



82 3.5 Visualization: Partial Dependence Plots

A much more powerful approach that can be applied to models of any dimension is
the use of so called partial dependence plots [57]. The idea is to view a collection
of plots, where each of these plots visualizes the partial dependence of the model
on a selected small subset of input variables. According to [57], such a collection
can seldom provide a comprehensive depiction of the whole model, but it can lead
to helpful clues. Partial dependence plots are scientifically not new, but in the
experience of the author seldom used and rather unknown, at least for people with
an engineering background. Therefore, partial dependence plots are described in the
next few paragraphs shortly following mainly the explanations from [57].

For simplicity, only the typical case is explained in the following, where the partial
dependence of the model on just one single variable is considered. This input is called
the partial dependence input (PDI). In order to generate a partial dependence plot,
a function that estimates the partial dependence of the model on the PDI is needed
and will be called the partial dependence function f̄P . This function represents the
effect of the PDI on the model taking into account the average effects of all training
data samples.

In order to determine the partial dependence function, some definitions are made
in the following. If there are p different PDI variables uj, there will be p partial
dependence functions f̄P,j with j = 1, · · · , p. The vector u(−j)(i) is the i-th training
data sample without the PDI variable:

u(−j)(i) =
[
u1(i) u2(i) · · · uj−1(i) uj+1(i) · · · up(i)

]T
. (3.29)

Therefore ŷ(uj, u(−j)(i)) is the model output at the i-th training data sample, but
the value of the PDI can be chosen arbitrarily. With the help of these definitions,
the j-th partial dependence function can be estimated by

f̄P,j(uj) = 1
N

N∑

i=1
ŷ(uj, u(−j)(i)) . (3.30)

At any specified value for the PDI, the model output ŷ(·) varies due to changes in
the training data samples u(−j)(i), i = 1, 2, . . . , N . The mean of this variation is
estimated by the partial dependence function. The estimation of the corresponding
variance is straight forward:

σ2
P,j(uj) = 1

N − 1

N∑

i=1
(ŷ(uj, u(−j)(i))− f̄P,j(uj))2 . (3.31)



83

In general there might be more than just one PDI variable, see [57] for further
details. However, for visualization purposes more than two PDI variables are not
very valuable. Typically, the PDI is varied equidistantly from its minimum to its
maximum value occurring in the available data set. This results in a mean curve
and its corresponding variances when applying (3.30) and (3.31) to each of these
PDI values.

A model with two inputs is utilized to illustrate features of the partial dependence
plots. As demonstration example the following artificial process is approximated by
an LMN:

y = u1 + u1 · u2
2 . (3.32)

We define the first PDI variable as u1 and the second one as u2. So for each individual
PDI variable, we obtain a partial dependence plot. The process as well as the partial
dependence plots are shown in Fig. 3.35. Both partial dependence plots contain
important information about the dependencies of the process on the input variables.
In Fig. 3.35b the linear influence of u1 can be seen and in Fig. 3.35c the quadratic

0 1
0

1.5

u1

f̄ p
,1

b) Partial dependence plot of u1

Mean
Std.

0 1
0

1.5

u2

f̄ p
,2

c) Partial dependence plot of u2

0
0.5

1

0
0.5

1
-1

-0.5

0

0.5

1.5

2

u1
u2

ŷ

a) Process: y = u1 + u1 · u2
2

Figure 3.35: Model with two inputs (a) and its partial dependence plots of u1 (b)
and u2 (c)



84 3.5 Visualization: Partial Dependence Plots

characteristics of u2 are observable. Larger standard deviations indicate stronger
influences of variables not chosen as PDI. Therefore the growing standard deviation in
Fig. 3.35b with increasing values of u1 implies a growing influence of u2. The vertical,
dotted lines in Fig. 3.35b and Fig. 3.35c give hints about the data distribution along
the PDI variable. In between two vertical lines lie 10 % of the PDI values present in
the training data set. The most left and the most right vertical line are omitted and
would occur at the beginning and the ending of the mean curves. In the example
shown in Fig. 3.35 the data is distributed uniformly along both axes u1 and u2.

One important thing to keep in mind is that the whole visualization approach highly
depends on the model of the process. Because rather the model than the process
itself is visualized, the obtained results are only trustworthy if the model accuracy
is high.

3.5.1 Investigation with Test Processes

TP1 and TP2 serve as examples to further review the capabilities of the partial de-
pendence plots for the detection of relevant inputs. In case of TP1 it is interesting
to see if the irrelevance of input u4 can be observed from the resulting partial de-
pendence plots. For TP2 it is worth knowing what happens in case of the discrete,
binary inputs u3 and u4.

In order to create the partial dependence plots, LMNs are trained with HILOMOT.
Local affine models are used. The model complexity is automatically determined with
the AICc criterion. Because both test processes have four inputs, the used training
data sets share the same properties except for the added noise to the output. They
consist of N = 100 training data samples and are obtained through a maximin LH
optimization. In case of TP1 no additional noise is added to the output because
input u4 exclusively consists of noise. For TP2 white Gaussian noise is added such
that the SNR equals 20 dB. For both test processes 100 different noise realizations
are generated. The partial dependence plots shown in the following belong to just
one of the 100 noise realizations. The shown plots are the typical outcome.

Test Process One

Figure 3.36 shows the partial dependence plots for all inputs of TP1. The nonlinear
dependency of the output from inputs u1 and u2 are observable as well as the linear



85

0 0.5 10

0.5

1

u1

y

Mean
Std.

0 0.5 10

0.5

1

u3

y

0 0.5 10

0.5

1

u2

y
0 0.5 10

0.5

1

u4

y

Figure 3.36: Partial dependence plots for all inputs of TP1

relationship between u3 and the output. Furthermore it can be recognized that
inputs u1 and u2 influence the output in a quite similar way. The partial dependence
plot of input u4 indicates that it influences the output not at all. The slope of the
mean curve is zero independent of the value of u4. Or in other words, the value of
u4 does not have a significant impact on the output value. These observations are in
perfect accordance to the knowledge about TP1, see (3.2). Looking at the standard
deviations it is noticeable that these are almost constant for each partial dependence
plot independent of the value of the PDI. This indicates that the influence of an PDI
does not depend on its value.

Test Process Two

Figure 3.37 shows the partial dependence plots for all inputs of TP2. The mean curve
for input u1 shows a nonlinear behavior, i.e. a decrease in the slope with increasing
values of u1. This is likely due to the fact that the model output gets pretty small
for high u1 values if both discrete inputs u3 and u4 equal one, see Fig. 3.4 and (3.3).
However, this interpretation is not based on the partial dependence plot itself but
on the knowledge available about TP2. Without this knowledge input u1 appears
to have a nonlinear influence. The origin of this nonlinear behavior, which is the
interaction of u1 with inputs u3 and u4, is unclear. In contrast to that, input u2 seems



86 3.5 Visualization: Partial Dependence Plots

0 0.5 1
1

2

3

4

u1

y

Mean
Std.

0 0.5 1
1

2

3

4

u3

y

0 0.5 1
1

2

3

4

u2

y

0 0.5 1
1

2

3

4

u4

y

Figure 3.37: Partial dependence plots for all inputs of TP2

to influence the input in a linear way. In fact, for the influence of u2 on the output it
is irrelevant how the discrete inputs u3 and u4 are chosen because the coefficients for
input u2 are the same for both of the scheduled planes, see (3.3). From the partial
dependence plots of u3 and u4 a nonlinear relationship is observable. The tendency
to obtain lower output values for high values of u3 and u4 is clearly visible. The lack
of vertical lines indicates that the distribution of values along the axes u3 and u4 is
by far not uniform. In fact, it can be concluded that most points lie close to the
minimum and maximum values of the two axes, which of course is a result of the
binary nature of these two inputs.

The standard deviations shown in the partial dependence plots for inputs u2, u3,
and u4 are almost constant for all PDI values. For the partial dependence of u1

the standard deviation increases with higher values of u1. This indicates a growing
importance of other variables. In fact, the deviations that can be expected due to
switching between the two planes are higher for high values of u1 (≈ 1) compared to
low values of u1 (≈ 0), see Fig. 3.4.

In summary, the partial dependence plots are a helpful tool to quickly review the
average influence of single inputs on the model output. The distinction between
linearly and nonlinearly influencing inputs seems to be possible from the observation
of the mean curves. The standard deviations help to rate the influence of all non-



87

PDIs together compared to the PDI, since variations at each specific value of the
PDI are only due the variations in the non-PDIs. Mean curves with a slope being
zero for all possible values of the PDI indicate that there is no influence of that PDI
variable at all. Additionally, helpful information about the data distribution along
all single axes can be obtained.

Despite all the advantages, partial dependence plots have to be interpreted with
care. For example, the fact that the slope of the mean curve of a partial dependence
plot is always positive does not necessarily mean that this is true everywhere in the
input space. This can be seen in the partial dependence plot for input u1 of TP2
shown in Fig. 3.37. From the equation of this process it is clear, that there is a
negative slope in u1-direction if both operating point variables u3 and u4 equal one.
This behavior is not observable from the partial dependence plot because on average
the process output is still increasing with higher u1 values. Since the training data
covers the input space uniformly, only one fourth of it leads to the usage of the plane
with negative slope in the u1 direction, in particular when u3 = u4 = 1. Care is
also necessary for the interpretation of partial dependence plots of discrete inputs.
Instead of plotting whole mean curves it might be advisable to just plot values at
discrete values that do exist in the training data set.

In addition, partial dependence plots are very sensitive w.r.t. the input data distri-
bution. In the given examples, input data was evenly distributed due to the maximin
LH design. Information extraction is much more difficult or even impossible if data is
„strangly“ distributed. Especially correlations between inputs may lead to unreliable
partial dependence plots as demonstrated for one application in Chapter 5.





89

4 Design of Experiments Studies

As already outlined in Section 2.5, design of experiments (DoE) plays a key role
in experimental modeling. Independent of the model type, the characteristics of a
process can only be represented by a black-box model, if these characteristics are
contained in the data used for the training. This thesis contributes to the further
development of both passive and active learning strategies. Section 4.1 deals with
the order in which experiments should be conducted, if the goal is to yield the best
possible model performance with fractions of the whole experimental design. In
black-box modeling tasks active learners need at least some data for the generation
of an initial model, on which the strategy can rely on. Through a clever order of
experimentation the amount of data needed for the initial model might be decreased.
In Section 4.2 advice about the incorporation of corner measurements is given. The
corners (vertices) of a hypercube are defined by the most extreme values of the
input variables. This section focuses on the case where the amount of possible
measurements is not much bigger than the number of corners. Finally, an extension
to the active learning procedure HILOMOT for design of experiments (HilomotDoE)
is presented in Section 4.3. This extension incorporates a new strategy to pick more
than one query point which can easily be expanded for multiple-input multiple-
output (MIMO) systems. Additionally, an alternative for the generation of so-called
candidate points is presented.

4.1 Order Of Experimentation

An often neglected aspect and main topic of this section regards the order in which
the measurements are conducted to yield the best possible model performance with
fractions of the whole experimental design. Only little literature could be found ad-
dressing the order of experimentation aiming at this specific goal. For example, [34]
and [62] consider the order of experimentation only in the context of neutralizing
influences of undesirable factors on the experimentation or efforts needed to change



90 4.1 Order Of Experimentation

factor levels. Additionally, these two publications deal only with factorial designs,
whereas methods proposed in this section can be applied to arbitrary experimental
designs. The method presented in [130] aims at a reduction of the training set size
in order to decrease computational demands and to improve the convergence speed
of the model training. In differentiation to that, the proposed methods here aim
to improve the convergence with respect to the data amount and does not consider
computational demands at all. Good models in early stages of the measurement
process yield several advantages, e.g. time can be saved because demanded model
qualities can be reached with less data which is exemplarily demonstrated in Fig. 4.1.
For this example the experimental design is a maximin Latin Hypercube (LH) from
which subsets are chosen in a bad and a good way. In order to reach the same model
quality ∆N = 119 additional samples are needed following the bad ordering strat-
egy, see Fig. 4.1a. The chosen subsets for Ntrain = 50 for both order determination
strategies are visualized. Only points near the design space center are chosen for the
subset designated as bad (red circles in Fig. 4.1b). The other subset, designated as
good, originates from the intelligent k-means sequence (IKMS) explained in more
detail in Section 4.1.3 (green diamonds in Fig. 4.1c). Of course Fig. 4.1 contrasts
worst- and best-case scenarios which are extremely unlikely to happen in practice
through the standard approach of random selection. The point of the approach pro-
posed here is to guarantee the best worst-case scenario. As a result the model can
be used earlier, while the measurement process is still in progress. For example,
model-based optimization runs become more reliable with small data subsets. Ac-
tive learning strategies enlarge the experimental design in an iterative and adaptive

0 100 169 3000

0.5

1
Good subset
Bad subset
Whole data set

Ntrain = 50

∆N = 119

Number of samples used for training

N
R

M
SE

on
te

st
da

ta

(a) Test error progress

0 10

1

u1

u
2

(b) Bad subset;
Ntrain = 50

0 10

1

u1

u
2

(c) Good subset;
Ntrain = 50

Figure 4.1: Demonstration example for the importance of the order of experimenta-
tion. Test error progress (a) together with the chosen subsets in a bad
(b) and a good way (c).



4 Design of Experiments Studies 91

way, based on models trained with the currently available training data, such that
the information gained by additional measurements is maximized. Typically, an ini-
tial experimental design is needed before the active learning phase can start [54].
Through a good order of experimentation the necessary amount of data serving as
initial experimental design might be decreased. Note that throughout this thesis the
term “measurement” is used synonymously for obtained data points, regardless of
their origin. For example, the data might originate from real-world measurements
as well as from computer simulations.

The proposed methods are based on the following considerations. Models relying
only on small amounts of data are limited in their possible model accuracy. Through
a clever placement of measurements, the possible model accuracy can be influenced.
The aim of all order determination strategies is to find subsets of points from the
overall experimental design, that lead to the possibly best model quality. Therefore a
wide and nearly uniform coverage of the whole input space with small subsets is the
goal if no prior knowledge about the process is available. The biggest gap sequence
(BGS) tries to tackle the described considerations straight forward, filling the biggest
gap of the input space with each additional point. One possible weakness of BGS
might be the exclusive concentration on points near the boundary at the beginning
of the algorithm, especially in high-dimensional input spaces. This potential issue
motivates the median distance sequence (MDS) that tries to avoid the concentration
of boundary-near points at the beginning. Adding the next point corresponding
to the median distance instead of the maximum distance should lead to a better
balance between points at the boundary and inside the input space for very small
subsets. The IKMS method exploits in a first step possibly existing structures in the
experimental design by the intelligent k-means algorithm [89]. All resulting clusters
represent a specific region in the input space. Starting with all points next to these
cluster centers should obtain information from all input space regions and in addition
avoids the concentration of points at the boundary for very small subsets. It is a
mechanism to balance the exploration and exploitation of the whole experimental
design. At the beginning all areas of the input space covered by the experimental
design are explored and then successively exploited in more detail.

The different methods to determine the order of experimentation for regression prob-
lems are explained in more detail in Sections 4.1.1 to 4.1.3. All methods are originally
published in [8] by the author of this thesis and are based on the aforementioned
considerations. Section 4.1.5 compares all methods for the determination of the
order of experimentation on functions generated with the static function generator



92 4.1 Order Of Experimentation

that is explained in Section 2.7. Section 4.1.6 summarizes the order of experimen-
tation findings and gives some remarks about the applicability for real-world test
benches.

For the following explanations it is always necessary to distinguish between three
sets of data points. Set N contains all points of a data set. S, containing all already
sorted points, and F, containing all not yet sorted points, are non-overlapping subsets
of N. Here and throughout the rest of this section, “sorted” refers to the successional
order of experimentation, i.e. the order in which the measurements should be con-
ducted. The relationships between the previously defined sets can mathematically
be expressed as follows:

N = S ∪ F and S ∩ F = ∅ . (4.1)

At the beginning of each method, F contains all data points (F = N). Then points
are sequentially moved from F to S until F is empty (F = ∅).

4.1.1 Biggest Gap Sequence

For the BGS, the first point to be added to S is the one closest to the center of
gravity of all data points. In the following, one iteration of the BGS is explained and
illustrated in Fig. 4.2. Here one iteration refers to all steps necessary to determine
one data point, that should be added to the sorted list next. In Fig. 4.2a there are
two already sorted points in S (orange crosses), whereas all other points still belong
to set F (blue circles). Each point in F is now assigned to its nearest neighbor (NN)
from subset S. The dashed lines in Fig. 4.2b connect each point in F with its NN
in S. The corresponding distances (lengths of the dashed lines) from all points in F
to their NN in S are calculated. The point with the maximum distance to its NN is
selected and is moved from F to S, see Fig. 4.2c. After adding a point to S, the next
iteration starts and the whole procedure continues until F is empty. Note that S is
incremented in size only after the last step of each iteration.

4.1.2 Median Distance Sequence

The MDS starts similar to the BGS method, i.e. the first point added to S is the
one closest to the center of all data points. After that, each point in F is assigned to



4 Design of Experiments Studies 93

(a) Two already sorted
points (x)

(b) Assigning each point
in F (o) to its NN in S

(x)

(c) Maximum NN is added
to S (x)

Figure 4.2: Illustration of the procedure for the MDS and BGS methods

its NN from subset S, like in the BGS strategy, see Fig. 4.2b. Again, the distances
from all points in F to their NN in S are calculated. Now the point that corresponds
to the median value of all calculated distances is moved from F to S, instead of the
one with the maximum distance. An update of the NN relationships between F and
S has to be performed. After that the procedure continues until F is empty.

4.1.3 Intelligent k-means Sequence

For the ordinary k-means algorithm the number of clusters k as well as initial cen-
troids (centers of the clusters) have to be specified by the user before the algorithm
can proceed. In the intelligent k-means algorithm the number of clusters k and the
corresponding initial centroids are automatically determined, before the ordinary k-
means algorithm is used [89]. Therefore, the intelligent k-means clustering contains
the ordinary k-means clustering algorithm but adds a clever initialization for it as a
pre-processing step [26].

Intelligent k-means Initialization

1. Determine the center of gravity of all data points c1.

2. Determine the data point c2 farthest away from c1. Treat both points as cluster
centers.

3. All data points are assigned to their nearest cluster center.

4. In contrast to the ordinary k-means algorithm only c2 is updated to the center
of gravity of all points assigned to c2. Cluster center c1 remains unchanged.



94 4.1 Order Of Experimentation

5. Repeat step 3 and 4 until convergence, i.e. no further changes in c2.

6. The cluster center c2 is saved and all data points belonging to it are removed
from the data set for further calculations. If the number of points that have
been assigned to cluster center c2 is greater than a user specified number (typi-
cally 2), it is used later for the initialization of the ordinary k-means clustering.

7. If there are data points left, go to step 1; otherwise stop.

At the end of this procedure there are k saved cluster centers for the initialization of
the ordinary k-means algorithm leading to k clusters. Then all data points belonging
to a cluster Ci, i = 1 . . . k, are sorted according to the BGS strategy described in
Section 4.1.1. As a result there are k sorted data point lists Li, i = 1, 2, . . . , k, or
cluster lists respectively. To get the final order of experimentation, the first element
of each list is moved from F to S as described in more detail in Algorithm 1. In
that way the first k points to be measured are the ones closest to the cluster centers,
because these points are the first elements in the lists Li. After that, the second
element of each cluster list is added until all data points are ordered according to
the IKMS. Figure 4.3 demonstrates the IKMS procedure for twelve points. First,
the intelligent k-means algorithm determines three clusters and assigns each point
to one cluster, see Fig. 4.3a. The numbers shown in Fig. 4.3b represent the final
ordering determined by the IKMS method.

u1

u2

Cluster 2
Cluster 1
Cluster 3
Cluster center

(a) The intelligent k-means determines
three clusters

1

2

3

4

5

6

7

8 9
10

1112

u1

u2

Cluster center

(b) The numbers represent the sequence
determined by the IKMS procedure

Figure 4.3: Explanation of the IKMS with the help of a demonstration example



4 Design of Experiments Studies 95

Input: Set of sorted data point lists Li, i = 1, 2, . . . , k
Output: One ordered list S which specifies the order of experimentation
Step 1: Define the set of not yet sorted points F as the union of all points
contained in the lists Li, i = 1, 2, . . . , k:
F := L1 ∪ L2 ∪ . . . ∪ Lk;
Step 2: Move the first element of each list Li, i = 1, 2, . . . , k to S until F is
empty. The processing order of the lists is arbitrarily determined but fixed.
while F 6= ∅ do

/* Go through all non-empty lists */
for each non-empty list do

move first element of the current list to S;
if current list is empty then

remove current list from the set of non-empty lists
end

end
/* Update the set of all not yet sorted points */
F := L1 ∪ L2 ∪ . . . ∪ Lk

end

Algorithm 1: Specification of the order of experimentation once the clustering
of the data is finished according to the intelligent k-means algorithm

4.1.4 Other Determination Strategies

The aforementioned order determination strategies are compared to one active learn-
ing strategy and a simple randomization of the order of the measurements. As ac-
tive learning strategy HilomotDoE [54] is utilized. For the selection of the point
that should be moved next from F to S a local model network (LMN) is trained
according to the HIerarchical LOcal MOdel Tree (HILOMOT) algorithm based on
all points already present in S. As a result the whole input space is partitioned into
subregions and for each subregion a local error measure is calculated. The point
in F is chosen that fills the biggest gap within the subregion with the worst local
error measure. If there are no points from F inside the worst performing subregion,
the second worst subregion is considered and so on. After one point is moved from
F to S, the whole procedure starts again (including a new training) and continues
until all measurements are ordered. HilomotDoE requires some initial points in S
such that the parameters of the local model network can be estimated. Typically
Nini = 2(p+ 1) initial points are determined according to the BGS strategy. Further
details about HilomotDoE can be found in Section 4.3 and in [55].

Optimality criteria are not considered here to determine the order of experimen-



96 4.1 Order Of Experimentation

tation. For these criteria typically a real-valued summary statistics of the Fisher
information matrix is optimized to achieve some desired properties, like e.g. min-
imum variance of the estimated parameters (D-optimal design) [43]. The Fisher
information matrix of the used model type (here it would be a local model network)
depends on parameters which are responsible for the input space partitioning. If this
partitioning of the local model network is determined and fixed, the Fisher informa-
tion matrix could easily be derived. However, this information matrix would only
be valid in case of the global (concurrent) estimation of all local model parameters.
The used identification algorithm utilizes a local estimation scheme for these param-
eters in order to introduce a regularization effect, improve interpretability, and avoid
overfitting, see [96] for further details. Therefore it is impossible to straightforwardly
implement an optimality-criterion-based strategy.

4.1.5 Comparison on Synthetic Functions

The experimental setup is described that is chosen to compare the different methods
for the determination of the order of experimentation for synthetic test functions.
These test functions are generated randomly with the help of the function generator
described in Section 2.7. The dimensionality of the design space is varied from p = 2
to p = 8. Three training data sets with different input distributions are used for
each random function and input dimension. Additionally, one huge test data set
is generated for each random function and input dimension in order to assess the
model quality. For each training data set the order of experimentation is determined
according to the methods defined in Sections. 4.1.1, 4.1.2, 4.1.3, and 4.1.4. Then, for
training data increments of 10 % (in the determined order) a model is trained and its
performance is assessed using the test data. Strategies for the order determination
are compared based on how quick the model performance increases (corresponding
to an decrease of the test error). Therefore, results are averaged over all random
functions created with the function generator. Here the advantages of a function
generator are exploited, i.e. designing synthetic functions with desired properties
such as the input dimensionality, the amount of data and the data distribution, to
name only a few.
In order to conduct the comparison, three different input distributions are used.
Maximin LH designs, optimized according to the algorithm proposed in [35], data
samples drawn from a uniform distribution, and data samples drawn from two normal
distributions with different mean values and equal standard deviations are employed.



4 Design of Experiments Studies 97

The two normal distributions have equal standard deviations, but the centers differ,
N (0.3 · 1, 0.12 · I) and N (0.7 · 1, 0.12 · I), with 1 being a vector consisting of ones
and I being the identity matrix. Figure 4.4 shows the different data distributions
exemplarily in a two dimensional input space. It can be recognized that the input
coverage decreases from the maximin LH design over data drawn from a uniform
distribution down to the drawing from two normal distributions. Additionally the
chance to repeat almost identical inputs twice or more often grows from Fig. 4.4a to
4.4c. The number of training samples for all data distributions is kept constant at
N = 300, while the number of inputs varies from p = 2, . . . , 8. Due to the constant
number of training samples and the increasing input dimension, different local data
densities arise.
In case of the uniform distribution and the two normal distributions 20 random test
functions are used and 20 different realizations (per input dimensionality) are drawn
from the probability density functions for the comparisons. Because there is only
one deterministic LH design (per input dimensionality), the number of test functions
for this input type is increased to 100. For each input dimension the number of test
samples is kept constant at N t = 105. The location of the test data samples is
determined by a Sobol sequence [101] for each input dimension and is fixed for all
synthetic functions. HILOMOT is used as training algorithm, see Section 2.3 for
details.

The achieved test errors for an increasing amount of training data are presented in
Fig. 4.5 for all three data distributions and input dimensionalities p = 2, p = 5, and
p = 8. Each column corresponds to one input dimensionality, each row to a data dis-
tribution. Most diverse results are yielded in case of Fig. 4.5g, where the experimental

0 0.5 1
0

0.5

1

u1

u
2

(a) Maximin optimized LH

0 0.5 1
0

0.5

1

u1

u
2

(b) Data drawn from
uniform distribution

0 0.5 1
0

0.5

1

u1

u
2

Input data
Distribution centers

(c) Data drawn from 2
normal distributions

Figure 4.4: Data used for the comparison of different order determination strategies



98 4.1 Order Of Experimentation

20 40 60 80 1000

0.1

0.2
M

ea
n

N
R

M
SE

on
te

st
da

ta
IKMS
BGS
MDS
Random
order
HDoE

(a) 2 inputs, maximin LH
design

20 40 60 80 1000.1

0.2

0.3

0.4

(b) 5 inputs, maximin LH
design

20 40 60 80 1000.2

0.3

0.4

0.5

0.6

(c) 8 inputs, maximin LH
design

20 40 60 80 1000

0.1

0.2

M
ea

n
N

R
M

SE
on

te
st

da
ta

(d) 2 inputs, uniform
distribution

20 40 60 80 1000.1

0.2

0.3

0.4

(e) 5 inputs, uniform
distribution

20 40 60 80 100
0.3

0.4

0.5

0.6

(f) 8 inputs, uniform
distribution

20 40 60 80 100
0.1

0.15

0.2

Amount of used
training data [%]

M
ea

n
N

R
M

SE
on

te
st

da
ta

(g) 2 inputs, 2 normal
distributions

20 40 60 80 100

0.3

0.4

0.5

Amount of used
training data [%]

(h) 5 inputs, 2 normal
distributions

20 40 60 80 1000.4

0.5

0.6

0.7

Amount of used
training data [%]

(i) 8 inputs, 2 normal
distributions

Figure 4.5: Mean NRMSE on test data versus the amount of training data for dif-
ferent input dimensionalities and distributions

design is drawn from two normal distributions and the input dimensionality is p = 2.
In this case, the IKMS, BGS, and the HilomotDoE based method perform equally
well. MDS turns out to be the worst method on average, even worse than the
randomly chosen order of experimentation. With an increasing input dimensionality,
the benefit of IKMS, BGS, and HilomotDoE vanishes and the test errors of all
methods get closer to each other. For input distributions yielding a good coverage
of the input space, all procedures perform equally well except for MDS, which at
least for two dimensional input spaces turns out to be the worst method. Altogether



4 Design of Experiments Studies 99

MDS performs worst and is on average even beaten by random orderings. Because
of this MDS results are omitted in subsequent discussions.

In Fig. 4.6 the achieved model performances are plotted against the amount of used
training data. The mean normalized root mean squared error (NRMSE) of the
randomly determined order of experimentation (NRMSErand) is used to normalize
each strategy’s mean NRMSE value. All NRMSE values are calculated based on
test data. The shown achieved model performances are averaged over all input
distributions. Results are shown for input dimensionalities p = 2 and p = 8. The
curves of all remaining input dimensions lay in between the shown ones. Compared
to simple random ordering, the maximum benefit amounts to 19 % and is obtained at
a usage of 20 % of the training data. The advantage of IKMS, BGS, and HilomotDoE
is more pronounced for low-dimensional input spaces (or higher data densities). For
almost all cases IKMS and BGS perform equally well and on a similar level as
HilomotDoE (abbreviated as HDoE in the figure). Even though the active learning
strategy is able to use more information, the performance is not significantly better.
However, not the full potential of HilomotDoE is exploited since it can only pick
data points present in the existing experimental design. Usually far more potential
points would be provided to the active learning strategy in order to cover the design
space better.

Figure 4.7 shows the comparison for all order of experimentation strategies, except for
MDS, in case of 10 % and 50 % used training data for all input dimensions and input
distributions individually. Based on the shown results, no general recommendation
for BGS or IKMS can be given. All proposed methods are significantly superior to

20 40 60 80 1000.8

0.85

0.9

0.95

1

2-d

8-d

Amount of used training data [%]

N
R

M
SE

/N
R

M
SE

ra
nd

IKMS BGS Random
order HDoE

Figure 4.6: Model performances vs. the amount of used training data for p = 2 and
p = 8, averaged over all input distributions



100 4.1 Order Of Experimentation

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

N
R

M
SE

/N
R

M
SE

ra
nd

Used training data: 10 %

(a) 2 normal distributions

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

Used training data: 50 %

HDoE
IKMS
BGS
Random
order

(b) 2 normal distributions

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

N
R

M
SE

/N
R

M
SE

ra
nd

Used training data: 10 %

(c) uniform distribution

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

Used training data: 50 %

(d) uniform distribution

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

N
R

M
SE

/N
R

M
SE

ra
nd

Used training data: 10 %

(e) maximin LH design

2 3 4 5 6 7 80.7

0.8

0.9

1

Input dimensionality

Used training data: 50 %

(f) maximin LH design

Figure 4.7: Normalized mean NRMSE values vs. input dimensionality for 10 % (left
column) and 50 % (right column) of used training data



4 Design of Experiments Studies 101

a random ordering as it is typically carried out nowadays.

4.1.6 Summary

Models can already be used while the measurement process is still in progress. The
accuracy of models in early stages of the measurement process highly depends on the
order, in which the measurements are carried out. Several newly invented strategies
for the order of experimentation are compared given an already existing experimental
design for regression problems. The main purpose is to gain information from all sub-
regions of the input space as early as possible, such that a certain reliability is ensured
throughout the whole input space. With the help of a function generator, the data
distribution and the data density is varied for several randomly generated synthetic
functions. It is shown that especially dense and structured input data benefits from
well ordered measurements. For sparsely and uniformly covered input spaces almost
all presented ordering strategies perform equally well. In summary, IKMS and BGS
perform in almost all scenarios equally well and are pretty close to the active learning
strategy. The yielded improvements of both model-free ordering strategies (IKMS
and BGS) lie between 5 % and 25 % compared to the random approach. In most
cases HilomotDoE outperforms the model-free approaches, but only slightly. For
real-world applications the proposed order determination strategies can be used in
combination with active learning strategies. It might be a good idea to use one of
the proposed order determination methods in very early stages of the measurement
process, since the model lacks reliability if only very few data is available. At some
point one may switch completely to the active learning strategy.

For the application on real-world test benches additional considerations are necessary.
The proposed strategies are all based on distance measures. If there are hard-to- or
expensive-to-vary factors on the test bench, a suitable input weighting can be used
to influence the methods. Through such an input weighting, points appear closer or
farther away, such that sequences can be generated, where hard-to-vary factors are
only changed slightly going from point to point of the ordered list. Experimental
design principles for controlling noise and bias are (I) replication, (II) blocking, and
(III) randomization.

Replication cannot be influenced by the order of experimentation strategies, since it
is assumed to determine the order of an already existing experimental design. If



102 4.2 Advisability of Specific Experimental Designs

this DoE should contain replication points or not has to be decided in advance,
before the order of experimentation is determined.

Blocking is the division of the whole DoE into several, but similar groups. The
motivation behind blocking is to determine the effect of variables that are
not considered in the experimental design and that clearly influence the out-
put variable. Examples for such so-called nuisance variables can be the room
temperature or air humidity. Each generated group of the DoE should then be
measured while the corresponding nuisance variables are at least approximately
constant. Output variations between different groups can then be associated
to the nuisance variables, whereas output variations within these groups can be
attributed to the variables contained in the experimental design. If the a-priori
determined experimental design contains several groups as a result of blocking,
the strategies to determine the order of experimentation should be applied to
each group individually.

Randomization is somehow already included in the proposed methods, i.e. IKMS
and BGS, since biggest gaps are filled. As a result, points that are close to
each other in the input space will be far away in the ordered lists generated
by IKMS and BGS. Thus, the time between the measurements of two similar
measuring points is increased and effects resulting from factors (inputs), that
cannot be controlled, can average out.

The applicability to a real-world metamodeling task is demonstrated in Section 5.3.
As the most promising methods, IKMS and BGS are used to determine the order
of experimentation for the generation of a centrifugal fan metamodel, where data is
yielded by computational fluid dynamics (CFD) simulations.

4.2 Advisability of Specific Experimental Designs

In the following, two questions concerning the DoE are addressed and answered.
Section 4.2.1 deals with the advisability of incorporating corners (vertices) into the
experimental design, i.e. the measurements of all inputs at their most extreme values.
Intuitively this seems to be a good idea, but it is shown that adding these corner mea-
surements turns out to be disadvantageous for the model quality in most cases. For
the investigations several DoEs are used with and without explicitly incorporating
corner measurements.



103

Section 4.2.2 compares commonly used space-filling experimental designs with re-
spect to the resulting model quality. These DoEs are typically used when there is
relatively little known about the process of interest and the whole design space should
be explored uniformly. Especially in computer simulation experiments, leading to
so-called metamodels, these experimental designs are typically utilized. It turns out
that maximin LHs outperform all other space-filling experimental designs in nearly
all tested cases.

4.2.1 Should Corners be Measured?

Typical human intuition favors the measurement of all inputs at their most extreme
values, i.e., minima and maxima. If only box constraints exist, these combinations
correspond to the corners of the input space. Measuring these corners in p dimen-
sions is called a 2p full factorial design in DoE language [90]. Other commonly used
DoE strategies like D-optimality with polynomial model assumptions or partial frac-
tional designs also incorporate many design space corners [90]. This section analyses
in which cases (number of data points, dimensionality of the problem) measuring
corners is advantageous and in which cases it is counter-productive. Obviously, in a
regression context additional measurements within the design space are absolutely
necessary to detect any nonlinear behavior. Intuitive benefits of measuring corners
are:

• Extrapolation can be completely avoided if the physical minima and maxima
of each input are measured. This should tighten the confidence intervals and
improve reliability.

• Arbitrarily high order interactions can be discovered in principle.

• Optima with respect to the inputs frequently occur at the boundary of the
input space. Thus, it might be a good idea to measure there in order to
improve the accuracy of the model in these regions.

On the other hand, the number of corners of an p-dimensional input space is 2p. The
following three cases can be distinguished (N = number of data points that shall be
measured):

• Low-dimensional problems (N � 2p): The number of corners is negligible to
the overall number of points to be measured. Therefore it seems reasonable to
include the corners to cover the most extreme combinations.



104 4.2 Advisability of Specific Experimental Designs

• Medium-dimensional problems (N > 2p): This is the critical case mainly dis-
cussed in this section and probably the most frequently occurring one (at least
in an engineering context). It will be shown empirically that measuring corners
offers increasing advantages when the amount of extrapolation and function
complexity grow.

• High-dimensional problems (N ≤ 2p): The number of corners is similar or
larger than the overall number of points to be measured. Therefore measuring
corners is infeasible.

A-priori it is not clear for the second case, whether the inclusion of all corner points
yields benefits for the final model performance.

In order to bring some light in the above addressed question, several design of ex-
periments with and without explicitly added corner measurements are compared in
terms of the achieved model accuracy. Therefore, the function generator described
in Section 2.7 is used to generate a large amount of synthetic examples. The results
are statistically evaluated.

For the comparisons made here, LH designs [86], Sobol sequences [125] and data
drawn from a uniform distribution is supplemented with additional corner points.
In order to achieve good space filling properties the LH designs are optimized with
the extended deterministic local search (EDLS) algorithm described in [35]. Sobol
sequences are inherently space-filling and the uniform distribution should also cover
the design space in a more or less space-filling manner. In order to investigate
the influence of corner points on the model quality, two data sets for each setting
(input dimensionality p, number of points N , basic input design, i.e. LH, Sobol, and
uniform) are created. One data set consists of NwC = N points, referred to as the
designs without corners (DWC). The other data set consists of NC = N − 2p points
coming from one of the three basic input designs and is supplemented with 2p corner
points such that the overall number of samples is equal. The later one is referred to
as combined design (CD). Both the CD and DWC design are compared in Fig. 4.8
exemplarily for a 3-dimensional input space and N = 12 samples. The comparison of
the DWC and CD design corresponds to the question for which settings the explicit
incorporation of corner points should be favored.

For the comparison the number of inputs is varied from p = 2, . . . , 8, while the
number of samples is held constant at N = 300. The DWC and CD designs are
used for the training. In case of the data drawn from a uniform distribution and



105

0
1

0

1
0

1

u1u2

u
3

(a) CD design with 8 corner points

0
1

0

1
0

1

u1u2

u
3

(b) DWC design

Figure 4.8: Comparison of a CD and a DWC maximin LH design in a 3-dimensional
input space. The number of points is N = 12.

the Sobol sequences, 20 different realizations are generated and results are averaged
over these 20 input designs. Only one LH design per setting is utilized. For each
setting, 100 sigmoidally saturated random functions (see Section 2.7) are generated
and statistically evaluated afterwards. For these functionsM = 10 polynomial terms
are used and the expected value of the exponential distribution is set to µ = 1.
Independently of the input dimensionality p and the case under consideration, the
test data consists of N t = 105 samples and it is generated by Sobol sequences. It
is assured, that the Sobol sequences used for the test data and training data have
no intersection. Therefore the models trained with data originating from the Sobol
sequences should not have a significant unfair advantage compared to models trained
with the other two input designs.

The training is done with the HILOMOT algorithm (see Section 2.3 and [97] for
details) and three different extrapolation scenarios are investigated:

• No extrapolation: Design space for training is [0, 1]p.

• Small extrapolation: Design space for training is [0.1, 0.9]p.

• Large extrapolation: Design space for training is [0.2, 0.8]p.

For all scenarios the test data points lie in the hypercube [0, 1]p.

Results for the investigations with the help of the synthetic functions are shown
in Fig. 4.9. The averaged NRMSE values are plotted against the input dimension-
ality for all extrapolation scenarios and all distributions of the training data. For
the scenarios with no and small extrapolation, DWC designs yield smaller NRMSE



106 4.2 Advisability of Specific Experimental Designs

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

M
ea

n
N

R
M

SE

Without corners
With corners

(a) No extrapolation,
LH

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(b) Small extrapolation,
LH

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(c) Large extrapolation,
LH

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

M
ea

n
N

R
M

SE

(d) No extrapolation,
Sobol

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(e) Small extrapolation,
Sobol

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(f) Large extrapolation,
Sobol

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

M
ea

n
N

R
M

SE

(g) No extrapolation,
uniform

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(h) Small extrapolation,
uniform

2 3 4 5 6 7 80

0.2

0.4

0.6

Input dimensionality

(i) Large extrapolation,
uniform

Figure 4.9: Comparison of designs with and without corners in terms of the achieved
mean NRMSE on test data for all extrapolation scenarios and all training
data distributions



107

values and are therefore superior to the CD designs. In the scenario with large ex-
trapolation the DWC designs outperform the CD designs only for the highest input
dimensionality. The reason why the DWC designs are better suited for the highest
input dimensionality is probably due to the high fraction of corner points in relation
to the overall number of training samples. Table 4.1 shows the ratios defined by the
corners of the design space (2p) divided by the number of training samples N . Since
the number of training samples is kept constant at N = 300, the shown ratio tends
to one as the input dimensionality increases. This means that almost no samples are
left to gather information from the „inside“, which is missing in order to approximate
the given test function properly. The distribution of the training data seems to play
no role, since the results are qualitatively very similar regardless if LH designs, Sobol
sequences or data coming from a uniform distribution is used.

Interestingly the models obtained by LH designs perform always better than the one’s
from Sobol sequences in case of no and small extrapolation. In order to visualize
this, results of all training data distributions are shown altogether in one graph in
Fig. 4.10a in case of no extrapolation and in Fig. 4.10b in case of small extrapolation.
This observation is investigated in more detail in Section 4.2.2.

Another noticeable result that can be seen in Fig. 4.9 is the decrease in the mean
test NRMSE value for large extrapolation demands at least for higher input dimen-
sionalities (p > 6). This phenomenon is counter-intuitive and occurs only in the CD
designs but regardless of the used training data distribution. It also appears for dif-
ferent model types. The same phenomenon was observed with multilayer perceptron
networks (see [96] for details about this model type) and Gaussian process models
as described in detail in [107]. To clarify this phenomenon, designs only consisting
of corner points are investigated, since the number of non-corner points is negligible
in cases where this phenomenon is observed. The objective function Jt is the error
on the test data which always lies in the hypercube [0, 1]p and is optimized with re-
spect to the region [b, 1− b]p into which the training data is scaled down to, compare

Table 4.1: Ratios between the corners of the design space (2p) and the number of
training samples N = 300

Input dimen-
sionality p 2 3 4 5 6 7 8
Ratio 2p/N 0.0133 0.0267 0.0533 0.1067 0.2133 0.4267 0.8533



108 4.2 Advisability of Specific Experimental Designs

2 3 4 5 6 7 80

0.2

0.4

0.6
with

corners

without
corners

Input dimensionality

M
ea

n
N

R
M

SE
LHS
sobol
uniform

(a) No extrapolation

2 3 4 5 6 7 8

0.2

0.4
with

corners

without
corners

Input dimensionality

M
ea

n
N

R
M

SE

(b) Small extrapolation

Figure 4.10: Comparison of different distributions of the training data for no (a) and
small (b) extrapolation

Fig. 4.11:

bopt = arg min
b

Jt ,

The value bopt leads to the minimal test error and corresponds to a specific region
in which which the training data is located. This optimization problem is solved
for all 100 eight-dimensional test functions generated with the function generator.
On average bopt turned out to be 0.2 with a standard deviation of 0.03. Assuming
that each training data point supports a model in a local region around it with
information about the process that should be approximated, this is a reasonable
result. The region supported by a training data point is visualized in Fig. 4.11 for
two cases corresponding to (i) b = 0 (upper right corner of the test data region) and
(ii) b > 0 (lower left corner of the training data region). As can be seen for case (i),
most of the supported region lies outside the test data hypercube and does therefore
not contribute to a lower error on test data. Case (ii) covers more hypervolume of
the test data hypercube leading to a better model performance on the test data.
Note that the shape and size of the shown support regions in Fig. 4.11 are chosen
arbitrarily to explain the mechanism responsible for the counter-intuitive observation
that larger extrapolation demands lead to a better model performance. Of course
the true shape and size of such regions is unknown and may vary with the location
in the input space as well as with the specific process under consideration.

In summary, it can be recommended to measure corners only if “enough” data points
remain inside the design space and large extrapolation is required. Another impor-



109

0 b 1 − b 1

0

b

1 − b

1

Test data
region

Training data
region

Support
region Data points

Figure 4.11: Visualization of the test data region, the training data region depending
on b, and exemplary support regions for two data points

tant outcome is the superiority of maximin LH designs compared to Sobol sequences
in most cases, leading directly to the investigations of Section 4.2.2.

4.2.2 Comparison of Space-Filling Experimental Designs

Commonly used space-filling experimental designs are compared by means of the
model quality achieved with them. These DoEs are typically chosen for computer
simulation experiments, leading to so-called metamodels, see Section 2.6 for de-
tails. In cases where there is relatively little prior knowledge about the process
of interest, space-filling experimental designs have the advantage to explore the
whole design space uniformly. This might be one reason for their popularity in
the field of metamodel-based design optimization (metamodel-based design opti-
mization (MBDO)), in which data is sequentially collected in regions of the design
space, where an optimum is suspected. Note that the term design in MBDO refers
to constructive design and not to the experimental design.

The experimental designs that are compared are several maximin LHs, originating
from different optimization strategies, Sobol sequences and data coming from uni-
form distributions. Examples where LH designs are chosen as DoE are e.g. [136],
[135], [137], [72], and [21]. Sobol sequences are increasingly used for computer ex-
periments according to [104]. Examples for work in which they are used are [38],
[134], and [28].



110 4.2 Advisability of Specific Experimental Designs

Most of the published related work, such as [67, 65, 66], [68], [49], and [24], relies
on comparison criteria based on measures of the input space coverage or on the
estimated prediction variance. In contrast to that, the comparison criterion used
here is the achieved model quality. Again, the random function generator described
in Section 2.7 is used to build several test functions. Through the randomness
incorporated in the function generator a variety of different characteristics can be
imitated and a favoring of any experimental design through a specific choice of
functions is avoided. Once the test functions are generated, an arbitrary amount of
data samples for training or testing purposes can be produced. Chen et. al. [25]
conducted a comparison of some experimental designs based on the resulting model
quality, but only for far less test functions compared to this work.

Three types of maximin LH designs are used for the comparison. Two of the maximin
LH designs are obtained by the optimization with the EDLS algorithm [35]. The
third maximin design is obtained by the function implemented in the commercially
available software Matlab. As an additional reference, data drawn from a uniform
distribution is also incorporated in the comparison.

The EDLS algorithm tries to maximize the distance between the point pair having
the smallest nearest-neighbor distance in a given data set (maximin criterion) by
coordinate exchanges. Therefore the distances between all possible point pairs have
to be determined and coordinates of the points having the smallest distance to each
other are tentatively exchanged with other points. If such an tentative exchange
leads to an improvement of the maximin criterion, it is actually carried out. In case
no exchange partner can be found that leads to an improvement of the maximin
criterion, phase one of the EDLS algorithm is terminated. In phase two of the
EDLS algorithm additional points are considered for coordinate exchanges. These
additional points are point pairs having the second (third, fourth, etc.) smallest
distance to each other. For more details the reader is referred to [35].

The input space dimensionality is varied from p = 2, . . . , 8 while the number of
training samples is held fixed at N = 300. The test data to assess the model quality
consists of N t = 105 samples coming from a Sobol sequence independent of the input
dimensionality. The high number of test samples compared to the training data size
should guarantee a good measure of the generalization performance of the obtained
models. It is assured that the Sobol sequence for the model quality assessment
and the ones used for the training do not contain the same data points. For each
investigated input dimensionality 30 different realizations of each experimental design



111

are generated and serve as training data for 30 different test functions created by the
function generator. The realizations of the EDLS-optimized LH designs are obtained
by varying the initial LH design. The design achieved after finishing phase one of
the EDLS algorithm will be abbreviated as LH (EDLS I) in the following. Phase
two takes the result of phase one and continues the optimization until convergence.
The optimization result of phase two will be abbreviated as LH (EDLS II). For the
Sobol sequences different parts of a very long sequence are taken.

The aforementioned settings for the comparison are done for three different complex-
ities of the test functions. Through the variation of the µ parameter (see Section 2.7)
functions are likely to arise that are of rather simple complexity (µ = 0.5), of medium
complexity (µ = 1), and of high complexity (µ = 2). All models are LMNs trained
with HILOMOT as explained in Section 2.3. The model complexities are determined
with the help of the Akaike’s information criterion (AICc).

Figure 4.12 shows the mean test errors of all experimental designs versus the input
dimensionality for all test function complexities. For each input dimensionality the
results of all 30 test functions and 30 input data realizations are averaged to obtain
the mean values for each experimental design. The NRMSE is calculated according
to (2.6) and is employed on Nt = 105 test data samples. Lower NRMSE values
indicate better generalization performance. The difference between the model quali-
ties achieved with the investigated experimental designs increases with an increasing
complexity of the test functions and an increasing input dimensionality. In all cases

2 3 4 5 6 7 80

0.1

LH
(EDLS

II)

LH
(EDLS I)LH

(Matlab)
Sobol

Uniform

Input dimensionality

M
ea

n
te

st
er

ro
r

(N
R

M
SE

)

(a) Simple complexity
(µ = 0.5)

2 3 4 5 6 7 80

0.1

0.2

0.3

LH
(EDLS

II)
LH

(EDLS I)

LH
(Matlab)

Sobol
Uniform

Input dimensionality

(b) Medium complexity
(µ = 1)

2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

LH
(EDLS

II)LH
(EDLS I)

LH
(Matlab)

Sobol
Uniform

Input dimensionality

(c) High complexity
(µ = 2)

Figure 4.12: Mean test errors of functions that are of simple complexity (µ = 0.5),
medium complexity (µ = 1), and high complexity (µ = 2)



112 4.2 Advisability of Specific Experimental Designs

the maximin LH designs optimized with the EDLS algorithm yield the best results.
The continuation of the EDLS optimization (phase two) after phase one has com-
pleted brings advantages especially for complex functions (µ = 2) and high input
dimensionalities, see Fig. 4.12c. The next best experimental design according to the
achieved model quality is the Sobol sequence. The maximin LH designs obtained by
the Matlab function yield slightly better model performances compared to the data
coming from the uniform distribution.

The variability due to varying test functions is far bigger than the variation due to
different realizations of the experimental designs. Here, the standard deviations of
the model errors resulting from the different realizations of the experimental designs
are of interest. Therefore the standard deviations for each test function are compared.
If an experimental design reveals a small standard deviation in the corresponding
test errors, the danger of obtaining a bad DoE by picking just one realization for a
specific task is small. This is an extremely appealing property in combination with a
low mean value of the expected model error. In order to compare the best maximin
LH design (EDLS II) with the Sobol sequences, the relative difference between the
mean errors ēi

∆er = ēSobol − ēLH
ēLH

· 100 % , (4.2)

and between the standard deviations σni

∆σnr = σnSobol − σnLH
σnLH

· 100 % , (4.3)

is used. According to the definitions of (4.2) and (4.3), positive values indicate the
improvement of the EDLS-optimized maximin LH design in percent compared to the
Sobol sequence. Figure 4.13 shows the values of ∆er and ∆σnr for all 30 medium and
complex test functions together in one graph for input dimensionalities p = 4 and
p = 8. Each dot and each cross corresponds to one test function. The upper right
corner of the graph contains test functions for which the maximin LH design leads to
better mean test errors (∆er > 0) and lower standard deviations (∆σnr > 0), which
is the case for most of the 60 shown test functions in each graph. The selected graphs,
i.e. Fig. 4.13a and 4.13b, show the results for the input dimensionalities where the
EDLS-optimized maximin LH designs come off worst and best. The improvements
in the relative mean error difference and the standard deviation difference go up to
35 % and 300 %, respectively. The maximum decline in ∆er is about 15 % and 70 %
in ∆σr. However, in far more cases the EDLS-optimized LH designs are superior to
Sobol sequences in both aspects.



113

−10 0 10 20

−50

0

50

100 LH superior

Sobol superior

∆er = ēSobol−ēLH

ēLH
· 100 %

∆
σ
n
r

=
σ

n
S

o
b
o

l−
σ

n
L

H

σ
n

L
H

·1
00

%
µ = 1
µ = 2

(a) Input dimensionality p = 4

0 10 20 30

0

100

200

300

LH superior

Sobol
superior

∆er = ēSobol−ēLH

ēLH
· 100 %

µ = 1
µ = 2

(b) Input dimensionality p = 8

Figure 4.13: Relative mean test errors and standard deviations for all 30 test func-
tions of two complexities (µ = 1, µ = 2) for p = 4 and p = 8.

Figure 4.14 shows the required mean computation time for the generation of all
investigated experimental designs. In this category the Sobol sequences are superior
to all LH designs and are only outperformed by the uniform designs. On an absolute
scale the optimization of the EDLS I LH designs takes up to one minute on average,
while the generation of EDLS II designs consumes up to 660 minutes on average.
The creation of all other designs takes far less than one second.

Unfortunately it is not possible to clarify with certainty what the reasons are that
in almost all cases the maximin LH designs outperform the other investigated ex-
perimental designs regarding the mean model quality. The superiority regarding the
variance in the model qualities originates probably due to the use of an optimization

2 3 4 5 6 7 810−6

10−3

100

103

Input dimensionality p

M
ea

n
co

m
pu

ta
tio

n
tim

e
in

m
in

ut
es

Uniform Sobol LH
(Matlab)

LH
(EDLS I)

LH
(EDLS II)

Figure 4.14: Mean computation time for the generation of the experimental designs



114 4.2 Advisability of Specific Experimental Designs

algorithm in order to generate the training data. Through the optimization the vari-
ation between different training data sets should be very low which finally results
in a lower model quality variance. However, one property of the designs is investi-
gated in some more detail in the following in order to find a hint that might explain
the superiority regarding the better mean model quality. For the comparison of the
space-filling designs carried out in this section it is assumed that designs covering
the input space uniformly are advantageous for the expected model quality. In the
opinion of the author, one crucial point is to fulfill the uniformity requirement for
reasonable few data samples. For example data drawn from a uniform distribution
should cover the input space uniformly, but quite a lot of samples are needed until
clumps and empty spaces vanish. Figure 4.4b shows N = 300 samples drawn from a
uniform distribution in a two-dimensional input space and clumps as well as empty
spaces are apparently present. A commonly used measure to quantify the geometric
non-uniformity of points is the L∞-discrepancy [123]. For any data set containing
N points it is defined as:

D∗N = sup
K⊆Rp

∣∣∣∣∣
N in(K)
N

− Vin(K)
V

∣∣∣∣∣ . (4.4)

In this equation K defines a hypercube contained within the p-dimensional input
space Rp with one corner of it located at the origin 0. The number of points inside
K is N in and the hypervolume of K is Vin. V corresponds to the total hypervolume
in which all data points N are contained. In other words, a hypercube is sought in
which the discrepancy between the proportion of points inside the hypercube differs
the most from the proportion of points that should be present according to the volume
proportion of that hypercube. In Fig. 4.15 the proportion of points is plotted against
the proportion of hypervolume of a hyper-square for the two- and eight-dimensional
case. The shown curves correspond to the worst L∞-discrepancy of all 30 input data
realizations of the maximin LH designs, i.e. EDLS I and II, and the Sobol sequences.
On top of each shown figure there is an alternative x-axis showing the edge length
of the hyper-square that corresponds to the hypervolume Vin. The closer the curves
are to the diagonal, the lower is the discrepancy measure according to (4.4). Curves
lying below the diagonal represent a too low data density and vice versa. For the two-
dimensional case shown in Fig. 4.15a all experimental designs lie upon the diagonal.
With an increasing input dimensionality the curves deviate more and more from the
diagonal. On average the Sobol sequences tend to be a little bit above the diagonal
whereas the maximin LH designs are typically below it. The interpretation of this
observation is that the LH designs possess more points very close to the boundary



115

0 0.5 0.71 0.87 1
Edge length hyper-square

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Vin

V

N
in N

LH (EDLS II)
Sobol
LH (EDLS I)

(a) p = 2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Vin

V

0 0.84 0.92 0.96 1
Edge length hyper-square

(b) p = 8

Figure 4.15: Proportion of points inside a defined hypervolume to all points (N in/N)
versus proportion of that hypervolume to the total hypervolume (Vin/V )
for input dimensionalities p = 2 and p = 8

of the outer hypercube. In an eight-dimensional input space the ratio Vin/V = 0.5
corresponds to an edge length of ≈ 0.92, see Fig. 4.15b. At this point the curves
of the two LH designs lie clearly below the diagonal, meaning that in relation to
the proportion of the hypervolume too few data samples lie inside the hyper-square.
Viewed from a different angle the number of points in the remaining hypervolume
(V − Vin) has to be relatively high, because the point (Vin/V = 1, N in/N = 1) has
to be met exactly. Since the advantage of the maximin LH designs with respect to
model quality increases with the input dimensionality, see Fig. 4.12, this property of
the training data set seems to be favorable w.r.t. to the model quality.

In summary, maximin LH designs created by the EDLS algorithm (and probably
other optimization schemes as well) are superior to all other investigated experimen-
tal designs regarding both the achieved model qualities and the variation of these
model qualities. These advantages have to be paid off by higher computational effort
for the DoE. However, the LH designs can be optimized and stored in advance to
a specific task, such that this drawback can be weakened at least for some applica-
tions. Another drawback of the maximin LH designs regards their extensibility. If
just a few points should be added to an already optimized LH design it is not as
easy as to append additional points to an existing Sobol sequence, because further
optimization runs are necessary. The results are important for both the initial DoE



116 4.2 Advisability of Specific Experimental Designs

Table 4.2: Advantages and drawbacks of Sobol sequences and maximin LH designs

Maximin LH designs Sobol sequences

+ Better model qualities on average

+ Lower deviations in the model
qualities (even worst case delivers
satisfactory results)

– Higher computational effort and
therefore more time-demanding
to generate the experimental de-
signs

– Difficult to add further design
points incrementally

– Not suited for very high amounts
of data samples (N > 104) be-
cause optimization takes too long

• Higher L∞-discrepancy on av-
erage (theoretically a drawback,
but has a positive effect in the in-
vestigations of this section)

– Lower model qualities on average

– Higher deviations in the model
qualities (worst case might be
very inferior)

+ Lower computational effort and
therefore less time-demanding to
generate the experimental de-
signs

+ Easy to add further design points
incrementally

+ Very high amounts of data sam-
ples not a problem

• Lower L∞-discrepancy on aver-
age (theoretically an advantage,
but has no positive effect in the
investigations of this section)

and subsequent refinements of it in presumably near-optimum regions of the design
space. Table 4.2 compares the advantages and drawbacks of the Sobol sequences and
the maximin LH designs.



117

4.3 Goal-Oriented Active Learning with Local Model
Networks

A methodology for goal-oriented active learning with LMNs is presented in the fol-
lowing. The basic concept arose by reason of a real-world application where training
data for a CFD metamodel should be generated. However, this section focuses not
on the application to the problem at hand but describes the developed methodology
in a more theoretical context. The application is presented in Section 5.3. The de-
veloped methodology is invented for (meta-)models that try to describe a technical
system universally - not only one occurrence of it. In other words, the model should
be able to describe the technical system well in general and does not only focus
on specific areas of the design space, like optima-near regions as metamodel-based
design optimization (MBDO) techniques do.

The goal-oriented nature originates from three main targets that are addressed si-
multaneously during the active learning procedure. (I) The concentration on pos-
sibly near-optimum regions and (II) the focus on areas in the design space where
the (meta-)model’s performance is considered to be worst. Additionally, (III) new
measurements should differ from already gathered data as much as possible. With
these goals three important issues in modeling are addressed simultaneously: (I)
optimality, (II) model bias, (III) model variance/uniformly space-filling property.
In order to fulfill all goals, special properties of LMNs are utilized (embedded ap-
proach). Through the structure of LMNs it is possible to assign local model errors
to specific regions in the input space. New measurements are preferably placed in
such high-error zones, while concentrating on presumably near-optimum regions that
differ most from the already existing training data. As will be shown in the appli-
cation section, the invented methodology is able to extend the area of achievable
design points in the input space and leads to a better exploitation of optimum-near
regions.

As already described in Section 2.5, active learners can be distinguished by their
query strategies, i.e., how they choose the next query. The herein presented goal-
oriented active learning strategy is an extension of the HilomotDoE algorithm pro-
posed in [55]. The main focus of the query strategy of HilomotDoE is to reduce the
error of an LMN, as described in some more detail in Section 4.3.1. Since the error
of the model can be decomposed into a bias and variance part [96], HilomotDoE



118 4.3 Goal-Oriented Active Learning with Local Model Networks

addresses and reduces both error parts as described in [56]. There are two main in-
novations compared to the already existing HilomotDoE algorithm. One innovation
regards the generation of so-called candidate points. Candidate points are potential
queries from which only one or a small subset is chosen to be measured. In the orig-
inal HilomotDoE algorithm, candidate points are generated randomly by drawing
values from a uniform distribution or Sobol set. The goal-oriented active learning
strategy generates the candidate points in a completely deterministic way as de-
scribed in more detail in Section 4.3.2. The other innovation regards the generation
of more than one query. There are already existing strategies to pick more than one
query with the HilomotDoE algorithm described in [56]. The strategy outlined in
Section 4.3.1 offers advantages especially when dealing with MIMO systems.

4.3.1 Active Learning with Local Model Networks

As already mentioned, the active learning strategy with LMNs aims at reducing
the error of the final model. It is assumed that the highest error reduction can
be obtained if the queries are placed in areas of the input space with the highest
local error measure eLM,i, i ∈ {1, . . . ,M} with M being the number of local models.
For the calculation of the local error measures eLM,i the measured outputs y, the
local model outputs ŷ

i
, the effective number of local parameters neff,i and the local

validity matrix Q
i

= diag(Φi(u)) are required:

eLM,i =

√√√√(y − ŷ
i
)TQ

i
(y − ŷ

i
)

trace(Q
i
)− neff,i

, i ∈ {1, . . . ,M} . (4.5)

Each squared error between a local model output and the measured output is weighted
with the corresponding validity value and is divided by the leftover degrees of free-
dom. For the sake of simplicity (4.5) handles only the case with one output (multiple
input single output (MISO) case). For the MIMO case a local error measure arises for
each output individually. For more details on how to compute the effective number
of parameters neff,i for each local model please refer to [56].

Figure 4.16 visualizes the situation during the active learning phase for a two-
dimensional input space if only one query is sought. An LMN is trained with HILO-
MOT based on all currently available data. As one result the partitioning of the
input space is obtained and for each local model a local error measure according
to (4.5) can be calculated, see Fig. 4.16a. In the original, not yet extended version



119

u1

u2

low error high error

(a) Qualitative local errors

u1

u2

low error high error

(b) Training data (x), candidates (·) and
chosen query (o)

Figure 4.16: Partitioning of an LMN with local errors (a) and with focus on the
worst local model together with training data (x), candidates (·) and
the chosen query (o)

of HilomotDoE, candidate points are generated through random sampling from a
uniform distribution (dots in Fig. 4.16b). From all randomly generated candidate
points only the ones lying in the local model with the worst local error measure are
considered in the following. The candidate point inside the worst local model that
fills the greatest hole of the already measured training data is chosen as query. In
order to find the greatest hole, the nearest neighboring training data point to each
considered candidate is determined. The candidate point with the greatest distance
to its nearest neighboring training data point is chosen as query. During the distance
calculations, all training data samples are considered, but only candidates within the
worst performing local model are taken into account. After the measurement at the
current query has finished, the training data set is updated, a new LMN is trained
with HILOMOT, and the next query can be determined.

For algorithmic efficiency reasons it might be reasonable to request more than one
query at a time. If nq > 1 queries are demanded, a new strategy for HilomotDoE is
proposed. Still HILOMOT is used to train an LMN and yield a partitioning of the
input space. Then, all local error measures are calculated and normalized, such that
their sum equals one:

êLM,i = eLM,i

M∑
j=1

eLM,j

. (4.6)



120 4.3 Goal-Oriented Active Learning with Local Model Networks

The number of demanded queries from each local model nqLM,i is obtained by round-
ing the overall number of demanded queries nq multiplied with the corresponding
normalized local error measure êLM,i:

nqLM,i = bnq · êLM,ie . (4.7)

With this approach more queries are demanded from a local model, the bigger its
local error measure is in relation to the local error measures of all other local models.
Again, for the sake of simplicity (4.6) and (4.7) consider only the MISO case, but
an extension for MIMO systems is straightforward. The normalized error measures
êLM,i have to be extended by an index specifying the output number. Additionally
an extra (possibly weighted) summation over all outputs has to be included in the
denominator of (4.6). Then, (4.7) has to be evaluated for each output and the
number of requested queries is obtained by summing up these queries for each local
model and each output.

4.3.2 Generation of Candidate Points

As already mentioned, the other novelty is the deterministic generation of the can-
didate points which are subsequently used by HilomotDoE. A block diagram of the
whole goal-oriented active learning procedure is shown in Fig. 4.17. The candidate
points are generated through an optimization based on the currently available model,
trained with all yet accessible measurements. With the help of the model the objec-
tive function J(u) can be determined for each design vector uT =

[
u1 u2 · · · up

]
.

In order to distribute the initial values for the optimization runs in a space-filling
manner throughout the whole input space, the EDLS algorithm proposed in [35] is
used to generate a maximin LH design. To prevent the optimization from generating
too similar candidate points, nc constraints for each initialization point coming from
the LH design are applied. If no constraints would be demanded all optimizations
lead to the same optimum assuming the optimization finds the global optimum.
More details about the used constraints follow in the next paragraph. All resulting
candidate points are provided to HilomotDoE, that determines queries as described
in previous paragraphs (biggest hole criterion). After the queries are measured,
they are added to the available measurements. Through the altered training data
the model and therefore the outcome of optimizations with the new model might
change, even if neither the constraints nor the LH design is changed.



121

Available
measurements

Training
algorithm Model

Optimization LH designConstraints

Candidate
pointsHilomotDoEProcess

queryne
w

da
ta

po
in

t
(q

ue
ry

+
la

be
l)

uopt

u J(u)

Figure 4.17: Block diagram of the goal-oriented active learning procedure

Different constraints induce a desired variability in the optimization solutions by
forcing the optimization to meet the constraints. These constraints might reflect
later usage scenarios, if some design parameters are bounded, e.g. due to limited
available construction space. Including optimal solutions meeting such constraints
in the training data set should improve the resulting model quality for these appli-
cation scenarios. In contrast to that, variations in the optimization solutions due
to local optima or convergence problems are not desired. The corresponding ge-
ometries are not of special interest for later usage scenarios since they are obviously
suboptimal. If the number of optimization variables is p, there are nc = 2p possible
constraint combinations specifying which variables are held fixed. For each point
contained in the LH design all possible constraint combinations are applied. Con-
strained optimization variables are held fixed at the value of the corresponding LH
design point. As an example Fig. 4.18 together with Table 4.3 illustrate this for
p = 2 optimization variables for the i-th point of the LH design. Four optimization
scenarios arise with different constraints, all listed in Fig. 4.18 and Table 4.3. The
variable uj,LH denotes the value coming from a point in the LH design that is fixed
during the corresponding optimization run. In case of „opt.“ in a field of Table 4.3,
the value of the corresponding variable is yielded by the optimization. With this
approach N c = NLH · nc = NLH · 2p optimization runs are necessary to obtain all
candidate points.

The presented goal-oriented active learning strategy is very process oriented, since
candidate points are concentrated around near-optimum regions given some deter-
ministically specified constraints. Because of the high specificity of the HilomotDoE
extension no adequate artificial example is created. However, the usefulness of the
presented strategy is demonstrated in Section 5.3 for the active generation of training
data for a CFD metamodel.



122 4.3 Goal-Oriented Active Learning with Local Model Networks

Table 4.3: Each column contains one optimization scenario. An optimization variable
uj might either be constrained to a specific value (uj,LH(i)) or can be free,
i.e., the value is determined through the optimization (opt.).

Optimization scenario: 1 2 3 4
Opt. variable u1 opt. opt. u1,LH(i) u1,LH(i)
Opt. variable u2 opt. u2,LH(i) opt. u2,LH(i)

u1,LH(i)

u2,LH(i)

1. No constraints
maximize

u1,u2
J(u)

2. Equality constraint for u2

maximize
u1

J(u)

subject to u2 = u2,LH(i)
3. Equality constraint for u1

maximize
u2

J(u)

subject to u1 = u1,LH(i)
4. No optimization
u1 = u1,LH(i); u2 = u2,LH(i)

Figure 4.18: Illustration of all optimization scenarios for point i of an LH design with
two inputs



123

5 Applications

In this chapter some applications of the proposed input selection and design of exper-
iments (DoE) techniques are presented. The shown applications prove the usefulness
and applicability of the concepts and methods described in Chapters 3 and 4. The
first application example presented in Section 5.1 considers the auto miles per gal-
lon (MPG) data set that is freely available from the machine learning repository of
the University of California Irvine (UCI) [80]. The second application presented in
Section 5.2 deals with the intake manifold of an combustion engine. Computational
fluid dynamics (CFD) metamodels predicting the efficiency of centrifugal and axial
fans are topic of Section 5.3. Some of the developed DoE techniques are applied for
the generation of a data set for the centrifugal fan CFD metamodels. The mixed
wrapper-embedded input selection is applied to both the centrifugal and the ax-
ial fan CFD metamodels in Section 5.3.3. The last application concerns a heating,
ventilating, and air conditioning (HVAC) system and is shown in Section 5.4. The
first three applications deal with static modeling tasks, while the aim in the HVAC
application is to build a dynamic model for control design of the process.

5.1 Miles Per Gallon Data Set

The MPG data set concerns city-cycle fuel consumption to be predicted in terms
of three multi-valued discrete and four continuous input variables [106]. The input
variables are:

• Number of cylinders u1 (multi-valued discrete),

• displacement u2 (continuous),

• horsepower u3 (continuous),

• weight u4 (continuous),



124 5.1 Miles Per Gallon Data Set

• acceleration u5 (continuous),

• model year u6 (multi-valued discrete), and

• origin u7 (multi-valued discrete).

The fuel consumption is measured in miles per gallon (MPG); higher MPG val-
ues correspond to lower fuel consumption. The used data set is obtained from the
machine learning repository of the University of California Irvine (UCI) [80] and
contains N = 392 samples. This data set is split into a training and test data set
containing N train = 333 and N test = 59 samples, respectively. For the splitting of
the data set a deterministic and distance-based algorithm is used with the goal to
avoid extrapolation and is explained in detail in Appendix A.

The auto MPG data set is used to demonstrate the abilities of the separated x-z-input
selection in Section 5.1.1. In addition to that, the regularization-based input selection
(RBIS) approach is tested on the real-world example in Section 5.1.2. Finally, partial
dependence plots are shown and discussed in Section 5.1.3.

5.1.1 Mixed Wrapper-Embedded Input Selection

For the investigation with a separated x-z-input selection the search strategy as
well as the evaluation criterion are chosen according to the recommendations in
Section 3.2.2, i.e. backward elimination (BE) and Akaike’s information criterion
(AICc), respectively. Local affine models are used for the local model networks
(LMNs) trained with the HIerarchical LOcal MOdel Tree (HILOMOT). The model
complexity of the LMNs is determined with the help of the AICc. Due to the input
selection scheme, there are 14 possible LMN inputs.

Figure 5.1a shows the AICc values versus the number of LMN inputs. The best AICc

value is obtained with a subset size of seven LMN inputs, since lower AICc values
indicate better model performances. In between two subsequent AICc values the
LMN input that is removed in the corresponding BE step is denoted. To simplify
the determination of the inputs contained in the best subset, Fig. 5.1b is provided
and shows which input subset corresponds to a specific number of LMN inputs. As
can be seen, the best input subset contains four and three inputs in the x- and
z-input space, respectively. The chosen LMN inputs belonging to the best subset
are marked in bold type in Fig. 5.1b. Table 5.1 summarizes the assignment of
each physical input variable to both the x- and z-input space. Interestingly, all



5 Applications 125

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−1,800

−1,600

−1,400

−1,200

−1,000

u4x

u6z

u2z u5z

u1x

u3x

u7x

u4z

u2x

u7z

u6x

u1z

u5x

u3z

Number of LMN inputs

A
IC

c

(a) Evaluation criterion curve

1 2 3 4 5 6 7 8 9 10 11 12 13 14
u1x

u2x

u3x

u4x

u5x

u6x

u7x

u1z

u2z

u3z

u4z

u5z

u6z

u7z

Number of LMN inputs

In
pu

t

(b) Selected inputs

Figure 5.1: AICc values versus number of LMN inputs (a) and selected inputs for
the auto MPG data set

Table 5.1: Assignment of all physical inputs of the auto MPG example to the x- and
z-input space for the best subset containing seven LMN inputs

x-input space z-input space
u1, u3, u4, u7 u2, u5, u6

physical inputs are incorporated in the best subset, but either exclusively in the x-
input space or the z-input space. This implies that a classic wrapper input selection
approach would have failed to reduce the number of inputs. Therefore, the auto
MPG example benefits from the exploited possibility to distinguish between the x-
and z-input space. A comparison of the model quality achieved with the best input
subset opposed to a model with all inputs is omitted here, because it is included in
the next section, see Fig. 5.2.



126 5.1 Miles Per Gallon Data Set

5.1.2 Regularization-Based Input Selection

The RBIS approaches with the heuristic as well as with the optimization-based de-
termination of the split regularization parameters are tested on the auto MPG appli-
cation. Findings from the separated x-z-input selection from the previous section are
not used here. Therefore, all physical inputs u1 up to u7 are contained in both the x-
and z-input space during the RBIS calculations. For the heuristic determination of
the split regularization parameters the same four initial values are used as previously,
which are 10−4, 10−3, 10−2, and 10−1, see Section 3.3.3. The optimization-based de-
termination of the split regularization parameter has the leave-one-out (LOO) error
as objective.

In Fig. 5.2 the model qualities of all RBIS approaches and additionally the model
quality with the best subset according to the separated x-z-input selection from the
previous section are compared. Additionally the achieved model qualities of the
LOcal LInear MOdel Tree (LOLIMOT) and HILOMOT are visualized without the
use of any input selection technique, i.e. all inputs are used for both the x- and
z-input space. There is no decrease in the model quality through any of the input
selection techniques. The best model quality is achieved by the model with only
seven LMN inputs resulting from the separated x-z-input selection. The best RBIS
result is obtained if the heuristic is used for an initial split regularization parameter
of λ = 10−3.

0 0.05 0.1 0.15 0.2 0.25 0.3

RBIS λ = 0.0001

RBIS λ = 0.001

RBIS λ = 0.01

RBIS λ = 0.1

RBIS opt. λ

MWEIS 7
LMN inputs

NRMSE on test data

HILOMOT
LOLIMOT

Figure 5.2: Comparison of the achieved model qualities with all RBIS approaches,
the best input subset found with an separated x-z-input selection, as well
as LOLIMOT and HILOMOT



5 Applications 127

In contrast to the investigated test processes in Section 3.3.3, the RBIS approach
is able to increase the model accuracy more clearly. A likely cause is the higher
dimensionality of the auto MPG application compared to the used test processes,
where the maximum number of inputs is four instead of seven for the auto MPG
application. It is assumed that through the increased input dimensionality the ben-
efits of regularizing the splitting parameters become more pronounced. Additional
investigations of the RBIS approach with processes having higher-dimensional input
spaces are suggested for future research.

5.1.3 Visualization: Partial Dependence Plot

The partial dependence plots for all inputs of the model with the best quality are
shown in Fig. 5.3. The model used for the visualization is obtained through the
separated x-z-input selection and has four x-inputs and three z-inputs. The nonlinear
dependency on the inputs contained in the z-input space, which are the displacement,
the acceleration, and the model year, is clearly visible from the mean curves. The
mean curves of the remaining inputs indicate an affine behavior as could be expected
from the fact that these inputs are only contained in the x-input space.

All mean curves show a monotonic behavior. The fuel consumption generally in-
creases

• with fewer cylinders,

• for higher values of the displacement,

• for higher values of the horsepower,

• for higher values of the weight,

• for higher acceleration values, and

• the earlier the car is built.

Additionally, the fuel consumption increases very slightly when the origin changes
from Europe over Japan to the USA. Obviously an increasing fuel consumption for
fewer cylinders is physically implausible. This strange effect if further elaborated in
Section 5.1.4.

Besides the global influence of all inputs, sensitivities are observable through the
slopes of the shown mean curves. The MPG values are most sensitive with respect



128 5.1 Miles Per Gallon Data Set

3 4 5 6 7 810

20

30

40

Number of cylinders

M
PG

Mean
Std.

1,650 3,400 5,20010

20

30

40

Weight [lb]

M
PG

USA Japan Europe

20

30

40

Origin

M
PG

70 265 45010

20

30

40

Displacement [in3]

8 16.4 24.810

20

30

40

Acceleration [sec.]

50 140 23010

20

30

40

Horsepower

70 76 8210

20

30

40

Model year

Figure 5.3: Partial dependence plots of the best auto MPG model for each physical
input

to the weight and the horsepower. Additionally, the MPG values are sensitive to
changes in the displacement but only for low displacement values.

5.1.4 Critical Assessment of Partial Dependence Plots

The partial dependence plot of the number of cylinders shown in Fig. 5.3 indicates
lower MPG values meaning an increasing fuel consumption for fewer cylinders. This
is obviously physically implausible and the reason for this strange effect is further
investigated in this section.

At first the training data without the incorporation of any model is reviewed. In
Fig. 5.4a, the MPG values are plotted against the number of cylinders. Although



5 Applications 129

3 4 5 6 7 8

10

20

30

40

Number of cylinders

M
P

G

(a) Training data

3 4 5 6 7 8

20

25

30

Number of cylinders

M
P

G

Median

25th percentile

75th percentile

(b) Partial dependence plot with median
curve

Figure 5.4: (a) MPG versus number of cylinders. (b) Partial dependence plot for the
number of cylinders with the median instead of the mean curve.

the MPG values for each number of cylinders vary widely, there is a trend towards
increasing fuel consumption with more cylinders. Since the data does not provide a
reason for the partial dependence plot of the number of cylinders, it can be assumed
that the underlying model delivers implausible predictions. At this point it is not
clear whether the model provides only a few, but huge, implausible predictions that
can be regarded as a kind of outlier. In order to verify this, the way the partial
dependence plot is created is changed. As explained in Section 3.5, the average
effects of all training data samples are taken into account in order to represent the
effect of one input variable on the model. Instead of taking the average effects of
all training data into account, the median effects are shown in Fig. 5.4b, since the
median is known to be statistically more robust against outliers. Because the same
implausible trend of the fuel consumption still maintains, there have to be more
unreliable model predictions than just a few outliers.

Finally, the reason for the implausible model predictions could be found and is
illustrated in Fig. 5.5. Naturally, the number of cylinders and the displacement are
highly correlated as can be seen in Fig. 5.5a. This leads to regions in the input
space in which no information is available for the model. In particular, no data
and therefore no information is available for high displacements and few cylinders
and vice versa. If the model is forced to make predictions in these regions of the
input space, it can be considered as extrapolation with a high danger of unreliable
predictions. This is exactly what happens. For the creation of the partial dependence
plot the model is indeed forced to extrapolate as can be seen in Fig. 5.5b. It can
be observed that in the region of low displacements and many cylinders the model



130 5.2 Air-Mass Flow Prediction

3 4 5 6 7 8

100

200

300

400

500

Number of cylinders

D
is

pl
ac

em
en

t
[in

3
]

20 40 60

MPG

(a)

3 4 5 6 7 8

100

200

300

400

500

Number of cylinders

Evaluated for PDP
Training data

20 40 60

Predicted MPG

(b)

Figure 5.5: (a) Displacement versus number of cylinders together with the training
data and the MPG values therein. (b) Displacement versus number of
cylinders together with points that have to be evaluated for the partial
dependence plot (PDP) creation together with predicted MPG values.

predicts a very low fuel consumption. The training data set does not contain such
small consumption values, see Fig. 5.5a. In conclusion, extreme care is advised in the
interpretation of partial dependence plots, in particular if highly relevant inputs are
strongly correlated which provokes extreme extrapolation in the partial dependence
plots.

5.2 Air-Mass Flow Prediction

In modern combustion engines the engine control unit (ECU) is responsible for man-
aging the engine performance. It is used to control e.g. the air-fuel ratio, the idle
speed, and the variable valve timing [61]. Therefore, the ECU has to model the air-
mass flow (AMF) depending on the engine’s operating point. Parameters needed to
calculate the AMF are traditionally stored in look-up tables with supporting points
upon a grid. This runs into difficulties due to the required storage, which grows
exponentially with higher input dimensions. In order to overcome the exponential
increase of required storage, Bänfer et. al. proposed, investigated, and realized the
substitution of the look-up tables with LMNs, see [98, 5] for details. The data set
used in this section originates from the cooperation of the University of Siegen with
Continental Automotive GmbH, in which the substitution of look-up tables by LMNs
has been developed.



131

The AMF into the combustion chamber of a gasoline engine should be predicted in
order to determine the optimal amount of fuel that has to be injected for a complete
combustion. The AMF y depends on the following six inputs:

• Engine speed u1,

• valve timing for the intake camshaft u2,

• valve timing for the exhaust camshaft u3,

• position of the swirl flap u4,

• position of the variable intake manifold (VIM) flap u5, and

• intake manifold air pressure (MAP) u6.

A schematic sketch of the technical system is shown in Fig. 5.6.

It is known that the system can be adequately described with scheduled affine mod-
els [61]. These affine models depend explicitly on the MAP u6 while the dependency
on the remaining inputs is implicitly contained in operating-point-dependent slopes
ma and offsets b. In particular, the slope ma and offset b depend only on the inputs
u1, u2, . . . , u5:

ŷ(u1, u2, u3, u4, u5, u6) = ma(u1, u2, u3, u4, u5) · u6 + b(u1, u2, u3, u4, u5) . (5.1)

The AMF prediction has traditionally been modeled by grid-based look-up tables.
Recently it has been described by LMNs which is shown in Fig. 5.7. As can be seen,
the position of the swirl flap u4 and the position of the VIM flap u5 are treated
in a special way. Both of these inputs are binary ones. As a result there are four

Figure 5.6: Schematic sketch of the intake manifold of a combustion engine



132 5.2 Air-Mass Flow Prediction

One of
4 LMNs

Selected LMN

depends on

VIM and swirl

flap values

x

∑
Slope

MAP

Offset

AMF

Engine speed

Intake valve

timing

Exhaust

valve timing

VIM flapSwirl flap

Figure 5.7: Schematic sketch of the „traditional“ model structure for the AMF pre-
diction. Depending on the positions of the VIM and swirl flap, one of
four LMNs is used to determine the offset and the slope for an affine
model depending on the intake MAP.

possible combinations of u4 and u5 values. For each combination an individual LMN
is trained with three inputs, namely the engine speed u1 as well as the valve timings
for the intake and exhaust camshaft u2 and u3, respectively. The outputs of each
LMN are the slope ma and the offset b, which are used to finally calculate the AMF
under consideration of the MAP.

All of the previously described prior knowledge about the modeling of the AMF is
not exploited for the investigations in this section. Instead, it should be analyzed if a
separated x-z-input selection is able to reveal the model structure known from expert
knowledge solely based on data. For the separated x-z-input selection all physical
inputs u1 to u6 are treated equally and are used as inputs for one LMN. Additionally,
the partitioning of the resulting LMN is analyzed following the embedded input
selection approach described in Section 3.4.1.

For the investigations, one data set is available with a total number of N = 3045
samples. This data set is split into one training data set consisting of N train = 2589
samples and one test data set consisting of N test = 456 samples. For the splitting of
the data set the deterministic and distance-based algorithm described in Appendix A
is used with the goal to avoid extrapolation.

5.2.1 Mixed Wrapper-Embedded Input Selection

The separated x-z-input selection is used with BE as search strategy and the AICc as
evaluation criterion. Note that due to the used input selection scheme the number
of LMN inputs to choose from is twelve. Only local affine models are used for



133

LMNs that are trained with HILOMOT. The model complexity of the LMNs is also
determined with the AICc.

Figure 5.8 shows errors on training and test data versus the number of LMN inputs.
In between two subsequent error values the input is denoted that is discarded in
the corresponding BE step. Besides the information about the input number, the
input space from which the input is removed is denoted, i.e. x or z. The minimum
normalized root mean squared error (NRMSE) value is obtained with eleven LMN
inputs. If the number of LMN inputs is decreased to six, the NRMSE value does
not change significantly. Therefore, having six LMN inputs can be seen as a good
compromise between the model quality and the simplicity of the model.

The model structure identified solely based on the available data for six LMN inputs
is shown in Fig. 5.9. It matches the „traditional“ model structure which is based on
expert knowledge, see Fig. 5.7. In other words, the six most important inputs found
with the separated x-z-input selection are in accordance with expert knowledge and
are assigned to the correct input space. Note that the likelihood of obtaining this
result just by chance is 1/924, because the number of possible combinations of six
inputs out of twelve is

(
12
6

)
= 924.

Finally, the model quality of the LMN with six inputs resulting from the separated
x-z-input selection is compared to the existing model structure. The main difference
of both models is the handling of the binary inputs u4 (swirl flap) and u5 (VIM
flap). In the existing model structure, these inputs are used to decide which of four
distinct LMNs is used. In contrast to that, the model structure identified with the

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.2
0.4
0.6
0.8

1
1.2

u1z

u6x

u4z u5z u2z u3z u1x u5x u2x u4x u3x u6z

Number of LMN inputs

N
R

M
SE

Training data
Test data

Figure 5.8: NRMSE values on training and test data versus the number of LMN
inputs for the AMF prediction



134 5.2 Air-Mass Flow Prediction

premises

consequents

Engine speed

Intake valve timing
Exhaust valve timing

VIM flap

Swirl flap

MAP AMF

Φi(z)

Figure 5.9: Visualization of the model structure identified with the separated x-z-
input selection

separated x-z-input selection uses only one LMN with u4 and u5 only incorporated in
the z-input space. It turns out that the model quality of the existing model structure
is slightly better in terms of the achieved NRMSE value on test data, namely 0.03
opposed to 0.05.

In summary, the confidence in the separated x-z-input selection is increased through
the AMF application example. Even though the model structure identified solely
based on the available data is worse compared to the traditional structure in terms
of the achieved prediction quality, it is very close to it. Additionally, the six most
important inputs are revealed and are assigned correctly to the respective input
space.

5.2.2 Partition Analysis

In order to rank all inputs according to their nonlinear influence, an LMN with local
affine models is trained and subsequently the resulting input space partitioning is
analyzed as described in Section 3.4.1. HILOMOT is used to train the LMN. The
model complexity is determined with the AICc. All physical inputs are used as inputs
for the x- and z-input space.

The resulting relevance factors are shown in Fig. 5.10. The engine speed has the
highest relevance factor while the swirl flap has the lowest relevance factor. Sur-
prisingly, the relevance factor of the intake MAP is not the lowest even though it is
the first z-input that is removed in the separated x-z-input selection, see Fig. 5.8.



135

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

10−2

10−1

100 Engine speed

Intake valve timing
Exhaust valve timing

Swirl
flap

VIM
flap Intake

MAP

R
el

ev
an

ce
fa

ct
or

s
ρ

i

Figure 5.10: Relevance factors ρi for the LMN that predicts the AMF

Compared to the relevance factor of the engine speed, all other relevance factors
are almost zero and differences are only visible due to the logarithmic scaling of the
y-axis. It seems that due to the small differences in the relevance factors the ranking
of inputs u2 to u6 is not trustworthy. Based on the obtained relevance factors, only
the engine speed seems to be relevant for the z-input space. From prior knowledge
and from the separated x-z-input selection this can not be confirmed. However, the
results of the separated x-z-input selection indicate that having the engine speed (u1)
in the z-input space and the intake MAP (u6) in the x-input space already leads to
quite a good model, see Fig. 5.8.

In summary, the partition analysis fails to fully convince. Even though the partition
analysis is able to reveal the most relevant z-input, which is the engine speed, the
ranking of the remaining inputs seems to be completely random. In defense for the
partition analysis, it can be said that the differences between the relevance factors
ρ2, ρ3, ρ4, ρ5, and ρ6 are too small to draw conclusions about their relative ranking.
However, it can not be recommended to rely on the partition analysis results in
general. Performing an additional mixed wrapper-embedded input selection seems
to be mandatory in order to find good input subsets for the z-input space.

5.3 Fan Metamodeling

In this section the generation of CFD metamodels serves as example to prove the
usefulness and applicability of some contributions of this thesis. In particular, advan-
tages obtained through the chosen order of experimentation, the goal-oriented active
learning strategy with LMNs, and the mixed wrapper-embedded input selection are
pointed out. Two different types of fans are considered, which are centrifugal and



136 5.3 Fan Metamodeling

axial fans. Most of the information contained in this section about the axial fans is
obtained from [3]. Information regarding the centrifugal fans originates from [4], [8],
and [9].

The metamodels should capture the behavior of either centrifugal or axial fans. The
general purpose of fans is to generate a gaseous fluid flow under build-up of pressure.
Typically, the design of a new fan comprises two main targets. Firstly, the design
point (i.e. the desired flow rate V̇ and pressure rise ∆p) must be fulfilled. Secondly,
the shaft power Pshaft shall be as low as possible. The achievability of the first design
target mainly depends on the choice of the outer fan diameter D and the rotational
speed nR. Cordier [33] found that the specific fan diameter

δ = D
(

8
π2

)1/4(
∆p
ρf

)−1/4
V̇ 1/2

(5.2)

and the specific fan speed

σ = nR

(2π2)−1/4
(

∆p
ρf

)3/4
V̇ −1/2

(5.3)

of all built fans and pumps lie in a narrow band around the curve depicted in Fig. 5.11
which were later known as the Cordier curve and the Cordier diagram, respectively.
The original Cordier diagram is based on fan performance data stemming from the
1950s, but its validity was confirmed in numerous more recent studies, see e.g. the
work by Willinger et al. [140, 141, 142]. Figure 5.11 furthermore indicates the
typical realm of centrifugal and axial fans. The rest of the Cordier-band is associated
with other fan types such as propellers or mixed-flow. The second design target
(the minimization of Pshaft) is equivalent to the maximization of the aerodynamic
efficiency defined as

η = V̇ ·∆p
Pshaft

. (5.4)

Independent of the fan type, i.e. centrifugal or axial, only the impeller as the key
component with respect to aerodynamic efficiency is investigated.



137

0.1 1 5
1

5

10

σ [-]

δ
[-]

Cordier band
Cordier curve
Typical realm of
centrifugal fans
Typical realm of
axial fans

Figure 5.11: Cordier diagram with indication of the typical realm of centrifugal and
axial fans

Centrifugal Impeller Geometry

The centrifugal impeller geometry is described by nine geometrical parameters in-
cluding, among others, the number of blades, the inner diameter, the inlet width, the
outlet width, the inlet blade angle, and the outlet blade angle. Those parameters are
supposed to be most relevant in order to adapt the impeller geometry to a large va-
riety of potential design points [17]. Figure 5.12 shows a technical drawing in which
almost all geometrical design parameters are explained. Note that the centrifugal
fan metamodels have ten inputs, including the geometrical parameters as well as the
flow rate.

rD

Figure 5.12: Impeller design parameters of the centrifugal impeller



138 5.3 Fan Metamodeling

Axial Impeller Geometry

The axial impeller geometry is described by 26 geometrical parameters including,
among others, the number of blades, the hub-to-tip ratio, the chord length, the
angle of incidence, and the sweep angle. Figure 5.13 shows two technical drawings
in which some of the geometrical parameters are depicted. Note that the axial fan
metamodels have 28 inputs, including the geometrical parameters as well as the flow
rate and the target flow rate.

Figure 5.13: Some impeller design parameters of the axial impeller

Why Metamodels?

The generated CFD metamodels approximate, among other flow field quantities, the
efficiency and the pressure rise of fans depending on geometric parameters of the
impeller. The CFD metamodels are used to aerodynamically optimize the design
parameters of the impeller with the evolutionary algorithm described in [3]. In prin-
ciple, CFD simulations could directly be coupled with optimization algorithms to
optimize impeller designs. However, this would lead to a very high computational
expense required for the optimization of each impeller design. Both ways to opti-
mize the impeller geometry are depicted in Fig. 5.14. By using a metamodel, the
computational demand that is necessary for the numerical CFD simulations reduces
to the generation of data, which is needed for the metamodel training as shown in
Fig. 2.11. Once the metamodel is trained no further CFD simulations are necessary.
The time needed to compute the efficiency and the pressure rise for one impeller
geometry at one specific volume flow could be reduced from approximately 30 min-
utes to 0.02 seconds by substituting the CFD simulation with the metamodel. More
information about the centrifugal impeller parameterization, the CFD model, and



139

δ
σ

Impeller geometry optimization

Optimizer

d

doptη

CFD

(a)

δ
σ

Impeller geometry optimization

Optimizer

d

doptη
CFD

Metamodel

(b)

Figure 5.14: Impeller geometry optimization with the help of CFD simulations (a)
and a CFD metamodel (b)

the optimization of the CFD grid resolution can be found in [4]. For the same in-
formation regarding the axial impeller the reader is referred to [3]. A more detailed
discussion about fans in general can be found in [16]. The fundamentals of fluid
dynamics are covered in [92].

Design of Experiments – Centrifugal Fan Metamodel

The training data acquisition for the metamodel generation can be divided into two
phases. The first one is a passive learning phase in which CFD simulations are carried
out according to a predefined maximin optimized Latin Hypercube (LH) design. In
this phase the intelligent k-means sequence (IKMS) method is used to determine in
which order the CFD simulations should be carried out that are contained in the
design of experiments. Section 5.3.1 describes the effect of all order determination
methods on the metamodel quality. The second phase follows an active learning
scheme in which information about already simulated impeller designs is exploited
to determine further CFD simulation queries. The goal-oriented active learning
strategy with LMNs is used for the second phase. Section 5.3.2 reviews the influence
on the model quality and additional improvements of the resulting metamodels.
Roughly, 900 and 3000 different impeller geometries are CFD simulated in phase one
and two, respectively.



140 5.3 Fan Metamodeling

By using this two phase data acquisition approach, it is assured that the whole design
space is explored in phase one such that metamodel predictions are reliable for a
variety of different impeller geometries. Once the metamodel quality is saturated
or considered to be sufficiently reliable, information from the metamodel is used to
plan additional measurements. By exploiting information of the metamodel these
adaptively planned measurements aim to improve the metamodel in areas of the
design space where the metamodel’s performance is considered to be worst while
simultaneously concentrating on near-optimum regions and geometrical designs that
differ as much as possible from already measured geometrical designs. Since the
quality of the metamodel was saturated after the CFD simulation of approximately
900 different impeller geometries in phase one, phase two was started and used for
the rest of the project duration.

Design of Experiments – Axial Fan Metamodel

The training data acquisition for the metamodel generation consists only of a passive
learning phase. It dates back to times where the DoE know-how was less developed.
At first, 2000 different geometrical designs are generated with the help of a Sobol
sequence [125] and CFD simulated. Subsequently, 1000 random candidate points are
generated from which the 10% are chosen that are farthest away from the already
existing points. The second step is repeated several times until the DoE contains
approximately 12, 000 different geometrical designs.

5.3.1 Order of Experimentation

Although the CFD simulations have been carried out according to the IKMS method
during the first data acquisition phase, this section tries to compare all order of
experimentation methods except for the median distance sequence (MDS) method.
Because the MDS method’s results on the artificial test processes are the worst ones,
it is completely neglected here. In addition, HILOMOT for design of experiments
(HilomotDoE) and a simple randomization are used to determine an ordering of all
training data samples as references. For an explanation of how HilomotDoE is used to
determine the order of experimentation, see Section 4.1.4. However, all calculations
are done in retrospect, after all data for the CFD metamodel generation has been
completely collected. Metamodels for both relevant outputs, i.e. the specific pressure
rise ψ and the efficiency η, are considered.



141

In order to compare all order determination strategies on a fixed data set, all available
data is randomly split into 85% for training and 15% for testing purposes. This is
done 50 times, such that there are 50 different training and test data sets. For
each of this data splittings, the order of experimentation for the training data is
determined with each order determination strategy, i.e. biggest gap sequence (BGS),
IKMS, HilomotDoE, and the simple randomization. Once each order determination
strategy has determined the ordering for each of the 50 training data sets, LMNs are
trained with fractions of these sorted training data sets. At first an LMN with the
first 10% of the training data is trained, then with the first 20% of the training data,
and so on until all training data is used, as visualized in Fig. 5.15. HILOMOT is
used as training algorithm to generate the LMNs and with the help of the test data
the model quality is assessed. As a result, one curve of the model quality versus the
amount of used training data arises for the BGS, IKMS, and HilomotDoE strategy
and each split of the whole data set. In case of the randomized ordering, ten different
random orderings are determined for each of the 50 training data sets, such that there
are 500 of these curves. Figure 5.16a and 5.16b show the mean values of these curves
for the prediction of ψ (specific pressure rise) and η (efficiency) in case of the BGS,
IKMS, and HilomotDoE strategies. In case of the randomized orderings only the
best and worst curve (out of all 500) are shown. An order determination strategy is
considered to be good if the resulting model quality quickly improves. This means a
good model quality is reached with a rather low training data set size. Comparing
the two model-free algorithms, IKMS and BGS perform equally well and on a similar
level as the active learning strategy, which is abbreviated with HDoE. Showing the
best and worst case of the random orderings should provide a feeling how good or
bad the strategies perform on an absolute scale. Note that the error of the worst

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Sorted training data Test data

HILOMOT LMN

Training data amount
increased in 10 % steps

Model
quality

Figure 5.15: Procedure to assess the model quality for 10% increments of the sorted
training data. Here, only the model quality assessment for 30% of the
training data is visualized.



142 5.3 Fan Metamodeling

20 40 60 80 100

0.2

0.3

0.4

0.5

Amount of used training data [%]

N
R

M
SE

on
te

st
da

ta IKMS (mean)
BGS (mean)
HDoE (mean)
Random order
(worst and best)

(a) ψ prediction

20 40 60 80 100

0.3

0.4

0.5

0.6

Amount of used training data [%]

N
R

M
SE

on
te

st
da

ta

(b) η prediction

Figure 5.16: Comparison of different order determination strategies for the prediction
of ψ and η

and best random order do not coincide with the error of the other determination
strategies at 100% of the used training data. This is due to the fact, that each of
the two shown random sequence curves is generated with only one of the 50 resulting
training data sets while the other curves represent mean values. The IKMS, BGS,
and HDoE curves are very close to the best case of all random sequences for all
amounts of used training data.

The advantage of using a specific order of experimentation is pointed out for the
real-world example of generating a data base used to build a CFD metamodel. The
achieved model qualities with the two model-free approaches, namely the BGS and
the IKMS, are even comparable to an active learning strategy (HilomotDoE) as can
be seen in Fig. 5.16. The reason for the comparable model qualities might be the
rather high-dimensional input space (p = 9) while the overall amount of training
data even at the end of the first data acquisition phase is rather low (N ≈ 900). In
other words, HilomotDoE might still be exploring the whole input space instead of
concentrating on highly nonlinear regions in it. Another disadvantage for Hilomot-
DoE here is, that the candidate points are restricted to the data points contained in
the existing data set and can not be chosen arbitrarily in the input space.

5.3.2 Goal-Oriented Active Learning

In case of the active learning for the CFD metamodel the goal-oriented procedure
illustrated in Fig. 4.17 is applied with minor adjustments to meet problem specific
needs. A maximin LH design for an 11-dimensional input space is generated with



143

NLH = 586 samples. Two of the eleven inputs specify a design point defined by the
desired flow rate and pressure rise. These two inputs always belong to the set of
constrained optimization variables, since the efficiency is maximized for these design
points. The remaining p = 9 inputs correspond to the geometric parameters that
should be optimized. It follows that there are nc = 2p = 512 possible optimization
constraints for each point contained in the LH design. As explained in Section 4.3.2,
all possible combinations of constrained optimization variables are applied to each
point contained in the LH design, resulting in N c = 512 · 586 = 300 032 candidate
points after all optimization runs are finished.

Here, in each loop of the active learning strategy a list of 500 query points is deter-
mined. Each query point is intended to be CFD-simulated. As soon as new CFD
simulations are finished and the data set is updated with new information, the pro-
cess of updating the list of query points starts again. The number of demanded
queries is chosen quite high to prevent the current query list from becoming empty,
i.e. all queries have been CFD-simulated, before the new query list is readily deter-
mined. Until the update of the query point list is finished, the „old“ list is further
used. Once the optimization of all candidate points is accomplished and all new 500
queries are calculated, the new list is used.

The influence of the proposed goal-oriented active learning strategy is evaluated
based on three aspects. First, the model quality is assessed for increasing portions
of training data. Second, the extension of achievable design points in the Cordier
diagram is shown. And third, the improvements of the achievable total-to-static
efficiencies are visualized for all achievable points in the Cordier diagram.

For the model quality assessment 545 data points are chosen from the CFD data basis
according to the data splitting procedure explained in Appendix A. All 545 chosen
data points cover the area of possible design points spanned by the desired flow
rate and pressure rise uniformly. These designs together with the achieved total-to-
static efficiencies serve as test data for the models generated with different amounts
of training data. The target value of the model is the total-to-static efficiency ηts.
Figure 5.17 shows the curve for the model quality versus the training data amount.
The dashed line marks the point, where the passive learning phase has ended and
the active learning strategy has started. It is observable that the model quality
at the end of the passive learning phase started to saturate. A likely cause for
the saturation is that the global characteristics of the centrifugal fans are already
identified with the 900 different impeller designs. No new information seems to be



144 5.3 Fan Metamodeling

0 20 40 60 80 100

0.3

0.6

0.9
Boundary be-
tween active
and passive
learning phase

Amount of used training data in [%]

N
R

M
SE

on
te

st
da

ta
ηts

Figure 5.17: NRMSE on test data originating from CFD-based optimization runs vs.
amount of training data

added by further exploring the design space uniformly since the model quality does
not improve. Hence, a more goal-orientated DoE strategy is needed that exploits
already available information in form of the metamodel to find new queries (impeller
designs) that contain new information. Note that the test data used to create the
shown curve here differs from the test data used in the previous section. Therefore
the errors from Fig. 5.17 are not comparable to the ones shown in Fig. 5.16.

Figure 5.18 shows the extension of achievable regions in the Cordier diagram through
the proposed goal-oriented active learning strategy. For almost each viable specific
fan speed σ higher specific fan diameters δ are possible. Additionally, lower and
higher specific fan speeds could be achieved through the active learning phase com-
pared to the passive one. The impact of the extension of achievable points cannot

Figure 5.18: Extension of achievable design point area in the Cordier diagram



145

be evaluated without taking into account the corresponding efficiencies. Therefore,
the discussion of the impact is postponed to the end of this section.

The absolute total-to-static efficiencies in the area of possible impeller designs af-
ter the active learning strategy and the corresponding improvements are shown in
Fig. 5.19a and 5.19b, respectively. The efficiency could be improved at some points
from ηts ≈ 0.3 (before the active learning took place) to ηts ≈ 0.6. The improvements
are mostly achieved above the Cordier curve, where the specific fan diameter δ is
relatively high. The efficiency improvements through the active learning can only
be shown in areas, where data from the passive learning phase is available because
a reference value exists only there, compare Fig. 5.18. That is the reason, why the
area covered by possible designs is smaller in Fig. 5.19b compared to Fig. 5.19a.

The extension of achievable regions in the Cordier diagram together with the absolute
efficiencies shown in Fig. 5.19a indicate that designs in the extended regions are not
attractive to be realized in practice. The achieved efficiencies in the extended regions
are rather low and therefore not desirable. However, the efficiency improvements
close to the Cordier curve are quite high and demonstrate the usefulness of the
active learning strategy for one real-world application.

Through an extension of the already proposed HilomotDoE [54] algorithm, a goal-
orientation is introduced, see Section 4.3. There are three goals: (I) The concen-
tration on possibly optimal geometries, (II) the focus on areas in the input space
with inferior generalization performance and (III) a high diversity of training data
samples. In the application example shown here, all three goals are met. (I) The

(a) Absolute efficiencies (b) Efficiency improvements

Figure 5.19: Absolute total-to-static efficiencies after the active learning strategy (a)
and improvements through the active learning strategy (b)



146 5.3 Fan Metamodeling

maximum efficiencies could be improved as shown in Fig. 5.19, (II) the overall model
performance could be increased as can be seen in Fig. 5.17, and (III) the diversity in-
crease of the training data samples leads to an extension of achievable design points,
see Fig. 5.18.

5.3.3 Mixed Wrapper-Embedded Input Selection

The mixed wrapper-embedded input selection is applied to both the centrifugal and
the axial fan metamodel. In this section the linked x-z-input selection is used with
the AICc as evaluation criterion. Two search strategies are employed and compared,
which are BE and forward selection (FS). For both input selection approaches 80%
of all available data is used while 20% of it is saved to subsequently assess the model
quality for specific input subsets on fresh data. For data splitting the deterministic
and distance-based algorithm explained in detail in Appendix A is used.

Centrifugal Fan Metamodel

Figure 5.20 shows the results of the linked x-z-input selection for the centrifugal
fan metamodel. Regardless of the used search strategy, it is observable that no
better bias/variance tradeoff could be found by removing inputs, see Fig. 5.20a.
This means that each of the inputs carries enough information to overcompensate
the additionally introduced variance. It can be concluded that (I) only physically
meaningful inputs have been chosen to describe the behavior of the centrifugal fans
and (II) the experimental design ensures a meaningful variation of these inputs. This
outcome is reasonable and was expected since experts in the field of fans, including
several experts from established companies, discussed and finally agreed on which
inputs to use for the metamodel.

For this application, there is no noticeable difference between the two used search
strategies. From one up to five LMN inputs the subsets chosen by BE and FS are
in fact identical, see Fig. 5.20b. But even with different subsets of inputs for the
higher-dimensional cases, the model accuracies are comparable. Table 5.2 presents
errors on the test data set for several input subsets, including six, eight, and ten
LMN inputs. Of course, the error for the model incorporating all available inputs
is identical. With six LMN inputs the model based on the subset selected by BE



147

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

·105

Number of LMN inputs

A
IC

c
BE
FS

(a) AICc vs. number of LMN inputs

1 2 3 4 5 6 7 8 9 10
u1
u2
u3
u4
u5
u6
u7
u8
u9

u10

Number of LMN inputs

In
pu

t

(b) Selected inputs

Figure 5.20: Obtained results of the linked x-z-input selection for the metamodel of
centrifugal fans

performs insignificantly better. In case of eight LMN inputs the model based on the
subset selected by FS is slightly better.

According to commonly used impeller design methodologies, as described e.g. in [22],
the most important geometrical parameters are those that directly affect the guidance
of the gaseous fluid flow and how it enters and exits each flow channel. Therefore,
the most important geometrical parameters for the CFD metamodel should be:

• The inner diameter u2,

• the inlet blade angle u3,

• the inlet width u5,

• the outlet width u6, and

• the outlet blade angle u4.

Table 5.2: NRMSE values for models based on different LMN input subsets evaluated
on the test data set of the centrifugal fan metamodel

Number of LMN inputs 6 8 10

Selected BE subset 0.4598 0.3773 0.3041
Selected FS subset 0.4622 0.3691 0.3041



148 5.3 Fan Metamodeling

Note that the order of the list above does not reflect the importance of the individual
parameters, but rather the path from the gaseous fluid flow from the impeller inlet
to the outlet. Since the rotational speed for all CFD simulations was fixed, the inner
diameter together with the inlet blade angle determine the flow angle with which the
gaseous fluid enters each flow channel. The inlet and outlet width have a big impact
on how the cross-section area, through which the gaseous fluid flows, changes from
the inlet to the outlet of the impeller. The change in the cross-section area has a
significant influence on the deceleration of the gaseous fluid [36] which in turn affects
the losses of the impeller and therefore the efficiency [22]. The outlet blade angle
directly influences the deflection of the gaseous fluid flow at the impeller outlet.

The five most important geometrical parameters according to the linked x-z-input
selection with BE as search strategy are in perfect accordance with expert knowl-
edge, i.e. all five parameters from the above list are selected, see Fig. 5.20b. The only
metamodel input that is considered even more important is the volume flow rate u10,
which is also quite reasonable because it specifies the operating point of the centrifu-
gal fan. When using the FS search strategy, the shroud radius u7 is considered to be
more important than the inlet blade angle u3 which seems not reasonable according
to expert knowledge. However, no significant influence on the model quality can be
observed in Fig. 5.20a.

Axial Fan Metamodel

Figure 5.21 shows the results of the linked x-z-input selection for the axial fan meta-
model. Both search strategies deliver for most input subset sizes comparable AICc

values. From 20 up to 28 LMN inputs no more significant improvements are observ-
able. The best achieved AICc values are obtained with 27 and 24 LMN inputs for
BE and FS, respectively. The biggest difference in the achieved AICc values appears
at eleven LMN inputs.

Both used search strategies lead to identical input subsets from a subset size of one up
to three, see Fig. 5.21b. According to the achieved AICc values, both search strategies
deliver comparable results for almost all subset sizes. Selected input subsets are
compared regarding the error on the test data set in Table 5.3. The compared
subsets include:

• 11 LMN inputs because the biggest difference in the achieved AICc value of
both search strategies appears at this point, see Fig. 5.21a.



149

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
−5

−4

−3
·104

Number of LMN inputs

A
IC

c

BE
FS

(a) AICc vs. number of LMN inputs

2 4 6 8 10 12 14 16 18 20 22 24 26 28
u1
u3
u5
u7
u9

u11
u13
u15
u17
u19
u21
u23
u25
u27

Number of LMN inputs

In
pu

t

(b) Selected inputs

Figure 5.21: Obtained results of the linked x-z-input selection for the metamodel of
axial fans

• 24 LMN inputs because the lowest AICc value is achieved in case of FS.

• 27 LMN inputs because the lowest AICc value is achieved in case of BE.

• 28 LMN inputs, corresponding to a model incorporating all available inputs.

Table 5.3: NRMSE values for models based on different LMN input subsets evaluated
on the test data set of the axial fan metamodel
Number of LMN inputs 11 24 27 28

Selected BE subset 0.5934 0.5168 0.4814 0.4339
Selected FS subset 0.6450 0.4948 0.5305 0.4339



150 5.3 Fan Metamodeling

Again, it is hard to decide whether one of the two search strategies delivers signif-
icantly better subsets. A noteworthy fact is that, according to the test errors, no
model quality improvement can be achieved by removing any of the 28 LMN inputs.
This could not be concluded from the obtained AICc values, see Fig. 5.21a. However,
this indicates again that (I) only physically meaningful inputs have been chosen to
describe the behavior of the axial fans and (II) the experimental design ensures a
meaningful variation of all inputs.

Prior to the input selection of the axial fan metamodel, an expert in the field of
axial fans made an assumption about the most important inputs according to his
expertise. Seven inputs are stated as presumably most important for the efficiency
of the axial fans, including

• the volume flow u1,

• the target volume flow u2,

• the number of blades u3,

• the hub-to-tip ratio u4,

• the tip clearance u5,

• the chord length at midspan u12, and

• the maximum camber at midspan u15.

Reasons for this assumption can be found, e.g., in [22]. It is remarkable that in case
of the BE search strategy the subset with seven LMN inputs contains five of these
inputs, see Fig. 5.21b. The subset containing seven inputs found with FS includes
four of the assumed seven most important inputs.

Summary

For the two fan metamodels the mixed wrapper-embedded input selection approach
is not able to improve the model accuracy by removing inputs through the linked
x-z-input selection. Both metamodels are a good example for reasonably selected
inputs and a well chosen DoE. However, with the trend of an ever increasing in-
put space dimensionality it will get harder, even for domain experts, to select the
right amount of inputs for the best bias/variance tradeoff. Even though the mixed
wrapper-embedded input selection approach is not able to improve the accuracy of



151

the metamodels, information about the most important inputs is gathered. In case
of the axial fan metamodel expert knowledge confirms the results regarding the in-
put importance obtained from the input selection. Input selection allows to gain
insights and confidence in the data-driven models which is a very important factor
for industrial acceptance of these abstract approaches.

5.4 Heating, Ventilating, and Air Conditioning
System

A heating, ventilating, and air conditioning (HVAC) system, that has already been
investigated in [119] and [108] is the real-world application dealt with in this section.
The goal is to build a dynamic model that can be used for model predictive con-
trol [118]. The focus in this section lies on the generation of a good dynamic model
and not on the model predictive control. The mixed wrapper-embedded input selec-
tion approach with the separated x-z-input selection is applied to the HVAC system
in order to find the best subset of inputs. Three data sets are available, that serve as
training, validation, and test data, which are described in more detail at the end of
this section. The training data is only used for the estimation of all LMN parameters
during the training with LOLIMOT. Here, LOLIMOT is used instead of HILOMOT
due to the increased required computation time that results from the very high num-
ber of potential LMN inputs, which is 140, see Section 5.4.1 for details. With the
help of the simulation error on validation data the model complexity, i.e. the number
of local models, is chosen. Additionally, the simulation error on validation data is
used as evaluation criterion during the separated x-z-input selection. For this inves-
tigation the results obtained with the validation error as evaluation criterion for the
separated x-z-input selection turned out to be superior compared to using the AICc.
The test data set is only used after the separated x-z-input selection is finished.
The reason for the inferiority of the AICc as evaluation criterion in this particular
application is unknown. It is assumed that the AICc is not that well suited for the
model complexity determination of dynamic models for short sampling times and
therefore also struggles as evaluation criterion during the input selection.



152 5.4 Heating, Ventilating, and Air Conditioning System

Problem Configuration

The setup presented in Fig. 5.22 shows a typical application of a series connection
of cooling and heating coils. The air is dehumidified by the cooling coil in order
to adjust the air humidity. Since the air temperature is decreased by the cooling
coil too, the air has to be reheated by the heating coil in order to meet the desired
temperature. The power of the coils can be adjusted by valves. For the cooling coil
the water mass flow is varied via the valve position u1, whereas for the heating coil
the mixing ratio of the returned cold water and the hot supply water is varied via
the valve position u2. For this configuration, a constant air mass flow of ṁa = 1 kg
per second is assumed. The output signals of the system are the temperature y1

and the relative humidity y2 of the outlet air. The input signals of the system are
the valve positions u1 and u2, the temperature d1 and the relative humidity d2 of
the inlet air, the inlet water temperature d3 of the cooling coil and the water supply
temperature d4 of the heating circuit. The valve position u1 and u2 are actuating
variables which can be varied arbitrarily to excite the dynamic system as desired.
In contrast to that, the LMN inputs d1, d2, d3, and d4 can be measured but not be
manipulated freely. The units of the measured temperatures and humidities are ◦C
and %, respectively. The data sets used in this work are generated on a real world
system shown in Fig. 5.23. This pilot plant is provided by the company Fischer&Co
Luft- und Klimatechnik in Graz/Austria. Figures 5.22 and 5.23 are kindly provided
by Daniel Schwingshackl (University of Klagenfurth), Jakob Rehrl (Graz University

Figure 5.22: Schematic sketch of the HVAC system



153

air dampers
fan

cooling
coil 1heating

coil 1

steam
humidifier

heating
coil 2

cooling
coil 2

approx. 8.5 meters

supply
air test
room

exhaust
air test
room

inlet
air

return
air test
room

Figure 5.23: Picture of the real-world HVAC system [119]

of Technology), and Martin Horn (Graz University of Technology).

Available Data Sets

The training data set consists of N train = 5490 samples, the validation data set has
Nval = 224 samples and there are N test = 262 test samples. The sampling frequency
for all data sets is f0 = 1/16 Hz. As already mentioned, only two valve positions
u1 and u2 can be manipulated. As can be seen in Fig. 5.24, the excitation signal
for the valve positions consists of several steps around different operating points.
The variation in the measurable disturbances is by far weaker and lower frequent
compared to the manipulated variables. Figure 5.24 also shows the signals of the
control variables. Especially the dependency of both control variables on the second
valve position u2 is clearly observable.

5.4.1 Mixed Wrapper-Embedded Input Selection

The search strategies used for the separated x-z-input selection are backward elimina-
tion (BE) and forward selection (FS). In order to test the mixed wrapper-embedded
input selection, we assume to have very limited insights on the physical background
of the HVAC system. Nevertheless the maximum and minimum delay nmax and
nmin, respectively, have to be provided for the BE search strategy because it starts



154 5.4 Heating, Ventilating, and Air Conditioning System

0 5 10 15 20 25
0

50

100

Time [h]

u
1
,u

2

u1
u2

0 5 10 15 20 25
0

20

40

60

80

Time [h]

d
1
,d

2
,d

3
,d

4

d1
d2
d3
d4

0 5 10 15 20 25
10

20

30

40

50

Time [h]

T
em

pe
ra

tu
re

y 1
[◦

C
]

0 5 10 15 20 25
0

20

40

60

80

100

Time [h]

R
el

.
hu

m
id

it
y
y 2

[%
]

Figure 5.24: HVAC training data set consisting of the manipulated variables u1 and
u2 (valve positions), the measurable disturbances d1 (inlet air temper-
ature), d2 (rel. humidity inlet air), d3 (inlet water temperature cooling
coil), d4 (water supply temperature), and the control variables y1 (outlet
air temperature) and y2 (rel. humidity outlet air)

with all potential inputs. nmin and nmax are chosen to be 1 and 10, respectively,
for all physical inputs as well as for all physical outputs. For each target value,
i.e. the temperature y1 and the relative humidity y2, distinct models are built and
therefore distinct input selections are performed. Because of the chosen minimum
and maximum delays, there are 70 possible LMN inputs for each of the two input
spaces, i.e. the x- and z-input space. As a result the total amount of potential LMN
inputs is virtually doubled to 140. Following the separated x-z-input selection with
the two search strategies BE and FS, the methods choose LMN inputs to be removed
or added without paying attention from which input space it is eliminated from or
added to.



155

Results

For the performed separated x-z-input selection, Fig. 5.25a shows results for the
temperature y1 and Fig. 5.25b the results for the relative humidity y2. The validation
error is plotted against the number of LMN inputs for both search strategies. It is
evident that for both outputs y1 and y2 the subsets found by BE are far superior to
the ones found by FS. Especially for input subsets containing less than 80 inputs,
the difference in the model qualities achieved with the found subsets is huge. The
main reason for this turns out to be a lack of delayed outputs in the x-input space
of the LMNs in the FS case. For the temperature y1, the FS selects the first delayed
output, in particular y1(k−3), as the 78-th LMN input. Therefore, subsets with less

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0.2

0.4

0.6

0.8

Number of LMN inputs

N
R

M
SE

on
va

lid
at

io
n

da
ta BE

FS

(a) Temperature y1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0.4

0.6

0.8

1

1.2

Number of LMN inputs

N
R

M
SE

on
va

lid
at

io
n

da
ta BE

FS

(b) Relative humidity y2

Figure 5.25: Obtained results of the separated x-z-input selection for the HVAC
system



156 5.4 Heating, Ventilating, and Air Conditioning System

than 78 LMN inputs lead to local finite impulse response (FIR) models. In case of
the relative humidity y2 the same effect takes place, but the first delayed output, in
particular y2(k − 6), is selected as 94-th LMN input. In this application one huge
disadvantage of FS becomes clearly visible. The interaction between several inputs
are not discoverable by simply adding one input at a time. In contrast to that, when
following a BE strategy, all interactions are present from the start. The deterioration
of the model performance by removing one input that is important in combination
with any other input is directly recognizable. In the following only results of the
BE are further discussed because of the far worse model accuracies obtained with
subsets found by FS.

The performance improvement through the mixed wrapper-embedded input selection
with BE as search strategy is significant for both outputs. In general, the achieved
model performance for the temperature is by far better than for the relative humid-
ity. One noticeable aspect are the long plateaus of the simulated validation error
for both output variables. For the temperature the same validation error is achieved
between 54 and 121 LMN inputs. In case of the relative humidity there are two of
these plateaus, one ranging from 37 up to 87, and the other from 88 up to 104. We
discovered that during these plateaus only inputs from the z-input space are elimi-
nated that are never chosen as split directions. The x-input space is kept unchanged.
Therefore discarding those LMN inputs does neither affect the z-input space par-
titioning nor the parameter estimation of the local models. As a result all LMNs
corresponding to one plateau are in fact identical, which explains the constant val-
idation errors. The calculations took 90 hours (17 for FS) for the temperature and
41 hours (14 for FS) for the relative humidity on a cluster node with 12 CPUs and
48 GB of RAM. The difference in the calculation times originates from the fact, that
generally a higher complexity (more local models) was chosen for the temperature
models throughout the whole input selection procedure. This might also explain the
much lower error rates for the temperature model.

For the temperature, the optimal subset size of LMN inputs according to the simu-
lation error on validation data is 50, for the relative humidity it is 37. Now several
LMN input subsets are compared to each other in terms of their NRMSE values (J)
on all three available data sets, see Table 5.4. Besides the best LMN input subsets,
models including all LMN inputs are listed. In addition, local minima with far less
LMN inputs are compared as well, in particular the temperature model relying on 19
LMN inputs and the relative humidity model relying on 18 LMN inputs. Highlighted
loss function values indicate the best value for each data set and each output. Rows



157

two to four of Table 5.4 show the loss function values for the model of the tempera-
ture. Especially the performance improvement on validation and test data through
the separated x-z-input selection is impressive. Even with only 19 LMN inputs al-
most the same model quality is achieved compared to a model with 50 LMN inputs.
Since the curves of the simulated model outputs for 19 and 50 LMN inputs are barely
distinguishable, Fig. 5.26 shows only the case with 19 LMN inputs. In addition the
process output (here the temperature y1) from the test data and the test error is
shown.

Rows five to seven of Table 5.4 show the model performances for the relative humid-
ity. Here the improvement on validation data is significant, but the improvement
on test data is only moderate. Eventually, the generalization performance does not
reach the same accuracy level as the temperature model, but the simulated model
output follows the measured relative humidity quite well. Figure 5.27 demonstrates

Table 5.4: NRMSE values (J) on different LMN input subsets for the training, vali-
dation and test data sets

number of LMN inputs Jtrain Jvali Jtest

19 LMN inputs (y1) 0.013 0.052 0.230
50 LMN inputs (y1) 0.013 0.049 0.248
140 LMN inputs (y1) 0.025 0.193 0.550

18 LMN inputs (y2) 0.046 0.417 0.723
37 LMN inputs (y2) 0.070 0.417 0.408
140 LMN inputs (y2) 0.073 0.882 0.459

0 50 100 150 200 25020

25

30

35

40

Discrete time k

y 1
an

d
ŷ 1

[◦ C
]

Temperature test data

0 50 100 150 200 250

0

5

10

er
ro

r
(y

1
−

ŷ 1
)process (y1)

model output (ŷ1)
error (y1 − ŷ1)

Figure 5.26: Measured vs. simulated temperature for the test data set with 19 LMN
inputs



158 5.4 Heating, Ventilating, and Air Conditioning System

0 50 100 150 20030

40

50

60

Discrete time k

y 2
an

d
ŷ 2

[%
]

Relative humidity validation data

0 50 100 150 200 −10

0

10

20

er
ro

r
(y

2
−

ŷ 2
)

process (y2)
model output (ŷ2)
error (y2 − ŷ2)

Figure 5.27: Measured vs. simulated relative humidity for the validation data set
with 37 LMN inputs

this for 37 LMN inputs on the validation data.

In addition to the gain in model performance, the separated x-z-input selection
makes the final model more concise and simplifies its interpretation. After a closer
look at the best LMN input subsets it is remarkable that for both outputs there are
only two LMN inputs left in the z-input space (serving as operating point variables).
In both cases, these are the same physical inputs, namely the valve positions u1

and u2, but with different delays. Actually, nonlinearities originating from the valve
characteristics are identified correctly to be important for the definition of an oper-
ating point. This is extremely appealing since these are the manipulated variables
in control of the HVAC system. Therefore their influence is most important and the
accuracy of the model w.r.t. u1 and u2 is crucial. Since the excitation of u1 and u2

in the training data is most active it is a natural outcome of the input and order
selection procedure to keep both in the LMN inputs.

For the model of the temperature the LMN inputs that are left in the z-input space
are u1(k − 3) and u2(k − 1). The LMN inputs u1(k − 2) and u2(k − 2) are in the
relative humidity model’s z-input space. Since the dimensionality of both z-input
spaces is two-dimensional, we can visualize the partitioning of them. Figure 5.28
shows the partitioning for the temperature model exemplarily. More splits along the
u2-axis indicate a stronger nonlinearity in that direction. Each validity area contains
a number that corresponds to the relevant local affine model.

The interpretation of the selected LMN inputs for the affine local models (x-input
space) is difficult, since there are so many variables left. Easy interpretation, how-
ever, regards the relative humidity model, for which the physical input d1 (inlet air



159

0 50 100
0

50

100

1

2
3

4
5

6
7

8
9

10
11

12 13

u1(k − 3) (valve position in %)

u
2(

k
−

1)
(v

al
ve

po
sit

io
n

in
%

)

z-input space partitioning

Figure 5.28: Partitioning of the z-input space for the model of the temperature

temperature) is neglected completely, i.e. none of its delayed versions is used. In
summary, it is shown that the mixed wrapper-embedded input selection approach,
in particular the separated x-z-input selection, for the modeling of the HVAC system
leads to a significant improvement and simplification of the model as shown in Ta-
ble 5.4. Additionally, the interpretability is increased at least for the z-input space
that can be described for both outputs with only two operating point variables.





161

6 Conclusions and Outlook

This thesis is settled in the field of experimental modeling and specifically focuses
on the weakening of the effects of the curse of dimensionality. This phrase describes
the exponential increase in effort with an increasing input space dimensionality, see
Section 2.2 for more details. Therefore there is the need to keep the input space
dimensionality of the models as low as possible. On the other hand, there is a trend to
increase the input space dimensionality in modern model-based applications mainly
due to the following two reasons:

• Ever increasing process complexities create the demand for higher degrees of
freedom to control them via additional actuators, which leads to potentially
more inputs for the models.

• The demand for higher model accuracies originating from stricter regulations
and market demands, such that potentially more influences (=̂ inputs) have to
be considered to fulfill them.

Because of the increased process complexities it gets harder even for domain experts
to determine the right amount of inputs used for an experimental modeling task in
order to find a good compromise for the aforementioned conflict.

This thesis investigates the possibility to automatically select the right amount of
inputs solely based on data. All presented input selection methods heavily rely on
special properties of local model networks (LMNs). In particular, the possibility to
separate linear from nonlinear influences when using local affine models is exploited
exhaustively, see Section 2.3 and Chapter 3 for more details. In addition to input
selection methods, the curse of dimensionality is also tackled by the development
and investigation of design of experiments (DoE) techniques.



162

Conclusions

The findings for all input selection methods are summarized in the following.

The Mixed wrapper-embedded input selection (MWEIS) approach exploits the
input space separation of LMNs into a x- and z-input space fully, enabling it to
distinguish between linear and nonlinear effects as explained in detail in Sec-
tion 2.3 and 3.2. It is shown that the combination of a backward elimination
(BE) as search strategy and Akaike’s information criterion (AICc) together out-
perform other combinations of search strategies and evaluation criteria. Other
investigated search strategies are: Forward selection (FS), an exhaustive search,
and a genetic algorithm. Other investigated evaluation criteria include: 10-fold
cross-validation and the model error on a distinct validation data set. With
the help of test processes the ability to detect linear and nonlinear effects is
demonstrated. For the auto miles per gallon (MPG) data set it is shown that
exploiting the separability of linear and nonlinear effects leads to advantages
compared to classical wrapper approaches. In this example, all physical inputs
are included in the best subset, but exclusively only either in the x- or z-input
space. In case of the prediction of the air-mass flow (AMF) into the combus-
tion chamber of a gasoline engine, a model structure is identified that meets
exactly the available expert knowledge about the process. Eventually, the
mixed wrapper-embedded input selection approach is able to increase the ac-
curacy of a heating, ventilating, and air conditioning (HVAC) model by finding
the appropriate dynamic model order for both input spaces. For the HVAC
system possible shortcomings of FS are demonstrated impressively. Models
based on subsets found by BE are magnitudes better than models based on
subsets found by FS.

The regularization-based input selection (RBIS) approach penalizes the oblique-
ness of splits that are made in order to partition the z-input space. In principle,
it can be implemented for any axis-oblique partitioning strategy based on split
optimizations. In this thesis, it is implemented for the already existing HI-
erarchical LOcal MOdel Tree (HILOMOT) algorithm as explained in detail
in Section 3.3. Unfortunately this approach is not able to show the desired
behavior for the test processes, which includes an improvement of the LMN’s
generalization performance as well as a reduction of the variance error. It
turns out that no good compromise could be found for the split regulariza-
tion parameter that is able to keep splits parallel to unimportant z-inputs



6 Conclusions and Outlook 163

while being able to reliably produce oblique splits in subspaces where they are
needed. However, in the auto MPG application the RBIS approach improved
the generalization performance clearly. A likely cause is the increased input
dimensionality for the auto MPG application compared to the used test pro-
cesses. It might well be, that the benefit of the RBIS approach comes only into
play for higher-dimensional problems.

The embedded approach that analyzes the partitioning of an already trained LMN
rates all available inputs in the z-input space quantitatively as explained in de-
tail in Section 3.4. Currently this quantitative rating serves just as information
for the user and is not further utilized. The embedded approach is able to rank
the inputs of the z-input space correctly for the test processes. However, it
is not clear from which relevance factor value on an z-input should be consid-
ered as irrelevant. Reliably determining a threshold seems difficult. In case of
the AMF application the partition analysis fails to indicate all relevant inputs
for the z-input space. From the mixed wrapper-embedded input selection it is
known which physical inputs should be assigned to the z-input space. Only one
of them, namely the engine speed, is indicated to be relevant by the partition
analysis for the z-input space.

Partial dependence plots are not scientifically new, but are reviewed in this thesis
as a tool to visualize the average influence of single inputs on the model output.
The distinction between linearly and nonlinearly influencing inputs seems to be
possible from the observation of the mean curves in case of the test processes.
Despite all advantages, partial dependence plots have to be interpreted with
care. It has to be considered that the on-average-effect of an input might be
different from the effect at specific points in the input space. Additionally,
the auto MPG application shows problems of partial dependence plots with
correlated inputs, here the number of cylinders and the displacement. As
a result the model is forced to extrapolate heavily for the generation of the
partial dependence plot since there is no data from which the model could
learn a proper prediction of the MPG in case of small displacements and a
high number of cylinders. This leads to implausible and wrong trends of the
corresponding partial dependence plot.

The findings for all design of experiments topics dealt with in this thesis are sum-
marized in the following.



164

The order of experimentation is important if the model of interest should be used
as early as possible. In particular, the model may already be used while mea-
surements are still in progress. The focus lies on the best possible model
accuracy at any time. Several distance-based methods have been developed to
determine the order of experimentation in order fo fulfill the aforementioned
goals. The methods are the biggest gap sequence (BGS), the median distance
sequence (MDS), and the intelligent k-means sequence (IKMS). All order de-
termination methods are compared to each other and to multiple random or-
derings of the measurements. In addition these methods are also compared to
an active learning strategy that serves as reference. The results obtained on
test processes generated with the function generator described in Section 2.7
and for the generation of a computational fluid dynamics (CFD) metamodel
point out that the IKMS and BGS methods perform equally well and by far
better than the MDS method. In fact IKMS and BGS perform on average as
good as the best case of all randomly generated orderings. Even though the
active learning strategy can use more information about the test process under
investigation, it is only on par with the IKMS and BGS method.

Should corners be measured? This question is investigated with the help of the
function generator described in Section 2.7 for several extrapolation scenarios
and ratios of corner points in relation to the overall data set size. The goal is to
give recommendations for cases in which the number of corners is a substantial
amount of all data points that can be measured. It turns out that measuring
corners can only be recommended if „enough“ data points remain inside the
design space and large extrapolation is required.

The comparison of space-filling designs with the help of the function generator
described in Section 2.7 incorporates Sobol sequences, data coming from a
uniform distribution, and several maximin optimized Latin Hypercube (LH)
designs. The optimized LH designs differ in the way they are optimized. In
particular, maximin optimized LH designs generated with the extended de-
terministic local search (EDLS) algorithm from phase one and two (see Sec-
tion 4.2.2 for details) are used as well as one function implemented in the
commercially available software Matlab. Maximin LH designs created by the
EDLS algorithm (and probably other optimization schemes as well) are supe-
rior to all other investigated experimental designs regarding both the achieved
model qualities and the variation of these model qualities. These advantages
have to be paid off by higher computational effort for the creation of the DoE.



6 Conclusions and Outlook 165

However, the maximin LH designs can be optimized and stored in advance
to a specific task, such that this drawback can be weakened at least for some
applications. Another drawback of the maximin LH designs regards their ex-
tensibility. If just a few points should be added to an already optimized LH
design it is not as easy as to append additional points to an existing Sobol
sequence, because further optimization runs are necessary. The results are im-
portant for both the initial DoE and subsequent refinements of it in presumably
near-optimum regions of the design space.

The goal-oriented active learning with LMNs is an extension of HILOMOT for
design of experiments (HilomotDoE) and addresses simultaneously three main
goals: (I) The concentration on possibly near-optimum regions and (II) the
focus on areas in the design space where the (meta-)model’s performance is
considered to be worst. Additionally, (III) new measurements should differ
from already gathered data as much as possible. With these goals three impor-
tant issues in modeling are addressed simultaneously: (I) optimality, (II) model
bias, (III) model variance/uniformly space-filling property. The proposed goal-
oriented active learning with LMNs proved to fulfill all goals during the genera-
tion of a data set used to train CFD metamodels of centrifugal fans. The max-
imum reachable efficiencies could be improved, the overall model performance
could be increased, and the diversity increase of the training data samples can
be seen in the extension of achievable design points.

Outlook

For future research the following topics are of interest in the opinion of the author.

• Since the mixed wrapper-embedded input selection is computational demand-
ing and takes quite a lot of time, the following idea should lead to a speed-up
of the necessary calculation times. The author suggests to increase the com-
plexity penalty of Akaike’s information criterion for the determination of the
model complexity during the input selection or to utilize the Bayesian informa-
tion criterion instead. As a result, the number of local models should decrease
on average and each individual training should take less time to be completed.
One difficulty might be to find a reasonable value for the complexity penalty
in order to still guarantee good bias/variance tradeoffs.



166

• The mixed wrapper-embedded input selection should be tested in combination
with LMNs employing local models that are regularized finite impulse response
(FIR) models as described in [91]. In particular, a z-input selection seems to
be reasonable in case of LMNs with local, regularized FIR models because
the regularization already takes care of a good bias/variance tradeoff for the
x-input space (or the rule consequents). However, to the knowledge of the
author, the automatic selection of inputs for the z-input space (or the rule
premises) has not been addressed so far.

• Because the regularization-based input selection revealed advantages only for
a rather high input space dimensionality, in particular for the auto MPG
application, it is suggested to further investigate this approach with higher-
dimensional test processes, i.e. p� 4.

• For the regularization-based input selection a different procedure is suggested
for further research. In the procedure explained in Section 3.3, shrinkage of
the splitting parameters belonging to important inputs for the z-input space
is avoided by a subsequent unregularized split optimization incorporating only
the important z-inputs (vi 6= 0) for each split. It is suggested to omit this
subsequent unregularized split optimization for each split and to analyze the
resulting partitioning of the final LMN with the embedded input selection
approach presented in Section 3.4.1. Afterwards a training with the standard
HILOMOT algorithm (without any split regularization) is performed where all
inputs that have a relevance factor of zero are removed from the z-input space.
Advantages of the newly suggested procedure could be:

– The decision if an input is relevant for the z-input space is based on several
splits and should therefore be more reliable.

– The unregularized split optimization within the standard HILOMOT al-
gorithm circumvents the need of finding a good compromise between axis-
oblique and axis-parallel splits. Relevant inputs for the z-input space are
identified prior to the standard HILOMOT algorithm. In the subsequent
standard HILOMOT algorithm splits in the remaining z-input space can
be arbitrarily oblique without being penalized.

• Once information is obtained about which inputs act in a (mostly) linear or a
nonlinear way by the mixed wrapper-embedded input selection, this informa-
tion should be utilized for future experimental designs. Inputs only contained



6 Conclusions and Outlook 167

in the x-input space can be treated differently in the DoE opposed to inputs
that are contained in the z-input space. Depending on the used local model
type, optimal experimental designs can be used, e.g. D-optimal, A-optimal, or
G-optimal ones, see [40, 1, 39]. Space-filling designs are suggested for the in-
puts contained in the z-input space. Because the properties of the nonlinearity
are typically not known in advance, i.e. before measurements are taken, the
z-input space should be uniformly covered. First investigations have already
been carried out in [60].

• As shown for the auto MPG application, partial dependence plots are prone
to yield implausible results if inputs are highly correlated. Therefore it is
suggested to omit all input combinations that have to be evaluated by the
model in order to create the partial dependence plots that force the model to
extrapolate. For the decision whether an input combination forces the model
to extrapolate, a one-class-classification algorithm, like e.g. [73] can be used.





169

A Data Splitting

In experimental modeling the main task is to create models solely based on mea-
surements with a high ability to generalize well on unseen data [15]. As described in
Section 2.2, using all available data in order to tune the parameters of an artificial
neural network is inappropriate because overfitting can not be detected. Therefore,
all available data is typically split into several data sets which are then used for
training, validation, and testing, also described in Section 2.2. At best, the training,
validation, and test data set contain all typical characteristics of the overall avail-
able data. Depending on the data set in which typical characteristics are missing,
problems are likely to occur. For the following considerations it is assumed that a
typical characteristic is missing only in one of the three data sets.

Training data set: The model is not able to learn some aspects of the process under
consideration and therefore is not able to generalize well. The lack of general-
ization performance can be detected by the validation or test data set because
these data sets contain the missing characteristics.

Validation data set: The model is able to learn all aspects of the process under
consideration. However, the model might overfit the specific characteristic
missing in the validation data set. Because this characteristic is not contained
in the validation data set, poor generalization behavior related to it can not be
detected. As a result, the model complexity might be determined suboptimally.
With the help of the test data the generalization performance can be assessed
properly.

Test data set: The model is able to learn all aspects of the process under consider-
ation and the model complexity is determined properly. However, the assess-
ment of the model quality with the test data set might be overly optimistic or
pessimistic.

The danger of lacking characteristics in one of the three data sets grows with a
decreasing data set size, if the data is split randomly the worst-case scenario may be



170

arbitrarily bad. Unfortunately, simple random splitting is used in most applications
according to [109]. Especially in engineering applications data is often scarce because
measurements are time-consuming and expensive. Therefore, additional effort should
be put in the data splitting strategy. Commonly used data splitting strategies can be
found in [85] and [109]. For this thesis, a rather simple deterministic and distance-
based strategy to split the available data into a training and a test data set is
carried out. The explicit generation of a validation data set is omitted here, since
Akaike’s information criterion (AICc) (calculated with the training data) proved to
be a reliable substitute, at least for local model networks (LMNs) as shown in [56].
The used data splitting method is explained in the following.

The user-demanded amount of test data should be selected from the whole data
set such that all regions of the input space are represented. At the same time,
big data gaps in the remaining training data set should avoided. In order to fulfill
this requirements, all points contained in the whole data set are sorted according
to the biggest gap sequence (BGS) which is explained in detail in Section 4.1.1 and
illustrated in Fig. A.1. As a result, one number is assigned to each point, representing
its place on the sorted list, see Fig. A.1d. If the user-demanded number of test data
points is N test, the first N test points from the second half of the sorted list are
chosen as test data as visualized in Fig. A.2. The reasoning behind this heuristic
is the following. Points at the beginning of the sorted list would probably lead to
extrapolation in the test data. As a result, the test error would be overly pessimistic.
Points at the end of the sorted list might be very close to points in the training data
set, leading to an overly optimistic test error. According to the author’s experience,
the selected heuristic leads to a good compromise and thus to a realistic evaluation
of the generalization performance of the model.

In the example shown in Fig. A.1, the whole data set contains N = 12 samples and
three points should be chosen as test data. Therefore, point 7, 8, and 9 are selected,
which are highlighted in Fig. A.1d. If the first three points from the sorted list would
have been chosen as test data, points 2 and 3 might already force the resulting model
to extrapolate. If the last three points would have been chosen as test data, points
11 and 12 are very close to points 4 and 5, respectively.



A Data Splitting 171

(a) (b)

(c)

1

2

3
4

5

6

7

8

9

10

11

12

(d)

Figure A.1: Illustration of the data sorting according to the BGS procedure. (a) The
first two sorted points (x) are the one closest to the center of gravity of
all points and the one that is farthest away from it. (b)-(c) The next
point (x) is iteratively added to the sorted list by choosing the one of
the remaining points (o) with the maximum distance to the next already
sorted point. (d) Numbers denote the place in the sorted list of all points.

Train

Test

Train

Sorted list
(ascending numbers)

1st half of
the sorted list

2nd half of
the sorted list

Figure A.2: Visualization of the heuristic used to pick test data from the whole data
set sorted according to the BGS method





173

References

[1] AC Atkinson. The Usefulness of Optimum Experimental Designs. Journal of
the Royal Statistical Society. Series B (Methodological), pages 59–76, 1996.

[2] Mihiar Ayoubi. Nonlinear System Identification Based on Neural Networks with
Locally Distributed Dynamics and Application to Technical Processes. PhD
thesis, TU Darmstadt, 1996.

[3] Konrad Bamberger. Aerodynamic Optimization of Low-Pressure Axial Fans.
PhD thesis, University of Siegen, November 2015.

[4] Konrad Bamberger, Julian Belz, Thomas Carolus, and Oliver Nelles. Aero-
dynamic Optimization of Centrifugal Fans Using CFD-Trained Meta-Models.
In 16th International Symposium on Transport Phenomena and Dynamics of
Rotating Machinery (ISROMAC), Hawaii, USA, April 2016.

[5] Oliver Bänfer, Oliver Nelles, Josef Kainz, and Johannes Beer. Local Model Net-
works with Modified Parabolic Membership Functions. In Artificial Intelligence
and Computational Intelligence, 2009. AICI’09. International Conference on,
volume 1, pages 179–183. IEEE, 2009.

[6] Russell R Barton. Metamodeling: A State of the Art Review. In Simulation
Conference Proceedings, 1994. Winter, pages 237–244. IEEE, 1994.

[7] Richard E. Bellman. Adaptive Control Processes. Princeton University Press,
1961.

[8] Julian Belz, Konrad Bamberger, and Oliver Nelles. Order of Experimenta-
tion for Metamodeling Tasks. In International Joint Conference on Neural
Networks (IJCNN), pages 4843–4849, Vancouver, Canada, July 2016.

[9] Julian Belz, Konrad Bamberger, Oliver Nelles, and Thomas Carolus. Goal-
Oriented Active Learning with Local Model Networks. International Journal of
Computational Methods and Experimental Measurements, 6(4):785–796, 2018.



174 References

[10] Julian Belz and Oliver Nelles. Function Generator Application: Shall Cor-
ners Be Measured? In Proceedings of the 25th Workshop on Computational
Intelligence, pages 271–287, Dortmund, Germany, November 2015.

[11] Julian Belz and Oliver Nelles. Proposal for a Function Generator and Ex-
trapolation Analysis. In IEEE International Symposium on Innovations in In-
telligent SysTems and Applications (INISTA), pages 282–287, Madrid, Spain,
September 2015.

[12] Julian Belz and Oliver Nelles. Normalized L1 Regularization for Axis-Oblique
Tree Construction Algorithms. In IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–7, Hawaii, USA, 2017. IEEE.

[13] Richard A Berk. Statistical Learning From a Regression Perspective. Springer
Science &amp; Business Media, 2008.

[14] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. The Journal of Machine Learning Research, 11:1601–
1604, 2010.

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer
Science &amp; Business Media, 2006.

[16] Frank P Bleier. Fan Handbook: Selection, Application, and Design. McGraw-
Hill New York, 1998.

[17] L Bommes, J Fricke, and R Grundmann. Ventilatoren. Vulkan Verlag, Essen,
2003.

[18] L. Breiman. Hinging Hyperplanes for Regression, Classification, and Function
Approximation. Information Theory, IEEE Transactions on, 39(3):999–1013,
1993.

[19] L. Breiman and P. Spector. Submodel Selection and Evaluation in Regression.
The X-Random Case. International Statistical Review/Revue Internationale
de Statistique, pages 291–319, 1992.

[20] K.P. Burnham and D.R. Anderson. Multimodel Inference Understanding AIC
and BIC in Model Selection. Sociological methods & research, 33(2):261–304,
2004.



References 175

[21] Xiwen Cai, Haobo Qiu, Liang Gao, and Xinyu Shao. Metamodeling for High
Dimensional Design Problems by Multi-Fidelity Simulations. Structural and
Multidisciplinary Optimization, pages 1–16, 2017.

[22] Thomas Carolus. Ventilatoren. Vieweg+Teubner Verlag, 2013.

[23] Martin Casdagli. A Dynamical Systems Approach to Modeling Input-Output
Systems. In A Proceedings Volume in the Santa Fe Institute Studies in the
Sciences of Complexity, volume 12, page 265 ff. Addison-Wesley Publishing
Co, 1992.

[24] Ray-Bing Chen, Dai-Ni Hsieh, Ying Hung, and Weichung Wang. Optimiz-
ing Latin Hypercube Designs by Particle Swarm. Statistics and Computing,
23(5):663–676, 2013.

[25] Victoria CP Chen, Kwok-Leung Tsui, Russell R Barton, and Martin
Meckesheimer. A Review on Design, Modeling and Applications of Computer
Experiments. IIE transactions, 38(4):273–291, 2006.

[26] Mark Ming-Tso Chiang and Boris Mirkin. Intelligent Choice of the Number of
Clusters in k-Means Clustering: An Experimental Study with Different Cluster
Spreads. Journal of classification, 27(1):3–40, 2010.

[27] S.L. Chiu. Selecting input variables for fuzzy models. Journal of Intelligent
and Fuzzy Systems-Applications in Engineering and Technology, 4(4):243–256,
1996.

[28] Biagio Ciuffo, Jordi Casas, Marcello Montanino, Josep Perarnau, and Vincenzo
Punzo. Gaussian Process Metamodels for Sensitivity Analysis of Traffic Sim-
ulation Models: Case Study of AIMSUN Mesoscopic Model. Transportation
Research Record: Journal of the Transportation Research Board, (2390):87–98,
2013.

[29] Bertrand Clarke, Ernest Fokoue, and Hao Helen Zhang. Principles and Theory
for Data Mining and Machine Learning. Springer Science & Business Media,
2009.

[30] David A Cohn. Minimizing Statistical Bias with Queries. Technical report,
DTIC Document, 1995.

[31] David A. Cohn. Neural Network Exploration Using Optimal Experiment De-
sign. Neural Networks, 9(6):1071 – 1083, 1996.



176 References

[32] David A. Cohn, Zoubin Ghahramani, and Michael I Jordan. Active Learning
with Statistical Models. Journal of Artificial Intelligence Research, 1996.

[33] O Cordier. Ähnlichkeitsbedingungen für Strömungsmaschinen. Brennstoff-
Wärme-Kraft (BWK), 5(10):337–340, 1953.

[34] Alexander A Correa, Pere Grima, and Xavier Tort-Martorell. Experimenta-
tion Order in Factorial Designs: New Findings. Journal of Applied Statistics,
39(7):1577–1591, 2012.

[35] Tobias Ebert, Torsten Fischer, Julian Belz, Tim Heinz, Geritt Kampmann,
and Oliver Nelles. Extended Deterministic Local Search Algorithm for Max-
imin Latin Hypercube Designs. In IEEE Symposium Series on Computational
Intelligence (SSCI), pages 375–382, Cape Town, South Africa, December 2015.

[36] Christoph Engel. Untersuchung der Laufradströmung in einem Radialventilator
mittels Particle Image Velocimetry (PIV). PhD thesis, Universität Duisburg-
Essen, Fakultät für Ingenieurwissenschaften» Maschinenbau und Verfahren-
stechnik» Institut für Energie-und Umweltverfahrenstechnik, 2007.

[37] S. Ernst. Hinging Hyperplane Trees for Approximation and Identification.
In Decision and Control, 1998. Proceedings of the 37th IEEE Conference on,
volume 2, pages 1266–1271. IEEE, 1998.

[38] Kai-Tai Fang and Runze Li. Uniform Design for Computer Experiments and
its Optimal Properties. International Journal of Materials and Product Tech-
nology, 25(1-3):198–210, 2005.

[39] Valerii V Fedorov and Peter Hackl. Model-Oriented Design of Experiments,
volume 125 of Lecture Notes in Statistics. Springer Science &amp; Business
Media, 2012.

[40] Valerii Vadimovich Fedorov. Theory of Optimal Experiments. Elsevier, 1972.

[41] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari.
A Clustering Technique for the Identification of Piecewise Affine Systems. Au-
tomatica, 39(2):205–217, 2003.

[42] Torsten Fischer, Benjamin Hartmann, and Oliver Nelles. Increasing the Perfor-
mance of a Training Algorithm for Local Model Networks. In World Congress
of Engineering and Computer Science (WCECS), pages 1104–1109, San Fran-
cisco, USA, October 2012.



References 177

[43] Ian Ford, DM Titterington, and Christos P Kitsos. Recent Advances in Non-
linear Experimental Design. Technometrics, 31(1):49–60x, 1989.

[44] Bjarne A Foss and Tor A Johansen. On Local and Fuzzy Modelling. In Third
International Conference on Industrial Fuzzy Control and Intelligent Systems
(IFIS), pages 80–87. IEEE, 1993.

[45] Jason AS Freeman and David Saad. Learning and Generalization in Radial
Basis Function Networks. Neural Computation, 7(5):1000–1020, 1995.

[46] Jerome H Friedman. Multivariate Adaptive Regression Splines. The annals of
statistics, pages 1–67, 1991.

[47] Jerome H Friedman. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics, pages 1189–1232, 2001.

[48] Stuart Geman, Elie Bienenstock, and René Doursat. Neural Networks and the
Bias/Variance Dilemma. Neural computation, 4(1):1–58, 1992.

[49] A. Grosso, A. Jamali, and M. Locatelli. Finding Maximin Latin Hypercube
Designs by Iterated Local Search Heuristics. European Journal of Operational
Research, 197(2):541–547, 2009.

[50] Jie Gui, Zhenan Sun, Shuiwang Ji, Dacheng Tao, and Tieniu Tan. Feature
Selection Based on Structured Sparsity: A Comprehensive Study. IEEE trans-
actions on neural networks and learning systems, 2017.

[51] I. Guyon. Feature Extraction: Foundations and Applications, volume 207.
Springer Verlag, 2006.

[52] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res., 3:1157–1182, March 2003.

[53] Chris Harris, Xia Hong, and Qiang Gan. Adaptive Modelling, Estimation and
Fusion From Data: A Neurofuzzy Approach. Springer-Verlag Berlin Heidelberg,
2002.

[54] B. Hartmann, T. Ebert, and O. Nelles. Model-Based Design of Experiments
Based on Local Model Networks for Nonlinear Processes with Low Noise Levels.
In American Control Conference (ACC), 2011, pages 5306–5311. IEEE, 2011.



178 References

[55] B. Hartmann and O. Nelles. Adaptive Test Planning for the Calibration of
Combustion Engines – Methodology. Design of Experiments (DoE) in Engine
Development, pages 1–16, 2013.

[56] Benjamin Hartmann. Lokale Modellnetze zur Identifikation und Versuchspla-
nung nichtlinearer Systeme. PhD thesis, Universität Siegen, April 2014.

[57] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learn-
ing, volume 1. Springer New York, 2001.

[58] Trevor Hastie and Robert Tibshirani. Generalized Additive Models. Wiley
Online Library, 1990.

[59] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall,
Inc., second edition, 1999.

[60] Tim Oliver Heinz, Julian Belz, and Oliver Nelles. Design of Experiments –
Combining Linear and Nonlinear Inputs. In Proceedings of the 27th Workshop
on Computational Intelligence, pages 211–226, Dortmund, Germany, 2017.

[61] John B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill,
Inc., 1988.

[62] Hisham Hilow. Comparison Among Run Order Algorithms for Sequential Fac-
torial Experiments. Computational Statistics &amp; Data Analysis, 58:397–
406, 2013.

[63] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.
Adaptive Mixtures of Local Experts. Neural computation, 3(1):79–87, 1991.

[64] J.S.R. Jang. Input selection for anfis learning. In Fuzzy Systems, 1996., Pro-
ceedings of the Fifth IEEE International Conference on, volume 2, pages 1493–
1499. IEEE, 1996.

[65] Ruichen Jin, Wei Chen, and Agus Sudjianto. On Sequential Sampling for
Global Metamodeling in Engineering Design. In ASME 2002 International
Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, pages 539–548. American Society of Mechanical
Engineers, 2002.



References 179

[66] Ruichen Jin, Wei Chen, and Agus Sudjianto. An Efficient Algorithm for Con-
structing Optimal Design of Computer Experiments. Journal of Statistical
Planning and Inference, 134(1):268–287, 2005.

[67] Mark E Johnson, Leslie M Moore, and Donald Ylvisaker. Minimax and max-
imin distance designs. Journal of statistical planning and inference, 26(2):131–
148, 1990.

[68] Rachel T Johnson, Douglas C Montgomery, Bradley Jones, and JohnW Fowler.
Comparing Designs for Computer Simulation Experiments. In Proceedings of
the 40th Conference on Winter Simulation, pages 463–470. Winter Simulation
Conference, 2008.

[69] Antonia J Jones. New Tools in Non-Linear Modelling and Prediction. Com-
putational Management Science, 1(2):109–149, 2004.

[70] Roger D Jones, YC Lee, CW Barnes, GW Flake, K Lee, PS Lewis, and S Qian.
Function Approximation and Time Series Prediction with Neural Networks. In
International Joint Conference on Neural Networks (IJCNN), pages 649–665.
IEEE, 1990.

[71] Michael I Jordan and Robert A Jacobs. Hierarchical Mixtures of Experts and
the EM Algorithm. Neural computation, 6(2):181–214, 1994.

[72] Olumayowa T Kajero, Tao Chen, Yuan Yao, Yao-Chen Chuang, and David
Shan Hill Wong. Meta-Modelling in Chemical Process System Engineering.
Journal of the Taiwan Institute of Chemical Engineers, 2016.

[73] Geritt Kampmann and Oliver Nelles. One-class LS-SVM with Zero Leave-
One-Out Error. In 2014 IEEE Symposium on Computational Intelligence in
Control and Automation (CICA), pages 1–6, Dec 2014.

[74] M. Karagiannopoulos, D. Anyfantis, SB Kotsiantis, and PE Pintelas. Feature
selection for regression problems. Proceedings of HERCMA07, 2007.

[75] Ron Kohavi et al. A Study of Cross-Validation and Bootstrap for Accuracy Es-
timation and Model Selection. In International Joint Conference on Artificial
Intelligence, volume 14, pages 1137–1145, 1995.

[76] Ron Kohavi and George H. John. Wrappers for feature subset selection. Arti-
ficial Intelligence, 97(1):273 – 324, 1997.



180 References

[77] F. Kursawe and H.-P. Schwefel. Optimierung mit Evolutionären Algorithmen.
Automatisierungstechnische Praxis, 39(9):10–17, 1997.

[78] IJ Leontaritis and Stephen A Billings. Input-Output Parametric Models for
Non-Linear Systems Part I: Deterministic Non-Linear Systems. International
Journal of Control, 41(2):303–328, 1985.

[79] Asriel U Levin and Kumpati S Narendra. Identification Using Feedforward
Networks. Neural Computation, 7(2):349–369, 1995.

[80] M. Lichman. UCI Machine Learning Repository, 2013.

[81] H. Liu and H. Motoda. Computational Methods of Feature Selection. Chapman
& Hall, 2007.

[82] Chu Kiong Loo and Mandava Rajeswari. Growing Multi-Experts Network. In
TENCON 2000. Proceedings, volume 3, pages 472–477. IEEE, 2000.

[83] David Lowe. Adaptive Radial Basis Function Nonlinearities, and the Problem
of Generalisation. In First IEE International Conference on Artificial Neural
Networks, pages 171–175. IET, 1989.

[84] David JC MacKay. Information-Based Objective Functions for Active Data
Selection. Neural computation, 4(4):590–604, 1992.

[85] Robert J May, Holger R Maier, and Graeme C Dandy. Data Splitting for Artifi-
cial Neural Networks Using SOM-Based Stratified Sampling. Neural Networks,
23(2):283–294, 2010.

[86] M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code. Technometrics, 21(2):239–245, 1979.

[87] M. Meckesheimer, A. J. Booker, R. Barton, and T. Simpson. Computationally
Inexpensive Metamodel Assessment Strategies. AIAA journal, 40(10):2053–
2060, 2002.

[88] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Berlin, 1992.

[89] Boris Mirkin. Clustering for Data Mining: A Data Recovery Approach. Chap-
man & Hall/CRC, London, 2005.



References 181

[90] Douglas C Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, 2008.

[91] Tobias Münker and Oliver Nelles. Local Model Network with Regularized
MISO Finite Impulse Response Models. In Fuzzy Systems (FUZZ-IEEE), 2016
IEEE International Conference on, pages 1–8. IEEE, 2016.

[92] Bruce Roy Munson, Donald F Young, and Theodore Hisao Okiishi. Funda-
mentals of Fluid Mechanics. New York, 1990.

[93] M. Munson and R. Caruana. On Feature Selection, Bias-Variance, and Bag-
ging. Machine Learning and Knowledge Discovery in Databases, pages 144–159,
2009.

[94] Roderick Murray-Smith. Local Model Networks and Local Learning. Fuzzy
Duisburg, 94:404–409, 1994.

[95] Roderick Murray-Smith and T.A. Johansen. Local Learning in Local Model
Networks. In Artificial Neural Networks, 1995., Fourth International Confer-
ence on, pages 40–46. IET, 1995.

[96] Oliver Nelles. Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models. Springer, 2001.

[97] Oliver Nelles. Axes-Oblique Partitioning Strategies for Local Model Networks.
In IEEE International Symposium on Intelligent Control, pages 2378–2383,
Munich, Germany, October 2006.

[98] Oliver Nelles, Oliver Bänfer, Josef Kainz, and Johannes Beer. Local Model
Networks - The Prospective Method for Modeling in Electronic Control Units?
ATZelektronik worldwide, 3(6):36–39, 2008.

[99] Oliver Nelles and Rolf Isermann. Basis Function Networks for Interpolation of
Local Linear Models. In Proceedings of the 35th IEEE Conference on Decision
and Control (CDC), volume 1, pages 470–475, 1996.

[100] Oliver Nelles, S Sinsel, and R Isermann. Local Basis Function Networks for
Identification of a Turbocharger. In UKACC International Conference on Con-
trol (Conf. Publ. No. 427), volume 1, pages 7–12. IET, 1996.

[101] Harald Niederreiter. Low-Discrepancy and Low-Dispersion Sequences. Journal
of number theory, 30(1):51–70, 1988.



182 References

[102] Andreas Poncet, Jean L. Poncet, and George S. Moschytz. On the Input-
Output Approximation of Nonlinear Systems. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), volume 2, pages 1500–1503. IEEE,
1995.

[103] Michael JD Powell. Radial Basis Functions for Multivariable Interpolation: A
Review. In Algorithms for Approximation, pages 143–167. Clarendon Press,
1987.

[104] Luc Pronzato and Werner G Müller. Design of Computer Experiments: Space
Filling and Beyond. Statistics and Computing, 22(3):681–701, 2012.

[105] Predrag Pucar and Mille Millnert. Smooth Hinging Hyperplanes - An Alter-
native to Neural Nets. In Proceedings of 3rd European Control Conference,
volume 2, pages 1173–1178, 1995.

[106] J Ross Quinlan. Combining Instance-Based and Model-Based Learning. In
ICML, page 236, 1993.

[107] C.E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
2006.

[108] Jakob Rehrl, Daniel Schwingshackl, and Martin Horn. A Modeling Approach
for HVAC Systems Based on the LoLiMoT Algorithm. In 19th IFAC World
Congress, pages 10862–10868, 2014.

[109] Z. Reitermanová. Data splitting. WDS 2010 Proceedings of Contributed Pa-
pers, 1:31–36, 2010.

[110] J. Reunanen. Overfitting in Making Comparisons Between Variable Selection
Methods. The Journal of Machine Learning Research, 3:1371–1382, 2003.

[111] Carl Rhodes and Manfred Morari. Determining the Model Order of Nonlin-
ear Input/Output Systems Directly from Data. In IEEE Proceedings of the
American Control Conference, volume 3, pages 2190–2194, 1995.

[112] Carl Rhodes and Manfred Morari. Determining the Model Order of Nonlinear
Input/Output Systems. AIChE Journal, 44(1):151–163, 1998.

[113] Ryan M Rifkin and Ross A Lippert. Notes on Regularized Least Squares. 2007.



References 183

[114] Stefan Schaal and Christopher G Atkeson. From Isolation to Cooperation: An
Alternative View of a System of Experts. Advances in Neural Information
Processing Systems, pages 605–611, 1996.

[115] Stefan Schaal and Christopher G Atkeson. Receptive Field Weighted Regres-
sion. ATR Human Information Processing Laboratories, Tech. Rep. TR-H-209,
1997.

[116] Benedikt Gregor Eric Schenker. Prediction and Control Using Feedback Neural
Networks and Partial Models. PhD thesis, Swiss Federal Institute of Technol-
ogy Zürich, Switzerland, 1996.

[117] Mark Schmidt, Glenn Fung, and Romer Rosales. Fast Optimization Methods
for L1 Regularization: A Comparative Study and Two New Approaches. In
Machine Learning: ECML 2007, pages 286–297. Springer, 2007.

[118] Daniel Schwingshackl, Jakob Rehrl, and Martin Horn. Model Predictive Con-
trol of a HVAC System Based on the LoLiMoT Algorithm. In European Control
Conference (ECC), pages 4328–4333, 2013.

[119] Daniel Schwingshackl, Jakob Rehrl, and Martin Horn. LoLiMoT Based MPC
for Air Handling Units in HVAC Systems. Building and Environment, 96:250
– 259, 2016.

[120] Burr Settles. Active Learning Literature Survey. University of Wisconsin,
Madison, 52:55–66, 2010.

[121] S. Shan and G. G. Wang. Metamodeling for High Dimensional Simulation-
Based Design Problems. Journal of Mechanical Design, 132:051009, 2010.

[122] R. Sindelar and R. Babuska. Input selection for nonlinear regression models.
Fuzzy Systems, IEEE Transactions on, 12(5):688–696, 2004.

[123] Amith Singhee and Rob A Rutenbar. Why Quasi-Monte Carlo is Better than
Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 29(11):1763–1776, 2010.

[124] Anders Skeppstedt, Lennart Ljung, and Mille Millnert. Construction of
Composite Models from Observed Data. International Journal of Control,
55(1):141–152, 1992.



184 References

[125] Ilya Meerovich Sobol’. On the Distribution of Points in a Cube and the Ap-
proximate Evaluation of Integrals. USSR Computational Mathematics and
Mathematical Physics, 7(4):86 – 112, 1967.

[126] Torsten Söderström and Petre Stoica. System Identification. Prentice Hall
International (UK) Ltd., 1989.

[127] K Stokbro, DK Umberger, and JA Hertz. Exploiting Neurons with Localized
Receptive Fields to Learn Chaos. Complex Systems, 4(3):603–622, 1990.

[128] Michio Sugeno and GT Kang. Structure Identification of Fuzzy Model. Fuzzy
Sets and Systems, 28(1):15–33, 1988.

[129] Tomohiro Takagi and Michio Sugeno. Fuzzy Identification of Systems and its
Applications to Modeling and Control. IEEE transactions on Systems, Man,
and Cybernetics, (1):116–132, 1985.

[130] Tatiana Tambouratzis. Counter-clustering for training pattern selection. The
Computer Journal, 43(3):177–190, 2000.

[131] P.N. Tan, M. Steinbach, V. Kumar, et al. Introduction to Data Mining. Pearson
Addison Wesley Boston, 2006.

[132] Robert Tibshirani. Regression Shrinkage and Selection via the LASSO. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[133] Ah Chung Tsoi and Andrew D Back. Locally Recurrent Globally Feedforward
Networks: A Critical Review of Architectures. IEEE Transactions on Neural
Networks, 5(2):229–239, 1994.

[134] Hua-Ping Wan and Wei-Xin Ren. Parameter Selection in Finite-Element-
Model Updating by Global Sensitivity Analysis Using Gaussian Process Meta-
model. Journal of Structural Engineering, 141(6):04014164, 2014.

[135] G Gary Wang. Adaptive Response Surface Method Using Inherited Latin
Hypercube Design Points. Journal of Mechanical Design, 125(2):210–220, 2003.

[136] G Gary Wang, Zuomin Dong, and Peter Aitchison. Adaptive Response Sur-
face Method–A Global Optimization Scheme for Approximation-Based Design
Problems. Engineering Optimization, 33(6):707–734, 2001.



References 185

[137] G Gary Wang and S Shan. Review of Metamodeling Techniques in Support of
Engineering Design Optimization. Journal of Mechanical Design, 129(4):370–
380, 2007.

[138] Lipo Wang, Yaoli Wang, and Qing Chang. Feature Selection Methods for
Big Data Bioinformatics: A Survey from the Search Perspective. Methods,
111:21–31, 2016.

[139] Ronald J Williams and David Zipser. A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks. Neural Computation, 1(2):270–280,
1989.

[140] Reinhard Willinger. Das CORDIER-Diagramm für Strömungsarbeitsmaschi-
nen: Eine theoretische Begründung mittels Stufenkennlinien. In VDI-Berichte,
number 2112, pages 17–28, 2010.

[141] Reinhard Willinger. Theoretical Interpretation of the CORDIER-Lines for
Squirrel-Cage and Cross-Flow Fans. In Proc. ASME TurboExpo, pages 675–
684, Copenhagen, Denmark, 2012.

[142] Reinhard Willinger and Michael Köhler. Influence of Blade Loading Criteria
and Design Limits on the Cordier-Line for Axial Flow Fans. In Proc. ASME
TurboExpo, Düsseldorf, Germany, 2014.

[143] Achilleas Zapranis and Apostolos-Paul Refenes. Principles of Neural Model
Identification, Selection and Adequacy: With Applications to Financial Econo-
metrics. Springer-Verlag London Limited, 1999.

[144] Hui Zou and Trevor Hastie. Regularization and Variable Selection via the
Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005.


	Deckblatt
	Titelblatt
	Acknowledgments
	Contents
	Symbols and Abbreviations
	Latin Symbols
	Greek Symbols
	Abbreviations

	Kurzfassung
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Structure of this Thesis

	2 Nonlinear System Identification
	2.1 Static and Dynamic Models
	2.2 Curse of Dimensionality and Bias/Variance Tradeoff
	2.3 Local Model Networks
	2.4 Input Selection
	2.5 Design of Experiments
	2.6 Metamodeling
	2.7 Static Function Generator

	3 Input Selection Using Local Model Networks
	3.1 Test Processes
	3.2 Mixed Wrapper-Embedded Input Selection Approach
	3.3 Regularization-Based Input Selection Approach
	3.4 Embedded Approach
	3.5 Visualization: Partial Dependence Plots

	4 Design of Experiments Studies
	4.1 Order Of Experimentation
	4.2 Advisability of Specific Experimental Designs
	4.3 Goal-Oriented Active Learning with Local Model Networks

	5 Applications
	5.1 Miles Per Gallon Data Set
	5.2 Air-Mass Flow Prediction
	5.3 Fan Metamodeling
	5.4 Heating, Ventilating, and Air Conditioning System

	6 Conclusions and Outlook
	Conclusions
	Outlook

	A Data Splitting
	References



