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Chapter 1

Introduction

1.1 Problem

This research was conducted in the region of “Südwestfalen”, Germany. It is
the third-largest industrial region in Germany in terms of the number of people
employed in the industrial sector. It is also home to many small and medium-
sized enterprises (SMEs) [cf. Bähr and Steier, 2013]. On the whole, these SMEs
have achieved great success, which is also evident from the number of world
market leaders located in the region [cf. Frye et al., 2015].
Although many of these companies have a focus strategy, with respect to Porter
[1980, pp. 35–40], their product offerings have become diverse. At the same
time, product complexity has increased [cf. Schuh, 2005, p.13]. Consequently,
the supply chain has become more complex, meaning that the complexity of
production planning and production scheduling has also intensified. By produc-
tion scheduling, we mean the allocation and sequencing of tasks, e.g. production
orders to resources such as machines. In many cases, at the SMEs we visited,
production scheduling was done without any special software or system sup-
port, but manually with the help of Microsoft Excel. The people responsible for
production planning spent much of their working hours creating the daily pro-
duction plan. Many decisions regarding the production plan were not based on
facts and data, but on the experience of the production planners, often rendering
these plans unreproducible. Throughout the observations, it showed that:

– the capacity of the machines,

– the time needed to setup a machine to produce a job (setup time),

– the structures of dependencies between the materials, semi-finished and
finished goods in production (multi-level bills of materials),

– the availability of persons or robots for setting up the jobs on the machines
(setup operators),

1



2 CHAPTER 1. INTRODUCTION

are not considered in the making of a plan. Usually plans are repaired after the
creation to fix the biggest deficiencies. However, in the production itself, dis-
ruptions occur due to unexpected latencies. In the best case, expensive external
production capacity can be rented. In the worst case, stock-outs arise or jobs
are delivered late. Apart from that, there are high intermediate stock levels.
Production is often run in SMEs as a job shop. That means there are several
different machines such as a milling machine, a drilling machine, etc., on which
products in different orders must be manufactured. The main research area
for this type of production scheduling does not focus, however, on providing
solutions for holistic real-world problems. It seems that most of the effort is
put into providing computational complexity results for production scheduling
problems. Thus, it is often assumed in the literature that a job can be set up
if it is available and the corresponding machine is empty. Yet, this can only
hold if the setup operator, the person, or robot which changes the attachments
of the machine, is not a limiting factor. Therefore, the consideration of setup
operators is, in many cases, mandatory.

1.2 Aim

The general aim of this work is to link methods from the area of operations
research to real world problems in SME, as this has not been done yet, to the best
of our knowledge. Therefore, we investigate if it is possible to apply standard
algorithms from the area of operations research, which have been shown to
provide good solutions in production planning to real-life cases from SMEs.
As the problem structure differs and the size of input varies, we compare and
analyse the performance of the algorithms to make a more general statement
about further problem contexts.

1.3 Method

As we investigate real-world problems in a holistic approach, the tools used
in this work differ from quantitative inquiry to qualitative investigation in the
companies to formal approaches from the area of operations research.
With the help of an empirical study, critical fields of action for small and
medium-sized companies in the area of production planning were worked out
with the purpose of reasoning the approach. The study is restricted to a problem
motivation. Thereafter, representing the main focus of the work, three SMEs
were used to analyse and explore the production planning problem in detail.
Each problem was solved in a two-step approach:

For each of the three production planning problems, a mixed-integer pro-
gramme (MIP) was set up together with people from the respective op-
erations scheduling department. Owing to the complexity of the MIPs,
standard solvers were only able to solve minor instances of the problems.
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Then metaheuristic algorithms were used to solve the MIPs with the aim
of creating sound solutions in short computer running time.

1.4 Structure

As the aim of the work is to link different research areas, the work needs also
to provide a basic understanding of the underlying research areas. Therefore,
Chapter 2 describes state-of-the-art approaches to production planning and their
use in small and medium-sized companies.1 Therefore, fundamentals of general
production planning procedures are shown in Section 2.1. The basic charac-
teristics of small and medium sized companies and their differences from large
companies are described in Section 2.2. Section 2.3 brings together both parts
and indicates, with the help of an empirical study, which was conducted during
the research, the peculiarities of the production planning in the area of small
and medium sized companies.
In Chapter 3, an overview of recent literature, on production planning problems
which take setup operator availability into account is presented from an oper-
ations research perspective. This chapter provides fundamentals for the later
chosen algorithms.
Chapter 4 shows the first real case. As in Chapters 5 and 6, the information
was assessed through data gathering in the companies themselves. It focuses
on scheduling of parallel dedicated machines subject to setup constraints, as
seen at a German factory. Section 4.1 introduces the problem, while Section
4.2 presents the problem definition. A standard model formulation is shown in
Subsection 4.2.1. Extensions to the model can be found in Subsection 4.2.2.
The metaheuristic algorithms which are used for the solution of the problem
are outlined in Section 4.3. Genetic algorithms (GAs) (Subsection 4.3.1) tabu
searches (TSs) (Subsection 4.3.2) and a simulated annealing (SA) (Subsection
4.3.3), as well as a variable neighbourhood search (VNS), combining the meth-
ods, are shown, which can solve problems up to 100 machines and 1,000 tasks.
Computational results are presented in Section 4.4. Different variants of the
metaheuristics are tested on the one hand with the help of random instances
(Subsection 4.4.1), whereby a lower bound is calculated to evaluate the results.
On the other hand, we design a class of test instances from which the optimum
solution is known so as to determine the optimality gap accurately (Subsection
4.4.2). In Subsection 4.4.3 results from tests with real company data are pre-
sented. A brief conclusion about the chapter is then given in Section 4.5.
Chapter 5 shows the second real case. It focuses on unrelated parallel machine
scheduling subject to setup and assignment constraints, as seen at another Ger-
man factory. Section 5.1 introduces the problem before the problem is defined
and the corresponding MIP is shown and described in Section 5.2. The methods

1The goal of this chapter is not to provide a detailed analysis of the status of production
planning systems nor shall it provide an overview of all SME characteristics. The chapter
should provide a basic understanding of SMEs and production planning systems so that the
reasons for and the focus of the main research from Chapters 4, 5, and 6 are clear.
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used (GAs 5.3.1, TSs 5.3.2, and VNS) are shown in Section 5.3. Computational
results are then presented in 5.4 whereby different variants of the metaheuristics
are tested, on the one hand, with the help of random instances (5.4.1). On the
other hand, we design a class of test instances from which the optimum solu-
tion is known (Subsection 5.4.2) to determine the optimality gap accurately. In
Subsection 5.4.3 real data from the company is used to test the metaheuristics.
A conclusion is given in Section 5.5.
Chapter 6 shows the third real case. It focuses on the assignment and scheduling
of jobs in a job shop with parallel machines subject to setup operator constraints
as seen at the third analyzed company. Section 6.1 introduces the problem. In
Section 6.2. the problem definition is given. The corresponding MIP is shown
in Subsection 6.2.1, while in Subsection 6.2.2. extensions to the MIP are in-
troduced. The focus in Section 6.3 is laid upon metaheuristics. GAs (6.3.1)
and TSs (Subsection 6.3.2) as well as a VNS (6.3.3) are developed. Different
variants of the methods are then tested in Section 6.4 with the help of random
instances (Subsection 6.4.1), instances from which the optimal solution is known
(Subsection 6.4.2) and industry data from the company on which this research
is based on (6.4.3). A conclusion for the chapter is given in Section 6.5. A final
conclusion is given in Chapter 7.



Chapter 2

State-of-the-art approaches
in production planning and
their use in small and
medium-sized companies

2.1 Fundamentals of production planning

Production planning or production management can be defined and explained in
a number of ways. For our purposes, to explain production planning and control
(PPS) for non-mass producers, which most SMEs are, the Aachener PPS model
from Schuh and Gierth [2006] seems most appropriate as it provides a broad
perspective, without losing important aspects, on the area of PPS. In general,
it can be stated that other works such as [Kurbel, 2011] could also be used as
an introduction to PPS, as different works provide more or less the same view
on PPS.
Production management plans, controls, and steers all operational resources
with the aim of producing or delivering the output/product to the highest qual-
ity and quantity at the set time and at the lowest cost [cf. Schuh and Schmidt,
2014, p. 1]. That means the purpose of the PPS is to ensure that the goal of
production, for example, to supply the output in the right manner and at the
right time, is ensured at various levels as described in the following.
It has to be noted, though, that PPS is a highly complex matter. Many pro-
cesses and functions are interdependent—starting with the customer order to
production scheduling to the replenishment of materials for production. These
interdependencies are shown with data and decision correlation. Data correla-
tion means that data for some tasks are dependent on the data of another task.
Decision correlation means that a decision of a certain task influences the deci-
sion of another task. Moreover, the sheer size of the data is another complexity

5
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issue. In many cases, there are five- or six-digit numbers for products, work
plans, etc.[cf. Scheer, 1991]
As a result, the PPS is a hierarchical approach, meaning that distinct levels of
planning and control are run in stages while the output of a higher level stage is
an prescribed input for the lower level planning. While the planning complexity
can be reduced through this approach [cf. Scheer, 1991], it might not be possible
to find the optimal solution for the production.

The Aachener PPS model was first introduced in 1993 but is continuously being
developed [cf. Schuh and Gierth, 2006, p. 5]. It offers a theoretical background
for operational practice. The model uses a holistic approach [cf. Schuh and
Gierth, 2006, p. 11].

The priority of the Aachener PPS model is the description of PPS systems
from different perspectives to reach the goals:

– selection and introduction of PPS systems,

– reorganization of PPS systems,

– development of PPS concepts,

– development of PPS systems,

– alignment of PPS processes,

in the best possible manner [cf. Luczak and Eversheim, 2001] [cf. Schuh and
Gierth, 2006, p. 12]. For our purposes, to provide a basic understanding of the
different planning levels in the field of production planning, the reference view
of the so-called tasks from the Aachener PPS system seems most appropriate.

The task reference view, which the following paragraphs are based on, is
divided into network tasks, core tasks, cross-sectional tasks, and data adminis-
tration.[cf. Schuh and Roesgen, 2006]

Network tasks deal with inter- and intra-organization networks at a strategic
level. It is possible that some tasks have an equivalent in the core tasks but
are less detailed due to their inter-organizational character. Within the network
tasks, again, three areas are sub-divided [cf. Schuh et al., 2011a, p. 32]:

Network configuration: One part of the network configuration is prod-
uct programme planning. This is the decision of which parts to produce
(type, variants, quality, if applicable quantity) and the choice of the cor-
responding procurement and distribution channels. The other part of the
network configuration is the network dimensioning. The question of which
parts or services, as chosen in the product programme planning, should be
provided by the company itself (make-or-buy decision) must be answered
in the network dimensioning. Related to this is the evaluation and choice
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ning

Production demand plan-
ning

Network
requirement
planning

Production
planning and
control

Outside sup-
ply planning
and control

Data management

Table 2.1: Aachener PPS Model based on Schuh and Gierth [2006, p. 21]

of network partners. Finally, in intra-organizational networks, location
planning is also part of the network dimensioning. [cf. Schuh and Roes-
gen, 2006, pp. 32-33]

Network sales planning: Collaborative demand planning, forecasting,
and demand consolidation between corporations are included in network
sales planning, which focuses on the distribution of final products. The
result of sales planning is an estimate of which and how many products
will be ordered. There is an equivalent task called production programme
planning in the core tasks. [cf. Schuh et al., 2011a, pp. 34-35]

Network requirement planning: Based on the results of the net-
work configuration and network sales planning, it is first checked roughly
whether the estimated demand can be matched by the given capacity
in the planning periods (network capacity planning). If the estimated
demand can be matched, the approval for the network production pro-
gramme can be given. Otherwise, alternatives (outsourcing for example)
must be considered.
Primary production requirements are then, in the so-called network de-
mand allocation, allocated to the different production locations in the
network from which, at a later stage, the local production plan can be
made.
In the network demand planning : secondary production requirements are
derived from all network locations, and if possible combined. They are
then split between products to be produced within the network (insourc-
ing) and products to be produced externally (outsourcing). [cf. Schuh et
al., 2011a, pp. 35-38]
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Network tasks

Network configuration
Product program planning

Network dimensioning

Network sales planning
Collaborative demand planning

Demand consolidation

Network requirement planning

Network capacity planning

Network demand allocation

Network demand planning

Core tasks

Production program planning

Sales plan

Primary requirement planning

Rough resource planning

Production demand planning

Gross secondary requirement determination

Net secondary requirement determination

Type of supply assignment

Lead time scheduling

Capacity requirement identification

Capacity balancing

Production planning and control

Lot sizing

Detailed scheduling

Resource detailed scheduling

Sequencing

Availability check

Production order release

Outside supply planning and control

Order calculation

Procurement offer obtaining

Supplier selection

Order release

Cross-sectional tasks

Order management

Offer processing

Order processing

Order coordination

Inventory management

Inventory planning

Warehouse administration

Inventory analysis

Inventory control

Batch administration

Controlling
Information preparation

Measure deduction

Data management
Master data

Dynamic data

Table 2.2: The task reference view based on Schuh and Roesgen [2006, p. 30]
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Cross-sectional tasks are used for the optimization and integration of the
PPS system. They allow the integration of different network tasks, core tasks
or core and network tasks [cf. Schuh and Roesgen, 2006, pp. 58-59]:

Order management: To provide an overarching order procedure, the
order management starts with the offer processing. Here, all relevant in-
formation for the order is determined and recorded in the system. Also
considered is the broad calculation at what point in time the order would
be ready for delivery. If the offer is accepted by the customer, technical
details are determined, and necessary external parts are acquired in the
so-called order processing. Moreover, a rough production scheduling, in-
cluding upstream activities such as construction, is done in such a way
that basic production dates are given. Finally, a rough check of the re-
sources (materials, workers, etc.) and the production capacity is done.
The order coordination starts with the acceptance of the order and goes
until the shipment of the order. It controls all order-related activities such
as the progress of production, capacity of the resources, availability of ma-
terials, etc. [cf. Kurbel, 2011, pp. 247-251][cf. Schuh and Roesgen, 2006,
pp. 59-63]

Inventory management: The purpose of the inventory management is
to allow the company to buffer stochastic fluctuations, such as for example
fluctuations in customer demand [cf. Whybark and Williams, 1976]. In-
ventory planning is the task to select sufficient disposition strategies and
adjust the prolonging parameters to those strategies (minimum stock level,
maximum stock level, order quantity, etc.) so that costs are minimized
for the given targets.[cf. Corsten and Gössinger, 2009, pp. 475–488] Ware-
house administration deals with the locations of stock in a warehouse and
also the allocation of storage areas such as stock entry and exit or customs
area. Inventory analysis tries to maximize the efficiency of a warehouse by
analysing factors like the stock turnover rate. Inventory control records
all stock rotations. Apart from the physical registration stocks are also
recorded on a value basis.
A batch is a group of materials or products that is produced or handled
under the same circumstances (same time, materials, etc.). Batch ad-
ministration manages the information about a batch and provides this
information to other departments. [cf. Schuh et al., 2011a, pp. 65–70]

Accounting: The role of financial governance of PPS systems is to con-
trol and to provide transparent and expressive information [cf. Much and
Nicolai, 1995, p. 157] [cf. Eversheim, 1995, p. 197]. Thus, the focus,
compared with order management, is not on individual orders but on the
whole PPS system. Information preparation is needed for the decision-
making process. Key figures or key performance indicators (KPIs) are
used to illustrate the PPS processes in a less complex manner. A target
actual comparison of KPIs allows the identification of recent or upcoming
problems in the specific processes. If relationships between processes and
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KPIs are known, measures can be deducted. This can either be done man-
ually, or if possible automatically, as in the case of raising minimum stock
levels when KPIs, regarding the ability to supply goods, reveal problems.
[cf. Schuh and Roesgen, 2006, pp. 69-71]

Data management: The purpose of data management is to store and
maintain all relevant data for the enterprise resource planning and/or the
PPS system. Master data is used permanently in the planning process.
Therefore, it needs persistence and high maintenance effort. Material-
resource master data, bill of materials, work plans, as well as customer
and supplier master data are distinguished. [cf. Kurbel, 2011, pp. 58–92]
The persistence of dynamic data is more limited than master data. It is,
on the one hand, always related to a point in time (i.e. the amount of
stock at time t). On the other hand, it gets flagged with certain statuses
such as ‘finished’ for a production order. Dynamic data is related to
master data (i.e. which customer owns the order). Dynamic data includes
data related to stock, production, and operations. [cf. Kurbel, 2011, pp.
124-127, 171-173, 210-211]

Core tasks involve the key jobs of the PPS system for a single company [cf.
Schuh and Roesgen, 2006, pp. 52]:

Production programme planning: The result of the production pro-
gram planning is which primary production requirements in which amount
at which points in time shall be produced [cf. Hackstein, 1988, p. 295].
In order to do so, a sales plan must be created first. It is usually done
by the sales department. If the company is part of a production network,
data from the network sales planning can be used. Otherwise the sales
are forecast with the help of statistical data or with the help of turnover
targets.2 Based on the sales forecast, the primary internal requirements,
and the customer orders at hand, the gross primary requirement is com-
pared to the actual stock levels. The results of this primary requirement
planning are the net primary requirements. [cf. Lödding, 2015, p. 108]
These requirements are then checked for validity regarding machine and
worker capacity, operating inventories, and materials in the rough resource
planning. If the primary requirements cannot be covered with the given
resources, the plan must be changed (i.e. produce products later or add
additional workers). [cf. Kurbel, 2011, pp. 144-152]

Production demand planning: The production demand planning‘s
task is to plan the resources, outgoing from the results of the produc-
tion programme planning, in a medium term (i.e. weekly) and provide
sufficient production supplies. Thus, a gross secondary requirement deter-
mination is done. The primary, secondary, and tertiary requirements are

2For more information on forecasts and a literature overview, see Tempelmeier [2006, pp.
31–52].
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identified without taking stock levels into consideration. Either determin-
istic approaches, in which production times and quantities are determined
with the help of lead times and the bill of materials, or stochastic fore-
casting approaches are used. The identification of the open secondary
requirements is done with a comparison between the amount of stock,
reservations, orders, and requirements, either for specific points in time or
time periods in the net secondary requirement determination. The make
or buy decision for the net requirements is done in the type of supply as-
signment step. It is possible that the decision of which parts to procure is
permanent. Otherwise is it decided on a case by case basis. Procurement
and production orders are then combined periodically. In terms of lead
time scheduling, the production and procurement orders are planned with
the help of processing- and lead times between tasks on the resources or re-
source groups in a more detailed way than in the rough resource planning,
but less detailed than in the production planning and control. Forward-,
backward-, and midpoint-scheduling are differentiated. Either simulta-
neously with lead time scheduling or after it, the amount of necessary
capacity for each resource or resource group is calculated for each period
in the capacity requirement identification. Finally, a capacity balancing is
done if necessary, by either adding additional resources in periods or by
moving production orders to different periods. [cf. Schuh et al., 2011a, pp.
65-70]

Internal production planning and control: Within production plan-
ning and control, the input from the production demand planning is used.
The first step is lot sizing, which means in series production systems, the
combination of orders for the same product type and in make-to-order pro-
duction systems the combination of orders with similar usage of resources.
Here, the amount of setup time needed is reduced and the average stock
level increased. Lots can be created in many ways. In the detailed schedul-
ing the start and end dates for each job on each resource are determined.
This can either be made with backward, forward, midpoint, or bottleneck
scheduling. It is possible, that the results show problems (i.e., the lat-
est possible start date is in the past or the earliest possible finish time is
too late). Thereafter, counter measures such as lot splitting are under-
taken. The detailed scheduling does not take the available capacity into
consideration. Therefore, the resource detailed scheduling compares the
available capacity with the required capacity. If needed, jobs are resched-
uled, or capacity is added through, for example, additional work shifts.
An alternative to the sequential approach is the resource availability plan-
ning which simultaneously plans production dates and respects capacities.
For production jobs, which are assigned to the same resource or resource
group at the same time, a sequence must be established. The decision of
the sequence can be made with the help of selection criteria such as pri-
ority rules, or with cumulative criteria such as the minimization of setup
times. It is also possible, that the decision about the job sequencing is
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left open to the workers in front of the machines (decentralization). After
all planning has been undertaken for each production job, the availability
of the resources and material is once again checked (availability check).
If problems arise, the production plan must be reviewed in the detailed
scheduling step. During control and steering, the production orders are
released. If a production order is released, the preparation of the neces-
sary resources begins and all relevant documentation for the production
order is created at the same time. [cf. Herrmann and Manitz, 2015, pp.
14-21][cf. Nicolai et al., 1999, pp. 43-51]

Outside supply planning and control: The number and types of prod-
ucts to be procured at which time are based on the type of supply assign-
ment. After that, lot sizes for the procurement goods are calculated in
the order calculation. Here, procurement requirements are combined for
certain periods. If goods are to be procured for the first time, offers from
suppliers must be obtained (procurement offer obtaining). After this step,
these offers are evaluated in the supplier selection. Criteria can be qual-
ity, delivery date fidelity, price, and so on. Master contracts with the best
suppliers for longer time periods are negotiated thereafter. The order re-
lease is then done finally regarding the results of the previously described
planning steps. [cf. Schuh and Roesgen, 2006, pp. 56-58]

2.2 Differences of small and medium-sized com-
panies in contrast to large companies

There is no single definition of SME. Instead, quantitative and qualitative char-
acteristics are used to identify this type of companies.

2.2.1 Quantitative criteria

Curran and Blackburn [2001, pp.9-10] describe that quantitative SME defini-
tions are useful and popular among researchers and policy-makers as they are
simple, objective, and transparent. The quantitative definition of SME is used
for all companies in each sector if it is within the limits of the threshold. Thus,
these limits are the same for production, trading businesses, and so on. [cf.
Clements et al., 1997]
Apart from the limitations of the inferior covering of production problems this
might create, there are many variations within the quantitative definitions. [cf.
Berisha and Pula, 2015] Different indicators to define the size of the company
are used. Popular indicators include capital, earnings, number of employees,
turnover, sales volume, etc. [cf. Haake, 1987, p.15], [cf. Theile, 1996, p.16]
As we are only dealing with German companies in the later version of this work,
two quantitative definitions which are widely known and used in Germany are
shown exemplary.
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The ‘Institut für Mittelstandsforschung Bonn’ (IfM) uses two characteristics
to decide whether a company is considered as small or medium. The number of
employees must be below 500 and the annual turnover below 50.000.000 e. If
one of the two characteristics does not apply, the company would be character-
ized as large. [cf. IfM, 2002]

Enterprise category Number employees and Annual turnover

Small < 10 < 1 million e

Medium-sized < 500 < 50 million e

SME < 500 < 50 million e

Table 2.3: SME-definition of the IfM Bonn based on IfM [2002]

The EU uses more restrictive characteristics. To be considered as a small or
medium-sized company, two of the three categories must hold. 1. The number
of employees must be below 250 persons. 2. The annual revenue must be below
50.000.000e. 3. The balance sheet total must be below 43.000.000 e. [cf.
European-Commision, 2015, p.10]

Enterprise cate-
gory

Number
employ-
ees

and Annual turnover Annual balance
sheet total

Micro < 10 < 2 million e < 2 million e

Small < 50 < 10 million e < 10 million e

Medium < 250 < 50 million e < 43 million e

Table 2.4: SME-definition of the European Commission based on European-
Commision [2015, p.12]

However, it has to be acknowledged that, to be considered small or inde-
pendent, financial interlocking must be taken into account. If more than 25%
of the company in question is owned by another company, the values (number
of employees, etc.) of the so-called non-independent company are added to the
values of the owner company. The combined values are then evaluated.

2.2.2 Qualitative criteria

As stated in the last subsection, there may be some problems with any exclusive
definition of an SME based on quantitative data. Leite and Ferreira [2011] note
that it was shown that, while there may be inconsistencies in quantitative clas-
sifications, SMEs around the world share characteristics as the organizational
form or strategic issues. Stokes and Wilson [2010, p. 5] add that it might be
difficult to define an SME accurately, but they are recognized in the daily op-
erations. In the following, distinguishing features of SMEs in contrast to large



14 CHAPTER 2. APPROACHES IN PRODUCTION PLANNING

companies are presented. Generally speaking, Ackermann and Blumenstock
[1993] state that there is a close tie between the owner and the SME in contrast
to the owner or owners of large enterprises. Mugler [2006, pp. 25–27] also de-
scribe that the company is characterized by the personality of the owner, who
is often also the manager.

Management
An older work from Bolton [1971] states that an SME is characterized through
the management by its owner in a personalized manner. Other authors such
as Theile [1996, pp. 16–17] talk also about a personal principle. The per-
sonal principle suggests that the manager or owner takes a leading role in the
decision-making process. The company is for him a lifelong duty. Theile [1996,
pp. 16–17] also speaks about the unity of leadership and capital. Hence, the
manager is at the same time the owner, so he also bears some or all of the
financial risk. He has a high personal risk with all company decisions, which is
why he is likely to have an enormous influence on all strategic decisions in the
company. Pfohl [2006] provides some more characteristics regarding the man-
agement of SMEs. The term ‘owner-managed company’ can often be used for
SMEs in contrast to the ‘externally managed companies’, which are in many
cases bigger enterprises. A paternalistic leadership structure is often a result of
this, while in big companies the leadership follows, in general, principles and not
the ideas of single individuals. Group decisions are thus uncommon in SMEs.
Finally, it is through the owner-managed leadership structure, the management
team is not easily interchangeable compared to external management in large
companies.
Managers in SMEs often have a technical background but lack management
knowledge. In large companies, on the other hand, the management team pos-
sess management knowledge, while the technical expertise lies with specific de-
partments.
Also, information processing is not widely developed in SMEs. Related to the
lack of information processing is the increased importance of improvisation and
intuition, which also results from insufficient managerial planning. This might
lead to the fact that, in contrast to large companies, limited options exist when
wrong decisions are taken.
If the management of large companies can be said to be far away from the
daily business, the management of SMEs is often directly involved in the daily
business. As a result, there is a chance of accumulation of responsibility in the
management level of SMEs, which might lead to an overload on the manage-
ment. If there is a division of work at the management level, the division is
often related to personal reasons and not related to the tasks themselves.

Organization
Theile [1996, pp. 16-17] relates the organization of an SME to the personal
principle. The manager is in direct contact with his employees, customers, and
suppliers. Therefore, the manager takes part in all technical, organizational,
and administrative processes in the company. This is also described by Mank
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[1991, p. 52]. Mugler [2006, pp. 25-27] describes the managers personal net-
work. The manager is directly connected to suppliers, customers, and other key
stakeholders. He also describes the organization of an SME as low formalized.
Pfohl [2006] again gives some additional characteristics. The characteristics of
the leadership at a large company as well as an SME also influence the organiza-
tion. While in an SME the organization is built around the manager, with other
people having little detailed knowledge about the system, the organization of
large companies does not depend on persons but on tasks. SMEs often have low
departmentalization. Moreover, it is typical for an SME to have low delegation
and formalization levels.
The positive results are as follows: There is a short and direct information flow;
delegations and control occur directly in personal contacts; there are rarely
coordination problems; there are strong personal bonds between the team of
managers and the employees; and finally there is a high level of flexibility which
allows the company to adjust quickly to changing environmental circumstances.
The quick adaption to environmental changes is also described by Mugler [2006,
pp. 25–27].
On the negative side, as Pfohl [2006] notes, there is a low division of labour,
which leads to a duplication of tasks.

Procurement
Pfohl [2006] states that SMEs usually have a weak position in the procure-
ment market due to their low transaction volume. Furthermore, they often
order materials as per customer demand. In contrast, large companies have a
strong position in the procurement market. Material procurement is done inde-
pendently of the production jobs but through long-term basic agreements with
suppliers.

Production
Also in production, Pfohl [2006] says that the division of labour is less in SMEs
than in large companies. In many cases, SMEs use universal machines, which
are labour-intensive. Hence, the cost digression per unit with an increasing out-
put is less than the cost digression in large companies with their special-purpose
machines.

Sales
Regarding sales, Bolton [1971], Pfohl [2006], and Mugler [2006, pp. 25-27] de-
scribe one characteristic of an SME, which is to have only a small market share.
Theile [1996, pp. 16–17] speaks about the personal principle which in sales
means that the manager is in direct contact with the companys customers. Mu-
gler [2006, pp. 25–27] describes that SMEs provide goods based on individual
customer requests.

Logistics Pfohl [2006] provides some specific information about logistics for
SMEs. SMEs rarely have a concept of logistics. Therefore, in many cases there
is no dedicated logistics department. Furthermore, the companys logistics focus
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on daily activities in contrast to large companies, which focus on longer-term
operational and strategic issues.

Finance
From Bolton [1971] and Mugler [2006, pp. 25–27] come the most important
point concerning finance criteria for SMEs, which are similar to quantitative
criteria. An SME must be independent. It is not part of a larger group or
enterprise. Pfohl [2006] also describes that, due to their limited size, they rarely
have access to the financial market and thus have limited financing options at
their disposal. In a crisis, they get only limited governmental support. On the
contrary, the ownership of large companies is dispersed. They also have access
to the financial markets and receive governmental support in crisis situations.

Research and Development
Research and development (R&D) in SMEs is different from the formal R&D
in large enterprises Vossen [1998]. Bessant [1999]; Vossen [1998]; Lee et al.
[2010] as well as van de Vrande et al. [2009] state that, while SMEs are more
flexible than large organizations and less formalized, they are limited in terms
of internal R&D due to their financial resources. Acs and Audretsch [1987]
describe them as important for innovation. According to Baum et al. [2000];
Ceci and Iubatti [2012]; Edwards et al. [2006], SMEs have an external focus on
R&D, which is linked to social and personal ties. Baum et al. [2000]; Lee et al.
[2010] describe that they get through these relationships or networks to have
access to resources and new technological competences. Hence, Brunswicker
and Vanhaverbeke [2015] conclude that SMEs prefer non-monetary activities to
transaction-based ones. This type of R&D is known in the literature as open
innovation. A general introduction to the topic is given by Chesbrough et al.
[2006].
While Pfohl [2006] also sees no formal R&D departments in SME, he comes
to different R&D characteristics in SME. SME research focuses on short-term,
demand-oriented product and procedure developments with low interest in fun-
damental research. This also implies that there is a brief temporal gap between
the invention and its economic use. By contrast, large companies often have
dedicated R&D departments which work on long-term product and procedure
developments with a strong connection to fundamental research. Therefore,
they have a larger time gap between the invention and the economical use for
the company.

Personal
As per definition shown, SMEs have fewer employees than their large coun-
terparts. Pfohl [2006] also states that SMEs employ fewer people with high
academic qualifications than large companies. Therefore, large companies have
a tendency towards employee specialization, while SMEs tend to have people
with a broad knowledge base. Mugler [2006, pp. 25–27] states that there is a
close relationship between the manager and his employees.
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In conclusion, it can be seen that it is not an easy task to differentiate SMEs
from large companies. While it might be easy to rely solely on quantitative
criteria to identify SMEs, in the case to provide insights into the production
scheduling of SMEs this would be by no means accurate enough. Therefore,
throughout this work, the word ‘SME refers to companies which show some or
all of these characteristics.

2.3 Production planning in small and medium-
sized companies

When we bring Sections 2.1. and 2.2. together, it is assumed that SMEs do
not follow the described procedure from Section 2.1. Instead, we expect that in
production planning SMEs follow the behaviour described by Pfohl [2006] and
Mugler [2006, pp. 25–27].

In order to identify first fields of actions and to back up our assumptions for small
and medium-sized companies in production planning, a quantitative assessment
was conducted. The survey has been published beforehand [cf. Hiepler et al.,
2016]. The companies who were contacted for the survey are on the one hand
SMEs from North-Rhine-Westphalia which run their own production, known to
the University of Siegen. Besides, the van Dijk Electronic Publishing GmbH
[2014] database was used to find more participants. Hereby, it was selected first
that companies must be from North-Rhine-Westphalia. Then the companies
were limited to the manufacturing sectors for plastics, glass, metal, electronics,
machines, automotive, etc. Other sectors like bakeries, which are also listed
as manufacturing companies, are excluded. As the number of employees and
the total sum of the balance sheet were not listed, we separated the companies
based on the annual turnover. Every company with an annual turnover of less
than 50 million e was included. Moreover, companies from which no annual
turnover was known and companies which had a higher annual turnover were
checked through the internet. If the companies were managed by the family, it
was also included in the questionnaire. More than 1,000 invitations were sent
out to take part in the survey online.
The questions of the survey can be found in the appendix. Two existing ques-
tionnaires were used as the basis for the creation of the questions in this survey
(FIR-RWTH-Aachen [2013]; Spath et al. [2010]). As the focus of these question-
naires was different, the results cannot be compared. The general structure and
style of the questions from the questionnaires were used to create the questions
for our study. They were then adapted especially to the needs for production
planning in SME. As described, the goal of the questionnaire is to identify fields
of actions for further research in production planning. To focus on the right sec-
tor and type of production as well as the goal for production planning in the case
studies, these characteristics are first analysed. After that, deficits in produc-
tion planning are directly asked for. As people may not be aware that they have
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deficits in production planning, because they are, for example, buried through
too high stock levels which can be used as a buffer for production, questions
which check for these characteristics are included as well. Finally, questions
regarding the maturity level of production planning are used to identify if the
participants have made use of up to date processes and tools for production
planning already, or if they have problems in production planning and did not
adapt current available solutions. This would then be not a target for research
but for consultants.
153 companies took part in the survey of which 116 were usable. Not each com-
pany answered every question though. The majority of the companies which
took part in the survey are from the metal processing and machine engineering
sector (Table 2.5). To validate the findings, the results are compared, wherever
possible, to three other recent studies on production planning in SMEs (Heck
and Vettiger [2014]; Bley et al. [2016]; Boß and Deckert [2017]). If no comparison
is made, the information is not provided in the other studies. Bley et al. [2016]
used a questionnaire and evaluated 244 responses, Boß and Deckert [2017] used
a questionnaire and received 60 responses while Heck and Vettiger [2014] con-
ducted interviews. The number of companies interviewed is not known. Heck
and Vettiger [2014] describe the interviewed companies as from the industrial
sector with own production from the area of Liechtenstein, Switzerland, and the
southern part of Germany. Other business areas such as banking or gastronomy
were not interviewed. From Bley et al. [2016] it is only known that most of
the companies contacted were from the industrial sector around Dresden. No
more details are given. Boß and Deckert [2017] have most responses from the
area of metal processing and machine engineering sector (69%). As they did not
include the automotive industry explicitly, and as it is thought that automotive
industry is involved in metal processing, the distribution of the industry sectors
seems comparable between their study and ours (69% from Boß and Deckert
[2017] to 60% in our conducted survey).

It has to be acknowledged though, that the quantitative survey has only lim-
ited general significance, as the goal of the survey is, as stated, to identify first
fields of actions for deeper research, an overview, and a basic understanding of
specific production problems for SME. It is not meant to provide detailed ana-
lytical insights. Missing values are not dealt with explicitly. Reasons for missing
values could be that some questions aim at internal data, which might not be
available so far or which might not be wanted to be shared by the companies.
Furthermore, it is possible that the questions were not understood correctly. To
increase the validity of the survey and to use more advanced statistical tools,
such as a multiple regression analysis, missing data could be handled by inter-
polation, for example. On the other hand there is no systematics in the missing
data to recognize. Thus, no significant loss of meaningfulness is assumed. The
introduction of failure explanatory variables exceeds the scope of the study [cf.
Eid et al., 2015, p. 49, p. 290]. Moreover, the reliability of the data indicates
that only descriptive statements should be derived. Although the total number
of participants is high, in some groups, the number of participants is so low
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Industry Frequency

Paper, publisher and print industry 5

Chemical industry 5

Rubber and plastic industry 6

Metal working and production 38

Manufacturing systems engineering 19

Production of office and data processing ma-
chines, electrical engineering and lenses

5

Vehicle manufacturing and automotive industry 7

Others 21

Total 106

Missing 10

Total 116

Table 2.5: Industry classification

that also non-parametric methods provide significant propositions only hardly.
Finally, as only companies from North-Rhine-Westphalia were interviewed, it
is not possible to generalize the answers taken, for all SMEs. Nevertheless, to
identify fields for deeper research with the help of company data in the next
chapters, the results are sufficient.

It is, furthermore, of interest to know what type of production the compa-
nies answering the questionnaire do, to tighten future research. Most of the
SMEs investigated produce make-to-order (Section 2.2) (Table 2.6). The com-
panies which we analysed for the case studies in this paper were thus chosen to
be make-to-order producers. Only Boß and Deckert [2017] provide information
about the type of order processing. Interestingly, they do not consider series
production in their analysis. Nevertheless, most of their companies are also
make-to-order producers or engineers to order (86%). This needs to be kept in
mind when comparing the answers in the study and recommendations.

Regarding the ‘logistical command variable’, the ‘requested delivery date’ is
mentioned most often (Table 2.7). This goal was also given in the case studies
in Chapters 4, 5, and 6.
Due to formatting reasons, the targets are partly consolidated in (Table 2.7). In
“other logistical command variable” are the answers “other logistical command
variable”, “minimize tardiness for production jobs”, “minimize makespan” (min-
imize the time between the start of the first job and the end of the last job),
“maximize output”, “minimize inventory”, “minimize operating cost”, “mini-
mize production cost”, and “produce in lots” summarized.

Table 2.8 shows the companies satisfaction with their due date punctuality
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Make-
to-
order

Series
pro-
duc-
tion

Variant
pro-
duc-
tion

Mass
pro-
duc-
tion

Others Total

Paper, publisher and
print industry

3 1 1 0 0 5

Chemical industry 1 0 1 3 0 5

Rubber and plastic
industry

3 1 1 1 0 6

Metal working and
production

18 12 3 5 0 38

Manufacturing sys-
tems engineering

15 2 2 0 0 19

Production of office
and data processing
machines, electri-
cal engineering and
lenses

2 3 0 0 0 5

Vehicle manufactur-
ing and automotive
industry

1 3 1 1 0 6

Others 11 3 2 1 1 18

Total 54 25 11 11 1 102

Table 2.6: Production type
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Requested
delivery
date

No
agreed
command
variable

Other
logistical
command
variable

No
state-
ment

Total

Paper, publisher and print
industry

3 1 1 0 5

Chemical industry 3 0 1 1 5
Rubber and plastic indus-
try

3 1 2 0 6

Metal working and pro-
duction

29 4 5 0 38

Manufacturing systems
engineering

13 1 3 2 19

Production of office and
data processing machines,
electrical engineering and
lenses

3 0 2 0 5

Vehicle manufacturing
and automotive industry

4 0 2 0 6

Others 7 1 7 3 18
Total 65 8 23 6 102

Table 2.7: Logistical command variable and production type
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not at
all sat-
isfied

2 3 4 completely
satisfied

Total

Paper, publisher and print
industry

0 0 0 3 2 5

Chemical industry 0 0 1 3 0 4
Rubber and plastic indus-
try

0 1 2 2 1 6

Metal working and pro-
duction

1 3 14 13 5 36

Manufacturing systems
engineering

1 2 6 6 0 15

Production of office and
data processing machines,
electrical engineering and
lenses

0 1 0 3 1 5

Vehicle manufacturing
and automotive industry

0 3 1 1 1 6

Others 1 1 3 9 4 18
Total 3 11 27 40 14 95

Table 2.8: Satisfaction concerning due dates

on a scale of 1–5, where 1 indicates that they are not satisfied at all and 5
indicates that they are completely satisfied. Fourteen companies are completely
satisfied; 54 are in the range of 4–5; and 81 are in the range of 3–5.

Table 2.9 shows the inventory management activities of the companies.
Nearly 2/3 of the companies use either warehousing or predominantly ware-
housing. Only little more than 1/3 focuses on just in time delivery or focuses
on just-in-time delivery.

Table 2.10 shows the satisfaction of the companies with regard to their stock
keeping levels on a scale of 1–5, where 1 means that the stock level is too high
and 5 means the stock level is too low. Forty-five of the 95 companies indicated
their satisfaction with a 3. This also means that 50 companies are not satisfied
with their stock levels. Thirty-two of those 50 companies indicated that they
think they have extremely high stock levels.
While one would first assume that make-to-order producers have no stock level,
because they produce only when they get an order, there are different reasons
for them to keep stock. On the one hand, this can be technically related to lot-
sizing. When a lot is created from two different orders with different due dates,
the order with the later delivery date will need to be put on stock. On the other
hand, apart from the stock with finished products, it is common to put raw
material or also semi-finished goods on stock. Then only the last production
step or the customization is done when the customer order arrives. Although
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Make-to-
order

Series
pro-
duc-
tion

Type pro-
duction

Mass
produc-
tion

Others Total

Warehousing 16 12 4 4 0 36
Just in time 6 0 0 0 0 6
Predominant
warehousing

11 11 5 4 0 31

Predominant
just in time

21 3 2 3 1 30

Total 54 26 11 11 1 103

Table 2.9: Inventory management

this question is not specifically asked in the studies from Boß and Deckert [2017]
and Heck and Vettiger [2014] both give information about satisfaction with stock
levels. Heck and Vettiger [2014] state that 67% of the interviewed companies
ignore inventory costs. Therefore, it is clearly not in the focus of the companies.
Boß and Deckert [2017] describe that only 20% of the companies have achieved
an optimization with the help of PPS for stock. They therefore conclude that
this is not in their focus. One reason might be that most of the companies in
the questionnaire are make-to-order producers.

Table 2.11 shows the use of IT systems in the companies. Multiple answers
could be given by a single company, as it is possible and might make sense to
run multiple different IT systems. It should be noted that there is an overlap in
the functionality of some systems. It is common for ERP systems also to pro-
vide production planning support: For example, it might be possible to create
production lots in the ERP system. 57, 7% of the companies interviewed rely on
an ERP system. 46, 4% use production data acquisition. 33% run a dedicated
PPS system. Other IT-based tools are rarely used. Bley et al. [2016] describe
that 48% of the companies answered that they use an ERP system and 33% use
a system for production planning and control. Boß and Deckert [2017] quote
nearly identical numbers. 47% of the companies use an ERP and 36% use a PPS
system. However, it must be acknowledged that he offers more answer possi-
bilities such as dedicated systems for logistical and business processes. Such a
system can also be described as an ERP system for smaller companies. Then
their percentage would go up to 67%. The general ranking of systems used in
the studies is however the same. Different to this is the study from Heck and
Vettiger [2014]. They quote that 83% of the companies interviewed use an ERP
system. No other information is given.

The companies that claimed to be using IT systems were further studied
about the type of resource constraints they considered in their planning (Table
2.12). Only little more than 50% of them include resource constraints at all in
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too
high

2 3 4 too
low

Total

Paper, publisher and print in-
dustry

0 1 4 0 0 5

Chemical industry 0 2 1 1 0 4
Rubber and plastic industry 0 2 3 1 0 6
Metal working and produc-
tion

3 11 14 7 1 36

Manufacturing systems engi-
neering

2 3 7 3 0 15

Production of office machines
and data processing ma-
chines, electrical engineering
and lenses

0 2 3 0 0 5

Vehicle manufacturing and
automotive industry

2 1 2 1 0 6

Others 2 1 11 3 1 18
Total 9 23 45 16 2 95

Table 2.10: Satisfaction concerning stock levels

Frequency Percentage
Enterprise Resource Planning 56 57,7
Production planning and control system 32 33,0
Manufacturing detailed planning 9 9,3
Supply chain management system 7 7,2
Production data acquisition 45 46,4
Machine data acquisition 16 16,5
Product data management 8 8,2
Additional other IT-Systems 29 29,9
No IT-Systems 13 13,4
No Statement 6 6,2

Table 2.11: Use of IT systems
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Frequency Percentage
Machine capacity 34 38,6
Human resource capacity 30 34,1
Setup capacity 5 5,7
Sequence-dependent setup times 9 10,2
Machine care 7 8,0
No statement 42 47,7

Table 2.12: Consideration of resource constraints in IT systems

the planning. Among the most considered factors are machine capacities 38, 6%
and staff constraints 34, 1%. While this question is not asked specifically in the
other studies, some information is given. Boß and Deckert [2017] describe that
50% of the companies answered they estimate the delivery date for an order.
Two-thirds of the companies do not take process estimation structures such as
methods and time management into consideration. They purely estimate dura-
tions based on their experience. Only a few companies use IT tools for planning.
Over 70% of the companies decide about the production sequence together in
meetings. As production planning is not an easy task, a low consideration of
resource constraints in planning is considered. Heck and Vettiger [2014] describe
a similar setting. 50% of the companies use pen and paper, or Excel. Again,
the consideration of multiple resource constraints in such a planning scenario is
difficult. Although the questions in the other studies had a different focus, the
answers they provide are in line with the answers given in this study.

Only 35 of the interviewed companies use lot-sizing, which is the combina-
tion of orders for the same products in series production or the combination
of orders with similar usage of resources in make-to-order production systems,
in their production planning (Table 2.13). Nevertheless, we have to take the
type of production into account. What is surprising, though, is that most of
the make-to-order companies do not use lot-sizing. One explanation for this is
that the characteristics of the products to be produced might be too different.
Another explanation is provided by Schuh et al. [2011b, p. 150]. They indi-
cate that some companies create lots by sequencing similar tasks from different
production orders behind each other. As this is different from the common
approach that combines the same production orders with a lot, some compa-
nies might not know that this can also be considered as lot-sizing and therefore
indicated that they did not make use of lot-sizing. Even more astonishing is
that some companies with series production indicated that they did not use
lot-sizing. Therefore, it appears that the understanding of this question or the
definition of lot-sizing might be subject to misunderstanding.

Of those companies which use lot-sizing, only about half of them do so by
system support (Table 2.14). While the majority of SMEs in make-to-order
production do not make use of lot-sizing (Table 2.13), half of them make use
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Yes No Total
Make-to-order 8 40 48
Series production 14 10 24
Variant production 5 6 11
Mass production 8 3 11
Others 0 1 1
Total 35 60 95

Table 2.13: Lot-size planning production type

Yes No Total
Make-to-order 4 4 8
Series production 5 9 14
Variant production 4 1 5
Mass production 4 4 8
Total 17 18 35

Table 2.14: Lot-size planning production type system supported

of system support in lot-sizing. Furthermore, about half the variant producers
use lot-sizing. When it comes to system support in lot-sizing, about all of them
make use of it. Most of the series producers use lot-sizing but do not use system
support. For series producers, an explanation could be that lot-sizing is an im-
portant task which can still be done manually. For variant producers, it is also
important but cannot be done by hand easily. Therefore, if a variant producer
wants to use lot-sizing, it has to do it with the support of IT.

We also investigated those companies that use some kind of an IT system
to support the planning (Table 2.15). We believe that these companies should
have a more advanced process orientation (at least they paid a decent amount
of money to digitalize their processes or some of their processes), and therefore
might indicate what others would do. To our surprise, they did not take many
factors into account when it came to the size of a lot. Among the most impor-
tant is machine capacity. However, only 13 of the 33 companies which answered
that question took machine capacity into account. The next most mentioned
resource constraint is staff capacity which, was only said to be included by seven
of the 29 companies which answered that question.

The situation changes when we only investigate those companies that build
their lots using an IT tool (Table 2.16). Ten of the 13 companies which answered
the questions consider machine capacity explicitly. Only five of the companies
under investigation answered that they considered the next most commonly
mentioned resource (personnel). Hence, problems with the given capacity might
be likely.
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Lot-size planning method
Yes No Total

Machine capacity 13 20 33
Human resource capacity 7 22 29
Setup capacity 2 2 4
Sequence-dependent setup times 4 5 9
Machine care 3 4 7
No Statement 15 26 41
Total 29 57 86

Table 2.15: Consideration of resources for the lot-size planning if IT systems
are existent

System supported lot-size planning
Yes No Total

Machine capacity 10 3 13
Human resource capacity 5 2 7
Setup capacity 2 0 2
Sequence-dependent setup
times

3 1 4

Machine care 3 0 3
No Statement 5 10 15
Total 15 14 29

Table 2.16: Consideration of resources for the lot-size planning if IT systems
are existent and lot-size planning is done system supported
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Frequency Percentage
Imprecise determination of due dates /
make-to-order

23 22,8

Unbalanced degree of capacity utiliza-
tion

51 50,5

Imprecise sales planning 25 24,8
Insufficient treatment of completion
confirmation data

22 21,8

Lacking tracking of progress towards
completion

19 18,8

Logical break between planning and
controlling

7 6,9

System break between planning and
controlling

13 12,9

Static production planning insufficient
consideration of external effects)

12 11,9

Planning with average and estimated
values

28 27,7

Others 4 4,0
No Deficits 14 13,9

Table 2.17: Deficits

In Table 2.17 we asked the companies about their production deficits. The
most frequently mentioned deficit is the uneven capacity utilization, with more
than 50% of the SMEs claiming this. The use of average and estimated values
in the planning is the second most mentioned deficit (27, 7%). Answers can
also be taken from Heck and Vettiger [2014]. They claim that 83% of the inter-
viewed companies saw capacity utilization as a problem. 50% of the companies
also complained about time-consuming setups as a problem for production plan-
ning. As most of the companies in the study from Heck and Vettiger [2014] use
pen and paper, or Excel, these resource constraints are not considered explicitly,
and they create a problem in production planning and later in production.

When considering the underlying type of production, the make-to-order and
series producers (which we especially focus on, as previously stated) mostly cited
uneven capacity utilization as a deficit (Table 2.18). In case of a make-to-order
producer, this might be related to the uncertainty of incoming orders. For the
series producers, which do their lot-sizing by hand, this manual procedure might
be an explanation.

We finally asked the SMEs to suggest what improvements they might make
as a solution to deficits (Table 2.19). Owing to illustration reasons, some answers
are summarized again. We consolidated the answer possibility system break be-
tween planning and controlling, logical break between planning and controlling,
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Make-
to-
order

Series
produc-
tion

Type
produc-
tion

Mass
produc-
tion

Others Total

Imprecise determina-
tion of due dates /
make-to-order

12 6 4 1 0 23

Unbalanced degree of
capacity utilization

27 13 4 7 0 51

Imprecise sales plan-
ning

7 7 6 5 0 25

Insufficient treatment
of completion confir-
mation data

12 5 3 2 0 22

Lacking tracking
of progress towards
completion

11 0 4 4 0 19

Planning with average
and estimated values

15 6 3 3 1 28

Others 13 10 5 4 1 36
No Deficits 8 3 2 1 0 14
Total 52 26 11 11 1 101

Table 2.18: Deficits production type

static production planning (insufficient consideration of external effects), etc.
from the survey to others in the table. The central planning approach and the
remonstrance of reaction strategies were suggested by most of them.

We now go on to summarize the most important findings with respect to
further research that seeks to aid in SMEs production planning from Tables
2.5–2.19 and their respective counterparts in the other studies. From Table 2.6
it becomes clear that research should focus on make-to-order producers. This
was also the answer given by Boß and Deckert [2017] who had a participation of
86% make-to-order producers. This is the largest group of production companies
among SMEs. The most important logistical command variable is the requested
delivery date (Table 2.9). To our surprise, there are more companies closer to
being satisfied with their due date punctuality than there are companies which
are not (Table 2.8). An explanation might be given with the help of (Table
2.10) (satisfaction with stock levels). About half of the companies indicated
that they were not satisfied with their stock keeping levels. Undoubtedly, there
is a connection between stock levels and punctual delivery. By adding additional
stock, punctual delivery increases, while problems in production planning might
still exist. Many companies indicate that they have deficits in the production
(Table 2.17). In Table 2.19, a central planning approach is most often suggested
to tackle the deficits. Therefore, we will focus on a central planning approach.
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First
method
1

Second
method
2

Third
method
3

Fourth
method
4

Fifth
method
5

Sixth
method
6

Seventh
method
7

Imprecise deter-
mination of due
dates / make-to-
order

3 13 0 4 8 11 2

Unbalanced de-
gree of capacity
utilization

5 28 6 7 16 23 11

Imprecise sales
planning

6 14 5 6 8 15 2

Insufficient
treatment of
completion
confirmation
data

2 16 1 4 12 7 0

Lacking track-
ing of progress
towards comple-
tion

2 14 2 5 10 11 0

Planning with
average and es-
timated values

3 18 2 4 8 13 1

Others 8 25 3 8 16 21 1
No Deficits 1 0 0 0 0 0 13
Total 12 44 8 11 25 32 27

1 self-dependent planning and controlling of single process steps by the executing department (de-
centralized approach)
2 continuous planning and controlling of the process steps by the central planning department
(centralized approach)
3 constant (automated) determination and forwarding of the order progress by the vendor to the
customer
4 constant (automated) determination and forwarding of the actual due date by the customer to
the vendor
5 Treatment of completion confirmation data in real time
6 Provide practical reaction strategy for significant plan differences
7 No statement

Table 2.19: Possible methods against deficits
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As most of the companies do not incorporate (many) resource constraints in the
planning (Table 2.12) the models and algorithms later explicitly incorporate
further resource constraints, as this might be a reason for the deficits. Clearly,
the requirements to provide enough IT equipment for planning in SMEs need
to be fulfilled first. This result is similar in all studies. But this should not be a
task for research but for consultants who should implement these systems, as the
procedure and tasks related to such an implementation are widely known. With
regard to the results, the limitations of the study will be clearly put up again.
There is an overall limited significance caused by a lot of uncontrollable factors.
Furthermore due to the related focus of regional companies on distinguished
industrial sectors, a possible bias exists. Nevertheless, it is a first step in a
mixed methods approach. The meaning for the following chapters is that the
main results of the findings in the study will be taken as a rough guideline for
the detail case investigation of the three analyzed companies. The results will
be nevertheless examined carefully.
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Chapter 3

Fundamental literature on
scheduling with the
consideration of setup
operators

3.1 Scheduling review

Scheduling is the allocation of temporary tasks to resources to achieve a certain
goal, for example, the minimization of tardiness.3 It is used in a variety of areas
such as health care (see for example Cayirli and Veral [2003] for an overview
of outpatient scheduling in health care), project scheduling (see for example
Brucker et al. [1999] for an overview of project scheduling), informatics (see for
example Garey and Johnson [1977]), or as in our case machine scheduling.
The problem structures are nevertheless related to each other. Therefore, the
widely known classification and depiction from Graham et al. [1979] can be
applied. To give an overview of the most relevant works in the field of offline
scheduling, where we refer to the publications which provide fundamental in-
sights into this area and the most recent publications, the machine environment
dimension from Graham et al. [1979] is adequate to classify the works. We
therefore differentiate the problem by:

- Single machine,

- identical parallel machines,

- uniform parallel machines,

3With tardiness in general, we refer to the difference between a point in time t, a due
date for the customer for example and the point in time t‘, when the job is finished, good is
delivered etc., when t‘ is later than t.

33
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- unrelated parallel machines,

- open shop,

- job shop,

- flow shop.

Further subcategories can be created by mixing these problems, such as flow
shop with parallel machines. As there is much more literature on scheduling,
the interested reader can find a review of the literature on machine scheduling
problems from Abedinnia et al. [2017a,b].
Since most works focus on computational complexity, a brief introduction will
be given for problems which are classified as NP-hard. There is no known al-
gorithm to solve the problem in polynomial time. It is also unknown if the
solution is verifiable in polynomial time. For NP-complete problems, there is
also no known algorithm which will solve the problem in polynomial time, but
a solution can verified in polynomial time.4

Single machine scheduling problem
For the single-machine scheduling problem, i.e. there is one machine on which
jobs have to be scheduled, with the goal to minimize total tardiness Lawler
[1977] provide pseudopolynomial algorithms. Du and Leung [1990] show that
the problem is NP-hard. When the jobs have weights and the goal is to mini-
mize total tardiness, Lawler [1977]; Lenstra et al. [1977] show that the problem
is NP-hard.
If the goal is to minimize the number of late jobs, Moore [1968]; Maxwell [1970];
Sidney [1973] show that the problem is polynomially solvable. If the goal is to
minimize the number of late jobs which have weights, Lawler and Moore [1969];
Karp [1972] demonstrate that the problem is NP-hard.
The single machine scheduling problem with the goal to minimize the weighted
sum of completion times is shown to be solvable in polynomial time by Smith
[1956].
Over time, many variants have been investigated such as precedence relations
[cf. Lawler, 1973], release dates for jobs [cf. Lenstra et al., 1977], or batches
[cf. Brucker et al., 1998]. Today there are even many more variants. Google
Scholar lists more than 200 publications for single machine scheduling for the
first quarter of 2018. Recent works include maintenance- [cf. Nesello et al., 2018;
Pacheco et al., 2018] or sequence-dependent setup times [cf. Nesello et al., 2018;
Pacheco et al., 2018; Chen, 2018] in the problem setting.

Identical parallel machines
Identical parallel machines indicate that there are jobs that need to be allocated
and scheduled on one of the machines. The running time for a job is independent
of the machine on which it is allocated. If the goal is to minimize the makespan,
the most important results are that the problem is already NP-hard with two

4For more information see for example Garey and Johnson [1975].
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machines [cf. Lenstra et al., 1977] as well as for an arbitrary number of machines
[cf. Garey and Johnson, 1978]. Mnich and Wiese [2015] show that some cases
are polynomially solvable when certain variables are restricted. Jansen [2010];
Chen et al. [2014] provide approximation results. Recent works from 2018 focus
on the development and improvement of algorithms for this problem. These
works include for example Schwerdfeger and Walter [2018]; Mrad and Souayah
[2018]; Sheremetov et al. [2018].

Uniform parallel machines
In contrast to identical parallel machines, in this case machines have a certain
speed factor for the processing of jobs such that the processing time for jobs can
differ due to the machine on which it is allocated. Only two publications are
known to provide complexity results for uniform parallel machines. Jansen et al.
[2016] provide an approximation algorithm with the help of sparsification tech-
niques. Knop and Koutecky [2017] showed that if the processing time of a job p
is limited to k, then there exists an algorithm with polynomial running time. As
there are only a few recent publications in this section (Google Scholar lists 392
between 2014 and the end of the first quarter 2018), there is no clear research
direction. Among the most recent publications are “Bi objective scheduling on
uniform parallel machines” from Zeng et al. [2018], “Power of preemption for
minimizing total completion time on uniform parallel machines” Epstein et al.
[2017], or “Uniform parallel machine scheduling for minimizing total resource
consumption with a bounded makespan” from Lin and Ying [2017].
’
Unrelated parallel machines
If the processing times of a task differ on the machines and there is no rela-
tion between the difference in processing times on the machines, the problem is
called unrelated parallel machine scheduling. There are more complex results
for this problem than for other parallel machine scheduling problems. When
the goal is to minimize the sum of completion times, Horn [1973]; Bruno et
al. [1974] show that the problem is polynomially solvable. Hoogeveen et al.
[2001] show that the problem is non-approximable when the goal is to mini-
mize weighted completion times. Knop and Koutecky [2017] show that there
exists an algorithm with polynomial running time when the processing times
and weights are limited. Further results show approximation algorithms for the
goal to minimize makespan [cf. Lenstra et al., 1990] and exceptional cases for
the same goal which can be solved in polynomial time [cf. Knop and Koutecky,
2017]. When the most recent literature is reviewed, some focus seems to be on
batch respectively lot sizing [cf. Eremeev et al., 2018; Lu et al., 2018; Tan et
al., 2018]. Another focus is on the consideration of further resources [cf. Villa
et al., 2018; Arbaoui and Yalaoui, 2018].

Open shop
In the open shop, there is a set of jobs. Each job consists of operations which can
be scheduled in any order on the machines. If the goal is to minimize makespan,
Gonzalez and Sahni [1976] show that the problem is NP-hard for more than two
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machines. Williamson et al. [1997] also show that there is no polynomial-time
approximation algorithm which creates a schedule with strictly less than 5/4 of
the optimal schedule length. If the goal is to minimize the sum of completion
times, Achugbue and Chin [1982] showed that the problem is NP-hard for two
machines, for an arbitrary number of jobs and when the number of jobs is fixed.
Hoogeveen et al. [2001] show that there exists no polynomial approximation
algorithm for this target. Lawler et al. [1981] prove that the two machines mini-
mize maximum lateness problem is NP-hard when the number of jobs is limited
or unlimited. In the case that the number of tardy jobs shall be limited, Liu and
Bulfin [1988] show that the problem is polynomially solvable if all processing
times equal one. Recent works provide no clear direction. Some publications
focus on providing algorithms for open-shop scheduling problems [cf. Tanimizu
et al., 2017; Bai et al., 2017]. Other publications focus on the amendment of
existing models and their complexity [cf. Tellache and Boudhar, 2017].

Job shop
As opposed to the open-shop problem, operations in the job shop problem need
to go on the machines in a certain order. The order can be different for each job.
Among the most important works are from Lenstra and Kan [1979] which prove
that the problem with two machines and the target to minimize the makespan
is NP-hard, as well as the problem with three machines when all processing
times are set to one. Sotskov and Shakhlevich [1995] prove that the problem
is NP-hard with three machines and three jobs. When the target is to mini-
mize the sum of completion times, Garey et al. [1976] show that the problem is
NP-hard with two machines. Three machines and three jobs are also NP-hard
[cf. Sotskov and Shakhlevich, 1995]. If there are two machines and the pro-
cessing time is set to one, the problem is polynomially solvable [cf. Kubiak and
Timkovsky, 1996]. If the jobs have, however, weights, the problem becomes NP-
hard [cf. Timkovsky, 1998]. The problem is also polynomially solvable with two
machines, the goal to minimize the number of tardy jobs when the processing
time is set to one [cf. Kravchenko, 1999]. They also show that the problem be-
comes NP-hard when the goal is to minimize the number of weighted tardy jobs.
Timkovsky [1998] shows that this problem (two machines, processing times set
to one) is NP-hard when the goal is to minimize maximum weighted tardiness.
When the most recent works in job shop scheduling are examined, many of them
provide new algorithms [cf. Rameshkumar and Rajendran, 2018; Nouiri et al.,
2018; Dao et al., 2018]. Another, but smaller research stream is the extension
of the problem [cf. Zhao et al., 2018; Piroozfard et al., 2018; Devassia et al., 2018]

Flow shop
The flow shop problem can be described as a set of jobs with operations which
must be produced on a chain of machines. The sequence for the operations of
the jobs on the machines has to be the same for each job. Garey et al. [1976]
show that the problem is NP-hard for three machines and the goal to minimize
makespan. Williamson et al. [1997] show furthermore that there is no polyno-
mial time approximation algorithm which provides schedules shorter than 5/4
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of the optimal schedule. If only two machines are considered, the problem is
polynomially solvable [cf. Johnson, 1954]. In the case where the goal is to min-
imize the sum of completion times, the problem is NP-hard with two machines
[cf. Garey et al., 1976]. Hoogeveen et al. [2001] show, for an arbitrary number
of machines, that there is no polynomial time approximation algorithm. The
two-machine flow shop problem with the goal to minimize maximum lateness
is also proven to be NP-hard [cf. Lenstra et al., 1977]. When the recent works
are considered, there is a clear and heavy focus on hybrid flow shop problems.
That is, there is a flow shop but at certain or all stages there are also parallel
machines. Recent publications are for example from Dios et al. [2018]; Shah-
vari and Logendran [2018]; Mousavi et al. [2018]. Another focus is flow shop
scheduling with permutation. In this case, jobs cannot overtake each other on
machines. Thus, a permutation of the jobs is created as a solution and this per-
mutation will be the same on all machines. Examples come from Abdel-Basset
et al. [2018]; Fernandez-Viagas et al. [2018].

3.2 Scheduling with setup operators review

While Section 3.1 has provided a general introduction to and status quo of the
literature in the field of scheduling, this section will provide more details on
the specific area of scheduling under the explicit consideration of operators as
a scarce resource, which was mentioned as a specific factor in the conducted
survey which led to this focus overall. The structure in this section will follow
those of Section 3.1 except for the cases with parallel machines. In the area
with the consideration of operators, the literature can better be divided by the
degree of freedom for the parallel machine planning than by the processing time
variations.

While there exists a review of operator/machine interference problems from
Stecke and Aronson [1985], which also tackles the problem of setup operator
availability, numerous works have been published since then. In our literature
overview (Table 3.1) regarding machine scheduling offline problems with the
explicit consideration of operators, we classify by distinguishing between two
types of operations, the setup for the job (the time needed to setup a machine
to produce a job) and the job’s processing (the actual production of the good)
itself. In both cases, operator availability might act as a further restriction. In
an informal way, by scheduling we refer to the allocation of tasks to resources
and the creation of a sequence for these tasks. In our case, we allocate jobs to
machines (if the allocation is not predetermined), create a sequence of jobs on
machines (if not predetermined) and create a sequence for the setup of the jobs.
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Multiple setup and machine operators
The most general case in regard to operator availability constraints in the field
of scheduling is, when multiple operators need to setup jobs on machines and
another type of operators need to attend the machines during the processing
phase. As for all multiple operator cases described in this paper, a job needs at
most one operator at any point in time. To the best of our knowledge, the prob-
lem is only dealt with once [cf. Chen et al., 2003] and is therefore not mentioned
explicitly in Table 3.1. They consider a job shop context with transfer lots. The
initial problem is relaxed and decomposed into smaller sub-problems, which are
then solved with a dynamic programming approach. Finally, a heuristic is used
to build a feasible schedule out of the solutions of the sub-problems.

Single setup and single machine operator
When only a single setup operator and a single machine operator are considered—
i.e. only one person can attend a setup and only one other person can attend
the job during its processing—no contribution has been made to the best of the
authors knowledge.

Multiple setup operators
Also in the multiple setup operator case, there is a group of setup operators and
one needs to attend the setup of the job, only limited contributions have been
made so far. In the related field of lot-sizing, Tempelmeier and Copil [2012]
integrate parallel common setup operators in the capacitated lot-sizing problem
(CLSP) with linked lot-sizes, multiple machines and sequence-dependent setups.
They then solve the problem with a fix and optimize heuristic based on Helber
and Sahling [2010].

Werner and Kravchenko [2010] provide complexity results for the parallel ma-
chine scheduling problem with multiple setup operators. They provide a poly-
nomial algorithm for the makespan minimization case with equal setup and
equal processing times and a pseudopolynomial algorithm for the case with unit
setup times, m machines and m-1 setup operators. They prove, furthermore,
that the problem of minimizing maximum lateness with a fixed number of ma-
chines and servers is NP-hard. Finally, they provide a worst-case description
of two-list scheduling algorithms for the parallel machines makespan minimiza-
tion problem. Kerkhove and Vanhoucke [2014] present a hybrid metaheuristic
for the parallel machine scheduling problem with due and release dates for jobs,
sequence-dependent setups and limited setup operators. Furthermore, machines
are arranged in geographically dispersed locations such that due dates and the
objective function (minimize weighted total tardiness) are influenced by the
machine–job combination. Kerkhove and Vanhoucke solve the problem in two
phases. They first use a combination of GA and SA without considering the lim-
ited setup operator availability. They then correct the solutions using standard
dispatching rules such as first come first served for the setup operators.
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Single setup operator
In the associated case, where only a single setup operator needs to attend the
setup of the job is considered, publications in different problem contexts are
known. Regarding lot sizing, Tempelmeier and Buschkühl [2008] propose a
model formulation, based on the proportional lot-sizing and scheduling problem
[cf. Haase, 1994] and a reformulation based on the simple plant location prob-
lem. Tempelmeier and Buschkühl are able to find good solutions with the help
of standard solvers within a few minutes of central processing unit (CPU) time.
In a subsequent work Tempelmeier and Copil [2016] integrate a single setup
operator into a CLSP with parallel machines and sequence-dependent setups.

Cheng and Sriskandarajah [1999] analyse the single setup operator problem
in the field of a two-machine flow shop, when setup and dismounting times
exist, and the operator can only setup respectively dismount jobs in a cyclic
pattern. The goal is to reduce makespan. Furthermore, they distinguish be-
tween setups and dismounting operations which can be conducted without the
actual job on the machine, and those, in which the actual job on the machine
is needed. The only decision to be made is the order of jobs on the first ma-
chine. They show that both problems are NP-complete. Glass et al. [2000]
show that the open-shop and flow-shop problem with two machines, a setup
operator, and the makespan minimization goal are NP-hard. Additionally, the
two-machine, no-wait flow shop problem with a single setup operator is shown
to be solvable in polynomial time, while the two-machine open-shop problem
with a single setup operator is NP-hard. Furthermore, they present some ex-
ceptional cases of the parallel dedicated machines problem5 which are solvable
in polynomial time such as when only two machines are considered, or the case
when all setup and processing times equal a constant c. Moreover, they show
a greedy algorithm for the multiple machine case, which has worst case ratio of
two and an improved heuristic for the two-machine case with a worst-case ratio
of 3/2. Brucker et al. [2005] provide complexity results for a flow shop with
a single setup operator when setup times are separable from the jobs. They
analyse problems with variations in the number of machines (two, arbitrary),
setup times (constant, unit), processing times (constant, unit) and the objective
function (makespan, total completion times, total tardiness, maximum lateness,
number of tardy jobs, with and without weights). They show that the problem
with a setup operator is at least as difficult as the corresponding classical flow
shop problem without a setup operator. Su and Lee [2008] investigate a two-
machine no wait, separate setup flow shop with a single setup operator with the
goal to minimize the total completion times. They show optimal solutions for
some restricted cases and properties for the general case, from which a heuristic
and a branch and bound is established. Then, they use their methods on the
special case of the problem, without the setup operator and compare it to the
methods proposed by Aldowaisan [2001]. Although their heuristic is faster, the

5Jobs are already dedicated to the machines in advance. Therefore, no assignment of jobs
needs to be made. The only decision to be made is the sequence of jobs on the machines.
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branch and bound algorithm from Aldowaisan requires smaller execution times,
as the number of jobs increases.

Several works have been published in the area of a single setup operator and two
or more parallel machines. Koulomas [1996] show that the problem with two
machines, arbitrary setup and processing times and the objective to minimize
idle time is NP-hard by reducing it from the three-partition problem, which is
shown to be NP-hard by Garey and Johnson [1975]. Moreover, they provide a
beam search heuristic, which works efficiently with two machines but can also
be adapted to a context with more than two parallel machines. Kravchenko and
Werner [1997] present a pseudo-polynomial algorithm for the two-machine case
when all setup times are one and the goal is to minimize makespan. They also
prove that in the more general case with an arbitrary number of machines, the
problem is NP-hard. Finally, complexity results for different variants when the
objective function is not the minimization of the makespan, but the idle time,
are shown. Blazewicz et al. [1999] investigate parallel machines with a single
setup operator problem with setup and dismounting times. They prove that the
problem is already NP-hard for the two-machine case. It is, however, polyno-
mially solvable when all jobs are identical. Furthermore, it is shown that any
list scheduling algorithm has a worst-case approximation ratio of three times
the optimal value for the makespan minimization goal. Hall and Sriskandarajah
[2000] provide additional complexity results for the single setup operator and two
or more parallel machines. They distinguish between the number of machines
(two, arbitrary), setup times (constant, unit, arbitrary), processing times (unit,
arbitrary) and the objective function (makespan, total completion times, total
tardiness, maximum lateness, number of tardy jobs, with and without weights).
Wang and Cheng [2001] provide an approximation algorithm for this problem
when the goal is to minimize the weighted sum of the completion times. They
show that their algorithm builds solutions such that the completion time of a
job is not more than (5− 1

m ) times away from the completion time in an optimal
solution. They also provide further results for special cases of their problem.
Kravchenko and Werner [2001] introduce an algorithm for the parallel machines
one setup operator problem with the goal to minimize the sum of completion
times, when all setup times equal one. They show that their algorithm has a
worst case bound of n

′
(m−2) times the difference to the sum of the completion

times in the optimal schedule. n
′

is the number of jobs that have a processing
time less or equal m − 1. Brucker et al. [2002] present additional complexity
results for this problem setting. They differentiate by the number of machines
(two, arbitrary), release dates (unit, constant, arbitrary), setup times (unit,
constant, arbitrary), processing times (unit, constant, arbitrary), and objective
functions (makespan, total completion times, weighted total completion times,
total tardiness, weighted total tardiness, maximum lateness, number of tardy
jobs, weighted number of tardy jobs). Abdekhodaee and Wirth [2002] prove
that the two-machine, one-setup-operator makespan minimization problem is
NP-hard. They also provide polynomial time algorithms for the two special
cases when each processing time of a job is not larger than each setup time or
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when jobs are of equal length and the number of jobs is even. In a subsequent
paper, Abdekhodaee et al. [2004] investigate two special cases for the two par-
allel machines one setup operator setting when jobs have identical processing
times and each setup is less or equal to the processing times and when jobs have
equal setup times and each processing time is longer than the setup time. Both
cases are NP-complete. In 2006, they use various heuristics, such as a GA on the
two machines one setup operator, makespan minimization problem. They can
achieve solutions which are at maximum 5% higher than the lower bound and
at an average 2% higher. Gan et al. [2012] created for this problem context an
MIP model and two branch-and-price variants based on the models. They test
the methods together with two greedy heuristics established by Abdekhodaee
et al. [2006] and the ‘XPressMP’ solver based on the formulated MIP model
with the help of randomly generated data. For small cases, the MIP solver
shows superior performance, whereas for larger instances, the branch-and-price
variants show superior performance. Hasani et al. [2014d] developed a SA and
a GA for the two parallel machines, single-server, makespan minimization prob-
lem, which is tested on instances with up to 1000 jobs. On the whole, their
heuristics show a reliable performance and is close to lower bounds. Hasani et
al. [2014a] furthermore use the concept to decompose a schedule into blocks to
provide a MIP model for the same problem. Their model clearly outperforms
all existing models in the literature for this problem setting. When the goal is
to reduce forced idle time and jobs have to be scheduled alternatively on two
machines, Hasani et al. [2014b] describe a MIP model and present a hybrid
heuristic consisting of a constructive algorithm and a tabu search. They tested
it on problems with up to 100.000 jobs. In another study, Hasani et al. [2014c]
consider the problem of minimizing total weighted job completion time for an
arbitrary number of parallel machines with a single server. They propose an
approximation algorithm with a worst-case ration of (3 − 1

m ). Therefore, they
improved the existing approximation algorithm from Wang and Cheng [2001]
with a worst-case ratio of (5− 1

m ). Kim and Lee [2012] formulate two MIP mod-
els for the case of arbitrary parallel machines, a single server and the makespan
minimization goal. They furthermore created a hybrid heuristic, combining SA
and TS. The heuristics are tested with respect to an optimal value or best-found
value by ‘Cplex in 3600 seconds. The average gap is 2, 06% to the values cal-
culated by ‘Cplex. Hasani et al. [2016] present two constructive algorithms for
the two-parallel machine, one single setup operator, minimizing the makespan
problem. These work well in large problem instances with up to 10.000 jobs
but are not superior to the approaches presented from Hasani et al. [2014d] and
Hasani et al. [2014a] in small and medium-sized instances.

Blazewicz et al. [1999] deal with the parallel machine problem when jobs
are dedicated to the machines. They show that any list scheduling algo-
rithm has a worst-case scenario of two times the optimal value. Huang et al.
[2010] investigated this problem with sequence-dependent setup times. They
propose a mixed integer formulation and a hybrid GA using characteristics of
GA and branch-and-bound methods. To test their algorithm, Huang et al. pro-
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pose lower bounds. They can find solutions close to the lower bound for up to
10 machines and 100 jobs. Apart from the hybrid GA, Huang et al. show a spe-
cial case of the problem which is solvable in polynomial time. Xie et al. [2012]
investigate a problem where there are not only setups for the jobs, but also dis-
mounting times. They present an approximation algorithm with a worst-case
performance ratio of two.

Some papers consider a setting where jobs are not only assigned to machines,
but the sequence of jobs is predetermined for each machine (parallel dedi-
cated machines with job chains). Then, the only decision to be made is
the setup sequence. Wikum et al. [1994] deal with this problem. They describe
chains of jobs, which have to be scheduled for a single machine with minimum
time lags between these jobs on a chain. Transferred to our context, the sin-
gle machine corresponds to the setup operator, while the jobs are setups. The
minimum time lags can be regarded as processing times. They prove for in-
stance that the problem is solvable in O(k log k) time, where k is the number
of chains, and each chain consists only of one job but becomes NP-complete
as soon as one chain has two jobs. Munier and Sourd [2003] show three cases
which are solvable in polynomial time. (1st) Finding the optimal schedule in
the makespan minimization problem, when all setups have the same duration o
and all processing times have the same duration d. (2nd) Finding the optimal
schedule in the makespan minimization problem, when each processing time is
less than the shortest setup time. (3rd) Finding the optimal schedule when the
goal is to reduce the flowtime where all processing times are smaller than a
constant setup time. Brucker et al. [2006] extend these results by showing that
when all jobs have the same duration o and all delays have the same duration
d and the goal is flowtime or makespan minimization, the problem is solvable
in polynomial time. Schauer and Schwarz [2013] study a so-called body shop
scheduling problem (BSSP) which corresponds to a special type of the job shop
problem. In addition to the classical job shop, machines are connected to a
so-called laser source. A machine can only process a job if no other machine is
processing a job. Moreover, the machines need to move to the jobs. While mov-
ing takes zero time, machines cannot bypass each other, where they are aligned
on a straight line. The single-machine scheduling problem with job chains can
be seen as a restricted subproblem of the BSSP. (Note that the single setup
operator and the single machine operator with parallel dedicated machines with
job chains correspond both to the single machine scheduling problem with job
chains). They show that the problem is polynomially solvable with two chains
but becomes NP-hard with three. Thus, this means that our problem is polyno-
mially solvable with two machines, but becomes NP-hard with more than two
machines. A general overview and complexity results for other types of single
machine problems with precedence delays can be found in Brucker and Knust
[1999].

Multiple machine operator case
Different works have been published for the multiple machine operator case.
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That is there is a group of machine operators and each job needs to be attended
during its processing phase by one operator. Agnetis et al. [2011] investigate this
problem in the job shop context. They show that the problem is already NP-
hard with three jobs, three machines and two operators or with n jobs, which
have only one task and three machines with two operators. Note that the lat-
ter problem could be regarded as three parallel dedicated machines. They also
present a dynamic programming algorithm that runs in pseudopolynomial time
if the number of jobs is fixed, a fully polynomial time approximation scheme, a
branch and bound approach and two heuristics.

Bourland and Carl [1994] investigated two cases of the so-called fractional op-
erator problem. There are several parallel machines which have to process
several jobs. Each job needs a certain proportion of an operator during its
processing. Hence, an operator can attend several machines at once if he has
ample capacity. Bourland and Carl [1994] distinguish between two consecutive
problems (planning and control). While the goal in the planning stage is to
find a cost minimal cyclic schedule for a constant demand rate, in which each
product can only be set up once, the goal in the control stage is to find a short
term schedule, based on the outcome of the planning stage, which suits known,
but unstable demand, whereby products can be set up more than once. Fur-
thermore, they present a dynamic programming example for the control stage.

Kellerer and Strusevich [2004] provide complexity results for different variants
of the multiple machine operator problem with parallel dedicated machines.
They differentiate between the number of machines which must be served (two,
three, arbitrary), the number of operators available (one, two, three, arbitrary),
how much capacity a job needs (one, arbitrary), the capacity of the resources
(one, two, arbitrary), family setup or removal times, and job pre-emption. In
all cases, the objective is makespan minimization.

Single machine operator
A special case of the multiple machine operator is when only a single machine
operator is present in such a way that only one machine can/must be attended
when a job is being processed. Espelage and Wanke [2000] analysed a flow
shop with buffers in front of each machine and only one worker, who can su-
pervise one machine at a time. A further restriction is that he can only change
his position if there are no more jobs waiting at the current machine. The goal
is to minimize the movement of the worker, where a movement is considered
as the change of a worker between two machines. They show that when the
job order is fixed, and the buffer size is restricted to two, a polynomial algo-
rithm is found. In the case when a job order has to be found and the least
number of buffers has to be two, the problem is NP-complete. They also show
in 2003 that the problem, when there are no buffers in front of the machines,
is NP-complete, and provide a linear time approximation scheme with a ratio
two for that case. Bako and Vickson [2004] investigate a single-machine oper-
ator setting in the open and flow shop case with two machines. Each time the
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operator starts working on a different machine, he must set it up first. Thus,
jobs are processed in batches on a machine. They show that the problem of
minimizing the number of tardy jobs is NP-hard. Furthermore, they provide
pseudopolynomial dynamic programming algorithms for both cases.

Kellerer and Strusevich [2003] provide complexity results for the m parallel
dedicated machines makespan minimization problem, where only some jobs
need an operator. They show that the problem is solvable in polynomial time in
the two-machine case if pre-emption is not allowed, or in the multiple machine
case, where the pre-emption of jobs which do not need an operator is permit-
ted. Additionally, it is shown that the problem with three machines without
pre-emption is NP-hard in the ordinary sense and problems where the number
of machines is part of the input are NP-complete even if pre-emption of resource
jobs is allowed. Finally, heuristic algorithms based on the group technology ap-
proach are presented for the specific contexts and their worst-case performance
is investigated.

From a scientific perspective, the focus so far is more on providing complex-
ity results for the different problem types rather than on the development/
implementation of algorithms to tackle real world problems around setup op-
erator scheduling. With a view to filling this research gap, we first focus on
the most restricted case—the single setup operator parallel dedicated machines
problem (Chapter 4). We then approach the more general case of parallel ma-
chines with multiple setup operators, in which only two contributions have been
made so far (Chapter 5). Finally, we create a new problem context by adding
parallel machines to a job shop (Chapter 6). Although the problem complexity
increases with that, we do not know why this type of problem context has not
been regarded in the literature so far, as it has high practical significance.
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single ma-
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open shop Glass et al. [2000] Bako and
Vickson
[2004]

job shop Agnetis
et al.
[2011]

flow shop Cheng and Sriskandarajah
[1999]; Glass et al. [2000];
Brucker et al. [2005]; Su and Lee
[2008]

Espelage
and Wanke
[2000,
2003];
Bako and
Vickson
[2004]

parallel
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Werner
and
Kravchenko
[2010];
Kerkhove
and Van-
houcke
[2014]

Koulomas [1996]; Kravchenko
and Werner [1997]; Blazewicz
et al. [1999]; Hall and Sriskan-
darajah [2000]; Wang and Cheng
[2001]; Kravchenko and Werner
[2001]; Brucker et al. [2002]; Ab-
dekhodaee and Wirth [2002]; Ab-
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Gan et al. [2012]; Kim and Lee
[2012]; Hasani et al. [2014d,c,a,b,
2016]

Bourland
and Carl
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parallel
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Koulamas and Smith [1988];
Blazewicz et al. [1999]; Glass et
al. [2000]; Huang et al. [2010];
Xie et al. [2012]

Kellerer
and Stru-
sevich
[2004];
Agnetis
et al.
[2011]

Kellerer
and Stru-
sevich
[2003]

parallel
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Wikum et al. [1994]; Munier
and Sourd [2003]; Brucker et
al. [2006]; Schauer and Schwarz
[2013]

Table 3.1: Classification of relevant literature
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Chapter 4

Parallel dedicated machines
subject to setup constraints

4.1 Introduction

In Chapters 4, 5, and 6, we analyse the problems indicated in Chapter 2 by
the survey.6 The three companies chosen for detailed investigation fit perfectly
within most of the companies interviewed from the survey. On the one hand,
the companies use a make-to-order production strategy. Some products of the
three companies analysed in detail are also created in batches. Thus, we also
take care of the second most mentioned production type, make-to-stock. The
arrangement of the material flow and the machines which they possess further-
more underline that the make-to-order strategy for these three companies seems
correct. The companies use universal machines for production so that they can
easily produce various parts with the same machines. Moreover, the material
flow also follows this strategy. There is no single flow of material through the
machines. Instead, the type and sequence a job must go depends on the job
themselves. Therefore, we talk about a job shop.
This part of the research is based on a medium-sized company from Germany
from the automotive sector with the focus on the production of small metal
parts. The number of people employed as well as the revenue are well in the
quantitative definition of the IfM [2002]. The company is owned and run by
a family. The CEO of the company is directly involved in sales. According to
Theile [1996], this is also an indicator for an SME.
Prototypical, we analysed one of their factories with 13 machines on which sev-
eral thousand pieces are produced every day. When the results from Section

6The description and connection of the companies to the empirical study has to be done
carefully. While the companies are in line with the study, this means they have the same
disadvantages. In the contracts which were made for the case study, anonymosity was assured
to them. Hence it is a balancing actto give enough information to the reader and provide
anonymosity.
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2.3 are considered, it can be said that while the company has an ERP system,
the scheduling is done manually. There is a planning department which creates
production plans using Excel. Jobs are dedicated to machines regarding ma-
chine capabilities but also the running costs. Each machine has ten to twenty
jobs to fulfil. Problems due to the creation of unfeasible plans are dealt with
directly on the shop floor. It can therefore be said that the company shows the
same characteristics as most of the companies in the empirical study. Hence, it
is expected that results from this section can be transferred to majority of SME
with production. As the company uses universal machines, before a job can be
produced on a machine, the machine has to be set up for the job. The setup
itself involves the change of the tooling, the adjustment of the apparatus for the
pieces which are to be produced, as well as the programming of the computer
numerical control (CNC) system with the job specific parameters.
The disadvantage of universal machines is that they tend to be labor intensive
[cf. Pfohl, 2006]. The setup needs to be done by a setup operator. In this case,
a setup operator is a dedicated person who has the necessary skills and tools for
setting up machines. No one else at the company is allowed or able to perform
the changeovers. Setup operators work in two shifts. The early shift starts at 6
a.m. and continues until 2 p.m., with a break between 10 and 10:30 am. The
second shift starts at 2 p.m. and continues until 10 p.m., with a break from 6
p.m. to 6:30 p.m. In any shift, there is only one setup operator, meaning that at
any point in time, only one setup is possible. On the contrary, the machines are
operated in three shifts, seven days a week, meaning they are always available
to process jobs.
Each time, the setup operator switches between machines, a traveling time
occurs. The traveling time consists partly of the distance between the two
machines, which the setup operator must cover but also the time, the setup
operator needs to return tools no longer needed and pick up new ones.
The main production goal is to minimize the total tardiness. New production
jobs are added once a day regarding their due date at the end of the existing
production plan. By that rule, new production jobs can be easily integrated
in the existing plan while the production goal is still considered. There is no
planned schedule for the setup operator himself. Instead, the planning depart-
ment sets up the next available job. If several jobs can be chosen, it sets up the
job, which was available first.
When using this due date heuristic on the data we received from the company,
some jobs are still late. At the same time, it can be seen that setup operators
and machines have idle times. Hence, computerized scheduling, taking setup
operators into account might provide better results than the due date heuristic
currently applied. Our aim is to provide a schedule for the setup operator which
minimizes total tardiness. Based on the given production plan by the company,
we apply our methods as described in Section 4.3.
For this reason, a modified approach is proposed, which explicitly incorporates
setup operator availability. Furthermore, we include time periods in which the
machines cannot be set up and travel times between machines for the operator.
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4.2 Problem definition

In what follows, we consider a set of machines 1, ...,M . For each machine m
there are preassigned jobs j = (1,m), . . . , (nm,m) which have to be processed
in a given sequence. A job is specified by a pair (j,m) consisting of the job
index and a machine number. For notational convenience, we assume that jobs
are numbered accordingly. There are N jobs in total. Each job (j,m) requires
processing time pj,m and is preceded by a setup of duration sj,m. Each machine
can process one job at a time. Pre-emption, the interruption of a job, to produce
a different job, or to make a break, is not allowed either for jobs or for setups.
For each job and each setup, the start time (and, hence, the completion time)
is to be decided. For a schedule to be feasible we require setups to be non-
overlapping. The goal is to minimize total tardiness. Note that we can assume
that each job follows its preceding setup without any idle time in between.
As described before, the problem can also be seen as a single machine scheduling
problem with job chains and non-negative minimum time lags between consec-
utive jobs in a chain with the goal to minimize the sum of tardiness. The setup
operator in the parallel machine case can be regarded as the single machine in
the single machine scheduling problem. Setups in the parallel machine case are
jobs in the single machine scheduling problem. Processing times in the parallel
machine case correspond to minimum time lags in the single machine scheduling
problem. Using the three-field notation introduced by Graham et al. [1979] our

problem, can be represented as (1|chains(lij >= 0)|
J∑

j=1

Tj), whereby Tj is the

tardiness of a job j.

We additionally consider two generalizations of the problem setting described
above. First, we incorporate breaks a = 1, . . . , A. A break is a time interval
where the setup operator cannot work and, therefore, no setup can overlap with
a break. Second, we consider travel times between machines for the setup oper-
ator. We denote the travel time needed between the end of a setup on machine
l and the start of a setup on machine m by hl,m. In a formal setting, our model
is defined by:
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Indices
m Machine index, m = 1, . . . , M
j Job index, j = 1, . . . , nm
a Break index, a = 1, . . . , A
Parameters
pj,m Processing time of job (j,m)
sj,m Setup time of job (j,m)
bsa Beginning of break a
bea End of break a
K Adequate large number
hl,m Travel time from machine l to machine m
N Number of jobs in total
Lj,m Delivery date of job (j,m)
Variables
tj,m Tardiness of job (j,m)
Cmax Makespan

γj,mi,l Binary variable which equals 1 if the start of the setup

for job (j,m) follows start of the setup for job (i,l) directly
βj,m,a Binary variable which equals 1 if job (j,m) starts after break a
Sj,m Starting time of the setup for job (j,m)

Table 4.1: Notation parallel dedicated machines

4.2.1 Standard model formulation

min

M∑
m=1

nm∑
j=1

tj,m (4.1)

Sj+1,m − pj,m − sj,m − Sj,m ≥ 0 ∀ j = 1, . . . , nm − 1,m = 1, . . . ,M (4.2)

Sj,m − Si,l + (1− γj,mi,l ) ·K ≥ si,l

∀ j = 1, . . . , nm, i = 1, . . . , nl,m = 1 . . . ,M, l = 1, . . . ,M,m 6= l (4.3)

M∑
m=1

nm∑
j=1

(j,m)6=(i,l)

γj,mi,l ≤ 1 ∀ i = 1, . . . , nl, l = 1, . . . ,M (4.4)
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M∑
l=1

nl∑
i=1

(j,m)6=(i,l)

γj,mi,l ≤ 1 ∀ j = 1, . . . , nm,m = 1, . . . ,M (4.5)

M∑
m=1

nm∑
j=1

M∑
l=1

nl∑
i=1

(j,m)6=(i,l)

γj,mi,l = N − 1 (4.6)

(Sj,m + pj,m + sj,m)− Lj,m ≤ tj,m

∀ j = 1, . . . , nm,m = 1, . . . ,M (4.7)

tj,m, Sj,m ≥ 0 ∀ j = 1, . . . , nm,m = 1, . . . ,M (4.8)

γj,mi,l ∈ {0, 1}

∀ j = 1, . . . , nm, i = 1, . . . , nl,m = 1, . . . ,M, l = 1 . . . ,M, (j,m) 6= (i, l)
(4.9)

γj,mi,m = 0. ∀ i = 1, . . . , j − 1, j = 2, . . . , nm,m = 1, . . . ,M (4.10)

The objective function (4.1), minimize the sum of tardiness tj,m for all jobs
m = 1, . . . ,M, j = 1, . . . , nm, together with constraint (4.7), the tardiness for
a job j,m must be greater or equal the starting time for the job Sj,m + its
processing time pj,m + its setup time sj,m - its due date Lj,m, represent the
goal to minimize total tardiness. Constraint (4.2) ensures the non-overlapping
of jobs on a machine. The difference between the starting time of a successor
job Sj+1,m and the sum of the starting time for the predecessor job on the
same machine Sj,m, the processing pj,m and setup time sj,m of the predecessor
job must be positive. Constraint (4.3) ensures the non-overlapping of setups
on different machines. If a job j on machine m is the direct successor of job i
on machine l (γj,mi,m ), the starting time of job j,m - the starting time of job i,l
must be greater or equal the setup time of i,l si,l. Constraint (4.4) rules that
each job i,l has maximum on successor, while constraint (4.5) rules that each
job j,m has maximum one predecessor. Constraint (4.4) ensures that there is
a strict sequence of successor–predecessor relationships and no cycles. There is
number of jobs - 1 relationship overall. Therefore, cycles are not possible as in
this case, there would be more relationships as number of jobs - 1. Constraints
(4.8), (4.9) and (4.10) define the variables domains. That means they describe
the limitations of the variables.
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4.2.2 Extensions

The model can be further enhanced by incorporating breaks and travel times
between machines for the setup operator as described in Section 4.1. They are
not part of our core problem, but of course have a high practical relevance.

Sj,m + sj,m ≤ bsa + βj,m,a ·K

∀ j = 1, . . . , nm,m = 1, . . . ,M, a = 1, . . . , A (4.11)

Sj,m ≥ bea · βj,m,a ∀ j = 1, . . . , nm,m = 1, . . . ,M, a = 1, . . . , A (4.12)

Sj,m − Si,l + (1− γj,mi,l ) ·K ≥ si,l + hl,m

∀ j = 1, . . . , nm, i = 1, . . . , nl,m = 1, . . . ,M, l = 1, . . . ,M,m 6= l (4.13)

βj,m,a ∈ {0, 1} ∀ j = 1, . . . , nm,m = 1, . . . ,M, a = 1, . . . , A (4.14)

min Cmax (4.15)

Snm,m + pnm,m + snm,m ≤ Cmax ∀ m = 1, . . . ,M (4.16)

Constraint (4.11) and (4.12) rule that the starting time for a job Sj,m and
its setup sj,m must either be finished before a break a starts bsa or the starting
time must be greater or equal to the end of break a bea. They are connected
through binary variable βj,m,a and ensures that one of the constraints is met and
the other one has not to be fulfilled. Constraint (4.13) extends constraint (4.3)
by incorporating travel times for the operator between the machines hl,m. Con-
straint (4.14) defines the domain of the binary variable. Constraint (4.15) and
(4.16) replace constraint (4.1) and (4.7) when the goal is to reduce makespan.
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4.3 Methods

When we tried to find the optimal solution by dynamic programming. We
thought that even while we might not be able to find the optimal solution when
all constraints are included, we might be able to solve the problem with less con-
straints. While searching for ideas how to do it, we found a work which showed
that if one chain has more than one job the problem is NP-complete [Wikum
et al., 1994]. Hence, we focus on metaheuristics to provide good solutions in a
short time frame for our much larger real-world problem sizes. Metaheuristics
are a type of heuristics which can be applied to a variety of problem settings.
Although they do not guarantee that the optimal solution will be found, they
are generally able to provide good solutions with reduced computational time in
contrast to algorithms which will guarantee optimal solutions [Blum and Roli,
2003]. There are different ways to classify metaheuristics. As the focus is on
different search strategies, we differentiate them by local vs global search. We
define a local search method as an algorithm which explores a neighbourhood
deeply and continues only slowly to other neighbourhoods. A global search on
the other hand explores a single neighbourhood only roughly and moves very
quickly to other areas, such that a wider proportion of the overall solution space
is explored. We use the TS for the local search algorithms and the GA in the
field of global search algorithms. Both can be said to be the most common
metaheuristics for the local, respectively the global search. This might also be
shown by the number of publications found in the EBSCO host database (1.887
for TS 10.358 for GA) [EBSCO, 2017]. SA was furthermore included as it com-
bines the advantages of the local search with those of the global search. In the
beginning, the algorithm moves fast and broad through the solution space while
it focuses after some running time more intensively on the area it is in. The idea
is akin to the idea of the structure of our also used VNS: Search in the beginning
broadly to identify promising neighbourhoods which shall then be explored in
more detail.

In total, six different variants of TS, GA, and SA were used to solve the previ-
ously described problem. The methods are either used separately or combined
in a VNS. In the VNS, the six different variants are used in ascending order
regarding the duration they need to search the solution space. This order was
experimentally determined to be:

1. GA 2-point Crossover repair after each exchange (V1),

2. GA 2-point Crossover repair at end (V2),

3. GA 1-point Crossover,

4. TS Swap,

5. TS Insert,

6. SA.
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The VNS algorithm can run for a maximum predetermined running time q.
Every method has a maximum of q/6 minutes time before we switch to the next
method, except when it does not find a better solution within half the allowed
time. Then the method is also switched and the remaining time is added to
the maximum running time of the following method. In our experiments, the
duration for the switching was found out with the help of test runs.
We use heuristics to find starting solutions for the methods. For the TSs and
the SA, only the best solution is taken. For the GAs, all solutions are used for
creating the starting population:

1. Of all jobs allowed to be processed with regard to the chains, set up the
job with the earliest due date. Repeat until all jobs are processed. The
motivation for the method is minimizing the sum of tardiness.

2. Of all jobs allowed to be processed with regard to the chains, set up the
job with the least slack time. Repeat until all jobs are processed. The
motivation for the method is minimizing the sum of tardiness.

3. Of all jobs allowed to be processed with regard to the chains, set up the
job with the shortest setup time. Repeat until all jobs are processed. The
motivation is, to get as many machines running as possible, such that the
sum of the idle times is minimized.

4. Of all jobs allowed to be processed with regard to the chains, set up the
job with the longest processing time. Repeat until all jobs are processed.
The motivation is that the operator creates periods of time in which he
has to set up fewer machines since more machines are still processing jobs
and such the idle time for the waiting machines is reduced.

5. Of all jobs allowed to be processed with regard to the chains, set up the
job from the chain with the largest sum of remaining setup and processing
times. The motivation is to balance the finish times of the last jobs on
the chains and such minimize the makespan.

We use a machine representation as a solution in contrast to the usual form of
a job representation in the field of job scheduling. The sequence in the machine
representation indicates to which machine the setup operator should move next.
Given the sequence ‘3,2,2,1,4,5,1,2,3,1, this would mean first set up machine 3,
then machine 2, and so on. Alternatively, the sequence ‘3,2,1,5,4,6,7,8,9,10 in
a job representation would stand for setting up the machine which job three is
dedicated to, then the machine which job two is dedicated to and so on. The
length of the sequence is equal to the number of setups and jobs, respectively.
Our problem structure allows that each representation can be easily transferred
to the other. Furthermore, the search procedures are also identical. The algo-
rithm is, however, more efficient in the machine representation. That is because
of the fixed order of jobs on the machines. In contrast to the machine repre-
sentation, when the job representation is used, the algorithm must check for
validity or repair the found solution, respectively.



4.3. METHODS 55

Each sequence to be evaluated is subject to a post processing: Set up the jobs
according to the sequence. If a setup operator has idle time and can only start
the next job at time t, search in ascending order regarding the goal (i.e. next
tardy job) for another job that can be set up before time t. If such a job is
found, do the setup. Repeat until all jobs are processed.

4.3.1 Tabu Search

Tabu search was created by Glover [1986, 1989, 1990]. It is based on the meth-
ods of classical local search. In contrast, TS can overcome local optima, because
it allows worse solutions than the current solution as the starting point for the
next iteration.

Outgoing from a solution x, a neighbourhood N(x) is created. This is done
with the help of a classical neighbourhood search methods such as the Swap
exchange. Each solution in N(x) is evaluated using a fitness function. The
best feasible solution is taken as the starting solution for the next iteration.
To prevent the algorithm from running in circles, the previous solution, part of
the previous solution, or the transformation from the previous to the current
solution is prohibited for a certain period (aspiration criteria) and put on the
tabu list. The search is stopped when the stopping criteria is met (search time,
number of iterations and so on).

Either the Swap exchange or the Insert method is used to create a new neigh-
bourhood. The Swap method directly exchanges two numbers in a solution
sequence, if they do not lead to the same schedule (e.g., exchanging three and
three), while the Insert method puts a number a to a later position after a num-
ber b and moves all numbers that were previously between these two forward
by one position. In both cases, the search space for a position in which to insert
or into which to swap an element is limited to the next 15 positions due to time
constraints. The tabu list consists of the 200 last used entire sequences. The
type of the tabu list as well as the size were determined through test instances.
Furthermore, a shake is used to randomly generate a new origin every 200 iter-
ations. In the shake, two randomly chosen positions are exchanged with each
other until 50% of all positions have been moved. The problem structure allows
for the consideration of interim values of the fitness function. For all machines,
the completion times are recorded for each position in the origin string. The
newly built strings use the partial results while calculating their fitness value.
With fitness value we refer to the value the created schedule gets receives re-
garding the objective function. In our case, this is always the sum of tardiness
or the makespan. In a broad outline, the algorithm runs as follows:
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while (gap > y) do {

origin string = best string of the past iteration

if (iteration == one of the predefined values to shake the origin string) do
{

shake origin string

}

for (i = 0 ; i < N ; i++) do {

if (i + 15 ≤ N) do {
j = i +15

}
else do {

j = N

}
for ( x = i to j) do {

use chosen exchange method on the origin string and create new
string with parameters i and x

post processing

if (new string not in tabu list) do {
calculate fitness function

if the new solution is better than the best solution found in
this iteration, and/or the best global solution, update the
best solutions correspondingly

}
}

}

}
To provide a better understanding, an example of the Swap and Insert ex-

change is given below:
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Figure 4.1: TS Swap and Insert

Origin
2 1 1 2 2 3 3 4 4 4

Swap Insert
1 2 1 2 2 3 3 4 4 4 1 2 1 2 2 3 3 4 4 4

1 1 2 2 2 3 3 4 4 4 1 1 2 2 2 3 3 4 4 4

2 1 1 2 2 3 3 4 4 4 1 1 2 2 2 3 3 4 4 4
...

...
2 1 1 2 2 3 3 4 4 4 2 1 1 2 2 3 3 4 4 4

2 2 1 1 2 3 3 4 4 4 2 1 2 1 2 3 3 4 4 4

2 2 1 2 1 3 3 4 4 4 2 1 2 2 1 3 3 4 4 4
...

...

For the given schedule “2,1,1,2,2,3,3,4,4,4”, the Swap method exchanges the
positions of the numbers directly. Starting with numbers 2 and 1, then 2 and 1
again, followed by 2 and 2 (which are not exchanged since both numbers are the
same), the positions are exchanged, until the last position or the 15th position
from the anterior exchange point in the schedule (number four) is reached. The
anterior exchange point is then set forward to the second position, number one,
and exchanges them with its neighbours. This is continued until the anterior
exchange point has also moved forward to the end of the schedule. Hence,
maximum 45 new schedules are derived for the Swap method in the example
given.
The first exchange for the Insert is equal to the one for the Swap method. The
second differs, as it can be seen. Number 2 is moved to the third position in the
row, while both number 1s are pulled one position closer to the beginning. In
the third new schedule, number 2 is put into the fourth position while number
1s and number 2 are pulled one position closer the front of the schedule. These
exchanges are then continued until the last position or the fifteenth position
from the anterior exchange point in the schedule is reached. Like the Swap
exchange, the anterior exchange point is then set forward by one position to
number 1 and the exchange is started again outgoing from the new anterior
exchange point. The whole procedure is terminated when the anterior exchange
point reaches the end of the schedule.

4.3.2 Genetic Algorithm

The Genetic Algorithm is a biased stochastic search [cf. Goldberg, 1989, pp.
10–11]. It was first proposed by Holland [1975]. It is related to the evolutionary
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search procedures. There might be slight differences in the notation [cf. Jiao et
al., 2007] or level of depth [cf. Blau et al., 2004] regarding the different problem
settings.

There are chromosome strings (or chromosomes) which represent a solution to
a problem. Each part of the chromosome string is called a gene and represents
a part of the solution. The characteristics of genes are shown by alleles. All
chromosome strings together at a stage are in a so-called population.

An example of the mentioned notation can be derived from 4.3.2. In the first
line the chromosome strings are shown in a so-called population. The chromo-
some strings have 10 genes at the most. The first chromosome string consists
of genes 5, 4, 3, 1, etc. From the second chromosome string we take gene 2 as
an example. Gene 2 consists of the following alleles: 5, 2, 4, 1, 3. Allele 2 is
described as 1,0,1,1,0,0. The example stops here. But it is also possible that the
characteristics of the alleles can be distinguished further, and so deeper levels
exist. Thus, the more detailed the genetic algorithm is, the more levels arise.
However, our example already has 1010 + 55 + 66 = 10000049781 different
probabilities of how a chromosome strings might look.

population

5 4 3 1 2 9 7 0 0 0 5 6 3 4 2 1 7 9 0 0
...

chromosome string
5 6 3 4 2 1 7 9 0 0

gene
5 2 4 1 3

allele
1 0 1 1 0 0

Figure 4.2: GA Structure

The basic procedure of a genetic algorithm is as follows: The first step is
to form a population. Hence, different solutions get decoded into chromosome
strings. This starting solution is also different from other methods. The GA
makes use of multiple points and not a single one. [cf. Goldberg, 1989, pp. 7 -
9]. Each chromosome string is evaluated using a so-called fitness function.
In the next step, a new population has to be found. This is named the re-
production phase. A popular approach for reproduction is the roulette wheel
strategy [cf. Goldberg, 1989, p. 11], which is also known as the Monte Carlo
simulation. Each sequence gets an area of the roulette wheel assigned in relation
to its fitness function. Thus, the better sequences have a higher chance of be-
ing selected. The problem with this approach is that convergence might apply
quickly [cf. Baker, 1985]. If a chromosome string has a vast area in the roulette
wheel, there will probably not be a diverse new population. Therefore, Baker
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[1985] introduced the so-called ranking. All sequences are ranked according to
their function. The highest rank gets the biggest area. The space gets assigned
by a linear function, which means the space assigned does not increase or de-
crease between the sequences. It does not make a difference if one chromosome
string makes up a high percentage of the whole sum of the fitness functions.
Empirical tests by Baker [1985] have shown that although the ranking method
is slower, the results are better because it does not lose genes. In the next step,
the simulation is run until there are the same numbers of chromosome strings
in the new population as there were in the old.
The stage of crossover follows. Two chromosome strings are randomly selected
and the crossover is undertaken. There exist different variants of crossovers.
Two, respectively three of the most common crossovers are explained in more
detail at the end of this section. The crossover is repeated with the chromosome
strings of the reproduced population until the new population is filled.
Finally, the new chromosome strings have to run through a mutation in or-
der to make sure that the search does not end in a local optimum. Each gene
is mutated with a specific probability, the mutation rate. The rate has to be
very small otherwise the genetic algorithm becomes a pure random search [cf.
Holland, 1992, p. 110]. When selected, the gene is altered at random. The
mutations goal is to prevent the genetic algorithm being judged to quickly and
therefore remaining in a local optimum. In the end, the chromosome strings are
evaluated by the fitness function and the complete process starts again. This
process is repeated until the stopping criterion is met. A common constraint is,
for example, a pre-specified number of iterations [cf. Jiao et al., 2007]. A dis-
advantage of this criterion is that an optimal solution might have already been
found while the computer is still calculating. A moving average rule [cf. Bal-
akrsihnan and Jacob, 1996] is a good fix in this case. The moving average rule
stops the process when, for a certain number of iterations, the fitness function
remains the same. The moving average rule, also known as the conversion rate,
should be calculated for each problem individually using the sensitivity analysis
in a trial example run. A tight conversion rate would let the computer run
infinitely, whilst a very loose convergence rate would stop the process although
a better solution could be found easily.

Three GAs are applied in our case. Our chromosome strings are the sequences,
which represent solutions. Although there are a variety of crossover methods
(see for example Soni and Kumar [2014] for an overview), we use the two most
traditional variants, which are well known and have been extensively tested in
other problem settings. We use two 2-point crossovers, with different repair
and a 1-point crossover. The 1-point crossover was first introduced by Holland
[1975]. The N-point crossover, which is a generalization of the 1-point crossover
was introduced by Jong [1975]. The most basic form of the N-point crossover is
the 2-point crossover.

The 2-point crossovers select uniform randomly two crossover points on two
arbitrary taken chromosome strings from the old population, where strings with
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a better fitness value have a higher probability of being selected and exchange
the genes between these points with each other. The following formula regarding
Baker is used to assign the selection probability to strings:

Rank the strings according to their fitness value beginning with the worst
string

selection probability of string i = position in ranking for i
number of strings∑

m=1
m

· 100.

The new chromosome is created, from the first parent chromosome string
until the first crossover point, the second parent chromosome string from the
first crossover point until the second crossover point, and the first chromosome
string from the second crossover point to its end. We create a second chromo-
some by exchanging the orders in which the parents are considered.
In the first case, the exchange of genes is done sequentially and each gene ex-
change is followed by a repair if necessary. In case a machine received in an
exchange has no more jobs to be processed, then the dispensed machine has too
few occurrences in the resulting string. A repair is necessary. Starting from the
left, the resulting string is searched for a gene (machine) which has the same
characteristic as the received gene. This gene is then changed to the character-
istic of the dispensed gene.
In the second case, the repair is done after all genes between the two crossover
points have been exchanged. Again, it is likely that in the resulting strings,
some machines have too many occurrences, while others have too few. A repair
is necessary. For each machine, it is controlled if the number of occurrences in
the new chromosome string is equal to that in the parent string. Beginning with
the first machine, the repair is done as follows: If machine q is underrepresented
in the chromosome string, the first gene with the characteristic of an overrep-
resented machine beginning left in the new chromosome string, is changed to
the characteristic of the underrepresented machine. If the machine is overrep-
resented in the chromosome string, the leftmost gene with the characteristic q,
is changed to the characteristic of the next underrepresented machine. This is
done until all machines are represented equally in the old and new chromosome
strings. It should be noted that the two presented crossover methods are likely
to have different outcomes due to their different repair mechanisms.
In the case of the 1-point crossover, a crossover point is randomly picked, for
two arbitrary chosen chromosome strings. Whereby, strings with a better fitness
value have a higher probability of being selected from the old population. The
same probability selection formula as in the 2-point crossover methods is also
used here. All genes in the strings before the crossover point are then swapped
with each other. The repair follows the exchange of all genes before the crossover
point and is undertaken in such a way that the relative precedence of genes from
the parent chromosome strings is also reflected in the new chromosome strings.
Each new child string c of the parent p with the same postfix is considered.
From left to right, each gene in the parent p is considered, and it is checked
whether the machine q it represents is underrepresented in the child c. If it is,
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the first gene of the child after the crossover point that has not been replaced
during the repair, it is set to the characteristic of q.

To provide a better understanding an example is given below. See Table 2.1
as an example for the 2-point crossover variants.

Origin
2-point crossover immediate repair 2-point crossover repair at end

2 1 1 2 2 3 3 4 4 4 2 1 1 2 2 3 3 4 4 4

4 3 2 1 4 3 2 1 4 3 4 3 2 1 4 3 2 1 4 3
Crossover/Repair 1 Crossover 1

2 2 1 1 2 3 3 4 4 4 2 1 1 1 4 3 3 4 4 4

4 3 1 2 4 3 2 1 4 3 4 3 2 2 2 3 2 1 4 3
Crossover/Repair 2 Repair 2

2 2 1 1 4 3 3 2 4 4 2 2 1 1 2 3 3 4 4 4

4 3 1 4 2 3 2 1 4 3 4 3 1 4 2 3 2 1 4 3

Crossover/Repair 3
2 2 1 1 4 3 3 2 4 4

4 3 1 4 2 3 2 1 4 3

Figure 4.3: GA 2-point crossover

For the given schedule “2,1,1,2,2,3,3,4,4,4” and “4,3,2,1,4,3,2,1,4,3” the 2-
point crossover immediate repair switches the positions between the crossover
points (3–6) consecutively. Starting with the switching between 2 and 1 from
position 3, the first position which has the same characteristic of the newly
gained gene (1 and 2 respectively) is switched to the characteristic of the dis-
pensed (2 and 1 respectively). This is continued until the second crossover point
(3, position 6) is reached. In the 2-point crossover, all genes are first exchanged
and then the repair follows. In the example, less repair is necessary. The repair
follows the same rule as in the 2-point crossover immediate repair case. In the
first string, two characteristics of 2 are missing, while one characteristic of 1 and
4 is too much. Therefore, the first genes with the characteristic 1 and another
with 4 is changed to 2. In the second string, the problem is analogue except
that the first genes with 2 are changed to 1 and 4.
In the 1-point crossover, the relative precedence of the parent strings is retained.
In the example, all genes from the beginning until and including position 3 are
exchanged. (2,1,1 and 1,4,4). Starting with the first position in the origin string
the number of characteristics in the new string are checked. Gene 2 is used three
times in the origin 1 string but only once in the new string. Therefore, the first
position of the crossover point (position 4) is changed to the characteristic of
2. Position 2 in origin string 1 has characteristic 1. There are two genes with
characteristic 1 in origin 1, but only one gene with 1 in new string 1. Therefore,
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1-point crossover

2 1 1 2 2 3 3 4 4 4 Origin 1

1 4 4 3 3 2 2 2 1 4 Origin 2
Crossover

1 4 4 2 2 3 3 4 4 4

2 1 1 3 3 2 2 2 1 4

Repair Origin

1 4 4 2 2 3 3 4 4 4 2 1 1 2 2 3 3 4 4 4

2 1 1 3 3 2 2 2 4 4 1 4 4 3 3 2 2 2 1 4

1 4 4 2 1 3 3 4 4 4 2 1 1 2 2 3 3 4 4 4

2 1 1 4 3 2 2 2 1 4 1 4 4 3 3 2 2 2 1 4
...

...

1 4 4 2 1 2 2 3 3 4 2 1 1 2 2 3 3 4 4 4

2 1 1 4 4 3 3 2 2 4 1 4 4 3 3 2 2 2 1 4

1 4 4 2 1 2 2 3 3 4 2 1 1 2 2 3 3 4 4 4

2 1 1 4 4 3 3 2 2 4 1 4 4 3 3 2 2 2 1 4

Figure 4.4: GA 1-point crossover

position 5 gets changed to value one. This procedure is followed until the last
position (10) in the origin string when characteristic 4 is reached. The new
string 2 is controlled and repaired analogously.

All three crossover variants share, however, the same type of mutation and
elitism, as well as the same population size. The population size is fixed to
100, which was found to be a sufficient size regarding convergence and solution
quality. In addition to the crossovers, each chromosome string in the new pop-
ulation is selected with a probability of one percent for mutation. If a string is
selected, two genes in the string are chosen randomly and switched. Regarding
elitism, the two best chromosome strings are automatically transferred from the
old to the new population. Furthermore, all variants have in common that a
new population is first created completely, before the new chromosome strings
are subject to post processing and rated with the help of the fitness function.
Therefore, there are no ‘intermediate populations containing strings partly from
the old and the new population. The procedure can be described briefly as:

while (gap > y) do {
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while (size of new population < total population size - 2 ) do {

pick 2 strings from the old population regarding their fitness value

crossover and repair

mutate each of the new chromosome strings with a predefined prob-
ability

add the 2 new strings to the new population

}

add the 2 best chromosome strings of the last population to the new
population

post processing

calculate fitness function

sort the strings according to their fitness value

if (best string of new population < so far found best global string)

so far found best global string = best string of new population

old population = new population

clear new population

}

4.3.3 Simulated Annealing

Simulated annealing is an approximation algorithm developed by Kirkpatrick et
al. [1983], used in mathematical optimization. The basic idea is to simulate the
annealing process from metallurgy. After heating up metal, the slow annealing
of the metal allows the atoms to sort themselves and create a stable structure,
close to the optimum. Regarding the algorithm, the temperature is a probabil-
ity of a worse solution to be accepted.

Similar to the TS, starting from a solution x a new neighbourhood N(x) is
created. Either the Swap exchange or the Insert method is used to create a new
neighbourhood. Since both methods have been extensively described in Subsec-
tion 4.3.1 no further explanation will be given here. In contrast to the TS, it is
however one solution of the neighbourhood picked randomly and checked with
the help of the probability function whether it will be accepted. The probability
of a solution x’ to be accepted p(x’) can be described with the following formula:

(e− f(x)−f(x′)
t ) · 100. f(x) and f(x′) are thus the fitness values of the last and
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the recently calculated solution. T is a parameter that regulates the probability
of the general acceptance of worse solutions in the SA. Each time a new solution
is found, it gets updated by u, the so-called annealing factor by t = t · u. The
parameters u and t were obtained with the help of tests. While t is set to 1000
in our case, u is selected in such a way that after a 360-second running time the
probability to select a worse solution is close to 0.

In general the algorithm runs as follows:

while (gap > y) do {

create new neighbourhood outgoing from the last solution x

randomly select a string x′ out of the neighbourhood of x

post processing

calculate fitness value of x′

calculate p(x′)

randomly choose a number z between 0 and 100

if (z ≤ p(x′))

x = x′

t = t · u

}

4.4 Computational results

The algorithms described in Section 4.4 are implemented in Java and tested
on an Intel i7 Quadcore 3.4 GHz, 16 GB memory computer with the help of
randomly generated instances (5.1), instances from which the best solution is
known (5.2) and real-life data received from the company (5.3).

4.4.1 Random instances

The instances are created in such a way that they on the one hand reflect
the production situation of the company which is in the focus in this chapter.
The minimum and maximum setup times or the proportion between setup and
production times are derived from this situation, for example. On the other
side, the instances shall also show the performance of the algorithms when the
size of the instances are a multiple of the instances with real data from the
company (more machines or jobs for example). For each test case, 25 instances
are solved with randomly generated numbers with regard to:

1. Setup times, which vary from 0 to 300 time units,

2. processing times, which vary from 0 to 3000 time units,
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3. due dates for the jobs. The due dates are calculated as follows: Sum
up all production and setup times of the jobs to a variable s. Multiply
s with a positive factor greater than one, so that there is a chance that
a schedule with zero tardiness is possible, to s*.7 For each job, assign
uniform randomly a due date between 0 and s*. Sort the jobs according
to their due dates on the affiliated machines.

Furthermore, some cases consider:

4. Breaks, or more precisely setup operator availability times. Setup opera-
tors are available from Monday to Friday between 12:00 a.m. and 4 p.m.
They have breaks from 4:00 to 4:30 a.m. and from 12:00 to 12:30 p.m.,

5. a distance between machines which the setup operator must cover. Ma-
chines are given randomly an x and y coordinate between 0 and 1000. The
distance and the travel time for the setup operator between two machines
m1 and m2 is respectively calculated by:

∣∣xm1 − xm2

∣∣+
∣∣ym1 − ym2

∣∣.
The computing time is limited to 360 seconds per instance and method.

From 10 to 100 machines and 10 to 40 jobs on each machine (OEM) are con-
sidered in an instance (Tables 4.2, 4.5). A lower bound, calculated by an MIP
relaxation, and a random search are used to compare the results of the meth-
ods described in Section 4.3. Cases 1–16 have the objective to minimize the
makespan. The makespan is defined as the time between the start of the setup
for the first job and the end of production for the last job including the time
for breaks, if applicable. Cases 1–8 consider only the simplified problem, with-
out breaks and distances between machines. Cases 9–16 consider all extensions.
Cases 17–32 have the objective to minimize total tardiness. Cases 17–24 consider
only the simplified problem, without breaks and distances between machines.
Cases 25–32 consider all extensions as well.

Cases 1–16
What can be seen from cases 1–16 (Tables 4.3, 4.4) is that there is already a huge
improvement in comparison to the starting solution (greedy algorithms) for all
metaheuristic methods. The random search also shows some improvement in
contrast to the starting solutions but gets clearly beaten by any metaheuristic
method.

From Figures 4.5 (Diagram Case 2) to 4.8 (Diagram Case 14) it can be seen
that the biggest improvement gains are already achieved before 60 seconds run-
ning time, depending upon the number of machines. Only in the biggest case in
the diagrams, Figure 4.8 (Diagram Case 14), larger gains can be achieved after
60 seconds. One explanation could be that already with minor changes in the
schedule, large improvements can be achieved. It has to be considered, however,
that the TSs, as well as the SA, both of which will investigate a neighbourhood

7In our case we choose 1,1 as a factor.
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Case Machines Jobs Setup time Processing
time

Breaks Machine
dis-
tance

1 10 10 OEM U(0,300) U(0,3000) / /
2 10 20 OEM U(0,300) U(0,3000) / /
3 10 40 OEM U(0,300) U(0,3000) / /
4 25 10 OEM U(0,300) U(0,3000) / /
5 25 20 OEM U(0,300) U(0,3000) / /
6 50 10 OEM U(0,300) U(0,3000) / /
7 50 20 OEM U(0,300) U(0,3000) / /
8 100 10 OEM U(0,300) U(0,3000) / /
9 10 10 OEM U(0,300) U(0,3000) yes 100·100
10 10 20 OEM U(0,300) U(0,3000) yes 100·100
11 10 40 OEM U(0,300) U(0,3000) yes 100·100
12 25 10 OEM U(0,300) U(0,3000) yes 100·100
13 25 20 OEM U(0,300) U(0,3000) yes 100·100
14 50 10 OEM U(0,300) U(0,3000) yes 100·100
15 50 20 OEM U(0,300) U(0,3000) yes 100·100
16 100 10 OEM U(0,300) U(0,3000) yes 100·100

Table 4.2: Random instances makespan 1–16

very closely by their structure, are beaten in all but one case by the GAs, which
investigates a neighbourhood in a broader sense. Besides, as can be seen in Fig-
ure 4.8 (Diagram Case 14), the GAs get their first gains much faster than the
TSs and the SA. Therefore, this explanation does not hold in general. Another
explanation might be that the neighbourhood structure in case 4.8 (Diagram
Case 14) challenges the TSs and SA harder than the other cases from the dia-
grams in such a way that it needs to enter a new neighbourhood to achieve the
gains. This would mean that there is already a different level of challenges for
the algorithms within this problem setting.

The VNS shows as expected the best overall results of all metaheuristics, thereby
indicating that it can take advantage of the benefits of each metaheuristic. In
six of the eight cases, it is better than the individual methods alone when no
breaks and travel times are incorporated. When breaks and travel times are
incorporated in four out of the six valid cases, the VNS performs best.

While there is, in the case of 10 machines, only a minor gap to the lower bound,
in all other cases, there is still a huge gap, especially when breaks and travel
times are incorporated. In two cases (11 and 15), no lower bounds were found
within acceptable time (360 seconds). Therefore, it is difficult to validate the
overall performance of all the metaheuristics, although they bring huge improve-
ments in contrast to the greedy algorithms.
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Starting solu-
tion

GA 2 point V1 GA 2 point V2 GA 1 point

1 149,83% 1,48% 0,95% 0,92%
2 173,19% 2,55% 2,15% 2,17%
3 190,20% 4,70% 4,27% 4,39%
4 315,80% 72,80% 72,76% 72,92%
5 349,30% 85,42% 85,38% 85,97%
6 517,76% 232,81% 233,158% 234,76%
7 569,45% 257,81% 257,76% 258,22%
8 883,93% 550,06% 549,65% 550,68%
9 235,79% 102,32% 101,24% 100,23%
10 287,93% 141,91% 139,79% 140,44%
11 XXX% XXX% XXX% XXX%
12 553,73% 390,93% 390,40% 377,91%
13 676,19% 500,79% 498,93% 492,12%
14 1046,88% 867,44% 863,93% 864,22%
15 XXX% XXX% XXX% XXX%
16 2034,10% 1836,45% 1832,76% 1831,21%

Table 4.3: Gap to the lower bound for cases 1–16, methods 1–3 and starting
solution

TS Swap TS Insert SA VNS Random
Search

1 1,64% 1,96% 3,93% 0,60% 68,86%
2 4,36% 4,92% 4,84% 1,89% 106,81%
3 7,41% 7,34% 5,60% 3,36% 141,31%
4 82,48% 84,59% 81,88% 72,72% 202,77%
5 92,48% 92,77% 93,46% 88,12% 405,08%
6 235,30% 235,39% 237,20% 229,85% 391,08%
7 259,46% 260,86% 265,18% 261,82% 479,14%
8 551,90% 553,50% 545,89% 540,91% 733,64%
9 102,66% 106,93% 115,34% 98,07% 145,22%
10 145,87% 148,38% 154,94% 141,98% 211,95%
11 XXX% XXX% XXX% XXX% XXX%
12 409,16% 410,50% 411,31% 382,65% 447,54%
13 515,07% 521,77% 522,22% 495,92% 593,54%
14 901,53% 905,69% 917,79% 872,03% 938,87%
15 XXX% XXX% XXX% XXX% XXX%
16 1883,96% 1884,98% 1874,84% 1830,20% 1904,66%

Table 4.4: Gap to the lower bound for cases 1–16, methods 4–8
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Figure 4.5: Diagram Case 2

Figure 4.6: Diagram Case 6
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Figure 4.7: Diagram Case 10

Figure 4.8: Diagram Case 14
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Case Machines Jobs Setup time Processing
time

Breaks Machine
dis-
tance

17 10 10 OEM U(0,300) U(0,3000) / /
18 10 20 OEM U(0,300) U(0,3000) / /
19 10 40 OEM U(0,300) U(0,3000) / /
20 25 10 OEM U(0,300) U(0,3000) / /
21 25 20 OEM U(0,300) U(0,3000) / /
22 50 10 OEM U(0,300) U(0,3000) / /
23 50 20 OEM U(0,300) U(0,3000) / /
24 100 10 OEM U(0,300) U(0,3000) / /
25 10 10 OEM U(0,300) U(0,3000) yes 100·100
26 10 20 OEM U(0,300) U(0,3000) yes 100·100
27 10 40 OEM U(0,300) U(0,3000) yes 100·100
28 25 10 OEM U(0,300) U(0,3000) yes 100·100
29 25 20 OEM U(0,300) U(0,3000) yes 100·100
30 50 10 OEM U(0,300) U(0,3000) yes 100·100
31 50 20 OEM U(0,300) U(0,3000) yes 100·100
32 100 10 OEM U(0,300) U(0,3000) yes 100·100

Table 4.5: Random instances total tardiness 17–32

Cases 17 - 32
In contrast to cases 1–16, where the goal was to minimize the makespan, in
cases 17–32 (tables 4.6, 4.7) with the aim to minimize total tardiness, the greedy
heuristics for the starting solutions performed much better. Overall, in 135 of
the 400 calculated instances, they found the best solution immediately.

With respect to the GAs, the 1-point crossover dominates the 2-point crossovers.
It is in no case worse but in eight cases better than the best solution of the 2-
point crossover methods. The 1-point crossover is further dominated by the TS
in all cases. This might indicate that the starting solution is already in a good
neighbourhood for further improvements. When comparing the two TSs, espe-
cially the Swap method showed promising results. It performed only worse in
one case than the Insert method, but in 14 cases it was better. The SA provides
only average results. While it is better in the larger instances than the GAs, it
performs worse in the smaller instances. This is especially noteworthy, as the
SA also uses the Swap exchange, which provided the best results in the TS.
Therefore, the explanation about the starting solution in a good neighbourhood
can be questioned.

From Figures 4.9 (Diagram Case 18) to 4.12 (Diagram Case 30) it can be seen,
that all metaheuristics find better solutions very fast. The first gains for the TSs
are overall bigger than for the other methods, which is in line with the theory
that the starting solution is in a good neighbourhood. On the other hand, it
can clearly be seen that the SA has less gains in the beginning than the GAs.
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Starting so-
lution

1,0 GA 2 point
V1

GA 2 point
V2

GA 1 point

17 402,08% 7 140,63% 108,75% 94,18%
18 3059,45% 9 372,89% 312,09% 254,15%
19 896,50% 7 451,15% 399,86% 389,17%
20 71,44% 6 60,22% 60,22% 60,22%
21 91,14% 6 65,84% 65,84% 65,84%
22 116,44% 6 78,06% 78,06% 78,06%
23 49,66% 7 36,31% 36,31% 36,31%
24 215,63% 8 129,00% 129,00% 129,00%
25 422,65% 7 261,63% 239,94% 224,55%
26 506,35% 7 254,73% 220,90% 179,76%
27 367,19% 7 315,16% 313,55% 295,07%
28 103,19% 10 103,19% 103,19% 102,16%
29 85,18% 13 85,18% 85,18% 85,04%
30 37,42% 10 37,42% 37,42% 37,42%
31 496,35% 11 496,35% 496,35% 496,35%
32 32,86% 14 32,86% 32,86% 32,86%

Table 4.6: Gap to the lower bound for cases 17–32, methods 1–3 and starting
solution

TS Swap TS Insert SA VNS Random
Search

17 21,60% 32,90% 245,83% 28,68% 217,29%
18 83,29% 83,62% 407,06% 96,98% 1820,72%
19 30,62% 37,48% 527,39% 29,40% 896,50%
20 19,65% 23,18% 60,22% 19,59% 71,44%
21 22,96% 25,17% 65,57% 22,96% 91,14%
22 25,04% 25,91% 78,06% 25,07% 116,44%
23 23,20% 23,57% 36,31% 23,20% 49,66%
24 71,92% 74,11% 126,55% 78,05% 215,63%
25 91,11% 96,86% 267,10% 33,68% 422,65%
26 25,80% 48,05% 254,71% 28,15% 506,35%
27 32,89% 40,00% 158,58% 22,82% 367,19%
28 43,40% 43,40% 61,87% 21,94% 103,19%
29 23,23% 22,43% 57,93% 8,16% 85,18%
30 17,32% 18,32% 21,55% 12,25% 37,42%
31 58,14% 90,43% 496,35% 24,23% 496,35%
32 15,92% 20,42% 31,55% 15,26% 32,86%

Table 4.7: Gap to the lower bound for cases 17–32, methods 4–8
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Figure 4.9: Diagram Case 18

So, for the moment, there is no conclusion regarding the explanation of different
performances of the metaheuristics.

The VNS showed again an exceptionally good performance. Overall it per-
formed as the best method in nine cases. In the other cases it was close to
the best-found valid solution. The path of the VNS from Figures 4.9 (Diagram
Case 18) to 4.12 (Diagram Case 30) is interesting though. It first follows the
performance of the GAs and then switches for further improvements to the TSs.
Before the switch, the performance is worse than the performance of the TSs.
The switch allows the VNS, however, to get overall a better performance than
the TSs. Therefore, it indicates that a neighbourhood exists which was found by
the GAs and which allows an overall better performance when analysed in detail
than the starting neighbourhood, which is more intensively explored by the TSs.

It has to be acknowledged though, that in 25 of the 400 test cases the lower
bound indicated that no tardiness exists, while the best-found starting solution
showed a tardiness. It remains unclear how these cases can be compared. They
are so far not included in Table 4.6 and Table 4.7.
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Figure 4.10: Diagram Case 22

Figure 4.11: Diagram Case 26
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Figure 4.12: Diagram Case 30

4.4.2 Instances with known best solution

We tried different variants to create lower bounds, when we were not able to
solve the MIPs because we ran out of memory. On the one hand, we started
by relaxing some integer and binary variables and/or eliminating constraints.
“CPLEX” and “Gurobi” were, however, still not able to solve these relaxed
problems. Only when all integers were relaxed, the problem was solvable by
standard solvers. But we started to calculate lower bounds manually, by sum-
ming up the setup and break times, and adding the smallest production times
of the jobs to the machines. These lower bounds were worse than relaxing all
integers in the MIP and using the solution of these as the lower bounds. Never-
theless, the results for these lower bounds were rather weak as could be seen in
4.4.1. Therefore, we also created instances in such a way that the best solution
is known beforehand. It is clear that there are different ways to create a sched-
ule from which the best solution is known beforehand. The most obvious way
is that all machines and the setup operator have a workload of 100% until a
certain point in time t. There is no other schedule that finishes before t. Never-
theless, this is not a realistic schedule regarding the data we have received from
the company. Therefore, we tried to make the schedule as realistic as possible,
while still maintaining the knowledge at which point in time the optimal sched-
ule ends. For us, this means that the setup operator as well as the machines
both have idle time in the optimal schedule.

1. For the time period 0 to t a sequence for the setup of jobs is randomly
chosen. This sequence also implies the assignment of jobs to machines.
Two consecutive setups on the same machine are not allowed. The se-
tups of the jobs are selected in such a way that the setup operator has
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Figure 4.13: Generation of instances with best solution known parallel dedicated
machines: Step 1

a workload of 100%. Therefore, the earliest possible point in time, when
the setup operator is finished, is t. (Figure 4.13)

2. On each machine, after the final setup, a processing time amounting to
the difference between t’ and the end of the final setup on the machine
is inserted. A lower bound for the last completion time for all jobs is the
point when the last setup is finished (t) plus the minimum processing time
over all final jobs on the machines. This happens at time t’. Therefore,
our proposed schedule which finishes also at t’ is optimal. (Figure 4.13)

3. Between two jobs on a machine, a randomly chosen processing time with
the maximum duration of the distance between the two setups is intro-
duced. Until point t, the setup operator still has a workload of 100%.
Hence, the argumentation from point 2 still holds. Therefore, the sched-
ule is still optimal. (Figure 4.14)

4. The final processing times on the machines is increased from t’ to t”.
The argumentation from point 2 can be used analogously. Therefore, the
schedule is still optimal. (Figure 4.14)

5. The processing times between t’ and t” are interrupted through the inser-
tion of setup times, which therefore split the last jobs into smaller jobs.
The setup times are chosen in such a way that the machines still have a
100% workload between the last setup before t on each machine and t”.
The setup operator still has a full workload between 0 and t. If the ma-
chines have a full workload after their last setup before t, a lower bound
is the point in time when the last setup is finished before t, plus the min-
imum amount of work a machine has to do after the final setup before t.
This point is reached at t”. The proposed schedule ends at t”. Hence, it
is optimal. (Figure 4.14)
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Figure 4.14: Generation of instances with best solution known parallel dedicated
machines: Step 2

For each case, 25 instances are solved.

Case Machines Jobs
33 10 10 OEM
34 10 20 OEM
35 10 40 OEM
36 25 10 OEM
37 25 20 OEM
38 50 10 OEM
39 50 20 OEM
40 100 10 OEM

Table 4.8: Instances from which the best solution is known 33–40

Cases 33–40
What can be seen clearly from tables 4.9 and 4.10 is the huge gap to the lower
bound for the greedy heuristics. Even in the smallest cases, the gap is still on

Starting so-
lution

GA 2 point V1 GA 2 point
V2

GA 1 point

33 188,50% 0,03% 0,00% 0,00%
34 193,70% 0,02% 0,01% 0,03%
35 195,46% 0,03% 0,03% 0,05%
36 380,83% 0,20% 0,11% 0,13%
37 356,78% 0,09% 0,08% 0,09%
38 536,59% 0,67% 0,59% 0,59%
39 564,16% 0,67% 0,66% 0,70%
40 805,75% 2,02% 1,98% 2,01%

Table 4.9: Gap to the optimum for cases 33–40, methods 1–3 and starting
solution
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TS Swap TS Insert SA VNS Random
Search

33 0,08% 1,09% 1,64% 0,00% 75,05%
34 1,13% 1,25% 1,25% 0,02% 107,96%
35 0,99% 0,98% 0,80% 0,03% 140,08%
36 1,68% 2,07% 2,14% 0,23% 206,09%
37 1,47% 1,61% 1,51% 0,28% 258,86%
38 2,43% 3,45% 3,19% 1,32% 371,39%
39 2,24% 2,34% 2,12% 0,87% 450,65%
40 3,90% 4,10% 3,66% 2,31% 621,52%

Table 4.10: Gap to the optimum for cases 33–40, methods 4–8

Figure 4.15: Diagram Case 34
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Figure 4.16: Diagram Case 38

average of 188, 5%. In the largest instances, the gap can get as high as 805, 75%
on average. The metaheuristics are on the other side very close to the optimum
after 360 seconds. No metaheuristic is more than 4, 1% away from it. Even
more, Figure 4.15 (Diagram Case 34) and 4.16 (Diagram Case 38) show in an
exemplary manner that all metaheuristics come very close to the optimum in
a very short time frame. This is an interesting result, as the cases were made
in such a way that they were thought to be hard to solve, as they are very dense.

Although the neighbourhood search methods (TSs, and SA) show a satisfac-
tory performance, they are always further away from the optimum than the
GAs. The SA is still the weakest metaheuristic. The TSs are in line with re-
sults 1–16 and the GAs are best. They are in all but one case less than one
per cent away from the optimum on average. Therefore, it seems clear that
the choice of goal for optimization has an influence on the performance of the
metaheuristic.

The performance of the VNS is, however, worse than the performance of the
GAs. Although it is closer to the results of the GAs than to the other methods,
or sometimes gets the same results as the GAs, it is worse than the GAs on
average. Therefore, the stage of TS or SA, with a detailed view on the neigh-
bourhood it takes from the GAs, does not bring up sufficient results, as in cases
1–16. This could either be that the GA search is not finished yet and thus the
other methods have to start in a not-so-good neighbourhood, or the structure in
the neighbourhood brought up by the GAs, cannot be efficiently investigated by
the TSs and SA. Hence, while the objective function, number of jobs, machines
is comparable from cases 1–16 to cases 33–40, the underlying problem structure
must be different. Further research must be done.
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Figure 4.17: Travel distances at the company

4.4.3 Case study

As the problem has already been described in the introduction, the information
provided below focuses on detailed production data from the company. For our
calculations we use ten old, real production instances, which are referred to as
case 41. The planning period covers the next four weeks in each instance, where,
on average, 144 jobs need to be produced on 13 machines. The minimum number
of jobs to be scheduled is 114 while the maximum is 196. The objective is to
minimize total tardiness. Since the company has a large product portfolio and
only the customer related quantity is produced, there are significant differences
in the production times for the jobs. In the data we received from the company,
the shortest production time for a job is 62 minutes, the largest production
time is 4167 minutes while the average production time is 2103 minutes and the
average median of all production times is at 2088 minutes.
The shortest setup time for a job, in the data provided by the company, is 60
minutes, the longest 180 minutes, while the average setup time is 120 minutes
and the median of all setup times is also 120 minutes.
The travel time between two machines, Figure 4.17, consists of picking up the
tooling at one machine, bringing it to the tooling keeping location, picking
up new tooling and then going to the new machines. Although machines are
arranged in two rows, the position of the tooling keeping location at the end of
one row increases overall travel time. Therefore, the travel times are between 10
and 22 minutes. Furthermore, setup operators work in shifts with breaks and
the goal is to minimize total tardiness, as described in Section 4.1.

Since the goal in this subchapter is to identify the possible production im-
provements for the company if more advanced heuristics would be utilized, we
use their due date heuristic to find a starting solution and compare it to the
VNS, which shows the best and most steady performance. The first compar-
ison is the average makespan. In the VNS the makespan is on average 56656
minutes. In the due date heuristic, the makespan is on average 339934 min-
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utes.8 The total production output, i.e. the number of finished jobs per day is
therefore also higher for the VNS (3,66 in the VNS to 0,61 jobs in the due date
heuristic). The higher production output is due to reduced waiting time for the
setup operators and for the machines. In the due date schedule setup operators
wait 87,74% and machines 93,27% of their time while in the VNS schedule the
waiting times are only 34,39% for setup operators and 61,68% for the machines.
Hence, it can be said that the company can achieve significant efficiency gains
by using metaheuristics. Although we did not test the performance of the other
algorithms, in this context, which is close to the random cases with the goal of
minimizing total tardiness, we would expect that all metaheuristics increase the
solution quality in contrast to the due date heuristic. Nevertheless, in line with
Subsection 4.4.1 we expect the TSs to perform best, even slightly better than
the VNS, which is used. Especially the SWAP exchange is sought to provide
additional solution quality. The GAs as well as the SA are expected to provide
worse solutions than the VNS in this case.

4.5 Conclusion

The aim of this chapter is to extend the parallel dedicated machine scheduling
problem with the scarce resource setup operators. With this goal in mind, a for-
mal problem definition in Section 4.2. was given. Here the operation time of a
job was split into setup and production time. The setup can only be undertaken
if the setup operator has ample capacity. Moreover, in the model, travel times
between the machines and break times, and shift times for the setup operator
were also included.

Seven different methods were developed to tackle the problem (three GAs, two
TSs, one SA, and one VNS) in 4.3. Section 4.4. then brings up a broad compu-
tational study in which the methods were tested. Different instances with the
objective either to minimize total tardiness or makespan were used here.

Randomly generated instances with up to 100 machines and 1000 jobs were
tested with and without break and travel times between the machines in 4.4.1.

If the goal was to minimize makespan with random instances, the VNS per-
formed best. In eight of the 14 cases, precisely in six out eight cases without
breaks and travel time, and two of six cases with breaks and travel time, the
VNS performed best. In the other cases, the VNS was also close to the best-
found solution. After that, the GAs also showed a satisfactory performance
and delivered the best-found solution in some cases. TSs and SA performed
relatively weak and left a bigger gap to the best-found solution.

Also in the minimize total tardiness problem with random instances the VNS

8Note that the makespan is so large due to the break and travel times.
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performed very well. It delivered in nine out of the sixteen cases the best so-
lution after 360 seconds. The TSs also provided good results. To our surprise,
the GAs still had a huge gap at the lower bound compared with the TSs and
the VNS.

Since we provided rather weak lower bounds, we created in 4.4.2 instances from
which the optimal solution was known. Due to the structure of the instances,
only the makespan minimization goal was pursued. In contrast to cases 1–16,
the GAs outperformed all other methods. The VNS, by contrast, was able to
find the same solution quality as the GAs in two cases and is close in the other six
cases. The TSs as well as the SA still had a larger gap from the optimal solution.

Finally, we tested the VNS, as it provided the steadiest performance of the
metaheuristics so far, in Subsection 4.4.3 on real data provided by the company.
It could clearly be shown that the use of the VNS would deliver huge savings
to the company.

Section Type Target Density Performance

Parallel
dedicated
machines

Random in-
stances

Makespan no breaks low GAs best, TS
good

Tardiness no breaks low TSs better than
rest

Makespan breaks low bigger gap with
breaks rest same

Tardiness breaks low GAs have prob-
lems

Best solution
known

Makespan high all metaheuristics
have strong per-
formance

Table 4.11: Results 1

Comparing the test scenarios so far, it can be said clearly that the perfor-
mance of the methods is dependent upon the problem structure. Nevertheless,
any metaheuristic was much better than the currently used sorting heuristics in
this area to generate a plan. The VNS search was in all of the scenarios close to
the best solution and performed especially well in the random cases 1–16. As
the work/performance of the VNS is dependent on the work/performance of the
underlying metaheuristics, it is not included in Table 4.11, as the target is to
identify influencing factors on the performance of the different algorithms. With
column 5 density, we refer to whether the structure of the optimal solution is
thought to be very dense. Although the setup operator as well as the machines
have idle time in the best solution known case the machines have maximum
workload in the first part of the schedule and in the second part the schedule,
the setup operator has maximum workload. Therefore, this is seen to be a dense
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schedule. We also expect a schedule to be denser with a higher number of setup
operators, as they are clearly a limiting factor. Hence, the higher number of
setup operators in a schedule, the less the amount of overall idle time.
The most obvious result is in the best solution known case (makespan). All
metaheuristics show a robust performance. There is no difference in the num-
ber of jobs. Therefore, it is estimated that density has a positive influence on
the performance of all metaheuristics. Also, in the random instances makespan
cases, the results are good for all metaheuristics. Although they are closer to
the lower bound in the smaller instances, the gain they can achieve is bigger in
the larger instances. Therefore, there is no advantage for smaller instances. The
GAs are slightly better than the TSs. In the tardiness random instances cases,
the TSs are better than the GAs. Hence, a first expectation would be that the
TSs work better with the goal to minimize total tardiness. When breaks are
included, the gap to the lower bound overall increases for all metaheuristics.
The GAs seem especially to have problems with breaks and the goal total tar-
diness. So, this combination seems to have a negative influence on the GAs. No
interesting facts were found about the SA.

Overall, the chapter provides first insights into the so far unknown relevance
of setup operators in the area of production planning. From a practical point
of view, the results are of special importance to production companies and have
huge cost-saving potential. As shown in the results, huge savings can be gained
by the use of more advanced algorithms. On the other side, as seen in Sec-
tion 2.3., many SMEs lack basic software infrastructure to use these advanced
algorithms. Therefore, an introduction is only the second step for them. In
these cases, the primary recommendation is to increase awareness that setup
operators are a limiting factor and to ensure that a sufficient number of setup
operators is always available. This can be done through the advanced training of
operators for example such that they are able to do both jobs. This chapter also
contributes to the sparse literature on setup operator scheduling. Nevertheless,
while old questions have been answered, new questions arose. What remains
unclear is the different performance of the metaheuristics regarding the prob-
lem structure. Some focus should therefore be clearly put on identifying better
lower bounds. On the other hand, the influence of the different constraints,
targets could be checked in a computational study where all combinations of
targets and constraints are tested. Moreover, we have only tested these types
of algorithms on the very distinct case of parallel dedicated machines with one
setup operator. Their performance in more general problems remains unclear
so far.



Chapter 5

Parallel machines subject to
setup constraints

5.1 Introduction

The problem we consider in this chapter is based on the production situation for
synthetic material at a medium sized company. While the company analysed in
this chapter is above the limits of the quantitative definition of the IfM [2002] (it
has around 700 employees) it is still family owned in second generation. Different
members of the family are responsible for different tasks in the company such
as sales, production or human resources. The company also uses universal
machines which can produce a variety of products. Therefore, they also have
the problem of labour intensity Pfohl [2006]. There is an ERP system, but it
does not support PPS functionality. The planning is done completely manually
with Excel. Stock levels are so high that sometimes also the parking spaces for
employees are used to store parts. Hence, the company is perfectly in line with
the answers from our study, and thus the results are expected to be applicable
to most other SMEs in the field of production. The mathematical problem can
be seen as the proceeding of the parallel dedicated machines problem with a
single setup operator from Chapter 4. The difference now is that there is no
job-chain on the machines, jobs are not preassigned to machines and instead of
one setup operator, there are multiple setup operators. We focus on their plant
at the headquarter with 10 machines.
Before a job can be produced on a machine, the machine has to be set up for
the job. A setup time occurs in the following cases:

1. A change of dimension is needed when the succeeding product has a
diameter that is different from its predecessors. The time for the change
is sequence-dependent. For the products with the largest diameters, the
time to change the dimension can take up to 20 hours.

2. If a successor product follows immediately on the same machine and has

83
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a different colour from that of the predecessor product, a colour change
setup must be done. The machine must be cleaned of the leftovers of the
old base material. The base material for the successor product then gets
filled into the machine. Depending on the sequence of the products, the
colour change can take up to 36 hours.

3. If the successor does not follow immediately, the machine must still be
cleaned and shut down afterwards. We will refer to this as dismounting
as was done by Cheng and Sriskandarajah [1999]. Dismounting can take
up to eight hours.

4. If a job has no direct predecessor, a start-up time occurs. This is the
time for heating up the machine and setting it up with the correct tooling.
The start-up time is machine-dependent and can take up to 20 hours.

Setup and dismounting operations, as well as machine start, must be done by
a setup operator. This dedicated person has the necessary skills and tools for
setting up and dismounting the machines. Setup operators work in three shifts,
seven days a week. At each point in time, three setup operators are available,
meaning that three setup operations can be done in parallel.
The company uses the following scheduling strategy: New production jobs are
added every Monday to the plan. They are added in such a way that the start
and end times of the jobs in the existing plan do not get affected. New jobs
are sorted by their delivery date and planned behind the already scheduled jobs
as early as possible in the plan. The plan covers the next four weeks. There
is no planned schedule for the setup operator himself. Instead, he sets up the
next available job. If several jobs can be chosen, he sets up the job which was
available first.
For the company, the most important goal is the punctual delivery of customer
orders. Although, as of today, their punctuality is close to 100%, future require-
ments of their customers will affect their production schedule. On one hand,
the minimum order level will diminish. More jobs will have to be produced and
scheduled. The proportion of setup time as opposed to production time will
increase. Besides, the company has a growth of 10% annually, which is why
the number of jobs to be scheduled and produced also increases. Therefore,
manual scheduling is likely to reach its limitations. Computerized scheduling,
taking the above-mentioned restrictions into account, might provide better re-
sults, than the strategy currently applied.

5.2 Problem definition

In a more formal way, the problem can be described as follows: We consider a
set of machines m = 1, . . . ,M . There are jobs j = 1, . . . , J . Each job j requires
processing time pj,m, which depends on the machine the job is assigned to, and
is preceded by sequence-dependent setups of duration sl,j . If no job follows in d
time units on the same machine after the direct preceding job has been finished,
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a job and machine-dependent dismounting bj,m occur. After the dismounting
of a machine, a start-up time cm for this machine is needed. Pre-emption is
allowed neither for jobs nor for setups. Each job j can be produced on a set
of machines, but may only be assigned to exactly one machine. The binary pa-
rameter θj,m indicates whether job j can be done on machine (m). At any point
in time t = 1, . . . , T , there can be at most Qt overlaps of setups, dismounting,
and start-ups.

For each job and each setup, the assignment and start time (hence the com-
pletion time) is to be decided. The goal is to minimize total tardiness. Note
that we can assume that each job follows its preceding setup without any idle
time in between.

5.2.1 Standard model formulation

min
J∑

j=1

taj (5.1)

Lj − (Sj + pj + sj) ≤ taj

∀ j = 1, . . . , J (5.2)

sj ≥
M∑

m=1

J∑
i=1

si,j · φmi,j ∀ j = 1, . . . , J (5.3)

sj ≥
M∑

m=1

γj,m · cm ∀ j = 1, . . . , J (5.4)

pj =
M∑

m=1

pj,m · γj,m ∀ j = 1, . . . , J (5.5)

J∑
i=1

J∑
j=1,j 6=i

φmi,j ≥
J∑

j=1

γj,m − 1 ∀ m = 1, . . . ,M (5.6)

M∑
m=1

J∑
i=1

φmi,j ≤ 1 ∀ j = 1, . . . , J (5.7)
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Indices
m Machine index m = 1, . . . , M
j Job index, j = 1, . . . , J
t Time index, t = 1, . . . , T
Parameters
ej,m Binary parameter which is 1, if job j is producible on machine m
pj,m Processing time of job j on machine m
sl,j Setup time of job j, if j follows job l
bj,m Dismounting time of job j on machine m
cm Start-up time of machine m
d Timeslot for shutting down a machine
tt Time at point in time t
K Adequate large number
Qt Number of setup overlaps allowed at time t
Lj Delivery date of job j
Variables
Sj Starting time of job j
pj Processing time of job j as defined in the model
sj Setup time of job j as defined in the model
taj Tardiness of job (j)
Cmax Makespan
θj Binary variable which turns 1 if job j is too late
γj,m Binary variable which turns 1 if job j is produced on machine m
ιj,m,t Binary variable which turns 1 if job j is produced on machine m at time t
αi,j Binary variable which turns 1 if setup of job j is finished after setup of job i
βi,j Binary variable which turns 1 if job j is finished after job i

ζi,jt Binary variable which turns 1 if setup of job i and setup of job j overlap at
time t

σi,j Binary variable which turns 1 if job j is produced after job i
φmi,j Binary variable which turns 1 if job j is produced next after job i on

machine m
ηi,j Binary variable which turns 1 if job j is produced immediate after job i
λi,j,t Binary variable which turns 1 if t is before the starting time of job i
ωi,j,t Binary variable which turns 1 if t is after the ending of the setup time of

job i or job j
δi,j,t Binary variable which turns 1 if t is after the ending of the processing time of

job i or job j

Table 5.1: Notation parallel machines

M∑
m=1

J∑
j=1

φmi,j ≤ 1 ∀ i = 1, . . . , J (5.8)
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γj,m ≥ φmi,j ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M (5.9)

γi,m ≥ φmi,j ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M (5.10)

M∑
m=1

γj,m = 1 ∀ j = 1, . . . , J (5.11)

γj,m ≤ ej,m ∀ j = 1, . . . , J,m = 1, . . . ,M (5.12)

(1− φmi,j) ·K + Sj ≥ Si + si + pi

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M (5.13)

Si + σi,j ·K ≥ ((Sj + sj)−K · ζi,jt )−K · λi,j,t −K · ωi,j,t

∀ t = 1, . . . , T, i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.14)

J∑
j=1

ζi,jt ≤ Qt ∀ t = 1, . . . , T, i = 1, . . . , J (5.15)

(σi,j − 1) ·K + Si ≤ Sj ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.16)

σj,i ≥ 1− σi,j ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.17)

σj,i + σi,j = 1 ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.18)

tt ≥ Si −K · λi,j,t ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.19)
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tt < Si +K · (1− λi,j,t)

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.20)

tt ≤ Si + si +K · ωi,j,t +K · (1− αi,j)

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.21)

tt ≥ Si + si −K · (1− ωi,j,t)−K · (1− αi,j)

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.22)

tt ≤ Sj + sj +K · ωi,j,t +K · αi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.23)

tt ≥ Sj + sj −K · (1− ωi,j,t)−K · αi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.24)

ωi,j,t = ωj,i,t ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.25)

Si + si ≥ Sj + sj −K · αi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.26)
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tt ≤ Si + si + pi +K · δi,j,t +K · (1− βi,j)

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.27)

tt ≥ Si + si + pi −K · (1− δi,j,t)−K · (1− βi,j)

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.28)

tt ≤ Sj + sj + pj +K · δi,j,t +K · βi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.29)

tt ≥ Sj + sj + pj −K · (1− δi,j,t)−K · βi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.30)

δi,j,t = δj,i,t ∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j, t = 1, . . . , T (5.31)

Si + si + pi ≥ Sj + sj + pj −K · βi,j

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j (5.32)

(φmi,j − 1) ·K + Si + pi + si + d ≥ Sj − (1− ηi,j) ·K

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M (5.33)
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(φmi,j − 1) ·K + Si + pi + si + bi,m + cm ≤ Sj + ηi,j ·K

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M (5.34)

Sj , tj,m ≥ 0 ∀ j = 1, . . . , J (5.35)

ej,m ≤ 0. ∀ j = 1, . . . , J (5.36)

θj , γj,m, ιj,m,t, αi,j , αi,j , βi,j , ζ
i,j
t , σi,j , φ

m
i,j , ηi,j , λi,j,t, ωi,j,t, δi,j,t ∈ {0, 1}

∀ i = 1, . . . , J, j = 1, . . . , J, i 6= j,m = 1, . . . ,M, t = 1, . . . , T (5.37)

The objective function (5.1), minimize the sum of tardiness for all jobs taj ,
together with constraint (5.2), the tardiness for a job j must be greater than or
equal the starting time for the job Sj + its processing time pj + its setup time
sj - its due date Lj , represent the goal to minimize total tardiness. Constraint
(5.3) defines the setup time for a job sj . Jobs have sequence-dependent setup
times depending upon the predecessor i. To reduce the usage of sequence-
dependent setup times in all calculations, the setup of a job sj is connected to
the sequence-dependent setup time si,j which is actually used (φmi,j). Constraint
(5.4) ensures that the setup time of a job sj is greater or equal to the start-up
time of the machine cm if the job is on the machine γj,m = 1. Constraint (5.5)
sets the production time of a job j pj equal to the machine-dependent production
time pj,m on which the job runs in the solution γj,m = 1. Constraints (5.6),
(5.7), (5.8), (5.9), (5.10), (5.11), ensure a strict sequence of jobs on machines.
Constraint (5.11) ensures that each job is connected to exactly one machine.
φmi,j is the direct successor j, predecessor i relationship on machine m. Each job
j can have no more than one predecessor on a machine m (5.7). Each job i can
have no more than one direct successor on a machine m (5.8). There can only be
a successor predecessor relationship on a machine m φmi,j , if the successor (5.9)
and the predecessor (5.10) are assigned to the machine m γj,m = 1. The number
of relationships on a machine must be greater than or equal to the number of
jobs assigned to that machine - 1 (5.6). Moreover, considering (5.9) and (5.10),
this prohibits sub-cycles as the number of direct relationships is limited. (5.12)
ensures that a job j can only be processed on machine m γj,m = 1, if the machine
is able to process job j ej,m = 1. If job j is the successor of job i on machine m
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φmi,j = 1, this makes the first part of (5.13) (1−φmi,j) ·K +Sj ≥ Si + si + pi = 0
such that the start time of job j Sj must be greater than or equal to the start
time of i Si + setup of i si and the processing time of i pi.
Constraints (5.14)–(5.32) regulate the number of setups at any point t. As the
explanation of these constraints would be more difficult to understand, only the
basic functioning of them will be described if expressed in the linear model.
For each point in time t, there is only a limited number of setups allowed Qt.
Therefore, for each t, it must be checked whether t is between the start of a
job Sj and the end of the setup for the job Sj + sj . σi,j is a binary variable
which is one if job j is produced within time frame d after job i on the machine
(5.33). If this does not hold, the start-up time of job j must also incorporate the
dismounting of the predecessor bi,m and the start-up time of the machine cm on
top of the finish time of the predecessor (Si + si + pi) (5.34), (5.35), (5.36) and
(5.37) define the variables domains.

5.2.2 Extension

In case the goal is to minimize makespan, constraints (5.38) and (5.39) replace
constraints (5.1) and (5.2).

min Cmax (5.38)

Sj + pj + sj ≤ Cmax ∀ j = 1, . . . , J (5.39)

5.3 Methods

Two TSs and two GAs were used to solve problems outlined before. The meth-
ods which showed the worst performance in Chapter 4 were not considered. The
functionality and elements of the methods presented here, are derived from Sec-
tion 4.3, so that the performance of the metaheuristics can be compared better.
The methods are either used separately or combined in a VNS, as in Section
4.3.

The four algorithms are sorted in the VNS in view of their exploration of
the neighbourhood. We start with the algorithms which search a neighbourhood
more broadly and then continue with the TSs which investigate a neighbourhood
more closely. This order is:

1. GA 2 point crossover,

2. GA 1 point crossover,

3. TS Swap Exchange,

4. TS Insert.
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The VNS is stopped after q minutes. As we have only four methods here,
each method has a maximum of q/4 minutes time before we switch to the next
method in the VNS. When a method does not find a better solution within
half of its allowed time, it is switched to the next method and the remaining
time is added to the next method. The duration for the switching was found
experimentally.
We use a two-stage combination of different heuristics to find a starting solu-
tion for the metaheuristics. In the first stage, we assign jobs to machines and
decide the processing order (job-chain) on each machine. In the second stage,
we find a schedule for the setup operators and thus the times at which the jobs
are processed are also determined. For the TSs, only the best solution is taken
while for the GAs we use all solutions to form the first population.

First stage heuristics:

1. Schedule jobs in non-descending order by their due date as early as possi-
ble. Do this on a machine which has the highest production speed for the
job. If two machines have the same production speed, use the machine
which can start the job earlier. Repeat until all jobs are processed.

2. Schedule jobs in non-descending order by their due date as early as possi-
ble. Do this on a machine which can start the job first. If two machines
can start the job at the same time, use the machine with the higher pro-
duction speed. Repeat until jobs are processed.

3. Schedule jobs in non-descending order by their due date as early as possi-
ble. Do this on a machine which can finish the job first. If two machines
can finish a job at the same time, use the machine with the higher pro-
duction speed for the job. Repeat until all jobs are processed.

4. Schedule jobs in non-descending order by their slack time as early as pos-
sible. Do this on a machine which can finish the job first. If two machines
can finish a job at the same time, use the machine with the higher pro-
duction speed for the job. Repeat until all jobs are processed.

5. Schedule jobs in non-descending order of the number of machines which
they can be served by. Do this on a machine which can handle the least
amount of jobs, as early as possible. If multiple jobs can be served by the
same number of machines, schedule the jobs in non-descending order of
their due dates. Repeat until all jobs are processed.

Second stage heuristics:

Each time a setup operator gets available, the heuristics use one of the fol-
lowing strategies to find his next assignment. These times are considered in
non-decreasing order of their occurrences.

1. Of all jobs allowed to be processed with regard to the job-chains, set up
the job with the earliest due date.
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2. Of all jobs allowed to be processed with regard to the job-chains, set up
the job with the least slack time.

3. Of all jobs allowed to be processed with regard to the chains, set up the
job with the shortest setup time. Repeat until all jobs are processed.

4. Of all jobs allowed to be processed with regard to the chains, set up the
job with the longest processing time. Repeat until all jobs are processed.

5. Of all jobs allowed to be processed with regard to the chains, set up the
job from the chain with the largest sum of remaining setup and processing
times. Repeat until all jobs are processed.

A solution is represented by a sequence of jobs together with the name of
the machine they are assigned to. The sequence also indicates to which machine
a setup operator should move next. Given the sequence ‘J2 M1, J3 M2, J4 M0,
J1 M3, this would mean first setting up machine 1 with job two, then machine
2 with job 3, then machine zero with job 4, etc.

5.3.1 Tabu Search

As the basic functionality of the TSs has been described in Subsection 4.3.1
extensively, we will here only focus on the differences and the main elements of
the TSs which are used for this problem setting.

The neighbourhood is created and explored in a three-stage method in regard to
the used objective function. Two different search methods (Swap exchange, In-
sert method) can be chosen. As both methods have been extensively explained
in Subsection 4.3.1, they are not described again here. The fitness value must
be calculated after each stage. Two different objective functions have been
implemented (makespan minimization, minimize total tardiness). After each
fitness value calculation, for each machine an objective value (i.e., tardiness) is
calculated. There is a predefined ratio that describes which proportion of the
machines is set to high or low. Our tests suggested that we set the ratio to 1/3
in smaller instances and up to 1/6 in large instances.

1st stage: For each job from a high machine, it is then moved to each low
machine, if possible. The position of the job within the solution representation
will stay the same. Only the assigned machine will be changed.

2nd stage: Use the selected exchange method.

1. For each job assigned to a high machine, exchange the position directly
with each other job of the high machine, if possible.

2. For each job a assigned to a high machine, put it after each other job b of
the high machine, and move all jobs that were previously between these
two on the high machine forward by one position.
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In both cases, the search space for a position in to which to insert or in which
to swap an element is limited to the next 15 positions due to time constraints.

3rd stage: Set up the jobs based on the sequence. If a setup operator has
idle time and can only start the next job at time t, search in ascending order
of the goal (i.e. due dates) for another job that can be set up before time t. If
such a job is found, do the setup. Repeat until all jobs are processed. We call
this post-processing.

After a neighbourhood has been created, and their solutions have been rated,
the best solution, which is not prohibited by the tabu list or is prohibited but
meets the aspiration criterion (the solution is the new best global solution), is
taken. Besides the exchange methods, a shake is used, to randomly generate
a new origin every 200 iterations. Thus, we choose two jobs randomly which
change their position and machine assignment if possible. This is done until
50% of all jobs have been exchanged.

The tabu list consists of the last conducted exchanges and moves on the ma-
chines. The list follows a first in, first out principle, which means that the oldest
moves and exchanges in the tabu list leave it first. The size of the tabu list is
dynamic, but there is a minimum (10) and a maximum (50) size. If the fitness
value of the current solution is better than that of the last solution, the size of
the tabu list is reduced by one, if the minimum has not been reached. If the
fitness value of the current solution is lower than that of the last solution, the
size of the tabu list is extended by one, if the maximum has not been reached.
The goal of the procedure is that areas which lead to improvements should be
explored more intensively than areas which cause deterioration.
The algorithm runs as follows:
while (gap > y) {

origin string = best carried over string of the past iteration

if (iteration == one of the predefined values to shake the origin string) {

shake origin string

}

for ( i = 0 ; i < last position in the origin string ; i++) {

for ( m = 0 ; m < number of machines ; m++) {

if (job in position i is on a high machine) {

if (machine m is on a low machine) {
move the job in position i from the high to the low ma-

chine, if possible
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calculate fitness value of the new string and save string in
the temporary neighbourhood

}

}

}

}

for (i = 0 ; i < last position in the origin string ; i++) {

for (f = i+1 ; f <= last position in the origin ; f++) {

if (job in position p is on a high machine) {

if (job in position f is on the same machine) {
use chosen exchange method

post-processing

calculate fitness value and save string in temporary neigh-
bourhood

}

}

}

}

sort the strings regarding their fitness value in the temporary neighbour-
hood

make the first string whose move is not prohibited by the tabu list (or is
prohibited but meets the aspiration criterion= the new origin string

if (fitness value of the old origin string < fitness value of new origin string)
{

if (size of tabu list < maximum size of tabu list ) {

add the move from the old origin string to the new origin string

add the move to the tabu list

}
else {

delete the oldest move in the tabu list

add the move from the old origin string to the new origin string
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add the move to the tabu list

}

}

if (fitness value of the old origin string > fitness value of new origin string)
{

if (size of tabu list > minimum size of tabu list ) {

delete the two oldest moves from the tabu list

add the move from the old origin string to the new origin string

add the move to the tabu list

}
else {

delete the oldest move in the tabu list

add the move from the old origin string to the new origin string

add the move to the tabu list

add the move from the old origin string to the new origin string

add the move to the tabu list

}
if ( fitness value of so far found best solution > fitness value of new
origin string) {

update so far found best solution

}

}

}

5.3.2 Genetic Algorithm

In this chapter, we focus only on the main elements and the differences to Sub-
section 4.3.2, in which the GAs functionality has been described in detail. Two
GAs are applied. We use a 2-point crossover and a 1-point crossover. In all
variants, the population is limited to 500 chromosome strings.

The same selection method for the 2-point crossover as in Section 4.3 ex-
plained, is used. In contrast to Section 4.3, the following formula is used here
and in Chapter 6 to assign the selection probability to strings:
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Selection probability in % of string a = fitnessvaluea·100
last string∑
i=string1

fitnessvaluei

.

If strings have a higher selection probability of q%, they are added to set C.
The number of strings in C is c. Reduce the selection probability of each string
in C to q%. The sum of the differences between the higher selection probability
and q is distributed among the strings which are not in set C with the help of
the following formula:

Selection probability of string a = Selection probability of string a +

the sum of the differences between the higher selection probability and q
number of strings in population −c .

Rank the strings according to their fitness value

selection probability of string i = position in ranking for i
number of strings∑

m=1
m

· 100.

After each fitness value calculation, machines are categorized into high or
low in regard to the objective function. For each machine, an objective value
(i.e. end of last job) is calculated. Machines which have a higher average value
are classified as high, machines which have a lower value are classified as low.
The new chromosomes are built in a two-stage approach.

1st stage: In the first stage, only the assignment of machines to jobs is consid-
ered and not the job sequence itself. The new chromosome is built—from the
first parent chromosome string until the first crossover point, the second par-
ent chromosome string from the first crossover point until the second crossover
point, and the first chromosome string from the second crossover point to its
end. We create a second chromosome by exchanging the orders in which the
parents are considered.
The exchange of genes is done sequentially, and each gene exchange is followed
by a repair if necessary. To start with, the objective values of each machine
gets adjusted. Here the average value from the respective values of the parents
is built. The assumption is that machines which were previously below/above
average in both parents will also be below/above in the new chromosome string.
For machines which were classified differently from the parents the estimation
is more unclear. Therefore, they move towards the new average. In case a
machine has been assigned to a job on which it cannot be processed, the job
gets assigned a non-marked machine with the lowest value on which it can be
processed. The assigned machine gets marked now, such that it is not assigned
anymore in the repair until all other low machines have been assigned.

2nd stage: In the second stage, only the sequence of jobs is considered. The
procedure is the same as in the first stage, except for the repair. The repair
is done after all genes between the two crossover points have been exchanged.
Again, in the resulting strings, some jobs may not occur, while others have
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multiple occurrences. A repair is necessary. For each job, it is controlled if the
number of occurrences in the new chromosome string is equal to that number
in the parent string. Beginning with the first job, the repair is done as follows:
If job q is underrepresented in the chromosome string, the first gene with the
characteristic of an overrepresented job beginning left in the new chromosome
string, is changed to the characteristic of the underrepresented job. If the job
is overrepresented in the chromosome string, the leftmost gene with the char-
acteristic q is changed to the characteristic of the next underrepresented job.
This is done until all jobs are represented equally in the old and new chromo-
some strings. Note that the two presented crossover methods are likely to have
different outcomes due to their different repair mechanisms.

Postprocessing After a sequence has been initially evaluated. A so called
postprocessing is used. Setup the jobs regarding the sequence. If a setup oper-
ator has idle time and can only start the next job at time t, search in ascending
order of the goal (i.e., due dates) for another job that can be setup before time
t. If such a job is found, do the setup. Repeat until all jobs are processed.

In the case of the 1-point crossover, the selection method is similar to the
selection method of the 1-point crossover in Chapter 4. The same formula as for
the 2-point crossover versions in this chapter is used to assign the fitness prob-
abilities to the chromosome string. As in the 2-point crossover case, machines
are classified into high or low after each fitness evaluation. The chromosomes
are then also built in a two-stage approach in which in the first stage only the
machine assignment gets changed and in the second stage the job sequence.

1st stage: All genes in the strings before the crossover point are swapped
with each other. If a repair is necessary, because a job has been assigned a
machine on which it cannot be processed, the repair is done analogous to the
2-point crossover version.

2nd stage: The crossover of the second stage is similar to the one of the
first stage, except the repair, which is done differently. The repair follows the
exchange of all genes before the crossover point and is undertaken in such a
way that the relative precedence of genes from the parent chromosome strings
is also reflected in the new chromosome strings. For each new child string c of
the parent p with the same postfix is considered. From left to right, each gene
in the parent p is considered, and it is checked whether the job q it represents
is underrepresented in the child c. If it is, the first gene of the child after the
crossover point that has not been replaced during the repair, is set to the char-
acteristic of q. Finally, again the post-processing follows.

The two crossover variants share the same type of mutation and elitism. In
addition to the crossovers, each chromosome string in the new population is
selected with a probability of one percent for mutation. If a string is selected,
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two genes in the string are chosen randomly. The machines for each of the
genes assigned are changed randomly to another machine which can process the
job, before the genes are switched. As the results for the algorithms shall be
comparable across the chapters, the same procedure for the elitism is used as
in Subsection 4.3.2. The new population gets the two best chromosome strings
from the old population. There are no ‘intermediate populations which con-
tain partly old and new strings, meaning that a new population is established
first completely before further steps such as post-processing and the rating are
undertaken. The procedure runs as follows:

while (gap > y) do {

while (size of new population < total population size - 2 ) do {

pick 2 strings from the old population regarding their fitness value

crossover and repair

mutate each of the new chromosome strings with a predefined prob-
ability

add the 2 new strings to the new population

}

add the 2 best chromosome strings of the last population to the new
population

post-processing

calculate fitness function

sort the strings according to their fitness value

if (best string of new population < so far found best global string)

so far found best global string = best string of new population

old population = new population

clear new population

}

5.4 Computational results

The tests were performed on the same computer as in Chapter 4. The algorithms
presented here were tested on an Intel i7 Quadcore 3.4 GHz, 16 GB memory
computer with the help of randomly generated instances (5.4.1), instances from
which the best solution is known (5.4.2) and real-life data received from the
company (5.4.3). The programming language used was again Java.
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5.4.1 Random instances

For each test case (Table 5.2), three instances are solved with randomly gener-
ated numbers. Like Subsection 4.4.1, instances are created in such a way that
they not only reflect the production situation of the described company but also
show the performance of the algorithm in larger instances. The cases are built
as follows:

1. For each job–machine combination, randomly pull a number between 0 and
100. If the number is greater than 50, the job can run on the machine.
If the job cannot run on any machine after the procedure, assign uniform
randomly one machine.

2. For each job–machine combination, the job can run on, uniform randomly
assign a processing time between 0 and 3000.

3. For each machine, uniform randomly assign a maximum interim time be-
tween 0 and 1000, in which no dismounting is needed.

4. For each job–machine combination, the job can run on, uniform randomly
assign a dismounting time between 0 and 3000.

5. For each job–job combination, assign a setup time between the dismount-
ing time (COT) and 3000.

6. For each machine, a start-up time (SUT) and 3000 equal to the smallest
setup time for the job.

7. Due dates for the jobs. The due dates are calculated as follows: Sum up all
maximum production and setup times of the jobs to a variable s. Multiply
s with a positive factor to s*.9 For each job assign uniform randomly a
due date between 0 and s*.

The computing time is limited to 360 seconds per instance and method.
From 10 to 25 machines, 100 to 500 jobs, and 1 to 5 setup overlaps are consid-
ered in an instance. In the total tardiness, as well as the makespan minimization
problem, it was considered to create lower bounds by relaxing some constraints
(unlimited number of setup overlap, identical parallel machines) and then use
a polynomial algorithm. However, these generalizations of our problems are
already NP-hard. Lenstra et al. [1977] describe the makespan minimization
problem while Du and Leung [1990] show already that the total tardiness single
machine scheduling problem, a special case of the parallel machine problem is
NP-hard. We relaxed further constraints and tested them with cases which we
were able to solve to optimality with the help of “CPLEX”. It showed that the
lower bounds were even weaker as in Subsection 4.4.1. We therefore compare the
performance of the metaheuristics to the best starting heuristic after 360 sec-
onds running time. Cases 42–53 have the objective to minimize the makespan.

9In our case we choose 2 as a factor.
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Cases 54–65 have the objective to minimize total tardiness. The results are not
in line with the results from Section 4.4. We thus plot the neighbourhoods for
some methods to investigate the reasons for the mixed results more closely.

Case Machines Jobs Setup
time

Processing
time

interim
time

SUT COT setup
over-
laps

42 /
54

10 100 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

1

43 /
55

10 100 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

3

44 /
56

10 100 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

5

45 /
57

10 200 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

1

46 /
58

10 200 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

3

47 /
59

10 200 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

5

48 /
60

25 250 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

1

49 /
61

25 250 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

3

50 /
62

25 250 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

5

51 /
63

25 500 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

1

52 /
64

25 500 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

3

53 /
65

25 500 U(COT,
3000)

U(0,
3000)

U(0,
1000)

min setup
time job

U(0,
3000)

5

Table 5.2: Random instances 42–53 makespan / 54–65 total tardiness

Cases 42 - 53
What can be seen from Table 5.3 (random instances, maskepan) is that the
enhancement for each metaheuristic to the starting solution is less in the larger
cases. Furthermore, in most cases the enhancement is larger with increasing
setup operator size. Therefore, it seems that easier and smaller instances can
be solved better within the 360-second time frame.

As the GAs performed well in the makespan minimization cases either with
random instances (4.4.1) or in the instances which were created in such a way
that the best solution is known (4.4.2), it is expected that they also show here
a good performance. The GAs show, however, only minor improvements from
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GA 2
point

GA 1
point

TS Swap TS Insert VNS

42 2,19% 2,52% 23,38% 9,10% 25,10%
43 4,84% 7,44% 18,42% 14,39% 23,95%
44 10,67% 13,89% 21,21% 22,84% 25,00%
45 0,12% 0% 9,15% 5,40% 12,99%
46 5,18% 1,09% 27,96% 15,34% 26,98%
47 5,34% 6,72% 31,52% 18,39% 28,32%
48 0,15% 0% 11,47% 7,66% 7,17%
49 0,17% 0,25% 16,55% 11,32% 11,12%
50 3,85% 0,24% 19,11% 14,82% 11,04%
51 0% 0% 1,44% 1,27% 1,32%
52 0% 0% 2,50% 1,91% 1,91%
53 0,09% 0% 2,64% 2,44% 2,56%

Table 5.3: Enhancement to the starting solution for cases 42 - 53

Figure 5.1: Diagram Case 46
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Figure 5.2: Neighbourhood TS Case 46

Figure 5.3: Neighbourhood GA Case 46
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Figure 5.4: Neighbourhood VNS Case 46

the starting solution. When comparing only the GAs, both methods are, in five
cases, better than the other. Larger cases with 250 jobs or more show rarely,
respectively no improvement. In Figure 5.1 (Diagram Case 46) it can be seen
that the GAs have a steady improvement over the time. The increase of the
solution quality is nevertheless slow. On the other hand, as the slope is linear,
it is expected that the GAs would with further running time also enhance the
found solutions. Figure 5.2, 5.3 and 5.4 show how the GA 1 point, the TS
Insert and the VNS see the neighbourhood for case 46. The fitness value is rep-
resented by the height in the figures. Since the minimization of the makespan is
the objective, a lower fitness value is an enhancement. The width in the figures
shows the solution space in one iteration.10 The depth from right to left (back
to front) shows the change of the neighbourhood with each iteration. Figure 5.3
shows the neighbourhood for the 1-point crossover GA. It can be seen clearly
that the GA does not run the same amount of iterations as the TS 5.2. On the
other hand, the GA has more solutions in a single iteration to solve. In each
single iteration the GA has, furthermore, many solutions which are much worse
than the best solution in the iteration. This is because the GA neighbourhood
is, due to its structure, more diverse than the neighbourhood of the TS. Hence,
it seems that only a small area of the overall solution space can be used to
gain good solutions. Therefore, the GA cannot get any advantage over the local
search methods by using more of the solution space. What can also be seen is
that worse solutions decrease in the population over time. Therefore, it is likely

10Due to technical reasons it is not possible to show all solutions for each iteration. There-
fore, sometimes only an excerpt of the best solutions is shown.
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that the GA will come to a better solution with a longer running time, when
the search space for the GA is more converging.

Here the TSs perform better than the GAs, although they were worse in Chapter
4 in the makespan cases. From the TSs, the Swap method dominates the Insert
method. It is in all but one case better than the former. In the last eight cases,
the Swap method finds the best solution among all metaheuristics. The Insert
method also initially shows a steep incline before the incline decreases dramat-
ically after approximately a 30-second running time. It seems nevertheless not
to be stuck in a local optimum during the 360-second running time. From the
graph in Figure 5.1, it can be seen that there is a steep decline/incline in the
beginning and only little decline/incline in the later iterations. Interesting is
the proportion of fitness values in a single iteration (Figure 5.2). While in the
beginning the proportion of worse solutions in an iteration is higher, there is
a convergence at the end towards good solutions. Hence, the TS is more and
more stuck in a local or global optima.

The VNS finds the best solution among the metaheuristics in five cases. In
the last eight cases is it close. When taking Figure 5.1 (Diagram Case 46) into
consideration, the performance of the VNS seems clear. The 1-point crossover
shows almost no gain, while the 2-point crossover shows a steady but slow linear
gain. Therefore, the VNS also shows only a limited gain at the beginning. After
180 seconds, it is switched to the TS Swap heuristic, which immediately shows
a much higher incline, which is similar to the incline the TS has at the very
beginning, when the method is run separately. Therefore, the performance of
the VNS is clearly dependent on the performance of the TS Swap in case 46.
After 270 seconds it is switched to the Insert method. However, no further gains
can be achieved by this. Therefore, the VNS stays below the result of the Swap
method in case 46.

Overall, the results are surprising when they are compared to those with the
target to minimize makespan in Chapter 4. While the GAs do not perform well
at all, the TSs can at least get some enhancements. While the metaheuristics
have the same number of jobs, the neighbourhood structure seems to be worse
for the metaheuristics. Especially, the GAs are not able to run many iterations.
So, the problem in Chapter 4 was either very easy, or the complexity here has
increased exponentially.

Cases 54 - 65
Overall, it can be clearly seen in Table 5.4 (random instances, total tardiness)
that the methods show a higher improvement in the smaller instances. There-
fore, it shows that new algorithms should not only be tested on small problem
instances but also on large real-world problem instances.
Although the GAs do not find the best solution among all methods in any case,
especially in the smallest instances, their results are close. They have problems
in the large instances. Furthermore, the GAs find better solutions when the
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GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

54 4,59% 5,24% 28,09% 9,89% 34,78%
55 62,45% 58,99% 66,68% 68,30% 58,99%
56 68,29% 67,13% 75,31% 74,82% 70,05%
57 0,48% 0,63% 32,20% 32,22% 23,23%
58 8,05% 7,67% 35,64% 35,64% 24,54%
59 18,43% 16,64% 45,36% 45,32% 27,25%
60 0,22% 0,32% 13,03% 13,03% 6,66%
61 0,60% 1,60% 13,96% 13,96% 6,95%
62 3,06% 1,62% 15,23% 15,23% 8,04%
63 0% 0% 1,03% 1,03% 1,91%
64 0% 0,19% 1,06% 1,06% 1,85%
65 0% 0,41% 1,38% 1,38% 2,34%

Table 5.4: Enhancement to the starting solution for cases 54–65

Figure 5.5: Diagram Case 58
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Figure 5.6: Neighbourhood TS Case 58

Figure 5.7: Neighbourhood GA Case 58
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Figure 5.8: Neighbourhood VNS Case 58

number of setup operators is set high. Therefore, it seems that the GAs have
problems finding feasible solutions. This, coupled with a large problem instance,
leads to a weak performance. But it is much better than in the cases with the
task to minimize makespan. Figure 5.5 (Diagram Case 58) shows as 5.1 (Di-
agram Case 46) a steady enhancement for the GAs. What can especially be
seen in Figure 5.7 (Neighbourhood GA Case 58) is how a population eliminates
weak solutions over time and new, better solution arise (blue level). As the
population has not converged in Figure 5.7 (Neighbourhood GA Case 58) there
is still an incline in each iteration, it seems clear that the GA would need more
running time to find better solutions.

In each case, the TSs are better than the GAs. They are able to improve
the starting solution by as much as 75,31%. The Swap method is in three cases
better than the Insert. In all other cases the result is astonishingly the same.
Although it is possible that the TS found the global optimum in these cases, the
improvement is much lower than in the smaller instances. Therefore, it might
also be just a local optimum. Each of the TS has found in six cases the best so-
lution among the methods, making it the strongest methods in this context. In
contrast to Figure 5.1 (Diagram Case 46), Figure 5.5 (Diagram Case 58) shows
that there is not a superb performance in the beginning and no performance
later. Instead, there is a steady but decreasing enhancement over time in case
58. Especially 5.6 shows that the enhancement for each iteration in the TS is
much higher. The reasons for this remain unknown.

The VNS is the best method in the four cases. It outperforms especially in
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the three largest instances. It is close in two further cases. In the other six
cases, it performs much better than the GAs but has a gap to the TSs.
Figure 5.5 (Diagram Case 58) shows the problem with the VNS in case 58, one
of the cases in which a gap to the solutions from the TSs remains. The VNS
follows, during the first 180 seconds, the performance of the GAs. The per-
formance of the GAs is weak but continuous, which is why the VNS does not
switch to another method. After 180 seconds, it is then switched to the TSs in
the VNS.
Figure 5.8 (Neighbourhood VNS Case 58) appears to be similar to Figure 5.4
(Neighbourhood VNS Case 46). The GAs shows only small enhancements at the
beginning with a neighbourhood which has a diverse solution quality. When the
switch to the TSs is undertaken, the solution values become more homogenous
and the enhancement per time unit increases.

Nevertheless, also here, as in the makespan cases no conclusion for the dif-
ferent performance can be given. More detailed proposals will be made at the
end of the chapter, where the results of the case studies from which the best
solution is known are analysed.

5.4.2 Instances with known best solution

Since we cannot provide lower bounds for the randomly generated instances,
we also create instances, similar to Subsection 4.4.2, so that the best solution
is known beforehand. The structure is again chosen in such a way that in the
optimal schedule the setup operators can have waiting time and the machines
have waiting times. Cases 66–77 have the objective to minimize makespan.
Cases 77–89 have the objective to minimize total tardiness. Instances for the
makespan minimization problem are generated as follows:11

1. Job and machine setup times are 0 in the first step. The maximum avail-
able capacity of all machines between 0 and t is h. On each machine one
job is added such that each machine has a workload of 100% between 0 and
t. The workload of all machines between 0 and t is then also h time units.
Given that the workload is 100% of the available capacity, the schedule
must be optimal. (Figure 5.9)

11Note that the minimization of total tardiness is an enhancement of this makespan mini-
mization generation procedure and thus described at the end of this procedure.
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0 t
M1
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M3
M4
M5
M6

Figure 5.9: Generation of instances with known best solution parallel machines:
Step 1

2. For each job, its processing time is randomly reduced by a setup time
with the minimal setup duration between one and t·number of setup operators

number of machines·2 ,
and the time the machine needs to wait until it is set up the first time.

Furthermore, it must hold: t · number of setup operators ≥
J∑

i=1

si. The

sum of the waiting times on all machines until the setup times start can
be minimized if the operators set up the jobs in ascending order of the
setup times until all machines are running. The available capacity with
regard to the minimum waiting times still matches the sum of setup and
processing times. Hence, the schedule is optimal. (Figure 5.10)

0 t
M1M1
M2M2
M3M3
M4M4
M5M5
M6M6

Figure 5.10: Generation of instances with known best solution parallel machines:
Step 2

3. The processing times are interrupted by inserted setup times. Hence, new
jobs are created. The minimum duration of the setup needs to be greater
or equal to the m smallest setup time. Setup times can be inserted at
any position on the machines between the end of the smallest setup and t,
where the available capacity on the machine is given and minimum one of
the setup operators has idle time. Furthermore, between two setups there
needs to be a minimum processing time of a single time unit.

(a) Randomly choose a feasible starting position for a setup.
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(b) Randomly choose a finishing for the setup between the m minimum
setup time and twice the value of m minimum setup time and the
interruption of the capacity due to setup operator unavailability or
the starting of the next job.

(c) Continue until the chosen job limit has been reached, or no capacity
is left.

The available capacity with due regard to the minimum waiting times still
matches the sum of setup and processing times. Hence, the schedule is
optimal. (Figure 5.11)

4. Each created job now gets assigned additional values.

(a) For each job–machine combination, except for the combination which
has already been created, randomly pull a number from 0 to 100. If
the number is greater than 50, the job can run on the machine.

(b) For each job–machine combination, the job can run on, except for
the combination which has already been created, uniform randomly
assign a processing time between the assigned processing time and
twice the value of the first assigned processing time in the schedule.
However, the second overall job–machine combination is assigned the
same processing time as the already created job–machine combina-
tion in the schedule. Thus, no simple sorting heuristic can easily
identify which job should run on which machine.

(c) For each job–job combination, except for the combination which has
already been created, assign a setup time between the first chosen
assigned setup time for the job in the schedule and twice the value of
the first already assigned setup time in the schedule. However, the
second overall job–job combination is assigned the same setup time
as the already created job–job combination in the schedule. Thus,
no simple sorting heuristic can easily identify which job combinations
are part of the optimal schedule.

(d) Due dates for the jobs: Each job is assigned a due date by which the
processing of the job in the built schedule is finished. Thus, there
is no tardiness in the optimal schedule. Since we cannot divide our
best-found solution by the best-found solution of zero, we set the
value of the optimal solution to one.
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Figure 5.11: Generation of instances with known best solution parallel machines:
Step 3

Case Machines Jobs Setup operators
66 /78 10 100 1
67 /79 10 100 3
68 /80 10 100 5
69 /81 10 200 1
70 /82 10 200 3
71 /83 10 200 5
72 /84 25 250 1
73 /85 25 250 3
74 /86 25 250 5
75 /87 25 500 1
76 /88 25 500 3
77 /89 25 500 5

Table 5.5: Known best solution 66–77 makespan / 78–89 total tardiness
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Starting
solution

GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

66 13,53% 11,87% 12,47% 6,93% 7,30% 7,97%
67 5,47% 4,80% 5,47% 1,90% 1,33% 2,37%
68 5,37% 4,10% 5,37% 2,30% 2,20% 2,20%
69 5,97% 5,67% 5,67% 1,97% 2,20% 2,77%
70 5,50% 4,00% 4,67% 0,93% 1,07% 1,70%
71 6,63% 5,37% 5,13% 1,07% 0,77% 1,47%
72 17,50% 17,43% 16,53% 2,97% 3,60% 3,47%
73 19,20% 18,43% 17,60% 2,50% 2,83% 2,83%
74 15,00% 15,00% 13,20% 2,23% 2,43% 1,93%
75 9,67% 9,62% 9,62% 1,62% 2,20% 2,02%
76 9,93% 9,93% 9,83% 1,27% 1,47% 1,17%
77 9,53% 9,53% 9,50% 0,93% 1,60% 1,00%

Table 5.6: Gap to the optimum solution for cases 66–77

Figure 5.12: Diagram Case 70
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Figure 5.13: Neighbourhood TS Case 70
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Figure 5.14: Neighbourhood GA Case 70

Figure 5.15: Neighbourhood VNS Case 70
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Cases 67–77
For the minimize makespan known best solution cases 66–77, the possible gains
for using a metaheuristic are somewhat limited. Most cases allow only savings
in the single percentage area. The maximum gap to the optimal solution is
19,2% in case 73 (Table 5.6).
The GAs thus show only minor improvements. This is somehow explainable, as
they, as already stated, search their neighbourhood rather broadly. It should
be noted, however, that in the makespan minimization cases where the best
solution is known in Chapter 4, the gap to the optimum is much higher for
the starting heuristics, but the GAs also find solutions closer to the optimum.
Figure 5.12 (Diagram Case 70) shows that the GA 1-point also finds better so-
lutions at the beginning, but is then stuck. The GA 2-point shows a steady but
slow performance and will likely come to a better solution with a longer running
time. The neighbourhood for the GA (Figure 5.14) seems completely different
than in Figure 5.3. The solution values of a single iteration ranges from values
close to the optimum, to solution values which are eight times higher than the
optimum solution. Nevertheless, it can also be seen that with the running time,
weaker solutions get eliminated. Therefore, it is estimated that with further
running time better solutions will also be found here. Especially noteworthy
from 5.3 and 5.14 is that more iterations can be calculated in the same amount
of time.

On the other hand, the TSs find in this neighbourhood also solutions which
are very close to the optimum. In six of the twelve cases, the Swap exchange
finds the best solution of all methods while the Insert method finds the best
solution of all methods in three cases. Figure 5.12 (Diagram Case 70) shows
furthermore that both TSs come to a much better solutions close to the opti-
mum after a very short running time. Figure 5.13 shows clearly, how the TS
Swap sees case 70. The area looks somewhat flat. There is a small enhancement
in the beginning, after in many cases close or similar solutions are found. Only
one area of the neighbourhood has much worse solutions. The results from the
TSs can be said to be in line with the expectations. As said in Chapter 4, the
TSs are expected to work well when they start in a neighbourhood which is
close to the optimum as the TSs focus densely on the chosen neighbourhood
and do not easily switch to another neighbourhood.

While the VNS in two cases finds only better solutions than the other meta-
heuristics, it has apart from case 68 in which the TS Insert and the VNS find the
best solution, in four cases the second-best solution (case 73 together with the
TS Insert). In Figure 5.12 (Diagram Case 70), the VNS first follows the path
of the GAs and after 180 seconds switches to the TSs. The switch allows the
VNS to also come closer to the optimum while keeping a gap from the solution
values of the TSs. Figure 5.15 shows again how clearly the neighbourhoods are
in the respective methods in the VNS seen. While in the beginning the solution
quality of the neighbourhood is diverse, as soon as it is switched to the TS,
the solution values of the neighbourhood become more homogenous. As the
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solution is, however, remarkably close to the optimum or has hit the optimum,
no further large enhancements can be found.

Cases 78 - 89
The biggest surprise of the results of cases 78–89 (Table 5.7) (known best solu-
tion, total tardiness) is that the GAs show a very strong performance, as they
were much worse with the same target when random instances where analysed.
In four out of the 12 cases, they can find the optimal solution in each of the
single tests in the cases. The 2-point crossover finds the best solution among
all metaheuristics in 10 cases. The 1-point crossover comes to the same good
solution values as the 2-point in five of the 10 cases. However, in the largest and
most restricted case (87), the GAs come out last. Therefore, indicating again
that they have problems with the size of the instance and the number of the
setup operators. Figure 5.16 (Diagram Case 82) shows, in contrast to the other
progression graphs in Section 5.4, a strong enhancement at the beginning for
the GAs. The neighbourhood structure for the GA looks like the ones before in
case 82 (5.18) , except that iterations get rid of weak solutions much faster and
therefore include the newer, better, solutions faster. Hence, the enhancement
per time unit is better for the GA until it is close to the optimum in case 82.
Furthermore, the solution values in a single iteration seem to be much more
homogenous. The reasons for this cannot be identified, unfortunately, by the
data analysed so far. Further research seems necessary.

The TSs also find much better solutions in comparison with the starting so-
lution. The TS Insert finds the best solution among all metaheuristics in one
case while the Swap finds the best solution among all metaheuristics in no case.
In seven cases the TS Swap finds a better solution than the TS Insert, which
only finds a better solution in five cases. The solution value is in all cases, how-
ever, close to each other. Figure 5.16 (Diagram Case 82) shows that the TSs
also give a good performance at the beginning, but are then stuck in a local
optimum from which they find no better solution values. Figure 5.17 (Neigh-
bourhood TS Case 82) indicates the problem the TSs clearly have. Different
from the other TS neighbourhoods seen so far, the initial neighbourhood for the
TS has a much more diverse solution quality. Hence, the TS might take a path
which does not lead to the optimum solution easily.

The VNS finds the best solution among the heuristics in three cases. In a
further case it does find a better solution to any of the other methods. In the
cases with up to 200 jobs, the solutions are close to the best-found solutions of
the other methods. In the larger instances, a gap still remains. Nevertheless,
the VNS is still in all but one case better than the TSs. Figure 5.19 (Neigh-
bourhood VNS Case 82) shows that the neighbourhood for the VNS is similar
to the neighbourhood of the GAs. Further performance enhancements for the
TSs or a transition from the GA methods to the TS methods can therefore not
be seen, as the neighbourhood/population is already close to the optimum and
homogenous. Therefore, the VNS is performing again very well, as it can focus
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Starting
solution

GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

78 2336 2,33 7 858,67 910,33 0,33
79 645,67 0 0 642,33 634 0
80 806,67 0 0 606,67 603 0
81 2137,67 0,33 0,33 1094,33 1083,33 15,33
82 2047,67 0 0 916 919,67 0
83 1464,67 0 0 947 947,33 1,33
84 3248 159,33 281 973 1013 987
85 2434 14 27 1058,33 1014,67 404,67
86 2855 18 27,67 1004,67 1013 517,33
87 8905 8569,67 6425,67 4107,33 4075,67 4287
88 4725,67 2184 3161,33 2448 2419,33 2402,67
89 5106 1584,33 1747,67 2820 2823 2734

Table 5.7: Gap to the optimum solution in time units for cases 78–89

Figure 5.16: Diagram Case 82



5.4. COMPUTATIONAL RESULTS 119

Figure 5.17: Neighbourhood TS Case 82

Figure 5.18: Neighbourhood GA Case 82
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Figure 5.19: Neighbourhood VNS Case 82

on the method which brings the most advantages in this problem setting.



5.4. COMPUTATIONAL RESULTS 121

5.4.3 Case study

As the problem case has been extensively described already in 5.1, only the
production data will be shown. Five old production instances were used for
test runs, which are referred to as instance 90. The planning period covers
the next four weeks. The number of jobs to be allocated and scheduled on
the 19 machines is between 123 and 161 where on average 132 jobs need to be
scheduled. The objective is to minimize total tardiness. For some products,
only the customer quantity is produced. Other products, which are ordered
more often, are delivered from stock. If the minimum stock level is reached, a
production order with a fixed quantity is produced. The quantity is usually set
such that for four month no new production for the article must be undertaken.
Hence there are significant differences in the production times. Furthermore, it
must be considered that the production times are machine-dependent, and the
setup times are sequence-dependent. As a result, no average or median values
can be given.
In the data we received from the company, the shortest production time for a
job is 5 minutes and the longest is 4320 minutes. The shortest setup time for a
job is 0 minute and the longest is 1440 minutes.
Furthermore, at each point in time, three setups are allowed to overlap.

Since the goal in this section is a comparison of the planning procedures of
the company, we use their due date heuristic to find a starting solution and
compare the VNS with it, because it showed the most steady performance. For
the due date heuristic, the total tardiness is 156922 minutes, while for the VNS
the total tardiness is 128316 minutes on average in a schedule. Thus, each job
is on average 0,83 days late in the due date heuristic, while it is only 0,68 days
late when the VNS is used. The number of finished jobs is nearly twice as high
with 1,51 jobs per day for the VNS in contrast to the 0,77 jobs per day for the
due date heuristic. While the utilization of the setup operators increases only
marginally from 11,07% to 16,68%, the utilization of the machines increases
from 2,7% to 5,8%. An explanation for the low utilization of the machines and
setup operators might be that there is a bottleneck machine, which increases
the makespan. It can be concluded that significant gains for the company can
be achieved by using more advanced algorithms for their production planning.
When the expected performance of the other untested algorithms is described,
the tests where the best solution is known and random instances show distinct
results in each setting. In the comparable setting of random instances (200 jobs,
three setup operators), the GAs give a weak performance and the TSs are the
best algorithms of all tested ones, while the VNS comes out in the middle. In
the comparable known best solution case (200 jobs, three setup operators), the
TSs bring up the worst solutions while the GAs perform best. The VNS comes
out in the middle. Since the random instances are from their structure closer
to the case study, one would expect that the TS would provide the best results
for this setting.

Furthermore, it is clearly shown that new algorithms should also be checked
for their performance in large instance sizes to identify their practicability in
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the real world.

5.5 Conclusion

This chapter showed the continuation of the parallel dedicated machines subject
to setup constraints chapter. Moreover, for the second company which was vis-
ited setup operators were not explicitly considered in the production planning.
Therefore, the main aim of this chapter was to extend the production problem
structure, the parallel machine scheduling problem with setup operator avail-
ability.

First, in 5.2., a formal problem definition was given. We distinguished the
production time by a machine-dependent processing time, in which no setup
operator was needed, and a sequence-dependent setup as well as dismounting
time in which a setup operator was needed. In Section 5.3., we outlined the five
different methods (two GAs, two TSs, and a VNS) which were used to solve the
problems, with the focus on either minimizing total tardiness or makespan in
Section 5.4.

Randomly generated instances with up to 25 machines and 500 jobs were tested
in Subsection 5.4.1. The VNS provided the best solutions among the heuristics
in the first four of the twelve makespan minimization cases. In the other eight
cases, the Swap exchange provided the best results. The GAs, on the other
hand, performed weakly, as they often only found minor improvements.
In the random instances total tardiness minimization problems, the GAs again
showed a weak performance. The TSs, by contrast, showed a robust perfor-
mance. They were able to improve the solutions by as much as 75,31% (case
56). Although the VNS was not as good as the TS in most cases, it did provide
in some of the instances the best solutions. In all test cases, so far, it should be
noted that the improvement for larger instances was small. This is, neverthe-
less, not a severe problem as the real-world problems, which form our focus, are
smaller. They are as stated in 5.4.3. between 116 and 163 jobs. But it is shown
that new algorithms should generally be checked for their performance in large
instance sizes to identify their limitations and their practicability for the real
world.

As there were problems with lower bounds, instances were created in 5.4.2 in
such a way that the optimal solution is known. Cases 66–77 dealt with the
makespan minimization problem. The GAs again only showed a weak perfor-
mance. The TSs, on the other side, were able to get very close to the optimal
solution. The VNS also got close to the optimal solution but stayed behind the
TSs.
In cases 78–89 (minimize total tardiness), the GAs showed a surprisingly strong
performance. Especially in the smaller cases with more than one setup operator,
they were able to find particularly good or optimal solutions. While the VNS
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was better than the TSs in most cases, it often still had a gap to the GAs.

Finally, the VNS, which has shown the steadiest performance in all test instances
in Section 5.4 so far, was tested in Subsection 5.4.3 on real data provided by
the company. It was able to nearly double the number of finished jobs per day
in contrast to the used due date heuristic by the company. The utilization of
the machines also increased.

Section Type Target Density Performance

Parallel
dedicated
machines

Random in-
stances

Makespan no breaks low GAs best, TS good
Tardiness no breaks low TSs better than

rest
Makespan breaks low bigger gap with

breaks rest same
Tardiness breaks low GAs have problems

Known best
solution

Makespan high all metaheuris-
tics have strong
performance

Table 5.8: Results 2

The different results clearly suggest that the performance of the methods de-
pends on the problem structure. It was first thought that GAs do not perform
in these types of problems, but it is now clear how context-dependent they are.
On the other hand, the TSs provided promising results in most test settings.
While the VNS did not provide the best solutions in most cases, it showed a
good and steady performance in all instances. When the overall results of the
two chapters are compared, new insights are gained (5.8 and 5.9). Clearly in all
known best solution cases, all metaheuristics perform well. Interesting is that
the GAs perform better than the TSs in the tardiness cases, while they had
problems in the tardiness cases with breaks in Chapter 4. Furthermore, if the
number of setup operators is high, also the known best solution tardiness cases
can be solved better. Considering the results from Subsections 4.4.2 and 5.4.2,
this is clear as the density (the proportion of working to idle times in a sched-
ule) is higher in these cases, as the proportion between working setup operators
and the setup operator with forced idle time in the second part of the created
schedule in the known best solution cases is more in favor of the working setup
operators. Hence, the schedule is denser. Moreover, in the random instance
cases, the higher number of setup operators, the better the performance of the
metaheuristics. Hence, a dense schedule is easier for the metaheuristics to solve
than a schedule which has overall more freedom. The 360-second running time
seems to limit the performance of the metaheuristics in the larger instances.
While still some achievements can be made, they are higher in the smaller in-
stances. This is thought to be due to the large neighbourhoods, which would
probably require more running time. This is especially true for the GAs as they
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need some running time to get the population into a converging state. Other-
wise, the GAs are more likely a random search. As stated before, it is unknown
why the TSs are better in Chapter 5 in the cases with makespan than the GAs.
The comparison between the overall results brings no answer for this question
unfortunately.

The chapter provides additional insights into the rarely investigated field of
setup operators in the field of production scheduling. To provide a conclusion
for production companies, it can be said that they are likely to gain more effi-
ciency in the production with the use of more advanced algorithms in contrast
to the currently used sorting heuristics. Moreover, it can be clearly seen that
setup operators also seem to be a bottleneck in the parallel machines problem.
The gains the algorithms can achieve increase exponentially with the use of
more setup operators. Therefore, companies should check whether or not it is
possible to use more setup operators. Furthermore, this work contributes also to
the so far sparse field of setup operator scheduling. Although we provide some
explanations for the different performances of the metaheuristics, no proof can
be given. Further research regarding the overall performance of metaheuristics
seems necessary. The algorithms were furthermore only tested on the distinct
case of parallel machines. As most companies have a more general problem
structure there is a need for further investigation.
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Section Type Target Density Performance

Parallel
machines

Random instances
Makespan low high GAs not good,

worse with larger
instances, better
with more setup
operators/ TS
better than GAs,
better with more
setup operators,
worse with large
instances

Tardiness low / high GAs better
than case with
makespan, better
with more setup
operators, worse
with large instances
/ TSs better than
GAs, better in
small instances,
with more setup
operators

Known best solution
Makespan high good results for TSs

and GAs , TSs bet-
ter

Tardiness high very good results
for GAs , good re-
sults for TSs, better
in small instances,
better with more
setup operators

Table 5.9: Results 3
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Chapter 6

Job shop with parallel
machines scheduling subject
to setup constraints

6.1 Introduction

The problem in this chapter was brought to our attention by a medium-sized
company from the automotive sector. They produce aluminium parts. The com-
pany is in the limits for revenue, staff employed, and balance sheet total of the
IfM [2002]. The characteristics of the company indicate that it is an SME. The
company is run by the owner. While he has no direct contact with customers
any more, he is still involved in the daily operational business [cf. Mank, 1991].
The company also shows low formalization [cf. Mugler, 2006] and uses universal
machines [cf. Pfohl, 2006]. Referring to our empirical study in Section 4.3, the
production planning is done by hand in this company. It is possible to identify
the person who created a plan using the production plan. An ERP system is
furthermore in use. A lot of processes are, however, not realized in the ERP
system but by email. Lot sizing is not an issue for this company. The company
is therefore in line with most of the companies from the study in Section 2.3.
Hence, the results can be used to create recommendations.
The problem described within this chapter is an extension of the “parallel ma-
chine setup operator scheduling problem”, namely a ”job shop with parallel ma-
chines subject to setup constraints”’. The difference from the ”parallel machine
setup operator problem is that there are no single jobs that can be produced
in any given sequence; however, there are job chains that must be produced in
a predetermined way. In another mode of expression it is also common to say
there are jobs, which themselves exist of operations which all must be processed
in a given way, so that the job is finished. There are time intervals in which no
setup neither production can be undertaken.

127
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The plant we analysed has 13 machines which are arranged in groups depending
on the operations they can process.
Every day between 1,000 and 5,000 components are produced in the plant. The
production order of a component is called a job. Each job comprises operations
with precedence relations (operation chains) such as drilling, milling, and turn-
ing. The assignment and scheduling of operations on machines is done through
the planning department, which consists of three people.
Before an operation can be processed on a machine, the machine has to be setup
for the operation. The setup involves the change of tooling, the adjustment of
the apparatus for the pieces which are to be processed, and the programming
of the CNC control system with job-specific parameters. The time needed for a
setup of an operation on a machine is not only dependent on the operation but
also on the preceding operation done using the machine.
The setup can only be undertaken by the so-called setup operators. In this case,
a setup operator is a person who has the necessary skills and tools for setting up
machines. Each setup operator can, at any point in time, set up one machine
at the most.
Setup operators and machines work in three shifts, seven days a week in the
following time intervals: 6:00 a.m.–2:00 p.m., 2:00 p.m.–10:00 p.m., and 10:00
p.m.–6:00 a.m. In each shift, there are three setup operators available. Further-
more, every shift includes a break after four working hours for an hour.

Since penalties for late deliveries are high in this sector, the main goal for
the company is the minimization of the total tardiness. Due to the complexity
of the planning context and the limited computer support, the planning de-
partment generally schedules operations regarding their due date at the earliest
possible time on a feasible machine. There is no planned schedule for the setup
operators themselves. Instead, they set up the next available operation. If sev-
eral operations can be chosen, they set up the operation, which was available
first. Before going to develop the actual algorithm, we analysed the outcomes
of the basic procedure of the planning department. While it seemed clear that
no other procedure was basically possible for them to perform at the time, the
results of the hitherto-used procedure of the planning department were less than
satisfactory.

6.2 Problem definition

In what follows, we consider a set of machines 1, . . . ,M . There are setup op-
erators h = 1, . . . , R and jobs j = 1, . . . , J . Each job consists of operations
i = (j, 1), . . . , (nj , j) which have to be processed in a given sequence (chain).
For notational convenience we assume that operations are numbered accordingly.
Each operation (i, j) requires processing time pi,j and is preceded by a setup
of duration si,j . Pre-emption is allowed neither for operations nor for setups.
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Depending on the operation, it can be processed on different machines. Binary
parameter vi,j,m indicates whether operation (i, j) can be done on machine m
or not. Each machine can process one operation at a time. For a schedule to
be feasible, we require the number of overlapping setups not to be greater than
the number of the setup operators R. The goal is to minimize total tardiness
J∑

j=1

tj . Note that we can assume that each job follows its preceding setup with-

out any idle time in between. We additionally consider a generalization of the
problem setting described above. We incorporate breaks a = 1, . . . , A. There
can be no setup nor the processing of a job between the beginning of a break
bsa and the end of a break bea. If a setup si,j or processing of an operation
pi,j has started before the break bsa and crosses it while being carried out, the
processing, respectively the setup is prolonged by bea - bsa.
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Indices
m Machine index, m = 1, . . . , M
j Job index, j = 1, . . . , J
i Operation index, i = 1, . . . , nj
h Setup operator index, h = 1, . . . , R
a Break index, a = 1, . . . , A
Parameters
pi,j Processing time of operation (i,j)
si,j Setup time of operation (i,j)
K Adequate large number
vi,j,m Binary parameter which equals 1,

if operation (i,j) can be done on machine m, else it equals 0
bsa Beginning of break a
bea End of break a
Lj Delivery date of job (j)
Variables
βi,j,a Binary variable which turns 1

if operation (i,j) would be processed during a break
ηi,j,a Binary variable which turns 1

if operation (i,j) would be set up during a break
θi,j,a Binary variable which turns 1

if operation (i,j) would be setup or produced during a break
εi,j,a Binary variable which turns 1

if operation (i,j) starts before break a
γi,j,m Binary variable which turns 1

if operation (i,j) is processed on machine m
δi,j,l,k,m Binary variable which turns 1

if operation (l,k) starts directly after operation (i,j) on machine m
αi,j,h Binary variable which turns 1

if operation (i,j) is assigned to setup operator h, else it turns 0
σi,j,l,k,h Binary variable which turns 1

if operation (l,k) starts directly after operation (i,j) and is assigned to setup operator
h

Si,j Starting time of operation (i,j)
tj Tardiness of job j
Cmax Makespan
nm Number of tasks assigned to machine m
qh Number of setups assigned to setup operator h

Table 6.1: Notation job shop with parallel machines
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6.2.1 Standard model formulation

min
J∑

j=1

tj (6.1)

tj ≥ Snj ,j + pnj ,j + snj ,j − Lj ∀ j = 1, . . . , J (6.2)

Si+1,j − pi,j − si,j − Si,j ≥ 0 ∀ j = 1, . . . , J, i = 1, . . . , nj − 1 (6.3)

M∑
m=1

γi,j,m = 1 ∀ j = 1, . . . , J, i = 1, . . . , nj (6.4)

γi,j,m ≤ vi,j,m ∀ j = 1, . . . , J, i = 1, . . . , nj ,m = 1, . . . ,M (6.5)

Sl,k − (Si,j + pi,j + si,j) ≥ (δi,j,l,k,m − 1) ·K

∀ j = 1, . . . , J, l = 1, . . . , J, i = 1, . . . , nj , k = 1, . . . , nl,m = 1, . . . ,M (6.6)

J∑
j=1

nj∑
i=1

J∑
l=1

(i,j 6=k,l)

nl∑
k=1

δi,j,k,l,m =
J∑

j=1

nj∑
i=1

γi,j,m − 1 ∀ m = 1, . . . ,M (6.7)

J∑
l=1

(k,l6=i,j)

nl∑
k=1

M∑
m=1

δi,j,k,l,m ≤ 1 ∀ j = 1 . . . , J, i = 1, . . . , nj (6.8)

J∑
j=1

(i,j 6=k,l)

nj∑
i=1

M∑
m=1

δi,j,k,l,m ≤ 1 ∀ l = 1, . . . , J, k = 1, . . . , nl (6.9)

Sk,l − (Si,j + si,j) ≥ (σi,j,k,l,h − 1) ·K

∀ j = 1, . . . , J, l = 1, . . . , J, i = 1, . . . , nj , k = 1, . . . , nl, h = 1, . . . , R (6.10)
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R∑
h=1

αi,j,h = 1 ∀ j = 1, . . . , J, i = 1, . . . , nj (6.11)

J∑
j=1

nj∑
i=1

J∑
l=1

(i,j 6=k,l)

nl∑
k=1

σi,j,k,l,h =
J∑

j=1

nj∑
i=1

αi,j,h − 1 ∀ h = 1, . . . , R (6.12)

J∑
l=1

(k,l6=i,j)

nl∑
k=1

R∑
h=1

σi,j,k,l,h ≤ 1 ∀ j = 1, . . . , J, i = 1, . . . , nj (6.13)

J∑
j=1

(i,j 6=k,l)

nj∑
i=1

R∑
h=1

σi,j,k,l,h ≤ 1 ∀ l = 1, . . . , J, k = 1, . . . , nl (6.14)

Si,j ≥ 0 ∀ j = 1, . . . , J, i = 1, . . . , nj (6.15)

γi,j,m, σi,j,k,l,h, δi,j,k,l,m, αi,j,h ∈ {0, 1}

∀ j = 1, . . . , J, l = 1, . . . , J, i = 1, . . . , nj , k = 1, . . . , nl,m = 1, . . . ,M

h = 1, . . . , R (6.16)

Objective function (6.1), along with constraint (6.2), represents the goal
to minimize total tardiness. Tardiness is checked for each last operation of a
job nj , j (6.2) and summed up (6.1). Constraint (6.3) defines that the successor
operation of a job Si+1,j can only start after the predecessor operation is finished
(Si,j + pi,j + si,j). Constraint (6.4) represents that each operation (i,j) is on
exactly one machine m γi,j,m. Constraint (6.5) ensures that every operation
(i,j) can only be assigned to a machine which can handle this operation vi,j,m.
Constraint (6.8) and (6.9) ensure that each operation has no more than one
direct predecessor (6.8) and one successor (6.9). Constraint (6.7) prohibits sub
cycles as the number of successor predecessor relationships on each machine is
limited to the number of jobs assigned to the machine - 1. Constraint (6.6) makes
sure that if an operation (l,k) follows operation (i,j) on machine m δi,j,l,k,m the
start time of l, kSl,k must be greater or equal to the end of the predecessor
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operation on the machine (Si,j +pi,j +si,j). Constraints (6.10)–(6.14) are made
in the same way as constraints (6.4), (6.6) - (6.9). The difference is that here,
operations must be assigned to a setup operator h. If an operation (k,l) directly
follows operation (i,j) on setup operator h (σi,j,l,k,h). (l,k) can only start Sk,l

after the start of Si,j and the finish of its setup si,j . Constraints (6.15), (6.16)
define the variable’s domains.

6.2.2 Extension

Si+1,j − pi,j − si,j − Si,j − (bea − bsa) · βi,j,a ≥ 0

∀ j = 1, . . . , J, i = 1, . . . , nj − 1, a = 1, . . . , A (6.17)

Sl,k − (Si,j + pi,j + si,j)− (bea − bsa) · βi,j,a ≥ (δi,j,l,k,m − 1) ·K

∀ j = 1, . . . , J, l = 1, . . . , J, i = 1, . . . , nj , k = 1, . . . , nl,m = 1, . . . ,M

a = 1, . . . , A (6.18)

Sk,l − (Si,j + si,j)− (bea − bsa) · βi,j,a ≥ (σi,j,k,l,h − 1) ·K

∀ j = 1, . . . , J, l = 1, . . . , J, i = 1, . . . , nj , k = 1, . . . , nl, h = 1, . . . , R

a = 1, . . . , A (6.19)

bsa ≤ Si,j −K · ζi,j,a

∀ j = 1, . . . , J, i = 1, . . . , nj , a = 1, . . . , A (6.20)

bsa > Si,j + si,j −K · ηi,j,a
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∀ j = 1, . . . , J, i = 1, . . . , nj , a = 1, . . . , A (6.21)

bsa > Si,j + si,j + pi,j −K · θi,j,a

∀ j = 1, . . . , J, i = 1, . . . , nj , a = 1, . . . , A (6.22)

ζi,j,a + ηi,j,a < 2 +K · βi,j,a

∀ j = 1, . . . , J, i = 1, . . . , nj , a = 1, . . . , A (6.23)

ζi,j,a + θi,j,a < 2 +K · βi,j,a

∀ j = 1, . . . , J, i = 1, . . . , nj , a = 1, . . . , A (6.24)

min Cmax (6.25)

Cmax ≥ Snj ,j + pnj ,j + snj ,j ∀ j = 1, . . . , J (6.26)

When the goal is to minimize makespan, constraints (6.24) and (6.25) re-
place constraints (6.1) and (6.2). Constraints (6.17), (6.18), (6.20), (6.22), and
(6.24) incorporate break times in the non-overlapping of operations, whereas
constraints (6.19), (6.20), (6.21), and (6.23) incorporate breaks in the non-
overlapping of setups. As in Section 5.2 for the explanation of t, there is no
benefit of trying to explain the functioning of the incorporation of breaks in the
model in contrast to the linear mathematical formulation. Therefore, only the
general functioning is explained. For each operation (i,j), the operation is not
allowed to be processed or setup during a break. If it runs into a break, either
the setup or the processing is prolonged by the duration of the break. Therefore,
it must be checked for each start time, end of setup time and end of processing
time, if a break is hit in between such that the operation is then prolonged.

6.3 Methods

In Chapter 6 the algorithms from Chapter 5 are continued, which means that
here also two TSs and two GAs are applied as well as their combination in the
VNS. This allows us to compare the performance between the metaheuristics
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better. Therefore, only the differences are explained. In other words, there is no
specific description of the algorithms, as they are similar to the ones presented
in Section 5.3. It must be acknowledged, though, that the programming for the
algorithms here is much closer to the programming of the algorithms in Chapter
4 due to the form of the solution representation. Both chapters have chains in
their problem setting. In Chapter 4 there are job chains, here we have operation
chains.
The solution representation is also the main difference to the algorithms from
Chapter 5. A solution can be represented by a sequence of jobs together with
the name of the machine they are assigned to, similar to the solution repre-
sentation from Chapter 4. This form of solution is sufficient for the problem
structure described in this chapter, since the sequence of operations belong-
ing to the same job cannot be changed. Therefore, the sequence “J2 M1, J3
M2, J2 M0, J1 M3” would mean setting up machine 1 with the first operation
of job 2, then machine 2 with the first operation of job 3, then machine zero
with the second operation of job 2, and so on. The sequence also indicates to
which machine a setup operator should move next. It would also be possible
to represent a solution by the sequence of operations to be set-up. The se-
quence “O1,1M1, O1,2M2, O2,2M0, O2,1M3” would mean to setup first machine
one with operation1,1, then machine two with operation1,2, then machine zero
with operation2,2, and so on. The problem structure allows the transfer of each
representation form to each other at any time. In both cases, the search pro-
cedures are similar. Nevertheless, the search has a higher efficiency in the job
representation. This is because it does not have to check for the validity or
repair a found solution as the job representation does not show any movement
of operations within a job.
Starting solutions are also created in a two-stage approach. As there is no ex-
plicit machine influence on the operations, such as a machine-dependent running
time, less heuristics for the creation of the starting solution are used. For the
objective to minimize total tardiness, we need to assign dummy due dates to
the operations of a job to make the decision in which sequence operations will
be processed in the sort-heuristics. The due dates are assigned as follows:

Duedatei,j = Duedatej − (
nj∑

x=i+1

sx,j + px,j).

First stage heuristics:

1. Schedule operations in non-descending order with regard to their due date
as early as possible on the machine which can start the operation first.
Repeat until all operations and jobs are processed.

2. Schedule operations in non-descending order with regard to their slack
time as early as possible on the machine which can finish the operation
first. Repeat until all operations are processed.

3. Schedule operations with regard to the operation chain in non-descending
order of the number of machines which they can be served by, on the
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machine which can handle the least amount of operations, as early as
possible. If multiple operations can be served by the same number of
machines, schedule the operations in non-descending order of their due
dates. Repeat until all operations are processed.

Second stage heuristics:

The second stage procedure is closely related to the one from Section 5.3. The
reason is again comparability of the algorithms across the chapters. When a
setup operator becomes available, one of the following strategies is used by the
heuristics to find the next assignment for the setup operator.

1. Of all operations allowed to be processed with regard to the operations-
chains setup the operation with the earliest due date. Repeat until all
operation are processed.

2. Of all operations allowed to be processed with regard to the operations-
chains setup the operation with the lowest slack time. Repeat until all
operation are processed.

3. Of all operations allowed to be processed in regard to the operations-
chains setup the operation with the shortest setup time. Repeat until all
operations are processed.

4. Of all operations allowed to be processed with regard to the operations-
chains, setup the operation with the longest processing time. Repeat until
all operations are processed.

5. Of all operations allowed to be processed with regard to the operations-
chains, setup the operation from the chain with the largest sum of remain-
ing setup and processing times. Repeat until all operation are processed.

6.4 Computational Results

As in Sections 4.4 and 5.4, the algorithms are tested on an Intel i7 Quadcore
1,7 GHz, 8 GB memory computer. The programming language is JAVA. There
are randomly generated instances (6.1), instances of which the best solution
is known (6.2) and there are instances with real-life data received from the
company (6.3).

6.4.1 Random instances

For each test case (Table 6.2), three instances are solved with randomly gen-
erated numbers. The instances are created in the same way as in Subsections
4.4.1 and 5.4.1 in such a way that they not only reflect the production situation
of the company in focus but also provide information about the performance of
the algorithms in larger instances. The cases are built as follows:
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1. For each operation, randomly pull a number between 0 and 100. If the
number is greater than 50, the operation can run on the machine. If
the operation cannot run on any machine after the procedure, uniform
randomly assign it to one machine.

2. For each operation, assign it uniform randomly a position in a random
job.

3. For each operation, the operation can run on uniform randomly assigned
setup time between 0 and 3000.

4. For each operation, the operation can run on uniform randomly assigned
processing time between 0 and 3000.

5. Due dates for the jobs. The due dates are calculated as follows: Sum up
all production and setup times of the operations within jobs to a variable
s. Multiply s with a positive factor to s*.12 For each job assign uniform
randomly a due date between 0 and s*.

Furthermore, some cases consider

6. Breaks. Setup operators and machines are available 24 hours whereby a
break of one hour for both needs to be undertaken every eight hours.

The computing time is limited to 360 seconds per instance and method. Be-
tween 10—25 machines, 10–50 jobs, 100–500 operations, breaks and no breaks,
and 1–5 setup operators are considered in the instances (Tables 6.2, 6.3). At
first, an attempt was made to compare the results with the lower bounds, which
were created by relaxing some and later all integer variables in the MIP. As in
Subsection 5.4.1, the lower bounds were so weak that we compare the relative
improvements of the methods. Cases 91–114 have the objective to minimize
the makespan. As in Chapter 4, the makespan here is also defined as the time
between the start of the first setup until the end of production for the last
job including the break times. Here cases 91–102 only consider the simplified
problem, without breaks. Cases 103–114 include breaks. Cases 115–138 have
the objective to minimize total tardiness. Here cases 115–126 consider only the
simplified problem, without breaks. Cases 127–138 consider all extensions as
well.

Cases 91–102
The first thing to notice in Table 6.3 (random instances, makespan, no breaks)
is, that the higher the number of setup operators is, the higher is the enhance-
ment for the metaheuristics in contrast to the starting solution. It seems, that
the constraint of the number of setup operators limits the performance of the
metaheuristics. In general, it has to be acknowledged that the gains are in
many cases only very little. Especially in the large instances, only minor im-
provements can be achieved.

12In our case we choose 1,25 as a factor.
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Figure 6.1: Diagram Case 95

Figure 6.2: Neighbourhood TS Case 95
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Figure 6.3: Neighbourhood GA Case 95

Figure 6.4: Neighbourhood VNS Case 95
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Case Ma-
chines

Jobs Oper-
ations

Setup time Processing
time

setup
over-
laps

breaks

91/115 10 10 100 U(0, 3000) U(0, 3000) 1 /
92/116 10 10 100 U(0, 3000) U(0, 3000) 3 /
93/117 10 10 100 U(0, 3000) U(0, 3000) 5 /
94/118 10 20 200 U(0, 3000) U(0, 3000) 1 /
95/119 10 20 200 U(0, 3000) U(0, 3000) 3 /
96/120 10 20 200 U(0, 3000) U(0, 3000) 5 /
97/121 25 25 250 U(0, 3000) U(0, 3000) 1 /
98/122 25 25 250 U(0, 3000) U(0, 3000) 3 /
99/123 25 25 250 U(0, 3000) U(0, 3000) 5 /
100/124 25 50 500 U(0, 3000) U(0, 3000) 1 /
101/125 25 50 500 U(0, 3000) U(0, 3000) 3 /
102/126 25 50 500 U(0, 3000) U(0, 3000) 5 /

Table 6.2: Random instances 91–102 makespan / 11–126 total tardiness

The GA 1-point crossover shows a relatively strong performance in the small
cases in contrast to the other methods. It shows the best performance of all
metaheuristics in cases 91–93. Overall, it is in all but three cases better than
the 2-point crossover. In three iterations it does not find a better solution at all,
similar to the 2-point crossover. As in Section 5.4., the GAs have problems with
large instances. The GA clearly eliminates the worst solutions in the beginning,
and has a more homogenous population with increasing running time (Figure
6.3) (Neighbourhood GA Case 95). In connection with Figure 6.1 (Diagram
Case 95), it can also be stated, that continuously new best solutions are found.
Therefore, it is expected, that with further running time, the solution quality
will further enhance.

The TS Insert is better than the TS Swap in all but one case. In four cases it has
the best solution among all heuristics, while the TS Swap has the best solution
among the heuristics only in one case. Furthermore, the TS Swap surprisingly
finds no better solution at all in the first three cases, while the TS Insert, as the
best metaheuristic in these cases shows improvements by as much as 11,13%.
Figure 6.1 (Diagram Case 95) demonstrates how both TSs have a strong per-
formance in the beginning, before they reach after little running time, an area,
from which they find no better solution. Figure 6.2 demonstrates clearly how
different the neighbourhood for the TS Swap looks. After a strong incline in
the solution quality at the beginning, with a neighbourhood which has more or
less homogenous solution values in an iteration, the neighbourhood gets much
more diverse with the running time.

It can also be seen that the solutions of the TS deteriorate over time before
they come back to an area with good solutions. That means, that the TS has
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GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

91 0,92% 1,88% 0,00% 0,74% 1,71%
92 3,92% 12,10% 0,00% 7,09% 6,50%
93 5,51% 15,10% 0,00% 11,13% 5,79%
94 0,46% 0,68% 0,90% 1,03% 1,07%
95 0,39% 1,37% 2,95% 3,35% 3,63%
96 1,47% 4,49% 4,69% 4,36% 4,29%
97 0,29% 0,49% 0,16% 0,61% 0,67%
98 0,37% 0,41% 1,20% 1,66% 1,24%
99 1,30% 0,72% 2,16% 2,53% 2,58%
100 0,00% 0,09% 0,03% 0,16% 0,16%
101 0,00% 0,00% 0,20% 0,33% 0,28%
102 0,10% 0,04% 0,43% 0,62% 0,42%

Table 6.3: Enhancement to the starting solution for cases 91–102

either found the optimum solution, is closer to the optimum solution, maybe
because the starting heuristics can find better solutions with a higher degree of
freedom in the problem, or that the TS is in such a difficult area, from which it
can hardly come closer to the optimum. Then the following hypothesis might
hold. The higher the degree of freedom in the problem, the larger the solution
space and the more difficult it becomes for the TSs to come to a good area and
get near the optimum.

The method which has the best results overall is the VNS. It achieved in com-
parison to the other methods the best results in five of the 12 test cases. Fur-
thermore, it also showed the biggest consistency in achieving gains. In the cases
where it did not have the best results, it was close to the best results. The
VNS, again, follows the graph of the currently used metaheuristic (Figure 6.1
(Diagram Case 95)). While the performance is low in the beginning, the switch
to the TS methods shows a strong increase in the solution quality such that
the VNS finds the best solution among all metaheuristics. Figure 6.4 shows the
neighbourhood of the VNS. While the beginning is akin to the structure of the
GA, the structure when the VNS makes use of the TS methods appears to be
different from the structure when the TS is used alone. An explanation is that
the solution given from the GAs to the TSs leads the latter to a different neigh-
bourhood region, which is more homogenous and provides also better overall
solutions as the results suggest.

Cases 115–126
Table 6.4 (random instances, total tardiness, no breaks) shows, as the other ta-
bles in which the best solution is not known in this chapter, the enhancement to
the starting solution for cases 115–126. The GAs show marginal improvements.
The 1-point crossover method is better than the 2-point in 10 cases. In the
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GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

115 3,81% 6,92% 29,67% 29,08% 28,18%
116 2,72% 9,64% 19,90% 19,48% 19,25%
117 3,46% 11,66% 18,66% 18,35% 17,50%
118 2,03% 3,19% 23,67% 25,98% 20,16%
119 0,16% 0,34% 16,06% 17,29% 14,65%
120 0,24% 1,06% 14,45% 13,10% 12,87%
121 1,97% 1,87% 13,11% 13,15% 10,49%
122 0,41% 0,46% 14,11% 14,18% 9,96%
123 0,24% 0,83% 12,25% 13,31% 8,74%
124 1,50% 1,25% 1,48% 1,48% 2,73%
125 0,01% 0,08% 1,49% 1,49% 1,16%
126 0,00% 0,12% 1,88% 1,88% 1,33%

Table 6.4: Enhancement to the starting solution for cases 115–126

Figure 6.5: Diagram Case 119
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Figure 6.6: Neighbourhood TS Case 119

Figure 6.7: Neighbourhood GA Case 119
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Figure 6.8: Neighbourhood VNS Case 119

cases, in which 1-point is better, there is a large gap between these two. Figure
6.5 (Diagram Case 119) clearly shows that the GAs rarely show improvement.
This can also be seen in Figure 6.7. The GA does not show much improvement
in the populations except the elimination of the weakest solutions right at the
beginning. In contrast to Chapter 5, this result is surprising. While in 5 the
GA has some enhancement, especially when there is an increase in the number
of setup operators, here this is not true. The performance is overall low but
slightly better when the number of setup operators is also low.

The TSs on the other hand perform much better relatively. The TS Swap finds
the best solution among all methods in six cases. Two of the best solutions are
shared with the TS Insert. Apart the TS Insert finds the best solution in five
further cases. As the solutions are close, it can be stated, that both perform
equally. The TSs in Figure 6.5 (Diagram Case 119) have a strong improvement
at the beginning but then the improvement over time declines. Figure 6.6 also
shows a strong improvement for the TS. But it is problematic that only few
iterations have been run.

There are no surprises at least for the VNS search. It has only the best so-
lution in one case, but is always close. In Figure 6.5, the VNS follows the path
of the TSs after 180 seconds but does not have sufficient time to come to the
same level as they are. In 6.8 the VNS also follows the forms of their respective
methods.
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Although in the smaller cases the improvement is at maximum 29,67% (case
115), it can be seen that the bigger the solution space is, the lower the improve-
ments for the methods. Interestingly, in contrast to the other test cases seen
in Section 5.4 and here so far, an increase in the number of setup operators
does not lead to solution enhancements. As the starting solutions, which do not
incorporate setup operators at all, it is possible, that they perform better in
the cases 115–126 and such the metaheuristics have less room for improvement.
Therefore, this could indicate that they are close to the lower bound. Neverthe-
less, from Figures 6.6 - 6.8 (neighbourhoods for the GA, TS and VNS in case
119), it can be seen that for all methods, a much smaller number of iterations
can be solved than in the other chapters. Hence, the degree of freedom might
be problematic for the methods.

Case Ma-
chines

Jobs Oper-
ations

Setup time Processing
time

setup
over-
laps

breaks

103/127 10 10 100 U(0, 3000) U(0, 3000) 1 yes
104/128 10 10 100 U(0, 3000) U(0, 3000) 3 yes
105/129 10 10 100 U(0, 3000) U(0, 3000) 5 yes
106/130 10 20 200 U(0, 3000) U(0, 3000) 1 yes
107/131 10 20 200 U(0, 3000) U(0, 3000) 3 yes
108/132 10 20 200 U(0, 3000) U(0, 3000) 5 yes
109/133 25 25 250 U(0, 3000) U(0, 3000) 1 yes
110/134 25 25 250 U(0, 3000) U(0, 3000) 3 yes
111/135 25 25 250 U(0, 3000) U(0, 3000) 5 yes
112/136 25 50 500 U(0, 3000) U(0, 3000) 1 yes
113/137 25 50 500 U(0, 3000) U(0, 3000) 3 yes
114/138 25 50 500 U(0, 3000) U(0, 3000) 5 yes

Table 6.5: Random instances 103–114 makespan / 127–138 total tardiness

Cases 103–114
The results from cases 103–114 (Table 6.6)(random instances, makespan, breaks)
look similar to the results 91–102 (Table 6.3)(random instances, makespan, no
breaks). Except for the smallest instances, no significant improvement can be
seen.

In the smallest instances (103–105) the GAs are able to achieve the best re-
sults of all methods. The performance in the larger instances is, in many cases,
close to zero. When the two GAs are compared, the 1-point crossover performs
much better than the 2-point. It finds better solutions in eight of the 12 cases.
Figure 6.9 (Diagram Case 107) shows a typical curve for the best solutions found.
Both GAs nearly increase linear. The neighbourhood for the GA (Figure 6.11)
shows as in Figure 6.7 (neighbourhood for the GA in case 119) a diverse solution
quality in a single iteration.
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GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

103 1,04% 1,94% 0,65% 1,75% 1,88%
104 3,76% 11,26% 0,57% 6,67% 7,98%
105 4,68% 16,46% 0,00% 6,73% 9,97%
106 0,71% 1,09% 1,22% 0,92% 1,26%
107 0,77% 1,79% 3,38% 3,21% 3,33%
108 1,63% 2,17% 7,38% 5,12% 5,97%
109 0,12% 0,18% 0,12% 0,24% 0,29%
110 0,76% 0,31% 0,90% 1,55% 1,29%
111 0,76% 0,68% 1,96% 3,09% 2,12%
112 0,06% 0,17% 0,07% 0,22% 0,18%
113 0,03% 0,01% 0,27% 0,37% 0,35%
114 0,00% 0,01% 0,72% 0,78% 0,72%

Table 6.6: Enhancement to the starting solution for cases 103–114

Figure 6.9: Diagram Case 107
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Figure 6.10: Neighbourhood TS Case 107

The TS Insert is better than the TS Swap in nine cases. In five of the nine
cases it finds the best solution among all heuristics. The TS Swap is only better
than the former in three cases. In one of the three cases (108) does it find the
best solution among all methods. In Figure 6.9 (Diagram Case 107) it can be
seen that the VNS has an incredible start at the beginning, but then is not able
to find further enhancements. Figure 6.10 does not help neither. The neigh-
bourhood seems so rough, that no explanation can be given.

While the VNS is better than all other methods in only one case. It is the second
best in the other 11 cases. In Figure 6.9, the VNS, as seen before, switches to
the TS methods after 180 seconds and also gains a strong performance incline
before being stuck at a certain level. Figure 6.12 shows the typical performance
of the VNS, we have seen before. The much more diverse neighbourhood in the
GAs switches to a flat area when the TS methods follow. The explanation from
Figure 6.4 (Neighbourhood VNS Case 95) that the GA methods lead the TSs
to a more homogenous neighbourhood can still be applied.
Nevertheless, also here the overall weak performance of the metaheuristics can-
not be answered.
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Figure 6.11: Neighbourhood GA Case 107

Figure 6.12: Neighbourhood VNS Case 107
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Cases 127–138
The results of cases 127–138 (Table 6.7(random instances, total tardiness, breaks))
seem similar to the results from 115–126 (6.4(random instances, total tardiness,
no breaks)). There are robust performance gains in the smaller instances and
only little gains in the larger instances.

Both GAs perform relatively weakly. They are not able to find the best so-
lution among all methods in any case. The maximum improvement to the
starting solution is in any case 10,00%. In five of the 12 cases, one or both
methods provide less than 1% improvement.
Figure 6.13 shows the same progression for the heuristics as Figure 6.5 (Dia-
gram Case 119). The GAs nearly show no gains. Furthermore, from Figure
6.15 (Neighbourhood GA Case 131) the GA seems to have, as in Figure 6.7
(Neighbourhood GA Case 119), problems to converge its diverse population. It
seems that the proportions of solutions in the different solution levels stay the
same.

The TSs on the other hand, have a strong performance, especially in the smaller
cases. They improve the solution by as much as 29,85%. In eight cases the TS
Insert finds the best solution among all. In further three cases the TS Swap has
the best solution. Figure 6.13 shows furthermore that both TSs keep improving
the solutions over time. The enhancement per time unit decreases, however.
Figure 6.14 shows a homogenous neighbourhood for the TS in the same iter-
ation. As in case 119, the TS improves the solutions significantly from the
starting solution.

Although the VNS only finds the best solution in one case among the heuris-
tics used, it is always close. Figure 6.13 shows that the VNS gets its gains,
when switched to the TS methods. Figure 6.16 (Neighbourhood VNS Case 131)
shows the problems the GAs have even more clearly. While the number of the
weakest solutions decreases, the figure shows, that until the VNS switches to
the TSs method, there are no visible gains for the best solutions in the GAs.
The neighbourhood in a single iteration for the VNS is much more homogenous
and leads also to a clear solution improvement.
The difference in performance is interesting for the different objective functions.
The neighbourhood structure also seems related to this. When the neighbour-
hood is more homogenous in a single iteration, overall the methods can find
better solutions.
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GA 2
point

GA 1
point

TS Swap TS In-
sert

VNS

127 4,09% 7,11% 29,79% 29,85% 29,09%
128 1,51% 7,71% 17,55% 16,50% 16,15%
129 3,95% 10,00% 15,94% 16,50% 15,30%
130 1,83% 2,44% 24,79% 24,99% 17,50%
131 0,18% 0,39% 17,15% 17,39% 14,24%
132 0,71% 0,02% 12,50% 12,48% 10,92%
133 2,92% 2,99% 14,66% 14,79% 12,16%
134 0,17% 0,13% 13,42% 13,87% 10,33%
135 0,09% 0,54% 10,67% 10,24% 8,81%
136 1,63% 1,71% 1,38% 1,38% 2,85%
137 0,03% 0,01% 1,35% 1,35% 1,22%
138 0,01% 0,00% 1,71% 1,71% 1,13%

Table 6.7: Enhancement to the starting solution for cases 127–138

Figure 6.13: Diagram Case 131
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Figure 6.14: Neighbourhood TS Case 131

Figure 6.15: Neighbourhood GA Case 131
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Figure 6.16: Neighbourhood VNS Case 131

6.4.2 Instances with known best solution

As in the other chapters, also in this problem context, the lower bounds only
have limited significance. Hence, only the performance to the starting solution
was measured and not the gap to the lower bounds. Therefore, again, instances
are generated in such a way that the best solution is known. The structure
of the generation of instances is related to the structure of the generation of
instances in Subsection 5.4.2. Therefore, here also there is an optimal schedule
which gives some machines as well as setup operators idle time. Cases 139–150
have the objective to minimize makespan. Cases 151–162 have the objective to
minimize total tardiness. Instances for the makespan minimization problem are
generated as follows:13

1. Operation and machine setup times are 0 in the first step. The maximum
available capacity of all machines between 0 and t is h. On each machine
one operation is added in such a way that each machine has a workload
of 100% between 0 and t. The workload of all machines between 0 and
t then stands at h time units. Given that the workload is 100% of the
available capacity, the schedule must be optimal. (Figure 6.17)

13Note that the minimization of total tardiness is an enhancement of this makespan mini-
mization generation procedure and thus described at the end of this procedure.



6.4. COMPUTATIONAL RESULTS 153

0 t
M1
M2
M3
M4
M5
M6

Figure 6.17: Generation of instances with known best solution job shop parallel
machines: Step 1

2. For each operation, its processing time is randomly reduced by a setup
time with the minimal setup duration between one and 1

number of operations∗2
t on that machine and the time the machine needs to wait until it is setup
the first time. The sum of the waiting times on all machines until the setup
times start can be minimized if operations are set up in ascending order
of the setup times until all machines are running. The available capacity
with due regard to the minimum waiting times still matches the sum of
setup and processing times. Hence, the schedule is optimal. (Figure 6.18)

0 t
M1M1
M2M2
M3M3
M4M4
M5M5
M6M6

Figure 6.18: Generation of instances with known best solution job shop parallel
machines: Step 2

3. The processing times are interrupted by the inserted setup times. Hence,
new operations are created. The minimum duration of the setup needs to
be greater than or equal to the m smallest setup time. Setup times can be
inserted at any position on the machines between the end of the smallest
setup and t, where the available capacity on the machine is given and
minimum one of the setup operators has idle time. Furthermore, between
each setup, there needs to be a minimum processing time of a single time
unit.

(a) Randomly choose a feasible starting position for a setup.

(b) Randomly choose a finishing for the setup between the m minimum
setup time and the maximum between 1

number of operations t and the
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interruption of the capacity due to setup operator unavailability or
the starting of the next operation.

(c) Continue until the chosen operation limit has been reached, or no
capacity is left.

The available capacity with due regard to the minimum waiting times still
matches the sum of setup and processing times. Hence, the schedule is
optimal. (Figure 6.19)

4. Each created operation now gets additional information assigned.

(a) For every operation–machine combination, except for the combina-
tion which has already been created, randomly pull a number between
0 and 100. If the number is greater than 50, the operation can run
on the machine.

(b) Operations get also batched and sequenced to jobs.

i. Select the earliest starting operation which has either no prede-
cessor in the job or which starts after the production end of the
last selected operation in the same job.

ii. The selected operation is attached to the end of the currently
created sequence of operations in the current job. The operation
cannot be chosen for other jobs anymore.

iii. If a job has 10 operations, or there are no more operations for
the job to choose, the job is closed.

iv. If there are so far not to a job assigned operations, create a new
job and go back to i.

(c) Due dates for the operations. Each operation gets a due date assigned
on which the processing of the operation in the built schedule is
finished. Thus, there is no tardiness in the optimal schedule. Since
we cannot divide our best-found solution to the best-found solution
of zero, we set the value of the optimal solution to one.

0 t
M1M1M1M1M1M1
M2M2M2M2
M3M3M3M3
M4M4M4M4M4M4
M5M5
M6M6M6M6

Figure 6.19: Generation of instances with known best solution job shop parallel
machines: Step 3
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Figure 6.20: Diagram Case 143

Figure 6.21: Neighbourhood TS Case 143
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Figure 6.22: Neighbourhood GA Case 143
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Case Machines Operations Setup overlaps
139/151 10 100 1
140/152 10 100 3
141/153 10 100 5
142/154 10 200 1
143/155 10 200 3
144/156 10 200 5
145/157 25 250 1
146/158 25 250 3
147/159 25 250 5
148/160 25 500 1
149/161 25 500 3
150/162 25 500 5

Table 6.8: Known best solution 139–150 makespan / 151–162 total tardiness

Cases 139–150
The first thing to notice in Table 6.9 is that the starting solutions are as far as
264,35% (case 147) away from the optimum, while the metaheuristics can get
as low as 35,08% to the optimum (VNS in case 144).
While the GAs performed weakly in the random instances makespan cases, they
performed much better in cases when the optimal solution is known. In six of
the twelve cases the best-found solution of a GA is better than the best-found
solution of a TS. An explanation is that in the random cases, the solutions
found are much closer to the optimal solution, although the lower bounds in the
pre-tests suggested otherwise. Therefore, the GAs might have a disadvantage
in the random cases as they are good in exploring a broader neighbourhood
in a short time as this might be in cases 139–150. In ten of the twelve cases,
the 1-point crossover is better than the 2-point. The 2-point crossover is only
better than the 1-point in two cases. Besides, the 1-point crossover finds the
best solution among all metaheuristics in five cases. The GAs show a strong
improvement at the beginning in (Figure 6.20) (Diagram Case 143). They then
continue to find better solutions over time but with less improvement per time
unit. Nevertheless, it seems that when they would have more time, even better
solutions could be found as they look like a linear function in the end. In the GA
neighbourhood (Figure 6.22), it can be seen how weak solutions get eliminated
over time and better solutions are continuously discovered. The figure suggests
that with further running time, even better solutions are likely to be found.

The TS Swap is better than the TS Insert in eight cases. Hence, the performance
is opposite to the performance in cases 91–102 (random instances, makespan).
To the best of our knowledge, no explanation that a Swap exchange explores
a neighbourhood more broadly than an Insert exchange exists. Both TSs have
a strong improvement at the beginning in (Figure 6.20) (Diagram Case 143).
They are, however, stuck at a certain level shortly thereafter. This could in-
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Starting
solution

GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

139 194,74% 97,87% 67,2% 194,74% 163,31% 91,35%
140 164,77% 78,95% 52,43% 71,77% 53,94% 54,73%
141 155,23% 97,03% 57,41% 139,90% 119,14% 75,80%
142 129,52% 76,5% 47,7% 87,31% 93,62% 65,44%
143 139,85% 64,58% 44,18% 107,38% 109,14% 59,62%
144 137,5% 68,33% 62,23% 120,78% 108,96% 35,08%
145 234,29% 182,36% 154,26% 167,15% 183,58% 145,29%
146 256,55% 172,96% 165,45% 188,47% 191,05% 163,83%
147 264,35% 196,38% 188,04% 165,33% 183,70% 177,60%
148 195,32% 131,29% 129,02% 123,82% 157,63% 107,06%
149 167,85% 121,28% 121,73% 102,9% 142,56% 95,01%
150 182,72% 137,30% 139,78% 121,02% 170,07% 108,59%

Table 6.9: Gap to the optimal solution for cases 139–150

Figure 6.23: Neighbourhood VNS Case 143
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dicate, that the optimal solution is in a completely different neighbourhood,
which cannot be reached during the 360 seconds. Also the neighbourhood for
the TS shows this kind of performance (Figure 6.21) (Neighbourhood TS Case
143). There is a strong improvement in the beginning, before the search browses
through a plain area, with occasionally much weaker solutions.

The VNS shows the best performance of all metaheuristics. In six of the twelve
cases, the VNS shows a better solution than any other method. In the other
cases, the VNS is close to the best result. An explanation for this could be that,
as all methods work very well, the GAs broadly identify the region in which the
TSs can then search with more detail. On the contrary, in Figure 6.20 (Diagram
Case 143) and Figure 6.23 (Neighbourhood VNS Case 143), the VNS follows
the performance of the GAs until it is switched to the TSs. It can then gain
only minor improvements. As this is an exception and not the norm in these
cases, this is not investigated further.

Cases 151–162
In contrast to the random instances total tardiness cases in this chapter (Table
6.4), there are huge gains for any metaheuristic in the known best solution total
tardiness cases (Table 6.9), therefore indicating that the solutions found in the
random cases are close to the optimal solution. It has to be considered, though,
that in cases 115–126 fewer iterations can be calculated during the 360-second
running time. The reason for this remains unknown to date.

The GAs are sometimes able to reduce the gap to the lower bound by more
than 60%. The 1-point crossover especially shows a strong performance. In
all cases it is better than the 2-point crossover. In one case it is the best
metaheuristic among all. After an initial improvement for both GAs in Figure
6.24 (Diagram Case 155), they continue to show improvement but at a slower
rate. The graphs look then nearly linear for them. When the actual case, 6.26
(Neighbourhood GA Case 155), and case 119, Figure 6.7, (same problem set-
ting random instances) are compared, there is clearly a different performance.
Here, the GA runs on one hand through more iterations and on the other hand
eliminates the weaker solutions in its population over time.

The TS Swap provides the best solution among the heuristics in four cases,
while the TS Insert does so in five cases. In many cases, they can reduce the
gap by more than 80%. The TSs have a strong improvement at the beginning in
6.24 (Diagram Case 155) and show almost no gains after 90 seconds. Neverthe-
less, they are already much closer to the optimum in contrast to the GAs. It can
be clearly seen in Figure 6.25 (Neighbourhood TS Case 155), that the TSs runs
through a more or less homogenous neighbourhood in each iteration. It should
be also noted, that the TS runs through more iterations than in the same case
(Case 119 Figure 6.6) with random instances. As stated before, the performance
of a metaheuristic seems to be related to the neighbourhood structure. Homoge-
nous neighbourhoods seem to provide better performance for the metaheuristics.
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Starting
solution

GA 2
point

GA 1
point

TS
Swap

TS In-
sert

VNS

151 347065 189337,67 123117,67 49254,33 51907 59115
152 324719,33 190752,33 127844 38746 45222,67 52017,67
153 295125,33 182238 126305,67 32958,33 30884,67 51815,67
154 518974 318028 234858 99231,33 99599,33 98448,33
155 449277 317448,33 222565 66025,67 71260,67 65864,67
156 435968 319124,33 228405 69542,67 66073,33 75388
157 1011233 767401 652216,67 188290 184463,67 255061,67
158 948611 773500,67 686941,33 142391 146483 207920,33
159 1111981 845270,33 700855 153162,33 148381,33 219719
160 1392076,33 1152400,67 1131627,33 852940,67 852940,67 846477
161 1331305,33 1165148,67 1128194 719269,67 718231,33 803533,33
162 1663244,67 1288367,67 1184460,67 742195 738784,67 886512

Table 6.10: Gap to the optimal solution in time units for cases 151–162

Figure 6.24: Diagram Case 155
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Figure 6.25: Neighbourhood TS Case 155
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Figure 6.26: Neighbourhood GA Case 155
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Figure 6.27: Neighbourhood VNS Case 155
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The VNS also shows a strong performance. In three of the twelve cases, it
finds the best solution among all metaheuristics. In the other cases, it is close
by. The VNS, again, basically follows the form of the other methods in Figure
6.24 (Diagram Case 155). Until the switching point at 180 seconds, the perfor-
mance looks linear. It is then switched to the TS Swap and immediately the
graph shows the curve which the TS had at the beginning. The VNS again
shows the typical structure often seen before (Figure 6.27). There are no specif-
ically new and interesting peculiarities.

6.4.3 Case study

To describe the results for the company, we solved 20 production cases with
real data from the company. We refer to them as case 163. A schedule is done
only for the next two weeks, since there are major adaptions within a small
time frame for customer orders. Therefore, a larger planning horizon would
mean major variations and repairments in the planned schedule. During this
period, 19 jobs with 190 operations need to be scheduled on average on the
13 machines.14 In the smallest case, only 16 jobs with 160 operations need to
be planned, while in the largest case 21 jobs with 210 operations need to be
scheduled.
Although the end components for customers are similar, each component has
distinct characteristics. Thus, the components can only be produced based
on customer order. As a result, there are major variations in the production
quantity and the production time for the operations. In particular, there are
small quantities for reorders of faulty parts. In the data we received, the smallest
production time is 0 minutes,15 the longest production time is 4320 minutes,
where the average median of all production times for the operations is at 690
minutes.
The smallest setup time is 5 minutes, the largest setup time is 720 minutes, and
the average median of all setup times is 362 minutes. There are three setup
operators available during the working hours.16 The objective is to minimize
total tardiness.

Since the goal in this sub chapter is a comparison of the planning procedures
of the company, we use their due date heuristic to find a starting solution and
compare the VNS against it.17

14The data suggested that each job has exactly 10 operations.
15This could be a handling operation. Although there is no handling time for the operation,

is still needs to wait, as there might be a handling time for the operations in the queue before.
16Setup operators and machines work in three shifts, seven days a week in the following time

intervals: 6:00 a.m.– 2:00 p.m., 2:00 p.m.–10:00 p.m., and 10:00 p.m.–6:00 a.m. Furthermore,
each shifts includes a break after four working hours for half an hour.

17Although the VNS shows only the second-best performance in the case study tests, we
compare the performance of the due date heuristic further against it, since it shows the most
stable performance in all tests.



6.5. CONCLUSION 165

The first comparison is the total tardiness. In the due date heuristic opera-
tions are on average 16,132 days late while the tardiness for an operation is
in the VNS only 10,02 days. Moreover, the total production output, i.e. the
number of finished operations per day is higher for the VNS with 10,97 to 7,82
operations in the due date heuristic. The higher production output is due to
the decrease of waiting times for the setup operators and for the machines. In
the due date schedule setup, operators had a utilization of 64,29% and machines
38,46% of their time while in the VNS schedule the utilizations are 90,24% for
setup operators and 61,90% for the machines. It can therefore be stated that
the use of more advanced algorithms in production planning is suggested.
Although we did not test the other algorithms, we would expect the TSs to
perform better than the GAs as they were better in the random instances as
well as in the instances where the best solution is known with 200 jobs and three
setup operators. Although the VNS is better than the TSs in the known best
solution cases, it is still expected that the TSs provide better solutions in the
case study. This is because they perform better in the random instances, which
is closer to the case study regarding its structure.

6.5 Conclusion

This chapter was the final part of the investigation of setup operators in the
production scheduling environment. We extended the general problem of “job
shop scheduling with parallel machines” with additional constraints of setup
operator availability. A formal problem description was given in 6.2. Apart
from the consideration of setups which can only be undertaken if a setup opera-
tor is available, break times for the machines and setup operators were included.

Two GAs, two TSs, and a VNS were developed (6.3) to investigate the perfor-
mance gains for using advanced algorithms against the commonly used sorting
heuristics. The objective function was to minimize either makespan or total
tardiness.

Randomly generated instances (6.4.1) with up to 25 machines, 50 jobs and
500 operations were tested with and without breaks in 6.4.1. If no breaks were
considered, the VNS performed best. In five of the twelve cases, it found the
best solution. The TSs found the best solution of all metaheuristics in three
cases. The GAs showed a diverse performance. While they provided the best
results in the smallest cases, they had major problems with the bigger cases.

The situation is likewise when breaks are considered.

But the results were different when the objective minimum total tardiness was
considered. In these instances, either with breaks or without, the VNS per-
formed well, the TSs were strong, while the GAs showed weak performances in
all problem sizes.
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If the known best solution cases were considered (6.4.2.), the results were again
different. The VNS once again showed a robust performance. The GAs were
very strong as well. The TSs, surprisingly, showed a much weaker performance.
The GAs performed sufficiently in the minimize total tardiness cases but got
clearly outperformed in all cases by the TSs. The VNS showed particularly good
results in all instances, thus taking the best of each of the underlying methods.
Finally, the VNS was tested in Subsection 6.4.3 on real data provided by the
company. It was clearly shown that the use of a more advanced heuristic can
lead to significant savings for companies.

Section Type Target Density Performance

Parallel
dedicated
machines

Random in-
stances

Makespan no breaks low GAs best, TS good
Tardiness no breaks low TSs better than

rest
Makespan breaks low bigger gap with

breaks rest same
Tardiness breaks low GAs have problems

Known best
solution

Makespan high all metaheuris-
tics have strong
performance

Table 6.11: Results 4

When the results of this final subsection are compared to the results of the
previous subsection, it is clear that all metaheuristics perform well when the
optimal schedule is denser. Also, in the known best solution cases, all meta-
heuristics perform very well. In the random instance cases, the metaheuristics
perform better when there are more setup operators, i.e. when the schedule is
dense. Furthermore, in line with the other chapters, the smaller the instances,
the better the performance of the metaheuristics. This holds especially for the
GAs. It is expected that they have problems with convergence in larger in-
stances. Thus, it acts more like a random search. Therefore, it is concluded,
that more running time is needed for the heuristics to come to an appropriate
solution. About the influence of the target on the metaheuristic, no definitive
answer can be given. In some makespan cases, the GAs are better than the TSs
in some it is opposite. The same holds for the total tardiness problems.
Overall, the chapter provided additional information to the field of setup oper-
ator scheduling in production planning. When used, the algorithms described
will probably decrease costs for companies which have a “job shop with parallel
machines subject to setup constraints” problem. As described in Section 2.3,
many SMEs do not have, however, the adequate IT infrastructure to use ad-
vanced algorithms. When a company has such a complex problem, it is clearly
recommended to work on the IT infrastructure to be able to use these types of
algorithms first. The increasement of setup operators is not recommended to
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start with, as there are so many influencing variables on a plan, that the pure
increasement might not solve the problems the companies face. This chapter is
also the final part to the literature of our work in setup operator scheduling.
While first insights into these type of scheduling problems have been provided,
many new questions arose regarding the context-specific performance of the
metaheuristics. Therefore, also in this chapter, a larger computational study
with slightly different MIPs is recommended to identify the influence of the
different constraints on the performance of the heuristics more clearly.
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Section Type Target Density Performance

Parallel
machines

Random instances
Makespan low high GAs not good,

worse with larger
instances, better
with more setup
operators/ TS
better than GAs,
better with more
setup operators,
worse with large
instances

Tardiness GAs better
than case with
makespan, better
with more setup
operators, worse
with large instances
/ TSs better than
GAs, better in
small instances,
with more setup
operators

Known best solution
Makespan high good results for TSs

and GAs , TSs bet-
ter

Tardiness high very good results
for GAs , good re-
sults for TSs, better
in small instances,
better with more
setup operators

Table 6.12: Results 5
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Section Type Target Density Performance

Job shop
with parallel
machines

Random instances
Makespan no breaks Bad performance

for all / GAs
better than TSs
in small instances,
better with higher
number of setup
operators, better
in smaller

Tardiness no breaks low / high TSs better than
GAs, TSs has
average perfor-
mance, better in
small instances,
better with more
setup operators

Makespan breaks low / high comparable to no
breaks

Tardiness breaks low / high comparable to no
breaks

Known best solution
Makespan high GAs in smaller

instances much
better than TSs,
in larger instances
approximately
equivalent

Tardiness high Both strong per-
formance, TSs
clearly better
than GAs

Table 6.13: Results 6
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Chapter 7

Final Conclusion

The investigation of production planning in small and medium-sized compa-
nies showed that production plans were usually made with the help of sorting
heuristics without considering the special problem structure of the companies
production environment such as setup operator availability. The main aim of
this work was to investigate the following:

1. If methods from the operations research context could be applied to more
complex, real-life problems of medium-sized companies

2. Which methods worked well for these types of problems

3. Moreover, setup operators were explicitly considered in the models and
solution algorithms.

To this end, an essential understanding of the fundamentals of production
planning, Section 2.1, and of how small and medium-sized companies are differ-
ent from large companies, Section 2.2, was needed. The theory of production
planning was then combined with the differences between small and medium-
sized companies and large companies in Section 2.3. Within this section, based
on a quantitative survey we conducted ourselves and with the help of further
studies, we investigated the planning situation of small and medium-sized com-
panies. Our study and the further studies suggested an insufficient planning
system inside SME. A central planning approach to scheduling which includes
all relevant resource constraints can be concluded from the survey in Section
2.3. As the study has limited overall significance for the reasons described in
2.3., but is important to outline the overall planning situation in SME, we ab-
stracted the problem of production planning for three typical real world cases,
modeled them, showed the solvability and the limitations. Before we come to
the cases, we went on to provide a state-of-the-art literature review (in Chapter
3) for these types of scheduling problems by focusing on the most problematic
scarce resource—setup operator availability.
In the first case, we investigated “parallel dedicated machines subject to setup
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constraints”. We developed seven different metaheuristics to solve the prob-
lem. The results suggested that any company with this kind of problem should
seriously consider using one of the more advanced algorithms to create a produc-
tion plan. In the second case, i.e. the more general form of “parallel dedicated
machines subject to setup contraints”, “parallel machines subject to setup con-
traints” we developed the five heuristics with the most promising results from
the first case and tested them on different instances. While some heuristics
showed adequate results, others lacked in terms of certain problem parameter
settings. Therefore, it was concluded that the problem context/setting had a
major influence on the tool of choice. In the third context, we analysed the
most general problem of our three cases, the “job shop with parallel machine
scheduling subject to setup operator constraints”. Again, the performance of
some methods was strongly influenced by the problem context. While we could
not find a general advantage of certain techniques, it was shown that these kind
of problems are generally solvable in an acceptable time frame.

On the whole, the work is the first to provide insights into the production
scheduling process of small and medium-sized companies with additional setup
operator constraints. Practically, the results are of special importance to small
and medium-sized companies, which could increase their production output by
using the described algorithms in the scheduling department. To use the algo-
rithms, adequate IT infrastructure is essential. As many SMEs lack sufficient
IT infrastructure (2.3), they should check and update their basic infrastructure.
Apart from IT, when companies are faced with parallel (dedicated) machine
problems, increased awareness that setup operators are a limiting factor and
the explicit consideration of those in the manual planning might help. If they
are considered a limiting factor in the plans, which they likely are, the overall
increase in the number of setup operators will help. Employing more setup op-
erators explicitly may not be needed, but it should be checked whether through
advanced training machine operators are able to do both tasks. This work also
contributes to the sparse literature of setup operator scheduling. Nevertheless,
while old questions have been answered, new questions arose. What remains
unclear is the exact influence of the problem context on the ability of the method
to find an appropriate solution in an acceptable time frame. Therefore, future
work should try to identify the underlying reasons for the performance/non-
performance of the algorithms. A cluster analysis could be useful in this re-
spect. In addition, future studies should also take more factors such as machine
breakdowns into account. Finally, the algorithms should be implemented in the
companies, and it should be checked whether real savings can be achieved.
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L. Sheremetov, J. Mart́ınez-Muñoz, and M. Chi-Chim. Two-stage genetic algo-
rithm for parallel machines scheduling problem: Cyclic steam stimulation of
high viscosity oil reservoirs. Applied Soft Computing, 64:317–330, 2018.

J. B. Sidney. An extension of Moore’s due date algorithm. In Symposium on
the Theory of Scheduling and its Applications (North Carolina State Univ.,
Raleigh, N. C., 1972), pages 393–398. Lecture Notes in Economics and Math-
ematical Systems, Vol. 86, Berlin, 1973. Springer. Incorporating the results
of discussion by Hamilton Emmons and John Rau.

W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2):59–66, 1956.

N. Soni and T. Kumar. Optimization by simulated annealing. International
Journal of Computer Science and Information Technologies, 5(6):7235 – 7238,
2014.

Y. N. Sotskov and N. V. Shakhlevich. NP-hardness of shop-scheduling problems
with three jobs. Discrete Appl. Math., 59(3):237–266, 1995.

D. Spath, M. Hämmerle, and P. Rally. Wertschöpfung steigern. Fraunhofer
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