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Abstract

Similar to other sectors, present-day agriculture relies on new advances in di�erent �elds such as ma-

chine learning, computer vision, robotics, botany, etc. In the modern world, new scopes have been

introduced to agriculture, either directly or indirectly, to meet human needs, preserve the natural and

environments and resources for the future. As an example, the sustainability of growth is dependent

on a drop in cost under a particular threshold, and modernization of agriculture, in di�erent aspects,

is a demand to accelerate the process toward an acceptable growth. In order to improve agricultural

productivity and increase bene�ts, one necessity is to transition from traditional methods to modern

methods and availability of smart machines. In this way, it is feasible to build systems based on

automation and control concepts and utilize precise algorithms for carrying out di�erent tasks with

fewer hands-on farms and protecting natural resources for the next generations. Hence, experts in

robotics and electrical engineering are also involved with new aspects of agriculture and farming.

Accordingly, while researchers have been forced to compete for increasing precision and pro�tabil-

ity in agricultural activities and improve present methods with respect to natural environments,

it is also necessary to serve on new major fronts: accurate mitigation of weeds in �elds, optimum

water consumption, reducing labor costs and number of workers, 24-hour remote control of �elds,

etc. Hence, it is necessary to provide more useful information about plant species and apply the

extracted information for further purposes. Accurate recognition of plants is an essential part of

such information. This task cannot be neglected as it supports not only farmers but also botanists

and environmentalists.

By considering the workplaces of farmers and botanists, it is feasible to divide the workspaces

into two main subsets: controlled environments like laboratories with static conditions and uncon-

trolled environments like outdoor environments with dynamic conditions. Despite the importance of

plant recognition, a considerable number of works has been proposed for recognizing plant species in

stationary conditions based on constant background, light condition, the position of leaves, presence

of single leaves, etc. In the real world, such constraints and assumptions do not lead to promising

results. Therefore, consideration of other factors is essential to build e�cient systems for natural

plant recognition.

In this research, both workspaces have been considered to develop well-mechanized plant recog-

nition systems. This work employs the modern combined methods for local feature extraction and

precise recognition of plant species. To ful�ll the goals in the controlled environment, six di�erent

plant recognition systems are developed and evaluated by conducting various experiments. It is

noteworthy that the modern combined methods have been adopted as the foundation of the �rst

phase of the natural plant recognition systems in the uncontrolled environment. However, the story

changes in outdoor environments and there is no �xed condition for taking images of plants and leaves.

In uncontrolled environments, environmental and non-environmental factors a�ect the photograph-

ing process. Light intensity and illumination are two crucial environmental factors that have an

impact on images, and these factors may vary over time. Images taken from one particular scene or

object are not the same if it is captured in the morning or the evening. Furthermore, weather a�ects

the color intensity in outdoor environments as the color of leaves depends on temperature, light and



water supply, and changes to these factors are also inevitable with the change of month and season.

Non-environmental factors like background and distance have also e�ects on the performance of plant

recognition systems. Backgrounds of images of natural plants taken in outdoor environments are gen-

erally more complicated in comparison to backgrounds in controlled environments. Meanwhile, the

distance, either short or long, between camera and plant is undoubtedly another big challenge in

uncontrolled environments. In addition, there is no certainty that the images contain only one single

leaf or there will be a number of leaves within images.

To develop a more e�cient natural plant recognition system, we ride the wave of the tsunami

of deep learning and build a novel plant recognition system based on a convolutional neural net-

work. Due to the promising result and the superior performance, the system is then deployed as the

main core of a mobile real-time system. To evaluate the system, a mobile robot and a semi-robot

have been equipped with cameras to navigate and explore the outdoor environment in two di�erent

years, 2017 and 2018. While exploring, an image is captured and automatically processed by the

deep natural plant recognition system to visualize the species of the target plant as a real-time sys-

tem. The �nal results show that the real-time mobile plant recognition system can identify natural

plant species independently of the used camera, distance, time of day and other environmental and

non-environmental factors in uncontrolled environments.

Natural Plant Recognition System, Deep Learning, Dynamic Environment, Controlled Environ-

ment, Field Robot



Zusammenfassung

Ähnlich wie in anderen Sektoren wird die heutige Landwirtschaft durch aktuelle Fortschritte in ande-

ren Bereichen wie z.B. maschinelles Lernen, Computer Sehen, Robotik, Botanik usw. beein�usst. Die

Moderne erö�net neue Perspektiven für die Landwirtschaft, sowohl direkt als auch indirekt, um den

menschlichen Bedürfnisse besser dienen zu können, dabei die natürlichen Lebensräume zu erhalten

und die Ressourcen zu schonen, um nachhaltig zu wirtschaften. So ist beispielsweise die Nachhaltigkeit

des Wachstums von einer deutlichen Senkung der Kosten unter einen bestimmten Schwellenwert ab-

hängig. Damit wird die Modernisierung der Landwirtschaft unter verschiedenen Gesichtpunkten eine

Forderung, die den Prozess eines akzeptablen Wachstum beschleunigen kann. Um die landwirtschaft-

liche Produktivität zu verbessern und den Nutzen zu steigern, ist es notwendig, von traditionellen

Methoden auf moderne Methoden und insbesondere auf die Verfügbarkeit intelligenter Maschinen

zurückzugreifen. Auf diese Weise ist es möglich, Systeme auf Basis von Automatisierungs- und Steue-

rungskonzepten zu bauen. Mit solchen präzise an die Aufgabe angepassten Systemen können die glei-

chen Aufgaben mit deutlich weniger menschlicher Arbeitskraft in den Betrieben bewältigt werden

und es werden gleichzeitig die natürlichen Ressourcen für die nächsten Generationen geschont. Daher

beschäftigen sich Experten für Robotik und Elektrotechnik auch mit neuen Aspekten der Landwirt-

schaft.

Die Forschung ist allgemein bemüht die Genauigkeit und Rentabilität der landwirtschaftlichen

Tätigkeiten zu steigern und vorhandene Methoden in Einklang mit den gegenwärtigen, natürlichen

Gegebenheiten zu verbessern. Dies bedeutet auch, dass es notwendig ist in neuen Gebieten tätig

zu werden. Diese Gebiete sind unter anderem, präzisere Minimierung von Unkraut auf den Feldern,

Optimierung des Wasserverbrauchs, Reduzierung von Arbeitskosten und Arbeitskräften, sowie stän-

dige Fernsteuerung von Feldern. Um diesen neuen Anforderungen gerecht werden zu können, werden

detaillierte Informationen über die verschiedenen P�anzenarten benötigt. Dabei spielt vor allem die

exakte Identi�zierung der P�anzenspezies eine zentrale Rolle. Schlussendlich werden davon die Land-

wirte, Botaniker und Umweltschützern gleichermaÿen pro�tieren.

Die Arbeitsbereiche von Landwirten und Botanikern lassen sich in zwei Hauptgruppen unterteilen:

Der erste Bereich �ndet sich in einer kontrollierten Umgebung. Eine solche Umgebung ist charak-

terisiert durch statische Bedingungen und lässt sich zum Beispiel in einem Labor realisieren. Der

zweite Bereich ist die unkontrollierte Umgebung. Diese Umgebung ist durch dynamische Bedingun-

gen geprägt und lässt sich beispielsweise in der Auÿenumgebung �nden. Ein Groÿteil der Forschung

zur P�anzenerkennung �ndet bisher in einer kontrollierten Umgebung statt und dokumentiert Er-

gebnisse, wie die Position und das Vorhandensein einzelner Blätter. Diese Ergebnisse sind auf einen

konstantem Hintergrund und gleichbleibende Lichtverhältnisse angewiesen. In der realen Welt über-

wiegen jedoch dynamische Bedingungen. Folglich kommt es in der Praxis häu�g zu unzulänglichen

Ergebnissen bei der Identi�kation von P�anzenarten. Für die Optimierung der P�anzenerkennung

in der Praxis ist es daher unbedingt erforderlich weitere Faktoren, die über die in den kontrollierten

Umgebungen vorhandenen hinausgehen, zu berücksichtigen.

In dieser Forschung wurde in beiden Arbeitsbereichen die Entwicklung gut mechanisierbarer P�an-

zenerkennungssysteme berücksichtigt. In dieser Arbeit werden moderne kombinierten Methoden zur



lokalen Merkmalsextraktion und zur präzisen Erkennung von P�anzenspezies eingesetzt. Um die Ziele

in der kontrollierten Umgebung zu erreichen, werden sechs verschiedene P�anzenerkennungssysteme

entwickelt und durch verschiedene Experimente bewertet. Diese Methoden wurde auch in der ersten

Phase in der unkontrollierten Umgebung verwendet. In der Auÿenumgebung gibt es jedoch keine

festgelegten Bedingungen für die Aufnahme von P�anzen und Blättern. Damit sind die Randbedin-

gungen substantiel anders.

In unkontrollierten Umgebungen beein�ussen Umwelt- und Nicht-Umweltfaktoren den Prozess der

Fotogra�e. Lichtintensität und Beleuchtung sind zwei wichtige Umweltfaktoren, welche die Bildent-

stehung beein�ussen. Sie können auch noch im Laufe der Zeit variieren. Die Bilder, die von einer

bestimmten Szene oder einem bestimmten Objekt aufgenommen wurden, stimmen nicht überein,

wenn sie morgens, mittags oder nachmittags aufgenommen wurden. Darüber hinaus beein�usst das

Wetter die Farbintensität in den Auÿenumgebungen, ebenfalls ist die Farbe der Blätter von der

Temperatur, dem Licht und der Wasserversorgung abhängig. Änderungen dieser Faktoren sind auch

mit dem Wechsel von Monat und Jahreszeit unvermeidlich. Nicht-Umweltfaktoren wie Hintergrund

und Entfernung wirken sich zusätzlic auf die Leistung von P�anzenerkennungssystemen aus. Hin-

tergründe von Bildern natürlicher P�anzen, die im Freien aufgenommen wurden, sind im Vergleich

zu Hintergründen in kontrollierten Umgebungen im Allgemeinen komplexer. Der kurze oder groÿe

Abstand zwischen der Kamera und den P�anzen ist zweifellos eine weitere groÿe Herausforderung in

unkontrollierten Umgebungen. Auÿerdem gibt es keine Gewissheit, dass die Bilder nur ein einziges

Blatt enthalten, oder eine groÿe Anzahl von Blättern widergegeben wird.

Um ein e�zienteres natürliches P�anzenerkennungssystem zu entwickeln, surfen wir mit auf der

aktuellen Tsunami des Deep Learnings und bauen ein neuartiges P�anzenerkennungssystem auf, das

auf einem recursiven neuronalen Netzwerk basiert. Dieses System wird detailiert vorgestellt und eva-

luiert. Aufgrund der vielversprechenden Ergebnisse und der guten Leistung wird das System dann als

Hauptkern eines mobilen Echtzeitsystems eingesetzt. Zur praxisnahen Bewertung des Systems wur-

den ein mobiler Roboter und ein Semiroboter mit Kameras ausgestattet, um in zwei verschiedenen

Jahren - 2017 und 2018 - die Umgebung im Freien zu erkunden. Während der Erkundung wird das

Bild erfasst und automatisch vom System die Spezies der im Bild sichtbaren P�anzen bestimmt. Die

Endergebnisse zeigen, dass das mobile Echtzeitp�anzenerkennungssystem in der Lage ist, natürliche

P�anzenarten unabhängig von der verwendeten Kamera, der Entfernung, der Tageszeit und anderen

Umwelt- und Nicht-Umweltfaktoren in unkontrollierten Umgebungen robust zu identi�zieren.

Natürliches P�anzenerkennungssystem, Deep Learning, Dynamische Umgebung, Kontrollierte Um-

gebung, Feldroboter
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Chapter 1

Introduction

1.1 Motivation

The real age of the Earth is still an unsolved question for scientists. However, the timeline of the
Earth's ages provides an approximate planetary age, while the start of life is accordingly obtained
and is estimated to have begun roughly 0.7 billion years later than the Earth itself. However, scien-
tists approximate the age of the Earth to be 4.5 billion-years old. Many researchers believe that life
on Earth is a process which has been gradually developed and its start is not a sudden phenomenon
in reality. Due to the continual progress of life through di�erent ages, we are able to declare that life
is certainly a constant occurrence. A clever question that might be asked is, "How can we explore the
Earth and life?" The main sources of information to answer this question are fossils, and scientists
can investigate the fossil records to achieve valuable information about the history of humans, life
and the Earth. In addition to such records, it is useful to study microscopic ancient plants to discover
more aspects of the Earth and the life on it during di�erent ages. Due to the existence of plants from
early ages, they have played a signi�cant role in di�erent aspects of the mentioned process throug-
hout history, and their e�ects are de�nitely undeniable. If we go back to the Ordovician-Silurian
extinction, we see tracks of plants on climate change which happened more than 425 million years
ago, and the role of plants is absolutely bold over geological time. Although it was approximately
more than 3000 million years ago that the �rst plant-like living-organism called blue-green algae
was found, it might still be found in water. Early plants di�er from today's plants and researchers'
�ndings have proven that the structure of early plants was as complex as plants in our age. Changes,
roles, e�ects and other related issues of plants encourage us to inquire into di�erent aspects of the
evolutionary history of plants. Moreover, the level of complexity has been varied in plants over time
and such variations start from the earliest algal mats, through bryophytes, lycopods, and ferns, to
the complex gymnosperms and angiosperms of today [1].

Let's look into the structure and components of atmosphere during the existence of early plants.
During that age, the major component of air was carbon dioxide and the amount of oxygen was not
suitable for today's plants. Over time, photosynthetic plants slowly came along and had e�ects on the
composition of the atmosphere; the amount of oxygen consequently increased, and the atmosphere
was �lled with oxygen as the plants moderated the amount of carbon dioxide by consuming it during
the photosynthesis process, a unique ability of plants for turning solar energy into chemical energy.
Two important factors, perspiration and breath, had direct e�ects on the cooling of the atmosphere.
Atmospheric cooling had indirect e�ects on climate and weather conditions over time. To summarize
the mentioned points, we should acknowledge that plants are key regulators of nature and life on the
Earth, and they function as a signi�cant and fundamental basis of the Earth's ecologies, either on
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land or under water.
Like other organisms, the history of plants is full of ups and downs over time. A common origin

story describes the early humans who rubbed two sticks together and made �re for the �rst time.
This story has frequently been proposed in elementary school courses, and some students may have
even tried to conduct such an experiment. Perhaps it seems to be a simple fact for us today, but
we cannot ignore the role of plants and the ingenuity of our early ancestors. Throughout history,
human civilization has owed its stability, progress, and continuity of existence to plants, and no one
can deny this truth. Two important connected factors, water and plants, are the basis of human life,
and the human is able to consume water for agriculture activities regardless of irrigation method.

Let's look at the Earth and the distribution of the population on the planet. We �nd people
are living all around the world and there is also a huge diversity of plants. Plants can be found in
any place, such as deserts, oceans, etc., and the diversity and distribution of plants a�ect how the
world's population is distributed. Furthermore, many plants grow in places that are not habitable
by humans.

With regard to human life, an important issue is the development of human civilization. By stu-
dying di�erent sources concerning human civilization, the emergence of civilization near rivers is the
common point of explanation. The �rst human civilizations that appeared close to rivers can be
considered the origins of modern life. In addition, another basis for human civilization is agriculture,
including di�erent plants cultivation and other activities in agriculture. Besides, the relationship
between plants and human civilization has undoubtedly had various impacts on, for example, human
history, sociology, economics, culture, literature, etc. Through the investigation of many cultural
masterpieces, we �nd the undeniable e�ects of plants; for instance, Ha�z [2], the beloved Iranian
poet, created a masterful style by using plants and �owers in various themes in his novels, providing
evidence of the signi�cance of plants in literature. If we have a wide look into the realms of human
activity, we �nd the presence of plants in many di�erent �elds that we might not think to associate
them, for instance, religion, social behavior, politics, and customs. Ultimately, plants and plant pro-
ducts have been essential components and driving forces in exploration, religion, wars, slavery, and
innovation.

Domestication is a process which has usually been neglected and its impacts have not been eva-
luated as they are in reality. Over many decades, the main sources for human survival were wild
animals, �sh, and wild plants. Let's go back to the Paleolithic ("Old Stone") and the Ice Age periods
and investigate human life. Interestingly, all human groups were involved in nomadic life as hunters
and gatherers. Domestication of wild plants and wild animals started at the time that people settled
down in the Middle East. Accordingly, success of human civilization is debated to domestication.

To continue our study on the in�uences of plants, we would like to consider terrestrial ecosystems
and life cycles to specify the role of plants. Obviously, plants are rich sources of nutrients and they
have the �rst rank of primary producers of nutrients, especially proteins. The presence of plants in
the water cycle and biogeochemistry has made plant species the gold component. In addition, they
are considered as the gold component in the energy cycle due to their role in producing energetic
molecules.

Although many types of plants have been become extinct over time, the applications for plants
have increased, and there has been no limit to these functions over the past years. The collection
of information about extinct plants is a contemporary demand as advances in biotechnology and
genetics contribute to the capacity to produce similar lab products in the future. Considering the
possibility of the extinction of plant species, it is essential to have a comprehensive database of dif-
ferent plants [3] [4] [5] [6].

Since prehistoric times, plants have been used for their healing properties. From the beginning
of the 20th century, a part of the pharmacy curriculum was growing, which involved the study of
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medicinal herbs [7], and continued for several decades. More attention to plants has been the result
of the commercial growth of medicinal plants and the public interest to bene�t from products and
soothe and improve discomfort and di�erent health problems. Furthermore, people tend to care for
their ailments by using natural treatments. Rich resources of ingredients can be utilized in medicine
and industry. Such resources are medicinal herbs, which can be utilized in drug development and
synthesis, and many compounds of plants are widely usable in modern medicine. Consequently, the
e�ects of plants on the advancement of drug development cannot be neglected as there is a very
close relationship between plants and the drug industry. Furthermore, it should be pointed out that
there is an estimation showing that more than two thirds of the plant species on the Earth have
medicinal value. Nowadays, many scientists are targeting pro�table and sustainable agrifood, �bre
and horticultural industries as they attempt to develop new plant products with unique properties
and manage natural resources as well.

These days, traditional agriculture in many countries has been replaced by modern methods, and
many new methods and techniques have been developed to increase the e�ciency of agricultural
activities and avoid destroying the outdoor environment. In addition, biotic functions of ecosystems
depend on plants including soil fertility and stability, water availability and pest control for sustaina-
ble agriculture, rangeland management and restoration. Plants also have e�ects on climate change
and, ultimately, the health of ecosystems.

Before stepping into the next phase, we would like to have a general glance at the relationship
between plants and humans and other creatures. If we consider con�icts and interactions between
plants and other creatures like humans and animals, we �nd many positive and negative impacts
on di�erent resources. Any change of behavior in a creature, results in new changes in the natural
environment. People want to govern the Earth and enjoy a set of ecological, economical, scienti�c and
recreational bene�ts from di�erent components of the environment, and we do believe that plants
are one of the best resources for such bene�ts.

An investigation of the agricultural applications shows a new horizon of plants which is brightening
in the �eld of plant genetics. New research areas have been developed and progressed to overcome
new challenges for human life and to ful�ll new necessities. If we would like to secure global food,
we need to consider plant genetics as a key component which should be applied in agriculture. It
is notable that the history of agricultural science is very rich, and it goes back to the Roman era.
Despite being traditionally huge sources of energy, the role of plants has become more colorful in
modern life, and the focus of many researchers is on plants either directly or indirectly. Furthermore,
many human needs, such as shelter, clothing, medicine, fuel and raw materials, can be ful�lled by
plants.

Due to the importance of plants in di�erent �elds, new roads have been constructed in other �elds
with regard to plants and their various applications. Two important �elds, computer vision and ro-
botics, are tied to plants, and new goals have been de�ned with regard to plants, their roles and
human use. As an example of this interaction, let's consider a farm with many uneducated workers
who are not familiar with nor can they recognize the many types of weeds which grow in the �eld.
If the farm is providing raw materials for a pharmaceutical industry, correct recognition of plants is
critical and this can be performed by workers or automatic systems. Recognition of plant species is
a new door which has been opened in modern farming and agricultural applications. Hence, there is
a demand to do research and work in this �eld in parallel with considering economic bene�ts.

Plant recognition involves the task of identifying plant species correctly and has di�erently rela-
ted aspects. A beginner might ask some questions about this task. The �rst most frequently asked
question is "Is it possible for human to identify plant species?" The second question asked is "Who
is responsible for plant recognition and how is he/she able to recognize di�erent plant species?" The
third question is "Can we develop a system for recognizing plant species automatically?" It is hard to
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answer all questions and explain all aspects of them completely, thus, in this research, we introduce
some major points. However, the answers to the proposed questions and many new questions will be
answered in this work.

Botanists are specialists in botany and plant sciences. They are commonly involved in plant reco-
gnition, which is often a challenge even for them despite their expertise and knowledge of di�erent
plants. Ultimately, botanists are not capable of recognizing all plant species easily, and they have to
spend quite a long time identifying species through the use of reference books. Furthermore, it should
be pointed out that the status of plants is very important in biological applications, and accurate
identi�cation contributes to correct and quick diagnose of plant diseases. Automatic supervision of
plants is also possible if we can identify species correctly and protect them from di�erent diseases
and pests. Other people who are closely involved in plant recognition are farmers and farm workers;
however, as their knowledge is usually limited in this �eld, they often do not have broad information
about many plant species and are sometimes unable to distinguish harmful weeds in the �elds. No-
wadays, a novel intention is to produce plants with new pre-de�ned characteristics and properties,
and scientists in the �eld of biotechnology are working in labs across the globe to develop plants with
unique advantages.

To summarize, di�erent aspects of plants and their roles prove the importance of developing a
plant recognition system that will let all people, even non-professionals, obtain the scienti�c know-
ledge of botanists concerning plants. Moreover, a real demand of contemporary life is to decrease
the operation time of most man-made systems and accelerate recognition tasks. Other advantages of
designing a plant recognition system are fast classi�cation, understanding and management of plant
species. Hence, the goal is to investigate, design, and implement a plant recognition system to meet
the aforementioned advantages.

1.2 Problem Description

1.2.1 Classi�cation of Plants

According to the literature on plant recognition research, plant classi�cation is generally based on
leaves, and recognition systems complete this task by considering only one leaf of each plant. If we
go further and target plants in the natural environment, challenges will be changed in comparison to
recognizing only one leaf of a plant, and we discuss this condition later.

Plant recognition systems can be divided into three di�erent groups which include user-based
systems, semi-automatic systems and fully-automatic systems. If the system is based on a user, the
individual in�uences how the system is working and their decisions a�ect the performance of the
system. For instance, there are some systems wherein a user is able to select di�erent features and
adjust parameters, and the system then starts doing the task by using the selected features and
de�ned parameters. Furthermore, we should keep in mind that the knowledge of the user is also
important, and we cannot ignore his/her familiarity with plants and the recognition process. The
second category of plant recognition is the semi-automatic one. In such a system, the user has less
in�uence on the performance of the system and the user's decisions have less e�ect on the �nal
results. However, this type of system does not perform the task without human interaction. The
third type of the systems is the fully-automatic system which ful�lls the task of plant recognition
automatically. In such systems, there is no interaction between the user and the system as the whole
task is automatically performed. Some systems have been proposed as fully-automatic, however, in
reality, they provide some di�erent plant species as a result of a test but the user is required to �nd
the exact plant species visually and only then the speci�c result will be provided as the output of the
test. Hence, such systems are �nally human vision-based, not machine-based. In general, all types
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of systems can potentially be used in innumerable domains of plant recognition tasks. Existence of
human action is an important challenge in itself, and the decrease of external interference is a goal
while �nding a good solution is a desire.

We are able to group the current plant recognition systems based on another concept. A good
hypothesis is to model machines on the basis of human vision and to try to model the human eye to
carry out plant recognition tasks. If a system is based on human vision, it might also be dependent on
human action and decision. Hence, the system is based on two di�erent concepts, vision and action,
where the action component can be performed physically or mentally. For instance, the user has to
decide on the possible proposed plant species whereby the �nal result depends on his/her decision,
and this decision is directly connected to the human vision and the brain. Plant recognition is a
challenging problem in any case, but it is more challenging if we have several leaves in an image.
Such cases will become very complicated if the background of the image is not constant, and the
background varies from one image to another. Consequently, we have complex images with many
di�erent parameters if we take pictures of plants in outdoor environments. In such cases, we do not
only have a plant, there might be di�erent types of challenging objects, such as soil, mud, concrete,
rocks, fences, signs, etc., within the scene. Therefore, there are many di�erent factors and parameters
that we have to struggle with to solve the problem of plant recognition.

The most important and crucial aspect is to �nd how we can classify di�erent plant species in the
natural environment. Firstly, we have to investigate the natural environment and the possible factors
that might a�ect images. Subsequently, an optimal path should be found to help us achieve our
goals. In this work, we are going to solve the problems of plant recognition step-by-step and develop
di�erent systems in each step. Moreover, we usually rely on features of images and types of features
are not the same in di�erent systems. However, the extracted features are typically local ones. We
detect the features from the images and then engage in description to get rich information from the
image. However, the starting point of feature engineering is very di�erent from the last phase of the
work. The point is that we change the method of feature extraction in the last phase and trust this
to very new neural network modeling. Meanwhile, there will also be some changes to the learning
part of the systems while we are "swimming in the river of plant recognition", so to speak, and
approaching the �nish line of the work. From a learning point of view, it becomes very di�cult and
sophisticated to compare the �rst steps of the work using traditional learning techniques.

It is worthwhile to mention that we introduce di�erent existing plant datasets and start imple-
menting plant recognition systems by using classic datasets. Particularly using the classic dataset,
one might face many problems due to the e�ects of the number of plants, changes of color, changes
of shapes, etc. A lack of information causes misclassi�cations of plant species as the number of plants
of the dataset are rather large. Furthermore, using di�erent feature extraction techniques and im-
plementing various recognition systems contributes to having �nal systems with di�erent runtimes
and applicability, and the consumption of time varies from one system to the other one which can
be considered as a strength for each system.

On the other hand, even though implemented systems provide both good accuracy and runtime,
it is still necessary to improve proposed approaches in order to obtain better performance. After-
wards, we start working on natural images of plants, and our focus is to develop e�cient systems for
the recognition of plants in uncontrolled outdoor environments. Light changes have huge e�ects on
images which are taken in outdoor environments, thus, we have prepared a modern dataset due to
di�erent lighting conditions. Let's imagine that the weather is windy, and we would like to identify
plant species. New harmful e�ects will be added to the images taken in windy weather. In such cases,
the human eye is not able to recognize the shapes of leaves, and plant recognition proves di�cult
through the use of a machine. Other factors, like the distance between the camera and plant, create
new challenges, and we have to struggle with them as well. In the �rst phase of the natural plant
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recognition, local features are still trustable, and we have a depth investigation of this important issue
for building systems based on modern description techniques. At this stage, we will stop describing
the remainder of the problems and complete this explanation in the next section.

To summarize, this dissertation answers the question of if it is feasible to develop systems with
good performance and speed for classifying di�erent plant species so that it can be used for real-time
applications and in uncontrolled natural environments. Also, we would like to clarify if it is worth
combining modern feature detection and description approaches in the sense of producing better
feature components to build classi�ers with high performances in di�erent aspects.

1.2.2 Real-time Natural Plant Recognition System

Till now, we have worked on classic and modern plant images by using local features and modern
approaches. In this stage, we start exploring the new problems of the work and propose new systems
with regard to real-time applications in uncontrolled environments. The �rst problem concerns how
we will be able to design a real-time system for natural plant recognition. To solve this problem, we
focus on deep neural networks and our investigation leads to designing and building a new system
based on deep neural networks. As our main goal is to use the developed system as a mobile real-time
system, we need to consider all the possible challenges that we might face in an uncontrolled envi-
ronment. The main challenges for plant recognition in outdoor environments are the large variation
in the shapes of plants and leaves as well as the lighting and background. The �rst challenge is to
shape the variation of the leaf in an outdoor environment. A leaf of one speci�c natural plant species
appears very di�erent from various viewpoints and angles. Moreover, the age of the leaf a�ects its
shape whereby the fresh leaf and the old leaf do not appear the same. On the other hand, there
might exist dying and dried leaves amongst a bunch of leaves within the natural images of plants
which makes the problem of classi�cation extra challenging. An important question to address is why
would we like to change the direction of the proposed approaches and developed systems.

Let's consider the �rst challenge and investigate the local feature-based approaches. The main con-
cept behind such approaches is feature-matching. However, shape variation makes feature-matching
di�cult between two natural images of one plant species of di�erent shapes. Furthermore, it might
be impossible to do this technique even if we segment only one leaf in each image and use these seg-
mented leaves instead of using all leaves for matching. On the other hand, leaves can be more similar
to each other in terms of pixel values than matching two single leaves of di�erent plants; however,
similarity of leaves is very low in reality. As mentioned, the second obstacle is the variation of light
conditions. It is very hard to recognize objects, especially leaves with their complexity, under varying
light conditions with many shadowy areas. From morning to night, the amount of light increases
and decreases, and we cannot in�uence the natural amount of light; this is because we do not want
to interfere with the natural environment, although we would be able to adjust light conditions by
using additional appropriate equipment. Meanwhile, even two images from the same part of a plant
or the same leaf under di�erent light conditions can appear dramatically di�erent from each other.
Finally, a complicated and unexpected background is also an impeding factor and the recognition
performance is reduced dramatically by a varying background. These mentioned factors are out of
our hands, and we cannot easily control them. However, even if we were able to control these factors,
implemented systems are far away from the �nal goals of this research.

One factor is distance between camera and plant. However, in our real-time application we aim
to develop a system that works without any limit on distance and is capable of plant classi�cation
from long distances of, for instance, 100 cm and 200 cm. It should be noted that this factor has not
been considered in other plant recognition systems till now. In this phase of the work, our focus is
primarily on overcoming all challenges to improve the plant recognition performance in uncontrolled
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outdoor environments.
Our purpose is to create a mobile and real-time system for identifying natural plants, therefore, we

attempt to build semi-robot and mobile robot systems to ful�ll the desired task. It should be pointed
out that the mobile robot system is an autonomous robot which can also be utilized as a controllable
robot. One idea is to enable the system to perform the recognition task without depending on the use
of a single camera. As a result, the systems can be used in any natural condition and at any distance
by using di�erent cameras. Furthermore, the mobile system can navigate or be navigated through
outdoor environments like farms and forests. In order to solve the problems and overcome challenges,
we implement a natural plant recognition system based on a deep learning concept. The performance
of the system is higher than other proposed systems. We utilize the system as a real-time one and
test it in a mobile system by using three cameras. More details of the systems, robots and cameras
will be provided in the sequel chapters. Our last test, the real-time test, is not common in plant
recognition tasks. We will not only test images at di�erent times and on di�erent days, but we will
also capture testing images in di�erent years and seasons, spring and summer.

1.2.3 Problems and Needs of Plant Recognition System

According to the literature, most of current systems are de�cient in some aspects, and there is
still a gap between our needs and developed systems for plant recognition. In this work, the lack of
related factors has been addressed and tried to solve environmental and non-environmental challenges
in order to approach the �nal desired goals. In order to obtain satisfactory results, the listed factors
have been taken into account. Some factors have been considered as problems and listed below. Also,
these factors will be explained in detail in the following chapters.

E�ciency

The meaning of e�ciency is the ability to get desired results. In order to inject e�ciency into
a system, the method used should be a ubiquitous tool and technique. E�ciency is a signi�cant
aspect in determining that a recognition system is reliable to be used even in challenging conditions
and environments. That being said, a system's e�ciency can be determined through measurable and
mathematical concepts. Therefore, it is possible to express the e�ciency quantitatively and compare
the obtained results of di�erent implemented systems. This feature can be translated into a system's
productivity in achieving correct results whereby the amount of incorrect results is at a minimum
and the waste of the systems resources is very low.

E�ectiveness

E�ectiveness can be referred to as the capability of obtaining desired results. The quality of a
system can be shown by its e�ectiveness. In terms of computer usage, e�ectiveness can be connected
to the completion of desired tasks. Therefore, the research intends to investigate the e�ectiveness of
the existing systems and to try to compensate for their weaknesses.

Generality

Ultimately, the system should be connected to di�erent situations. The feature of generality can be
interpreted by extracting di�erent concepts and de�ning various situations. One goal of this research
is to achieve the highest level of generalizability. This feature may have its price whereby other crucial
features are ignored. Consequently, one challenge is to avoid sacri�cing other features uncritically.
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Accuracy

Accuracy plays a central role in di�erent �elds of science and has di�erent meanings. For instance,
its de�nition involves the nearness of a calculation to the true value in numerical analysis, where it
can be de�ned as the measurement of tolerance in industrial instrumentation. In order to investigate a
classi�cation system, �nal obtained accuracy can be used to compare the system with other systems.
However, this feature cannot represent the quality of a system individually. In addition to accuracy,
other factors such as precision and recall are essential in a comparison between classi�cation systems.

Stability

In order to design a useful and powerful system, it is necessary to investigate the stability of
algorithms. For instance, it is essential to use stable algorithms to detect corners or key-points in
one image. If the image is rotated, the result of corner detection should remain correct. This is one
of the features that should be taken into account.

Being Automatic

In order to classify plants, correct selection of metadata is one important step. There are three
types of metadata selection, manual, semi-automatic and automatic. Manual selection relies on users
and the individual decides which piece of information should be selected. In this type, the action of
a user is mandatory. The second mentioned type is semi-automatic, and it is often used in place of
the traditional selection type. The last type is automatic which can be achieved by using technology
instead of a user. This type of selection intends to utilize modern methods to precisely, consistently
and e�ciently apply the metadata. As a classi�er system consists of di�erent components, it is very
important to make the whole system automatic. All parts should be connected to each other to build
a fully-automatic system without any user interference. In automatic systems, there is no request for
user interaction and decision-making in a classi�cation task. Automatic systems can be applied in
industrial and robotic �elds.

Responsiveness and Usability in Real World

Responsiveness is a concept in computer science which can be referred to as the ability of a system
to complete the desired tasks in the real world. There is also another important factor called usability
which has di�erent de�nitions and relevant concepts. The �rst important concept is the ease of use.
Another concept is the degree to which software or systems can be utilized by speci�ed consumers
to achieve quanti�ed objectives with e�ectiveness, e�ciency and satisfaction in a quanti�ed context
of use [8]. The designed system should not only be usable by experts in a lab but should be usable
in the real world by non-experts too.

Robustness

Robustness can be referred to as a system's persistence despite noise and perturbation. Di�erent
factors and parameters can be assumed as unwanted noise or perturbation in one system. In order to
have a robust system, it is necessary to investigate the robustness of the used methods and algorithms
developed. In addition, apart from the robustness of the methods and algorithms, it is also crucial
to check the robustness of the whole system. If a system is robust to changes of the environment and
related parameters, this system can be trusted in di�erent situations. For instance, a classi�cation
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system can be designed and built due to its robustness against illumination variations. This feature
should be taken into account due to mentioned points.

Availability

Various concepts of availability can be assumed for one implemented system. If availability is
considered as a factor of reliability, reliability increases and so does availability. If the considered issue
is data, availability of data in real world and labs can be an important feature for consideration. In
addition, this feature can also be described as the ability to quickly adapt to changes in circumstances.
Ultimately, consideration of this feature is inevitable.

Adaptability

Due to the rapid development of systems and applications, one important factor is the real adap-
tability of the target purpose in a heterogeneous environment. It is very important to create a system
which has adaptability to light changes. Therefore, the implemented system should be adaptable.

Complexity

Complexity is one important problem that should be taken into account as a feature. It describes
the behavior of an implemented system which consists of di�erent parts. However, there is no speci�c
meaning for complexity among scientists in the real world and the meaning can be de�ned in relation
to systems and phenomena. If the system is not complex, the problems of the system are tractable,
and it is possible to address the problems accurately. Di�erent components of the system should be
connected in a manner that they can be investigated simply. In order to be able to �nd and solve
problems, it is necessary to pinpoint the cause and also know which components of the system ful�ll
which goals. Moreover, computational complexity is another concept which can be focused on. This
concept is also helpful to compare di�erent implemented systems according to the utilized algorithms
and methods.

Flexibility

The high �exibility of an image processing system usually facilitates adaptation of the system
to technical modi�cations. Hence, �exibility is an important factor to cope with the challenges of
a useful system, and this feature should be taken into account. In addition, it is also possible to
investigate �exibility of the algorithms used. Furthermore, �exibility can be used as a measure of the
ability of a modeling technique.

The Robot's Future

In order to make agriculture a high-tech profession, robots should be entered into this �eld as a
necessity. There are plenty of ripe tasks which require the aid of robots. Robotic technology is able to
push any section of the �eld towards precision agriculture. The future of agriculture is connected to
the future of robotics and its application in this context. Furthermore, a lot of challenges are ahead
and many new issues should be taken into account.
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Modern Farms and Intelligent Farmers

Farmers are a part of nature and we cannot imagine natural environments without farmers. Due
to the increase in the world population, modern farming methods are necessary to increase and
enhance production in every farming sector. Thus, technology has swept into soil development, soil
management, pruning, seeding, harvesting, light management, pest control, etc. In order to monitor
products, it is essential to know all the species which have been grown on the farm. During harvesting,
it is of great importance to recognize plant species as well. The automatic recognition of plants is
a demand of modern farms where time is a vital factor. To attain peak e�ciency, farmers need to
use advanced equipment and they tend to have remote access to the farms during day and night.
Farmers always juggle a set of parameters such as weather, level of soil moisture and nutrient content.
Ultimately, modern farming is a revolution in agriculture, and it is business. One important aspect
of this farming business is to increase income sources, increase the earned money from the farm and
also maximize production and pro�t. Moreover, intelligent tools are promising to have intelligent
farmers on modern farms. Many robots can play the role of intelligent farmers and provide the tools
and facilities that are needed to have modern farms.

1.3 Goals of the Dissertation

The main goal of this dissertation is to precisely address the challenging problems of automatic
plant recognition systems in both controlled and uncontrolled environments as a means of challen-
ging laboratory and natural environments and to present new ideas and approaches in this domain
and related issues. We intend to focus not only on the current issues but also those of the future.
The dissertation surveys the state-of-the-art, discusses various related challenging aspects, focuses
on required systems in detail and addresses upcoming demands and technologies in this �eld. The
aim of the dissertation is to establish new foundations for developing e�cient and automatic plant
recognition systems for both laboratory and natural environments by considering neglected factors
and parameters. Moreover, the main topics located on the cutting edge of the state-of-the-art are
addressed, from both the theoretical and practical points, which include: connecting human vision
and computer power to make computer-based systems smarter, recognition of the arti�cial plant
images and natural plant images, developing mobile real-time plant recognition systems to be used
on farms and in outdoor environments.

Connecting human vision and computer power in the plant recognition �eld is studied in the
sense of interpreting the current status as deep as possible. The knowledge about human vision and
machine power will be the key factor for robust and precise classi�cation, especially under natural
outdoor conditions and in light of unexpected occurrences in the natural environment. Concretely,
one goal is to classify di�erent plant species as accurately as possible, and there should be a close
relationship between human and computer vision to get the highest possible accuracy. However, it is
not intended to create an exact simulation and model of the human vision system, and ultimately,
this is out of the scope of this thesis.

To achieve the research aim, di�erent modern systems and techniques are thoroughly researched.
Additionally, it is important to cover gaps between human recognition systems and computer reco-
gnition systems. Obviously, the human recognition system is inherently probabilistic, therefore, it
is intrinsically fallible. Although the chance of error can be low, there is no way to eliminate error
completely even with human recognition as it depends on di�erent factors such as level of health,
perception, etc. Hence, our expectations are too great if we plan to design and operate systems with
a zero occurrence of error. Although, the process of learning for a machine is still far away from
this process for a human, more real-life applications of contemporary soft computing techniques have
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been recently proposed in di�erent �elds, and this dissertation is a part of the e�orts to �nd e�cient
solutions to real-life problems.

Recognition of plants cannot be bound to arti�cial images, laboratory images or indoors images
with speci�ed backgrounds. Natural images are treated as special objects to be deeply studied in
this thesis due to a huge need for plant recognition in complicated and cluttered natural outdoor
environments. Up until now, there has been no plant identi�cation and recognition system that can
work properly under the presence of light intensity variations, changes in distances and weather con-
ditions, changes of time, etc. because the environment is not �xed in most outdoor scenarios. The
most reliable way to deal with plant recognition is to design a robust identi�cation and classi�ca-
tion module to be usable in di�erent situations and conditions and build a system which provides
suitable and correct prediction to cope with various changes and variations in the natural outdoor
environment. Nevertheless, natural plants are really complex objects so that there is still no complete
solution for such a recognition task. Therefore, the goal of this thesis is to get the problems of plant
recognition solved in challenging environments.

Alternatively, there is a demand for this technology in many �elds, such as agriculture, modern
farming, the pharmaceutical industry, etc., and the lack of a natural plant recognition system is
undeniable. We need to implement a real-time system which is capable of navigating through the
natural environment for the classi�cation of di�erent plant species. The navigation can be done as an
autonomous process or manual process by a user. Real-time systems usually have time constraints
which are inevitably associated with hardware equipment and designed systems where the software
part is so important. Navigating in harsh environments, like farms and forest, is also a challenge that
we have to solve by building an appropriate robot. Finding a solution to this problem is recognized
as necessary, and this will be considered as part of the thesis. The last focus of this thesis is the
development of a semi-robot and robot for plant identi�cation in the presence of many challenges.

1.4 Novel Contributions of the Dissertation

The dissertation provides eight di�erent contributions with respect to the task of plant recognition,
and we explain how to vanquish the main challenges for this task under di�erent arti�cial and natural
environments and build reliable systems. In addition, the contribution of a concept, which is the
classi�cation of complex images, is also shown. The main contributions are listed as follows.

1.4.1 Combined Feature Detection and Description in Plant Classi�cation

First, it should be pointed out that the target of the thesis is to solve one important problem:
plant classi�cation; and this is fundamentally a recognition rather than detection task. However, many
di�erent approaches have been proposed for plant recognition, and matching techniques have been
utilized as the basic concept of many approaches. With respect to matching processes, there are some
additional considerations concerning the obtained amount of useful information, number of features,
computational cost, timing and speed. In addition, the important point is to increase functionality
and applicability of the current existing approaches. Regardless of the complexity of images, we would
like to achieve better matching results, so we need to specify more important points and get richer
information by considering the problem as a matching task. An increase in correctly matched points
means a better performance of the matching approach. Each detection or description algorithm has its
own speci�cations, properties, and characteristics. Some algorithms like the features from accelerated
segment test (FAST) algorithm [9] and the HARRIS algorithm [10] can only be used as detection
approaches. On the other hand, other approaches like the scale-invariant feature transform (SIFT)



12

algorithm [11] and the speeded up robust features (SURF) algorithm [12] are useful for both detection
and description purposes. Regardless of being arti�cial or natural images, we would like to use the
potential of di�erent detection and description algorithms as a part of the matching technique and
overcome de�ciencies and disadvantages of single algorithms by combining di�erent detectors and
descriptors. For instance, the FAST algorithm is usually considered as a fast detector, but it lacks
in the description step. If we combine such a quick algorithm with a description algorithm, the �nal
combined method bene�ts from high speed performance of the detection part, the FAST detector.
Due to the aim of achieving the features fast, the combined method, the FAST-SIFT, is helpful.
However we have to investigate other parameters and factors to know its performance compared
with other methods. Furthermore, each detection algorithm uses a unique process to detect features,
so detected features of di�erent algorithms are di�erent from each other and we are be able to explore
new features and achieve completely new information from them. For instance, if we investigate two
di�erent algorithms, the FAST-SIFT as the combined method and the SIFT as the original one, we
�nd out that the obtained information from one speci�c image is not the same as when using both
methods and the image has individually been processed by each method.

Therefore, the work in this contribution deals with pure detection algorithms which cannot be used
as description for recognition purposes and such algorithms are combined with description algorithms.
Hence, the combined method can be used as the backbone of recognition systems and matching
tasks by extracting information of the detected features. The combination of modern algorithms
is not just applied to arti�cial images, the combined methods are also used for natural images,
and we present this contribution to overcome challenges of recognition systems and we rely on the
methods as a component of the systems. Recognizing the quality of the performance of the developed
natural recognition systems using combined methods, they are able to cope with many di�erent
complex images even taken in harsh situations like windy weather. Consequently, the combined
algorithms have been con�rmed to be robust throughout the images in di�erent and very challenging
lighting conditions and in di�erent scenarios based on used models in both laboratory and outdoor
environments.

1.4.2 Classifying a Large Number of Plant Species

We would like to develop systems for plant recognition that are able to classify a large number of
plant species. The plant recognition task is not only classifying plants or non-plants, it is ultimately
classifying categories. One main goal is to cope with classi�cation of di�erent plant species. In this
work, we develop systems for 32 di�erent plant species. The implemented systems are based on
di�erent techniques, and we �nally built six di�erent systems for classifying the mentioned number
of plants. Furthermore, we conduct various experiments and compare proposed systems from di�erent
aspects. Our experiments show that we obtain a good trade-o� between di�erent e�ciency factors
and that we would be able to choose one system according to our needs and purposes. It should be
noted that all systems do the recognition task automatically.

1.4.3 Signi�cant Improvement of Systems for Classi�cation of a Large

Number of Plants

After developing six systems for the recognition of a large number of plants, we would like to �nd a
solution for improving the developed systems. Hence, we analyze the existing systems by investigating
the used algorithms. In addition, we have a look into possible solutions to get impressive results. We
propose a new foundation for modeling extracted data from input images and then do the training
process. Two new systems are built based on the vector of locally aggregated descriptors (VLAD)



13

technique [13]. We compare the new systems with similar systems of our state-of-the-art and observe
higher accuracy for both new systems. The VLAD technique contributes to encoding images and
extracted information in a more e�cient way and results in an improvement of the systems.

1.4.4 General Natural Plant Recognition based on Modern Combined

Algorithms

The �nal aim of this research is to achieve a plant classi�cation mechanism which is not only meant
to classify plants in controlled conditions like a laboratory, but also to advance the ability of natural
plant classi�cation beyond indoor and controlled environments. If a system is capable of identifying
plants in abnormal areas, it brings many bene�ts to systems operating in outdoor environments for
plant recognition. A lack of information is the main challenge in many recognition and detection
tasks, especially the time that we are trying to extract information from natural images with the
lowest amount of similarity and the highest amount of complexity. It should be pointed out that not
all information obtained from natural images of plants is helpful. In such images, we usually �nd
more useless information, and extracting information from a natural image is a critical part of the
work.

In relation to natural images, human vision systems normally have the ability to di�erentiate
between useful and useless information, but machine-based systems are largely not intelligent enough
to decide whether data are useful or useless. Furthermore, we usually �nd large variations in di�erent
parameters and factors in natural images. For instance, a part of a natural scene might be dark in
the presence of shadow and the other part might be a�ected by large amounts of light. As explained
before, we apply combined modern detection and description algorithms for plant recognition. We can
rely on such new methods and use them for developing and building systems to recognize plant species
in natural environments. It was not predictable that modern combined algorithms would lead to good
performance in natural plant recognition systems and that they could provide interesting and good
performance under natural circumstances. If we divide our implemented systems into two groups,
systems that are able to recognize plant images captured in controlled conditions and systems that
can recognize natural plant images, we see that the good performance of modern combined methods
is not limited to one of the groups and they show good performance for both types of images. This
outcome is proof of the generality of the proposed combined methods.

To summarize, the classi�ers generated by the proposed combined modern methods provide a
range of accuracy between 90% and 94.94% for recognizing four di�erent natural plant species, and
the results are impressive with respect to complex natural images captured in outdoor environments.

1.4.5 Novel Natural Plant Recognition System Based on a Deep Learning

Algorithm

One main challenge of a recognition task is to struggle with the features and types of them. In
fact, we usually ask a question before starting the work and try to �nd the best answer for it. This
question is "Which features can be used for ful�lling the recognition task?"

Finding a general algorithm that is able to detect features e�ciently in any condition is very
hard. In the natural environment, many di�erent conditions such as changes of illumination, camera
angles, background, crowded objects in scenes, etc. might occur, and feature extraction is impos-
sible using only one generalized algorithm. Deep learning [14] is a new concept in today's neural
network area which provides an opportunity to learn generic features, and it has changed the face
of machine learning algorithms. In addition, it is a new generation for machine learning algorithms,
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and a multitude of researchers anticipate dealing with many unsolved challenges by using deep lear-
ning algorithms. Deep learning models are multi-layer neural networks with complex architecture for
extracting very complicated information from input images. However, we could not design and deve-
lop deep neural networks without the advancement and availability of useful hardware like graphics
processing units (GPUs) [15]. Our investigation proves that the most successful architecture in reco-
gnition tasks is convolutional neural networks (CNNs) [16] and we design a deep network with eight
layers and plenty of parameters and our aim is to use its hidden potential and capabilities in attaining
such an excellent performance in di�erent aspects. Considering the process of the feature engineering
in CNNs, less e�ort is needed for getting rich information. It leads to reduction of di�culties in
some aspects like runtime, required domain expertise, etc. Hence, we would like to elaborate on plant
recognition systems to apply advantages of deep convolutional neural network (CNN) which employs
various �lters. We develop a deep and powerful model to extract the general purpose features and
perform the natural plant recognition task. In order to train the model, we use two di�erent modes,
central processing unit (CPU) [15] and graphics processing unit (GPU), and compare the training
time as well. However, our priority was GPU-based training from the beginning.

Due to the uncontrolled conditions and di�cult challenges in natural environments, we need to
extract objective and rich information in any scene and in the presence of any harmful factor, the-
refore, better feature extraction is equal to more objective information. From our perspective, an
increase or decrease of unwanted factors should not have any e�ect on the performance of the �nal
system. Besides, we provide a system to visualize the deep model and �nal result of the testing input.
Through various experiments, we demonstrate that the system has an accuracy of 99.5%, and there
is a signi�cant improvement in the recognition process and performance in comparison to previous
systems for natural plant recognition.

1.4.6 Novelty of Dataset and Systems Implemented for Natural Plant

Recognition

A key component of a computer vision task is the image, and the importance of the image is
not limited to its digital information. Before entering the world of data, we need to have a deep
look into images. Therefore, we investigate the role of the dataset for developing plant recognition
systems and aim at the �lling in of the missing gaps between the natural environment and arti�cial
environment with regard to the desired recognition task. Our study has led to substantial progress
in the research. Despite an increased interest in plant recognition, implemented systems are mostly
able to recognize plants in controlled conditions, and they are based on datasets containing images
taken in laboratories with only one single leaf or a homogeneous background with a single color.

Most of the plant datasets lack many natural factors and parameters, and we did not �nd a dataset
consisting of all possible challenges in natural and uncontrolled environments. Lighting conditions
and light intensity are important factors which a�ect the photographing process in natural environ-
ments. If we take two pictures of a plant in an outdoor environment, we are unable to get completely
similar images because the light intensity and lighting conditions vary in the natural environment
faster than our expectations. However, a professional photographer is probably able to take similar
pictures by adjusting the camera's setting. Furthermore, illumination e�ects are undeniable in na-
tural color images that are taken in outdoor environments. Although many approaches have been
proposed for extracting illumination e�ects, we do not want to follow such approaches, and our aim
is to use the whole capacity of an image as it is, without any additional pre-processing. In addition, a
variety of image changes do not allow us to �nd a unique method for e�ciently reducing illumination
e�ects.

Let's imagine that we are going to walk through a farm in Germany on a sunny morning. We
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would like to test our plant recognition system and identify di�erent plants and weeds on a farm.
Someone might ask the question, "Can we do plant recognition if the weather becomes windy?" The
demand is to develop such a system, which has the ability of plant recognition in di�erent weather
conditions. In the proceeding chapters we talk about the di�culties of weather conditions in detail.
Our modern dataset consists of images taken in di�erent weather conditions to achieve the goal of
recognizing plants in these various circumstances.

One important challenge for plant recognition, which has been neglected is distance. The question
is, "Is there any plant recognition system which performs the task at di�erent distances?" Distance is
a factor which a�ects recognition system performance, the distance being between camera and plant.
Our goal is to build a system which is able to identify plant species at di�erent distances like 25 cm,
50 cm, 150 cm and 200 cm. In fact, the system should not be dependent on the distance between
camera and plant. This independence increases the e�ciency of the plant recognition system. Hence,
we take pictures from natural plants at 25 cm, 50 cm, 75 cm, 100 cm, 150 cm and 200 cm and this
diversity of distances helps us to have a more useful system. It should be pointed out that a human
is also not able to recognize the shape of leaf if he or she is far away from a plant, however, it is still
very important to achieve a system with this ability. An increase in distance means that we do not
have only one leaf within an image, there might even be a whole plant within the image captured.
This goal is a signi�cant challenge and �nding a solution is a big jump for the next generation of
plant recognition systems.

In random plant photography, it might be seen that there is no leaf within an image, and it is
very hard to recognize a plant species without any speci�c shape of leaf. Meanwhile, it is extremely
hard to distinguish plant species in a single image without any prior knowledge about the viewpoint
and angle. Hence, the system should not have a viewpoint-dependent mechanism, and it should be
completely viewpoint-invariant. In some cases, there is no visible shape of leaf within an image, and
the human eye is also not able to �nd one single leaf in the scene. Furthermore, several leaves may
be covered by each other, and there is no distinguishable view for a leaf to be identi�ed. Due to
important viewpoint characteristics of leaves, the modern dataset contains a variety of images with
very di�erent viewpoints, and each image has been taken at a random and unusual angle, so many
di�erent views can be observed among images of the modern dataset.

Complexity of images is not limited to mentioned factors, and the diversity of non-plant objects
is often high in urban environments, hence, they bring more complications. In some non-urban en-
vironments, such as farms, the variety of objects is usually less than in urban environments. In such
circumstances with plenty of objects, it is almost infeasible to interpret a complex scene with human
knowledge and experience, and it is very hard to recognize plant species from far distances.

To address plant recognition problems, we identify the remaining points for the task and introduce
a new modern dataset with many di�erent challenges concerning di�erent aspects, unique characteri-
stics and large variations among images. To our best knowledge, there is no similar dataset available,
and the modern dataset is unique. This dataset has been used for developing di�erent natural plant
recognition systems. Meanwhile, our experiments show good performances of the proposed systems,
however, large variations exist.

1.4.7 Real-time, Mobile, Natural, Plant Recognition System

Although the natural plant recognition systems provide really a high accuracy in recognizing plant
species, the applicability of deep natural plant recognition in real-time mobile systems, both semi-
robot and robot, is a new goal and we would like to investigate such applicability in challenging tests.
Although the deep system is limited due to its computational expensiveness, our purpose is to build
a mobile system which is capable of plant recognition in outdoor environments in any challenging
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condition like lighting change, change of time, morning or evening, change of weather condition, etc.
The fact is that the important limitations of mobile systems come mainly from hardware-related
issues. Furthermore, navigating through di�erent outdoor environments requires suitable and stable
systems. Therefore, solutions have to be taken into account with regard to limitations. Although the
training of the deep natural plant recognition system can be carried out by both CPU and GPU, it
takes a very long time if we use the CPU mode. As we would like to have a mobile and real-time
system, it is necessary to build two systems. The semi-robot one works and outputs the results in
the GPU mode. The mobile robot, called Zephyr [17], uses the plant recognition system by using the
CPU mode. This mobile robot can be used as an autonomous robot, though it is also controllable
by using a joystick. In addition, the robot does not su�er from low speed while navigating in harsh
environments. Additional details related to both systems are provided in Chapter 9.

In order to test the real-time mobile system, we chose to conduct the experiments in two di�erent
years, 2017 and 2018, days and times. Additionally, we used three di�erent cameras including Sam-
sung, iPhone 6s and Canon EOS 600D (details of the cameras will be provided later) therefore, new
factors have been added to our previous challenge-factors and our investigation will be really close to
reality in outdoor environments. Our �nal test shows an accuracy of 84.17% for 120 testing images
[18].

1.4.8 Fully Automated Plant Recognition System

In this work, our attempt is to develop fully automated systems for the assigned classi�cation
task, plant species recognition, and the purpose is to eliminate human intervention. All systems
involve classifying various plant species based on di�erent feature extraction methods. Our goal is
to automate the whole process and functions of plant recognition and replace humans by using
appropriate hardware and software tools. In order to specify the type of such systems, we need to
investigate the application of the systems and the nature of control. Due to the application area,
the system can be applied industrially in agriculture, and it can be considered automated for plant
recognition. For instance, in this research, we develop a system based on a deep learning model
and the whole process from beginning to end is automatic. To increase its applicability, the plant
recognition system and a mobile robot are connected, and an autonomous mobile robot obtains the
ability of fully-automatic natural plant recognition.

1.5 Document Structure

In the section that follows, the organization of the remainder of the dissertation is outlined.
We begin Chapter 2 with a full discussion of the state-of-the-art and some fundamentals related to

background knowledge for providing a better understanding of previous work. Particularly, we pre-
sent the de�ciencies of previous systems, and these guide us in creating new systems with di�erent
unique contributions.

Chapter 3 provides a survey of available plant datasets and introduces di�erent types of datasets
regarding the data within each. We investigate the images of each dataset and analyze it in terms
of the shapes of leaves and photographing conditions. We present a study of information, which is
provided in each dataset, and review the characteristics of the images of each set individually. In the
presence of various dataset, we demonstrate their importance, which is elaborated upon in additional
chapters as well.

Before starting the major parts of the work, an analysis of di�erent types of images captured in
various conditions, both controlled and uncontrolled, is undertaken. Chapter 4 covers the analysis of
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plant images, and these experiments are mostly histogram-based. Moreover, this analysis contributes
to achieving a better understanding of the images that we are going to work on.

An investigation of the useful existing methods for classi�cation tasks is the next step of the
research. The idea is to use feature detection and description as the basis of the systems which we
would like to implement for plant recognition. Chapter 5 studies di�erent detection and description
algorithms in detail. Afterwards, the focus turns to the problem of matching, as plant recognition
can be inspired by this concept. In this chapter, novel modern combined detection and description
methods are proposed, and they have been experimentally tested on several images. The outcomes
of this chapter are completely analyzed to compare di�erent possible approaches and to know if they
are applicable for the classi�cation of plant species.

Chapter 6 presents the work as a follow-up of using modern combined methods for developing
plant recognition systems and classifying a large number of plants, totaling 32 di�erent species. In
this chapter, six systems are proposed which are actually based on modern combined detection and
description algorithms and the bag of words (BoW) model [19]. The training phase of the classi-
�ers is carried out by a support vector machine (SVM) [20] [21]. We show that traditional machine
learning algorithms contribute to achieving good accuracy in the testing phase. To solve the plant
recognition problem, one of the implemented systems can be selected with regard to the needs of,
for instance, high accuracy, runtime, etc. The results show good system performance based on the
modern methods of SURF, FAST-SURF and SIFT. The highest accuracy is obtained by doing de-
tection and description with the SURF. The mechanisms of the proposed systems in Chapter 6 are
comprehensively compared.

Chapter 7 considers the challenging problem of natural plant classi�cation in outdoor environ-
ments. It begins with a discussion of the problems of natural environments and the novelty of working
in outdoor environments where many external factors and parameters in�uence plant classi�cation.
If we consider natural plant recognition as a musical work, this chapter is actually a prologue. In this
chapter, six di�erent systems are proposed, and several experiments are conducted to compare the
performance of the proposed systems.

Chapter 8 begins by introducing new machine learning algorithms and a deep study is provided.
We propose a new and novel system based on deep neural networks for natural plant recognition. The
�nal accuracy of the system is equal to 99.5% which is a large value without any doubt. This system
can be used, for example, in di�erent weather conditions, at di�erent distances, during various times
of the day or night, even if the shape of the plant's leaf is not clear to the human eye. The model
is based on deep CNN, and a very useful system is provided for visualization of the system and its
output during the test process.

An unsolved problem of plant recognition is to build a system which is mobile and operational
in real-time. In order to design such a mobile system, we build two di�erent systems, semi-robot
and robot. Both systems are able to navigate through natural and uncontrolled environments for
identifying plant species. Chapter 9 explains the entire process of building such systems and details
di�erent aspects of the problems encountered. The test shows that the accuracy of the experiments
conducted in 2017 and 2018 is equal to 84.17%.

Chapter 10 concludes with a summary, a brief discussion of the whole work and its applications.
Some unique ideas about the future directions for plant recognition systems are discussed.

Chapter 11, titled: "Appendices", adduces several concepts related to this work which may be
helpful for readers to develop a better understanding of some of the relevant issues in the scope of
this research.
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Chapter 2

Literature Review and Fundamentals

As outlined in the �rst chapter, the investigation of plant recognition aims at identifying plant
species in di�erent environments, controlled and uncontrolled conditions, and developing mobile and
autonomous systems to fully exploit these capabilities and accomplish challenging plant classi�cation
tasks. In order to present the context of the work in the domain of plant recognition and emphasize the
state-of-the-art in this area, we would like to review the existing literature on plant classi�cation and
relevant work. Due to the diversity of proposed approaches and systems, we provide a brief literature
overview and describe relevant and prominent state-of-the-art research related to the di�erent parts
of the work. In addition to explaining critical points, fundamentals are also reported brie�y.

Over the last years various systems have been proposed for plant classi�cation tasks which have
been based on di�erent techniques. In this chapter, we divide the existing systems into di�erent
categories based on the type of images, used components and type of systems as well as provide
more details and information about them. In section 2.1, we �rst introduce the main types of plant
species despite numerous types of plants all around the world. Section 2.2 describes the state-of-the-
art in plant recognition and introduces various systems with di�erent approaches and techniques for
recognition and identi�cation of plants. To provide initial knowledge about the literature on plant
recognition systems based on neural networks, section 2.3 is provided. Furthermore, two examples
of plant robots with recognition tasks are explained in section 2.3. This chapter is concluded by a
summary in section 2.4.

2.1 Types of Plant Species

Although there are a large number of plant species all around the world, and they can survive
climes from hot deserts in Africa to snowy mountains in di�erent regions of the Himalayas, humans
have attempted to categorize and separate plants according to particular characteristics, locations,
usages, etc. As much as the plant world is familiar to us, we know surprisingly little about the plants
around us and we lack some speci�c de�nitions for grouping plants. Many researchers consider sim-
ple characteristics like seed and �ower as indicators for categorization. For instance, if we consider
the existence of a �ower as the discriminating factor, plants are divided into two di�erent groups:
�owering plants, such as the sun�ower and orchid, and non-�owering plants, like mosses and ferns.
The existence of a �ower seems to be a simple concept for discriminating plants and categorizing
them into two di�erent groups. Another considerable factor for di�erentiating plants is seed. We can
divide plant species into seed plants and seedless plants. Seedless plants are actually plant species
that have no seeds. Seedless plants have some atypical properties, and they might lack in the ability
to maintain and transport water. The existence of seed leads to sexual reproduction which contains
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two sets of chromosomes, but the reproduction of plants without a seed is based on spores and the
process is usually done by one set of chromosomes. In fact, both methods are sexual reproduction,
but reproduction of some seedless plants is asexual. As an example, reproduction can be done by
leaves. In such plants, leaves fall o� and new plants will be regenerated.

There are some other common types of plants and we try to group plant species according to these
common factors, though it is hard to generalize the categorization process. Some common types are
trees, vegetables and fruit bearing plants, grasses, shrubs and bushes, cacti, herbs, crops, annuals,
biennials, perennials, creepers, climbers, bulbs, plants with tubers and tuberous roots, summer-
�owering plants, spring-�owering plants, etc [22].

Let's consider trees, shrubs and bushes as common types of plants. We are able to divide plants
into trees and shrubs where trees are taller than shrubs. In addition, trees can be divided into deci-
duous trees, ornamental trees, trees with �owers (angiosperms), trees without �owers (gymnosperms).
Shrubs and bushes can also be grouped into �owering and non-�owering types. Most shrubs are the
�owering type; and they are commonly used in home gardens and their ornamental value is high. It
is worthwhile to mention that the importance of plants is not limited to material bene�ts and the
green color of plants soothes the human soul, which can be considered as a spiritual bene�t.

2.2 State-of-the-Art in Plant Recognition

Plant recognition is a huge task even for specialists and botanists. Botanists as experts for plants
have developed a very precise system based on one hand perceivable features and on the other hand
on evolutionary consideration that categorize all plants on the Earth. Herbarium is a traditional
method of collecting di�erent plant species in dried forms for further studies and research. In this
way, plant parts, especially leaves, are mounted on exsiccatae to be used as reference. Furthermore,
botanists have reference books which contain photos of the leaves of plants and information about
scienti�c plant names, family, genus, etc. Two important books as references for plant identi�cation
are Flora von Deutschland und angrenzender Länder: Ein Buch zum Bestimmen der wild wachsenden

und häu�g kultivierten Gefässp�anzen [23] and Computer-assisted storage and retrieval of the data

of taxonomy and systematics [24]. The �rst one is a proper destination book in the world of plants
and corresponds to the requirements. The second one is also helpful by considering specimen data,
ecological data and taxon-level information [24]. In addition, a review is provided by providing the
details of seven projects to computer processing of taxonomic information [24]. Furthermore, a book
was supposed to be the end of the road of plant identi�cation which took 16 years to complete and
was published in six volumes from 1984 till 2000 by Cambridge University Press. However, we cannot
draw a border for plants with innumerable species. The title of the book is The European Garden

Flora [25] and accurate information is provided for the manual identi�cation of plants. Moreover,
the subtitle of it is manual for the identi�cation of plants cultivated in Europe, both out-of-doors and

under glass [26]. This process is time-consuming, and there exists an undeniable demand to have a
fast plant recognition process. Since the beginning of the 21st century, many approaches have been
proposed to identify plants by using leaves to recognize plant species, and they are mostly based
on images of leaves as botanists rely on these for plant identi�cation. We would like to describe the
progress of leaf and plant recognition in a timeline schematic.

In 2000, leaf image retrieval was proposed as the main key for plant identi�cation [27]. The main
focus was on the shape of leaves. The main problems are shape feature extraction and shape feature
matching where the proposed solution is a two-step approach. The �rst step is to use centroid-contour
distance curve which is a shape characterization function and utilize object eccentricity (or elongati-
on) for leaf image retrieval. By doing proper normalizations, some useful features, scale, rotation and
translation invariant will be achieved for the centroid-contour distance curve and the eccentricity



21

of the image. In this step, leaf images are ranked by means of the eccentricity, and then another
ranking process is performed by both centroid-contour distance curve and the eccentricity together.
The second ranking part uses top scored images of the previous part. Reduction of the matching
time is obtained by a thinning based method which locates start points for the matching process. It
is worthy of note that there were plenty of techniques for shape representation at that time. Some
important techniques, such as chain codes [28] [29], geometric moments [30], Fourier descriptors [31],
shape signature [32] and matching method like [33] are proposed. In 2002, an interactive method
was proposed for the recognition of �owers [34]. An important research project in this �eld was
performed by Mokhtarian and Abbasi in [35] whereby they utilized curvature scale space images for
representation of leaf shapes and then applied these to classify leaves with self-intersections. Saitoh
et al. [36] worked on the recognition of blooming �owers and proposed a new method for extracting
the boundary of blooming �owers. This method is based on selecting a route by minimizing a sum
of the local cost divided by the route length [36]. The importance of this work is that they used
digital pictures captured in the natural environment. However, the research has been neglected by
many researchers in this �eld. After one year, a method based on shape features was proposed for
leaf identi�cation in [37]. An image segmentation process was performed to separate the leaf from
the background, although the images of the leaves used were arti�cial images. The idea was to do
classi�cation of 20 di�erent plant leaves by means of a moving center hypersphere (MCH) classi�er
[37]. Hence, eight geometric features and seven moment invariants were extracted and the �nal ac-
curacy was about 92% [37].

Wu et al. [38] mixed up the plant recognition problem with arti�cial neural networks. They pro-
posed a system based on neural network and domain-related visual features with three aspects of
leaves which were shape, dent and vein. The shape features were actually slimness, roundness, solidity
and moment invariants [30] features. Dent features consisted of cornerness, size, angle and sharpness
features. The rami�cation and camber constituted the last group of features, vein features. As a
result, the performance of the proposed system in [38] was satisfying after conducting experiments.
By considering di�erent size of training set, performance of the prototype system was examined
and achieved accuracies were more than 92%. In [3], a new hypersphere classi�er, called the moving
median centers hypersphere (MMCH), was proposed for classi�cation of 20 plant species. Digital
morphology features, including geometrical features such as aspect ratio, rectangularity, area ratio of
convexity, perimeter ratio of convexity, circularity, eccentricity, etc. [3] as well as invariable moment
features, were extracted by the contours of plants' leaves. The �ndings showed that the storage space
was saved and the classi�cation accuracy was not sacri�ced when the classi�cation time was reduced.

Texture features have also been considered as useful information for implementing plant recogni-
tion systems. In 2010, Ehsanirad et al. [39] proposed a leaf recognition system for classi�cation of
plant species by extracting texture features using a gray-level co-occurrence matrix (GLCM) [40] [41]
[42] and principal component analysis (PCA) [43] algorithms. The used dataset of this work was pre-
pared by plucking fresh leaves from plants in �elds and di�erent rotations were applied in captured
color images with simple and white background. They used 455 images for both training and testing
dataset. Using the GLCM method and the PCA method led to the classi�cation accuracy of 78% and
98% respectively. In 2010, two other works were published for the identi�cation of plants. In order to
classify medicinal plants, an approach was proposed by combining di�erent features in [44] whereby
color, edge and texture features were extracted and used for training two types of classi�ers, SVM
and the radial basis exact �t neural network (RBENN) [44]. This approach was used to classify three
di�erent classes: herbs, shrubs and trees. The accuracy of the proposed work with combined color
and texture features was 90%, although the classi�cation accuracy using just color features was 74%
and it was 80% if edge texture features were used. In December 2010, a new work, entitled "Leaf
Shape Identi�cation Based Plant Biometrics" [45], was published and proposed a method which was
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applicable for the plants with broad �at leaves whereby the user should select some points including a
base point of the sample leaf image and a few reference points on the blades of the sample leaf images.
In fact, the user helps to extract the shape of the leaf. Afterwards, some extracted morphological
features, such as eccentricity, area, perimeter, major axis, minor axis, equivalent diameter, convex
area and extent [45] built a set of features. After the normalization of feature points by taking the
ratio of slice lengths and leaf lengths (major axis), a probabilistic neural network was designed for
the recognition task. In order to test the proposed work in [45], ten-fold cross-validation technique
was used and the average accuracy was about 91.5%.

Up until 2011, proposed approaches for leaf classi�cation were mostly based on global shape featu-
res. In [46], the most commonly used approach was based on local features and one modern algorithm,
the SIFT algorithm, was used for this purpose. Furthermore, the shape features, which are global
features, were added to local features and a weighted k-nearest neighbor (KNN) algorithm [47] was
implemented for the classi�cation task. In the area of plant classi�cation, this work was a starting
point for utilizing local detectors and descriptors. The �nal accuracy of the proposed approach was
91.30%. In 2011, two other works were proposed for plant recognition. In [48], a preferential image
segmentation method was proposed for the automatic classi�cation of leaves and �owers. In fact, this
method used prior information and encoded it for preferential segmentation as a tree of shapes. This
method's importance is related to it being invariant to translation, rotation and scale transformati-
ons. In the last work, Chaki et. al [49] implemented a plant recognition system based on two shape
modeling techniques including the moments-invariant (M-I) model [30] and the centroid-radii (C-R)
model [50]. Furthermore, an improved result was obtained by using a hybrid set of features invol-
ving both the M-I and C-R models. To demonstrate the work, a data set with 180 images for three
classes was used. The �nal experiments showed a range of accuracies for the proposed models and
techniques. This range was equal to [90%, 100%].

As an active area of research, others focused on the plant recognition in the year followed. In [51],
the work was based on 12 digital morphological features (DMFs) [51] which were derived from 5 basic
features. The minimization of the dimension of the input vector of the training model was carried
out by the PCA method. Two di�erent training methods, the SVM and KNN, were applied to two
di�erent datasets and the results were compared as well. It is worth considering that the proposed
systems were mostly based on the extraction of shape features and relevant features. The system
based on the SVM outperformed the system based on the KNN in both accuracy and execution
time. When the used dataset is Flavia, the di�erence between the classi�cation accuracies of the
systems was 16.5% where the di�erence between the execution time of the systems was 2.9 seconds.
Another proposed system for plant identi�cation was based on a set of di�erent information: color,
shape volume and cell features. This was a semi-automatic system composed of three stages with
regard to color index features, comparing shape features, cell features and volume fraction features
[52]. The system was tested and evaluated on 1000 leaf and �ower images. The �nal result showed
that the recognition rate was up to 85% [52]. Due to the importance of plant recognition in medicine,
a new system was proposed for the identi�cation of medicinal plants [53], and the approach was also
based on leaf features which were area, color histogram and edge histogram. An interesting work was
proposed in [54] and the classi�cation process was based in a random forest [55]. The used dataset
consisted of scan photos, scan-like photos and natural images which made this work di�erent from
the previous systems. The procedure was to �rst categorize di�erent types of images. Secondly, pre-
processing approaches were implemented to correct shadow and background, removing petiole, and
segmenting lea�et automatically. Then, an approach was created through the combination of shape,
morphological and tooth (pixel on contour of leaf that has a high curvature [54]) features, and the
extracted features were applied to a random forest classi�er [54].

In 2013, two important systems for plant recognition were proposed in [56] and [57]. The �rst men-
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tioned work used the potential of leaf contours and proposed a method for extracting features of leaf
contours. The method relied on the lines between the centroid and each contour point on an image,
and the distribution of distances in the leaf contour was shown by a length histogram. Furthermore,
the used leaf images were taken in controlled conditions with white backgrounds. Di�erent experi-
ments were conducted for comparing the results. For instance, a scale invariance test was performed.
In this test, the minimal value was equal to 0.98611 and the maximal value was 0.99992 where they
considered 45 correlation coe�cients. In [57], they had a look into di�erent implemented systems
for plant recognition and the approaches which were utilized for feature extraction. In addition, the
types of extracted features were listed for some previous works.

In 2014, new works were proposed, and this research would like to investigate two important pro-
jects of that year. The focus of the �rst one [58] was on the automatic identi�cation of medicinal
plants and the second one [59] was based on using combined viewpoints for the purpose of plant
classi�cation. In [58], it was proven that extracted leaf features, such as leaf area, roundness, rectan-
gularity, etc., were Gaussian distributed, and a weighted averaging technique was proposed to obtain
an identity number for each plant. In the other work [59], a viewpoints combined classi�cation me-
thod was proposed and a dense SIFT was applied to do detection and description steps. To represent
the images with a high level descriptor, a Gaussian mixture model (GMM) [60] was utilized and the
process was followed by a variation of the SVM. To show the results, they trained 7 classi�ers for
each viewpoint. The evaluation step was based on tow metrics, precision and runtime. The precision
results were in the range of [0.314, 0.965] and the range of the runtime was [0.95, 1.82].

Before investigating proposed approaches and systems in 2015, we would like to introduce a paper
which conducted experiments on Malaysian medicinal herbal plants and tried to answer an important
question in the area of plant recognition: "Is Shape the Key Feature?" [61]. The extracted features
were a fusion of shape, color, and texture which were based on the SIFT algorithm, color moments,
and segmentation-based fractal texture analysis (SFTA) [62], respectively. It was proven that such
a fusion of features outperformed the color or shape feature identi�cation rate. In other words, the
highest average identi�cation rate was equal to 94% by using shape, color and texture features.

In [63], the authors proposed an automatic system and the �rst target was to segment the region
of interest (ROI) [64] before extracting a set of shape features. To perform the classi�cation task,
weighted feature normalization [65], reduction of dimension by PCA, and SVM were used, and the
�nal accuracy of the system on Flavia dataset [66] [67] was 87.40%.

Since 2017, more research has been proposed in the area of plant recognition, and di�erent approa-
ches have been utilized for classifying plant species. One of the �rst projects in 2017 was proposed
by [68], where the used dataset was a classical one. Furthermore, a circle-based radii model [68] was
proposed which was a new shape descriptor. The basis of the work was to consider the contour of
the leaf and the center point and border of a circle inside in the contour. The goal was to extract
44 features for the training step which was performed by SVM. The accuracy of the proposed model
was 93.33% for the shape descriptor [68]. In order to di�erentiate between types of leaves (lobed and
unlobed) and classify simple and lobed simple leaves, a new research project [69] proposed a rotation
and scaling invariant method by detecting changes between background and leaf (and vice versa) in
binary images and used unlobed simple and lobed simple leaf features. Lee et al. [70] introduced a
hybrid generic-organ convolutional neural network (HGO-CNN) [71], and it was used as a model for
training in di�erent mixtures of plant datasets. Interestingly, the authors mentioned that their model
was not generalized enough for testing images.

Novel research in the area of plant recognition is yearly proposed and this is still a steady and
growing trend. In order to identify the herbal plants, the texture features were extracted from the
leaf images and the SVM classi�er was experimented on using a set of herb plants which contained
leaf images in a controlled environment. In January 2018, a general survey was provided in [72] and
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di�erent references and approaches were compared by considering di�erent aspects and parameters.
Before starting a research on plants disease identi�cation, it would be useful to have a look into the
work in [72].

2.3 Short Literature Review for Plant Recognition Systems

Based on Neural Networks and Plant Robots

Due to the importance of plant recognition systems based on neural networks and robots used for
relevant agricultural tasks, we would like to have a short study on related literature in this section.
It should be pointed out that more details concerning the previous research will also be provided
in each chapter separately. Furthermore, the current research area is active as opposed to stagnant.
Firstly, we look into several neural networks used for plant recognition and then we have a short
glance at plant robots.

In 2007, one early neural network system for plant recognition was proposed [66] and a probabilistic
neural network (PNN) [73] was employed to carry out the classi�cation task. The extracted featu-
res in this work were 12 digital morphological leaf features orthogonalized into 5 principal variables
to form the input of the PNN. In [74], a 3CCD camera was utilized for capturing color images
from weeds and crops. Segmentation and image analysis operations were conducted on color images,
and the process was then followed by a radial basis function neural network [74]. The �nal accura-
cy was approximately 80%. Rankothge et al. [75] developed a plant recognition system called the
advanced plant identi�cation system (APIS) [75], and the starting step of the approach consisted
of removing noise, normalizing the leaf area, reducing the white background, and scaling the image
of the leaf. They proposed an extraction step which consisted of color, shape and vein pattern ex-
tractions. It is worth mentioning that a rotational invariant was added by using a 2D-fast Fourier
transform (2D-FFT) method [75]. However, the system was dependent on the quality of the images
taken, and it was declared that the system needed less time compared to the manual identi�cation
of plants by experts. In 2013, an additional research project proposed the use of an arti�cial neural
network (ANN) [76] for plant recognition and compared the results of two di�erent classi�ers, the
KNN and ANN classi�ers. Two di�erent types of features, color and shape features, were extracted
and utilized as inputs of the classi�ers. In terms of execution time, the results showed that ANN
was slower for smaller datasets and the performance of KNN was not good for a scaled dataset. In
addition, they worked on a classical leaf dataset, Flavia dataset, and applied the proposed system to
such a dataset.

Through the advances in control theory, the tendency toward using of automation in industry has
been increased. Agricultural activities are mostly repetitive and dull tasks. A demand is to connect
the robotic concepts to the agricultural needs and �nd high-tech solutions for the traditional acti-
vities. It contributes to reducing dependency on workers and performing tasks more precisely. One
important aspect of automation is boosting productivity. In agriculture, productivity is one of the
main components and no one can disconnect it from the related activities on farms. Nowadays, many
investors and companies in di�erent �elds have been convinced to work on agricultural robots, alt-
hough many projects are still in the prototype phase. Despite success in agricultural activities, the
mentioned points have motivated researchers and owners of companies to develop new agricultural
robots and bene�t from advances in both mobile robots and computer vision systems.

In the practice of modern farming, digital farming plays an important role by covering di�erent
parts from sensors and data analysis to robots. The main purpose is to automate processes, espe-
cially in weed control, �eld scouting and harvesting. Concerning agricultural robots, several issues
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like human-robot collaboration and presence of robots in dynamic environments are highlighted.
However, optimization of sensors, digitalization of information and applicability of multi-robots are
also important for building the future of digital farms. Tractor is an important equipment in farms.
Nowadays, autonomous tractors are needed for modern farms. Claas autonomous navigation [77] is
an example of autonomous tractors which employs Cam Pilot steering and 3D computer vision [77].
It is featured with the Global Positioning System (GPS)-based control to follow on the ground [77].
The next example is John Deere iTEC Pro that applies global navigation satellite system to control
steering and operate in rows of crops [77].

Furthermore, farming operations can be divided into some fundamental areas such as spraying,
crop scouting, harvesting, sorting, pruning and weed control. The importance of weed control goes
back to the economical bene�ts and increase of crops. One of the new developed machines is the Vibro
Crop Intelli series presented by Kongskilde industries [78]. In addition to precision and ease-of-use,
the system provides increase of pro�tability and e�ciency of mechanical weed control in row crops.
Hence, it is possible to recognize weeds and non-weeds easily.

Another important operation is to detect plant diseases. In [79], a mobile robot was built to
overcome the existing challenges and there is a small, portable and reliable platform to check farms
automatically, detect plant diseases and spray pesticides. The experiment was carried out on cotton
as well as groundnut �elds using di�erent image sizes, 640 × 480 pixels and 1024 × 768 pixels. The
name of the autonomous �eld robot in this work was eAGROBOT [79]. The authors deployed a
disease detection approach which was proposed by Al-Hiary et al [80]. In 2016, a plant recognition
system was developed by combining an oriented FAST and rotated BRIEF (ORB) [81] algorithm, a
fast library for approximate nearest neighbours (FLANN) matcher [82] and a neural network, and
the system was used by a robot [83]. In order to perform agricultural and gardening tasks, the robot
was capable of measuring some main parameters for characteristics such as temperature, humidity,
heat level, wind speed, wind direction and soil moisture [83]. Data acquisition was carried out by
getting data from the on-board sensors of the gardening rover and the data was then sent to a cloud
storage platform where it was prepared for future predictions in the garden. To have a remote con-
trol and monitor for the rover, a website and an android application were built and the internet of
things (IoT) [83] was used for precision agricultural activities.

In addition to detection of plant diseases and recognition of weeds, there is another area that
mobile robot technology can enter to increase the productivity of �elds. This section is actually the
plant recognition task on �elds. It is an extension of weed control task and enables us to recognize
various plant species on �elds, not only recognizing weeds from non-weeds. Developing a mobile ro-
bot with this applicability is useful in gardens with various types of trees and fruits. In addition to
performing the plant recognition task, such system contributes to accurate sorting of products and
precise management of gardens for next crop year. The mentioned points motivate us to develop a
mobile robot which is able to identify plant species in dynamic and outdoor environments.

2.4 Summary

Despite this chapter having introduced a range of di�erent systems and approaches, the �eld of
plant recognition still lacks a system which can be utilized in uncontrolled natural environments. In
image processing, lighting variation is a challenge in many tasks such as object recognition, object
detection, segmentation, etc. In addition, our �nal plant recognition story is not from a single object
and we see di�erent objects and a bunch of leaves within an image captured in a natural outdoor
environment. A bunch might contain various types of leaves such as fresh leaf, old leaf, dried leaf,
deformed leaf, etc. Furthermore, there is no routine for capturing images from natural plants, and
this means that the images may be taken at di�erent times (morning, noon, and evening) and on
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di�erent days. Meanwhile, the position of the sun is not �xed, and the angle of the sun's radiation
varies. In an outdoor environment, the weather condition changes daily, especially in Europe. For
instance, the weather is cloudy in the morning and it becomes sunny at noon. The weather changes
once again and it becomes windy. Changes of weather have e�ects on lighting conditions and might
deform the shapes of leaves. These are only some challenges in the natural environment, and many
proposed plant recognition systems try to segment leaves within the image or they need to have
the whole shape of the leaf in the image. Our goal is to be able to classify plant species in di�cult
conditions, even if the image is blurry.

Within the literature reviewed, one important point is the dependency on the camera in the pro-
posed systems. It is highly important to solve this problem and build a natural plant recognition
system which can perform classi�cation tasks without any consideration about the camera used.
Such a system would be able to deploy ordinary cameras, such as mobile cameras. One important
advantage of such a feature is the reduction of the overall cost of the whole system. Another im-
portant point is the distance between camera and plant. If the distance between camera and plant
species in the natural environment increases, it is hard for both human and machine to recognize the
shape of a leaf and the type of plant. It is also necessary to build a mobile system which is capable
of classifying the plants as a real-time and fully automatic system. Therefore, for plant recognition,
this research develops two di�erent systems, semi-robot and robot, and both are able to navigate
through the natural environment, including farms, to execute the desired task.

Although we have introduced di�erent aspects of plant recognition systems found in the literature,
various algorithms and approaches are proposed in this thesis, and the related state-of-the-art for
each chapter is provided separately. Our purpose is to provide more details about each step of the
proposed systems. It is worth mentioning that each chapter also introduces previous and related
works as examples of the state-of-the-art.



Chapter 3

Datasets and Availability

In order to study plants and investigate plant recognition systems, it is mandatory to perform
an accurate study and analysis of collected data in this �eld. There are some public plant and leaf
datasets, and the availability of these datasets is helpful to consider desired goals at di�erent levels
and steps where each dataset has its own properties and characteristics. Similar to other classi�cation
tasks, it is important to select suitable datasets to obtain targeted results. Before introducing the
available datasets, we have a look into plants by considering related issues in botany.

Botanists usually divide the plants into two main groups which are non-vascular (bryophytes) and
vascular (tracheophytes). In general, early plants lacking in vascular tissues are members of the �rst
group, which include liverworts, hornworts and mosses. Plants with vascular systems, such as Phylum
Pteridophyta, Angiosperms and Gymnosperms, form the second group. It is worth mentioning that
the main task of the vascular system is to transfer water and nutrients. Botanists introduce a plant
species by establishing six di�erent basic hierarchical levels: phyla, class, order, family, genus and
species. However, this research does not focus on such information in plant recognition but rather
the goal is to identify the class of the plant without providing additional information about its sub-
levels.

In this chapter, some datasets will be introduced and explained brie�y, furthermore the used
dataset will be described in detail. Challenges of the used datasets will also be addressed in more
detail. This chapter is grouped into three sections. The �rst section describes the classic datasets,
the second section represents the semi-modern datasets and the third introduces the modern dataset
in detail.

3.1 Classic Datasets

Most commonly, a dataset corresponds to the contents of a single type of data. Several classic
datasets are publicly available for leaves of plants, and they have been used widely in the related
literature.

3.1.1 One-hundred Species Plants Leaf Data Set

This dataset has been introduced in [84], and it comprises one hundred di�erent minor/major
species of the plant leaves. In fact, it is a planar binary shapes dataset and it has 1600 images in
total. The dataset is available in the online UCI Machine Learning Repository [85], and each class
has 16 images for its labeled species. Due to the number of images and classes, it is considered as a
dataset with low example images in each class, although the number of classes is rather large. This
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dataset is useful for multi-class classi�cation tasks when the training dataset is small. Figure 3.1
shows some samples of this dataset.

Figure 3.1: Several samples of the dataset from left to right, (a) Acer Campestre, (b) Crataegus

Monogyna, (c) Magnolia Salicifolia, (d) Quercus Rhysophylla and (e) Salix Fragilis

Figure 3.2: Two sample images of the Leaf Shapes database, Ground truth image- class C (Left),

Sample image- class a (Right)

3.1.2 Leaf Shapes Database

This dataset has been developed for academic and research purposes, and the developer of the
dataset is [86]. Leaves of 18 di�erent plant species have been collected to create this dataset. It is
worth noting that the number of images is not �xed for all classes, and it varies from one class
to another one. Moreover, the name of each class has become unique by de�ning a special folder
format. For instance, if the name of the folder is "cg1-cg10", it represents that the class is "c", the
images are grayscale according to the "g" and the 10 shows that this folder contains 10 images of
the class. Additionally, the format of the images is "tif" in this dataset. The current dataset can
be applied in di�erent areas such as shape analysis, shape feature representation, texture feature,
contour analysis, contour-based image retrieval, leaf recognition, etc. One important point of this
dataset is the availability of ground truth images. In Figure 3.2, two samples of this dataset have
been shown.

3.1.3 Flavia Dataset

The Flavia leaf dataset is one of the most famous leaf datasets. In this dataset, there are only
leaves of plants without stems. It contains leaf images of 32 di�erent plant species. The number of
leaves varies from one species to another, and it ranges from 50 to 77 images per species because
of the di�culty of �nding samples varies for each plant. The Flavia dataset is a collection of 1800
red-green-blue (RGB) images. The images have been recorded against a white background, and the
resolution of the images is 1600×1200. Furthermore, no restriction has been taken into account while
photographing. The sampling of the leaves has been done on the campus of Ninjing University and
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Figure 3.3: Five samples randomly selected from one class of the dataset

Sun Yat-Sen arboretum, Nanking, China. This dataset has several characteristics, for instance, the
leaves in the images are not aligned and some of them have some rotations. Therefore, this dataset is
closer to reality. Figure 3.3 represents several samples of one plant species which have been selected
from the Flavia dataset. Figure 3.4 represents 32 di�erent samples of all plant species where one
leaf sample per species is shown.

Figure 3.4: 32 di�erent samples of all plant species of the dataset

3.1.4 Swedish Leaf Dataset

The Swedish leaf dataset [87] has 1125 images taken of 15 di�erent plant species such as Ulmus
carpinifolia, Acer, Salix sinerea, Betula pubescens, etc. There exist 75 images per each species. The
leaves have been sampled from Swedish trees. In the images of the dataset, some of the leaves
images have some parts of footstalks. In some cases, existence of footstalks has been considered as
unsuitability, and some pre-processing methods like morphological operations have been carried out
to remove the undesired parts. In order to have a robust leaf shape recognition [88], removing the
footstalks has been performed as the pre-processing step. This dataset has also several characteristics.
The leaves in the images are aligned very well to the background for taking pictures, and the alignment
has manually been done. In addition to this alignment, the rotation is very small and it can be passed
up. Another point associates with the way that the images have been taken. Actually, the images
have been captured of one side of the leaves, not two sides of the leaves. The third characteristic is the
good quality of the leaves in this dataset. There has been no serious partial loss in the leaves when
the images have been taken. Figure 3.5 shows several sample images of the Swedish leaf dataset.
They are three di�erent species, and two sample images of each species are shown.

Figure 3.5: Several sample images of the Swedish leaf dataset
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3.1.5 Smithsonian Leaf Dataset

In [89], 343 leaf images have been captured of 93 di�erent species. Each image shows one isolated
leaf, and the leaves have not been made �at during photographing of them. The number of leaves
changes from one species to another.

3.2 Semi-Modern Datasets

Although identi�cation of plant species might seem to be a simple task, it is a very di�cult
task even for botanists, scientists and professionals such as farmers, naturalists, foresters and nature
exploiters. Semi-Modern datasets do not contain fully-natural plants images; however, it has been
attempted to create datasets which are closer to the real world.

3.2.1 Pl@netleaf dataset

The Pl@netleaf dataset is a known dataset for plant recognition based on leaf images [90]. This
dataset has been created in 2011, and it can be utilized for content-based plant identi�cation tasks.
Moreover, the dataset was used for the plant identi�cation of Image Combined Lab Evaluation
Forum (ImageCLEF) 2011. Seventyone tree species from the French Mediterranean area have been
used to capture 5436 images and create the dataset. It contains three di�erent types of images
which are leaf scan images, leaf scan-like pictures with a uniform white background and free natural
pictures, where they have 3070, 897 and 2469 images, respectively. The purpose of the third type
of the images is to have natural conditions of di�erent plant species which can be considered as a
signi�cant point of the dataset.

In addition, meta-data is created for each image, and each meta-data, xml �le, stores the following
information [90]:
- Date

Figure 3.6: Three sample images with the scan type

- Acquisition type: scan, pseudoscan or photograph
- Content type: single leaf, single dead leaf or foliage (several leaves on the tree visible in the picture)
- Full taxon name (species, genus, family, etc.)
- French or English vernacular names (the common names)
- Name of the author of the picture
- Name of the organization of the author
- Locality name (a district or a country division or region)
- GPS coordinates of the observation

Figure 3.6, Figure 3.7 and Figure 3.8 represent three scanned images, three scan-like images
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and three free natural images, respectively.

Figure 3.7: Three sample images with the scan-like type

Figure 3.8: Three free natural pictures of the Pl@netleaf dataset

3.2.2 Pl@netleaf dataset II

The Pl@netleaf dataset II is an extension of the Pl@netleaf dataset described in section 3.2.1. The
dataset contains images of 126 di�erent tree species from French Mediterranean area. In comparison
to the Pl@netleaf dataset [90], the number of images is increased to 11572 images. The images are
divided into three groups, similarly as its previous version: leaf scan images (57% of total images), leaf
scan-like pictures with a uniform white background (24% of total images) and free natural pictures
(19% of total images). Meta-data is associated with each image. Furthermore, partial meta-data
information can also be found in the image's EXIF, and it may include the following information:
- Model of the camera or the scanner
- Resolutions and dimensions of images
- Some optical parameter, the light measures, etc. for the photos

Besides, the images have been taken from distinct trees growing and living in distinct areas. Figure
3.9 represents localities of the plants included in the dataset.

Figure 3.9: Locations of the plants included in the Pl@netleaf dataset II [90]
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3.3 Modern Dataset

Ecosystems have attracted the attention of researchers and scientists. One noticeable dimension
of the ecosystems is their high diversity. Accurate knowledge of ecosystems' evolutions results in
the sustainable development of humanity and conservation of biodiversity. Therefore, it is necessary
to have deep and accurate knowledge of ecosystems' components such as geographic distributions
and living species. Plant species are one important member of the living species set. Moreover,
identi�cation of plant species plays a challenging role in ecological systems. One requirement is to
have a natural dataset with outstanding records. This kind of datasets has been called modern
datasets. A modern dataset is created as a part of this project, and it is called the natural plant
dataset. It is also known as the modern plant dataset. This modern dataset contributes to making
the pure computer vision knowledge closer to the real-world applications.

3.3.1 New Natural Plant Dataset

Despite the recent advances in the multimedia �eld, digital equipment, network bandwidth and
information storage capacities, the absence of modern datasets for plants identi�cation is beheld and
it is needed to collect an outstanding set of records. It is vital to consider the requirements and
necessities of the real world in terms of recognition systems. Due to the necessities of the modern
life and the development of technology, modern data is needed to solve new problems. One modern
dataset can evolve in terms of size, complexity, generality, etc. The proposed dataset, new natural
plant dataset, is a modern one which is completely di�erent from other available datasets due to its
unique properties. It is also called the modern natural plant dataset (MNPD).

The investigation of the dataset shows that it contains color images taken of distinct plants with
considerably di�erent characteristics, percentage of homogeneous regions, details, etc [91]. Some
points have been considered as general rules for preparing the dataset. In order to take pictures,
similar protocols have not been used to acquire the images [91], and there is no special consideration
about the camera selected. Consequently, there is no dependency on the used camera [91]. To have
a useful natural dataset, di�erent aspects or components of natural environments should be taken
into account. Adding these continuum aspects mainly leads to creating and providing a logical and
e�cient collection of data to solve the problem and compensate for the lack of a modern natural
dataset [91].

Distance

Distance is an important factor which has been neglected in other available datasets. To our best
knowledge, it is the �rst time that this factor has been considered during the preparation of plant
datasets. The distance is de�ned as the distance between the camera and the plant. This factor
contributes to �lling the gap between needs of the real-life and current systems for plant recognition.
Images of the dataset have been captured at short and long distances of 25 cm, 50 cm, 75 cm, 100
cm, 150 cm and 200 cm.

It should be noted that the increase of the distance has e�ects on both the human eye and ma-
chine performance. For the human vision system, the increase of the distance between the human
and the plant makes it di�cult to correctly recognize the shape of the leaf with all details; therefore,
the identi�cation of the leaf shape will really be hard. In addition, the human eye is not able to
distinguish the leaf shape in images captured at long distances, even if the human eye has already
been trained for identifying the leaves of that plant species by observing previously di�erent samples
of the leaves of the plant species. Regardless of looking at a plant in natural environments at long
distances or looking at a photo while the distance between the objects and the camera is long, it
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Figure 3.10: Two sample images of the natural plant dataset whereas the distance between the camera

and the plant is 200 cm

Figure 3.11: Change of the viewpoint at the distance of 25 cm

is really not easy to recognize the plant species and it is necessary to overcome this challenge in an
appropriate way.

There is also another point about the distance. If the observer is looking at a scene with a bunch of
leaves and several branches of the plant, it is relatively impossible to count the number of the leaves.
Let's imagine that an image is taken at a long distance like 200 cm in the outdoor environment with
di�erent undesired objects which make the scene more complex, the di�culty is not bounded to the
distance, and new challenges are added because of the environment and additional objects. In such
case, the recognition process is not as simple as before, and a challenging factor is added to the whole
task. As a result, adding this factor to the plant dataset is an apt change for making the dataset
closer to natural outdoor environments. Figure 3.10 shows two images of the dataset taken at the
distance of 200 cm.

This factor adds an important property to the future systems from a new aspect, and it helps to
generalize through a fresh concept. It contributes to developing a plant recognition system indepen-
dent of distance. This means that the system can be used at any distance in general. Furthermore,
an e�cient distance-independent system is more valuable for the real-life applications.

Change of Viewpoint

In order to evaluate the performance of a modern system, it is necessary to create a dataset
containing images with signi�cant amount of viewpoint variations. This modern dataset includes
images taken at arbitrary viewpoints and di�erent distances. At each de�ned distance, changes of
the viewpoint among images are undeniable. Figure 3.11 represents two images with the change of
the viewpoint at one distance. Although the size, color and clarity of di�erent leaves are not the
same and they vary from an image to another for one plant species in previous datasets, the leaves
of the plant species are similar to each other. In addition, the lighting condition is usually kept �xed
in many existing plant datasets and other factors like the point of view and the angle do not change
during photographing.

As one of the goals is to develop a plant recognition system that can be utilized as a real-time
system on farms, we cannot guarantee of having the same point of view or angle in all images. To
ful�ll this goal, it is necessary to increase the variety of the images by considering these two factors
and take pictures at di�erent points of view and angles. Our solution is to randomly capture images
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of the plants in natural environments and consider none of the mentioned factors. As a result, the
�nal system will possess an angle-independent mechanism. Moreover, it will be able to recognize
plant species correctly under naturally varying positional conditions.

Lighting Condition

The images have been taken under di�erent illumination conditions. Some factors such as the
position of the sun, positions and forms of clouds, overcast weather and rain cause illumination
variations as they a�ect the other factors like shadows, location and position of shadows, color and
light absorption. Illumination changes can be observed in this dataset and move it even more towards
the real natural-world. Two of the �rst factors that usually come to photographer's mind are lighting
condition and light intensity if the purpose is to take pictures in natural and outdoor environments.

Suppose that we take two pictures of a plant in the outdoor environment with the same other
factors such as camera setting, angle, point of view, distance, etc. in two di�erent sunny days, the
pictures are not the same because both light intensity and lighting condition are di�erent as the
position of the sun, as the main source of light, a�ects the photographing process and the �nal
pictures. One important e�ect of the position of the light source is the amount of shadow. Darkness
in the uncontrolled outdoor environment and large variations of its amount a�ect the �nal natural
color pictures as well. Figure 3.12 represents the images with di�erent illuminations.

Basically, light is vital for taking pictures. Complex and natural plant images are taken with

Figure 3.12: Two samples with di�erent illuminations

changing light intensity. Di�erent types of natural light can produce a wide variety of appearances
when an image is taken of a plant, even though the light source is the same. Light intensity may refer
to the amount of available light for capturing photos. Light measurement has two main forms: the
re�ected light and the incident light. The direction of the light, such as side lighting, back-lighting
and front-lighting, also a�ects the images. Due to lighting conditions of natural environments and
the intention of generating di�erent conditions, no special considerations about actively in�uencing
the illumination have has been taken into account for capturing the images of the dataset to make
it more natural. In addition, the attempt has been to strengthen the diversity of lighting conditions.
In many datasets, we �nd that it has been tried to align and adjust the light source for obtaining
uniform illumination, even with accurate calibration and proper alignment. Moreover, it is hard to
keep light intensity �xed as light can vary in intensity by as much as 1000 times and the light intensity
a�ects the quality of images. It is worth mentioning that the regulations in the human eye are more
complex and include chemical processes in the retina.

Background

By considering di�erent datasets, a factor that usually attracts our attention is the background. As
previously explained, datasets usually contain images with homogeneous backgrounds (mostly white
backgrounds) and the objects of the images are isolated leaves without petiole. In such laboratory
conditions, leaf images are mainly taken with the same settings, parameters. Factors which might
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a�ect photographing are kept �xed and constant. It is worth mentioning that the diversity of images
decreases in datasets with homogeneous backgrounds; however, the variety of the leaf shapes still
remains.

Weather Condition

The images have been taken of complex scenes with various backgrounds in di�erent weather
types. In order to develop a general system, a new factor is added to this dataset, and it is actually
weather condition (the type of the weather). More precisely, climate, weather, and wilderness can
a�ect the performance of the plant recognition system. There are �ve di�erent types of weather
conditions listed as bad weather:
- Cloudy and unpredictable clouds
- Windy
- Rainy and drizzly weather
- Snowy
- Foggy

For instance, the contrast of the image is lower in the foggy weather. Small water droplets can
cause light scattering and blocking, therefore other parameters such as the reaching light, contrast
and visibility will be changed and reduced. In cloudy days, clouds absorb a part of the light and
di�use the rest; so there is usually no direct light on objects in natural environments, and it causes
visual e�ects.

The mentioned weather conditions can be divided into two di�erent classes according to their
physical properties and visual e�ects. These classes are: steady (fog, mist and haze) and dynamic
(rain and wind). Droplets of the steady class are too small, (1-10 µm), and they cannot be detected
within the image if the distance between the camera and the plant is large, although they have
e�ects on the recognition task. In comparison, the e�ects of the dynamic weather are much more
complex. For example, wind can make leaves and their shapes indistinguishable. Furthermore, the rain
produces sharp intensity edges and intensity variations in images, and it consists of small particles
which are 1000 times larger in size, (0.1-10 mm), in comparison to the steady class. Besides, we
may see dust on the leaves of the plants in natural uncontrolled environments, and the leaves might
be covered by dust and leaf spot diseases a�ect the foliage of ornamentals and shade plants. These
diseases cause damage the original appearance of leaves while they are clearer at short distances. This
e�ective factor in the plant recognition process has been neglected in the existing datasets despite
its importance. For instance, we would like to take pictures of plants when it is windy and there is
no human intervention. In fact, the camera is in our hand and there is no unipod stabilizer available.
In this weather condition, the camera may shake a lot while the leaves of the plants are moving too
much. Consequently, the �nal images are blurry images in comparison to the sunny weather, and
the clarity of leaves and plants reduces in captured images. In addition, we �nd that the number of
deformed leaves increases in images.

Time of Photography

Time of photography is another factor which can be considered in developing a helpful and general
dataset. As a consequence, the time of taking pictures has not been �xed to a certain time. The images
have been taken at di�erent times on di�erent days. This factor certainly contributes to having a
more realistic and natural dataset. Let's suppose that we keep the setting of the camera, distance
and all other factors �xed and start taking pictures of one plant in the morning and evening; our
purpose is to �nd the e�ect of the time on captured pictures. The investigation of the images taken
of one speci�c plant while all factors and conditions have been kept �xed shows that the sun and
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the amount of the shadow have not been the same after a few hours. The �nal images are visually
di�erent, even for the human. Over time, the number of the dried and fresh leaves might be changed
and the color of the leaves varies, even if the leaf shapes are not deformed. In fact, the dying leaves
in yellow, brown or red colors contain low amount of chlorophyll. A fresh leaf absorbs most of the
visible light and re�ects a large amount of the near-infrared light, but more visible light and less
near-infrared light are re�ected by a non-fresh leaf. Therefore, photographing at di�erent times adds
additional challenges to the plant recognition process in uncontrolled natural conditions.

Selection of Camera

In order to take pictures for the dataset, there is no consideration about the model of the camera.
The model of the camera is Canon EOS 600D.

Other Challenges, Random Photography and Environments

Random photography is the golden key for preparing a natural plant dataset. In the outdoor
environment, many leaves of plants are covered by other leaves and the complete leaf shape cannot
be distinguished easily. Even for the human eye, it is not easy to estimate and predict the hidden and
invisible parts of the leaves. In addition, it is so hard for a computer-based machine to predict the leaf
shapes and extract complete and enough information from the images taken in natural environments.
A lack of information leads to wrong recognition of the plant species, and it is impossible to trust
such plant recognition system. It is a desire to design a system that is able to identify types of
plants in such complex uncontrolled environments. It is also necessary to have a look into di�erent
outdoor environments. Two main categories of outdoor environments are urban environments and
non-urban environments. The variety of non-plant objects are often high in urban environments.
Therefore, complexity of the images captured of the plants in urban environments is higher than in
non-urban environments. It should be pointed out that the presence of di�erent objects in urban
environments and variations of natural backgrounds lead to very complex images taken of the scenes.
It is almost impossible to interpret such complex scene with the human knowledge and experience;
hence, it is also very hard to recognize plant species by using machines [91]. If we check the objects
in non-urban environments such as farm, garden, etc., we �nd that the variety of objects is typically
less than in urban environments. However, the simplicity of these environments in comparison with
urban environments does not decrease the complexity of the plant recognition process and natural
backgrounds vary in di�erent captured images.

An Overview on the Selected Plant Species of the Modern Dataset

The selected plant species are common plants in Germany, especially in Siegerland. If we walk
through this region, we �nd the mentioned plants in di�erent places in both natural and urban
environments. Due to the pre-de�ned goals for the future work and the importance of the plant re-
cognition for the future of agriculture, the plant species have been chosen, and it is a need for having
a natural modern dataset containing common plant species of the region and the country. Further-
more, di�erent plant species had been checked before selecting these plant species. The investigation
of the common plants during a period of time, several months, showed that Cornus is very sensitive.
For example, a daily color change (from green to yellow) occurs in some parts of most leaves, which
eventually results in an inevitable deformation of leaf shapes in this plant species. Furthermore, the
leaves of the Cornus are similar to Amelanchier Canadensis if the number of rainy days decreases for
a while. In addition, Acer Pseudoplatanus is usually exposed to diseases, and variations among its
leaves increase when there is no adequate amount of rain in a period of time. For Acer Pseudoplatanus
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and Hydrangea, dead leaves can usually be found, even in rainy days in summer. At long distances, it
is very di�cult to distinguish Hydrangea from Acer Pseudoplatanus. Over time, the variation of the
appearance of the leaf in Amelanchier Canadensis is usually high. Investigating a dataset containing
these types of plants is an interesting challenge. The selected plant species add more challenges to
the task of the natural plant recognition by considering di�erent common plants of the region and
create a task closer to that one we face in natural environments.

3.3.2 Summary of Modern Dataset

Capturing images in nature is so popular among the professional and amateur photographers
and the tendency of the plant photography is also increasing as well. In addition to the industrial
applications for the plant recognition systems, the possibility of identifying the plants in nature
images is a demand for the today's world. In the nature photography, direct shooting of the plants
in day time leads to obtaining very green images, and the images are not so artistic in this case.
Professional photographers try to solve this problem by adjusting the camera settings and changing
the source of the light. Furthermore, they also try to take pictures in closer distances to make more
meaningful photos. Indeed, they are also able to do some post photographing operations and use
some tools to achieve their goals of the nature capturing instead ruining the natural scene.

The motion of the leaves is an important factor which might happen when taking pictures. In many
cases, photographers attempt to take photos during times when there is no wind and consequent leaf
motion, but we just captured the images without any additional equipment for blowing the plants
and making wind arti�cially or stopping the motion of the leaves. In addition to the motion, there is
also another important factor that in�uences the natural plants during the photography. This factor
is the background and di�erent additional objects that we may see in the images of the plants. As
we would like to make the system closer to the human abilities, we do not mind any consideration
about the background. Meanwhile, when someone is taking pictures, they might think to capture
pure images by using highly advanced cameras with fantastic lenses.

A professional-grade camera is usually expensive and, with such equipment, a photographer is
able to take high quality pictures of the plants with very tiny details. However, we are sure that it
is not possible to access highly equipped cameras for this research, and the type of the camera and
its accessories should not have any impacts on our deep system. Con�dently, we intend to reduce
the distance between the human vision and the computer vision where the human has eyes and the
computer and the robot have cameras. In addition, we did not use any sensor to change the nature
and outdoor condition during photographing, and there is no speci�c protocol for taking the images.

During the preparation of the modern dataset, we did not try to put the leaves of plants in the
center of scenes. Instead of this, we were eager to take the photos from the plants as they exist around
us without any attempt to centralize the objects in the scene. Hence, the viewer's eye does not focus
on one speci�c object. Furthermore, there is no consideration of positioning to bene�t from this fact
while taking the pictures of the plants, and di�erent points of view will be provided.

The mentioned points are requirements of new datasets to �ll in the gap between existing plant
recognition systems and desired plant recognition systems for real-life applications. As an important
part of the work, real challenges and di�culties of the plant recognition in uncontrolled conditions
have been investigated from di�erent aspects before preparing the dataset. In this section, the factors
and challenges have been identi�ed and introduced, and they can be considered as the starting point
in developing the natural plant recognition system. Moreover, one important property of the modern
dataset are large variations among its images. In fact, we need a dataset with natural images that have
been taken at di�erent angles, views, illuminations, light intensities, weather conditions, distances,
positions of leaves, etc. Moreover, generalization of the dataset helps to build a recognition system
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which is capable of working in di�erent situations in various environments with di�erent conditions
such as windy and cloudy weather. To our best knowledge, there is no similar dataset available, and
existence of scenes with di�erent objects and details makes the dataset very challenging.

Dividing the dataset into two sub-datasets, the training dataset and the testing one, is randomly
done. Some factors such as non-uniform illuminations (shadows, underexposure and overexposure),
background clutter and pose vary signi�cantly among the images of the dataset, and such large range
of variations in both the training and testing datasets is suitable to explore various aspects of the
problem and to �nd an appropriate solution to overcome the challenges of recognizing plant species
in natural environments [91]. Deep investigation of images of the dataset proves that images are
a�ected by several factors, and there is mainly no focus on the e�ects of only one factor as there is
not any control over environmental factors [91]. The aspects that will be added to future systems are
responsiveness and usability in the real world, stability and robustness in di�cult weather conditions,
availability, adaptability, etc.



Chapter 4

Image Analysis

Image analysis is usually de�ned as a process of extracting quantitative and meaningful information
or measurements from images by using computer approaches. The start point of such a process is
getting an input image and the end point is getting an output in the form of numerical data while it
is also possible to obtain the output in the form of an image if needed. Nowadays, a new meaning has
also been added to the image analysis and the ability of computer-based algorithms for identifying
visual information in an image is also considered as image analysis. Image analysis consists of many
di�erent simple and non-simple techniques which can be used for performing a wide range of tasks
automatically. Special requirements for the image analysis are a computer with suitable additional
devices and a�ordable equipment. It would be a good idea to have a look at a particular image and
analyze it from a human's point of view. A human is able to categorize the objects within the image
according to their types. Figure 4.1 shows a sample image of the modern dataset and a human can
specify the types of objects including leaves, branches and the background. Not only recent advances
in social media are based on text analysis but also text analysis is even applied to visual contents.
Moreover, we have also had interesting advances in image analysis and related �elds. The purpose
of this chapter is introducing main concepts mentioned in the literature and investigating images of
some plants using some typical approaches.

Figure 4.1: A sample image of the natural plant dataset (modern dataset) containing di�erent objects

with various types, leaves, branches and backgrounds
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4.1 Investigation of Image Histograms

Image analysis contributes to getting basic details and extracting desired elements in a structured
way. In this section, predominant intensities of some images by visualization through the histograms
are investigated. An image histogram is usually a graph of the count of the number of pixels that
are at a speci�c intensity. As we have di�erent images of plants from the same species, we are able
to compare them graphically by the histograms. It is worthwhile to mention that image histograms
are nowadays available on many modern digital cameras [92]. They help photographers check the
distribution of the captured images and �nd whether the details of the image have been lost to
blown-out highlights and blacked-out shadows or not [92].

Let's consider two samples of one plant species and the plot histogram of these two samples,
respectively. Figure 4.2 shows the �rst sample image and its histogram where the x-axis is the
intensity value from 0 to 255 and the y-axis is the number of pixels with that intensity value.
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Figure 4.2: Left: First sample image Right: Histogram of the �rst sample image

Figure 4.3 represents the second sample image and its histogram. It can be noted that we �rstly
convert the RGB images into the grayscale with the following equation. Furthermore, converting
color images into grayscale images can be performed using di�erent methods which will be discussed
in the next chapters.

Grayscale = 0.2989R + 0.5870G+ 0.1140B (4.1)

where R, G and B are red, green and blue components of one pixel.
As we see in the �gures, both x-axis and y-axis vary in the histograms. Variation of values in

y-axis depends on the number of the pixels in each image and how the intensities of the pixels are
distributed.
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Figure 4.3: Left: Second sample image Right: Histogram of the second sample image
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At this stage, a comparison is made between some samples of one species. We suppose one sample as
the reference point for the comparison of four other samples. First of all, we change the range of the
images and the new range is from 0 to 1 as a normalization step. Then, we convert our 5 images into
grayscale. Afterwards, we create the normalized histograms. And �nally, we calculate the histogram
error between the �rst image and the second one using the following equation.

Error(1, 2) = sum((NH1−NH2)2) (4.2)

where normalized histograms of the �rst and the second samples are NH1 and NH2, respectively.
Figure 4.4 shows 5 sample images of the Flavia dataset and the obtained results after comparing

the �rst sample with the other samples.

Figure 4.4: Five sample images of the Flavia dataset and the results obtained after comparing the

�rst sample with the rest of the samples

Now, we select 5 images of various plant species randomly and compare the �rst selected plant
species with the other four plant species. Figure 4.5 represents the results calculated by error. As
one observes, the errors between the �rst plant species and other plant species are larger than the
time when we investigated the errors among 5 samples of the same plant species. Unfortunately, we
cannot �nd a general method for plant recognition by using the aforementioned comparing approach.

Figure 4.5: Images of 5 di�erent plant species and the obtained results after comparing the �rst

random selected plant species with the other plant species
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4.2 Investigation of Histogram Equalization

In this section, the next step of the image analysis, the investigation of the histogram equalization,
is discussed for some plant species. In order to automatically adjust image intensities, histogram
equalization is a suitable technique and it enhances contrast within the original image. Furthermore,
the histogram equalization transforms the intensity values and it results in matching of the histogram
of the output image with a speci�ed histogram. If the input image is shown as I and it is actually a
matrix r by c with pixel intensities ranging from 0 to L−1, the normalized histogram of I with a bin
for each possible intensity is the number of pixels with one intensity divided by the whole number of
pixels. L usually equals 256 as we use images in grayscale.

px(i) = p(x = i) =
ni
n

(4.3)

ni the number of occurrences of gray level where the gray level is equal to i.
Then the cumulative distribution function (CDF) [93] will be as follows and it will be the accu-

mulated normalized histogram of the image, too.

CDFx(i) =
i∑

j=0

px(j) (4.4)

In order to produce a new image, called y, it is possible to create a function, called T , which
transforms the image from x to the new image y and y = T (x). Having a �at histogram, there is a
linearized CDF across the value range. For instance, we have:

CDFy(i) = iK (4.5)

and K is constant and the properties of the CDF helps us do a transform process as below.

CDFy(y
′) = CDFy(T (K)) = CDFy(K) (4.6)

K lies in the range of [0,L] and T is responsible for mapping the levels into the range [0,L] where
L is equal to 1 in our case as we utilized a normalized histogram of x. Figure 4.6 shows a sample
image of the modern dataset.

Figure 4.6: A sample image of the modern dataset

We calculate the histogram of the grayscale image where the number of bins used in the histogram
are equal to 64 as the grayscale image is represented by 8 bits. Figure 4.7 represents the histogram
of the grayscale image.

To adjust the contrast of the grayscale image, we use the histogram equalization technique and
attempt to match a �at histogram with 64 bins. Figure 4.8 illustrates the contrast-adjusted image
of the grayscale version and its new histogram. To see a bit better the details, it has been done as a
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Figure 4.7: Grayscale image with its histogram
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Figure 4.8: Contrast-adjusted image obtained from the grayscale version and its new histogram

�rst step.

As one can see, the histogram is completely changed and the distribution of the image is �atted in
comparison to the normal histogram of the grayscale. The transformation return value is a vector that
maps gray-levels in the intensity image, grayscale image, to gray levels in the histogram equalization.
Figure 4.9 shows the plotted transformation curve. The input values are mostly in the range between
0.3 and 0.6, although the distribution of the output values is even in the range of [0,1].
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Figure 4.9: Plotted transformation curve
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4.3 Channels of Image and Image Reconstruction

The present section is intended to have its focus on extracting channels of a color image and recon-
structing the original image by means of the extracted channels. We use a repeatable and iterative
procedure to get R, G, B channels from an input image and separate the results. Firstly, we split the
color image to the green channel, the red channel and the blue one. Next, we create a black channel
and then build a color version of each component individually. Figure 4.10 shows the input image
which is a member of the modern dataset.

Figure 4.10: Original input image for extracting the channel

Figure 4.11 represents the histogram of red, green and blue channels while they have been ex-
tracted from the original input image.
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Figure 4.11: Histogram representation of the red, green and blue channels

After extracting the channels, we recombine the components in the sequence of red, green and
blue and get the reconstructed version of the image. Figure 4.12 represents the red channel image,
green channel image, blue channel image and reconstructed image.
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Figure 4.12: Representing the red channel image, green channel image, blue channel image and

reconstructed image separately

4.4 Conclusion

An overview of the image analysis, comparison between some samples based on histogram and
the information obtained from image analysis were presented in previous sections. We considered
some samples of the modern dataset and other datasets used and took some simple and basic image
analysis approaches to have a better understanding of plants images. Image analysis is not limited
to getting information from di�erent histogram-based approaches and it can also be used in other
areas of computer vision. Importance of the image analysis has been extended to images with text
contents as the number of images are increasing in social media and many users are interested in
getting some speci�c information due to texts in images although the story is completely di�erent in
plant recognition in our point of view. One idea was to compare histograms of di�erent samples of one
plant species and compare plants of one speci�c family to know whether the extracted information
of the histograms is useful for recognizing the plant species or not. Furthermore, we tried to �nd
the relationships between one de�ned plant species and other plant species. But there was no way
to discriminate between various plant species based on the information obtained merely from the
histograms and generalized approaches. It is needed to do more operations so as to achieve rich
suitable information for the plant recognition.



Chapter 5

Keypoint Detection, Feature Description

and Matching

Feature is a basic concept with the same general sense in computer vision, image processing,
pattern recognition and machine learning �elds, although the complexity of this concept is undeniable,
especially in image processing. In any particular case, this concept is highly dependent on a speci�c
proposed problem. Therefore, collection and selection of features are important in computer vision
systems. Each piece of image contains some pixels and information to solve the tasks related to the
proposed problem, and subsets of features can be interpreted in di�erent ways for the analysis of the
image and its information. Features can be assumed as small particles of images. From this point of
view, these particles can be utilized to represent images, and if e�ciently detected and extracted,
will be helpful for building useful systems and e�cacious applications in the next steps.

Due to the rapid growth of using computer vision technology, computers are used to analyze
images which are acquired by means of digital devices and image datasets. Basically, it is necessary
to have a camera for building a simple computer vision system. However, such vision systems are not
costly to develop through using personal computers with built-in camera and required interfaces. In
order to analyze images in machine vision tasks and solve the basic computer vision problems, the
matching process is particularly useful which can be done through various methods and algorithms.
Being an important concept, matching is growingly used in di�erent areas such as computer vision,
computer graphics, photogrammetric and other applications of images. Matching does not merely
focus on �nding similarities in a group of images and includes some other important applications
such as image alignment, 3D tracking, image registration, object recognition, motion tracking, robot
navigation, etc. Furthermore, matching tasks can be accomplished by various algorithms proposed
in [94] [95] [96].

The human eye can simply perform the matching based on some typical colors, textures, geometric
distributions, characteristics of images, etc. Therefore, the idea of capturing such characteristics of
images intuitively has been investigated by using di�erent algorithms and techniques. In general,
most of the available approaches in this regard are based on image processing or computer vision.
The image processing-based detection exploits features of leaves by using di�erent algorithms to
obtain and examine a bunch of features. In this chapter, we are going to propose the combination of
di�erent algorithms and create combined methods for detection and extraction of features. A general
review of the related works is presented in section 5.1. Firstly, we aim at investigating the capacity of
each algorithm separately for our purposes (see more details in section 5.2). The nature of the image
is an important factor which in�uences the performance of an implemented algorithm; for instance,
illuminating conditions can signi�cantly a�ect the results. As one important part of this chapter,
we attempt to investigate the algorithms in the complex natural images, especially in the presence
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of dense edges and with variations in di�erent parameters and factors. We need to use the whole
potential of the algorithms in both detection and description tasks; hence, we propose the modern
combined methods which can utilize the detection algorithms with di�erent description algorithms
(see section 5.3). Thus, we show the superior performance of the proposed combined methods in
comparison with more conventional ones. First, a detection algorithm needs to be carried out in
order to obtain the corresponding keypoints. Second, an algorithm should be used to complete the
processes of extracting features and obtaining descriptors. Moreover, the proposed combined methods
can be applied in di�erent problems due to desired tasks as none of the approaches can separately
lead to the desired results. A fundamental aspect of the object recognition task is matching, and it is
possible to signi�cantly improve it by choosing the best sets of features [97] [98]. Hence, a technique
is studied and used experimentally in section 5.4. Moreover, the proposed combined methods for
obtaining e�ective information for the computer vision tasks are described in section 5.5. Finally,
section 5.6 draws the conclusion of the chapter.

5.1 Related Work

As mentioned above, keypoint detection and feature extraction are critical operations due to their
undeniable roles and importance in computer vision tasks. The eye, as the main sensory organ of the
visual system, is responsible to form an image in the human vision system. Despite the simplicity of
the phenomenon at the �rst glance, the involvement of brain proves the complexity of the process.
However, robot's eye and brain are not really comparable to the human systems beyond the abilities
of the world's most powerful hardware and computers, the features are not trivial for the robots at
all.

The variation of the viewpoints may lead to a complete change of objects and scenes, but the
human brain and prior knowledge help to recognize objects correctly. Basically, it is impossible to
assume one speci�c shape for leaves of one plant species. Moreover, leaves of one plant species do
not possess only one color. Although the typical color of a leaf is green, it might be in other colors
such as orange, red, reddish orange and yellow. These are two remarkable points at this stage.

In principle, a human is able to focus on the important parts of any image in the surrounding and
natural environment. These parts could have unique perceptual signi�cance or particular forms. The
human eye is also capable of tracking changes in a natural scene which is a fundamental property
of the human vision system. Due to these characteristics of the human eye, one question is posed;
"Does the human eye detect and identify features in an image?" This question is the origin of other
studies on biological nature of the human vision system. Hence, studies on both arti�cial and biolo-
gical vision systems have been carried out to yield better understanding of features in an image. It
is proven that any visual system, either arti�cial or biological, must simplify the image and record it
in an economical 'token' form [99].

Therefore, it should be made clear that many publications regarding image processing and compu-
ter vision investigate plant/leaf detection by getting di�erent information and using various methods
[66] [100] [101] [102]. However, they usually de�ne a set of features, use a limited number of features,
and also show some speci�c species of plants but not plants in general.

As a consequence, these techniques are applied for speci�c and prede�ned species of plants and
�xed photographing conditions, but in this work generality is always taken into account. Overall, all
algorithms don't result in robust feature detection. Therefore, they cannot always be applied in the
complex natural images to ful�ll the goals. Moreover, there is no guarantee to detect desired infor-
mation and obtain appropriate features. This leads researchers to come up with a solution rather
than gathering only a limited set of features.

The literature on the plant recognition techniques reveals several studies using leaf as the main
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component in determining species of plants [103] [104] [105] [106]. In order to detect keypoints and
extract features, there are various algorithms which can be applied to obtain results.

The SIFT algorithm is one important algorithm for the mentioned tasks. David G. Lowe intro-
duced a more advanced approach leading to local image descriptors, invariant to translation, scaling
and rotation. Furthermore, these extracted descriptors are partially invariant to illumination changes.
Basic characteristics of this algorithm are useful in general. In [107], the SIFT algorithm, a powerful
and modern algorithm, has been used in detecting objects under various imaging conditions.

Another modern and outstanding algorithm which is usable for detection of keypoints and ex-
traction of features is the SURF algorithm. A real-time SURF-based system has been developed for
tra�c sign detection in [108]. These two main modern algorithms are the foundations of our work
in this chapter. Each detection or extraction algorithm has its own characteristics and properties.
Therefore, it is required to create new combined methods so that we can use altogether advantages
of each separate algorithm in one new combined method. The idea of combining detection and ex-
traction algorithms can be simply explained. Here, an image is passed through a detection algorithm
to achieve keypoints. Then, an algorithm is performed to extract descriptors. The combined methods
can be applied to di�erent datasets, even natural datasets. It is also possible to compare di�erent
combined algorithms and compensate for their original drawbacks in the combination form in order
to help for a better plant recognition system and enhance applicability of the algorithms for the �nal
target. Some factors of the methods, such as e�ciency, robustness and speed, are very important
for plant recognition systems. The next phase of this chapter concerns the matching approaches. In
[109], the motivation was to develop a shape detection scheme that can quickly assist vision systems
on robot excavators to detect objects of interest based on shapes. Moreover, the aim was to develop
a shape descriptor for a sampled boundary point of any shape. Object recognition can be acquired
by matching features with a priori knowledge of the shape context of the boundary points in an
object [109]. In order to identify the plants, a modi�ed dynamic programming (MDP) algorithm
[110] for shape matching is proposed in [110]. In [103], isolation of a leaf on a blank background can
be performed by a user, and then the leaf shape is extracted by the system. Subsequently, the system
matches the obtained leaf shape to the shape of leaves of known species. After several seconds, the
top matching species along with textual descriptions and additional images, are represented. These
are only some examples of using matching techniques for the plant recognition purposes. In order
to �nd the constraints of possible methods and techniques and solve their drawbacks, it is intended
to investigate the proposed combined methods and investigate the matching between di�erent plant
species.

In the present work, we are interested in approaches and methods which could be applied for detec-
ting features of plants in both arti�cial and natural environments. In addition, we aim at comparing
the similarity of plant species by means of matching techniques.

5.2 Keypoint Detection and Feature Extraction

As discussed, detecting keypoints and extracting features are extremely important issues for prac-
tical applications such as object recognition and 3D modeling. Even though many researchers att-
empted to �nd best detection and extraction algorithms for their systems, the results basically show
that appropriate selection of algorithms is not enough and other parameters such as the cost of com-
putation and running time are also important. In addition, the type of image and variations within
the image are important to complete the detection and extraction tasks successfully by obtaining
useful features. For instance, illumination changes cause a typical problem for precise feature mat-
ching tasks [111] [112] [113]. Another example refers to environmental conditions. If two images are
taken of one plant species at di�erent times and weather types, i.e. windy and cloudy, interest points
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Figure 5.1: A sample image captured in windy condition

may be unstable due to vibrations of leaves as well as variations of unwanted illumination.
The human nervous system (see 11.2) systematically arranges the complex natural stimuli or �l-

ters them in order to extract behaviorally relevant cues. These cues have a high probability of being
associated with the important objects or organisms in their environment, as opposed to irrelevant
background or noise. In fact, the human nervous system helps the human eye concentrate and focus
on interesting and signi�cant parts of a photo or a scene. After a while, one remembers the signi�cant
parts of the photo or scene and not all the details. In computer vision and feature engineering, it
is a demand to identify and store an image for any further process by means of a unique set of
features. These features should be exclusive for each image and they should be able to distinguish
between the original image and the other images. In order to obtain useful features, the focus is on
the characterization of signi�cant parts of the image as it can be an initial step for other parts and
calculations [114] [115].

Feature detection algorithms could be divided into two di�erent groups. In this way, we obtain
di�erent types of features. However, no clear-cut de�nition is available for the algorithms. These two
main groups are the low-level feature detection algorithms and the high-level feature detection algo-
rithms. Low-level features are the basic features that can automatically be extracted from an image
without any shape information and they do not give any information about spatial relationships.
Low-level feature detection algorithms are mostly concerned with �nding corresponding points bet-
ween images or �nding interest points for classi�cation as this concept is even remotely interesting at
the lowest possible level like determining signi�cant points of an image as well as �nding edges, dots
or lines in an image. Moreover, each pixel of the image has its own information, so some concepts
like pixel intensities and colors can also be considered as low-level features. In the image processing
domain, thresholding is a form of the low-level feature extraction performed as a point operation
while the high-level feature detection algorithms are more in tune with how we classify objects in the
real world. In the domain of machine learning, they are usually concerned with the interpretation
or classi�cation of the whole scene instead of �nding only some signi�cant parts or points, and they
can be applied to body pose classi�cation, classi�cation of human's actions, object detection and
recognition, etc.

It is worth mentioning that the low-level algorithms can be utilized in the high-level feature ex-
traction approaches to do the desired tasks like large shapes detection in an image. In Figure 5.1,
we attempt to add some details of the mentioned facts.

Observing the Figure 5.1, we identify it as "leaves with complex background consisting of a sign,
a panel and soil on the surrounding." At the �rst glance, human identi�cation is based on the whole
image and scene without looking at the components separately or classifying the objects.

Algorithms such as the SIFT and the histogram of oriented gradients (HOG) [116] cannot perform
similarly as does the human vision system, and only attempt to detect the local intensity variations
such as keypoints, edges, etc. A meaningful classi�er can be implemented to use the detected and
extracted features. Obviously, there is a gap between two mentioned facts, and hence it is essential
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to minimize the distance between high level representations (interpreted by a human) and low-level
features (performed by algorithms) to achieve a logical solution for object detection problems. As a
result, a novel area, namely deep learning, has been created and a�ected the whole world of science,
which will be discussed in detail later.

It should be alluded that the extracted information from the images is usually called features.
Features are basically represented in terms of numerical values. Therefore, they cannot easily be
understood or even correlated. Here, instead of using a bunch of images, the extracted information
can be applied for further process. In other words, we reduce the data and attempt to have a new
set of information in lower dimensions.

Features are sometimes called descriptors. Actually, features can be divided into two di�erent
types: global and local features, which can be applied based on the desired application. Global des-
criptors are usually used for image retrieval, object detection, and classi�cation while local descriptors
are used in the object recognition/identi�cation tasks. Generalization of an entire object with a sin-
gle vector is the main capability of global type, and therefore the knowledge of a shape is usable
as a whole. Global features include contour representations, shape descriptors and texture features.
Shape matrix, invariant moments [30] [117] [118], HOG and co-occurrence histograms of oriented
gradients (CoHOG) [119] are only some examples of the global type descriptors. Hence, a rough
segmentation of the desired object is possible by means of global features, and this advantage can be
used for class discrimination [120] [121]. As the name of local features indicates, the bases of local fea-
ture are local properties like curvature. Computation of this type of features is performed in di�erent
parts and points of an image, and robustness is an important characteristic of local features. Most
local features describe the small image patches (keypoints in the image). The SIFT, SURF, local
binary patterns (LBP) [122] [123] [124], binary robust invariant scalable keypoints (BRISK) [125],
maximally stable extremal regions (MSER) [126] [127] and fast retina keypoint (FREAK) [128] are
some examples of the local descriptors.

Basic ideas and implementation steps behind some of the utilized feature detectors and descriptors
will be explained in detail. A more extensive treatment of the algorithms, including comparison and
usage guidelines, can be found in the following chapters while the algorithms are used as components
of the implemented systems. Before moving to the next section, we attempt to clarify two important
concepts which are detection and recognition. To explain the di�erence between these concepts, we
assume to have an image containing di�erent objects. In performing a detection task, we have to
answer the question: is there an object of a certain class in the image present or not. Recognition
means �nding the identity of an object; for instance, the goal of a certain plant recognition is to �nd
the species of the plant in the image.

5.3 Local Features: Detection and Description

In order to cope well with the changes and variations of the objects in images, it is not appropriate
to use approaches which are based on consideration of the entire image. Partial occlusion, various
changes of viewpoints and variations of distances in photographing are only three important proper-
ties of natural images in real outdoor environment. Hence, at �rst we need to pass up algorithms
delivering the global features. One important point is to �nd the local invariant feature which allows
performing an e�cient matching between the local structures of images. In addition, translation,
rotation, scaling and a�ne deformation are some examples of changes between di�erent images.
Therefore, it is necessary to �nd the invariant features which lead to representing them accurately
and e�ciently.

E�cient matching is one main goal of using local structures; hence, the aim is to obtain a sparse
set of the local measurements identifying the images and capturing the right soul and nature of the
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images. As a result, signi�cant structures of images are encoded to use for further processes. The
following points should be ful�lled to obtain the right features from the images:
1- The process of feature extraction should be repeatable, therefore the same features can be extrac-
ted from di�erent images showing the same object.
2- The whole process of feature extraction should be precise and accurate.
3- The algorithm should lead to distinctive feature extraction. It means that the extracted features
should be distinctive for di�erent images; thus, a distinctive set of features can be used to represent
a certain image.

As detection of keypoints and extraction of features are used like a chain to create a single al-
gorithm, keypoints detection and features extraction are described in a speci�c manner instead of
separating all components completely.

A general scheme of an algorithm can be explained as below:
- Finding a set of detected keypoints which are distinctive
- De�ning a region around each detected keypoint in a scale- or a�ne-invariant way
- Extracting and normalizing the region content
- Computing a descriptor from the normalized region
- Matching the local descriptors

5.3.1 Localization of Keypoints

Keypoints detection is the �rst step in �nding e�cient features. Keypoints are reliable and ap-
plicable when it is possible to localize them under di�erent varying conditions and situations such
as viewpoint changes and presence of noise. It is obvious that transformations such as rotation and
translation of an input image may occur. After any transformation, the same feature locations should
be found in the extraction procedure. Although it is not easy to satisfy the criteria for all points in
an image, increasing the probability of satisfying the criteria is helpful. For example, if a point is
located in a uniform region, its motion cannot be determined exactly as it is not distinguishable from
the neighbors. If we suppose a point is located on a line which is straight, its motion perpendicular
to the line is measurable. Due to mentioned facts, the main motivation is to concentrate on points
which are showing changes in two directions. Two important keypoints detectors which have been
applied in the modern algorithms are discussed in the following. They are the Hessian a�ne detector
and the HARRIS detector which are employed to �nd the desired regions.

Hessian A�ne Region Detector

The Hessian a�ne region detector [129] belongs to a subclass of feature detectors which are known
as a�ne-invariant detectors. Some other members of this subclass are MSER, Kadir-Brady saliency
detector [130] [131], edge-based regions (EBR) [132] [133] and intensity-extrema-based regions (IBR)
[134] [133]. The basis of this algorithm is the Hessian matrix which is the second derivative of the
matrix. Therefore, this type of the detectors searches for the locations which show the strong deri-
vatives in the image. In each image point, p, the Hessian matrix is as the following:

H(p) =

[
Ixx(p, σ) Ixy(p, σ)

Ixy(p, σ) Iyy(p, σ)

]
(5.1)

where σ is a scale. In addition, Ixy is, for instance, the second derivative in the x and y directions.
The procedure which is followed by the detector is as below:

1- Computing second derivative Ixx, Ixy, and Iyy for each image point
2- Finding the points where the following equation, the determinant of the Hessian, becomes maximal
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in comparison with other points

det(H) = IxxIyy − I2xy (5.2)

The search is carried out over the whole image. A 3×3 window is used to estimate the derivatives.
The used concept is non-maximum suppression. The pixel whose value is larger than the values of
the other eight neighbors inside the window is preserved. Afterwards, the detector returned all the
locations of the pixels whose values are higher than that of a prede�ned threshold which is called θ.
In this procedure, the locations of the results are actually corners and textured image parts.

HARRIS Corner Detector

Human vision is able to recognize the edges as one of the low-level image features and obtain
signi�cant information, although there are other low-level features which can be detected in images
to be applied in computer vision tasks.

The rate of change in the edge direction is considered curvature as an important feature. The rate
of change gives new meanings to the points in a curve, and rapid variation of the edge direction is
a proof that the points are corners. However, a small variation of the edge means that the points
correspond to straight lines. As a result, it is feasible to reduce the data and use this signi�cant
information as an alternative in di�erent tasks such as matching and shape description.

This is a mathematical approach which has been used in computer vision and image processing
for detection of corners in images. This type of detectors has been named after Chris Harris. In [10],
C. Harris and Mike Stephens proposed a combined corner and edge detector to improve one of the
previous and old corner detection algorithms, e.g. Moravec's corner detection algorithm [135]. In
1977, Moravec de�ned the concept of interest points as distinct regions [136]. He was interested in
�nding distinct regions that could be used to register consecutive image frames [136]. This method
is not invariant to rotation, and also has a low repeatability rate. The main concept of the Moravec's
algorithm is to de�ne points with low self-similarity as corners. The basic idea of the Moravec's corner
detection operator is to measure curvature by considering the changes along a particular direction in
the image. This algorithm checks each pixel of the image to �nd if there is a corner where it tests how
similar a patch centered on the pixel is to nearby largely overlapping patches. In order to measure the
similarity, the sum of squared di�erences (SSD) [137] has been utilized for the pixels of two patches.
More similarity is shown when a lower number is achieved. This algorithm has its own problems,
some of which are listed in [10]. When there is an edge whose direction di�ers from the direction
of the neighbors, horizontally, vertically, or diagonally, the smallest SSD is large. Any edge is not
basically an interest point and its selection as an interest point is not correct in this case. Therefore,
the operator of the algorithm is non-isotropic. After 11 years, Harris and Stephens proposed a new
method, the HARRIS detector, to improve limitations of the Moravec's algorithm.

In order to ful�ll the disadvantages of the mentioned algorithm and solve its problems, Harris and
Stephens implemented a new algorithm which is based on the di�erential of the corner score (local
autocorrelation function [10]) with direct respect to direction. They proved its good consistency
performance on natural imagery. As an intensity based method, the HARRIS detector is a good
combined corner and edge detector which has roughly acceptable detection results and repetition
rate. The repetition rate is an important factor for the detection algorithms.

In other words, this algorithm is based on intensity variation over all directions. Corners are the
regions in the image with large variation in intensity in all directions. The simple idea behind the
mathematical form is to �nd the di�erence in intensity for a displacement of (u, v) in all directions
where the displacement in the x direction is u and the displacement in the y direction is v. The
image intensities are denoted by I. In order to express the idea in mathematical form, the following
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equation is developed.

E(x, y) =
∑
u,v

w(u, v)[I(x+ u, y + v)− I(u, v)]2 (5.3)

The window function is w(u, v) in the position (u, v) and works the same as a mask. This function
is either a rectangular window or Gaussian window which gives weights to pixels underneath [138].
E is the di�erence between the original and the moved window and it is produced by a shift (x, y).
I(u, v) is the intensity of the original in the position (u, v) and I(x+ u, y + v) is the intensity of the
moved window where the position changes to (x+ u, y+ v). The purpose is to �nd the windows that
are producing large E values. Therefore, it is needed to obtain high values in w(u, v)[I(x + u, y +

v) − I(u, v)]2. In order to maximize this term, it is possible to utilize Taylor series for expansion of
the term as below.

I(x+ u, y + v) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (5.4)

Then:

E(x, y) ≈
∑
u,v

w(u, v)[Ix(u, v)x+ Iy(u, v)y]2 (5.5)

The term I(x + u, y + v) changes to a new form by means of Taylor series which is in�nite and
contributes to approximating the equation. The approximated equation can be formed di�erently
and tucked up into the matrix. The new generated form is as follows:

E(x, y) ≈
[
x y

]
M

[
x

y

]
(5.6)

The middle term in the above equation, which is called M , is equal to:

M = (
∑
u

∑
v

w(u, v)

[
I2x IxIy
IxIy I2y

]
) (5.7)

where Ix is the local image derivative in the x direction, Iy is local image derivative in the y
direction, and w(u, v) indicates a weighting window, rectangular or circular window, over the area
(u, v). Moreover, the window function gives weights to the pixels. The state of response depends
on the type of the used function. The response can be anisotropic or isotropic if the used function
is either a box �lter or a Gaussian �lter. In the Moravec's algorithm, the easiest approximation
is utilized for the window function. Inside and outside the window are de�ned as 1 (inside) and 0
(outside), respectively. In the isotropic case, the used window function is Gaussian and it delimits a
circular window. The window function is valid for all directions and this speci�c function is as below:

w(x, y) = exp(−x
2 + y2

2σ2
) (5.8)

M is the structure tensor which means the second moment matrix. Auto-correlation matrix is a
very popular mathematical technique which is utilized in features detection methods. Thus this 2×2

symmetric auto-correlation matrix is used in the HARRIS method as above.
To apply a circular window, a Gaussian one should be used. In this case, the response is nearly

isotropic and one of the problems of the Moravec's algorithm is solved, and the values are weighted
more heavily near the center. Finding interest points is carried out by computation of eigenvalues of
the mentioned matrix for each pixel. When both eigenvalues are large, it means that it is the location
of a corner. In order to get a corner measure C(x, y) for each pixel (x, y), the following equation,
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Figure 5.2: 110 detected keypoints in one sample leaf image using the HARRIS algorithm

namely the scoring function, is used:

C(x, y) = det(M)−K(trace(M))2 (5.9)

where

det(M) = λ1 ∗ λ2, and trace(M) = λ1 + λ2 (5.10)

K is used as an adjustment parameter and the eigenvalues of the auto-correlation matrix are λ2,
λ2. Harris proposed to combine the eigenvalues in a single measure instead of two measures. Fur-
thermore, the obtained eigenvalues make a decision on the status of the region. When λ1 and λ2
are small, |C| is also small; then, the region is �at, and the windowed region has approximately a
constant intensity. For example, the region is �at when there is only a slight change in C in any
direction. When one eigenvalue is high and the other is low (λ2� λ1 or vice versa), C is less than
zero and the region is an edge. In other words, the local auto correlation function is ridge-shaped
and a slight change in C has been caused by local shifts in one direction along the ridge. Moreover,
signi�cant changes occur in the orthogonal direction. The last condition occurs when λ1 and λ2 are
large. At these positions, the local auto correlation function peaks sharply and shifts in any direction
causes an increase. In this condition, C is large and the region is one corner. The HARRIS detector
is used as one of the detection algorithms in the implemented systems.

One important point of the algorithm is its wide usage for the corner detection in practice. Moreo-
ver, consistency, accuracy and speed are three important factors which should be taken into account
for comparing performances of di�erent algorithms. Further, it should be stated that the reduction
of noise's impact has been obtained by using a Gaussian function w(x, y), because the �rst-order
directional di�erentials are sensitive to noise. Figure 5.2 represents a sample leaf image and its
detected HARRIS features.

Furthermore, one important point is the sensitivity of the traditional HARRIS algorithm to noise
and changes in image scale. Hence, the algorithm is not suitable for matching the images if the size
of the images varies. In [139], it is explained that the HARRIS algorithm is rotationally invariant,
partially invariant to a�ne change intensity and non-invariant to image scaling. Since the HARRIS
algorithm is intrinsically an intensity based approach which attempts to �nd corners directly, it has
been widely used in practice.
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Shi-Tomasi Corner Detector

Someone might raise the question if such a detector, as the HARRIS corner detector, is really useful
for many cases in detecting the corners in di�erent species/types of plants and how the algorithm can
be improved to detect the interest points in leaves of plants considerably. Intuitively, J. Shi and C.
Tomasi proposed a new corner detector in June 1994 which was based on the HARRIS detector [140].
To answer the proposed question, a minor change in the HARRIS algorithm made it much better
than before. The modi�ed operator will run properly even when the HARRIS algorithm fails. The
new algorithm is called good feature to track functions and the name re�ects the concepts behind
the algorithm. Certain assumptions can be taken into account to track corners due to their stability.
Accordingly, direct computation of minimum between λ1 and λ2 can be performed. Therefore, the
scoring function of the HARRIS algorithm is changed to the following equation in this algorithm:

C = min(λ1, λ2) (5.11)

This value is compared to a threshold to �nd whether it is a corner or not. It means that if two
eigenvalues are greater than a threshold, λmin, a corner is found. This state has occurred in the green
area of the next �gure, Figure 5.3. The used procedure is shown in the next �gure, where the x-axis
is λ1 and the y-axis is λ2. In the blue and gray areas, one of the eigenvalues is less than the de�ned
threshold and the other one satis�es the condition of being more than the threshold. These areas are
edge parts of the image. In the red area, both eigenvalues are less than the de�ned threshold, making
the area a �at one.

The performance of both algorithms, the HARRIS corner detector and Shi-Tomasi corner detector,
can be compared for detecting keypoints in plants, especially for natural images where a part of an
image can be wet soil and other materials with which re�ection of the visible light changes and
absorption of the re�ected light from the sun varies in images.

This method has been performed on di�erent images of the used datasets. The results open up
new windows to select the appropriate algorithm for further steps of implementing the system. Figure
5.4 shows the detected features for two di�erent images when the Shi-Tomasi method is applied and
the threshold is �xed to 23. Consequently, the number of the detected features is 23.

Figure 5.3: Comparing eigenvalues according to a threshold
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Figure 5.4: Original images (on the left side) and the results of the detected features (on the right

side) when the Shi-Tomasi algorithm is used

FAST

The problem of speed is extremely important for building the practical real-time systems and ap-
plications. Even though a lot of researchers attempted to propose and implement e�cient detection
algorithms like the HARRIS, the results did not show good performance considering the algorithm's
speed [141]. As it is an important task to identify correspondence of keypoints in images, one fast
algorithm is very attractive for this very purpose to obtain keypoints at a high speed level.

By considering the de�ciency of the HARRIS algorithm in speed, the FAST was proposed in 2006
by Rosten and Drummond [9]. It was intended to increase speed without sacri�cing the quality of the
detection procedure and to have high repeatable local information content. In principle, the machine
learning concept has been added to change the �avor of corner detection to achieve a fast algorithm.
One main advantage of this algorithm is its computational e�ciency. To achieve a su�cient e�ciency,
the following main properties are required:
1- Fastness of the algorithm
2- Adequate repeatability

The FAST algorithm is an e�cient corner detector based on comparing the pixels intensities. In
this algorithm, a circle of 16 pixels surrounding the central pixel has been considered to identify
corners. In fact, it compares pixels only on a circle of �xed radius (16 pixels) around the corner
candidate point. Every circle's pixel is labeled from 1 to 16 clockwise. In this algorithm, all pixels
are investigated and checked whether they can be desired and interest points. P is a pixel with Ip,
which is assumed to be the intensity of the pixel. A threshold intensity value equals to 20% of the
current pixel is set, which is called Threshold in this study. Then, a circle of 16 pixels around P

is considered for further procedure. This pixel is a corner if there exist n contiguous pixels in the
surrounding circle which are lighter than Ip+Threshold or darker than Ip−Threshold. n is de�ned
as 12 in the original method. If the value is not de�ned less than 12, this method does not reject
many candidates. A machine learning approach is applied to solve this weakness/failure. In the clas-
si�cation part, at least 12 continuous pixels must be darker or lighter than the central pixel, and then
the central pixel is a corner. When the central pixel is classi�ed as a corner pixel, it is not necessary
to test all 16 pixels in cases of a non-corner pixel. Thus, the algorithm is quick and applicable when
high speed is an essential factor. Consequently, it can be used in real-time applications.

To speed up the FAST algorithm, this procedure can test only four pixels at 1, 9, 5 and 13. Firstly,
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1 and 9 are tested to examine whether they are highly bright or dark. Subsequently, we check the
pixels at 5 and 13. If none of the pixels is the case, then, the pixels are not regarded as corners. This
procedure will be continued for all the pixels of the image. Although this algorithm is faster than
other corner detection methods, it is not robust to high levels of noise and there is a dependency
on the mentioned threshold. Figure 5.5 shows the features detected in the two di�erent images and
the features are detected by using the FAST algorithm. The number of the detected points is also
provided, as it is observable in the �gure.

It may be true that the FAST algorithm is e�cient due to its high speed, but it has one disadvan-
tage. The main problem is the detection of a large number of corners. Natural images are complex
and a large number of corners is detected which might include many noisy corners. This disadvan-
tage arises from the basis of this algorithm because it is based on the intensity information of 16
surrounding pixels.

Figure 5.5: The features detected for two di�erent images using the FAST algorithm (the number of

the detected keypoints for the natural image: 114628, the number of the detected keypoints for the

arti�cial image: 130)
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Further Algorithms on Curvature

Many other important issues are available for the corner detection algorithms and each algorithm
o�ers a di�erent attribute with di�ering penalties. Förnster attempted to �nd the location of a corner
with sub-pixel accuracy [142]. An ideal corner is assumed to be a single point that tangent lines cross.
Hence, this algorithm uses a least-square solution to �nd the point closest to the tangent lines of the
corner.

Although much more attention is paid to the edge detection algorithms in comparison to the corner
detection algorithms, there are other popular works which have been devoted to corner detection
algorithms such as smallest univalue segment assimilating nucleus (SUSAN) [143] and automatic
synthesis of detectors [144].

In fact, SUSAN stands for the Smallest Univalue Segment Assimilating Nucleus with the same as
the HARRIS corner detector which relies on the principle of intensity. It is a member of intensity
based methods. Whereas other methods such as the proposed methods in [145] and [146] are contour
based methods with di�erent concepts. If the brightness of each pixel within a mask is compared
with the brightness of that mask's nucleus, then, an area of the mask can be de�ned which has the
same (or similar) brightness as the nucleus [147]. Jie Chen et al. [147] showed the overall superior
performance from the HARRIS corner detector in comparison to the SUSAN corner detector on the
whole.

In [148], Mokhtarian proposed a contour-based method for corner detection and indicated an
extended curvature scale space corner detector. In order to represent shapes in di�erent scales from
coarse (low-level) to �ne (detailed), another method was developed for curvature scale space by
Mokhtarian [149]. In short, the orientation of each algorithm can a�ect the decision making to apply
the proposed algorithm in the plant recognition system. To implement the desired systems with
colorful characteristics, the investigation of algorithms is undeniable.

Figure 5.6: Four circular masks at di�erent places on a simple image [147]

5.3.2 Modern Algorithms (Analysis of Region and Patch)

Perception of the human eyes contributes to recognizing di�erent scenes and objects in images
easily and storing some speci�c information of images' contents. In computer vision and image pro-
cessing, it is needed to have algorithms which could work the same as this important visual element.
After doing some computations for abstraction of image information and making local decisions on
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di�erent points of the image, it is intended to encode the signi�cant information of the collected
features and interest points and gain meaningful feature vectors which di�erentiate one keypoint
from another one in the image. In fact, information of an image is reduced to represent the image in
a set of feature vectors and the obtained information can be availed for further desired tasks.

As discussed before, the importance of keypoints has some reasons behind it. Image transforma-
tions such as translation, rotation, illumination, change of scale, the variation of viewpoint, image
blurring and added noise can cause practical e�ects on the original image. Selection of a proper tech-
nique leads to �nding the same keypoints in both the original and modi�ed images. The next step
is the feature extraction where its obtained information depends on the feature detection algorithm.
Traditionally, the term extraction refers to algorithms which extract local features and make them
ready to pass to another processing step. Since feature detection is performed before feature extrac-
tion, feature description has the role of an intermediate stage between computer vision algorithms.

Descriptors are usable for summarizing some characteristics of keypoints. In order to have a suc-
cessful description procedure, some considerations are required as below:
1- Position of keypoints should be ine�ective. For instance, if translation occurs and the same keypo-
ints are detected in di�erent positions and pixels, the description algorithm should ensure the same
outcome.
2- One important factor is the robustness against di�erent image transformations and conditions.
However, one description algorithm cannot be robust against all transformations. For instance, if two
photos are taken of a leaf of the same plant in di�erent time of day or at di�erent weather conditions
and types, sunny and cloudy, the leaf should be recognized similarly in the both cases.
3- Descriptors should be scale-independent. For instance, two images are supposed to be available
and they show the same scene of a bunch of leaves. The image 1 is twice the size of the image 2.
As previously discussed, similar keypoints should be extracted from two images, but the size of the
keypoints in the image 2 is twice that of the �rst image. In the description step, similar descriptors
should be assigned for the keypoints with di�erent size. We consider prominent parts of the images.
If the prominent part of one keypoint in the image 2 is a horizontal line of 20 pixels inside a circular
area with a radius of 16 pixels and also the prominent part of the keypoint in the image 1 is a hori-
zontal line of 10 pixels inside a circular area with radius of eight pixels, the same descriptor should
be obtained by the description approach.

Someone may desire to know how to determine a technique by which the useful descriptors can
be provided. We provide an answer for this question later when we explain and implement some
modern description algorithms. Developing a solution that compensates for powerful algorithms is
our main goal which we continuously consider in further steps to understand how to build desirable
and e�cient systems.

SIFT

In 2004, Lowe et al. [11] proposed a new algorithm to resolve relevant problems of practical app-
lications at the low-level feature stage. This algorithm is useful and applicable for the both feature
detection and feature extraction, and the nature of the algorithm classi�es it in the group of local
algorithms.

The SIFT algorithm, a popular, complicated and modern algorithm in computer vision applica-
tions, detects keypoints and extracts descriptors. Hence, the SIFT algorithm can be divided into
two main stages which are feature detection and feature description. The SIFT detector extracts a
collection of keypoints from an input image and then computes a histogram-based descriptor with
128 values for summarization of local image structures. For instance, the description stage can be
connected to the use of the low-level features in object matching. Further, building Gaussian scale
space, keypoint detection and localization, orientation assignment, and keypoint descriptor are the
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algorithm's steps [11].
It should be declared that low-level feature extraction within the SIFT approach selects salient

features in a manner invariant to the image scale (feature size) and rotation, and with the parti-
al invariance to change in illumination. Moreover, the formulation reduces the probability of poor
extraction due to occlusion clutter and noise. It also shows how many of the techniques considered
previously can be combined and capitalized on, to have a good e�ect.

Since we are not able to detect corners by applying the same windows for detection of keypoints
with di�erent scales, di�erence of Gaussian (DoG) [11] is used. The DoG is an approximation of
Laplacian of Gaussian (LoG) [150]. By using this procedure, we actually perform a type of scale-
space �ltering. The DoG blurring of an image in various octaves is computed to obtain the DoG and
the input image is repeatedly convolved with Gaussians for each octave of scale space to create a set
of scale space images. Then, adjacent Gaussian images are subtracted to build the DoG images. Af-
terwards, a down-sampling by a factor of 2 is carried out on the Gaussian images, and the procedure
is repeated. Finally, the convolved images are grouped by octave and we obtain a �xed number of
DoG per octave.

The procedure can be reformulated using di�erent words and mathematical forms. The method

Figure 5.7: The octave of the scale space and the procedure [151]

used for detecting the keypoints is based on a method proposed by Lindeberg in [152] for the scale-
adaptive blob detection. In this systematic methodology, blobs with associated scale level can be
detected from the scale space extrema of the scale-normalized Laplacian. In order to de�ne a norma-
lized Laplacian concerning the scale level in the scale space, the following calculation is performed:

∇2
normL(x, y; s) = s(Lxx + Lyy) = s(

∂2L

∂x2
+
∂2L

∂y2
) = s∇2(G(x, y; s) ∗ f(x, y)) (5.12)

Calculation of the smoothed image values L(x, y; s) is performed from the input image, f(x, y), by
convolving with Gaussian kernels of di�erent widths s = σ2. It should be pointed out that σ denotes
the standard deviation and s is the variance of the Gaussian kernel; thus we have:

G(x, y; s) =
1

2πs
exp(
−(x2 + y2)

2s
) (5.13)

To �nd stable keypoint locations in the scale space, Lowe et al. [153] proposed a method based
on scale space extrema in the DoG function convolved with the image, DOG(x, y; s), which can be
computed from the di�erence of two nearby scales separated by a constant multiplicative factor.



61

Therefore, the scale space extrema are detected from the points (x, y; s) in scale space, at which
the scale-normalized Laplacian assumes local extrema with respect to space and scale. In a discrete
setting, such comparisons are usually made in relation to all neighbors of a point in a 3 × 3 ×
3 neighborhood over space and scale, as it will be discussed later. The DoG operator forms an
approximation of the Laplacian operator:

DoG(x, y; s) = L(x, y; s+ ∆s)− L(x, y; s) ≈ ∆s

2
∇2L(x, y; s) (5.14)

If we assume to have σi+1 = kσi as scale levels, then we have an approximation of the scale-
normalized Laplacian with ∆s∇2L = (k2 − 1)t∇2L = (k2 − 1)∇2

normL which means:

DoG(x, y; s) ≈ (k2 − 1)

2
∇2
normL(x, y; s) (5.15)

It has been proven that the method leads to detecting scale invariance keypoints as:
- Preservation of keypoints under the scaling transformations [11].
- Amount of scaling a�ects the transformation, and the selected scale levels are transformed in cor-
respondence with the amount of scaling [152].
- Since the Laplacian operation is rotationally invariant, keypoints are invariant if we consider rota-
tion [154].

In order to localize the scale space extremum with a resolution higher than the sampling density
over space and scale, both the DoG approach proposed by Lowe [11] and the Laplacian approach
proposed by Lindeberg [152] involve the �tting of a quadratic polynomial to the magnitude values
around each scale space extremum. Although it is a post-processing stage, it is highly important for
increasing the accuracy of the scale estimates and ful�llment of the purpose of scale normalization.

Keypoint detection and localization constitute the next step of the SIFT algorithm. Without any
doubt, candidates for keypoints are the local maxima or minima of DoG images. What is performed
in this step is comparing the pixels in DoG images to neighbors; here, 26 neighbors in 3x3 regions
in the current and adjacent scales of each pixel are taken into account and compared to the inten-
ded pixel. In the end, potential keypoints are the local maximum or minimum pixels and a �ltering
process is essential to obtain more accurate results. To solve the problem, a Taylor series expansion
of scale space is utilized which leads to having a more accurate location of extrema. The process
continues with comparing the intensity at the extremum to a contrast threshold (0.03). If this value
is less than the threshold, it is automatically rejected for the next process. Since it is essential to
remove edges as DoG has a higher response for them, a method similar to the HARRIS method is
applied.

In fact, the Laplacian operator responds to the image structures that are like blobs and corners.
By using the Laplacian operator, there might be another possibility and it also responds to edges.
In this case, the operator is not suitable for the matching tasks. Therefore, Lowe found a solution
by formulating a criterion in terms of the ratio between the eigenvalues of the Hessian matrix for
suppression of these types of points [153] [11] where computation of the matrix is carried out at the
position and the scale of the interest point.

H =

[
Lxx Lxy
Lxy Lyy

]
(5.16)

In order to achieve e�cient computations, it is feasible to reconsider the matrix in terms of the
trace and the determinant; then, we have:

detH

trace2H
=
LxxLyy − L2

xy

(Lxx + Lyy)2
≥ r

(r + 1)2
(5.17)
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Between the larger and the smaller eigenvalues, an upper limit on the ratio is permitted, being
denoted by r ≥ 1.

Basically, this 2 × 2 Hessian matrix (H) is applied to �nd curvature. In our implementation, an
edge threshold is de�ned as a ratio. This threshold equals 10 in [11]. If it is greater than the threshold,
the keypoint is removed and discarded. Therefore, strong keypoints are obtained.

In the next step of the method, the orientation of keypoints is determined by means of compu-
ting a gradient histogram in the neighborhood of the keypoints. This step contributes to achieving
invariance to the image rotation. To this end, a 36-bin orientation histogram is produced, which is
weighted by the gradient magnitude and a Gaussian window with a σ 1.5 times the scale of the
keypoint. The highest peak of the histogram and other peaks with 80% of the highest peak are taken
to compute the orientation. The outcome generates the keypoints with the similar location and scale,
but in di�erent directions.

The �nal step of the SIFT method is to compute the keypoint descriptors. For each keypoint, a
16 × 16 neighborhood is considered and divided into 16 sub-blocks. The size of each sub-block is
also important and is de�ned to be 4× 4. An 8-bin orientation histogram is built for each sub-block.
Therefore, 4 × 4 × 8 is the size vector which is equal to 128. The obtained vector represents the
keypoint descriptor. Normalization is performed to enhance the invariance to changes in illumination
and contrast invariance [155]. To avoid local high contrast measurements and reduce the in�uence of
large gradient magnitudes, the normalization has been performed by thresholding the values in the
unit feature vector so that each one is not larger than 0.2. Then, the values are renormalized to a
unit length. This means that matching the magnitudes for large gradients is no longer as important,
and that the distribution of orientations has greater emphasis. The value of 0.2 is determined expe-
rimentally using the images containing di�ering illuminations for the same 3D objects [11]. Figure
5.8 represents the formation of the keypoint descriptor.

Figure 5.8: Formation of the keypoint descriptor. The black circle is utilized to indicate the presence

of the Gaussian centered at the keypoint

Figure 5.9 represents the detected features for the two images when the SIFT algorithm is applied
for detection of keypoints; here, the number of the detected features is also computed. The number
of the detected features is equal to 2330 for the image on the top whereas the image at the bottom
has 238 detected features.

SURF

An inspired algorithm from the SIFT algorithm is the SURF [12] which is based on the Hessian
matrix and can be applied in both feature detection and extraction steps. The algorithm speeds up
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Figure 5.9: The detected features for two images when the SIFT algorithm is applied to detect

keypoints

the SIFT algorithm without substantially sacri�cing the quality of detected points. Thus, this method
is widely used in di�erent computer vision applications considering its e�ciency, distinctiveness and
robustness in invariant feature localization. Moreover, the algorithm is applied to extract features
as a component of the combined methods which will be discussed later. In the SURF algorithm, an
intermediate image representation, called the image integral [156], is used to increase the calculation
speed of the algorithm. The integral image is obtained by computation of an input image. The input
image is I and the integral image is IM where a point is (x, y).

IM(x, y) = Σi≤x
i=0Σj≤y

j=0I(x, y) (5.18)

When the integral image is used, calculating the area of an upright rectangular leads to a reduc-
tion of four operations. Moreover, the change of size does not a�ect the computation time, and the
algorithm is still e�cient, even though large areas are required.

The SURF entails computation of the Hessian matrix and its detector is basically based on the
determinant of this matrix. A two-dimensional Hessian matrix consists of a 2× 2 matrix containing
the second-order partial derivatives of a scalar-valued function (image pixel intensities) as shown
below:

H =

[
∂2f
∂x2

∂2f
∂xy

∂2f
∂xy

∂2f
∂y2

]
(5.19)

It is a symmetric matrix and its determinant is the product of eigenvalues.
Calculation of derivatives is performed by convolution with a suitable kernel. The determinant

can be calculated in di�erent scales. Gaussians are optimal for the scale space considerations and the
SURF approximates LoG with a box �lter. A parallel procedure is also possible due to two usages,
box �lters and integral images. The purpose is to increase the computational e�ciency. Integral
images help to do faster computation of the box convolutions and have a quick method to compute
the intensities for any rectangle within the image, which is independent of the rectangle size. In
addition, computation time is not sensitive to the �lter's size. A scale space is divided into octaves
which show a series of �lter response maps obtained by convolving the same input with a �lter of
increasing size [157].
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The construction of scale space begins with a 9 × 9 �lter. It calculates the blob response of the
image for the smallest scale. After that, the size of �lters increases to 15× 15, 21× 21, 27× 27, etc.
to continue the procedure. Blob response is shown in the location (x, y, σ) as follows:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (5.20)

When the used �lter is a 9× 9 matrix, σ equals to 1.2. In general, the following equation exists:

σ = (currentfiltersize/basefiltersize) ∗ (basefilterscale) (5.21)

where the base �lter size is 9 and the base �lter scale is 1.2.
An important step is to localize and �nd the major keypoints in the scale space. To achieve

this goal, a non-maximum suppression is applied in a 3 × 3 × 3 neighborhood. The maxima of the
determinant of the Hessian matrix are then interpolated in the scale and image space with the method
proposed by Brown in [157] [158]. One considerable point is the di�erence in scale between the �rst
layers of every octave which is large, thus scale space interpolation is an important issue.

The next part is the feature description which should be robust and unique for a feature. The
other points are the direct impact on computational complexity, robustness and accuracy. In the
description phase, the bases are on Haar wavelet responses in horizontal and vertical directions, x
and y. The integral images are used to do e�cient calculations at any scale. Finding the orientation of
interest points contributes to having a rotational invariance algorithm. Gaussian weights are applied
to the interest point, obtaining robustness against deformations and translations. The SURF provides
a functionality called upright-SURF or U-SURF which contributes to robustness up to ±15◦ [157].
This version of the SURF improves the speed of the algorithm as one of the advantages.

An interest area is de�ned by a window size of 20s × 20s. This area is divided into 4 × 4 square
regions as subareas, and they contribute to keeping spatial information. Then, Haar wavelet responses
are computed for each subarea in x and y directions. A vector is created after this procedure. In the
following, the formed vector is shown:

v = (Σdx,Σdy,Σ|dx|,Σ|dy|) (5.22)

In general, there are two di�erent dimensions for the SURF feature descriptor, 64 and 128. The 64-
dimension version has higher speed whereas the 128-dimension version provides better distinctiveness
of features. This can be considered as another functionality of the SURF algorithm. The sign of the
Laplacian contributes to speeding it up at the matching stage. It is another improvement of the
algorithm. Here, the purpose is to distinguish bright blobs on dark backgrounds and vice versa:

∇2L = tr(H) = Lxx(x, σ) + Lyy(y, σ) (5.23)

Laplacian is the trace of the Hessian matrix and the values are previously calculated for the
determinant of the Hessian matrix. Moreover, it is possible to use the sign of Laplacian to have faster
matching and it does not have any impact on the performance of the description and other stages.

Figure 5.10 represents the detected features for the two images when the SURF algorithm is
applied for detection of keypoints and the number of the detected features is also computed. The
number of the detected features is equal to 38717 for the natural image while the arti�cial image has
550 detected features.

ORB

The ORB has been proposed as an alternative to the SIFT or SURF in [81]. This algorithm can
be explained in two steps, the detection and description parts. The basis of the detection part is



65

Figure 5.10: The detected features for two images when the SURF algorithm is applied to detect

keypoints (the number of the detected keypoints for the natural image: 387171, the number of the

detected keypoints for the arti�cial image: 550)

the FAST algorithm where the description part is based on the visual description algorithm, binary
robust independent elementary features (BRIEF) [159]. Mixing detection and description algorithms
is a good idea used in the next steps to achieve the purposes of the study.

The ORB algorithm applies the FAST algorithm and �nds the keypoints �rst. Then, it uses the
HARRIS corner measure to select top N points among the detected keypoints. In order to produce
multiscale-features, it utilizes pyramid too. As we know, the orientation is not computed by the
FAST algorithm. One question is how to solve the problem of the rotation invariance, and it leads
the authors to proposing a modi�cation. To this end, the intensity weighted centroid of the patch
with a corner located at the center is calculated. The orientation is the direction of the vector from
this corner point to the centroid. Moreover, moments contribute to improving the rotation invariance.
If the size of the patch is equal to r, moments are computed with x and y in a circular region of this
radius, r.

Secondly, the ORB algorithm applies the BRIEF algorithm for the description part. One question
is how to use the BRIEF algorithm which has a poor performance with rotation. The ORB directs
the BRIEF due to keypoints' orientations. If there are n binary tests at the location (xi, yi), a 2× n
matrix is de�ned and named S. This matrix contains the coordinates of these pixels. The rotation
matrix is obtained by means of the orientation of the patch called θ. It rotates the S matrix and the
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result matrix, Sθ.
The increment of the angle is performed by 2π/3, and it enables the algorithm to approximate the

angle and build a lookup table of pre-computed BRIEF patterns. As long as the keypoint orientation
θ is consistent across views, the correct set of points Sθ is used to compute its descriptor [160].

In order to investigate the ORB algorithm, it is also necessary to consider the properties of the
BRIEF algorithm. Each bit feature of the BRIEF algorithm has a large variance and its mean is
roughly 0.5. This property is lost when it is oriented along the keypoint direction. By losing this
property, it becomes more distributed and higher variance makes a feature more discriminative and
its response di�ers from one input to another input.

One goal is to obtain the uncorrelated tests as each test helps the result. Due to the mentioned
points, the ORB should �nd the uncorrelated binary tests with high variances and means near to
0.5. The solution is to run a greedy search among all possible binary tests. The result is called the
rBRIEF.

As it is stated that the ORB is much faster than the SIFT and SURF algorithms and its descriptor
has better performance in comparison to the SURF algorithm [81], the ORB algorithm can be utilized
in low-power devices for panorama stitching [160]. Multiple-probe locality sensitive hashing (LSH)
[160] is also applied for matching purposes and it is an improvement to the traditional LSH [161].

The ORB algorithm has been applied to one sample image, and the number of keypoints is equal
to 218414.

Figure 5.11: Representing the detected features using the ORB algorithm

5.4 Matching

First, it should be made clear that the current research project aims at exploring the di�erent
aspects of the plant recognition system. However, those aspects become very challenging even in the
aspects that seem to be apparently simple. Therefore, many di�erent approaches as well as various
aspects at any stage have been investigated to discover possible solutions. At the current stage, the
concepts of matching have been considered due to the aim of matching for next processes. Matching
is a technique in image processing for �nding parts of an image which match another image. By
using this technique, it is possible to compare the quality of the implemented algorithms and �nd the
corresponding features from di�erent images based on a search distance between the feature vectors
such as the Mahalanobis [162] and the Euclidean distance. With respect to our di�erent datasets
where images are not limited to only one scene for one speci�c plant species, we really need to use
the matching technique and test out images. Unlike a common matching problem, we do not have
only one leaf in an image and there is a bunch of leaves or a branch of a plant species. Accordingly, it
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should be mentioned that only the matching technique is not responsive for sophisticated tasks such
as natural plant recognition. For the purpose of a facile implementation, the matching algorithm used
is one of the standard matching approaches, which is not at that best performance for all di�erent
applications. The reason is that it is impossible to de�ne only one general matching algorithm as
the best algorithm for all purposes, although the implemented algorithm shows �exibility for various
datasets.

5.4.1 General Overview of Matching Technique

The primary stage of the technique is to detect the keypoints. When keypoints are detected, it is
possible to extract the descriptors in the right way and use them for further processes of matching.
The most important stage of the matching algorithm is to de�ne a criterion for comparing the
extracted descriptors. Hence, a well-known computer vision method, called brute-force search [163],
is applied as the core of the matching technique. The Brute-force matcher [164] takes one descriptor
of the features in the �rst image and calculates the distance between the features of the image and
the features of another one. Finally, the smallest distance is the corresponding match. In other words,
all the possibilities are checked by using this technique.

According to the used method for feature detection and extraction, we de�ne di�erent distance
types. For instance, the Euclidean distance is a good choice while the SIFT or SURF algorithm has
been applied. If the given vector is X, the Euclidean distance is then computed as below:

X =


x1
x2
...
xn

 (5.24)

|X| =
√

Σn
k=1|xk|2 (5.25)

Hamming distance [165] is another choice which can be used as a type of distance measurement.
It is applicable for binary descriptors such as the ORB, BRIEF, BRISK, etc. Actually, as a metric
distance, the Hamming norm is actually utilized. This type of distance measurement is usually used
for binary descriptors, and the calculation of the distance is performed by counting the number
of bits that are dissimilar. For instance if there are two vectors, X1 =

[
1 0 1 1 1 0 1

]
and

X2 =
[
1 0 0 1 0 0 1

]
, the Hamming distance is equal to 2.

Basically, the dependency of feature matching on similarity, complexity and quality of images
is irrefutable and therefore better matching results can be obtained by more similar images. If a
technique cuts out more uncertain matches, higher percentage of successful matching can be achieved.

5.4.2 Results for Matching and Explanation

In order to perform the matching task, one of the implemented systems consists of the SIFT detec-
tor and descriptor. In the case of the standard SIFT algorithm, it has a 128 dimensional description
of a patch of pixels around the detected interest point. To perform the matching task, we use two
images and carry out a process to match the features in these two images. The matching process
consists of the following steps:
- Reading the two sample images
- Converting the images into grayscale
- Detecting and extracting the keypoints in both images
- Performing the Brute-force matcher by the use of the Euclidean distance (Norm L2, 4)
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- Showing the keypoints in both images and drawing results by separate lines where each line repres-
ents the connection between matching keypoints in the sample images

In order to examine the proposed method, we utilize di�erent samples and apply the proposed
matching method on them. Before carrying out the experiments, we brie�y examine the Brute-force
matcher to know how it is actually working. The used matcher is based on the Euclidean distance
which is the preferable choice for the matching process based on the SIFT algorithm [166]. Another
important point is the behavior of this matcher and its goal is to �nd the k-nearest neighbors for
each descriptor. It should be pointed out that the SIFT algorithm provides independent descriptors
from scale and octave after detecting keypoints in any scale. We should not forget that descriptors
are actually describing keypoints.

Figure 5.12 represents the input images and the �nal result of matching process. The number of
the detected keypoints for the sample image on the left side of Figure 5.12 is 1160 while the number
of the detected keypoints for the sample image on the right side of Figure 5.12 is 746.

Figure 5.12: Matching between the two leaf images with the white background

Figure 5.13 shows two natural images, and the matching process has been conducted on these
samples. The number of the detected keypoints for the sample image on the left side of Figure 5.13
is 3340 and the number of the detected keypoints for the sample image on the right side of Figure
5.13 is 2167.

The next experiment is to scale two samples of the previous matching experiment and test mat-
ching. It is notable that the new samples have approximately 31.25% of the original samples in the
previous test. For both the original samples, the dimension is equal to 1600 × 1200. After scaling,
the dimension of the new samples equals 500 × 375. Figure 5.14 shows the scaled images and the
�nal matching result. The number of the detected keypoints for the sample image on the left side
of Figure 5.14 is 253 and the number of the detected keypoints for the sample image on the right
side of Figure 5.14 is 130. Meanwhile, it should be noted that the number of the detected keypoints
for the image on the right side of Figure 5.14 is approximately 17% of the number of the detected
keypoints for the original image without scaling.

Because the transformations are simple a�ne transformations the following is true:
If we plot the endpoints of the vectors in a coordinate system (dx, dy) we get a regular pattern;

i.e. for translation one point. So, we can compare the real measurement patterns with the expected
pattern.
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Figure 5.13: Matching between two natural plant images

Figure 5.14: Matching between two scaled leaf images with the white background

5.5 Combined Detection and Description Methods

Our life is full of the memories of di�erent events which have occurred in the past. When one
thinks of a speci�c memory, he recalls some pieces of the memory depending on some factors such
as the importance and the boldness of the memory. These pieces of the memory are the abstracted
parts of it. If one decides to describe this memory to other people or attempts to write it down, he
connects the pieces together and solves the puzzle of his speci�c memory even if many years have
passed. The order of using these pieces depends on the sequence of occurrence time and the way
he remembers the memories. Consequently, each piece contains di�erent information although it is
supposed as a point. All or some of the points might be used for explanation of the memory, and
the selected points might a�ect the reality and veracity of the memory if we decided to compare and
adapt it to the real occurrence after a while.

Suppose that some people took part in one special event on the same day and at the same time.
After the event, one TV reporter asks this group of people to thoroughly explain the event for TV
viewers. Although they explain one event, they give di�erent information and details and describe it
in their own words. It should be pointed out that vocabulary treasure may have in�uence on each
one's explanation and story. Moreover, the charm of the event for TV viewers di�ers according to the
explanation of each participant and the rest of any discussion on the event depends on explanations.

The mentioned examples are two important points which can be considered as the main key to
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our work and the idea of combining di�erent algorithms. In the images, the initial attempt is to �nd
the points which can be processed for further purposes and de�ned goals. Hence, di�erent algorithms
have been developed to detect interest points. Each algorithm can be assumed as one participant
who has taken part in an event and is able to explain the �nding of the event in a distinctive way.
Therefore, each implemented algorithm can detect its own interest points of each image and the
extracted information can be applied for the next steps.

As another example, if we ask two people to look at the same scene in one image, we cannot
expect them to exactly identify the same features of the scene. However, if we pose a question on
what they see in the image, they provide similar answers as the whole scene is almost the same and
only some details of the scene are di�erent. In order to computerize the process and �nd extracted
details and information, the performance of each algorithm is unique for one speci�c image and the
digitized information is di�erent from one algorithm to another. Additionally, this is similar to the
mentioned example.

Some characteristics, such as invariance, robustness to rotation changes, scaling variations and
change of light, have impacts on the performances of the algorithms, and thus on the achieved re-
sults. Traditional and modern algorithms can be mixed up to add new characteristics and features
like speeding up the whole process. Since the separate investigation of the algorithms has been car-
ried out in previous sections successfully, the use of the combination in detection and extraction is
investigated in this section. The use of the combined algorithms helps stabilize the process and reduce
the undesired impacts of changes such as rotation and scaling. In this section, new algorithms, the
so-called combination of di�erent modern algorithms (methods), are derived to impressively detect
and extract features. Generally, one purpose is to prevent failing of the algorithms when applied
separately in di�erent conditions such as space scaling and rotating. Moreover, we attempt to deal
with images which have been taken at di�erent conditions and it is important to have algorithms
which are applicable.

In this section, some combined algorithms are introduced to detect and extract features in plants'
images. Remarkably, unique potentials and high performance of a combined algorithm contribute
to training a plant classi�er and recognize plants accurately. However, many features need to be
extracted and then trained, which increase the usability of the combined method for recognition
applications, especially for an accurate and high-speed performance.

Therefore, this section attempts to provide a way to improve the robustness of the algorithms
studied in the previous sections. This idea leads to new feature detection and extraction of plants
using multi-algorithms; to this end, spreading di�erent characteristics of the two algorithms helps
spread out information based on di�erent detected features. Thus, the aim of this section is to develop
combined methods which perform new quantitatively accurate detection and extraction su�ciently
fast for plant recognition applications. Indeed, rich features should be detected by detection algo-
rithms and then should be considered as the points for description. For each point, a combination of
detection and description is used to infer a feature vector. A combined approach takes into account
both detection and description properties of utilized algorithms and bene�ts of the properties in
di�erent environments; however, the type of the environment a�ects the e�ciency of the algorithms.
This enables the combined algorithms to capture much more detailed information and features than
does the prior art, and also to give a much richer experience in the representation of information,
even for the scenes with signi�cant and incomparable conditions such as various weather conditions
and di�erent photographing time as well as including the presence of shadow, wind and sunshine. In
the experiments, we carry out our idea of combining the algorithms, yielding recognition accuracies
of over 90% which outperforms the conventional systems.



71

5.5.1 HARRIS-SIFT and HARRIS-SURF

The HARRIS algorithm is a conventional corner detector which is suitable to apply in our work
as it detects changes in image intensity and has some useful properties. The HARRIS algorithm is
particularly applicable to a wide variety of images such as urban images, images of industrial products
(cars and airplanes), etc. One property of this detection algorithm is being invariant to rotation. If
a corner is found in one ellipse, the detected part remains as a corner even if we rotate the ellipse
randomly. Therefore, rotation of images does not have any impact on the detected corner. Another
property of the HARRIS algorithm is that it is partially invariant to a�ne intensity changes. For
instance, if we shift the intensity from I to I+b, this operation is invariant as we only use derivatives
in the HARRIS algorithm. Another possibility is to change the intensity from I to αI; it is not
invariant in this case according to the calculation of derivatives. It is not invariant to spatial scaling.
If an edge is detected by the algorithm, rescaling might lead to detecting it as a corner (see Figure
5.15).

Figure 5.15: Edge, scaling and corner in the HARRIS algorithm

In other words, the algorithm is robust to the image translation, rotation and noise, high repeatable
to luminance variation and rigid geometric transformation [167]. In [168], it is shown that the HARRIS
detector is a good start point for the computation of a�ne invariant features and positions of scales,
and a combination of the HARRIS detector with Laplacian-based scale selection is carried out. The
HARRIS-Laplace detector is then extended to a new detector, called the HARRIS-a�ne detector,
and it helps to solve the challenges of a�ne transformations. There is yet another important point
to discuss. The computational cost of the proposed approaches is extremely high and therefore it
is essential to compensate for this disadvantage. Our idea is to use the detected features of the
HARRIS algorithm with description algorithms which bene�t from other properties. We investigated
our hypothesis by means of two modern algorithms, the SIFT and SURF, for the description step.

Being invariant and distinctive are two important factors and we intend to add them in the
description step. Therefore, we decided to utilize the SIFT algorithm to achieve the descriptors.
High reliability and robustness of the SIFT algorithm help us approach the goals. As discussed,
the description part of the SIFT algorithm is carried out on detected keypoints of the implemented
HARRIS algorithm. Now grids of 4× 4 (sub-regions) are taken by making this feature point as the
center in the scale of the image [11]. The gradient direction histograms in the eight directions of each
sub-region are calculated. Then, a feature vector is generated and the dimension of it is 128. This
feature vector is the desired descriptor that we need for the purposes of our study.
De�nition

HARRIS-SIFT is a new term which consists of two terms. The �rst term shows the used algorithm,
the HARRIS algorithm, for the detection step and the second one represents the applied algorithm,
the SIFT algorithm, for the description step.

In order to improve the idea of image characterization, a new strategy, i.e. the SURF algorithm,
is chosen as it has higher speed of computation in the description step. As previously explained, the
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SURF algorithm applies wavelet responses in two di�erent directions of x and y, i.e. horizontal and
vertical directions, and neighborhood of size 20s × 20s is taken around the keypoint where s is the
size. It is divided into 4 × 4 grids. For each grid, the horizontal and vertical wavelet responses are
taken and a vector is generated as below:

v = (Σdx,Σdy,Σ|dx|,Σ|dy|) (5.26)

The length of the SURF feature vector is equal to 64 and the advantage of this lower dimension
is its higher speed of computation compared to the SIFT algorithm.

These combined methods are signi�cant because we can utilize a mere detection algorithm to
obtain the keypoints and exploit these keypoints and related properties for the description step. One
possibility is to use another detection algorithm instead of the HARRIS algorithm and combine this
new algorithm with the SIFT and SURF algorithms. The new possibility is proposed in the next
section.

5.5.2 FAST-SIFT and FAST-SURF

The HARRIS algorithm has two useful properties: stability and robustness. However, the algorithm
su�ers from one limitation which is related to the speed of computation. Similar to the previous
section, we attempt to combine the algorithms, with the main purpose of proposing algorithms
which perform faster. Pertaining to the mentioned properties and details of the FAST algorithm, it
is used as a detection component of the combined algorithms. In the next chapters, the two methods
are used for plant recognition systems. Similar to the previous section, the combined methods are
explained in detail in the subsequent chapters.

5.6 Conclusion

We have introduced some new modern methods for feature detection and description using the
combined approaches. Compared with the existing approaches, our method provides a new possibility
to do the description for detection algorithms and achieve other properties as a result. For instance,
the speed and computation time are two important factors and they a�ect our decision for selecting
the appropriate algorithm. The �nal quantitative accuracy of a system should be also acceptable.
Combination of the algorithms helps to catch the mentioned properties. For instance, it is possible
to speed up the detection step of the SIFT algorithm by using the FAST algorithm. Overall, the
combined algorithms enable fast and robust detection and description modules which can be used for
automatic plant recognition systems. We acknowledge that the use of detection algorithms alone in
the plant recognition system is not e�cient, due to the lacking of the description module. A desired
plant recognition system has two important parts, i.e. detection and description, so that it can �nd
the applicable and useful features. Such a system is planned to be implemented and established.



Chapter 6

Implementation and Comparison of E�cient

Modern Description Methods for

Recognition of Classic Plant Species

The present chapter introduces six di�erent systems for automatic recognition of plant species.
Modern description methods are applied in the systems for automatic recognition for 32 di�erent
plant species (classic dataset). This classic dataset is actually the Flavia dataset explained in 3.1.3.
The results will help us to compare the e�ciency of the implemented systems, explore the goals and
decide on selecting an appropriate system due to the pre-de�ned purposes of applications. In order to
judge the systems, some experiments are conducted. The experiments contribute to drawing borders
between the demands and the systems. As a result, we can make a decision about selecting various
systems. We further illustrate which experiments have been carried out. The presented systems yield
good recognition accuracies for classic datasets with a large number of plant species. The recognition
accuracy of the systems di�ers from one to another, and the characteristics of each one contribute
to using the correct system in appropriate situations.

The works have been published in Signal & Image Processing: An International Journal (SIPIJ),
April 2015 [169] and in Advances in Image and Video Processing Journal (AIVP), 2015 [170].

6.1 Introduction

One of the important aspects of the biological evolution, known as a remarkable part of evoluti-
on, is plant evolution. It involves with other facts like adaptations, acclimations and modi�cations.
Fossils are actually indirect evidences of the presence of plants around 3000 million years ago. For
instance, oxygen-producing photosynthesis has been observed in geological records. Despite the low
level of complexity of early plants, they have played an important role over successive generations
and the passage of time. Early plants were responsible for cooling the climate, increasing the level
of oxygen and lowering the amount of carbon dioxide in the Planet's atmosphere. It is also worth
mentioning that fossil fuels like coal and oil have been made from plant material. One example is
carbon that was taken out of the atmosphere and buried in swamps many years ago [171]. In other
word, plants played the role of a bridge between the life's evolution and the chemical evolution of
the atmosphere.

By looking into the evolution of plants we �nd a wide range of complexity from the early stages
of existence of plants to current gymnosperms and angiosperms. In addition, they have diversi�ed in
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aquatic and terrestrial environments over years. Four groups of land plants, mosses, ferns, conifers
and �owering plants, re�ect a sequence of the evolutionary history of land plants. Structural support
is a factor a�ecting the life of plants in di�erent environments. A plant is able to live in an envi-
ronment if it has the essential components. In addition, other environmental factors have enormous
e�ects on plants and relevant issues like adaption. Two of the environmental factors are buoyancy
and gravitational force which are not the same in aquatic and terrestrial environments and vary from
an environment to the other one.

Let's consider the mentioned factors in an environment with dense water. We know that gravity
changes by height and the gravity also varies a little bit in oceans. In dense water, we have the
feeling of being light. The reason is actually buoyancy which generates an upward force to objects
with smaller density than water in aquatic environments. In addition, the e�ects of gravity reduction
and structures with gas-�lled vesicles allow them to �oat like kelps. Hence, an obstacle will be solved
by structure and large forms of kleps and adaptation emerges.

Investigation of the role of plants is vital for better planning of the ecosystems' future. In any
ecosystem such as forests, wetlands, etc., there is an important issue related to water called the water
cycle. In the process of water cycle, plants play an invisible role which is transpiration. They absorb
water through their roots from ground. Water ground is distributed in other components of plants
like stems and leaves. A part of water is evaporated on the surface of leaves. Evaporation rate depends
on the environment. In dry days, plants add more moisture to natural environments. Additionally
more water will be returned to the atmosphere by the transpiration. For instance, leaves of an oak
tree transpire 151416.47 liters of water per year [172].

By considering plants as producers, negative factors like diseases can a�ect their performance and
interfere with their roles and tasks. In addition, plants are responsible for security of human life
and the future world's food. These issues can be in�uenced by other factors such as urbanization,
population growth, income levels, lifestyles and preferences over time. Let's have a look at two of
mentioned factors, urbanization and income levels, and investigate the relationship between plants
and them. The �rst factor, urbanization, is actually a very complex term because it can be de�ned
di�erently and various interpretations can be derived from it. One de�nition for this concept refers to
spread and strengthen of urban living, economic and behavioral patterns. Another de�nition is the
population shift from rural to urban area. Urbanization has e�ects on patterns of food and dietary.
Furthermore, food preferences are also changing because of new lifestyles in urban areas. Consequent-
ly, the diversity of people's diet is increasing. It is a demand to have plants suiting these whole new
needs.

We investigate the next factor, income level, its e�ects and the importance of plants. Although
poor people struggle to make a better life, sometimes they are not successful in providing decent
food. In fact, they do not have enough income to buy their needs. On the other hand, economic
growth does not necessarily mean an increase in their income. In many under-developed and develo-
ping countries, growth rates are negative or low. Therefore, income levels are very lower. As a result,
agriculture and related activities are also in�uenced by negative and undesired rates. Hence, there
is an invisible relationship between this point and plants. Furthermore, plants are prone to various
injuries and diseases. Climate changes cause pest infestations and subsequent crops are being a�ec-
ted. The e�ects of pest might be continued in the years to come and we face marginal losses [173].
Perhaps the simplest solution for overcoming the diseases is the use of chemical pesticides. Nowadays,
there are other options like pest management approaches and accurate use of pesticides to reduce
harmful e�ects of chemical pesticides to human health and environmental safety. In addition, plant
diseases are a threat to the world's food security and exacerbate de�cit of the food supply. It should
be pointed out that it is an aspect that has global e�ects.

Nowadays, one of the main concerns is global warming which deserves further discussion owing
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to its importance and e�ects on plants. In order to do the photosynthesis, plants take in carbon
dioxide and give o� water. Consequently, plants and the surrounding air will become cooler by the
evapotranspiration process. In [174], it has been proven that plants can take the responsibility for
o�setting greenhouse gas emissions. In addition, the �ndings show that plant leaves give rise to some
methane in a very small amount and fears of forestry and agriculture contributions to global war-
ming will be allayed [175]. As a result, we �nd that plants and their e�ects are not constrained to
our today's world. In fact, they will a�ect our lives in the future too. Therefore, the study of plants
in di�erent aspects is necessary and none of the related �elds can be neglected.

In botany and plant taxonomy, a challenging task is recognition of plants. It is even more di�cult
if it is needed to be done automatically. At this stage, the focus is on designing and implementing
plant recognition systems due to the importance of plant recognition. Plant classi�cation is also im-
portant for ecological purposes and discovery of the future of plant species. Taking medicinal and
commercial applications of plants into account, precise identi�cation of plants is a desire. We propose
di�erent approaches that can be used in plant recognition systems to meet the �nal needs.

To give computers a visual understanding of plants, specifying important component of plants is
necessary. By looking at several plants, we may instantly �nd that stem, root, �ower, fruit and leaf
are common components of di�erent plants. The question is, "Which components can be used for
the plant recognition task by machines?" This step is very important as the development of systems
depends on the nature of data and the �nal application.

Despite the presence of other components like fruits and �owers, leaf is usually considered as a
reliable component for plant recognition in botany. This component usually grows after cold tempe-
ratures in winter. In other words, it is the response of plants to warmer days. Over time leaf grows
and its color changes from light green to darker green. The shape of leaf remains somehow the same.
The investigation of di�erent plants shows that the shape of leaves di�ers from one plant species
to another, but leaves of one plant species have mostly the same shape. However, they are rarely
the same in all of their characteristics such as size, color, etc. If we compare this component to the
others, we will �nd that it has two important properties namely generality and availability. In addi-
tion, di�erent metrics can be derived from leaves for getting valuable information about the shapes
of leaves for plant recognition. Another point is the simplicity of collecting leaves from various plant
species. This property contributes to having useful plant datasets for the plant recognition.

Let us look at previous works in plant recognition and its related areas. Due to the importance
of shapes and its related features, Takeshi Saitoh et al. [176] proposed an approach based on two
components of wild �owers, �ower and leaf, and obtained 95% recognition rate. They used two images
(frontal �ower and leaf images) for the recognition task. In this approach, 17 di�erent features were
extracted from two images and fed to the system. Considering �ower and leaf images, eight color and
shape features were extracted from the �ower image while nine features were extracted from the leaf
image. The set of leaf features composed of ratio of the average internal area connecting the valley
points over the average external area, the ratio of the vertical length over the horizontal length,
moment, roundness, a de�ned bias, opening angle at the stem, opening angle at the tip, structure
index showing if a leaf structure is pinnate or ternate, and color [176]. In 2004, a computerized plant
species recognition system under the name of CPSRS [4] was introduced as a web-based applica-
tion consisting of two main parts, web client and web server. Text-based information retrieval and
content-based leaf retrieval are two types of plant species retrieval methods that were proposed in
this work. The experimental results showed a recall rate of about 71% by considering the top �ve
images [4]. Another work proposed in 2006 [177] used shape features of leaf for the plant recognition
with the maximum recognition rate of 92%. The extracted features were eight geometric features
like rectangularity, circularity, eccentricity and seven moment invariants from contours of leaves. The
features were applied to a new moving center hypersphere classi�er to carry out the plant recognition.
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In [178], new doors were opened to plant recognition by entering the support vector machine and
extracting both color and texture features for SVM classi�ers. Afterward, Zhang et al. [179] used a
learning method called the locally linear embedding (LLE) [179] to bene�t from this method for pro-
jecting the original samples into a low dimensional space. Another purpose was to preserve the least
reconstructed weights among the neighbor points. Due to the sensitivity of LLE to noisy points and
outliers, a weighted LLE (WLLE) algorithm [179] was proposed. In this approach, the score of each
point, called the importance score, was obtained by the heat kernel function. They were added to
the cost function of WLLE and the �nal recognition task was carried out. In 2011, another proposed
work was based on combination of local descriptors and global features to recognize plant species
[180]. In order to select most discriminant features, a linear discriminant analysis method was applied
in this work to develop an automatic leaf recognition system and achieve acceptable results [180]. A
modi�ed locally linear discriminant embedding (MLLDE) algorithm [181] was proposed in [181] and
it was based on LLE and modi�ed maximizing margin criterion (MMMC) [182]. It was possible to
map leaf images into leaf subspace for further analysis by using MLLDE. The bene�t was full use
of class information for improving discriminant power and developing an e�cient plant recognition
system. In another work [183], a new method called the multiscale distance matrix was proposed to
get the geometry of the shape which has important properties such as translation invariant, rotation
invariant, scaling invariant and bilateral symmetry. In order to improve the power of discrimination,
descriptor and dimensionality reduction were combined. The method was extremely fast for real-time
applications. Easy implementation was also mentioned as one of the advantages of the method in
this work.

Since 2004, the SIFT algorithm has been used in di�erent tasks, especially for detection and reco-
gnition purposes. In [184], SIFT features were assembled with a K-means matching method for face
recognition. Final results showed the robustness of the SIFT algorithm in variations of expression,
accessory and pose. In addition to the SIFT algorithm, the SURF algorithm has also been used
widely in many classi�cation tasks. For instance, SURF features were applied in [185] for detecting
face components. To develop the system, a classi�er checked the feature vectors �rstly if they were
from face images. The component labeling was then performed to specify nose, eye and mouth.

Using modern algorithms like the SURF and the SIFT usually leads to detecting many features
which can be put in a bag of features. In such bag, accurate representation and use of features are
so important for further applications. An e�ective solution is to use the bag of features approach
[186] and represent features e�ectively for the training step of systems. The origin of this method is
natural language processing tasks and information retrieval. This method has been introduced and
applied widely; e.g. in [187] [188] [189] [190] [191] [192].

Before starting the design and implementation of an automatic plant recognition system, it is
essential to investigate the availability of suitable leaf datasets to be selected from. There are some
common datasets such as Flavia dataset, Leafsnap dataset and ImageCLEF dataset. We decided to
select the Flavia dataset because it contains the leaf images of 32 di�erent plant species. This number
of classes encouraged us to design and implement the systems based on this dataset. The dataset
consists of 32 di�erent plant species and we divided it into two sub-datasets, i.e. training dataset and
testing dataset. The training dataset consists of 1255 leaf images, and the testing dataset is made of
648 images taken of leaves. Before starting to work on this dataset, the investigation of the dataset
was mandatory to �nd possible solutions of our main problem, plant recognition system. However,
we just concentrated on considering the plant species of the dataset, not other additional information
like location and distribution of the plants. Without any doubt, it is usually hard for a human to
recognize the similarity of one plant species when di�erent images of it have been taken. This fact
motivates us to design and select algorithms which are able to extract discriminative and repeatable
features of each plant species.
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The structure of the chapter is organized as follows: Section 6.2 describes a general overview. Sec-
tion 6.3 describes how to do pre-processing with respect to color and grayscale images. Section 6.4
introduces the backbone of our systems while an active way to do the training is illustrated in section
6.5. Experiments, results and performance analysis will be discussed in section 6.6 and applications
of proposed systems will be provided in section 6.7 while section 6.8 provides the acknowledgment,
and section 6.9 concludes the work.

6.2 General Overview

All over the world, there are plenty of plant species and subsequently a large volume of information
of them in di�erent types. Hence, the development of a fast, reliable and competent classi�cation
technique is necessary to handle the information and classify the data. Shapes of leaves are good
solutions to plant recognition problems. They help botanists and biologist identify and recognize
various plant species as they provide useful amount of information. In order to recognize plant spe-
cies, botanists use their references books. They have to �nd the exact family and name of one plant
species by searching several pages of books. This type of search is really time-consuming. In addition,
the probability of wrong recognition is usually high. Recent advances in computer vision can help
developing accurate and reliable systems for automatic plant recognition.

If we consider only one leaf, is it possible to use all information of the leaf image? How can we
obtain useful information from the leaf image instead of extracting all the information? Do all pixels
of the leaf image contain important and valuable information? The answers to these questions have
in�uences on decisions for further steps and design of systems. With regard to this issue, we need to
�nd e�ective methods for extracting information of leaf images to develop e�cient and fast systems.

Detection of features is a basic and important part for many applications. Feature detection is the
process where automatic examination of an image is done for �nding unique features of an object.
In a such manner, the object could be found based on its features in di�erent images. Detection
of local interest points plays an important role in di�erent image processing tasks. For instance, it
is the �rst step of the BoW model which will be discussed later. Automatic detection of features
should be performed to detect unique points in images to construct a useful set of points. Using this
process, any object will be detected based on its own features in each image. Several well-known
region detectors have been mentioned in the literature [193] [194].

In computer vision and pattern recognition, feature extraction is one of the main processing blocks.
The primitive objectives of feature extraction are reducing the computational complexity of the sub-
sequent process and facilitating a reliable and accurate recognition. In other words, the goal of feature
extraction is to yield a pattern representation that makes the classi�cation trivial. Generally, feature
extraction involves reducing the number of resources required to describe a large set of data. When
performing analysis of complex data, one of the major problems stems from the number of variables
involved. Analysis with a huge number of variables generally requires a large amount of memory and
computation power. It may over�t the training samples and generalizes poorly to new samples. Fea-
ture extraction is a general term for methods of constructing combinations of variables. Furthermore,
it is needed to get around the problems while still describing the data with su�cient accuracy. To
overcome the challenge of feature extraction in this work, the description part is performed by using
SIFT and SURF algorithms. Comparing the algorithms, the SIFT creates 128-dimensional vectors
when the SURF creates 64-dimensional vectors. By using the mentioned procedure, each image is
a collection of vectors of the same dimension (128 for the SIFT and 64 for the SURF) where the
number of components is of no signi�cance.

Another important part of classi�cation is implementing an e�ective method for representation
of images. In classi�cation, the bases are visual contents of images and the similarity of the image
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contents. The image contents are described via image features. Detecting keypoints with rich infor-
mation should be done as a basic part. It can automatically be done by using di�erent detection
methods and represented by descriptors [168]. Then keypoints are grouped into a number of clusters
with those having similar descriptors assigned into the same cluster. They would be shown by one
single visual word, thus all keypoints will be mapped into a limited number of visual words.

A popular and widely used approach for feature representation is BoW which can be used to
measure similarities between images. A de�nition of the BoW model can be the "histogram represen-
tation based on independent features" [19]. The BoW is inspired by models used in natural language
processing (NLP) [195]. This model ignores or downplays the word arrangement (spatial information
in the image). Then it does classi�cation based on a histogram of the frequency of visual words. This
method includes three steps:
- Feature detection, feature description and visual words generation.

It should be pointed out that this approach is used for document representation in information
retrieval. This methodology was �rst proposed in the text retrieval domain problem for text docu-
ment analysis [196]. It was further adapted for computer vision concepts and applications [196]. For
image analysis, a visual analog of a word is used in the model. It is based on the vector quantization
process by clustering low-level visual features of local regions or points, such as color, texture and so
forth.

After detection and extraction of features, the next step is to convert vectors into visual words
and create a codebook (dictionary) [197]. The visual word "vocabulary" is established by clustering
a large corpus of local features. To achieve our purpose, K-means clustering is performed. The cluste-
ring algorithm contributes to �nding the centers of the clusters of the feature descriptors. The visual
words are collected to construct the visual vocabulary. For each feature descriptor in an image, the
nearest visual word from the vocabulary is assigned. The distribution of visual words in the image
is represented as a histogram. Every feature can be mapped onto a speci�c visual word through the
clustering process. Hence, the image is represented by the histogram of the visual words. The details
of the BoW are provided in section 6.4. After extraction of the BoW features from the images, they
will be entered into a classi�er for training or testing. In this stage, SVM is used to train the classi�er,
and the last step will be doing the testing part.

The whole system has four parts which are image pre-processing, feature detection and extraction
and classi�cation. We would like to follow two main goals, classi�cation accuracy and low compu-
tational cost. Therefore, the following architecture is considered the initial scheme of the system.
Figure 6.1 shows a general scheme of the plant recognition system.
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Figure 6.1: General scheme of the plant recognition system

6.3 Image Pre-processing

De�nition of a computer image is a two-dimensional matrix of pixels like N × N m-bit pixels
and each pixel has its own value. N is the number of points and m has the task of controlling
the number of brightness values. The value is usually derived from the output of an analog-to-
digital (A/D) converter. With regard to the value of each pixel, it is proportional to the brightness
of the corresponding point in the scene. By using m bits, we will have a range of 2m values and this
range is [0, 2m−1]. Obviously, higher values of m give more available levels and increase the available
contrast in an image.

Color images consist of three intensity components, which correspond to red, green and blue.
They are commonly called the RGB images. The storage strategy of a color image is to be saved as
a two-dimensional array of small integer triplets or three separate raster maps, one for each channel,
although the second choice is rare nowadays.

Figure 6.2 shows one leaf which is represented in the RGB model. In this case, each component
is in the range of [0, 255].

Monochrome usually refers to an image in black and white or even grayscale image, although it
might be used to refer to other combinations containing single colors such as blue-white or blue-black.
This means that all black and white images are monochrome images, but all monochrome images
are not black and white images. Although the history of monochrome photography dates back to the
middle of the 19th century, it is still popular among many professional photographers for some artistic
purposes or imaging applications. Besides, monochrome photographing allows the photographer to
focus on desired interpretation and forms instead of reproducing just reality without any emotional
and additional impacts on the observers.

An image is taken of a plant with an iPhone 6s in an outdoor environment, and Figure 6.3
represents the original image (on the left side) and the converted grayscale version (on the right
side).

6.3.1 Black and White Image

If we look at a chess board and consider each square as one pixel, the chess board is a black and
white image with black pixels (black squares) and white pixels (white squares). In order to get a
better understanding, we can think of the depth of an image. The depth of an image is de�ned as
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[X, Y]: [1238 441] 
[R,G,B]: [181 221 72] 

Figure 6.2: A sample leaf image in the RGB model

either the number of bits utilized to show the color of a single pixel in a bitmapped image or the
number of bits used for each color component of a single pixel. For instance, if we have a 1-bit image,
each pixel holds only one-bit number, either 0 or 1. A black pixel is 0 and a white pixel is 1. We
suppose that there is a color image, we are able to convert it into a black and white image by using
a threshold:
If p is greater than 150, then it is equal to 1.
If p is smaller than 150, then it is equal to 0.

In Figure 6.4, the assigned threshold is 150 and the color image is converted into a black and
white image.

6.3.2 Grayscale Image

In this type of images, the color gradually varies from the weakest intensity, black to the strongest
intensity which is white, and the range is made up of shades of gray between black and white. If we
assign m = 8, we will obtain brightness levels ranging between 0 and 255, and we will be able to
show the image in grayscale level.

Here, we can have a �ashback to the human vision system. Cones play the role of wavelength-
sensitive sensory cells in the human body. Cones are actually divided into three di�erent types. Each
type has its own sensitivity to light (electromagnetic radiation) of di�erent wavelengths. In addition,
each type is sensitive to one of red, green and blue lights. In fact, this is the reason behind color
images (in RGB format) and their components.

Then new questions may be asked, "How does grayscale image work and from what it inspires?"
In a grayscale image, it is not important how much light is emitted of di�erent colors and we have

one value per pixel. The di�erence is the total amount of emitted light for each pixel where little
light gives darker pixels and much light is perceived as bright pixels. The two following questions
deserve an answer.
- "Why should we use grayscale images?"
- "How can we convert color image into grayscale image?"

When we want to answer the �rst question, we should consider di�erent aspects of both grayscale
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Figure 6.3: Converting the original image (on the left side) into the grayscale version (on the right

side)

and color images. Although color images give us a lot of information, the whole information will not
be necessarily useful. In many practical applications like corner detection and edge detection, we
just need the information of edges or corners for further steps. Such information can be obtained by
extracting features from a grayscale image. In this case, the information of the color image occupies
more memory, too. Therefore, it is logical to investigate and reconsider the goals before making our
decision about the type of the image. If we convert a color image into grayscale, it is similar to
reducing noise from a signal as unwanted data is removed and the data becomes purely useful.

The answer to the second question is the key to the pre-processing step. In order to make our
conversion closer to reality, we use a weighted average of three components, R, G and B. The role
of the green component is unique in this conversion as brightness usually comes over by the green
component. Hence, the coe�cient of the green component has the largest value among all coe�cients
in our weighted equation. The equation used is as below:

Grayscale = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B (6.1)

This equation is applied to convert the input images of the system into grayscale images. The
obtained grayscale images will be used in next steps to design and implement our desired systems.
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Figure 6.4: Converting the RGB image (on the left side) into the binary image (on the right side)

using the threshold value of 150

6.4 Bag of Words

Local feature extraction involves interest point detection and computation of descriptors in the
region surrounding those interest points. The �rst step of this stage is to detect features as an initial
part for doing the feature extraction. An ideal detector detects the interest points even if some
transformations such as scale and rotation have occurred. Interest points can be detected manually
or, preferably, they can automatically be detected using some speci�c techniques. Features must
be prominent, easily detectable and spread over the whole image. Good localization accuracy is an
essential property that we expect from the feature detection technique in this step. Besides, feature
detection should not be sensitive to the assumed image degradation. Furthermore, the used technique
should be able to detect features regardless of image deformation and unwanted transformations such
as scale and rotation in every situation.

The input of feature detection and extraction algorithms is a set of labeled training images. There
are di�erent techniques and algorithms to detect features.

In order to accomplish the task of plant recognition, one step towards the goals is to investigate
useful and applicable algorithms for design and implementation of systems. We decide to consider a
di�erent procedure to detect keypoints and use the potential of each algorithm in the detection part.
For the description part, we just use two modern description algorithms, the SIFT and the SURF.
We combine these two algorithms with feature detection algorithms to obtain unique combined
algorithms.

According to the description component, we divide the algorithms into two di�erent subsets as
below and compare the results in detail. For instance, if we would like to combine the HARRIS
algorithm, the detection component, and the SIFT algorithm as the description algorithm, we use
the term HARRIS-SIFT for our new algorithm. If the SURF algorithm is used to do the description
part, the SIFT is replaced by the SURF. Therefore, the algorithm is called HARRIS-SURF.
- 1st subset: SIFT, HARRIS-SIFT and FAST-SIFT
- 2nd subset: SURF, HARRIS-SURF and FAST-SURF

As mentioned before, the combined term represents the names of the detection and description
algorithms.

6.4.1 First Subset of Algorithms

At this stage, our �rst aim is to identify interest points which hold a high amount of local infor-
mation. They are originally pixels with well-de�ned positions. These unique points can be used to
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describe the image. If we consider two di�erent images of the same scene, useful interest points are
those points which can be detected in both images. Additionally, higher repeatability means better
robustness. As pointed out before, di�erent available feature detection algorithms use various sche-
mes. Since the 1980s, the HARRIS algorithm, a rotation-invariant method, has been used in di�erent
systems for detection of corners and edges because it is a combined technique of corner and edge
detection. The basis of this algorithm are discrete image features, not continuum like the texture
or edge pixels [10]. If the image is rotated, nearly the same corners will be found. When we have
large-scale changes, the algorithm does not perform well [198]. Being invariant to rotation is helpful
in classi�cation tasks as any change in the position of objects in images in�uences recognition and
classi�cation results.

The SIFT algorithm is a rotation-invariant method which also owns other useful characteristics.
This algorithm is invariant to image scale and highly distinctive. Therefore, other important characte-
ristic could be added to the �rst algorithm. Moreover, it has no variance to variations of illumination,
viewpoint and local a�ne distortions. To compute a 2D Gaussian function, the input image will be
convolved by two passes of 1D Gaussian function in both horizontal and vertical directions. The
SIFT algorithm is summarized as below:
- Scale-space extrema detection
- Keypoint localization
- Orientation assignment
- Keypoint descriptor

There are some di�erences between the �rst version of the SIFT algorithm [153] and its modi�ed
version [11] published in 2004. A modi�cation was carried out to locate each keypoint at the location
and scale of the candidate keypoint [153] for calculating the interpolated location of the maximum
using quadratic Taylor expansion of DoG scale space function and best-bin-�rst (BBF) algorithm
[199]. The modi�cation leads to improvements of matching and stability of the selected image by
approximating the closest neighbor with high probability.

The last used algorithm is FAST algorithm (revised in 2010) to do the detection part. One main
reason behind the development of this algorithm was to struggle with limitations of detectors in
real-time applications. For instance, vision simultaneous localization and mapping (VSLAM) [200]
describes a mobile robot with limited computational resources [201]. Hence, the FAST algorithm is a
weapon choice to �nd corners faster in real-time applications and tracking usages with limited com-
puting resources. Obviously, one attempt towards real-time and industrial applications is to reduce
the timing as much as it is possible without losing the needed information and essential contents of
the image. This algorithm helps us to save the timing of the process. Another important characte-
ristic of this algorithm is the large number of features that it �nds in comparison to the SIFT and
HARRIS algorithms. On the other hand, a di�erence between the FAST algorithm and the SIFT
algorithm is that the FAST algorithm does not include any orientation operator.

Advantages of the SIFT algorithm and its performance against other algorithms made it the most
used description algorithm [111]. Since detection algorithms like the HARRIS and the FAST su�er
from lack of connectivity of interest points which show one limitation for obtaining descriptors, we
use the SIFT to compensate for the defects of the algorithms in the description part. After �nding
keypoints, descriptors are generated according to the areas surrounding interest points for a set of
labeled training images. For this part, the SIFT is used. A descriptor vector is computed for each
keypoint and the dimension of the descriptor is 128. Although this value seems to be high, lower
descriptors than it do not perform the task as well as it does. Also, computational cost is another
aspect of the process. Undoubtedly, obtained descriptors should be rich enough to be usable at the
category level.
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6.4.2 Second Subset of Algorithms

The second subset of algorithms includes SURF, HARRIS-SURF and FAST-SURF algorithms.
Results of the SIFT are invariant to changes of scale, rotation and variations of illumination, but its
computational cost is high. One expectation is to reduce this factor in our systems. Hence, we decided
to replace the SIFT algorithm with another modern algorithm called the SURF algorithm. The SURF
algorithm is a sped-up version of the SIFT algorithm. The algorithm is rotation- and scale-invariant.
In the SIFT, Lowe approximated LoG with DoG for �nding scale-space. The SURF goes a little
further and approximates the LoG with box �lter. One big advantage of this approximation is that
convolution with box �lter can be easily calculated with the help of integral images. It can be done
in parallel for di�erent scales. Also, the SURF algorithm relies on the determinant of the Hessian
matrix for both scale and location. As a robust local feature detection method, it works much faster
than the SIFT algorithm.

Generally, the goal of a descriptor is to provide a unique and robust description of an image feature,
e.g. by describing the intensity distribution of pixels within the neighborhood of the point of interest.
Therefore, most descriptors are computed in a local manner. A description is obtained for every point
of interest identi�ed previously. The SURF descriptor is based on the similar properties of the SIFT,
with even further stripped down complexities. The �rst step is �xing a reproducible orientation based
on the information from a circular region around the interest point. The second step is constructing
a square region aligned to the selected orientation and extracting the SURF descriptor from it. A
descriptor vector is computed for each keypoint and the dimension of the descriptor is 64. This value
is less than that of the SIFT algorithm with dimension of 128. The SURF algorithm has a lower
dimension, higher speed of computation and better distinctiveness of features. Obtained descriptors
will be used to �nd similarities among di�erent images.

6.4.3 Bag of Words Model

BoW is one of the most important and competitive concepts in NLP [202] and information re-
trieval (IR) [203] such as text retrieval [204]. The �rst reference to the model is [205] which is in
a linguistic context and combinations of elements are inspired by other algorithms. Recently, this
unique strategy [206] [195] has been widely applied to computer vision tasks to solve complicated
problems. A common point is existence of a large volume of obtained features and information.
During the desired classi�cation process, the importance of correct representation of the features is
undeniable. Let us consider an example to clarify the concept of the BoW model in a text document,
which contains two sentences as below:
1- One plant recognition system distinguishes di�erent plant species.
2- We implement a plant recognition system.

Based on the sentences and their contents, we are able to create a list of structures (dictionary)
as below:
[ "One":0
"plant":1
"recognition":2
"system":3
"distinguishes":4
"di�erent":5
"species":6
"We":7
"implement":8
"a":9
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]

Then, we can form a vector to represent each sentence according to the structure. Each element
of the vector shows the frequency of each word in each sentence. For instance, if we check "plant"
and its occurrence in the �rst sentence, we can see that it is used twice. Therefore, the frequency for
this word is 2. The generated vectors are:
- Vector 1 for the �rst sentence: [1, 2, 1, 1, 1, 1, 1, 0, 0, 0]
- Vector 2 for the second sentence: [0, 1, 1, 1, 0, 0, 0, 1, 1, 1]

This approach is helpful because of two important factors, simplicity and �exibility. By using this
approach, we will be able to obtain a dictionary of known words and a measure of occurrence and
presence of each known word. As a result, we can build a histogram of words within a text. Additio-
nally, we can consider the count of each word as a feature [207] to quantify and analyze documents
and texts e�ciently. One may observe that it is possible to ignore the location of words in this model.
This very concept can also be applied to computer vision and image processing while using image
patches instead of words.

Someone might ask, "Why has the BoW model become important in Computer Vision and Image
Processing �elds? And what are the strengths of the BoW model?" Recently, we have encounte-
red two signi�cant breakthroughs which led to a revolution in the �elds mentioned above. The �rst
strength of the BoW model is development of algorithms to extract discriminative low-level local
features like the SIFT, SURF and HOG algorithms. As discussed before, the origin of the BoW mo-
del is representation of text data. The second strength of the BoW model is the possibility of using
it to represent mid-level representations, increasing the level of representation of local features and
providing an output with new vertical representations of images in a manner that can be used for
potent statistical machine learning models. To model visual attention maps, outputs of BoW models
can also be used [208] [209] [210].

Fei Fei Li et al. [211] proposed di�erent models such as BoW model, Part-based model [212] [213]
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Figure 6.5: Low-level and mid-level information

[214], etc. for object recognition. Apart from the model, one important point is the improvement
of computational time; because the system is involved in lots of extracted information. There is a
need for fast multi-label classi�cation in addition to the robustness of the approach. Hence, the BoW
model is chosen for our systems to make use of its advantages.

It should be pointed out that part-based models are a wide range of models for object categori-
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zation problems. The origin of this type of models dates back to the work of Fischler and Elschlager
in [215]. Part-based on manual labeling of parts and the constellation model [216] are two examples
of the part-based model.

We study the pipeline of the BoW model in this section. Figure 6.5 illustrates representation
levels of the model where the input extracted features are encoded into a visual vocabulary (dictio-
nary of words). As we observe, the ultimate desired representation is obtained which is a mid-level
one. The whole BoW model contributes to generating and preparing the features for the training step.

Classi�cation Systems Based on Bag of Words Model

In this section, we provide a short review of using BoW models in classi�cation tasks. Several
existing examples in the literature on classi�cation systems propose BoW as a basis of the system.
In 2007 [217], a model was presented for human action categorization by proposing a hierarchical
model. The idea was to make full use of both the geometric power of constellation model [216] and
the richness of the BoW model. It is worth mentioning that the constellation model is a generative
model [216] for representing the target categories. In this model, probability functions are used to
show the objects of a class by considering the geometric relationship between di�erent parts. Dese-
laers et al. [218] proposed an approach to classify and �lter pornographic images from network tra�c,
and the approach was based on the BoW model. The system provided �exibility for the user, and
the �nal result demonstrated good performance. In [219], the concept of the BoW was employed for
semantic texton forests, and the results proved that the approach contributed to the state-of-the-art
by reducing computation expenses and providing an image-level prior for segmentation.

In 2010, an interesting research was conducted by emphasizing the utilization of codebook discri-
mination information among various scene classes, and the authors proposed an improved approach
based on the BoW model for scene recognition [220]. The purpose was to get a new weighted hi-
stogram and this histogram was obtained by incorporating information of a co-occurrence matrix
[221] and a K-means algorithm [222] into the original BoW histogram. The BoW was used in [223]
for describing complex objects in very high spatial resolution imagery and for classifying challenging
objects in aerial images. As a result, the authors proved that the combination of spectral and tex-
ture features led to high classi�cation accuracy in such images. To solve the problem of face and
expression recognition, an active area of research, a system based on BoW was proposed in [224] by
considering holistic and local features. Furthermore, an interesting part of the proposed system in
[224] was simultaneous extraction of discriminative local facial features and maintenance of holistic
spatial information.

As we know, we usually involve two serious challenges for classi�cation of synthetic aperture ra-
dar (SAR) [225] images, and the goal is to solve the main problem by considering the challenges.
In fact, the challenges are achieving an appropriate representation of features and �nding a suitable
pattern classi�cation approach. In [226], the �rst challenge was solved by using BoW and an e�cient
representation of SAR images was achieved. A new extension of the BoW formalism was proposed in
[227] and a �exible formalism was introduced. By dividing the process into BoW, dictionary coding
and pooling, they applied a density function-based pooling strategy to improve the representation of
the links between codewords of dictionary and descriptors in the resulting image signature [227] and
tested the proposed approach in video and image classi�cation tasks.

In 2015, a classi�cation framework [228] was proposed for binary shapes with changes in scale,
rotation and viewpoint. To classify animal shapes, invariant features and contextual information were
incorporated in the BoW model and resulted in a signi�cant performance of the implemented system
compared to other projects in related literature. The application of the BoW model has not been
restricted to the mentioned research, and it has also been used in satellite imagery. Yuan et al. [229]
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proposed an automatic cloud extraction method. This method consisted of segmenting images into
superpixels, computing dense SIFT descriptors from each superpixel, constructing compact feature
vectors through the use of the BoW model and building a classi�er. Interestingly, the authors proved
that the proposed approach was not sensitive to the number of codewords in the codebook obtained
by the BoW model.

As discussed, the BoW model has entered into many di�erent areas and it has been used in various
applications to ful�ll desired goals. Peng et al. [230] provided a survey and comprehensive study of
BoW and di�erent fusions methods for recognition of actions. In addition, a simple and e�ective
representation method, called hybrid supervector, was proposed and the obtained results on several
datasets were impressive. Another work was proposed for scene classi�cation and high spatial resolu-
tion (HSR) imagery [231] based on BoW. Di�erent types of features, including global feature, local
spectral and structural features, were employed to fuse local and global features at the histogram
level and to create a local-global feature bag-of-visual-words (LGFBOVW) scene classi�er [231]. The
BoW has made an in�uence in social media resources, and a new and e�cient approach was proposed
in [232] to improve the original BoW model by designing a fuzzy membership function which was
able to measure the similarity between the features and words.

Analysis of BoW's Approach

In order to embark on the BoW model used in our systems, we need to explain the process of
building the visual model (visual model as the words are actually referred to images and their patches)
and the vocabulary for the dataset. In the previous step, we attempted to get the set of descriptors in
each image of the training dataset. To achieve our purpose, we used the SIFT and SURF algorithms
to compute the image descriptors. If we perform the SIFT algorithm on a given image, the result
is an N × 128 dimension descriptor where N is the number of features. The next step to ful�ll the
BoW's approach is to construct a vocabulary by a clustering algorithm which consists of cluster
centers. Our tendency is creating clusters of similar features and assigning words to them. The user
is able to decide on the number of clusters. If we suppose that the number of features is equal to N
and we select k number of clusters, there will be a model within k clusters which a�ects the size of
the vocabulary. Consequently, the features will be distributed and separated due to the number of
clusters. The vocabulary contains local patterns in images.

One important concern is similarity. In our approach, the similarity is determined by the Euclidean
distance between descriptors without considering if the description step is done by the SIFT or SURF
algorithms. The implemented Brute-force matcher in OpenCV is so helpful for computing similarity
by using the Euclidean distance. Similar descriptors are clustered into K (where K equals 1000)
number of groups. The range of K usually varies between 500 and 4000 in the literature. We use the
K-means clustering algorithm which is basically a vector quantization method. Actually, descriptors
are quantized. As a standard practice, each feature is put into the cluster which the feature has the
minimum Euclidean distance from the cluster's center. Thereby, each image is �nally grouped into its
particular visual words. In other words, the clusters are named visual words and they represent the
vocabulary collectively. Each cluster has a cluster center which can be thought of as the representative
cluster of all the descriptors belonging to that class. Here, each cluster is a visual word and represents
a special pattern by the keypoints in the cluster. The cluster centers are found and used to group
input samples around the clusters. An equivalent histogram is formed and it contains bins that are
equal to the size of the vocabulary. For each feature obtained from the SURF algorithm, the feature
is assigned and quantized to its cluster optimally and then plotted in the histogram. Categorization
of all features cools o� the heat of the problem and we have to solve a multi-classi�cation task.

Before explaining the next part, we would like to have a short glance at the K-means clustering
algorithm with Euclidean distance. Suppose that we have 8 di�erent observations (i = 8) consisting
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of two variables, xi and yi. If our �nal goal is to have two clusters, we then need to initialize two
pairs which are actually the centroids of the clusters. After that, we have to compute the Euclidean
distance between each observation and initial centroids of clusters 1 and 2. Then, each observation
will be assigned to one of the clusters based on the minimum Euclidean distance.

It is considered that information of each detected keypoint in an image is mapped to a certain
word through the clustering process. Hence, the image can be represented by the histogram of the
visual words and each keypoint is encoded. After mapping the keypoints to visual words, each image
can be represented as a bag of visual words. The obtained vocabulary should be large enough to
distinguish relevant changes in image parts, but not so large to distinguish and recognize irrelevant
variations such as noise. In doing so, novel image features can be translated into words. Translation
of the extracted features into four words, G1, G2, G3 and G4 is shown in Figure 6.6.

Figure 6.6: Translation of the extracted features into four words, G1, G2, G3 and G4

6.5 Classi�er Training

Our approach has been sparked by feature detection and description algorithms and following by
BoW model. Now we would like to answer the remaining questions to continue the approach. Some
of the questions are as below and we are going to answer them to complete and �nalize our approach
properly.
1- What does the obtained result of the BoW model tell us?
2- How can we be capable of using the obtained result of the BoW for further processing?
3- As we have confronted 32 di�erent plant species, how can we point out the optimum solution for
the remaining step of the approach?

In order to answer to these questions, we did not con�ne ourselves to previous explanations since
we aimed to classify a large number of plant species and get an automatic plant recognition system
in the end. By generating vocabulary, every image is represented by a histogram of how often local
features are assigned to each visual word. In such representation, the frequency, but not the position,
of words is used to show text documents. Due to existence of 32 di�erent plant species, we have to
solve a multi-label classi�cation task. In the literature of object recognition-based classi�cation, one
may �nd many di�erent approaches and methodologies such as random forest, Naive Bayes classi�er
[233] [234], adaptive boosting (AdaBoost) [235] [236], expectation-maximization (EM) algorithm
[237], etc. to build classi�ers. Bag of Words is exactly the lost piece of the puzzle for connecting the
description data to the training phase. It gives us isolated and meaningful data to organize the next
steps. In fact, the BoW model prepares a large volume of data from 32 di�erent classes in a useful
form to help us in solving the classi�cation problem. But, the question is "Which classi�er is useful
for our goal?" In this part, we investigate some common classi�ers and machine learning algorithms.
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6.5.1 Investigation of Machine Learning and Classi�er Approaches

The training phase is surprisingly a signi�cant component of classi�cation tasks and helps us
�nalize a model and do the prediction task for new observations. A classi�cation example would be
determining if the given sample is a grass or not. Figure 6.7 shows a simple example of a classi�cation
task. In this case, the classi�er does the classi�cation of a given sample and determines whether it is
a grass or not.

Machine learning is generally grouped into supervised learning and unsupervised learning. There

Input Image Classifier 

Is it grass? 

Yes 

No 

Grass 

Non-Grass 

Figure 6.7: Classifying the input image whether there is grass or not

are a lot of approaches which can be listed and used as machine learning algorithms. Therefore, brief
descriptions of some machine learning algorithms are provided.

Random Forest Algorithm

The decision tree [238] is a data mining model similar to that of a �owchart, a tree structure
for decision making, and the assignment of a class and a category of particular data. As its name
implies, this tree is composed of a number of nodes and branches. The middle nodes are also used to
make decisions according to speci�c attributes. In principle, a decision tree is a predictive model. It
can be utilized for visual and unequivocal representation of decision and decision-making. Multiple
decision trees can be merged together to build a useful concept in the machine learning �eld and it
is the random forest.

The main concept of the random forest algorithm, an ensemble learning method, can be implied
by its name. This algorithm can be applied in both classi�cation and regression tasks and it lies in
supervised learning. In the real world, each forest has a number of trees. In the world of machine
learning, this algorithm also tries to create a forest with its essential elements, trees. In 1995, the �rst
random decision forest [239] was proposed based on using the random subspace method [240]. The
algorithm has been extended in [55] and [241] and it has become a trademark [242]. If we compare a
real forest with the algorithm, we will see that a forest with more trees seems to be more robust in
the real world. A forest with more trees leads to higher accuracy in the world of machine learning.
In addition, more trees in this algorithm prevent over�tting of the model. The algorithm begins with
decision tree learning [243]. The following Figure 6.8 explains how a decision tree algorithm works.

Naive Bayes Algorithm

Naive Bayes algorithm [244] is a simple technique to create e�cient probabilistic classi�ers based
on Bayes' theorem [245]. This type of classi�ers seems to be simple, but they are able to carry out
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Figure 6.8: Representing how a decision tree algorithm works

sophisticated tasks for high dimensional inputs e�ciently. Its performance is remarkably outstanding
even for large datasets. One particular characteristic of the algorithm is the independent assumptions
between predictors. Another important point is the ability of Naive Bayes classi�ers to handle an
arbitrary number of either continuous or non-continuous features. The foundation of the algorithm
is posterior probability. We suppose that the data is X = {x1, x2, ..., xk} where it is representing
n features. These features are actually independent variables. We would like to create a posterior
probability for one of the events from the set of possible data (classes) C = {c1, c2, ..., ck}. According
to the Bayesian theorem, the following equation is applicable as the conditional probability:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(6.2)

We can also rewrite the above equation in plain English, therefore:

posterior =
perior × likelihood

evidence
(6.3)

Support Vector Machine Algorithm

Support vector machines (SVMs), also called support vector networks [246], have opened new
doors to e�ciency and applicability with colorful views in machine learning in analyzing data for
classi�cation and regression problems, although they have been mostly used for classi�cation pro-
blems to label di�erent objects or observations. Reasonably, SVMs are supervised algorithms capable
of dealing with highly complex tasks.

The basis of the SVMs is the concept of decision planes. It contributes to de�ning decision bounda-
ries. What a decision plane does is to make an optimal separation between a set of objects belonging
to various classes. The important element of the SVMs is support vector. In a simple example, a
support vector is the coordinates of a single observation. The SVM model attempts to handle and
segregate multiple data in the best possible way. By constructing support vectors (hyperplanes) in a
multidimensional space, SVMs are able to carry out classi�cation tasks and perform the estimation
relationship between variables as a regression task. Novelty detection [247] and outliers detection
[247] are also other prominence tasks which can be done by SVMs.
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In classi�cation tasks, two brilliant ideas of maximizing the margin and the kernel trick [248] [249]
help SVMs work on unknown samples appropriately and gain optimal results accurately. In addition,
high accuracy of classi�ers can be guaranteed and the problem of the curse of dimensionality will
be solved. The following questions are in focus with regard to SVMs as our goal is to implement an
e�cient plant recognition system with a number of di�erent plant species.
1- Will the SVMs algorithms be helpful and reliable in creating a model for our desired goals in plant
recognition?
2- Which type of SVMs is useful for our system?
3- What is the exact data that is needed to be fed into the SMV algorithm? Is the prepared data in
the correct form?
4- What are the advantages and disadvantages of the SVMs?

To answer these questions and some other questions related to our system and the running step,
we need to present a brief and high-level description of SVM algorithms.

In classi�cation tasks, we are involved with two di�erent datasets, the training dataset and the
testing dataset, which consist of leaves' images of di�erent plants. We apply some modern detection
and description algorithms to obtain succinct information of the images. Then we model this infor-
mation in the ways supposed to be useful for our classi�ers. In addition, the label and features of
each image in the training dataset are also known.

Firstly, we want to express a simple classi�cation task with the SVM algorithm. In this case, if
we have two plant species of our dataset as our two labeled classes, the main goal is to separate the
available two plant species by using a function. This function is derived from the available data and
information from the plant species of both classes. If the samples are spread as represented in Figure
6.9, a linear classi�er is able to separate them. However, there are di�erent lines that can do the
separation procedure. A good classi�er is the one that works optimally and maximizes the distance
between the data and the line performing the classi�cation of the samples of the plant species. Thus,
this line is the best choice as one of the expectations is being general for the classi�cation task.
It is the idea behind the SVM classi�er to select the maximum margin. If we do not consider this
maximization, the noise will have unwanted e�ects on the performance of the classi�er. Therefore,
new predictions will be badly destroyed.

The red line (hyperplane in general) ful�lls the constraint of the maximum margin between the
classi�er and samples in the represented space.

One other important question is, "How can we deal with the data which is not separable linearly?"
The initial idea is to try to map the data into a higher dimensional space where one can separate

the data linearly and achieve a linear classi�cation. In order to achieve this goal and build a higher
dimensional feature space, kernel functions are a good choice. They can be applied to the separation
of the data. Although a lot of kernel functions have been developed, it is also possible to develop
custom kernels. Some of the standard kernel functions are as below:
- Polynomial (homogeneous):

k(x, y) = (xTy)d (6.4)

- Polynomial (inhomogeneous):

k(x, y) = (xTy + 1)d (6.5)

- Gaussian radial basis function (RBF):

k(x, y) = exp(−γ||x− y||2) for γ > 0 (6.6)
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Figure 6.9: Representation for classifying two classes of plants

γ is equal to 1
2σ2

- Hyperbolic tangent:

k(x, y) = tanh(kxTy + c) for some (not all) k > 0 and c < 0 (6.7)

It has been proven in [250] that if kernel function k(~xi, ~xj) = Φ(xi) · Φ(xj) satis�es the Mercer
condition [251], in some transformation spaces, the function corresponds to the inner product and
we have, Φ(x) · Φ(xi) = k(~x, ~xi).

The beauty of kernel functions is hidden in the transformation of nonlinear spaces into linear ones,
providing proper inputs for classi�ers and sending back the results into the original spaces. The �avor
of �exibility can be added by SVM classi�ers. It has been observed that SVM plays an important
role in an e�cient classi�cation with high accuracy and complete theory. In addition, it is possible
to have nice theoretical guarantees with regard to over�tting if an appropriate kernel is used. Simple
structure, high adaptability, global optimization, short training time and good generalization per-
formance are other advantages of SVMs [252]. The mentioned points make these types of classi�ers
interesting for us to explore. SVM algorithms are similar to pruning machines for cutting branches
and creating pure models which are not only theoretically applicable but also practically assuring
good �nal results in the plant recognition.

Although there are advantages to SVMs, there are still some drawbacks in SVMs from di�erent
standpoints. Generalization of SVMs is an important characteristic of these algorithms, but they are
not fast enough in the testing phase [253] [254]. Since there are di�erent options to select as kernel
function, we have still the possibility of selecting a function freely. It can be considered the positive
side of SVMs. Also, it can be considered a disadvantage of SVMs because the entire performance of
the algorithm lies in the selected kernel function. Therefore, it is essential to �nd and choose the best
kernel type according to desired goals.

In addition, each kernel function has some parameters. Appropriate selection of the parameters'
values is also another side of this issue. We can assign di�erent values to one speci�c parameter. Then
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we can examine how the algorithm is working with di�erent assigned values. It results in comparing
the implemented systems with di�erent values. But, it is really di�cult to determine the optimum
value for each parameter and achieve the best possible performance. Hence, some advantages of SVMs
wear other clothes unconsciously and become disadvantages in some cases. We are able to consider
this fact as an opportunity for enhancing the �nal performance of the implemented system. Another
point is tracking the behavior of kernel parameters and the �nal performance while initialization of
one parameter has changed. If we incorporate the weights of advantages and disadvantages of SVMs,
we will grasp the usefulness of SVMs in building e�cient models for plant recognition systems.

Another point remaining is how to feed the data into the SVM algorithm. To this stage, the ex-
tracted features are quantized by using the K-means clustering algorithm. After making a decision
on the size of vocabulary, the chosen size is used as the number of clusters. Then the center of each
cluster is found for next steps. For instance, if we create an 800-word visual vocabulary, the number
of clusters is equal to 800. We are able to create a histogram for visual word occurrences according
to visual word indexes and frequency of occurrences. It results in a new representation of original
images in an encoded format. This new format of data aims to provide a reasonable intelligence for
classi�cation of unknown data by feeding this data into SVMs.

There are di�erent kernel functions which can be used for the training phase. Some of kernel
functions such as linear, polynomial and sigmoid are functions of the inner product of the data. But,
the RBF kernel function is a function of Euclidean distance between the points of the data. Based
on the Euclidean distance, similarity depends on how close the points are. This concept helps to
perform better in some cases. For instance, if there are two points close to the origin point while
located on opposite sides, the Euclidean distance leads to higher values for these points whereas the
kernel functions based on the inner product give lower values to points. In this case, the result is not
correct.

One other important property of the RBF kernel is its smoothness that is also controllable. In
signal processing, we usually use low pass �lters to smooth signals. The RBF kernel function in
image processing is also a low pass �lter that selects out the smoothest solution. There is a direct
relationship between the smoothest solutions and the fastest convergence of sum of high order de-
rivatives. Moreover, by mathematical investigation of the RBF kernel function's formula, we can
�gure out that better performance of the kernel function happens when there is an in�nite sum of
high-order derivatives for fast convergence. However, the function is complex with an in�nite sum
of components. The outcome of this property is �tting of smooth solutions. It can contribute to
producing more separating hyperplanes and �nally achieving the goal of recognizing di�erent plant
species. In addition to being optimal, this type of kernel is aesthetically non-parametric as the model
is basically in�nite.

Our insight into di�erent kernel functions proves that the treatment of the problem is mathema-
tical and clari�cation of properties is essential to construct a useful model in the training phase and
empower the designed systems. The emphasis on parameter tuning cannot be eliminated for the trai-
ning step. It should be mentioned that the performance of the model can be improved dramatically
by adjustment of SVM's parameters. A detailed explanation of the used SVM is provided in next
sections.

6.6 Experiment, Discussion, Results and Performance Analy-

sis

Plant recognition has proven to be problematic when the number of species increases [169] [170]
since shapes of some plant species are similar and multi-classi�cation of many plant species is not an
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easy task at all. Additionally, the color of a plant of the same species changes in di�erent samples, and
some parts of the samples might be destroyed randomly. In order to build an e�cient and stable plant
recognition system for 32 di�erent plant species of the Flavia dataset, we used a machine with the
following speci�cations: Intel R© CoreTM i7-4790K, CPU @ 4.00 GHz and installed memory (random-
access memory (RAM)) 16.0 GB [169] [170]. All designed systems are investigated, applied and
evaluated by the same machine. We used a testing dataset consisting of 648 images of 32 di�erent plant
species of the Flavia dataset [169] [170] and six di�erent systems were implemented and tested for
obtaining empirical results. All in all, six di�erent automatic systems with various modern detection
and description algorithms for plant recognition were implemented and evaluated in the mentioned
testing dataset. The modern detection and description algorithms are: (1) SIFT, (2) HARRIS-SIFT,
(3) FAST-SIFT, (4) SURF, (5) HARRIS-SURF and (6) FAST-SURF.

By using novel combined approaches, we are going to extend the existing knowledge and techniques
which will result in the development of new plant recognition systems as well as the improvement of
the techniques which can be used in other di�erent �elds. We will also have a look at the experiments
performed and we will attempt to �nd the best results, in terms of accuracy, confusion matrix,
precision, recall, number of detected keypoints and the time needed. Moreover, the implemented
systems will be compared in two di�erent groups based on the description component. Comparison
of results contributes to the search for the minimum error and the best reliability. In each group, we
propose a possible combination of two di�erent modern algorithms to have more robust results in
the recognition system using a classi�er. In the following, the investigation of the methods and the
procedure of the experiments is illustrated.

6.6.1 Some Important Metrics for Measuring the Quality of Classi�er

Systems

In this section, some important metrics for measuring the quality of the classi�er systems are
introduced. These metrics are accuracy, precision and recall.

Accuracy

Accuracy is a metric measurement that shows the number of the correctly classi�ed samples
(images) of the dataset divided by the total number of the test samples in the testing dataset. The
percentage of accuracy is obtained by the following equation. In other words, it is an analogy that
depends on the correct prediction of unknown samples of the testing dataset and the total number
of the unknown samples of the testing dataset multiplied by 100.

Accuracy of Classification =
c

n
.100 (6.8)

c is the number of correct classi�ed images of the testing dataset where n is the total number of
the images in the testing dataset. This measurement is usually the start point of classi�cation pro-
blems. Other measurements will help get more information about the implemented systems and their
accurate comparison. Classi�cation error is another metric that can be derived from the accuracy.
This new metric is obtained by subtracting the accuracy (or percentage of accuracy) from one (or
100).

Precision and Recall

Precision and recall values are two metrics that can be measured by using the constructed confusion
matrix.
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Precisioni =
Mii

ΣjMji

(6.9)

Recalli =
Mii

ΣjMij

(6.10)

Universally, precision is the fraction of events where we is correctly declared i out of all the
instances where the algorithm declared i. Conversely, recall is the fraction of events where we correctly
declared i out of all of the cases where the true of state of the world is i. In fact, precision is a measure
of result relevancy, while recall is a measure of how many truly relevant results are returned.

6.6.2 Experiment and Discussion of the Systems by the SIFT Component

In this section, we used the SIFT algorithm as the main component of the implemented systems
in extracting features. Three di�erent combined methods have been used to do the detection and
description parts of the systems and obtain the �nal result by each one, respectively. The methods
used are SIFT, HARRIS-SIFT and FAST-SIFT. Table 6.1 shows the accuracy of the implemented
systems with each method.

Since the di�erence between the systems lies in detection and description parts, it is essential

System Percentage of Accuracy

Implemented System with the SIFT 89.35

Implemented System with the FAST-SIFT 81.94

Implemented System with the HARRIS-SIFT 80.4

Table 6.1: Accuracy of each implemented system [169]

to investigate and analyze the characteristics of these modern combined algorithms. The highest
accuracy has been obtained by the implemented system with SIFT algorithm for detection and des-
cription. The reason lies in the properties of this modern algorithm, especially in the detection phase
of the algorithm. In the SIFT algorithm, extracted features are scale, rotation and contrast invariant.
Keypoints of the SIFT algorithm are actually the extremum of a DoG scale pyramid. Then a set of
potential keypoints locations is found and many keypoints are produced. But, these keypoints should
be re�ned and purged to achieve more accurate, more useful and stable results because some of the
keypoints are not stable enough for further processing. The appropriate step, in this case, is to do a
detailed �t close by data for precise location, scale and the ratio of principal curvatures. This step
helps remove low contrast keypoints, which are sensitive to noise and poorly localized keypoints along
an edge. A Taylor series expansion of scale space is used to get a more accurate location of extrema.
If the intensity at this extrema is less than a threshold value (0.03 as per the original paper), it will
be rejected [169]. Furthermore, the higher response for edges has been provided by DoG, so edges
need to be removed too. To achieve this purpose, a concept similar to HARRIS corner detector is
utilized and a 2× 2 Hessian matrix (H) is applied to compute the principal curvature.

For edges in the HARRIS corner detector, one eigenvalue is larger than the other. In order to
achieve invariance to image rotation, an orientation is assigned to each keypoint. In addition, a
neighborhood is taken around the keypoint location depending on the scale, and the gradient magni-
tude and the direction are calculated in that region. The outcome is an orientation histogram with
36 bins covering 360 degrees. The highest peak in the histogram is considered as the criterion if the
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value of any peak is above 80% of the value of the highest peak. The orientation of that peak is also
calculated. The �nal result of this step is a set of keypoints with same location and scale, but in
di�erent directions. Consequently, it contributes to achieving good stable results.

Now, the keypoint descriptor is created and a 16× 16 neighborhood around the keypoint is taken.
It is divided into 16 sub-blocks of 4 × 4 size. For each sub-block, an 8-bin orientation histogram is
created. So, a total of 128 bin values are available. It is represented as a vector to form keypoint
descriptor. The HARRIS detector is one of the components in combined modern algorithms. It is
well-known to detect corners in images. In order to have reliable image matching, the level of the
algorithm's invariance is of high importance. In reality, this detection algorithm does not provide the
desired level of invariance, although it has been widely used for some computer vision applications.
In addition, the accuracy of the implemented system with the HARRIS component is not the highest
one.

The third explored algorithm was the FAST detector algorithm. This algorithm is used as the

(a) Simple (b) Approximately simple

(c) Approximately complicated (d) Complicated

Figure 6.10: Sample images for calculating the number of the keypoints

detection component of the combined algorithm, the FAST-SIFT. Basically, the FAST algorithm
performs faster than other algorithms, SIFT and HARRIS, and enjoys a considerable improvement
in computational speed. But the FAST algorithm is not very robust in the presence of noise. Less
analysis of possible pixels leads to achieving high-speed property in the FAST algorithm, but the
ability of the detector is reduced to average out the noise. There are many noisy features among the
detected keypoints by the FAST algorithm and the number of keypoints increases totally. It should
be pointed out that the noisy features are not appropriate for further tracking.

Considering the discussed points with regard to the di�erences in detection algorithms, one im-
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Figure 6.11: The detected keypoints using the SIFT algorithm [169]

portant issue is the number of the detected keypoints by means of di�erent algorithms. We examined
the number of the detected keypoints for four species of the dataset. The di�erence between the
four species is the complexity pertaining to the human vision. Therefore, they are labeled as sim-
ple, approximately simple, approximately complicated and complicated. For the SIFT algorithm, the
complicated one has the maximum number of keypoints while the obtained number of keypoints is
minimum for the simple one.

For SIFT and FAST-SIFT algorithms, the number of keypoints is calculated and shown in Table
6.2 where Figure 6.10 also shows the images of the samples.

Number of keypoints in modern algorithm Simple leaf Approximately simple leaf Approximately complicated leaf Complicated leaf

SIFT 113 255 625 1656

FAST-SIFT 234 1040 1193 5894

Table 6.2: Number of the detected keypoints

Figure 6.11 and Figure 6.12 represent the detected keypoints for one leaf when the SIFT and
FAST-SIFT algorithms have been applied to it, respectively.

The FAST algorithm �nds thousands of keypoints, while the SIFT and HARRIS algorithms �nd
only hundreds of keypoints. Detection with the FAST algorithm generates some noisy keypoints. A
large number of keypoints mixed up with noisy keypoints cause decrement of classi�cation accuracy
of the implemented plant recognition system with the FAST-SIFT algorithm. By using the SIFT
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Figure 6.12: The detected keypoints using the FAST-SIFT algorithm [169]

algorithm, both the quantity and quality of the detected keypoints were adequate for our desired
plant recognition system and these keypoints enrich the system for getting accurate and decent �nal
result.

In order to compare the performance of the implemented plant recognition systems, we searched
for a concept which could help us with a better evaluation of the systems. Two questions had to be
answered, (1) "How long does the process of running the system on a new image take for �nding
the exact plant species?" and (2) "Is it useful to compare the required time of di�erent recognition
systems?" So, we measure and then compare the system from this point of view.

The system with the FAST-SIFT algorithm needs the lowest test time in comparison to other
methods. The needed test time per image was measured for all of the three systems. Table 6.3 shows
the needed test time for each system per image in milliseconds (ms).

Used Algorithm Test time needed per image ms

SIFT 780.4300

FAST-SIFT 610.3900

HARRIS-SIFT 771.8700

Table 6.3: The test time per image [169]

So far, it has been discovered that performance of the FAST-SIFT algorithm performs better than
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Figure 6.13: Variations of the ν parameter for the implemented systems respectively [169]
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Figure 6.14: Variations of the γ parameter for the implemented systems respectively [169]

the HARRIS-SIFT algorithm if we consider both accuracy and the needed test time simultaneously.
Probably, one reason is the large number of detected keypoints by means of the FAST algorithm. Ho-
wever, the increase in the number of keypoints leads to the detection of noisy keypoints. The reason
behind a better performance in comparison to the HARRIS-SIFT lies in the increase of keypoints
which speeds up the process. Accuracy of both systems is close, but the needed test time makes the
system with the FAST-SIFT a better option in real-time applications for fairly good results.

Although very little information might be provided; in general, all detected pixels contain infor-
mation. Descriptors use the relationship of the pixels and model them to have better information for
further processing. Detected keypoints a�ect the results of plant recognition systems. The system
with the SIFT algorithm has the best result among the implemented systems using other algorithms.
High classi�cation accuracy and acceptable time for �nding the species of an unknown plant prove
that the implemented system using the SIFT algorithm is the best choice from among the imple-
mented systems in the �rst subset.

In the training phase, the RBF kernel has been utilized. The e�ects of varying some parameters
on the �nal error for all three systems using the RBF kernel were investigated. The experiment was
performed on ν and γ parameters. The ν parameter is an upper bound on the fraction of margin
errors and a lower bound of the fraction of support vectors relative to the total number of training
examples. The value of the ν parameter is between 0 and 1. To do the experiment, the γ parameter
is kept �xed equal to 1.0. Then the variation of the ν parameter was applied. As it is shown in Figure
6.13, error of each system increases when this parameter increases. By using the SIFT algorithm for
the system, the increase in the ν parameter has less in�uence on the �nal result. It is the proof of
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the system's robustness against the varying ν parameter.
The e�ect of changing the γ parameter on the �nal error is also shown in Figure 6.14 while the ν

parameter is held �xed at 1.0. There is a direct relationship between the increase of the γ parameter
and the increase of the error. In comparison to the ν parameter, the impact of γ increase on the �nal
results is less than the ν parameter for the implemented plant recognition systems.

An interesting matrix, named confusion matrix, is constructed. The confusion matrix is one n×n
matrix (n = 32 in our case) containing information about the actual classi�cation results (in its
columns) and di�erent category labels through the classi�cation (in its rows). Confusion matrix of
each implemented system is computed to get precision and recall values for each label of the systems.

In both Figure 6.15 and Figure 6.16, the minimum values among the systems belong to the
implemented system with the combined HARRIS-SIFT algorithm. It was predictable for us as it had
the least accuracy percentage between the three systems. The system with the SIFT algorithm has
lees value variations than other systems in both �gures. In comparison, the variation of the system
with the FAST-SIFT is in the middle of the other systems and has the second rank as shown in the
�gures. The investigation of the precision and recall measurements illustrates that the sequence of
e�ciency is the SIFT, the FAST-SIFT and the HARRIS-SIFT.

The surrounded area is another concept to consider when comparing the systems. A high area
under the curve represents both high recall and high precision, where high precision relates to a
low false positive rate. High recall relates to a low false negative rate. In Figure 6.15 and Figure
6.16, larger areas belong to the system implemented with the SIFT algorithm. Therefore, this system
performs better than other systems. Both high scores prove that the system is returning accurate
results (high precision), as well as returning the majority of all positive results (high recall). It should
be pointed out that the relationship between recall and precision can be observed for each system
individually.
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Figure 6.15: Precision measurements for the systems with di�erent detection and description algo-

rithms, SIFT, FAST-SIFT and HARRIS-SIFT [169]

If we consider the three implemented systems in the current set, we �nd out that the system using
the SIFT algorithm plays the role of gold among other materials. It fascinates us to review more
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Figure 6.16: Recall measurements for the systems with di�erent detection and description algorithms,

SIFT, FAST-SIFT and HARRIS-SIFT [169]

details of the extracted information from the graphs for this system. As shown in the �gures, the
minimum value of recall is less than 0.6 for this system while the minimum value of precision is more
than 0.6. Variation of values in precision is less than the variation in the recall and Figure 6.17
shows these variations. Also, more labels have values near the maximum and most of the values are
in the highest interval that is [0.8, 1].

In Figure 6.18, the measurements of precision and recall are de�ned for the system with the
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Figure 6.17: Measuring the precision and recall for the system with the SIFT algorithm [169]

FAST-SIFT algorithm. In this system, intervals of variation are larger than the system with the
SIFT algorithm. In addition, the minimum value of the precision is 0.5. After an investigation into
the minimum value of the recall, it is found that the value is less than 0.4 and equal to 0.3333.

The Figure 6.19 illustrates the precision and the recall of the system using the HARRIS-SIFT al-
gorithm. The minimum values of the precision and recall are 0.3 and 0.1666. Concerning this system,
the value intervals of precision and recall are larger than other systems. Additionally, this �nding is
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Figure 6.18: Measuring the precision and recall for the system with the FAST-SIFT algorithm [169]

expectable because the accuracy of this system is lower than other systems. Furthermore, a decrease
in the measured values is also its clear evidence.
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Figure 6.19: Measuring the precision and recall for the system with the HARRIS-SIFT algorithm

[169]

6.6.3 Experiment and Discussion of the Systems by the SURF Component

In order to demonstrate the applicability and reliability of the proposed systems, 648 test images
were tested by the systems using the SURF algorithm as the backbone of the combined used methods.
The testing dataset was formed out of the images of 32 di�erent plant species. They were used for
the testing phase of the implemented plant identi�cation systems. In fact, we were going to solve an
inverse problem where we had just images without any additional information for the identi�cation
of plant species. So, disambiguation between potential systems seemed inevitable and we found the
exact class (label) of the test image as the input of the system. Results of the recognition systems
were evaluated by comparing the output of classi�ers with di�erent combined modern detection and
description algorithms.

In this section, modern detection algorithms, the HARRIS and the FAST, are combined with the
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SURF to form one part of the whole approach. In this part, we built three di�erent plant recognition
systems, and one of the modern algorithms was applied in each one. The used methods are actually
SURF, HARRIS-SURF and FAST-SURF. One question might be asked, "Why do we use the SURF
algorithm as the new component instead of the SIFT algorithm in [169]?" The purpose is to obtain
better features leading to higher accuracy. Table 6.4 shows the accuracy of 32 plant species reco-
gnition results under di�erent systems by the SVM classi�cation algorithm with radial basic kernel
[246] [255] and di�erent combined modern and detection algorithms. The OpenCV library is available
online at [256]. The accuracies shown in the table were calculated from running the proposed systems
on a personal computer (PC) with Intel R© CoreTM i7-4790K, CPU @ 4.00 GHz and installed memory
(RAM) 16.0 GB [169] [170]. Of course, the performances of the proposed systems involve a trade-o�
between accuracy and other factors such as speed and needed time. Using the SURF algorithm leads
us to obtaining the highest accuracy among other algorithms and the algorithms proposed in [169].
The system implemented using the FAST-SURF algorithm has a higher accuracy when it is compared
to the proposed system using the SIFT algorithm in [169]. As mentioned before, all measurements of
the experiments have been obtained by doing the desired experiments �ve times and averaging the
measurements.

The maximum accuracy belongs to the system which was implemented by the SURF algorithm.

System Percentage of Accuracy

Implemented System with the SURF 92.28

Implemented System with the FAST-SURF 89.66

Implemented System with the HARRIS-SURF 87.19

Table 6.4: Accuracy of each implemented system [170]

Since the SURF algorithm is a sped-up version of the SIFT algorithm, the proposed system with this
algorithm is also speeded up version of the implemented recognition system with the SIFT algorithm
where the other components are similar to each other. Additionally, the accuracy of the system with
the SURF algorithm represents other aspects of its e�ciency in comparison to other proposed novel
systems. The SURF algorithm is clearly invariant with regard to scale, orientation and illumination.
The SIFT algorithm leans on the DoG for �nding scale-space, but the SURF algorithm goes further
and approximates the LoG with a box �lter. One may still ask what the main advantage of this
approximation is.

The momentum for the proposed approximation is that convolution with a box �lter can be sim-
ply calculated with the contribution of integral images. In addition, it can be performed in parallel
for di�erent scales. The SURF algorithm relies on the determinant of the Hessian matrix for both
scale and location. For orientation assignment, the SURF algorithm utilizes wavelet responses in
horizontal and vertical directions for a neighborhood of size 6s. In order to give weight to the ob-
tained responses, a Gaussian function centered at the point of interest is utilized. They are then
plotted in a two-dimensional space. The dominant orientation is estimated by calculating the sum of
all responses within a sliding orientation window of a 60 degrees angle. The interesting part is that
wavelet response can be found out using integral images very easily at any scale.

In order to continue the SURF algorithm and perform feature description, the SURF uses Wavelet
responses in the horizontal and vertical direction (again, use of integral images helps with the simpli-
city of the procedure). A neighborhood of size 20s× 20s is taken around the keypoint where s is the
size. It is divided into 4×4 sub-regions. For each sub-region, horizontal and vertical wavelet responses
are computed and a vector is formed. The represented vector gives the SURF feature descriptor with



104

total 64 dimensions. Ideally, it is good to know which aspects of the algorithm's performance this
lower dimension a�ects. By investigating various aspects, lower dimension results in a higher speed
of computation and matching in practice. It also provides a better distinctiveness of features.

The SURF algorithm has an option which can be considered as dimension extension and there is
the possibility of achieving more distinctiveness by this extended 128 dimension version [157]. The
sums of dx and |dx| are computed separately for dy < 0 and dy ≥ 0. Similarly, the sums of dy and |dy|
are split up according to the sign of dx, thereby doubling the number of features. As an important
point, complexity is not increased and the computational costs will not be much higher.

In order to underlie the interest point and create an improvement, trace of the Hessian matrix, sign
of Laplacian, was utilized. This process does not add any additional computation cost because it has
been already computed during the detection step and the improvement has been easily apprehended.
The sign of the Laplacian is responsible for distinguishing bright blobs on dark backgrounds from
the reverse situations. By getting the same type of contrast, we are able to compare features in the
matching stage. The advantage is using minimal information which leads to faster matching without
any reduction of the descriptor's performance. In addition, the SURF adds totally a lot of features
to improve the speed in every step.

In the HARRIS-SIFT algorithm, the detection component is a corner detection algorithm, which
is the HARRIS detector. Preferably we use the HARRIS points when looking for exact corners or
the time that precise localization is required. It basically �nds the di�erence in intensity for a dis-
placement of (u, v) in all directions. In some cases, this algorithm is not reliable, because detected
points of the algorithm do not have the required level of invariance for image matching. Although
the accuracy of the system with this algorithm is less than other systems in our work, it has been
used widely in di�erent computer vision applications.

To have a faster detection, the FAST detector is chosen as one of the components. It is based on
the accelerated segment test (AST) [257] which can be considered as a modi�cation of the SUSAN
corner detector. The FAST is not robust in the presence of noise and especially high-level noise as
it might happen in plant recognition and moore importantly in the natural environment. A small
damage in the leaf sample causes harmful e�ects on the used algorithm. Besides this disadvantage,
it is many times faster than other existing corner detectors and provides high levels of repeatability
under large aspect changes and for di�erent kinds of features.

We are seeking other criteria for the investigating the performance of the implemented systems at
this stage. Four di�erent species of the dataset were randomly selected, and the second experiment
was performed for calculation of the number of keypoints. The complexity of the species is speci�ed
and labeled as simple, approximately simple, approximately complicated and complicated according
to the de�ned level of the complexity by the human vision. The number of the keypoints are calcu-
lated for the SURF and FAST-SURF algorithms (see Table 6.5). Figure 6.20 shows the images of
the samples.

Number of keypoints in the modern algorithm Simple leaf Approximately simple leaf Approximately complicated leaf Complicated leaf

SURF 27 71 345 828

FAST-SURF 234 1040 1193 5894

Table 6.5: Number of the detected keypoints

Figure 6.20 shows the detected keypoints for one leaf when the SURF and FAST-SURF algo-
rithms are applied.

If compared with the number of the detected keypoints by using the SIFT algorithm [169], the
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Figure 6.20: The detected keypoints using the SURF algorithm (Left) and the FAST-SURF algorithm

(Right) [170]

SURF algorithm detects fewer keypoints and results in an adequate number of the detected keypoints
with a high accuracy. The FAST detection algorithm �nds a large number of keypoints mixed up
with noisy and undesired keypoints which cause a decrement of accuracy.

Performance of an automatic recognition system can be evaluated by the running time for its re-
cognition task. Due to the cost of operations, it is imperative that we should determine the required
time for proposed systems. Without any doubt, there is a relationship between higher running time
and costs of the whole system. We are looking for systems with less computation time. Therefore, we
change the orientation of our investigation and compute the needed time of the implemented systems
with di�erent approaches.

Used Algorithm Needed test time per image ms

SURF 445.2680

FAST-SURF 345.5120

HARRIS-SURF 528.7560

Table 6.6: The test time per image [170]

By using the SURF algorithm, faster computation was obtained without sacri�cing the accuracy.
In short, the SURF algorithm adds a lot of features which improve the speed in each step as well as
the detection and description parts. The analysis shows that the automatic system with the SURF
algorithm is faster than the system with the SIFT algorithm while the performance is somehow
comparable to the SIFT algorithm. The SURF algorithm handles the images with the blurring and
rotation well, but not changes of the viewpoint and illumination. This fact will have undesirable
e�ects if we work on the classi�cation of the natural images. It will be proven in next chapters both
theoretically and practically.

The system with the FAST-SIFT algorithm has the minimum required computation time in com-
parison to the other proposed systems and the big problem of the speed of the system. The needed
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computation is measured for all three systems in ms (See Table 6.6). In comparison with the system
using the SIFT algorithm [169], the system with the SURF algorithm needs less time for the same
dataset. The needed time for the system using the HARRIS-SURF algorithm is lower than the system
using the HARRIS-SIFT algorithm in [169].

We employed three di�erent combined modern methods to deal with the possibility of the trade-o�
between the accuracy of the classi�cation and the needed time for classifying the images. Although
the accuracy of the system using the FAST-SURF algorithm is less than the system with the SURF,
the system is still helpful because it reduces the risk of late prediction of the input test image.

The descriptor is a key element that contributes to modeling the relationship between the detected
points with little information. Additionally, it helps to have useful and e�ective model with richer
information. Since the FAST-SURF algorithm detects more keypoints than the HARRIS-SURF algo-
rithm, more information is supplied. It results in a better performance of the system. One important
characteristic of the FAST algorithm is its acceptable power for the repeatability which has a good
in�uence on its performance in the recognition of 32 di�erent plant species. Owing to the properties
of the SURF algorithm as the main description algorithm, the performances of the detection algo-
rithms, the HARRIS and the FAST, with the algorithm are acceptable and more than expected.

Now, we would like to focus on the in�uence of the changes in the SVM parameters for successful
classi�cation of the proposed systems. It also a�ects the answers to the questionnaire survey about
the performance of the identi�cation systems from another point of view. Fundamentally, when we
evaluate the automatic plant recognition systems, it is essential to know what and how parameters
might in�uence the systems. This type of evaluation has been skipped in some plant recognition
systems such as [258], [259] and [260] and the capacity of the implemented systems has been ignored.
However, even a small change in the parameters might a�ect the whole system and its behavior. ν
and γ parameters, as two SVM parameters, are chosen to consider their variation e�ects on the �nal
error of the systems. ν and γ parameters might produce unfavorable results.

Although both selected parameters have some impacts on the classi�cation power of the systems,
ν parameter has a more meaningful interpretation because the ν parameter presents an upper bound
on the fraction of the training samples which are errors (badly predicted) and a lower bound on the
fraction of the samples which are the support vectors. The value of the ν parameter cannot be out
of [0, 1]. In order to start the experiment of this step, the ν parameter has been changed while the γ
parameter was held constant at 1.0. By the increment of the ν parameter, the error of the systems
is increased and it is shown in Figure 6.21. The increase of the ν parameter has the least in�uence
on the system using the SURF algorithm in comparison to the other implemented systems. The
robustness of the system with the SURF algorithm against the ν parameter variations is interesting.
It proves the validity of the system without causing an inadmissible change in the system behavior
when the allowable parameter changes.

The γ and its variations are used to consider the e�ects on the �nal error of each classi�cation
system. The γ parameter de�nes how far the in�uence of a single training example reaches, with the
low and high values respectively meaning far and close [170]. For this experiment, the ν parameter is
kept �xed at 0.1. The increase of the γ parameter causes the error increment as shown in Figure 6.22.
The diagrams are ascending, but the values of the slopes are not large. The minimum slope value
belongs to the system using the SURF algorithm which indicates the robustness of the system in this
experiment. The increase of the γ parameter has less e�ects than the increase of the ν parameter.

The other experiment for the evaluation of the performance of the system is visualizing the results
of the system by the constructing the confusion matrix and extracting the precision and recall mea-
surements. Hence, the precision and recall are measured for each label of the implemented systems
by using the information of the confusion matrix. In both Figure 6.23 and Figure 6.24, the system
implemented by the HARRIS-SURF algorithm for the detection and description parts has minimum
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Figure 6.21: Variation of the ν parameter for the implemented systems respectively [170]
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Figure 6.22: Variation of the γ parameter for the implemented systems respectively [170]

values. We were able to predict it because it has the least accuracy percentage among the other three
systems. This experiment shows that variation of the obtained values of the system with the SURF
algorithm is less than the other systems in both �gures. The performance of the system with the
SURF algorithm is exciting due to the results shown in plotted �gures. The system implemented
using the FAST-SURF algorithm obtained the second rank among our systems. Its performance is
in the middle compared to the other systems of the current set of classi�ers. According to the mea-
surements, the sequence of the systems in this experiment is the SURF, the FAST-SURF and the
HARRIS-SURF.

Another concept to be compared is the area under each plotted graph. The larger areas under
the curve represent both higher precision and recall. These concepts as depicted in Figure 6.23 and
Figure 6.24, the system with the SURF detection algorithm has better performance in the systems
with the combined modern algorithms because the larger areas that belong to it. Both high scores
show that the system is returning the accurate results (high precision) as well as returning a majority
of the positive results (high recall).

For an e�ective investigation of the issue explained above, the relationship between the recall and
the precision is shown in a �gure for each system separately. For the system with the SURF detection
component, the minimum value of the recall is 0.6190 and the minimum value of the precision is more
than 0.7037 [170]. The variation of the values in this recognition system is less than the system with
the SIFT detection component used in [169], and it is a notable result. Figure 6.25 shows how the
system varies between di�erent plants. It is worth mentioning that the value of most labels in Figure
6.25 lies between 0.9 and 1.0, and this range, [0.9,1.0], is undoubtedly the highest possible interval.
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Figure 6.23: Precision measurement for the systems with di�erent detection and description algo-

rithms, SURF, FAST-SURF and HARRIS-SURF [170]
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Figure 6.24: Recall measurement for the systems with di�erent detection and description algorithms,

SURF, FAST-SURF and HARRIS-SURF [170]

In Figure 6.26, the precision and recall values are represented for the system with the combined
modern algorithm, the FAST-SURF algorithm. In this system, the minimum values of the precision
and the recall are the same and equal to 0.67 [170]. In comparison to the implemented system with
the SURF detection algorithm, there are more variations in the results of both precision and recall.
After the investigation of the minimum recall value, we found that this value is less than 0.4 and
equals 0.33. In comparison to the used FAST-SIFT algorithm in [169], this combined algorithm has
a better performance.
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Figure 6.25: Measurement of precision and recall for the system with the SURF detection component
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Figure 6.26: Measurement of precision and recall for the system with the FAST-SURF algorithm

[170]

The precision and recall measurements of the system with the modern method, the HARRIS-
SURF algorithm, are shown in Figure 6.27. The minimum value of the precision is 0.3 while the
minimum value of the recall is 0.1666 and it is less than the minimum value of the precision. The
di�erence between the maximum and the minimum is large in this system for both precision and
recall values, and the range of the interval increases. In other words, the larger intervals are covered
in the implemented system using the HARRIS-SURF algorithm for the obtained precision and recall
values. Obviously, the main reason is the classi�cation accuracy of this system that is lower than the
other systems using the SURF and FAST-SURF algorithms.

If we consider all experiments including the presence of 32 plant species, the results of the current
systems prove higher overall accuracies than that of the preliminary systems in pervious sections.
We tested the systems under a large number of the plant species where the images were not exactly
from the same plants in its natural environment. It is just the beginning and the further study and
work should clarify how we can become capable of distinguishing the plant species in the outdoor
environments and di�erent challenging conditions.

The results of the implemented systems show a good achievement in the recognition systems using
the modern combined algorithms, and also re�ect somehow the level of di�culty of our dataset with
huge diversity of the plant species. Overall, the systems using the SURF algorithm as their description
base seems to be a decent choice to keep the balance between the accuracy and the computation time.
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Figure 6.27: Measurement of precision and recall for the system with the HARRIS-SURF algorithm

[170]

So, a high classi�cation accuracy with good and suitable computation time can be achieved by the
system used the SURF algorithm with an accuracy equal to 92.28%. In order to decide on choosing a
useful system from the proposed systems, we have to know which plant recognition system favorably
suits our speci�c case e.g. we can ignore the accuracy if the computational complexity and the speed
are important for us. When the accuracy and the time are not critical issues, it is recommended to
detect and extract more features by using the system with the SIFT algorithm instead of the system
with the SURF algorithm.

In the end, we would like to consider one sample which was recognized di�erently by two di�erent
systems. Figure 6.28 shows the sample image (on the left side of the �gure) of one class which we
used as the input for two systems. One of the systems was based on the HARRIS-SURF, and the
other was based on the FAST-SIFT. The former system recognizes the sample input plant image
correctly and identi�es its class while the latter wrongly recognizes the real class. A sample image of
this class is shown in Figure 6.28 (on the right side of the �gure).

6.7 Applications of the Proposed Systems

Botanists use the plant identi�cation books like [261], [262] and [263] as their references for the
plant recognition. Normally, botanists �rst consider the leaf of the seen plant and try to �nd its
exact family. Then, they start to understand if the plant belongs to that family according to di�erent
factors like place. The botanists also check both sides of leaves and the veins. Considering all factors is
a tough task and it might result in the wrong identi�cation of the plants. In addition, this procedure
usually takes a long time to distinguish the exact class of the plant. The proposed systems have
extensive application in the botany and plant sciences. The botanists would be able to use the
developed systems easily. Moreover, the ordinary people and non-specialists, especially high school
and undergraduate students, can use the systems to identify the plants without any pre-knowledge
if they have recently started learning and training in this �eld.

In addition, the volumes of the biological information of the plants are increasing daily. Specialists
and non-specialists have access to this data gathered from all around the world and even museums.
The developed systems contribute to sorting out the information of di�erent plant species based on
the desired factors. Furthermore, it can be used for reverse image searching that would be helpful
in the research labs and biology departments. However, some functions and new features should
be added to the current systems. The reverse image searching also allows the researchers and the
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botanists to discover related contents of a speci�c sample plant species [264].
E-commerce websites may be developed to sell di�erent plant species from all around the world.

The owners of such websites will be able to identify the plant species without getting the information
from the people who want to o�er their products through the websites. Additionally, the owners of
the websites can examine the correctness and validity of the received information from the people
o�ering those plant species.

Figure 6.28: Sample input image for two plant recognition systems (on the left side), the system

based on the HARRIS-SURF classi�es it correctly, and the system based on the FAST-SIFT cannot

recognize it correctly and identi�es the input as another class. On the right side, there is a sample

of the wrong identi�ed image
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6.9 Conclusions and Future Scope

We tried to introduce a newer and more e�cient approach to the plant recognition using di�erent
modern detection and description methods. The bene�t is to have the systems for the identi�cation
of a large number of various plant species, 32 di�erent plant species in our case. The achievements
of the technical research in [169] [170] are to provide the optimal and robust systems used to build
several automatic plant recognition classi�ers. In addition, the use of di�erent algorithms resulted
in extracting and providing e�cient, high quality and repeatable features. In [169], the SIFT algo-
rithm and two combined methods were taken into account for the plant recognition and classi�cation.
Moreover, the accuracy measurement and the e�ciency of each method were described. The expe-
rimental results were also compared with some quantitative results and discussed according to the
human vision for four di�erent species. The experiments on the testing dataset, demonstrate that
the system using the SIFT algorithm has the best performance among the proposed systems.

In [170], three methods, the SURF and two combined methods which were the HARRIS-SURF
and the FAST-SURF, were taken into account for the plant recognition and identi�cation on the
Flavia dataset. For the implemented systems, the accuracy measurement and the e�ciency of each
method were explained in detail by performing the experiments. The obtained results are also com-
pared with some quantitative criteria and explained according to the human vision for four di�erent
species as we did for the previous set of systems in [169] before. The experiments on the testing
dataset demonstrate that the system with the SURF algorithm has the best performance among the
proposed systems in [170]. In comparison with the methods used in [170] and [169], the systems using
the SURF and the FAST-SURF have better performance and accuracy.
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Although we stopped our experiment on the used dataset in [169] and [170], we are able to build
systems based on the VLAD technique. In addition, it is possible to make some changes on this
technique and create new systems. The �rst new idea is based on expanding the VLAD technique,
using the squared residuals. It contributes to obtaining more compact representation of the images.
Moreover, it would be feasible to search for the two nearest neighbor visual words for aggregating
each descriptor. Improvement of the VLAD technique is also possible by combining the second-order
information and using the vector of locally aggregated tensors (VLAT) [266]. This approach is an
extension of the VLAD and two sub-terms representing respectively the �rst-order and the second-
order information constitute the VLAT approach [267].

In sum, the presented work highlights the developments in the �eld of the plant classi�cation
using the bag of words model as one of its main components. Applying di�erent detection and de-
scription methods proves that the initially-designed systems can be enhanced to provide a better
performance by using the combination of the detection and description algorithms. We also proposed
fast and robust systems that can be applied to the plant recognition as PC software. Our next goal
can be to improve the implemented recognition systems and �nd a solution to get a more e�cient
representation of the extracted information.



Chapter 7

Automatic Plant Recognition Systems for

Challenging Natural Plant Species using

Modern Detection and Description Methods

In this chapter, we address an important unsolved problem of plant recognition systems �rstly
and scrutinize the problem from di�erent aspects and points of view. In fact, we propose the �rst
forward-thinking work to �nd a solution for the problem of the natural plant recognition. Here we
start a new journey to secure the future of other related �elds such as medicine, drugs industry,
agriculture, etc. We introduce an e�ective scheme and design of an automatic system which will
thoroughly be inspected with di�erent possible methods. Several systems will accordingly be created.
The challenges are not only restricted to the plant recognition task. Various environmental challenges
such as wind, dust, shadows, etc. have undesired impacts on the recognition of plant species. Our
main goal is to compensate the gap between current existing plant recognition systems and the
real needed system. Hence, the modern dataset explained in 3.3.1 is utilized. Di�erent detection
and description techniques are applied to detect keypoints and extract features which are usually
called modern methods. It should be pointed out that the other main components are BoW and
SVM. The systems enable a reliable process for plant recognition which emphasizes on the purpose
of natural plant identi�cation. Since the systems are developed to ful�ll the necessities of the real
world, di�erent experiments have been carried out. The system using the SIFT approach yields a
high recognition accuracy of over 94%. We furthermore illustrate how each implemented system can
be used to improve the ability of correct and accurate recognition.

This work has been published in conference [268] and journal [151].

7.1 Introduction

The Earth is known by various names like, green planet, terrestrial planet and as the �fth largest
planet of the solar system. Exploring the history and existence of life on the Earth shows that our
planet is approximately 4.5 billion years old [151]. The history of life is estimated to have originated
approximately 0.7 billion years later [151]. However, life has developed on the Earth gradually, this
phenomenon can be considered as a constant occurrence and happening, not like an exponential
graph. To discover the Earth's history and to look back through the past years, the study of micros-
copic ancient plants and fossil records are essential for better understanding of the related issues.
The distribution of plants is not steady and it varies from one place to another all around the world.
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Considering one region, the distribution of one speci�c plant species varies in the unique nature and
environment of the supposed region. The presence of plants is not only limited to botany labs. They
are present in di�erent places, such as deserts and jungles, and within various �elds, such as literature
and mythology, with useful and inestimable historical records.

Imagining the Earth without oxygen is impossible. The e�ects of plants become more manifest
since no other living organism can exist on the Earth without plants because they form basic food
staple and persist as the largest factory for oxygen production. This is not their only role, however,
as plants are also responsible for the regulation of water cycles and they a�ect the environment
and climate. Agricultural activities depend on plants. In addition, many countries bene�t from these
activities in both political and economic situations which have an essential in�uence on the future of
countries.

In order to form the Earth and living organisms, photosynthesis was a turning point. Plants use
this process to convert light energy into chemical energy. Some of the early microorganisms evolved
a way to use the energy from sunlight to make sugar out of simpler molecules. However, unlike green
plants today, the �rst photosynthesizing organisms did not release oxygen as a waste product, so
there was no oxygen in the air [170]. The main part of these busy factories is the leaf which is the
core of production.

Plants have contributed to the development of human civilization as they appeared close to ri-
vers where they in�uenced the origins of modern life. They impacted the climate and its variations.
From this aspect, their signi�cance is also undeniable. Due to scienti�c �ndings, the perspiration
and breath of plants leads to a cooling of the atmosphere. They consume and lead to a reduction in
the amount of carbon dioxide through the process of photosynthesis. This reduction has an indirect
cooling e�ect. Furthermore, climate change alters the life cycles of plants. It is an interesting point
and approves the relationship between them. Additionally, plant species traits are the attributes that
most directly a�ect the ecosystem processes. They contribute to the healthiness of an ecosystem.

Additionally, people have utilized plants with medicinal properties for many years to �ght against
diseases. Many patients insist on using herbal medicines and drugs to avoid chemical drugs and
treatments which might have destructive e�ects over time. Besides being rich resources of ingre-
dients, plants produce all food for living organisms, even their own food in order to survive and
grow. Furthermore, many scientists are working in labs to help feed people all around the world and
produce lab-grown plants to meet the new needs of human life. New generations of plants will be
available as daily human food by genetic manipulations. The advancement of agriculture depends on
this new paradise which could be helpful for reducing the waste of crops.

If we explore the history of plants, we �nd some plant species in the past years which have be-
come extinct and we do not have any access to them now. Due to human activities, plant species
are in danger of extinction. A complete information database of di�erent plant species [3] [4] [5] [6]
can be collected. Plants' role in change of the Earth's climate after the Ordovician extinction which
happened more than 425 million years ago is irrefutable in addition to the activities a�ecting plants
in the past years. Furthermore, plants have had di�erent in�uences on the human life too.

Due to the importance of plants and their roles, their study is essential in various �elds. Conside-
ration of their di�erent applications is a demand which leads research to focus on their details. The
automatic recognition of plants is a novel �eld to contribute to research and future studies. A useful
plant recognition system should be capable of the identi�cation of di�erent species in all places, even
the natural environment. The connection between the computer vision and plants is undeniable. The
change of the typical manner of plant recognition has become important nowadays where automatic
plant recognition is also an exigency in the modern world. The typical plant recognition is impossible
with either a glance or a blink. Experts and botanists use some books and references that contain
plants information to identify the species which is a common and time-consuming way to identify
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plants. Accordingly, having an automatic recognition system helps scientists, researchers, managers
and engineers in labs, o�ces and factories. E�cient plant recognition systems enable people who
have not been trained in botany to participate in plant projects.

In the natural environment, we encounter plants grown in di�erent regions, weather conditions
and climates. The weather condition is one of the parameters which a�ects plant life and its existence
in a particular area. Recognition of plants in di�erent weather conditions is a new window of research
in the �eld which can be considered for the generalization in a recognition task. In order to have a
general system, the distance from the camera to plants is not only a problem. It should be conside-
red as another factor to help us while we are going to implement an applicable recognition system.
During day and night, the variation of light intensity in the environment is undeniable. Thus, it can
be considered as an important factor as well. Adding these factors leads to a huge challenge to invent
an accurate and secure system. Thus, recognition of species in di�erent conditions is a real need as
plants are ubiquitous to our life, and the development of an automatic plant recognition system is
mandatory and will be e�ective for di�erent aspects of life on the Earth.

There are many di�erent plant species with various shapes, colors and textures in various illumi-
nations and lighting conditions all around the world and particularly in Europe which is famous for
being the Green Continent. During the last decades, many e�orts have been used to make roles and
activities of robots closer to real humans. In spite of many successful attempts and the conceptual
philosophy, there is a big gap between the human visual system and those installed on robots. For
instance, the human eye sees and recognizes di�erent leaves of one plant species at very close distan-
ces to the whole plant even if there are shades of dark green, yellow, red or orange. The human brain
can di�erentiate shades of colors under di�erent lighting conditions and at di�erent times of the day.
But, this process is still not feasible for the current computer vision and robot systems. We prefer
building a general system instead of just a speci�c system for modeling the leaves of plants. This is
because one important factor of a model is the color, but leaf color is not always constant. We do
not rely on one detection and description algorithm. Instead, we are going to work on a combination
of detection and description algorithms to infer the visual di�erences that can be found by both
humans and robots. In addition, we would like to create a system that helps humans recognize plant
species completely without any pre-knowledge concerning plants.

If we compare the vegetation detection [269] to plant species recognition, we �nd that both vege-
tation and the leaves of plants can have di�erent colors, but there is a big di�erence between them. If
we consider the color in a small vegetation region, our expectation is to �nd the color homogeneous.
Therefore, it is possible to �nd the �rst vegetation pixel. Then, it is possible to search for the other
vegetation pixels among its neighbors and detect the vegetation region according to color similari-
ties. In plant species recognition tasks in challenging cases, it is impossible to consider only the color
similarity or dissimilarity because we face many di�erent conditions and situations.

Finding the answers to the two important questions is necessary at this stage, "Which component
of the plant is useful for the plant identi�cation systems? Does it help us to achieve our goal?" We
believe that �nding the useful component of a plant is a long jump to having a recognition system.
To �nd the answer of the proposed questions, we resile from the current stage and consider the
factors which should be taken into account for the correct selection of the component. The intended
factors are stability, consistency and independency for �nding the desired component. The seasonal
characteristics of plants surely a�ect the selection of the component. Therefore, we would like to
have a robust component against these characteristics. One important component of the plant is the
leaf. It can be investigated to build automatic systems for the plant recognition without any human
interface and interaction.

The leaves of plants are the �rst characteristic to be selected as a trusted and important part.
Therefore, we inspect these in detail. Some characteristics of leaves, like size and color, might vary
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in a single plant, but their typical shapes are generally the same as others. When we look at only
one leaf, each side of the leaf might have a speci�c color. It is sometimes hard for the human eye to
distinguish the di�erence of the colors. Furthermore, we presumably see one plant that its leaf has
been transformed and it is going to be a dried leaf. In other case, the lower side of the leaf might be
rolled to the upper side and the leaf loses its original shape. In addition, if we suppose that we are
looking at an apple tree, the diversity of the leaf shapes in this speci�c tree is high. This diversity
adds more challenges to easily identify the species of the tree. It is also hard for the human eye to
determine whether the leaves are exactly similar to each other and whether they are coming from
the same apple tree. Similarly, through the use of robots, it is really hard to classify natural plant
species.

Although we think that the leaf shapes are commonly structured, we sometimes �nd turbulent and
unstructured shapes among the leaves of one speci�c plant. Therefore, we cannot trust the texture of
leaves in all outdoor environments. Hence, the texture orientation is not a good choice in challenging
cases. In general, we are able to categorize the shapes of leaves in nature as below [270]:
- Ovate
- Obovate
- Lanceolate
- Oblanceolate
- Cordate
- Obcordate
- Elliptical
- Oblong
- Cuneate
- Linear
- Peltate
- Spatulate
- Reniform
- Hastate
- ...

Some factors, such as the smoothness of margins, form of curves, position of centers, condition
of blades and the length and width of leaves, etc., di�er in di�erent plant species. The �rst e�ect is
the increase in the changes of shapes between various leaves. The diversity of plant species and the
various possible conditions in nature make the recognition of them harder than what we assume. Mo-
reover, plants can survive in di�erent places and regions by means of adaptation. Hence, adaptation
is one important property of plants. It helps them in hard life situations. This concept might also
result in changes to the shape of plant leaves. In addition, the shapes of the leaves change for some
plants during day and night. This point is a golden key for opening the new land of plant recognition
systems.

The investigation of plant recognition systems proves that the current plant recognition systems
like [271], [272] and [49] are working under constrained conditions. In order to conquer these con-
ditions, the �rst requirement is to consider some factors that should be added. It is necessary to
�nd the factors carefully if the goal is to build a useful system for various real conditions. Moreover,
the system should be robust enough to be used in di�erent natural environments. Thus, di�erent
aspects or components of natural environments should be taken into account. More precisely, climate,
weather and wilderness can a�ect the performance of a plant recognition system [268]. Therefore,
we consider weather conditions as one of the added factors. Removing this factor would mean losing
one of the pieces of the desired puzzle. In addition, di�erent types of natural light can produce a
wide variety of appearances when an image is taken of a plant. Even though the light source, the
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sun, is the same, this source provides a di�erent light intensity every hour. Therefore, we have to
create a system which can be utilized at di�erent times of the day. The enhancement of the system
depends on how it works under di�erent variations of light intensity. Having a system that recognizes
plant species in di�erent light intensities is a signi�cant goal. In other words, the system should work
perfectly without any consideration of time of day, whether we are using the system in the morning,
noon or evening.

Furthermore, in agricultural applications the distance between the observer and the plant species
might be more than 1 meter or less than 50 cm. The observer can be a human or a system, machine
or robot. The camera of the system plays the role of the human eye in this case. If we change the
position and the distance of the leaves from the camera, we are simulating the mentioned fact that
might happen in the real world. Furthermore, the point of view has an in�uence on what is seen of
the plant species, too.

The subjective and objective abilities of the human eyes vary between one person and another.
This also happens in plant recognition systems if we use a speci�c camera or a random camera. The
independency of the identi�cation system from the used camera is also an important point for obtai-
ning a general system. This fact also will be considered in developing and testing a real-time system
in the future of our work. At this stage, we choose our camera without any additional consideration.
Therefore, the type of the camera will not have any e�ect on the proposed systems. It can contribute
to us developing a general system.

A consideration of these continuum factors helps to develop and employ a reliable and general
system for various applications with the purpose of plant recognition. Figure 7.1 depicts some sample
images of the dataset which belong to one plant species [268]. These new factors will add unique and
new features to systems that will be built. In addition, they make the systems more applicable and
e�cient. Although these are new challenges, the implemented systems should tackle all challenges to
achieve the desired goals.

Figure 7.1: Four di�erent sample images of the Cornus [268]

The result of modern life is modern needs. Therefore, we need to develop accurate systems to assist
botanists and professionals. Here we would like to go deeper into the issue of the plant recognition
and talk about it in another way. The �rst need of any computer vision system is to have visual
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information which can be images or frames of videos. To acquire images, we use a camera that has
the role of the human eye. While a human is looking at a tree, the image of the scene and the tree
will be processed in the brain. The related information will be stored as well. Then some important
information of the scene will be highlighted in the memory. The individual will be able to remember
this information after a while. With this in mind, we propose a system that is able to act like the
human brain and vision systems for recognizing di�erent plant species.

As we have discussed, the plant recognition system is based on the shape of the leaf. Due to
added factors, the correct extraction of features and useful information is the critical point in the
initial step of inventing the system. The appropriate analysis of the constituent shapes and using an
accurate technique aims at the data processing. The automatic plant species recognition, which is a
signi�cant necessity, relies on computational methods to extract discriminative features from images
like other image recognition tasks [273] [274] [275]. Due to the needs of modern life, the tendency
to use automatic systems has increased recently, especially within the last two decades. Thus, a set
of techniques that learn features automatically has become a priority. It is one of the main goals
to transform raw data to correct representation which can be e�ectively exploited in machine lear-
ning and pattern recognition tasks. The two main advantages of feature learning are the automatic
analysis of images and e�cient use of features in classi�cation and recognition tasks. Furthermore,
real-world data is commonly very complex, redundant, variable and even noisy. For instance, images
taken in outdoor environments are faced with natural factors, like light intensity and illumination.
The adaptation of present strategies is very important to automate and generalize plant recognition
systems.

In order to create an automatic system for plant identi�cation, many methodologies have been
proposed to analyze leaves of plants. Most of the proposed approaches have attempted to de�ne
contours of leaf shapes and apply the contours for their own purposes. Geometrical parameters, such
as area, maximum length, maximum width and perimeter, are applied in [100]. These parameters
are not e�ective enough to obtain a general recognition system in the natural environment because
the distance between the camera and the plants changes as one of the assigned factors. In additi-
on, the size and numbers of leaves in each image will not remain �xed. As a result, methodologies
with similar concepts and ideas are useless in such environments. The reported work in [101] uses
both color and geometrical features. As discussed before, the color is not a good choice in outdoor
and challenging natural environments. Other methodologies have been introduced in [276], [277],
[278], [279], [280] and [281] for shape representation. In [282], the proposed method is based on the
curvature scale space (CSS) [282] approach and the classi�cation of chrysanthemum leaves is based
on the KNN method. In another work [283], region-based shape recognition techniques have been
applied for doing leaf image classi�cation. The �nal accuracy was 82.33% for the proposed method
where the contour-based method had 37.6% classi�cation accuracy [283]. The important point is
that arti�cial images have been utilized in the mentioned literature. Despite the e�ciency of these
proposed approaches, they are a little far away from our work at this stage because the work is based
on natural images. Some works like [176] and [284] can only be applied to the certain species. In [52],
the implemented system is actually a semi-automatic system and the �nal accuracy is 85%.

Popular modern approaches, such as the SIFT and the SURF, are used by researchers and scien-
tists to extract features of images. The fundamental characteristic of the mentioned methods are
stable local feature detection and good representation of the original data. The SIFT, which is the
resistant algorithm to the usual image deformations, includes both feature detection as well as des-
cription parts. It can be applied separately due to the desired purpose. In addition, a large amount of
keypoints from one image will be obtained. The keypoints are originally the oriented disks attached
to blob-like structures of the image. Being invariant to the image translation, scaling and rotation
has made the algorithm popular and considered as an accurate feature detector and descriptor. In
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[169], the basis of the methods used is the SIFT algorithm to recognize plants automatically. In order
to classify �owers, SIFT features are utilized in [285]. The scope of using the SIFT algorithm is also
extended to other �elds such as object tracking [286], video matching [287] and even image retrieval
[288].

The FAST algorithm is a popular approach to detect corners when real-time application is de-
manded. It is a fast algorithm from this point of view and it provides a lot of features, without the
matter of the level of usefulness of features, in a short time. However, one important disadvantage of
this algorithm is that it is not robust to high levels of noise. In [169] and [170], the FAST approach
is a part of the combinational methods for automatic plant recognition.

Another interesting and popular approach for the feature detection is the HARRIS algorithm,
proposed by Chris Harris and Mike Stephens. Since corners show a variation in the gradient of an
image, this variation can be utilized to do a detection procedure perfectly [151]. The HARRIS me-
thod was used as a component of the combined methods used in [169] and [170] to do automatic
plant classi�cation. It should be pointed out that the used dataset in [169] and [170] is not natural,
but it is practically a common dataset. There are several plant datasets such as the Flavia dataset,
ImageCLEF dataset [90], Leafsnap dataset [289] and Intelengine dataset [76]. Each dataset contains
di�erent plant species. According to the need for a natural dataset for our �nal targets, we started
the initial step and prepared a useful dataset to ful�ll the demands of building a general, robust and
accurate system. This new and unique natural dataset includes 1000 natural images of four di�erent
and common plant species of Siegerland, a region in Germany. The types of the plant species are
Hydrangea, Amelanchier Canadensis, Acer Pseudoplatanus and Cornus. The used dataset has some
unique characteristics and puts our work and research in the right direction.

The current chapter is devoted to principal directions of the e�ort of �nding a right approach for
implementing a useful natural plant recognition system. In this content, we are going to start solving
the problem of the natural plant recognition and examining di�erent methods to achieve our goal.

For an easier understanding of the case, let us start to do several segmentation algorithms to
determine if they could be used as a part of the desired systems. With respect to the segmentation
outcomes, it is easier to go through the next steps and make a correct decision. We are dealing
with multiple branches of leaves, not only one leaf or a pseudo-scanned or scanned leaf with a white
background. In natural environments, additional factors such as wind, angle of the received sunlight,
etc. are making the original problem much harder. Overall, the procedure of implementing the clas-
si�cation systems will be explained in detail.

The structure of the remaining chapter is organized as follows: Section 7.2 describes how we ex-
amine pre-processing steps to know if it is useful for natural plant recognition. Section 7.3 provides
a general overview of the plant recognition problem. Section 7.4 introduces the form and design of
our system while the implemented systems are also illustrated in this section. All experiments and
results will be discussed in section 7.5 while section 7.6 describes a short talk on the experiments,
results and performances of the natural recognition systems. Section 7.7 describes the future work
and section 7.8 provides the acknowledgment. The last section, section 7.9, concludes the work of
this chapter.

7.2 Pre-processing Examination

One traditional way of designing a recognition system is to initialize the �rst step by using a pre-
processing part. According to the state-of-the-art work in [290], the idea is to use a segmentation part
or additional detection part. Finding a suitable pre-processing methodology contributes to enhancing
the quality of the input images and preparing the raw data in a usable correct form for the next
steps. The raw images might consist of artifacts and noise because we are navigating in natural and
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outdoor environments to capture photos from di�erent plant species. In other words, we can apply
pre-processing methodologies to reduce the input information and retrieve just an important set of
useful data where de-noising would also be possible due to the nature of the used methodology.

In addition, the other goals might include detecting speci�c patterns in the input data, decompo-
sing the input data into principal components and dealing with constraints and restrictions of the
images taken. Intuitively, in the case of natural images, there is no dominant direction for creating
a recognition system and soaring to the de�ned goals. Therefore, we are trying to test di�erent
approaches in the ocean of possible methodologies to �nd the e�ective approach which is a buried
treasure, so to speak. Literature surveys reveal the availability of various segmentation, contour de-
tection, corner detection, edge detection, �ltering, etc. methods to remove desired parts of images for
pre-processing analysis. Some questions behind the idea of the pre-processing are listed as follows:
- Should we remove the background of a natural image to obtain the desired region which is the leaf?
- If we have several leaves of a plant in an image, is it essential to identify the contour of each leaf?
- Do we get any bene�t from the color segmentation of an image for the detection of a leaf of a plant?
- If we �lter the background and remove the unwanted region around a leaf, is the obtained result
good enough for the matching or the next steps?
- If we eliminate some important factors, such as weather condition and the time of day, distance,
etc., and only take the pictures without any consideration of the light intensity and illumination, do
we obtain acceptable results, even visually good results?

Although, there are several previous projects that have attempted to facilitate their tasks by doing
additional pre-processing, our unsolved problem is still like a fresh and unknown fruit which has not
yet been cut. And we are going to perform some algorithms to lower the unwanted information in
each image. For instance, we may be able to remove the bad e�ect of edge re�ectance and reduce the
complexity of the original image. Let's consider possible scenes and objects that we might see in an
image taken in the natural environment. In the case of a simple background and the existence of one
leaf, we are usually able to detect the leaf from the background and segment the whole image into
two parts, leaf and background. Conversely, if we have a complex background and several leaves in
one image or a leaf with a complex background, this scene is even more complicated for the human
eye. However, the human vision system works better than a computer-based system for identi�cation
and discrimination of the objects, background and foreground. The human vision system has also an
inimitable ability. Hence, human can predict and estimate the shapes of leaves if a part of one leaf
is not visible and it is under another leaf. In this case, the gap is related to the di�erence between
understanding and the mentality of the human and machine as well as the feedback that might be
stored in the human brain.

In April, 2015, we started to work on the possible pre-processing methods, and attempted to
propose a comparative study in this section. An iPhone 5s has been used to take pictures from
three di�erent plants around the Campus Hölderlin of the University of Siegen, located Latitude:
50.90592 | Longitude: 8.02850. The �nal aim is to highlight the performance of such a pre-processing
step for further processes and �nd out if we are able to extend this tool for our system design. The
images are the Standard Red Green Blue (sRGB) that was created in 1996 by Microsoft and Hewlett-
Packard (HP) [291]. The images are challenging in terms of colorimetry [292], illumination or defects,
however, they are not as complex as the images of the modern dataset. Figure 7.2 depicts three
sample images of the plants in the natural environment. This section �rst details the state-of-the-art
and then refers to (11.1) concerning the implementations and available tools, and �nally, various
illustrations consisting of the aim of the study and the conclusion are addressed.
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Figure 7.2: Sample natural image with defect (Left), sample natural image with colorimetry (Middle),

sample natural image with illumination problem (Right)

7.2.1 State-of-the-Art

Many proposed methods are based on the analysis of a uniform and single-colored background,
for instance a white background [293] [289]. Another typical solution is to use a pair of images and
then do the removing process of the background [294]. In the case of our work, some segmentation
methods have been proposed to analyze images with a natural background based on a single image
[295] [296] [297]. The guided active contour (GAC) algorithm has been proposed in [298] to segment
tree leaves on a natural background.

In this section, we use the iPhone 5s for photographing. Other cited works in this �eld are proposed
in [299], [300] and [301]. Some techniques have been implemented and applied as shown in (11.1).
The important factors are the capacity and reliability of the method and also the e�ciency of the
extracted parts of the image for the next steps.

7.2.2 Set-up and Study of Algorithms

In order to overcome the di�culties of the strong a�ection of the natural environment and the
unwanted pseudo-noise in the captured images of the outdoor environment, it is necessary to set up
and examine several available algorithms. In outdoor cases, the images are usually noisy. Contrast
variation and changes of brightness throughout the images usually occur. The images taken repre-
sent palmately lobed leaves around the Campus Hölderlin of the University of Siegen. Obviously, for
plant recognition systems, a good image gives a better performance recognition rate than a noisy
image. With regard to the quality of the images, we do not consider the impacts of this factor in this
phase of the research, although the poor quality of the images captured impacts the performance
and �nal recognition rate. In natural images, it is also hard to �nd the best way for doing detection
and description of high-quality features. To shorten the description and explanation of this section,
the analysis of various pre-processing techniques, Canny algorithm (edge detector) [302], K-means
color clustering, grabcut algorithm [303] and superpixel-based segmentation algorithm [304] for qua-
litative object segmentation and detection are provided in (11.1). Our purpose is to �nd out if these
algorithms will provide superior performance in the matching and recognition tasks.

7.2.3 Aims of the Current Study

We present in this section and (11.1) a study of di�erent methods of segmentation and edge
detection applied to the problem of the pre-processing for the extraction of plant leaves in natural
images taken in an outdoor environment. During this process, we �rst highlighted the problem and
the performance obtained by using each method explained in (11.1). The quality of segmentation and
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detection tasks varies. Each method yields to new �ndings and properties of results. We analyzed
the contributions of the algorithms if we used them as a pre-processing step. This analysis allowed
us to know the e�ciency of the choices and the di�erent aspects of using them as the �nal choice
of the pre-processing for plant recognition systems. This work is useful for designing and developing
an online platform for both beginner or expert users to examine various algorithms for their own
images, either arti�cial or natural.

Related parameters can be provided as a part of the tools for making better analyses and �nal
validations. The application of this platform will not be limited to the plant images. Other images
such as medical images, microscopic images, nuclear images, etc. can also be used. The user can give
grades to each used approach for its own test image and obtain a ranking list of the approaches at
the end. As an example, the user is able to specify the object position in GrabCut with the provided
tools and then run the approach, although it can be applied as an automatic approach too. Some
additional features such as morphological operations, thresholding in HSV space or thresholding in
RGB space are also useful to add. They can provide extra characteristics to the platform. These
features have also been implemented in our study, but further explanations of them is beyond the
scope of this stage. One remaining point is the importance of the segmentation concept in di�erent
areas of image processing and computer vision. An image can be segmented based on the pixel [305],
region [306], edge, as well as edge and region hybrid segmentation and clustering one [307].

7.2.4 Conclusion

After implementing and examining the described methods in (11.1), we �nd that a lot of additional
costs might be incurred through the pre-processing of the entire plant recognition system. Given the
importance of a real-time system and the high variety of images of the natural dataset, we decided
to utilize local feature detection methods as the basis of the future systems instead of initializing
the process by detecting and segmenting the leaves in each natural image. One point should not be
forgotten and that is that we are not involved with man-labeled images and man-made features. Our
"rocket", i.e., the natural plant recognition system, does not have ordinary fuel, and its "fuel", i.e.,
the images of the dataset, is very challenging. Consequently, it is critical to �nd the best "propulsion",
in our case the most powerful features, and start with a great forward momentum. We rely on the
drive of our previous experiences and start to develop our natural plant recognition systems without
any pre-processing.

7.3 General Overview

Plants variety leads to a diversity of properties. Even for each speci�c species there are extremely
unique characteristics. In the plant recognition, and stemming from diversity, one neglected area is the
species classi�cation and identi�cation. Accordingly, we need to develop recognition systems which
are accurate, reliable, and general and automatic, that work without needing botanists. One missed
point here is the system's compatibility with di�erent environmental and illumination conditions such
as weather, distance, etc. In order to have a generalizable system, the �rst step is determination of an
appropriate dataset with natural images and videos taken from natural environment. As inaccurate
selection might lead to destructive e�ects on the whole system, �nding an e�cient method to extract
the most useful data is vital to feed data appropriately into the classi�cation step. It could be done
through implementing an automatic system.

Inputs from raw images are mostly too large to be processed by algorithms and systems. Therefore,
the �rst step is to detect features and output the signi�cant locations and information of the natural
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images. This step is a low-level operation which has been used in many image analysis problems and
computer vision applications. It helps to represent the initial natural data in a reduced format. For
instance, corner detectors �nd locations of corners in one image where the detection part of the SIFT
technique is responsible for information encoding about the local neighborhood image gradients the
numbers of the feature vector. But the question is which parts of a natural image will be the interest
points.

Historically, interest points can be corners, blobs or edges in an image. To expand the notion of
the interest points, the following terms are determinative:
1- Well-founded and clear mathematical de�nition.
2- Well-de�ned position in the natural image space.
3- Richness of the local image structure around the interest point.
4- Simplifying the further processing in the vision system when it is detected.
5- Stability under local or global perturbations in the image domain. If illumination or brightness
variations occur, the interest points should not lose the repeatability characteristic, and they can be
reliably computed in any condition.
6- Correct behavior and high degree of robustness of the interest points when the scale of natural
images changes.

Through a consideration of the richness of the detected points, the e�ciency of the detection tech-
nique will be evaluated and determined. The concept of feature detection refers to the techniques
that help to compute abstractions of image information. In addition, it contributes to investigating
and making local decisions at every image point and pixel whether there is a feature of a given type
at that point or not. There are di�erent feature detection techniques. For instance, HARRIS and
FAST are two common techniques to do feature detection which can be applied to relax the detection
step and the complexity of the original natural images. Fathi Kazerouni et al. [169] and [170] used
various detection algorithms, such as HARRIS and FAST, to detect the interest points which had
the real concept of computing the abstractions of the image information.

Concerning the execution time of the system with the SIFT algorithm in [151] for plant recogni-
tion, our decision is to replace the mentioned algorithm by the SURF algorithm as the core of the
description methods. A multi-resolution pyramid technique is utilized in the SURF algorithm to ma-
ke a copy of the original image with a pyramid shape to obtain an image with the same size but with
a reduced bandwidth [268]. Thus, a special blurring e�ect on the original image, called a scale-space,
is achieved [268]. This technique ensures that the points of interest are scale invariant [268]. In [170],
the SURF method was used to distinguish 32 di�erent plant species, where the used dataset was
a classic dataset and the images were captured against a homogeneous and white background. The
�nal accuracy with the SURF method was 92.28% which is higher than the other proposed systems
in [169] and [170].

A PNN is the proposed approach for the semi-automatic classi�cation of the plant species in [45],
and the obtained accuracy is 91.41%. In addition to being semi-automatic, this system was has been
tested on only classic and arti�cial images. One detection method can be combined by the SIFT or
SURF algorithms and a strong tool for the detection and description will be provided. For instance,
this powerful tool was used in [169] and [170] and 32 di�erent plant species were recognized automa-
tically, and the highest obtained accuracy was 92.28%.

In order to organize the obtained information and form them in a useful way for the next steps,
an intermediate step has been considered to connect the previously described step to classi�cation.
One e�cient technique is the BoW which represents the descriptors in a compact format. It provides
a brief summary of feature representation and contributes to showing an image in a feature vector.
This vector is ready to be applied in a machine learning algorithm. Historically, this technique was
often used in the NLP. Nowadays, it has been applied to images, and a word-like concept can be
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considered as the number of local features in image. In simple terms, this technique treats the docu-
ment as a set of words. Therefore, the BoW can be applied to images as analogies. In an image, a
word can be considered as the amount of local features. When images are expressed by vectors, it is
possible to use the SVMs for the classi�cation step.

The next step is to �nd and select a good learning technique. A learning technique may be either
supervised or unsupervised. SVMs [186] [308] [309] and Bayesian classi�ers [186] [310] [308] are the
most popular techniques between the supervised learning methods, and we should not forget that
the decision theory approaches are behind classi�cation solutions.

To perform the training stage, we chose a robust, accurate and e�ective algorithm which can also
be applied even when we have a small training dataset and the �nal goal is to handle the multiple
classes. In 2014, an SVM was the backbone of a system which was proposed for the leaf classi�cation
by extracting 12 leaf features and orthogonalizing them into 5 variables where the variables were fed
into the SVM [51]. In an SVM algorithm, a vector based machine learning method, each data item
can be plotted as a point in the n-dimensional space with the value of each feature being the value
of a particular coordinate. Then, the classi�cation will be performed in the next part.

We have divided our natural plant dataset into two sub-datasets. The training sub-dataset consis-
ted of 664 images and the testing one had 336 challenging images. A detailed explanation is provided
with a step-by-step procedure for the construction of an automatic system for the natural plant
species recognition.

7.4 Approach for Natural Plant Recognition Systems

Natural plant recognition is of high signi�cance because it conveys the goodwill of di�erent app-
lications in medicine, drugs, etc. It is a signi�cant issue among agricultural business undertakings.
In addition, it is not only a concept for today's world. It will strongly in�uence the future success
of humans on the Earth. Tremendous amount of plant species all around the world in�uences us to
consider them deeply. One point is to try to use the plants in appropriate applications according to
the demands of human life and the environment. Automatic plant recognition systems are required
to operate at a high level of reliability and accuracy. The applicability of a proposed system in the
natural environment and real-world scenarios has become more important in recent years.

The methodology presented here is an e�cient approach for challenging plant recognition. Va-
rious systems have been developed by consideration of the approach. In general, it is comprised of
two main phases which are actually training and testing. The �rst phase undergoes three stages:
image pre-processing, feature detection and extraction, modeling and training. These sub-phases are
debriefed in the three related sections. In order to recognize and classify plant species from a set
of plant images, the natural plant images are read before undergoing the pre-processing. Then the
grayscale images are computed from the real-world data. In other words, the beginning step is the
pre-processing part and it deals with the conversion of RGB images. The second step will be done by
consideration of the detection and description operations. The approach continues with the modeling
and training as the third step. The �nal step is the detailed test procedure of the implemented sys-
tems. To summarize the overall process of the proposed approach, the block diagram of the proposed
system is shown in Figure 7.3.
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Figure 7.3: The overall process of the proposed natural plant recognition system

7.4.1 Image Pre-processing

The nature of the input images is complex, and the input images are the natural and challenging
images in the RGB model. Each natural image of the dataset contains a scene of a plant and we
observe di�erent objects such as leaves, stems, challenging backgrounds, etc. An RGB image is
composed of three channels: red, green and blue. These channels are usually abbreviated as R, G
and B, respectively. By scrutinizing our images, we recognize that the color space is one of the most
common color spaces, sRGB. As of 2007, the sRGB color space can be considered as the default color
space for the RGB model. Almost all equipment for recording and displaying an image with the RGB
color model supports the sRGB color space at a minimum.

Looking at the color quality diagram below in Figure 7.4, you can see that the triangle environment
depicts the color range of the sRGB compared to the human vision range (CIE 1931 Color Space)
[311]. A large part of the human color vision is outside the color space of the sRGB color space.
These are not necessarily the colors we can see and they cannot be displayed in the sRGB color
space. These colors are outside the scope of the color space of the sRGB. The fact that most human
sight is outside the sRGB color space explains why this color space is at least minimal. It should be
considered as a limited color space.

7.4.2 Feature Detection and Extraction

The second step of the approach is the keypoint detection and description parts which are similar
to oxygen for the human respiratory system. When humans are looking at a scene, they usually focus
on important and interesting details of the scene. Our decision on selecting the type of the feature
detection and extraction is inspired by this fact. To represent images, there are two main methods,
called global representation and local representation. In the mentioned scenario, the human behavior



126

Figure 7.4: Color scheme for the sRGB color space compared to the human vision (CIE 1931)

while viewing a scene can be compared to the global representation and global features. It means
looking at the whole image and the word global is actually the interpretation of this subject.

Human's attention to speci�c parts and details of the scene is comparable to extracting local
features of the objects in the scene. In addition, the human eye is undoubtedly able to extract all
information from a raw image. But, not all information has the same importance level for computer
algorithms. Additionally, some information might not be useful for further applications. Useless in-
formation may also increase the computation costs. This point is one of the reasons that motivated
us to choose local features instead of global features.

While photographing in outdoor environments, di�erent factors, such as illumination, light inten-
sity, viewpoints, angle, etc., undeniably change. Consequently, priority is given to a method that is
resistant to changes. The stability and power of the performances of selected methods against the
di�ering conditions of various scenes, including light intensities and illuminations, scaling, geometry,
and shift transformations, are very important at this step. Since global methods are not invariant to
transformations and they are mostly sensitive to di�erent changes to the discussed factors, they are
not appropriate for real natural images. However, local methods are rich enough to remain invariant
to di�erent changes, such as viewpoints and illumination. They are usually based on some salient
regions. We will be able to obtain the relevant information from the natural data. Hence, we are
able to represent any natural plant image based on its local structures by using a set of local feature
descriptors extracted from a set from the regions of interest or keypoints. The structures of local fea-
tures are usually helpful to be used in object recognition and classi�cation applications as the local
structures are more stable and distinctive than other structures in smooth regions. Meanwhile, they
lead to achieving high accuracy. In Figure 7.5, the global feature representation and local feature
representation are shown in one of the dataset's images, as an example.

Due to the explained facts and superior performance of the local features [312], the methods that
produce the local features have been selected out for building our plant recognition systems. By
utilizing such methods, large numbers of the local features, comprising hundreds of local features,
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Figure 7.5: Left: Global image features representation, Right: Local image features representation

will be created and the amount of the memory increases in comparison to other types of methods.
Therefore, a high amount of memory is a disadvantage of methods with the local representation. A
good solution is to aggregate local image descriptors into compact vector representation [313].

In general, the detection method and detected features might greatly a�ect the desired applicati-
ons and �nal goals. To utilize a feature detector, some properties, such as robustness, repeatability,
accuracy, generality, e�ciency and quantity, should be taken into account to follow the right path
and reach the desired destination. In the next section, we investigate and look into some detection
algorithms which will be used in our methodology and proposed approach.

Before continuing our explanation, some remaining points should be clari�ed about the process of
feature detection and extraction. We seek invariance properties in the process of the feature detecti-
on. The goal is to have a feature extraction process that stays the same even if we involve di�erent
speci�ed or non-speci�ed conditions and undesired added phenomena. Consequently, we require a
feature extraction algorithm which is able to �nd reliable and robust features despite the changes in
time and appearance of plants, regardless of the reason. Furthermore, we need to have immunity to
changes in the illumination level as we would like to identify the plant species from the images and
the images might be dark or light in relation to the conditions.

In principle, the existence of the shape of a plant in an image can be approved if there exist
contrasts between a plant and its background. The shape of a plant can be detected, as has been
shown in the proposed pre-processing methods. As a result, invariance to illumination is an essential
property. Clearly, any computer vision technique will fail in extreme lighting conditions. It is the
same for the human eye as we cannot see anything when it is completely dark and there is no source
of light.

Following the illumination, the next most important parameter is the position: we seek to �nd a
plant (or leaf of a plant) wherever it appears in images captured in outdoor and natural environments.
This factor is usually called position, location or translation invariance. Then, we do not want to �nd
a plant species respective of its rotation (assuming that the leaf of a plant or even the camera has an
unknown orientation and rotation is also not known). This is usually called rotation or orientation
invariance. Then, we want to determine the leaf at whatever size it appears, which might be due to
the physical change, or however close the plant or leaf might be placed to the camera. This requires
an important property which is size or scale invariance.

The mentioned points are the main invariance properties we shall seek from our feature detection
and extraction techniques. However, nature tends to show us that we have to struggle against chal-
lenges, and balls are usually rolling under our feet to prove that we are not so lucky: there is always
noise in images and di�erent environmental factors a�ect the photographing process. In addition,
since we are concerned with the leaves of plant species, there may be more than a single leaf in the
image. If one is on top of the other one, it will occlude, or hide the other, so all of the leaves will not
be visible and there might be no leaf with a clear shape. So what should we do to overcome all visible
and invisible challenges? What is the solution for clear and unclear sides of the plant recognition
task? Before developing the recognition systems, we need powerful techniques to detect and extract
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the features. A higher complexity of the extraction step compared to the detection step is undeniable,
since the extraction implies that we have a description of a feature.

Let's look into our expectation from a detection algorithm brie�y. First of all, the detection algo-
rithm should have the ability of detecting the same feature locations regardless of the other factors
and parameters like scaling, rotating, shifting, deformations, artifacts, noise, etc. The feature detec-
tion algorithm should be a repetitive process which can �nd the same features of the same plant
in any view. Another point is the ability of the algorithm in detecting e�cient features where the
quantity of features should not be either low or high. The quantity of the detected features should
be the re�ectance of the compressed information of the image. Another aspect of the detection algo-
rithm is related to its e�ciency in real-time applications. It is essential to consider if the algorithm
is supported for such applications and it can be generalized as a part of the other systems.

By detecting the keypoints, we calculated the descriptors for all of them with the purpose to ful�ll
a procedure to use those keypoints in a correct way. Let's suppose having an image matching task.
We would like to know if the objects, especially the leaves of the plants, are the same in two di�erent
images. We try to identify the similar parts in two di�erent natural images or �nd di�erences bet-
ween two di�erent natural scenes. To solve the proposed problem, we have to compare every keypoint
descriptor of the �rst natural plant image to every keypoint descriptor of the second natural plant
image. Descriptors are actually the vectors of the numbers and we are able to compare them with a
simple criterion like the Euclidian distance. However, more complex distances are also available to
be used as similarity measures. When the distance between the descriptors is the lowest value, the
related keypoints to the descriptors are the matches, for instance, the same leaf shapes or the same
non-leaf objects in two di�erent images. The following combined modern methods have been used
for the feature detection and description:
- HARRIS-SIFT
- HARRIS-SURF
- FAST-SIFT
- FAST-SURF
- SIFT
- SURF

7.4.3 Modeling and Training

Up until this stage, we have gained the feature descriptors of the detected keypoints, but the main
question is, "How can we connect the obtained descriptors to the classi�cation stage?" To broach the
answer of the proposed question, we should establish a bridge as a connection between the description
algorithms and the training phase of the classi�cation part. We have to use a manipulating approach
for preparing the existing information in a way that can be applied in the next stage. One possible
approach is to quantize local visual features. A manipulation approach, inspired by the BoW method,
frequently used in the text domain and document classi�cation [314] [315], is used for constructing
a bridge between the previous and next steps. This concept has opened a new door into another
domain, the visual domain of the image processing, as a means to describe images as a collection
of words, to do object categorization and classi�cation tasks and to achieve surprisingly promising
results [206] [316] [186] [317] [318] [319].

Due to the main concepts of the BoW, we need to transfer the local features into the visual words,
especially in the image representations [320] [321] [322] [323] [324]. Then, we build a codebook from
the obtained local descriptors and try to create the �nal outputs, the image histograms. The pixels
of an image can be represented as the letters in a text document. The structure of a pixel and
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its surrounding neighbors can consequently be assumed as words, the basic elements, in the text
document.

The images of the dataset own unique characteristics because of very large variations among the
images and scenes. Many clutters in the background and foreground can be observed in the images
of the dataset. Scale, light intensity, time, distance and illumination are not kept constant and they
are variant parameters. The idea of the BoW is to make compact packages of descriptors from the
local features of the categories of di�erent natural images. In addition, the intention is to obtain a
�nite number of clusters and create a visual vocabulary.

Splitting an image into small image patches helps us to represent them as numerical vectors by
means of feature descriptors and steers towards having a set of words. Clustering algorithms, the key
elements of machine learning, are helpful to convert these types of vectors into words and produce
vocabulary. The words are then de�ned as the centers of the learned clusters. Moreover, each group
can be considered as one speci�c word. The next step will be mapping each patch of an image to
certain visual words through the clustering process, so the image can be represented by the codeword
histogram. It should be noted that the number of the clusters is the vocabulary size. In [169] and
[170], the BoW technique has been used to classify a large number of plant species because it is
una�ected by the position and orientation of the object in an image. Hence, the BoW technique is a
good choice and helpful for representing the images as we need them for the next steps.

To have a vector representation of the images, the quantized feature space contributes to indicating
the frequency of the visual words which can be utilized in conjunction with some vector-based kernels
or similarity measures for the matching or categorization of the image content. The question then
arises, "What is the di�erence between the current approach and the one used for the previously
implemented systems?" To answer this vital point, we have to reconsider the natural plant dataset
and explore its properties. The changes in the distance between the camera and the plants in the
dataset in�uence this part of the approach. In fact, we cannot build only a vocabulary for the whole
process. Due to the change of distance, we need to construct a vocabulary for each distance separately.

In the BoW model, the image's features are denoted into words by specifying which visual words
are actually nearest in the feature space based on the Euclidean distance between the cluster centers
and the input descriptor. Moreover, each extracted region should be assigned to the corresponding
visual word in the test phase. The model will be utilized for the new natural images in a certain
procedure as well. Firstly, the keypoints of the new image will be detected. Then the descriptors
will be extracted from them secondly. Thirdly, the nearest neighbor in the constructed vocabulary
will be computed for each descriptor, and the histogram will be built in the �nal step. It should be
considered that ith value in the histogram is actually the frequency of the ith vocabulary word. Finally,
the histograms will be fed into a classi�er to predict the labels and classes for images. Classi�ers need
�xed dimension feature vectors. The whole approach is really fast, robust and simple to understand.
The properties and useful information of the detected keypoints have been captured and modeled to
start the learning and classi�cation steps.

Moreover, the BoW method can be replaced by neural networks. A unique part of our work, which
will be explained in next chapters, is the use of deep neural networks to design and implement an
excellent recognition system.

7.4.4 SVM Classi�cation and Testing

After ending up with the BoW model, we need to sort all obtained results and design a concrete
classi�er to �ght this challenge and formulate the desired tasks. In the previous steps, the primary
substance of the classi�ers has been prepared for each class. Now we come up with a new area,
called SVM, to complete the necessities of the current step. The SVM, a powerful tool based in the
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statistical learning theory, is really useful in real world applications, especially in classi�cation tasks,
due to its good performance. In image recognition, supervised machine learning models have been
considered as e�cient methods in many cases. The SVM involves e�ciently �nding and separating
the optimal hyperplane in higher dimensions, which maximizes the margin of the training data to
guarantee the correct classi�cation of the input pattern. When the number of dimensions is greater
than the number of samples, the SVM stays e�cient and it is one of its bene�ts in addition to
the e�cient memory. Therefore, concepts of decision planes have been applied to de�ne decision
boundaries.

As an example, it is feasible to separate the data from two categories by a hyperplane when an
appropriate mapping is applied. Consequently, the hyperplane has the largest distance to the nearest
training data point of any class, and it is then called the functional margin. In other words, from the
given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which
categorizes the new examples. Intrinsically, the SVM relies upon the data pre-processing to show the
patterns in a higher dimension instead of the original feature space. Extension of the original SVM
method [246] has been utilized in regression, classi�cation and clustering problems.

The SVM method has some special bene�ts. One of the important bene�ts of this method is its
ability to project the input data points on the high dimensions by means of the kernel functions
to obtain separating hyperplane converting to lower dimensions. Furthermore, the method is more
e�ective and e�cient in high dimensional spaces. It does not lose its e�ciency even if the number
of dimensions is larger than the number of samples. For constructing an optimal hyperplane and
minimizing error, the used method is an iterative training algorithm. To review the mathematical
aspects of the SVM, we can refer to the explanations in [21], [325], [253], [326] and [327].

According to the explanations of Cortes and Vapnik in 1995 [246], we tried to use SVM as it
demonstrates an acceptable performance and is more reliable than the other methods like Naive
Bayes classi�er. An ability of the SVM is to locate a separating hyperplane in the feature space and
classify the points in the space without showing the space explicitly by utilizing a kernel function.
It should be noted that the SVM can operate correctly even if the designer does not know how it is
really working or completing the task. Therefore, it does not depend on the designer's knowledge.
By using the kernel trick, it is also possible to build in the expert knowledge about the problem via
the kernel engineering.

We want to train the SVM on a set of natural plant images and construct the training matrix.
This process is followed by putting the histogram responses for each class and then setting up the
labels for each training image. For instance, we have two di�erent classes, leaf and non-leaf classes.
One necessity is to de�ne which row in the training matrix corresponds to a leaf and a non-leaf.
In this special case, if the 1st element of the label matrix is +1, it proves that the 1st row of the
training matrix falls into the leaf class. As a result, a 1D label matrix is de�ned and each element
of this matrix corresponds to one row in a 2D matrix. It is noteworthy that di�erent kernel types
for the SVMs are available such as the linear kernel [328], polynomial kernel [328], RBF, sigmoid
kernel [328], exponential chi2 kernel [329], and histogram intersection kernel [329]. The used SVM is
explained in 7.5.

In a nutshell, the SVM technique is a part of the systems proposed and implemented in [169],
[170], [268] and [151], since it has some key features, such as possibility of using di�erent kernel
functions, absence of local minima, the sparseness of the solution and the capacity control obtained
by optimizing the margin. In fact, the SVM works di�erently, and it is a good and fast solution for
many problems, especially plant recognition. One important side of the SVMs is that they own a
regularization parameter which forces us to think about the important relevant issues, regularization
and over�tting.

Furthermore, there are other methods such as random forests, probabilistic graphical models [330]
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or nonparametric Bayesian [331] methods with advantages and disadvantages. In a classic NN, the
amount of parameters is enormously high. If there are the vectors of the length 100 and we want to
classify into two classes, one hidden layer of the same size as an input layer will lead us to more than
100000 free parameters. We know how badly we can over�t and how easy it is to fall to the local
minimum in such a space as well as how many training points we will need to prevent that and how
much time will we need to train them.

7.5 Experiment, Discussion, Results and Performance Analy-

sis

In our experimental activity, we have conducted di�erent separate and connected experiments.
Each experiment aimed at assessing the proposed scenarios and systems to recognize the plants in
the challenging natural environment. The dataset of the images was acquired by using a Canon came-
ra, Canon EOS 600D. The images were taken over di�erent areas near the Hölderlin Campus of the
University of Siegen (Siegen, Germany) and at di�erent times, dates and weather conditions. The ca-
mera used is characterized by one 18-megapixel complementary metal-oxide semiconductor (CMOS)
sensor, Digital Imaging Integrated Circuit (DIGIC) 4 processor. It is a shot-friendly and powerful
camera in a small package for taking the pictures in any situation. It also has a scene intelligent
auto mode and a 3-inch (3.2) vari-angle clear view LCD which give us the freedom of using various
features to capture our images in di�erent conditions with or without a �ash. Figure 7.6 represents
the camera used.

The International Organization of Standardization (ISO) speed is 400, but other settings of the

Figure 7.6: The camera used

camera changes across the di�erent images taken. For instance, Figure 7.7 has the following camera
details:
F-stop: f/4.5
Exposure time: 1/30 sec
Focal length: 36 mm
Flash mode: No �ash, compulsory
Dimension: 5184×3456

The following camera details belong to another sample of the dataset, and Figure 7.8 represents
this sample.
F-stop: f/6.3
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Figure 7.7: A sample of the dataset using the �rst setting

Exposure time: 1/100 sec
Focal length: 36 mm
Flash mode: No �ash, compulsory

The acquired images have the following properties:

Figure 7.8: Another sample of the dataset using a di�erent setting

Dimension: 5184×3456
Width: 5184 pixels
Height: 3456 pixels
Horizontal resolution: 72 dpi (dots per inch)
Vertical resolution: 72 dpi
Bit depth: 24
Resolution unit: 2 (this value means resolution should be interpreted as dots per inch, and if it was
equal to 3, resolution should be interpreted as dots per centimeter)
Color representation: sRGB

7.5.1 Short Description of the Dataset and Setups

Recently, there has been a large amount of academic and non-academic research investigating
di�erent aspects of inventing the plant recognition systems such as [332], [333], [169], [170], etc. Most
of the proposed systems are based on visual techniques and learning algorithms. Furthermore, there
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is a big obstacle which is the use of the arti�cial images and the images taken in de�ned conditions,
for instance, where light intensity, illumination and distance are kept constant. Such parameters
actually lead to a restriction of the implemented systems. In order to reduce the limitations of the
current systems, it is essential to consider the huge impacts of the parameters that help us to build
systems for recognizing natural plants, speci�cally plants in the natural environment. The variety
among the plants in the natural environment is higher than when we set a speci�c condition for the
environment or when the environment is arti�cial or under the human control. Despite the roughly
similar appearance of a plant species' leaves in an outdoor environment, we see di�erent colors and
structures among the leaves as well as shapes. As mentioned previously, environmental factors, such
as light intensity, illumination, time of day, etc., also a�ect plant recognition in outdoor environments.
Furthermore, these factors in�uence the outcomes of systems. Our main goal is to drive through the
challenges of natural plant recognition. Hence, we created a new dataset of natural images with a
high diversity among our samples. According to our work up until this stage, we are going to follow
our previous works of [169] and [170]. On the other hand, in regard to our stringent considerations,
we face new challenges such as moving leaves under heavy wind, plants in cloudy weather, leaves in
sunny weather, etc., instead of controlled weather conditions. These challenges can be clearly seen in
the dataset of the images taken. We did not create any arti�cial or human-made conditions during
the process of photographing and recording the images.

In particular in this dataset, the demands of generalized systems will be ful�lled, and the drawbacks
of systems for the recognition of plants in hard situations will be remedied. The dataset is comprised
of 1000 natural images of four di�erent plant species, Hydrangea, Amelanchier Canadensis, Acer
Pseudoplatanus, and Cornus, which are the common plants of Siegerland, a landscape that is a part
of south Westphalia in Germany.

Similar to other classi�cation tasks, we divided the original dataset into two di�erent sub-datasets,
called the training dataset and the test dataset. The number of images in the training dataset was
664, while the number of images in the test dataset was 336. Table 7.1 represents the number of
images for each distance and subset. Someone might put forward the question, "Why did we take
pictures at di�erent distances?" Overall, plant recognition systems can be utilized by �eld robots
which can be used for di�erent purposes and tasks on farms and in its related industries. Imagine a
robot is going through a farm, the distance between the robot and crops will not always be constant
because of the ripeness of agricultural land and the robot's movements. Having samples at di�erent
distances between the camera and the plants compensates for the lack of this feature in current
plant recognition systems. This unique characteristic helps us to obtain a freedom for recognizing the
plants at various distances. It should be pointed out that we always measured the distance between
the camera and the plant accurately when capturing the images of the dataset. We usually double-
checked the measured distance.

Dataset 25 cm 50 cm 75 cm 100 cm 150 cm 200 cm

Number of images for training dataset 160 160 160 160 12 12

Number of images for test dataset 80 80 80 80 8 8

Table 7.1: The number of training and test images in each distance separately

By investigating the dataset, we found that the main con�guration of the dataset which is large
variations appearance such as scale, illumination, pose and background clutter in the natural training
and test images, and the images have been taken at di�erent distances, angles and views [151]. As
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explained, the other factors, like light intensities and illumination, light re�ection, weather conditions
and time of taking the images, have been changed during the preparation and �nalizing of the dataset.
Figure 7.9 shows two samples of the training dataset and two images of the test dataset.

Figure 7.9: Representing four samples of the dataset, two training images on the top and two test

images at the bottom

7.5.2 Details of Equipment

The object recognition abilities of the humans are completely di�erent from the machine-based
systems, and it is very tough and complex for a machine. To design and develop a useful and
applicable plant recognition system, and ful�ll the recognition task, the machine we used has the
listed components:
- Intel R© CoreTM i7-4790K
- CPU @ 4.00 GHz
- Installed memory (RAM) 16.0 GB

This machine is exactly the same one that has been previously utilized for the other systems, and
we met our aims for the tasks of the plant recognition.

7.5.3 Visual Analysis of Natural Images

In the natural environment, the shapes of leaves are not predominantly well formed. It is very dif-
�cult to arrive merely at a visual analysis. In order to verify the shapes of leaves of natural plants, it
is necessary to investigate several images of a speci�c plant species and �nd the shape and pattern of
its leaves. The outgrowth of the dataset's investigation is the visual analysis of leaves which can lead
to an exhaustive guide for our goals. It is also important to know whether the investigated samples
of the plant species are healthy. For instance, if we look at one of the plant species called Cornus,
we �nd out that some leaves are not completely green. The outliers of them have become yellow
after a while. Turning yellow is not only a physical change, it has some e�ects on our work for plant
recognition. There are a variety of nutritional de�ciencies that can be addressed as we encounter a
bunch of leaves in each scene. Though, each leaf of the plant might have its own properties in detail.
In the following, some de�ciencies are listed and described:
- Boron de�ciency is a widespread de�ciency of the plants all around the world, and a common result
of this de�ciency is a reduction of the crop production and quality. Boron is not a negligible element
for the growth of plants, and a lack of it causes a deformity of the shapes of leaves, a loss of symmetry
to the margins of leaves and a complete or partial absence of the apex.
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Figure 7.10: Four samples of one speci�c plant species with the deformed shapes of the leaves (Left),

a sample which is not deformed (Right)

- The result of shape deformation and undulations might be calcium de�ciency.
- The reason for the unusual shapes of leaves can be a de�ciency of phosphorus. Another impact of
phosphorus de�ciency is the change of color to yellow or red in some parts of leaves.
- The reason of another change of leaves might be a lack of nitrogen. This de�ciency e�ects chlorosis
uniformity in the entire area of the leaves and the replacement of the color green by yellow from the
base to the apex and the central vein to the leaf borders.
- Other de�ciencies, such as iron de�ciency, magnesium de�ciency, manganese de�ciency and potas-
sium de�ciency have usually visual e�ects on the leaves where color changes might appear.

Figure 7.10 shows some samples of shape deformation and color changes in the dataset contents.

7.5.4 Experiments and Measurements

Experimental assessments of the proposed systems have been prepared in di�erent scenarios,
measurements, evaluations, and comparisons. Each experiment has been organized into two groups
of systems. The members of the �rst group are the systems with the SIFT algorithm as the descriptor.
The second group is comprised of the systems with the SURF algorithm as the descriptor. In order to
demonstrate the performance, e�ectiveness and applicability of the proposed natural plant recognition
systems with di�erent approaches and techniques, we investigated the experiments and the results
[151] [268]. Whereby, 664 scenes were captured by the camera and used for the training, and the
remaining scenes of 336 images were utilized for the testing. We present the experimental results on
several measurements to answer the proposed problems. The results obtained are also evaluated by
comparing the output of the di�erent systems. The investigation of the results recalls Stephen Few's
talk, "Numbers have an important story to tell. They rely on you to give them a voice [334]." It
should be pointed out that all result-numbers reference to the test dataset.

Accuracy of Classi�cation Using Di�erent Proposed Systems

Since we have taken the images at di�erent distances, we are able to de�ne four di�erent groups
according to the distances. The �rst indicator of the systems' performance is the accuracy of the
classi�cation. Accuracy (6.8) is one of the performance metrics in classi�cation problems. Using
the accuracy helps us to check out the number of correct predictions made by the natural plant
recognition system over all performed predictions, both correct predictions and wrong predictions
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together.
Table 7.2 shows the accuracy of the natural plant recognition results under di�erent sets of the

detection and description algorithms trained by the SVM for all distances in only one package without
discriminating the systems due to the assigned distances [151] [268].

Proposed System with Detection and Description Approaches Correct Predictions Wrong Predictions Percentage of Accuracy

SIFT 319 17 94.94

FAST-SIFT 309 27 91.96

HARRIS-SIFT 314 22 93.45

SURF 316 20 93.96

FAST-SURF 306 30 90.94

HARRIS-SURF 303 33 90

Table 7.2: The accuracy of the classi�cation by applying each proposed system with its unique

detection and description approaches [151] [268]

Calculation and Construction of the Confusion Matrix for Proposed Systems

A system that is generated at the classi�cation and learning stage should be analyzed at an
evaluation stage to determine its applicability. Subsequently, it is needed to identify the performance
of the proposed algorithm and the details of the system. In the testing phase of system, there is a
useful and popular concept for the classi�cation which is called confusion matrix. The success of the
systems may be evaluated by comparing the constructed confusion matrix of each system. Despite
the simplicity of the confusion matrix, we �nd it a colorful world of information for our implemented
systems. In [151], the confusion matrix has been called a visional tool to evaluate the performance
of each proposed model or system in the classi�cation and prediction tasks. It has been also named
a predictive capability in the classi�cation tasks.

To introduce the confusion matrix, we are going to explain some important properties of it �rstly.
This is a square matrix of order n, where n is the number of the target classes, in our case the
number of the plant species, and the number of the rows and columns is equal to 4 in our case [151].
The trace of the confusion matrix as a square matrix is the sum of its main diagonal elements. The
confusion matrix describes the performance and quality of an automatic plant recognition system. It
contributes to easy understanding of the results obtained. Considering the structure of the confusion
matrix, the columns represent the predicted class or label, and the rows correspond to the true and
actual class or label [151] [335].

In 11.6, we build the confusion matrix for each developed system at di�erent distances separately,
and the related table is created. Each table, Table 11.1 � Table 11.24, illustrates one square matrix
4-by-4 for each system at the associated distance [151] [268] and helps us to identify and compare
the inherent features of the classi�cation errors.

In addition to all obtained information from the confusion matrix, this matrix conveys two other
criteria: precision (6.9) and recall (6.10). The precision is "how many of the chosen samples are true"
and the recall is "how many of the correct samples have been chosen." In the next section, we begin
by going through a new experiment to provide these two criteria which are the statistical measures
based on the evaluation of the confusion matrix. Hence, we examine the quality of the implemented
systems and the status of the trained and tested models from the new aspects as well.
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Evaluation of Proposed Systems by Using New Measurements Obtained from the Con-

fusion Matrix

After accuracy calculations and building the confusion matrixes, we drive two common metrics, the
precision and the recall, to complete our investigation and comparison. Apart from the information
of confusion matrix, these two metrics help us to have a comparative evaluation of the proposed
and implemented systems by di�erent approaches. The computation of the precision is achieved
by dividing the exact number of the correctly classi�ed positive examples by the number of the
examples labeled by the system as positive [151]. The de�nition of the next metric shows that the
recall is obtained by means of dividing the number of the correctly classi�ed positive examples by the
number of the positive examples in the test data [151]. Before calculating the metrics separately, it
should be noted that the behavior of the metrics provides di�erent meanings in the �nal evaluations.
If we consider the metrics of one implemented recognition system as the high value of recall and
the low value of precision; in such values, the consequence would be a return of many results from
automatic systems. However, a lack of the correct predictions is undeniable and we �nd many incorrect
predictions compared to the actual training labels.

If we �nd the reverse conditions where the precision is high and the recall is low for a natural
plant recognition system, the system returns considerably few results. But, most of the predictions
are correct in comparison to the actual training labels. Let's think to an ideal system according to
the precision and recall measurements and attempt to �nd what type of the system is ideal. Here,
we would like to write a prescription for the quality of the automatic systems due to the mentioned
measurements. If the recall and precision values are both high, the system is so close to an ideal
and satisfactory recognizer of plant species. The highest score of either the precision or the recall is
1.0. For instance, if we obtain the precision score of 1, this would mean every result retrieved by the
proposed plant recognition system was predicted correctly. Though, it does not give any information
if all the relevant plants were correctly predicted. Another possibility is to obtain a perfect recall
value, the highest value which is equal to 1.0. In this case, it means that all relevant predictions were
retrieved from the natural plant recognition system. This metric does not provide any information
about how many of the retrieved results were actually irrelevant.

As we have di�erent distances, the precision and the recall for each proposed system have been
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Figure 7.11: Precision measurements for three SIFT description-based systems for the natural plant

recognition (distance 25 cm) [151]

derived from its own confusion matrix. The measurements and calculations are shown in di�erent
�gures. In addition to the drawn graphs, a comparison of the results is also feasible if we investigate
the area under the curves. A high area under a curve is interpreted as both high recall and high
precision.
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Figure 7.12: Recall measurements for three SIFT description-based systems for the natural plant

recognition (distance 25 cm) [151]

The �rst distance equals 25 cm where the images of the natural plant dataset have been captured
at this distance. Firstly, we calculated the precision and recall measurements for the �rst group of the
proposed systems based on the SIFT description approach at this distance. As a reminder, we should
note that precision is a measure that tells us what proportion of the plants we have recognized as the
class of the plant species is actually the intended plant species. To accomplish the second experiment
of this stage and ful�ll the mission, the precision and recall measurements of the current distance
have been computed for each proposed system in one �gure individually. Figure 7.11 and Figure
7.12 show the precision and recall results of the proposed systems based on the SIFT description
approach at the distance of 25 cm.

One important point is that the labels used, which are label 1, label 2, label 3 and label 4 represent
Hydrangea, Amelanchier Canadensis, Acer Pseudoplatanus and Cornus, respectively.

To specify the outcome of the �gures and curves, we are able to check the variation of the proposed
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Figure 7.13: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SIFT detection approach using the SIFT description approach (distance 25 cm) [151]

systems in the precision and recall measurements. In addition, we can compare the recognition
systems by means of this unique concept. For instance, the proposed system with the combined
approach FAST-SIFT has more variation than the other proposed systems of this group in the
precision and recall curves. Interestingly, the performance of this system is worse than other systems
when the distance is 25 cm and we are trying to identify the natural plants. In addition to these
metrics, it has the lowest accuracy among the other systems. If we gather all results, we conclude



139

that it has been a predictable fact due to the obtained confusion matrix and extracted information.
According to the obtained results of the precision and recall measurements, the proposed system
using the SIFT detection approach has the least variations between all the proposed systems of the
current group. The performance of the system with the HARRIS detection approach is less than the
system with the SIFT detection approach, but it is more than the system with the FAST detection
approach.

A new advantage of the plotted precision and recall measurements is the possibility of comparing
the results of the proposed systems simultaneously and if considering each label as a dot, we are
able to investigate and compare the proposed systems dot by dot in each �gure. For example, the
considered label is the second one, label 2. In Figure 7.11, both systems based on the HARRIS-SIFT
and SIFT approaches have the highest possible precision value. They are equal to 1.0, whereas the
system based on the FAST detection approach has a value between 0.80 and 0.90. In the above
mentioned label, if we check the recall values, we �nd that the system based on the SIFT detection
approach has the highest value among the proposed systems. According to the obtained values, the
second rank of the recall measurements in the label 2 belongs to the system which is based on the
FAST detector. The lowest value of the recall measurements in the label 2 belongs to the proposed
system by the HARRIS detection approach.

Another investigation of the measured precision and recall is to compare the area under the
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Figure 7.14: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SIFT description approach (distance 25 cm) [151]
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Figure 7.15: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SIFT description approach (distance 25 cm) [151]
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curves of each system. If we consider the plotted precision curves of the systems based on the SIFT
and FAST detectors, we �nd out that the area under the curve of the systems based on the SIFT
detection approach is larger than the area under the curve of the systems based on the FAST
detection approach. Combining the obtained results of both systems proves a better performance of
the proposed system based on the SIFT detection approach than the proposed system based on the
FAST detection.

To compare the precision and recall measurements for each proposed system individually, we have
plotted these measurements of each system in a �gure separately, and Figure 7.13, Figure 7.14 and
Figure 7.15 represent the measurements of the precision and recall metrics for each system in one
�gure.

The next group of the proposed systems consists of three implemented systems based on the SURF
description approach. First of all, the two �gures, Figure 7.16 and Figure 7.17, are plotted and each
one separately contains the precision measurements and recall measurements of the proposed systems.

At the distance 25 cm, the system that excites our attention is the proposed system based on
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Figure 7.16: Precision measurements for three SURF description-based systems for the natural plant

recognition (distance 25 cm) [268]
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Figure 7.17: Recall measurements for three SURF description-based systems for the natural plant

recognition (distance 25 cm) [268]

the HARRIS detector. Its performance is comparable to the proposed system based on the SURF
detection approach. The high precision and recall values prove this interesting fact which can be also
double-checked through an investigation of the area under its precision and recall curves. In order
to observe the relationship between the precision and recall measurements of the proposed system,
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Figure 7.18, Figure 7.19 and Figure 7.20 have been plotted. Each �gure indicates the obtained values
of these two metrics for each system individually.
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Figure 7.18: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SURF detection approach using the SURF description approach (distance 25 cm) [268]
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Figure 7.19: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SURF description approach (distance 25 cm) [268]

Clearly, the recall measurements provide the information about the performance of the system with
respect to the missed classi�cations. The precision measurements provide the information about the
performance of the systems by consideration the correct classi�cations. Hence, minimizing the false
negatives leads to achieving a recall value of 1.0, and the result of minimizing false positives is to
have a precision value of 1.0 as well.

If we consider one label, e.g. label 3, the precision value is at a maximum for the proposed system
based on the SURF detection, and it is equal to 1.0. In this case, the values of the precision measu-
rement are not maximum for the other proposed systems based on the FAST and HARRIS detection
approaches.

The next experiment is to increase the distance between the plants and the camera. Now we are
exactly at the distance of 50 cm. The distance change a�ects the outcomes of the precision and recall
measurements.

At this distance, the proposed system based on the SIFT detection approach has the lowest
range of the variations among all labels if we compare it to the other systems based on the SIFT
description approach. An excellent performance from the system using the HARRIS-SIFT combined
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Figure 7.20: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SURF description approach (distance 25 cm)

[268]
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Figure 7.21: Precision measurements for three SIFT description-based systems for the natural plant

recognition (distance 50 cm) [151]

approach was surprising. It implies that we are able to apply this system at this distance and use
speci�c properties of this system in a correct form. If we compare the systems based on the combined
detection and description approaches with the SIFT description basis at the distance 50 cm, a su-
perior performance from the system with the HARRIS-SIFT approach is undeniable in the precision
and recall measurements. Figure 7.21 represents the performed experiment for getting a precision
measure of the three proposed systems.

Figure 7.22 shows the recall measure for the three SIFT description-based systems to recognize
the natural plants at a distance of 50 cm. At this distance, the worst performance among the im-
plemented systems with the SIFT description approach returns to the system using the FAST-SIFT
approach.

Figure 7.23, Figure 7.24 and Figure 7.25 represent the recall and precision measurements for the
three SIFT description-based systems to recognize the natural plants at the distance of 50 cm. Each
�gure is representative of both measurements of the system together. The area under the precision
curve of the system with the SIFT detection approach is larger than the system with the FAST
detection approach. This is evidence of a better performance from the implemented system with the
SIFT detector in comparison to the proposed system with the FAST detector.

To complete the investigation of the remaining systems of the current system, we are going
to present the precision and recall measurements in separate �gures. The results of the metrics are
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Figure 7.22: Recall measurements for three SIFT description-based systems for the natural plant

recognition (distance 50 cm) [151]
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Figure 7.23: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SIFT detection approach using the SIFT description approach (distance 50 cm) [151]

shown for all proposed systems of this group in its own �gure.
In Figure 7.26 and Figure 7.27, the implemented system using the SURF detection approach has

the largest areas under its curves, as shown in the plotted graphs. The system which has the smallest
areas under its curves is the proposed system based on the HARRIS detection algorithm. In the
recall measurement, the recognition systems based on the HARRIS algorithm has the highest range
of variations if we consider the values of all four labels. If we consider the results of the accuracy of
the classi�cation, the recall and precision metrics, we �nd a superior performance from the system
based on the SURF detector compared to the other systems based on the SURF descriptor.

Figure 7.28, Figure 7.29 and Figure 7.30 show precision and recall measurements. Instead of
checking the area under the plotted curves, we are eager to investigate the results for one speci�c
label. The second label is actually Amelanchier Canadensis. The measurements of the recall metric
indicate that the system using the SURF detection algorithm has the highest value in this label where
the system using the FAST detection algorithm has the second rank with respect to the measured
recall values in this label. Furthermore, the system based on the HARRIS detector does not perform
as well as the two other systems in this label. Its recall value is less than the others.

To follow up the further study of the experiments, we continue checking the precision and recall
metrics for the �rst group of the proposed systems which are based on the SIFT as their description
component. We increase the distance between the plants and the camera and the new distance is
75 cm. The precision and recall experiments will be carried out at this new distance to inspect the
performance of the implemented systems. Figure 7.31 and Figure 7.32 show our results at the di-
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Figure 7.24: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SIFT description approach (distance 50 cm) [151]
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Figure 7.25: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SIFT description approach (distance 50 cm) [151]

stance of 75 cm. When the distance is 75 cm, the precision and recall results of the proposed system
using the FAST-SIFT approach are comparable to the obtained results of the system with the other
combined approach, the HARRIS-SIFT algorithm.

On the other hand, the accuracy of the classi�cation is interestingly the same for these two mentio-
ned recognition systems. If we consider the areas under the precision and recall curves of the system
using the SIFT detection approach, we �nd that the areas are larger than other areas belonging to
the other systems of this group. The higher precision and recall values mean a better performance
of this recognition system. The obtained curve of the system using the FAST-SIFT proves that it is
has a lower range of variation if it is compared to the changes of the system with the HARRIS-SIFT
approach. However, the di�erence is insigni�cant, and it is equal to 0.006.

Our next attempt is to plot the precision and recall measurements of each of the proposed systems
in just one �gure. As a result, three di�erent �gures will be built. Figure 7.33 represents the precision
and recall measurements of the proposed system based on the SIFT detection approach.

To evaluate each proposed system of the �rst group at the distance of 75 cm, the recall and
precision measurements have been calculated for each system individually, though it is also possible
to compare the results of di�erent proposed systems. Amazingly, the obtained results of all proposed
systems in this group, when the distance is 75 cm, are in the range of [0.8, 1.0], neither the precision
nor the recall is less than 0.8.

For the second group of the proposed systems at the distance of 75 cm, we would like to observe
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Figure 7.26: Precision measurements for three SURF description-based systems for the natural plant

recognition (distance 50 cm) [268]
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Figure 7.27: Recall measurements for three SURF description-based systems for the natural plant

recognition (distance 50 cm) [268]

the di�erences between the precision and recall measurements of the systems in two �gures, Figure
7.36 and Figure 7.37. The �rst �gure shows the precision measurements and the second addresses
the recall measurements.

In most labels, the performance of the system based on the SURF detector is better than the
others when we investigate the precision results at 75 cm. This performance has been repeated in
the recall results. If we choose one of the two systems based on the combined approaches, we are
able to double-check the obtained results by considering three factors: accuracy, recall and precision.
The same as the previous experiments, we represent the precision and recall results of each proposed
system in separate �gures. However, it is di�cult to achieve high recall and high precision, and it
sometimes turns out very di�cult. Our observations, in Figure 7.38, Figure 7.39 and Figure 7.40,
prove that the proposed systems have enabled us to recognize the plant species at a long distance,
such as 75 cm.

In this recall experiment, the variation of the values is small when the used approach for detection
is the SURF. The labels have large values if we compare them to the other proposed systems based
on the SURF description approach.

The last experiment bears an important and completely unique part of our project. At this point,
the distance is greater. A set of three di�erent distances between the camera and the plant species
are created: 100 cm, 150 cm and 200 cm. The �rst attempt is to build separate precision and recall
�gures, Figure 7.41 and Figure 7.42. The �gures represent the results of these two metrics for the
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Figure 7.28: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SURF detection approach using the SURF description approach (distance 50 cm) [268]
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Figure 7.29: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SURF description approach (distance 50 cm) [268]

�rst group of the proposed recognition systems which are actually based on the SIFT description
approach.

Without any doubt, we encounter good performances from the systems based on the SIFT de-
tection approach. At this set of distances, the system based on the HARRIS detector has the three
maximum values for the three labels: label 2, label 3 and label 4, if we investigate the recall results.

Let's start a new comparison due to recall values. If we compare this performance to the obtained
recall results of the system based on the SIFT detection approach, we conclude that the system
using the HARRIS detection approach overrides the better performance of the system based on the
SIFT detection approach at this set of distances. The system using the SIFT detector is not solely
our choice in all conditions and situations. Moreover, the investigation of the recall results asserts
a good performance from the system using the HARRIS-SIFT approach in comparison to the other
proposed system which has utilized the other combined approach. The area under the curve of the
system using the FAST-SIFT is less than the others, and its performance is not comparable to the
other systems if we consider the recall measurements.

To make our investigation more accurate and obtain more essential information from the expe-
riment, we plot the recall and precision measurements of each system in one �gure simultaneously,
and it is a procedure that we have followed up on. Figure 7.43 shows that the system using the SIFT
detector has low variations for both precision and recall metrics. The variations of the FAST-SIFT
method are lower than the HARRIS-SIFT method. The results are shown in Figure 7.44 and Figure
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Figure 7.30: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SURF description approach (distance 50 cm)

[268]
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Figure 7.31: Precision measurements for three SIFT description-based systems for the natural plant

recognition (distance 75 cm) [151]

7.45.
Figure 7.44 represents the performance of the system based on the FAST detector according to

the precision and recall metrics. For the three labels, the recall values are greater or equal to the
precision values.

Figure 7.45 shows that the recall curve has occupied more area than the precision curve when
the basis of the proposed system is the HARRIS-SIFT approach.

The second group of the proposed recognition systems absorbs our attention in wanting to know
their performance by examination of the precision and recall experiments and in considering the
e�ectiveness of the proposed systems by the quantitative analysis. This investigation resembles the
control of the parents during the early development of the children.

The distance has been increased from 75 cm to 100 cm, 150 cm and 200 cm. Obviously, the
recall and precision results have been changed as Figure 7.46 and Figure 7.47 show related curves.
The recall values of the system based on the SURF detection algorithm have been in the range of
[0.91667, 1]. Its precision results have been in a smaller range, [0.92308, 1]. In addition to the high
accuracy of this proposed system, the obtained ranges display the large values of the precision and
recall measurements. This is a proof that the recognition system is able to return many correct la-
beled results during the classi�cation task.

At this group of distances, the results of the system with the HARRIS-SURF approach are com-
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Figure 7.32: Recall measurements for three SIFT description-based systems for the natural plant

recognition (distance 75 cm) [151]
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Figure 7.33: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SIFT detection approach using the SIFT description approach (distance 75 cm) [151]

parable to the results of the system using the FAST-SURF approach; and the previous experiment,
that of the classi�cation accuracy. It also provides an evidence of this fact because of their equal ac-
curacies at the mentioned distances. If we double-check the accuracy of the proposed systems using
the SURF description approach, we �nd that the di�erence between the accuracy of the system based
on the SURF detector, the HARRIS detector and the FAST detector is 2% which is roughly a small
value. Therefore, these three di�erent systems can be applied according to our goals and desired
applications at the mentioned distances of this step. In Figure 7.48, Figure 7.49 and Figure 7.50, the
precision and recall results of the three proposed systems are shown.

To complete our experiments, we consider the proposed systems according to the existing di-
stances. In the lowest distance, 25 cm, the systems based on the SURF description method perform
very well and have higher accuracy compared to the systems based on the SIFT description method.
However, the performance of the system based on the SIFT is generally good. In longer distances,
the system based on the SIFT outperforms the system based on the SURF. In general, the system
based on the SIFT is more robust and it is one of its advantages.

To sum up the performed experiments and make a short conclusion of the precision and recall
measurements for the �rst group of the proposed systems, the sequence of the best results and per-
formances are the systems based on the SIFT detection approach, the system based on the HARRIS
detection approach and the system based on the FAST detection approach. The areas under the
curves are the evidence of this sequence [151].
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Figure 7.34: Measuring precision and recall metrics for proposed natural plant recognition system

based on the FAST detection approach using the SIFT description approach (distance 75 cm) [151]
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Figure 7.35: Measuring precision and recall metrics for proposed natural plant recognition system

based on the HARRIS detection approach using the SIFT description approach (distance 75 cm)

[151]

Number of Detected Keypoints

We are usually accustomed to performing some frequent experiments, but we are going to try out
a new type of experiment. The goal is to follow up our curiosity in a new aspect instead of generating
the regular tests. As a result, awesomeness and uniqueness will be added to our experiments and the
previous experiments will be expanded di�erently.

In matching concepts and image processing, the keypoints correspond to image contents and
similar parts of the images. One main contribution of keypoints is to be able to apply this universal
tool for comparing di�erent proposed approaches and indicate a new analysis. As we have used
di�erent approaches in our implemented systems, investigation of the number of detected keypoints
has been shown in Table 7.3. The last scenario of our experiments is actually to detect the keypoints
and to count the number of the keypoints at di�erent distances if the detection part of the proposed
system is changed. Figure 7.51 represents the used sample images for �nding the keypoints and
counting the number of the keypoints.

Since the test has been performed on the natural images at di�erent distances, variation of the
number of the detected keypoints depends on the captured scene of the plant species and the contents.
In addition, it is worth mentioning that it is not easy to select the best detector and �nd a clear
optimal way. For instance, the system based on the SURF detection method has higher accuracy at
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Figure 7.36: Precision measurements for three SURF description-based systems for the natural plant

recognition (distance 75 cm) [268]
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Figure 7.37: Recall measurements for three SURF description-based systems for the natural plant

recognition (distance 75 cm) [268]

the distance 50 cm in comparison to the system based on the SIFT detection method. In this case,
the number of detected keypoints is also larger when the SURF detection method is used. However,
the performance of the system based on the SIFT detection method is acceptable. On the other hand,
the system based on the SURF detection approach has still larger number of detected keypoints at
the distance 100 cm, but the accuracy of this system is less than the system based on the SIFT
detection approach which detects less number of keypoints at the mentioned distance.
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Figure 7.38: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SURF detection approach using the SURF description approach (distance 75 cm) [268]
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Figure 7.39: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SURF description approach (distance 75 cm) [268]
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Figure 7.40: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SURF description approach (distance 75 cm)

[268]



152

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 

Pr
ec

is
io

n 

Label - 100 cm, 150 cm, 200 cm 

SIFT 
FAST-SIFT 
HARRIS-SIFT 

Figure 7.41: Precision measurements for three SIFT description-based systems for the natural plant

recognition (distances 100 cm, 150 cm and 200 cm) [151]
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Figure 7.42: Recall measurements for three SIFT description-based systems for the natural plant

recognition (distances 100 cm, 150 cm and 200 cm) [151]
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Figure 7.43: Measuring precision and recall metrics for proposed natural plant recognition system

based on the SIFT detection approach using the SIFT description approach (distances 100 cm, 150

cm and 200 cm) [151]
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Figure 7.44: Measuring precision and recall metrics for proposed natural plant recognition system

based on the FAST detection approach using the SIFT description approach (distances 100 cm, 150

cm and 200 cm) [151]
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Figure 7.45: Measuring precision and recall metrics for proposed natural plant recognition system

based on the HARRIS detection approach using the SIFT description approach (distances 100 cm,

150 cm and 200 cm) [151]
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Figure 7.46: Precision measurements for three SURF description-based systems for the natural plant

recognition (distances 100 cm, 150 cm and 200 cm) [268]
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Figure 7.47: Recall measurements for three SURF description-based systems for the natural plant

recognition (distances 100 cm, 150 cm and 200 cm) [268]
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Figure 7.48: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the SURF detection approach using the SURF description approach (distances 100 cm, 150

cm and 200 cm) [268]
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Figure 7.49: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the FAST detection approach using the SURF description approach (distances 100 cm, 150

cm and 200 cm) [268]
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Figure 7.50: Measuring precision and recall metrics for the proposed natural plant recognition system

based on the HARRIS detection approach using the SURF description approach (distances 100 cm,

150 cm and 200 cm) [268]

Number of keypoints according to System based on the SIFT

the used approaches and distance detector and SIFT descriptor

50 cm 2385

75 cm 1438

100 cm 2251

System based on the HARRIS System based on the SURF

detector and SIFT descriptor detector and SURF descriptor

314 9035

435 4894

1000 7099

Table 7.3: Number of the detected keypoints for some proposed systems [268] [151]

Figure 7.51: Sample image at the distance 50 cm (Left), sample image at the distance 75 cm (Middle),

sample image at the distance 100 cm (Right)
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7.6 A Short Talk on the Experiments, Results and Performan-

ces of the Natural Recognition Systems

Based on the observations during the design, implementation and test phases of the proposed
systems, we would like to provide a view into the inner hidden layers of the proposed systems. To
continue our study and open up the new aspects, we largely follow the performances of two high-
lighted systems and work on the reasons for our independent investigations. Exploring all proposed
systems emboldens two implemented systems, the systems based on the SIFT and SURF detectors.

Due to the obtained results, we are going to especially compare two superior systems and �nd out
the reason for the results. By investigating the system based on the SURF algorithm, this system is
not completely a�ne invariant which is proven in [336]. Despite this shortcoming, using the SURF
algorithm has not been limited. Its potential has been utilized widely in di�erent systems. As an
example of the shortcomings, the SURF algorithm does not work if we have a severe rotation or the
view angle di�ers greatly. In addition, the SURF algorithm is sensitive to rotation and illumination
changes that happen mostly in images captured from the natural scenes and objects in the outdoor
environments without the human control of the mentioned factors.

On the other side, the description part of the SIFT algorithm is more appropriate and useful
for describing the images a�ected by di�erent translation, scale, rotation, and other deformations
like changes of the illumination. The performances of these two algorithms are not the same in the
face of noise and deformations. Here, noise means any variation and change which might a�ect the
captured plant scene in the recognition task. We have a natural dataset of the plant species which
includes various image capturing conditions containing the deformation of the leaves, the change of
the viewpoint and the view angle, the distance variation, the change of the weather conditions, and
the other changes such as background, illumination, etc. The images of the dataset are complex and
highly di�erent by consideration of these various aspects. The robustness of the SIFT algorithm is
better than the SURF algorithm. The algorithm contributes to the developed system for a better
resistance to undesirable factors and complicated changes with harmful e�ects in the natural plant
recognition. Comparing the classi�cation accuracy of the implemented system with the SIFT ap-
proach and the SURF approach shows a good robustness of the proposed system using the SIFT
algorithm in a challenging natural environment. Due to the obtained results, the truth is that the
system based on the SIFT detector has good robustness against the unexpected natural changes and
various environmental variations.

The SIFT algorithm is computationally expensive and it is considered slow in its application in
many systems. However, the acceleration of this system has been performed by means of the two
other detection algorithms which are the HARRIS and FAST detection algorithms. The contribution
to the systems based on the HARRIS and FAST detectors involves a trade-o� between the accuracy
of the classi�cation and the speed of the implemented systems. The HARRIS and FAST detection
algorithms play the role of an auxiliary algorithm to replace the detection part of the SIFT algorithm.

In addition to the SIFT description approach, the SURF description approach has also been app-
lied in the proposed systems and the combined approaches have been created. While the basis of the
description part is the SURF descriptor, HARRIS and FAST detectors are also applied as detection
components of the systems. Using each proposed system depends on our expectations, limitations
and the importance of some factors, like accuracy and runtime. Furthermore, it is possible to select
out a system according to our real needs. For instance, we are able to use a system with shorter run-
time and sacri�ce the accuracy of the classi�cation if our demand is a fast natural plant recognition
system.

In a nutshell, the performance of each system is evaluated and compared to other implemented
systems using di�erent aspects. It is necessary to emphasize other remaining points. The dataset con-
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tains di�erent imaging conditions including complex objects, challenging scenes, changes of rotation
and scale, light intensity and illumination changes, various times of image capturing and changes
of weather. The experimental assessments have been organized in di�erent phases. The diversity of
experiments helps us to evaluate the systems in di�erent ways. Meanwhile, the images are captured
at di�erent distances which are also roughly large. Its contribution is to achieve recognition systems
which are usable in farms and agriculture as people mostly do not care about the distance of the
system for identifying the plant species. In addition, dividing the entire dataset into training and
testing datasets has been performed automatically and randomly. Before �nishing the discussion in
this section, it is worthy of note that a good work in the plant recognition was proposed in [289].
Comparing the systems in this chapter to the proposed work in [289] proves that our systems are more
robust and they work better. They are able to identify the plant species in the natural environment
with many challenges. This represents signi�cant progress in the area of the plant recognition.

7.7 Systems Potential for Future Use

We proposed six natural plant recognition systems based on the modern combination of the detec-
tion and description approaches in [151] and [268]. The implemented systems are markedly di�erent
to the common systems used in di�erent �elds. The current systems usually lack an important fac-
tor, the generalization of the system. They mostly cannot be used in di�erent situations and various
environments such as windy and cloudy weather, which are challenging situations and conditions. In
addition to the generality of the systems, we have the taste of e�ciency, reliability and high accuracy,
as the experimental tests and quantitative results have proven in detail.

In all implemented systems, the construction of the visual vocabulary is done by clustering the
data and representing the resulting data. Feature vectors play an important role in the whole pro-
cess, and the used bag of words step. It is possible to use a potential model, GMM, and examine
the in�uence of this model. The important point is to �nd how the GMM handles 128 dimensional
feature vectors of the SIFT algorithm is used. Unfortunately, this model is computationally intensive
and expensive. Although it can be a potential model, we did not use it due to the reason mentioned.

As explained, the implemented systems deal with robots and the related technologies. Drones can
use the proposed systems on farms and recognize the plant species at di�erent distances between the
drones and the plants. The systems are also useful for the robots deployed in the agricultural �elds.
The story of recognizing plant species consists of two di�erent conditions while we are using robots
and the direction of the sight is a problem in many systems. The �rst condition is to set up a camera
and quadcopter and look at the plants from above, therefore, the sight from the camera is vertical
to the plants in the �eld as shown in Figure 7.52.

The second condition happens if we use a robot which is able to drive through the paths inside a
farm. In this condition, the lens of the camera might be parallel to the plants inside the �eld. Hence,
the robot takes pictures from the front scene of the plants, instead of taking the pictures from above.
Figure 7.53 shows this special case and the direction of the sight parallel to the plants.

The proposed systems enable the experts and non-experts to recognize the plants in any direction
of photographing and at di�erent angles of view in the natural environment. It is one of the novel
potentials of the proposed systems to be able to be used for any type of robot or drone. If we suppose
having a robot with one of the proposed systems, the application is not limited to the classi�cation of
the plant species. The robot can also be used for crop monitoring in huge �elds, therefore, the farmers
always get close to crops and collect the data in a real-time system. In the traditional farming, the
farmers consumed a lot of water to irrigate the crops. In the today's world, the primary focus is to
reduce the amount of the water consumed and save more water for the future. Hence, the traditional
farming methods are not useful and applicable. An e�cient method is to target speci�c plant species
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Figure 7.52: Vertical sight into plants from a camera mounted on a quadcopter

Figure 7.53: Taking images of the front side of plants
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and irrigate them in the correct time. Furthermore, such a robot is also useful for removing the
undesired weeds and increasing the e�ciency of the growth of the desired plants. In this case, the
robot would be able to decide on keeping or removing the plants. Farmers are also able to control the
�eld easily and track the changes in the �eld to improve the �nal productivity. In addition, a remote
control for di�erent tasks on the farm can be provided. In addition to the mentioned applications,
the experimental results also show the potential of the implemented systems in other �elds, such
as botany and the pharmaceutical industry, because we are able to use the systems as applications
on a PC. Consequently, the botanists and other experts are able to pro�t from the natural plant
recognition and gather the data for further scienti�c purposes. Ultimately, the systems also save time
instead of using the traditional methods for the plant identi�cation.
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7.9 Conclusions and the Future Scope

At this stage of the work, a few natural plant recognition systems, 6 systems, have been introdu-
ced which propagate the classi�cation of the plants in the natural environment through the entire
pipeline of the proposed approaches. Each system has been trained on the output of the SIFT or
SURF descriptor by applying the SVM algorithm. The proposed system, which utilized the SIFT
detection and description method, has been able to obtain the highest recognition accuracy, 94.94%.
Very few algorithms like the SIFT and SURF algorithms can be applied for both feature detection
and feature description and e�ectively perform in di�erent situations, such as rotation, scaling and
changes of blurring and illumination. Our work proves that both algorithms also have a good perfor-
mance in the natural situations such as various weather conditions, complex backgrounds, the time
of photographing, large viewpoint changes, change of light intensity, etc. The combination of these
description algorithms with the other detection algorithms, the HARRIS and FAST algorithms, leads
to new types of the detection and description algorithms. It contributes to the implementation of the
real-time recognition systems as well as e�ciently overcoming the challenges in the real situations.
Due to the results, the �nal recognition systems are e�ective enough to recognize the natural plants
in such challenging situations, particularly at di�erent distances and times of the day.

The proposed systems in both [268] and [151] are the most realistic references of the current state-
of-the-art in the natural plant recognition systems. In other words, the proposed and implemented
systems extract features and automatically classify images of the natural plants with a high accuracy
and impressive results by the use of the machine learning methods. In past years, it was a dream
to invent systems which are able to recognize plant species in the natural environment. We have
considered natural factors and unique challenges. We accordingly developed new plant recognition
systems. Consequently, this dream is a reality today. Some contributions of the implemented sys-
tems are that they are fully-automatic, they exploit the combined modern detection and description
algorithms, they have utilized the natural images throughout the research and they can function
in non-�xed environmental and non-environmental parameters such as light intensity, illumination,
weather condition and distance.

In the experiment section, it has been feasible to use the GPU instead of the CPU based imple-
mentation and to speed up the systems. There is also an important point about the implemented
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systems related to creating di�erent vocabularies for the distances. Since we have four di�erent sets
of distances, one vocabulary is constructed for each distance. It is impossible to have only one voca-
bulary for one system. Hence, the future work should be able to solve this problem and compensate
this shortcoming correctly and accurately. An alternative is to �nd a solution for calculating the
distance between the camera and the plant from a new test image. To measure this distance, there is
an interesting point where the ratio between the focal length and the distance between the plant and
the camera is equal to the ratio of the size of the leaf in the image and the height of the leaf in the
real life. Therefore, it would be possible to add a pre-processing part to the system and calculate the
distance between the plant and the camera. However, such a pre-processing step adds computational
cost to the system. In addition, it is sometimes hard to get the size of the leaf within the natural
image as there might be no complete single leaf in the image or a part of the leaf might be covered
by the other branches or leaves. Another feasible solution is to ask the user to measure the distance
between the plant and the camera during photographing. This distance can then be used as a pre-
knowledge for the system. Furthermore, another option is to use an ultrasonic sensor for measuring
the distance. Consequently, the future work brings a signi�cant improvement for the natural plant
recognition. The deep learning algorithm will be applied to design a new system in the next chapter.
It will be explained why deep learning is used and how the model is implemented. More questions
will also be answered in detail.



Chapter 8

Novel System: Deep Learning System for

Recognition of Natural Plant Species

The use of natural plant species images has been investigated successfully in Chapter 7. Using va-
rious systems contributes to having access to di�erent systems with their own properties which might
be applied in desired situations. In addition, it helps to obtain systems with desired characteristics
such as generality, reliability, stability, etc. in spite of changes in the natural environment. Although
the obtained accuracies of the proposed systems are high, there is still one limit with regard to produ-
cing one vocabulary per distance for each implemented system. It might degrade the usability of the
systems in real-time applications. Since we do not like to be involved with any limitation and failure,
it is essential to �nd an e�ective and practical solution. Another goal is to increase the accuracy of
the recognition system and predict more samples correctly in a challenging test. While most of recent
approaches and systems are purely based on SVM algorithms, we are going to change the direction
of our study and go to a new world to achieve our goals in a new foundation and framework.

This chapter studies a famous category of classi�cation approaches to considerably improve the
proposed systems in Chapter 7. The idea is to expand our knowledge of the neural network �eld
and then use the neural network concepts for implementing a new plant recognition system. This
study enables us to distinguish the plant species with higher accuracy than the prior systems and get
�rm experience for one of the �nal goals which is the real-time and mobile use of systems for plant
recognition in outdoor environments. The presence of a longer distance between camera and plant,
sunshine, wind or small drops of rain has an e�ect on the structure of the captured images from the
natural plants. Hence, the performance will be signi�cantly changed.

A system based on neural networks will be designed and implemented in the current chapter. in
order to use natural images, the dataset explained in 3.3.1 is applied. Using a deep learning algo-
rithm yields a very high accuracy of over 99%, where the basis of the system is a convolutional neural
network, CNN. High accuracy is not the only su�cient factor, trade-o� between energy consumption
and building the �nal system is also important. Thus, the energy consumption will be explored and
explained in one section separately. In this chapter, we carry out the experiments extensively. Fur-
thermore, we provide a complementary demonstration for the analysis of the implemented system
using the CNN and represent signi�cant improvement in natural plant recognition performance in
outdoor environments.

This work has been published in SN Applied Sciences, Springer journal [91].
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8.1 Introduction

The curious nature of humans often places a question mark before anything that happens in the
real world, and even in the virtual world. The power of perception, realization and thinking always
accompanies human beings and makes distinctions in many issues and facts. It is rare to see a big
tsunami in a research area, and we do not usually face such an experience. But such scenarios have
taken place in the area of machine learning since a few years ago, and deep learning became the
topic of the day. Interestingly, the fever of this topic has not subsided, and the number of fascinated
researchers increases daily. Surprisingly deep learning is not limited to the machine learning �eld.
It has a�ected other �elds such as robotics, the car industry, data science and computer vision. It
has had a progressive revolution that shows no signs of slowing down. In addition, many questions
have been raised and many more will be forwarded in the future. However, the important point is
the refulgence of one lamp among many machine learning lamps. Deep learning represents a unique
beacon that is emitting its light regardless of any positive or negative comments.

Let's �ashback to the past decades and refer to the previous machine learning algorithms which
have been utilized for many years. It is almost fair to refer to machine learning algorithms, aside
from deep learning algorithms, as traditional algorithms. For several decades algorithms such as
SVM, Naive Bayes, ANN, etc., have been applied in various systems. People have paid attention to
the mentioned traditional learning algorithms. Since the new generation of machine learning algo-
rithms is still fresh, prodigious and new, it has become a battle, so to speak, and many researchers
and experts are trying to be victorious.

During the last and current century, the desire has been to design systems that mirror human
functions, such as the human speech system, auditory system, vision system, brain, etc. The belief is
in the superiority of human systems in comparison to other living organisms in the world. The main
purpose is to invent new systems similar to human capabilities in di�erent aspects, such as e�ciency,
precision, repeatability, reproducibility, etc.

Deep learning is still in its infancy [337]. Although it has only recently taken it �rst steps, its
achievements in di�erent �elds are still commendable. Many active areas and projects such as speech
recognition, object detection and recognition, data mining, NLP, customer relationship manage-
ment (CRM) [338], etc., are connected to deep learning algorithms. As a result, they are bene�ting
amazingly from this novel generation of neural networks. In addition, lots of forgotten projects and
unsolved problems have been rede�ned. New goals have been assigned after the development of de-
ep learning algorithms, although the goals seemed to be likely unachievable. Due to the mentioned
points, we introduce the human nervous system (see 11.2) to become familiar with the main concepts
and similarities between the human nervous system and the deep type of neural networks.

If we return to the middle of 1980s, we �nd a novel research carried out by LeCun et al. [339]. It
is supposed to be the �rst version of a learning algorithm in its category. After more than a decade,
a particular work [16] has been proposed. The contribution of this work is undeniable in the world of
the CNNs, widely used in the object recognition and classi�cation problems. The spirit of the human
system is blown up and the architecture of CNNs has been built. Although the �rst exploration
of neural networks began several decades ago, its current generation, deep learning, has attracted
many eyes, and the scope of machine learning has been widened. If we venture to name previous
neural networks, we can call them shallow learning in contrast to deep learning, whereby a shallow
net is composed of input, output and, at the most, one or two hidden layers in between them. The
fresh chapter of the neural networks was proposed in 2006 [340] and the main purpose was to have
a high-level abstraction model of data. To achieve this purpose, a set of algorithms and complex
structures with multiple non-linear transformations was performed.

Various theoretical and practical works have been performed in the �eld of deep learning and
di�erent types of algorithms and architectures have been proposed. Di�erent deep learning architec-
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tures, for example, deep neural networks [341], convolutional deep neural networks [342], deep belief
networks [343], recurrent neural networks (RNNs) [344], and auto-encoders [345] have been applied
to the �elds like computer vision, automatic speech recognition, natural language processing, audio
recognition and bioinformatics where they have been shown to produce state-of-the-art results on
various tasks [91]. The selection of appropriate neural networks is a vital part of our work, thus a
deep study has been performed. By considering di�erent aspects of the work and the desired goals,
we decided to use CNN. In [346] and [347], the CNNs have proven their huge power and capacity for
the image recognition.

The diversity of deep neural networks is not limited to the architecture of di�erent networks; there
are di�erent frameworks that might be used by researchers. There is also a big competition among
current deep learning frameworks. On the other hand, the pressure of new desires and features is
undeniable.

The presence of high CPU power, the new generation of the GPUs and access to higher amounts
of data are some reasons for the creation of more e�cient neural networks with higher numbers of
layers and complex architectures. Plant recognition is a daunting challenge, especially in natural
and outdoor environments. Therefore, we decided to design, develop, implement, and test a natural
plant recognition system based on deep learning concepts. Furthermore, the intention is to use the
potential of a deep learning algorithm to conquer the remaining land of accurate recognition and
identi�cation of plant species. Up until now, we have always grouped the samples of the dataset into
training and testing samples. This procedure will be continued in this stage of the work to utilize a
decision-making mechanism and predict the class of testing samples as well.

Some ideas behind the convolutional deep neural networks are local receptive �elds (8.3.4), sha-
red weights (8.3.4) and pooling (8.3.6). If we use the weight sharing of the convolutional layer with
the scheme of pooling, the result is an enrichment of the properties of invariance. In addition, it
is inadequate to have limited invariance and equi-variance if we attempt to solve complex pattern
recognition tasks. As a result, it is necessary to utilize a wider range of invariance and systematic
ways. Hence, the CNN with appropriate changes is e�cient to be used in the computer vision and
image recognition tasks for getting superior results.

Study and examination of di�erent deep architectures highlight the reason for the attractiveness
and popularity of CNNs. In comparison to other common neural networks, the training phase of
CNNs is simpler. Hence, its industrialization is easier, and the chance of developing a user-friendly
product is increased. Additionally, the contemporary demand for new technology and systems has
rapidly increased, and new technology has daily penetrated di�erent scienti�c and industry �elds
and human life. Similar to other �elds, robot technology has entered the agricultural �eld. Farming
robots play a fundamental role in di�erent applications to achieve great improvements in farming
tasks. As discussed previously, we would like to open a new window and use the potential of deep
learning methods in the classi�cation of plant species because of the shortcomings of those previous
developed systems. This work is actually a new generation of plant recognition systems in outdoor
environments with very challenging parameters and factors. As explained before, the dataset con-
sists of four plant species, Hydrangea, Amelanchier Canadensis, Acer Pseudoplatanus and Cornus,
belonging to the Siegerland region in Germany. It should be pointed out that the dataset is very
complex, and our work cannot be directly compared with other studies using arti�cial datasets. In
this work, the proposed deep model is the next step of previous works in [268] and [151]. One reason
is to achieve higher accuracy and compensate for the remaining disadvantages. The �nal accuracy
of the implemented system with deep neural network is 99.5%. In general, a fully-automatic plant
recognition system is a helpful tool for plant specialists and botanists.

In this chapter, the proposed system uses a convolutional deep neural network architecture to do
the plant recognition and classi�cation task with high accuracy. The �nal results will be investigated
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and then evaluated. Furthermore, the contribution of the system will be reported and the �nal results
of the experiments will also be compared to the results of previous proposed systems in [268] and
[151] which have been implemented through the other pipelines.

The rest of this chapter is organized as follows: presentation of deep learning and neural networks'
fundamentals are provided in section 8.2; describing the proposed approach and providing a report
about the deep model and how it is working for recognizing the natural plant species is addressed in
section 8.3; materials and equipment are represented in section 8.4; explanation of the experiments
and results with additional details of the whole deep system and related evaluations is provided in
section 8.5; and section 8.6, concludes the work of this chapter.

8.2 Deep Learning and Neural Networks' Fundamentals

Nowadays, we often hear a new term, deep learning, which conjures up mental images of another
term, machine learning. Many may consider these terms interchangeable, but deep learning is a new
frontier, even for experts in the �eld of arti�cial intelligence. It is undoubtedly a giant step forward
for the study of neural networks and the related areas. One primary idea of arti�cial intelligence is to
have the human capabilities relevant to the human brain system such as thinking, making a decision,
etc. Over the last century, many people have been involved in this �eld and the wheels of progress
are ceaselessly moving. However, this movement is sometimes fast and other times slow. Due to the
mentioned idea, one important point is to create machine learning systems which are smarter than
before.

Let's look at these systems from another point of view. Imagine, for instance, a child who is four
years old. While the child is looking at a scene, it can distinguish if there is a ball. An educated
person who is 31 years old is also looking at the scene. She realizes more information and details
than identifying only a ball. In addition, if she makes a mistake with respect to the details of the
scene, she is able to rectify and correct the mistake. The child might not be able to give more details
than the presence of a ball. Learning from mistakes helps us to make systems smarter and more
e�cient in di�cult situations. Before starting our discussion on traditional machine learning, neural
networks and deep learning, we would like to explore the timeline of deep learning and then continue
our explanation from there.

8.2.1 Deep Learning Timeline

Discussion concerning deep learning is increasing daily, and a lot of experts and non-experts are
trying to understand this fascinating topic. Once a researcher starts using these advanced neural
network models, he might think that it is not only research, it is also a hype in his scienti�c journey.
Although many academic people still look at deep learning as an artistic masterpiece in the Louvre
Museum. But, they do not want to face the challenges of this concept in their own research. In ad-
dition, they mostly admire the outcomes of deep learning without applying it to their own projects.
Today, deep learning is usually considered as a solution in many new proposals, but this unique pro-
posed solution is often not applied in the end. In reality, we have two groups of people who represent
two sides of deep learning. The �rst side is comprised of the people who have fallen in love with deep
learning, while the other side is made up of those who saying it is worthless to explore. They usually
consider it only a bridge between the traditional learning algorithms and the next modern ones. This
second group thinks that the deep learning is similar to the may�y, a metaphorical comparison to
describe it as having short life-span.

A common question raised is about the general role of deep learning algorithms in the future of
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the Arti�cial Intelligence. At the moment, deep learning tackles many problems which seemed to be
impossible and hard to solve for many years. This area goes beyond a simple neural network. It has
contributed to both theoretical and practical advancements. Meanwhile, it is a result of new hard-
ware and our access to powerful equipment. Deep learning has been similar to polar bears in winter
days if we investigate its timeline deeply as a showcase of its creation and existence. Despite its new
and fresh appearance, deep learning was proposed for the �rst time a few decades ago. Current deep
learning algorithms are the outcome of many years of e�orts.

The uniqueness of deep learning is actually based on its contribution to new learning representa-
tions of raw data. Deep learning algorithms emphasize a high number of layers to represent the data
meaningfully. The idea behind such algorithms are actually arti�cial neural networks.

In this section, we would like to have a realistic look at the history of the deep learning and its
career as it seems to be a perplexing subject. Its major developments are an important part of gaining
a better understanding. Figure 8.1 represents the deep learning timeline made by Favio Vázquez
[348] which indicates a rich history behind deep learning as a modern neural network.

Figure 8.1: The timeline of the deep learning created by Favio Vázquez [348]

It was, in fact, during a dark era before 1943 that the �rst mathematical model of a neural network
was proposed. Two scientists, Walter Pitts and Warren McCulloh, from di�erent research �elds, logic
and neuroscience, cooperated and proposed the �rst neural network model [349]. Moreover, this work
has become the foundation of neural network models and logical calculation for neural activity. The
references of this work were limited to three works published in 1925, 1927, and 1938. This model is
still alive and known as the McCulloch-Pitts neurons [350], although it has been gradually developed
and changed over time.

In 1950, Alan Turing published a paper titled "Computing Machinery and Intelligence-AM Tu-
ring" [351] and proposed the inquiry of whether a computer can think. He was a mathematician and
also widely known for his involvement in breaking code in World War II. For the �rst time, Turing
predicted the development of machine learning in 1947 and believed that a machine with the ability
to learn from experience is necessary.
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Seven years later, Frank Rosenblatt prepared a paper which was submitted to Cornell Aeronautical
Laboratory in January of 1957. The title of the paper was "The Perceptron: A Perceiving and Reco-
gnizing Automaton" [352]. His research was closer to the hardware aspect of the issue. He pointed
out that it would be possible to build a system which could be an electronic or electromechanical one.
Furthermore, this system would be able to learn to recognize similarities between di�erent patterns
and information in which it would be similar to the perceptual process of the brain. His work is also
considered as the basis of deep neural network (DNN) development.

In 1959, an additional advancement in machine learning took place which led to a new discovery
in the visual cortex found in animals, hence we can call this year, the year of discovery of two types
of cells, simple cells and complex cells. This work was carried out by two neurophysiologists who
won Nobel prizes, David H. Hubel and Torsten Wiesel. This discovery in�uenced arti�cial neural
networks and played an inspirational role for plenty of neural network models.

The next novel work is titled "Gradient Theory of Optimal Flight Paths" and published in 1960 by
Kelley [353]. Although it was a signi�cant work in the �eld of control theory, it has been used directly
and indirectly in arti�cial intelligence and arti�cial neural networking since 1960. For instance, the
behavior of systems with inputs and the modi�cation of systems by using feedback contributed to
propose the basis of continuous backpropagation models which can be used in the training phase of
neural networks.

Several years passed and a new work was published, "Neocognitron" [354], and a new concept by
the same name was proposed. A neocognitron is a hierarchical, multilayered neural network capable
of robust visual pattern recognition through learning. The model was utilized for recognition of vi-
sual patterns, handwritten character recognition and other pattern recognition tasks, recommender
systems, and even NLP [14]. In addition, convolutional neural networks were inspired by this unique
work.

In 1982, Hop�eld made an excellent progress in this �eld of research [355] by creating "Hop�eld
Net" which is a recurrent neural network (RNN). Interestingly, its popularity has not decreased over
the ensuing years. If we call this type of neural network a gift from the 20th century for modern deep
learning, we have not exaggerated at all.

After 4 years, an important learning method, back propagation, was proposed in [356]. The app-
lication of this method in existing neural networks proved that it would be an e�ective method for
improvement of many proposed problems and tasks at that time, like shape and word recognition.
The importance of this work is not limited to the 1980s as it laid the groundwork of deep neural
networks. Hence, Hinton is usually referred to as the godfather of the deep learning area. He deserves
this title because of his abundant attempts and sincere contributions over the years.

In the late 1980s, another great work [357] was published. The backpropagation approach was
combined with convolutional neural networks whereby it was applied to handwritten digit recogniti-
on. In addition, the implemented system was utilized over the 1990s and the beginning of the 2000s
by many companies, especially in the United States. Without any doubt, LeCun is a king in the
neural network research.

A new term, long short-term memory networks (LSTMs), was proposed by Hochreiter and Schmid-
huber in 1997 [358]. It was a new generation of RNN which had been improved by the capability
of learning long-term dependencies. In this new model, the problem of long-term dependency was
solved. In addition, the network could practically remember the information for long periods of time
without any additional challenge for learning. This work is still popular and is used frequently in
many tasks. For instance, Google implemented it into its speech-recognition software for Android-
powered smartphones [359].

After about 9 years, another e�ective research was proposed in [340]. The important point is the
similarity of the paper to a relaxation beach for neural networks in the middle of 2000s. Hinton pro-
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posed also the use of complementary priors to get a fast and greedy layer-wise unsupervised learning
algorithm for deep belief network (DBN). It is a generative model with many layers of hidden causal
variables [340] [360].

Advances in neural networks and image classi�cation are owed to Alex Krizhevsky [361] who came
up with the idea of AlexNet [362]. He is the winner of several international competitions on machine
learning and deep learning. The �rst attempt was to improve LeNet which was proposed in the 1990s
[363] [357] [364] [365] [366] [367] [368] [369] [346] [370] [371] [16] and to build a new and improved
one. His success has undoubtedly been a new renaissance in neural network research. In fact, deep
learning was kicked into high gear towards further success.

In 2012, Hinton et. al [372] marked a bold signature and introduced a novel regularization tech-
nique to prevent over�tting, a serious problem for deep networks, in deep neural network models.
Another paper was published in 2014 [373]. This unique work explains the Dropout technique [373]
and its improvement on the performances of deep neural networks in supervised learning tasks such
as speech recognition, image classi�cation, etc.

Ian Goodfellow, the leader of a research team, et al. [374] proposed a new framework to estimate
generative models. Additionally, a goal was to cope with unsupervised learning which is generally a
goal in arti�cial intelligence. This framework is called the generative adversarial nets (GANs) [374].
The main idea is to use an adversarial process for simultaneous training of two models and make
a competition between them. The �rst model, the generative one, takes in the data distribution.
The second one, the discriminative model, estimates the probability that a sample came from the
training data rather than the generative model. It is responsible to determine if the sample is real
or generated. The importance of this work was seen in LeCun's talk [375] where he recognized the
generative adversarial net (GAN) as the most important development in the last 10 years in the area
of deep learning.

In 2017, an interesting paper was published [376] and entitled "Dynamic Routing Between Cap-
sules." Many people were curious and excited to know more about this article as it was a work of
Hinton's research group, "the godfather" of deep learning. By reading the paper, we �nd that it
introduces a completely new concept, capsules in neural networks. To explain this new work, let's
consider one example. Figure 8.2 shows a woman's face, and Figure 8.3 represents the components
of the woman's face. If we apply convolutional neural networks, both pictures will be considered to
represent a face. Although the second picture consists of components of the face, orientational and
spatial relationships between parts of the face are not considered in the second picture, and it will be
predicted as face by using a CNN model. In fact, a combination of two eyes, a nose, and lips is not
a face at all. A CNN model uses max pooling or successive convolutional layers to reduce the size of
�owing data through the model. Therefore, the �eld of view will be increased by neurons of higher
layers, and the detection of higher order features will be provided, but the important point is that
max pooling is the result of losing signi�cant information. The idea of Hinton's capsule networks is
to solve the shortcoming of CNNs and use important spatial hierarchies among objects, whether the
objects are simple or complex.

A group of the neurons forms one capsule and the used mechanism is an iterative routing-by-
agreement [376]. In fact, lower-level capsules opt to send their outputs to the higher-level capsules
because the higher-level capsules have activity vectors with big scalar products with the predictions
which are coming from the lower-level capsules.

The deep learning topic is still open and ordinary people use its applications every day, even if
they know nothing about this hot topic. For instance, Google's voice recognition, Facebook's face
recognition, Net�ix's recommendation engine, Apple's Siri are only some daily applications of the
deep learning concepts. In this section, our purpose was to provide a survey of the history behind
the deep learning and its sequel.
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Figure 8.2: A Scene including a whole face

Figure 8.3: The components of the face seen in the scene

8.2.2 ANN

The guidance of the ANN is the human nervous system (see 11.2) with its unique components
and functions. The creation of a new neural network is so similar to giving birth to a child. The
child needs to be trained. His or her behavior and activities are undoubtedly dependent on the
training procedure. The child's ability to learn is one of the most important properties of the human
development. There is usually a focus on the ability to learn more sophisticated subjects and harder
tasks over time.

Although arti�cial neural networks are inspired by biological neural networks, there are some basic
di�erences between the two. The procedure of the learning and training is absolutely di�erent. If we
build an arti�cial neural network, we are going to achieve a �nal goal. This goal is pre-de�ned by the
desired application of the network. In fact, we do not expect an additional demand when the network
is ready to use. Consequently, the network is able to make decisions on unknown samples due to its
practical learning process. When a child is born, there are still training and learning procedures, but
we cannot specify a unique target. The passing of the time represents the �nal result. In addition
to the training and learning, there are many factors, such as parents, economic situations, cultural
e�ects, etc., that have impacts on a child's performance and development. Therefore, the result will
be unpretentiously random and out of our hands.
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Let's continue with arti�cial neural networks and try to �nd out how they have been modeled
and what the basic structure is. The �rst aim is to emulate the human nervous system (see 11.2) in
a mathematical and computational form. Hence, the aim is to achieve a simpler and smaller system
which can be used by humans, robots and other computers.

Due to the presence of streaks of the biological nervous system, one important component of
arti�cial neural networks (ANNs) is neuron and interconnection among the neurons to send and
receive the information is based on the de�ned tasks. An ANN consists of di�erent layers to simulate
the biological model. Each layer typically consists of hundreds to thousands of neurons while its
biological counter part has billions. The connectivity path between neurons is called topology. The
outcome is actually a map of the neural network. Furthermore, each neuron has some inputs and a set
of weights, and the point is a �nite number of the inputs. Then, some mathematical computations
are carried out on them by an activation function, and the output of the neuron is obtained. In
comparison to biological neurons, the activation functions have the role of the synapses. Various
layers and neurons are connected to each other to form the neural network. If we consider the
learning algorithm as a component of the neural network, this component di�ers between two di�erent
networks. Figure 8.4 is an example of the neuron's structure in an arti�cial neural network.

Figure 8.4: Arti�cial neuron's structure

It should be pointed out that the components of the biological neural networks of the human brain
and the nervous system and the arti�cial neural networks are not exactly the same in structure and
behavior as biological neurons, although recent developments have helped to increase the number of
the neurons in the arti�cial neural networks and have made it closer to the biological one.

As previously mentioned, the learning process is so important in arti�cial neural networks, but
it is unlike the learning process in biological neural networks. In arti�cial neural networks, we face
a de�ned topology which is designed for solving a problem. It substantially follows speci�c goals
and remains �xed over time. In addition, the learning is started from the scratch. To get weights,
optimization algorithms can be applied. These will be adjusted randomly, then aggregations of input
stimuli will be mapped to the desired output function.

There is also another method of doing the learning process which is called �ne tuning [377]. In this
type of learning, a pre-trained network topology is utilized, and adjustment of the weights is carried
out by this pre-trained one. In order to ful�ll the process successfully, the learning rate should be low.
Therefore, the learning process is relatively slow. In both types of learning processes, the input data
should be fed into the network and spread through the whole network. Continuously the outcome
measurement and weight modi�cation are carried out. The best possible weights will be �nally put
in the current direction for hitting the target of the task.

This learning process is comparable to a child learning to solve a puzzle. The child attempts to put
the pieces of the puzzle in the correct positions. He/she tries to �nd whether the position suits the
piece or not. If it is not the right position, he/she has received the feedback and knows that he/she has
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to �nd another place which should be smaller or larger than the previous position. Therefore, he/she
tries again to solve the problem. Gradually the child puts all the pieces of the puzzle in the correct
positions and achieves the �nal desire of the task. After the completion of the learning process, both
the child and the neural network are able to do the desired tasks. However, the di�erence goes back
to the needed time for doing the task. When the child learns, he/she is able to perform the task faster
with the repetitive practice. Another di�erence is related to creativity. The child has a unique ability
and he/she might have creativity to speed up the duration for �nishing the task and tackling new
problems as well. An arti�cial neural network responds to a new task without any creativity because
the nature of the learning process is not the same as the one that the child obtained. A trained
arti�cial neural network publishes the result of the new task as it has been learned. In fact, there is
no creativity for solving new problems. To provide more information, a traditional and typical type
of neural network, called feedforward neural network, is explained in (11.4).

8.2.3 Deep Learning De�nitions and Classes

To de�ne deep learning concepts and bases, we should not forget that deep learning is involved
with many hard and unsolved problems of past and recent years. Most problems are interestingly
complicated because of high dimensionality and lack of rules. In order to cope with the di�culties
of such problems, it is very important to train the system for challenging circumstances and make
it capable of doing the desired task in unforeseen and unexpected situations without pre-existing
knowledge of the rules. Although deep learning is still fresh and young, we see its contributions in
many existing systems. In addition to huge advances in deep learning algorithms, we cannot ignore
the help of high CPU and GPU power and the availability of big and complex data. In the near
future, we will surely hear more about developed systems based on the deep learning algorithms.

Deep Learning De�nitions

Through the emergence of deep learning, a lot of de�nitions have been proposed for this �eld and
high-tech descriptions have been created. In this part, we would like to investigate some proposed
de�nitions.

Some researchers believe that the deep learning is a class of the machine learning algorithms that
bene�ts from its large number of layers to perform the information processing nonlinearly and extract
the features which might be supervised or unsupervised. Another de�nition of deep learning is based
on another characteristic of such algorithms and a common target of the deep learning approaches.
The purpose is to learn multiple levels of representation for modeling relationships of data where
basically the complex and unsupervised learning of representations is the basis of many models.
In fact, the features with lower levels are used to form features with higher levels, hence, a deep
architecture is actually a hierarchy of features.

It has also been proposed that the goal of deep learning is to make better representations of
data and learn them in the best possible way. The fourth de�nition of deep learning holds the
hypothesis of being a part of machine learning and undertaking the learning process at multiple
levels of abstraction. Use of the arti�cial neural networks and the statistical models contribute to
building higher level concepts from lower level ones. In addition, if we consider the same lower level
concepts, it will also be possible to create many high level concepts by using them. The last de�nition
of deep learning focuses on the main goal of machine learning approaches. The aim is to create real
arti�cial intelligence. The deep learning moves us towards this goal and makes more sense of data
representation and abstraction.
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Deep Learning Classes

Here, we would like to investigate the brain's working model and the classes of deep learning. Let's
assume that we have a computer with many small processors. These processors can be compared to
a massive number of neurons in the human brain system. The needed time for reacting to any input
is a few milliseconds. If we design a very small electronic device for modeling a biological neuron,
it is theoretically necessary to add a transfer function. This function plays the role of the neuron
for responding to the inputs and commands. Connecting di�erent neurons in neural networks makes
it more similar to what we have in the human brain system. The �nal model will be closer to the
working of the brain as well. Due to the complexity of deep learning algorithms, the used techniques
and architectures, it is drastically hard to accurately de�ne the borders among the deep learning
approaches. Furthermore, we do not have a limited number of deep learning classes. As there is
no scaling system for de�ning di�erent classes of deep networks, we classify them into three major
groups according to the architecture and techniques. Our categorization has three members, which
are deep networks for unsupervised or generative learning, supervised deep networks and hybrid deep
networks.

The �rst category, deep networks for the unsupervised or the generative learning, is a group of
networks where there is no access to information about the �nal labels of the classes. This means
that we do not use any speci�c supervision information in this group of deep networks. The point
is that the deep networks of this group can be generative or non-generative. There is no obligation
to be generative naturally, although they are mostly generative. Their intention is to get high order
correlation of the available data for the desired tasks such as the analysis of pattern and synthesis
usages. If the features representations and abstraction are unsupervised, then the network is abso-
lutely a member of this group. Some example members of this group are DBN, deep Boltzmann
machine (DBM) [378], restricted Boltzmann machine (RBM) [379], and generalized denoising auto-
encoders [380]. It should be noted that the most common members of this category are deep energy
based models [381].

The second category belongs to deep discriminative networks for supervised learning. This type
of network is usually utilized for classi�cation tasks as they are powerful discriminative tools. In
this group of networks, the labels of classes are in the hand directly or indirectly. The deep stacking
network (DSN) [382], CNN and time delay neural network (TDNN) [383] are only some members of
this group. In addition, some deep networks such as the RNN and the sum product network (SPN)
[384] can be considered as supervised as well as unsupervised learning models.

The last de�ned category is the hybrid deep networks [385] where the term "hybrid" and "fusion"
usually indicate the result of combined methods and algorithms. If a model is built based on the
fusion of di�erent approaches with the deep learning model, this developed model is a hybrid deep
network. The approach used might be another deep learning model or another approach like feature
detection and extraction algorithms. For instance, a hybrid deep model of convolutional and RBM
models has been used in [386] for face veri�cation.

8.2.4 Deep Learning and Traditional Machine Learning in Classi�cation

Tasks

Classi�cation tasks can be divided into two main phases if machine learning algorithms are utili-
zed. The �rst main phase is called the training phase. The second main phase is actually the testing
phase where new and unseen observations should be tested. In this phase, the labels of the test
images should be predicted. An important technical point is to know how the traditional machine
learning algorithms and the deep learning approaches di�erentiate.
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The training part of classi�cation problems is usually performed by using the training images
and the relevant image labels. Then, the obtained model of the training is evaluated by the use of
testing images. Prediction of each testing image is carried out where the label of each testing image
is determined. If the used algorithm is a traditional machine learning one, we usually have two im-
portant tasks which should be carefully completed in the training. The �rst one is to extract features
which are useful for the traditional machine learning algorithms. As explained before, two important
detection and extraction algorithms are the SIFT and SURF methods. The next step is to utilize the
obtained features for building a training model. The feature extraction process will be repeated for
the new images of the testing dataset, and the features will be applied to the trained model and the
labels will be predicted.

Obviously, the important point is feature engineering, though the di�erence between traditional
machine learning algorithms and deep learning algorithms goes back to the procedure of feature engi-
neering. Feature engineering is a critical, di�cult and time-consuming task. In addition, it involves a
high level of knowledge. The work�ow of the deep learning algorithms shows how it is di�erent from
the traditional machine learning algorithms. Figure 8.5 represents the work�ow of each algorithm
separately. Meanwhile, the traditional machine learning algorithms are not obsolete, although the
advances of deep learning algorithms are faster than what we can imagine.

Input  Feature 
Extractor Features Traditional Machine 

Learning Algorithm Output 

Input Deep Learning Algorithm Output 

General Flow of Traditional Machine Learning Algorithm 

General Flow of Deep Learning Algorithm 

Figure 8.5: Representing the work�ow of the deep learning and the traditional machine learning

separately

To wind up the explanation about the fundamentals of the deep learning and arti�cial neural
networks, we compare some aspects of the human and machine learning in (11.3).

8.3 Proposed Approach

A modern method for analyzing and representing 2D images is to use deep neural networks and
split data into smaller pieces, abstractions and levels, although many representation learning approa-
ches were �rst proposed several decades ago [387]. Until 2006, there were two challenging subjects
with respect to training multi-layer neural networks, over�tting and gradient scattering, and it was
very hard to adjust parameters and obtain optimum performance in implemented neural systems. In
[360], stacked autoencoders were proposed, and a hypothesis was con�rmed that greedy unsupervised
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layer-wise training is helpful for the optimization of deep networks as the proposed approach leads
to a better representation of relevant high level abstractions. It was a good start to step into a new
generation of neural networks. Without any doubt, we owe to an increase in the volume of available
data and advances in hardware components like the GPU and powerful processors. Our proposed
approach is based on fully connected layers of a deep neural network for automatic natural plant
recognition.

As there is a full connection between all components of the whole neural network, it is very similar
to the human brain and nervous system. Due to our knowledge about the human body, we are more
familiar with the architecture of such a neural network. Therefore, realization of the system is easier.
Furthermore, a deep CNN, a hierarchy with many layers, is also known as a shift invariant or space
invariant arti�cial neural network (SIANN) because of the shared-weights of the architecture and the
translation invariance characteristics [388] [389]. Interestingly, this deep model is very dependent on
nonlinear transformation functions. The input data and its scheme exceedingly depend on the desired
task. In this section, the historical explanation of this type of deep network, the linked concepts and
the topology of the proposed deep CNN model will be provided in detail.

8.3.1 CNN History and State-of-the-art

As you might know, the main task of plant species recognition is to classify an unseen input image
of a plant and distinguish its class and species. If there is a tree in a scene, people are able to state
that there is a tree in the picture because of the way that they learned and the visional ability of
determining the image as a tree. Computers and machines do not have such a visional ability. If they
look inside an image, they �nd quite di�erent information from that of a human. A computer sees a
matrix of pixels with di�erent values between 0 and 255 which are the intensities of the pixels.

To solve the problem, the computer attempts to achieve important characteristics of the input
image at di�erent levels. For better understanding of the proposed approach, we �rst investigate the
history behind the CNNs and describe di�erent parts of its components.

A CNN is not a deep network for today, it will be the future of image classi�cation. The history
behind it proves that its application will not be stopped in the near future. This class of neural
networks was inspired by the visual cortex of two animals, cat and monkey, and simple and complex
cells [390]. After several years, a new concept was introduced and it was called neocognitron [354].
This self-organizing neural network model has the ability of unsupervised learning which means there
is no need to have a teacher during the learning process. In order to recognize stimulus patterns, this
model worked based on the geometrical similarity of the shapes of patterns without being a�ected
by the shape deformation of the input patterns such as the change of size, shift of position, etc. The
model was tested on the handwritten numbers.

The CNN's evolution continued and a time-delay neural network was proposed in [391] whereby
the results were remarkably good for the speech recognition of the phonemes and simple words. This
type of network is a primary 1D convolutional network. In addition, the role of this network is also
found in [392]. In 1998, a novel work was proposed in [16]. Its impact on deep neural networks was
inevitable while a back-propagation algorithm and gradient based learning technique were utilized.
This work also showed how a convolutional neural network can be combined with a search or infe-
rence mechanism to be used as document recognition tools. The application of convolutional neural
networks entered a new phase when it was used for di�erent systems in optical character recognition
and handwriting recognition by Microsoft [393]. In addition, a convolutional neural network was
proposed and used in the hand tracking [394], and another one was suggested for the face recognition
in [347].

In the middle of the 2000s, a new suggestion was to use the GPU for machine learning purposes
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[395]. Other works such as [396], [340], [360] and [397] also proposed more e�cient applications of
GPUs for training convolutional neural networks. The work in [360] was the initiator of the new
advances in neural networks and many ideas have since been proposed in the �eld of deep learning.
The advent of the deep neural networking goes back to the ImageNet Large Scale Visual Recogni-
tion Competition (ImageNet LSVRC) 2012 [398] where Krizhevsky, Sutskever and Hinton won the
competition by building the "AlexNet" [362]. The network resembles LeNet which was proposed in
[16]. With this network, the top-5 error was reduced from 26.2% to 15.3%. Furthermore, the used
dataset consisted of roughly 1.2 million training images of 1000 classes, 50000 validation images and
150000 testing images [362]. Investigation of this success proves the contribution of Recti�ed Linear
Units (ReLUs) [372] and Dropout [373] and speeding up the whole task by means of GPUs. Un-
doubtedly, we can call this success one of the main revolutions of the current century. Interestingly,
the basis of the models with good performances in ImageNet LSVRC was deep CNNs from 2013
until 2016. Some examples are OverFeat in 2013 [399], ZFNet in 2014 [400], VGGNet in 2014 [401],
GoogLeNet in 2014 [402], and ResNet in 2016 [403]. It is worth mentioning that Ke Jie, the GO
world's champion, was defeated by Google's DeepMind AlphaGo arti�cial intelligence [404]. Figure
8.6 represents a brief overview of the CNN models and some details of each model separately [405].

Deep CNN models have been employed in many applications since 2012. In order to localize

Figure 8.6: Di�erent CNN models [405]

objects, CNNs have been used in [406] and the task has been completed e�ciently. In [407], face
recognition was performed by deep networks. The system is called the VGG-Face which led to obtai-
ning impressive results in comparison with the state-of-the-art. Deep CNNs have also been proposed
in the medical applications as we �nd in [408], [409], [410] and [411]. In addition, the CNN has been
utilized for the circuit recognition in [412]. Furthermore, the CNNs have been examined in more areas
such as estimation of pose [413], text spotting [414], visual saliency detection [415] and recognition
of action [416]. These are only some examples of using deep CNNs for various domains.

We follow up our discussion with linked concepts of CNNs and provide a short explanation of the
major steps and related concepts. Before starting the next section, it is worth noting that CNNs have
been extended into many domains such as video analysis [417], the pharmaceutical industry [418],
checkers [419], NLP [420], etc.
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8.3.2 Linked Concepts

CNN has its own world with exclusive creatures, and the related concepts are arguably di�erent
from other domains. The e�ects of this unique world are undeniable in modern life. CNN is one
of the advanced technologies that we are lucky to see and enjoy its advantages for many unsolved
problems. In order to walk through this exciting world, we need to �rst know the relevant de�nitions
and concepts. Then we can investigate the proposed deep model. Regardless of the di�culties, we
would like to take a tour and jump into the major steps of deep CNN models.

Before starting the tour, we must mention some initial points in this part and (8.3.3). CNNs consist
of di�erent layers such as a convolutional layer, pooling layer, fully connected layer, etc (8.3.3). The
architecture of this type of deep network is discriminative. The presence of the weight sharing in
the convolutional layer and the possibility of selecting the pooling layer add invariance and semi-
invariance properties, like translation invariance, to the CNN models. These characteristics endow
the CNN models with e�ective solutions for image classi�cation and pattern recognition tasks.

Main Steps of Deep CNN

For building a deep CNN model and doing the training phase, we usually involve four main steps
and wrong processes during this phase might have disruptive e�ects. Preparing data is the �rst
important step in creating a deep CNN model and all machine learning techniques. It is necessary to
have a good dataset instead of good images of the dataset, but the question is, "What is the meaning
of a good dataset instead of good images of the dataset?"

The dataset must be descriptive and representative. Our prepared dataset, a natural plant dataset,
is exactly the one that we need. A considered factor of the dataset is diversity among the images.
If we consider only one image, it might appear unusable while the whole dataset consists of images
to help us reach our �nal goal. In addition, it is essential to handle and hoard the natural images
of the dataset in an appropriate format which can be utilized in the system e�ciently. It is also
worth mentioning that one pre-processing step might be necessary. It depends on our de�nition of
the model and the format of images. In our case, we have RGB images which are composed of three
channels, R, G and B. Therefore, the input data is 3-dimensional and provides an extra depth.

The de�nition of the desired deep model is surely important as the second step. The architecture
of the model will be de�ned in this step and the con�guration of the model will be created. There are
many parameters, such as the number of layers, type of layers, number of iterations, type of functions,
�lters, etc. It is necessary to create the �rst scheme of the model and compute the parameters that
might be dependent on other parameters as well. The optimization process is the third step of deep
CNN models. It plays an important role to reduce the loss of the model.

The last general step of preparing a deep CNN model is to do the training and get the �nal trained
model. Due to the volume of the deep CNN model, one necessity is to use powerful hardware for
the training step. Although it is possible to train the deep CNN model slowly by means of central
processing units (CPUs), the priority is to utilize GPUs for this step and speed up the training
process to get satisfactory parameters and the �nal model. The �nal trained model will be saved and
can be applied in making new tests and predictions.

Deep Learning Frameworks

Deep learning is not only a huge area of machine learning, many researchers, developers and
scientists are trying to create and develop new interfaces, frameworks, and toolboxes based on this
concept. The �nal desire of the developers is to put their own framework in the highest place of deep
learning's showcase and for passionate users to utilize their framework. In addition to researchers
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and scientists, companies also compete in the battle of building more e�cient frameworks. No one is
merely waiting to see the improvements of other toolboxes and frameworks. This �erce competition
contributes to the deep learning advances in di�erent aspects. Due to the newness of deep learning,
there is still a great deal of work to discover. Pioneer players are attempting to overcome the di�culties
to become the leaders of this part of the machine learning �eld. We realize the importance of deep
learning and its frameworks when we look at the list of companies that have made investments.
Google, Facebook, Amazon, and Microsoft are only a few examples of the current list of companies.
Up until now, many frameworks have been proposed and we describe some popular frameworks in
(11.5), mostly mentioned in [421]; furthermore, we discuss our utilized framework as well as provide
a short explanation about our reasons for choosing it in (11.5.5).

8.3.3 Building Blocks of Deep CNNs and Relevant De�nitions

Our deep CNN model consists of three main layers, input layer, several hidden layers and output
layer, for classi�cation of challenging natural plants. There are di�erent types of layers which might
be used in hidden part of the deep model and consideration of the nodes shows that each node of
the current layer is connected to the nodes of the next layer. A hidden layer of the deep CNN model
can be convolutional layer, pooling layer (called also down-sampling layer and sub-sampling layer),
fully connected layer and non-linear layer. It should be pointed out that some relevant de�nitions
are provided in (11.4.1).

8.3.4 Convolutional Layer

Let's suppose that we take an input plant image constituting 227×227×3, referring to width and
height pixels with 3 channels of RGB image, hence we have actually a 3-dimensional input. If we
consider this example, the convolutional layer, called also the convolution layer, is a learnable �lter
which slides over the input plant image and a dot product is performed between the input plant
image and the de�ned �lter. Two learnable parameters that are weight and bias constitute the con-
volutional layer. It is worth mentioning that weight is usually named kernel �lter.

If the size of the �lter is 5×5, the depth should be equal to 5×5×3 because of the structure of the
input and its 3 channels. Hence, the �lter is able to cover all three channels of the image. It should
be noted that the result of each taken dot product is scalar.

The convolutional layer is a member of the feature learning in the deep CNN model, and it be-
longs to feature learning part where each �lter is a representative of one speci�c interest feature.
Hence, the CNN model will learn which feature is a component of the �rst plant species. The power
of the output data is independent of the locations of the features. The plant species might be in a
di�erent position, but the model is still able to recognize it correctly as the presence of the features
is important.

In forward passing, we convolve each �lter in width and height directions, and the result is an
activation map in 2-dimension for the �lter. Intuitively, the network learns the �lters that are acti-
vated in the input when they view certain features in some places. By stacking the activation maps
for all �lters along the depth dimension, a complete mass of the output is obtained. Each entry in
this volume of the output can be considered as the output of a neuron looking only at the small area
of the input, which shares common parameters with the other neurons in the same activation map,
because these numbers are the results of applying the same �lter. Figure 8.7 shows neurons in a
convolutional layer. Each neuron is spatially connected to just one local region in the full depth of
three color channels. Meanwhile, mathematical relations of the activation map are explained later.



177

Figure 8.7: Neurons in a convolutional layer

Moreover, it is not practical to create connections between all neurons and all regions of the input
volume. The reason is the increase of weights for the training phase. Moreover, the computational
complexity increases which costs highly. To solve this problem, we connect each neuron to a small
region of the input volume and the area of this small region for connection is a metaparameter called
the receptive �eld [422]. In other words, a local region of the input volume is the receptive �eld with
the same size as the �lter. Now, if the receptive �eld has a size equal to 5 × 5, it means that each
neuron in the convolutional layer has a weight fraction of 5×5×3 = 75 for a 5×5×3 input volume.

It should be pointed out that there is another relevant concept called the shared weights. Despite
its simplicity, it is so helpful for transformation operations. By using this concept, it is feasible to
utilize the same weights for performing the desired operation like convolution.

8.3.5 Activation Layer

The name of this layer interprets its role and responsibility which is to make decision on the �nal
value of the neuron and activate it if it has not reached its ideal value yet. It is also mentioned that
this type of layers is actually an element-wise operator. For instance, we have a cell that its ideal
value is equal to 1. In practice, it is probably impossible to achieve this target value and the current
cell equals 0.75. We use a function to activate this cell by assigning a comparison with a threshold
value. For example, we compare the cell value with 0.6 and set it to 1 if the value is greater than 0.6;
otherwise, we set it to 0. As a result, the size of both bottom blob and produced top blob remains
the same and they will be identical in size. Some types of the activation layer are Recti�ed Linear
Unit (ReLU) [379], hyperbolic tangent (TanH) and sigmoid.

8.3.6 Pooling Layer

Pooling layer is an important layer of the deep CNN models, and operates a nonlinear down-
sampling process on the width and height of the image. Therefore, the �rst outcome is actually
reduction of the volume of the image. It should be noted that this layer is a member of the feature
learning part of the deep CNN model and its operation on each feature map is independently per-
formed.

One important point is the place of the pooling layer which is usually after the convolutional
layer. Reduction of spatial dimensions, width×height, of its input which is actually the output of the
convolutional layer helps to gain a reduced representation and less amount of parameters and compu-
tations in the model. This reduction can be 75%. We shouldn't forget that the down-sampling is loss
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of information, but we may bene�t from this loss of information. To examine the loss of information,
we consider the outcomes of the pooling layer. Reduction of the parameters and computations proves
the important advantage of using the pooling layer which is the control of over�tting.

In addition, the pooling layer does not have any e�ect on the depth dimension of the input volume.
There are di�erent types of pooling layers, but the most popular one is called max pooling that gives
us the maximum number in every small sub-region of the input volume convolved by the �lter. For
instance, we have a max pooling with a �lter of size 3×3 and stride of 2 in our proposed deep model.
Two other types of the pooling layers are average pooling and L2-norm pooling. For instance, if we
have a 2 × 2 matrix and the average pooling is applied, then the result is the average of the four
members of the matrix.

Figure 8.8 shows the operation of the max pooling layer where the �lter's size is 2 × 2 with the
stride of 2 at every depth slice [423] and the output is 1

4
size of the input.

Figure 8.8: Example of the max pooling [423]

8.3.7 Fully Connected Layer

Fully connected layer is generally used after convolution and pooling layers. What we have in this
layer is the same as a class of the traditional feed-forward neural network, multilayer perceptron
(MLP) [424], and outputs of the convolutional neural network will be the input of this layer. In other
words, this type of layer is responsible for connecting neurons of one layer to neurons of the other
layer. If we use a fully connected layer at the end of the deep model, the result is an N-dimensional
vector. N is actually the number of the labels, and it means that we have N neurons �nally. It is
necessary to point out that this layer belongs to the classi�cation part of the model.



179

8.3.8 Loss Layer

The driver of the learning is loss which does the comparison process between a predicted label and
its true label. The loss layer is basically the �nal layer and there are di�erent loss functions which
can be used for di�erent tasks. The computation of loss is forward-passing, but the gradient compu-
tation is backward-passing if we consider the direction of the loss pass. The typical loss function is
SoftmaxWithLoss [425] and it can be utilized for doing one-versus-all classi�cation.

Another type of the loss function is called sigmoid cross-entropy [426] and it is useful for pre-
diction of N independent probability values in the range [0, 1]. The other type of the loss function
is Euclidean, and it is suitable for regression to real-valued labels (−∞,+∞). The loss layer is the
member of classi�cation part of the deep CNN model.

8.3.9 Local Response Normalization

Lateral inhibition is a concept in neurobiology and refers to an interconnection pattern of neurons
in body. In fact, adjacent neurons or receptors inhibit each other. In the same way, our intention is
to have peaks and local maxima in deep neural networks. In convolutional layers, a local response
normalization (LRN) [427] layer helps us to do normalization across channels and to increase sensory
perception. This type of layer is included in Ca�e and can be considered as brightness normalization
over local input regions. As described in [428], there exists a factor where three di�erent parameters
can be selected and each input value can be divided by it (see 8.1).

8.3.10 Blob

Here let's focus on a new de�nition that is a basic building block of the Ca�e framework. There
is an important component for the implementation of a deep CNN model in the Ca�e framework.
This component is called "Blob" and it can be used for storing and communicating purposes. If we
consider an individual layer of a deep CNN in Ca�e, we �nd that the layer consists of di�erent blobs.
A blob is like a wrapper for easy access to data that encapsulates this information for the CPU and
GPU to process. One side of the blob's role is to hide the computational operations of the CPU
and GPU and use the memory when there is a demand. It is an N-dimensional structure for the
information storage like the batches of the input images, parameters for models and optimization. In
addition to the storing property, the framework allows us to communicate among data by means of
blobs. Two chunks of the memories, data and gradient values, can be stored by the blobs. They might
be saved on the CPU or the GPU. In order to synchronize values between the CPU and the GPU,
the blob utilizes a SyncedMem class, conceals the details of a process and minimizes the transfer of
the data.

8.3.11 Topology of the Proposed Deep CNN Model

Our goal is to design, develop, and implement a system with a deep CNN core, a set of learnable
�lters for automatic classi�cation of natural plant species without any user interaction and additional
human or non-human actions. As discussed before, a convolutional neural network is composed of
di�erent types of layers such as a convolutional layer, pooling layer, fully connected layer, etc. An
increase in the number of layers and neurons has made the CNN models closer to the real biological
brain, nervous system and related concepts. The name of the model is the proof of the importance
of convolutional layers among the common layers of this type of network.

The learnable �lters of the model are not spatially large. But, they play an important role for
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extending the input data, adding depth, and obtaining the full structure of the input data. As a
result, a volume of neurons has been obtained. Two main types of layers constitute our proposed
CNN model. These are convolutional layers (�rst �ve layers) and fully connected layers (last three
layers). The role of the fully connected layers is to make connections between current neurons to the
whole neurons of the layer which is located before it. Figure 8.9 demonstrates the overview of two
types of layers for the proposed CNN model [91].

Now we continue with the detailed explanation of the architecture of the proposed deep learning

Figure 8.9: The overview of two types of layers for the proposed CNN model [91]

network and the layers of the implemented deep CNN model. If we stay far away from the deep
network, we are able to divide the deep network into three di�erent parts, the input data, the deep
CNN and the output data.

The input dataset consists of RGB natural images of di�erent plant species. In order to provide
more details of the �rst layer, let's look into it deeply. The whole layer is composed of di�erent
sublayers such as the convolutional layer and the pooling layer. In this convolutional layer, the weight
�lter is the Gaussian which means that we initialize the �lters with a Gaussian distribution function.
In addition, a bias layer is added which starts the biases at zero. The reason for setting the biases
at zero is to break the asymmetrical structure which is obtained by some small random numbers in
the weights. Then a ReLU layer is provided referring to [379]. If the input of this layer is x, then
the output will be equal to x if x is greater than 0; otherwise it equals to ((negative − slope) × x).
We do not set any value for the (negative− slope) parameter, therefore, the ReLU function is called
standard of getting max(x, 0). It contributes to maintaining the memory consumption and to having
the bottom and the top alike. Then a LRN layer [427] is applied where the local size (n) of it is set to
5 for summing over adjacent channels [427], alpha (α), the scaling parameter, is equal to 0.0001, and
beta (β), the exponent of the following equation [427], equals to 0.75. This type of layer performs a
kind of lateral inhibition by normalizing over the local input regions [427]. The following equation
shows the mathematical relations of the parameters. In this case, each input is divided by the next
formula:

(1 + (
α

n
)Σix

2
i )
β (8.1)

The last sublayer of the �rst layer is a max pooling one and it is like a bridge to connect the �rst
layer to the second one.

Before describing the next layer, it should be pointed out that there are two batches, one belongs
to the training phase and the other belongs to the testing phase. The size of a batch means the
number of inputs in one pass for processing. If we set the batch-size to 250, we may get an error
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regarding the memory of GPU, so we should decrease the batch-size to a lower value. For example,
we can set it to 50. In the testing phase, we should change the batch-size to another lower value. For
instance, if the batch-size in the training phase is equal to 50, we can set it to 10. Additionally, we
have divided our natural image dataset into two subsets; the number of training images is 800 and
the number of test images is 200. The images have been selected for the training and test subsets
randomly. If we set the batch-size of the training phase to 50, we can divide the number of training
images by this batch-size, so 800

50
= 16. Therefore, the test interval in the solver step can be 16, 32,

48, ..., 16×n (can be a coe�cient of 16). We set this parameter to 32.
If we set the batch-size of the testing phase to 10, then we divide the number of test images by

this batch-size, so 200
10

= 20. Therefore, the test iteration in the solver step can be 20, 40, ..., 20×n
(can be a coe�cient of 20). The parameter is set to 20.

Epoch =
Maximum iteration

test interval
(in solver step) (8.2)

Test iteration × batch− size (of test phase) = Number of test images (8.3)

Another important point is about possible alternatives for the Gaussian distribution. A feasible
alternative is to utilize a constant �lter. In this way, the weights will be �lled by a constant value.
However, it is not a good idea to initialize all the weights to a constant value. The same learning
for all neurons is the weakness of this �lter as the same outputs will be produced. In fact, it will
not be learning di�erent features. Another option is to do the process by using a uniform �lter and
consequently sampling small values from the uniform distribution. In [429], it has been proposed that
completing the training is hard for networks with more than �ve layers when a uniform initialization
is applied.

The next layer, the second layer, is also a convolutional layer. There is a pad parameter which is
set to 2. It means that we have de�ned 2 pixels to add to each side of the input in this convolutional
layer. The type of the weight �lter in this layer is Gaussian. Moreover, there is a parameter called
group and its default value is 1. When we do not talk about this value in a layer, it means that the
default value has been utilized. This parameter helps us to limit the connections of each �lter to a
subset of the input. For instance, if we have 402 inputs and set this parameter to 2, then we have
two groups of 202 connections, and subsequently, the process is accelerated by roughly double speed,
although there is a very small loss in the convergence operation. In this layer, the neuron bias has
been initialized by using the constant 0.1. The local response normalization and max pooling are the
same as the ones used in the �rst layer. The output of the second layer is the input of the third layer.

The third layer is a convolutional layer without any additional layers of the local response norma-
lization and max pooling types. Furthermore, the pad parameter is set to 1 and the type of weight
�lter is the same as the previous layer with a standard deviation of 0.01 and a mean of zero. By
investigating the standard deviation value, we �nd out that setting smaller values result in chocking
the activations and applying larger values lead to explosion of the activations. The used bias �lter has
the type of constant, the same as the �rst layer, and its value is set to 0. Then, one ReLU layer has
been applied as it was done previously in the other two layers. It is noteworthy that there are other
alternatives for the ReLU. One feasible alternative is actually the TanH which outputs a value in
the range (-1, +1) and the center is equal to zero. Our �rst choice is the ReLU as the TanH involves
with expensive computations. Furthermore, the ReLU performs faster than the TanH.

Then, the fourth layer is a convolutional layer, and there is no other pooling or local response
normalization. The pad parameter is equal to 1 and the weight �lter is a Gaussian distribution with
a standard deviation of 0.1 and a mean of the default value which is actually equal to zero. The
bias �lter remains constant and has the value of 0.1. The last convolutional layer is the �fth layer
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of the deep CNN model. A max pooling layer has been added to this layer where its kernel size
is 3 and the stride value is equal to 2. It is worth mentioning that the Gaussian �lter used in the
convolutional layer has a standard deviation of 0.01 and a mean of zero. We have adjusted 2 groups
and the pad value is equal to 1. Moreover, the neuron biases have been carried out by the constant
0.1 and one ReLU have been utilized. It should be noted that the sensitivity of the value of the stride
is important. Using large values leads to increasing the probability of losing information. In such
case, the overlap to receptive �elds would be reduced and spatial dimensions would consequently be
decreased.

The �rst fully connected layer is the sixth layer of the deep network. The type of the fully connec-
ted layer is actually an InnerProduct layer. The input will be supposed as a simple vector, and an
output will be produced in the form of a single vector with height and width of 1. In this layer, the
Gaussian distribution has a standard deviation of 0.005 and a mean of 0. There is also a constant
bias �lter with the value of 0.1. To overbear the over�tting problem, the dropout approach has been
proposed in [372] and we have applied it to the model. The term can be thought of as dropping
out units in a deep neural network and the units might be hidden or visible [373]. The same as a
neural network, the dropout layer is a biological inspiration. In [373], it has been mentioned that a
theory of the role of the sex in the revolution [430] is a motive in proposing the dropout approach.
In addition, the biological neurons have a rate for �ring while the inputs have been received, but
this rate might be random, which is similar to adding random noise to the current values, and the
dropout approach is also based on this fact at each run. It switches o� and removes random hidden
units (neurons) in the training phase. The proposed approach has been used instead of the expensive
methods that use a combination of predictions of di�erent models for the reduction of the test errors
[55] [431]. The dropout is also helpful for the convergence since it varies the required iteration value
which is approximately a double one [91]. The neurons that have been dropped out are not helpful
for passing forward, and they will not be present in the backpropagation. By using this procedure,
the deep network samples have a di�erent architecture any time there is an input, but all of the
di�erent architectures share weights. In the testing phase, all neurons are utilized and the outputs
of them are multiplied by 0.5. Meanwhile, the structure of the seventh is the same as the sixth layer
as well.

Let's clarify the dropout by considering a simple example. There are 10 students who are studying
mathematics and the lecturer usually asks some questions about previous topics in the beginning of
each session. There are only 3 students who are ready to answer the questions quickly. The lecturer
is able to ask these students not to answer the questions, hence, the other students can also answer
to the questions and learn the topics better. While the answers of these students are not correct,
the lecturer supports them to make their answers correct, and this process of correction is similar to
updating the weights in a deep CNN. The important outcome of this process is better learning for
all the students of the class, all neurons of the layer.

The third fully connected layer is the last layer of the deep CNN model and its output has been
fed into a 4-way softmax with loss. The initialization of the weight in the last layer has been per-
formed by a Gaussian distribution with the standard deviation 0.01 and a zero-mean. In general, we
compute a probabilistic likelihood per class and then utilize it for the calculation of the error that
the network has created [91]. To obtain the accuracy, we have added an accuracy layer, and it shows
the score of the network of the present batch. It should be pointed out that the accuracy layer will
not be propagated. The softmax function is as below:

σ(z)j =
exp(zj)

ΣK
k=1exp(zk)

(8.4)

where z is a vector of the inputs to the output layer. If we have 4 outputs, then there will be 4
elements in z. In addition, j is responsible for indexing the outputs and we have j = 1, 2, ..., K.
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The optimization process is the third step of deep CNN models. Another part of this process is
the generation of parameters' updating. In order to arrange the model optimization, there is a solver
and it coordinates the forward inference of the network and also the gradients of backward for doing
the update task which helps to improve the loss of the model. A part of the learning process is the
solver's responsibility, and the other part of it is the model's responsibility to reduce the loss and
obtain the gradients.

In this stage, we would like to investigate the scheme of the solver step and state some important
parameters like momentum and weight decay as well as provide details of the learning part. We
begin by walking through the stage to become familiar with the parameters therein. Training of the
deep CNN model is based on stochastic gradient descent (SGD) [432] with the mentioned batch-size.
To start the learning process, a momentum of 0.9 has been proposed as an acceptable and e�ective
value. This parameter makes the model faster and more stable. There is another hyperparameter
called the weight decay, and it is utilized for regulating large weights, direct updating of process and
decreasing the error of training. Furthermore, it usually gets a real fraction and our chosen value for
this hyperparameter is 0.0005. Furthermore, the low value of this parameter is helpful for reducing
the error of the model's training and penalizing the large weights. Setting the value of the weight
decay depends practically on the network and the goals. By setting this parameter to such low value,
we ful�ll our desired goal for caring about our predictions and obtaining a high accuracy.

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε· <
∂L

∂w
|wi

> Di (8.5)

wi+1 := wi + vi+1 (8.6)

where
i: the index of iteration
v: the momentum variable
ε: the rate of learning
The last term which is multiplied by ε: the average over the ith batch Di of the derivative of the

objective with respect to w, evaluated at wi.
There are some other feasible alternatives that can be used instead of the SGD. The �rst option is

adaptive moment estimation (Adam) [433]. Similar to the stochastic gradient descent, it is gradient-
based optimization method proposed in [433]. The Adam computes adaptive learning rates for each
parameter. It stores and keeps both an exponentially decaying average of past squared gradients and
an exponentially decaying average of past gradients like momentum. Considering the momentum as
a ball running down a slope, this method is like a heavy ball with friction that prefers �at minima
in the error surface. Although the performance of this method is good, it lacks from an important
issue, generalization.

The other possible choice is a gradient-based optimization method which is called the AdaGrad
[434]. In this method, the attempt is to "�nd needles in haystacks in the form of very predictive but
rarely seen features [434]." This method is based on dividing the features into frequent and infre-
quent features. As a result, we would be able to adapt the learning rate to the parameters, perform
smaller updates for the parameters associated with the frequent features and larger updates for the
parameters associated with the infrequent features. As each parameter has its own learning rate and
the learning rate is monotonically decreasing, the learning rate may become very small. Then, the
system stops learning and it causes a problem.

The next feasible alternative is RMSProp proposed in [435]. The method is an adaptive gradi-
ent method. As explained, the AdaGrad su�ers from radical diminishing of the learning rates. To
overcome the problem of the AdaGrad, this method is helpful as it decays the past accumulated
gradient. Hence, only one portion of the past gradients would be considered and the behavior of the
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RMSprop is like the moving average. In addition, its contribution is to divide the learning rate by
an exponentially decaying average of the squared gradients. Investigation of this method shows that
its main problem is generalization as proved in [436]. However, our choice is the SGD due to the
importance of generalization.

Due to the structure of the layers, the start of layers' weights is from a Gaussian distribution with
zero-mean and standard deviation of 0.01. Neuron biases have been utilized in some layers, layer 2,
layer 4, layer 5, and fully connected hidden layers 6 and 7 where the constant value is equal to 0.1
and the early stages of the learning have been sped up by use of ReLUs with positive inputs. In
addition, the remaining layers have neuron biases with a constant value of zero. The base learning
value has been kept constant and it is equal to 0.00001 which is a real value. By choosing this small
value, the model with new data will be changed slowly, but the learning process of the new layer will
be fast enough. Therefore, the process will be more reliable.

The used learning policy gets a value with a quoted string and it decides on the changes of the
learning rate over time. As the used type of this parameter is by steps, the learning policy drops
the learning rate in step sizes of the gamma parameter which is equal to 0.1, and the learning rate
is multiplied by the gamma parameter. The next important point is stepsize, which is a positive
integer and shows the number of iterations for going onto the next step of training. In addition, we
use another parameter to limit the number of iterations, and it is representative of the maximum
number of iterations. We are able to decide on the mode that we would like to use in solving the
network. There are two modes, GPU and CPU, and our selected option is GPU.

Furthermore, there is a nice feature which helps to indicate how often the Ca�e should output a
model and solverstate [437]. This value is a positive integer. To complete the parameters of the solver,
we introduce two remaining parameters, named test iterations and test interval. The test interval
shows how often the test phase of the network will be executed [437], and the test iterations indicate
how many test iterations should occur per test interval [437].

Now we would like to discuss an example and make clear the concepts used. We adjust the total
number of iterations to 450000 and the optimization process runs for a maximum of 450000 iterati-
ons. If we set the stepsize and the learning rate to 100000 and 0.01, respectively, then we have:
1-For the �rst 100000 iterations, we just utilize the learning rate.
2- For the iterations between 100000 and 200000, the learning rate is multiplied by the gamma which
is equal to 0.1, and we do the training at (0.01)× (0.1) = 0.001.
3- For the iterations between 200000 and 300000, the learning rate is (0.001) × (0.1), which equals
to 0.0001.
4- For the iterations between 300000 and 400000, the learning rate is (0.0001)× (0.1), and it equals
to 0.00001.
5- For the iterations between 400000 and 450000, the learning rate is equal to 0.000001.

If the test iteration is set to 10000, the solver can calculate the accuracy of the model by use of
the testing set every 1000 iterations.

In this section, we have introduced many new concepts, relevant issues (including deep learning
frameworks) and de�nitions, the proposed approach as well as details of the deep model. Figure 8.10
represents the deep model of the deep natural plant recognition system (DNPRS). Regarding the
materials and equipment, we will explain the related important points in detail in the next section
to prepare for the experiment section as well.

To summarize the model, Table 8.1 provides an overview of the layers and the parameter values.
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96 ch 256 ch 384 ch 384 ch 256 ch 4096 ch 4096 ch 4 ch

Convolutional Layer 1:
Gaussian weight filter
Bias layer
ReLU layer
LRN layer
Pooling layer

Convolutional Layer 2:
Pad Parameter
Gaussian weight filter
Bias layer
ReLU layer
LRN layer
Pooling layer

Convolutional Layer 3:
Pad Parameter
Gaussian weight filter
Bias layer
ReLU layer

Convolutional Layer 4:
Pad Parameter
Gaussian weight filter
Bias layer
ReLU layer

Convolutional Layer 5:
Pad Parameter
Gaussian weight filter
Bias layer
ReLU layer
Pooling layer

Fully Connected Layer 6 and 7:
Gaussian weight filter
Bias layer
ReLU layer
Dropout

Fully Connected Layer 8:
Gaussian weight filter
Bias layer
Loss layer

Figure 8.10: Deep model of the DNPRS

Layer 1 Gaussian weight �lter (std=0.01) Bias layer (constant value of 0) ReLU layer

LRN layer (n=5, α=0.0001, β=0.75) Pooling layer (max type)

Layer 2 Pad parameter (2) Gaussian weight �lter (std=0.01) Bias layer (constant value of 0.1)

ReLU layer LRN layer (n=5, α = 0.0001, β = 0.75) Pooling layer (max type)

Layer 3 Pad parameter (1) Gaussian weight �lter (std=0.01) Bias layer (constant value of 0)

ReLU layer

Layer 4 Pad parameter (1) Gaussian weight �lter (std=0.01) Bias layer (constant value of 0.1)

ReLU layer

Layer 5 Pad parameter (1) Gaussian weight �lter (std=0.01) Bias layer (constant value of 0.1)

ReLU layer Pooling layer (max type)

Layer 6 Gaussian weight �lter (std=0.005) Bias layer (constant value of 0.1) ReLU layer

Dropout layer

Layer 7 Gaussian weight �lter (std=0.005) Bias layer (constant value of 0.1) ReLU layer

Dropout layer

Layer 8 Gaussian weight �lter (std=0.01) Bias layer (constant value of 0) Loss layer (4-way Softmax type)

Table 8.1: An overview of the layers and the parameter values

8.4 Materials and Equipment

Our research explores the feasibility of high-e�cient recognition for plant species from nature.
Through the design of the proposed deep CNN model, we would like to become ready for the chal-
lenging test and experiment phase. Once the whole system, including the model, materials, and
equipment, is designed, built, and trained, it is feasible to start doing the test and to predict the
plant species in the testing dataset. Due to an extra de�ned goal for using the implemented system
in real-time situations, there will be an additional challenge.

Furthermore, the used dataset is not clean at all, but what does this mean? It means that we
did not consider any speci�c routine for taking the pictures. We have obtained a variety of images
with di�erent qualities, shooting locations, light intensities, point of views, distances, etc. Due to
the importance of the generality of the system, there is no speci�c consideration during the selection
process of the testing images. In addition, the images have been selected from the modern dataset
randomly, thus the dark sides of the selection have been excluded.

One important point is preparation of the hardware, essential equipment and deciding on the
computer mode for performing the training and testing steps. In addition, visualization of the results
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is also important because of further steps of the work. Furthermore, appropriate equipment helps
to investigate the model and its parameters, especially critical ones with more in�uences on the
performance of the model.

8.4.1 Record of Data

Our prepared dataset, called the modern dataset, has been created to support us in moving
forward to �nd e�ective answers for the unsolved problems on the plant recognition topic. A complete
explanation of the dataset and data recording was provided in Chapter 3. It is worth mentioning
that the used camera was Canon EOS 600D.

8.4.2 Used PCs

Two di�erent machines have been used to conduct the experiments and train the proposed deep
CNN model as we had two options, CPU and GPU, for the training phase due to the selected
framework. The �rst used machine has the following speci�cations and it has been used for training
the deep model by means of the CPU:

Intel R© CoreTM i7-4790K, CPU @ 4.00 GHz, Installed memory (RAM) 16.0 GB
The maximum memory size of this type of CPU is 32 GB and its memory type is DDR3-1333/1600,

DDR3L-1333/1600 @ 1.5V and the maximum provided memory bandwidth is equal to 25.6 GB/s.
Furthermore, we should emphasize that the base frequency of the processor is 4.00 GHz and its price
is roughly 350$ [438].

The speci�cations of the next machine, which has been used for training through the use of the
GPU, are as follows:

Intel R© CoreTM i7-4820K, CPU @ 3.70 GHz, Installed memory (RAM) 16.0 GB, and graphics
GeForce GTX 760/PCIe/SSE2

GeForce GTX 760 is a powerful and mid-range desktop graphics card and its manufacturer is
NVIDIA which is providing new and interesting equipment for the deep learning. Its core clock can
be in the range of 980-1033 MHz, but it depends on the temperature of the chip and the power
consumption.

Although we used both GPU and CPU to do the training phase, we only used the GPU for
performing the testing phase in this work. Perhaps someone asks, "How can I choose a GPU for my
PC if I am going to implement deep neural networks?" It is really hard to give a narrow and speci�c
answer to this question as the process of selecting the GPU is so complicated. An investigation of
some speci�cations of the GPUs is helpful for making a good decision and choosing an appropriate
GPU. The �rst point is to consider and check the Compute Uni�ed Device Architecture (CUDA)
cores. For instance, GeForce GTX 760 has CUDA cores 1152. The memory bandwidth is the other
point that someone might probably consider as an important factor. It would be also possible to
consider the memory required by the GPU and then decide on the GPUs by the ranking of the GB/s
rate. As an example, the memory bandwidth of the GeForce GTX 760 is 192.2 GB/s [439].

The architecture of GeForce GTX 760 is Kapler, not Fermi. As a result, the power consumption is
less when the used architecture is Kapler [440]. In addition, thermal speci�cations can be considered
for comparing di�erent the GPUs. The mentioned example, the GeForce GTX 760 has the maximum
GPU temperature, 97 centigrade. The price is also another factor which can be used for comparing
di�erent GPUs. In many cases, our selection depends on the budget. For instance, the price of the
GeForce GTX 760 is 199 Euro [441]. In summary, we selected the GeForce GTX 760 for the PC
according to all compared factors, especially our budget. It was the cheapest GK110 GPU with the
best performance and acceptable energy consumption to achieve our goal.
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8.5 Experiments and Results

Before starting our discussion of performed experiments and obtained results, we would like to
look at the application of deep learning in plant species recognition from another perspective. The
world population increases daily and the estimated population is set to reach 9.8 billion by 2050 [442].
Moreover, the current amount of food production does not meet the needs of the population of 2050,
it will only be sustainable if the production is doubled. This increase in production is very challenging
due to, for instance climate change, over-allocated lands for agriculture activities in many countries,
water scarcity, etc. Therefore, it is necessary to consider alternative practical approaches in di�erent
sectors such as herbicides, pesticides, water, plant growth rate, etc. as well as the development of
new technologies to compensate for the lack of food.

New robots can contribute to overcoming the di�culties of population growth and the need to
double the food production. Robots can be utilized for detection of weeds, pests and unwanted plant
species. Robots will be able to play the human resource roles in gardens and take charge of them
in the harvesting of horticultural products and the relevant processes like automatic picking and
grading of ripe fruits. Furthermore, the quality of the mentioned processes can be enhanced by the
use of robots. In many stages of agricultural processes, the recognition of plant species can be utilized
which results in an increase in the number of products and the �nal outcome of agricultural activities.
Regardless of the complexity of the goals, our goal is to apply a sophisticated deep CNN model for
identi�cation and recognition of natural plant species and use the deep system in di�erent states
of the plant growth. Despite many problems, it is a courageous decision to develop natural plant
recognition systems based on deep learning, which is also called the supervised learning, as the deep
neural network is trained by using labeled data.

To test our deep model, we would like to examine the DNPRS in the testing phase. We use
our modern dataset, which is provided at the Institute of Real-time Learning Systems, University
of Siegen [443]. Four di�erent plant species have been collected by using a Canon EOS 600D in
di�erent weather conditions, days, time and change of distance between the camera and plant species.
Consideration of the mentioned factors results in a natural dataset with high diversity in many
parameters such as distance, background clutter, pose, angle, illumination, light intensity, viewpoint,
etc. The original modern dataset consists of 1000 natural images, and we have randomly divided
it into two sub-datasets, the training dataset (800 images) and testing dataset (200 images). The
original modern dataset was also applied in [268] and [151], however, the training and testing datasets
were not the same as the datasets used for the DNPRS. In Table 8.2, the number of the images at
each de�ned distance, where the distance is measured from the camera to the plant species, can be
observed.

Natural plant dataset 25 cm 50 cm 75 cm 100 cm 150 cm 200 cm

Number of plant images 240 240 240 240 20 20

Table 8.2: Number of images at each de�ned distance [91]

The DNPRS is based on one component of plants, the leaf, which has a longer lifespan compared
to the other components like the fruit and �ower. Moreover, there is no additional pre-processing
operation such as scale, crop, etc. in the training and testing phases before using the input images
and feeding them into the DNPRS.
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Figure 8.11: The accuracy, iterations and maximum accuracy of the DNPRS [91]

8.5.1 Classi�cation Accuracy

Our results on the modern dataset are summarized in Figure 8.11. The deep system achieves the
highest accuracy in the 1056th iteration. It is the best performance during the use of the modern
dataset when it is compared to the other implemented systems in [268] and [151]. As it is observable
in Figure 8.11 [91], the maximum accuracy occurs in the mentioned iteration. It is constant for
the next iterations until all iterations, 160000 iterations, are �nished and completed. Figure 8.11
represents the accuracy of the DNPRS in all iterations in the blue color and the maximum accuracy
equals 99.5%. The second y-axis on the right side shows the percentage from 0% to 100%. In addition
to the accuracy, changes of the loss can be seen in the red color. Its representative part is the �rst
y-axis on the left side. The variation of loss proves that the value of the loss is high at the beginning
and it decreases by the increase of the iteration.

By using the DNPRS, the achieved accuracy is larger than all other implemented systems based
on the modern combined detection and description approaches using the modern dataset [268] [151].

8.5.2 Runtime by using GPU and CPU

As explained before, spreading a deep model across GPUs speeds up the whole process in compari-
son to the use of CPUs. We used two di�erent personal computers (PCs) with di�erent speci�cations.
Once we adjusted the deep model to the CPU mode and used one of the PCs for training the model.
In addition, we used the GPU mode for training the model too. Our purpose was to compare the
runtime of the deep model.

In the GPU mode, the runtime of the deep model was 1248.5088 (sec), 20.8084 (min), when we
reached the maximum accuracy in the iteration of 1056.

One question that might arise is, "How long does it take if we use another mode, the CPU mode?"
Let's check the runtime when the CPU mode was applied. Table 8.3 shows the runtime of the model
for both GPU and CPU modes. With the GPU acceleration, our deep model training is more than
2422 times faster than using the CPU. In other words, several weeks have been reduced to less than
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DNPRS Runtime (min)

GPU 20.8

CPU more than 50400

Table 8.3: Runtime of the deep model for the GPU mode and the CPU mode

30 minutes. A reduction of runtime helps us to do the desired changes on our model easily without
waiting for a runtime of several weeks. This obtained time shows the importance of using the GPU
for deep learning algorithms. Meanwhile, exploitation of the bene�ts of using the GPU is not limited
to runtime. Beside time, energy consumption is also important where this factor decreases by means
of GPUs. Therefore, the optimized and formulated solution is to use the GPU and consume much
less energy for the power and also the cooling.

Due to the obtained accuracy and runtime with the GPU, there is a good trade-o� between
the energy consumption, the �nal deep model and the maximum accuracy. We cannot ignore one
important point when choosing the GPU or the CPU and this remaining point is budget. If the
budget of a project is not su�cient to utilize the GPU, the option of using the CPU is anyway
available. Another option would be to use Google's Cloud tensor processing unit (TPU) [444], but it
is currently only available in the USA [445]. Use of one TPU costs 6.50 USD for an hour [445]. In the
near feature, it might be possible for the users from other origins to rent Google's tensor processing
units (TPUs) and bene�t from the fast running time for deep learning algorithms.

8.5.3 Confusion Matrix, Precision and Recall

The �rst experiment of this section involves building the confusion matrix for the tested images.
As it is shown in Table 8.4, there is only one misclassi�cation for one of the plant species. In fact,
the plant type is Cornus, but it is identi�ed as Amelanchier Canadensis. We have only one error in
the recognition of 200 samples of our four plant species. Therefore, the accuracy (6.8) is 99.5%, as
mentioned before.

DNPRS Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 50 0 0 0

Amelanchier Canadensis 0 50 0 0

Acer Pseudoplatanus 0 0 50 0

Cornus 0 1 0 49

Table 8.4: Confusion matrix of the DNPRS

Previously, we proposed di�erent plant recognition systems for identi�cation of plants in the na-
tural environment in [151] and [268]. The idea behind the systems was to use the potential of the
combined modern detection and description techniques such as SIFT, SURF, HARRIS-SIFT and
FAST-SURF. Through an investigation of the results, we �nd that the system implemented by the
use of the SIFT algorithm has the highest accuracy among all implemented systems, and its accuracy
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is equal to 94.94%. If we check out the systems implemented, SURF, HARRIS-SURF, and FAST-
SURF, based on the SURF algorithm as the description component, we �nd out that the largest
accuracy belongs to the system using the SURF detection and description techniques and the accu-
racy is 93.96% [268]. The accuracies of the other systems with the FAST-SURF and HARRIS-SURF
techniques are 90.94% and 90%, respectively [268]. There is a considerable factor which has e�ects on
the performance in the mentioned systems. This factor is actually the distance from the camera and
the plant species. As you remember, we have taken the pictures in various distances. The question
is, "How might the distance ruin the implemented systems, though the accuracy is acceptable and
good?"

664 

336 

Number of Training and Test Images 

Number of Training 
Images 
Number of Test Images 

800 

200 

Number of Training and Test Images 

Number of Training 
Images 
Number of Test Images 

Figure 8.12: Number of training and test images in systems based on the SIFT and SURF description

approaches [268] [151] (Left), Number of training and test images for the DNPRS [91] (Right)

Let's consider the system using the HARRIS-SURF as its basis. Once we would like to get the
result in a de�ned distance, we have to construct a vocabulary for this speci�c distance. In fact, it
is necessary to build a new vocabulary when the distance is changed. If the distance is 25 cm and
we increase it to 50 cm, then we have to build a new vocabulary for the distance 50 cm and the
vocabulary is not useful at all. We have totally designed and implemented six di�erent systems for
the natural plant recognition in [151] and [268]. As we have to construct one vocabulary per distance
for each system, there are a lot of vocabularies. There is no consideration for the distance if we apply
the DNPRS for the natural plant recognition. Thus, the weakness of the previous systems has been
solved completely.
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Figure 8.13: Precision measurements for the DNPRS [91]
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Figure 8.14: Recall measurements for the DNPRS [91]
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Figure 8.15: Precision and recall measurements for the DNPRS in one �gure [91]

To continue with the implemented systems in [151] and [268] and the DNPRS, we need to consider
the di�erence of the training and testing datasets. As explained before, the number of the testing
images and the training images are 664 and 336 images, respectively [151] [268]. However, the trai-
ning dataset of the DNPRS has 800 images where its testing dataset consists of 200 images. Figure
8.12 shows the split of the original dataset into training and testing datasets for di�erent proposed
systems in [91] [151] [268].

To extract new information from the confusion matrix, we compute two important criterions, the
precision (6.9) and the recall (6.10), which are beyond the accuracy. Figure 8.13 and Figure 8.14
illustrate the measurements of these two metrics and the four values of the x-axis, 1, 2, 3, and 4,
indicate respectively Hydrangea, Amelanchier Canadensis, Acer Pseudoplatanus and Cornus. For
instance, the recall value of Cornus is equal to 0.98, whereas, the recall value of Amelanchier Cana-
densis equals 1 which is the maximum value.

High values of the precision and the recall express a better performance of the DNPRS for the
considered plant species. By plotting the precision and recall measurements, we are able to investi-
gate another metric which is the area under the plotted measurements.

The maximum value of the area under plotted precision measurements is 3.00 when the predic-
tion of the testing images is completely correct. Due to the presence of one misclassi�cation for the
whole testing images, the related area is less than the highest possible value and its value is 2.9803.
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From this point of view, we are able to check the plotted recall measurements. We �nd out that the
maximum value is again 3.00 if there is no misclassi�cation when the images are tested to recognize
the types of plants. One misclassi�cation has occurred and the area under the recall measurements
has been decreased to 2.9900. In order to compare both recall and precision measurements simulta-
neously, Figure 8.15 is plotted.

Figure 8.16: Visualization of the test image taken in a short distance and the type of the plant is

Cornus in reality [91]

Figure 8.17: Visualization of the test image while the type of the plant is Acer Pseudoplatanus in

reality [91]
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Figure 8.18: Visualization of the test image taken in a long distance and the type of the plant is

Cornus in reality [91]

8.5.4 Visualization of Proposed Deep Model and Scoring

In 2015, a useful tool for layer visualization of deep models was introduced by [446]. It is helpful for
interpretation of constructed deep models in Ca�e. This tool is useful for visualization of implemented
deep networks. It is also applicable to give scores for testing the process of new images of natural
plant species. Furthermore, it helps us to compare the scores of di�erent testing images. As a part of
the system, this tool is added to the implemented recognition system. The whole process of testing
a new image is automatic and there is no interference. Three samples of the testing images, like an
image taken in windy weather, have been processed by the use of this tool and the results are shown
in Figure 8.16, Figure 8.17 and Figure 8.18.

Let's consider one of the �gures, for instance, Figure 8.17. In this example, the input image that
is considered as the testing image is represented on the top left corner and the names of the four
plant species have been written under this image:
- Hydrangea, Amelanchier Canadensis, Acer Pseudoplatanus and Cornus

The �rst name is Acer Pseudoplatanus, and the written score behind it is equal to 0.90. This score
means the probability of being Acer Pseudoplatanus is 90%. The second name is Hydrangea, and the
score on the left side of it is 0.10. This means that the probability of being Hydrangea for the input
test image is 10%. The next written plant species are Amelanchier Canadensis and Cornus and their
scores are zero.

In summary, the prediction of the input testing image is visualized in one �gure. If two di�erent
samples of one plant species are correctly recognized by the system, we are able to compare the
testing samples visually. Figure 8.19 shows two di�erent samples which are tested by the system and
their recognized species is the same. We would like to use a reverse engineering process and visually
compare them with respect the obtained scores of the system.

As we have seen in Figure 8.19, the image on the left side has been captured in the short distance
where the image on the right side has been taken at a longer distance. The distance is an important
factor for the human brain and visual system to understand the exact shapes of leaves in images and
recognize types of plant species. Furthermore, the image on the right side looks blurry and the reason
lies in the weather condition that is windy. Strong wind moves leaves and branches of plants and
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Figure 8.19: Visual comparison of two samples recognized correctely by the system

the human is not able to identify the shapes of leaves for di�erent plant species, especially at longer
distances. As humans are often curious about details and pay attention to di�erent colors in a scene,
the observer focuses on the trunk in the image on the right side. In addition, there is no single leaf in
both images. It makes the problem harder than we expected in controlled photographing conditions,
further visual challenges prove the e�ciency of the implemented system as well.

8.5.5 Deep CNN, Drawbacks and the Most Recent and Potential Upco-

ming Breakthrough

As explained, layers play an important role in deep CNN models. The main component is actually
the convolutional layer since the name of this type of neural networks is derived from this important
component. Close layers to inputs are obviously deeper and they are responsible for detecting and
extracting features. Furthermore, simple features will be combined and more complex features will be
provided, whereas, the other layers are closer to the last layer. Hence, we �nd very high level features
at the top of deep models for doing the �nal predictions. Over time, the access to useful hardware
for deep learning purposes has increased. Additionally, the deep CNNs are amenable to the chips
and the �eld programmable gate arrays (FPGA). The CNNs are compatible for the hardware, and
manufactures are working on producing new hardware due to the needs of the current market. An
interesting example is the Intel FPGA which accelerates the arti�cial intelligence for the deep lear-
ning in Microsoft's Bing Intelligent Search [447]. Moreover, some companies, such as NVIDIA, Intel,
Samsung, and Mobileye [448], have made a good e�ort in the development of convolutional network
chips and deploying deep learning models in di�erent applications. In addition to high technology
companies such as Google, Facebook, Microsoft, Apple, IBM, Yahoo! and Twitter, the number of the
startups has grown to begin the research and projects using the CNNs. They have interests primarily
in developing new relevant products and services.

The bene�t of CNNs is to have layers with three dimensional volume neurons. The turning point
is the presence of depth in addition to width and height. Figure 8.20 shows the width, height and
depth of such a structure. In the deep CNNs, all neurons of a layer are not fully connected to the
next layer, and they are connected to a small region of the layer.

Figure 8.21 shows a 3D input volume with the size 4× 4× 3 as follows.

The CNNs are very well-suited for image processing and image classi�cation domains. If we com-
pare CNNs to RNNs in the image domain, we �nd the superiority of the CNNs in fundamental
components. The CNNs have trainable parameters that depend on depth and the used �lters at the
current layer. On the other hand, many convolution operations are performed on input volumes. The
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Figure 8.20: Structure of a 3D neuron in CNNs

Figure 8.21: Structure of a 3D input volume for the deep CNN [449]

result is to have features and activation maps. Furthermore, huge numbers of �lters help to do the
learning process and get the spatial features from the volumes. Consequently, we obtain very abstrac-
ted representations that lead to the prediction of the outputs through an advanced process. In fact,
the deep model learns how to capture important components of an image such as edge, curve, line,
etc. and utilizes these components to recognize larger structures which are actually plant species.
The RNNs have some �lters with the same weights, thus, they are not suitable for classi�cation tasks
as they cannot be used for doing the training process with the idea of capturing the information
at di�erent levels. The RNNs do not help us to ful�ll the generalization goal in our system because
there is a single series of the �lters which learn to associate the current input at each step, and the
RNNs are applicable for the recognition of patterns across the time.

Two important questions are: How does one train such a model with many layers and parameters?
How does one overcome the obstructions of the gradient, such as instability and the tendency of
vanishing or exploding?

Although we have a big model with many layers, the type of these layers is convolutional one.
Using this type of layers contributes to reducing the huge number of the parameters. Consequently
the learning process becomes easier. The e�ect of the dropout is undeniable in our deep model as it
avoids over�tting in such a complex neural network. Acceleration of the training process has been
done by using the ReLU instead of the other methods like the sigmoid. This process is usually 3 or
5 times faster. Interestingly the ideas seem to be simple, but they are powerful and e�cient.
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With regard to the drawbacks, the main weakness is the need of the powerful hardware and its
expensive costs. Furthermore, it is hard to handle with many hyperparameters and the adjustment
of these parameters is not easy at all. Designing a deep model is hard because it is not possible for
us to change only a parameter and get a new version of the deep model in a short time. It is time
consuming if we would like to make a new change and obtain a new model with the new adjusted
parameter. If we concern about changing a layer completely, it will be catastrophe for designers of
deep models. Here we would like to consider the last drawback. Important spatial hierarchies between
the simple and complex objects are not considered in the internal data representation, although the
solution is to use the idea of the capsules and the dynamic routing between capsules [376].

The last explanation of this section is about the most recent and potential upcoming breakthrough
in the deep learning which has been expressed by Yann LeCun [450]. He proposed the GANs as the
most important advancement in the deep learning, and it is a member of the unsupervised machine
learning algorithms. The unique idea is to train two neural networks simultaneously at the same
time. The �rst neural network is called the discriminator, which is typically a convolutional neural
network. The other network is called generator, which is typically a deconvolutional neural network
[451]. This algorithm has been utilized in di�erent applications such as modeling patterns of the mo-
tion in video [452], reconstructing 3D models of the objects from the images [453], the improvement
of the astronomical images [454], and the image enhancement [455].

8.5.6 DNPRS, Applications and Future Work

This proposed plant recognition system, DNPRS, is a unique system in di�erent aspects. Its �nal
accuracy is high enough in comparison to the other previous implemented systems in [268] and [151].
In order to recognize the natural plants, the implemented DNPRS can be used in a robot and applied
in the real-time application. We are able to mount a camera on a robot or semi-robot system for
the classi�cation of the plants when the robot or semi-robot goes through a garden, jungle, or farm,
at any time of day, even if it is morning or evening without any consideration about the weather
condition and the presence of the sun.

Robots are under the pressure of entering in di�erent �elds and our expectation of robots is to
solve the remaining problems of each �eld and obtain accurate results. The future of agriculture
is connected to the future of robotics. It is a fundamental demand to be applied in farming and
agriculture, although there are many challenges which should be taken into account. Many aspects
of modern farming, such as soil development, soil management, pruning, seeding, harvesting, light
management, pest control, etc., should be enhanced for the future of world due to its rapidly increa-
sing population. One necessity is to identify all species which have been grown on farms and monitor
the products. Automatic recognition of plants is also useful and applicable in the harvesting process.
In addition, robots help to accelerate di�erent tasks on farms and save time that is a vital factor in
the modern world. To attain peak e�ciency, farmers need to use advanced equipment. They tend to
have remote access to the farms during the day and afternoon [91]. By using robots, farmers are able
to juggle various facts such as weather, level of soil moisture, nutrient content, etc. The DNPRS is
an intelligent tool to facilitate identi�cation of plant species and it can be used in natural conditions.

Figure 8.22 shows the schematic of a semi-robot that will be used in the future for testing the
DNPRS as a real-time system. The semi-robot is composed of a PC, monitor, camera, unipod and
carrier. It is possible to adjust the height of the unipod and rotate the camera if it is needed.

There is also a real agriculture robot at the Institute of Real-time Learning Systems (EZLS) at
the University of Siegen, Germany and it is called the Zephyr [17]. Figure 8.23 shows this robot that
is equipped with a camera, SJCAM SJ4000 and a wireless modem [17]. If an image is taken by the
Zephyr, the image can be transferred over the wireless network to one stationary platform or a cloud
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Figure 8.22: The designed semi-robot for the real-time application of the system in the future [91]

server. Then, the DNPRS recognizes the plant species.
Due to the properties of the DNPRS, the real-time system is usable at various distances, di�erent

times of day like morning, noon, and evening, and di�erent weather conditions such as sunny, cloudy,
etc. It is worth mentioning that the whole process of the plant recognition, from taking a picture of
the plant to the �nal result, the species of the plant, will be completely automatic. The independence
of the whole system from the used camera will also be examined by using the other cameras [91].
As you remember, we detected and extracted the features for using them in the traditional machine
learning algorithms, SVMs. We are also able to extract the features by using a deep model and then
training the features in the algorithms like SVMs. Hence, we can use the rich extracted features
obtained by the deep model.

Figure 8.23: The mobile robot, Zephyr, that can be used for the real-time application of the system

[17]

8.6 Conclusion

Since the appearance of deep learning, an increasing interest in this unique area of machine learning
has led to a diverse set of applications for exploring the complicated and unsolved problems in the
machine learning. Another aspect is to supply the new needs of modern life with respect to the
capacity of deep learning algorithms. In this chapter, we designed and analyzed a deep convolutional
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neural network and deployed for classi�cation of a very challenging natural plant species in natural
environments. Many di�erent factors have been taken into account according to characteristics and
properties of the dataset and the result is promising. This system, DNPRS, ful�lls our determined
goals such as applicability, generality, etc. The DNPRS classi�es e�ciently four plant species with an
accuracy of 99.5%, which is larger than obtained accuracies by the systems used the modern combined
methods like FAST-SURF, FAST-SIFT, HARRIS-SIFT, and SURF, etc. [268] [151], although these
systems are also useful in many cases. The key result of the system is not restricted to the �nal
classi�cation accuracy. Providing a scoring tool also helps to compare di�erent input samples of the
plant species visually by consideration of the obtained scores. We also provided a discussion on how
the implemented system di�erentiates when the hardware components are changed for the training
process. The experiment of training by both CPU and GPU proved the importance of the used
hardware as well. Moreover, the application of the DNPRS is not limited to agriculture. It can also
be used in di�erent �elds such as medicine, drugs, etc. as a fully-automatic plant recognition system.
Due to the important position of the system in the industry of the future, we beat the barriers of
using mobile robots in natural environments for accurate plant recognition.



Chapter 9

Mobile Plant Recognition Robot (Real-time

Application of the DNPRS in Challenging

Outdoor Environments)

The horizon of agriculture's future is not clear. Many factors like climate change, population
growth and soil infertility might have irrecoverable e�ects on di�erent aspects of the agriculture. One
important aspect of agriculture is plant recognition. It is very challenging in outdoor environments,
especially in �elds and unstructured places. To walk through a farm and distinguish plants automa-
tically, it is essential to integrate an automatic plant recognition system with mobile robots. Over
time, robots are taking up the responsibilities and activities of humans in di�erent places, especially
in the natural environment. As previously introduced, our intention is to build stable and reliable
robots with the capability of the identi�cation of plants. To develop such an agricultural robot, there
are two phases. One is related to the robot and its features. The other is connected to the system
capabilities for plant identi�cation including recognition under unfavorable climate and environmen-
tal changes. An important component of such a system is undoubtedly the camera which should be
mounted on the robot.

However, the robotic market is steadily growing in many �elds, its growth is not covering in
agriculture as it is expected and it should be broadened. In agriculture, many existing robots are
substantially doing elementary operations and simple labor-intensive activities of the growing season
such as irrigation, harvesting, seed sowing and pesticide spraying. Some activities like spraying and
spreading pesticides are harmful if the chemical materials enter the human body through the inha-
lation, ingestion or absorption. Thus, it is necessary to replace the workers with the robots to avoid
jeopardizing the worker health and safety. Another purpose of using robots in agriculture is to ad-
vance precision in this �eld. As many farming tasks are repetitive, implementing robotic technology
contributes to increasing productivity and saving time and energy.

In order to design robot farmers, consideration of the agricultural environment is certainly im-
portant. Hence, challenges of the natural environment have to also be considered while designing an
automatic plant recognition system. Ours is a four-wheeled robot and enables us to easily do plant
recognition tasks in the natural environment. The control of the robot is done by joystick, although
it is possible to utilize the robot in farms as an autonomous robot with unique features such as fast
navigating through the crop rows, good stability in the agricultural environment, being multipur-
pose, etc. In addition, a semi-robot is proposed for real-time tests. We investigate both robot and
semi-robot in plant recognition tasks.

This work has been published in the 2019 IEEE 15th International Conference on Intelligent
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Computer Communication and Processing (ICCP 2019) [18].

9.1 Introduction

A portable plant recognition system has many realistic advantages and usages. While a family is
visiting a park, the kids might be curious to know the type and name of plants. They ask the parents
many questions and expect to get the right answers. Furthermore, mayoralty of a city may propose
some plans for local plants of the city and surroundings. In addition to controlling the invasive spe-
cies, his aim might be bene�ting from energy conversion, reduced labor requirements, local ecosystem
supporting, etc. Another approach of such a plan is to expand it to the citizens and invite them to
participate. Botanists and scientist of other �elds are also interested in recognizing plant species for
their own purposes such as gathering data. Furthermore, a wide range of pragmatic farmers are keen
to �nd all types of weeds in their farms. They want to prevent weeds from becoming established as
they invade crops. Additionally weeds have negative in�uences on the productivity of farms, crop
quality, quantity and amount of organic matter in soil, etc. To continue our discussion, �rstly we
would like to have a look at mobile robots.

Let's consider brie�y some agricultural robots and their functions. Robots have penetrated the
farms and gardens to carry out di�erent agricultural tasks such as harvesting, weed control, sor-
ting and packing, etc. For harvesting, there are several automated systems to perform this task. For
instance, Agrobot [456] is like a tractor. The system works within rows, detects ripe strawberries
and picks the fresh ones up without any contact. The ripeness of strawberries is determined by the
cutting-edge graphic processing units. It has 24 arms and constitutes a team which is working wi-
relessly. The important part of this robot is its �exible platform; hence, it can be used for other
farming purposes and con�gurations. Interestingly, there is an option to de�ne if it is intended to
remove stem or calyx during the harvesting process.

Another example is a project called the Asterix that sprays herbicides on only weeds without
impacting crop plants and the ground through the use of machine vision and advanced patented
technology that are out of the scope of our work. Weeding is an important task in farms. Several
robots have been developed to carry out the task and limit exposure to herbicides. One of the pro-
posed machines is Oz weeding robot [457] that has three di�erent modes: manual mode, track and
follow mode and autonomous mode. As a weeder robot, the robot takes care of weeding and saves
farmers from the drudgery of this repetitive job. Moreover, this electric robot reduces the workload
of farmers and contributes to the improvement of working conditions. The next agricultural robot
that we would like to introduce is Vinbot [458]. It is an all-terrain robot which works entirely autono-
mously with a set of sensors. The sensors are useful for capturing images and data. Cloud computing
applications help to analyze vineyard images and 3D data, �nd the yield of vineyards, predict yield
accurately and send the obtained data to owners of the vineyards. Additionally, there are some other
applications for robots to tackle the wide range of the tasks in gardens and farms. Robots can be
used for sorting and packing purposes in agriculture. An example of such robot is the Pro Packing
Robot [459] that was developed to �ll cartons with fruits and vegetables [460]. It is equipped with a
camera that helps to di�erentiate the sorted products.

The identity of agricultural robots has not been su�ciently investigated if we ignore the mobile
robot for one important task in farms and gardens which is actually plant recognition. Plant reco-
gnition contributes to di�erent related areas of agricultural management such as soil management,
farm management, dairy management, animal management, etc. A lack of integration of agricultural
robots with plant recognition systems is undeniable and there are not many robots for automatic
plant recognition. In [461], a mobile robot was developed and applied for the mechanical control
of weeds in outdoor environments. The vision system was composed of two sub-systems. The �rst
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sub-system recognizes the row structure formed by the crops [461] and guides the robot along the
rows. The second sub-system is a color-based vision system for identifying a single crop among weed
plants [461]. In [462], they proposed a method for plant species recognition by the use of a 3D light
imaging, detection and ranging (LIDAR) sensor and di�erent learning methods by means of the
toolbox Weka [463]. They created a set of features, such as a mean of the re�ectance values, maxi-
mum re�ectance value, minimum re�ectance value, etc., which are size and rotation invariant. They
carried out an experimental evaluation of the best used learning methods. The results have been
obtained for identi�cation of plant species in the laboratory. The Asterix [464], an autonomous robot
for automatic control of weeds in row-crops owned by the Adigo AS [465], classi�es leaves by the
use of color information and shape descriptors [466]. It is worth mentioning that the test has been
carried out in a carrot �eld.

Precision farming (PF) is not a limited concept. It includes di�erent farming tasks which target
to improve farming operations and obtain ultra-precise information for the crop management. If we
would like to use a robot for the purpose of precision farming, the ability of identi�cation of weeds
is necessary for the robot. The real-time application is also another side of this work. In [467], a
CNN-based semantic segmentation of crop �elds has been proposed. The approach helps to separate
sugar beet plants, weeds and background information by using input RGB data. Moreover, the pro-
posed system has been utilized on a real agricultural robot, Bonirob [468]. Due to the importance
of deep learning and its great in�uence in di�erent areas, the relationship between deep learning
and robotics is getting closer. Ribeiro et al. [469] addressed a real-time deep learning based method
for pedestrian detection (PD) [469] to the human-aware robot navigation problem by combining an
aggregate channel features (ACF) detector [470] with a deep CNN. In the end, they achieved a fast
enough performance. In [471], fusion of a CNN model with a feature-based layered pre-�lter was ap-
plied to a mobile robot. It resulted in improving the precision and recall results of human detection.
The experiment was carried out on two di�erent robots with di�erent GPUs. Neural networks can
also be used for autonomous robot navigation in unknown environments as discussed in [472].

Nowadays, the implementation of deep learning models is not a desire. It has become more po-
pular because of the availability of new hardware and the possibility of using embedded systems
with limited resources. Furthermore, mobile robots have been developed and used widely in di�erent
�elds as explained. But the lack of a mobile robot for plant recognition in real world environments
is tangible. For instance, an autonomous robot for agriculture (AgriBot) [473] carries out di�erent
agricultural activities such as digging holes, putting seeds in holes, covering the hole with soil, ap-
plying pre-emergence fertilizers and herbicides along with the marking agent, communicating with
another robot by means of Wi-Fi. It is known as a multi-purpose agricultural robot, but there is
no operation for plant species recognition. Plant recognition in uncontrolled environments is usually
referred as the identi�cation of weeds and non-weeds by the use of robots [474] [475] [476] [461]. The
missing part is to use a mobile robot for recognizing di�erent plant species, not just the identi�cation
of weeds and non-weeds.

To compete with the di�culties of plant recognition in uncontrolled environments, we decided
to utilize our implemented CNN model [91] for real-time tests and undertake the tests with two
di�erent mobile systems, a semi-robot and a robot. Deep learning has matured enough to be used in
another new �eld, plant species recognition. It is able to �ght with unsolved problems in real-time
plant recognition and conquer the peak of related di�culties of recognizing plants in the natural
environment. In this work, we address some existing problems of recognizing plants. The �rst issue is
to use an automatic plant recognition system as a real-time system in the natural environment. Two
di�erent platforms, a semi-robot and a mobile robot, can bene�t from the system and open a new
window into agriculture and biology. The other problem refers to the used camera for taking photos
as input images. We would like to build two systems which can be utilized independent of the used
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camera. In fact, we do not want to make any consideration about the camera used. Furthermore,
generalization of the plant recognition system will also be provided from another aspect.

In addition, we would like to do the tests at di�erent distances without measuring the distance
between the camera and the desired natural plant species. Thus we do not care if the distance is more
or less than 1 meter. In this way, we omit one factor which is usually considered in many robots and
systems. Meanwhile, the CNN model works in the natural environment without any consideration
about the time of day and the weather condition if it is sunny, cloudy, or windy. In agricultural app-
lications, the used robot can be considered as a small robot. This robot is capable of the autonomous
navigation in �elds. It is also able to keep its distance from crop rows without crashing. Considering
the physical aspects of the robot, current conditions in particular areas of plant recognition play a
major role. The design of the robot is helpful and usable within farms with di�erent situations and
conditions due to some advantages in terms of cost, speed, accuracy and energy consumption in de-
sired operations. It can be considered as the end product if we target the mentioned issues properly.
Furthermore, using a semi-robot has economic justi�cations when there are insu�cient facilities and
equipment. Therefore, we decided to propose such a system.

The inputs of the CNN model are RGB images that will be recorded in natural environments.
The identi�cation of plant species will automatically be done without any pre-processing and pre-
segmentation. The output of the plant recognition system can be used for providing a status report
of mobile robot or semi-robot navigation through an uncontrolled environment. In addition, using
a deep CNN model on agricultural robots is reasonable because of the importance of both of them
in the today's world. The industrial market tends to use deep learning algorithms, and the market
is thirsty for the agricultural robots. Hence, many startup technology companies are working on
di�erent systems based on the deep learning algorithms and developing robots for agricultural pur-
poses. Many companies consider di�erent challenges of the relevant issues such as food supply, lack
of workers, the high cost of hiring experienced workers, complexities of farming activities, increase
of greenhouses, etc. They attempt to provide for the rising demands of the agriculture �eld.

One important point is to increase the awareness of the robots and high-tech systems among the
farmers and owners of the farms. To convince such people and break the barriers, it is necessary to
create precise systems and support implemented systems over time. It should be pointed out that
the elasticity of demand is high according to the obtained statistics about shipments of agricultural
robots. It will increase in the next years from 32,000 units in 2016 to 594,000 units annually in 2024,
and the market is expected to reach 74.1 billion $ in annual revenue [477]. Although we do believe
that each region might seek its own demand. Furthermore, the plant recognition is not limited to
only one region or one �eld, it is a demand for many farmers and owners of gardens and also people
of other �elds such as botanists, scientists in the pharmaceutical industry, etc.

The rest of this chapter is organized as follows: related works in section 9.2, system set-up and
schematic in section 9.3, experimental evaluation and results in section 9.4, future work in section
9.5 and conclusion in section 9.6.

9.2 Related Works

In the content of plant classi�cation, one necessity is to automate plant recognition operations.
Another necessity is to commercialize a system which can be used in di�erent places and situations.
Di�erent approaches and techniques have been proposed for plant recognition. They are mostly ba-
sed on leaf analysis and identi�cation of leaves. In [478], the focus was on the extraction of feasible
characteristics such as shape, morphology, texture and color to obtain a set of features to recognize
plant species. Arun et al. [479] proposed texture feature extraction to identify medical plants where
the texture features included grey textures, grey tone spatial dependency matrices (GTSDM) [480]
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and LBP operators. In [481], Zernike moments were utilized to create a plant recognition system,
although the Zernike moments are dependent on the scaling and translation of objects where their
magnitudes are not dependent on the rotation of the objects [482]. The proposed approach in [483]
was to use a contour-based shape descriptor, multi-scale triangular centroid distance (MTCD) [483]
and dynamic programming. The best alignment between corresponding points of the shapes was
found by the dynamic programming. In [296], using a combination of various features, shape, texture
and color features was proposed for doing SVM classi�cation of the plants. Cerutti et al. [298] used
high-level geometrical descriptors for building a plant recognition system. The system that will be
used in the current work has been proposed in [91] and a deep CNN model has been applied to
recognize the natural plant species.

Investigation of the related works in the robotics �eld shows that most agricultural robots with
recognition responsibilities are just doing classi�cation task for two classes, for instance classi�cation
of weeds and non-weeds. In [484], normalized excessive green conversion, statistical threshold value
estimation, adaptive image segmentation, median �lter, morphological feature calculation and ANN
were utilized for weed detection and recognition from crop plants. The images were taken by a �eld
robot. Potena et al. [485] presented a perception system for automatic classi�cation of crops and
weeds. The input images were RGB+near infra-red and the classi�cation of the pixels was performed
by a CNN. A weed detection and classi�cation method including the green segmentation and the
feature extraction was proposed in [486]. The goal was to utilize the system for autonomous weed
control robots which would be able to classify plants into crops and weeds. In [83], data was acqui-
red from on-board sensors of the gardening rover, also called Autonomous Laboursaving Internet of.
Things Veteran Energizer (ALIVE), and sent to a cloud storage platform. They used feature extrac-
tion algorithms, SIFT, SURF, ORB and the neural networks to distinguish plant species.

Despite all these important successes and contributions of the mentioned plant recognition ap-
proaches and robots, the problem still persists if we consider more realistic parameters and factors
in the natural environment. The rationale behind the current work is to build interesting mobile
real-time systems which are capable of performing the natural plant recognition task in outdoor
environments without any consideration of the distance between plant species and camera, the type
of camera, direction of wind, etc. From our perspective, we think that it is time to apply our deep
learning approach at a practical level whereby the robot will be able to navigate an environment and
recognize plant species from the viewed scene, not only from a single leaf with a speci�c background
like soil. This is the greatest motivation for us in this work. It is worth mentioning that the proposed
model in [91] is our rocket engine for the real-time application and its fuel is the natural dataset in
used [91].

In sum, we make four key claims, which are the following: Our implemented systems are able to (i)
accurately perform natural plant recognition for four various plant species with heavily overlapping
leaves in di�erent conditions and real world situations (targeting the correct identi�cation of plant
species without considering the used camera and the distance); (ii) act as a robust classi�er that
adapts well to di�erent lighting conditions, changes of the original shape of leaves and leaf composi-
tion, ages of plants and backgrounds as well as weather conditions not seen in the training dataset;
(iii) work in real-time on a regular CPU or GPU; (iv) be simply extended for the identi�cation of
more plant species.

9.3 System Set-Up & Schematic

We would like to explain two di�erent mobile systems which have been used for our experiments
where our recognition system is the same for both mobile systems. The mobile systems are actually
a semi-mobile robot and a mobile robot, the Zephyr. The semi-robot system is shown in Figure 9.1,
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and three di�erent cameras have been used for the image acquisition of the testing phase. The main
component of the semi-robot system is as below:
- Intel R© CoreTM i7-4820K, CPU @ 3.70 GHz, Installed memory (RAM) 16.0 GB and graphics
GeForce GTX 760/PCIe/SSE2

The mobile robot is shown in Figure 9.2 and we just used one camera, a Canon EOS 600D, for

Figure 9.1: Representation of the semi-robot system

capturing the images during the testing phase of the mobile robot.

Figure 9.2: The mobile robot, the Zephyr

9.3.1 Image Acquisition and Cameras

In order to capture the images, it is possible to use a camera without the need of a human. This
can be considered as the main advantage of using an automatic system for the image acquisition.
Using such a system makes the image capturing convenient and natural and guarantees input for
the automatic plant recognition system. If we want to take the pictures in the controlled lighting
environment, we are able to utilize external lighting equipment and solve the related problems by
using approaches in light engineering. In an uncontrolled environment, capturing images happens in
a natural outdoor setting. Hence, there is no control of temperature, illumination, light intensity,
dust, etc. The e�ciency of the plant recognition system depends on the independence of the camera
used. Consequently, the system will be generalized. Samsung Galaxy Note 4, iPhone 6s and Canon
EOS 600D are the used camera for taking the pictures.

9.3.2 Agricultural Mobile Robot-Zephyr

The Zephyr robot is a small agricultural robot of the Institute of Real-time Learning Systems,
University of Siegen, Germany. It has been participated in di�erent competitions. It is possible to
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use it as an autonomous robot and control it by joystick. The signi�cant property of the robot is
its high speed navigation in �elds. To ful�ll our purpose, the developed deep CNN model is run on
a laptop with the following speci�cations and the plant recognition system is executed in the CPU
mode of the Ca�e framework during the test with the Zephyr:
Dell Latitude E7240, Intel Core i5-4300U (2x 1.9 GHz / 3 MB Cache / 64-bit/ 8 GB RAM 128 GB)

9.4 Experimental Evaluation and Results

In this section, the ultimate goal is to demonstrate the applicability and reliability of the deep
CNN model in [487] [488] by carrying out di�erent real-time tests in the challenging outdoor environ-
ments. Prior to the current real-time investigation, the model was tested after the completion of the
critical component of deep learning algorithms, the learning step. The results of the experiments were
presented in previous chapter. The interest in deep learning models is continuously increasing. We
would like to apply the deep model elaborately in a real-time test and create an intersection between
a deep model for the plant recognition and a group of the mobile semi-robots and mobile robots.
In addition to using the deep model in the real-time test, there are other important objectives. We
want to examine and analyze them through the new experiments.

One main objective is to examine the deep plant recognition system at di�erent times and on
di�erent days. The deep system is trained by the modern dataset created in 2015. Our real-time tests
have been carried out in 2017 and 2018, a two-year test. Researchers mostly test their classi�cation
systems at the same time as developing the systems. But, our intention is to carry out the tests in
di�erent years and times. The e�ect of time is undeniable on experiments and results. We accept this
challenge and continue our journey despite the di�culties of the change of time.

Another objective is to investigate the e�ects of the camera on the mobile plant recognition sys-
tems. We examine the model by using three di�erent cameras, the Samsung Galaxy Note 4, the
iPhone 6s and the Canon EOS 600D. The deep model is trained by the images of the modern dataset
where the distance between the camera and the plant was considered as an important factor during
capturing the images of the plants. We measured the distance accurately to have a set of images
in each de�ned distance. For the real-time test, we are not concerned about the distance. In fact,
the images are taken at close and far distances without any additional consideration of this factor.
Furthermore, the real-time system is tested in di�erent weather conditions such as sunny, cloudy,
windy, etc. There is also another objective that we have considered. It is the goal of connecting our
scienti�c research and work to industrial applications in agriculture, medicine, botany, etc.

A human is looking at a leaf of a plant. Surely, he perceives the structure and shape of the leaf
if the light intensity and illumination is adequate. If he is looking at a portrait, he is able to count
people in it, but what happens if he looks at a plant with a bunch of leaves. We would like to know
if he is able to count the leaves of the plant. Figure 9.3 shows a sample image of a plant with plenty
of leaves.

As we see in Figure 9.3, a human cannot count the leaves of the plant completely. As many leaves
are hidden behind others, it is impossible to count them correctly. For a machine, it is signi�cantly
more di�cult to count the number of the leaves especially if it is not easy to identify the shape and
structure of one leaf. The complexity of the background has an e�ect for identifying the plant species.
One crucial point is that we conduct the real-time experiment on the semi-robots and mobile robots,
but we combine the �nal results for the further evaluation. In addition, the real-time deep system
can be run in two di�erent modes, CPU mode and GPU mode. The GPU mode is used for doing the
test by our semi-robot and the CPU mode for the test by the use of the mobile robot.

As we have used three di�erent cameras, we show the number of the images taken with each
camera, and Table 9.1 represents the related information.
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Figure 9.3: A plant with plenty of leaves

iPhone 6s Samsung Galaxy Note 4 Canon EOS 600D

Acer Pseudoplatanus 23 0 7

Amelanchier Canadensis 10 0 20

Cornus 16 3 11

Hydrangea 19 4 7

Table 9.1: Number of pictures taken of plant species with each camera

The accuracy of the mobile test is equal to 84.17%. Table 9.2 shows the confusion matrix of the
real-time plant recognition results during di�erent times, weather conditions, distances and using
di�erent cameras.

Precision and recall are two important parameters which can be extracted from the confusion

Real-time Mobile System Acer Pseudoplatanus Amelanchier Canadensis Cornus Hydrangea

Acer Pseudoplatanus 29 1 0 0

Amelanchier Canadensis 4 20 0 6

Cornus 5 2 22 1

Hydrangea 0 0 0 30

Table 9.2: Confusion matrix for the real-time experiment

matrix. Figure 9.4 and Figure 9.5 show the precision and recall measurements, respectively. The
sequence of labels is 1, 2, 3, 4 and the members of this sequence are actually Acer Pseudoplatanus,
Amelanchier Canadensis, Cornus, Hydrangea.

The maximum value of the precision measurements is equal to 1 where the minimum value equals
to 0.7631. Three out of the four precision measurements are between 0.8 and 1.

The measured recall values indicate that the change of the values is higher than this change in
the precision values. The �rst and the last labels are equal to 1 which is the highest possible value
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Figure 9.4: The precision measurements for the mobile test
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Figure 9.5: The recall measurements for the mobile test
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Figure 9.6: The precision and recall measurements for the mobile test

for the recall measurement. All values of the recall measurements are in one range, [0.6666, 1]. In
comparison to the graph of the precision measurement, the area under the graph of the recall mea-
surement is smaller. It should be pointed out that the greater area under the graph is the evidence
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Figure 9.7: Importance of ranking in the recognition process

of good performance. It does not matter if the graph shows the precision or recall measurements. In
addition, Figure 9.6 represents the recall and precision measurements in one graph. Therefore, we
are able to compare the recall and precision values of the real-time system simultaneously.

During our test, one exceptional case happened and it is worth explaining in this case. If the deep
real-time system recognizes a sample as two di�erent plant species with the same percentage, the
question is "What is the �nal result?"

Figure 9.7 shows the sample that is recognized as two di�erent species with the same percentage.
But, the �rst one is Amelanchier Canadensis and the second rank is Corus. According to the obtai-
ned ranks, the �rst rank is Amelanchier Canadensis and the plant species is actually Amelanchier
Canadensis. As a result, the importance of the ranking in such cases is undeniable.

A new experiment has been conducted by cropping the input image. In this test, an original image
has been cropped and four cropped images have been obtained. The cropped version of the original
sample has di�erent dimensions if we compare them with the original one. The dimension of each
image has been obtained randomly. There is no special consideration about the dimension and the
size. As we see, the cropped images have been predicted correctly, and the plant species are correct.
Figure 9.8 shows the original image and the four cropped images.

Figure 9.9, Figure 9.10 and Figure 9.11 represent the predictions of the original image and the
four cropped images which have been shown in Figure 9.8.

The system is an end-to-end system and it takes the input image and outputs the plant species.
Our recommendation is to select the mode by considering the available equipment. In our tests,
autofocus is a feature of the used cameras. As the whole process of plant recognition is automatic,
we do not care about this feature if it happens or not. For instance, the needed time for capturing a
picture with the Canon increases if the autofocus happens automatically. The implemented real-time
plant recognition system works at di�erent times of the day, weather conditions and distances.

One main contribution of this work is a new system to classify the natural plant species using the
RGB data taken by one camera without considering the brand, the model and the type. In fact, we
remove such a limit. The deep model is based on the CNN, and it is useful for identifying the plants
in the challenging natural environments automatically. Due to the structure of the model, it is feasi-
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Figure 9.8: The original image and its cropped versions

ble to generalize it to many natural plant species all around the world. We aimed at recognizing the
plants with the complex backgrounds in two di�erent years, 2017 and 2018. It is one of the important
achievements of the work which shows its applicability to be used for the industrial purposes.

To our best knowledge, there is no similar mobile robot or semi-robot system which is able to carry
out the plant recognition in outdoor and natural environments under the mentioned conditions. As
explained before, the other mobile systems are mostly capable of identifying two types of plants in the
outdoor environment, particularly weed and non-weed plants. Being portable is another additional
contribution of this work where the whole software can be installed on a processor and used for all
steps, from obtaining the real-time images (capturing the images) to getting the �nal results.

9.5 Feature Work

The future of this work is not only limited to the plant recognition systems. The mobile component
can be considered as a part of the future work. We are able to design and implement a solar power
system, a renewable clean energy source, for the mobile robot and consequently reduce the pollution.
Such a robot can work autonomously every day, and there is no need for charging or replacing the
battery. It is also possible to use it on cloudy days as the solar cells get the power from the sun,
converting the light into electricity and storing energy.

From a business perspective, it is so important to reduce the overall cost of the system and increase
its e�ciency in some agricultural aspects and target applications. Hence, it could be interesting to add
other features like a seed spreader and a fertilizer spraying device to the mobile system. There is an
additional important point about the system and its real-time application. It should not necessarily
be used only by a robot or semi-robot. It can be integrated into the other agricultural machines
like tractors, which can be found on most farms. In such case, the ultimate cost of the system is
less than the time that the recognition system is implemented as a component of a mobile robot.
Due to independence of the system from the camera, it is not essential to buy a unique camera for
performing the task of plant recognition. The camera of a cell phone can also be utilized.

With regard to the natural plant recognition system, it is possible to take a sequence of images
from one plant species. Then the system identi�es the plant species in all taken images. If 90% of the
results show one output, this output is certainly the type of the tested plant. Furthermore, we are
able to extend the system for the other plant species if we obtain many images of each plant in the
natural environment. Creating a connection between the results of the plant recognition system and
the robot based on a semantic camera is also another possible future work. In this case, the output
information of the recognition system can be applied in a semantic approach for the mobile robot
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Figure 9.9: The classi�cation results for one sample image and its �rst cropped image

Figure 9.10: The classi�cation results for the second and third cropped images

navigation tours.
As discussed before, the model is based on the deep learning concepts. It is unimaginable to

separate the future of the system from the future of the deep learning area where its future depends
on developing models closer to the human brain system. Meanwhile, it is stated that the future of
the deep learning will be connected to the information bottleneck method which is described in [489]
for the �rst time. Geo�rey Hinton, the godfather of the deep learning, declared that it may be the
answer to a really major puzzle in the neural networks [490].
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Figure 9.11: The classi�cation result for the last cropped image

9.6 Conclusion

Many di�erent countries in various continents such Asia, Africa and South America are dependent
on agricultural activities. There are many small farms where a lot of workers are laboring in di�erent
environments. One important point is the diversity of farming environments which are mostly unpre-
dictable, especially in India and West Africa. To ful�ll the need of plant recognition in such places, it
is necessary to consider the potential of the systems based on di�erent variables like cost, e�ciency
in challenging conditions, simplicity of the system for users, etc. The system developed in this rese-
arch is an automatic and real-time plant classi�er. It has been added to an autonomous agricultural
mobile robot, Zephyr, and a semi-robot. In the real-time test, the accuracy of the deep system has
been 84.17%, and the images were taken in the natural environment on di�erent days, in di�erent
weather conditions, at di�erent distances and by various cameras. The system is independent of the
used camera for taking the pictures.

In general, it helps us to overcome the existing challenges in the plant recognition tasks. The
system is portable and reliable for the automatic recognition of plants and the monitoring of plant
species for managing crops in farms and natural outdoor environments like forests. The achievements
of the technical research in this work are the provision of a user-friendly system which leads to robust
results as well as short running time for mobile navigation and the building of a commercial real-time
robot system for distinguishing the plant species without focusing on only one leaf of the target plant.
The automatic real-time system is fully tested to identify four natural plants in two di�erent years,
2017 and 2018, in Siegen, Germany. Evaluations of the results are not only based on the visual tests
but also some useful experiments, such as confusion matrix, precision and recall measurements, etc.,
have also been detailed in this work.
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Conclusions

10.1 Summary

The thesis has addressed the problem of the plant species recognition and understanding the re-
lated di�culties. To investigate the existing plant classi�ers, we addressed some major weak points
of the current systems. The weak points have led them to be unable to deal with complex scenes of
the plants in natural environments, the representation of the leaves, the changes of light in outdoor
environments and other challenging factors like the time of imaging and weather conditions. Fur-
thermore, some other di�culties may occur due to other factors such as the distance between the
used camera and the plant or the viewpoint and angle of photographing. In addition, warmness or
coldness of weather results in changes to the shapes of the leaves. Furthermore, the shapes of the
leaves vary in day and night for some plant species. Therefore, the appearance of the plants changes
and the plant recognition tasks become harder. Hence, it is so important to develop methods and
build systems which are capable of handling the challenges in the real world.

To this end, we divided the plant recognition task into plant recognition in a controlled envi-
ronment and plant recognition in an uncontrolled environment. We proposed six systems based on
di�erent approaches for the �rst environment. Then, we proposed seven systems based on di�erent
algorithms, especially deep learning.

Additionally, we built one semi-robot system and a mobile robot system which can be used on the
farms and various outdoor environments as well. To evaluate the systems with di�erent approaches,
we also conducted di�erent experiments. We compared the results from di�erent points of view. Real
robotics experiments were also carried out. To summarize, the proposed systems outperformed many
current systems.

With regard to plant classi�cation, the well-known commonly available datasets present controlled
environments during photographing. When we look into a dataset consisting of the images of the
leaves, which has been taken in a controlled environment, we �nd small changes among the leaves of
one plant, and the images are usually taken with de�ned and constant background.

In Chapter 3, we pointed out that di�erent datasets provide di�erent plant images with various
challenges, and we investigated the problematic challenges which are exactly a part of the natural
environments. Moreover, we classi�ed the current datasets based on the level and amount of natu-
ralness. We consequently explained why we chose the used datasets.

By doing the image analysis on di�erent samples of the datasets based on the histogram in-
formation, we started checking the e�ectiveness of the obtained information for matching and the
classi�cation of the plant species in Chapter 4. Although the obtained information is useful for com-
paring di�erent samples, using only the provided information is not su�cient for our goal. The reason
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is that we expect to develop systems with the capability of identifying the plant species in a general
manner. In fact, the generality is one of the most important goals. But as a comparison, the mentio-
ned approaches in Chapter 4 can be used.

To improve the plant recognition, we step into the concepts of the modern keypoint detection and
extraction algorithms. We investigate some modern algorithms such as FAST, HARRIS, SIFT, etc.
We conducted some experimental tests on a few sample images to check out the performances of
the algorithms practically. In addition, to a survey on keypoint techniques, we extended our investi-
gations into another important area of image processing, the matching. In our case, we de�ned one
reference plant image and a target plant image. We applied the modern (keypoint) algorithms as the
basis of the matching process to investigate the corresponding features and the reliability of the used
algorithms.

The turning point of Chapter 5 is introducing the modern combined detection and description
methods such as the HARRIS-SIFT, the HARRIS-SURF, etc. Furthermore, this part ful�lled our
ambition for combining di�erent detection and description algorithms.

The proposed approaches in Chapter 5 have been utilized as the base of the implemented systems
in Chapter 6. For the aim of the plant identi�cation, we suggested systems based on the combined
modern detection and description methods and the BoW technique. Our e�ort was to model the very
rich information of the images in the best way. The di�erence among the modern combined methods
led to having di�erent systems with various characteristics and performances for the recognition of a
large number of plant species. In this work, the local features extracted from the images with single
leaves and the SVM algorithm was applied for �nalizing the classi�ers. Consequently, the resulting
plant classi�ers yielded recognition accuracies over 80%. Especially, the accuracy of the system based
on the accuracy of the system based on the SURF detection and description reached more than 92%
for more than 30 di�erent plant species.

In addition to the robustness of the systems, the runtime test proved that the systems were fast
enough for real-time plant recognition. As the implemented systems can be divided into two groups
according to the used description methods, we could investigate the systems of each group separately.
For instance, if we look into the results of the systems with the SURF description method, we �nd an
important fact. The system that used the FAST method detected more features and delivered more
robustness. Furthermore, this system did not pay too much computational cost for the detection of
the features. There is also a good trade-o� between the obtained accuracy and computational time in
the system based on the SURF detection method. Furthermore, all implemented systems recognize
plant species automatically. Hence, there is no need for user action and modi�cation. Nonetheless,
the performances of the proposed systems depend on the known scenarios of both detection and
description methods. Thus, it is recommended to prioritize our needs �rst and choose one of the
proposed plant recognition systems based on our anticipations and needs.

The next phase was to design and implement recognition systems for natural plant species in
outdoor environments. This work was conducted in Chapter 7. This chapter addresses the problems
of the state-of-the-art and the lack of a recognition system for plants under natural conditions. The
emphasis is placed on building a reliable system for natural plant identi�cation and compensating
the gap between the current systems and the real-world needs. We started to examine pre-processing
techniques and their applicability concerning whether they can be utilized in the identi�cation sys-
tems as the starting step. As the self-generated modern dataset consists of color images, we found
di�erent changes in the images of one plant species. It was a big challenge to classify four di�erent
plant species in di�erent sunshine and weather conditions, distances, and times of photographing,
even when all images were taken in shining or shadow conditions. This task was challenging because
other parameters a�ected the images. Despite the various changes of the scenes in the images, we
attempted to �nd a general solution to decrease the e�ects of the changes and even to remove the
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unwanted factors to prepare natural images for the classi�cation task. Due to the variety of the chan-
ges, it was not feasible to enhance the images and have them in the same conditions and formats.
However, it was possible to divide the images into several groups mainly based on one factor. For
instance, it would be possible to divide the images based on the light intensity and illumination. But,
some factors did not exist in a number of images and such images could not be set in a group. The
existence of many factors proved that it was impossible to have a pre-processing step which could
work e�ciently under any condition.

We continued our work by developing six di�erent systems based on the BoW model and the local
feature detectors and descriptors. Thus, the basis of all systems was the BoW model. The training
process was done by SVMs. Di�erent SVMs were used and tested as a part of the implemented sys-
tems to judge which one was more e�cient and applicable. The system based on the SIFT algorithm
obtained the highest accuracy of the classi�cation: 94.94%. They outperformed the other proposed
systems in terms of accuracy. By de�ning our expectations from the system, the other proposed
systems were also useful and reliable. For instance, we are able to choose the systems due to the
expected runtime. Despite the impact of many factors and parameters like angle, point of view, illu-
mination and light changes, and wind e�ects, we yielded acceptable and high recognition accuracy
in all proposed systems of over 89.99%.

For the next stage, we explored our goals in a new machine learning �eld. Finally, we explored
the applicability of the very modern method of deep learning for natural plant classi�cation. The
intention was to check its generality, reliability, stability, etc. In Chapter 8, we developed a new
system based on deep neural network concepts. An important advantage of the proposed system,
called the DNPRS, was to increase the usability of the system for real-time purposes. The developed
system based on CNN put us in the correct road towards a real-time and mobile system for automatic
natural plant recognition in outdoor environments. The performance of the DNPRS was interestingly
outstanding, and the system achieved an extremely high accuracy of 99.5%. Although the accuracy
was not the only important factor in concluding whether the developed system was e�cient enough
or not. Hence, di�erent experimental evaluations were conducted to compare the previously proposed
systems to the DNPRS and the results proved the better performance of the DNPRS in di�erent
aspects.

The last chapter, 9, explored the �nal goal of the plant recognition task which focused on develo-
ping a mobile recognition system with the capability of natural plant identi�cation. The developed
system was used by a semi-robot and a mobile robot for navigating through outdoor environments
and recognizing plant species. The mobile robot could be utilized autonomously and carry out the
task of plant recognition. The test of the systems was not done in di�erent years. This meant that we
performed the experiments on completely new data in addition to previous challenging factors. In a
new year, the growth of leaves might be a�ected by some environmental parameters and the shapes
of leaves could be changed as well. Furthermore, we did the tests using di�erent cameras and proved
that the DNPRS could work independently from the used camera. The conducted experiments and
results were evidence of the e�ciency of the developed system based on deep learning concepts.

In a nutshell, the goal of this work is to develop and implement new automatic systems that
enable the plant recognition in both natural and non-natural environments. To explore the goals and
�ndings, various experiments have been conducted for each proposed system and the results have
been compared. Since one main challenge of the plant classi�cation is the capability of identifying
many plant species, we developed six di�erent systems in [169] and [170] which successfully classi�ed
a large number of plant species with high accuracy. In [169] and [170], it was the �rst time that
modern combined methods were introduced for recognizing plant species. The images were captured
in the controlled condition without any change in the light intensity, illumination, background, etc.
One way to interpret generality is to increase the number of plant species. The developed systems in
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[169] and [170] bene�t from this characteristic. In order to recognize plant species in uncontrolled en-
vironments, six automatic systems based on the modern combined detection and description methods
were proposed in [151] and [268]. Although the systems were able to recognize plant species in the
presence of environmental factors such as viewpoint, angle, light intensity, brightness, position of light
source, background, weather condition, etc., they were still dependent on the pre-information about
a non-environmental factor, the distance between the camera and the plant species. The next stage
was to design a natural plant recognition system called the DNPRS for the recognition of natural
plants in di�erent weather conditions, time of day (morning, noon, afternoon), various backgrounds,
short and long distances, etc. [91]. The DNPRS is a deep neural network-based system which can
be employed in the presence of environmental and non-environmental factors. Due to the possibility
of extending the DNPRS, it was utilized as the basis of a mobile real-time plant recognition system
in [18]. This new mobile real-time system provided a degree of freedom for selecting the camera
for capturing natural images in uncontrolled outdoor environments. Furthermore, it was applied in
two di�erent mobiles systems, semi-mobile robot and mobile robot, with the possibility of using two
di�erent modes, for agricultural applications. It is noteworthy that this well-developed system was
tested over two years without concerning the distance between the camera and the plant species. In
the following, we �nd a shortlist of the major contributions of the DNPRS:
- Working in di�erent environmental factors such as light intensity, brightness, position of light sour-
ce, background, weather condition, time of day, etc.
- Being independent of the selected camera for taking pictures of natural plants.
- The ine�ectiveness of non-environmental factors (viewpoint, angle, distance between the camera
and plants, etc. during photographing) on the system performance.
- Possibility of being used in di�erent �eld robots as a real-time system for recognition of di�erent
plants in natural outdoor environments.
- Usability with lack of hardware (existence of two modes, GPU and CPU).
- Possibility to generalize the DNPRS to identify more plants.
- Being a portable plant recognition system.

10.2 Direction for Future Work

The increase of the world population has an in�uence on many other parameters and leads to new
needs and necessities. For instance, there is a huge increase in the demand for cereal production and
rice supply [475]. Consequently, there will be a challenge to secure food for the whole world. Without
any doubt, climate change also creates a new battle. Many people in undeveloped countries might
be impacted by the shortage of food. Moreover, another undesired e�ect of the climate change is the
variation of the rainfall patterns. Compensation of rainfall is another challenging problem. Thus, we
need to equip humans and automatic systems with plant recognition systems to meet the challenges
of the future and overcome these di�culties.

This section mainly investigates the future trends in research. The modern classi�cation-based me-
thods for leaf recognition or natural plant species classi�cation (see Chapter [6, 7]) are feature-based.
However, the used datasets and images are completely di�erent, and there exist various concerns. The
accuracy of such systems are generally high as the modern features are used to train the classi�ers.
As a result, there is usually a trade-o� between the accuracy and runtime.

It is feasible to apply faster components to reduce the processing time. The new engineering pro-
cess extracts more features and information, so that the robustness increases. However, we need an
appropriate equipment, like the GPU, to implement the training process of the deep learning model.
Furthermore, the foundation of the model is deep CNN, and we have to pay its computational ex-
penses.
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If the users do not have access to adequate and useful equipment for new modeling (for instance,
if users would like to increase the number of plant species and have a new system), it causes a big
problem for �nishing the training process. To tackle the problem, there are three possible solutions
which came to mind by combining previously proposed approaches. The �rst solution is to extract
features from the deep model and feed them into the SVMs. It is possible to get di�erent features from
the deep CNN model accurately from the input photographs. For instance, it is possible to extract
the features from layer 4 or even fully connected layers and then use them for the training processes
by the SVMs. The other solution is to apply the local features, extracted by the SIFT or SURF
algorithms, as the input layer of the BP neural network [491]. Furthermore, we are able to combine
the VLAD approach and the deep model, a trainable end-to-end neural network architecture, and
apply it as a new solution. This scenario can be used in two di�erent ways. Our investigation showed
that our �rst idea has been utilized in [492] and a generalized VLAD layers is connected to the CNN
architecture. Then it is trained via a backpropagation process. The other possibility is to fuse the
extracted features from the deep model and the VLAD vectors and get features with more variety.

There are other possibilities for the future work to focus on improving the performances of the pro-
posed systems. One factor considered in the modern dataset is the weather condition. One possibility
is to model the weather conditions and reduce noise before feeding the images into the developed
systems. For instance, we see small drops on the leaves of the plants while the weather is rainy. To
enhance the images, it is useful to remove the drops and reduce the e�ects of them in the images.
We can target the restoration of an image by approximating and decomposing the weather in the
scene which can be inspired by [493].

In [494], the goal was to recognize and then remove the shadows from the monochromatic natural
images, and the proposed learning-based approach could be helpful to reproduce the high-quality
shadow-free images. Another feasible solution is to add an extra part to the proposed plant recogni-
tion system for removing the weather condition in�uences. In [495], they tried to remove the weather
e�ects from the monochrome images, although it was declared that the methods could be applied
to the images captured in RGB format. They focused on the problem of the poor contrast for the
images taken in bad weather conditions. They proposed a fast physics-based method without any
need for a priori weather-speci�c and scene information to compute the scene structure. They could
restore the contrast of the scene from the two or more images taken in bad weather condition.

Another work has been also proposed in [496] and the goal was to �nd a mathematical model
for the fog by using the deep neural networks and remove the fog for the enhancement in advanced
driver assistance systems (ADAS). If we would like to use such an approach to reduce the e�ects of
the bad weather conditions, two extra parts should be added. One part should be added to identify
the type of the weather for a sample input image, and an e�cient approach is the used to remove the
bad e�ects of the weather condition. Afterwards, it is possible to feed the input into the proposed
plant recognition system for recognizing the type of the plant. It should be mentioned that such
operations will be computationally expensive. In addition, there is also another idea to classify the
images due to the weather conditions and then create new systems based on various datasets where
each dataset contains the images of one weather condition. Although adding a pre-processing step
for the classi�cation of the input images according to the weather condition is time consuming, it is
feasible to achieve higher accuracy in natural plant recognition tasks by dividing the training process
and creating a model for each weather condition. Furthermore, the optimization of such a system is a
challenge and decreasing the processing time should be considered to try to provide a good trade-o�
between high accuracy and runtime.

In Chapter 9, we built real-time mobile systems and conducted new experiments in di�erent years.
Our image acquisition is stationary, not moving, meaning that the robot stops completely. The used
camera captures an image as the input of the recognition system. As the whole process is automatic,
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one important consideration is about the speed of the image acquisition. Although the deep system
works independently from the used camera, it is critical to choose a camera which takes pictures
quickly. Clearly, we can utilize a faster camera than the used cameras in capturing images. Our
choice can be Optronis CamPerform - High-speed CMOS camera [497] which works properly in the
real-time situation. This camera is capable of taking 1051 frames per second at its full resolution.
Due to the importance of fast imaging, an investigation into improving the speed of the camera in
the image acquisition is really considerable. Our goal is to break the real-time constraint.

Another future direction of this work could be to develop a web-based application on a server
and ask several groups of German botanists to take the pictures from the plant species in natural
environments over a period of time, e.g. from May to October, and upload the pictures by labeling
and marking the exact name of the plant species. In addition, it is necessary to provide a precise
protocol about the situations and conditions of photographing as we do not want to get any gap
between our goals and the modern dataset which will be provided in the future. In this way, it is
feasible to increase the number of natural images and add new plant species to the modern dataset.
Another advantage is the possibility of mapping the biodiversity of these plant species in Germany
over time. However, it is essential to have an expert researcher or scientist to check the correctness
and worthiness of the uploaded images.

The future of the work can be put in the direction of di�erent industrial areas, although other
sections, like insurance companies, can use the systems for the accurate estimation of the plants and
crops in the farms and the related issues. When such companies are able to recognize the plants in
the �eld and calculate the number of each plant species, they can insure the crops due to the coverage
levels and the needs. The plant recognition systems may help these companies to reduce inaccurate
payments. Furthermore, an accurate record of the data helps companies to calculate the productivity
of each �eld per year and compare this factor in di�erent years. As a result, they would be able to
prepare contracts due to the status of the �elds, productivity, etc.

The last idea for some future work is to use the output of the system for a designed system by
using other types of information. If we implement a system based on the resource description frame-
work (RDF) [498], we can add the output of our system as the component of information when the
mobile robot is navigating through the natural environment by the use of a semantic camera. In this
case, if the robot sees a tree or plant, it can add its plant species as one part of the information and
the proposed work in [499] can be extended. In fact, our proposed systems contributes to becoming
closer and closer to a semantic camera and its respective technology.



Chapter 11

Appendices

11.1 Implementation of Several Pre-processing Algorithms

11.1.1 Canny Algorithm (Edge Detector)

The importance of edge detection is connected to information such as direction, step characteri-
stics, shape, etc. that detected edges provide for us. Edge might exist between two leaves, leaf and
background, area and area. In 1986, Canny algorithm [302] was developed by John F. Canny, and has
become a popular edge detection technique as a multi-stage algorithm which consists of four di�erent
stages. Despite its simplicity, it has been used widely [500] [501]. Thorough deeply researching the
Canny algorithm, we investigate the stages of the whole technique, then we carry out our test on
several images.

An edge region can be de�ned as a region where there is a big distance di�erence between any set
of sub-regions. Edge detection is always sensitive to noise and artifacts, hence the �rst stage of the
algorithm is to reduce and clear the image from existing noise. A Gaussian �lter (3× 3 or 5× 5) is
applied, and the result is a smoothed image. The second stage is to do an intensity gradient of the
smoothed image. In order to compute the �rst derivative in both horizontal and vertical directions,
Gx and Gy, a Sobel kernel [502] is used in both x and y directions. So, we can obtain the gradient
and the direction of the edge for each pixel as below:

EdgeGradient(G) =
√
G2
x +G2

y (11.1)

Angle(θ) = tan−1(
Gx

Gy

) (11.2)

Concerning the relationship between the gradient direction and edges, the gradient's direction is
always perpendicular to edges and the direction of the gradient is rounded to one of four angles
showing vertical, horizontal and two diagonal directions. We shouldn't forget that intensities change
across the edge, not along the edge.

To form the Canny operator, the third stage is to investigate and check all pixels of the image
whether they constitute any edge or not. To remove noisy pixels, each pixel is checked to �nd if it
is a local maximum in its neighborhood in the direction of the gradient. This stage is called non-
maximum suppression [503], which is an edge thinning technique. For instance, if the pixel A is on
the edge in the vertical direction, the gradient's direction is normal to the edge and the pixel B and
the pixel C are in gradient's directions. Therefore, the pixel A is checked with B and C pixels to
�nd if it forms a local maximum. If so, it is considered for the next stage; otherwise, it is suppressed
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which means, it is put to zero. As a result, we obtain a binary image with thin edges. The last
stage for ful�lling the multi-stage algorithm is Hysteresis Thresholding. This stage helps to �gure
out which edges are real and which are not. In fact, the current stage works like a �lter. To obtain
the goal, two threshold values, minTher and maxTher, should be de�ned. If the intensity of the
gradient of the edge is more than the maxTher, then this edge is surely a real edge. In addition,
there are two other possible cases that we have to consider them. If the target edge is less than the
minTher value, this edge is discarded and de�ned as the non-edge. The last case occurs when the
intensity of the gradient of the edge lies between the minTher and the maxTher. In this case, we
consider the edge as a real edge if it is connected to pixels of a real edge; otherwise, it is not an edge.

In order to examine the Canny edge detector on natural images, a 3 × 3 kernel Gaussian �lter
is created. There are two other parameters, minTher and maxTher, which should be determined
in this edge detection process. We de�ne and adjust the next proportion between the minTher and
maxTher values.

maxTher = 3×minTher (11.3)

Here, the maximum value of the minTher is limited to 100; thus, the value of the minTher may
lay between 0 and 100. For instance, if we set the minTher value to zero, the result is a binary image.
Figure 11.1 depicts the obtained result when we put the minTher to zero in the mentioned process.

Figure 11.1: The original image and the result when the minimum threshold is set to zero

During the experiment conducted on images by means of the Canny edge detection algorithm, we
decided to adjust the minTher value for �nding the best output. The �nal results of input images
with the used threshold value, minimum threshold value, are shown in Figure 11.2, 11.3 and 11.4.

Figure 11.2: The result of the Canny algorithm with the threshold value of 34

The purpose of using an adjustment feature is to �nd the best result for leaf parts. One disad-
vantage of this method is the lack of �nding a general threshold value which can be used for all
samples. We also need to connect the resulting edges to extract the estimate and complete edges
that seem so obvious for the human eye system and mind. One of the limitations of the algorithm
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Figure 11.3: The result of the Canny algorithm with the threshold value of 30

Figure 11.4: The result of the Canny algorithm with the threshold value of 48

is the binary result. Actually, we lose some information that might be valuable for next steps of
the plant recognition. We have found another restriction of the method which is the dependency on
the size of the Gaussian kernel, and the locations of the edges might be o� according to the size
of this smoothing �lter. Another lack of the method is disconnectedness in some parts, corners and
junctions, because the smoothing �lter blurs them out. To summarize this part, it should be pointed
out that the algorithm is not powerful enough in presence of noise interference, and it performs the
detection step weakly. However, it �nds the details of the natural image and provides basically thin
edges. In our case, the Canny detector isn't able to detect useful information for all sample natural
images. Leaves of natural plants can't be segmented e�ciently, but the Canny detection algorithm
yields surprisingly good results in medical images [504].

11.1.2 K-means Color Clustering

K-means is actually a clustering algorithm which can also be applied to obtain the most dominant
colors in a natural image. The main goal of clustering algorithms is to divide the input data into k
separate clusters and multiple regions, whereas each cluster might contain n data. The data of each
cluster can be assigned to the center of the cluster by using the nearest mean. In fact, the data of the
same cluster is assumed as more similar data if we compare the data of the cluster (a set of pixels) to
the obtained data of another (another set of pixels). Since one of the main targets in segmentation
is to entail the division or the separation of the image into regions of similar attributes, it is useful
to apply a K-means color clustering method and extract a set of contours from the entire image.
Therefore, we are able to ful�ll the most basic part of the image segmentation which is its luminance
amplitude for a monochrome image and color components for a color image. Furthermore, all pixels
in a speci�c region are basically similar with respect to some characteristic or computed property,
such as color, intensity and texture.

Due to the in�uence of complicated background and the diversity of natural objects in natural
images, it is not possible to do segmentation easily. At this stage, we would like to examine if we
are able to do clustering and isolate leaves. For initialization of the color clustering, we would like
to make three partitions from the original images. Consequently, the number of clusters is equal to
3. We can also increase the number of clusters. According to the conducted experiments, smaller
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number of clusters (less than 5) gives better results. It is worth mentioning that the input images
are color images constructed by three channels.

To begin the algorithm, we set the input natural image to 3 sets of samples. As goal is to �nd
labels and centers, we apply the K-means. During the clustering step, the termination criteria is
the maximum number of iterations and/or the desired accuracy. The de�ned accuracy is equal to
0.01, although it would be possible to reduce this value if needed. It means, "As soon as each of the
cluster centers moves by less than 0.01 on some iteration, the algorithm stops." Five attempts are
carried out, and the process yields the best compactness for the samples and labeling of them. The
algorithm continues, hence the reshaping of the original image is performed according the obtained
groups of pixels and the centers are �nally mapped. Similarity between colors of natural leaves and
backgrounds of sample images leads to fairly good results for the implemented K-means clustering.
Figure 11.5 illustrates the outputs of the implemented algorithm for three natural images.

Figure 11.5: The results by using the K-means clustering algorithm

11.1.3 Implementation of Grabcut Algorithm

In this section, we propose implementation of an algorithm, called Grabcut [303]. This algorithm
can be considered as an automatic method or graphical initialization method. To have an automatic
process, it is essential to set up numerical parameters �rstly, and then initialize the algorithm. One
possibility is to de�ne the center of the natural image as the target. As a result, the corners of the
natural image would be considered as noisy parts without any bene�t. This is exactly the dark point
of this algorithm in challenging conditions that we are involved in the future. Furthermore, another
possibility is to utilize an initial guiding shape in the pipeline of the algorithm, and we call it gra-
phical initialization.

One solution to our problem is to segment foreground/background. Grabcut is the extension of the
graph-cut approach [505] which is based on both local and global properties and satis�es the goal of
object extraction [269]. The Grabcut is somehow the iterative version of the algorithm that simpli�es
substantially the user interaction needed for a given quality of result. This algorithm utilizes both
edge and region information, hence the algorithm is equipped with a strong and powerful weapon.
The obtained information is used to form an energy function which creates the best segmentation
when it is minimized. One interesting part of the algorithm is to build a graph for representing
pixels of the image as the nodes in the graph. Two important nodes are the Sink and Source nodes
where the �rst one shows the foreground of the image, and the latter, the Sink node, depicts the
background of the image. One important point is that each pixel node in the graph is connected to
the Source and Sink nodes. In addition, the segmentation of the image depends on the separation of
the Source and Sink nodes. The energy function plays the role of weights between the pixel nodes
and also weights between the pixel and Source or Sink nodes in the graph. These weights are de�ned
by the edge information in the image. Thus, a weak indication of an edge between two pixels (a small
di�erence in pixel color) results in a very large weight between two pixel nodes. Determination of
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the weights between the pixels nodes and the Source and Sink nodes is carried out by the region
information. These weights are calculated by determining the probability of the pixel node being
part of the background or the foreground region. The next step, referred as the clue marking stage,
is separating the foreground and background regions. Concerning this issue, some pixels in the image
should be labeled before the segmentation as either the foreground or the background. We face a new
concept in this step, and it is called the hard labeled. Any labeled pixel of this stage is set as the hard
constraint. It means that hard labeled pixels cannot change their labeling during the segmentation
process; therefore, they are condemned to have their labels without any change.

Afterwards, a Min-cut/Max-Flow algorithm [505], a graph cut technique, is used to do the graph
segmentation. This algorithm is responsible for cutting the graph into two separating Source node
and Sink node with a minimum cost function; thus, the minimum cost cut is determined by this
algorithm. In order to obtain the cost of cut, the sum of all the weights of the links that are cut will
be used. Due to the iterative characteristic of the algorithm, the process continues until the time that
the classi�cation converges. However, the iteration number should be de�ned by user. By separating
the Source and Sink nodes, the connected pixels to the Source node are considered as the foreground,
and the rest pixels are the background in the end.

One important point is to make the algorithm wholly automatic without any additional user in-
teraction. Firstly, we calculate the size of each image. If we suppose that the image has columns and
rows, a rectangle with the top-left vertex at (50, 70), of width (columns-150) and height (rows-180)
pixels will be drawn and used for the Grabcut method. Another important point is to de�ne the
number of iterations for processing the algorithm, and this parameter is set to 10.

Figure 11.6 shows the outputs of the algorithm applied to the samples. The experiment is carried
out by our machine with speci�cations of Intel R© CoreTM i7-4790K, CPU @ 4.00 GHz, and installed
memory (RAM) 16.0 GB.

Figure 11.6: The results of the Grabcut algorithm for three samples images

As a summary, the Grabcut algorithm is actually a new algorithm for foreground extraction de-
monstrated in [303], which obtains foreground alpha mattes of good quality for moderately di�cult
images with a rather modest degree of user e�ort [303]. The system is a combination of hard seg-
mentation by iterative graph-cut optimization with the border matting to deal with blur and mixed
pixels on object boundaries [303]. Despite good results obtained by the Grabcut algorithm and nearly
excellent segmentation, this method is time-consuming. We also centralized the rectangular window,
and there might not be any leaf or the leaves might be outside the designed window.

11.1.4 Superpixel-based Segmentation Algorithm

Upon seeing an image containing a plant, a human has no di�culty for understanding the entire
structure of the plant, even though the structure is a 3D one and there are a lot of additional objects
in the surrounding. However, segmenting all regions of natural images remains extremely challenging
for both human and current computer vision systems. Sometimes the human is able to guess the
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invisible regions and parts, but it is not easy for a computer vision system to estimate or guess
invisible parts without prior knowledge. Indeed, in a narrow mathematical sense, it is impossible to
separate all parts from the natural plant image taken in hard weather such as windy and rainy, since
we cannot predict the e�ects of undesired particles. In addition, it can also sometimes be di�cult
to know if it is an outstanding painting of the plant or if it is a picture of a scene in the natural
environment. Practically human perceives, and realizes remarkably well given just one image; and we
want to give the computers this realization and make the computer-based systems closer to reality
for the segmentation of the natural scene. Natural images have usually more details, therefore it
is intended to investigate a new algorithm, superpixel-based segmentation algorithm, for natural
plant images to know whether it would be possible to utilize this algorithm for obtaining perceptual
important regions of the image because these regions are re�ecting global aspects of the image.

In comparison to low-level visual processing like edge detection, segmentation approaches cannot
commonly run at the same speed. One necessity is to do segmentation tasks in faster way. Using
the superpixel image segmentation technique [304] solves the problem of timing in the segmentation.
Furthermore, the technique provides relatively good segmentation, and the result obeys neither too
coarse (to have too few components) nor too �ne [304] [506] [269]. In addition, the technique does
not impose an expensive computational cost compared to other segmentation techniques like the
Grabcut technique. The implementation of the technique in [269] runs in O(nlogn) time for n graph
edges, and it is the same as the original one [304].

Figure 11.7 represents the results of this approach on our captured natural images. In our test,
we keep one of the parameter of the segmentation algorithm, called sigma, �xed, and it equals 0.8.
Another parameter, k, shows the greedy scale of the algorithm where the higher value of k, the large
regions we expect to be segmented. The latter parameter, "Min_size", de�nes the minimum size
for each segmented region. If a region has smaller size than the Min_size, it should be joined to an
adjacent region. The speci�cations of the used machine are Intel R© CoreTM i7-4790K, CPU @ 4.00
GHz and installed memory (RAM) 16.0 GB.

Tuned parameters:
k = 50
Min_size=100
Channels = 3

Figure 11.7: The results of the superpixel-based segmentation algorithm on our captured natural

images with the number of segmented regions and the processing time, (Left) the number of the

segmented regions = 426, (Middle) the number of the segmented regions = 484, (Right) the number

of the segmented regions = 553

Looking at an original natural image of one of the plants, we �nd more complexity in the image,
and the result of the implemented algorithm contains more segmented regions which are small regions
of interest. Each region seems to be approximately homogeneous in color, and it is completely true in
reality. In addition, our investigation of the results proves that a uniform region is usually extracted in
a larger size compared with others containing textures and edges. Nonetheless the algorithm performs
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well and e�ciently, it captures nonlocal properties of images. Although nonlocal properties can be
as useful as local properties in some cases and the running time of the algorithm is fairly good,
matching many small regions is not simple. Seeking useful regions in each image separately is also
not an easy task. A carefully reading one must raise the question of how to apply the small regions
in which there are interest segments of leaves. In order to answer the question, we have to determine
which segmented areas are the regions of interest. Seeking the solution that ful�lls the missing point,
we �rst start with applicability of the algorithm. It is applicable if we combine it with the Grabcut
algorithm. In this way, we are able to segment the natural leaf image to useful small regions, but this
procedure adds more computational cost if we consider it as the pre-processing step.

11.2 Human Nervous System

Human nervous system is the second heart of the human body as it is the leader of human activities.
In other words, the controller of the functions of the human body is the brain, and it uses nerve cells,
neurons, to carry out di�erent tasks. Neurons are spread through the whole body and formed a
network. Interestingly, there is also interaction among the neurons in the whole body, and the other
organs of the human body like ears and eyes play the role of receivers for obtaining the information.
The whole nervous system can be divided into two main parts: central nervous system (CNS) and
peripheral nervous system (PNS). The main components of the CNS are brain and spinal cord. Main
components of the PNS, nerve cells, are responsible for transferring the information from/to the
CNS. Due to the importance of the functions of the nervous system, we �rstly have a look into some
main functions, and then we investigate the human visual system.

Figure 11.8: Overview of the nervous system

In reality, we are not able to divide the system on the basis of the functions. However, we have
anatomical and functional divisions. The main problem is how we can �t functional di�erences into
anatomical divisions, because we have sometimes the same structure and it can be a part of various
functions. Hence, it is very hard to have certainty in general. Let's explain this fact by an example.
In human body, the optic nerve is responsible for carrying signals from the retina. The signal may be
used for the conscious perception of the visual stimuli. In addition, they may be used for the re�exive
responses of the smooth muscle tissue. Hence, it is not easy to specify the border of di�erences.
To solve this problem, we need to change our standpoint; therefore, we try to divide it according
to another basis. Our decision is to do division on the basis of basic functions: sensation, response
and integration. Another option is to divide the system on the basis of the functional di�erence in
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responses and the control of the body, but we skip this basis and continue with the �rst proposed
solution.

The same as many systems, the nervous system receives environmental information, and responds
to the received information whereas the �rst part is called the sensation and the second one is named
the motor responses. In addition, a third type of function exists, and it is called integration which is
responsible for associating and integrating sensory information with other sensations which are higher
cognitive functions like memories, emotion and learning. Hence, it is feasible to divide the nervous
system into three major functions: sensory functions, motor functions and integration functions.

Human visual system consists of eyes, the biological camera, and a part of his brain and pathways
for making connections. The brain part is responsible for all related image processing tasks which are
really complex. The retina processes the neural signals, and the signals go via axons of the ganglion
cells through the optic nerves. The signals continue their journey, and information are divided and
crossed over the optic chiasm. Then, the signals go through the optic tracts to the lateral geniculate
nucleus (LGN), and continue from the LGN to the place that the visual processing occurs. This place
is the primary visual cortex.

Figure 11.9: Visual cortex

The sensory functions con�rm the presence of any change from homeostasis or a speci�c event
occurred in the environment, known as a stimulus. The main senses are usually smell, touch, sight,
hear and taste, and human organs are mostly the resources of gaining the senses. Due to characteristics
of the taste and the smell, the stimuli of them are chemical substances. There is another type of
stimuli, physical or mechanical one. For instance, touch is a physical interaction with the human
skin, sight is the light stimuli, and hear is the perception of the sound that is a physical stimulus.
Furthermore, there are additional sensory stimuli which can be considered as internal one like stretch
of ligaments.

The basis of the nervous tissue is neuron cell, and the neurons are responsible for the electrical
signals communicating information about sensations and responding to stimuli. Three dimensional
shape of neurons provides the possibility of having a vast numbers of connections within the nervous
system. In addition, the main part of the neuron is the cell body called soma. As we consider, neurons
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are mostly described as having one axon which is a �ber emerging from the cell body and projecting
to target cells. An axon is able to branch for communicating with the targets and propagating the
impulse of the nerve. Dendrites are also other highly branched processes of the neuron, and they are
responsible for obtaining the information from other neurons at speci�c areas of the contact which are
called synapses. From dendrites, the �ow of the information is in one direction, and it goes through
neuron across the cell body and also down the axon.

There is an action potential which propagates down the axon and it is the basis of the electrical
signal in a neuron. In fact, a neuron is able to produce an action potential if it receives the input from
another neuron or a sensory stimulus. There are also synapses which give permission to neurons to
pass signals, that are either chemical or electrical in nature, among themselves or to target another
cell which might be more e�ective. However, we have to mention that chemical synapses are far more
common.

Figure 11.10: Human neuron

If we compare the arti�cial neural network to the biological one, there are some similarities as the
arti�cial one is inspired by the biological network. In general, arti�cial neural network learns how to
do new functions and it takes place by adjustment of the topology and weights. For the biological
network, the learning process takes also time for human. Furthermore, the time that takes for a
student to learn a new mathematical theorem depends on di�erent parameters like genetics, previous
background, etc. In biological neural networks, the learning is obtained from the interconnections
between myriad neurons in the brain and the nervous system, and repeating makes the task easier for
the student as the neurological connections become stronger. In the arti�cial neural network, there
exist interactions between the nodes. By the end of learning process, the nodes and weights will be
�nalized.

11.3 Human Learning vs Machine Learning

In general, machine learning is a subset of arti�cial intelligence. The algorithms of this subset are
rapidly growing and the speed of advances is greatly increasing. One cannot deny the huge progress
of the machine learning algorithms. The term learning usually refers to the humans and the process
of the human learning, but it has been used for machines in the arti�cial intelligence as well. Firstly,
we would like to have a look at the learning concepts related to the human brain and psychology.
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Then our goal is to compare the human and machine learning.
The human learning is a unique process in nature and it can be divided into di�erent levels. A

child may learn something new by memorizing it. For instance, a child is able to sing, if he/she
memorizes the lyrics of a song. In addition to the memorization, the ability of remembering is also
another aspect of being capable of singing.

Learning and understanding are close concepts and they might be wrongly considered as the same
process. Understanding is only one of the learning levels. The other side of the understanding that
might happen is misunderstanding. When a child enters primary school, one important part of the
learning is to understand the facts even if the fact seems to be simple. Understanding helps the
child to compare the main concepts and ideas. The next level is applying what has been learned.
If a child learns how to sum two numbers, he/she will be able to apply this knowledge to new
questions for summing two other new numbers. Analyzing this mathematical task is also another
part of the learning. Therefore, humans are able to analyze new tasks and examine the components
of the problems when learned.

Apart from the analysis, another level of the learning is evaluating the problem. The evaluation
process consists of making judgment and comparing the facts based on some other concepts and
standards. The last level of the learning is the ability of combining di�erent concepts and ideas,
and creating a new problem. Furthermore, an important part of human's creativity is related to
human's learning. In this level, a child is able to solve a mathematical problem through the use of
the alternative methods and by proposing new solutions. The proposed examples can be expanded in
other scenarios too. Additionally, one point should not be forgotten "Practice is an important factor
in the human learning."

As discussed before, the �rst idea of learning is to imitate the human learning and provide di�erent
levels of learning. The neural networks have helped us to get closer to the desire of learning and
obtaining the human behavior and activities in machines. Basically, the components of the neural
networks are not adaptive or self-organizing. Thus, the algorithms start to teach the networks how
to perform the desired task correctly and responsibly. Although it is very hard to achieve all levels of
the human learning, a main goal is to build knowledge-based machines. The �nal goal is to use the
machines and the related knowledge in appropriate ways. If a machine learns the human activities, it
is possible to save the human time and e�ort by replacing them with machines. In addition, it is also
possible to have online access to the obtained knowledge and gather more advantages from relying
on the machines in the real life.

In order to use and teach the machines, they need the human learning and knowledge, and a
combination of the human and the machine learning makes sense. For instance, we would like to
build a machine which can be used in remote surgery. To do the process learning of such a machine,
it is essential to combine the human knowledge and the human learning. Therefore, the machine
learning is not completely independent of the human learning.

The human brain does not work the same as computers, which are actually digital. Computers'
language is basically composed of only two digits, 0 and 1. However, we are able to compare them
through the consideration of the status of the neuron. For instance, we can suppose a triggered
neuron as 1 and a non-triggered neuron as 0. Furthermore, the human memory is unlike the machine
memory which has a limited capacity. For instance, RAM is similar to the short-term memory of the
human. However, the human memory does not have a �xed capacity while some parameters, such as
expertise, experience and familiarity, may a�ect the di�erential capacity from one person to another.
Furthermore, a machine is usually not able to repair its components if one part is not usable, but
the human body and its organs help to cure a damaged component in many cases. Although we �nd
similarities between humans and machines, they are still very dissimilar in many aspects. Researchers
and scientists are still doing their best to go up and increase the likeness of the machines and human



228

in di�erent aspects and areas.

11.4 Feedforward Neural Network

Traditional neural network reckons on shallow networks [507] and its simplest and the �rst type of
it consists of 3 di�erent layers, one input layer, one output layer and mostly one hidden layer between
the �rst layer and the last layer, input layer and output layer, respectively. If the main architecture of
the neural network has more than these three layers including input and output layers, the network
is quali�ed as deep learning. A neural network with three layers is named feedforward neural network
if the data moves only in one forward direction [508] which means the movement of the input data
through the hidden layer and ending in nodes of the last layer. In this type of neural network, we
�nd neither cycles nor loops. Figure 11.11 shows architecture of a feedforward neural network, and
it is observable that there is only one direction of the data �ow.

Hidden Layer 

Input Layer Output Layer 

Figure 11.11: A part of a simple feedforward neural network

It should be noted that shallow neural networks usually refers to neural networks with only
one hidden layer, and deep neural networks are usually neural networks with several hidden layers;
therefore the di�erence lies in the number of intermediate layers.

11.4.1 De�nitions of Concepts

In this section, we would like to introduce some concepts and terms which might be used in deep
CNN models.

The �rst term which has been explained before is activation map. It is also called convolved feature
and feature map, and it is the output volume which is obtained by sliding a �lter over the input
plant image and computation of the dot product.

The next term that might be utilized is "Depth" which is the number of the applied �lters.
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Fibre, called also depth column, is a set of neurons pointing to the one receptive �eld.
Another important term is stride, and it is responsible for de�ning the intervals that we should

apply the �lters to the input. It produces spatially smaller output volumes and its common value is
2. In order to set the stride, it is necessary to obtain an integer value for the output volume, not a
fraction. For instance, we set the stride to 2, the �lter will then shift by 2 pixels when it convolves
with the input volume.

Zero padding is a process of adding zero to the outside of the input volume, making it ready for
convolution operations and obtaining �nally the same number of outputs as inputs. Without the
zero padding operation, we lose some information of the outer part of the volume after convolutional
layers, and decrease of the size of volume destroys the performance of the deep model. Figure 11.12
shows the zero padding operation for a volume of information [509].

Figure 11.12: Example of the zero padding operation

Due to the mentioned concepts, we would like to propose an example to show how we compute
the output volume mathematically. The input volume is [Width×Height×Depth] and the size of
the receptive �eld is considered as F . Other parameters, stride, zero padding and depth, are S, P
and K, respectively. The output volume, [Widthout×Heightout×Depthout], is calculated as follows:

Widthout =
(Width− F + 2P )

S + 1
(11.4)

Heightout =
(Height− F + 2P )

S + 1
(11.5)

Depthout = K (11.6)

11.5 Common Deep Learning Frameworks

11.5.1 Theano

The �rst deep learning framework that we would like to introduce and study is Theano [510]
which is actually the �rst widely adopted framework for deep learning algorithms and a numerical
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computation library for Python. The creator of this framework is Prof. Yoshua Bengio [511] and
it has been maintained by Montreal Institute for Learning Algorithms (MILA) [512]. In September
2017, they o�cially stated that they wouldn't work on Theano any more after the last release of it
in 2018 [513]. The framework is user friendly as the user is able to do computations by means of
NumPy-like syntax, build the models and do the training on either CPU or GPU. Some positive and
negative points of this framework are listed as below:

Positive Points:
1- Possibility of using Python and NumPy
2- Presence of computational graph as a useful abstraction
3- Availability of high level wrappers, Keras and Lasagne [514].
4- RNNs.

Negative Points:
1- Long compiling time if model is large
2- Single GPU
3- Useless error messages
4- Finding bugs on amazon web services (AWS) [515]

11.5.2 Torch

Torch [516] is a deep learning framework and it is available for public use as an open source
for scienti�c computing framework. Providing various deep learning algorithms has become this
framework so popular, and it is already used by Google, Twitter and Facebook [516]. In addition,
the core of the PyTorch [517] is Torch, and it has the role of heart in the human body. The Lua
programming language [518] is the basis of the Torch for fast scripting, and implementation of the
Torch is in C/CUDA with a wrapper in the Lua [513].

Popularity of the Torch is also connected to its simplicity to use, �exibility for implementing
complicated neural network models, possibility of creating arbitrary graphs of deep networks and
availability of parallelizing the models over CPUs and GPUs e�ciently.

Some main features of the Torch are listed as below:
1- Strong N-dimensional array
2- Availability of many procedures for doing some processes like indexing, slicing and transposing
3- Providing C interface through the LuaJIT [519]
4- Possibility of using linear algebra and numeric optimization methods
5- Neural networks and energy-based models
6- GPU supporting
7- Ability to being embedded with di�erent mobile operating systems, the iOS, the Android and
FPGA

11.5.3 TensorFlow

TensorFlow [520], an open source software library developed by the Google Brain Team [521], is
introduced for performing numerical computation using �ow graphs and conducting deep learning
algorithms. Without any doubt, it is one of the most common deep learning frameworks used widely
by many companies and scientists. The �rst version of it su�ered from slow running, but the released
version of the framework in January 2018 is much faster, and new features are added to enhance
the framework and increase its �exibility [522]. It should be pointed out that two programming
languages, C++ and Python, have been used for the framework.

Due to the presence of a giant company behind the framework, many huge companies such as
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eBay, Coca Cola, Twitter, Deep Mind, airbnb, Uber, etc. are users of the framework. Moreover, it is
possible to run its model on CPUs, GPUs and TPUs.

In addition to the mentioned points, a comparative list of other points is provided and some
advantages and disadvantages are announced.

Advantages:
1- Python and NumPy
2- Less compiling time than the Theano
3- Possibility of parallelizing the data and models
4- Presence of a visualization tool, TensorBoard
5- Similarity to the Theano concerning the possibility of the computational graph abstraction

Disadvantages:
1- Lack of commercial support
2- Working slower than similar frameworks
3- Slow computational graph as it uses only Python
4- Absence of many pretrained models
5- Being fatter than the Torch

11.5.4 Keras

In this part, we would like to have a glance at Keras [523] which is a high-level deep learning API
written in Python, and the creator of it is François Chollet [524] who is a researcher in Google [513].
One important advantage of the Keras is the possibility of running it on the top of the TensorFlow
or the Theano, and it bene�ts from supporting convolutional networks, recurrent networks and
combinations of them, thus it has covered multiple frameworks. As backend, the Keras framework
has both TensorFlow and Theano. In addition, Google has selected the Keras for the high-level API
service of the TensorFlow; hence the user enjoys more �exibility. Another advantage of the Keras
is its simplicity, and the user is not involved with complex mathematical concepts, although he is
able to utilize them correctly and do fast prototyping for advanced and complicated deep learning
models. Furthermore, it is possible to run the Keras on both CPUs and GPUs.

In the following, there is a list of properties of the Keras.
1- Working with the TensorFlow and the Theano
2- Growing fast due to its simplicity
3- Supporting only Python and R [525]
4- Lack of many pretrained models

11.5.5 Ca�e

Here, we would like to introduce Ca�e (stands for Convolutional Architecture for Fast Feature
Embedding) [526] which was developed in 2013 by Berkeley Arti�cial Intelligence Research (BAIR)
[527] and community contributors. This framework is considered the brainchild of Yangqing Jia who
is working as a researcher at Facebook [528]. Having many contributors and a large repository of
pre-trained deep neural network models made Ca�e very popular for image classi�cation tasks. The
NVIDIA Deep Learning GPU Training System (DIGITS) [529] uses Ca�e as one of its powerful
frameworks for building deep neural networks to do image classi�cation, segmentation, and object
detection tasks. Furthermore, two other used frameworks are Torch and TensorFlow. One important
point is the release of Ca�e under the BSD 2-Clause license [530].

In order to design and implement our deep neural network model, our choice is Ca�e. Many users
have grievances concerning the di�culties of installing this framework, and it is, therefore, important
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to be aware of the pros and cons of use. Below some important properties of Ca�e are listed:
1- Uses plaintext for modeling and optimizations and decreases programming.
2- Acceptable speed to be used in academic and industrial applications. For instance, it has been
mentioned in [531] that Ca�e is able to process more than 60M images per day if we use a single
NVIDIA K40 GPU.
3- Possibility of extending the model and creating new settings easily as it is a modular and �exible
framework.
4- Open source framework.
5- A large community of users from di�erent academic, industrial and startup sectors.
6- Opportunity of compiling a Ca�e model on di�erent devices and porting to Windows and Linux.
7- Although it is actually based on C++, it supports other programming interfaces, Matlab and
Python.
8- Possibility of building complex layers and deep components in a low-level language.
9- CUDA library.
10- Possibility of switching between CPU and GPU.

There are still other reasons that motivated us to select Ca�e for our natural plant recognition
system. The point is its �exibility for CNN implementation and classi�cation tasks which is our �nal
desire. Additionally, the option of �ne tuning is also available in this framework. We are able to
extend the model by adding layers and linking it to other toolboxes if it is needed. In addition, the
concentration of the framework is on convolutional neural networks. Another point is the activeness
of the Ca�e framework. Its development has not stopped, therefore, we would be able to use new
features if needed. Furthermore, there is a unique facility for Ca�e users. They are able to enjoy
access to a repository of models that developers have designed, implemented and shared on Ca�e
Model Zoo [532] [533]. It should be pointed out that Ca�e is overall a good choice for us because our
intention is to design a feedforward deep network. The last reason is the possibility of changing from
CPU to GPU and vice versa, and it has been useful in our real-time application.

11.6 Constructed Confusion Matrix for each Proposed System

Proposed system used the SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 18 0 0 2

Amelanchier Canadensis 1 17 0 2

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.1: Confusion matrix (distance 25 cm) [151]

Proposed system used the SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 19 1 0 0

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.2: Confusion matrix (distance 50 cm) [151]
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Proposed system used the SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 18 0 0 2

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 0 0 20 0

Cornus 2 0 0 18

Table 11.3: Confusion matrix (distance 75 cm) [151]

Proposed system used the SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 22 1 0 1

Amelanchier Canadensis 0 24 0 0

Acer Pseudoplatanus 0 0 23 1

Cornus 0 0 0 24

Table 11.4: Confusion matrix (distances 100 cm, 150 cm 200 cm) [151]

Proposed system used the FAST-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 16 0 0 4

Amelanchier Canadensis 1 16 0 3

Acer Pseudoplatanus 0 0 20 0

Cornus 0 3 0 17

Table 11.5: Confusion matrix (distance 25 cm) [151]

Proposed system used the FAST-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 18 1 0 1

Amelanchier Canadensis 0 17 0 3

Acer Pseudoplatanus 0 1 19 0

Cornus 0 0 0 20

Table 11.6: Confusion matrix (distance 50 cm) [151]

Proposed system used the FAST-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 19 0 0 1

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 1 0 19 0

Cornus 2 1 0 17

Table 11.7: Confusion matrix (distance 75 cm) [151]

Proposed system used the FAST-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 21 2 0 1

Amelanchier Canadensis 0 24 0 0

Acer Pseudoplatanus 0 0 24 0

Cornus 1 0 0 23

Table 11.8: Confusion matrix (distances 100 cm, 150 cm and 200 cm) [151]
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Proposed system used the HARRIS-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 16 0 0 4

Amelanchier Canadensis 1 15 0 4

Acer Pseudoplatanus 0 0 20 0

Cornus 0 0 0 20

Table 11.9: Confusion matrix (distance 25 cm) [151]

Proposed system used the HARRIS-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 20 0 0 0

Amelanchier Canadensis 1 18 0 1

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.10: Confusion matrix (distance 50 cm) [151]

Proposed system used the HARRIS-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 18 0 0 2

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 1 0 19 0

Cornus 2 0 0 18

Table 11.11: Confusion matrix (distance 75 cm) [151]

Proposed system used the HARRIS-SIFT detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 20 3 0 1

Amelanchier Canadensis 0 24 0 0

Acer Pseudoplatanus 0 0 24 0

Cornus 0 0 0 24

Table 11.12: Confusion matrix (distances 100 cm, 150 cm and 200 cm) [151]

Proposed system used the SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 20 0 0 0

Amelanchier Canadensis 2 17 0 1

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.13: Confusion matrix (distance 25 cm)

Proposed system used the SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 20 0 0 0

Amelanchier Canadensis 3 17 0 0

Acer Pseudoplatanus 0 0 20 0

Cornus 1 0 0 19

Table 11.14: Confusion matrix (distance 50 cm)



235

Proposed system used the SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 16 0 4 0

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 0 0 20 0

Cornus 1 2 0 17

Table 11.15: Confusion matrix (distance 75 cm)

Proposed system used the SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 22 0 1 1

Amelanchier Canadensis 0 23 1 0

Acer Pseudoplatanus 0 0 23 1

Cornus 0 0 0 24

Table 11.16: Confusion matrix (distances 100 cm, 150 cm and 200 cm)

Proposed System used the FAST-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 19 0 0 1

Amelanchier Canadensis 2 17 1 0

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.17: Confusion matrix (distance 25 cm)

Proposed system used the FAST-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 20 0 0 0

Amelanchier Canadensis 2 15 0 3

Acer Pseudoplatanus 0 0 20 0

Cornus 1 1 0 18

Table 11.18: Confusion matrix (distance 50 cm)

Proposed system used the FAST-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 14 0 6 0

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 0 1 19 0

Cornus 1 3 0 16

Table 11.19: Confusion matrix (distance 75 cm)

Proposed system used the FAST-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 21 0 2 1

Amelanchier Canadensis 0 22 1 1

Acer Pseudoplatanus 0 0 23 1

Cornus 0 0 0 24

Table 11.20: Confusion matrix (distances 100 cm, 150 cm and 200 cm)
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Proposed system used the HARRIS-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 19 0 0 1

Amelanchier Canadensis 1 18 1 0

Acer Pseudoplatanus 1 0 19 0

Cornus 0 0 0 20

Table 11.21: Confusion matrix (distance 25 cm)

Proposed system used the HARRIS-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 18 0 0 2

Amelanchier Canadensis 4 14 0 2

Acer Pseudoplatanus 0 0 20 0

Cornus 1 1 1 17

Table 11.22: Confusion matrix (distance 50 cm)

Proposed system used the HARRIS-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 13 0 6 1

Amelanchier Canadensis 0 19 0 1

Acer Pseudoplatanus 0 1 19 0

Cornus 2 0 0 18

Table 11.23: Confusion matrix (distance 75 cm)

Proposed system used the HARRIS-SURF detection and description techniques Hydrangea Amelanchier Canadensis Acer Pseudoplatanus Cornus

Hydrangea 22 0 1 1

Amelanchier Canadensis 0 21 0 3

Acer Pseudoplatanus 0 0 23 1

Cornus 0 0 0 24

Table 11.24: Confusion matrix (distances 100 cm, 150 cm and 200 cm)
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FAST features from accelerated segment test

SIFT scale-invariant feature transform

SURF speeded up robust features

VLAD vector of locally aggregated descriptors

GPUs graphics processing units

GPU graphics processing unit

CPU central processing unit

CPUs central processing units

CNNs convolutional neural networks

CNN convolutional neural network

BoW bag of words

SVM support vector machine

SVMs Support vector machines

MCH moving center hypersphere

MMCH moving median centers hypersphere

GLCM gray-level co-occurrence matrix

PCA principal component analysis

RBENN radial basis exact �t neural network

KNN k-nearest neighbor

M-I moments-invariant

C-R centroid-radii

DMFs digital morphological features

GMM Gaussian mixture model

SFTA segmentation-based fractal texture analysis
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ROI region of interest

HGO-CNN hybrid generic-organ convolutional neural network

PNN probabilistic neural network

APIS advanced plant identi�cation system

2D-FFT 2D-fast Fourier transform

ANN arti�cial neural network

ANNs arti�cial neural networks

ORB oriented FAST and rotated BRIEF

FLANN fast library for approximate nearest neighbours

IoT internet of things

RGB red-green-blue

sRGB Standard Red Green Blue

ImageCLEF Image Combined Lab Evaluation Forum

MNPD modern natural plant dataset

CDF cumulative distribution function

MDP modi�ed dynamic programming

HOG histogram of oriented gradients

CoHOG co-occurrence histograms of oriented gradients

LBP local binary patterns

BRISK binary robust invariant scalable keypoints

MSER maximally stable extremal regions

FREAK fast retina keypoint

EBR edge-based regions

IBR intensity-extrema-based regions

SSD sum of squared di�erences

DoG di�erence of Gaussian

LoG Laplacian of Gaussian

SUSAN smallest univalue segment assimilating nucleus

BRIEF binary robust independent elementary features

LSH locality sensitive hashing
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WLLE weighted LLE

MLLDE modi�ed locally linear discriminant embedding

MMMC modi�ed maximizing margin criterion

A/D analog-to-digital

BBF best-bin-�rst

VSLAM vision simultaneous localization and mapping

NLP natural language processing

IR information retrieval

SAR synthetic aperture radar

HSR high spatial resolution

LGFBOVW local-global feature bag-of-visual-words

AdaBoost adaptive boosting

EM expectation-maximization

RBF radial basis function

ms milliseconds

AST accelerated segment test

VLAT vector of locally aggregated tensors

CSS curvature scale space

HP Hewlett-Packard

GAC guided active contour

CMOS complementary metal-oxide semiconductor

CRM customer relationship management

RNNs recurrent neural networks

RNN recurrent neural network

DNN deep neural network

LSTMs long short-term memory networks

DBN deep belief network

GANs generative adversarial nets

GAN generative adversarial net
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DBM deep Boltzmann machine

RBM restricted Boltzmann machine

DSN deep stacking network

TDNN time delay neural network

SPN sum product network

RAM random-access memory

SIANN space invariant arti�cial neural network

ImageNet LSVRC ImageNet Large Scale Visual Recognition Competition

ReLUs Recti�ed Linear Units

ReLU Recti�ed Linear Unit

BAIR Berkeley Arti�cial Intelligence Research

DIGITS NVIDIA Deep Learning GPU Training System

LRN local response normalization

SGD stochastic gradient descent

Adam adaptive moment estimation

CUDA Compute Uni�ed Device Architecture

DNPRS deep natural plant recognition system

FPGA �eld programmable gate arrays

EZLS Real-time Learning Systems

GPS Global Positioning System

LIDAR light imaging, detection and ranging

PF Precision farming

PD pedestrian detection

ACF aggregate channel features

AgriBot autonomous robot for agriculture

GTSDM grey tone spatial dependency matrices

MTCD multi-scale triangular centroid distance

ALIVE Autonomous Laboursaving Internet of. Things Veteran Energizer

SLR single-lens re�ex

BSI Backside Illumination
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QHD Quad High De�nition

HDR High Dynamic Range

ISO International Organization of Standardization

DIGIC Digital Imaging Integrated Circuit

CNC computer numerical control

UCB UDOO Connector Board

ROS Robot Operating System

ADAS advanced driver assistance systems

RDF resource description framework

CNS central nervous system

PNS peripheral nervous system

LGN lateral geniculate nucleus

TanH hyperbolic tangent

MLP multilayer perceptron

MILA Montreal Institute for Learning Algorithms

AWS amazon web services

PC personal computer

PCs personal computers

TPUs tensor processing units

TPU tensor processing unit
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