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Abstract
Today there exists a wide range of industrial systems that are based on federated

architectures, which means that the each computing node in the system is exclusively
assigned to one function. Due to the increasing computing capability of a single
processor and the increasing amount of computing processors on a single platform,
extensive research on integrating multiple functions with different criticality levels
on a shared platform was carried out. For example, in the avionic domain, the
development trend has moved from federated to integrated architectures. The ARINC
653 standard was released, which defines the execution environment for hosting
several avionic software functions within a single computing node. ARINC 653 was
successfully implemented (e.g., Airbus A380) and achieved its primary goals (cost
and weight reduction, enabling modular certification).

However, the existing execution environments based on an integrated architecture
support only static system configurations. In specific domains like the railway
industry, dynamic system adaptation is required during runtime, which affects both
the application execution environment and the data communication mechanisms. In
this dissertation, our focus is on an execution environment based on an integrated
architecture, which guarantees the safe integration of mixed-criticality applications
and also addresses the system reconfiguration problem.

In order to close the research gap, we introduce an execution environment for
integrated real-time applications by leveraging the Software-Defined Networking
(SDN) paradigm. We extend the temporal and spatial isolation mechanisms from the
application layer to the execution environment, so that the integrated applications
share the computing node without interference. For the data communication of
the integrated applications, we propose a virtual switch supporting temporal and
spatial isolation between data flows and leverage the SDN paradigm to address the
reconfiguration requirements of data flows. Besides, we also address the controlled
import and export of messages between data flows in the proposed virtual switch.
For the deterministic communication requirements of hard real-time applications, we
propose a virtual switch that is IEEE 802.1Qbv and IEEE 802.1Qci capable according
to the Time Sensitive Networking (TSN) standard, in order to close the research gap
of virtual switching guaranteeing bounded delay with low jitter in an integrated
architecture.

In the proof-of-concept implementations, we demonstrate the non-interference
between applications in the execution environment by fault injection. In our virtual
switch demonstrators, we evaluate the fundamental isolation mechanisms and de-
terminism of message switching, while measuring the caused overhead for message
transmission as well as controlled data exchange, where the measured overhead in
the proposed virtual switch is less than 10 µs.
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Kurzfassung
Heute gibt es eine breite Palette von Industriesystemen, die auf föderierten

Architekturen basieren, was bedeutet, dass jeder Rechenknoten im System auss-
chließlich einer Funktion zugeordnet ist. Aufgrund der zunehmenden Rechenleis-
tung eines einzelnen Prozessors und der zunehmenden Anzahl von Rechenprozes-
soren auf einer einzigen Plattform wurde umfangreiche Forschung zur Integration
mehrerer Funktionen mit unterschiedlichen Kritikalitätsstufen auf einer gemein-
samen Plattform durchgeführt. So hat sich beispielsweise im Bereich der Avionik
der Entwicklungstrend von föderierten zu integrierten Architekturen verlagert. Der
ARINC 653 Standard wurde veröffentlicht, der die Ausführungsumgebung für das
Hosting mehrerer Avionik-Softwarefunktionen in einem einzigen Rechenknoten
definiert. ARINC 653 wurde erfolgreich implementiert (z.B. Airbus A380) und er-
reichte seine primären Ziele (Kosten- und Gewichtsreduzierung, modulare Zerti-
fizierung möglich).

Die bestehenden Ausführungsumgebungen auf Basis einer integrierten Architek-
tur unterstützen jedoch nur statische Systemkonfigurationen. In bestimmten Bere-
ichen wie der Bahnindustrie ist eine dynamische Systemanpassung zur Laufzeit er-
forderlich, die sowohl die Anwendungsausführungsumgebung als auch die Datenkom-
munikationsmechanismen betrifft. In dieser Dissertation liegt unser Fokus auf einer
Ausführungsumgebung, die auf einer integrierten Architektur basiert, die die sichere
Integration von mixed-criticality-Anwendungen garantiert und auch das Problem
der Systemrekonfiguration angeht.

Um die Forschungslücke zu schließen, stellen wir eine Ausführungsumgebung
für integrierte Echtzeitanwendungen vor, indem wir das Paradigma des Software-
Defined Networking (SDN) nutzen. Wir erweitern die zeitlichen und räumlichen
Isolations-mechanismen von der Anwendungsschicht auf die Ausführungsumge-
bung, so dass sich die integrierten Anwendungen den Rechenknoten störungsfrei
teilen. Für die Datenkommunikation der integrierten Anwendungen schlagen wir
einen virtuellen Switch vor, der die zeitliche und räumliche Isolation zwischen den
Datenflüssen unterstützt und das SDN-Paradigma nutzt, um die Rekonfigurationsan-
forderungen der Datenflüsse zu erfüllen. Darüber hinaus befassen wir uns auch mit
dem kontrollierten Import und Export von Nachrichten zwischen Datenflüssen im
vorgeschlagenen virtuellen Switch. Für die deterministischen Kommunikationsan-
forderungen von harten Echtzeitanwendungen schlagen wir einen virtuellen Switch
vor, der IEEE 802.1Qbv und IEEE 802.1Qci nach dem Time Sensitive Networking
(TSN)-Standard ist, um die Forschungslücke des virtuellen Switchings zu schließen,
das eine begrenzte Verzögerung mit geringem Jitter in einer integrierten Architektur
garantiert.



xii

In den Proof-of-Concept-Implementierungen zeigen wir die Nicht-Interferenz
zwischen Anwendungen in der Ausführungsumgebung durch Fehlerinjektion. In
unseren Virtual-Switch-Demonstratoren bewerten wir die grundlegenden Isolations-
mechanismen und den Determinismus des Message-Switching, während wir den
verursachten Overhead für die Nachrichtenübertragung sowie den kontrollierten
Datenaustausch messen, wobei der gemessene Overhead im vorgeschlagenen Virtual-
Switch weniger als 10 µs beträgt.
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Chapter 1

Introduction

In the roadmaps of the semiconductor industry, according to the Pollack’s Rule [104],
a new generation of micro processors with a doubled number of transistors leads
to about 40% performance increase. The Moore’s law [112] states that the number
of transistors on a microprocessor doubles every two years. That means, a new
generation of micro processors with a doubled number of transistors every two years
leads only to about 40% performance increase. However, the Moore’s law is coming
to the end since the traditional shrinking of transistors is reaching its limits [78]. If
the added transistors are used for multiple cores instead of a single core, then the
performance and computation capability are doubled by doubling the transistors,
which means that the penalty of Pollack’s rule is avoided. As a consequence, the
computing platforms are using multi-core processors instead of single-core processors,
in order to gain more computation capability and energy efficiency with reduced
deployment cost and complexity [32]. Due to the increasing computing power of
modern integrated platforms based on multi-core processors, extensive research
on integrating multiple applications with different criticality levels on a shared
platform was carried out in different domains such as avionics and automotive
systems. Corresponding industry standards like ARINC 653 [23] and AUTOSAR [41]
were released. Integrating applications on a shared computing node leads to a mixed-
criticality system, since safety-critical applications can be combined with the non-
critical ones [97]. In order to address the integration of mixed-critical applications with
reconfiguration requirements, this dissertation introduces an execution environment
for an integrated architecture, which leverages the SDN paradigm to support dynamic
time-triggered communication. The proposed execution environment guarantees the
safe integration of mixed-criticality applications in an integrated system and also
addresses the specific requirements of system reconfiguration.

Today there exists a wide range of industry systems adopting federated archi-
tectures, which means that the computing nodes are function-specific, i.e., every
computing node in the system hosts exactly one function. For example, in today’s
railway domain, the Train Control and Monitoring System (TCMS) is a train-borne
distributed control system which provides a single point of monitoring and control-
ling of all applications within a train. The existing TCMS execution environments are
based on a federated architecture because of the specific industry constraints and the
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long development life-cycles. The railway transportation systems have suffered from
a limited adoption of novel technological advancements in electronic hardware and
software, communication networks and embedded computing.

As analysed in [98], a federated system provides better fault containment than an
integrated architecture due to the nature of "one function - one ECU". Either a hard-
ware fault or a development fault can be limited to affect a single application. The
development of applications based on federated architectures is independent from
each other thanks to the restricted interactions between applications via gateways.
Since each application within the federated architecture owns its dedicated com-
puting node, the unintended interference between applications is ruled out, which
consequently reduces the system complexity. However, sharing an integrated system
among several applications contributes to hardware cost reduction and simplifies
wiring of a system, which can increase the system dependability, because more than
30% of electrical system failures are caused by wiring malfunction [118]. Furthermore,
a safety-critical system should be fault-tolerant to keep the safety-critical applications
functioning properly despite the occurrence of faults. Computing and communica-
tion resources in an integrated platform can serve as a generic backup for multiple
applications, which leads to the reduction of replicated hardware in comparison to a
federated system, where computing nodes are application specific.

The development based on integrated architectures in automotive and avionic
industries led to significant industrial successes (e.g., Boeing 787, Airbus 380, etc.),
while the adoption of an integrated architecture in other domains offers research
questions due to the respective domain-specific requirements.

1.1 Problem Statement

The research problem we address in this dissertation is how to leverage the SDN
paradigm to build up an execution environment for integrated real-time systems,
which support hard real-time and system reconfiguration during runtime. This
problem is divided into three major parts stated as follows.

• Research problem 1: Dependable execution environment that enables inte-
gration of safety-critical and non-critical applications and supports system
reconfiguration.

In the avionic and automotive industry, research on integrating applications
with different criticality levels on the same computing node was carried out.
The foundations for this integration are mechanisms for temporal and spatial
partitioning, which are designed to prevent fault propagation between parti-
tions and guarantee the reserved computing resources for each partition, so that
safety critical applications cannot be affected by applications of lower criticality.
Previous systems such as automotive and avionic systems were static, whereas
other domains such as railway require more dynamic system structures to cope
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with inauguration problem during runtime, which is the open challenge to be
addressed. More specifically, train inauguration consists of operations executed
in case of train coupling to give all computing nodes their addresses, orientation
and other necessary information.

• Research problem 2: Virtual switching supporting time-space partitioning
and dynamic configuration for integrated systems.

In the proposed execution environments based on integrated architectures in the
automotive and avionic domains, the data communication is statically config-
ured through channels between communication ports. When the fundamental
architecture of the execution environment evolves from a federated architecture
to an integrated one, and the data communication requires for online dynamic
reconfiguration, the online rescheduling is a major challenge which requires the
execution environment to dynamically adjust to changes of applications.

• Research problem 3: Property transformation and encapsulation between
data flows of different applications in an integrated system.

Since industry applications are certified to have different safety critical levels,
encapsulation between data flows is necessary to prevent fault propagation
from non-safety critical applications to safety critical ones. The messages of
the data flows could have different properties (e.g., syntax, semantic, etc.),
which requires the proposed virtual switch to be able to achieve property
transformation when conveying messages between different data flows. In this
dissertation, we propose a virtual gateway within the proposed virtual switch
to address the controlled import and export of messages between different data
flows.

1.2 Contributions

In this dissertation, based on the existing execution environments in automotive
and avionic domains, we extend and adjust the temporal and spatial partitioning
mechanisms to meet other requirements like the dynamic characteristics in the railway
industry, and meanwhile preserve the timing determinism and non-interference in
the spatial and temporal aspects.

We address the data communication by leveraging the SDN paradigm to propose
a virtual switch residing in the execution environment of integrated systems. Our
proposed virtual switch enables hard real-time communication of applications on a
single computing node.

The challenge of property transformation and encapsulation between data flows
of different applications in the proposed virtual switch is also tackled in this work. We
propose the gateway services in the virtual switch and evaluate the caused overhead
to show that the determinism of the data communication is not affected.
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1.3 Document Structure

The structure of the dissertation is as follows:
In Chapter 2, the basic concepts and terms that are used throughout this disserta-

tion are discussed. It starts with dependability concepts ranging from the attributes to
faults that affect the system dependability, and the necessary means to protect system
dependability. The notion of a system architecture and real-time system are discussed,
before the fault hypothesis concept is discussed. Followed by the partitioning and
fault & error containment concepts, the communication mechanisms are discussed.
At the end of this chapter, the system reconfiguration concept is explained.

Chapter 3 gives an overview of the related work in the area of execution envi-
ronments in integrated real-time systems. The state-of-the-art analysis of Real-Time
Operating Systems (RTOSs) discusses the RTOS capabilities and the representative
products, which are either commercial or open-source. The ARINC 653 and AU-
TOSAR standards are analysed with respect to system architecture and real-time
capacity. The other related research fields are virtual networking and SDN.

Chapter 4 introduces the requirements for the execution environment of integrated
real-time systems, based on which the functional distribution framework concept is
proposed including the logical and physical components. This chapter ends up with
the proof-of-concept implementation and the corresponding results.

Chapter 5 addresses the data communication in the execution environment of
integrated real-time systems. This chapter presents the virtual switching of data
flows on an integrated platform, which enables real-time communication on a single
computing node, so that federated computing nodes are enabled to be integrated on
a single node while preserving the deterministic real-time communication.

Chapter 6 concludes the research work in this dissertation and looks into the
future work in the development of integrated real-time systems.
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Chapter 2

Basic Concepts and Terms

In this chapter, the basic concepts and terms used in this dissertation are presented
and explained, in order to provide the background knowledge for later chapters.

2.1 Dependability

In [66] dependability is defined as the property of a computer system that reliance can
be justifiably placed on its service. A system behaves as it is perceived by the user(s)
in delivering the service, where a user is another system (human or physical) which
interacts with the serving system. The concept of dependability can be organised in a
tree structure as shown in Figure 2.1. In this systematic illustration of dependability,
one can distinguish the concerned attributes (e.g., availability, safety, etc.) that
compose the general dependability for critical systems. A fault is the fundamental
cause of an error, which can lead to a system failure. Consequently, the presented
measures to preserve the system dependability range from fault forecasting to fault
prevention before a faulty situation happens, and fault tolerance/removal in the
faulty scenarios to keep the system dependable.

2.1.1 Attributes

In the following sections, the attributes that characterise the system dependability are
discussed in detail.

2.1.1.1 Availability

Availability states the accessibility of a system to the system users. According to [45],
the traditional definition of availability emphasises the capabilities of a system re-
garding the failure and repair characteristics. In the traditional consideration, neither
the readiness of a system to carry out an operation nor the accessibility via networks
are taken into account, which results in the overestimation of availability. The pro-
posed definition of availability is treated as a scalar measure that is based on the
recovery-enabled reliability as mention in chapter 2.1.1.2. It reflects the instantaneous
availability [125] of a system that is capable to recovery after failures. Other proposed
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FIGURE 2.1: Dependability Tree

availability measures[21, 83] take more complex system characteristics (e.g., system
size, composition) into account.

2.1.1.2 Reliability

As discussed in [45], the system reliability captures the ability of the system to
operate continuously without interruption. The authors in [45] refined the existing
reliability definition with the extension of casual points in time to measure the system
reliability, and renamed it as system reliability. Apart from the system reliability, the
authors also define the service reliability, which states the ability of the system to
complete a service successfully, even in the presence of failures, given that the system
accepted the service request in the first place. The prerequisite of this definition is
that the system is capable to detect, repair and recover from failures and design errors.
The definition of service reliability acknowledges the fact that system failures can
happen and the system capability to recover from failures affects the system reliability
positively.

2.1.1.3 Safety

As discussed in chapter 2.1.1.1 and chapter 2.1.1.2, availability and reliability concen-
trate on the system capability to avoid failures, while safety emphasises the avoidance
of catastrophic system failures, which can lead to severe human injury and environ-
mental damage [4]. As illustrated in [102], safety represents the probability of a
system to stay in safe states even when encountering failures of system components.
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For example, safety is of great importance to the transportation industry, because
passengers on-board vehicles should be ensured to stay safe in both normal and
system malfunction scenarios. The safety requirements for the execution environment
proposed in this dissertation is discussed in section 4.1.2.1.

2.1.1.4 Confidentiality

Confidentiality is one of the attributes that are grouped into the scope of system
security [65]. The confidentiality of a system ensures that only the authorised end
users can access their assigned resources. As an example, in the security engineering
for vehicle communication [56], the confidentiality is treated as one of the security
goals to guide the analysis of the security requirements, so that the content of com-
municated messages is only allowed to be accessed by the authorised sender and
receiver.

2.1.1.5 Integrity

According to [67], integrity excludes the occurrence of improper alteration of infor-
mation in a computer system, and it is also one of the prerequisites for availability,
reliability and safety. However, guaranteeing integrity does not necessarily ensure
confidentiality of a system, because a message that has not been tampered with can
still be attacked via passive listening, which results in information leakage.

2.1.1.6 Maintainability

As stated in [66], maintainability is defined as the ability of a system to undergo
repairs and evolution. Maintainability consists of not only corrective maintenance,
but also adaptive and predictive maintainence. From the viewpoint of a computer
system, the system should be able to preserve the ability of delivering mandatory
services with respect to the service agreement. Another relevant capability is that a
system should be maintainable in the face of environmental changes (e.g., adoption
of new operating systems or new system databases).

2.1.2 Impairments

According to the "fault-error-failure" chain discussed in [67], a fault within a system
could lead to a system error, which states that the system deviates from the pre-
defined state, and consequently the system’s services cannot be fulfilled. The failure
of a service can subsequently represent another fault, ultimately leading to a so-called
system failure.

As analysed above, the essential reason of an observable system failure is a system
fault. In order to maintain the dependability of a system, we analyse different kinds
of system faults and the corresponding means to maintain dependability in the
following sections.
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2.1.3 Fault Classes

Since a system consists of different building blocks such as hardware infrastructures,
software entities and end users, system faults can be correspondingly classified
into hardware faults, software faults and interaction faults. System faults can also
come from the environment (e.g., EMI, radiation), which are not emphasised in this
dissertation.

2.1.3.1 Hardware Faults

As discussed in [93], the faults that hit the system’s physical resources are called
hardware faults. The hardware faults either result from manufacturing faults during
the production process, or are caused by environmental threats during operation.
Assumed that hardware diversity is leveraged to avoid common mode failures and
the computing nodes are well protected against the environmental threats (e.g.,
shielding against EMI, separate grounding), then each computing node forms a
Fault-Containment Region (FCR).

2.1.3.2 Software Faults

Since this dissertation concentrates on an integrated architecture, according to [93], the
software in the whole system can be classified into system software and application
software. The same system software deployed on multiple computing nodes could be
affected by the same software faults (e.g., design fault), which prompts the computing
nodes to form a common FCR. From this aspect, system software should be designed
to be simple enough for thorough validation (e.g., micro-kernel of PikeOS [39]).
Regarding the application software, a group of replicated instances must be treated
as the FCR.

2.1.3.3 Interaction Faults

As defined in [65], interaction faults represent the faults caused by human operators
due to their faulty inputs provided to the computer system. This kind of faulty
operations can originate from poor system design of man-machine interfaces or
lack of system assistance for the operators to make the correct decisions during the
interaction. Both intentional or unintentional interaction faults should be tolerated
by the system to avoid system failures.

2.1.4 Means of Dependability

2.1.4.1 Fault Prevention

Fault prevention includes the means to prevent the occurrence or introduction of
faults [5]. Fault prevention is traditionally treated as part of the engineering process,
i.e., during the development of hardware and software entities. Compared to a
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development methodology that passively records the faults in the products, fault
prevention leverages developed mechanisms to actively reduce the introduced faults
in those products.

2.1.4.2 Fault Tolerance

As stated in [67], fault tolerance consists of error processing and fault treatment. In
case a system fault happens, the error caused by the fault should be dealt with and a
failure should be prevented, in order to achieve the fault tolerance.

Error processing includes error detection, error diagnosis and error recovery that
try to identify an erroneous system state, to assess the damages caused by propagated
or detected errors, and to recover from an erroneous state, respectively.

The mentioned fault treatment firstly diagnoses an existing fault to determine the
causes, so that the fault could be passivated by preventing faulty components from
execution. Thereafter reconfiguration can happen in case that the whole system is not
able to provide the required service after isolation. This kind of reconfiguration is
often acceptable even at the price of degraded services.

2.1.4.3 Fault Removal

During system development, fault removal [5] comprises steps like verification,
diagnosis and correction. The verification step aims to test the system either statically
or dynamically to find out whether the system conforms to its specification and
possibly to reveal both hardware and software faults. After testing, the system
is diagnosed to spot the system faults and then these identified faults should be
corrected.

During the usage phase of a system, fault removal [5] emphasises the corrective or
preventive maintenance. Corrective maintenance aims to remove faults that already
cause errors in the system, while preventive maintenance takes the potential hardware
and software faults into account.

2.1.4.4 Fault Forecasting

Fault forecasting [65] aims to estimate the current number of faults and the future
incidence of faults as well as the possible consequences resulting from the faults.
The system faults can be identified and classified in a qualitative way and the cor-
responding mechanisms to deal with the identified faults can also be identified. In
a quantitative way, the satisfaction probabilities of the aforementioned attributes
of dependability (cf. section 2.1.1) can be evaluated. Tools exist to carry out the
qualitative and quantitative evaluations separately or in a coordinated way [66].
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2.2 System Architecture

From the logical point of view, a system consists of various applications (e.g., driving
assistance, entertainment in car), which can be composed by distributed functions.
From the physical point of view, a system is built up with physically networked
computing nodes. Based on the mapping between functions and computing nodes, a
system can be classified into a federated architecture or an integrated architecture.
From the functional criticality point of view, both types of system architectures can
be mixed-criticality architectures.

2.2.1 Federated Architecture

In a system based on a federated architecture, one distributed function owns its
dedicated computing nodes and an application is built up with the distributed
functions that are connected via physical communication channels [61, 99]. We depict
an example federated architecture in Figure 2.2. In this example, each computing
node hosts one function and the functions belonging to the same application (i.e.,
functions in the same colour) communicate with each other via the network.

FIGURE 2.2: Example of a Federated Architecture

In the case of an ultra-dependable application, the federated architecture has so
far been preferred due to the natural advantages of the architecture [96]. Thanks to
the clear boundaries between functions and the heterogeneity of hardware platforms,
neither a hardware fault nor a software fault can affect the other connected nodes.
Errors within one function can be handled within one node before propagating to
other ones. The interaction between applications can be resolved by gateway services,
so that the development of applications can be done independently, which also
enables the separation of concerns between applications.
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Based on the system paradigm of a federated architecture, the amount of com-
puting nodes in a system increases linearly with respect to the number of functions.
Consequently, the lack of multiplexing at the hardware level leads to high cost of
computing nodes and wiring effort, and implicitly results in large dimensions and
high energy consumption.

2.2.2 Integrated Architecture

As mentioned in [98], one can introduce an integrated architecture if one computing
node is shared among different functions. As depicted in Figure 2.3, each comput-
ing node in the system hosts more than one function in comparison to the above
mentioned federated architecture. The consequential advantage of an integrated
architecture is the reduction of the used computing nodes as well as the wiring for
the communication network. Less wiring and the reduced amount of connectors
contributes to the improvement of the system dependability. Furthermore, a safety-
critical system should be fault-tolerant to maintain the functionalities of safety-critical
functions also during faulty situations. If an integrated architecture contains general-
purpose computing nodes, then they can serve as a backup resource for multiple
functions, which leads to a reduction of the required replicated hardware compared
to a federated system, in which the computing nodes are function specific. Integrating
different functions on the same computing node also eases the coordinated communi-
cation between these functions, since the functions access the same timing resource
that is essential for time-driven execution.

FIGURE 2.3: Example of an Integrated Architecture

From the system integration point of view, the integrated architecture increases
the complexity of the computing nodes, due to the potential interference between
functions hosted on the same computing node. This challenge is solved in the
state-of-the-art and the corresponding measures like time-space isolation and virtual
communication links were proposed [96].

2.2.3 Mixed-Criticality Architecture

As introduced in [15], a system is treated as a mixed criticality system, when the
functions of the system are of distinct criticality levels (as defined in standards such
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as IEC 61508 [49], DO-178C [31], DO-254 [109] and ISO 26262 [50]).
The example mixed-criticality system in Figure 2.4 shows that an integrated

system can host several functions of different Safety Integrity Levels (SIL) (e.g. SIL 2
and SIL 4 according to IEC 61508). Another depicted aspect in this example is that the
partitioning mechanism as discussed in section 2.5 is a prerequisite to segregate the
functions in a modular way. A mixed-criticality system enables different applications
to be certified against different criticality levels by leveraging the time-space isolation
paradigm, so that the overall system need not be certified to the highest criticality
level.

FIGURE 2.4: Example of Mixed-Criticality Architecture

2.2.4 Execution Environment

An execution environment within a computing node consists of the computational
resources (e.g., memory) and architectural services (e.g., clock service) to execute the
hosted applications of the computing node. Within an integrated computing node, the
execution environment can establish isolated computational resources for different
applications, in order to prevent faults from propagating between applications.

2.3 Real-Time Systems

As defined in [62], a real-time system provides correct computational results in both
the logical and temporal domains. In other words, a real-time system should finish
each operation correctly without exceeding the corresponding deadline.

From the system point of view, a real-time system is either permanently ready
to process random inputs from the physical environment, or it is scheduled to be
ready for processing specific inputs that appear at predetermined times. The required
system outputs are generated before predetermined deadlines. From the viewpoint
of the system, if a real-time system consists of multiple dependent functions, the
intermediate results of the functions should meet the derivative requirements in the
time and value domains.
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A real-time system is generally classified based on the consequences when the
system misses predetermined deadlines. A real-time system can be classified into
hard real-time or soft real-time as discussed in the following sections.

2.3.1 Hard Real-Time System

In a hard real-time system, applications should be guaranteed to meet the specified
deadlines without any exceptions, and any violated time constraints can lead to a
severe system failure.

An example of a hard real-time system is the Anti-lock Braking System (ABS) in
vehicles. Missing a response deadline of the ABS can result in a vehicle being out of
control, which endangers the safety of the passengers.

2.3.2 Soft Real-Time System

A soft real-time system has timing constraints that are not requested to be strictly
satisfied. In other words, missing a deadline in a soft real-time system can affect the
system behaviour without causing a critical system failure.

One example of a soft real-time system are the multimedia services in networked
environments. The frames transmitted over a network can be delayed or even
dropped alongside the transmission channels, which results in stagnation or frame
skipping of the media.

2.4 Fault Hypothesis

As stated in [93], in the scope of integrated architectures, a fault hypothesis aims
to identify the FCRs, and it also specifies the failure modes and provides realistic
failure rate assumptions. Based on the fault hypothesis, the implementation and
validation of fault-tolerant strategies is enabled. In the following sections, we discuss
the constituting parameters of a fault hypothesis in detail.

2.4.1 Fault-Containment Regions

According to [64], a FCR is a collection of components that operates correctly regard-
less of any arbitrary logical or electrical fault outside the region. One can classify
the faults into either a FCR fault or a system fault, where a system consists normally
of different FCRs. According to the fault-error-failure chain introduced by Laprie
[4], a fault within one FCR A can lead to the failure of FCR A and this failure can
cause a fault in FCR B if it propagates to FCR B through the communication network
between FCR A and FCR B. Redundancy-based mechanisms are widely implemented
to achieve failure masking for the FCRs.
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2.4.2 Failure Mode Assumptions

From the view point of the user, one FCR could have different kinds of failure modes
that determine the necessary redundancy mechanisms to achieve error containment
of the FCR [93]. In this dissertation, we address the critical failure modes that are
relevant in an integrated architecture for safety-critical environments. According to
[60], the failure modes are as follows:

• Babbling idiot failures: A FCR suffers from babbling idiot failures when it sends
out messages during unassigned time slots in a time driven communication
network. This kind of failure can be detected and handled by guardian systems
within the communication system.

• Masquerading failures: A FCR can masquerade other FCRs if it is able to
assume the identity of other FCRs. A masquerading failure could be a serious
threat to the whole system with respect to the widely applied fault-containment
mechanism via replication and voting on replicated messages, because a single
faulty application within one FCR can even masquerade multiple replicated
applications and send out masqueraded messages to overwrite the correct
ones. Consequently, if the messages contain naming or addressing information
for the underlying routing infrastructure, extra detection mechanisms within
the computing node should be carried out to protect the whole system from
masquerading failures.

• Slightly-off-Specification (SoS) failures: Different FCRs in a system can inter-
pret the same received faulty message as valid or invalid based on their own
specification of this message. The faulty message could have slight differences
with respect to time, value or coding aspects.

• Crash/Omission (CO) failures: The CO failure mode states that a computing
node operates correctly or crashes, and the communication system transports
messages correctly or is unable to transport any messages. In the communica-
tion system, acknowledgement or membership services help to detect omission
failures. Within computing nodes, detection of FCR crashes should be car-
ried out at the architecture level, because a FCR crash results in not produced
outputs that can be detected by other FCRs without guarantees.

• Massive transient disturbances: Phenomena like Electro-Magnetic Interference
(EMI) can disturb communication systems and even lead to temporary loss of
communication between FCRs. During such a period, computing nodes need
to detect the communication failure and carry out default safe actions until the
communication system finishes recovery. Proper quality engineering of the
communication medium also contributes to avoiding such failures.
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2.4.3 Failure Rate Assumptions

As discussed in [93], the failure rate depends on the kinds of failure modes. In
addition, the differentiation of failure rates is affected by the failure persistence (e.g.,
transient failures, permanent failures).

2.4.4 Recovery Interval of an FCR

The FCR recovery interval is the maximum interval of time between the point in time
of a FCR failure happens and the FCR provides the correct service again [93].

2.4.5 Maximum Number of Failures

As defined in [93], the parameter specifies the maximum number of FCR failures
that a system should be capable to handle. The maximum number of failures is
determined by the aforementioned failure rate and recovery interval. Today the
prevalent assumption in safety-critical systems is a single fault hypothesis, i.e., a
system suffers at one point in time a maximum of one FCR failure.

2.5 Partitioning

Partitioning is one of the central concepts for a computing node of an integrated
architecture to host applications of different critical levels. Partitioning represents the
isolation mechanism that can be applied at different levels (e.g., processor, memory,
I/O) within an integrated system, in order to provide independent execution environ-
ments for different applications. In this sense, each application within one partition
forms a Fault Containment Region (FCR) that delimits the immediate effect of a
fault [97]. As stated in [110], a partitioned system should provide fault containment
equivalent to a federated system in which each partition is allocated an indepen-
dent processor and associated peripherals and all inter-partition communications are
carried on dedicated lines.

The partitioning paradigm is classified into temporal and spatial partitioning that
will be discussed in detail in the following sections.

2.5.1 Temporal Partitioning

Temporal partitioning guarantees that applications residing within a computing
node of an integrated architecture are segregated with respect to the execution time.
According to [97], temporal partitioning ensures that the FCRs have no effect on
each other on the ability to access shared resources (e.g., common network, shared
processor). From the view point of a partition, the temporal properties (e.g., latency,
jitter, duration of availability) of the services provided by the shared resources during
the scheduled accessing time interval are not affected by the other ones [110].
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At the processor level, the partitions within the same computing module are
normally scheduled on a fixed and cyclic basis. In order to implement this schedul-
ing mechanism, the CPU time is divided into Major Time Frames (MTF) with pre-
configured duration. The hosted partitions are activated within at least one time
window of every MTF and only one partition can be activated during one time win-
dow. The system integrator defines the order of the activated partitions, taking the
partition attributes like period and Worst Case Execution Time (WCET) into account.

At the communication network level, there are different protocols (e.g., TTEth-
ernet [52], ARINC 664 [22]) guaranteeing timely delivery of messages. TTEthernet
leverages Time-Division Multiplexing (TDM) to create dedicated virtual channels
between communicating entities, so that the other unauthorised entities cannot access
or interfere with the communication in their unassigned time intervals. Temporal
partitioning in ARINC 664 is realized through Virtual Links (VLs) that are charac-
terised by Bandwidth Allocation Gaps (BAGs) and jitter. The BAG specifies the
minimum time interval between two messages of the same VL, and messages passing
through the scheduler can be dispatched in a bounded time interval that represents
the maximum admissible jitter. The VL represents a logical unidirectional connection
from one source computing node to at least one destination computing node and
each VL is timely isolated from the others.

2.5.2 Spatial Partitioning

According to the definition in [110], spatial partitioning must ensure that software in
one partition cannot change the software or private data of another partition (either
in memory or in transit) nor command the private devices or actuators of other
partitions.

At the memory level, partitions in an integrated architecture should have their
allocated memory areas. The allocation of the system memory is based on the partition
requirements and it is achieved at the partition granularity. In many COTS products
(e.g., PikeOS, VxWorks), a Memory Management Unit (MMU) is used to implement
the spatial isolation of memory resources at the hardware level [97].

At the processor level, since the processors could be timely shared between
partitions (i.e., temporal partitioning in chapter 2.5.1), there could be processor
context (e.g., register values) left from the last active partition. In order to avoid
a partition being affected by the last executed partition on the same processor, the
processor context should be carefully dealt with, so that the behavior of a partition
is not implicitly affected by the last one. For more detailed background on spatial
partitioning, we point to [110].

At the communication network level, since the physical communication infrastruc-
ture is timely multiplexed among the applications, the major point to be concerned
with in spacial partitioning is the possibility that one application could manipulate
the messages of other applications via unintended access (e.g., altering of messages
in message buffers not owned by the application) [93]. From the viewpoint of the
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execution environment on a computing node, it is mandatory to isolate the system
resources for the communication of different applications.

2.6 Fault and Error Containment

When we talk about safety-critical applications integrated with other non safety-
critical applications on the same computing platform, the protection against failures
affecting safety-critical applications must be addressed.

2.6.1 Fault Containment

In the domain of integrated architecture, different applications integrated on the same
computing node share the computing hardware, power supply, timing source etc.,
which can fail due to a hardware fault and result in the failure of the whole computing
node. According to the definition of FCR (see section 2.4.1), one computing node
hosting multiple applications should be treated as a single FCR. In a single FCR, a
fault cannot immediately affect another FCR, however, a faulty application could
send out faulty messages to the other applications residing in different FCRs, which
results in the required error containment in the following section.

2.6.2 Error Containment

2.6.2.1 Within computing node

When a software fault happens within one application that is integrated with other
applications and hosted on the same computing node (i.e., the same FCR), there is the
need to prevent the error resulting from the fault in the application from propagating
to other applications on the same platform. According to [96], the temporal and
spatial isolation between applications contributes to avoiding timely interference of
the CPU and other resources (e.g., memory, I/O) for each application. This isolation
applies also to the node-internal communication mechanisms.

Messages carrying erroneous values or delivered untimely could propagate from
a faulty FCR to another FCR and lead to another failure in it. In order to prevent error
propagation between FCRs, communication guardians at the architectural level can
be leveraged to avoid timing error propagation and voting at the application level
contributes to the value failure handling [60].

2.7 Communication Mechanisms

In order to fulfil the communication requirements between different applications
running in parallel, message-based communication and shared-memory based com-
munication are the two mainly used technologies [68].
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2.7.1 Shared-memory based Communication

In case of communication based on a shared memory, the applications are authorized
to access identical memory areas to achieve the inter-process communication between
the applications. If a computing platform is integrated with homogeneous computing
resources, the shared memory communication is favorable, and the message-passing
mechanism can be the preferred option on heterogeneous computing resources.

In the Multi-Processor Systems-on-Chip (MPSoC) domain, the communication
based on shared memory is competitive due to the low cost of on-chip memory
accesses [103].

2.7.2 Message-based Communication

In the message-based communication, the communicating entities manage the lo-
cal resources and exchange information via messages. In an integrated computing
environment, the message-based communication provides an effective abstraction be-
tween computing nodes and the underlying network, as well as between applications
on the same platform.

As discussed in [95], message-based communication contributes to complex-
ity control for integrated architectures in the way that the well-defined messages
represent the properties of the application in a clear fashion. The message-based com-
munication is leveraged in ARINC 653 and AUTOSAR standards that are discussed
in the following chapter.

2.8 System Reconfiguration

In an integrated system, system changes caused by intended or unintended reasons
result in systematic reconfiguration. An example of an intended system change is the
train inauguration process in the railway domain. The transportation vehicles in the
railway domain are enabled to couple and decouple with each other during daily
operation, in order to achieve the dynamic composition purpose. One representative
unintended reason causing system reconfiguration is an unpredicted module fault
in an integrated system that affects safety-critical applications, which can be moved
from a faulty module to a redundant one [10].

In this dissertation, system reconfiguration means the dynamic adaptation of the
execution environment during system runtime, which affect both the configuration
of the applications and the communication infrastructures. As discussed in [55], the
following requirements should be fulfilled to achieve the predictable timing and
continuity of service during the system reconfiguration.

• Assured Reconfiguration [117]. This requires the effects of system reconfigura-
tion to be known beforehand. If a system reconfiguration affects a safety-critical
application, the caused consequences should be predictable.
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• Bounded Reconfiguration Time. The system reconfiguration should be fin-
ished within bounded time interval that is available in the executing system.

• Continuity of Service. If a system reconfiguration affects subset of the ap-
plications, the other subset of applications should be satisfied with required
resources to provide continuous service.

• Consistent Configuration. From the viewpoint of the applications, the system
configuration should be consistent during runtime. System reconfiguration
should not cause intermediate configurations that result in various system
configurations for different applications.

• Robust Reconfiguration Mechanisms. The system reconfiguration process
should avoid to cause failures, which can potentially cause a system failure.

• State Preservation. As discussed in [13], relevant system states that are valid
after system reconfiguration should be retained, in order to avoid causing
system failure.
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Chapter 3

Related Work

This chapter analyses the related work in the field of execution environments for
integrated real-time systems.

3.1 Real-Time Operating System

A system hosting real-time applications requires an RTOS to provide a deterministic
framework, so that logical and temporal correctness of the real-time applications can
be guaranteed. In this section, the memory management and scheduling mechanisms
of an RTOS are discussed, followed by the discussion of selected RTOSs (PikeOS and
Linux RTAI).

3.1.1 RTOS Capability

This section addresses the memory management and scheduling issues of an RTOS.

3.1.1.1 Memory Management

As discussed in [86], the memory management mechanism within a RTOS can be
classified into static and dynamic memory management.

• Static memory management. The free memory in a system is allocated statically
to the tasks, which hold and free the shared memory during execution. Specific
memory areas can be reserved for critical tasks while meeting the worst-case
demand of the tasks.

• Dynamic memory management. As a dynamic strategy, one single memory
space can be multiplexed by a task. In another word, a task can run on a
memory space that is smaller than required by overlaying the same memory
area during execution.

Most of the COTS RTOSs leverage a MMU (e.g., LynxOS [80], PikeOS [54] and
Xtratum [24]) or a Memory Protection Unit (MPU) (e.g., VxWorks [80]) from the
underlying hardware platform to protect application specific memory from undesired
accessing.
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3.1.1.2 Scheduling

For the scheduling in hard/soft real-time systems, applications can be scheduled
either statically or dynamically.

• Static scheduling. In static scheduling algorithms, the information of the sched-
uled entities is completely known before execution and the target schedule
is statically computed [58], which can be in a preemptive or non-preemptive
fashion. A static preemptive schedule can work in clock-driven way like the
temporal partitioning mechanism in the ARINC 653 standard [23] that will be
discussed later. In case the allocated execution time of the partitions is longer
than the worst-case execution time of the partitions, no preemption is necessary
during partition switching, which results in the static non-preemptive schedule.

• Dynamic scheduling. Similar to the static scheduling, dynamic scheduling can
be preemptive or non-preemptive. One representative of dynamic preemptive
scheduling is the Earliest Deadline First (EDF) scheduling mechanism [72],
where the task with the earliest deadline is assigned the highest priority and
enabled to preempt the running task. When the priory assignment mecha-
nism stays unchanged and tasks in execution cannot be preempted, the EDF
scheduling algorithm works in a non-preemptive fashion.

3.1.2 Related Work on RTOS

In this dissertation, the involved RTOSs are the PikeOS and the real-time Linux
variant Linux RTAI. The PikeOS is an RTOS certified to the highest criticality levels
(SIL4 according to IEC61508, Class A according to DO178C), and the Linux RTAI is
an open source RTOS. These RTOSs will be discussed in detail in this section.

3.1.2.1 PikeOS

PikeOS is a type 1 hypervisor that supports hardware virtualisation and para-
virtualization functionalities. The CPU time is divided into time windows called time
partitions and the isolated time partitions are grouped to form a scheduling schema,
which is executed cyclically. PikeOS can switch between different scheduling schemes
during run-time. Processes within one time partitions are scheduled in a priority-
based preemptive fashion. The extra time partition 0 is defined as a background
partition to run critical or non-critical processes, so that processes with low latency
constraints can be executed timely, meanwhile the idle CPU time can be utilized by
the non-critical processes. Partitions are independent execution environments to host
other OSs with the capability to configure the affinity of processors.

In PikeOS, the physical memory can contain multiple physical memory regions,
which are used to serve the per-partition memory allocation (e.g., thread/task de-
scriptors). This kind of physical memory partitioning ensures that one partition is
served by one memory controller, and specific physically tagged cache entries are
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not evicted, therefore predictability in the per-partition memory access is preserved.
As above mentioned, PikeOS leverages a hardware MMU to perform its memory
isolation. Each partition and every task within a partition has its own virtual memory
space. The memory assignment is done statically during the system integration
process.

3.1.2.2 Linux RTAI/LXRT

The RTAI/LXRT Linux extension was proposed in [82] to add a middleware between
the hardware infrastructure and the regular Linux kernel, in order to provide real-time
services for the hosted applications.

• Scheduling Strategy. The patched RTAI Linux kernel can block or redirect
hardware interrupts to avoid delays of real-time applications. Static and dy-
namic priority-based scheduling are both enabled in this kernel, where the
normal Linux kernel is configured with lowest priority and runs only when the
real-time kernel is idle.

• Memory Management. Linux RTAI/LXRT leverages a MMU from the underly-
ing computing platform to protect the memory space of real-time applications
from unauthorized accessing.

As researched in [92], the temporal isolation capability of RTAI Linux can be
preserved by introducing a time-triggered scheduling task with the highest priority
in the real-time kernel. Meanwhile the RTAI APIs are restricted to rule out potential
interference between partitions. The naming services in RTAI are suggested to be
extended, so that applications are only enabled to access their own resources.

3.2 ARINC 653

In the avionic domain, the development trend of the computing platforms is evolving
from federated to integrated architectures, which are called Integrated Modular
Avionics (IMA). Following this trend, research on integrating functions with different
criticality levels on the same computing node was carried out and corresponding
industry standards such as ARINC 653 were released. The ARINC 653 standard
defines the execution environment to host multiple avionic functions on a single
computing node using strict temporal and spatial partitioning. From the view point
of industrial adoption, ARINC 653 was successfully implemented (e.g., Airbus A380)
and achieved its primary goal that aims at cost and weight reduction and enabling
modular certification. We will discuss in detail the execution environment defined by
ARINC 653 in the following sections.
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3.2.1 System Architecture

The architecture of a standard ARINC 653 system is illustrated in Figure 3.1. In
this architecture, the user partitions are logically separated from the underlying
computing platform via the APplication EXecutive (APEX), which provides the
interfaces for the user partitions to access the architectural services.

FIGURE 3.1: ARINC 653 System Architecture

Every partition contains multiple processes and a partition (except the system
partitions) leverages the services provided by the APEX interface to accomplish its
functionalities. The OS kernel provides services (e.g., process management, time
service) to the APEX layer, in order to hide the platform specific implementation from
the hosted user partitions.

3.2.2 Partitioning

As mentioned in the ARINC 653 standard [23], the central mechanism in the ARINC
653 philosophy is the partitioning concept. The applications residing within an inte-
grated computing platform are partitioned with respect to the execution time and
computing resources, which is called temporal and spatial partitioning, correspond-
ingly.

A partition can consist of several processes, which can be executed concurrently
to achieve the target system functionalities. In this case, either preemptive or non-
preemptive scheduling could be adopted for the process scheduling within a partition.

The partitions defined in ARINC 653 are statically scheduled according to the
configuration generated during system integration phase. For the resource allocation
and the scheduling perspective, extensive research ([2, 29, 115, 121, 122]) has been
done by leveraging Mixed Integer Linear Programming (MILP). For example, the
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authors in [29] concentrated on the non-periodic task scheduling problem, while
the other mentioned papers aimed at resolving the scheduling problem of periodic
tasks. Among the above mentioned related work, only the authors in [2] proposed a
solution for the partition allocation and scheduling problem, while considering strict
periodicity and system constraints. In [70], Lhachemi, Hugo, et al. developed a model
for simultaneous partition allocation and schedule design, so that the distribution
of applications over partitions and the scheduling patterns could be automatically
adjusted to optimise the system performance. The authors in [108] proposed an
online partition rescheduling algorithm to switch between offline verified schedules.
As discussed in [38], inspired by the software-based synchronisation used in the
space shuttle, Roscoe Ferguso proposed the partition synchronisation mechanism in
an ARINC 653 system, where partition switches on the computing nodes are aligned.

Regarding the timing determinism in a temporally partitioned execution environ-
ment, as discussed in [130], I/O interrupts can be handled by providing dynamically
decreasing time slots in between the fixed time windows within each MTF, in order
to guarantee timing determinism at the ARINC 653 MTF level.

In ARINC 653, partitions own the dedicated system resources that are statically
allocated before the system starts up. The allocation of the system resources is based
on the partition requirements and it is achieved at the partition level. The processes
within the same partition have access to the allocated resources of the partition. The
concurrent execution of processes within the same partition causes potential conflicts
like race conditions during memory access. Therefore, semaphores and mutexes
are supposed to avoid conflicts with concurrent or exclusive access to the partition
resources. In order to detect race conditions of resource accesses within a partition,
the authors in [19] presented the AR653 tool to monitor the synchronised operations
and shared resources at the process level. The race conditions can be detected after
collecting the monitoring information.

3.2.3 Communication Mechanism

In the ARINC 653 standard, the communication scenarios are categorised into inter-
partition and intra-partition communication.

3.2.3.1 Inter-partition Communication

The inter-partition communication includes both the communication between parti-
tions residing on the same computing node and on different ones. The communication
is message based, which enables the communicating user partitions to abstract from
the underlying infrastructure and reduces system complexity. In another word, the
application developers only take care of the exchanged messages to understand the
system inter-operation.

As depicted in Figure 3.2, the communicating partitions exchange messages
either through queuing ports or through sampling ports, which are connected by the
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underlying channels. A channel is the logical link between partitions and statically
configured during system integration.

FIGURE 3.2: ARINC 653 Inter-partition Channel

In order to ensure the portability, the implementation of inter-partition commu-
nication channels is platform specific. From the view point of a partition, the sent
and received messages via the channels contain no explicit location information. The
message routing is done based on the offline configuration provided by the system
integrator [23]. The authors in [69] proposed a configurable and extensible schema
of inter-partition communication defined in ARINC 653. They implemented a net-
work manager as a system partition to abstract diverse underlying network protocols,
which also works as a gateway entity to convey messages between different networks.

3.2.3.2 Intra-partition Communication

Regarding the communication between processes within a user partition, buffers
and blackboards are defined for the messages that are queued or updated in place,
correspondingly. Semaphores and mutexes are the legacy mechanisms for the syn-
chronised access of the buffers and blackboards. A process can also trigger an event
to activate the execution of another process.

The intra-partition communication mechanisms are limited to the memory re-
sources assigned to a user partition during system initialization. In another word, as
long as there are enough memory resources, the interactions between processes within
an application partition could be changed, without affecting the other partitions on
the same computing platform.
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3.2.4 System Reconfiguration

In the avionic domain, the reconfiguration of an IMA platform was researched in
projects like DIANA and SCARLETT. In the SCARLETT project, Bieber et al. [10]
proposed a preliminary design to enable an IMA platform to be reconfigurable.
The authors revealed in this work the reconfiguration scenarios and proposed the
corresponding processes to switch between pre-defined configurations under the
identified safety constraints [11] in a centralised way. In the DIANA project, Engel,
Christian, et al. in [33] leveraged a byzantine agreement algorithm to propose a
configuration selection mechanism, in order to activate one of the pre-qualified
configurations during system run-time in a distributed way. Both projects aim to
improve the system reliability during run time by dealing with exceptions (e.g.
substitution of one computing node by another node).

The authors in [75] proposed a framework to meet the fault tolerance requirements
in avionic systems based on the ARINC 653 standard. Safety-critical partitions are
duplicated and the communication mechanisms are extended, so that the backup
partitions could be reconfigured to replace detected faulty partitions.

3.2.5 Research Gap

To the best of our knowledge, the communication mechanisms within the integrated
architectures in the avionic domain are managed by switching between pre-defined
configurations in a safety process, without addressing the system reconfiguration
during runtime.

3.3 AUTOSAR

The AUTomotive Open System ARchitecture (AUTOSAR) is a development partner-
ship that aims at establishing an open industry standard for the software architecture
in the automotive domain [41]. The target software architecture helps to isolate
the automotive software from the underlying hardware to enable the independent
development. AUTOSAR also enables the integration of legacy automotive software
on a single computing node without specifications from the vendors.

In the following sections, we explore the AUTOSAR from the basic architectural
design to the detailed communication mechanisms.

3.3.1 System Architecture

The system architecture specified in the AUTOSAR standard is depicted in Figure
3.3. The layered architecture leverages the RunTime Environment (RTE) to enable
the independent development of the application software and the basic software [14].
The defined unified AUTOSAR interface ensures the portability and reusability of
the application software by abstracting from the infrastructure related components.
From the view point of the hardware suppliers, the RTE offers an independent
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development environment, so that the hardware specific software components can
be evolved independently.

FIGURE 3.3: AUTOSAR System Architecture

According to the system architecture in Figure 3.3, multiple application software
components are integrated on a single computing node, which calls for both spatial
and temporal partitioning mechanisms to prevent fault propagation between software
components. As discussed in [142], AUTOSAR groups different executable tasks
into system applications and leverages the OSEK’s application protection facilities to
avoid spatial interference between system applications. The activation and execution
of AUTOSAR executable entities is basically done in an event-triggered manner and
optional monitoring mechanisms are applied to detect errors in the configured timing
behaviours.

The grouping of executable tasks residing in different software components re-
quires communication mechanisms that will be discussed in the following section.

3.3.2 Communication Mechanisms

In the AUTOSAR standard, the Virtual Functional Bus (VFB) is defined as the con-
ceptual communication mechanism to support message exchange between software
components, meanwhile the VFB also provides separation between software compo-
nents and the underlying infrastructures. The VFB interconnects different software
components via well-defined ports. The communication mechanism in AUTOSAR is
classified into client-server and sender-receiver paradigms [25, 17].

3.3.2.1 Client/Server Paradigm

The Client/Server (C/S) paradigm provides the possibility for an application software
component to invoke services that are provided by other components. The authors
in [17] discussed the specific requirements (e.g., self-adaptation, timing monitoring)
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of C/S communication in AUTOSAR and proposed a template based programming
method to develop a C/S module in AUTOSAR, in order to enable the migration
from legacy federated systems to integrated ones based on AUTOSAR.

3.3.2.2 Sender/Receiver Paradigm

In the sender/receiver paradigm, a sender can distribute data frames to multiple
receivers, or multiple senders can send messages to the same receiver. Regarding the
message semantics in this communication mechanism, state data and queued data
are supported to transfer "last updated" and "buffered" messages. Data filtering can
be done by leveraging the OS capabilities like OSEK-COM data filters.

According to the analysis in [25], the major characteristics of the discussed com-
munication paradigms in AUTOSAR are compared and listed in TABLE 3.1.

TABLE 3.1: Comparison of Communication Paradigms

Client/Server Sender/Receiver
Data Content operation-oriented data-oriented
Multiplicity n clients: 1 server (n>=0) depends on data semantics

Concurrency and Ordering non-guaranteed ordering guaranteed ordering

3.3.3 System Timing

According to the authors in [105], the timing aspect in an AUTOSAR system is
not addressed due to the primary objective of easing system integration of system
components from different suppliers. The authors also reveal model mismatches
that potentially lead to unpredictable timing behaviours of applications. In order to
optimise the communication timing within local computing nodes, Long, Rongshen,
et al. [74] propose extended mapping rules of AUTOSAR runnable entities in the
execution environment. The major idea is to refine the mapping of runnable entities
to the underlying OS tasks with the goal to reduce the context switch overhead and
consequently the communication delay.

3.3.4 System Reconfiguration

In the AUTOSAR standard, a system is configured statically when the whole setup
is integrated. More specifically, the available system resources (e.g., memory, I/O)
within an AUTOSAR system are allocated statically. Extensive research has been done
with respect to the dynamic reconfiguration within an AUTOSAR system during
runtime.

Approaches based on enumerating possible system configurations and switching
between different schemes were researched in work like [8] and [43]. These mech-
anisms are beneficial for system verification and certification. However, they are
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essentially based on static system configuration and can lead to unavoidable system
overhead (e.g., memory resources, re-certification cost).

In [140], Marc Zeller et al. identified the challenges with respect to extending
the AUTOSAR architecture with run-time adaptation capability. Thereafter they pro-
posed the necessary extensions as basic software components or application software
components to achieve run-time monitoring and application activation/deactivation,
which is treated as a run-time adaptation mechanism in AUTOSAR. In [126], the au-
thors proposed a middleware based on the AUTOSAR architecture with the extension
of self-configuration and self-healing capabilities. The essential mechanism of the
proposed extension is that the networked computing nodes are enabled to negotiate
the distribution of applications in a distributed way according to the proposed metric
of Quality of Service (QoS). The proposed self-adaptation is application indepen-
dent and the timing aspect of the self-configuration and self-healing processes is not
addressed in this work.

With respect to timing requirements, the authors in [9] proposed a hierarchical
architecture to realise application dependent reconfiguration within AUTOSAR sys-
tems. In the proposed mechanism, the application behavior is separated from the
reconfiguration behavior and the scheduling period of the application is extended to
run the reconfiguration behavior, in order to meet hard real-time requirements. The
timing correctness of the proposed model is also verified with timed automata and
model checking tools.

The above discussed approaches are mainly concerned about the adaptation at
the application layer. In contrast, the authors in [135] introduced different approaches
to integrate the Service-Oriented Driver Assistance (SODA) framework [134] into
AUTOSAR at the architectural level. In another word, the authors concentrated on
extending the basic software components of AUTOSAR in this work. Firstly, the
SODA framework can be integrated into the AUTOSAR system as an independent
complex driver. Secondly, the SODA framework can replace the existing Universal
Measurement and Calibration Protocol (XCP) in AUTOSAR. Last but not least, one
can adapt and enhance the transport protocols in AUTOSAR to achieve the required
integration. Refer to [135] for more details about these approaches.

3.3.5 Research Gap

As discussed, the AUTOSAR executable entities are basically scheduled in an event-
triggered fashion, which results in the lack of determinism of the system timing.
The discussed mechanisms addressing system reconfiguration concentrate on the
approaches at the application layer in stead of the architectural level.
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3.4 Virtual Networking

3.4.1 History of Network Virtualization

As Thomas Anderson et al. discussed in [3], the network development was ini-
tially based on an ossified architecture, since legitimate needs based on the network
were satisfied by incremental modifications that could not improve the network
architecture. Network virtualization was proposed as a potential mechanism to
support network architecture development. Thereafter, network virtualization was
extensively researched in different domains.

As classified in [20], network virtualization can be grouped into Virtual Private
Networks (VPN), programmable networks and overlay networks. The programmable
network and the overlay network are conceptually similar to this work. The authors in
[16] summarised the programmable network model, in which the message transporta-
tion entities (e.g., router, switch) are equipped with extended computation facilities to
deploy dynamic network services. Regarding the overlay network, different commu-
nicating nodes can be connected via the VLs created on top of the physical network,
where diverse network requirements (e.g., QoS, availability, security) could be met.
Thomas Anderson et al. [3] argued that the overlay network lacks consideration of
the interaction between different virtual networks and it is mostly accomplished at
the application layer based on IP networks, therefore an overlay networks does not
essentially drive the network architecture innovation.

3.4.2 Network Virtualization Deployment

As Raj Jain and Subharthi Paul discussed in [51], from the perspective of the network
composition, the network virtualization includes Network Interface Card (NIC) virtu-
alization, switch virtualization and Local Area Network (LAN) virtualization, which
are deployed in data centers, cloud computing and network function virtualization
environments.

3.4.2.1 Data Center and Cloud Computing

Date centers and clouds are networked computing infrastructures that are at the
premises of the enterprises or remotely located, respectively. The physical computing
resources are virtualized in these setups, where different Virtual Machines (VMs)
can be integrated on the same computing platform. The VMs belonging to identical
tenants/users should be coupled with the same virtual network (e.g., virtual L2/L3
networks), in order to provide location transparency of VMs and inter virtual network
segregation [90].

The Internet Engineering Task Force (IETF) working group proposed the Virtual
eXtensible Local Area Network (VXLAN) [79] and the Network Virtualization using
Generic Routing Encapsulation (NVGRE) [42] to correspondingly address the network
virtualization at Ethernet and Internet level. Other related work like the Stateless
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Transport Tunneling (STT) [30] protocol and the TRansparent Interconnection of Lots
of Links (TRILL) protocol [90] tackle the encapsulation of virtual networks when
overlay networks are deployed to achieve the network virtualization.

3.4.2.2 Network Function Virtualization

The Network Function Virtualization (NFV) [18] allows network functions to abstract
from proprietary hardware platforms and enables them to run on standard industry
hardware, which was proposed in the telecommunication industry intended to reduce
the OPerating EXpenses (OPEX) and CAPital EXpenses (CAPEX) and meanwhile
increase the deployment agility of new services [88].

According to European Telecommunications Standards Institute (ETSI), the NFV
architecture is depicted in Figure 3.4. The building blocks of the whole system are the
NFV infrastructure (including physical and virtualized infrastructure), the virtualized
network functions and the management & orchestration component [36].

FIGURE 3.4: Network Function Virtualization Architecture

The infrastructure consists of hardware resources and software platforms for the
VNFs. The virtualization infrastructure created by software (e.g., hypervisor) enables
the underlying hardware to abstract from the hosted VNFs to enable the independent
development of network functions and hardware platforms in the telecommunication
industry. As discussed in [88], the network functions (e.g., DHCP servers, firewalls)
in home networks can be ported from the proprietary devices to virtual execution
environments like VMs, and the network functions can be chained to create specific
services by leveraging the virtualized network facilities provided by the underlying
infrastructure. The NFV MANagement and Orchestration (NFV MANO) component
contributes to the configuration and management of both the infrastructure and
the VNFs with the help of the included databases that provide necessary system
properties. The ETSI proposed the MANO framework in [36] also considered the
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inter-MANO cooperation and the capability to enable the coordination between
MANO components and the existing network management systems, in order to
support the evolution of NFV in the telecommunication industry.

3.4.3 Network Virtualization in an Integrated Architecture

In the research field of virtual networking based on an integrated architecture, the
authors in [95] proposed the virtual network paradigm for both safety-critical and non
safety-critical applications based on a physical time-triggered network. The proposed
virtual networks leverage temporal and spatial partitioning between applications to
ensure encapsulation of different communicating entities. The proposed architecture
has a layered structure to enable the computing platform at the computing node level
to abstract from the functions of an application. The proposed virtual network was
implemented in a DECOS node computer [94], where the bandwidth resources of the
underlying time-triggered network are subdivided into time slots for applications.
Control transformation functionalities are necessary when the event-triggered mes-
sages are mapped to the time-triggered network. The controlled message exchange
between virtual networks is achieved by the proposed virtual gateway [91]. The pro-
posed virtual networks contributes to both infrastructure cost saving and reliability
improvement by means of wiring and connection reduction.

3.4.4 Virtualized Network Management

In a virtualized networking environment, management should be addressed to
improve the effectiveness and reliability of virtual networks [35]. In this section,
we analyse the state-of-the-art network management protocols Simple Network
Management Protocol (SNMP) and NETwork Configuration Protocol (NETCONF).

3.4.4.1 SNMP

The IETF defined the SNMP in the RFC 1213 protocol [84] for the management of
networked entities. The managed networked entities leverage the Management
Information Base (MIB) to record the management related information, which can be
retrieved by the SNMP server running on the managed entities to reply to queries
that are issued by the SNMP clients residing on the managing entities.

Kiran Voderhobli discussed in [132] the adoption of SNMP as the communication
mechanism to collect management-related system information in a virtualized exe-
cution environment. SNMP was used in [131] to communicate between analytical
entities and VMs to study the network traffic characteristics in virtualized networks.
Apart from leveraging SNMP as the communication mechanism, Ya-Shiang Peng and
Yen-Cheng Chen [101] customised the MIB for VMs and proposed a hierarchical ar-
chitecture to monitor both virtual and physical entities. The authors in [46] leveraged
the SNMP MIB to control the operations in VMs, which demonstrated the control
capability of SNMP.
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Asai et al. extended in [127] the MIB to be a Virtual Machine Management
MIB (VMM-MIB), which is unsuitable for controlling virtual routers in a virtualized
environment due to the read-only property of VMM-MIB [111]. Daitix et al. [26]
extended the Virtual Router (VR-MIB) [116] to define a virtual network management
interface that is capable to create and remove virtual routers, and even dynamically
bind virtual network interfaces to a physical network interface.

3.4.4.2 NETCONF

Since the above discussed SNMP is originally not optimal for configuration man-
agement, the IETF released the NETCONF protocol that addresses the configuration
management of networked entities. Along with NETCONF comes the Yet Another
Next Generation (YANG) data modelling language to abstract from the properties
of networked entities in a unified way. According to the RFC 6241 protocol [34], the
layered NETCONF protocol is summarized in TABLE 3.2.

TABLE 3.2: NETCONF Protocol Layers

Layer Example
Content Configuration/State/Notification Data

Operations <get-config>/<edit-config>
Messages <rpc>, <rpc-reply>, <notification>

Secure Transport SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ...

As shown in TABLE 3.2, the NETCONF protocol consists of 4 layers. The content
layer contains the service- and device-related parameters that are modelled in data
models (e.g., YANG [12]). The operation layer provides an abstraction in the inter-
actions between management clients and servers based on Remote Procedure Calls
(RPCs) and the encoded parameters are in XML-form. The message layer under the
operation layer defines an independent framing mechanism to encode the RPCs and
notifications, so that the message layer can be deployed on any secure transport mech-
anisms that meets the NETCONF specific requirements (e.g., connection-oriented,
SSH support). In another word, security is supported and implemented at the trans-
port layer in the NETCONF protocol.

After the IETF released the NETCONF protocol, there existed several NETCONF
implementations. To name a few examples, YENCA [141] was the first NETCONF
capable implementation, which combined an agent and a manager that were im-
plemented in the C language and Java, correspondingly. Thereafter, YENCA was
improved by the LORIA-INRIA laboratories to include a python implemented agent
and a web-based manager, which were connected via SSH. The open-source im-
plementation Netopeer [71] implemented the RFC 4741 (predecessor of RFC 6241),
in which the manager was both web- and command-line-based. Another notable
implementation is called Yuma. It was RFC 6241 compliant and the management
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servers on the managed entities can be extended in a plugin fashion, which freed the
servers from recompiling during runtime. The lately implemented libnetconf library
[63] targeted the RFC 6241 compliance in the GNU/Linux environment. The major
advancement of libnetconf is that the defined NETCONF capabilities are provided
as functions. More specifically, the developer can leverage the NETCONF functions
from the libnetconf library to build up customised NETCONF servers and clients. The
Yuma and libnetconf implementations are tested with respect to the interoperability
of the NETCONF protocol in [6]. As discussed in [113], for the perspective of indus-
trial deployment, major manufactures (e.g., Ericsson, Cisco) already shipped their
devices with NETCONF software, which is enabled by the NETCONF development
kits provided by Netconf Central and SNMP Reasearch.

3.4.4.3 Comparison between NETCONF and SNMP

In this section, we summarise the major differences between SNMP and NETCONF
in TABLE 3.3 according to the discussion in [139].

TABLE 3.3: Comparison between NETCONF and SNMP

NETCONF SNMP
Approach Document-oriented (XML) Variable-oriented

Protocol layers Content, operation, Application layer
message, transport

Management capabilities Configuration Fault/performance
management management

Architecture Manager-agent Manager-agent
Data structure YANG model MIB

Transaction capability Entire configuration Single item

As summarised above, the NETCONF protocol defines the communication ap-
proach to be document-oriented, which means that the configuration files of the
managed entities are exchanged between management servers and clients in well-
structured documents. In contrast, a SNMP manager communicates with managed
agents via simple variables without specific structures that may lead to the lack of
an overall view of the device configuration. The essential differences in the com-
munication approach are resulting from the defined target management capabilities.
The NETCONF protocol aims to cover the configuration management of networked
devices, which is not optimally addressed by SNMP. The management-related items
on a SNMP agent are organised in a MIB that is implemented in a data-oriented
language derived from Abstract Syntax Notion 1 (ASN.1) [139]. This makes the devel-
opment based on MIB a complex and time-consuming task, while the defined YANG
data modelling language for the NETCONF protocol is human-readable and well-
structured to represent the device configuration. As experimentally shown in [139],
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the NETCONF protocol outperforms the SNMP for the perspectives of efficiency,
effectiveness and security.

3.4.5 Research Gap

To the best of our knowledge, the research on network virtualization address either
dynamic virtual networking without hard real-time support, or static virtual net-
working with hard real-time support. In this dissertation, we address the virtualized
networking that supports both hard real-time and dynamic system configuration.

3.5 Software-Defined Networking

According to the definition provided by the Open Networking Foundation (ONF),
SDN means the physical separation of the network control plane from the forwarding
plane, where a control plane controls several devices. Except for the separation of the
data plane and control plane, the control plane is defined to be programmable. In
this section, we discuss the SDN paradigm in detail.

3.5.1 SDN Architecture

The reference SDN architecture proposed by ONF is shown in Figure 3.5. The over-
all architecture consists of three layers, namely the infrastructure layer, the control
layer and the application layer. The physical networking devices build up the in-
frastructure layer, where the devices are capable to communicate status data to the
controllers and carry out the instructions received from the controllers. The control
layer represents the service access point (e.g., Application Programming Interfaces)
for the applications at the application layer. In a large-scale networking scenario, the
controllers should be able to synchronise infrastructural information with each other
and execute in a coordinated fashion. The SDN applications are obligated to deploy
the network management tasks by leveraging the programmability of the control
layer.

In the following sub-sections, we will discuss the related work in these SDN
layers.

3.5.1.1 Infrastructure Layer

The SDN infrastructure mainly consists of switching devices and the interconnection
mechanisms between the switching devices.

As discussed in [137], a SDN-enabled switching device can be logically decom-
posed into two parts: a data plane and a control plane. The logical data plane is
normally mapped to the processor that is configured to switch packets according
to the switching rules stored in the local memory, which constitutes the physical
mapping entities of the logical control plane. In comparison to conventional switch-
ing devices that run complex routing protocols, a SDN-enabled switching device
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FIGURE 3.5: SDN Architecture

is simpler in terms of computing capacities. Due to the essential changes of the
architectural paradigm, the conventional switching devices should be redesigned to
be SDN-enabled.

As discussed before, the control plane is physically mapped to the local memory,
therefore the key challenge is the way to use the local memory in specific scenarios.
For example, in a dependable system (e.g., X-by-wire), the network scale is pre-
dictable, which means that the amount of message switching rules stored in the local
memory of a device can be known during system design. In such dependable systems,
one of the prerequisites is a deterministic networking facility for safety-critical data
flows. That means the memory management techniques in the switching devices
should be developed in a timely deterministic fashion. Traditional memory manage-
ment services in the network switching entities leverage aggregation [57] to reduce
the amount of route entries in memory. Other researched mechanism like Adaptive
Least Frequently Evicted (ALFE) [100] aim at preserving cache entries for data flows
of specific priorities, in order to guarantee the cache hit rate of these flows. To the
best of our knowledge, there exist no memory management systems that address
timely deterministic data flows in SDN-enabled switching devices.

The data plane in a SDN switching device ought to forward messages according
to the rules stored in the control plane based on flexible message identification and
classification mechanisms. Hardware accelerated classification is researched based
on both commodity hardware [119, 120] and customised hardware [77], which is
proven to reduce the network packet processing delay and consequently increases the
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network throughput. However, for the safety critical data communication in real-time
systems, the bounded latency with low jitter between communication entities should
be addressed [97]. Guohan Lu et al. proposed in [76] an offloading mechanism for an
Application-Specific Integrated Circuit (ASIC) to avoid exhausting memory and to
prevent interference between specific data flows. As for the message switching for
safety-critical data flows, similar mechanisms can be developed to meet the real-time
networking requirements.

Apart from the switching devices, the other important component of the infras-
tructure layer is the transmission media. The currently existing transmission media
includes wired, wireless and optical media. Wired packet switching is the de facto
mechanism in the above discussion. In addition, wireless and optical media will be
discussed as follows.

• As Manu Bansal et al. discussed in [7], modern wireless systems normally have
common processing blocks at the physical layer, and different configurations
with various characteristics. Based on that, OpenRadio [7] and Dyson [89] were
proposed to decouple wireless protocols from hardware and extend hardware to
provide statistic information, correspondingly. This work attempted to evolve
the wireless transmission environment towards Software-Defined Radio (SDR)
[129] that can be integrated by SDN systems.

• Regarding optical fibers, the Generalized Multi-Protocol Label Switching (GM-
PLS) [81] defined the control plane for optical networks, which enables unified
management of switching domains (e.g., wired, optical). To date, there are
various attempts proposing a unified control plane for mixed transmission
environments. Extensions of optical switches to support switching rules of
higher layers potentially lead to a unified managed data plane while causing
the economic difficulty of upgrading existing switching infrastructures [27,
28]. Virtualized switching [73] was proposed to establish proxy messages be-
tween optical interfaces and software switch interfaces at the cost of increased
communication latency.

3.5.1.2 Control Layer

As Wenfeng Xia et al. proposed in [137], a controller is logically composed of a
language translator, a rules updating process, a status collection process and a status
synchronization process. The detailed functionalities of the building blocks and their
interactions will be discussed as follows.

• Language translator: The language translator translates the commands from
the application layer into packet switching rules that are finally carried out by
the infrastructure layer. Existing communication protocol like the Command
Line Interface (CLI) for Cisco Internetwork Operating System (IOS) can be
adopted as the configuration language. However, the common configuration
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languages provide basic low level hardware abstractions that result in error-
prone development processes. Therefore, a high level language is a better
option for the language translator. To date, there are well-developed high level
language like the Flow-based Management Language (FML) [47], the Frenetic
language [40] and the Nettle language [133], which can be potential options for
the language translator.

• Rule updating process: The rule updating process generates the message switch-
ing rules based on the input from the language translator and communicates the
generated rules to the infrastructure layer. During the process of rule updating,
consistent rules should be guaranteed to provide deterministic network be-
haviours. Different levels of consistency are proposed for rule updating. More
specifically, the strict consistency and eventual consistency are defined. When
strict consistency is required, a packet or a data flow in the switching devices is
forwarded according to a single rule set (i.e., either an old one or an updated
one). In contrast, packets of the same data flow can be switched according
to both original rules and updated ones to keep them eventually consistent.
Mark Reitblatt et al. [106] and Rick McGeer [85] provided the proof-of-concept
implementation for the discussed consistency constraints.

• Status collection process: The status collection process is responsible for query-
ing network status information from the switching devices, thereafter the col-
lected information is provided to the network applications. The OpenTM
introduced in [124] targets at estimating a network Traffic Matrix (TM) in an in-
telligent fashion, in order to avoid increasing load on switching devices. Except
for the network traffic statistics (e.g., transmission duration, packet number,
etc.), the data flows are analyzed with respect to the message volume. Data
flows are classified into "elephant" and "mice" flows, where an "elephant" flow
is more important to be identified for collecting network status information.
Similar to the mixed-criticality networking environment, the status informa-
tion of critical data flows should have the highest priority to be collected and
provided to the network applications for decision making.

• Status synchronization process: The status synchronization process is defined
to synchronise network status information between controllers, which ensures
the unique global view of the involved network. The authors proposed in [123]
the HyperFlow that leverages the publish/subscribe mechanism to synchronise
collected network status information between controllers. A similar attempt
done by H Yin et al. [138] used communication among controllers to both share
network status information and coordinate behaviours of controllers.

As discussed above, a controller deals with two data streams. One is the de-
ployment of policies and rules from network applications to the switching devices;
the other one is the collection and transmission of network status information from
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switching devices to network applications, meanwhile guaranteeing the synchronised
network views in the control plane.

3.5.1.3 Application Layer

At the application layer, the network applications are able to analyze the latest
network status information to manage the underlying infrastructures through the
control layer. To date, there are network applications ranging from switching control
to network security. Selected related work is discussed in the following sections.

Message routing and switching are the main functionalities of a network facil-
ity. The SDN paradigm enables the message switching process to be centralised
in a dynamically controlled fashion. The initial effort addressing load balancing
with message forwarding rules in SDN was done in [136], where the authors pro-
posed to compute a message path dynamically based on the network traffic status.
In [59], Koerner et al. addressed independent traffic specific balancing strategies
in a SDN system, which essentially matches the requirements of mixed-criticality
systems, where data flows of different criticalities need to be treated specifically.
Regarding the network QoS, application-dedicated requirements can be addressed
with resources reservations via a SDN controller [53, 37], which demonstrates the
cross-layer cooperation of a SDN system.

Network virtualization technologies (e.g., VLAN, tunnel) are widely used in com-
mon practice to facilitate the coexistence of different networks on shared physical
infrastructures. However, these conventional virtualization technologies rely on
complex distributed infrastructural configuration that causes extra network overhead
for the switching devices to agree on the network view and converge to target config-
urations. The authors proposed in [128] the libNetVirt to function as a centralised
network controller for network virtualization management, which tackles the above
discussed disadvantage. Another example for network resource slicing in a SDN-
enabled system is the FlowVisor [114], which selectively transmits control messages
between controllers and switching entities, so that each controller is able to manage
its own network entities.

In the cloud computing field, virtual switching is one of the key aspects of cloud
computing, and the Open vSwitch is a famous SDN-capable OpenFlow switch ad-
dressing the networking problem between applications. In [87], Mian et al. validated
that Open vSwitch is secure at the cost of increased round trip times in compari-
son to non-virtualized execution environments for cloud computing. He and Liang
[44] evaluated the security, QoS and network performance of Open vSwitch, which
showed positive results. In order to guarantee QoS, Akella and Xiong [1] proposed to
allocate bandwidth for satisfying QoS requirements of the priority cloud users based
on Open vSwitch. In this research, the proposed QoS approach uses a bandwidth and
path length based metric and queuing techniques for different users. Other existing
software switches (e.g.,VALE switch [107], mSwitch [48]) are mainly concerned about
throughput and packet rates.
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In this dissertation, the mainly concerned aspects of the application layer are
the configurable routing, the switching capability, and the virtualized networking
technologies on a single physical infrastructure or networked environment, which
are closely related to the work that is presented in the following chapters.

3.5.2 Research Gap

For the deterministic data communication in hard real-time systems, the bounded
latency with low jitter between communication entities is an important requirement
to be addressed, which is out of the scope of the existing SDN research.
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Chapter 4

SDN-based Execution Environment
for Integrated Architecture

This chapter discusses the functional distribution framework concept that builds up
the execution environment for integrated systems and the proof-of-concept imple-
mentation in this dissertation.

4.1 Requirements

In this section, the requirements for the execution environment of mixed-criticality
applications based on an integrated architecture are discussed.

4.1.1 Technical Requirements

The technical requirements consist mainly of the functional characteristics that are
provided by the framework, so that the hosted applications are able to fulfil the
technical specifications defined by the developers.

4.1.1.1 Systematic Adaptation

Existing execution environments (e.g., TCMS in the railway domain) are based on a
federated architecture which is different to an integrated architecture. Every comput-
ing node in a federated system hosts one function, therefore, the execution environ-
ment on a computing node is function-specific. In integrated systems, one computing
node can host multiple applications due to the increasing computing capabilities
of modern platforms. Another prerequisite is that the execution environment and
the underlying platform provide the capability to spatially and temporally separate
different functions, so that a non-critical application cannot interfere with a critical
application.

Today the execution environments for integrated architectures are typically static.
For example, in the avionic domain, the configuration of the execution environment
is done by the system integrator during design time. Also the configurations of
the communication mechanisms are statically done during system development.
Reconfiguration of the execution environment is often reduced to switching between
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predefined configuration modes, which is mainly due to safety concerns, because
pre-configured scheduling schemes can be statically analyzed and proven to be safe.

In order to support also more dynamic application domains with a changing
system structure and adaptive behaviours, the integrated computing node should
provide a reconfigurable execution environment for mixed-criticality applications, the
systematic adaptation during runtime should be addressed under the precondition
that further system requirements are not violated.

4.1.1.2 Temporal and Spatial Partitioning

In the scope of this dissertation, applications can have different safety criticality levels
(e.g., SIL1 to SIL4 according to IEC 61508) when they are integrated on a computing
node. The execution environment based on an integrated architecture provides shared
computing resources for different applications. The existing execution environments
based on a federated architecture achieve partitioning due to the physical separation
of nodes in federated systems. In order to prevent interference between applications
with different criticality levels and guarantee sufficient hardware resources for appli-
cations, the target execution environment should ensure spatial partitioning for the
hosted applications. One possible implementation of spatial partitioning is hardware
MMU based.

For hard real time control applications missing the deadline can cause serious
consequences. For example, when a vehicle brake control function misses its deadline
and fails to stimulate the actor, the vehicle does not brake and this can result in
passenger injury or even death. In order to guarantee the real-time properties of
applications on an integrated architecture, the execution environment should ensure
strict system-level time partitioning. Similar to ARINC 653, partitions should be
scheduled on a cyclic basis, which enables the execution environment to allocate
computing resources to each function for meeting the following timing requirements.

4.1.1.3 Timing Determinism

The framework aims at providing an infrastructure for real-time applications, there-
fore timing determinism is a prerequisite.

At the application level, a hard real-time application can be scheduled to execute
in a time-triggered fashion to meet the required timing constraints. In this sense,
the target framework needs to ensure the timely dispatching and termination of
applications.

At the data communication level, data flows between critical applications need
to meet their timing requirements specified by the application developers. To date,
data flows in a federated system are assigned to dedicated physical channels that
naturally guarantee the exclusive access to communication facilities. In an integrated
system, different data flows are multiplexed on one physical communication channel,
where messages are dispatched in a time-triggered way or under rate constraints.
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Regarding the local communication within one computing node, the target frame-
work should provide temporal and spatial isolation at the data flow level. In addition
to the partitioning mechanism, the data communication should be dynamically adapt-
able according to the discussed requirement in section 4.1.1.1.

4.1.2 Non-technical Requirements

Except from the technical requirements, there are non-technical requirements (e.g.,
safety, security) that need to be addressed in the target framework.

4.1.2.1 Safety

In the human involved field, safety is one of the most important aspects to be con-
sidered. From the perspective of the framework, the safety requirement applies to
the software components of the execution environment. From the conceptual de-
sign process to the final deployment, the software components should be developed
according to target safety integrity levels (e.g. from SIL1 to SIL4 according to EN
ISO/IEC 61508). As discussed in Section 4.1.1.1, static configuration and switching
between offline defined configurations for safety critical systems can be proven to
be safe. However, the required systematic adaptation during runtime raises further
safety requirement in this work, which will be addressed in the later sections.

4.1.2.2 Security

In one aspect, the safety-related framework is sensitive against systematic faults
that are introduced during the system development process as well as random
operational faults. In another aspect, such a framework is also sensitive to security
threats (e.g., intentional human attack). The ISA/IEC 62443 standard series addresses
the security of industrial systems and provides guidance from defining security levels
to countermeasures for different security levels. Security is not the major requirement
to be tackled in this dissertation, but the target framework is designed to handle
specific security issues and be extendable for further security matters.

4.2 Functional Distribution Framework Concept

In the avionic and automotive industry, research on integrating applications with
different criticality levels on an integrated platform have lead to domain specific
standards like ARINC 653 and AUTOSAR. In this section, the fundamental mech-
anisms of these standards are extended to define a framework that is capable of
hosting dynamically changing applications, which is an open research problem. Since
the discussed applications consist of distributed functions, we define the synonym
"Functional Distribution Framework" for the target framework.
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4.2.1 Logical Structure

The logical structure of the framework is depicted in Figure 4.1.

FIGURE 4.1: Logical Structure of Functional Distribution Framework

The resources of a computing node are partitioned into isolated sets that are
assigned to applications. In another word, a partition is allocated dedicated hardware
resources and a computing node is able to host different partitions simultaneously.
Different processes consisting of functions in a partition are scheduled to share the
hardware resources of the partition. The communication between processes within
a partition is done by variables, and the messages stored in shared memory are
leveraged to convey exchanged information between partitions, which host different
applications. The above mentioned logical elements will be discussed in detail in the
following sections.

4.2.2 Conceptual Building Blocks

The proposed framework is built up with the conceptual elements, which define the
basic interactive components for the framework.

4.2.2.1 Variable and Message

A variable represents a data structure that encloses necessary information to enable
the communication between processes of an application. The variables accessed
by multiple processes are protected against concurrent writing operations, in order
to assure a consistent system view for different processes. Similar to the buffers
and blackboards defined in ARINC 653, the semaphore and mutex are the common
mechanisms for controlled concurrent data accessing at the process level. The buffers
and blackboards are defined to convey messages of different semantics (i.e., queued
and non-queued messages), and a variable is also treated with respect to the defined
semantics.

As shown in Figure 4.1, the partitions within one computing node communicate
with each other via the defined shared memory, where the well-defined messages
are stored. A message is essentially an unit of variables, which are configured to
be exchanged between partitions. According to the specific system configuration,
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variables are merged into a single message to reduce the load of information exchange
between partitions. Since the shared memory areas are accessed by various partitions,
there should be protection mechanisms to rule out concurrent operations that can
result in an inconsistent system status.

4.2.2.2 Function and Process

A function is the basic scheduled unit in the system, which can be part of an appli-
cation. An example functionality of a function is to process dedicated inputs and
generate the outputs within a specified deadline. The resource access of a function
is protected in the scope of the process. The functions within a process can lever-
age either implicit or explicit synchronization mechanisms to achieve the required
scheduled execution.

A process consists of multiple functions to implement specific functionality. Pro-
cesses can be concurrently executed either using a static schedule or in dynamic
priority-based fashion, which is configured based on system wide functional and
non-functional requirements. A process accessing mutually-exclusive resources is
protected from being preempted, in order to ensure the safe execution of a critical
process. Except from the executable units (i.e., functions), a process is comprised of
data, priority, timing attributes and necessary counters/pointers. At the process level,
the framework provides management capabilities to be leveraged by the processes,
which will be discussed in the later section.

4.2.2.3 Partition

The partition indicates the combination of a resource partition and a time partition. A
resource partition encloses the system resources (e.g., memory) that are shared by the
configured processes, similarly, a time partition includes the processes, which can
be activated in the same time slot. The time partitions are exclusively scheduled in a
cyclic MTF, and the resource partitions are assigned to the scheduled time partitions.
This schema is illustrated by an example in Figure 4.2.

FIGURE 4.2: Example of Partition

In this example, different time partitions (e.g., 0,1,2 and 3) are scheduled exclu-
sively, while the resource partitions (e.g., 3 and 4) can be scheduled simultaneously
in the same time partition.

The partitions have direct access to the computing platform via well-defined
services that will be discussed. In many COTS products (e.g., PikeOS, VxWorks,
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etc.), a MMU is used to implement the spatial isolation of memory resources at the
hardware level.

Besides the resource partition and the time partition, a partition can be classified
into service partition or user partition. A service partition contains the processes
that provide architectural services (e.g., I/O driver), while a user partition consists of
processes implementing user-defined logic to realise user-specified functionalities.

4.2.2.4 Shared Memory

In the proposed logical structure, a shared memory is designed to store the communi-
cated messages between partitions. In another word, the shared memory is accessed
at the partition level. Due to the concurrent accessing, the shared memory region is
protected to maintain the system consistency. Similar to the partition, the memory is
statically allocated during system design, which creates a maximum limitation of the
dynamic memory allocation for the messages from the shared memory.

At the system level, there is an individually designed management service for
the shared memory accessing. The user partitions at the application level access the
shared memory in a transparent synchronized way through the interfaces provided
by the framework.

4.2.3 Execution Environment Services

The functional distribution framework is aimed to provide an execution environment
for the applications, where the provided services of the framework are proposed for
the mixed-criticality applications integrated on a single computing node. In this sec-
tion, we firstly define the minimum service set for the target execution environment,
thereafter discussing the details of the defined services, from the view point of both
structural and operational behaviours.

4.2.3.1 Basic architectural services

In this work, the target framework aims at providing basic architectural services that
fulfil the requirements discussed in section 4.1. These basic architectural services are
leveraged by application designers to develop customised applications with specific
critical levels.

• Timely deterministic communication service. This service guarantees the de-
terministic and timely transport of exchanged information between different
communicating entities, which is the prerequisite of the execution environment
for distributed critical functions.

• Reconfiguration service. The framework provides the capability to adapt to
changing system structure during runtime while preserving the determinism in
the execution environment.
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• Error containment service. Another important service provided by the execution
environment is the error containment capability. The execution environment
provides FCRs for different applications to achieve error containment between
applications, meanwhile fault tolerance based on redundancy is leveraged to
achieve error masking within a single application.

• Synchronization service. Distributed critical applications require coordinated
execution of processes, which results in the need for a synchronization service
of the execution environment.

4.2.3.2 Software Components

In this section, the designed software components (including framework manager,
configuration manager, function manager, variable manager, message manager, net-
work manager and synchronization manager) are discussed in detail.

The first defined component is the framework management entity that exposes
all the APIs provided for the applications. The detailed functionalities exposed by
the framework manager are illustrated below.

• Configuration. The framework manager receives the user configuration and
manages the configuration in a centralized fashion. The user configuration is
managed in the defined configuration manager.

• Initialization. The framework manager initializes the configured software
components according to the initial configuration provided by the system
integrator.

• Registration. User specified entities are initialized by the framework manager
and registered in the corresponding managers (e.g., variable manager, function
manager).

• Execution. The execution of hosted applications proceeds in a timely exclusive
way, so that processes belonging to different applications are free of competition
with respect to computing resources.

• Get variable. From the view point of the framework manager, the managed
variables are specific memory segments. The applications are allowed to get
their assigned variables through this interface.

As mentioned above, the framework manager initializes and calls the configu-
ration manager to load and organise the configuration items provided by the user
applications. In another word, the configuration manager manages the configuration
information for an instantiation of the framework. The major interfaced component
of the configuration manager is the allocated memory for storing the configuration
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information. Since the allocated memory is implicitly shared by various user applica-
tions, it should be protected against concurrent accesses that can result in inconsistent
system states.

As mentioned in section 4.2.2.2, the functions are the basic scheduled entities in a
system, therefore, the function manager is a mandatory component in the framework.
The function manager is responsible for managing the registered functions and the
accompanying attributes. To be more specific, all the functions are executed after
successful conditions (e.g., correct input, correct timing, etc) check, and the function
outputs are managed after successful execution.

The variable manager is responsible for internal variable access (i.e., read, write
operations). As discussed in section 4.2.3.1, fault tolerance based on redundancy
is a measure to address error containment, where a safety-critical variable can be
replicated and stored in different variable stores, so that erroneous variables can
be identified and corrected. For concurrent access protection, the system supports
mutexes and semaphores in this manager.

Similar to the variable manager, the message manager provides access services
for the defined messages. Except for these services, the message manager also
manages the composing and decomposing of the messages that are built up with
various variables. The attributes (e.g., timestamp) belonging to messages are in the
management spectrum of this managing entity. Since messages are stored in a shared
memory, access synchronization mechanisms like mutexes are deployed to achieve
controlled concurrent access.

When the communication happens between computing nodes, the network man-
ager is involved to manage the message exchange process through physical networks.
From the view point of the network manager, all the transported messages are treated
as datagrams without knowledge of message content.

The synchronization between computing nodes is managed in the framework,
where the local time is synchronized to a global time with a defined precision. If the
underlying hardware platforms provide the capability to synchronize each other, the
synchronization manager is not a mandatory component in the framework.

4.2.3.3 Behavioural View

After a system starts up, the framework processes configure the software components.
Thereafter, the software components are initialized based on the prepared configu-
ration. In the end, the system is executed when the framework finishes initializing
the software components. In this section, the interoperation between the defined
software components are discussed.

The configuration procedure is depicted in Figure 4.3. The framework manager
and the configuration manager are mainly involved in this procedure, where the
framework manager triggers the loading process of the configuration manager, and
the configuration items are loaded into the allocated memory region by the config-
uration manager. In case of configuration items for safety-critical components, the
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configuration manager duplicates the items and stores them in mirrored memory
regions.

FIGURE 4.3: Configuration Procedure

Regarding the initialization procedure, the main initialized components are the
variables, messages and the functions realizing the framework services.

• Variable/message initialization. As shown in Figure 4.4 and Figure 4.5, the
framework triggers the variable/message manager to initialize a variable/mes-
sage entity according to the retrieved configuration from the configuration
manager. The variable/message manager opens and maps the shared memory
for the variable/message before initializing them. The initialized variables and
messages are protected with mutexes against undesired concurrent access.

FIGURE 4.4: Variable Initialization Procedure

• Function initialization. The function initialization procedure shown in Figure
4.6 is designed for all functions. The initialization of a function entity is triggered
by the framework manager and conducted by the specific component managers
(e.g., network manager). The initialized functions are generally managed by
the function manager, which records all function-related information.
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FIGURE 4.5: Message Initialization Procedure

FIGURE 4.6: Function Initialization Procedure

After the framework finishes initializing the configured components, the execution
procedure is activated. The general execution procedure is shown in Figure 4.7. A
user application triggers its execution using the framework manager, which activates
the function manager to dispatch the corresponding function. The function specific
components (e.g., variables, synchronization mechanisms) are managed during the
procedure.

The execution of specific user applications is derived from the general process.
The differences between various applications depend on the functional logic and the
timing requirements of the user applications.

4.3 Proof-of-concept Implementation

In this section, the proof-of-concept implementation of the above proposed framework
is discussed in detail. At the end of this section, the experimental results are shown
and discussed.

4.3.1 Design Instantiation Based on PikeOS

In this dissertation, the proof-of-concept implementation of the framework is based
on PikeOS, which provides the real-time execution environment for the framework.
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FIGURE 4.7: Function Execution Procedure

According to the architectural design of PikeOS, the defined framework can be
implemented in different ways. One possibility is to implement it as a middleware
between the hosted applications and the PikeOS System SoftWare (PSSW). Alterna-
tively, the framework could also be implemented as an application within a resource
partition. In this proof-of-concept implementation, the framework is designed to be a
middleware providing the defined services.

4.3.1.1 Framework Manager

As depicted in Figure 4.8, the framework manager is designed as a C++ class that
provides the defined interfaces and manages the necessary system information that
is stored in a statically allocated system memory. The service functions are function
objects inherited from the basic function class. This inheritance mechanism also ap-
plies to the application processes, i.e., the application processes are registered as user
functions in the framework. The execution of both the user and the services functions
is managed by the framework manager in line with the pre-defined configuration.

FIGURE 4.8: Structural Design of Framework Manager



54 Chapter 4. SDN-based Execution Environment for Integrated Architecture

4.3.1.2 Configuration Manager

The configuration manager is in charge of importing configurations into the frame-
work before the system starts up. In the implementation that is depicted in Figure 4.9,
the configuration manager is responsible for managing the imported configuration
items which are represented as variables in the framework.

FIGURE 4.9: Structural Design of Configuration Manager

An initialization and a set of getter functions are exposed by the configuration
manager, so that the framework manager is able to both trigger the importation of
configuration items and query the imported items during system run-time.

4.3.1.3 Function Manager

The functions of the software components in the framework are registered and
managed in the function manager depicted in Figure 4.10. The function manager dis-
patches the registered functions according to the schedule provided by the framework
manager.

In this implementation, the mapping between emulated function types and func-
tion names is leveraged in order to enable switching between different function
types. The vector called func_schedule_entry is designed to maintain the execution
parameter of each functions. All the registered functions are managed as the objects
of the basic function class.

FIGURE 4.10: Structural Design of Function Manager
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4.3.1.4 Variable Manager

The variable manager provides the access point for the stored variables in the frame-
work. In the implementation shown in Figure 4.11, it is implemented as the parent
class, from which different kinds of variables are inherited.

FIGURE 4.11: Structural Design of Variable Manager

Accessing a variable includes setting and getting operations. For each setting
operation of the variables, the mutex provided by PikeOS is leveraged to manage
concurrent access to the objects. The getting operations differ from the setting opera-
tions, where the variable values need to be judged to be correct, when the variables
are mirrored based on the required SIL level.

The variables in the framework are stored in a shared memory space and the
corresponding mirrored memory in case of critical variables. The shared memory in
PikeOS is designed for the interaction between different resource partitions, which are
configured in the PikeOS system integration project. Therefore, the shared memory is
also accessible for the processes within the same resource partition.

4.3.1.5 Message Manager

As shown in Figure 4.12, the message manager consists mainly of the parsing and
composing interfaces, which are inherited from the basic function class. Apart from
the general function attributes, the composing function and the parsing function
need to manage either the target messages or the source messages and the involved
variables of the managed messages.
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FIGURE 4.12: Structural Design of Message Manager

4.3.1.6 Network Manager

In a similar way as the message manager, the network manager (see Figure 4.13) is in
charge of sending and receiving messages that form the two major building blocks of
this manager.

The receive function inherits the basic function and it can receive messages from
specific sockets. After a receiving operation, the message manager as above presented
is activated to parse the received messages and produce the variables. The send
function works in the opposite fashion and it is worth mentioning that the difference is
that a send function should manage the length of the sent messages. The reason for the
difference in the implementation is that a receiving process is able to receive messages
when there is enough buffer space without errors during run-time. However, when a
sending process sends out messages with an unexpected length, it can cause potential
unknown system failures.

4.3.2 Experimental Results

In this section, the experimental results of the proof-of-concept implementation are
presented. The major evaluated aspect of the proposed framework is the capability to
guarantee non-interference between applications of different safety-critical levels.
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FIGURE 4.13: Structural Design of Network Manager

4.3.2.1 Use Case

In order to demonstrate the capability of the framework, the user application "Bogie
Monitoring System" application (BMS) is developed and hosted by the framework.
Another application named "Rogue Application" (RA) is developed to cause interfer-
ence to the BMS.

The BMS application is defined to monitor bogie temperatures that are measured
by the temperature sensors and sent to the BMS application. The BMS application
decides on the output alarm levels based on configured temperature thresholds.
More specifically, the generated output can indicate a normal or abnormal bogie
temperature. The BMS application is used to simulate a safety-critical application in
the experiment.

As illustrated in Figure 4.14, the BMS and the RA are integrated and hosted
by the framework on the same computing node. The BMS receives sensor inputs
through the framework and sends out the computed output to the framework, which
is responsible for data exchange between partitions. The BMS is instantiated as a
user application residing in one partition, where the functionality is implemented
as specific functions inherited from the basic function class. The RA residing in
another partition intends to behave in a manner that is out of the scope of the system
configuration. In this use case, the RA tries to access unauthorized variables and



58 Chapter 4. SDN-based Execution Environment for Integrated Architecture

FIGURE 4.14: Experimental Use Case

register functions that are not configured, in order to inject systematic fault into the
framework.

4.3.2.2 Results

The experimental setup in this demonstration is shown in Figure 4.15, where the BMS
partition and the RA partition are integrated on an X86 computing node. We generate
the input messages for the BMS partition and receive the output messages on the IO
simulator. The RA controller and monitor is used to generate the control messages to
activate the fault injection of the RA partition and receive the corresponding results
of the triggered actions.

FIGURE 4.15: Experimental Setup

The schedule of the both partitions on the computing node is depicted in Figure
4.16. These two partitions are scheduled in a period of 50 ms, in which the BMS
partition is allocated with 40 ms CPU time and the left 10 ms is assigned to the RA
partition.

In the BMS application, there exist 6 configured variables (see Table 4.1) to store
the variables contained in the input messages and the computing results of the
functions. The InputTemperature and InputState record the measured value and
system status of the temperature sensors, the AlarmState represents the calculated
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FIGURE 4.16: Schedule of Use Case

alarm levels based on the input values and the BMSState indicates the status of the
BMS application.

TABLE 4.1: Configuration of BMS Variables

Identifier Inter Process Access Mode Type Default Range
InputTemperature1 true concurrent int 0 20 - 30

InputState1 true concurrent bool 0 0 or 1
InputTemperature2 true concurrent int 0 20 - 30

InputState2 true concurrent bool 0 0 or 1
AlarmState true concurrent bool 0 0 or 1
BMSState true concurrent bool 0 0 or 1

The configured variables in the RA are listed in Table 4.2. The ActionID indicates
the triggered action in the RA, and the corresponding action result is stored by the
ActionResult variable. If the triggered fault is successfully injected in the framework,
then the value of ActionResult equals to 1.

TABLE 4.2: Configuration of RA Variables

Identifier Inter Process Access Mode Type Default Range
ActionID true concurrent string 0 -

ActionResult true concurrent bool 0 0 or 1

The detail structures of the input and output messages for the BMS application
are shown in Figure 4.17. Based on the data structures, one can tell that the BMS
application majorly computes the state information and adds some extra identification
information (i.e., XXID) to the output messages.

The RA controller and monitor in Figure 4.15 communicates with the RA partition
by the unified message structure shown in Figure 4.18. When the RA partition is
triggered to inject specific systematic faults that are identified by ActionID, it carries
out the action and sends the results (i.e., success or fail) to the RA controller and
monitor.

We run the experiment for a duration of several hours and triggered the RA at
unspecific points in time. The exchanged messages between the IO simulator and the
BMS partition, as well as the ones between the RA partition and the RA controller
and monitor are captured via Wireshark. The example input and output message
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FIGURE 4.17: Structures of BMS Input and Output Messages

FIGURE 4.18: Structure of RA Messages

of the BMS application are shown in Figure 4.19 and Figure 4.20, correspondingly,
where the payload in the messages are marked in blue.

FIGURE 4.19: BMS Input Message

According to the presented data structure of the input messages, the value of
Temp1 and Temp2 are 20 and 44, and the values of the sensor states are both 0, which
means no error of the sensors in this simulation. In the captured output message, the
6th and 16th bytes record the calculated states of the BMS partition and the alarm
state. The 6th byte is 0, which indicates that the BMS partition is functioning without
errors. The 16th byte is set to 1 to indicate that the measured temperatures are out of
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the reasonable range (i.e., [20, 30]).

FIGURE 4.20: BMS Output Message

As presented, the systematic fault injection actions carried by the RA include
accessing unauthorized variables and registering functions that are not configured.
One example of the exchanged messages between the RA partition and the RA
controller and monitor are shown in Figure 4.21 and Figure 4.22.

FIGURE 4.21: RA Input Message

One can read that the value of the action result (i.e., the 7th byte) in the output
message stays unchanged in compare to the input message, which means that the
triggered injection action is failed.

This demonstration mainly proves the non-interference between applications,
which are timely and spatially isolated on the same computing node. Consequently,
the timing determinism of the system is maintained during run-time. For simplifi-
cation, the configuration parameters of the application are statically initialized in
the configuration manager. Other ways to access the configuration file through a
volume provider or a ROM file system are also feasible, therefore, dynamic system
adaptation can be tackled. Since the system reconfiguration mainly affects the data
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FIGURE 4.22: RA Output Message

communication, this issue is left open in this chapter and will be addressed in the
next chapter, where the data communication is addressed.

4.3.3 Conclusion

In this chapter, the requirements for the execution environment based on an integrated
architecture are analysed, based on which the functional distribution framework is
conceptually proposed and demonstrated with an instantiation based on PikeOS.
Regarding the software FCR, the proposed temporal and spatial partitioning between
different applications rules out the error propagation between applications in the
logical and temporal domains. In the proposed execution environment, redundancy
mechanism (e.g., replicated variables) is leveraged to tackle the fault scenario like
undesired variable modification.

The capability of the framework to exclude interference between applications of
different criticalities is demonstrated in this chapter, and dynamically configurable
data communication will be addressed in the next chapter.
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Chapter 5

Virtual Data Communication for
Integrated Real-Time Systems
based on SDN

This chapter addresses the data communication within the execution environment
for integrated real-time systems presented in Chapter 4.

5.1 Virtual Switch Supporting Time-Space Partitioning and
Dynamic Configuration

In this section, we propose a virtual switch that ensures temporal and spatial partition-
ing between data flows of the integrated applications hosted on the same computing
node. The switch leverages the SDN paradigm to be reconfigurable to address the
dynamic adaptation requirement.

5.1.1 System requirements

In this section, we discuss the major requirements for the virtual switch in the execu-
tion environment for integrated systems.

5.1.1.1 Temporal and Spatial Partitioning

The target virtual switch extends the temporal and spatial isolation concept from the
partition level to the data communication level, in order to guarantee the absence of
interference between data flows.

The partitions connected to the virtual switch within one computing node should
be isolated with respect to the execution time, in the way that the partitions are
scheduled on a fixed and cyclic basis, so that the non safety-critical applications
are not able to affect computing resources of the safety critical applications. The
data transportation for each ingress port within the virtual switch should also be
temporally separated.

With respect to spatial isolation, the ports of the virtual switch belonging to
different partitions should have their own dedicated memory resources, in order to
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prevent fault propagation between data flows, where a data flow can overwrite the
memory area of another data flow.

5.1.1.2 System Reconfiguration

Existing data communication in integrated architectures (e.g., ARINC 653) comprises
of statically configured channels between ports of different partitions, since there are
no requirements for system reconfiguration of the computing nodes during runtime.
However, in order to tackle the system reconfiguration requirement of further systems
(e.g., the railway domain), the target virtual switch should be capable to adapt to the
changes of the integrated system.

5.1.2 System Architecture

In this section, we propose our architecture design to address the identified partition-
ing and reconfiguration requirements.

5.1.2.1 General Architecture

As depicted in Figure 5.1, we define the general architecture model of the virtual
switch. The virtual switch consists of the data plane and the address server, which
are responsible for the message switching and address resolution, respectively. The
executions in the virtual switch are triggered by the control application that is spatially
and temporally isolated to the user applications.

FIGURE 5.1: General Architecture Model

The detailed architecture model of the data plane is shown in Figure 5.2. The
virtual ports provide the interface for the messages (i.e. the blue boxes) exchange
between the hosted applications and the data plane. A virtual port is initialized with
its specific configuration (e.g., buffer), and the message transmission in the data plane
is triggered based on the configured schedule. The link configurations in the data
plane specify the interconnections between the virtual ports, which are dynamically
configured during runtime.

The architecture model of the address server is depicted in Figure 5.3. The
central building block of the address server is the address database, which stores
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FIGURE 5.2: Architecture Model of VS Data Plane

the mapping information for the address resolution. An user application queries a
message’s destination virtual ports in the data plane, while a control application (e.g.,
CTR App. in Figure 5.1) updates the stored mapping information in case of system
reconfiguration. Since the address database is accessed by both the user applications
and the control application, concurrent access should be addressed to avoid system
inconsistency. In an integrated computing node, the control application is assigned to
time slots that are exclusively allocated, so that the discussed system inconsistency is
ruled out by design.

FIGURE 5.3: Architecture Model of VS Address Server

5.1.2.2 Communication Architecture

The communication mechanism of the virtual switch is inspired by the SDN paradigm,
where a switching entity is logically separated as the data plane and the control plane.
According to the SDN paradigm, we define the VS Data Plane as the data plane of
the virtual switch and the CTR application as the control component.

• Data plane. The address server in Figure 5.1 maps a message URI to the
destination ports. Before sending a message, the user application queries the
address server with the destination message URI for the destination ports within
the VS Data Plane. Thereafter it configures the path within the VS Data Plane,
and then sends out the messages. The VS Data Plane is capable for buffering
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the received messages in a dedicated buffer of each ingress port, which ensures
the spatial separation between data flows.

• Control plane. The message transport within the data plane is triggered by
the CTR application during the assigned time windows. The messages are not
moved to the destination ports right after reception in the ingress ports, so
that the destination ports are not exposed to a data race situation, in which a
non-safety critical message can delay a safety critical one. The order of ports,
from which the VS Data Plane moves the messages to the destination ports, is
configured by the CTR application.

The general process of the data communication is illustrated in Figure 5.4.

FIGURE 5.4: Data Communication Process

5.1.2.3 Resource Partition and Time Partition

The resource partition and time partition concepts are introduced to guarantee non
spatial or temporal interference between different applications.

A resource partition represents an application and is assigned to a time partition
that owns statically allocated time windows within the fixed cyclic time frame. An
RTOS scheduler can dispatch the time partitions in a time-driven manner to meet the
timing requirements of real-time applications. In contrast, the threads within resource
partitions assigned to the same time partition can be scheduled in priority-based
preemptive fashion.

As long as the system resources (e.g., memory, I/O, etc.) are statically assigned to
a partition, the MMU is leveraged to enforce that each partition has exclusive access
to the assigned resources. This kind of spatial isolation contributes to preventing
faults of one resource partition propagating to another one.
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5.1.3 Proof-of-Concept Implementation

In this section, we discuss the proof-of-concept implementation and present the
experimental results of the prototype. In order to support hard real time commu-
nication, all the related components should have bounded WCET. We discuss the
relevant data structure and the scheduling in the implementation, in order to prove
the deterministic behavior of the proposed virtual switch.

5.1.3.1 System Setup

In this implementation, we use the QEMU emulator to emulate a generic X86 platform
for the generated PikeOS ROM image, which integrates the PikeOS kernel, kernel
drivers, system extensions and the user applications. Our emulation runs on the PC
hardware with two cores of 2.3 GHz and 24 GB memory.

5.1.3.2 Implementation

The general architecture of the implemented virtual switch is depicted in Figure
5.5. The virtual switch consists of the data plane and the local DNS server, which
are implemented as kernel drivers in the PikeOS system. The DNS server is a
mock up instance and extended to map a message URI to the destination ports. In
this implementation, there are four resource partitions (Partition X) communicating
through the virtual switch and one control partition (CTR Partition) managing the
virtual switch.

FIGURE 5.5: General Architecture Design

The processes within partition 1 to 4 communicate with each other via the Com-
munication Driver (COM DRV), which encapsulates the whole message sending and
receiving process and provides well defined interfaces to the applications. The COM
DRV exchanges messages with the DNS server and the SW Data Plane through stati-
cally configured ports. The shown ports are of different functionalities. For example,
the ports No. 1 to 8 of the SW Data Plane and the DNS Server are defined as the data
ports, while the ports named with "CTR" are supposed to be the configuration entry
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points of these components. The connections between ports are coloured differently
to identify different data flows and partitions.

5.1.3.3 Relevant data structures

The implemented components of the virtual switch are the SW Data Plane and the
DNS Server. The related data structures are discussed in detail in this section.

• SW Data Plane. As shown in Figure 5.6, the major data structure in the SW Data
Plane consists of three parts. The first part is the array port_bitmap, which is
designed for each ingress port to record the bitmap of the destination ports. A
sending partition needs to configure this bitmap before dispatching a message.
The second part is the buffer_array for each ingress port to buffer the received
messages before being conveyed to the destination ports. When the SW Data
Plane is triggered to transport the messages from the ingress ports to the egress
ports, the bitmap port_control_list is used to regulate the priorities of the ingress
ports.

FIGURE 5.6: The Major Data Structures in SW Data Plane

• DNS Server. As depicted in Figure 5.7, the DNS Server stores the mapping of
the application URIs, the IP addresses and the corresponding port cookies in
the uri_ip_port_mapping_array to resolve the queries from the partitions. The
port_buffer array is defined for each port to record the query results. Every port
within the DNS Server and the SW Data Plane is assigned a unique cookie. The
query results can contain more than one destination port cookie, in case one
partition needs to send out a multi-cast message.

5.1.3.4 Scheduling

As shown in Figure 5.5, there are four application partitions and one control partition
hosted on the platform. In this implementation, Partition 1 and 2 are defined as
the message sender and Partition 3 and 4 as the receiver. In order to preserve the
temporal isolation between message senders and receivers, the scheduling scheme in
the implementation is designed as depicted in Figure 5.8.
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FIGURE 5.7: The Major Data Structure in DNS Server

PikeOS also introduces a background time partition, which is active during
runtime and contains threads of both high priority (e.g., error handler) and low
priority. This background time partition is designed for the safety critical threads
to preempt other threads and for the non-safety critical threads to consume the idle
CPU time of all the time partitions.

FIGURE 5.8: Scheduling Scheme

In this scheduling scheme, a cyclic time frame of 40ms is defined, within which
each of the time windows is set to 10ms, so that despite of system overhead, each
sending or receiving process can be finished within one time window. The Service
partition is the background partition that is beforehand discussed. The Partition 1
and 2 are scheduled to run in parallel within the second time window. After the
senders finish sending messages to the ingress ports, the CTR Partition is scheduled
to manage the SW Data Plane and DNS Server, as well as to trigger the SW Data
Plane to finish moving message from ingress ports to the configured egress ports. As
the receivers, the Partition 3 and 4 run after the CTR Partition to receive the expected
messages.

5.1.3.5 System reconfiguration

In the example system architecture in Figure 5.5, we assume that the network topology
related information is updated periodically and the DNS Server keeps the up-to-date
mapping of the application URIs, IP addresses and the assigned ports within the SW
Data Plane. The reconfiguration of the SW Data Plane is done by each COM DRV
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before sending out a data message. In more detail, if one process requests to send out
a data message with a destination URI, the COM DRV will query the DNS Server for
the destination port of this message, and then configure the SW Data Plane through
the connected CTR port.

5.1.4 Experimental Results

In this proof-of-concept implementation, we measured the consumed time for a parti-
tion to send and receive a message. The emphasis is placed on the non-interference
between partitions and the deterministic behaviour of the configuration procedure. If
one sending partition sends more than one message within one time window, there
will be no context switching for the sending thread and the sending overhead will be
dramatically decreased. In order to make the test scenario as close as possible to the
worst case scenario and based on the thread model of PikeOS, we ensure that each
sending partition sends at most once within one time window.

5.1.4.1 Sending and Configuration Overhead

In Figure 5.9, the results consist of the consumed time for Partition 1 and 2 to send
out messages. The measured sending process starts from sending out the query to the
DNS Server and ends at the successful return from sending out a message (see Figure
5.4). This figure also depicts the results of measuring the delay for both partitions
to configure the SW Data Plane, before the data messages are sent out. On average,
the consumed time for configuring the SW Data Plane takes more than 50% of the
sending delay.

FIGURE 5.9: Sending and Configuration Delay

The delay of sending a message to its ingress port in the SW Data Plane is the dif-
ference between the consumed time of the whole sending process and the consumed
time of configuring the SW Data Plane (about 50-100 µs in Figure 5.9).
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5.1.4.2 Receiving Overhead

Similar to Figure 5.9, the results in Figure 5.10 show the receiving delay of Partition 3
and 4. The receiving process covers two steps: sending out the receive command and
receiving the expected message. On average, receiving a message takes about 120 µs
that is less than the sending overhead, because in the sending procedure, the sender
partition needs to configure the SW Data Plane before sending out the messages,
which causes the observed increased delay.

FIGURE 5.10: Receiving Delay

The observed overhead for sending a message to the ingress port (see Figure 5.9)
is on average significantly less than the receiving overhead. The reason is that there
is no context switching after configuring the SW Data Plane and the sending thread
can send out the message in the same thread context.

5.1.4.3 Relaying Overhead

Except for the overhead during message sending and receiving, the overhead for the
SW Data Plane to move two messages from the ingress ports to the egress ports is
shown in Figure 5.11. The most measured overhead vary between 50 µs and 150 µs.

FIGURE 5.11: Local Message Transmission Overhead

Since the PikeOS kernel has to deal with high priority interrupts (e.g., clock
interrupt), the jitter of the measured delay during runtime in Figure 5.9, 5.10 and5.11
is unavoidable.
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5.1.4.4 Temporal Isolation

In order to verify the temporal isolation of different time partitions, we use the trace
server in the PikeOS kernel to trace the time partition switching events in the kernel.
Since the time partition switching events happening on different CPUs are similar,
we chose the traced results on CPU #1 that are shown in Figure 5.12. As verified in
Figure 5.12, there is only one active time partition on CPU #1 at any point of time.
The results also confirm the static cyclic schedule scheme in Figure 5.8.

FIGURE 5.12: Temporal Isolation

5.1.5 Conclusion

The work in this section leverages the SDN paradigm to define a reconfigurable
virtual switch within the execution environment for integrated real-time systems.
The proposed virtual switch guarantees spatial and temporal isolation between data
flows to meet the requirement of mixed-criticality data communication. By leveraging
the isolation mechanisms, a non-critical data flow can neither occupy the allocated
time interval, nor access the transmitted information of a critical data flow. The pro-
posed reconfiguration mechanism at the communication level addresses the dynamic
structural changes both in intended or unintended system reconfiguration. More
specifically, a faulty partition treated as a software FCR can be replaced by a redun-
dant partition that results in the adaptation of the virtual likes at the communication
level. The virtual switch is capable to leverage the up-to-date structural information
to achieve the information transmission.

5.2 Virtual Gateway

In the previous section, a virtual switch supporting time-space isolation and dynamic
configuration was proposed to address the local communication within an integrated
computing node. However, controlled information import and export between
different data flows in the virtual switching environment is an open research problem.

In this section, we propose a virtual gateway residing in the virtual switching en-
vironment to resolve property mismatches between different data flows and prevent
fault propagation between applications of different safety levels. As shown in Figure
5.13, the virtual gateway is involved in the message transmission procedure within
the data plane of the virtual switch, when the input and the output messages are of
different specifications.
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FIGURE 5.13: Generic Description of the Virtual Gateway

5.2.1 Overall Description

In the proposed virtual switch, the spatial and temporal isolation is extended from
the application layer to the data switching layer, i.e., the virtual switch provides
dedicated system resources (e.g., memory) to buffer both incoming and outgoing
messages for each port, and the data transportation of the ports is guaranteed not
to interfere with each other. A port in this context defines the interface between
an application and the data plane of the virtual switch. Spatial isolation between
ports that are assigned to different data flows also contributes to security such as
handling masquerading failures between applications. In the SDN paradigm, the
network forwarding control plane is separated from the data forwarding hardware,
which enables the control logic and state to be reconfigured during runtime. The
aforementioned benefit of SDN is leveraged by the proposed virtual switch to address
the reconfiguration of the communication network.

As depicted in Figure 5.14, from the viewpoint of the logical structure, the virtual
gateway resides in the proposed virtual switch to enable the virtual switch to control
the import and export of messages between different data flows. The virtual gateway
leverages the core services provided by the underlying RTOS to implement the
required services.

5.2.2 Requirements of the Virtual Gateway

In the proposed virtual switch, the applications are connected via VLs. Since data
redirection between different VLs contributes to reducing amount of redundant
applications, the virtual gateway is required to support the controlled coupling of VLs.
Due to the system reconfiguration requirement, configurable routing of a message
with deterministic overhead should also be addressed by the virtual gateway.

From the view point of the virtual switch, the specification of the ports that link
the applications with the data plane of the virtual switch needs to be extended to
capture operational properties, semantic and addressing information. This extension
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FIGURE 5.14: Logical Structure of the Virtual Gateway

contributes to enable the virtual gateway to either manipulate the passing messages
at a finer granularity than the proposed virtual switch or achieve the controlled data
transmission. Since the applications of mixed-criticalities can reside on the same
integrated computing node, the virtual gateway needs to encapsulate the data flows
to avoid error propagating from non safety-critical applications to safety-critical ones.

5.2.3 Role of the Virtual Gateway

As shown in Figure 5.15, the virtual gateway is supposed to convey messages between
different VLs. From the perspective of an application, the port (i.e., interface between
an Application and its VL) specifications differ from each other, which results in the
property mismatch between VLs. Resulting from this property mismatch, one of the
major functionalities of the virtual gateway is to achieve the property transformation.
In the execution environments based on an integrated architecture, the applications
of different safety criticalities could be virtually coupled via the virtual gateway. Con-
sequently, the other functionality of the virtual gateway is to encapsulate information
exchanged between data flows.

FIGURE 5.15: Role of the Virtual Gateway

5.2.3.1 Property Transformation

Since the work in this dissertation focuses on the message exchange between data
flows within the same computing node, the property mismatch occurs at semantic
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and operational level. An important source of semantic incoherence comes from
different application specific rules (e.g, naming rules). Since the proposed virtual
gateway resides underlying the application level, the major addressed property
transformation takes place at the operational level.

Each port connecting an application and the data plane is configured with the
specific characteristics (e.g., message syntax, temporal specification). This port de-
scription enables the virtual gateway to transform messages into others. The central
mechanism within the virtual gateway for the syntax transformation is an inner
repository to store the convertible elements that build up the messages according to
the configuration of each port. The virtual gateway can resolve temporal differences
(e.g., different message periods) of the transported messages by leveraging the inner
repository to buffer the transformed messages.

5.2.3.2 Encapsulation

Since an integrated platform is open to host applications of different safety criticalities,
different data flows are encapsulated from each other by the virtual gateway via
selective redirection of messages. The virtual gateway is in charge of making decision
on the authorisation of the passed messages through the gateway according to the
configured rules (e.g., max/min values, periods). This implies that the virtual gateway
also applies the configured error detection mechanisms during the process of selective
redirection, i.e., messages carrying erroneous contents are forbidden to crossover the
FCR in the system.

5.2.4 Architecture of the Virtual Gateway

As discussed, the major functionalities of the virtual gateway are property transfor-
mation and encapsulation. The general architecture of the virtual gateway is shown
in Figure 5.16, where the role of the virtual gateway is demonstrated with the help of
three communicating partitions. Assume that partition 1 and partition 2 belong to
the same application and partition 3 belongs to another application, the data flows
between partition 1 and partition 2 are conveyed by the virtual switch and the virtual
gateway is not activated during the switching process. In the case that partition 3
requires to receive messages from partition 1, the virtual gateway should be involved
in the transmission process. The central building block of the virtual gateway is the
database to store the convertible elements of the messages. The messages passing
through each port are predefined and configured in each port. The virtual gateway
dismantles the messages with respect to the configured syntax of the input messages
and assembles the required output messages according to the configuration of the
output port. The building blocks of the output messages are stored in the database.
Another functionality of the database is to buffer the messages to resolve temporal
inconsistency of the transported messages.
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FIGURE 5.16: General Architecture of the Virtual Gateway

From the operation point of view, the detail architecture of the virtual gateway
is depicted in Figure 5.17. The sending and receiving processes are scheduled by
aligning with the scheduling of the virtual switch. According to the configuration of
the communicating ports, the incoming messages are decomposed into convertible
elements that can be used to compose the outgoing messages. In this sense, the virtual
gateway can adapt to dynamic configurations of communicating ports.

FIGURE 5.17: Operational Structure of the Virtual Gateway

With respect to the defined encapsulation capability, the virtual gateway should
apply controlled filtering mechanisms between the input and the output ports. More
specifically, the content and temporal domains of the transported messages should
be within the pre-configured ranges.

5.2.5 Proof-of-concept Implementation

This proof-of-concept implementation extends the proposed virtual switch with
the proposed gateway functionalities. The emphasis is placed on the extended
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functionalities of the virtual gateway.

5.2.5.1 Data Communication

In the previous work, we leveraged the SDN paradigm to implement our data com-
munication architecture as a virtual switch residing in the execution environment
based on an integrated architecture, in order to address the dynamic system reconfig-
uration requirement. Taking the gateway defined functionalities into account, this
implementation follows the communication architecture depicted in Figure 5.18.

FIGURE 5.18: Architecture of Data Communication

In this data communication architecture, the partitions are spatially isolated
and the processes within partition 1 to 4 communicate with each other through the
Communication Driver (COM DRV), which encapsulates the message sending and
receiving processes and provides well defined interfaces to the applications. The
COM DRV exchanges messages with the DNS server and the virtual switch data plane
implemented as PikeOS Kernel Level Driver in the kernel via statically configured
gates. The gates in this implementation are (i.e., mapped entities of ports) assigned to
transport either data messages or control messages.

The virtual gateway is implemented as modules within the PikeOS kernel. The
developed system callbacks of a kernel module run in the context of the calling
partition, which results in less context switching and better timing behaviour com-
paring to a software partition implementing the gateway functionalities. The virtual
gateway repository is implemented as a database to buffer the convertible elements
of the input messages, in order to enable the message transformation of different
VLs. More details about this repository will be discussed later. The configuration
modules in the data plane and the DNS server store the specifications of gates and the
specifications of VLs, respectively. Both the repository and the configuration modules
are controlled by the control module, i.e., the message transport and configuration
update are triggered by the control module, which deals with the incoming requests
from both user applications and control partition.
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5.2.5.2 Component Specification

In the previous work, the virtual switch was implemented as a PikeOS kernel driver.
This implementation extends the developed kernel driver with the defined gateway
functionalities that require the extended specifications for the kernel driver.

• Gate Specification. From the viewpoint of the applications, the gates defined
in the PikeOS system provide the access points for the user applications to
communicate with the kernel modules residing in the PikeOS kernel. In the
previous work, the messages between applications are exchanged without
syntactic nor semantic specifications. In order to address the proposed property
transformation functionality, the gates connecting the applications and the
kernel module are extended to be configurable.

• Virtual Link Specification. A VL in the implementation represents a connection
between applications residing in different partitions. In order to selectively
redirect a message from an input gate to the output gate(s) and transform the
properties of the transported messages, different VLs require a prior specifica-
tions that contain the following aspects:

– Message Syntax: the message syntax of each VL is pre-configured, so that
the virtual gateway can disassemble an incoming message into convertible
elements and store them in the gateway repository to be assembled for the
link specified outgoing messages.

– Message Semantic: Semantic like event and state carried by the messages
need to be considered when the messages are transported between differ-
ent VLs.

– Message Addressing: from the viewpoint of an application, the connected
entities of a VL are addressed by system-wide identifiers. In this way, the
applications are addressed based on the functionalities and reconfigura-
tion of the underlying communication mechanisms is transparent to the
applications.

5.2.5.3 Convertible element database

The virtual gateway is responsible for conveying messages between different VLs.
Consequently, messages of different syntax need to be decomposed and composed
by leveraging the database developed within the kernel module. The structure of
the database is depicted in Figure 5.19. This gateway repository provides for each
gate a separated buffer to store the convertible elements of the messages passing
through the gates. This implementation aims at maintaining the spacial isolation
for different data flows. And based on this structural design, accessing the database
requires always deterministic overhead.
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FIGURE 5.19: Data Structure of the Virtual Gateway Repository

5.2.5.4 System Workflow

The work flow of the data plane and the DNS server are depicted in Figure 5.20 and
Figure 5.21, respectively. Both the data plane and the DNS server are implemented as
PikeOS kernel driver, which provides system callbacks for the user applications to
access the kernel modules.

As shown in Figure 5.20, during the initialization phase, the data plane allocates
the necessary memory for all modules. Due to the systematic design, reallocation of
memory after the initialization phase is not possible. Thereafter the data plane loads
the pre-defined configuration (e.g., gate specification) into the configuration module.

After initialization, the data plane accepts both data messages and control mes-
sages from the user applications. Data messages are copied between user memory
space and the data plane in PikeOS kernel, in order to protect the kernel space from
unauthorised access of the user applications. In this framework, the control mes-
sages can be message switching trigger or reconfiguration instructions. The message
switching is guarded by the Gate Control List (GCL), which defines the order of VLs
to be activated. This mechanism aims to avoid the temporal interference between
VLs within the data plane. The data messages could be conveyed directly from the
input gate to the destination gates, when the input and output gate configurations
specify the identical message structure. Otherwise the input messages should be
disassembled and stored into the gateway repository, in order to provide input for
the assembling process of the output messages.
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FIGURE 5.20: Workflow of the Data Plane

The DNS server in Figure 5.21 is responsible to resolve the address of the target
entities to the output gates within the data plane. In order to simplify the whole
system, we assume that the DNS server is always up to date with respect to the
topology changes. The DNS server receives queries from the user applications
and return the mapped output gates for the queried VL. The DNS server could
also be triggered to update the IP addresses of target applications to simulate the
system reconfiguration scenario. In order to provide location transparency of the user
applications, the mapping between the application address and the output gate can
be changed during run time.
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FIGURE 5.21: Workflow of the DNS Server

5.2.6 Use Case and Experimental Results

In this work, we demonstrate the functionalities of the virtual gateway in the specified
use case. The emphasis is placed on the gateway functionalities after a simulated
system reconfiguration.

5.2.6.1 Use Case

In this work, from the viewpoint of the applications, the use case in Figure 5.22
describes the scenario when applications P1 and P3 communicate via pre-defined VL,
meanwhile P2 communicates with P4 via another VL. The defined message types
and structures are also summarised in the figure. The addressing mechanism is
defined at the gate level. Existing addressing mechanisms (e.g., in railway domain)
are based on a federated system architecture, where one function is hosted by one
device that forms the nature spatial isolation between applications, and since our
proposed execution environment is based on an integrated architecture and functions
are integrated on the same computing platform, the partitions containing applications
build up the isolated execution environments at the system level.

We assume that the sent and received messages of a pre-defined VL are of the
same structure, i.e., the gates linked to the VL have the same gate specification (e.g.,
gate 1 and gate 3 in Figure 5.22). In this case, the transported messages are buffered
without further manipulation. Another link between gate 1 and 5 is activated by the
DNS server during run time (i.e., to simulate a system reconfiguration), which results
in the VL between P1 and P4 with different gate specifications of input and output
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gates. The virtual gateway functionalities are activated in this case. According to
the configured message type, P4 receives the RemoteTemp message (through gate 5)
that contains a subset of information in the RemoteIO message, which requires the
gateway to perform the message transformation.

FIGURE 5.22: Use Case in the Proof-of-Concept

In this use case, the scheduling of the applications is shown in Figure 5.23. This
schedule runs cyclically, and within each cycle, P1 and P2 send out messages before
the control application triggers the message transmission in the kernel space. After the
sending and switching phases, P3 and P4 receive the specified messages respectively.

FIGURE 5.23: Example Schedule of the Applications

5.2.6.2 Experimental Results

The experiment is run on a generic X86 platform that is emulated by the QEMU
emulator, and the emulation runs on the PC hardware with two cores of 2.3 GHz and
24 GB memory. In this experiment, we investigate the gateway functionalities and
the side effects caused by the virtual gateway.

Figure 5.24 depicts the latency caused by the data communication mechanism
through measuring the consumed time for a message to pass through the data plane.
The sending applications are configured to send out 100 messages, and the control
partition enables the VL between P1 and P4 after the 50th message. This represents
the reconfiguration scenario in a simplified way.
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FIGURE 5.24: Message Transport Delay

As shown in the results, the measured latency for the three VLs are within the
range from 600ms to 1000ms, with some exceptions to be observed. These exceptions
are caused by the timing restriction of an emulated platform. The scheduling mecha-
nism determines that the minimum delay is 600ms (e.g., between P2 and P4), because
the CTR partition is assigned with a time window of 600ms. The green points before
the 50th message are set to 0, just to show that there is no data transportation in this
VL during this time slot.

Due to the defined message types and structures in the use case, the gateway is
able to selectively redirect the messages while transforming the message properties
like syntax. The transformation of temporal properties is not directly addressed in the
implementation. However, the repository is implemented for the message buffering
and extendable to deal with the temporal misalignment. Since we implement the error
detection mechanism with respect to the time domain of the transported messages in
the data plane, which majorly causes the exceptions of higher latency than 1000ms in
Figure 5.24. The target PikeOS image is run on an emulated platform and there could
be system interrupts delaying the message transportation. As shown in Figure 5.18, if
a message with earlier time stamp is delayed before sent into the data plane, then this
message is recognised as faulty in the time domain when a message with later time
stamp arrives beforehand. In this situation, the faulty message is abandoned and the
receiver reads the last message again, which results in the observed higher latency.

There is no observed correlation between the measured latency of the three
data flows. The reason is that the temporal and spatial partitioning mechanism is
extended from the user application level to the data communication level. All the VLs
are specified with their own memory area and the data transportation of different
data flows are free of temporal interference between each other in the proposed
architecture.
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5.2.7 Conclusion

The proposed virtual gateway in the execution environment based on an integrated
architecture permits selective information exchange between different VLs, while
preserving encapsulation of the linked data flows. More specifically, a faulty message
(e.g., in the time domain) can be identified and treated according to the configured
rules at the data switching level, so that an erroneous message cannot propagate to
other VLs. The experimental results demonstrate the functionalities of the proposed
virtual gateway, and meanwhile show the strength of the partitioning mechanism.
This work extends our previous research of the system execution environment on
integrated architectures and tackles the system reconfiguration problem.

5.3 Virtual Switch supporting IEEE 802.1 Qci and Qbv

In the previous section, a virtual switch supporting time-space isolation and dynamic
configuration has been proposed. In this section, we propose a virtual switch that is
IEEE 802.1Qbv and IEEE 802.1Qci capable according to the TSN standard, in order
to close the research gap of virtual switching guaranteeing bounded delay with low
jitter.

5.3.1 System Requirements

The obligatory functionality of a virtual switch is to provide message switching
services. In this section, we analyze the requirements of the virtual switch that targets
at dependable data transmission in an integrated architecture.

5.3.1.1 Timing Determinism

The virtual switch aims at providing a communication infrastructure for real-time
applications, therefore timing determinism is one of the most important prerequisites.
Along the data transmission path, the latency caused by the switching entities should
be bounded with low jitter. From the viewpoint of a switching entity, the timing
requirement should apply both for ingress and egress points.

5.3.1.2 Spatial Isolation

For integrated applications within a computing node, in order to exclude the spatial
interference between applications of different safety-criticalities, the virtual switch
should provide each application with dedicated resources to rule out unintended
resource interference.

5.3.2 General Design

Inspired by the development of TSN, the virtual switch leverages the mechanisms
defined in the TSN Qci and Qbv protocols to achieve the timing policing. We assume
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that Time-Triggered (TT) traffic is selected for the transmission of safety-critical
messages and each TT message arrives at the ingress port of the switch at a specific
point in time according to the schedule. The virtual switch checks the incoming time
of TT messages based on a pre-defined time-based Access Control List (ACL) and
relays the temporally correct messages to the queues of their egress ports, which
are determined based on the routing tables. Regarding the egress policing, the GCL
defined in the Qbv protocol is specified to control the dispatching process of each
egress port. Only the GCL-enabled queues are able to dispatch the buffered messages,
so that no messages of different critical data flows can interleave with each other. The
ACLs and GCLs within a virtual switch are aligned with each other by taking the
relay overhead into account.

5.3.3 System Model

In general, we model the system from the viewpoints of the system architecture and
the applications.

5.3.3.1 Architectural Model

FIGURE 5.25: Architecture Model

As depicted in Figure 5.25, we define an example architecture model with multiple
virtual switches (i.e., VSW1 and VSW2 in Figure 5.25) residing on an integrated
computing node. In order to demonstrate the functionalities of the virtual switches,
multiple virtual end systems (i.e. VESn in Figure 5.25) are defined. The virtual end
systems communicate with each other via the virtual switches, which result in two
communication scenarios:

• VES→ VSW→ VES: this scenario represents the case that the communicating
virtual end systems are connected to the same virtual switch. In other words,
the transmitted messages between the VESs pass through only one VSW.

• VES→ VSW→ VSW→ VES: this scenario represents the case that the commu-
nicating virtual end systems are connected to different virtual switches on the
same node, and the virtual switches are connected with each other.
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5.3.3.2 Application Model

As depicted in Figure 5.26, the example application model is shown on the left side,
and the task scheduling on the right side.

FIGURE 5.26: Application Model and Task Scheduling

In this model, the messages (i.e., m1, m2 and m3) between the tasks (i.e., T1, T2, T3
and T4) build up the task dependencies that result in the shown task scheduling. This
task scheduling shows the general execution order of the tasks, while task activation
and execution duration are implementation specific.

5.3.3.3 Schedule Model for Multiple Virtual Switches

From the viewpoint of the integrated platform, it is logically necessary to map the
applications to the architecture, before discussing the overall schedule problem. An
example mapping from the application model to the architecture model is shown in
Table 5.1.

TABLE 5.1: Example Task Mapping

Task Mapped Entity
T1 VES1
T2 VES2
T3 VES3
T4 VES4

Based on the task scheduling and the defined mapping, the schedule model
containing the tasks and virtual switches is depicted in Figure 5.27. In this schedule
model, the tasks and virtual switches are activated periodically and the schedule in
the gantt chart represents the system schedule within one period.

The messages m2 and m3 in Figure 5.27 are dispatched simultaneously from
VSW2 to t4, which result in the racing situation at the egress port connected to t4.
In order to tackle this problem, we define the target dispatching algorithm for the
virtual switches.
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FIGURE 5.27: System Schedule Model

5.3.4 Dispatching Algorithm

Based on the schedule model, we propose the dispatching algorithm in Figure 5.28.
The ingressing process is shown on the top left side, and the dispatching process is
placed on the right side. The GCL execution process is placed on the bottom.

FIGURE 5.28: Ingressing and Egressing Process

If an incoming message is safety-critical, the incoming timing is checked against
the configured ACL. Only the messages arriving in their assigned time slots are re-
layed to the egress ports. Otherwise the received messages are treated as untimely and
abandoned. Right after enqueuing the messages at the egress ports, the dispatching
process should be activated.

According to proposed dispatching algorithm, when the dispatching process is
called, if the GCL enables the selected queue of a egress port to dispatch messages,
then the selected queue is authorised for data transmission. The other prerequisite for
message transmission is that there should be enough time left for the selected queue
to dispatch the enqueued messages. Otherwise the messages should be buffered.
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The GCL execute process is activated in time-triggered fashion, so that the dis-
patching process of each egress port is executed at the pre-defined points in time.

5.3.5 Virtual Switch Workflow

The workflow of the message switching within a virtual switch is depicted in Figure
5.29. An ingressing port waits for the semaphore that is assigned to the attached
real-time fifo, which connects different communicating entities. Except for the timely
synchronised message switching, the semaphore is also defined as the synchronisa-
tion mechanism between communicating entities. The incoming time of a message
is checked against the ACL after classification and matching the egress ports. The
successfully ingressed critical messages are enqueued in the egress ports and dis-
patched if the GCL enables the enqueued queue for data transmission, otherwise the
messages are buffered.

FIGURE 5.29: Workflow of Virtual Switch
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5.3.6 Proof-of-Concept Implementation

In this section we describe the proof-of-concept implementation of the virtual switch,
which includes the employed platform and the detailed realisation of the virtual
switch. The emphasis is placed on the deterministic message switching by leveraging
the TSN mechanisms.

5.3.6.1 Implementation Platform

The implementation runs on the PC platform with 16GB RAM and 6 physical cores of
3.2GHz. We deploy on this platform the real-time Linux LXRT/RTAI as the execution
environment of the developed virtual switches. In order to provide dedicated com-
puting resources for each virtual switch, we reserve two of the physical cores on the
platform and run the virtual switches on the reserved cores in a one to one mapping.
Therefore the context switches on the dedicated physical cores are avoided, which
may cause unpredictable behavior during runtime.

5.3.6.2 Realisation of Virtual Switch

We implement a virtual switch as a kernel module, which can access the RTAI real-
time scheduler and services that are implemented as kernel modules. As discussed
above, one virtual switch is exclusively assigned to one physical core.

FIGURE 5.30: General Realisation

As depicted in Figure 5.30, we leverage the real-time fifos provided by Linux RTAI
to implement the communication channels between virtual end systems and virtual
switches, as well as the communication channels between virtual switches. The
shared memory (i.e., SHM in Figure 5.30) is used to store the up-to-date configuration
parameters (e.g., routing information, GCL) that are managed by the manager process
and consumed by the virtual switches. From the viewpoint of the computing platform,
this way contributes to the unified configuration for multiple virtual switches that
reside on the same platform, and the configuration parameters are managed in a
logically centralised fashion.
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5.3.6.3 Related Data Structures

In this section, we discuss the major data structures of the implemented virtual
switch.

From the viewpoint of a virtual switch, each egress port within the virtual switch
should have its own schedule, more specifically, the GCL. In order to guarantee
low jitter from design, we implement the whole set of GCLs as a static array with
pre-defined maximum count of egress ports, instead of dynamically linked list. For
the schedule of each egress port as shown in Listing 5.1, the GCL_duration defines
the period of the cyclically enabled queues within this egress port. And this period
is subdivided into time intervals (i.e., GCL_item), which are assigned with different
queue masks. The queues of critical data flows are exclusively enabled to transmit
messages, so that one critical data flow is timely isolated from other flows.

s t a t i c s t r u c t egress_port_schedule
{

s t r u c t schedule egress_port_GCL [ count_egr_port ] ;
} ;

s t a t i c s t r u c t schedule
{

unsigned i n t GCL_duration ;
s t r u c t GCL_item GCL[ GCL_len ] ;

} ;

s t a t i c s t r u c t GCL_item
{

i n t o f f s e t ;
i n t durat ion ;
u i n t 8 _ t queue_mask ;

} ;

LISTING 5.1: Data Structure for Schedule of Egress Port

In addition to the data structures for egress port schedule, we also define the data
structures for the message buffers of the egress ports in Listing 5.2.

As discussed, the real-time fifos provided by Linux RTAI are leveraged to im-
plement the communication channels between virtual switches, as well as channels
between virtual end systems and virtual switches, we implement the egress port to be
one-to-one mapped to the fifos. In other words, the queues of an egress port share the
fifo attached to this port. Each queue records the number of the stored messages with
a predefined maximum count. The way in our implementation to rule out messages
of different critical data flows interleaving through the fifo is that each critical data
flow owns one dedicated queue.
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s t a t i c s t r u c t egress_port_buf
{

i n t o u t p u t _ f i f o s _ i d ;
s t r u c t queue al l_queues [ queue_count ] ;

} egress_por t ;

s t a t i c s t r u c t queue
{

i n t item_count ;
i n t head_index ;
i n t t a i l _ i n d e x ;
s t r u c t queue_item queue [ queue_len ] ;

} queue ;

s t a t i c s t r u c t queue_item
{

i n t msg_len ;
char item [ max_msg_len ] ;

} queue_item ;

LISTING 5.2: Data Structure for Buffer of Egress Port

Similarly, each ingressing message is stored in the defined vsw_ingress_buf in
Listing 5.3. Each ingressed message is classified based on the switching rules to
find the corresponding egress ports, which are recorded in the matched_egress_port
before activating the relay process.

s t a t i c s t r u c t vsw_ingress_buf
{

i n t msg_len ;
u i n t 8 _ t vsw_rv_msg [ max_msg_len ] ;

} vsw_ingress_buf ;

s t a t i c s t r u c t matched_egress_port
{

i n t count ;
i n t port_cookie [ count_egr_port ] ;

} matched_egress_port ;

LISTING 5.3: Data Structure for Buffer of Ingress Port

5.3.6.4 Temporal and Spatial Partitioning

For each virtual switch that owns a dedicated physical core, we implement a dedicated
process to manage each ingressing port of the connected entities. For example, in
VSW1 in Figure 5.30, we implement two processes to manage the ingressed messages
from VES1 and VES2, correspondingly. As shown in Figure 5.31, each process is run
exclusively for a duration of 5 ms and in a 10 ms period, which ensures the temporal
isolation between processes in a virtual switch and consequently eliminates race
conditions of the processes.
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FIGURE 5.31: Task Schedule in Virtual Switch

In this implementation, assume that each egress port owns 8 queues and two of
them are assigned to critical data flows, we use the example GCL (see Table 5.2) for
all egress ports. For simplification purpose, we assume the frame processing time is
neglectable, so that the ACL is identical to the GCL.

From the FCR point of view, since the setup is based on a single computing node
that forms the single hardware FCR, the addressed aspects by the temporal and
spatial partitioning mechanisms are related to software FCR, where error propagation
between different VESs are ruled out in the time and value aspects.

TABLE 5.2: Implemented Gate Control List

start time duration queue mask remark
0µs 30µs 10000000 time-triggered frames
30µs 30µs 01000000 time-triggered frames
60µs 40µs 00111111 other frames

5.3.6.5 Realisation of Application

In this implementation, we implement the tasks as a simple linux task sending mes-
sage periodically and waiting for the incoming messages. For the delay measurement
purpose, we insert a time stamp of u_int64_t type between the default Ethernet
header and the data as shown in Figure 5.32. Since T1 in Figure 5.26 provides the
source message of the whole setup, we configure the T1 to send the initial messages
in a 5 ms period, and the other tasks work in busy waiting fashion.

FIGURE 5.32: Extension of Data Frame

5.3.7 Experimental Results

In this experiment, we investigate the determinism of the message switching within
the virtual switches. As discussed, there are two identified communication scenarios
in the system setup, which happen either within single virtual switch boundary or
involve multiple virtual switches.
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We measure the message switching overhead caused by the virtual switches, more
specifically, the consumed time from the ingress ports to the egress ports that are
connected to the source and sink virtual end systems. In the experiment, the source
virtual end system is configured to send out 1000 messages. The measured results in
Figure 5.33 and Figure 5.34 show the overhead of the local switching within a virtual
switch.

FIGURE 5.33: Overhead for Data Flow between VES1 and VES2

FIGURE 5.34: Overhead for Data Flow between VES3 and VES4

As shown in the results, the overall latency caused by the virtual switches for the
local message transportation is in the range from 0.5 µs to 2 µs. Several exceptions
up to 5 µs could be observed in Figure 5.33 and Figure 5.34. In this implementation,
we isolate one physical core to run a virtual switch, as discussed in section 5.3.6.1.
Since timing resource is necessary to enable the process switching, one aspect needs
to be mentioned is that hardware timer interrupts are redirected to the physical cores
that are not isolated in this case, which results in the inter-core communication for
measuring the overhead that can cause the observable jitters. Another aspect is that
the jitter caused by the RTAI scheduler can also accumulate to the significant jitters in
the measured results.

Another measured overhead is of the message transmission through two virtual
switches. The overhead for data flow between VES2 and VES3/VES4 in Figure 5.30
is measured one after another within VSW2, therefore the results in Figure 5.35 and
Figure 5.36 are in the same distribution. The difference of the measured overhead
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(depicted in Figure 5.37) for the same message in these two data flows indicates the
overhead for enqueuing and dispatching a message, since a message from VES2 is
relayed to VES3 and VES4 in order.

FIGURE 5.35: Overhead for Data Flow between VES2 and VES3

As discussed in section 5.3.6.4, the ingressing processes of the virtual switches are
run in a 10 ms period and each with 5 ms runtime, and the relay/dispatching actions
are also finished in the ingressing process context. In our configuration, the process
in VSW2 for receiving messages from VSW1 is scheduled to run after the dispatching
process in VSW1. In another word, the VSW2 receives messages from VSW1 in
about 5 ms, after VSW1 dispatches messages to VSW2. This logical analysis is also
confirmed by the results in Figure 5.35 and Figure 5.36, which show the switching
overhead for a data flow passing through two virtual switches.

FIGURE 5.36: Overhead for Data Flow between VES2 and VES4

Similar to the measured local delay caused by virtual switches that are depicted
in Figure 5.33 and Figure 5.34, the majority of the overhead in Figure 5.35 range from
5000 µs to 5005 µs. Despite the delay caused by schedule (i.e., 5 ms), the left overhead
(i.e., 0-5 µs) is implementation related that need to be discussed. As aforementioned,
the major reasons for this observable overhead are inter-core communication due to
timer on other physical core and the jitter caused by RTAI scheduler. For this inter
virtual switches communication scenario, jitters could accumulate along the message
switching path, which result in the wider range of overhead (5 µs) than the intra
virtual switch communication (2 µs).
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FIGURE 5.37: Overhead for Enqueuing and Dispatching of one Mes-
sage

5.3.8 Conclusion

In this section, we propose the IEEE 802.1Qbv and IEEE 802.1Qci enabled virtual
switch for integrated real-time systems residing on single platform and define the
model of communication infrastructure with multiple virtual switches. The tempo-
ral and spatial isolation mechanisms at the data switching level rule out the error
propagation between different data flows. In the realisation of the virtual switch,
the configuration of the setup is managed in a centralised fashion, which enables
the logically centralised control of the switching entities that can be extended in a
physically networked environment to tackle the unified system reconfiguration prob-
lem. The corresponding schedule model is defined as the base for the dispatching
algorithm in a time-triggered way. The proof-of-concept implementation is done in
a resource dedicated way by leveraging the Linux RTAI patch. The experimental
results demonstrate the capability of the virtual switch to switch messages in a timely
deterministic way.
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Chapter 6

Conclusion

Integrating applications on a shared computing node leads to a mixed-criticality
system, since safety-critical applications can be combined with the non-critical ones.
Integration of mixed-critical applications with reconfiguration requirements is desir-
able, since domain-specific applications (e.g., in the railway domain) require system
reconfiguration during runtime. Existing execution environments based on an in-
tegrated architecture support only static system configurations. This dissertation
proposed an execution environment for an integrated architecture, which leverages
the SDN paradigm to support dynamic time-triggered communication. The pro-
posed execution environment guarantees the safe integration of mixed-criticality
applications in an integrated system and also addresses the system reconfiguration
requirement.

Furthermore, the virtual data communication for integrated real-time applications
was also addressed in this dissertation. Beyond the static communication mechanisms
in the state-of-the-art (cf. Section 3.2, Section 3.3), a virtual switch that ensures
temporal and spatial isolation between data flows of the integrated applications
hosted on the same computing node was proposed. The proposed virtual switch
leverages the SDN paradigm to support dynamic data communication, and the
controlled data exchange between different data flows is supported by the proposed
virtual gateway. In the proof-of-concept implementation, the virtual switch was
implemented as kernel modules of PikeOS, which is an RTOS certified to the highest
criticality levels. The fundamental isolation mechanisms and determinism of message
switching were demonstrated, while the caused overhead for message transmission
and controlled data exchange were also evaluated.

In order to close the research gap of virtual switching guaranteeing bounded delay
with low jitter, the virtual switch supporting IEEE 802.1 Qci and Qbv was proposed.
The model of the communication infrastructure with multiple virtual switches was
defined, and the corresponding schedule model was proposed as the base for the
dispatching algorithm that functions in a time-triggered way. The proof-of-concept
implementation was done in a time-triggered way by leveraging the Linux RTAI
patch. The experimental results demonstrate the capability of the virtual switch to
switch messages in a timely deterministic way, where the measured overhead is less
than 10 µs.
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In this dissertation, we concentrated on the data communication on a computing
node. One further research direction is to extend this work in physically networked
environments, where the data communication involving virtual switches and physical
switches is still an open research problem. The future work will be the hybrid switch-
ing environment with physical and virtual switches to enable a physically networked
system, which also brings the challenges in the consistent dynamic configuration
of the whole system. The SDN-based execution environment enables the logically
centralized control of physically distributed switching entities within physically
connected computing nodes, which will address the future research challenge.
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