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1 Introduction

Networks of long cylindrical or wormlike molecules are ubiquitous in nature and technology.
They occur on a variety of length scales from nanometers to centimeters and form the basic
molecular structure of any form of life. In the human body the cytoskeleton determines intra-
cellular transport on the nanometer length scale [1], while networks formed by centimeter long
collagen fibers stabilize and shape connective tissue [2]. Synthetic polymer solutions and melts
are extensively used for industrial and technological applications in the form of rubbers, plas-
tics, gels, films, glues, paints, etc. Of particular interest are “smart” materials whose dynamical
or structural properties can be altered by an external stimulus, e.g., interpenetrating polymer
network hydrogels are used in biomedical applications for drug delivery [3].

A special class of elongated molecules that form entangled networks are wormlike mi-
celles [4]. Micelles are aggregates of amphiphiles that self-assemble to larger structures of
various shapes. Concentrated wormlike micelle solutions exhibit remarkable viscoelastic char-
acteristics with numerous applications in biomedicine, cleaning, templating, drag reduction,
etc. [5]. Among a wide range of tunable micellar systems are photorheological fluids. Illumi-
nated by light, they alter their viscoelastic properties, which makes them particularly interesting
for nanotechnological applications, sensor systems, nanoelectronics, microfluidics, molecular
devices, and information storage devices [5, 6].

Ketner et al. [7] found “A Simple Class of Photorheological Fluids” in aqueous solutions of
ortho-methoxycinnamic acid (OMCA) and cetyl trimethylammonium bromide (CTAB). OMCA
is a photosensitive organic acid that shows a trans-cis isomerization when illuminated with UV
light. CTAB is a conventional, wormlike micelle forming, cationic surfactant. The OMCA-
CTAB system develops enhanced viscoelastic properties originating from self-assembly of long
cylindrical or wormlike micelles that overlap and form an entangled network. The network
morphology can be altered by changing the surfactant concentration or illuminating the sample
with UV light. The former changes the network density and the mesh size; the latter reduces
the average micelle length. Not only is the effect of the photon switching on the viscoelasticity
of the micelle matrix interesting, but it also allows to tune structural and dynamical properties
of the system. Therefore, new insight on fundamental processes of entangled networks can be
gained.
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1 Introduction

Classical rheometry techniques measure the mechanical response of a fluid, e.g., by shear-
ing it between two rotating plates of a rheometer. Thereby, information on microscopic pro-
cesses can be inferred indirectly [8–11]. The local rheological properties are accessible through
nanorheology techniques. According to the passive nanorheology approach, strongly diluted
tracer particles—usually spherical nanoparticles (NPs)—are dispersed in the specimen. Their
dynamics are measured by light or X-ray scattering or particle tracking and related to the vis-
coelasticity of the liquid [12–14]. Nanorheology is not limited by mechanical constraints. Con-
sequently, nanometer length scales and sub-millisecond time scales beyond the limits of classical
rheometry can be studied [15].

In general, nanocomposites—mixtures of a polymer or micelle matrix and NPs—are intrigu-
ing as the NPs can improve the electrical, optical and mechanical performance of the system [16–
19]. When the NP size is comparable to the network mesh size, additional processes like acti-
vated hopping or constraint release affect the NP dynamics, that start to differ from predictions
based on macroscopic measurements. Nanorheology is capable of measuring anomalous dynam-
ics in nanocomposites with the result that tracer-network interactions and transport properties
can be investigated.

Measuring structural dynamics in crowded environments or dense materials is a challenge.
In the past decades, X-ray photon correlation spectroscopy (XPCS) has been established as a
technique to study dynamics on the nanometer length scale by evaluating the fluctuations of
interference patterns—so-called speckle patterns [20, 21]. A speckle pattern emerges in the far-
field when the specimen is illuminated by coherent radiation [22]. The increasing brilliance (or
intensity) of modern synchrotrons or free-electron lasers (FELs) in combination with fast X-ray
detectors allows to measure speckle patterns with frame rates up to kilohertz. Consequently,
microsecond time scales are within reach and dynamics of aqueous solutions under natural con-
ditions become accessible.

Although XPCS in transmission, small angle scattering geometry is a well established tech-
nique, challenges arise predominantly from the radiation sensitivity of the sample and the anal-
ysis of terabyte datasets. Especially, the data treatment throughout the course of a five-day
beamtime is challenging as the beam damage threshold and the optimum signal-to-noise ratio
have to be determined during the experiment. Therefore, specialized software is required that is
capable of analyzing big datasets efficiently.

In the framework of this thesis, we investigated anomalous dynamics of NPs in entangled
networks of OMCA-CTAB micelles by means of nanorheology based on XPCS measurements.
Pushing the limits of state of the art XPCS beamlines at the Deutsches Elektronen-Synchrotron
(DESY) and the European Synchrotron Radiation Facility (ESRF), we gained new insight into
the high-frequency viscoelastic behavior of the OMCA-CTAB system. Our findings open the
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field for studying viscoelasticity and mechanical response with XPCS in other systems contain-
ing nanoscale networks. The newly developed analysis methods and programs presented in this
thesis will help to conduct successful XPCS experiments at high-brilliance X-ray sources, where
big data treatment is a bottleneck. Furthermore, they will make XPCS data analysis easier and
more accessible, and thereby, support the community and new XPCS users.

The thesis is structured as follows: in Chapter 2 we give an overview on the theory of vis-
coelasticity in entangled networks and the theoretical background of the employed measurement
techniques. Afterwards, the experimental realization is described in Chapter 3. Methods to han-
dle big XPCS datasets are introduced in Chapter 5 including a detailed explanation of the data
processing leading to the major findings discussed in Chapter 5. In Chapter 6, we summarize
the results and give an outlook on future studies.
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2 Theoretical Concepts and Measurement
Techniques

In this chapter, we lay out the theoretical framework to describe structural and dynamical
phenomena in complex fluids and explain how they can be inferred from tracer dynamics by
nanorheology. To give a flavor of the generality of the underlying concepts, in Section 2.1,
the nanorheology discussion is embedded into the larger picture of transport phenomena. In
Section 2.2, we describe the structural and dynamical properties of complex fluids containing
entangled networks of wormlike micelles with special emphasis on the microscopic origin of
viscoelasticity. In Section 2.2.3, the sample system is introduced alongside with the concept
of photorheology. Nanoparticle (NP) dynamics in complex fluids are discussed in Section 2.3
and extended to nanorheology. Since the major findings of this work are based on X-ray pho-
ton correlation spectroscopy (XPCS) measurements, a general introduction to X-ray scattering
techniques is given in Section 2.4.

2.1 Transport Phenomena

The fundamental relation between the rheological properties and nanoscale dynamics can be
described in terms of transport phenomena. Viscosity, η , diffusivity, D, and heat conductivity,
kt , can be expressed in terms of a flux proportional to a gradient within the material by the
following constitutive equations in one dimension [23]

σyx =−η
∂u
∂y

Newton’s law of viscosity , (2.1)

Jx =−D
∂c
∂x

Fick’s law of diffusion , (2.2)

qx =−kt
∂T
∂x

Fourier’s law of heat conduction , (2.3)

where u is the velocity in x-direction, c is the concentration, and T is the temperature. The
shear stress, σ , as described by Newton’s law of viscosity, is proportional to a velocity gradient
in the material where the dynamic viscosity, η , is the proportionality constant. The unit of
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2 Theoretical Concepts and Measurement Techniques

the shear stress is equal to a momentum flux (momentum per unit area per unit time). Thus,
viscosity characterizes the momentum transport within a material. In the same way, diffusivity
characterizes mass transport according to Fick’s law of diffusion where a concentration gradient
causes a particle flux, Jx. The amplitude is given by the diffusion constant, D. For sake of
completeness, Fourier’s law of heat conduction is included which describes the heat flux, qx, in
terms of thermal conductivity, kt , and a temperature gradient.

Classical rheometry techniques measure the mechanical response of a fluid under applied
deformation or stress, e.g., by shearing the liquid between two rotating plates. Thereby, the
rheological properties of the bulk liquid can be studied and information on the microscopic
stress relaxation can be inferred. Nanorheology approaches this problem from the opposite side
and connects the diffusivity of tracer particles on the nanoscale to the rheological traits of the
specimen. Besides the bulk properties, nanorheology allows to study the microscopic structure
and dynamics of complex liquids on the order of the tracer size. Thereby, transport properties,
tracer-network interactions, entanglement, strain response, etc. can be studied beyond length
and time scales accessible by standard rheology.

2.2 The Structure and Dynamics of Wormlike Micelles

Micelles are aggregates of surfactant molecules that self-assemble to larger structures of various
shapes and sizes in aqueous solution [4, 24, 25]. The main driving force for micelle formation
is the unfavourable contact of the apolar tail of the surfactants with the polar water molecules.
Depending on surfactant structure and concentration, headgroup charge, temperature, salt con-
centration, ionic strength, etc., spherical, lamellar or cylindrical micelles are formed.

The average contour length, L̄c—the length of an elongated micelle along its cylindrical
axis—depends on the surfactant concentration, c, and increases exponentially with the end-cap
or scission energy, Es [26]

L̄c ∝
√

c exp
(

Es

2kBT

)
, (2.4)

where T is the temperature and kB is the Boltzmann constant. Es is the energy necessary to
break a micelle and to form two new end-caps. It is an intrinsic property of the particular micelle
system and depending on the interaction between surfactant monomers. As a result of micelle
self-assembly, micelle solutions contain an exponentially distributed number density of contour
lengths, Lc (Figure 2.1) [27]

nL(Lc) =
1
L̄c

exp
(
−Lc

L̄c

)
. (2.5)

Addition of salt increases Es and the contour length of rodlike micelles can grow from some
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2.2 The Structure and Dynamics of Wormlike Micelles

tens to more than thousand nanometers [4] yielding long cylindrical or wormlike structures
(Figure 2.2b).

0 5 10 15 20

Lc (100 nm)

0.00

0.05

0.10

0.15

0.20

0.25

n
L
(L

c
)

Lc

L
−1
c exp (−Lc/Lc)

Figure 2.1: Micelle contour length distribution. L̄c is the average contour length.

Although wormlike micelles can be flexible on long length scales, their large cross-section
radius (RCS ≈ 3nm) makes them rigid on short length scales described by the persistence length,
lp, or the Kuhn length, b. The former is defined as the decorrelation length of the chain bond vec-
tors, while the latter is calculated as the mean squared distance of the chain ends divided by the
contour length. The relation between b and lp depends on the conformational model. In case of
wormlike chains it follows b≈ 2lp [4]. The short-range rigidity is determined by the interaction
of the surfactant monomers such that the Kuhn length can reach tens of nanometers [28].

Above a critical concentration, c∗, the micelles start to overlap and form an entangled network
as shown in Figure 2.2a. ξ̂ is the hydrodynamic correlation length or the mesh size of the micelle
network and is related to the plateau modulus, G0, by [27]

ξ̂ =

(
kBT
G0

)−1/3

. (2.6)

ξ̂ describes the average distance between entanglements. In the limit of long chains, it only
depends on the concentration according to [27]

ξ̂ ∝ c−0.77 , (2.7)

but not on the molecular weight or the contour length. This can be understood as follows: when
above c∗ chains start to form a tightly entangled network, the closest distance or mesh size is
independent of the length of a single chain but will decrease with increasing chain concentration.
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2 Theoretical Concepts and Measurement Techniques

(a) (b)

(c)
(d)

Figure 2.2: Characteristic length scales: (a) schematic drawing of an entangled network of
wormlike micelles. The mesh size or the distance between two entanglements is
described by the hydrodynamic correlation length, ξ̂ . (b) a single wormlike micelle.
Lc is the contour length (dashed black line) and Rg is the radius of gyration. (c) mi-
celles are rigid on short length scales which defines the persistence length, lp. (d) the
micelle cross-section showing the surfactant molecules with their head-group and
their lipophilic tail. Rcs is the cross-section radius.
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2.2 The Structure and Dynamics of Wormlike Micelles

time0

reptation

breaking

Rouse

confining 
tube

micelle

Figure 2.3: Dynamics of wormlike micelles: at t = 0 the micelle is confined by a fixed tube with
diameter a. On short time scales, Rouse modes describe the fluctuations of chain
segments inside the tube. On longer time scales, the micelle can either escape the
tube through reptation or break by creating two new end-caps. The latter processes
are characterized by the time scales τrep and τbreak, respectively.

Solutions of wormlike micelles show dynamical phenomena similar to entangled polymer so-
lutions as both wormlike micelles and polymers in athermal (or good) solvents can be described
as elongated, flexible chains. In the semidilute and concentrated regime their dynamics differ
from Brownian diffusion since the dynamics of a chain is restricted by the surrounding network.
According to the tube-model of Doi and Edwards [8–11] and de Gennes [29], adjacent chains
present fixed topological constraints that define a tight tube around a labeled chain in which the
chain is free to move. The relaxation mechanisms of a tube segment are directly related to the
stress relaxation and thereby to the rheological properties of the system.

Figure 2.3 shows a schematic drawing of the most important relaxation processes of wormlike
micelles. On short time scales, bending and stretching modes lead to chain segment fluctuations
inside the confining tube. In the ideal chain approximation—where the chain conformation can
be described by a random walk—a polymer (or micelle) chain is modeled as a sequence of beads
connected by springs. Thermal fluctuation of the beads results in a set of characteristic relaxation
modes of the full chain, so-called Rouse [30] and Zimm [31] modes. On long time scales,
thermal fluctuations cause displacement of the entire chain, which de Gennes [29] described as
reptation. Reptation is the stochastic, snake-like motion of a chain escaping its initial tube. It
is caused by small defects propagating along the chain and displacing each chain segment by a
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2 Theoretical Concepts and Measurement Techniques

short distance. The associated relaxation time of a chain undergoing reptation is [26]

τrep ∝

(
L̄c

Le

)3

, (2.8)

where Le is the entanglement length, i.e., the distance between entanglements along the micelle
contour. The cubic dependence of the reptation time on the number of entanglements per chain
is a direct consequence of the reptation model: one factor of L̄c/Le describes the friction caused
by each entanglement, a second stems from the number of steps the chain has to move to fully
relax, and a third is related to the linear time dependence of the center of mass mean squared
displacement (MSD) of the chain.

The fundamental difference between the three processes is evident in the time dependence
of the MSD of a monomer of the fluctuating chain, which is a measure for the separation of a
monomer from its initial position

〈∆r2(t)〉=
〈(

rrr(t)− rrr(0)
)2
〉
. (2.9)

rrr(t) is the position of the particle at time t and 〈. . .〉 denotes an ensemble and time average. The
time dependence of the MSD is

〈∆r2(t)〉 ∝ t , for diffusion a small molecule , (2.10)

〈∆r2(t)〉 ∝ t1/2 , for a monomer of a free chain [32] , (2.11)

〈∆r2(t)〉 ∝ t1/4 , for a monomer of a reptating chain [29] . (2.12)

Thermal motion of a small molecule is described by a random walk and results in the fastest dis-
placement (Section 2.3 for more details). The hindered motion of a monomer as part of a Rouse
chain is slower than free diffusion and leads to a smaller exponent of 1/2. Finally, reptation pos-
sesses the strongest restriction and its essentially one dimensional nature results in the smallest
exponent of 1/4. That confinement or restrictive dynamics modify the time dependence of the
MSD and lead to an exponent less than unity is fundamental and plays a key role in classifying
dynamical processes.

Except for their wide length distribution (Equation (2.5)), the second major difference be-
tween wormlike micelles and polymers is that micelles continuously break at a random position
along their contour and recombine with free micelle ends. Cates developed a theory based on the
reptation model that incorporates the reversible breaking of chains [26, 27, 33–35]. Assuming
that each chain can break with an average rate, κ , per unit length and time, the average lifetime
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2.2 The Structure and Dynamics of Wormlike Micelles

of a chain is
τbreak = (κLc)

−1 . (2.13)

The competition between reptation and scission has important consequences for the stress
relaxation in the network, typically described by the ratio

ζ =
τbreak

τrep
. (2.14)

For ζ & 1, micelles are stable and can move by reptation before they break. Consequently,
reptation is the main relaxation process and defines the terminal relaxation time. On the contrary,
for ζ . 1, scission contributes to the relaxation process and reduces the relaxation time such that
the terminal time becomes [33]

τR =

τrep for ζ > 1 ,
√

τbreakτrep for ζ . 1 .
(2.15)

2.2.1 Viscoelasticity and the Maxwell Model

A simple liquid is often defined as “a classical system of approximately spherical, nonpolar
molecules interacting via pair potentials” [36, 37]. On the contrary, aqueous solutions of poly-
mers or micelles are considered complex liquids due to their versatile morphology and the vari-
ety of dynamical processes and interactions present in these systems. Based on the macroscopic
rheological traits, a liquid exhibits ideally viscous behavior if the shear stress, σv, is proportional
to the shear rate, γ̇ ,

σv = ηγ̇ , (2.16)

where η is the shear viscosity. As the shear rate is equal to the velocity gradient in the liquid,
Equation (2.16) is another formulation of Newton’s law of viscosity (Equation (2.1)). Therefore,
ideally viscous liquids are also called Newtonian fluids.

While the deformation of a Newtonian fluid is irreversible and delayed in time with respect to
the applied stress, a purely elastic object instantaneously deforms due to an applied stress and
recovers its initial shape after the stress is released. According to Hooke’s law, the stress of an
ideally elastic material, σe, is proportional to the strain, γ , and the proportionality constant is the
elastic modulus, G0,

σe = G0γ . (2.17)

Viscoelasticity describes the nature of materials that exhibit both viscous and elastic behavior
simultaneously. In the Maxwell model, viscoelasticity is expressed as a dashpot and a spring
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2 Theoretical Concepts and Measurement Techniques

connected in series (Figure 2.4). The damping factor of the dashpot is the viscosity, η , and the
spring constant, G0, defines the elasticity. The total strain is γ = γe + γv, the sum of the elastic
strain and the viscous strain. Substituting Equations (2.16) and (2.17) leads to

γ̇ = γ̇e + γ̇v =
σ̇

G0︸︷︷︸
elastic

+
σ

η︸︷︷︸
viscous

. (2.18)

Identifying the characteristic stress relaxation time as τR = η/G0, Equation (2.18) becomes

ηγ̇ = τRσ̇ +σ . (2.19)

Figure 2.4: Schematic drawing of a viscoelastic material in the Maxwell model. A dashpot and
a spring symbolize the viscous and the elastic component with the viscosity, η , and
the elastic modulus, G0.

Following Doi and Edwards [8–11], the rheological properties of a system are determined by
the microscopic stress relaxation as a function of time. A central object is the stress relaxation
function, µ(t), that defines the stress relaxation modulus according to

Gr(t) = G0 µ(t) . (2.20)

Gr(t) describes the relaxation of internal stresses after an initial step deformation, γ0. In Fig-
ure 2.5, different forms of Gr(t) are shown. Gr(t) can be calculated by Gr(t) = σ(t)/γ0. Em-
ploying Equations (2.16) and (2.17), a viscous material is described by Gr(t) = ηδ (t), where
δ (t) is the Dirac-δ function, and an elastic material by Gr(t) = G0. From Equation (2.19) it
follows that viscoelastic materials are characterized by an exponentially decreasing stress with
the relaxation time, τR,

Gr(t) = G0 e−
t

τR . (2.21)

Eventually, the viscosity can be defined as the integral over the stress relaxation modulus

η = G0τR = G0

∫
∞

0
µ(t) dt . (2.22)

It is worth noticing that the terminal time can also be defined via the integral over the stress
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2.2 The Structure and Dynamics of Wormlike Micelles

relaxation function:
τR =

∫
∞

0
µ(t) dt . (2.23)

The structural and dynamical properties of wormlike micelles—random scission and recom-
bination and their exponential contour length distribution—have important implications on the
stress relaxation function. Although they do not alter the terminal time, they change the func-
tional form of µ(t) from purely exponential to stretched exponential shape depending on the
ratio between reptation and breaking time scales, ζ . For short breaking times (ζ . 1) the stress
relaxation induced by random scission leads to purely exponential behavior. However, for ζ > 1,
reptation dominates the stress relaxation and the wide contour length distribution leads to a
smeared out (stretched exponential) stress relaxation function

µ(t) ∝ e−
( t

τR

)1/4

for ζ > 1 . (2.24)

0

Figure 2.5: Stress relaxation modulus Gr(t) of viscous (blue), elastic (orange) and viscoelastic
(green) materials.

2.2.2 Rheometry

With Gr(t) the viscoelastic properties of a material are fully characterized. If Gr(t) is not acces-
sible in the time domain, it can be measured in the frequency domain as the complex modulus

G∗(ω) = iω
∫

∞

0
e−iωt Gr(t) dt = G′(ω)+ iG′′(ω) . (2.25)

The real and imaginary part of G∗(ω), G′ and G′′, are called the storage and loss modulus,
respectively. ω = 1/t is the frequency. Experimentally, G∗(ω) can be studied by oscillatory
shear measurements. The sample is loaded into a plate-plate rheometer (Figure 2.6) and sheared
by rotating one plate while keeping the other one fixed. Then the shear strain and stress are
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2 Theoretical Concepts and Measurement Techniques

recorded as

γ =
∆x
∆y

shear strain , (2.26)

σ =
F
A

shear stress . (2.27)

sample

rotating plate

fixed plate

(a) (b)

Figure 2.6: (a) the sample is loaded into the rheometer and sheared by keeping one rheometer
plate fixed and rotating the other one. (b) the deformation of an infinitesimal sample
volume that is sheared by a force F acting on the area A, the shear stress is σ = F/A

and the shear strain is γ = ∆x/∆y.

An oscillating shear force results in a sinusoidal shear strain and stress, which are recorded
as a function of time. The amplitudes, γ0 and σ0, of the oscillation and the phase shift between
both quantities, δ , can be transformed into the amplitude and angle of G∗(ω) in the complex
plain (Figure 2.7a)

G =
σ0

γ0
=

F/A

∆x/l
, (2.28)

δ = tan−1
(

G′′

G′

)
. (2.29)

For the Maxwell model, the frequency dependent complex moduli are

G′(ω) = G0
τ2

Rω2

1+ω2τ2
R

storage modulus , (2.30)

G′′(ω) = G0
τRω

1+ω2τ2
R

loss modulus , (2.31)

where again τR is the terminal relaxation time and G0 is the plateau modulus. The complex
moduli are displayed in Figure 2.7b for τR = 1 and G0 = 1. The terminal time is the inverse of
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2.2 The Structure and Dynamics of Wormlike Micelles

the frequency where the storage and loss modulus intersect and can be understood as the point
where the material changes its behavior from liquid-like to solid-like.

elastic

vi
sc

ou
s(a)

(a) Representation of the dynamic moduli in
the complex plane. G′ describes the elastic
and G′′ the viscous behavior of the material.

10−1 100 101 102

ω (s−1)

10−2

10−1

100

G
′ ,
G
′′

(P
a
)

(b)

G′

G′′

(b) Storage and loss modulus of the Maxwell
model according to Equations (2.30)
and (2.31), where τR = 1 and G0 = 1.

Figure 2.7: Dynamic or complex modulus as obtained from oscillatory shear (frequency sweep)
measurements.

The complex moduli further allow to deduce information on the shape of the stress relaxation
function. In a Cole-Cole representation—where the loss modulus is plotted against the storage
modulus (Figure 2.8a)—a purely exponential stress relaxation would result in a semicircle with a
diameter Gd/G0 = 1 (blue curve), whilst non-exponential stress relaxation would yield a smaller
radius (red curves). Turner and Cates [38] showed that the diameter of the fitted semicircle can
be directly related to the ratio between breaking and terminal time. The value of ζ̄ = τbreak/τR

can be extracted from Figure 2.8b and by fitting the terminal time the breaking time can be
calculated.

2.2.3 Photorheological Liquids

Photorheological liquids alter their rheological traits when they are exposed to light. Many pho-
torheological compounds are binary systems that contain at least one photoresponsive additive.
Ketner et al. [7] found that aqueous solutions of cetyl trimethylammonium bromide (CTAB)
and ortho-methoxycinnamic acid (OMCA) show remarkable rheological properties; in particu-
lar, a strong susceptibility to UV radiation that decreases the shear viscosity by several orders of
magnitude. In Figure 2.9, the structural formulae of CTAB and OMCA molecules are depicted.

CTAB is a cationic surfactant that above a critical micelle concentration of 10−4 gcm−3 [39]
forms spherical to cylindrical micelles in aqueous solution [40–44]. Addition of salt favors
the formation of larger structures and leads to a transition from spherical to rodlike and later
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Figure 2.8: Influence of non-exponential stress relaxation on the dynamic moduli.

long flexible, wormlike micelles [45]. Acids like OMCA can have a similar effect [46]. The
transition is essentially induced by a reduction of the effective headgroup charge of the surfac-
tant molecules [25] accompanied by an increasing end-cap energy and contour length (Equa-
tion (2.4)).

OMCA is a cinnamic acid derivative that exhibits a cis-trans isomerization upon UV illumi-
nation [47–49]. In its trans-configuration, OMCA binds to the CTAB micelle interface. The
negatively charged OMCA anions screen the positive headgroup charge of the micelles and
thereby induce the formation of long wormlike structures. UV illumination triggers isomeriza-
tion of the trans-OMCA molecules. Cis-OMCA binds less effectively to the micelles due to
its geometry and its higher hydrophilicity [7, 50]. Consequently, the cis-OMCA anions desorb
from the micellar interface, the effective headgroup charge increases, and the end-cap energy
decreases. As a result, the micelle length is reduced and the wormlike micelles are transformed
to short cylindrical and eventually spherical micelles.

Shortening of the micelles reduces the shear viscosity according to Section 2.2. This process is
irreversible as the absorption of cis-OMCA is weaker than the one of trans-OMCA (Figure 2.10).
Thus, after long enough UV illumination an equilibrium of cis-OMCA and trans-OMCA is
reached and a minimum of the average micelle length, L̄c.

The UV absorption of OMCA can be calculated with

Auv(c,d) = 1− e− log(10)ε ds c , (2.32)
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Figure 2.9: Structural formulae of cetyl trimethylammonium bromide (CTAB) (C19H42BrN)
and trans- and cis-ortho-methoxycinnamic acid (OMCA) (C10H10O3) molecules.
Sodium hydroxide (NaOH) is added to the aqueous solutions to dissolve the cin-
namic acid.
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Figure 2.10: Absorption spectrum of OMCA adopted from Ketner et al. [7].
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where ε is the molar extinction coefficient, ds the sample thickness and c the OMCA concen-
tration. A value of ε = 0.0164mM−1 mm was estimated at the position of the main absorption
peak of trans-OMCA at λ = 270nm. The absorption spectrum of OMCA has been measured by
Ketner et al. [7] with a Varian Cary 50 spectrometer with a square cell with 10 mm path length
and a concentration of 1 mM (Figure 2.10). Then the absorbed energy per unit area, Euv, can be
calculated as

Euv = Iuv Auv tuv , (2.33)

where Iuv is the intensity of the UV lamp and Tuv the UV illumination time.

2.3 Nanoparticle Dynamics in Complex Liquids and
Nanorheology

Nanorheology studies the local viscoelastic properties of a liquid by measuring the dynamics of
tracer particles. When nanoparticles (NPs) are dispersed in a complex fluid, their dynamics are
influenced by the structural and dynamical properties of the surrounding medium. The MSD
of particles diffusing in a viscous liquid consisting of molecules much smaller than the particle
radius, R, is increasing linearly with time [51]

〈∆r2(t)〉= 6DSE t . (2.34)

The proportionality constant, DSE , is the Stokes-Einstein diffusion coefficient

DSE =
kBT

6πηRh
, (2.35)

where T is the temperature and kB the Boltzmann constant. 6πηRh is the friction coefficient of a
sphere of hydrodynamic radius Rh moving with constant velocity through a medium of viscosity
η as calculated by Stokes [52]. Rh accounts for hydrodynamic effects that lead to a slightly
larger effective radius: Rh ≈ 1.1R.

Dispersed in a highly concentrated polymer or micelles solution, NP dynamics are strongly
affected by the network, especially, when the particle size is similar to the characteristic mesh
size. The mesh size is described by the distance between two entanglement points, also called the
hydrodynamic correlation length, ξ̂ . In an entangled network, NPs are localized on short time
scales by entanglements which define a transient cage that hinders the NPs from free diffusion.
Localization results in a plateau in the MSD (Figure 2.11). The hydrodynamic correlation length
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is related to the localization length of the NPs, rloc, per [14]

ξ̂
3 = rloc

22R . (2.36)

(a)

d

d

U
V 

ill
um

in
at

io
n

10−1 100 101 102 103 104

t

100

101
〈∆
r2

(t
)〉

·2
R

∝ t1/2

∝ t

ξ̂3

∝ t

viscous

viscoelastic

(b)

Figure 2.11: (a) (bottom) 2D sketch of a tracer particle of diameter d = 2R being localized in the
entangled micelle network. The average distance between entanglements (red stars)
is the hydrodynamic correlation length, ξ̂ . (top) upon UV illumination the micelle
length is reduced until the network is dissolved and the confinement vanishes. (b)
MSD of tracer particles times NP size in viscous and viscoelastic liquids [14].

Confinement and interactions with micelle fluctuation modes modify the short-time behavior
of the MSD which, as a result, increases as 〈∆r2(t)〉 ∝ t1/2 [14]. A time dependence with an
exponent smaller than one is also referred to as subdiffusive behavior [53, 54] in contrast to
diffusive dynamics, where the exponent is one.

After the terminal time, the cage relaxes and releases the particle. This so-called structural re-

laxation is characterized by a MSD that increases as 〈∆r2(t)〉= 6DSEt, where the proportionality
constant, DSE , is the Stokes-Einstein diffusion coefficient. Hence, the NPs probe the bulk vis-
cosity of the system according to Equations (2.34) and (2.35). The processes that define the
structural relaxation of the micelle network are reptation and breaking where a chain either
moves out of the way or breaks so that a cage opens up and releases the trapped NP.

Two other processes that drive the NP dynamics are activated hopping and constraint release.
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Here, fluctuations of chain segments temporally enlarge the local mesh size such that the NP
can slip through and leave confinement [14, 55–57]. Thus, the particle can escape the cage on
time scales shorter than the characteristic time of the structural relaxation. As a result, the NP
dynamics deviate from Stokes-Einstein theory as their motion is faster than expected from the
macroscopic viscosity and they experience an effectively smaller, local viscosity.

2.3.1 Obtaining the Complex Modulus from Nanorheology

It is possible to calculate the complex modulus, G∗(ω), directly from the MSD of the tracer
particles [58, 59]. G∗(ω) is related to the stress relaxation modulus via the complex Fourier
transform

G∗(ω) = iωFu{Gr(t)}= iω
∫

∞

0
Gr(t)e−iωt dt . (2.37)

Accordingly, both G∗(ω) and Gr(t) completely describe the rheological properties of the system.
Mason [60] found that the complex modulus can be calculated by

G∗(ω) =
kBT

πRiωFu{〈∆r2(t)〉}
, (2.38)

which can be written in form of the storage and loss modulus

G′(ω) = |G∗(ω)| cos(πg(ω)/2) , (2.39)

G′′(ω) = |G∗(ω)| sin(πg(ω)/2) , (2.40)

where

|G∗(ω)| ≈ kBT
πR〈∆r2(1/ω)〉Γ[1+g(ω)]

, (2.41)

and

g(ω) =
dlog〈∆r2(t)〉

dlog t

∣∣∣∣
t=ω−1

. (2.42)

A prerequisite for the calculation of the derivative in Equation (2.42) is that the MSD is dif-
ferentiable, which is not given a priori for experimental data with statistical noise. Therefore,
〈∆r2(t)〉 is smoothed before differentiation by fitting with a B-spline (short for basis spline).
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2.4 X-Ray Scattering Techniques

In Figure 2.12, a typical X-ray scattering experiment is sketched. The incoming X-rays are
described by a plane wave of the form

EEE i(xxx, t) = E0ε̂εε ei(kkkixxx−ωt) , (2.43)

where E0 is the electric field amplitude, ε̂εε is the polarization vector, kkki is the wave vector and ω

is the frequency of the radiation. The momentum transfer qqq = kkki− kkk f is the difference between
the incident and scattered wave vector with an absolute value of

q =
4π

λ
sin(θ) . (2.44)

The detector acquires the scattered intensity over a finite exposure time, t f , also called frame
time,

I(qqq, t) =
1
t f

∫ t+t f

t
I(qqq, t ′) dt ′ (2.45)

=
1
t f

∫ t+t f

t
E f (qqq, t ′)E∗f (qqq, t

′) dt ′ , (2.46)

EEE f (qqq, t) denotes the scattered electric field and EEE∗f (qqq, t) its complex conjugate.
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Figure 2.12: Sketch of the basic scattering geometry. The incoming wave described by the wave
vector kkki illuminates the sample. A detector measures the scattered wave vector kkk f

under an angle of 2θ . qqq is the momentum transfer vector.

2.4.1 Small Angle X-Ray Scattering

From the scattered intensity, I(qqq), information on the shape and structure of the scattering object
can be deduced. For diluted NP suspensions particle-particle interactions can be neglected and
a uniform scattering length density can be assumed. Then, the contrast of the scattering signal
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is given by the scattering length density difference, ∆ρs, between the particle material and the
solvent, and the scattered intensity as a function of momentum transfer is

Isaxs(qqq) = I0Vs φp ∆ρ
2
s V 2

p |F(qqq)|2 , (2.47)

where Vp is the particle volume and F(qqq) is the particle formfactor. The incident flux is denoted
as I0. Vs and φp are the illuminated volume and the nanoparticle volume fraction, respectively.
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Figure 2.13: Single particle formfactors, F(q,R), multiplied by the particle volume, Vp, for
spherical particles with a radius of 250 nm and 50 nm. The first minimum of the
intensity oscillations occurs at Rq' 4.5.

In the Born approximation, the scattered intensity is proportional to the Fourier transform of
the electron density, ρe(rrr). In case of isolated particles with uniform scattering length density,
the single particle form factor is given by [61]

F(qqq) =
1

Vp

∫
Vp

e−iqqqrrr dVp , (2.48)

which for spherical particles results in

F(q,R) = 3
sin(qR)−qRcos(qR)

(qR)3 . (2.49)

As the scattering process is described by a Fourier transform, the larger the scattering object,
the smaller the characteristic scattering angle. In fact, the first minimum of the form factor of
a spherical particle occurs at Rq' 4.5 (Figure 2.13). Therefore, particles with a characteristic
length scale of R = 50nm or larger lead to scattering signals at rather small momentum transfers
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or scattering angles (q . 0.1nm−1). Therefore, it is often referred to as small angle X-ray scat-
tering (SAXS) regime or ultra small angle X-ray scattering (USAXS) regime for even smaller
angles.

2.4.2 Coherent X-Ray Scattering and Speckles

Coherent X-ray scattering experiments are based on measuring interference phenomena whose
visibility increases with the coherence of the X-rays. Coherence is a measure for the correlation
between the electric field EEE(rrr1, t) and EEE(rrr2, t) which is defined in terms of the mutual coherence

function [62]
ΓΓΓ(PPP1,PPP2,∆t) = 〈EEE(rrr1, t) EEE∗(rrr2, t +∆t)〉t . (2.50)

〈· · ·〉t denotes a time average. For some arbitrary function, f (t), it can be calculated as

〈 f (t)〉t = lim
t→∞

1
t

∫ t

0
f (t ′) dt ′ . (2.51)

Figure 2.14: Sketch of Young’s double slit experiment from Goodman [62, p. 137]. Light from
the source S iluminates two pinholes PPP1 and PPP2. The diffraction pattern falls onto a
screen and is measured at a point QQQ.

Young’s double slit experiment (Figure 2.14) is a basic example of a diffraction experiment.
A light source, S, illuminates a plate with two pinholes, PPP1,2. A screen is placed behind the plate
and the intensity is measured at a point QQQ with the distance r1,2 from PPP1,2, respectively. The
intensity as a function of QQQ is

I(QQQ) = I1(QQQ)+ I2(QQQ)+KKK1 KKK∗2 ΓΓΓ

(
PPP1,PPP2,

r2− r1

vc

)
+KKK2 KKK∗1 ΓΓΓ

(
PPP2,PPP1,

r1− r2

vc

)
, (2.52)

where vc is the speed of light and KKK1,2 are complex valued vectors that describe the diffraction
of the waves at the pinholes. Essentially, the interference pattern expressed by Equation (2.52)
is the sum of the intensity from each individual pinhole, I1,2(QQQ), and two additional interfer-
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ence terms that depend on the mutual coherence function. The complex degree of coherence is
introduced as the normalized mutual coherence function

γγγ (PPP1,PPP2,∆t) =
ΓΓΓ(PPP1,PPP2,∆t)√

I(PPP1)I(PPP2)
, (2.53)

where I(PPP1) and I(PPP2) stand for the averaged intensities illuminating the pinholes. From
Schwarz’s inequality it is derived that

0≤ |γγγ(PPP1,PPP2,∆t)| ≤ 1 . (2.54)

Finally, eq. (2.52) can be rewritten as

I(QQQ) = I1(QQQ)+ I2(QQQ)+2
√

I1(QQQ)I2(QQQ) Re

[
γγγ

(
PPP1,PPP2,

r2− r1

vc

)]
. (2.55)

If the intensities behind the pinholes are equal, i.e., I1(QQQ) = I2(QQQ), the absolute value of the
complex degree of coherence with no pathlength difference, γ(PPP1,PPP2,0), is equal to the fringe
visibility—also called the contrast—of the interference pattern, β0

β0 =
Imax− Imin

Imax + Imin
= γ(PPP1,PPP2,0) , (2.56)

where Imax and Imin are the maximum and minimum intensity of the interference pattern.
The conceptional idea of a double slit experiment where only waves interfere can be extended

to the more complex case of a speckle pattern (Figure 2.15). Speckles occur in the far field as
an interference phenomenon if coherent light is scattered from different regions of a sample that
randomly add phase shifts to the incident radiation. The result is a complex pattern of bright and
dark spots where the final waves show constructive or destructive interference or regions of an
intermediate state.

Speckles can be described accordingly to a random walk [22] where the scattered intensity
from Equation (2.45) depends on the phasor amplitude A(rrr)

I(rrr) =
∣∣A(rrr)∣∣2 = ∣∣∣∣∣ n

∑
k=1
|Ak(rrr)|e−iφk

∣∣∣∣∣
2

. (2.57)

|Ak| and φk are the amplitude and phase that result from the kth scattering region. Subsequently,
the visibility of fringes in Equation (2.56) becomes the speckle visibility or speckle contrast, β0.
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Figure 2.15: Small angle X-ray scattering signal of colloidal particles measured with a coherent
X-ray beam (left). The sum of 50 images (right). The picture is adopted from Lee
et al. [63].

It can be calculated as [64, 65]

β0 =

∫∫
exp

[
−
(

∆x
ξt,h

)2
]

exp

[
−
(

∆y
ξt,v

)2
]

exp

[
−
(

τc vc

2ξl

)2
]

dV1 dV2 , (2.58)

where ξt,h and ξt,v are the transverse coherence lengths in horizontal and vertical direction,
respectively. ∆x and ∆z refer to the horizontal and vertical distances between two points in the
observation plain and V is the illuminated sample volume [63]. The longitudinal coherence
length, ξl , is defined as the distance two waves can propagate until they are completely out of
phase [e.g. 61, pp. 25–27]. It depends on the wavelength λ and the wavelength spread ∆λ per

ξl =
λ 2

2∆λ
. (2.59)

Increase of the longitudinal coherence is achieved by narrowing the bandwidth with a monochro-
mator and selecting one wavelength from the spectrum. Analogously, the spatial decorrelation
length of two wavefronts due to a finite divergence defines the transverse coherence length

ξt =
λRs

2Ds
. (2.60)
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Rs is the source size and Ds is the distance from the source. The transverse coherence is increased
by decreasing the emittance of a source.

2.4.3 X-ray Photon Correlation Spectroscopy

Dynamics in disordered samples result in fluctuations of speckles. XPCS measures these fluc-
tuations by acquiring time series of speckle patterns and calculating intensity autocorrelation

functions [20, 66]

g2(qqq,∆t) =
〈〈I(qqq, t)I(qqq, t +∆t)〉p〉t

〈〈I(qqq, t)〉p〉2t
, (2.61)

where 〈· · · 〉p denotes an average over pixels. Employing the Siegert relation, Equation (2.61)
can be written as

g2(qqq,∆t) = 1+β0 · |g1(qqq,∆t)|2 , (2.62)

where β0 is the speckle contrast and g1(qqq,∆t) is the intermediate scattering function. Depending
on the sample dynamics, the intermediate scattering function can have different forms. Equilib-
rium diffusion can be modeled by an exponential decay

g2(qqq,∆t) = 1+β0 · e−2(Γ∆t)α

, (2.63)

where Γ is the relaxation rate. α is the Kohlrausch-Williams-Watts (KWW) exponent describing
deviations from Brownian diffusion and simple exponential behavior (α = 1). In case of non-
interacting particles the intermediate scattering function is related to the MSD per [67]

g1(qqq,∆t) = e−〈∆r2(t)〉q2/6 . (2.64)

Figure 2.16 shows correlation functions of R = 50nm silica spheres in a glycerol-water mix-
ture. For Brownian motion, the decay rate is proportional to the momentum transfer squared and
the proportionality constant is the Stokes-Einstein diffusion coefficient (Equation (2.35)) leading
to the dispersion relation

Γdiffusion = DSEq2 . (2.65)

Deviations from Brownian diffusion are evident in the KWW-exponent and the q-dependence
of Γ. If both exponents are changed due to the same microscopic process, Equations (2.62)
to (2.65) imply the general relation [67]

αn = 2 . (2.66)

In the presence of caging effects and confinement the dispersion relation exhibits a q-indepen-
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dent component, Γ′1, that changes the low-q behavior [68].

Γconfinement = D1qn1 +Γ
′
1 . (2.67)

The parameters D1 and n1 describe the dynamics inside the confinement cage. As confined
dynamics are subdiffusive, an exponent of n1 > 2 is predicted. The reason for the constant
plateau is that confinement hinders the particles from exploring the full phase space on short
times scales. Therefore, it describes the slowest relaxation rate of the NPs inside the cage.
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Figure 2.16: (a) Correlation functions measured with silica (SiO2) spheres in a glycerol-water
mixture. (b) dispersion relation deduced from the correlation function in (a). Em-
ploying Equation (2.65), the diffusion coefficient and a viscosity of η = 50cP is
calculated.

Calculating the time average in Equation (2.61) is only reasonable for equilibrium dynamics
in the absence of aging effects, beam damage, dynamical phase transitions, etc. One possibility
to investigate heterogeneous or non-equilibrium dynamics are higher order correlation functions.
Therefore, the two-time correlation function,

c2(qqq, t1, t2) =
〈I(qqq, t1)I(qqq, t2)〉p
〈I(qqq, t1)〉p〈I(qqq, t2)〉p

, (2.68)

is introduced. Figure 2.17 shows the two-time correlation function corresponding to the data
in Figure 2.16. The constant width of the diagonal is indicative of equilibrium dynamics. g2-
functions measuring dynamics starting from a particular moment during the measurement can
be extracted by cuts through the two-time correlation function that are perpendicular to the
diagonal.

Systems that exhibit more than one relaxation on different time scales—like the localized
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Figure 2.17: Two-time correlation function describing equilibrium dynamics of R = 50nm SiO2
NPs in a glycerol-water mixture.

caging motion and the structural relaxation (Figure 2.11b)—can be modeled by a double expo-
nential decay of the form

g2(qqq,∆t) = 1+β0

(
β e−2(Γ1∆t)α1

+(1−β )e−2(Γ2∆t)α2
)
. (2.69)

Here, Γ1 and α1 describe the localized dynamics and Γ2 and α2 the structural relaxation, respec-
tively. β0 is the speckle contrast defined by the experimental setup and the scattering geometry
and β is the relative contrast between the two processes. The relative contrast decreases with q

and is related to the localization length, rloc, via a Debye-Waller-like factor [61]

β = exp
(
−r2

locq2/3
)
. (2.70)

With Equations (2.36) and (2.70) the hydrodynamic correlation length can be determined from
XPCS measurements. Figure 2.18 displays correlation functions calculated with Equation (2.69)
to illustrate the influence of the different parameters on the functional form of correlation func-
tions with a two-step relaxation.
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Figure 2.18: Correlation functions calculated with Equation (2.69). In every plot only one pa-
rameter is varied the other ones are fixed. The parameter that is varied is indi-
cated in the plot. In all plots β0 = 0.1 and β = 0.5 if not indicated otherwise.
The fixed parameters are: (a) α1 = 0.5, α2 = 1, Γ1 = 250s−1, (b) α1 = 0.5, Γ1 =
250s−1, Γ2 = 0.125s−1. In (c) and (d) the relaxation rates and KWW exponents
are Γ1 = 250s−1, Γ2 = 0.125s−1, α1 = 0.5, α2 = 1.
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3 Experimental Realization

In this chapter, the experimental realization of the techniques introduced in Chapter 2 is ex-
plained. First, we describe the sample preparation in Section 3.1. Then, we introduce the modi-
fied rheology setup designed to measure the effect of UV light on the bulk rheological properties
of photorheological liquids in situ (Section 3.2). In Section 3.3, an introduction to synchrotron
radiation is given before in Section 3.4 the particular beamline setups used at the European Syn-
chrotron Radiation Facility (ESRF) and at PETRA III at the Deutsches Elektronen-Synchrotron
(DESY) are described. The chapter closes with a description of the measurement protocols that
were developed to circumvent technical and analytical limitations in Section 3.5.

3.1 Sample Preparation

Micelle solutions were prepared following the recipe of Ketner et al. [7]. The cationic sur-
factant cetyl trimethylammonium bromide (CTAB) is the main building block of the micelles.
Ortho-methoxycinnamic acid (OMCA) binds to the micelle interface and induces the forma-
tion of long cylindrical (wormlike) structures. Both substances are commercially available and
were purchased from Sigma-Aldrich. CTAB is a white and OMCA a yellowish powder at room
temperature.

Both chemicals were dissolved in separate beakers in millipore water under gentle stirring
and being heated up to about 50 ◦C. While CTAB dissolves in water, sodium hydroxide (NaOH)
was added to fully dissolve and neutralize OMCA. Since NaOH also reacts with silanol groups
on the surface of the SiO2 tracer particles, adding an excessive amount of NaOH would dissolve
the nanoparticles in the final micelle solution. Therefore, the procedure was optimized such that
the amount of NaOH initially added to the OMCA beaker, was less then the amount of OMCA.
Then, small amounts (∼ 50µl) of NaOH were pipetted under constant stirring until the OMCA
is completely dissolved.

After about 5 min to 10 min stirring at 50 ◦C, the CTAB solution becomes almost fully trans-
parent with a slightly blueish shimmer. The OMCA solution turns yellowish. Putting the beakers
for a short period into an ultrasonic bath helps to dissolve the last aggregates. When no more ag-
gregates are visible, both beakers are stirred 10 min longer. Then, the OMCA solution is poured
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into the CTAB beaker under constant stirring. The solution instantly becomes more viscous due
to micelle self-assembly. The heating is turned off and the beaker is sealed to avoid evaporation.
After a couple of minutes the beaker containing the compound solution is removed from the
stirring plate and set aside to cool down to room temperature and for the micelles to equilibrate.

For samples with nanoparticles (NPs), a certain amount of water of the CTAB beaker was
substituted by an aqueous nanoparticle dispersion. Charge stabilized silica nanospheres with a
radius of R = 50nm were used as tracer particles. They were purchased from Nanocomposix

and shipped with a concentration of 10 mgml−1. The nanoparticle concentration was reduced
by a factor of ten to minimize any effect on the micelle formation while maintaining the X-ray
scattering signal at a reasonable level. In the final micelle solution the nanoparticle concentration
was 1 mgml−1 corresponding to a volume fraction of φp = 0.04%. All samples were prepared
with equal concentrations of CTAB and OMCA. Therefore, in the following a concentration of,
e.g., c = 50mM refers to c(OMCA) = c(CTAB) = 50mM.

For X-ray scattering measurements, the liquid sample was filled into quartz capillaries with
2 mm outer diameter and 10 µm wall thickness. The capillaries were sealed to be used in vac-
uum. Quartz capillaries are widely used in X-ray scattering experiments due to a low scattering
background and a long absorption length (135 µm at 8.1 keV). Furthermore, quartz has a high
transmission of UV light (& 90%), which allows a homogeneous illumination of the micelles
inside the capillaries with a UV light source.

UV Light Source

A mercury arc lamp was used to illuminate the OMCA-CTAB samples inside the capillaries or
between the rheometer plates (Section 3.2). The particular components were purchased from
Quantum Design Europe (see Table 7.1 for details on the particular components).

The experimental setup for illuminating capillaries is shown in Figure 3.1. The lamp housing
encloses a 100 W mercury arc lamp. It protects the actual lamp from damage and reflects the
UV light towards the front side where a condenser lens makes the beam parallel. After the lens,
a 45° dichroic mirror absorbs some of the infrared radiation and reflects the UV part of the
spectrum with a reflectance of more than 90 % (Figure 7.2). The setup is designed such that the
mirror reflects light between 280 nm to 400 nm covering both absorption peaks in the OMCA
absorption spectrum (Figure 2.10). An electronic shutter is mounted between the condenser lens
and the mirror and allows precise controlling of the UV illumination time.

Behind the mirror mount, where the light exits the lamp, an indium tin oxide (ITO) coated
quartz plate of 2.25 mm thickness reduces the intensity further and absorbs additional heat. The
transmission of the ITO plate is ca. 55 %. The flux on the sample was measured with a standard
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3.1 Sample Preparation

(a) Schematic drawing of the UV lamp taken from
Quantum Design Europe [71].

(b) Mercury arc lamp with electronic shutter and
dichroic mirror to illuminate a sample filled
into a capillary. An indium tin oxide (ITO)
coated quartz plate is used as an absorber to
reduce the UV photon flux and absorb heat.

Figure 3.1: (a) Technical details of the UV lamp and (b) UV lamp setup to illuminate samples
inside capillaries to be used in X-ray scattering experiments.
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3 Experimental Realization

power meter at the sample position. In the configuration shown in Figure 3.1b, light with a power
of about 860 mW (470 mW with ITO plate) reaches the sample. For X-ray photon correlation
spectroscopy (XPCS) measurements the samples were illuminated between 0 s to 700 s. A wait-
ing time of at least one hour after UV illumination was kept to allow for thermal equilibration
(Figure 3.2).
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Figure 3.2: Sample temperature equilibration after UV illumination during rheometry measure-
ments.

3.2 Rheometry Setup

Rheology measurements were carried out with a HAAKE MARS III rheometer at DESY. With
a movable breadboard at the backside of the instrument, the UV lamp can be mounted directly
above the sample (Figure 3.3). The rheometer was operated in plate-plate geometry with a 4 cm
(diameter) rotating plate. A quartz plate with a UV light transmission of roughly 90 % was used
as the fixed counter plate allowing measurements during UV illumination. An additional 2.5 mm
thick ITO coated quartz plate was mounted between the fixed rheometer plate and the UV lamp
to reduce the incident flux and to shield the sample from infrared radiation.

The intensity of the UV light, Iuv, was measured with a standard power meter at the sample
positions below the fixed quartz plate in the rheometer (Figure 3.3c). The sensor position was
varied to accurately estimate the UV intensity over the entire sample area. With Equation (2.33)
and the gap between the rheometer plates taken as the sample thickness the absorbed energy per
unit area can be calculated and will be given in mJmm−2.
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Figure 3.3: Rheometry setup at DESY: (a) rheometer with UV lamp mounted above the sample,
(b) topview of the rheometer plate during UV illumination, (c) sketch of the power-
meter sensor position for measuring the UV intensity at various sample positions.
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Systematic rheology measurements were conducted with different OMCA-CTAB concentra-
tions from 20 mM to 200 mM. Samples with 50 mM, 80 mM and 100 mM were measured with
UV illumination times from 0 min to 16 min. As the sample temperature is significantly in-
creased upon UV illumination (Figure 3.2), a waiting time of about one hour is required before
the next measurement can be started. The rheometer plate was rotated with a constant shear rate
of γ̇ = 10s−1 during UV illumination to guarantee a homogeneous illumination of the whole
sample volume.

For each concentration and UV illumination time a rheology protocol including different mea-
surement types was repeated three times to ensure reproducibility: flow-curve measurements,
where the shear rate was continuously increased from 0.01 s−1 to 20 s−1, were run over 5 min
to reveal possible shear thinning or thickening effects. The complex (or dynamic) modulus,
G∗(ω), was measured by oscillatory frequency-sweeps. The oscillation frequency was varied
from 0.5 rads−1 to 200 rads−1 and the storage and loss moduli were recorded.

3.3 Synchrotron Radiation

X-ray scattering experiments were conducted at 3rd generation synchrotrons, namely PETRA III
at the Deutsches Elektronen-Synchrotron (DESY) and at the European Synchrotron Radiation
Facility (ESRF). Synchrotron radiation is the term for electromagnetic radiation that is emit-
ted by charged particles, usually electrons or positrons, when they are accelerated lateral to
their velocity direction. Bunches of charged particles are accelerated to relativistic energies of
Ee = 6GeV (at the ESRF and PETRA III) and forced on a circular trajectory by strong magnetic
fields induced by so-called bending magnets. The circular orbit is preserved by additional mag-
nets that modify the trajectory and shape of the particle bunches, which is why synchrotrons are
also called storage rings.

Due to their relativistic velocity, the Lorentz transform leads to electromagnetic radiation
being conically emitted in forward direction in the laboratory frame (Figure 3.4a). The opening
angle of the radiation cone is proportional to the inverse Lorentz factor γ = (1−v2/v2

c)
−1/2� 1,

with the particle velocity v and the speed of light vc [61, pp. 33–43].
Synchrotron sources are often characterized by their brilliance

B =
Φ′

4π2εxεy
, (3.1)

where εx,y is the emittance in horizontal and vertical beam direction. The photon flux Φ′ is
usually given in phs−1 mm−2 mrad−2 (0.1% BW)−1, where BW is the energy band width. Es-
pecially experiments that require coherent X-rays benefit from high brilliance sources as the
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3.3 Synchrotron Radiation

coherent photon flux, Φc, is proportional to the brilliance and the square of the photon wave-
length, λ ,

Φc = B ·
(

λ

2

)2

. (3.2)

To increase the photon flux, electron bunches are sent through undulators: arrays of per-
manent magnets that produce alternating magnetic fields with a period of λu on the order
of centimeters (Figure 3.4b). Due to the Lorentz force, they induce fast oscillations of the
charged particles perpendicular to their circular trajectory. Undulators are designed in a way
that electrons emit in phase with themselves such that the electromagnetic fields add up and
the intensity increases. Thereby, the brilliance of PETRA III and the ESRF is of the order of
1021 phs−1 mm−2 mrad−2 (0.1% BW)−1, which is about a factor 1013 larger than the brilliance
of an X-ray tube and a factor 109 larger then the one of first generation synchrotrons based on
bending magnets. The fundamental wavelength generated by an undulator is [61, pp. 44–45]

λ =
λu

2γ2

(
1+

K2

2

)
. (3.3)

The undulator parameter, K, depends on the magnetic field strength, B0, and the undulator period

K =
eB0λu

2πmec
≈ 0.934λu[cm]B0[T] , (3.4)

where e and me are the electron charge and mass, respectively. Equation (3.3) and Equation (3.4)
show that the wavelength can be tuned just by changing B0 which is realized by varying the gap
between the two undulator halves. As λu ≈ 1cm and γ ' Ee/511keV ≈ 104, the fundamental
wavelength is of the order of Ångstrom and thereby in the X-ray regime.

Coherent X-ray scattering setups need to be capable of resolving highly detailed speckle pat-
terns in the far field. Assuming a fully coherent beam, the signal to noise ratio can be defined
as

SNR' 1

1+(p/s)2 〈I〉p
√

Npix Nimg Nser , (3.5)

where 〈I〉p is the average intensity per pixel and Npix and Nimg are the number of pixels and the
number of images, respectively. Nser is the number of series, i.e., the number of repetitions of
a single time series [73]. The first factor accounts for the geometrical contrast, i.e., how well
speckles of size s can be resolved by a detector with pixel size p. The speckle size depends on
the X-ray wavelength, λ , and geometrical factors like the sample to detector distance, Rd , and
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3 Experimental Realization

(a) Synchrotron radiation emitted by electrons on
circular orbit adopted from [61]. The elec-
trons are accelerated to relativistic velocity and
forced on a circular orbit of radius ρ by bend-
ing magnets. As accelerated charged particles,
they emit electromagnetic radiation in a cone
with opening angle 1/γ.

(b) Undulator working principle [72]. Permanent
magnets with alternating magnetic field direc-
tion (N,S) are built into a periodic structure
with spatial period λu. Electrons perform an
oscillatory motion due to Lorentz force they
experience on the path through the undulator
(black line). They emit electromagnetic radia-
tion that leaves the undulator and is guided to
the experiment (red and yellow cones).

Figure 3.4: Generation of synchrotron radiation by bending magnets (a) and undulators (b).

the beam size on the sample, z, and can be calculated by

s h
λRd

z
. (3.6)

A speckle size smaller than the pixel size results in undersampling of the speckle pattern and a
reduced SNR. On the other hand, measuring a large number of speckles improves the ensemble
average in the multi speckle approach. Madsen [74] calculated that the maximum SNR in small
angle X-ray scattering (SAXS) XPCS is achieved when the speckle size matches the pixel size.
Then, the optical contrast can reach values up to 46 %. For example: using a detector with a pixel
size of 75 µm—typical for X-ray detectors used for XPCS and high resolution X-ray scattering
experiments—a beam size of 10 µm and a photon energy of 8 keV the sample-detector distance
should be about 5 m.

3.4 Synchrotron Beamline Setups

X-ray scattering experiments have been conducted at P10 - Coherence Applications Beamline

at PETRA III (DESY), at ID10 - Soft Interfaces and Coherent Scattering Beamline (ESRF)
and at ID02 - Time-Resolved Ultra Small-Angle X-Ray Scattering Beamline (ESRF). Since all
experiments were performed in SAXS geometry, the basic concept of an XPCS beamline will be
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3.4 Synchrotron Beamline Setups

explained based on the example of P10. Afterwards, the subtleties and unique features of each
beamline will be described.

Small angle scattering setups are designed to study relatively large structures compared to the
X-ray wavelength with characteristic length scales from a couple of nanometers to micrometers.
In order to resolve momentum transfers below . 0.1nm−1, SAXS beamlines typically offer a
large sample to detector distance, which allows to increase the spatial resolution by expand-
ing the low-q region over a larger pixel area on the detector. The minimum accessible angle
is typically limited by a beamstop which blocks the direct beam to protect the detector from
overexposure.
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Figure 3.5: Layout of the Coherence Applications Beamline P10 at DESY [75]. The beamline
is divided into the optics hutch (OH), and the first and second experimental hutches
(EH1, EH2). The most important components for the presented XPCS study are
(from left to right): the undulator (U29), power slits (PS1, PS2), a high heat load
monochromator (HHM), two mirrors (M1, M2), guard slits (G1, G2), the position of
the sample chamber (USAXS), and the detector (D) at the end of the beamline. In
standard XPCS configuration (not USAXS), the sample is mounted at position S and
compound refractive lenses (CRL) are used to focus the X-ray beam.

Figure 3.5 shows a sketch of P10 and its optical components to tune the beam properties.
Undulator 29 marks the beginning of the beamline. Two power slits (PS1, PS2) define the initial
beam shape after the undulator. A two-bounce Si(111) high heat load monochromator (HHM)
increases the longitudinal coherence length (Equation (2.59)) by reducing the bandwidth to
∆λ/λ ≈ 10−4. Two grazing incidence mirrors (M1, M2) filter higher harmonics. As the criti-
cal angle is proportional to the X-ray wavelength, the fundamental wavelength is completely
reflected while photons with higher frequency are absorbed. Thereby, the heat load on the fol-
lowing optical components is reduced further. Parasitic scattering can be blocked by the guard
slits G1 and G2. Compound refractive lenses (CRLs) allow to focus the beam and reduce the
beam size on the sample down to a few micrometers. The detectors are mounted on a movable
table after a 5 m long evacuated flight path. In ultra small angle X-ray scattering (USAXS) ge-
ometry, the sample is mounted at 71.3 m in EH1 and G1 defines the beam size on the sample,
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3 Experimental Realization

which is typically a couple of tens micrometers. Thereby, a sample to detector distance of 21 m
can be reached.

Table 3.1: Beamline parameters in XPCS mode. Rd is the sample-detector distance, Ec the pho-
ton energy, λ the X-ray wavelength, z the beam size on the sample and Φc is the X-ray
flux.

beamline Rd [m] Ec[keV] λ [Å] z[µm] Φc[1010 phs−1]

ID10 5.25 8.10 1.53 10 0.32
P10 21.30 8.10 1.53 75 2.10
ID02 2.50 12.38 1.00 15 2.15

Table 3.1 contains more details on the most important beamline parameters for XPCS experi-
ments. 8.1 keV was the photon energy used for experiments at ID10 and P10. The configuration
at ID10 was the closest to a standard XPCS setup (Figure 3.6). With a sample-detector distance
of 5.1 m and CRLs focusing the beam down to 10 µm (FWHM) a maximum speckle contrast of
β0 = 14% could be achieved and measured with a vycor glass and silica particles in glycerol
as static and dynamic reference samples. In this configuration correlation functions could be
measured in a q-range of 0.015 nm−1 to 0.06 nm−1.

The versatile setup at P10 allows to extend the sample-detector distance to 21 m by mounting
the sample further upstream (in EH1) and measuring the scattered X-rays at the end of the second
experimental hutch (EH2, Figure 3.7). In USAXS geometry a relatively large beam size of 75 µm
could be used in favor of a reduced radiation dose. Without focusing the beam, the G1 slits were
used to define the beam size resulting in a rather flat beam profile. The maximum contrast was
estimated with an aerogel to be β0 = 10%. Correlation functions could be measured down to
slightly smaller momentum transfers between 0.010 nm−1 to 0.06 nm−1.

Measurements with delay times in the microsecond regime require fast X-ray detectors ca-
pable of acquiring data with repetition rates of kHz and faster. XPCS measurements were con-
ducted with different versions of the EIGER detector [78]. At ESRF (ID02 and ID10) an EIGER
detector developed by the Paul Scherrer institute (PSI) in Switzerland was used with a maximum
frame rate of 22 kHz. At P10 repetition rates of 9 kHz could be reached with an EIGER X 500k
from Dectris. Additionally, at P10 the static scattering signal was measured with an EIGER 4M
detector that provided an eight times larger field of few but slower repetition rates. At ID02
static SAXS measurements were acquired using a Rayonix MX-170HS. Details on the detector
specifications are listed in Table 3.2.
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Figure 3.6: SAXS XPCS setup at ID10 (ESRF): (a) experimental hutch optics: (t) guard slits,
(u) monitor, (v) slits, (y) attenuators, (z) fast shutter. (b) evacuated flight path ending
with a 2D X-ray detector.

Table 3.2: Detector specifications: Hybrid photon counting (HPC) and charge-coupled device
(CCD) detectors were used for measuring X-ray scattering signals. px,y is the hor-
izontal and vertical pixel size, and nx,y is the number of pixels. fmax denotes the
maximum frame rate of the detector.

detector type px[µm] py[µm] nx ny fmax[Hz] beamline

XPCS
EIGER 500k (PSI) HPC 75 75 1030 514 22000 ID02, ID10
EIGER X 500k (Dectris) HPC 75 75 1030 514 9000 P10
SAXS
EIGER X 4M (Dectris) HPC 75 75 2070 216 750 P10
Rayonix MX-170HS CCD 44 44 3840 3840 2.5 ID02
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a) samples

b)

c)
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USAXS setup 
at P10
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Figure 3.7: USAXS XPCS setup at P10 (DESY). (a) the sample is filled into 2 mm quartz cap-
illaries and mounted on a metal frame. (b) the frame is attached to a flange that
can be mounted in the standard P10 sample chamber. (c) the sample chamber is
positioned 21 m upstream from the detectors in the second experimental hutch (EH2
in Figure 3.5).
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3.5 Development of Measurement Protocols

As XPCS is based the correlation of successive speckle patterns, it is required that a measure-
ment covers the entire range of relaxation times of the sample system. In Chapter 4, we will
see that this time window reaches from microseconds to hundreds of seconds for the OMCA-
CTAB system. The shortest time scale accessible by XPCS is limited by the detector repetition
rate, fmax. It defines the minimum delay time, i.e., the first point of the correlation function:
∆t0 = fmax

−1. The detector cannot measure photons for the full period ∆t0 as it needs time to
read out the data and prepare for the next acquisition. Therefore, ∆t0 = t f + trdt + tlat incorpo-
rates the frame time, t f , i.e., the time the detector actually acquires photons, and the read out and
latency times, trdt and tlat .

While studying fast processes requires small delay times, t f is increased when the dynamics
are slower in favor of a higher dynamic range, smaller data volumes and a larger SNR due to the
increasing intensity per pixel (Equation (3.5)). The largest correlation time is determined by the
measurement time

Tm = Nimg∆t0 , (3.7)

where Nimg is the number of acquired images.
OMCA-CTAB micelles—as many other soft matter or biological samples—are extremely

susceptible to radiation damage. Therefore, another parameter that has to be considered to opti-
mize the experiment is the radiation dose, D , that is absorbed in the illuminated sample volume
during the course of a measurement. If the sample is exposed to an X-ray flux Φc for the time
Tm, then the absorbed dose is

D =
Φc Ec ATm φ

z2ds ρ
, (3.8)

where A denotes the sample absorption, Ec the photon energy, ds the sample thickness, φ is the
micelle volume fraction and ρ the sample mass density. D is measured in Gray (1Gy= 1Jkg−1).

According to Meisburger et al. [79], beam damage starts to affect the sample structure above
a certain critical dose, Dc. It can be estimated by measuring correlation functions for different
X-ray intensities by decreasing the incident flux and evaluating possible effects on the dynam-
ics. Two-time correlation functions are employed to distinguish between equilibrium dynamics
and beam induced effects. Accordingly, time series with 50 ms delay time were acquired with
different attenuator settings. Results obtained at ID10 and P10 are presented in Figures 3.8
and 3.9 for different micelle concentrations. The time axes have been converted according to
Equation (3.8) to display the absorbed dose. The width of the diagonals describes the amplitude
of the dynamics, i.e., the broader the diagonal the slower the dynamics and vice versa. In case of
equilibrium dynamics, the width of the two-time correlation function is constant throughout the
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Figure 3.8: Two-time correlation functions measured at q = 0.02nm−1 with R = 50nm silica
NPs dispersed in a 50 mM (a), (b) and 100 mM (c) micelle solution. The data were
acquired at ID10 with Φc = 0.325×1010 phs−1 and a beam size of (10µm)2. The
incident photon flux was 100 % and 5.4 % of Φc.

measurement and the time average in Equation (2.61) can be calculated to obtain g2-correlation
functions.

In the standard XPCS configuration at ID10 with a beam size of (10µm)2, the effect of the
absorbed dose was investigated with a 50 mM and 100 mM OMCA-CTAB sample with silica
spheres with a radius of 50 nm (Figure 3.8). Without attenuation (Figure 3.8a), the dynamics
are accelerated due to beam damage to the micelle network, which effectively decreases the
viscosity and results in a speed up of the tracer dynamics according to Equation (2.35). The
dynamics become continuously faster until the end of the measurement; however, most of the
damage seems to occur around 10 kGy evident in an abrupt change of the width of the two-time
correlation function. Attenuating the beam reduces the damage to the network. The dynam-
ics become stationary and the two-time correlation functions in Figures 3.8b and 3.8c exhibit a
constant width for the entire measurement time. Consequently, sample dynamics can be distin-
guished from beam induced effects. For example, comparing Figures 3.8b and 3.8c we can see
that the dynamics of the 100 mM sample are clearly slower than for the 50 mM sample due to a
higher viscosity of the former solution.

XPCS measurements with radiation sensitive samples can be optimized by increasing the
beam size and, consequently, increasing the scattering signal while keeping the absorbed dose
constant [80]. However, the reduced speckle size has to be compensated by increasing the
sample to detector distance beyond 5 m. Increasing the sample to detector distance comes along
with a decreased intensity. Conclusively, the sweet-spot within the boundaries of beam damage,
scattering intensity and speckle contrast has to be found. Technically, such a “large-beam” XPCS
setup is available at ID02 and at P10. Figure 3.9 shows two-time correlation functions acquired
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Figure 3.9: Two-time correlation functions measured at q = 0.01nm−1 with R = 50nm silica
NPs dispersed in a 100 mM micelle solution. The attenuation of the incident flux,
Φc, is indicated above the plots. The data were acquired at P10 in USAXS geometry
with 2.1×1010 phs−1 and a beam size of (75µm)2.

at P10 in USAXS geometry with (75µm)2 beam size and 100 mM micelle concentration. Also
here, the effect of beam damage is visible (Figures 3.9a and 3.9b) and the features are similar
to the ones in Figure 3.8: a clear thinning of the diagonal appears in Figure 3.9a due to beam
damage. The effect is weakened in Figure 3.9b and hardly visible in Figure 3.9c.

To estimate the critical dose, Dc, cuts parallel to the diagonal of the two-time correlation
functions are extracted at various points during the measurement. Without any beam induced
or aging effects, the value of the line cut, i.e., the contrast β , should be constant as a function
of the absorbed dose. Let β ′0 be the contrast after D0, then, β/β ′0 is unity until beam induced
effects alter the dynamics. In Figure 3.10, that this is the case for D . 10kGy. As a quite
conservative estimation for Dc, 2 kGy has been chosen as a threshold for the absorbed dose
during the experiments. This corresponds to a total measurement time of less than one second
per sample position with the unattenuated beam.

Based on the foregoing considerations, a sequence of measurement series was established
such that the sample was exposed to the same dose D . 2kGy for each acquisition. After each
measurement, the sample volume was renewed by moving the capillary. A fast shutter blocked
the beam between the measurements and protected the sample from X-ray illumination.

The nanorheology measurements were conducted at the limit of what is possible at state of the
art XPCS beamlines. The XPCS time series were acquired with frame times down to t f = 40µs
reducing the average intensity per pixel to less than 10−3 photons. Consequently, the informa-
tion a single image contains is extremely small. Using a photon counting detector, only very
few pixels actually detect a photon (Figure 3.11). As the SNR is proportional to the intensity per
pixel and the square root of the number of acquired time series and images (Equation (3.5)), the
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Figure 3.10: Estimation of the critical dose: (a) the contrast, β , normalized to the initial contrast
β ′0 = β (D0) is plotted as a function of the absorbed dose. The curves are cuts of the
two-time correlation functions starting with an initial dose D0 as shown in (b). All
XPCS measurements were conducted with a dose of maximum 2 kGy.

amount of data necessary to achieve a reasonable SNR increases dramatically in the low inten-
sity limit. Furthermore, the critical radiation dose threshold reduces the maximum measurement
time to less than a second with unattenuated X-ray beam. Therefore, it is impossible to cap-
ture dynamics over several orders of magnitude within a single measurement. Consequently,
correlation functions were measured step-wise by varying the acquisition rate and the incoming
photon flux. Having the measurement protocols established, we will see in the next chapter how
correlation functions can be composed from millions of sparse speckle patterns.
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Figure 3.11: Scattering patterns in SAXS geometry: The left side shows a scattering pattern
measured with 40 ms exposure time the right side with 40 µs.
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4 Data Analysis and Data Processing

With increasing brilliance and fast repetition rates of modern X-ray facilities like X-ray free-
electron lasers (XFELs) the amount of data acquired during a five-day beamtime easily reaches
hundreds of terabytes and even petabytes. Even at world leading synchrotron radiation facili-
ties like the European Synchrotron Radiation Facility (ESRF) or PETRA III at the Deutsches
Elektronen-Synchrotron (DESY), data acquisition rates of a couple of kHz produce millions of
images and live data processing and analysis push the file system and available computational
resources to their limits.

The aim of this chapter is to describe the data processing and the algorithms that were de-
veloped in the frame work of this thesis to calculate correlation functions from millions of
speckle patterns. Scanning with the X-ray beam across the sample can give rise to bubble
formation or aggregation while effects like sedimentation can lead to spatially heterogeneous
dynamics. Therefore, methods of sorting and categorizing big X-ray photon correlation spec-
troscopy (XPCS) datasets are inevitable. In a nutshell the data treatment can be subdivided into
the following steps:

1. calculation of intensity auto-correlation functions of individual times series (raw correla-
tion functions),

2. identification of artifacts and measurements that show signs of beam induced effects,

3. combination of raw correlation functions to obtain complete correlation functions,

4. fitting of complete correlation functions and parameter estimation.

Especially step 2 and 3 are delicate and distinguish the data treatment from other XPCS studies.
We will introduce two methods that are capable of identifying outliers and categorizing datasets
to compose complete correlation functions (Section 4.1). In Section 4.2, we will refine the two-
step relaxation model introduced in Equation (2.69) and discuss the parameter estimation.
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4.1 Composing Correlation Functions from Low Count Speckle
Patterns

As an example, we analyze time series measured with a concentration of 65 mM ortho-
methoxycinnamic acid (OMCA) and cetyl trimethylammonium bromide (CTAB). Nanoparticles
(NPs) with a radius of 50 nm were used as tracers. The dataset consists of about 160 time se-
ries and 70000 images (see Table 4.1). While 55 µs and 125 µs measurements were acquired
without attenuation, for time series with 10 ms and 500 ms the incoming flux was reduced to
10 % and 1 %, respectively.

Due to radiation sensitivity, each XPCS time series was measured on a different sample posi-
tion. Consequently, Equation (2.61) has to be applied to each individual time series. The number
of images per series, Nimg, the attenuation and the frame time, t f , were chosen such that the cor-
relation functions span the whole range of time scales from tens of microseconds to hundred
seconds while the absorbed dose per measurement was kept below Dc. The maximum tolerable
radiation dose was estimated to be Dc = 2kGy in Chapter 3.

Table 4.1: XPCS dataset measured with a surfactant concentration of c = 65mM, and NPs with
a radius of R = 50nm. The columns show from left to right: the frame time, the
minimum and maximum delay time, the measurement time, the attenuation factor,
the number of acquired images, and the number of measurement series.

t f [ms] ∆tmin[ms] ∆tmax[s] Tm[s] Φc/Φc,0[%] Nimg Nser

0.04 0.055 0.25 0.3 100 5450 99
0.11 0.125 0.26 0.3 100 2400 49

10 10.01 2.56 3.0 10 300 8
500 500.01 26.00 30.0 1 60 5

It might be confusing that the longest delay time, ∆tmax, is not equal to the measurement time,
Tm, i.e., the time the sample volume is exposed to X-rays. The reason for this deviation is the
way the correlation functions are calculated. Since correlation functions are usually plotted on
a logarithmic time axis, it is intuitive to calculate the points with logarithmic spacing. A so-
called multi-tau correlator achieves this by binning images along the time axis [81]. Thereby,
the amount of data points is reduced and the signal-to-noise ratio is increased. A side effect of
the logarithmic binning is that the correlation functions might be cut at the end if the last bin
does not contain enough data points.

The algorithm that has been used for calculating correlation functions is a modified version of
the PyXPCS module developed at ID10, which essentially is a software based multi-tau correla-
tor written in Python. Furthermore, the symmetric normalization scheme suggested by Lumma
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4.1 Composing Correlation Functions from Low Count Speckle Patterns

et al. [82] was applied to account for fluctuations of the incoming intensity without normalizing
to monitor data. In contrast to the standard normalization where the intensity in a pixel is nor-
malized by the average intensity in an image, Lumma et al. [82] could show that the symmtric
normalization leads to a reduced noise level by normalizing the correlation function by two sums
of intensities depending on the delay time.

The Python module Xana (available on GitHub) was developed in the frame work of this thesis
to analyze large amounts of X-ray scattering data. It provides methods to apply XPCS and small
angle X-ray scattering (SAXS) analysis schemes like the calculation of correlation functions
or azimuthal integration. Xana incorporates algorithms to parallelize the data access and the
analysis to reduce the computation time; especially important for online data analysis during a
beamtime. Loading data in chunks makes it possible to run the code on machines with small
memory like laptops. By using Xana on a High Performance Computing (HPC) cluster like the
Maxwell at DESY, several datasets can be analyzed simultaneously by distributing the workload
to different computing nodes, e.g., utilizing the job manager Slurm. The key feature of Xana
is a database that stores the results and includes meta data information on the datasets and the
analysis. Thereby, it allows to easily search, access and aggregate results. Furthermore, methods
to filter and average datasets are included, as well as algorithms for parameter estimation and
fitting of multi-exponential models.

Identification of Outliers

Applying Equation (2.61) to each of the 99 datasets measured with 40 µs frame time (Table 4.1)
yields the correlation functions shown in Figure 4.1. To identify outliers the quantity

χ
2
i =

1
N

N

∑
j=1

 ˆ〈g2〉 j−g(i)2, j

ˆ〈g2〉 j

2

, (4.1)

is calculated as the average squared deviation of single correlation functions, g(i)2 , from the pre-
liminary weighted average correlation function, ˆ〈g2〉. j is running over all N points of the cor-
relation function. Thereby, one value χ2

i is obtained per measurement i. Whether a correlation
function is considered an outlier or not is decided based on the condition

|χ2
i −〈χ2〉| ≤ nσχ2 here we use: n = 3 , (4.2)

where σχ2 =
√

Var[χ2] is the standard deviation of χ2
i . Only those correlation function are

averaged whose χ2
i value differs less then n times the standard deviation of all χ2

i values from
the average χ2

i value, 〈χ2〉. The parameter n can be adjusted to relax and tighten the sorting
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4 Data Analysis and Data Processing

criterion. A value too small can lead to sorting out valid correlation functions and an increased
noise level. For the data processing n= 3 could reliably identify outliert and resulted in not more
than 10 % discarded measurements. For the present dataset 9 out of 99 correlation functions were
identified as outliers for the shortest frame time. In general, they occur randomly in the capillary
predominantly as a result of beam induced effects.

10−4 10−3 10−2 10−1

∆t (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

g 2
(∆
t)

g
(i)
2

〈g2〉
outliers

Figure 4.1: Identification of outliers in the XPCS data: the dark blue points show correlation
functions of single time series (c = 65mM, R = 50nm, t f = 40µs, q = 0.027nm−1).
They are fluctuating around the mean correlation function (white face color). Out-
liers (red) are sorted out using the condition introduced in Equation (4.2). Each
correlation function was measured on a different sample position.

The outliers plotted in red in Figure 4.1 are quite close to the data points. However, they can
deviate much more from the real correlation function and induce large shifts of the average. In
fact, the other outliers are not shown as they exceed the y-axis limits. Therefore, even a small
number of corrupted datasets has to be sorted out carefully. After excluding the outliers, 90
correlation functions that fulfill Equation (4.2) are averaged. The resulting correlation function
with smaller noise (white face color in Figure 4.1) is used to compute the complete correlation
function. Following the same procedure, two measurements out of 49 were sorted out from all
datasets acquired with t f = 110µs.

In Figure 4.2, it is evident that complete correlation functions can be obtained from individual
correlation functions covering a time range from the smallest delay time of 55 µs up to hundreds
of seconds and more. After identifying valid measurements, individual correlation functions
are averaged and combined with measurements taken with various delay times. The resulting
correlation function is resampled with logarithmic spacing (Figure 4.2d)
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Figure 4.2: To build correlation functions from single datasets, individual correlation func-
tions (a) are averaged to reduce the noise to a tolerable level (b) (q =
0.017nm−1,0.027nm−1,0.037nm−1 and 0.047nm−1). Measurements with differ-
ent repetition rates are combined (c) and resampled (d) to obtain complete correlation
functions.

53



4 Data Analysis and Data Processing

Categorization of Datasets Using Bayesian Inference

For the foregoing considerations it was assumed that the data consist of mostly true correlation
functions that statistically scatter around a mean value and a few outliers. But what if the situa-
tion is more complex and correlation functions show different characteristic relaxation times due
to spatial inhomogeneities? Different relaxation rates would be measured depending on the sam-
ple position. Consequently, a simple average would lead to smeared out correlation functions
and wrong results. Therefore, the datasets have to be classified before a meaningful average can
be calculated. In Table 4.2, the parameters of another XPCS dataset are listed. The data were
acquired at P10 with 50 mM OMCA-CTAB micelles and tracer particles with a radius of 50 nm.

Table 4.2: Example XPCS dataset 2: c = 50mM, R = 50nm, illuminated with UV-light.

t f [ms] ∆tmin[ms] ∆tmax[s] Tm[s] Φc/Φc,0[%] Nimg Nser

0.11 0.117 0.84 1.0 100 8650 296
0.5 0.507 0.84 1.0 100 1996 140

50 50.007 48.01 63.8 1.6 1276 62

Following the same procedure as for the first dataset, Equation (2.61) is applied to each time
series. This time, we display correlation functions measured with frame times of 0.11 ms,
0.5 ms and 50 ms in one graph (Figure 4.3a). The number of points in the plot was reduced
for the sake of visibility. Apparently, the data points are not scattered around a common average
value. This effect is more pronounced in the distribution of the contrast values after ∆t = 400ms
delay time (dashed black line in Figure 4.3a). The histogram is clearly multi-modal which is
emphasized by a Gaussian kernel density estimation (KDE) (Figure 4.3b). A KDE plot does not
categorize the data based on a fixed number of bins with a certain width but plots a probability
distribution—here a Gaussian distribution—at the position of each data point. Later the sum of
all single Gaussian distributions is normalized so that the area under the curve is equal to unity.
In this way, features of the distribution, like multiple modes, become more visible while at the
same time artifacts due to binning are avoided. Figure 4.3b underlines the necessity for a more
detailed analysis since computing final correlation functions by averaging over a multi-modal
distribution would lead to smeared out results and a lower resolution. It is worth noticing that
both modes—the fast and the slow one—describe the structural relaxation; not to be confused
with the fast localized motion.

The next step is to identify the measurements that contribute to each mode in Figure 4.3b
and average them. This could be done by simple thresholding but we want to go a step further
and characterize the distribution which will later allow to automatize this step and makes it more
efficient when large amounts of data have to be processed. The idea is to describe the distribution
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Figure 4.3: Distribution of contrast values: (a) displays correlation functions measured with
frame times of 0.11 ms, 0.5 ms and 50 ms. The distribution of contrasts at
∆t = 400ms (dashed line) is plotted in (b). The patches show the histogram while
the solid lines are a Gaussian kernel density estimation (KDE) representation of the
data. The pins at the bottom indicate the values of individual measurements.

of all contrast values (Figure 4.3b) by a mixture of two Gaussian probability distributions. Then,
each measurement can be categorized as part of one mode.

It is worth noticing that excluding any beam induced effect is a prerequisite for this step.
In Figure 3.10 the critical dose was estimated to be 2 kGy by analysing two-time correlation
functions. All measurements were acquired with a lower absorbed dose. However, the intensity
per pixel is too small to employ the two-time analysis on the datasets with microsecond frame
times. However, outliers—as they were found in the last section—contribute to the tails of the
distributions and will be excluded as well.

Bayesian inference [86] is used to determine the parameters of the Gaussian mixture model.
Assuming that the distribution of contrast values can be described by two Gaussian distributions
of the form

N(x|µi,σi) =
1√

2πσi
exp

(
−(x−µi)

2

2σ2
i

)
, (4.3)

where µi is the mean and σi the standard deviation of the i-th contribution. Then, a Gaussian
mixture model with N contributions can be written as

P(x|µµµ,σσσ ,www) =
N

∑
i=1

wi N(x|µi,σi) . (4.4)
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µµµ , σσσ and www are N dimensional vectors of the mean values, µ1, . . . ,µN , the standard deviations,
σ1, . . . ,σN and the weights, w1, . . . ,wN , of each Gaussian distribution. In this example, we set
N = 2 to fit a model with two contributions to the data. The weights, wi, are drawn from a
Dirichlet-distribution. The Dirichlet distribution is often used in Bayesian statistics as a prior-
distribution of weights between different distributions as it preserves the normalization of the
posterior-distribution. It can be understood as the probability that a particular probability density
is observed. Uniform probabilities are assumed as priors for µµµ and σσσ .

The parameters are estimated using the Markov chain Monte Carlo (MCMC) method. The
Python package PyMC3 provides a toolbox for Bayesian inference including statistical models,
a variety of ensemble samplers and visualization features. Its documentation also includes ex-
amples on fitting Gaussian mixture models that served as a starting point for this analysis. A
No-U-Turn Sampler (NUTS) is used to draw values for the six parameters from their correspond-
ing prior-distributions with the goal to maximize the log-likelihood function of the problem. The
NUTS sampler is an extension of the Hamiltonian Monte Carlo (HMC) method that introduces
a variable number of steps of the random-walk and makes it more efficient [88].

Figure 4.4 shows the marginalized posterior-distributions of the parameters of the Gaussian
mixture model. Theoretically, the marginalized posterior-distribution of a parameter is obtained
by integrating over the other two parameters—also called nuisance parameters. Employing the
MCMC method, the posterior-distributions are sampled by a random-walker with a defined
number of steps. The path of a walker through the parameter space is also called chain. The
posterior-distributions of the parameters of the Gaussian mixture model were estimated by run-
ning four individual chains per parameter with 10000 steps each. Essentially, the distributions
in Figure 4.4 are histograms of the combined chains. Multiple chains are used to ensure that the
global maximum of the log-likelihood function was found.

Table 4.3: MCMC parameters.

mean error

µ1 0.0400 0.0003
µ2 0.062 0.002
σ1 0.0042 0.0002
σ2 0.0235 0.0014
w1 0.66 0.02
w2 0.34 0.03

The mean value and the width of the marginalized posterior-distributions are used to estimate
the parameters and the corresponding errors. The results are shown in Table 4.3. In agreement
with the histograms in Figure 4.3 the MCMC algorithm could identify one mode with a center
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Figure 4.4: (a) to (c) show the marginalized posterior distributions of the parameters µi, σi and
wi of the Gaussian mixture model.
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around 4 % contrast and one with 6.2 %. A smaller contrast is indicative of faster dynamics
as after the same delay time (here ∆t = 400ms) more correlation is lost. Moreover, the fast
mode has a smaller width (σ1/σ2 ≈ 18%) than the second contribution which implies a broader
distribution of relaxation times.

A more direct way to compare the fit with the data is to draw samples from the posterior

predictive distribution and plot it together with the data (Figure 4.5a). Both histograms are
in good agreement. Deviations are visible on the tail of the second contribution. Here, the
Gaussian mixture model could be refined by choosing different probability density functions
or increasing the number of distributions. However, for demonstration purposes the two-mode
model is sufficient and capable of distinguishing both contributions.
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Figure 4.5: (a) displays the distribution of contrast values at fixed delay time (blue) and the
posterior predictive distribution of the Gaussian mixture model (gray). Based on
the position and shape of the Gaussian modes (indicated by the two arrows) the
measurements are categorized and averaged resulting in the correlation functions
shown in (b). tc,1 and tc,2 are the time constants of single exponential fits.

The results for µµµ and σσσ from Table 4.3 are used to aggregate individual measurements to
obtain the corresponding correlation functions for each Gaussian mode. Measurements are se-
lected in a 0.5σi to 2σi environment around µi. The prefactor was chosen such that an individual
measurement contributes only to one mode indicated by the two arrows in Figure 4.5a. Fig-
ure 4.5b shows that a correlation function for both contributions can be calculated. Since no
measurements with frame times of 50 ms contributed to the fast mode (red), the longest delay
time of the correlation function is less than one second. The time constants tc,1 and tc,2 of a sim-
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4.2 Parameter Estimation with Multi-Mode Exponential Models

ple exponential fit differ by a factor of almost 3, which underlines the necessity for separating
both contributions. This method of categorizing datasets and averaging correlation functions is
applied to all datasets measured at P10 in ultra small angle X-ray scattering (USAXS) geometry.

The reason of the structural relaxation being multi-modal can be attributed to spatial inhomo-
geneity. This is evident in Figure 4.6, where the sample position is marked by a dot and the mode
is indicated by the color ((e) to (h)). (a) to (d) display the corresponding contrast distributions.
Apparently, the measurements acquired in the upper part of the capillary exhibit slightly faster
dynamics, i.e., a smaller contrast after the same delay time. The effect increases with longer UV
illumination times. A possible explanation is sedimentation that causes larger micelle aggre-
gates or denser parts of the network to sink to the bottom of the capillary. This is only evident
in the dynamics but not in the static scattering signal, which is dominated by the single particle
formfactor.

In summary, using Bayesian inference to categorize datasets can be useful to distinguish be-
tween different relaxation processes. Here, it was used as a tool for sorting correlation functions,
but it could easily be applied to different types of analysis. For example, we showed in an XPCS
study on ferroelectric materials that the contribution of contrast values as a function of delay
time can be studied to deduce information on the underlying relaxation processes [89]. Further-
more, in experiments at large scale facilities like European XFEL these techniques will become
important for reducing and processing large amounts of data.

4.2 Parameter Estimation with Multi-Mode Exponential
Models

In the last sections, we explained how correlation function with tolerable SNR can be calculated
from low intensity speckle patterns. We have seen that the correlation functions are characterized
by a two-step relaxation process that can be described by a double exponential model—or the
sum of two exponential functions (Section 2.4.3). Writing the q-dependence of the parameters
in Equation (2.69) explicitly we obtain

g2(q,∆t) = 1+β0

2

∑
i=1

βi(q)exp
{
−2
(
Γi(q)∆t

)αi(q)
}
, (4.5)

where β2(q) = 1−β1(q). The decay rates, Γ1,2(q), define the time scale of the relaxations, while
deviations from exponential behavior are described by the Kohlrausch-Williams-Watts (KWW)
exponents, αi(q). Further information on the dynamics can be deduced from the q-dependence
of the relaxation rates.
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Figure 4.6: (a) to (d) contrast distributions after ∆t = 400ms (cf. Figure 4.5a). The distribution of
all measurements is plotted in gray. If a fast and a slow mode could be distinguished,
the former is indicated in red the latter in blue. The data were acquired with 50 mM
surfactant concentration and R = 50nm NPs. From top to bottom, the samples have
been exposed to UV light for 0 s, 60 s, 120 s and 240 s. (e) to (h) position of the
measurement on the sample. The y and x coordinates correspond to the longitudinal
and lateral capillary axis, respectively.
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A reliable parameter estimation of essentially six independent parameters per q-bin requires
sufficient statistics of each correlation function, a well defined initial contrast plateau, β0, and
a clear baseline. The resolution of the initial contrast is mostly limited by the repetition rate of
the detector and the intensity that defines the smallest delay time, ∆tmin. Therefore, especially
the determination of the parameters of the fast relaxation process, Γ1(q) and α1(q), is diffi-
cult at very fast time scales. To determine the baseline or the minimum correlation value, the
measurement time, Tm, has to be sufficiently long.

Figure 4.7 shows correlation functions measured at P10 with 50 mM OMCA-CTAB micelles
and R = 50nm tracer particles. Both relaxation processes are clearly distinguishable such
that Equation (2.69) can be applied as a model for each curve separately. However, this is a
rare exception; in fact, for most of the datasets a least-squares-fitting of single correlation func-
tions in every q-bin fails. A possible solution is to perform a global fit of the whole dataset
containing up to 20 correlation functions. The reduced number of parameters allows to fit the
two-step relaxation in most of the cases. Concurrently, global fitting also adds constraints on the
parameters by introducing functional relations between them.

Three different models will be discussed that impose particular constraints on the fit parame-
ters based on the phenomena discussed in Chapter 2:

model 1: no constraints ⇒



β2 = β2(q) ,

Γ1 = Γ1(q) ,

α1 = α1(q) ,

β0 = const ,

(4.6)

model 2: Γ1 ⇒



β2(q) = β0 exp
(
−q2r2

loc/3
)
,

Γ1(q) = D1qn1 +Γ
′
1 ,

α1 = const ,

β0 = const ,

(4.7)

model 3: Γ1,α1 ⇒



β2(q) = β0 exp
(
−q2r2

loc/3
)
,

Γ1(q) = D1qn1 +Γ
′
1 ,

α1 = 2/n1 ,

β0 = const .

(4.8)

To compare the models, we calculate the dispersion relations, Γ1,2(q), for each of them and
investigate the influence of the choice of the model on the parameter estimation. Figures 4.7
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Figure 4.7: Correlation functions fitted with different parameter constraints: (a) only the con-
trast, β0, was assumed to be a the same for all curves. (b) the dispersion relation is
modeled by a power law plus a q-independent component, Γ′1. The contrast of the
structural relaxation, β2(q), is fitted with a Debye-Waller-like factor. (c) the KWW-
exponent is related to the scaling exponent of the dispersion relation according to
Equation (2.66): α1 = 2/n1.
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Figure 4.8: Dispersion relations of the short-time (Γ1, circles) and long-time (Γ2, squares) NP
motion inferred from Figure 4.7: (a) and (b) show the same data, but in (b) the
q-independent constant, Γ′1, was subtracted.
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and 4.8 display the correlation functions and the corresponding dispersion relations resulting
from model 1 to 3. Model 1 is the standard approach where all parameters are fitted separately
for each q-bin, only the maximum contrast, β0, is assumed to be a global fit parameter. Model 2
imposes constraints on β2 and Γ1. Introducing the localization length, rloc, the exponential decay
of the contrast as a function of q2 is described by a Debye-Waller-like factor (Equation (2.70)).
The procedure is demonstrated in Figure 4.9.
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Figure 4.9: Determination of the localization length, rloc, by fitting Equation (2.70) to the de-
creasing contrast of the long-time relaxation, β2(q).

From Figure 4.8 it is evident that the dispersion relation of the decay rates of the structural
relaxation, Γ2, can be described by a power law, while the one of the short-time relaxation,
Γ1, exhibits a constant plateau for small momentum transfers. A q-independent component of
the dispersion relation is indicative of confinement of the NPs as discusses in Section 2.4.3.
Model 2 adopts the corresponding functional form introduced in Equation (2.67) and describes
the dispersion relation by a power law plus a constant, Γ′1. The large-q behavior is characterized
through the generalized diffusion coefficient, D1, and the scaling exponent, n1. The KWW
exponent, α1, is fitted globally for each correlation function as well as the maximum contrast β0.
Model 3 additionally assumes α1 = 2/n1, which was motivated in Section 2.4.3. The parameters
describing the structural relaxation, Γ2 and α2, are fitted for each q-bin separately without any
constraints.

Model 3 changes the situation from optimizing a problem with 80 free parameters (4 parame-
ters per correlation function, 20 q-bins for the first mode) to optimizing 6 parameters per dataset.
Imposing a generalized version of the dispersion relation and using global fit parameters is nec-
essary for the fits to converge when the SNR of the individual correlation functions is insufficient
for fitting each curve separately. Additionally, a logarithmic weighting of standard errors is used
to increase the weight of the data points at short delay times.

64



4.2 Parameter Estimation with Multi-Mode Exponential Models

Fitting a model with functional relations between parameters is a task that is usually not pro-
vided by standard software. Therefore, an algorithm that is capable of fitting a variable number
of exponential decays to correlation functions was developed based on the Python package LM-

FIT. Relations between parameters Γi, αi, and βi can be dynamically set including the definition
of additional parameters like rloc. Based on the defined model, the weighted residuals are min-
imized by a Levenberg-Marquardt-algorithm and the parameters and their corresponding errors
are estimated.

After introducing and motivating the individual models, we will investigate their influence
on the parameter estimation. Therefore, the same dataset of correlation functions (Figure 4.7)
is fitted with Equation (4.5) and Equations (4.6) to (4.8). This yields the dispersion relations
displayed in Figure 4.8, where the blue, orange and green markers correspond to model 1, 2,
and 3, respectively. The error bars of Γ1 of the fit without constraints (blue circles in Figure 4.8a)
increase towards small momentum transfers. In fact, the three smallest q-values are not shown
due to error bars that exceed limits of the y-axis. This is indicative of the large uncertainties
that arise from fitting individual correlation functions. In addition, the contrast of the short-
time relaxation is small in the low-q region (Figure 4.7), which also results in larger errors.
Introducing constraints allows to include those points to the fit. Figure 4.8b implies that all three
models result in the same dispersion relation taking into account the larger errors of model 1.

The decay rates measured extend over almost six orders of magnitude from
0.01 s−1 to 2×103 s−1. The plateau of the short-time relaxation process is described by
the parameter Γ′1. In Figure 4.8b, Γ′1 is subtracted from Γ1. Thereby, the q-dependence of the
decay rates is pronounced. With n1 = 4.7, the exponent of the fast relaxation is almost twice
as large as the one of the slow relaxation, n2 = 2.4. Indeed, we find n1 ≈ 2n2 for all datasets,
which is indicative of different types of dynamics on short and long time scales. Here, we focus
on the comparison of the different models. A detailed discussion of the parameters is given in
Section 5.2. Since the parameters of the second mode are fitted without constraints, the values
of Γ2 are not depending on the model.

The next step is to compare the estimated parameters for the three models. Therefore, mod-
els 2 and 3 are fitted to the decay rates obtained from model 1, i.e., the raw data. The resulting
parameters are compared in Figure 4.10. To study the correlation between the parameters and
the reliability of the error bar estimation, the fits of model 1 were performed in two steps. First,
the maixmum-likelihood estimation of D1, n1 and Γ′1 was calculated using the Nelder-Mead-
method. The resulting parameters served as starting points for a MCMC sampler to calculate
the marginalized posterior-probability distribution of the parameters. The optimization was per-
formed with the Emcee module, which provides another MCMC ensemble sampler [92]. The
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4 Data Analysis and Data Processing

results—correlation plots and probability distributions—are visualized in Figure 4.12. As a com-
parison, the fit is also performed in the same manner for the structural relaxation (Figure 4.13).
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Figure 4.10: Parameter estimation with different constraints: the generalized diffusion coeffi-
cient, D1, the q-scaling exponent, n1, and the q-independent decay rate, Γ′1, are
compared for the three models defined by Equations (4.6) to (4.8).

From Figure 4.12, a strong correlation between D1 and n1 appears, whereas Γ′1 can be varied
independent of D1 and n1. The reason is that D1 and n1 describe the high-q and Γ′1 the low-q
behavior of the dispersion relation. In general, the proportionality constant and the exponent of
a power law fit are correlated, which is evident in Figure 4.13 where the long-time relaxation
process is fitted with a simple power law model without a constant contribution.

D1 determined without constraints exceeds the values of the other two models by a factor of
100 (Figure 4.10a). In agreement with the foregoing discussion on the correlation between the
parameters, also n1 determined by model 1 exceeds the corresponding values of model 2 and 3.
However, the large errorbar of D1 shows that these results are hardly reliable. Model 1 and 2
yield more reasonable values for D1 and n1. The estimation of Γ′1 agrees across all models.
Especially the high-q behavior of the dispersion relation is subject to large uncertainties due to
faster relaxation times and a smaller SNR.

Similar arguments hold for the estimation of the KWW-exponents (Figure 4.11). The values
of α2 obtained from model 1 and 3 are in agreement and decrease with q. The situation for α1

is different. If α1 is assumed to be q-independent (model 2 and 3), it is mostly determined by
the high-q stretching exponent, where the relative contrast of the short-time relaxation, β1, is
high. A global fit results in α1 = 0.48±0.02 for both model 2 and model 3. Therefore, artifacts
due to the additional constraints of model 3 can be excluded. In the low-q region, the smaller
relative contrast of the fast relaxation process leads to increased uncertainties employing model 1
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4.2 Parameter Estimation with Multi-Mode Exponential Models

(blue circles). We stress again that the fits of the fast relaxation (Γ1 and α1) without applying
constraints do not yield reliable results. Although a possible q-dependence of α1 cannot be
completely excluded, given the foregoing considerations, especially the uncertainties in the fits
without constraints, model 3 is chosen for the parameter estimation.
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Figure 4.11: KWW exponents obtained from different models. The results of model 1 and
model 3 are plotted in blue and green, respectively. The short-time KWW-
exponent, α1, is shown as circles and the long-time KWW-exponent, α2, as squares.
Since α1 is a global fit parameter in model 3, all data points have the same value
and reduced errors. Model 3 yields α1 = 0.48±0.02.

The example dataset discussed in this section exhibits particularly high statistics and an op-
timum resolution of both relaxation processes. Any deviation from this “ideal” case due to bad
statistics, less separated relaxation processes, insufficient time resolution, etc., makes a global
parameter estimation inevitable. The dispersion relation of the short-time relaxation was pa-
rameterized according to the theoretical model of confined dynamics introduced in Chapter 2.
Additionally, rloc is used to describe NP localization. The third assumption of model 3 is that
α1n1 = 2 introduced in Section 2.4.3. In summary, model 3 describes the correlation functions
correctly and allows for a reliable parameter estimation. Thereby, it is possible to overcome
statistical limitations and analyze datasets where model 1 and 2 fail. The results discussed in the
next chapter were thoroughly obtained from model 3.
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Figure 4.12: The histograms (first plot of each column) display the marginalized posterior distri-
butions of the parameters describing the dispersion relation of the short-time relax-
ation, D1, n1 and Γ′1. The other plots show the correlation between the parameters.
Contour lines are drawn for the 0.25, 0.50 and 0.75 levels. The blue lines indicate
the maximum likelihood estimation for each parameter.
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Figure 4.13: The histograms (upper and right graph) display the marginalized posterior distri-
butions of the parameters describing the dispersion relation of the long-time relax-
ation, D2 and n2. The third plot shows the correlation between the two parameters.
Contour lines are drawn for the 0.25, 0.50 and 0.75 levels. The blue lines indicate
the maximum likelihood estimation for both parameters.
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5 Discussion

In the following, the major findings will be discussed starting with the rheological characteriza-
tion of the OMCA-CTAB system in Section 5.1. In Section 5.2, the X-ray photon correlation
spectroscopy (XPCS) results are presented. In Sections 5.3 and 5.4, we describe the influence
of confinement and UV illumination on the structural relaxation of the micelle network and the
transport properties of the nanoparticles (NPs). In Section 5.5, we investigate high-frequency
phenomena connected to the localization of the NPs.

5.1 Anomalous Concentration Dependence and Intermicellar
Branching Investigated by Rheology

Different solutions of ortho-methoxycinnamic acid (OMCA) and cetyl trimethylammonium bro-
mide (CTAB) were prepared and characterized with a plate-plate rheometer at the Deutsches
Elektronen-Synchrotron (DESY) (see Section 3.2 for a detailed description of the setup). The
parameters that describe the rheological properties like the shear viscosity, η , the plateau mod-
ulus, G0, and the terminal time, τR, are calculated by fitting the dynamic (or complex) modulus
with the Maxwell model (Equations (2.22), (2.30) and (2.31)).

First, we discuss the effect of the concentration, c, on the rheological properties (Figure 5.1).
The viscosity is increasing with concentration (Figure 5.1b). Interestingly, a power law fit
(η ∝ cmη ) results in a rather weak concentration dependence with an exponent of mη = 2.2±0.3.
A stronger concentration dependence is predicted for the reptation model by scaling (mη = 3.7)
and mean-field theories (mη = 3.5) [44]. Experimental studies found mη & 3.2 for CTAB so-
lutions with added salts [26, 27]. This unusual behavior is also evident in the concentration
dependence of the plateau modulus and the terminal time. G0 shows the typical quadratic con-
centration dependence. In contrast, taking possible systematic errors and the linear scale into
account, τR is concentration independent. However, τR is predicted to scale like τR ∝ c1.4 [26,
44]. As both parameters, τR and G0, determine the viscosity (Equation (2.22)), the fact that the
terminal time is constant results in the unusually small exponent mη .

The anomalous concentration dependence of the viscosity points to intermicellar branching
and cross-linking with important consequences for the interpretation of the XPCS data in the
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(b) Rheological parameters obtained from (a). The red and black lines show power law fits with an
exponent of 2. The blue line shows the average of the terminal times, τR.

Figure 5.1: Concentration dependence of the rheological properties of OMCA-CTAB solutions
measured with a plate-plate rheometer.
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(b) Rheological parameters obtained from (a). The black and blue lines are fits with an exponential model,
the red line indicates the average plateau modulus until 200 mJmm−2.

Figure 5.2: Effect of UV illumination on the rheological properties of a 80 mM OMCA-CTAB
solution measured with a plate-plate rheometer.
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following sections. Micelle branching occurs when an entanglement is replaced by a joint be-
tween adjacent micelle strands resulting in a chemical cross-link [93, 94]. As joints are prone
to slide along the micelle contour they are effectively “softer” than entanglements which weak-
ens the concentration dependence and eventually, leads to a maximum of the shear viscosity as
a function of concentration [95]. The concentration range covered by the rheometry measure-
ments in Figure 5.1 is not large enough to exhibit a maximum between 20 mM to 200 mM, but
the unusually small scaling exponent of the viscosity (mη = 2.2±0.3) is still a strong indication
of micelle branching. Micelle branching is strongly determined by the additive (here OMCA)
that screens the effective head-group charge and induces the replacement of entanglements by
cross-links [96].

Although τR does not exhibit an explicit concentration dependence in the presence of inter-
micellar branching, it is predicted to increase with the contour length according to the reptation
model [97]. The contour length increases with L̄c ∝ c1/2 (Equation (2.4)). Therefore, a constant
terminal time is indicative of a modified concentration dependence of L̄c. In fact, it is ques-
tionable to what extent the concept of a contour length and the tube model is applicable in case
of a branched network, where all micelles are integrated into a multi connected superstructure.
Furthermore, it should be noted that it is not clear if micelle branches are equilibrium structures
or if they are metastable and shear induced during the sample preparation [98]. In summary, the
rheology experiments demonstrate that varying the concentration affects the plateau modulus—
and thereby the hydrodynamic correlation length, ξ̂ —but not the relaxation time of the stress
relaxation.

UV illumination causes isomerization of the OMCA molecules that desorb from the micelle
surface and reduce the end-cap energy, Es (Section 2.2.3). As a result, the average micelle
contour length decreases according to Equation (2.4). The effect of UV illumination on the rhe-
ological properties of an OMCA-CTAB solution with 80 mM surfactant concentration is shown
in Figure 5.2. As before, the Maxwell model is employed to determine η , G0 and τR, by fitting
the storage and loss modulus. However, for better visibility of the graph, the loss modulus, G′′,
is omitted and only the storage modulus, G′, is included in Figure 5.2a.

The rheological parameters are plotted in Figure 5.2b as a function of the absorbed UV en-
ergy, Euv. The shear viscosity is exponentially decreasing with UV illumination. An exponential
fit reveals that upon (115±3)mJmm−2 absorbed UV radiation the viscosity has decreased by
a factor of e−1. In contrast to the varying the concentration, the data imply that the UV illu-
mination dependence of the viscosity is solely determined by the terminal time. While τR is
strongly affected by UV illumination, G0 is constant for Euv < 200mJmm−2. Since the plateau
modulus is determined by the hydrodynamic correlation length, ξ̂ (Equation (2.6)), it can be
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concluded that the network mesh size is not affected by UV illumination up to 200 mJmm−2.
The decreasing viscosity as a function of UV illumination is due to the formation of new end-
caps accompanied by the breaking of cross-links or the scission of micelles. This effectively
reduces the connectivity of the branched micelle network.

From the rheology measurements a new picture of the micro structure of the OMCA-CTAB
system can be drawn: the micelles form a cross-linked network by forging intermicellar junc-
tions. The average distance between the connections is given by the hydrodynamic correlation
length, ξ̂ , and depends only on the surfactant concentration, c. Upon UV illumination, the long
range connectivity of the network is reduced by breaking cross-links and creating new end-caps.
Consequently, the connection between network meshes is reduced which decreases the bulk vis-
cosity. Indeed, it has been proposed that eventually, branched micellar systems could phase
separate into a densely connected phase and a dilute phase of small micelles [96, 99]. In case of
the XPCS measurements discussed in Section 4.1, denser parts of the network would sediment
to the bottom of the capillary over time, which explains the slightly different relaxation times
found in the upper and lower part of the capillaries (Figure 4.6).

In Section 2.3.1, a method developed by Mason [60] was introduced to calculate the dynamic
moduli directly from the mean squared displacement (MSD) of the tracers. The individual steps
are displayed in Figure 5.3. Employing Equations (2.61) to (2.64), 〈∆r2(t)〉 is calculated from
the correlation functions (Figure 5.3a). Before Equation (2.39) can be applied, the curves are
smoothed by fitting a B-spline (Figure 5.3b). Then, the viscoelastic spectrum and the complex
moduli can be calculated with Equations (2.37) to (2.42) (Figures 5.3c and 5.3d).

The advantage of nanorheology is that it allows to measure the complex moduli up to higher
frequencies than mechanical rheometry techniques. Here, three orders of magnitude were
achieved by XPCS compared to measurements with a plate-plate rheometer (cf. Figure 5.1).
Thereby, the high-frequency behavior of complex liquids can be studied. In principle, the results
in Figure 5.3 can be used to calculate parameters like the plateau modulus, the terminal time,
etc. However, as they can also be inferred directly from correlation functions, the transformation
to the complex moduli is not necessary and serves here only demonstration purposes.
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Figure 5.3: The dynamic moduli of a 50 mM OMCA-CTAB sample are obtained from XPCS
correlation functions employing the method of Mason [60]: (a) the MSD calculated
from XPCS correlation functions, (b) B-spline fitting of the MSD, (c) the viscoelastic
spectrum calculated from the smoothed MSD, (d) the storage modulus (solid line)
and loss modulus (dashed line) G′ and G′′.
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5.2 Nanoparticle Dynamics and XPCS Results

Silica NPs with a radius of R = 50nm and a volume fraction of 0.04 % were dispersed in the
OMCA-CTAB solutions for nanorheology measurements. The amount of tracers was tuned to
assure the scattered intensity per pixel to be sufficient for XPCS measurements on microsecond
time scales.

The correlation functions decay with a two-step relaxation where the short-time process de-
scribes the localized caging motion of the confined NPs and the long-time behavior characterizes
the structural relaxation of the network (see Figure 5.4). Both processes are analyzed by fitting
a generalized double exponential function to the data (Equations (2.69) and (4.5)). According to
fitting model 3 introduced in Section 4.2, the following functional forms are implicitly assumed
in Equation (4.5) to obtain the generalized diffusion constants, D1,2, the Kohlrausch-Williams-
Watts (KWW) exponents, α1,2, and the q-scaling exponent, n2:

Γ1(q) = D1q2/α1 +Γ
′
1 , (5.1)

Γ2(q) = D2qn2 . (5.2)

n1 = 2/α1 is substituted for the exponent in Equation (5.1). Furthermore, L0 = 2π/q0 is in-
troduced as the length scale where Γ1(q) shows a transition from a power law behavior to a
q-independent plateau, described by the parameter, Γ′1. L0 and Γ′1 are related per

Γ
′
1 = D1q2/α1

0 = D1

(
2π

L0

)2/α1

. (5.3)

In case of Brownian diffusion, the dispersion relation exhibits a quadratic q-dependence
(n2 = 2) and D2 is the diffusion constant. The functional form of Γ1(q) is different due to
confinement of the NPs dynamics [68]. Accordingly, L0 can be interpreted as the average size
(diameter) of the cage that confines a NP. Local dynamics inside the cage are modeled by a
power law and the parameters D1 and α1. Γ′1 is a measure for the longest relaxation time within
the cage that is related to the stiffness of the network. The confined motion is predicted to be
subdiffusive with α1 < 1 and n1 > 2.

The localization length, rloc, is determined by fitting the decreasing contrast between the two
relaxation processes as a function of q2 with a Debye-Waller-like factor (Equation (2.70)). Using
rloc, we can calculate the hydrodynamic correlation length [14]:

ξ̂
3 =

kbT
G0︸︷︷︸

rheology

= r2
loc2R︸ ︷︷ ︸
XPCS

, (5.4)
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allowing a direct comparison of rheology and XPCS measurements.
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Figure 5.4: Parameters calculated from correlation functions of a sample with 50 mM micelle
concentration without UV illumination and R = 50nm NPs: (a) correlation functions
for different q-bins from which two dispersion relations are calculated that charac-
terize the localized caging motion (blue) and the structural relaxation of the network
(orange). (b) dispersion relation of the localized caging motion modeled with Equa-
tion (5.1). q0 marks the momentum transfer where Γ′1 = D1q2/α1

0 . (c) dispersion
relation of the structural relaxation fitted with a power law.

First, we investigate the influence of concentration and UV illumination on the correlation
functions qualitatively (Figures 5.5 and 5.6). The data are displayed for one q-bin per figure
(0.036 nm−1 and 0.028 nm−1), which have been selected such that both relaxation modes are
visible in the graphs. For an explanation of the effect of the parameters on the shape of the
correlation functions the reader is referred to Figure 2.18.

Figure 5.5 contains correlation functions measured with micelle solutions with OMCA-CTAB
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Figure 5.5: Correlation functions measured with various surfactant concentrations ranging from
50 mM to 200 mM and silica NPs with a radius of 50 nm (q = 0.036nm−1).
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Figure 5.6: Correlation functions measured with 50 mM surfactant concentration and silica
R = 50nm NPs (q = 0.028nm−1). The color indicates the absorbed energy per unit
area through UV light illumination.
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concentrations from 50 mM to 200 mM. The structural relaxation speeds up with decreasing
concentration and the shape of the correlation functions seems to become more stretched. The
relative contrast of both processes increases as a function of concentration which is indicative of
a decreasing localization length. In contrast, the influence of concentration and UV illumination
on the localized motion is less evident in the XPCS data.

The effect of UV illumination on correlation functions of a 50 mM micelle solution is evi-
dent in Figure 5.6. The structural relaxation is strongly affected by UV illumination and shifts
to shorter time scales until eventually, only one relaxation mode is visible. The presence of
two relaxation processes is a direct consequence of the confinement of the NPs in the network.
Therefore, a single mode relaxation implies that the NPs are not confined anymore as the en-
tangled network has been completely dissolved and the solution contains short, unconnected
micelles. Correlation functions for different q-bins are displayed in Chapter 7.

Deviation From Simple Exponential Correlation Functions and Subdiffusivity

We have seen in Section 4.2 that the KWW-exponents of both the short-time and the long-
time relaxation mode indicate exponential (α = 1) or stretched exponential (α < 1) behavior.
Furthermore, the KWW-exponent of the structural relaxation, α2, exhibits a q-dependence. The
origin of this behavior will be discussed in this section in more detail.

While exponential correlation functions are characteristic for Brownian diffusion, stretched
exponential correlation functions describe subdiffusivity and anomalous dynamics in crowded
environments due to localization; for example, stretched exponential correlation functions have
been found in highly concentrated proteins [100, 101], nanocomposites [67], colloidal systems
near the glass transition [54], etc. Being confined in a transient cage, the diffusion of a particle
or molecule is hindered by the cage “walls”. Therefore, the probability to find that particle at
its original position inside the cage is increased compared a any other position outside the cage.
This leads to a slower than exponential (stretched) correlation decay [54]; also explained in
terms of memory effects [53]. In case of NP dynamics in the OMCA-CTAB network, coupling
between micelle fluctuation modes and NP dynamics additionally contributes to the anomalous
diffusion on short times scales and subdiffusive behavior [14].

Those effects are intrinsic to the dynamics, i.e., also a single NP would undergo subdiffu-
sive motion under confinement. However, stretched exponential correlation functions can also
emerge due to heterogeneity in the sample or non-equilibrium dynamics [102]. That is to say,
in the case of Brownian dynamics characterized by a distribution of relaxation times, an en-
semble average would result in stretched exponential correlation functions, too. Therefore, it is
important to disentangle different contributions that lead to stretched exponential behavior.
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5.2 Nanoparticle Dynamics and XPCS Results

In Figure 5.7, α2 is plotted as a function of the momentum transfer for a OMCA-CTAB
concentration of 50 mM and four different UV energies from 0 mJmm−2 to 170 mJmm−2. α2

decreases as a function of q until it reaches a constant value denoted αk. The length scale de-
pendence of α2 is a result of the complex network topology. In glass forming liquids, a KWW-
exponent decreasing with q has been attributed to the cross-over from local glassy-dynamics
(subdiffusive behavior) to long-distance diffusion [103, 104]. Analogously, α2 in the high-q
regime describes the local subdiffusivity due to caging effects. Similar to L0 in the previous sec-
tion, we define Lk = 2π/qk as the length scale where α2 becomes constant. It can be understood
as the onset of confinement induced subdiffusivity. On length scales larger than Lk, the data
show a transition towards diffusive behavior. However, α2 does not reach 1, which would corre-
spond to ideal Brownian diffusion and can be explained by non-exponential stress relaxation or
network inhomogeneities.
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Figure 5.7: KWW exponents, α2, of the structural relaxation measured with R = 50nm silica
particles and 50 mM OMCA-CTAB concentration as a function of momentum trans-
fer, q. The color indicates the absorbed energy through UV illumination. qk marks
the momentum transfer at which the initially decreasing α2 reaches the constant
value αk at high q.

Exploring General Relations between the Dynamical Parameters

The XPCS data acquired in the frame work of this thesis have been condensed to 82 sets of
correlation functions according to the methods explained in Section 4.1. Given that each dataset
consists of 2.5 million images in average, more than 200 million images have been analyzed.
The data include measurements of different concentrations and UV illumination times. Be-
fore discussing the nanorheology results with respect to the sample parameters, we explore the
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dataset as a whole to investigate general relations between the parameters. We consider the gen-
eralized diffusion coefficients, Di, the KWW-exponents, αi, and the exponents of the dispersion
relations, ni, of correlation functions that exhibit a two-step relaxation.

Figure 5.8 shows a grid of graphs where the distribution of Di, αi and ni is plotted on the
diagonal in a KDE representation (Figures 5.8a, 5.8e and 5.8i). This implies that the curves are
normalized like a probability density and the y-axis scales only applies to the data of the off-
diagonal plots. The correlation plots on the off-diagonal graphs display the mutual dependence
of the parameters. It is distinguished between the localized motion in red and the structural re-
laxation in blue. The data include all measurements where a two-step relaxation is visible while
it is not distinguished between different concentrations and UV illumination times. However,
their effect is implicitly encoded in the width of the distributions in Figures 5.8a, 5.8e and 5.8i,
i.e., the broader the distribution, the stronger the effect of concentration and UV illumination on
the sample.

The generalized diffusion coefficients, Di, describe how fast the NPs move through the net-
work. The distributions of Di are separated by about five orders of magnitude for both relaxation
processes (Figure 5.8a). Moreover, the distribution of D1 is about half as broad as the one of D2,
as the former spans over about three orders of magnitude, the latter over six. Hence, concentra-
tion variation and UV illumination predominantly affect the structural relaxation of the network,
as suggested by Figures 5.5 and 5.6. More precisely, D1 describes the dynamics at small length
scales, where NP dynamics are determined by the solvent viscosity inside the confinement cage
or short-time relaxation modes of the micelles. In contrast, the value of D2 depends on the
network mesh size, entanglements and the long-time stress relaxation—or in general the bulk
viscosity of the solution—which apparently is more susceptible to changes of the micelle length
and UV illumination.

Figure 5.8e and Figure 5.8i imply that both relaxation modes are separated not only by their
time scales—described by the values of Di—but also with respect to the dynamical exponents, αi

and ni, that describe the nature of the underlying relaxation processes. The structural relaxation
is characterized by a broad distribution of KWW-exponents, α2, with a maximum at 0.8 whereas
the localized dynamics are described by an exponent of α1 = 0.5.

The distribution of α1 exhibits a narrow peak at 0.5 whereas the one of α2 is about a factor
of two broader and ranges from 0.4 to 1.1. Assuming that the subdiffusive behavior of α1 stems
from caging effects, the structural relaxation is predicted to be essentially diffusive [14]. Instead,
non-exponential stress relaxation and long-range density fluctuations induce inhomogeneity of
the network and deviation from purely exponential correlation functions.

The q-dependence of the relaxation rates described by the exponents ni supports the hypoth-
esis of a fast subdiffusive and a slow, close to diffusive relaxation process (Figure 5.8i). The
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Figure 5.8: Grid of correlation plots and distributions of the fit parameters log(Di), αi and ni: the
plots on the diagonal are kernel density estimation (KDE) plots of the distributions
of the parameters. The off-diagonal graphs show correlation plots of the parameters
indicated at the bottom and the left side. The color indicates the short-time (red) and
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center graphs display the niαi = 2 relation.
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distribution of n1 has a maximum close to n1 = 4, whereas the distribution of n2 shows a maxi-
mum at 2.2.

In Equation (2.66), the relation αini = 2 was introduced as a result of the relation between
the MSD and correlation functions; therefore, n = 2 and n = 4 are expected for diffusive and
subdiffusive dynamics, respectively. The correlation plots of αi and ni in Figures 5.8f and 5.8h
retrospectively justify applying Equation (2.66). Trend lines have been added to the graphs that
indicate the niαi = 2 relation. Although this constraint was implicitly imposed on the fits of the
fast relaxation mode (red points) in Equation (4.8), the values of n2 (blue points) were obtained
without any constraints. Undoubtedly, they follow the same trend. Their larger spread is due to
measurement uncertainties. These results not only advocate the applied model, but also show
the generality of the relation between ni and αi. The fact that the distributions of the exponents
overlap and the data points in the correlation plots cover the parameter space in the range from
0.4 to 1.0 indicates that the system shows a transition from subdiffusive to diffusive behavior,
which we will investigate further in the following sections.

The other off-diagonal plots show a correlation of the generalized diffusion coefficients and
the q-scaling exponents—or an anticorrelation of Di and αi as a result of the relation in Equa-
tion (2.66). This correlation is an intrinsic feature of the power law fit and was discussed in
Section 4.2.

Although the foregoing discussion was quite qualitative, it has a strong advantage compared
to plotting individual datasets: it allows to evaluate the systematic error of the measurements and
to investigate mutual dependencies and correlations of certain parameters like Equation (2.66).
Thereby, fundamental physical concepts can be studied like the relation between the shape of
the correlation functions and the scaling of the dispersion relation.

Determination Of The Hydrodynamic Correlation Length

The hydrodynamic correlation length, ξ̂ , was determined from nanorheology measurements em-
ploying Equation (5.4). Below 200 mJmm−2 absorbed UV energy, the plateau modulus—and
thereby also ξ̂ —is not affected by UV illumination (Figure 5.2). Therefore, we include those
datasets and plot the distribution of ξ̂ for concentrations from 50 mM to 200 mM in Figure 5.9.
The width of the distributions of ξ̂ is of the order of 10 nm, whereas δ ξ̂ i = 2nm was determined
for the error of an individual value ξ̂ i from the XPCS measurements. The fluctuations of ξ̂ are
due to systematic errors of the sample preparation, e.g., stirring time and speed, temperature
during preparation, age of the sample, evaporation, etc., all affecting the network morphology.
Despite those systematic errors, ξ̂ can be calculated for each sample—that is, one capillary filled
with OMCA-CTAB solution of a particular concentration and UV illumination time—directly
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from the XPCS measurements with a precision of δ ξ̂ i . 2nm. This is a strong advantage of
nanorheology as it allows to measure the dependence of the dynamical parameters on ξ̂ with
higher accuracy. Important to recall is that one XPCS measurement actually consists of thou-
sands of correlation functions each measured on a different sample positions.

50 mM

65 mM

80 mM

100 mM

10 20 30 40 50 60 70 80

ξ̂ (nm)

200 mM

δξ̂i < 2 nm

Figure 5.9: Distribution of the hydrodynamic correlation length, ξ̂ , for various concentrations
determined by XPCS and nanorheology. The data include results from UV illu-
minated samples. For the statistical error of a single measurement δ ξ̂i < 2nm is
calculated from the fits of the correlation functions.

To compare rheology and nanorheology results, the values of ξ̂ determined with both methods
are shown in Figure 5.10. We used Equation (5.4) to calculate ξ̂ from the plateau modulus
measured with a plate-plate rheometer. A power law fit yields a concentration dependence of
ξ̂ ∝ c−0.72±0.06, which agrees with theoretical prediction of an exponent of −0.77 [26]. The
results of both methods are in agreement within the experimental accuracy.

An accurate measurement of the hydrodynamic correlation length is crucial for the follow-
ing analysis as it allows to relate the parameters that described the dynamical properties of the
OMCA-CTAB system to the characteristic length scale of the network. It is worth mention-
ing that nanorheology measurements can be conducted completely independent of mechanical
rheology experiments, i.e., they do not rely on a sample characterization by classical rheology
techniques. However, we will use the results from Section 5.1 to compare both techniques.
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Figure 5.10: Hydrodynamic correlation length, ξ̂ , determined by rheology (blue) and by
nanorheology with R = 50nm silica tracers (red) as a function of micelle concen-
tration. The solid blue line shows a power low fit.

5.3 Anomalous Dynamics Induced by Confinement and
Particle-Network Interaction

The aim is to investigate the structural relaxation of the network and compare the nanorheol-
ogy results with the Stokes-Einstein prediction. The structural relaxation determines the bulk
viscosity of the liquid. First, only datasets without UV illumination are considered as UV irra-
diation reduces the terminal time, τR, and consequently, affects the structural relaxation and the
viscosity, η . The Stokes-Einstein diffusion coefficient, DSE = kBT/6πηRh, was introduced in
Equation (2.35) to describe Brownian motion of spherical particles. The hydrodynamic radius
of the tracers, Rh = 55nm, was determined by light scattering and the viscosity from rheology
measurements (Section 5.1).

The values for DSE are indicated in Figure 5.11 as white diamonds. As a measure for the
confinement of the NPs in the micelle network we consider the ratio between particle size
and hydrodynamic correlation length, 2R/ξ̂ . ξ̂ was determined from the plateau modulus em-
ploying Equation (5.4). The gray line displays a power law fit of the rheology data yielding
DSE ∝ ξ̂−3.1±0.2. As the temperature, T , and the hydrodynamic radius, Rh, are constants for all
measurements, the diffusion coefficient only depends on the viscosity and scales like DSE ∝ η−1.
The concentration dependence of the viscosity was found to follow η ∝ c2.2 (Figure 5.1b) and
ξ̂ ∝ c−0.72 was deduced from Figure 5.10. In summary, the dependence of DSE on ξ̂ is a result
of the anomalous concentration dependence of the viscosity.
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In general, the proportionality constant of the XPCS dispersion relations, D2, can only be
compared with DSE if the correlation functions show simple exponential behavior (α = 1) and a
quadratic q-dependence of the decay rates: Γ2(q) ∝ q2. It is common in the literature to rescaled
the relaxation rates introducing 〈Γ2〉= Γ2α2/Γ̃(1/α2), where Γ̃(x) is the gamma-function [67].
If the stretched exponential shape originates from a distribution of relaxation rates and the
quadratic q-dependence is restored after rescaling, 〈Γ2〉 is the first moment of the distribution of
relaxation rates. However, if the anomalous exponent persists, it is indicative of truly subdiffu-
sive behavior.
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Figure 5.11: Diffusion constant of the structural relaxation, D2, measured with XPCS (red cir-
cles) and the Stokes-Einstein diffusion coefficient, DSE , calculated from rheology
employing Equation (2.35) (white diamonds). The solid line is a power law fit
resulting in DSE ∝ ξ̂−3.1±0.2.

Figure 5.11 shows the generalized diffusion constant of the structural relaxation, D2, obtained
from the rescaled relaxation rates of the correlation functions, as a function of the confinement
parameter (red circles). Above each data point, the corresponding q-scaling exponent, n2, is in-
dicated. ξ̂ was determined by Equation (5.4) from the localization length. Above a confinement
ratio of 2R/ξ̂ ≈ 2, rheology and XPCS data are in agreement implying that the tracers probe the
bulk viscosity of the solution according to Stokes-Einstein. Additionally, we find that the de-
viation of the exponent from quadratic scaling is |n2−2| ≤ 0.12. However for 2R/ξ̂ < 2, both
parameters, D2 and n2, are larger than predicted by Stokes-Einstein.

To investigate the deviation from Stokes-Einstein further, we calculate the normalized dif-
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ference of the generalized diffusion coefficient, (D2−DSE)/DSE , and plot it as a function of
n2−2, which measures the discrepancy of the exponent from the quadratic q-dependence (Fig-
ure 5.12). The origin of the graph corresponds to full agreement between the nanorheology data
and Stokes-Einstein. To study a possible effect of the rescaling of the relaxation rates, data ob-
tained from fitting Γ(q) (not rescaled) and 〈Γ〉(q) (rescaled) are included. First, we discuss the
eight points where n2−2 < 0.2, that correspond to the data in Figure 5.11 where 2R/ξ̂ > 2. In
general, rescaling the relaxation rates reduces the deviation for both the exponent and the gen-
eralized diffusion constant from the theoretical prediction, i.e., the gray points are transformed
to the red ones. In particular, the difference between D2 and DSE is decreased. In contrast for
n2−2 > 0.2, diffusive behavior is not restored after rescaling the relaxation rates, which is also
evident in Figure 5.11 for 2R/ξ̂ < 2.
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Figure 5.12: Normalized deviation of, D2, from the Stokes-Einstein diffusion coefficient, DSE

(y-axis) as a function of the difference of the exponent of the dispersion relation,
n2, from the quadratic q-dependence predicted for Brownian diffusion (x-axis). The
red and gray points show the results with and without rescaling of the relaxation
times. The red line is a guide to the eye.

We have seen in Section 4.2 that in case of large measurement uncertainties overestimating
the coefficient of a power law fit can cause the overestimation of the exponent and vise versa.
Therefore, the question is whether the data for n2−2 > 0.2 in Figure 5.12 describe truly subd-
iffusive behavior or deviate from Stokes-Einstein due to a bad fit. The answer to this question
is two-fold: first, the data that show subdiffusive behavior were obtained from correlation func-
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tions that exhibit a high contrast of the first relaxation mode due to a large localization length
(cf. Figure 5.11). Therefore, the accuracy of the parameter estimation is increased indicated by
the smaller error bars in Figure 5.12. Secondly, rescaling the relaxation rates does not restore
diffusive behavior as it does for the n2−2 < 0.2 data. The fact that also the rescaled relaxation
rates lead to a subdiffusive exponent is another strong indication for real subdiffusive behavior.

Based on Figure 5.11 and Figure 5.12 the nanorheology results suggest that upon confinement
release the NP dynamics change. For 2R/ξ̂ < 2, they tend to move faster through the network
than predicted implied by the generalized diffusion coefficient, D2. Furthermore, the values of
n2 indicate a subdiffusive contribution to the dynamics. How can we explain this deviation?
Although the macroscopic viscosity is determined by the microscopic structure and dynamics
of the micelle network, nanorheology is sensitive to additional microscopic processes that are
not reflected in the bulk properties. In particular when 2R/ξ̂ < 2, the hydrodynamic correlation
length becomes more comparable to the NP size in favor of coupling between micelle and NP
dynamics. The increasing mesh size in combination with micelle fluctuation modes allow the
NPs to slip through the network mesh and escape their confinement cages faster than estimated
by the macroscopic viscosity. Fluctuations of the network strands are due to short-time micelle
dynamics like Rouse modes, that allow the NPs to escape their cage and shift the onset of
the Stokes-Einstein violation to larger confinement values [14, 57, 105]. Consequently, the NP
mobility is less hampered by the surrounding micelles and the tracers experience a local viscosity
that is smaller than the bulk viscosity.

In addition to this so-called constraint release, activated hopping could contribute to NP dif-
fusion [55, 56, 106]. Indeed, it is an ongoing discussion how important the contribution of
activated hopping is compared to constraint release and particle-network interactions [107]. Ya-
mamoto and Schweizer [57] suggest that hopping only plays a role in a narrow range of con-
finement ratios from 2R/a ≈ 1 to 2R/a ≈ 2, where a is the tube-diameter. Theoretically, the
tube diameter and the hydrodynamic correlation length are not the same and a direct comparison
of the theoretical predictions and the XPCS data is difficult; especially, because the effect of
hopping is expected to be small.

Activated hopping—as a discrete process of successive jumps between cages—would affect
the shape of the correlation functions and lead to compressed exponential shape (α > 1) [102].
Figure 5.13 displays αk as a function of confinement for the localized caging motion (orange)
and the structural relaxation (blue); the latter includes the data corresponding to the diffusion co-
efficients in Figure 5.11. While the localized motion is described by an average KWW-exponent
of 0.5 as a result of caging effect (orange line), αk of the structural relaxation is continuously
increasing as a function of 2R/ξ̂ (blue line). Recalling that αk is determined by short-range
dynamics, it mainly reflects micelle-particle interactions which are strongest when the micelle
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Figure 5.13: Values of the KWW-exponent at large momentum transfers, αk, of the long-time
(blue) and short-time (orange) diffusion as a function of confinement. The solid
lines are guides to the eye.

strand or the distance between entanglements is on the same order as the particle diameter. For
2R/ξ̂ > 1, the interaction strength is reduced and the NP dynamics turn towards diffusive be-
havior. Hopping could contribute to this effect and lead to an increase of αk, but its contribution
cannot be distinguished from reduced NP-chain interactions.

Based on the KWW-exponent at high-q values, αk, we introduce the parameter

K =
1

αk
−1 , (5.5)

as a measure for the local subdiffusivity. It describes the deviation from exponential behav-
ior (K = 0) of the correlation functions on length scales similar to or smaller than the NP size.
Thereby, stretched exponential behavior due to long range network density fluctuations is ex-
cluded. Figure 5.14 shows the degree of subdiffusivity, K, and the transition length scale Lk as
a function of 2R/ξ̂ . Lk was defined in Figure 5.7 as the length scale below which confinement
of the NPs induces subdiffusivity. Correlation functions start to deviate significantly from expo-
nential behavior for 2R/ξ̂ . 2.2, which is about the same confinement ratio as the onset of the
Stokes-Einstein violation in Figure 5.11 given the precision of the data.

The fact that the degree of subdiffusivity increases as the network cages become larger, is
indicative of a continuous transition between localized motion and diffusion. In the intermittent
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region, the NPs can escape the cage even though their diameter is larger than the mesh size, but
coupling to micelle dynamics induces subdiffusivity. When the mesh size becomes much larger
than the NPs, the tracer dynamics are determined by the solvent viscosity and are not affected
by individual chains [14]. Opening up of the network cages is also advocated by the parameter,
Lk, that increases with decreasing confinement. That is to say, the NPs move a larger distance
until subdiffusivity is induced by the surrounding micelles.
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Figure 5.14: Degree of subdiffusivity, K, (red) and transition length, Lk, (blue) as a function of
confinement as deduced from Figure 5.7. The red line is a guide to the eye.

5.4 The Influence of UV Illumination on the Stress Relaxation
and the Long-Range Connectivity of the Network

In Section 5.3, we found that the NP dynamics deviate from Brownian diffusion below a con-
finement ratio of roughly 2R/ξ̂ < 2. It is important to recall that the value of ξ̂ changes pre-
dominantly as a function of the OMCA-CTAB concentration, c, as concluded in Section 5.1.
In the following, we will discuss the effect of UV illumination on samples with concentrations
of 50 mM, 80 mM and 100 mM. While the unilluminated 80 mM and 100 mM samples were
found to obey Stokes-Einstein—they fall into the 2R/ξ̂ > 2 regime—the unilluminated 50 mM
solution exhibits a confinement parameter of 2R/ξ̂ < 2, for which we found subdiffusive behav-
ior.
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UV illumination causes a reduction of the end-cap energy, Es, which favors the formation of
smaller micelles and reduces the average micelle length, L̄c (Equation (2.4)) [26]. Eventually,
it becomes energetically more favorable for the micelles to create an end-cap rather than a joint
and breaking of cross-links reduces the long-range connectivity of the network.

Figure 5.15 shows the long-time generalized diffusion coefficient, D2, normalized to the one
for zero illumination (D2,un = D2(0)) as a function of absorbed energy. D2 increases about
four orders of magnitude and then reaches a constant plateau (for the 50 mM sample). This
indicates that the minimum of L̄c has been reached and additional UV illumination does not
affect the micelle morphology any further. The reason is the irreversible isomerization of the
trans-OMCA molecules resulting in an equilibrium concentration of trans- and cis-isomers for
long UV illumination times (Figure 2.10) [7].
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Figure 5.15: Generalized diffusion constant, D2, as a function of absorbed UV energy and
normalized to the unilluminated ones, D2,un, for micelle solutions with 50 mM,
80 mM and 100 mM surfactant concentration. The solid lines are guides to the eye,
where the initial slope indicates an exponential increase. The increasing rate of the
red line is three times larger than the one of the blue line.

For all concentrations, D2 initially increases with UV illumination. However, the
50 mM sample shows a steeper increase and a stronger susceptibility to UV light than the
80 mM and 100 mM solutions. In fact, an exponential fit of the initial slope leads to a three
times higher increasing rate in case of the 50 mM sample compared to the other concentrations.
Assuming a spatially homogeneous UV illumination and that a certain amount of energy is
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necessary to break a joint, the number of broken joints per absorbed unit energy is constant and
the same number of joints was released after a particular absorbed UV energy. Then, the plateau
of D2 is reached when all connections are broken and the network has dissolved completely.

Interestingly, the susceptibility to UV irradiation—inferred from the slopes of the initial in-
crease in Figure 5.15—does not change consistently with concentration. Analogously to Fig-
ure 5.11, the reason for the 50 mM dataset following a different behavior can be attributed to
the same phenomenon as discussed in Figure 5.11, i.e., anomalous dynamics under loose con-
finement. In case of the 80 mM and 100 mM samples, the NPs are strongly confined by the
micelle network. UV illumination reduces the time scale of the stress relaxation which increases
the tracer diffusivity. For loose confinement of the 50 mM sample, where the NP dynamics are
not only determined by the network stress relaxation but also by tracer-micelle interactions, UV
induced reduction of the average micelle length additionally increases the tracer mobility.

Figure 5.16 supports this picture by showing the parameter that describes the subdiffusivity,
K, as a function of UV illumination for the same surfactant concentrations. The curves describe
the same trend: first, the subdiffusivity increases as a function of UV illumination; then, it
exhibits a maximum; eventually, the dynamics tend to restore diffusive behavior. The 50 mM
data present a larger initial K value due to the weaker confinement as discussed before. The
maxima of K mark the points where the localization of the particles starts to disappear, i.e.,
where the network has dissolved and the solution consists of unconnected wormlike micelles
(Figure 5.6). Additional UV illumination reduces the micelle length further, which weakens the
influence on the NP dynamics. Eventually, the liquid transforms into an almost Newtonian fluid
with the micelles being smaller than the NPs supporting Brownian dynamics—indicated by the
dashed gray line.

Both peaks are fitted with Lorentzian functions (solid lines), that allow to determine the
peak positions to be 120 mJmm−2 and 530 mJmm−2 for the 50 mM and 80 mM samples, re-
spectively. The subdiffusivity of the 100 mM increases following the 80 mM curve. The dif-
ferent behavior of the 50 mM sample is attributed to constraint release and stronger NP-micelle
interactions analogously to Figure 5.15 .

In general, the appearance of the two peaks and the influence of UV illumination on the degree
of subdiffusivity is interesting as it allows to deduce information on the shape of the stress
relaxation function, µ(t), of the micelle network and the interplay between reptation and Rouse
motion (Section 2.2). As ζ —the ratio of micelle breaking and reptation time scales—scales
like ζ ∝ L̄c

−4 [27], UV illumination changes the functional form of the stress relaxation by
inducing a shortening of the micelle contour length, L̄c [7]. The shorter the micelles, the longer
the breaking time; subsequently, reptation becomes the dominant process for stress relaxation
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Figure 5.16: Subdiffusivity described by the parameter, K, as a function of UV illumination for
micelle solutions with 50 mM, 80 mM and 100 mM OMCA-CTAB concentration.
The gray line indicates purely diffusive behavior (K = 0).

(ζ > 1). As a result, µ(t) exhibits a stretched exponential form which is reflected by the shape
of the correlation functions and the value of K in Figure 5.16.

The ratio between micelle breaking time and terminal time, ζ̄ = τbreak/τR, can also be inferred
from Cole-Cole plots of the dynamic moduli employing the work from Turner and Cates [38]
(see Section 2.2.2 and Figures 7.3 and 7.4). ζ̄ increases with UV illumination (Figure 5.17)
which implies an increasingly non-exponential shape of the stress relaxation function and inva-
lidity of the Maxwell model on short time scales. ζ̄ = 0 corresponds to a purely exponential
stress relaxation. Non-exponential stress relaxation in particular affects the high-frequency be-
havior of the dynamic moduli, which is explained by faster relaxation processes like Rouse
modes or tube-length fluctuations [4]. Tube length fluctuations describe the increased likelihood
of stress relaxation at the chain-ends due to their higher degree of freedom [108]. Similarly,
Rouse modes contribute to stress relaxation through fluctuations of chain segments shorter than
the entanglement length [109].

From ζ̄ & 1 it follows that ζ̄ ' τbreak/τrep and reptation can be identified as the main channel
of stress relaxation from the rheology measurements. This is the case for ζ̄ & 80mJmm−2 in
Figure 5.17 in agreement with the 80 mM and 100 mM data in Figure 5.16. That the behavior
of the 50 mM sample deviates from the rheology data is another indication that the violation of
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Stokes-Einstein and the subdiffusive behavior are not only induced by the viscoelasticity of the
network but actually a result of anomalous dynamics of the NPs for 2R/ξ̂ . 2.

0 50 100 150 200 250

EUV (mJ mm−2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ζ

Figure 5.17: The ratio between micelle breaking time and terminal time, ζ̄ = τbreak/τR, as a
function of UV illumination obtained from Cole-Cole plots. The data show the
average of measurements acquired with solutions of 50 mM, 80 mM and 100 mM
surfactant concentration. The solid line is a guide to the eye.

In short summary of the last two sections, we investigated the structural relaxation of the
OMCA-CTAB network and compared the rheology and nanorheology results. For strongly con-
fined tracer particles, the outcome of both methods is in agreement. However, when the confine-
ment is decreased below a certain level—we found 2R/ξ̂ . 2—the NP mobility anomalously
increases and the dynamics become subdiffusive. By systematically varying the network mesh
size and the micelle length, we could show that the microscopic stress relaxation is reflected in
the shape of the XPCS correlation functions. We attributed the increasingly subdiffusive behav-
ior to a stretched exponential stress relaxation function of the network determined by reptation
of the micelles.

5.5 High-Frequency Strain-Stiffening Due to Nanoscale
Rigidity

While on long time scales the NPs diffuse through the micelle network and probe the structural
relaxation, on short time scales they are localized (trapped) and their dynamics are determined
by the hydrodynamic properties of the confinement cage. Therefore, the parameters that describe
the short-time relaxation allow to deduce information on the cage size, L0, and the local speed of
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the dynamics, D1. As a result of confinement, the functional form of the short-time dispersion
relation is different from the long-time diffusion. It is of pure subdiffusive nature (α1 ≈ 0.5) and
exhibits a q-independent component, Γ′1, in the small-q region (Figure 5.4). Γ′1 quantifies the
smallest relaxation rate inside the cage, i.e., when the confined NP moves against a cage “wall”.
The value of Γ′1 describes how much the particle motion is damped by interacting with the cage.
Therefore, it is a measure for the stiffness of the network. As UV illumination has no effect on
the localized motion, the plots in this section include also data acquired with UV illuminated
samples for better statistics.

Figure 5.18 shows the generalized diffusion coefficient of the short-time relaxation, D1, as a
function of the hydrodynamic correlation length, ξ̂ . As a technical remark it has to be noted
that because of the limited time resolution and the reduced SNR in the high-q region due to low
scattering intensities, the estimation of D1 is bound to larger errors and is only possible down
to ξ̂ ≈ 45nm. Within the accuracy of the measurements, D1 is independent of ξ̂ . Recalling that
D1 is defined by the high-q behavior of the dispersion relation, Figure 5.18 implies that on short
length scales the NP dynamics are determined by the solvent viscosity inside the cage or by
short-range micelle interactions that do not depend on the mesh size [14].
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Figure 5.18: Generalized diffusion coefficient of the localized motion, D1, as a function of ξ̂ .
The solid blue line shows the average value.

In Section 5.2, L0 was introduced as the transition length scale between the high-q dynamics
described by a power law and the low-q plateau, Γ′1. Therefore, L0 is a measure for the space
the NPs explore until their dynamics are determined by caging effects—or in other words, the
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effective cage size. L0 exhibits a minimum as a function of the hydrodynamic correlation length,
ξ̂ (see Figure 5.19). The minimum value of L0 is approximately the hydrodynamic diameter of
the NPs showing that upon decreasing mesh size the micelle network reaches a state where it
ideally wraps the NPs yielding a minimum cage size. Interestingly, upon further reduction of ξ̂ ,
L0 starts to increase again which is indicative of an increased tracer mobility inside the cage.
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Figure 5.19: Effective cage size, L0, as defined in Figure 5.4b in units of the NP diameter, 2R,
as a function of the hydrodynamic correlation length ξ̂ . The solid line is a guide to
the eye.

It is important to keep in mind that the particles are not confined by a solid box but by a
complex system of branched and entangled flexible chains. Before, the discussion was mainly
focused on the network structure described by ξ̂ and its structural relaxation. Since on sub-
millisecond time scales, the network itself can be considered stationary, it is intuitive to recall the
structural and dynamical properties of an individual chain segment that defines the cage between
two entanglement points or cross-links (Section 2.2). Especially, the short-range bending rigidity
of the micelles starts to play a role and affects the NP confinement [98]. More precisely, in order
to be connected to a cross-link a micelle has to bend towards that junction. However, if the
distance between two joints is smaller than the length scale on which the micelle behaves like a
rigid rod—described in terms of the persistence or Kuhn length—the micelle cannot bind to the
nearest joint.

Coming back to the discussion of Figure 5.19, we can understand the minimum of L0 as
follows: for mesh sizes, ξ̂ , larger than the Kuhn length, b, the chain segments between network
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connection points are flexible and the NPs experience an effectively larger cage size. Then, L0

decreases with decreasing mesh size as the net is pulled tighter around a NP. Eventually, the
effective cage size increases again as ξ̂ becomes smaller than b and the micelles cannot connect
to the nearest cross-link due to rigidity on short length scale.

Nanoscale rigidity further induces local stiffness of the micelle network which is evident in
the behavior of the q-independent component of the dispersion relation, Γ′1 (Figure 5.20). Γ′1
describes the interaction between the NPs and cage walls and can be interpreted as a mea-
sure for the stiffness of the network on the nanometer length scale. Γ′1 exhibits a peak at
ξ̂ 0 = (41.2±0.2)nm with a full width at half maximum of (2.4±0.6) nm (fitted by a Lorentzian
function plus a constant background of (0.39±0.09) s−1). Comparing the results with Fig-
ure 5.19, the peak of Γ′1 occurs at the edge of the minimum of L0 towards smaller mesh sizes.
Apparently at a hydrodynamic correlation length of about 41 nm, the network develops extreme
stiffness upon deformation by the NPs.
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Figure 5.20: q-independent component of the short-time relaxation, Γ′1, as a function of ξ̂ . The
solid line is a fit to a Lorentzian function with a constant background. The center
position is ξ̂ 0 = (41.2±0.2)nm the full width at half maximum is (2.4±0.6) nm.

This behavior of the OMCA-CTAB system is very similar to macroscopic strain-stiffening in
branched networks that exhibit nonlinear mechanical response to deformation as a result of bend-
ing and stretching forces [2, 110–112]. Upon critical shear strain, those cross-linked networks
undergo a soft-to-rigid phase transition accompanied by peaks in dynamical network proper-
ties like the differential non-affinity [111] or the changing rate of the bending angle [113]. The

98
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singularity is damped by increasing bending rigidity of the fibers or polydispersity of the mesh
size [112]. In summary, the cross-linked network stabilizes under deformation depending on the
connectivity of the network and the rigidity of the network strands. Upon further deformation,
plastic flow induces fluidization [112].

In those references, collagen fibers often serve as a sample system with a macroscopic per-
sistence length on the order of ∼ 1cm [114]. The OMCA-CTAB network exhibits characteristic
traits comparable to transient fiber networks like intermicellar branching, disorder, short-range
rigidity, however, on microscopic length scales. Indeed, the peak of Γ′1 in Figure 5.20 occurs
for a hydrodynamic correlation length close to the Kuhn length found for wormlike CTAB mi-
celles [28]. Therefore, we can conclude that the network looses its local flexibility when the
average mesh size is similar to the Kuhn length of the micelles. As a result, on short-time scales
the network stiffens upon deformation through the NPs.

It should be emphasized that short-range rigidity is an intrinsic feature of the micelles—
similar to the end-cap energy—depending on the interaction between the particular surfactant
monomers. That is to say, the Kuhn length is well defined for a particular micellar system as
implied by the narrow peak width of (2.4±0.6) nm (Figure 5.20). Despite systematic errors
due to sample preparation, the high accuracy of the individual nanorheology measurements and
the precise determination of the hydrodynamic correlation length and the dynamical parameters
allow to study this phenomenon.

In summary, the data presented in this section are indicative of high-frequency strain-
stiffening due to nanoscale rigidity of the OMCA-CTAB micelle network. We have shown that
nanorheology and XPCS allow to study the local viscoelastic properties of microscopic networks
and their mechanical response to local deformation through the tracer particles. We attributed
the increasing stiffness to the microscopic structure of the micelles. As this phenomenon is con-
nected to the localization of the NPs it has important consequences for the transport properties
of NPs in these complex networks.
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6 Conclusion and Outlook

We studied the viscoelastic properties of photorheological micelle solutions of ortho-
methoxycinnamic acid (OMCA) and cetyl trimethylammonium bromide (CTAB); in particular,
aiming for new insight into microscopic phenomena in complex fluids. Nanorheological infor-
mation were inferred from the dynamics of tracer particles with a radius of 50 nm, that were
dispersed in the OMCA-CTAB matrix. The nanoparticle (NP) dynamics were studied over more
than six orders of magnitudes—from tens of microseconds to hundreds of seconds—by X-ray
photon correlation spectroscopy (XPCS) at world leading synchrotrons, namely PETRA-III
at the Deutsches Elektronen-Synchrotron (DESY) and the European Synchrotron Radiation
Facility (ESRF).

The sample preparation and the measurement protocols were optimized to maximize the
signal-to-noise ratio while avoiding beam damage. Employing time resolved XPCS and two-
time correlation functions, the critical dose was estimated to be Dc . 2kGy. With the beam
damage under control, the biggest challenge was the analysis of more than 200-million, mostly
sparse, speckle images with less than 10−3 photons per pixel. Anticipating future demands on
efficient software capable of processing big XPCS datasets, we explored and developed meth-
ods to categorize and compose correlation functions of low intensity speckle patterns. The main
algorithms are made available for the community through the open source Python module Xana.

By classical rheology we could refine the microscopic picture of the OMCA-CTAB system.
The measurements revealed that the shear viscosity of the solutions exhibits an anomalous con-
centration dependence, that was attributed to intermicellar branching. As an interesting conse-
quence, changing the micelle concentration affects only the mesh size, ξ̂ , of the network (or
the plateau modulus) but does not alter the terminal time of the stress relaxation. In contrast,
upon UV illumination, the shear viscosity and the terminal time decrease while the mesh size
stays constant (up to a certain point). This can be explained by a reduction of the long-range
connectivity of the network due to a shorter average micelle length. Consequently, the mesh size
and micelle length can be tuned independently.

Based on the findings of the rheology measurements, we investigated the influence of the mesh
size and the micelle length on the local viscoelastic properties of the network by nanorheology.
The XPCS correlation functions exhibit a characteristic two-step relaxation describing the short-
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time confinement of the NPs and the long-time structural relaxation of the network. By fitting
the correlation functions with a double exponential model, structural and dynamical information
on the OMCA-CTAB system were deduced.

The nanorheology results were compared with the Stokes-Einstein prediction, where the
macroscopic viscosity and the diffusion coefficient were inferred from classical rheology. Both
methods are in agreement in case of strongly confined tracers, i.e., for 2R/ξ̂ & 2, where R is
the NP radius. However, when the mesh size is increased and the confinement is reduced
(2R/ξ̂ . 2), the NP dynamics deviate from Stokes-Einstein. In particular, they become sub-
diffusive and indicate an increased tracer mobility as the NPs start to slip through temporarily
enlarged network meshes. Network fluctuations that lead to constraint release have important
consequences especially for the transport properties, e.g., when used for drug delivery. We
demonstrated how XPCS can be used to investigate the transport properties of NPs in complex
environments.

We could show that the shape of the stress relaxation function is reflected in the Kohlrausch-
Williams-Watts (KWW)-exponents of the correlation functions. Upon UV illumination, the NPs
present increased subdiffusive behavior. We attribute this effect to the UV induced shortening
of the average micelle length, which increases the time scale of random scission and makes the
chains more stable. Consequently, reptation causes a stretched exponential stress relaxation.
This effect increases until the micelles are too short to overlap and the network dissolves. Even-
tually, the photorheological liquid turns into an almost Newtonian fluid and diffusive behavior
is restored.

Microsecond XPCS allowed to investigate not only the structural relaxation but also the con-
fined NP motion. On short time and length scales inside the transient cage, dynamics were found
to be subdiffusive as a direct consequence of the confinement. Accordingly, the generalized dif-
fusion coefficient is determined by the solvent viscosity and is constant for various mesh sizes.
The short-time dispersion relation further allowed to study interactions between the NPs and
the cage described by the smallest relaxation rate of the confined motion that is related to the
local stiffness of the network. We found that for a mesh size of ξ̂ = (41.2±0.2)nm the stiff-
ness exhibits a very sharp peak with a width of (2.4±0.6)nm and attributed this phenomenon
to nanoscale rigidity of the micelles. Apparently, the network develops nanoscale rigidity when
the mesh size is similar to the Kuhn-length of the micelles.

We showed that by XPCS the nanorheological properties of complex fluids can be studied.
Fast X-ray detectors are necessary to capture confined dynamics from which the local network
properties can be deduced. Thereby, we pioneered future studies on the viscoelastic properties
of microscopic networks that are not accessible by macroscopic rheology.
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The methods we developed in the framework of this thesis are not limited to a particular sam-
ple but can be used in future XPCS studies on other radiation sensitive systems. Indeed, recent
experiments on protein dynamics benefited already from our efforts. With the advent of 4th-gen-
eration synchrotrons and free-electron lasers (FELs), we anticipate that microsecond XPCS will
play a key role in understanding fundamental processes in aqueous solutions and biological sys-
tems. In this thesis, we presented techniques that will support successful experiments in this
broad field.
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7 Appendix

UV Lamp Specs

Table 7.1: UV lamp components purchased from Quantum Design Europe.

name product number

housing LSH102
lamp LSB610
power supply LSN150/2
mirror holder LSZ115
dichroic mirror LSZ172A
condenser lense LSC115

Figure 7.1: Emission spectra of UV lamps: a 100 W mercury lamp is used in the present
setup [71].
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Figure 7.2: Reflectance of dichroic mirrors: curve 2 corresponds to the mirror used with the UV
lamp [71].
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Viscoelastic Properties of Photorheological Liquids: Cole-Cole
Plots
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Figure 7.3: Cole-Cole plots corresponding to dynamic moduli shown in Figure 5.1a. Gosc = Gd .
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Figure 7.4: Cole-Cole plots corresponding to dynamic moduli shown in Figure 5.2a. Gosc = Gd .
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Correlation Functions
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Figure 7.5: Correlation functions
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Figure 7.6: Correlation functions
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Figure 7.7: Correlation functions
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Figure 7.8: Correlation functions
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Figure 7.9: Correlation functions
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Figure 7.10: Correlation functions
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Figure 7.11: Correlation functions
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