
The way to a smarter community: Exploring and Exploiting Data
Modeling, Big Data Analytics, High-Performance Computing and

Artificial Intelligence Techniques for Applications of 2D
Energy-Dispersive Detectors in the Crystallography Community.

DISSERTATION
zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von
M. Sc. Amir Tosson

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2020

Betreuer und erster Gutachter
Prof. Dr. Dr. h.c. Ullrich Pietsch

Universität Siegen

Zweiter Gutachter
Prof. Dr. Jonathan Taylor
Universität Kopenhagen

Tag der mündlichen Prüfung
23. June 2020

iii

UNIVERSITY OF SIEGEN, GERMANY

Abstract
Faculty IV

Department of Physics

Doctor rerum naturalium (Dr. rer. nat.),

The way to a smarter community: Exploring and Exploiting Data Modeling, Big
Data Analytics, High-Performance Computing and Artificial Intelligence

Techniques for Applications of 2D Energy-Dispersive Detectors in the
Crystallography Community.

by Amir TOSSON

Big data will be a source of new economic value and innovation. But even more is at
stake. Big data’s ascendancy represents [. . .] shifts in the way we analyze informa-
tion that transforms how we understand and organize society” [1]. This important
statement by Mayer-Schönberger and Cukier highlights the crucial benefit this field
offers to the research and business communities. It is opening up an entirely new
horizon for economic and innovative solutions. It also sheds light on the main chal-
lenge researchers and business analytics across the world have been facing during
the recent years, namely big data handling, extraction and employing. Digitization
enabling the real-time data visualization for the further analysis is now a vital pre-
requisite for a successful and innovative scientific community. This work aims to
contribute to the transformation of the crystallography community, dealing with an
enormous volume of the measured data obtained due to technological advancement
in radiation and detection, into a smarter scientific environment.
Specifically, this dissertation has a twofold aim. First, it is intended to provide
an introduction and implementation guideline to scientists in the crystallography
community and across the fields demonstrating how trend technologies might be
applied to design cutting-edge research projects. Second, considering the Energy
Dispersive Laue Diffraction (EDLD) as a case study, it introduces an innovative
approach to exploit high-performance computing to develop a novel framework
for data processing within the time frame of a few seconds compared to the tra-
ditional analytic systems requiring a few hours to process the same amount of data.
The framework developed is based on multiple artificial intelligence algorithms, de-
signed to perform tasks that cannot be processed by basic programming techniques.
Extending this approach, data clouding has been employed to establish the commu-
nication channels between scientists and the collected data. This computing solu-
tion helps to achieve commoditization of computational resources, implementation
of open-source software, data virtualization, globalization of workforce, establishing
a data-sharing point. On the whole, due to these technological improvements, the
crystallography community might gain maximum benefit from the collected data.
As a proof of concept, the reliability, efficiency, and performance of the entire work
has been verified by involving the system in a challenging task, namely: the one-shot
analysis of the micro texture in polycrystalline materials.

HTTP://WWW.UNI-SIEGEN.DE
http://www.uni-siegen.de/nt/start/
http://www.physik.uni-siegen.de/

v

UNIVERSTÄT SIEGEN, DEUTSCHLAND

Zusammenfassung
Der Weg zu einer intelligenteren Gemeinschaft: Erforschung und Nutzung von
Datenmodellierung, Großdatenanalyse, Hochleistungsrechner und Techniken

der künstlichen Intelligenz für die Anwendung von 2D-Energiedispersiven
Detektoren in der Kristallographie-Gemeinschaft.

von Amir TOSSON

Die Verarbeitung großer Datenmengen bietet eine immer größeren Wert für Wirtschaft
und neue Innovationen. Aber es bietet noch viel größeres Potenzial. Die wachsende
Menge an Daten spiegelt [...] Veränderungen in der Art und Weise, wie wir Informa-
tionen analysieren, die unser Verständnis und unsere Organisation der Gesellschaft
verändern" [1], wieder. Diese wichtige Aussage von Mayer-Schönberger und Cukier
unterstreicht den entscheidenden Nutzen, den dieses Feld für die Forschung und
die Wirtschaft bietet. Es eröffnet einen völlig neuen Horizont für wirtschaftliche
und innovative Lösungen. Sie beleuchtet auch die größte Herausforderung, vor
der Forscher und Wirtschaftsanalytiker in den letzten Jahren weltweit stehen, näm-
lich die Handhabung, Extraktion und Nutzung großer Datenmengen. Die Digi-
talisierung, die die Echtzeit-Visualisierung der Daten für die weitere Analyse er-
möglicht, ist heute eine entscheidende Voraussetzung für eine erfolgreiche und inno-
vative wissenschaftliche Gesellschaft. Diese Arbeit soll dazu beitragen, die Kristall-
ographieGesellschaft, die mit einer enormen Menge an Messdaten, die aufgrund des
technologischen Fortschritts in der Strahlung und Detektion gewonnen wurden, in
eine intelligentere wissenschaftliche Umgebung zu verwandeln.

Diese Dissertation verfolgt insbesondere ein zweifaches Ziel. Erstens soll sie
eine Einführung und einen Umsetzungsleitfaden für Wissenschaftler in der Kristal-
lographieGemeinschaft und in allen Bereichen bieten und aufzeigen, wie Trendtech-
nologien zur Gestaltung von Spitzenforschungsprojekten eingesetzt werden kön-
nen. Zweitens wird unter Berücksichtigung der energiedispersiven Laue-Beugung
(EDLD) als Fallstudie ein innovativer Ansatz zur Nutzung der Hochleistungsrech-
nen vorgestellt, um ein neuartiges Rahmenwerk für die Datenverarbeitung inner-
halb des Zeitraums von wenigen Sekunden zu entwickeln, im Vergleich zu den
traditionellen analytischen Systemen, die für die Verarbeitung der gleichen Daten-
menge einige Stunden benötigen. Das entwickelte Rahmenwerk basiert auf mehreren
Algorithmen der künstlichen Intelligenz, die so konzipiert sind, dass sie Aufgaben
ausführen können, die durch grundlegende Programmiertechniken nicht verarbeitet
werden können. In Erweiterung dieses Ansatzes wurde die Data Clouding einge-
setzt, um die Kommunikationskanäle zwischen den Wissenschaftlern und den gesam-
melten Daten her- zustellen. Diese Rechenlösung hilft bei der Kommodifizierung
der Rechenressourcen, der Implementierung von Open-Source-Software, der Daten-
virtualisierung, der Globalisierung der Arbeitskräfte und der Einrichtung eines Date-
naustauschpunktes. Insgesamt könnte die Kristallographie-Gemeinschaft aufgrund
dieser technologischen Verbesserungen maximalen Nutzen aus den gesammelten
Daten ziehen. Als Machbarkeitsnachweis wurde die Zuverlässigkeit, Effizienz und
Leistung der gesamten Arbeit durch die Einbeziehung des Systems in eine anspruchs-
volle Aufgabe verifiziert, nämlich: die einmalige Analyse der Mikrotextur in poly-
kristallinen Materialien.

HTTP://WWW.UNI-SIEGEN.DE

vii

List of publications:

1. Tosson, A, Shokr, M, Abboud, A, Algashi, A, Hartmann, R, Strüder, L, &
Pietsch, U. EDLD-Tool: A real-time GPU-based tool to stream and analyze
energy-dispersive Laue diffraction of BIG Data sets collected by a pnCCD.
Journal of Instrumentation 14, P01008 (2019).

2. Tosson, A, Bahrami, D, Davtyan, A, Shokr, M & Pietsch, U. Deep learn-
ing application for events classification of energy-dispersive Laue diffraction
datasets collected by pnCCD. International Journal of Modern Engineering Re-
search (2019).

3. Tosson, A, Shokr, M & Pietsch, U. Application of cloud computing for big data
in the X-ray crystallography community. The 3rd International Conference on
Software Engineering and Information Management (2020) Sydney, Australia.

4. Tosson, A, Al Humaidy, M, Shokr, M & Pietsch, U. Application of ML in grain-
related classification of Laue spots in a polycrystalline ED Laue pattern. (In
progress).

5. Shokr, M, Tosson, A , Abboud, A, & Pietsch, U. Energy-dispersive Laue
diffraction by means of a pnCCD detector coupled to a CsI(Tl) scintillator us-
ing ultra-hard X-ray synchrotron radiation. Journal of Synchrotron Radiation
(2019).

6. Shokr, M, Schlosser, D, Abboud, A, Algashi, A, Tosson, A , Conka, T, Hart-
mann, R, Klaus, M, Genzel, C, Strüder, L, & Pietsch, U. Applications of a
pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in
ultra high energy X-ray Laue diffraction. Journal of Instrumentation (2017).

7. Abboud, A, Dönges, B, Shokr, M, Tosson, A , Micha, JS , Hartmann, R, Strüder,
L, & Pietsch, U. ELattice tilt and subdivision of grains during crack formation
in VHCF duplex stainless steel using microbeam x-ray laue diffraction. VHCF7
Seventh International Conference on Very High Cycle Fatigue (2017), Dresden
, Germany.

8. Poster: Tosson, A, Shokr, M & Pietsch, U. Application of Machine Learning
in the Energy Dispersive Laue Diffraction experiments. Artificial Intelligence
Applied to Photon and Neutron Science workshop, Grenoble, France.

9. Poster: Tosson, A, Shokr, M & Pietsch, U. Employing Big Data Analytics,
High-Performance Computing, and Artificial Intelligence for application of 2D
Energy-Dispersive detectors. RACIRI summer school, Kaliningrad, Russia.

10. Poster: Tosson, A, Abboud, A, Shokr, M, Hartmann, R, Strüder, L, & Pietsch,
U. Parallel Computing for Analysis of Big Data in Solid State physics. HiPEAC
conference, Manchester, UK.

ix

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Crystallography community . 1
1.2 FAIR data concept . 2
1.3 The vision . 2
1.4 Structure . 2

2 X-ray Diffraction theoretical framework and empirical concerns 5
2.1 X-rays sources . 6

2.1.1 Conventional X-rays tubes . 6
2.1.1.1 Bremsstrahlung . 6
2.1.1.2 Characteristic X-rays 6

2.1.2 Synchrotron radiation . 7
2.1.3 Free Electron Laser (FEL) . 7
2.1.4 Buzzwords in X-ray . 7

2.2 Detector technology . 8
2.2.1 Point detectors . 8
2.2.2 Area detectors . 8
2.2.3 2D energy-dispersive detectors (pnCCD) 9

2.3 Energy-Dispersive Laue Diffraction (EDLD) 10
2.3.1 Experimental setup . 10
2.3.2 A typical EDLD pipeline . 11
2.3.3 EDLD data-handling system . 12

2.3.3.1 Event-reconstruction 12
2.3.3.2 Data mining and selection 13
2.3.3.3 Data interpretation and visualization 14

2.3.4 EDLD challenges . 15

3 Big Data Fundamentals 17
3.1 5V’s theory . 17
3.2 Data disciplinary . 18

3.2.1 Stating and refining the question 18
3.2.2 Employing Exploratory Data Analysis (EDA) 19
3.2.3 Building formal statistical models 19
3.2.4 Visualization the results . 19
3.2.5 Communicating and interpreting the results 19

3.3 Data Clouding . 20
3.3.1 Cloud solution types . 20

3.3.1.1 Public Cloud . 20
3.3.1.2 Private Cloud . 20

x

3.3.1.3 Hybrid Cloud . 21
3.3.2 Cloud Computing Service Models 21

3.3.2.1 Infrastructure as a Service (IaaS) 21
3.3.2.2 Platform as a Service (PaaS) 22
3.3.2.3 Software as a Service (SaaS) 22

3.4 Data warehousing and In-Memory databases 22
3.4.1 In-Memory Databases (IMDB) 23
3.4.2 Cloud-based Data Warehousing (CDW) 23

3.5 Application of Big Data for the X-ray crystallography community . . 24
3.5.1 Data history and nature . 24
3.5.2 From Sparse Matrix to Coordinate format (COO) 24
3.5.3 The cloud . 25
3.5.4 The main framework . 25

3.5.4.1 Data Manager . 27
3.5.4.2 On-demand warehousing 27
3.5.4.3 Analysis tool . 29

3.6 System analysis and conclusion . 30

4 High performance computing and parallel programming 33
4.1 Introduction . 33
4.2 Central Processing Unit (CPU) Vs Graphics Processing Unit (GPU) . . 34

4.2.1 CPUs . 34
4.2.2 GPUs . 35
4.2.3 How do they Work Together? . 35
4.2.4 The bottleneck . 35

4.3 Sequential Vs Parallel programming . 36
4.4 Keys to success . 36

4.4.1 Build the scene . 37
4.4.2 Costs of complexity minimizing 38
4.4.3 Make it scalable . 38

4.5 Application of HPC in EDLD . 38
4.5.1 EDLD-tool . 38

4.5.1.1 Streaming module . 40
4.5.1.2 Pre-processing module 40
4.5.1.3 Frame-by-frame reconstruction module 40
4.5.1.4 On-demand data delivery module 40
4.5.1.5 Analysis module . 40

4.5.2 The Graphical User Interface (GUI) 41
4.5.3 EDLD-tool output . 41

4.5.3.1 Frame visualization . 41
4.5.3.2 Comprehensive imaging 42
4.5.3.3 Statistical and numerical output 42

4.5.4 Technical description of the tool 42
4.5.4.1 Streaming module . 42
4.5.4.2 Frame-by-frame reconstruction module 42
4.5.4.3 Analysis module . 43

4.6 Results and discussion . 46

xi

5 Artificial Intelligence (AI) 51
5.1 Introduction . 51
5.2 Machine Learning (ML) . 52

5.2.1 Disciplines . 53
5.2.2 Types of learning . 53

5.2.2.1 Supervised learning . 54
5.2.2.2 Unsupervised learning 54
5.2.2.3 Reinforcement learning 54

5.2.3 Common ML algorithms . 55
5.2.3.1 Linear regression . 55
5.2.3.2 Logistic regression . 55
5.2.3.3 Naive Bayes (NB) . 56
5.2.3.4 Random Forest (RF) . 56
5.2.3.5 K- Nearest Neighbour (KNN) 56
5.2.3.6 K-means . 56

5.2.4 Application of ML in the grain-related classification of Laue
spots in a polycrystalline ED Laue pattern 60
5.2.4.1 The objective . 60
5.2.4.2 Finding the reference grain 60
5.2.4.3 AT-map calculation . 62
5.2.4.4 The model . 62
5.2.4.5 Experimental datasets and discussion 68
5.2.4.6 Technical description and conclusion 69

5.3 Deep Learning (DL) . 76
5.3.1 Deep learning basics . 76

5.3.1.1 4.3.2.1 The neuron model 76
5.3.1.2 Artificial Neuron Network (ANN) 77

5.3.2 Convolutional neural network (CNN) 80
5.3.2.1 Convolution layer . 81
5.3.2.2 Pooling (down-sampling) layer 81
5.3.2.3 Flattening layers . 83
5.3.2.4 Fully Connected (FC) layers 84

5.3.3 DL Buzzwords . 84
5.3.3.1 Padding . 84
5.3.3.2 Softmax . 84
5.3.3.3 Training-validating-testing phases 84
5.3.3.4 Transfer Learning (TL) 85

5.3.4 Application of DL in events classification from pnCCD datasets 85
5.3.4.1 Introduction . 85
5.3.4.2 The objective . 85
5.3.4.3 The model . 86
5.3.4.4 Data preparation . 86
5.3.4.5 Network Architecture 87
5.3.4.6 Results and discussion 89

6 Application of EDLD in material texture analysis 93
6.1 Introduction . 93
6.2 Crystallography behind the scene . 94

6.2.1 X-ray methods . 94
6.2.2 Texture representation . 95

6.3 EDLD for texture analysis . 96

xii

6.3.1 Understanding the texture form an Energy-dispersive Laue
pattern . 96

6.3.2 Experimental procedure and data management 97
6.3.3 Analytical procedure . 100
6.3.4 Results and discussion . 103

6.3.4.1 Observations . 103
6.3.4.2 Mathematical representation 103
6.3.4.3 Graphical representation 104

6.4 Technical description of the tool . 104
6.5 Conclusion . 105

7 Summary and conclusion 107

A Design patterns in software engineering 111
A.1 Creational design patterns . 111
A.2 Structural design patterns . 111
A.3 Behavioral design patterns . 112

B Codes 113
B.1 EDLD abstraction class header file . 113
B.2 Pixel structure header file . 115
B.3 conV point structure header file . 115
B.4 Texture-tool abstraction class header file 116

C Calculations 119

Acknowledgements 131

xiii

List of Figures

2.1 The diffraction of x-rays by crystal planes according to Bragg’s law.
(A) is a constructive interference, while (B) is a destructive interfer-
ence (source [14]). 6

2.2 The EDLD experimental setup. X, Y and Z represent the laboratory
system and (y, z) are the detector coordinates. The incident beam is
parallel to X-axis. Each Laue spot has a specific position at the detec-
tor active area (zi, yi). φ is the angle between two diffracted spots and
SDD denotes the distance between the sample and the detector. In
some experiments, the sample could be moved in directions X, Y and
Z with respect to the chosen reference position. The detector could be
moved in three directions. 11

2.3 The layout of the data pipeline for the EDLD. The hardware layout is
composed of a 2D energy dispersive detector (pnCCD) including the
384 x 384 active area, the frame store module and CAMEX readout
chip. It is attached to the Analog to Digital Converter unit (ADC) and
the shared memory. The software part has two components: (1) The
Raccoon, which has a full accessibility to the shared memory and is
considered as raw data delivery point (2) Analysis framework con-
nected with Raccoon to execute data treatment and analysis. 12

2.4 The thirteen possible event types originating from the interaction of
single photon with the pnCCD detector. 14

2.5 Different example of the fall-out events. (A) represents a double-triple
combination, while (B) is a quadrapole-triple one. (C) shows a fall-
out event of two double events. (D) is a threefold event consists of
two double events and a triple event. 14

2.6 A part from a generate Laue patter from a GaAs sample. 15

3.1 The diagram of data analysis framework 18
3.2 The environment of a data warehouse. 22
3.3 The memory hierarchy . 23
3.4 The traditional sparse matrix representation for a snippet 7× 7 matrix

vs. its COO representation. (A) is the sparse matrix representation,
while (B) is for Coordinate representation. 25

3.5 The main framework. 26
3.6 The GUI of the DOI generator tool. 28
3.7 The GUI of the releasing tool with snippet data files. 28
3.8 A snippet code of the bad allocation exception handling 29
3.9 Comparison between the costs of on-premises and AWS cloud sys-

tems. The blue bars represent the on-premises solution, while the red
ones indicate the AWS. 31

4.1 A scheme of the main hardware component assembly. (A) is the CPU
while (B) is the GPU. 36

xiv

4.2 A scheme of the sequential programming behavior. 36
4.3 A scheme of the parallel programming behavior. 37
4.4 Present data handling system design. The Raccoon and the analysis

system work sequentially. Data are persisted to a storage disk and is
transferred manually to the analysis module. 39

4.5 The EDLD-tool design. The pre-processing module performs its job
before starting the experiment. The streaming and reconstruction mod-
ules continuously work during the experiment time preventing data
loss. The on-demand and analysis modules are mutually exclusive
and controlled by the user. 39

4.6 EDLD-Tool graphical user interface main boards. 48
4.7 Frame visualization output. (A) is a 3D view of frame number 400 and

(B) is for frame 500. The vertical axes represent the event amplitude
in [adu] . 48

4.8 The visualized output of EDLD-Tool for a testing Gallium-Arsenide
(GaAs) sample exposed to hard white X-ray beam with energy range
from 5 keV up to 120 keV. 49

5.1 AI technologies. 52
5.2 Machine learning disciplines . 53
5.3 Different types of learning according to their dependency on data . . . 54
5.4 The RF model for 5 decision trees. The winner is True with the ratio

of 80%. 57
5.5 The HC pipeline for a dataset of 8 objects. At the beginning all ob-

jects are represented in individual clusters. Then, they are gradually
merged into on cluster. 58

5.6 The output dendogram of the HC. 59
5.7 The output diagram of the Elbow method application with k range be-

tween 1 : 8 clusters. The chosen number of clusters is 4, representing
the Elbow point. 59

5.8 ML scheme. 61
5.9 The simulated reciprocal map for a GaAs crystal with the Miller in-

dices range of −3 to 3. 62
5.10 The spherical and Cartesian representation. 63
5.11 The simulated reciprocal map for bulk and rotated GaAs crystals with

Miller indices range of −3 to 3. The red lines represent the bulk ~q
while the blue lines are for the rotated ~q. The rotation polar (δθ) and
azimuthal (δφ)are 3.9◦ and 6◦, respectively. 64

5.12 The reciprocal representation of all grains. 65
5.13 The AT-map of the simulated dataset. 66
5.14 The dendogram of the HC algorithm. 66
5.15 The diagram of the k-mean algorithm with k range of 1 : 9 clusters.

Based on the result of the Elbow technique, the number of cluster in
this dataset is 3. 67

5.16 Analysis procedure pipeline. 68
5.17 The indexed Laue pattern of GaAs single crystal. Only the Bragg

peaks with the highest integrated intensity were assigned to the iden-
tified Laue spots in the figure. 70

5.18 The 3D plotting of the reciprocal mapping for a GaAs single crystal.
The red dots represent the simulated data while the blue dots are for
the experimental data points. 70

xv

5.19 The AT-map of the experimental data points. The (0, 0, 0) point was
included for better visualization. 71

5.20 The dendogram of the HC for a GaAs single crystal dataset. The
dashed line is the predefined threshold level. According to this thresh-
old, all data points have been merged into a single cluster. 71

5.21 The diagram of the Elbow k-mean algorithm with kinit = 1. The El-
bow point was voted to be 1. 72

5.22 The clustered AT-map of the GaAs sigle crystal dataset. The red x
represents the centroid of the predicted cluster. 72

5.23 The indexed Laue pattern of Ni polycrystalline sample. 73
5.24 The AT-map of the experimental Ni polycrystalline sample data points.

. 73
5.25 The dendogram of the HC for a Ni polycrystalline sample dataset.

The dashed line is the predefined threshold level. According to in-
tersection between the threshold and the plotting, this dataset was
clustered into 9 ensembles. 74

5.26 The diagram of the Elbow k-mean algorithm with kinit = 9. The El-
bow point was voted to be 9. 74

5.27 The clustered AT-map of the Ni polycrystalline sample dataset. The
red x represents the centroids of the predicted clusters. 75

5.28 The time to process different number of reflections within a Laue pat-
tern. (A) is the elapsed time to simulate the reference grain vs the
HKL ranges. (B) is the latency of the At-map calculator, while (C) is
for the classification procedure. 75

5.29 The neuron models, (A) is biological neuron structure [143], while (B)
is the imitative artificial perceptron. 77

5.30 A simple feed-forward neural network with one hidden layer. 78
5.31 The typical activation functions curves. The left diagram (A) is sig-

moid. The middle (B) and the right (C) onces are for tahn and ReLU,
respectively. 80

5.32 The model architecture of LenNet-5 network [152]. 81
5.33 A convolution layer scheme. The original features map has a size of

(4x4). The applied filter layer has kernel size of 1x1 and stride of 2x2.
Each element within the output convoluted map is the element-wise
product of the filter and the corresponding features map elements. . . 82

5.34 The common convolution filters. (A) and (B) are the vertical and hor-
izontal edge filters respectively. (C) is the Sobel filter while (B) is the
Scharr filter. 82

5.35 The Sobel edge detector. The left image is the original image, while
the right one is the output after applying the Sobel filter, Source: [155]. 83

5.36 The Max Pool layer scheme. The original features map has a size of
(4x4). The applied pool layer has a Max pooling function with kernel
size of 2x2 and stride of 2x2. The output pooled map is shrunk to have
a size of 2x2. 83

5.37 The flatten layer scheme. 84
5.38 A convolution layer scheme with zero-padding technique. The origi-

nal features map has a size of (4x4) and the padded one is (6x6). The
applied filter layer has kernel size of 1x1 and stride of 2x2. The cor-
responding features map has a size of (4x4) which is the same as the
original input. 85

5.39 The blocks diagram of Dl-based model for event reconstruction. 86

xvi

5.40 Randomly chosen events from the simulated dataset. Single, double,
triple and quadruple events are shown correspondingly in (A), (B),
(C), and (D). 87

5.41 Randomly chosen annotated fall-out events using "LabelImg". The
color-bar is shown here only for better visualization. (A) is a single
and two double events. (B) shows a combination of two singles and a
quadruple. 88

5.42 The convolutional neural network (CNN) with input layer, three pairs
of convolutional and pooling layers, a fully connected layer, and an
output layer. 89

5.43 The accuracy and loss curves. (a) and (b) are for 30 epochs while (c)
and (d) are for 100 epochs. The blue and orange lines are correspond-
ing to the training and the validation phases, respectively. 90

5.44 Layers and parameters of the network architecture. 91
5.45 The original scheme for the YOLO object detector. It has 24 convolu-

tional layers combined with max-pooling layers. It is equipped by 2
fully connected layers before the output layer [159]. 92

6.1 A continuum of diffraction patterns, source [168]. (A) is for a single
ideal crystal, while (B) represents the diffraction pattern of a textured
material. (C) is the Debye-Scherrer rings of powder diffractionn. 94

6.2 Simulated pole figures of a textured specimen of aluminum, where
X-axis is the transverse axis and Y-axis is the loading axis. (A) is the
texture direction of (110), while (B) is for direction (100). 96

6.3 A scheme of two different diffraction scenarios. (A) shows two paral-
lel planes related to two grains with different orientation with respect
to the laboratory coordinates. These planes are eliminated with white
incident beam, generating two different energy peaks within the same
pixel. (B) displays two nearly parallel grains. The reflected beam by
the same orientation planes results in energy peak broadening. 98

6.4 The diffraction patterns of a textured specimen of aluminum under
different energy conditions. (A) represents the integrated intensity
pattern with energy range of 8 : 100 keV. (B), (C), (D), and (E) are the
filtered images with energy ranges of 43± 0.2, 48± 0.2, 54± 0.2, and
59± 0.2 keV, respectively. 99

6.5 The in-memory cube database. 100
6.6 The energy spectra of the chosen pixel. (A) is the energy spectrum

without masking. (B) is the energy spectrum with the 10× 10 mask.
The mask was done after considering this pixel to be the center. 100

6.7 Analysis procedure pipeline. 101
6.8 The masked intensity images for different mask sizes. 102
6.9 Energy spectra for randomly chosen masked points. 103
6.10 Binary regression 3D mapping of the reciprocal space. The red, green,

blue cyan and yellow points represent the~q vector associated to {111}
, {022}, {113}, {133} and {002}, respectively. (A) is the side view (i.e.
perpendicular to y-z plane) while, (B) is the plane view (i.e. perpen-
dicular to x-z plane) with the incident beam at its center. 105

6.11 The final weighed 2D-projection (Pole figure). 105
6.12 The Graphical User Interface (GUI) of the used tool 106

7.1 The main control board of the MGA platform. 109

xvii

List of Tables

3.1 Comparison between cloud-based and traditional solution 30
3.2 Cloud infrastructure configurations . 31
3.3 Costs details . 31

4.1 The used system specifications. 43
4.2 System timing analysis. 43
4.3 Experimental setup. 47
4.4 Results comparison between the previous analysis system and EDLD-

tool. 47

5.1 The angles of the simulated grains to the GaAs reference grain. 63

xix

List of Abbreviations

FAIR Findability, Accessibility, Interoperability Reuse
HPC High Performance Computing
EDLD Energy Dispersive Laue Diffraction
AI Artificial Intelligence
MiTx Micro Texture
XRD X-Ray Diffraction
FEL Free Electron Laser
CCD Charge Coupled Devices
ADC Analog-to-Digital Converter
NDT Non-Destructive Test
API Application Programming Interface
EDA Exploratory Data Analysis
IMDB In-Memory Database
SaaS Software as a Service
PaaS Platform as a Service
IaaS Infrastructure as a Service
DW Data Warehouse
CDW Cloud-based Data Warehousing
DOI Digital Object Identifier
MVVM Model View ViewModel
CLI Common Language Infrastructure
CPU Central Processing Unit
GPU Graphics Processing Unit
ML Machine Learning
DL Deep Learning
HC Hierarchical Clustering
SSE Sum of Squared Errors
NN Neural Network
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
YOLO "You Only Look Once

xxi

1

Chapter 1

Introduction

There is an undoubted fact: the next decade will witness a massive increase in the
volume of the collected data. Nowadays, data are analogous to gold, and data man-
agement is considered as a critical differentiator for market winners. Moreover, the
pace of development of any business depends on the systematic harvest of data. Ac-
cording to a study by the World Economics Forum [2], it is estimated that by 2020 the
globally generated data will reach 44 zettabytes. That is the equivalent to one thou-
sand million hard-disks with the storage capacity of one terabyte!. All these facts
force the decision-makers to seek new innovative approaches for data handling en-
deavoring maximum benefit for the respective business.
The modern scientific society seems to experience a drastic boom in the nature of
its data. It has gained an unprecedented ability to generate and store breathtaking
amounts of data. For example, particle accelerators (e.g. the Large Hadron Collider
at CERN) generate ≈ 100 terabytes of data per day [3]. In addition, the fourth gen-
eration high brilliance X-ray sources combined with 2D detectors have increased the
rate of data generation up to tens of GByte/sec [4]. This society tries to evolve the
ability to leverage the data in such a way as to distill from them useful knowledge,
hence providing new discoveries.

1.1 Crystallography community

Crystallography community brings together scientists that are active in many fields
(e.g., X-ray diffraction, neutron scattering, electron microscopy, etc.) in order to en-
hance experimental experience, answer scientific questions, and introduce new dis-
coveries. It is the only available tool to dive deeply into the micro- and nanosystems
of this universe. Crystallographers may use different radiation sources to charac-
terize the inner structures of crystals to identify their behavior under different con-
ditions. This generates precious data and knowledge that can be utilized by many
other scientific branches, such as chemistry, physics, and biology.
This field was born in 1901 when Röntgen was awarded the Nobel Prize for X-ray
discovery [5]. During the following few years, Max von Laue established his equa-
tion that investigates the interaction of X-rays with crystals generating a diffraction
pattern or a Laue pattern. In 1913 Bragg underpinned the crystallography by in-
troducing his famous formula, known today as "Bragg’s low" [6]. He formulated
the relationship between atomic structure of any crystal and its generated X-ray
diffraction pattern. This could support the community with a tool to enhance the
knowledge about the structure of matter (i.e. materials, catalysts, DNA, proteins,
and viruses).
Nowadays, any progress in crystallography is growing out of the development of
the primarily two components of any successful experiment, namely: the radiation

2 Chapter 1. Introduction

source and the detector. Thanks to the new technologies in industry and manufac-
turing, many synchrotron radiation facilities are available providing a high brilliance
X-ray beam. Furthermore, the new generation of fourth dimensional detectors has
opened the door for further discoveries beyond the expectations. These factors and
others have caused a bottlenecking situation: a congested data flow system. It often
happens when the data generating rate overrides the data managing rate. Such an is-
sue may show several deficiencies, such as losing either valuable data or value of the
generated data. Therefore, many efforts have been done to promote the standards
of digital data.

1.2 FAIR data concept

"FAIR Guiding Principles for scientific data management and stewardship" [7] are
a set of principles providing guidelines to improve the Findability, Accessibility,
Interoperability, and Reuse of digital assets, maximizing the integrity and impact
of the research investment. They address an effective approach to promote maxi-
mum use of research data, enhancing the ability of machines to automatically find
and use the data. They emphasize that meta-data and data should be easy to be
found, assigned by a global and persistent identifier, authorized and authenticated
accessible, integrated with other data, and according to community policies.

1.3 The vision

As a part of the scientific community, the Solid state physics department of Univer-
sity of Siegen has framed a novel concept to digitalize and automize the whole data
processing pipeline. Starting from data acquisition to data analysis, it is performed
with the possible minimum user intervention. Aiming to achieve a suitable scientific
environment that provides computational resources commoditization, open-source
software implementation, virtualization, workforce globalization, and to establish a
data-sharing point. This enables the community to extract the maximum benefit of
the collected data achieving the FAIR data concept. Moreover, it can expedite the
time to discovery, allowing the scientists to focus on their science without to be ex-
perts in data management. Therefore, many resources have been committed to serve
not only for the final product but also training the human cadres who can connect
the science with the different fields.
Deeming this vision, this work brings different computing technologies to the scien-
tific community. It aims to provide the scientists with guidelines about each trend
technology, helping them to extent their understanding of the different techniques.
It also demonstrates a practical example to implement these technologies in the
crystallography community. Considering the Energy Dispersive Laue Diffraction
(EDLD) experiment as a case of study, a new framework has been gradually devel-
oped from scratch.

1.4 Structure

This work is organized as follows: Chapter 2 introduces the fundamentals of crys-
tallography and detector technologies, followed by a detailed investigation of the
experimental approach and its concerns, which used as a case of study in this work.
Chapter 3 deals with the Big Data and its basics. It addresses the implementation

1.4. Structure 3

of Big Data strategies (e.g. data warehousing and clouding) in the X-ray commu-
nity. Chapter 4 is devoted to the investigation of High-Performance Computing
(HPC) essentials and applications. It includes a description of the developed soft-
ware package to achieve the full real-time analysis, namely: EDLD-tool. On the basis
of Artificial Intelligence and its applications, chapter 5 demonstrates a preparatory
introduction of AI techniques, architectures, and usage. Then, it focuses on the pro-
cedures to exploit such algorithms. Based upon that, a verification of the eligibility
and worthiness of the developed software to extend the application range of the
studied experimental approach is presented in chapter 6. The focus of this verifica-
tion study is on material Micro-Texture (MiTx) analysis using a one-shot experiment,
which has been a challenging task to be achieved because of the complicated struc-
ture of its datasets. This work concludes, in chapter 7, with a description of the
achievements, the limitations of this study, and an outlook for future research. It is
worth to mention that this work is based on recent publications [8–10].

5

Chapter 2

X-ray Diffraction theoretical
framework and empirical concerns

X-ray Diffraction (XRD) is one of the most powerful non-destructive tools to char-
acterize different types of matter, such as fluids, powders, and crystals. It is able to
provide detailed information about the crystallographic structure, chemical compo-
sition, and physical properties of materials [11]. It is based on the elastic scattering
of X-ray photons by atoms that are arranged in a periodic lattice, generating scatter-
ing X-rays that are in phase and produce constructive interference. This is explained
by the means of Bragg’s law where the wavelength of electromagnetic radiation is
measured by the diffraction angle and the lattice spacing in a crystalline sample, as
follows:

nλ = 2d. sin(θ) (2.1)

where n is an integer called the order of reflection, λ is the wavelength of X-rays,
d is the interplanar spacing between the atomic planes of a given material and θ is
called the diffraction angle and represents the angle between the incident beam and
the surface to the probed crystallographic plane. Figure 2.1 shows the interaction
of X-rays with the atoms in a crystal. It displays two incident rays on two atomic
layers separated by the distance d. Figure 2.1a visualizes constructively interfering
rays, satisfying Bragg’s law. On the other hand, figure 2.1b represents the two rays
with a phase shift that causes a destructive interference. The collection of many of
these rays results in, so-called, diffraction patterns. Analyzing such patterns can
provide a detailed structural characterization of a material, such as composition and
molecular connectivity, crystal size and orientation, stress and strain determination,
and others [12, 13]. Currently, XRD is used in wide range of medical and material
research areas.
In order to achieve a successful XRD experiment, three main aspects should be sat-
isfied, namely: a source, a detector, and an analysis procedure. Any advancement in
XRD depends on what is the range of energy and the brilliance provided by the X-
ray source, how much efficiency and sensitivity can be achieved by the detector, and
how fast and accurate is the analysis procedure. This chapter represents theoretical
framework and empirical concerns about the components of XRD. It is organized so
that, section 2.1 covers the different sources of X-rays and section 2.2 is a collective
summary of the detection technologies. Section 2.3 is devoted to explain the EDLD
experiment as an analysis procedure giving a brief about its experimental geometries
and analytical pipeline.

6 Chapter 2. X-ray Diffraction theoretical framework and empirical concerns

(A) (B)

FIGURE 2.1: The diffraction of x-rays by crystal planes according to
Bragg’s law. (A) is a constructive interference, while (B) is a destruc-

tive interference (source [14]).

2.1 X-rays sources

X-rays are electromagnetic waves that have frequencies in the range 3× 1016 Hz to
3× 1019 Hz, corresponding to wavelength of 0.01 to 10Å . They have particle-like
properties and can be considered as bunches of photons carrying discrete amounts
of energies in the range 100 eV to 100 keV. This is known as the dual (wave-particle)
nature of X-rays [15]. There are three common mechanisms used to produce X-rays,
namely; conventional X-rays tubes, synchrotron radiation, and Free Electron Laser
(FEL).

2.1.1 Conventional X-rays tubes

A typical X-rays tube for crystallographic studies is to hit the target or the anode by
an energetic beam of accelerated electrons that are usually produced by heating a
metal filament [16, 17]. The energy of the produced X-ray photons can have a value
up to the maximum energy of the incident electrons. This process is defined by two
different atomic processes:

2.1.1.1 Bremsstrahlung

The name bremsstrahlung is a german name means "braking radiation". It is electro-
magnetic radiation given off by the acceleration or deceleration of a charged particle
(e.g. an electron or an positron) [16, 18]. It occurs when an ultra relativistic par-
ticle (i.e. it has velocity close to the speed of light) interacts with a strong electric
or magnetic field. Such an interaction results in a continuous distribution of X-rays
radiation.

2.1.1.2 Characteristic X-rays

If the electron has enough energy, it can knock an orbital electron out of the inner
electron shell of a metal atom. Since the process leaves a vacancy in the electron
energy level from which the electron came, the outer electrons of the atom cascade
down to fill the lower atomic levels, and one or more characteristic X-rays are usually
emitted. As a result, sharp intensity peaks appear in the spectrum at wavelengths

2.1. X-rays sources 7

that are a characteristic of the material from which the anode target is made. The
frequencies of the characteristic X-rays can be predicted from the Bohr model.

2.1.2 Synchrotron radiation

Synchrotron accelerators were originally developed for particle physics. From 1990,
facilities have been elected especially for X-ray use to overcome the disadvantage of
the conventional X-ray source: the constant compensation of the energy losses dur-
ing interacting. When an electron or a positron emits a photon, it slows down and
its trajectory is deflected. Thus, synchrotron accelerators are designed to provide
abundant bremsstrahlung photons which called "synchrotron radiation" [19]. Such
accelerators are widely preferred because of their high brilliance and level of polar-
ization of the generated beam. Moreover, the resulting X-rays are energy-tunable.
A typical synchrotron consists of:

• LINAC which is a device similar to the cathode ray tubes to produce the elec-
trons for the storage ring. These electrons are packed in “bunches” and then
accelerated enough for injection into the booster synchrotron.

• Booster ring where the electrons are accelerated before being injected into the
storage ring. The booster works to only when the storage ring is refilled.

• Storage ring where the electrons accelerate close to the speed of light. It is a
tube maintained at very low pressure. As the electrons travel round the ring,
they pass through different types of magnets and in the process produce X-
rays.

• Beamlines are the final destination of the X-ray beams that surround the stor-
age ring in the experimental hall. Each beamline is designed for use with a
specific technique or for a specific type of research.

2.1.3 Free Electron Laser (FEL)

FELs are a noval type of laser where the optical amplification is achieved by accel-
erating high energetic (relativistic) particles to generate the beam which propagates
through a periodic magnetic field (an undulator) [20]. A FEL directly converts the
kinetic energy of the electron beam into light with high tunability and potentially
high power and efficiency. This can create a much higher spectral brightness and
linear coherent beam, compared with other synchrotron radiation sources [21]. Free
electron lasers offer a number of valuable attractions, such as the ability to be op-
erated in very wide wavelength ranges and the spectacular performance in extreme
wavelength region that are not reachable by any other light sources. This can be used
in many applications such as atomic and molecular physics, ultrafast X-ray science,
advanced material studies, biology and medicine.

2.1.4 Buzzwords in X-ray

• Soft X-rays: are the rays with photon energies below 5− 10 keV. They are easily
absorbed and can only be used by evacuated beamlines.

• Hard X-rays: are the rays with high photon energies above 5− 10 keV. They
have a strong penetrating ability and are widely used in imagining inside of
visually opaque objects. The hard X-rays can be used outside vacuum.

8 Chapter 2. X-ray Diffraction theoretical framework and empirical concerns

• Monochromatic beam: is X-rays of a fixed wavelength (i.e. discrete energy
spectrum). It can be produced by characteristic radiation emitted by a con-
ventional X-ray tube, monochromatized synchrotron radiation, or free electron
lasers [22].

• White beam: is X-rays of a ranged wavelength (i.e. continuous energy spec-
trum). It can be produced by bremsstrahlung delivered by an X-ray tube or
white synchrotron radiation [22].

2.2 Detector technology

Many sophisticated applications such as medical imaging, industrial inspection, and
High Energy Physics (HEP) research require detectors with special characteristics,
such as fast frame rate, high spatial resolution, dynamic energy range, and conve-
nient active sensor area. Therefore, there is no exaggeration to say that the radiation
detectors are the key element of any scientific achievement. The rapid development
of the X-rays sources technology motivates the scientific community to push forward
the detector development beyond its limits. The main aim is to design photon detec-
tors that can deal effectively with the extreme flux generated by the current and new
generations of synchrotron and FEL sources. Thanks to the evolution in microelec-
tronics, many new types of detectors are commercially available where each photon
or particle can be treated individually, achieving the required spectral resolution,
spatial resolution, and quantum efficiency. This part gives a short summary about
the different types of available detectors, focusing on the 2D energy-dispersive ones.

2.2.1 Point detectors

From their name, point detectors are capable to discriminate X-ray photons in one
specific spatial point. They can be categorized into two groups depending on the
number of measured dimensions1. 1) 1D point detectors (i.e. proportional and scin-
tillation counters) [23]: they retrieve the intensity information within a specific point,
often called "the observation point". The typical count rate of such technology is up to
105 counts per second [22]. It is essential to mention that, linear or curved point pro-
vide one-dimensional position resolution [24]. However, the disadvantages of point
detectors are their large dead times and poor energy resolution. This may limit their
applications specially in case of white X-rays. 2) 2D point detectors (i.e. energy-
dispersive point detectors) [25, 26]: they are special types of point detectors based
on the fully depleted pn-structures. They deliver the scattered X-ray spectrum at the
detection point as an extra dimension besides the intensity information. They show
some unique advantages in the case of in-situ Energy-Dispersive (ED) experiments
using the white X-rays beam, compared with the conventional point detectors.

2.2.2 Area detectors

Area detectors are a class of X-ray detectors that are formed by two-dimensional
structures of individual active units. They are used to deliver the intensity of an
incident X-ray flux along one or more dimensions, such as position, time, or energy.
Generally, they convert the incident X-ray photons into electrical signals which are
detected by the pixel electronics. Pixel signals are then sent to further shared cir-
cuitry, which is accessible by all other detection channels.

1In this work, the intensity is considered as a dimension. Many literatures exclude the intensity.

2.2. Detector technology 9

One of the common X-rays area-detector is the Imaging Plate (IP). Originally, it was
developed in Japan by Fuji Photo Film Co. Ltd for diagnostic radiography applica-
tions [27]. The system makes use of the photostimulable Eu-doped phosphor pow-
der on plastic sheet that has a good capability to store information generated by
X-rays [28, 29]. The incident X-rays photon excite the Eu+2 to Eu+3 which is, then,
deexcited by a readout red laser. This results in losing an electron accompanied by
emission of light with an intensity proportional to the incident X-ray flux[27]. IP are
relatively cheap and reusable. They are efficient in delivering position information
as they can monitor a 2D spatial resolution with an overall resolution of 3D (includ-
ing the intensity). However, they show inability to deliver energy information and
no more available.
Another semiconductor area detector is the Charge-Coupled Devices (CCD). They
are considered to be the digital version of the area detectors with an extra dimension,
namely; time resolution with an overall resolution of 4D. The CCDs are filmless and
can capture light converting it to digital data. They are based on creating electron-
hole pairs by the incoming X-ray photons which are typically realized in a multiple
array of silicon wafer. The pixels signals are then converted into digital values by an
Analog-to-Digital Converter (ADC). This can be done by determining the amount
of generated charge at each photosite and converting that measurement to binary
form. Currently, the Pilatus [30] and Eiger [31] detectors are the most efficient area
detectors as they can reach a count rate above 106 count per pixel. Despite they show
an excellent performance in the case of monochromatic applications, they failed to
provide a sufficient energy resolution to be utilized in the white-beam mode.

2.2.3 2D energy-dispersive detectors (pnCCD)

The 2D energy dispersive detectors are special type of the CCD developed for time
resolved, simultaneous position and energy dispersive detection of X-rays with low
noise level, fast readout, and high quantum efficiency [32]. The pnCCD type is one of
the most common used devices. The "pn" refers to the semiconductor pn-junctions
that fabricated from both P-type and N-type regions and operate as reverse-biased
diodes. Originally, it was developed at the MPI-Halbleiterlabor (MPI-HLL) to be
used in X-ray astronomy application [33]. In 2007, the MPI-HLL and the University
of Siegen have initialized a collaboration to exploit the advantages of the pnCCDs
for X-ray crystallography applications [34]. The concept of the pnCCD as an energy-
resolving area detector is based on the principle of sideward depletion in high re-
sistivity silicon. The system serves as flexible large area detector in order to both
resolving single photons in the spectroscopic operation mode and counting photons
with a high dynamic range in the single photons counting mode. Moreover, the
long-term stability and high radiation hardness are the pioneering benefits of such
systems. The pnCCD used by the Siegen group has an entrance window covers
area of 8.3 cm2 with 384× 384 pixels, where each pixel has a size of 75× 75 µm2.
A fully depleted high-resistivity silicon volume of 450µm thickness creates a con-
tact between the entrance window and a thin n-doped epitaxial layer with thickness
of 7µm. It is equipped with a new frame store module which allows for a readout
frequency up to 1kHz with acquisition rate ≈ 112MB/s [35, 36]. The pnCCD de-
livers datasets that have a 4D structure (i.e. 2D position information, energy and
the time resolution). This result in a 5D overall resolution, including the intensity
[8]. It worth mentioning that the pnCCD has two different operation modes [22]:
(1) The Single Photon Counting mode (SPC) mode, individual photons are resolved

10 Chapter 2. X-ray Diffraction theoretical framework and empirical concerns

within a 3D data volume [22]. Charge clouds generated by photons should be sepa-
rated in space and time by the means of sufficiently low count rate or by analytical
techniques. (2) The integration mode, in which the pnCCD operates as a position
resolving CCD.

2.3 Energy-Dispersive Laue Diffraction (EDLD)

Energy-dispersive Laue diffraction (EDLD) is one of the experiments which profits
most substantially from the two dimensional energy-dispersive detectors (i.e pnCCD
cameras) properties and high brilliance X-ray sources. It is a a Non-Destructive Test
(NDT) tool to investigate the physical and mechanical characteristics of all kinds of
materials. It is a convenient technology that requires a little or no sample prepara-
tion. EDLD is based on Brag’s law and Laue equation, whereby both the angular
positions and the diffracting energies of the Laue spots can be analyzed without
additional information, allowing for a quick identification and quantification of the
crystal structure and the respective lattice parameters. The one-shot nature, low cost,
and rapid elemental analysis make EDLD an attractive and reliable tool for many ap-
plications. Moreover, the EDLD gives the chance to utilize an effective and systemic
data-handling pipeline. This can synthesize and leverage the experimental datasets
to enhance the overall goal of achievement.

2.3.1 Experimental setup

The primary advantage of EDLD experimental geometry is its simplicity and feasi-
bility. Since the EDLD is an angle- and energy-dispersive tool, it is possible to avoid
the prevalent experimental complexities, such as sample rotation and beam align-
ment. Therefore, it does not require any special devices or extraordinary experiment
preparation steps. Figure 2.2 shows the typical experimental setup of the EDLD ex-
periments. The used spectrum of white X-rays radiation is usually provided by the
storage rings or conventional X-ray tubes and can range from 5 keV up to about 140
keV. A collimating system is used to tailor the beam size, if required. In most cases,
an absorber system has to be installed in order to reduce the X-ray flux, allowing
to run the detection system in the single photon counting mode [37]. The sample
is located at a certain distance in front of the detector for transmission geometry, or
behind for reflection geometry. Both the sample and the detector may be equipped
by high resolution motor stages with steps sizes down to 1µm, enabling to change
the scattering geometry.
During the exposure time, the incident beam scatters elastically from the sample and
the diffracted signals are collected by the detector. Due to the wide energy range
of the attenuated beam, a characteristic multi-reflections Laue pattern is formed in
addition to the X-ray fluorescence signal originated by the elements which are pre-
sented in a sample and experimental equipments. This pattern contains intense re-
flections, often called Laue spots, representing each a crystal plane which fulfills the
Bragg condition. However, usual 2D detectors are not able to identify and analyze
the collected Laue spots without preliminary information about the experiment con-
dition (e.g. incident beam energy, material lattice parameters, or sample orientation).

2.3. Energy-Dispersive Laue Diffraction (EDLD) 11

Therefore, to achieve the maximum benefit of the EDLD, a 2D energy-dispersive de-
tection system is often used. In case of energy values higher than 80 kev, it is recom-
mended to use the bare silicon chip attached to a scintillator (e.g CsI:Tl scintillator)
to realize a suitable quantum efficiency [37].

FIGURE 2.2: The EDLD experimental setup. X, Y and Z represent
the laboratory system and (y, z) are the detector coordinates. The
incident beam is parallel to X-axis. Each Laue spot has a specific po-
sition at the detector active area (zi, yi). φ is the angle between two
diffracted spots and SDD denotes the distance between the sample
and the detector. In some experiments, the sample could be moved in
directions X, Y and Z with respect to the chosen reference position.

The detector could be moved in three directions.

2.3.2 A typical EDLD pipeline

One of the most major advantages of the EDLD is that it has a systematic data-
pipeline. It defines what, where, and how datasets are collected and driven. Em-
ploying an efficient pipeline, one can significantly boost the automatization of the
data-wise processes (i.e. extracting, transforming, validating, and loading data) for
further analysis. Figure 2.3 shows the basic layout of the conceptual EDLD process
pipeline. The system design is threefold:

1. The hardware stage: it is the detector (i.e the pnCCD) operated in a frame-
store module allowing for readout frequencies up to 1kHz in binning mode
and 600Hz for the entire image [38]. It is served by a fast frame readout chip
(CAMEX). The signals captured by the CAMEX are, then, converted into a
digital form by the ADC unit and stored in the shared memory.

2. The data analysis stage: it is a problem solving technique which performs
many consecutive steps towards the required application. It is a user-oriented
tool to investigate and interpret the datasets collected by the hardware. It may
be structured as a software package or a cascade of individual algorithms. The
behavior and the design of such systems depends on the purpose of the exper-
iment.

12 Chapter 2. X-ray Diffraction theoretical framework and empirical concerns

FIGURE 2.3: The layout of the data pipeline for the EDLD. The hard-
ware layout is composed of a 2D energy dispersive detector (pnCCD)
including the 384 x 384 active area, the frame store module and
CAMEX readout chip. It is attached to the Analog to Digital Con-
verter unit (ADC) and the shared memory. The software part has
two components: (1) The Raccoon, which has a full accessibility to
the shared memory and is considered as raw data delivery point (2)
Analysis framework connected with Raccoon to execute data treat-

ment and analysis.

3. The mediator: it is appointed to communicate between both hardware and
analysis stages. It has a full access to the shared memory and functions as
a data-truck delivering datasets to the analysis system. The currently used
mediator is named "Raccoon" and is responsible for data preprocessing and
basic online visualization [39]. It is supported by X-disk module to generate a
list of the streaming data to be delivered to the analysis system. Since there is
no unified analysis software, the current mediator is the final destination of the
generated datasets, which are stored in disk-based databases. Further using or
transferring of any dataset should be offline and manually performed.

2.3.3 EDLD data-handling system

The main aim of the EDLD data-handling system is to ensure that datasets are se-
curely preserved and archived. Besides, it is responsible for integrating and inter-
preting the collected data in a manner that preserves the research project goals. Af-
ter a sequence of detector-corresponding data-preprocessing steps (e.g. offset map,
noise map and common mode noise) [32], the collected dataset is gone through dif-
ferent stages mentioned below.

2.3.3.1 Event-reconstruction

The event-reconstruction, often called event recombination, is the first station of the
data, in which the recorded individual photons events are evaluated and categorized
in three types (valid single-pixel event, valid multi-pixel event and invalid events)

2.3. Energy-Dispersive Laue Diffraction (EDLD) 13

depending on splitting direction and the spreading area within the pixel array of
the detector [32]. For simplicity, when the system is operating in the single pho-
tons counting mode, only few photons are recorded simultaneously and not more
than one photon is triggered by one pixel during each frame time interval. In this
case, the number of the generated electrons in the charge cloud depends only on
the energy of the absorbed photon. The charge cloud expands due to the drift and
diffusion of electrons, passing through the silicon window towards the front end.
The final size of the charge cloud, at the pixel plane, depends on the photon energy
and the absorption depth within the depleted silicon substrate. The photon impact
is localized at one pixel (single), two (doubles), three (triples) or four (quadruples)
pixels, depending on the relative position and the size of the generated cloud [40].
Singles, left and right doubles, up and down doubles, four types of triples and four
types of quadruples result in 13 possible patterns, shown in figure 2.4. The patterns
which cannot be described by one of these 13 types are obviously not created by a
single-photon impact. They are considered as invalid events and are named as "fall-
out" events. These events may happen if two or more photon events are appearing
close to each other. Figure 2.5 shows examples of such events recorded during an
experiment. The dashed frames represent the borders of each event. Each event is a
combination of two or more single-photon events shown in figure 2.4. Figures 2.5a
and 2.5b display twofold events, while figures 2.5c and 2.5d show threefold combi-
nation. So far, there is no effective technique to resolve the fall-out events instead,
they are denoted as “unknown” and their contribution is neglected by conventional
analytical tools. Statistically, these events may represent up to 40% of the total trig-
gered events, depending on the beam flux and the readout system frequency. This
shows a demand to improve the event classification and to determine the actual
number of photons detected during the experiment, which may limit the outcome
of subsequent data treatment. Thus, many applications that demand extremely pre-
cise photons intensity calculations (i.e. structure factor analysis) are difficult to be
performed due to involvement of multiple complex correction steps. For further ex-
tension of pnCCD applications, the issue of "fall-out" events has to be addressed.
In order to achieve a successful events-reconstruction process, frames data should
undergo the following steps:

• Photon event pattern classification: the events are categorized in five types
(single-pixel events, three classes of multi-pixel events and fall-out events).

• Events reconstruction: the multi-pixel events are reconstructed to individual
photon hits by determining the center-of-mass coordinates of each event. A
detailed study has been done in this direction [40].

• Fall-out events resolving: events that assigned as fall-out should be analyzed
into a combination of two or more fundamental single photon events (i.e the
thirteen types).

• Co-reconstruction: in this step, all resolved fall-out events are then recon-
structed.

2.3.3.2 Data mining and selection

Data mining and selection represent a step, in which only a set of specific informa-
tion is assigned for further execution, depending on the desired application, and the
rest is neglected. In typical EDLD experiments, it is expected to see a Laue pattern

14 Chapter 2. X-ray Diffraction theoretical framework and empirical concerns

FIGURE 2.4: The thirteen possible event types originating from the
interaction of single photon with the pnCCD detector.

(A) (B) (C) (D)

FIGURE 2.5: Different example of the fall-out events. (A) represents a
double-triple combination, while (B) is a quadrapole-triple one. (C)
shows a fall-out event of two double events. (D) is a threefold event

consists of two double events and a triple event.

which contains several items that should be defined as background or foreground.
As a key example, figure 2.6 shows a part of the integrated image from an EDLD
experiment collected by using synchrotron radiation and a GaAs sample. It contains
three different items. 1) The direct beam signal generated by the primary X-ray beam
(i.e unscattered beam). The presence of such high-intensity signals may significantly
affect the final results as it dominates the pattern, impeding the visualization of the
Laue spots. Thus, the direct-beam should be segregated before any further calcu-
lations. 2) The background which is caused by many factors, such as air-scattered
X-rays, intrusion of impurities within the setup and the electronics, and the detec-
tor dead pixels. These continuous signals should be eliminated to prevent signals-
overlapping and the inconstancy in the final results. 3) Laue spots which are the
areas of interest as they contain all details about the examined sample. They should
precisely localized and analyzed. Beside their 2D position, relevant parameters have
to be extracted from the recored dataset, namely energy spectra and intensity. More-
over, the shape of these spots may be an essential parameter for several applications,
such as stress-strain analysis and grain deformation determination.

2.3.3.3 Data interpretation and visualization

Data visualization is the generation of visual representations of the recorded data.
Many analytical graphics and statistical plots are created to give the user insights
into the processed data. It may include charts, graphs, histograms, and 3D plots.

2.3. Energy-Dispersive Laue Diffraction (EDLD) 15

FIGURE 2.6: A part from a generate Laue patter from a GaAs sample.

Data visualization is particularly useful for experiment-steering, providing an ef-
fective indicator of the experimental procedure. A successful visualization tool for
EDLD experiments is to be able to visualize data from different sources very fast and
with confidence.
Data interpretation is a step, in which many physical equations and statistical rela-
tions are applied on the recorded dataset to convert the information into meaningful
physical parameters, depending on the desired application. Creating an effective
interpreting-tool usually requires a full understanding of both the scientific and the
technical concerns, ensuring a digitalization and automation of the analysis proce-
dure with the minimum user-interfere. The systematic data interpreting procedure
of the EDLD facilitates the developing and deploying of different tools and plat-
forms. A detailed overview of this procedure is shown in appendix C.

2.3.4 EDLD challenges

Datasets collected by an EDLD are profitable and can help the community to achieve
the maximum interest in scientific research. However, achieving real-time data-
handling is one of the most critical challenges because of the huge data volume
collected during the experiments. Moreover, the complicated structure of the raw
datasets make it difficult to implement new big data strategies. In order to deal with
such challenges and pursue their analytics goals, EDLD-scientists have been trying
to deploy or develop different tools and algorithms that perform individual tasks
and require user-observation. However, it has been always a dream to consolidate
all steps in one unified tool that can execute all data-handling tasks in a dynamic
manner with high precision, low latency, and powerful performance. Technically,
without such a coalesced platform, this field may fail to keep pace with the data
growth.

17

Chapter 3

Big Data Fundamentals

“Big Data is like teenage sex: everyone talks about it, nobody really knows how
to do it, everyone thinks everyone else is doing it, so everyone claims they are
doing it.”- Dan Ariely

Last decade has witnessed a rapidly increase in data volume collected by different
domains. The rise of these immense datasets introduced a new concept, namely;
"Being Data-Driven"[41]. A data-driven organization, community or enterprise ex-
ploits and leverages data in order to efficiently develop new products or monitor the
competitive surrounding. Therefore, the term "data science" has appeared in many
contexts studying where information comes from, what it represents and how it can
be turned into a valuable resource. This field makes use of such disciplines as math-
ematics, statistics and computer science, and incorporates a variety of techniques
like machine learning, cluster analysis, data mining and visualization. Among all
the buzzwords related to data science, "Big Data" is one of the most often heard [42].
General speaking, there is no consistent definition of this term. However, there have
been many attempts to define Big Data based on its key features and incentives [41,
42]. This chapter presents a collective theoretical review, covering the bare essentials
of Big Data frameworks, models, and scientific applications. It is organized in the
following way: section 3.1 and 3.2 introduce the basics of the Big Data. Section 3.3
explains the data clouding technology, covering the cloud solution types and service
models. Data warehousing and databases are presented in section 3.4, while section
3.5 is devoted to address the application of Big Data in crystallography community.
This chapter is, then, concluded by the analysis of the developed system and an
outlook for further works, shown in 3.6.

3.1 5V’s theory

Before diving into the guts and glory of Big Data, it is necessary to briefly discuss its
main characteristics, which are often described using five V’s [43, 44]:

1. Volume: refers to the amount of data gathered by a domain. The term “big
data” can be defined as a dataset that becomes so large that it cannot be pro-
cessed using conventional methods. Therefore, more advanced techniques and
algorithms are required not only to manage a huge data volume but also to
make intelligent use of its size as efficiently as possible.

2. Velocity: refers to the speed at which Big Data are being generated, collected
and analyzed. For time-sensitive domains (i.e. real-time responses), the analy-
sis of data flow is a demand at an ever-increasing pace.

18 Chapter 3. Big Data Fundamentals

3. Variety: refers to the different types of data which come from diverse sources,
including structured data (i.e. encrypted in one format) and unstructured (i.e
having no predefined manner). In fact, unstructured data, such as images,
videos and documents, represent 80% of the global data.

4. Veracity: refers to the quality and trustworthiness of the data. Many factors
affect data accuracy, such as noise, software bugs, data lineage, and abnor-
malities. More specifically, it’s not just the quality of the data itself but how
trustworthy the data source, type, and processing.

5. Value: refers to the worth of the data being extracted. It is vital to understand
the costs and benefits of collecting and analyzing the data to ensure ultimately
that the data reaped can be monetized.

3.2 Data disciplinary

The challenge anyone faces while attempting to describe the process of data analy-
sis is that, there is no regular basis for its explanation [45]. Introducing a compact
framework involves characterization of the data analysis is an alternative to find the
commonalities among different analytical approaches. From this perspective, this
sub-chapter demonstrates a general process that can be applied in various cases,
aiming to produce coherent results. Figure 3.1 displays the five main steps of data
analysis framework.

Data
analysis

Stating the

question

Exploring

the data

Building

models

Interpreting

the results

Commu-

nicating

the results

FIGURE 3.1: The diagram of data analysis framework

3.2.1 Stating and refining the question

Before undertaking any effective data analytics procedure, prior data-wise questions
should be formulated in a way that is consistent with federal standards and orga-
nizational purpose. The main aim is to provide the data scientist with descriptive,
inferential, and mechanistic summary of the dataset. This step helps the decision

3.2. Data disciplinary 19

makers to set the scene for a well-organized approach to achieve the demanding
output.

3.2.2 Employing Exploratory Data Analysis (EDA)

Exploring the data entails checking its structure and components. It also includes
the distributions of variables and the relationships between two or more variables
[46]. The goal of EDA can be summarized into the following key points [47]:

• Estimating assumptions based on which statistical conclusion will be reached.

• Suggesting hypotheses out of observations and their possible causes.

• Providing a logical reasoning for further data collection through surveys, in-
vestigations, or experiments..

3.2.3 Building formal statistical models

One of the main crucial purposes of formal modeling is to develop a precise specifi-
cation of the question and to design an instrument aimed at answering that question
based on the observations in research [48]. Moreover, modeling can be used to pre-
dict future observations. According to quantitative science, models fall into two
groups, namely [49];

• Deterministic models: in which the relation between the input and output of
the model is conclusively determined by the parameter values and the initial
conditions.

• Stochastic models: in which the system contains one or more stochastic element.
Generally, these models are not solved analytically as they possess some inher-
ent randomness.

3.2.4 Visualization the results

Data visualization is a procedure enabling setting interaction between the user and
the output of the processed data. It is an important part of data science which has
been rapidly rising for last decades. Technically, visualization is the use of computer
graphics to generate visual images which help to understand complex and massive
data representations [50]. Big Data brings new challenges into this field because of
the speed, size, and diversity of data that must be taken into account. Traditional
architectures and software tools are not able to visualize massive data in a timely
manner. Thus, innovative approaches should be adopted to address the challenges
associated with visualizing Big Data.

3.2.5 Communicating and interpreting the results

Communication is the backbone of any successful data analytics procedure, as there
is no point in doing any analysis if the process and the results are not being commu-
nicated to the audience. Data analysis tends to be extremely subjective. That is to say,
the nature and goal of interpretation will vary from business to business depending
on the type of data being analyzed and the audience receiving the output.

20 Chapter 3. Big Data Fundamentals

3.3 Data Clouding

The idea of data clouding was born in the 60th’s of the 20th century due to a publi-
cation by D. Parkhill [51]. Data Clouding means providing a centralized computing
facility as a public utility which is remotely accessible over networks [52]. It assumes
that every software or hardware component represents a piece of the cloud. Re-
cently, cloud computing has become a virtual part of any organization technology or
business model. It offers an optimal solution regarding not only how to operate the
infrastructure, but also how to save costs and authorize the third-party providers.
This sub-chapter provides an overview on cloud solution types and service models,
followed by a systematic example showing a medium-sized cloud.

3.3.1 Cloud solution types

3.3.1.1 Public Cloud

Public Cloud indicates a cloud type in which the services are being delivered online
(i.e. via the Internet). The offered services may be free or subscription-based with
costs depending on the amount of resources consumption (i.e. a pay-per-use basis)
[53]. The cloud providers are in charge of developing, managing, and preserving
the computing resources across the cloud network. The major benefits offered by
the public cloud services are the following:

• Costs reduction

• High scalability and flexibility.

• Providing universal accessibility

• Automatic backup for data and applications

Despite the tremendous benefits offered, public cloud services suffer from security
issues. Enterprises or organization cannot rely on the use of public clouds without
taking some security considerations, namely;

• Security liability: the responsibility is split between the provider and the cus-
tomer. The degree of responsibility depends on the type of cloud model.

• Data retention: data remnants are moved or deleted not to expose sensitive
data to unauthorized sources.

• Multi-tenancy hazards: sharing nature of public clouds may lead to security
risks such as unauthorized data access by other users, who utilize the same
hardware.

• Compliance regulations: different regions have different data privacy regula-
tions. It is important to consider the requirements of the region data can reside.

3.3.1.2 Private Cloud

Private Cloud refers to a cloud solution dedicated to be used by a single organiza-
tion. The computing resources are separated and delivered by using a secure private
network, and are not allowed to be shared with other tenancies. The provider takes
the responsibility for creating private cloud environment, implementing, securing,
and controlling the Cloud infrastructure [54]. The advantages of private cloud ser-
vices are listed below:

3.3. Data Clouding 21

• Flexibility to transform the infrastructure

• High scalability and efficiency

• No compromising on security and performance

• Dedicated and secure environments

However, this solution has several disadvantages, which can be summarized as fol-
lows:

• High total cost of ownership, compared to a public cloud

• The cloud stability is limited to on-premise computing resources

• Limited accessibility for mobile users

3.3.1.3 Hybrid Cloud

Hybrid Cloud is such a type of infrastructure that is a combination of the versatility
provided by public cloud and the comfort level offered by private cloud. The re-
sources are coordinated as an integrated infrastructure environment. Hybrid cloud
computing is about aggregation of capabilities and services from cloud service providers
with on-premises resources, leveraging the best-of-breed [55].The advantages of hy-
brid cloud services include:

• High reliability

• Flexible distribution of workloads across public and private environments

• Scalability of public environments without security risks

As far as the disadvantages of hybrid clouds are concerned, the main of them are
enumerated below:

• Higher costs compared to a public cloud solution

• Extra compatibility and integration required due to the usage of two different
solutions

• Additional complexity of infrastructure

3.3.2 Cloud Computing Service Models

3.3.2.1 Infrastructure as a Service (IaaS)

In this model, the cloud vendors provide the user with hardware and middle-ware
resources [56]. According to the National Institute of Standards and Technology
(NIST), IaaS is a model provides physical assets to consumers to support data pro-
cessing, storage, networks, and other fundamental computing issues [57]. This form
enables the user to implement arbitrary software resources (i.e. operating system
and applications). Moreover, it gives the user control over the storage and the de-
ployed applications. On the other side, the consumers cannot manage the underly-
ing cloud infrastructure.

22 Chapter 3. Big Data Fundamentals

3.3.2.2 Platform as a Service (PaaS)

PaaS model provides a development environment to deploy onto the cloud infras-
tructure acquired and applications created by the consumers [57].The cloud provider
has to support programming languages used as well as, libraries, tools, or services.
The user has the right to manage the created applications and configuration settings
of the hosting environment. However, it is forbidden for the consumer to control the
underlying infrastructure, servers, operating system, or storage.

3.3.2.3 Software as a Service (SaaS)

SaaS model is located on the top layer of the abstraction layers [56]. Its capabilities
make the consumers independent of their own resources. It enables the users to
access databases and softwares using applications hosted by a vendor [57]. In fact,
SaaS is considered as "On-Demand" software, in which the customer has access to a
single copy of the provider-created application. It allows the provider to integrate
softwares using Application Programming Interfaces (APIs). In addition, new func-
tionalities and features of the application might be developed in much faster and
more feasible way, as the source code is shared for all customers.

3.4 Data warehousing and In-Memory databases

FIGURE 3.2: The environment of a data warehouse.

Data warehousing is a method that aggregates data from operational systems
and external data sources into one central repository, so-called "Data Warehouse (DW)".
A DW is a relational database that contains properly integrated, cleansed, and re-
coiled data from disparate sources, aiming to make the data available for analysis,
comparison, and evaluation. It should be subject-oriented, non-volatile, historical,
and summarized. The generic environment for a valid DW contains four compo-
nents, namely: data source, data preparation and integration tool, data warehouse
architecture, and user-interaction tools. Figure 3.2 shows the pipeline of the DW-
environment components. The environment is usually supplemented by an extra
component, so-called "Quality Monitor". Its main aim is to ensure that the DW meets
its requirements.
Typically, the physical storage space for a DW deploys many hard disks as hosting

3.4. Data warehousing and In-Memory databases 23

databases (e.g. disk-based). However, such storages suffer from considerable draw-
backs regarding data accessibility and loading time, as the lay at the bottom of the
memory hierarchy. Figure 3.3 shows the memory hierarchy for different memory
types. The CPU-wise memory types give the highest performance and lowest la-
tency but they are costly and support very small space occupancy. In comparison,
the physical hard disks offer a huge storage volume and low costs but lower per-
formance and higher latency. The main memory is an intermediate element, which
balances all the memory components.

3.4.1 In-Memory Databases (IMDB)

Hard disks/ Flash (TB/GB)

Main memory (MB)

CPU cashes (KB)

CPU registers (B)

H
ig

he
r

pe
rf

or
m

an
ce

H
ig

he
r

la
te

nc
y/

lo
w

er
co

st
s

Bigger space

FIGURE 3.3: The memory hierarchy

In-Memory Database (IMDB) is an alter-
native solution to avoid latency which is
typical of disk-based databases. The us-
age of in-memory computing and data
storage options might be widely appli-
cable for designing the next generation
of data warehouse systems. An IMDB
defines storage, where data is primarily
stored in the main memory of the device
(Random Access Memory (RAM)). Com-
pared to other databases, IMDB gives con-
siderable advantages, such as performing
computation with a lager amount of data
in less time as well as improved access to
the data.
On the other side, the main memory is volatile, since there is a risk of losing all the
data if the power is removed. It thus impairs the non-volatility of the DW. Moreover,
it might not be possible to use the same IMBD for different systems and architec-
tures, which causes results in the need to make some changes in the program code,
resulting in additional costs.
A proper solution is to use the conventional database management systems, such
as Relational Database Management System (RDBMS). It relies on both the physi-
cal hard drive and the RAM as storage. When a query is requested the data from
physical hard drive are sent to main memory (RAM) for further processing [58]. In
contrast with IMDB, the cost of memory is drastically low.

3.4.2 Cloud-based Data Warehousing (CDW)

Cloud-based warehouses allow the users to modernize their processes as quickly as
a new technology is developed. Moreover, they simplify data access for the entire
organization. Communities and enterprises have been increasingly moved towards
cloud-based data warehouses, leaving traditional systems. The main differences be-
tween cloud-based data warehouses and traditional on-site warehouses are the fol-
lowing:

• No need to purchase physical hardware or or upfront licensing.

• Faster performance due to the usage of Massively Parallel Processing (MPP).

• Easy to be set and scaled

24 Chapter 3. Big Data Fundamentals

3.5 Application of Big Data for the X-ray crystallography
community

The X-ray crystallography community has recently been affected by a significant in-
crease in data volume caused by the use of advanced detector technologies. The
fact that forced the decision makers to implement Big Data and Big Data analytics,
aiming to achieve a suitable environment for scientists at experimental and post-
experimental phases. This sub-chapter introduces a new approach to use warehous-
ing and cloud computing to manage datasets collected by 2D energy-dispersive de-
tectors, for an example. Moreover, it suggests that, deploying a Software as a Service
(SaaS) cloud model, a public cloud data center, and cloud-based warehousing archi-
tecture, it is possible to dramatically reduce both hardware and processing costs.

3.5.1 Data history and nature

Since 2007 the MPI-halbleiterlabor and the University of Siegen have initiated a col-
laboration to develop a new non-destructive testing (NDT) method, which can be
applied in different fields (e.g. Crystallography, Material science, Nanowires tech-
nology, and Mechanical engineering). Meanwhile, an enormous amount of precious
data has been collected from various materials, radiation facilities, and geometrical
setups. The processed data have demonstrated the reliability of this technique as a
promising procedure for material microstructure characterization. However, the tra-
ditional approach of data encapsulating and storage is one of the biggest challenges
to keep pace with "the era of real-time". For instance, a typical one-shot raw image
data (≈ 50× 103 frame) consumes around 20 Gbytes of the storage volume. This
amount is explained by the fact that, each frame is statically saved as a matrix with
a size equal to the number of detector pixels. The space required for one frame is
number of pixels multiplied by the size of unsigned integer (2-4 bytes), regardless of
the pixel status (i.e. is lighted or not). Conceptually, each frame is stored as a large
sparse matrix (i.e. in which most of the elements are zero) with extra unnecessary
details, such as frame time stamp, detector ID, and related files’ names. Moreover,
all data elements are encoded into a complicated format, requiring a specific decod-
ing algorithm. Seemingly, dealing with such raw datasets (i.e. streaming, decoding
and refinement) is intractable and time-consuming (e.g. requires 8 hrs/image) [10].

3.5.2 From Sparse Matrix to Coordinate format (COO)

Very fast readout systems and high X-rays energy, used in the crystallography com-
munity cause the reduction of the pixel detector occupancy per recorded frame.
The number of events recorded per frame for a typical EDLD experiment is around
≈ 300− 1000 event, which represents less than 1% pixel occupancy (with detector
area 384× 384 pixel). Technically, sparse matrix is easy to be handled within a soft-
ware and efficiently parallelized. However, storing large matrices with high sparsity
(e.g. greater than 50%) is infeasible and storage consuming. Instead, the concept
of storage Coordinate formate [59] has been introduced to be the standard formate
for any dataset saved within the cloud. The COO is a particularly simple storage
scheme, where only the row indices, column indices, and values of the nonzero ma-
trix elements are considered [60]. Generally, COO is a sparse matrix representation
technique, by which both row and column indices are explicitly stored. It shows two
main limitations, namely; 1) No static size since, the required storage is proportional
to the number of nonzero elements. 2) Requires special algorithms to conveniently

3.5. Application of Big Data for the X-ray crystallography community 25

process this format. Figure 3.4 illustrates the traditional representation of an exam-
ple 7× 7 matrix and its alternative COO representation. In traditional implemen-
tation, as displayed in 3.4a, all elements (e.g. nonzero or zero) are represented. On
the other hand, as shown in 3.4b, only the nonzero elements are represented in COO
formate, ensuring that entries with the same row index are stored contiguously [10].
In order to practically achieve that, the streaming module, which is responsible of
acquiring and writing the data, has been updated to generate COO formate as the
standard data formate. Moreover, all analysis tools have been equipped with the
required algorithms to read and treat this formate. More details about the imple-
mentation and the testing are given in chapter 4.

4 0 0 0 0 0 8
1 0 0 0 6 0 0
0 0 3 0 0 0 0
0 0 0 0 0 7 0
3 0 0 0 0 0 0
0 0 0 0 9 0 0
0 0 2 0 0 0 0

(A)

Value =
[
4 8 1 6 3 7 3 9 2

]
Col =

[
0 0 0 4 2 6 0 4 2

]
Row =

[
0 6 1 1 2 3 4 5 6

]

(B)

FIGURE 3.4: The traditional sparse matrix representation for a snippet
7 × 7 matrix vs. its COO representation. (A) is the sparse matrix

representation, while (B) is for Coordinate representation.

3.5.3 The cloud

The University of Siegen is equipped with a cloud infrastructure , so-called "ScieBo".
This cloud offers a free service for all members of the university. "ScieBo", which
name is formed due to blending word is created from of parts of two words, i.e. “sci-
ence” and “box”, is a data storage for all the universities in North Rhine-Westphalia,
enabling users to save, synchronize and share data [61]. The storage capacity is up
to 500 GB for each employee with additional storage volume for research data. The
stored data are protected by the Federal Data Protection Act (BDSG).

3.5.4 The main framework

The main framework describes a particular SaaF environment which gives the user
a full leverage over the whole data-processing cycle. It includes a set of tools, APIs
and algorithms which controls all analytical procedures required for a successful ex-
periment, such as data streaming, standardization, saving, restoring, and analysis
[10]. The workload is distributed between three components, namely: Data Man-
ager, On-demand warehousing, and analysis tools. Figure 3.5 displays the pipeline
of the main framework. The Data Manger is surrounded by blue box while the red
and the green boxes envelope the On-demand warehousing and analysis tool, re-
spectively.

26 Chapter 3. Big Data Fundamentals

FI
G

U
R

E
3.

5:
Th

e
m

ai
n

fr
am

ew
or

k.

3.5. Application of Big Data for the X-ray crystallography community 27

3.5.4.1 Data Manager

Data Manager is a tool designed for adding, operating, accessing, and monitoring
data in the cloud. It ensures that data operating is optimal and the system is prop-
erly interacting with users. It has two main tasks, which are to add new datasets to
the cloud and to release datasets for analysis, depending on the user call. Further-
more, it provides the users with the connection channels to data storage. In order
to simplify this aspect, a decision has been taken to give each object (i.e. data file)
an arbitrary Digital Object Identifier (DOI). DOIs are alphanumeric strings having
a unique and persistent reference to a specific object. They are bound with the ob-
ject’s metadata, indicating the path to the directory where the object can be found
in the cloud. Aiming to standardize DOIs, a special tool has been implemented to
generate a DOI required to store a file within the cloud. Figure 3.6 shows the GUI
for desktop application of the implemented tool to generate the standard DOI. This
tool is the only writing tool which has the authority to add any new data file to the
cloud. The user has to fill the required description items about the experiment (i.e.
name, date, material used, radiation facility, organization, etc). After writing the re-
quired items, the tool will automatically generate a DOI for this file and store it in
the cloud. Moreover, a metadata file, so-called "README", will be generated. This
file contains all the details provided by the user, giving an overview on the experi-
ment to other users.
Data Manager is also equipped with a releasing tool, which is responsible for view-
ing, accessing, and sending stored data files to be analyzed. Figure 3.7 displays the
GUI for a desktop application of the releasing tool with snippet data files, in which
each row represents a data file with columned description items. The tool provides
a search bar, enabling the user to find a specific file within the cloud. Thus the user
is able to select one or more files to send them for further processing. The DOIs of
the selected files will be sent as a queue, so-called "Page-Request", to the On-demand
warehousing tool. This request is the final output of the Data Manager.
The tool is based on the Model–View–ViewModel (MVVM) architecture pattern,
originated from Microsoft, which is specialized in the Presentation Model design
pattern [62, 63]. It is a managed Windows Presentation Foundation (WPF) subsys-
tem, the front-end of which is written in XAML, while its back-end is written in
C#.The system has been supplemented by a Message Bus System (MBS) to synchro-
nize GUI threads and to route the traffic of the registered subroutines. The web
application version is developed in the .NET Cross-Platform [64] and is still in the
testing phase.
Technically, Data Manager is a managed code that compiles to the intermediate lan-
guage and is executed using Common Language Runtime (CLR). On the other side,
On-demand warehousing is an unmanaged code that compiles directly to machine
code. Therefore, binding codes, based on the C++/Common Language Infrastruc-
ture (CLI), are implemented to enable communication between both tools [65]. These
codes are responsible for data marshalling between the concepts.

3.5.4.2 On-demand warehousing

On-demand warehousing is a memory allocation and -deallocation tool, which is
responsible for reserving and freeing memory portions for the required data. It im-
plicitly transfers data from the cloud warehouse to the In-Memory database upon
the user request and frees this database after completing the analysis. The "Page-
Request" queue sent by Data Manager is the input of the On-demand tool. The

28 Chapter 3. Big Data Fundamentals

FIGURE 3.6: The GUI of the DOI generator tool.

FIGURE 3.7: The GUI of the releasing tool with snippet data files.

selected files are streamed and their data are allocated in the main physical mem-
ory. Each data file is supplied with a separated cube In-Memory database, which
is considered to be the bulk data structures [66, 67]. After the allocation process is
succeeded, the analysis tool kernel gets launched and the On-demand tool is sent to
the "on-hold" mode. Pointers of the allocated data structures are sent to the analysis
tool kernel for being buffered and analyzed. The deallocation process is performed
upon receiving the "DONE-MSG" massage, which declares that the analysis kernel
has successfully completed its task and is deleted.
The main aim of the On-demand tool implementation is to reduce the memory costs.
The collaborative connection between the warehousing and analysis tools shows a
sophisticated technique to control the memory consumption. Moreover, a combi-
nation of both the physical hard drive and the RAM can reduce the infrastructure
hardware costs.

3.5. Application of Big Data for the X-ray crystallography community 29

In order to boost the liability and robustness of the On-demand tool, several precau-
tions have been considered:

• Protection: This tool is fully protected from the user’s intrusion. Specifically,
the user has no access to any component (i.e. libraries, functions, pointers,
etc) within this tool. Moreover, all processes and procedures performed in a
hidden manner. This prevents the system from any error or bug accidentally
caused by the user.

• Exceptions handling: An exception is an error or unexpected event, which
happens during the execution time. Such an event can interrupt the flow of
the program. In case of the memory allocation and -deallocation tool, the most
expected exception is an error called "Bad Allocation" (or bad_alloc). As a pre-
ventive measure, "try − catch" block has been implemented. All allocation pro-
cesses are performed within the "try" block, which catches any exception. The
"catch" block then represents the following procedure with a specific exception
(e.g. bad_alloc in our case). Figure 3.8 display a snippet of the implemented
exception handling method.

include <new> / / i n c l u d i n g s t d : : b a d _ a l l o c

void memory_allocation (s t r i n g f i l e _ p a t h) {
t r y {

\\ the memory a l l o c a t i o n process
}

catch (s td : : bad_al loc &my_exception) {
\\ perform something to handle the except ion
}

}

FIGURE 3.8: A snippet code of the bad allocation exception handling

3.5.4.3 Analysis tool

Analysis tool is the final destination of the data pipeline. It is responsible for data
processing, visualization, and interpretation. It makes use of several cunning and
pioneer techniques, such as High Performance Computing (HPC) [68], Artificial In-
telligence (AI) [69], and Genetic Algorithms (GA) [70]. The main aim of any analysis
tool is to establish the communication channels between the user and the data pro-
cessed. Moreover, all its components should harmonically and consistently incorpo-
rate to generate a meaningful output, fulfilling the user demands. The architecture
and the logic of an analysis tool varies from system to another, depending on the de-
mands, policies, and altitudes of the user and/or the organization. Usually, the anal-
ysis tool is connected to a sub storage, where metadata files are stored. This gives
the user an access to the previously analyzed datasets, preventing the data analysis
duplication. The following chapters will demonstrate how these techniques might
be implemented to enhance the performance of the analysis procedure.

30 Chapter 3. Big Data Fundamentals

3.6 System analysis and conclusion

This part demonstrates the system analysis for two different cloud solutions, namely:
the off-shore (public) and the on-premises (private) clouds. Table 3.1 shows the com-
parison of several parameters related to both solutions. The costs have been calcu-
lated by using AWS Total Cost of Ownership (TCO) calculator, provided by Amazon
[71] for infrastructure configurations given in table 3.2. Figure 3.9 and table 3.3 dis-
play a detailed overview about the costs distribution for both cases per year. It is
clearly seen that public clouds offer a low-price solution, compared with the private
cloud, with factor up to 70%. Moreover, public solution shows variety of lucrative
features, such as remote access, unified sharable resources, flexible tasks schedules,
and low administrative workload. On the other side, on-premises systems are lo-
cally access and have limited applications-compatibility. Storage-wise, they prove
more powerful than the public clouds. However, public systems demonstrate fast
storage size growing.
It is essential to mention that, Amazon cloud has been chosen as an example for the
public cloud system. The reason behind this decision is fame and wide range of
this cloud. In addition, it show several similarities with the used cloud. Practically,
cloud market is getting stronger and denser, increasing the competition between the
cloud providers. Therefore, vendors are forced to aggressively reduce service costs.
In such a competitive market, long-term customer leads to high market volatility.
In such a volatile market, long-term customers are highly appreciated by the cloud
vendors. Taking this advantage, big communities (i.e. the scientific community) are
enabled to provide sustainable growth for their business with low cloud ownership
costs.

TABLE 3.1: Comparison between cloud-based and traditional solu-
tion

Public (AWS) On-premises
Total costs ≈ 94k e ≈ 233k e
Storage size Small Large
Size growing Fast Slow
Accessibility Remotely Locally
Access model Any device Corporate Desktops
Applications Limited Unlimited
Servers Integrated Co-located
Resources Unified Partitioned
Tasks scheduling Flexible Planned
Administration Reduced function Overhead
Infrastructure Can be subscripted Self-establishing

In this chapter, the Big Data fundamentals were investigated. The potential of
data clouding and in-memory warehousing for applications in the crystallography
community could be demonstrated by the example of EDLD experiments. In the
course of this work, various tools and algorithms were developed in order to obtain
the convenient environment for scientists. It could be shown that utilizing such in-
novative techniques boosts the performance of the whole organization. In the case of
big communities, exploiting SaaF model and a public cloud serves offers an optimal
solution with low costs and high performance.

3.6. System analysis and conclusion 31

TABLE 3.2: Cloud infrastructure configurations

Configurations Details
Server type DB

of processors/server 1
of cores/processor 4

of servers 10
Memory 16 (GB)

instances 10
Storage type SAN

Raw storage capacity 1 (TB)

TABLE 3.3: Costs details

On-premises Public (AWS)
Server ≈ 117k e ≈ 49ke
Storage ≈ 48ke ≈ 975e
Network ≈ 57ke ≈ 33ke
IT-Labor ≈ 10ke ≈ 11ke
Total ≈ 233ke ≈ 94ke

Server Storage Network IT-Labor
0

20,000

40,000

60,000

80,000

1 · 105

1.2 · 105

Pr
ic

e
[e

]

On-premises
AWS

FIGURE 3.9: Comparison between the costs of on-premises and AWS
cloud systems. The blue bars represent the on-premises solution,

while the red ones indicate the AWS.

33

Chapter 4

High performance computing and
parallel programming

"Redesigning your application to run multithreaded on a multicore machine is
a little like learning to swim by jumping into the deep end."- Herb Sutter

4.1 Introduction

High-Performance Computing (HPC) is the phenomena that describe computing
environments used to address problems that require sophisticated computational
and significant processing time. Surprisingly, the original pertaining of computing
was, in a way, high-performance computing. This term has started at the begin-
ning of the 20th century with a slightly shallow definition: Anything can perform
computation faster than a human being [72]. In 1920, this HPC has attained a great
uprising to include a new term, namely; "Supercomputing" [73]. After a few decades,
it was the first commercial implementation of the "Control Data Corporation (CDC)"
as supercomputer mainframe [74]. Since that time, using clusters of independent
processors connected in parallel has become a widespread trend. For many orga-
nizations and enterprises, HPC is an intrinsic side of any successful business. It is
involved in many complex problems, such as designing products, structure or flow
simulation, climate or geophysics simulation, and optimizing manufacturing. The
scientific community, as well, considers the HPC as a main element of the equa-
tion. Therefore, many scientific facilities (i.e Large Hadron Collider (LHC) at CERN,
ESRF) have established their own HPC section for better data handling and numer-
ical modeling.
Generally, There is no clear definition of HPC term. A helpful way for better un-
derstanding of the HPC is to think about its anatomy. It can be structured into two
components, namely: hardware and software. An effective HPC system is to have
both levels homogeneously and effectively interact with one another to shape the de-
manded performance. In such manner, it is suggested that HPC might be integrated
from three concepts:

1. Think smarter to melt the edges of the hardware by a genius software. The first
level of HPC starts with the design of the execution algorithms. Rather than fo-
cusing on Hardware-resources, the leverage is built around leading-edge and
providing concrete optimization software. That can help to adapt feasible envi-
ronments exploiting the maximum hardware-resources, saving execution time,
and reducing operating costs.

2. Work harder by involving more computing power. Almost all available pro-
cessing units have multi or many-cores connected in parallel, where a core is

34 Chapter 4. High performance computing and parallel programming

a processor that carries out instructions sequentially. Such architectures are
suitable for many computing problems that can be partitioned into indepen-
dent portions. In such manner, each processing core processes a portion of the
problem in parallel, and then combining the final processing results for each
portion. This type of computing is often referred to as "parallel computing" or
"data-parallel applications" [75].

3. Get extra help by breaking computers into clusters. In its simplest structure,
a cluster of computers incorporates computational powers of the processing
cores to provide an enormous combined computational power. This paradigm
is the base of the "supercomputing" [73].

This chapter demonstrates how the implementation of high performance and generic
algorithms can help to significantly reduce the execution time and costs. Section 4.2
represents a comparison between the two hardware components that are used in
this work (i.e. the Central Processing Unit (CPU) and the Graphics Processing Unit
(GPU)). The sequential and parallel programming concepts are explained in section
4.3, while section 4.4 gives some suggested keys to design a successful algorithm. Fi-
nally, a practical model of HPC implementation in EDLD experiments is discussed
in section 4.5 followed by the conclusion in section 4.6.

4.2 Central Processing Unit (CPU) Vs Graphics Processing
Unit (GPU)

The CPU and GPU are distinct hardware components. They have different purposes
but equal importance. Both the CPU and the GPU are embedded in silicon-based
microprocessors systems. They work together to provide the domain with the de-
manded computing power.

4.2.1 CPUs

A CPU is often called the brain of any ingrained system. It carries out the instruc-
tions of a program by performing control, logical, and input/output operations. A
CPU is consisted of millions of transistors and comprises three main components:
1) The Arithmetic Logic Unit (ALU) which is responsible of storing and perform-
ing the information. 2) The Control Unit (CU) is the scheduler that organizes and
executes the instruction queuing. 3) Cache memory, often called the CPU mem-
ory, is high-speed Static Random Access Memory (SRAM) that is faster accessed by
the microprocessors comparing with the regular Random Access Memory (RAM).
The CPU communicates with the other hardware components through the Dynamic
Random Access Memory (DRAM) that stores each bit of data. Figure 4.1a displays a
scheme of the assembly of a single-core CPU.
Architecturally, the CPU has a few cores with lots of cache memory and it can exe-
cute a handful of operations at once [76]. The first CPU was developed by Intel in
the 1970s [77]. Then for a few years most of the CPUs were designed with a single
core. Owing to fast improving in chip design and manufacturing, the current gen-
erations of the CPUs, however, have between 2 and 28 powerful cores [78]. They
are optimized to minimize the latency of a single thread. However, their memory
consumption is high, unlike GPU. The CPU provides more effective results in case
of processing serial instructions.

4.2. Central Processing Unit (CPU) Vs Graphics Processing Unit (GPU) 35

4.2.2 GPUs

A GPU is the brawn of the computing system. It is effective in performing much
more work per unit of energy as it emphasis on high throughput, comparing with
the CPUs. The first GPUs were optimized to offload and accelerate the graphical
computations (i.e. the creation and rendering of images, video, and animations)
[79]. Nowadays, GPUs are the key to different applications, such as automotive in-
dustry, health-care and life sciences, and artificial intelligence. [80]
GPUs, in contrast to CPUs, contain more ALU and smaller cache, with much higher
bandwidth. A bunch of ALUs with a portion of the cache memory, is often called
"parallel data cache" or "L1 cache", are coalesced together to compose a Streaming Mul-
tiprocessors (SM) [81]. A series of SMs, then, share a lower hierarchy cache memory,
namely; "L2 cache". Figure 4.1b shows a basic diagram of a GPU. In the same manner
as the CPU, a GPU incorporates with other system components by sharing RAM.

4.2.3 How do they Work Together?

As the CPU is the brain of the system, any assigned work to GPU is done through the
CPU. Usually, the CPU assigns tasks to GPU and waits for GPU to finish them. GPUs
and CPUs work independently as both generally execute different data and perform
in unlike manner. Technically, CPUs do all the complicated logic processing, as long
as the tasks only involve basic calculations. GPUs follow the principle of Single
Instruction Multiple Data (SIMD) allowing for fast execution of more complicated
calculations. Actually, GPUs are not alteration of CPUs but they are considered as
accelerators for a specific task. A GPU-based application offloads compute-intensive
tasks to the GPU, while the rest of the tasks are executed by the CPU. Usage of the
bandwidth of both CPUs and GPUs may be monitored in the following examples:

• Big Data: GPUs are the pioneering choice to power applications designed to
perform tasks on Big Data. They are able to accelerate the amount of data a
CPU can process in a given amount of time. because of their huge throughput
and large number of computational cores.

• Artificial intelligence: Systems that are based on artificial intelligence require
complex mathematical calculations which can be offloaded by the GPU. This
frees up time and resources for the CPU to perform other tasks.

• 3D Visualization: Many 3D modeling and visualization applications and li-
braries, such as Computer Aided Design (CAD) and Open Graphics Library
(OpenGL) rely on GPUs to draw, viewport, render, rotate or move those mod-
els in real time.

4.2.4 The bottleneck

A bottleneck is a point of congestion in the system. It occurs when too many work-
loads are assigned than can be performed and returned in a given time frame. Signif-
icant divergences in throughput between the CPU and the GPU may cause critical
bottlenecks. Variances in the hardware specifications are the most likely technical
issue. It may be a consequence of pairing a high-performance processor with a lack-
luster graphics card or vise Versa. Bottlenecks may also arise when the execution
program fails to achieve a balanced distribution of workload between both compo-
nents.

36 Chapter 4. High performance computing and parallel programming

(A) (B)

FIGURE 4.1: A scheme of the main hardware component assembly.
(A) is the CPU while (B) is the GPU.

4.3 Sequential Vs Parallel programming

A sequential software is said to be "one-thing-at-a-time" [82]. It is like hiring one
worker who carries out a step-by-step working plan, finishing one step before start-
ing the next. Technically, a problem, to be solved by a sequential algorithm, should
be broken into a discrete queue of instructions. The instructions are then executed
sequentially one after another on a single processor. Figure 4.2 visualizes a scheme of
the sequential behavior where a series of instructions is being performed stepwise.
Only one instruction may execute at any moment in time.

FIGURE 4.2: A scheme of the sequential programming behavior.

On the other hand, parallel programming violates the concept of "one-thing-at-
a-time". Hiring several or many workers to finish the assigned tasks introduces a
new assumption: "more-than-one-thing-at-once" [82]. Whereby, all workers work si-
multaneously and each one carries out an independent task. In the simplest sense,
a problem, to be solved by the parallel programming, is broken into discrete parts
that can be performed concurrently. Each part is further broken down to a queue of
instructions executed simultaneously on different processors. Figure 4.3 visualizes a
scheme of the parallel behavior.

4.4 Keys to success

Building a successful software in HPC is a difficult task to be measure. Ultimately
it depends on the goals, resources, and budget of the domain. This section paves
the pathway to the strategies that can take complexity out of the analysis process.

4.4. Keys to success 37

FIGURE 4.3: A scheme of the parallel programming behavior.

It suggests essential guidelines that make it manageable, successfully getting the
results necessary to advance the application.

4.4.1 Build the scene

Prior to making any investment in software, some general considerations should be
initialized: 1) Mapping out the aspects of the software and clear definition of every
step taken to move product out the door. 2) Budget boundaries planning, including
the ongoing support and maintenance costs. 3) Technical limitations addressing, in
which the headway of the product is assigned based on the technical experience of
the team. 4) Time constraints realizing, including the deadlines and the scheduled
releasing time.

38 Chapter 4. High performance computing and parallel programming

4.4.2 Costs of complexity minimizing

Software complexity has a huge impact on software acquisition costs. According to
the software complexity costs study [83], it is suggested that software maintenance
represents about 70% of the total acquisition costs. Maintenance cost is proportion-
ally related to the software complexity. Increasing software complexity can signifi-
cantly increase the maintenance costs by ≈ 25%. Thus, the ability to measure and
control software complexity is of paramount importance. Generally speaking, com-
plexity always has costs which can be a trade off with the value delivered by it. In
order to minimize such costs, the following characteristics should be considered: 1)
Learnability is the degree of ease that the user can understand and interface with
the software. A learnable product should offer short or steep learning curves. In
other words, it helps the user to learn how to use the software in less time and with-
out having been previously trained. 2) Usability is defined according to (ISO/IEC
9126− 1, 2000) as "the capability of a software product to be used and attractive to
the user when used under specified conditions." [84]. It emphasizes the possibility
for the users to accomplish the demanded task by using the software with minimum
adverse consequences. 3) Efficiency is the ability of an algorithm to perform a task
with optimum resources usage. Developing an efficient software requires reduction
the number of unnecessary resources used to produce the demanded output [85].

4.4.3 Make it scalable

Scalability is a substantial characteristic of any system. It refers to the competence
to cope the increasing in the workload and the operational demands. A scalable
software is to endorse any further growth or upgrades without a negative impact on
the quality of services and with the minimum incremental costs.

4.5 Application of HPC in EDLD

As it is shown in subsection 2.3.2, three main components, namely; data acquisi-
tion, data correction, and data analysis modules can construct a standard EDLD data
pipeline. Figure 4.4 visualizes a scheme of the typical EDLD pipeline consisted of
the data streaming system (Raccoon), on the one hand, and the analysis system, on
the other hand [32, 39]. These two systems work in sequential manner and require
network-less data transfer environments (i.e. using an external storage device). This
shows several drawbacks, such as time consumption, missing feedback to the user
during the experiment, and data loss.
Another disadvantage may arise from software complexity. The absence of a unified
framework and utilizing uncoalesced submodules result in implementation com-
plexities, memory issues, and high latency execution time. Moreover, lack of co-
herency puts more loads on the scientists forcing them to extend their programming
skills to fulfill the experience demands of each utilized platform. This can respite the
time to discovery, distracting the scientists from their science.

4.5.1 EDLD-tool

EDLD-tool is a new user-friendly GPU-based software package [8] to stream and
process datasets taken at X-ray white beam synchrotron sources using an energy-
dispersive 2D detector (pnCCD). This tool makes use of many scientific, high perfor-
mance libraries to increase the precision of data processing and to achieve on-the-fly

4.5. Application of HPC in EDLD 39

FIGURE 4.4: Present data handling system design. The Raccoon and
the analysis system work sequentially. Data are persisted to a storage

disk and is transferred manually to the analysis module.

analysis. It aims to find an optimum solution for problems previously addressed,
considering the computation efficiency and the precision of data analysis. It is in-
tegrated into the readout system to realize efficient data streaming, online visual-
ization, real-time analysis and rapid feedback to the user during the experiment.
EDLD-tool has a scalable architecture allowing to scale up its capacity to meet in-
creased workloads. Furthermore, it is designed in a manner that allows to add new
functionality without changing the existing code. It based on the abstraction class
design pattern with header file shown in appendix B.1. Aiming to achieve the in-
terface segregation principle [86] and to reduce the side effects of required changes,
the first release of the tool is divided into five coalesced modules that use the inter-
process communication and can run concurrently. Figure 4.5 shows a scheme of the
EDLD-tool design which can explained as follows:

FIGURE 4.5: The EDLD-tool design. The pre-processing module per-
forms its job before starting the experiment. The streaming and re-
construction modules continuously work during the experiment time
preventing data loss. The on-demand and analysis modules are mu-

tually exclusive and controlled by the user.

40 Chapter 4. High performance computing and parallel programming

4.5.1.1 Streaming module

It is the data-truck to deliver data from the sources (i.e. the detector readout system
in this case or previously recorded frame data files) to the final endpoint(i.e. the ex-
ecution APIs or the cloud). The streamed datasets are structured based on the Coor-
dinate formate (COO), as explained in subsection 3.5.2, allowing to save datasets in
both cloud-based and local-machine storages. It is equipped with a data-allocation
function based on the In-Memory Database (IMDB) architecture in which the data
are stored in the main physical memory of the local hosting machine. Each pixel is al-
located as a structure of data named "singlePixel" with header file shown in appendix
B.2. This structure contains all details about each individual pixel, such as X-Y posi-
tion, energy spectrum, and intensity. This function is efficient in case of experiment-
steering as it enables the real-time analysis without storing the data. Moreover, in
contrast to the tradition disk-optimized database architecture, the IMDB provides
considerably high-speed data-access.

4.5.1.2 Pre-processing module

The pre-processing module is designed to perform the detector-scope correction
steps required prior to data streaming. These steps (i.e. noise map, offset map , com-
mon mode noise, bad pixel map) are executed to deliver the raw pixel data quantita-
tively allowing to detect individual photons and their actual amplitude. This can be
quantified by recording and processing a few hundreds of dark frames in absence of
X-rays. This module is based on the technique introduced in [32].

4.5.1.3 Frame-by-frame reconstruction module

The frame-by-frame module is implemented endorsing individual frame treatment.
It evaluates and reconstructs each frame event, as explained in section 2.3.3. The
reconstructed data are visualized and saved in so-called ’finalized data’ container.
Moreover, this module provides the user with many information, such as number of
corrected frames, total number of events, and events pattern distribution. The frame-
by-frame reconstruction technique is efficient regarding the frame dynamics, as it
gives the domain full access to each individual frame-data. This supports further
advanced statistical analysis, such as sub-pixel characterization and cluster-analysis
[87].

4.5.1.4 On-demand data delivery module

The ’on-demand’ acquisition module optimizes the connection between the streaming
module and analysis module. It has a full accessibility to the ’finalized data’ container,
allowing the user to control the demanded dataset being analyzed depending on the
information provided by the frame-by-frame module. The user-selected dataset is
sent to the analysis module.

4.5.1.5 Analysis module

The Analysis tool manages crystallographic parameters of EDLD based on Bragg’s
law and the Laue diffraction method. It contains two separate workflows: (1) The
"A-Z Automatic" workflow, which analyses a complete data set automatically based
on minimum user intervention. The user only has to provide the main experimental
parameters, such as Sample-Detector-Distance, the position of the direct beam on

4.5. Application of HPC in EDLD 41

the detector (Xre f and Yre f) and peaks height threshold (see section 2.3). (2) The
supervised workflow, in which each analysis-procedure is fully controlled by the
user.
The analysis module is able to process previously recorded data file or data received
from on-demand module. It can, so far, perform the following main functions:

• Generation of a pixel-map image,

• Generating statistics on hit rate and events patterns distribution,

• Estimation and subtraction of background,

• Identification and localization of Bragg Peaks,

• Analysis of the energy spectra,

• Geometry optimization,

• Parameters calculation (Unit-cell, Bragg norms, reflection angles),

• Auto-indexing of Bragg peaks,

• Grain-corresponding spots identification,

• Calculation of crystal orientation with respect to the laboratory coordinate sys-
tem.

4.5.2 The Graphical User Interface (GUI)

A Graphical User Interface (GUI) platform is designed to provide the user with fa-
miliar working environment. All features and the most frequently used functions
are merged in the main control boards, where each feature is connected to a direct
manipulation element enabling the user to control the work-flow without any prior
technical experience. Figure 4.6a is the streaming module control board where the
raw and reconstructed data are visualized. It enables the user to control the cluster
size and the frames set that is being analyzed. The control board analysis module is
shown in figure 4.6b. It is divided into three parts: 1) the left part is the input boxes,
where the user can provide the required parameters. 2) the right part is devoted for
energy-wise analysis and visualization. 3) the middle one contains the main image
visualization.

4.5.3 EDLD-tool output

The tool is able to display and to save the results of the processed data as an image
plot or as a text file. The saved output file is written and customized in readable
formats (e.g. pdf, PNG, JPG and text plains), allowing for later data reviewing. The
visualized outputs are categorized as following:

4.5.3.1 Frame visualization

Frame visualization enables the user to inspect each individual detector frame. A
3D-plotting scheme, which contains all recorded events assigned in a chosen frame,
is generated, as shown in figures 4.7a and 4.7b. Each plot includes a time stamp,
which assigns the time difference between the first frame and the plotted one. The

42 Chapter 4. High performance computing and parallel programming

total number of recorded events and the highest assigned event-amplitude are in-
cluded as well.
The frame visualization provides the basic environment for further advanced frame-
scope treatments (e.g. sub-pixel reconstruction, charge cluster analysis). Moreover,
the scheduled data visualization technique describes the time-line of the experiment.

4.5.3.2 Comprehensive imaging

A continuous update of the pixel map (figures 4.8a, 4.8b, 4.8c and 4.8d) is generated
ensuring a real-time high-quality display of the data which are currently under pro-
cessing. It is supported by various graphical editing functions (e.g. zooming in/out,
color and counting scales changing). Moreover, each localized spot is displayed by
2D and 3D peak intensity plots and X-Y intensity line-profiles distribution (figure
4.8e).

4.5.3.3 Statistical and numerical output

Descriptive statistics on the experiment and the sample (i.e. events patterns distri-
bution, hit rate, indexing of Bragg peaks, crystal orientation, calculation standard
deviation, running time) are displayed and/or saved during the execution time.

4.5.4 Technical description of the tool

EDLD-tool is an object-oriented program based on the combination of sequential
and parallel computing. It uses the concept of classes inheritance. The current ver-
sion contains about 50 classes and class libraries (ROOT-CERN [88], OpenCV [89],
Eigen [90] and QCustomPlot [91]). The class inheritance has a single-root structure,
in which all used classes are inherited from the base class. The software package
is written in C/C++ and CUDA [92] with a user interface designed in Qt cross-
platform [93].

4.5.4.1 Streaming module

It is operating in non-blocking mode based on the ring-buffering technique. Archi-
tecturally, it is inherited from the algorithm in [39]. It is connected to the readout
hardware, allowing a frame streaming rate up to 600 frame/sec. However, due to
the beam flux constraints in EDLD experiments, the maximum frame rate is 100
frame/sec gives a single frame streaming cycle time = 10 msec.

4.5.4.2 Frame-by-frame reconstruction module

The base routine (CPU-wise) pseudo-code is shown in algorithm 1. A single data
frame is loaded from the streaming module and is treated as a 2D matrix with a size
equal to the detector sensitive area (384 × 384 in our case). Subsequently, the re-
constructed frame data are being visualized in real-time. The frame reconstruction-
visualization cycle time for the currently used machine is 1.1± 0.1 sec. However,
using a sequential frame-by-frame treatment routine with a high rate readout may

4.5. Application of HPC in EDLD 43

induce a high latency execution time, data loss and online visualization lag. There-
fore, a GPU-based routine has been developed in order to perform parallel recon-
struction. A set of frames data is vectorized and sent to the GPU machine, whereby
each frame is treated by a single thread. This attains a speedup factor up to 14 for
the given system features in table 4.1.
In order to optimize the number of frames being reconstructed in parallel per cycle, a
timing analysis considering the Worst-Case Scenarios (WCSs) has been performed.
The WCS was assumed to be a single frame streaming cycle time = 10 msec and
reconstruction-visualization cycle time per thread = 1.2 sec. The output parameters
for the WCS analysis are demonstrated in table 4.2. As a result, the value of 200
frames per cycle presents the optimum choice, as it obtains an acceptable speedup
factor, short waiting time of the analysis module, no data-loss and short real-time
visualization lag. The pseudo-code of the used routine is displayed in algorithm 2.

Algorithm 1 Reconstruction base algorithm.

1: function DEFINE FRAME DATA MATRIX

2: frm[384][384]← streamed frame data
3: function MAIN FUNCTION

4: FindValidPatterns;
5: ReconstructAllPatterns:
6: Singles← Number single events;
7: Multi← Number multipixel events;
8: SaveReconstructedData;
9: UpdateRealTimeVisualization;

10: startNewFram

TABLE 4.1: The used system specifications.

Feature Specification
Model Dell Lattitude 5480
Processor Intel Core i7-7600U
Speed 2.8GHz(4 CPU)
GPU Nvidia GeForce 930MX

TABLE 4.2: System timing analysis.

Number of
frames

Speedup
factor

First parallel
reconstruction
cycle time [sec]

Further paral-
lel reconstruc-
tion cycle time
[sec]

Analysis
module
waiting time
[sec]/cycle

Real-time
visualization
updating
frequency [Hz]

Average
data
loss/cycle

100 3 2.2 1.2 0 1 20 frame
200 6 3.2 1.2 0.8 0.5 0
500 12 5.2 1.2 3.8 0.2 0
1000 12 12.4 2.4 7.6 0.1 0

4.5.4.3 Analysis module

The main tasks of the analysis module are to reduce the data size, to orient the data-
pattern towards the desired application and to provide physical meaningful conclu-
sions from the processed data. It is divided into three submodules.

44 Chapter 4. High performance computing and parallel programming

Algorithm 2 Reconstruction GPU-based algorithm.
1: function THE KERNELFUNCTION

2: the reconstruction base algorithm . Without Updating the real-time
visualization

3: procedure INITIALIZATION

4: checking function =false
5: Num = 0
6: i = 1
7: function CHECKING FUNCTION

8: while (false) do
9: Num← Number of streamed frames

10: if Num > (200*i) then return true
11: function MAIN FUNCTION

12: if (true) then
13: DefineNumberOfThreads;
14: CopyToDevice;
15: LaunchKernelFunction (NumberOfThreads);
16: syncThreads;
17: CopyToHost;
18: UpdateRealTimeVisualization;
19: i← i+1
20: checking function← false
21: goto checking function.

1) Data mining and exclusion of artifacts The data mining routine is equipped
with several functions, such as the calculation of an absolute intensity map, direct-
beam discrimination, background elimination, Laue spot localization and energies
determination. To elaborate data mining, we undergo the pnCCD-data to the fol-
lowing steps:

• Pixels intensity map calculation: In the single photon detection mode, each
pixel will count one or no photon per frame. The integrated image, known as
pixels intensity map, is the summation of all frames providing the number of
events recorded by each pixel during the whole recording time. To avoid pixel-
by-pixel sequential iteration, a GPU-based algorithm is developed. Using the
algorithms in [94] and [95] as the main conceptional references, the integrated
image is generated with speedup factor up to 5.

• Background elimination: Scattering from experimental setup and electronic
noise may produce a continuous background. An effective method is needed
to detect and subtract this useless signals. Depending on the statistics-sensitive
non-linear iterative peak-clipping (SNIP) algorithm developed by CERN [96],
the 2D-continuous background is separated. The reliability of SNIP algorithm
to identify the background for a Laue experiment has been tested and reported
in [97, 98].

• Data delivery: Once the pixel map is corrected, it is delivered for further pro-
cessing. The rest of the data concerning the events amplitudes is switched to
a holding-on phase. In other words, the energy information for each recorded
event is stored and only the position information is delivered at this moment.

4.5. Application of HPC in EDLD 45

• Laue spots (foreground) localization: This is achieved by applying a two-dimensional
high-resolution peak search function [99] on the delivered pixel map. This
function automatically identifies the peaks in an image based on deconvolu-
tion method. A detailed description of this function concerning the mechanism
and the test of reliability can be found in [100, 101]. As soon as this step is car-
ried out, a 2D-Gaussian fitting is applied on the localized peaks to find the
center of mass for each spot with precision ≈ 10−2 pixels. A list of localized
spots with their positions is delivered to the next step.

• Energy spectrum estimation: Using the delivered spots list and data in holding-
on phase, an energy histogram is generated for each Laue spot representing
the distribution of the event amplitude in this area. To extract the required
energy-information from the histogram, a 1D spectrum peak searching func-
tion is used. This function selects the main peak after performing background-
elimination, spectrum smoothing and Compton edge recognition[99, 102]. Hence,
the selected peak is subjected to a 1D-Gaussian fitting.

Finally, the data is compromised to be a list of localized Laue spots with their energy
values. Only this list is sent to further process.

2) Data interpretation Many numerical calculations and crystallographic relations
are implemented at this step aiming to provide physical meaningful conclusions
from the processed data. In order to sustain with the maximum computational per-
formance, many parallel computation routines are implemented:

• Calculating the required parameters: Many parameters (e.g. the diffraction
angle 2θ, the wavelength λ, possible Miller indexations list (h, k, l) etc) for each
localized spot are calculated. Accordingly, as the number of localized spots
increases, the processing time increases as well. Therefore, a GPU-based rou-
tine has been implemented for crowded-spot patterns, allowing for a speedup
factor up to 5. Considering an efficiency analysis of the achieved parallelism,
the GPU routine is implemented only if more than 30 reflections have been
identified.

• Peak auto-indexation: To find the correct indexation of a Laue spot, one com-
pares the angles between two measured reflections with the theoretic angles
for all the possible permutations of Miller indices. If the difference between
experimental and expected angles for a given crystal system fulfills a prede-
fined uncertainty, the indices are supposed to be correct[103].
This base serial routine requires (n×m)2 action to perform a full indexation
task, where n is the number of reflections and m is the number of the possible
h,k,l for the nth reflection. A GPU-wise routine is implemented to parallelize
the indexation step reducing the work complexity to be (n×m). A further
parallelization implementation for better work complexity optimization is still
under development.

• Grain-corresponding spots identification: To assemble the collected reflections
into the correct corresponding grain is to compare the angles between two
measured reflections with the theoretic angles for all the possible permuta-
tions of Miller indices. If the difference between experimental and expected
angles for a given crystal system fulfills a predefined uncertainty, the couple
is supposed to be generated by planes belong to the same grain. A detailed

46 Chapter 4. High performance computing and parallel programming

explanation of this procedure is given in Appendix C.
The base serial routine has a time complexity of !n (i.e. O(!n)) to perform a full
identification task, where n is the number of reflections. A GPU-wise routine is
implemented to parallelize the indexation step aiming to reduce the work com-
plexity. A further parallelization implementation for better work complexity
optimization is still under development.

• Orientation determination: A transformation matrix is applied to transform
any plane in a crystal from crystal coordinates to Cartesian coordinates [104].
It can be calculated with only three reflections [103]. For crystals having more
than three reflections, the reflections are grouped in threefold subgroups cov-
ering all possible mutations. The final orientation is the mean value of the sub-
groups orientations. This step is done by the space transformation modules
implemented in Eigen library.

• Geometry optimization: EDLD-tool is equipped with a supplementary func-
tion that deals with geometrical parameters, such as SSD, peak position, and
direct beam position as ranged value with limits and step size defined by the
user. The data interpretation procedure is performed, covering all permuta-
tions of these values within the predefined range. Only discrete values that
show the lowest standard deviation are voted for the further calculations. The
main goal of this function is to find the optimal values of the experimental
setups.

3) Data visualization Data visualization establishes the connection channels be-
tween the user and the data being processed. EDLD-Tool is supporting this by many
cross-platform application programming interfaces (APIs) for rendering 2D and 3D
vector graphics, such as Open Graphic Library (OpenGl), QCustomPlot widget and
OpenCV. That endorses the interaction with a GPU to achieve hardware-accelerated
rendering.

4.6 Results and discussion

A previously conducted experiment [105] has been utilized to evaluate the perfor-
mance of the new analysis system. This experiment was realized at the synchrotron
radiation facility (EDDI beamline, BESSY-II, Berlin) with white X-rays. A Gallium-
Arsenide (GaAs) sample was located between the beam slit system and the detector
active area with experimental parameters given in table 4.3. The raw data were
streamed by streaming-from-file module and reconstructed by the parallel frame-
by-frame module. The finalized data were transferred and processed by EDLD-tool
analysis module ans a full analysis procedure was performed.
Table 4.4 reports the results and the comparison between both approaches. Notably,
EDLD-tool shows almost the same results as the previous approach regarding the
accuracy. The lower number of localized Laue spots may be a result of low intensity
peak height less than the predefined threshold or statistical error out of the accetable
range. Utilizing of the GPU-based algorithm enables the EDLD-tool to execute the
event-reconstruction within a time scale of minutes, comparing with the traditional
method that requires several hours to execute the same task. In respect of data anal-
ysis and interpretation, EDLD-tool shows an outstanding performance as it can exe-
cute a full data set analysis within a few seconds. The Geometry parameters can be

4.6. Results and discussion 47

exclusively optimized by using the "Geometry optimization function", aiming to re-
duce the statistical error. This function is not available in the traditional techniques.
However, activating this function may increase the latency and the workload. The
pioneering feature of the EDLD-tool is that it can operate "on-the-fly", providing the
user with real-time report about the conducting experiment.

TABLE 4.3: Experimental setup.

Material GaAs
Lattice constant 5.653 Å
Beam White x-ray beam
Beam energy 40 : 140 keV
Beam size 100*100±5 µm
Absorbing layer 200 µm of Pb

TABLE 4.4: Results comparison between the previous analysis system
and EDLD-tool.

Previous analysis EDLD-tool
Required disk-storage 20 GBytes 0
Computing style off-line on-the-fly
Work flow control Manually done by the user Automatically
Elapsed time for reconstruction Few hours Few minutes
Elapsed time for analysis Few hours Few seconds
Number of reconstructed frames 100000 100000
Geometry optimization Not included Exclusively performed
Number of localized spots 100 98
Number of indexed spots 100 98
Parameters calculation accuracy 0.5% 0.5%
Indexation standard deviation 2% 2%

48 Chapter 4. High performance computing and parallel programming

(A) EDLD-tool streaming module control board. The left visualization box shows the raw
data streamed directly from the readout. The right one is the data after reconstructing pro-
cess with a counter to display the number of finalized frames. Each function and feature is

connected with it manipulation element located in the right.

(B) EDLD-tool data analysis module control board. The lift-side part is for the user input
parameters and commands. The middle part contains all analysis main functions and pixel-
map visualization. The right-side part is for energy-scope analysis. The lower information

palette displays the final results.

FIGURE 4.6: EDLD-Tool graphical user interface main boards.

(A) (B)

FIGURE 4.7: Frame visualization output. (A) is a 3D view of frame
number 400 and (B) is for frame 500. The vertical axes represent the

event amplitude in [adu]

4.6. Results and discussion 49

(A) A screen-shot of the integrated image
after data reconstruction

(B) A screen-shot of a part of the inte-
grated imaged after the analysis proce-

dure

(C) 3D plotting of the pixel map before
background elimination

(D) 3D plotting of the pixel map after
background subtraction

(E) The quaternary plotting output of a localized Laue spot

FIGURE 4.8: The visualized output of EDLD-Tool for a testing
Gallium-Arsenide (GaAs) sample exposed to hard white X-ray beam

with energy range from 5 keV up to 120 keV.

51

Chapter 5

Artificial Intelligence (AI)

“Some people call this artificial intelligence, but the reality is this technology
will enhance us. So instead of artificial intelligence, I think we’ll augment our
intelligence.”- Ginni Rometty

5.1 Introduction

The term "intelligence" has been a subject of controversy throughout the history of
psychology. There is no uniform definition of the term: Versatile researchers have
proposed different conceptualizations which suggest that intelligence is the ability
to learn as well as recognize and solve problems. It involves many aspects such as
awareness, understanding, memory, language, and planning [106]. Thus, the fol-
lowing questions arise : Is intelligence an exclusive property of the human brain?
Can we create intelligent machines that have the same level of intelligence as hu-
mans? Alan Turing , who is considered to be the father of artificial intelligence (AI)
and computer science, initiated this branch of research by inventing the first intelli-
gent machine, the Turing machine, in 1936 [107]. This machine was used during the
Second World War to break the “Enigma” code used by German forces to send mes-
sages securely. In 1943, the field of AI has been fostered by Warren McCulloch, who
created the first neural network model [108]. . Arthur Lee Samuel also contributed
to the establishment of AI as well as computer gaming by publishing a paper about
his novel approach , which resulted in the first self-learning program to play check-
ers [109]. Since then, a lot of other attempts has been made for the advancement of
AI, which overall aim at making the dream to create smart machines that mimic the
human behavior come true.
Succinctly speaking, AI is the scientific field which aims to study and design intel-
ligent systems that perceive the environment and make decisions to maximize the
probability of success.Generally, AI can be classified into three types [110]:

1. Narrow AI: This type of intelligence is prominent in focusing on a single nar-
row task, such as playing chess, marketing suggestions, and weather forecasts.

2. Strong AI: : This type of intelligence is intended to think and perform several
tasks , similar to a human being. Moreover, it is able to learn, criticize, and
develop itself.

3. Super AI: This type of intelligence is capable to perform more sophisticated
actions, which are beyond the capacities of human intelligence in many fields,
such as scientific creativity, and social skills.

52 Chapter 5. Artificial Intelligence (AI)

Moreover, AI is incorporated into a variety of disciplines, such as automation, auto-
motive (self -driving cars), robotics, natural language processing (NLP), machine vi-
sion, and machine learning (ML), as figure 5.1 demonstrates. The focus of this work
is on ML, which is highlighted in green. As can be seen, ML contains Deep Learning
(DL)technology as a subset. This chapter shows how implementation of AI might
help to develop incredibly exciting and powerful techniques to solve many scientific
problems. Section 5.2 presents a collective summery of the ML fundamentals and ex-
emplifies its application in the crystallography community, whereas section 5.3 then
zooms in on the subfield of ML, namely DL, by outlining its basics and instantiating
its application in the crystallography community.

FIGURE 5.1: AI technologies.

5.2 Machine Learning (ML)

As stated in the introduction, ML is a form of AI that exploits datasets to detect a pat-
tern and learn it. It is one of the most important techniques to leverage data, helping
organizations to enhance their level of awareness and understanding. Compared
with Classical computer programs, the usage of such algorithms can automate task
performance rather than explicit programming. In industrial sector, as an example,
enterprises have exploited variety of ML models to boost the capability of predict-
ing the market fluctuations. This helps the decision-makers to create better future
for their business. According to Oxford Economics survey in 2017 [111], approxi-
mately 50% of companies are already using innovative ML techniques for business
analysis, such as repetitive tasks automation, recommendation systems, and data
pattern recognition.
In this manner, the science has acquired its AI-portion. The effect of ML is clearly

5.2. Machine Learning (ML) 53

visible across empirical sciences (i.e. biology, cosmology, material science, social
science, and different subfields of engineering). Many scientific applications and re-
search works have been published, broadly covering a range of scientific concerns,
such as bioinformatics [112, 113], medicine [114, 115], and astronomy [116, 117].
This subsection is structured as follows: Subsection 5.2.1 provides an overview of
the disciplines involved. Next, subsection 5.2.2 distinguishes a typology of learn-
ing, while subsection 5.2.3 lists the most common algorithms. Finally, subsection
5.2.4 demonstrates an application of ML to solve a crystallographic problem, namely
grain-corresponding Laue spots classification in a polycrystalline ED Laue pattern.
The detailed overview of ML concepts and theories can be found in [118–120].

5.2.1 Disciplines

" Machine Learning in a natural outgrowth of the intersection of computer science and statis-
tics " [121]. Professor Tom Mitchell introduced ML as a joint point where different
disciplines meet. He suggested that statics and statistical learning theory are the
backbone of any intelligent algorithm. He also state that ML incorporates additional
data-wise disciplines, such as data capturing, storage, indexing, retrieval, and merg-
ing. At a later stage, neurocomputimg and pattern recognition have become other
foci this field. All in all, it can be summarized that ML is a subject that integrates a
few widely mentioned disciplines, namely data science, statistics, neurocomputing,
and pattern recognition. Figure 5.2 depicts these four main areas involved in the
solution of a learning problem.

FIGURE 5.2: Machine learning disciplines

5.2.2 Types of learning

It is essential to identify the types of learning and to describe how they exhibit them-
selves in any given task one may encounter. Understanding the types of machine
learning helps the developer to craft the proper learning environment. Commonly,
learning might be divided into several categories according to its dependency on
data. Accordingly, as shown in figure 5.3, the three main categories are the follow-
ing: 1) supervised learning, where an algorithm learns from labeled data and predicts

54 Chapter 5. Artificial Intelligence (AI)

the next "never-seen-before"value [122], 2) unsupervised learning, where an agent iden-
tifies clusters from unlabeled data [123], 3) reinforcement learning, where an agent
learns from mistakes by interacting with a changing environment [124].

FIGURE 5.3: Different types of learning according to their depen-
dency on data

5.2.2.1 Supervised learning

Supervised learning is the most popular paradigm, in which a learner algorithm
learns from a given dataset in the form of examples with labels. The algorithm is
fed with two datasets, so called "the training and the testing sets". The training set
consists of n ordered instances of (xi, yi) pairs, where xi and yi are the ith input
and output respectively [125]. Due to a sufficient amount of such labeled (i.e with
the known output) sets, the algorithm can identify unlabeled data with very high
accuracy. During training phase, the testing dataset is used to evaluate the learner.
First, it is sent to the learner as an unlabeled set, allowing the algorithm to predict
the label for each example. Then, a comparison between the predicted and the actual
output is performed in order to estimate the accuracy of the algorithm.
Practically, a supervised learner tries to correlate the input features with the target
variable (i.e. the prediction output), generating a prediction function used to map
new input to the final output. This is a learning type which is exhibited in many
applications, such as spam detection, face recognition, handwriting recognition, and
advertisement popularity.

5.2.2.2 Unsupervised learning

Unsupervised learning is the opposite of supervised learning, where a learner is
fed by unlabeled datasets. In other words, the algorithm features no output or tar-
get outcome to predict. Instead, it tries to cluster the input population in different
groups, categories, or classes in such a way that makes sense for further intervention.
Nowadays, unsupervised learning is a demanding area as the overwhelming major-
ity of data is unlabeled. Such algorithms enable the user to handle huge amount of
data, achieving all potential profit out of it. They are widely used in several areas,
such as grouping user logs, recommender systems, and buying habits.

5.2.2.3 Reinforcement learning

In this case, machines or software agents are trained to make specific decisions by
using reinforcement learning. Conceptually, a learner is exposed to a dynamically

5.2. Machine Learning (ML) 55

changing environment and trained to determine the ideal behavior to boost its per-
formance. It has a learning-from-mistakes approach, where the learner receives reward
or reinforcement signal from the environment after performing an action. As long
as this process is repeated, the learner is able to distinguish between bad and good
behavior. Subsequently, the decision-making mechanism of the agent is improved.
This type of learning is used in many industries, such as resource management, in-
dustrial simulation, and video games.

5.2.3 Common ML algorithms

This part gives a brief overview on the most common machine learning algorithms.
These algorithms can be used to solve a huge range of problems. More applications
can be found in [119, 120].

5.2.3.1 Linear regression

Regression concept is originated from statistics has been adapted to statistical ma-
chine learning. Linear regression is used to model the linearity between independent
and dependent variables. This can be done by means of linear fitting by applying
the following line equation:

Y = β0X + β1 (5.1)

where Y is a dependent variable, X is an independent variable, β0 represents the
slope, and β1 is the intercept.
Linear regression is mainly classified in two groups, as follows:

• simple linear regression, which is modeled by only one independent variable.

• multiple linear regression, which is modeled by more than one independent
variables.

Linear regression is co-opted in a wide range of scientific areas (e.g. biology,
epidemiology, and social science) and applications (e.g. trend-line estimation, fixed
investment)

5.2.3.2 Logistic regression

Logistic regression is considered as a classification algorithm, since it is used to
model dichotomous values (i.e. 0/1, yes/no, true/false). It is known also as the
logistic model or logit model. It is used to analyze the relationship between mul-
tiple independent variables and a discrete dependent variable. It is based on the
occurrence-probability estimation of an event, where the dataset is fitted and repre-
sented on a logistic curve [126].
Suppose the two binary value 0 and 1 to be the outcomes with their probabilities of
observation 1− p and p respectively. Then the corresponding logit (l) transformation
is written as:

l = logit(p) = ln(
p

1− p
) = β0X + β1 (5.2)

where the ration (p
1−p) is called odds and logit is the logarithm of the odds [127].

Approximately 70% of data-wise problems are logistic and classification problems.
This makes logistic regression one of the most popular prediction methods, which is
used in many applications, such as image segmentation and categorization, cancer
detection, handwriting recognition, and gender detection.

56 Chapter 5. Artificial Intelligence (AI)

5.2.3.3 Naive Bayes (NB)

NB is an intuitive probabilistic algorithm used for classification problems. The main
idea behind it is to apply Bayes theorem [128] to discriminate different objects based
on certain features, following equation 5.3.

P(A|B) = P(B|A)P(A)

P(B)
(5.3)

where:

• A and B are two independent events having positive probability

• P(A|B) is the posterior probability of A occurring under assumption that B
has occurred

• P(B|A) is the likelihood probability of B occurring under assumption that B
has occurred

• P(A) is the class prior probability of A occurring

• P(B) is the predictor prior probability of B occurring

Accordingly, a NB classifier predicts the probability of belonging to a particular class
for given data points. NB algorithms are used in many applications, such as emotion
analysis, Spam filtering, and recommendation systems.

5.2.3.4 Random Forest (RF)

It is a classification and regression ML algorithm based on the decision tree concept
[129]. It consists of a combination of many uncorrelated decision trees considered as
fundamental building blocks of a RF. Each tree individually operates as a separated
classifier module. Then, the RF gathers all classifications and votes for the optimal
decision. Often, RF algorithms are called "the algorithms of wisdom of the crowds",
as the trees act as members of the committee [130]. Therefore, lower correlation
between trees gives high performance and accuracy. Figure 5.4 visualizes a scheme
of a RF model which has five decision members. Four of them vote for "True" while
only one is for "False". The RF final decision follows the majority of votes; it has
to be "True". RF models are very efficient on large datasets and are able to handle
missing data. They are used in many sectors, such as banking sector, medicines, and
E-commerce.

5.2.3.5 K- Nearest Neighbour (KNN)

KNN is a non-parametric learning algorithm, where underlying data points are clas-
sified into several groups, so-called clusters. A learner then predicts a corresponding
cluster for a new data point based on feature similarity. KNN is efficient with respect
to accuracy, simplicity, and versatility. However, it is computationally expensive and
requires high memory.

5.2.3.6 K-means

K-means is a simple unsupervised algorithm that aggregates each homogeneous
data points group in one cluster. Each cluster has a specific centroid, which is a

5.2. Machine Learning (ML) 57

FIGURE 5.4: The RF model for 5 decision trees. The winner is True
with the ratio of 80%.

point at the center of a cluster. Then, it identifies the number of centroids k (i.e. the
number of clusters), fulfilling the fact that data points in a cluster are heterogeneous
to peer groups.
The traditional k-mean has a major shortcoming; the domain should provide the
number of clusters (k) within a dataset. Therefore, many algorithms and techniques
have been developed to propose a solution for such this deficiency. This part cov-
ers only one algorithm (hierarchical clustering) and one technique (elbow method)
which are used for further work. More algorithms and techniques can be found in
[131–133].

a) Hierarchical Clustering (HC):
It is a clustering algorithm that considers k as a learning parameter. First, it treats
each data point as an individual cluster. Then, each cluster is merged to the nearest
one. This procedure is repeated till all data points are merged in one cluster and
organized as a tree. Each cluster in the tree is called a leaf and represents a union of
its children clusters as illustrated in figure 5.5. The figure shows a HC pipeline for

58 Chapter 5. Artificial Intelligence (AI)

an imaginary dataset, which contains eight data points. At the outset, each point is a
singleton cluster and then successively agglomerate pairs of nearest clusters. Finally,
all points are consolidated into one nested cluster. This type of clustering is typically
visualized as a dendrogram, as shown in figure 5.6. The data objects are represented
on the horizontal axis. The vertical line gives the average distance measured be-
tween the merged points (i.e. the similarity degree of clusters). The red doted line
is the threshold representing the demanded maximum error defined by the domain.
The clusters are allocated by the number the intersection points between the thresh-
old line and the dendrogram tree.

b) The Elbow method:
It is an ambiguous method to validate the consistency of a clustering algorithm. The
idea of the Elbow method is to perform k-means clustering with a range of values
for k, calculating the sum of squared errors (SSE) for each value of k. The total SSE
indicates the compactness of the clustering and should be minimal. By examining
the SSE convergence, the number of clusters is chosen so that the effect of merging
an extra cluster onto the data model is ignorable. Figure 5.7 provides an example of
the Elbow method output diagram. It shows a range of k between 1 and 8 clusters
with a chosen Elbow point of 4 clusters.

FIGURE 5.5: The HC pipeline for a dataset of 8 objects. At the begin-
ning all objects are represented in individual clusters. Then, they are

gradually merged into on cluster.

5.2. Machine Learning (ML) 59

FIGURE 5.6: The output dendogram of the HC.

FIGURE 5.7: The output diagram of the Elbow method application
with k range between 1 : 8 clusters. The chosen number of clusters is

4, representing the Elbow point.

60 Chapter 5. Artificial Intelligence (AI)

5.2.4 Application of ML in the grain-related classification of Laue spots
in a polycrystalline ED Laue pattern

As it explained in chapter 2, one of the most pioneering advantages of EDLD is the
one-shot experiment for polycrystalline materials. However, real-time analysis of
the generated Laue pattern without any orientation preference requires innovative
techniques to extract grain-wise information. Although, as proven in chapter ??,
HPC is an alternative candidate to perform such analysis, it demands a specific level
of programming skills. This part shows how an AI algorithm is able to execute the
same task without any programming complexities.

5.2.4.1 The objective

The main aim is to solve a crystallography problem, namely grain-related classifica-
tion of Laue spots in a polycrystalline ED Laue pattern. This can be considered as
a clustering problem, where spots corresponding to one grain representing a cluster
and number of centroids (k) refers to number of probed grains. Next step is to find a
similarity feature to base the clustering on. Since crystallographic planes within the
same crystal have the same orientation degree with respect to a reference crystal, the
orientation angle of the planes within a grain to their twine reference planes is con-
sidered as the learning feature. Simply put, figure 5.8 visualizes two grains, where
"Grain 2" is oriented to the reference "Grain 1". Two identical planes (hkl)1 and
(hkl)2 are displayed in both grains. The n1 and n2 vectors are the norm of the planes
in "Grain 1", while n3 and n4 belong to "Grain 2". From this perspective, "Grain 2"
is nothing but a representation of "Grain 1" in a different coordinate system. Thus, it
might be concluded that the angles α and β represent the axis transformation angle
and are identical, following equation 5.4 .

ε2 = cos α = cos β =
~n1.~n4

||~n1||||~n4||
=

~n2.~n3

||~n2||||~n3||
(5.4)

where ε2 is the orientation stamp for "Grain 2". Then, this 3D angle is projected onto
x − y, y − z, and z − x planes, giving the three components εx, εy, and εz. How-
ever, this fact requires two extra steps to prepare the data points before feeding the
learner. First, finding the reference grain. Second, representing all reflections in the
orientation stamp space, so-called "AT-map".

5.2.4.2 Finding the reference grain

The reference grain should contain all possible reflections for a specific experimen-
tal setup. That requires a detector active area covering a solid angle of a hemisphere
with the radius which equals to the traveling distance between the sample and the
detector. The limited size of the detector utilized by an EDLD experiment prevents
to fulfill this criterion. Therefore, a possible solution is to simulate the reference
grain as an extra step for each dataset.
A special algorithm has been developed to realize this step. It is an inverse model-
ing algorithm based on projection engineering and vectors algebra, which is written
in Python platform. It is able to model a list of all possible reflections generated by
a given crystal structure for specific experimental conditions (e.g. detector position
to the primary, energy range, and Miller indices range). This is done by generating
the reciprocal space map for a bulk crystal (i.e. which has no orientation to the lab
coordinates), as follows:

5.2. Machine Learning (ML) 61

FIGURE 5.8: ML scheme.

A list of possible Miller indices is generated within the predefined range after con-
sidering the structure factor of the material under inspection. As soon as the HKL
list is ready, the primitive basis vectors ~b1, ~b1 , and ~b1 for each Miller indices group
is calculated according to equation C.4. Applying the equations ??, C.6, and C.9 the
scattering vector components (~qx, ~qy, and ~qz) are then calculated, which are the main
components of the reciprocal mapping. Figure 5.9 shows the 3D reciprocal modeling
for a bulk GaAs crystal in hkl range between −3 to 3.
This algorithm is equipped with a rotation function, which is is able to rotate the bulk
grain within the 3D space. It is based on the spherical coordinate system, where each
bulk~q is assigned by radial distance (r), polar angle (θ), and azimuthal angle (φ). Fig-
ure 5.10 visualizes the spherical and the Cartesian representation for a vector (the red
arrow). The rotation is performed in the spherical system after transformation of the
bulk grain considering the required rotation polar (δθ) and azimuthal (δφ) angles.
Then, the coordinates of the rotated grain are transformed back into the Cartesian
system. The transformation between both systems is governed by equation 5.5.

r =

√
x2 + y2 + z2

θ = arctan y
x

φ = arccos z√
x2+y2+z2

To Cartesian−−−−−−→
←−−−−−−
To spherical

x = r sin(θ + δθ) cos(φ + δφ)

y = r sin(θ + δθ) sin(φ + δφ)

z = r cos(θ + δθ)

 (5.5)

Figure 5.11 displays the simulated reciprocal map for two GaAs crystals having the
Miller indices ranging between −3 to 3. The blue lines represent the rotated crystal
with δθ = 3.9◦ and δφ = 6◦ related to the bulk one (i.e. represented by the red lines).
This function will be used later to generate datasets in order to validate the clustering
algorithm. The pseudo-code of the grain simulator is displayed in algorithm 3

62 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.9: The simulated reciprocal map for a GaAs crystal with
the Miller indices range of −3 to 3.

5.2.4.3 AT-map calculation

After simulation of the reference grain, a prior data preparation step should be per-
formed, where all indexed reflections for an EDLD dataset are represented by an
AT-map. It is a 3D angular space, where each ~q vector corresponding to an individ-
ual reflection is mapped as a function of a 3D angle, representing its orientation with
respect to the predefined reference. It is essential to mention that there are two dif-
ferent datasets, namely the simulated and the experimental ones. For the following
section, the prefix Re f is used to indicate the simulated set, while Exp is used for
real data. The AT-map can be calculated as follows:

• Pairing each Exp reflection with its Re f indexing-twine one.

• Calculating the angle (ε) between the~qExp and the~qRe f for each pair.

• Analysing the three components α, β, and γ of the ε representing the projection
of ε on x− y, y− z, and z− x planes.

The output from the AT-map is expected to have many groups where data-points
of the same orientation to the reference grain are assigned to the same group. The
number of groups represents the number of probed grains while the centroids are
the rotations angles to the reference grain. By this representation, the problem is
converted to be an unknown k-clustering problem, and hence, ML can be applied
for its solution.

5.2.4.4 The model

As the number of cluster within the data is unknown, the traditional k-mean classi-
fier fails to provide a solution for such datasets. Instead, it is suggested to utilize a

5.2. Machine Learning (ML) 63

FIGURE 5.10: The spherical and Cartesian representation.

k-mean classifier which is able to treat the unknown k as a learning parameter. This
part investigates two different classifiers, namely HC, and K-mean with the Elbow
method. It will be shown that a combination between HC and the Elbow method
might give a better solution. To achieve this, a data set of three grains having dif-
ferent orientation with respect to the GaAs reference grain are simulated using the
explained grain-simulation algorithm with angles shown in table 5.1. Figure 5.12
visualizes the 3D mapping for all grains. The red dots represent the reference grain
while black, green, and blue ones are for Grain1, Grain2, and Grain3 respectively.
The AT-map of this dataset, shown in figure 5.13, has been fed to both mentioned
classifiers and the results are shown below.

TABLE 5.1: The angles of the simulated grains to the GaAs reference
grain.

Polar angle [◦] Azimuthal [◦]
Grain 1 5 1
Grain 2 6 18
Grain 3 3.9 6

• The hierarchical clustering: With a threshold of 3◦ per cluster, the HC votes for
k = 3 to be the optimal clusters number. The dendogram of the decision tree is
shown in figure 5.6

• K-mean with the Elbow method: With a k range of 0 to 9 clusters, k = 3 is
chosen to be the Elbow point. This is in agreement with the result of the HC
algorithm. Figure 5.15 displays the SEE for different k within the predefined
range.

To improve the performance and the accuracy, it is suggested to use the combination
of the two classifiers. The HC proposes the initial kinit value, which is validated by
the Elbow method, whereby, the initial kinit is incrementally stepped by one, giving
k+init. Subsequently, the traditional k-mean is performed with both kinit and k+init, cal-
culating the sum of square errors SEEinit and SEE+

init respectively. The convergence
between the two SSE values is then tested to find out if it fulfills the particular thresh-
old condition. If not, the kinit is updated to be k+init and this procedure is repeated till
the new optimal k value is found. Algorithm 4 demonstrates the pseudo-code of

64 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.11: The simulated reciprocal map for bulk and rotated
GaAs crystals with Miller indices range of −3 to 3. The red lines
represent the bulk ~q while the blue lines are for the rotated ~q. The

rotation polar (δθ) and azimuthal (δφ)are 3.9◦ and 6◦, respectively.

the model used. Implementation of this combination provides better accuracy as it
makes use the advantages of two different classifiers. Moreover, this procedure is ef-
ficient for datasets that contain a high number of clusters, as it reduces the examined
range of k value.

5.2. Machine Learning (ML) 65

Algorithm 3 Grain simulation algorithm based on the spherical representation.
1: procedure REFERENCE GRAIN SIMULATION

2: function DEFINE THE PARAMETERS

3: LC← The lattice constant
4: SF← The structure factor
5: function GENERATE POSSIBLE HKL GROUPS(HRange,KRange,LRange)
6: for h in range(-HRange,HRange) do
7: for k in range(-KRange,KRange) do
8: for l in range(-LRange,LRange) do
9: CheckTheStructureFactor()

10: if True then
11: CaculateQxQyQz()
12: SaveAsReference()
13: return RefArray[]← The bulk datapoints
14: function GENERATE THE RECIPROCAL SPACE MAP

15: function SAVE AS DATA POINTS

16: procedure ROTATED GRAINS SIMULATION

17: repeat
18: for i = 0 : sizeof(RefArray[]) do
19: ConvertToSpherical(RefArray[i])
20: RotateToRef(RefArray[i], θ, φ)
21: ConvertToCartesian(RefArray[i])
22: SaveAsRotatedGrain()
23: until number of required grains is reached
24: return RotatedGrainsArray[][]
25: function VISUALIZE THE DATA

FIGURE 5.12: The reciprocal representation of all grains.

66 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.13: The AT-map of the simulated dataset.

FIGURE 5.14: The dendogram of the HC algorithm.

5.2. Machine Learning (ML) 67

FIGURE 5.15: The diagram of the k-mean algorithm with k range of
1 : 9 clusters. Based on the result of the Elbow technique, the number

of cluster in this dataset is 3.

Algorithm 4 Grain simulation algorithm based on the spherical representation.
1: DataArray[]← The AT-map data
2: function RUN THE HC ALGORITHM(DataArray[])
3: return kinit ← The initial k value
4: let IsElbow = f alse
5: while IsElbow = f alse do
6: let k+init = kinit + 1
7: function RUN THE K-MEAN ALGORITHM(kinit)
8: return SEEinit

9: function RUN THE K-MEAN ALGORITHM(k+init)
10: return SEE+

init

11: function CHECK CONVERGENCE(SEEinit, SEE+
init)

12: return IsElbow
13: if IsElbow == false then
14: kinit = k+init

15: if IsElbow == true then
16: return IsElbowThe final k value

68 Chapter 5. Artificial Intelligence (AI)

5.2.4.5 Experimental datasets and discussion

Get the

experimental

parameters

Set the HKL

indexation range

Simulate the

Ref grain

Get the

experimental

data points

Calculate

the AT-map

Run the ML

classifier

Visualize

the results
End

FIGURE 5.16: Analysis procedure pipeline.

After the verification of the suggested model by the simulated dataset, it has been
tested on the data collected by the previously conducted experiments. The proce-
dure pipeline is shown in figure 5.16. First, the experimental setup parameters (i.e.
the detector position to the primary and to the sample,the beam energy range, the
probed material structure, the detector and pixels size) are sent to the model and are
used for further calculations. Starting from equation ??, the HKL range is estimated:

−
[

2.a. sin(θmax)Emax

hc

]2

< h2 + k2 + l2 <

[
2.a. sin(θmax)Emax

hc

]2

(5.6)

where Emax is the maximum photon energy provided by the radiation source and
sin(θmax) is calculated according to equation 5.7:

sin(θmax) =
XY√

XY2 + STD2
(5.7)

where STD is the travailing distance between the sample and the detector, XY is the
absolute distance between the reflection and the primary beam within the detector
plane calculated by equation 5.8:

XY =
√
[(xdec − xbeam) ∗ Pixx−size]

2 +
[
(ydec − ybeam) ∗ Pixy−size

]2 (5.8)

where xdec and ydec are the horizontal and vertical detector size in pixel, respectively.
The primary beam pixel position is given by xbeam and ybeam, while Pixx−size and
Pixy−size are the square pixel sizes. The reference bootstrap data are simulated as
explained in the previous part. The reflections of the recored Laue pattern are listed
and sent for the AT-map representation. Each reflection is defied with its Miller in-
dices (i.e. h, k, and l) and scattering vector components (i.e. qx, qy, and qz). Finally,
the AT-map is determined and fed to the classifier. This procedure has been per-
formed for two different experimental datasets:

1. Single crystal dataset: A single crystalline GaAs sample was mounted at the
beamline of the BESSY II storage ring in Berlin and the Laue pattern was
recorded in transmission geometry by a pnCCD [105]. Figure 5.17 visualizes
the Laue pattern recorded in a single exposure of the STD = 41mm. The
expected range of the Miller indices is between −20 and 20. For simplicity
reasons, a decision was taken to reduce this range to be −10 : 10 and only
the indexed points which meet this range are processed. The reciprocal map-
ping is shown in figure 5.18, the red and blue dots are for the bulk grain and
experimental data points respectively. Figure 5.19 visualizes the AT-map of

5.2. Machine Learning (ML) 69

this dataset including the (0, 0, 0) point for better visualization. The HC den-
dogram is shown in figure 5.20, where the dashed red line is the predefined
threshold. As all the found clusters are below the threshold line, the classi-
fier has merged all data points into one cluster giving k = 1. Based on the
feeding of the Elbow k-mean model with the AT-map and kinit = 1, the Elbow
point was voted to be 1. Figure 5.21 displays the SSE variation to the number
of clusters during the verification procedure. Ultimately, this dataset was pre-
dicted to have only one cluster with the centroid shown in figure 5.22. This
indicates that the examined Laue pattern contains reflections generated by a
single crystal. This result is totally in agreement with the expectations.

2. Polycrystalline dataset: An EDLD experiment was performed using a poly-
crystalline Nickel wire [134] and the Laue pattern was collected by a pnCCD.
Several reflections were selected and processed. Figure 5.23 shows the Laue
pattern and the assigned reflections. According to the prior analysis [134], the
reflections belong to nine different grains. The same procedure was applied on
this dataset. Figure 5.24 shows the 3D AT-map fed to the classifiers. The dendo-
gram of the HC is displayed in figure 5.25. The threshold line has 9 intersection
points with the plotting, giving kinit = 9. The Elbow k-mean diagram is shown
in figure 5.26, where the voted Elbow point is 9. Conclusively, nine grains have
been identified in this dataset which supports the results of with the previous
analysis.

5.2.4.6 Technical description and conclusion

This algorithm has been developed using Python programming language. The clas-
sifiers are based on SciPy library [135]. The 3D and 2D plots have been generated
exploiting Matplotlib library [136]. To criticize the performance in real-time, a la-
tency analysis has been performed on the three components of this software (i.e.
grain simulation, AT-map calculator, and classification). Figure 5.28a demonstrates
the elapsed time by the grain simulator to generate the reference grain with different
HKL ranges. Practically, a typical EDLD is not expected to exceed the HKL range of
−20 : 20 because of the limitations of the experimental setups (e.g. the beam energy,
detector size, and detector quantum efficiency). Depending on this fact, the max-
imum latency required to simulate a reference grain is less than 1sec. The elapsed
time of both AT-map calculator, and classification procedure have been investigated
and shown in figure 5.28b and 5.28c respectively. This has been done assuming a ref-
erence grain with the HKL range of 20 : 20. Basically, the latency of the classification
procedure can be neglected as it has no major effect. On the other hand, the AT-map
calculator shows slow performance in the case of extremely crowded Laue patterns
(i.e. having more than 300 reflections). This behavior is diminished with the number
of processed reflections less than 300.
This part has shown an ML-based solution to identify grain-corresponding Laue re-
flections in a polycrystalline ED Laue pattern. It has demonstrated that data points
representation is the key to any successful classification algorithm. The AT-map rep-
resentation offers an innovative approach to prepare EDLD datasets. Furthermore,
it has been proven that a combination of two classifiers (i.e. HC and the Elbow k-
mean) boosts the performance and the accuracy of the clustering procedure. The la-
tency analysis has emphasized the real-time properties of the developed algorithm.

70 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.17: The indexed Laue pattern of GaAs single crystal. Only
the Bragg peaks with the highest integrated intensity were assigned

to the identified Laue spots in the figure.

FIGURE 5.18: The 3D plotting of the reciprocal mapping for a GaAs
single crystal. The red dots represent the simulated data while the

blue dots are for the experimental data points.

5.2. Machine Learning (ML) 71

FIGURE 5.19: The AT-map of the experimental data points. The
(0, 0, 0) point was included for better visualization.

FIGURE 5.20: The dendogram of the HC for a GaAs single crystal
dataset. The dashed line is the predefined threshold level. Accord-
ing to this threshold, all data points have been merged into a single

cluster.

72 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.21: The diagram of the Elbow k-mean algorithm with
kinit = 1. The Elbow point was voted to be 1.

FIGURE 5.22: The clustered AT-map of the GaAs sigle crystal dataset.
The red x represents the centroid of the predicted cluster.

5.2. Machine Learning (ML) 73

FIGURE 5.23: The indexed Laue pattern of Ni polycrystalline sample.

FIGURE 5.24: The AT-map of the experimental Ni polycrystalline sam-
ple data points.

74 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.25: The dendogram of the HC for a Ni polycrystalline sam-
ple dataset. The dashed line is the predefined threshold level. Ac-
cording to intersection between the threshold and the plotting, this

dataset was clustered into 9 ensembles.

FIGURE 5.26: The diagram of the Elbow k-mean algorithm with
kinit = 9. The Elbow point was voted to be 9.

5.2. Machine Learning (ML) 75

FIGURE 5.27: The clustered AT-map of the Ni polycrystalline sample
dataset. The red x represents the centroids of the predicted clusters.

(A)

(B) (C)

FIGURE 5.28: The time to process different number of reflections
within a Laue pattern. (A) is the elapsed time to simulate the ref-
erence grain vs the HKL ranges. (B) is the latency of the At-map cal-

culator, while (C) is for the classification procedure.

76 Chapter 5. Artificial Intelligence (AI)

5.3 Deep Learning (DL)

Many scientific studies have adopted DL techniques to find solution for such prob-
lems as strain imaging from nano-crystals [137], crystal structure classification [138],
Deep Learning Methods for Visual Fault Diagnostics of dental X-ray systems [139]
and imaging nanoscale lattice vibrations [140]. The idea behind the implementation
of DL methods in data analysis is s to make use of their considerable advances in
computation and management of very large datasets [141]. Furthermore, DL meth-
ods have recently been shown to exceed human performance in performing visual
tasks such as object recognition and image classification [142]. This section is to
briefly describe the state of the art in DL methods and to investigate their applica-
bility for automatic event classification collected by a 2D energy-dispersive detector
(e.g. pnCCD). This implementation might improve both quality and performance
of the event reconstruction procedure for such detectors. To fulfill the above stated
goal, first, the main DL concepts are explained in subsection 5.3.1. Next,the focus is
shifted to the Convolutional Neural Networks (CNN), which are particularly rele-
vant for this work (subsection 5.3.2). In subsection 5.3.3, some current trends in DL
are explained. Finally, subsection 5.3.4 presents its application of DL in the crystal-
lography community.

5.3.1 Deep learning basics

5.3.1.1 4.3.2.1 The neuron model

The neuron model is inspired by the biological neurons that shape the networks of
brains of living creatures. Therefore, it is important to introduce a basic summery of
these natural systems. A neuron is a fundamental element of the neural network. It
is considered to be an information-processing cell, which transmits signals between
input and output destinations [143]. As shown in figure 5.29a, a neuron consists of
three constituents: dendrites, cell body (i.e. Soma), and axon. The dendrites are the
information-receivers of a neuron. They have a tree-like shape where each branch is
a connection line linked with the surrounding neurons by the weighting synapses.
The cell body (soma) is the core where all received signals are accumulated and
stored for further transferring. Once the accumulated signals fulfill a certain con-
dition (i.e. exceeding the threshold value), an electrical impulse is fired by means
of the axon and transferred to the output destinations based on previously learned
patterns. The axon terminals, located at the end of the axon’s branches, connect
spread signals across the synapses of other neurons. A set of linked neurons rep-
resent a neural network (NN) or neurons system. The neural capacity of a NN is
proportional to the capabilities of the system. For instance, a human being, who has
cognitive capabilities (e.g. speaking, remembering, abstracting, mechanizing) needs
1011 neurons, while an ant, having limited capabilities, requires 104 neurons [143,
144]. From a computational perspective, a NN might be modeled by the mathemat-
ical form given in equation 5.9.

y = A(∑
i

ωi~xi + b) (5.9)

where y is the scalar output transmitted by the axon terminals, ~xi is the vectorial
input of the neuron ith, ωi is the synaptic weight of the neuron ith, and b is the cell
body bias. A() is the firing function, which is often termed as "activation function".
The sum of all input signals refers to the accumulated signal stored in the soma.

5.3. Deep Learning (DL) 77

Based on the model of natural neuron, the first perceptrons (i.e. artificial neurons)
were formulated by Frank Rosenblatt [145].

(A)

(B)

FIGURE 5.29: The neuron models, (A) is biological neuron structure
[143], while (B) is the imitative artificial perceptron.

5.3.1.2 Artificial Neuron Network (ANN)

An ANN is a connectionist system where several perceptrons are homogeneously
operating together. The main objective of such systems is to perform the cognitive
functions of the human brain. Each individual neuron is called a "node" and has its
own bias (b). It is responsible for extracting, learning, or estimating a specific feature
from the weighted vectorial input. The number of implemented perceptrons and
their interconnected structure is called "the architecture of the neural network" [146].

78 Chapter 5. Artificial Intelligence (AI)

a) ANN Layers: The neurons of an ANN are grouped in subsets, so-called "lay-
ers". There are three types of layers, namely input, output, and working layers. As
their names suggest, the input and output layers are the communication channels
between the ANN and the outer components. The working layers are often labeled
as "hidden layers" as they are invisible to the external systems. They are the layers in
between the input layers and the output layers, which are responsible for extracting
a different set of high-level features. ANNs are categorized according to the number
of their hidden layers or signal propagation.The classification based on the amount
of hidden layers contains two types: single-layer, and multi-layer ANNs. It is essen-
tial to mention that stacking different neural network layers in a multi-layer ANN
is termed as "Deep Learning (DL)". On the other side, a single layer ANN is con-
sidered as a "shallow learning" architecture. The signal-propagation-based definition
includes various types of ANNs architectures, such as feed-forward, Radial Basis
Function (RBF), Recurrent Neural Network(RNN), and Convolutional Neural Net-
work (CNN). This work focuses only on the CNN architecture, more details about
the other kinds can be found in [146–149].

FIGURE 5.30: A simple feed-forward neural network with one hidden
layer.

b) The notation for the weights and biases: The weight and the bias indicate
the influence of the perceptrons on a NN: the higher the weight is, the higher is
the domination. The bias is an extra input to neurons, representing the offset of the
neuron. The commonly used notations for the weights and the bias of an ANN are
(ω[l]

mn) and (b[l]n) respectively, in which l is the layer number, while m and n refer to
the number of the launch and destination nodes in the lth layer respectively. For an
example, the output of the ANN shown in figure 5.30 can be given as:

y = A(W [1]~x + B[2])W [2] (5.10)

5.3. Deep Learning (DL) 79

where A() is the activation function,

~x =

x1

x2

 , W [1] =

ω

[1]
11 ω

[1]
21

ω
[1]
12 ω

[1]
22

ω
[1]
13 ω

[1]
23

 , B[1] =

b[1]1

b[1]2

b[1]3

 , W [2] =

ω

[2]
11

ω
[2]
21

ω
[2]
31

During the training phase, an ANN is trained to find the values of all weights and
biases involved in the architecture. This helps the NN to find a function which maps
input to the associated output label.

c) Activation function: The artificial neuron activation is the switching-status gate
of a neuron. It takes an vectorial input and performs point-wise operation, which
fires a binary output (i.e. [0,1] or [-1,1]) [139]. This allows to overcome the non-
linearity between a response variable and its input variables. The capacity of any
ANN principally depends on the result of its activation function. In the part below,
some popular and commonly used activation functions are shown.

• Sigmoid or logistic: It is standard logistic non-linear function or quasi step
function. It bonds the resultant output values between 0 and 1, normalizing
the output of a neuron. Figure 5.31a displays the curve diagram of the sig-
moid function. The most serious disadvantage of this activation technique lies
in the vanishing gradients in case of strongly-negative input. This causes a
neural network to get stuck at the training time. Sigmoid activation function
is governed by the following mathematical form:

y = S(x) =
1

1 + e−x (5.11)

• Hyperbolic tangent (tanh): It is a sigmoidal function (i.e. S-shaped), squash-
ing outputs values in the range between -1 and 1. It is a zero-centered function
that makes it easier to deal with negative, neutral, and positive input values.
Basically, it also faces the vanishing gradients problem at the edges. Figure
5.31b shows the curve of the tanh activation function, while the following equa-
tion is the mathematical form:

y = tanh(x) =
ex − e−x

ex + e−x = 2S(2x)− 1 (5.12)

• Rectified Linear Unit (ReLU): ReLU is the most commonly used activation
function in neural networks. It is a linear function for the positive input and
zero for the negative one. In other words, the firing output for the negative in-
put is clipped to zero, while it remains the same for the positive input. It has a
very high computationally efficiency, allowing the fast convergence during the
training procedure. Figure 5.31c is the curve of the ReLU activation function.
It has the following equation:

y = Re(x) = max(0, x) (5.13)

80 Chapter 5. Artificial Intelligence (AI)

(A) (B) (C)

FIGURE 5.31: The typical activation functions curves. The left dia-
gram (A) is sigmoid. The middle (B) and the right (C) onces are for

tahn and ReLU, respectively.

d) Loss function: A loss function or cost function (ρ) is an evaluation function to
measure the deviation of the learner performance from the real value. At its core,
this loss function simply measures the absolute difference between the prediction
and the actual value. It might have the mathmatical notation: |ypredicted − yactual |.
A loss function learns to be minimized, giving an indicator of "how good the ANN
is". Often, the loss function is distinguished into two major types depending on the
learning task: regression losses and classification losses.

e) Feedforward propagation: In forward propagation, an ANN has an open topol-
ogy, where the signal is fired in one direction; from the input layer to the output
layer [150]. There is no possibility for the neural network to correct itself after pre-
dicting the output. This results in high loss in case of non-linear correlated data and
learning-limitation, such as a failure to learn in case of sequential or time-depended
data. Therefore, the multi-layer perceptron (MLP) is widely used, allowing to learn
non-linearly separable patterns.

f) Back propagation: It is an innovative technique to minimize a loss by using a
closed-topology ANN. The signal is fired in two opposite directions: 1) calculating
the derivatives (the so-called "gradients") of the losses to the weights of the last layer.
2) sending the feedback in the opposite direction, gradually updating the previous
layers. Basically, back propagation uses the chain rule of differential calculus, where
it iteratively processes batches of data through the NN then updating the weights.
This can effectively help to steer the learner, in a descending manner, towards the
losses local minima. This algorithm is known as Gradient Descent (GD).

5.3.2 Convolutional neural network (CNN)

A CNN or ConvNet belongs to the DL architecture, where the perceptrons have
learnable weights and biases. It is very efficient in signal processing and image-
related applications (i.e. image classification, object recognition, and image genera-
tion). Conceptually, it is governed by computer vision and neural networks [151].
The first CNN was implemented in 1998 when the "LenNet-5" network architecture
was published by Y. LeCun [152]. Figure 5.32 shows the original model architecture
of LenNet-5 network. Thanks to the new technologies in the computing field, many
CNN architectures have been developed that efficiently process huge volume inputs
, such as GoogLeNet [153], and VGG [154]. A CNN can have the following layers:

5.3. Deep Learning (DL) 81

FIGURE 5.32: The model architecture of LenNet-5 network [152].

5.3.2.1 Convolution layer

A convolution layer is specialized to extract patterns from the input images and
make sense of them. It can detect the relation between a pixel and its neighboring
pixel within a predefined area, preserving the spatial properties between pixels. This
can be done by applying convoluting filter mask (i.e filter kernel, feature detector) on
the original input image. A filter mask is a coefficients matrix, epitomizing a specific
feature, such as image edges, object boundaries, pixel saturation, texture objects, etc.
During the convolution process, a predefined filter proceeds on local regions in the
input (e.g. defined by the size of the filter), computing a dot product between the
filter coefficients and the proceeded area. Consequently, a features map is generated
as an output of the convolutional layer, containing important features of the original
image. Figure 5.33 shows a simple example of a convolution layer. A 2× 2 filter is
applied on a 4× 4 input map. Each convoluted local input area results in an element
within the convoluted features map. By each step the filter proceeds to another local
area with a predefined shifting step. To perform a successful convolution, three
hyper-parameters should be defined, namely:

• The kernel size, which refers to the window size surrounding the local input
area being convoluted.

• Stride, which defines the step by which the kernel jumps each iteration.

• Detection features, which are the mathematical coefficients of the applied filter.

Figure 5.34 displays the coefficients matrices of the commonly used filters. The first
two matrices in the left-hand part are the typical vertical and horizontal edge detec-
tors. Figure 5.34c and 5.34d are the so-called "Sobel" and "Scharr" filters respectively.
Figure 5.35 shows the effect of applying the Sobel filter to calculate the X and Y par-
tial derivatives of the original image. Figure 5.35a is the original image [155], while
figure 5.35b is the features map. Moreover, the weights of the filter can be treated
as learning-parameters instead of learning from each pixel-wise weights. This can
reduce the number of learning-parameters during the training procedure enhancing
the computing performance.

5.3.2.2 Pooling (down-sampling) layer

A pooling layer is another building block of a CNN. It operates on each feature map
independently. Its function is to gradually minimize the size of the features map,
engaging no extra parameters. This can reduce the amount of training-parameters
and computation resources in the network. It assembles several elements from a

82 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.33: A convolution layer scheme. The original features map
has a size of (4x4). The applied filter layer has kernel size of 1x1
and stride of 2x2. Each element within the output convoluted map is
the element-wise product of the filter and the corresponding features

map elements.

(A) (B) (C) (D)

FIGURE 5.34: The common convolution filters. (A) and (B) are the
vertical and horizontal edge filters respectively. (C) is the Sobel filter

while (B) is the Scharr filter.

features map into an individual output element by applying a pooling function. The
hyper-parameters of a pooling layer are the following:

• The pooling kernel size

• Stride

• Pooling function, which is the mathematical operator applied on the chosen
elements.

The common pooling function is named " Max Pool" gives an output to the max-
imum element among the kernel elements. " Average Pool" is another kind of the
pooling function. The resultant output is the average value of the kernel elements.
Figure 5.36 displays an unpretentious example of the Max pooling function, with
the 2x2 kernel and 2x2 stride, applied on the 4x4 features map. The pooled features
map is then minimized to be 2x2.

5.3. Deep Learning (DL) 83

(A) (B)

FIGURE 5.35: The Sobel edge detector. The left image is the original
image, while the right one is the output after applying the Sobel filter,

Source: [155].

FIGURE 5.36: The Max Pool layer scheme. The original features map
has a size of (4x4). The applied pool layer has a Max pooling function
with kernel size of 2x2 and stride of 2x2. The output pooled map is

shrunk to have a size of 2x2.

5.3.2.3 Flattening layers

The main task of flattening or vectorization layers is to transform an N-D array into
1-D array, avoiding the implicit iteration over an N-D array. This can save compu-
tation resources and reduce the training latency. Basically, flattening layers have no
considerable effect on the performance of the trained module. Figure 5.37 visualizes
a scheme of a flatten layer applied to an 2D (3x3) array. The output is an 1D array
having 9 elements that is passed through the ANN for further processing.

84 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.37: The flatten layer scheme.

5.3.2.4 Fully Connected (FC) layers

Fully connected layers are substantial components of any CNN. The main purpose
of a FC is to connect different layers. Whereby, the ANN combines each node in a
layer to nodes in another layer widening the variety of attributes. This makes the
CNN more capable of classifying images.

5.3.3 DL Buzzwords

5.3.3.1 Padding

It is a process to symmetrically add extra element/s around the input map. It holds
a main role in a CNN, allowing to adjust the size of data. This helps to overcome
downsides of shrinking the output after convolution and bad image-corners resolv-
ing. Zero-padding is the most common type, where data are surrounded by zeros.
In figure 5.33, for example, the output features map is shrunk which is considered
as data-loss. In comparison, figure 5.38 displays the convolution layer applied on
a padded map. This results in an output map having the same size as the original
input.

5.3.3.2 Softmax

It is a normalization function, which is used in classification problems. It calculates
the probability of belonging to each class for a given input. Usually, it is imple-
mented as a final-output.

5.3.3.3 Training-validating-testing phases

The pipeline of building a DL algorithm can be divided in three main phases, namely
training, validating, and testing. The training phase is to train the model, where
the model learns, understand, and discovers. Testing is the standardization phase
to evaluate and test the learner before the real utilization. The validation phase is

5.3. Deep Learning (DL) 85

FIGURE 5.38: A convolution layer scheme with zero-padding tech-
nique. The original features map has a size of (4x4) and the padded
one is (6x6). The applied filter layer has kernel size of 1x1 and stride
of 2x2. The corresponding features map has a size of (4x4) which is

the same as the original input.

necessary to evaluate the hyperparameters of the model. Technically, the learner
never learns during the validation process.

5.3.3.4 Transfer Learning (TL)

TL is a method where to share functionality and learning between models. It allows
to reuse a pre-trained model as the starting point for a another model, developed for
a different related task.

5.3.4 Application of DL in events classification from pnCCD datasets

5.3.4.1 Introduction

This part presents a DL approach focusing on the events reconstruction from datasets
of synchrotron radiation based on Laue diffraction experiment using a white X-ray
beam and an energy-dispersive 2D detector (pnCCD). This approach is able to pre-
dict the single photon’s pattern type, referred hereafter as event, collected during the
EDLD experiments. The model used in this task employs the softmax function at the
output layer. It is equipped by a convolutional neural network (CNN) with multiple
layers between the input and output layers which is mostly applied to analyze visual
images. More than 70000 single photon impact events under supervised classifica-
tion have been simulated and extracted to build the training-validation datasets for
the algorithm.

5.3.4.2 The objective

As explained in subsection 2.3.3.1, one of the main data-preparatory steps is the
single-photon event reconstruction. Its purpose is to ensure that each recorded
event is generated by a single photon. In this context, the term "fall-out event"
has been introduced. Event reconstruction and resolving of the "fall-out events" in
real-time is a challenging task because of the huge volume of data collected during
the experiment. Although the implementation of parallel programming technology
using Graphic Processing Units (GPUs) to realize the reconstruction of events has
proven to be a reliable technique in the case of single-photon events reconstruction

86 Chapter 5. Artificial Intelligence (AI)

(as shown in subsection 4.5.4.2), it fails to offer a solution for fall-out events. There-
fore, an innovative approach is demanded to achieve a precise classification of pat-
terns not only for single-photon events but also for "fall-out" events. State of the art
DL-based application is introduced to perform such a task efficiently. It can precisely
achieve the basic single-photon classification. Furthermore, this approach serves as
a seed for the reconstruction of the fall-out events.

5.3.4.3 The model

The huge amount of available frame-data makes it possible to design an DL model,
having an end-to-end (e2e) fashion [156]. However, a decision was made to divide
the model into sub-blocks, where each block is responsible for a specific task. Figure
5.39 shows the blocks diagram of the applied DL-based model. The first two blocks
are for streaming, they assign the events within a frame image. Each recognized
event is sliced and sent as a 9× 9 image for further processing. Since the detector
size is 384x384 pixels, a single frame image is, in fact, a sparse matrix with only a few
events. Therefore, this step is implemented to avoid the large sparsity of the frame
image during the training and prediction phases. The 9× 9 size was chosen based
on the fact that the probability to have a fall-out event with spreading area greater
the 9× 9 is very low and can be ignored [40]. The event classifying (named "Events-
Classifier") and resolving (named "Events-Picker") represent the AI core, where the
assigned events are classified into five classes (e.g. single, double, triple, quadruple,
and fall-out). Only the fall-out events are fed to the resolving block for reconstruc-
tion. The picking algorithm is an object recognition procedure, where the fall-out
image is addressed into the different valid event patterns.

Get the

frame-data

Extract events

individually

Classify

the events

Resolve the

unknow events

FIGURE 5.39: The blocks diagram of Dl-based model for event recon-
struction.

5.3.4.4 Data preparation

a) Events-Classifier In order to assure the quality of the training procedure for
the "Events-Classifier", two datasets were used in combination: namely the simu-
lated and experimental samples. The simulated dataset was generated based on
constraints and conditions defined by a typical EDLD experiment, including all per-
mutations of the events as shown in figure 5.40. In this manner, a dataset comprising
52000 events was simulated, with the events randomly distributed across different
x, y pixel positions on the detector. The experimental dataset consists of more than
18000 labeled events, collected from various experiments which were performed
at X-ray facilities (i.e. DELTA, EDDI, ESRF, etc.). The simulated and experimental
datasets were used to feed the module during the training-validation phase, after
combining and shuffling them. To test the response of the trained module, only la-
beled experimental datasets taken from several experimental setups were utilized.
This allows to ensure the reliability of the module for any experimental data, regard-
less of the experimental conditions.

b) Events-Picker A dataset of 500 different fall-out examples was generated, where
each valid example was annotated by an anchor box.To train a robust classifier, ex-
perimental and simulated data were considered as the data-sources. To achieve a

5.3. Deep Learning (DL) 87

fast annotation, a free open source tool was used, namely "LabelImg" [157]. Figure
5.41 shows two examples of the annotated fall-out event images. Each event-type is
surrounded by a colored box. The positions and labels of the boxes are saved and
used as a part of the training data. Another dataset was prepared for the testing
procedure. It contains 200 pre-defined fall-out events examples.

(A) (B)

(C) (D)

FIGURE 5.40: Randomly chosen events from the simulated dataset.
Single, double, triple and quadruple events are shown correspond-

ingly in (A), (B), (C), and (D).

5.3.4.5 Network Architecture

a) Events-Classifier The Events-Classifier architecture is shown in figure 5.42. It
is composed by an input layer followed by three 2D-convolutional (Conv2D) layers
with rectified linear unit (ReLu) activation function, each one is connected with a
Max pooling layer. The output of these layers is flattened and sent to a fully con-
nected layer with the softmax activation function output layer, which contains five
classes. In order to boost the performance of the CNN, the ReLu is coupled with
dropout that has a rate of 35%.
The hyper-parameters (i.e. the numbers of layers, the number of neurons in each
layer, the size and number of filters, the stride size, the rate of dropout, the learning
rate, the optimizer ...etc) have been selected by trial and error method after perform-
ing many testings of architecture versions.
The events image data are streamed as a 3D sparse-matrix with 9× 9× 3 elements

88 Chapter 5. Artificial Intelligence (AI)

(A) (B)

FIGURE 5.41: Randomly chosen annotated fall-out events using "La-
belImg". The color-bar is shown here only for better visualization. (A)
is a single and two double events. (B) shows a combination of two

singles and a quadruple.

representing the X, Y sizes and 3 RGB-channels for each element, respectively. The
images are streamed as patches to the network, giving an output as probabilities of
one of the five classes indicating the event type (single, double, triple, quadrapole
or unknown). The features of Keras library with TensorFlow back-end have been im-
plemented for the network designing . The data were split into two sets (i.e. the
training and validation sets) with a splitting ratio of 90− 10%. The training was ex-
ecuted using a machine with the specifications provided in table 4.1. The network
filter coefficients have been trained using the sparse-categorical cross-entropy loss
function optimization and a learning-rate of 0.001. Adam optimizer has been used
to optimize the cost function, with the default values offered by the author, namely
β1 = 0.9, β2 = 0.999 and ε = 10−8 [158]. The model was fitted with 30 (see figures
5.43a and 5.43b) and 100 (see figures 5.43c and 5.43d) epochs, with the patch size
of 128. The accuracy and loss curves for different number of epochs are shown in
figure. 5.43. As it is shown in both modules, the weights convergence within the
first 30 epochs following the exponential decay function. Figure 5.43 displays linear
converge behavior between 30 and 100 epochs. For more than 100 epochs, the vali-
dation loss starts to diverge, which is an indication of over-fitting. Thus, a decision
was taken to have 100 epochs as a maximum value for the training-validation phase.
Figure 5.44 shows the summary of the layers architecture and the parameters. At the
end of the training-validation phase, two trained-modules have been generated for
the testing phase, namely Events-Classifier30 and Events-Classifier100.

b) Events-Picker The Events-Picker is an object detection algorithm based on "You
Only Look Once (YOLO)" neural network [159]. YOLO is a real-time object detec-
tion which has 24 convolutional layers followed by 2 fully connected layers. Figure
5.45 visualizes the original scheme of the YOLO architecture [159]. The classes and
training-data sets were customized to fit the required application. All the customiza-
tions and configurations were done by using the features abstracted in "ImageAI"
library [160]. The annotated dataset containing the anchor boxes details was spitted
into training and validating sets with a ration of 90− 10%, respectively. The model
was trained for 100 epochs with a patch size of 8.

5.3. Deep Learning (DL) 89

FIGURE 5.42: The convolutional neural network (CNN) with input
layer, three pairs of convolutional and pooling layers, a fully con-

nected layer, and an output layer.

5.3.4.6 Results and discussion

Events-Classifier30, Events-Classifier100, and Events-Picker trained-modules have been
tested with the corresponding testing dataset. The prediction accuracy has been
calculated, as follows:

β =
ncor

nall
× 100% (5.14)

where β is the prediction accuracy, ncor is the total number of the correctly predicted
events, and nall is the total number of events in the testing dataset.
The module Events-Classifier30 shows the average prediction accuracy of ≈ 92%,
while the module Events-Classifier100 is able to reach more than 99% of the predic-
tion accuracy. As a result, the CNN correctly predicts the events patterns and cat-
egorizes the streamed events in five different classes, namely single, double, triple,
quadruple and fall-out events. All in all, Events- Classifier100 provides a reliable
approach that can be used for further implementation. Both models give execution
time of 3.9± 0.03 sec per 5× 104 event (≈ 167 frame). However, this time is quite
long compared with the HPC approach (see section 4.5.4.2) which can perform the
same data size in 1.1± 0.1 sec.
However, the Events-Picker shows a poor prediction accuracy with score of ≈ 62%.
It was suggested that this behavior might be a result of the small training data size
or the used ANN architecture. Therefore, a decision was made to assign this as an
open-topic for further work.
Altogether, this part introduced a collective summary of the fundamentals and the
commonly used terms in DL. It demonstrated that the usage of CNNs is a suitable

90 Chapter 5. Artificial Intelligence (AI)

(A) (B)

(C) (D)

FIGURE 5.43: The accuracy and loss curves. (a) and (b) are for 30
epochs while (c) and (d) are for 100 epochs. The blue and orange
lines are corresponding to the training and the validation phases, re-

spectively.

approach to solve the event reconstruction problem. It proved that implementation
the right architecture and hyper-parameters might enhance the model accuracy. It
also gave an example to re-cast and implement a pre-trained model.

5.3. Deep Learning (DL) 91

FIGURE 5.44: Layers and parameters of the network architecture.

92 Chapter 5. Artificial Intelligence (AI)

FIGURE 5.45: The original scheme for the YOLO object detector. It
has 24 convolutional layers combined with max-pooling layers. It is

equipped by 2 fully connected layers before the output layer [159].

93

Chapter 6

Application of EDLD in material
texture analysis

“As we continue to improve our understanding of the basic science on which
applications increasingly depend, material benefits of this and other kinds are
secured for the future.”- Henry Taube

6.1 Introduction

Polycrystalline materials, such as metal and ceramics, are formed from combination
of many single crystalline grains. Each grain provides a certain distribution of ori-
entations with respect to an external reference system of coordinates. The degree
of the preferential grain orientations in space is characterized by the term "texture."
Determination of this orientation distribution relative to a selected reference frame
enables a description of the texture. With this in mind, the question arises: why do
we care about texture?
Material processing technologies (e.g. welding, rolling, forging, annealing, solidifi-
cation), predominantly, affect the texture of the materials, which has a significant in-
fluence on their macroscopic properties. Studying how texture changes under these
processes is referred to as material-evaluation, which provides insight into the history
of the material and enhances its manufacture to achieve an optimization of certain
properties. Undoubtedly, it is essential to investigate a material’s microstructure to
acquire a deeper understanding of its properties, which is necessary for the practical
use of this material in engineering applications.
Many techniques and research projects, such as Electron Back-Scatter Diffraction
(EBSP) [161], Slip Trace Measurement (STM) [162], Close Spaced Sublimation (CSS)
[163], have been applied to investigate the Micro-Texture (MiTx). Although these
approaches have shown reliable results, they provide rather limited solution to at
least one of the methodological challenges related to the MiTx exploration, namely;
experimental setup complicities (i.e sample rotation, experiment components align-
ment, etc) and Data management (i.e. pattern overlap, statistical corrections, etc)
Due to the advantage of the EDLD in measuring simultaneous position- and energy-
resolved signals and the new data management approach, this chapter demonstrates
application of EDLD in MiTx characterization of polycrystalline materials. Employ-
ing synchrotron X-ray imaging, an energy-dispersive 2D detector and high perfor-
mance computing, the MiTx investigation can be achieved on-the-fly by one-shot ex-
periments. It is organized so that, section 6.2 explains the crystallographic concerns
involved in this work. Section 6.3 demonstrates the engaging of the EDLD in MiTx
analysis, including experimental concern,analytical procedure, and the results. The

94 Chapter 6. Application of EDLD in material texture analysis

developed tools is descried in section 6.4, while section 6.5 is devoted for the conclu-
sion.

6.2 Crystallography behind the scene

The physical and mechanical properties of single crystals vary along different crys-
tallographic directions (anisotropy). For example, the shear behavior of graphene
differs with respect to the loading direction. In other words, the maximum shear
failure strain of graphene in one direction is 70% higher than that in the opposite
one [164]. This applies to several other physical properties, such as thermal ex-
pansion coefficient, heat transfer coefficient, and dielectric coefficient [165]. IA tex-
tured polycrystalline aggregate (i.e. having a preferred orientation) may also show
direction-dependent properties. These aggregated properties tend to average out
all microscopic properties of individual grains within the material and may have
higher or lower degree of macroscopic anisotropy [166, 167]. Monitoring and con-
trolling the texture is requested to predict anisotropy of materials. X-ray methods
are non-destructive techniques to observe and determine the nature of the texture.

6.2.1 X-ray methods

Diffraction patterns of single or multi-crystalline materials have the form of isolated
Laue spots(as explained in chapter 2), while the pattern of randomly oriented poly-
crystalline materials (powder) are enclosed in concentric intensity-uniform Debye-
Scherrer rings. Considering these two cases as extremes, the diffraction patterns
of textured materials represent an intermediate case. They show non-uniform (for
slightly textured specimen) or discontinuous (for highly textured) intensity distri-
bution along the circumference of the Debye-Scherrer rings. Figure 6.1 shows a con-
tinuum of diffraction patterns, the source of the image is [168]. It displays three
different diffraction patterns behaviors: figure 6.1a shows a pattern of a single ideal
crystal has isolated Laue spots. Figure 6.1b

(A) (B) (C)

FIGURE 6.1: A continuum of diffraction patterns, source [168]. (A)
is for a single ideal crystal, while (B) represents the diffraction pat-
tern of a textured material. (C) is the Debye-Scherrer rings of powder

diffractionn.

For monochromatic X-ray diffraction (a fixed wavelength beam), each ring is an
indicator of diffractions corresponding to a certain diffraction angle (e.g. a certain
d-value). In addition, according to Bragg’s law (c.f. equation ??), each ring is a repre-
sentation of a specific family of crystallographic planes within the reciprocal space.
Analysis of these rings and their non-uniformity might be treated as a conclusive
determination of the type and degree of the texture occurrence [167]. However, the

6.2. Crystallography behind the scene 95

fixed wavelength beam limits the number of crystal planes involved in the same
diffraction pattern. Thus, a lot of effortful experimental procedures (e.g. sample ro-
tation and beam manipulation) as well as statistical corrections (e.g. synoptic pattern
reconstruction and defocussing correction) have to be executed to fulfill an extensive
observation of the texture.
In contrast, white X-rays (a ranged wavelength beam) exploit the energy degree of
freedom, enabling the inclusion of a huge range of d-value allowing to involve sev-
eral crystal planes into a single energy-dispersive diffraction pattern. In fact, the gener-
ated pattern is nothing but an aggregation of all monochromatic diffraction patterns
generated within the accessible energy range. The main challenges of this technique
are data management, processing complexities and involvement of a special kind of
detectors (i.e. energy-dispersive detector).

6.2.2 Texture representation

Broadly speaking, texture evaluation and description is a complex process. There-
fore, several mathematical and graphical techniques are used in fundamental re-
search and industrial application to represent textures.

a) Mathematical representation: The representation of orientation distribution is
commonly employed in a quantitative description of the texture. The notation used
to describe the texture is as follows [169]:

Aggregate Texture = ∑
j

wj. {hkl}j . 〈uvw〉j (6.1)

where {hkl}j . 〈uvw〉j is the jth lattice plane and its orientational component [170] and
wj is weighting factor representing the probability of the jth main orientation compo-
nent. In essence, this notation means the {hkl} crystallographic planes and direc-
tions 〈uvw〉 in the most of grains are oriented almost parallel to texture plane and
texture direction, respectively. This orientation is referred to as preferred orientation.
A textured material may have one or more preferred directions due to the formation
mechanism. Indeed, there are many other texture representation methods (e.g. Ori-
entation distribution function (ODF)). The detailed overview of ODF calculation can
be found in [167, 169].

b) Graphical representation: According to the stereographic projection, the space
of all possible scattering vectors defines a sphere in the sample coordinates, centered
on the diffraction volume. Many pieces of information about the sample can be plot-
ted as scalar fields on this sphere. Since it is impossible to distinguish the positive
and negative directions of the crystallographic plane norms, the data plotted on the
sphere correspond to an unsigned norm, known as "pole". In other words, these
spheres are centrosymmetric, allowing to analyze just one hemisphere. The 2D pro-
jection of a hemisphere is said to be a pole figure.
For experiments using a point detector, a pole figure has projection area of a hemi-
sphere with the center point corresponding to a specific crystallographic set. To
plot one pole figure, the sample is rotated along the loading axis (Y- axis) and the
transverse axis (X- axis). This procedure is repeated, while changing the detector
position to generate a sequence of pole figures corresponding to different crystallo-
graphic planes. Figure 6.2 shows two different simulated pole figures for a textured

96 Chapter 6. Application of EDLD in material texture analysis

Aluminum specimen, where figure 6.2a shows (100) pole and 6.2b is (110). The sam-
ple and the laboratory coordinates were defined to be identical. These figures were
produced using Analysis Tools for Electron and X-ray diffraction (ATEX) software
package [171].
For experiments using position sensitive detectors (i.e CCD and image plates) [172],
a pole figure has the projection area of a hemisphere with the incident beam at its
center. To collect data orthogonally and azimuthally rotated along the prescribed
orientation, the sample is rotated along the loading axis (Y- axis) and the transverse
axis (X- axis) respectively. Comparably, using an energy-dispersive point detector
with a white beam, it is possible to extract the pole figure by rotating the sample
along the loading axis [25] or by utilizing many detectors simultaneously [26].

(A) (B)

FIGURE 6.2: Simulated pole figures of a textured specimen of alu-
minum, where X-axis is the transverse axis and Y-axis is the loading
axis. (A) is the texture direction of (110), while (B) is for direction

(100).

6.3 EDLD for texture analysis

This section demonstrates the employing ofthe EDLD in MiTx analysis. Given the
angle- and energy-dispersive nature of EDLD, the method is advantageous for tex-
ture investigation by one-shot experiments. As opposed to other methods, EDLD
makes it possible to avoid the experimental intricacies, mentioned above. EDLD-
MiTx is based on utlization of a white X-ray beam combined with a 2D ed detector
(pnCCD). The detector active area can then cover any convenient range of diffrac-
tion angle (θ), depending on the geometry parameters (i.e. SSD, detector size, and
other). The 5D characteristics of such a detector exploits the advantage to observe a
complete diffraction spectra in any fixed direction. However, a drawback of the use
of EDLD arises, namely a huge workload to analyze pattern overlap, which requires
ultra-efficient techniques to extract the final output.

6.3.1 Understanding the texture form an Energy-dispersive Laue pattern

The texture influence on the energy profile of the recorded Laue pattern can be sum-
marized into two scenarios, as follows:

• Multi-peaks spectrum: According to Bragg’s law, recording several energy
values at a certain Bragg angle is an indicator for simultaneously collected mul-
tiple diffractions assigned to the different crystallographic planes, which fulfill

6.3. EDLD for texture analysis 97

Bragg’s condition. These planes should have parallel norms and be related to
different grains. Figure 6.3a schematically demonstrates a 3D visualization of
this scenario, where two different parallel planes, (hkl)1 and (hkl)2, are probed
by a polychromatic beam. The diffracted beam includes two different energy
values at the same point.

• Peak broadening: Generally speaking, the spectral broadening of the Laue
diffraction occurs when the tensile loading is applied. This denotes that the
macroscopic texture is changed due to defect accumulation [173, 174]. Tilting
between grains within the same cluster (i.e. having the same preferred ori-
entation) produces variation in d-spacing between their identical orientation-
family planes, illuminated by the incident beam. Figure 6.3b shows the 3D
scheme of this scenario, where two grains from the same cluster have their
(hkl)1 and (hkl)2 to be nearly parallel. The collected rays demonstrate slight
energy shifting, which gives rise to the widening of the recorded energy peak.

6.3.2 Experimental procedure and data management

In the case study, a dog bone shaped aluminum alloy was previously processed by
Ultrasound Cycle Fatigue machine with 5× 106 cycles, ε = 8.8e−4 and σ = 130MPa,
a detailed description of studies about this fatigue mechanism can be found in [175–
178]. The sample was exposed to a white synchrotron beam with photons energies
between about 8 and 100keV, supplied by BESSY-II synchrotron storage ring. The
typical EDLD experimental geometry was used, with SDD = 74± 5mm (see chap-
ter 2). The diffracted rays were collected by the pnCCD. The recorded raw dataset
was then streamed and reconstructed by EDLD-tool, as explained in chapter 4. The
formed energy-dispersive diffraction pattern is expected to induce an overlap of sev-
eral inhomogeneous Debye-Scherrer rings. Figure 6.4a visualizes the recored energy-
dispersive diffraction pattern, while figures 6.4b, 6.4c, 6.4d and 6.4e are the energy-
filtered patterns produced by the "energy filter" module which illuminates events
with energy value in a specific range defined by the user.
Technically, handling these overlapping patterns is a problematic issue, as each pixel
within the detector active area is considered to be an area of interest. For simplicity,
each pixel plays a role as an ED point detector enclosing the energy variation of a
diffracted ray, corresponding to a specific diffraction angle. Thus, the in-memory
database used for typical EDLD experiments fails to warehouse data of EDLD tex-
ture experiments. Instead, a new 3D in-memory database with data cube architec-
ture [66, 67] has been implemented, where each pixel is represented as a cell in the
cube. Figure 6.5 shows a scheme of the implemented database. The X and Y vectors
specify the pixel position at the detector area, while the parameters vector demon-
strates a data structure, containing all details of a pixel (e.g. energy spectrum, q-
vector, 2θ, Miller indices, etc). This architecture shows a high degree of efficiency
regarding data accessibility and application of generic algorithms.
It is important to mention that implementation of data cube architecture may give
rise to two technical issues. 1) Resources consumption: 384× 384 structure (equal to
the detector size) is memory-consuming and may result in memory leaks. Moreover,
for pixel-wise independent calculations, it may induce high execution time latency
(for serial algorithms) or GPU resources consumption (for parallel algorithms). 2)
Low quality of energy spectrum: restrictions on a shot exposure time (typically≈ 10
min) and a large number of grains illuminated in the same shot reduce the qual-
ity of the energy spectrum recored by the individual pixel. Consequently, it is very

98 Chapter 6. Application of EDLD in material texture analysis

(A)

(B)

FIGURE 6.3: A scheme of two different diffraction scenarios. (A)
shows two parallel planes related to two grains with different ori-
entation with respect to the laboratory coordinates. These planes are
eliminated with white incident beam, generating two different energy
peaks within the same pixel. (B) displays two nearly parallel grains.
The reflected beam by the same orientation planes results in energy

peak broadening.

difficult to achieve automation of energy spectrum resolving (see chapter 4). Thus,
a decision was taken to implement an additional step, namely image reduction and
convolution, whereby each 2D neighboring pixels within a predefined mask are inte-
grated and convoluted in one structure point. This structure is labeled as "conV point
structure", with implementation header file shown in Appendix B.3. This technique
reduces the image size by a factor of (1− 384×384

mx×my
), where mx and my specify the mask

size, allowing to increase the energy spectrum resolution and enhance the analysis
performance. However, it may also diminish the spatial certainty of the analysis.
This drawback can be overcome by an optimization of either the mask size or the
2θ angles, as explained later. Figure 6.6 displays the energy spectra in both cases,
where figures 6.6a and 6.6b are the original and the integrated spectra respectively.

6.3. EDLD for texture analysis 99

(A)

(B) (C)

(D) (E)

FIGURE 6.4: The diffraction patterns of a textured specimen of alu-
minum under different energy conditions. (A) represents the inte-
grated intensity pattern with energy range of 8 : 100 keV. (B), (C), (D),
and (E) are the filtered images with energy ranges of 43± 0.2, 48± 0.2,

54± 0.2, and 59± 0.2 keV, respectively.

100 Chapter 6. Application of EDLD in material texture analysis

FIGURE 6.5: The in-memory cube database.

(A) (B)

FIGURE 6.6: The energy spectra of the chosen pixel. (A) is the energy
spectrum without masking. (B) is the energy spectrum with the 10×
10 mask. The mask was done after considering this pixel to be the

center.

6.3.3 Analytical procedure

Figure 6.7 shows the analytical process undertaken. The first two blocks are the pre-
processing steps, whereby the data streaming path (i.e. from a prerecorded file or
from the streaming module) is initialized and the hyperparameters (i.e. geometrical
parameters, mask size, etc) are specified. According to these parameters, the masked
intensity image is produced and visualized. Figure 6.8 exhibits the masked intensity
images, given different predefined mask sizes. Subsequently, the cube database pro-
totype, having the size of the masked image, is defined to be filled.
Calculating the point-wise parameters, such as energy spectrum, energy dominant-
peak/s values, diffraction angle (θ) and diffraction angle optimization range (δθ), is
the third step. This step is performed after the application of the quantum efficiency

6.3. EDLD for texture analysis 101

correction. Another parameter is introduced to define the contribution margin of
the energy peak(s), namely the "energy-weight (wE)". It can be calculated using the
following equation:

wE =
∫

FWHM

dI
dE
÷
∫

E

dI
dE

(6.2)

where, I is the intensity (counts), E is the energy and FWHM is the full width at half
maximum corresponding to a resolved energy peak. The "energy-weight" is used to
calculated the weighting factor shown in equation 6.1.
Aiming to assure the precision and reduce memory usage, a validity checking step is
carried out, whereby a twofold test is undergone on each point. To pass this test, the
intensity of each point should be above a predefined threshold and at least one en-
ergy value should be localized within the expected energy range. The points which
do not meet these prerequisites are removed from the memory database.
A transformation from the lab system to the reciprocal space is performed next, fol-
lowing equation C.9. Miller indices can be calculated, based on equation C.14, hav-
ing considered the structure factor and the standard deviation of measured Bragg
angles and energies, as explained in chapter 2. Points, reveal only one valid index-
ation set, are denoted as "Valid-Points". Multi-indexation points (i.e. having several
energy peaks) are donated as "Accumulative-Valid-Points" and their indexation sets
are vectorized and treated as several "Valid-Points" indexation sets. In order to re-
duce spatial uncertainty, this procedure is performed with θ-optimization over the
predefined range ±δθ, in which the diffraction angle is treated as a continuous pa-
rameter instead of a discrete parameter. The optimization function is executed over
the θ range with precision up to 0.01◦. The optimal solution, which fulfills the opti-
mization conditions, is stored in the "conV point structure" for further steps.
Finally, the points are clustered into families, depending on the corresponding orien-
tation. Each family represents a pole or a main orientation component. The weight-
ing factor (wj) is calculated as follows:

wj =
∑Phkl

wE

∑PV
wE

(6.3)

,where Phkl is the number of the valid points related to a specific hkl and Pv is the
number of all valid points.

Get recon-

structed data

Set hyper-

parameters

Intialize the

reduced image

Calculate

point-wise

parameters

Fill the conV

point structures

Check points

validity

Transform

into the

reciprocal space

Find Miller

indices

Estimate the

orientations

map/s

Visualize and

save the output

FIGURE 6.7: Analysis procedure pipeline.

102 Chapter 6. Application of EDLD in material texture analysis

(A) 1×1 (B) 3×3

(C) 5×5 (D) 10×10

FIGURE 6.8: The masked intensity images for different mask sizes.

6.3. EDLD for texture analysis 103

6.3.4 Results and discussion

6.3.4.1 Observations

As expected, different energy distribution behaviors were observed. Figure 6.9 shows
the energy spectra of four randomly chosen points. Figures 6.9a, 6.9b, and 6.9c show
the multi-peaks spectra, indicating the contribution of different interplanar spacing
(d) for the same diffraction angle (2θ). Figure 6.9d displays a single peak spectrum,
where only one reflection has been resolved.

(A) (B)

(C) (D)

FIGURE 6.9: Energy spectra for randomly chosen masked points.

6.3.4.2 Mathematical representation

As the final output of the analytical procedure, five grains clusters have been esti-
mated according to the following weighted orientation description;

Aggregate Texture =0.26± 0.02× {113}+
0.26± 0.02× {111}+
0.25± 0.02× {002}+
0.19± 0.02× {022}+
0.02± 0.02× {133}

(6.4)

In line with equation 6.4, the {113}, {111} and {002} orientation families can be de-
scribed as the most preferred orientations, representing ≈ 75% of the illuminated
grains. 19% of the grains are oriented in such a way that their {022} orientations

104 Chapter 6. Application of EDLD in material texture analysis

families are parallel or near parallel to the texture plane. {133} shows a small con-
tribution, which can be neglected.
Ignoring the orientation of the sample with respect to the laboratory coordinates
impedes the direct description of lab-wise directions. Therefore, the directions de-
scription is downgraded to be sample-wise, defining 3D rotation angles with respect
to the a chosen direction family. A decision was taken to choose the direction family
of the most preferred orientation as the preferential direction family. Drawing upon
this approach, the final description of the texture formation is described as follows;

Aggregate Texture =0.26± 0.02× {113} (0◦)+
0.26± 0.02× {111} (22◦)+
0.25± 0.02× {002} (76.74◦)+
0.19± 0.02× {022} (49.54◦)+
0.02± 0.02× {133} (25.94◦)

(6.5)

,where the first component is the preferential component, given 〈331〉 as the compar-
ing direction family. Grains corresponding to {111} and {002} clusters show equal
preferentiality degree of ≈ 26%. They have 3D the rotation angles of 22◦ and 76.74◦

between the comparing direction and their 〈111〉 and 〈002〉, respectively. Grains
with preferred orientation of {022} show lower contribution (≈ 19%) with 3D orien-
tation angle of 49.54◦. Only few grains (≈ 2%) have {133} as a preferred orientation,
which gives a 3D angle of 25.94◦.

6.3.4.3 Graphical representation

Figure 6.10 shows a 3D model of the unweighted distribution of the five deter-
mined orientation families in reciprocal space. It displays the binary regression (e.g.
valid or not valid) of the reciprocal space, where only the valid points are consid-
ered neglecting the wighting factor contribution. The two-dimensional projection
of the weighted three-dimensional data is shown in figure 6.11. In principle, this
2D-projection is considered as the global pole figure representing the five different
orientation families.

6.4 Technical description of the tool

The tool is an object-oriented program based on the concept of classes inheritance,
in which all classes are inherited from the base class. The base class has the design-
ing pattern of abstraction class, with the implementation header file shown in B.4. It
employs many class libraries, such as ROOT-CERN [88], Eigen [90] and QCustom-
Plot. The software package is written in C/C++ and CUDA [92] with a user interface
designed in Qt cross-platform [93].
The independence nature of the data (pixel-wise) makes it possible to implement
parallel programming techniques. Moreover, the 3D mapping was performed by
using a high performance graphics liberary, namely OpenGl [179].

6.5. Conclusion 105

(A) Side view (B) Plane view

FIGURE 6.10: Binary regression 3D mapping of the reciprocal space.
The red, green, blue cyan and yellow points represent the ~q vector
associated to {111} , {022}, {113}, {133} and {002}, respectively. (A)
is the side view (i.e. perpendicular to y-z plane) while, (B) is the plane
view (i.e. perpendicular to x-z plane) with the incident beam at its

center.

FIGURE 6.11: The final weighed 2D-projection (Pole figure).

6.5 Conclusion

This chapter demonstrated how EDLD might be applied as a non-destructive method
to resolve the propagation of texture presented in materials. It was shown that EDLD
is the optimal solution to avoid the experimental complexities, whereby a huge re-
ciprocal volume is covered within the same pattern. Moreover, due to the 3D nature
of EDLD collected data, a direct representation of pole figure is achievable without
any sample rotation.
It was proven that the use of the in-memory database with the cube architecture en-
hances data accessibility and warehousing. Furthermore, on-the-fly analysis is possi-
ble by the implementation of the HPC and parallel computing techniques.

106 Chapter 6. Application of EDLD in material texture analysis

FIGURE 6.12: The Graphical User Interface (GUI) of the used tool

107

Chapter 7

Summary and conclusion

This work explored different trend technologies, offering a collective summery of
each single procedure. It presented a simple mini-review of each discipline that can
be used by scientists regardless their technical experience and background. In addi-
tion, a preparatory introduction about the different X-rays sources and the detectors
industry was included. A special method of the X-ray diffraction, namely: Energy
Dispersive Laue Diffraction (EDLD) was investigated, indicating its cons and pros.
Moreover, it was emphasized that EDLD can serve as a reliable and effective NDT
method provides information that can fertilize the development in several scientific
areas. From a conceptual point of view, it could be shown that the 2D energy dis-
persive detectors (e.g. pnCCD) enable the 5D resolution (including the intensity)
detection of the X-rays. This helps to harvest the maximum benefits of the EDLD,
achieving the one-shot experiment without any experimental complexities.
Considering datasets collected by EDLD experiments as a case study, it was proven
that the implementation of the data clouding and warehousing can enrich data-
handling procedure. It was demonstrated that the cloud-based storage can provide
the scientists with a smarter environment to share their data. Moreover, it helps
to overcome the deficiencies arise from the traditional data-transferring techniques.
In addition, it suggested that utilization a SaaS cloud model is the most effective
candidate, as it allows the users to control the cloud infrastructure regardless their
technical skills. Upon that, an user-friendly tool has been developed authorizing the
users to view, edit, and add datasets stored in the cloud. This tool was tested within
a small size private cloud (i.e. 5 : 10 users) with infrastructure belongs to the depart-
ment of solid state physics of University of Siegen.
On the topic of HPC, the GPU-based software package, namely "EDLD-tool" has been
released to perform a full analysis procedure in the real-time. It is able to accomplish
the demanded tasks on a scale of seconds, allowing for on-the-fly experiment steer-
ing. The deploying of IMDB shows a powerful data warehousing procedure, facili-
tating faster response times than disk-optimized databases. In order to simplify the
using of the tool, EDLD-tool is equipped with a GUI platform giving the user a full
control over the tool. However, many this approach showed some problems, such
as the failure to reconstruct the fall-out events and the high latency execution time to
identify the grains in a polycrystalline Laue pattern.
In the course of this work, various AI techniques were developed to settle issues
emerged by the regular programming approaches. It could be proven that ML al-
gorithms can perform the the grains identification task with high precision and less
time. A new data presentation method, namely AT-map was introduced. It allows to
rearrange the dataset in such a manner that the ML algorithm can understand. More-
over, using a combination between two different ML concepts (i.e. the hierarchical
clustering and the Elbow method) can enhance the accuracy of the final output. This

108 Chapter 7. Summary and conclusion

algorithm was tested by two different datasets and showed agreement with the ex-
pectations.
The potential of DL application for photons events reconstruction could be demon-
strated. Two NN architectures based on the CNN were developed and trained using
simulated and experimental datasets. 1) The Event-Classifier which can classify the
recored events with precision up to 99%. 2) The Event-Picker which acts as an object
detector and has the architecture of YOLO neural network. It predicts the fall-out
events with score up to 62%.
As a final output, all algorithms, APIs, and models were gathered into one platform
named "MultiGrainAnalyzer (MGA)". It servers as a comprehensive control board,
where each model can be launched by pressing the corresponding button. Figure
7.1 displays the GUI of the MGA. It shows six different buttons linked to various
models, as follows:

• Run the pnCCD: it is to operate the pnCCD detector based on the module
provided by the manufacturer.

• Streaming module: it launches the streaming module mentioned in chapter 4

• Cloud control: this button is connected to the the DOI generator and releasing
tools that shown in chapter 3.

• EDLD data analysis: it launches the EDLD-tool mentioned in chapter 4.

• Energy filter: it launches the energy filter module mentioned in chapter 6.

• Texture analysis: it launches the texture tool mentioned in chapter 6.

The limitations of this work have been devoted to future research. First, all
mentioned algorithms operate under an operating system (i.e. they are window-
applications). It is suggested to develop them as web-applications, allowing for
flexible access. Second, extending the applications range of the MGA to include
different crystallographic fields, such as nanowires investigation, textile fibers and
polymers study. Third, improving the neural network architecture to boost the ac-
curacy of fall-out events reconstruction.

Chapter 7. Summary and conclusion 109

FIGURE 7.1: The main control board of the MGA platform.

111

Appendix A

Design patterns in software
engineering

A design pattern is a template that describes a solution to a frequent problem with
in a software. It is NOT the final code that can be release as a product, but it pro-
vides a tested and proven development paradigms. The main aim of these pattern
Design patterns can speed up the development process by providing tested, proven
development paradigms. Common design patterns can be improved over time, they
can be grouped into 3 groups, as follows:

A.1 Creational design patterns

These design patterns are all about class instantiation. This pattern can be fur-
ther divided into class-creation patterns and object-creational patterns. While class-
creation patterns use inheritance effectively in the instantiation process, object-creation
patterns use delegation effectively to get the job done. The commonly used patterns
are:

• Abstraction class: It creates an explicit instance of several families of classes. It
helps to improve the creation mechanism.

• Prototype: It helps to create a fully. initialized instance to be copied or cloned.
It is useful if the code requires several similar objects as it allows to reuse and
modify existing objects.

• Singleton: A singleton is a class of which only a single instance can exist. It
may often be beneficial in case the code requires only a single instance of the
class.

A.2 Structural design patterns

These design patterns are used to define the relation between the classes and the
objects and organize different classes and objects, forming larger structures to obtain
new functionality.

• Private Class Data: Restricts accessor/mutator access

• Adapter: it matches the interfaces between the different classes. It can convert
data into several format and help objects to establish collaboration with it.

• Proxy: It is used to provde a substitude or placeholder for another object called
"the intermediary", which acts as an interface to another resource.

112 Appendix A. Design patterns in software engineering

A.3 Behavioral design patterns

These design patterns are all about the communications between the objects of classes.
They provide solution regarding how the objects interact and how they can be seg-
regated.

• Iterator: it is the simplest and the most common used pattern. Each data col-
lection should provide an iterator, allowing the sequentially access to the ele-
ments within the collection.

• Null Object: Designed to act as a default value of an object

• Observer: The main usage is to notify any change of the state in one object to
another object without keeping these two objects tightly connected.

• Visitor: Defines a new operation to a class without change

113

Appendix B

Codes

B.1 EDLD abstraction class header file

ifndef EDLD_H
define EDLD_H

include <QDialog>
include <QFont>
include " maianalys is . h"
include " spot t rap . h"
include " spottrapped . h"
include " energyspectrumauto . h"
include " m a t r i a l . h "
include " qcustomplot . h"
include " l ives t ream . h"
include " frames . h"
include " gpuconnect . h"
include " spotstypy . h"
include <QInputDialog >
include <QPainter >
include " recomb . h"
include < s t d i o . h>
include < s t r i n g . h>
include <math . h>
include <QVector>
include <QWhatsThis>
include <QPen>
include <QStr ingLis t >
include <QDataStream>
include <QProgressDialog >
include "/usr/ l o c a l /include/opencv2/core . hpp"
include "/usr/ l o c a l /include/opencv2/imgproc . hpp"
include "/usr/ l o c a l /include/opencv2/highgui . hpp"
include "/usr/ l o c a l /include/opencv2/opencv . hpp"
include <TApplicat ion . h>
include <TCanvas . h>
include <TH2D. h>
include <TStyle . h>
include <TColor . h>
include <TF1 . h>
include <TF2 . h>
include <TH1 . h>
include <TMath . h>
include <TGraph2D . h>
include <TGraph . h>
include <TTree . h>
include <TGraphErrors . h>
include <TSpectrum2 . h>
include <QPainter >

114 Appendix B. Codes

include <algorithm >
include < i t e r a t o r >
include </usr/include/eigen3/Eigen/Core>
include </usr/include/eigen3/Eigen/Geometry>
include </usr/include/eigen3/Eigen/Dense>
namespace Ui {
c l a s s EDLD;
}

c l a s s EDLD : public QDialog
{
Q_OBJECT
void mainPattern () ;
public :
QString fi lename ;
QString f i lenameid ;
QString g a i n f i l e ;
QString c t e f i l e ;
spot t rap o j j ;
m a t r i a l l c ;
spottrapped ob ;
maianalys is ob j ;
SocketTest ok ;
frames o j e c ;
gpuConnect gpu ;
spotAl l ∗ r e f l e c t i o n ;
s t r u c t s p o t f i n ;
s t r u c t gra inor ;
double LC, ssd ;
i n t val2 [5] ;
i n t pro ;
i n t pro2 ;
i n t op_max , op_min ;
double op_res ;
unsigned i n t nFound ;
s p o t f i n ∗m_spots ;
energyspectrumauto obengspec ;
i n t img2 [3 8 4] [3 8 4] = { { } } ;
i n t img [3 8 4] [3 8 4] = { { } } ;
void plotImage (std : : vec tor < int > x , std : : vec tor < int > y) ;
void energySpecAll (s td : : vec tor < int > ∗engo) ;
void energySpecUsr (std : : vec tor < int > ∗ engal l , s td : : vec tor < int >∗y a l l ,

s td : : vec tor < int > ∗ x a l l , i n t xusr , i n t yusr , double gan_fa) ;
void specPlo t (s td : : vec tor < int > ∗ engal l , s td : : vec tor < int > ∗ y a l l ,

s td : : vec tor < int > ∗ x a l l , i n t xusr , i n t yusr , double gan_fa) ;
s td : : vector < int > t t t ;
s td : : vector < int > x2_rec ;
s td : : vector < int > y2_rec ;
s td : : vector < int > id2 ;
s td : : vector < int > x t r ;
s td : : vector < int > y t r ;
s td : : vector <double> qvector ;
s td : : vector < f l o a t > engtr ;
s td : : vector < f l o a t > eng_kev ;
std : : vector <double> twotheta ;
s td : : vector <double> dvalue ;
s td : : vector < int > h ;
std : : vector < int > k ;
std : : vector < int > l ;
s td : : vector < f l o a t >stdev ;
s td : : vector < int > eng2_rec ;
s td : : vector < int > l i v e ;
i n t int_img [3 8 4] [3 8 4] ;

B.2. Pixel structure header file 115

e x p l i c i t s i n g a n a l y s i s (QWidget ∗parent = 0) ;
~EDLD () ;

private s l o t s :
void on_load_cl icked () ;
void on_draw_clicked () ;
void on_eng_cl icked () ;
void on_take_c l i cked () ;
void on_spot t rap_c l i cked () ;
void on_see_c l i cked () ;
void on_eng_2_cl icked () ;
void on_gain_cl icked () ;
void o n _ c t e _ c l i c k e d () ;
void o n _ t h e t a _ c l i c k e d () ;
void on_index_cl icked () ;
void on_anglec_c l i cked () ;
void on_az_cl icked () ;
void on_loadrec_c l i cked () ;
void o n _ a l l c h _ c l i c k e d () ;
void on_serpara_c l i cked () ;
void on_opt_stateChanged (i n t arg1) ;
void on_pushButton_2_clicked () ;
void on_save_cl icked () ;
void on_saveeng_cl icked () ;
void on_spot t rap_2_c l i cked () ;

private :
Ui : : EDLD ∗ui ;
} ;

endif / / EDLD_H

B.2 Pixel structure header file

ifndef PIXELSTYPE_H
define PIXELSTYPE_H
include <vector >
typedef s t r u c t s i n g l e P i x e l {
s i n g l e P i x e l t () { / / c o n s t r u c t o r
engEvents . c l e a r () ;
engEvents . push_back (0) ;
}
s td : : vector <unsigned int > engEvents ; / / ene r gy spec t rum
i n t xpix , ypix ; / / p i x e l p o s i t i o n s
unsigned i n t i n t e n s i t y ; / / i n t e n s i t y

} pixMap ;
extern pixMap s i n g l e P i x e l t ;

endif / / POINTTYPE_H

B.3 conV point structure header file

ifndef CONV_PIXEL_H
define CONV_PIXEL_H
include <vector >
typedef s t r u c t convPoint {

convPoint () : i n t e n s i t y (0) , energy (0) , qx (0) , qy (0) , qz (0) , dval (0) ,
d_hkl (0) , h_f in (0) , k_ f in (0) , l _ f i n (0) , o r i en ta t i on Fa mi ly { } ,

116 Appendix B. Codes

d i r e c t i o n { } , hasIndextaion (f a l s e) {
eng_conv . c l e a r () ;
eng_conv . push_back (0) ;

}
double t h e t a ; / / d i f r a c t i o n a n g l e
unsigned i n t energy ; / / dominant ene rgy v a l u e
std : : vector <unsigned int > eng_conv ; / / ene rgy spec t rum
i n t xpix , ypix ; / / p i x e l p o s i t i o n s
i n t h_fin , k_f in , l _ f i n ; / / f i n a l i n d e x t a t i o n
unsigned i n t i n t e n s i t y ; / / i n t e n s i t y
double qx , qy , qz ; / / q−v e c t o r components
double dval , d_hkl ; / / p l a n a r s p a c i n g s
double h , k , l ; / / r e a l h k l
double so l id_ang_std ; / / i n d e x a t i o n s t−dev
i n t or ie n t a t io n Fa mi ly [3] , d i r e c t i o n [3] ; / / o r i e n t a t i o n , d i r e c t i o n
bool hasIndextaion ; / / v a l i d i t y c h e c k e r
std : : s t r i n g OrKey ; / / o r i n t a t i o n as a key

} convMap ;
extern convMap pixelConv ;

endif / / CONV_PIXEL_H

ifndef POINTTYPE_H
define POINTTYPE_H

endif / / POINTTYPE_H

B.4 Texture-tool abstraction class header file

ifndef TEXTURETOOL_H
define TEXTURETOOL_H

include <QDialog>
include <QFileDialog >
include <QMessageBox>
include " qcustomplot . h"
include " p i x e l . h "
include " b a s e c l a s s . h"
include " r i ngs . h"
include " a n a l y s i s e q u a t i o n . h"
include " pointtype . h"
include <exception >
include <vector >
include < u t i l i t y >
include <algorithm >
include <memory>
include " glwidget . h"
include " g r a i n f i n d e r . h"
include <exception >

namespace Ui {
c l a s s t ex tureTool ;
}

c l a s s t ex tureTool : public QDialog , public analys isEquat ion
{
Q_OBJECT

public :
e x p l i c i t t ex tureTool (QWidget ∗parent = 0) ;
~ tex tureTool () ;

B.4. Texture-tool abstraction class header file 117

QString fi lename ;
s t r u c t maps ;
s t r u c t texture_map ;
void drawConvMainImg () ;
void drawSubImage (QCustomPlot ∗k , QCPColorMap∗colorsub_map_1 ,

maps ∗m, i n t mode , i n t inX) ;
void drawConvMap(QCustomPlot ∗k , maps ma , QCPBars

∗regen , QCPBarsGroup ∗group , i n t ind , QVector<QString > ∗barTicks) ;
void def ineLines (QCustomPlot ∗k , std : : vector <convPoint > ∗convmap , i n t inX) ;
QCPBarsGroup ∗group ;
QPoint re_point ;

private s l o t s :
void Mouse_current_pos (QMouseEvent ∗evv) ;
void Mouse_current_pos_sub (QMouseEvent ∗evv) ;
void Mouse_current_pos_eng (QMouseEvent ∗evv) ;
void Mouse_released (QMouseEvent ∗evv) ;
void Mouse_Pressed (QMouseEvent ∗evv2) ;
void Mouse_Pressed_sub (QMouseEvent ∗evv2) ;
void on_open_clicked () ;
void on_draw_clicked () ;
void on_r ing_c l i cked () ;
void on_accept_c l i cked () ;
void o n _ s e t l i n e _ c l i c k e d () ;
void o n _ f f t _ c l i c k e d () ;
void on_save2_cl icked () ;
void on_save1_cl icked () ;
void on_save4_cl icked () ;
void on_engchec_stateChanged (i n t arg1) ;
void on_intchec_stateChanged (i n t arg1) ;
void on_intlog_stateChanged (i n t arg1) ;
void on_englog_stateChanged (i n t arg1) ;
void on_X_valueChanged (double arg1) ;
void on_Y_valueChanged (double arg1) ;
void on_Z_valueChanged (double arg1) ;
void on_R_valueChanged (double arg1) ;
void on_save_img_clicked () ;
void on_R_2_valueChanged (double arg1) ;
void o n _ c l e a r _ c l i c k e d () ;
void on_R_3_valueChanged (double arg1) ;
void on_R_4_valueChanged (double arg1) ;
void on_R_5_valueChanged (double arg1) ;
void on_R_6_valueChanged (double arg1) ;
void on_R_7_valueChanged (double arg1) ;
void on_img_line_stateChanged (i n t arg1) ;
void on_l l_stateChanged (i n t arg1) ;
void on_pushButton_clicked () ;
void on_thre_textChanged (const QString &arg1) ;
void o n _ t _ e s t _ c l i c k e d () ;
void o n _ s e t _ c l i c k e d () ;
void on_ex_textChanged (const QString &arg1) ;
void on_ey_textChanged (const QString &arg1) ;
void on_ez_textChanged (const QString &arg1) ;
void on_color_stateChanged (i n t arg1) ;
void o n _ s t a r t _ c l i c k e d () ;
void on_lo_stateChanged (i n t arg1) ;
void on_c lear_sub_c l i cked () ;
void o n _ a l l _ l o n e s _ c l i c k e d () ;
void on_l ine_log_stateChanged (i n t arg1) ;
void on_rec_c l i cked () ;
void on_hkl_c l icked () ;
void on_pdf_crea tor_c l i cked () ;

118 Appendix B. Codes

void on_eng_conv_show_clicked () ;
void on_eng_conv_save_clicked () ;
void on_saveconv_cl icked () ;
void o n _ h k l a l l _ c l i c k e d () ;
void on_draw_fam_clicked () ;

private :
Ui : : t ex tureTool ∗ui ;
i n t val idPonts ;
QCPItemRect ∗ r e c t ;
QCPColorMap ∗colorMap ;
QCPColorMap ∗convColorMap ;
QCPColorMap ∗convFamilyMap ;
std : : unordered_map<std : : s t r i n g , int > hkl_map ;
std : : s t r i n g element ;
QCPColorMap ∗colorsub_map ;
QCPColorMap ∗colorsub_map_1 [4] ;
QCPColorMap ∗convSub_map [4] ;
QCPBars ∗bars [4] ;
i n t x_conv , y_conv ;
std : : shared_ptr <BaseClass > _ b a s e _ c l a s s ;
s td : : shared_ptr <BaseClass > _ r i n g _ c l a s s ;
s td : : vector <convPoint > conv [4] ;
s td : : vector <convPoint > conv_Global_img ;
std : : unique_ptr <pointAl l [] > r e f l e c t i o n ;
s td : : vector <std : : pair < int , int > >pts ;
s td : : vector < f l o a t >t e x t u r e _ a n g l e ;
i n t l i n e _ p o i n t s [4] ;
f l o a t lineM , l i n e b ;
i n t d_s , xcc , ycc ;
bool geometry_setup_ok ;
GLWidget _glWidget_ ;
QVector <QString > barTicks ;

s i g n a l s :

} ;

endif / / TEXTURETOOL_H

119

Appendix C

Calculations

Based on the 3D Laue pattern delivered by the detector, each reflection is defined
by the energy resolution of individual Bragg peaks and their spatial resolution two
position coordinates. This allows to directly determine both the wavelength (λ) and
the diffraction angle (θ), following the equations C.1 and C.2 respectively.

λ =
hc
E

(C.1)

where h is the Planck constant, c is the speed of light and E is the Bragg peak energy
delivered by the detector.

θ =
1
2

tan−1(

√
x2 + y2

SSD
) (C.2)

where x and y are the absolute Bragg peak position on the detector plan, while SSD
is the sample-to-detector distance often called "the traveling distance". Therefore, in-
terplanar spacing (d) is calculated by substituting in the Bragg condition (equation
2.1). The spacing distance is related to the linear combination of the reciprocal basis
vectors via

d =
2π

hb1 + kb2 + lb3
=

2π

Ghkl
(C.3)

where Ghkl is the reciprocal lattice vector, while b1, b2, and b3 are the reciprocal prim-
itive basis vectors and can be calculated according to equation C.4

~b1 = 2π ~a2×~a3
~a1.(~a2×~a3)

~b2 = 2π ~a3×~a1
~a1.(~a3×~a1)

~b3 = 2π ~a1×~a2
~a1.(~a1×~a2)

(C.4)

In addition to the above description, an equivalent formalism based on reciprocal-
space can be used to characterize Bragg peak of energy E as a function of a scattering
vector~q,

~q =~k f −~ki (C.5)

where ~k f is the scattered wave vector and ~ki is the incident wave vector. The magni-
tude of these two vectors is unchanged as the it is a result of elastic reflections and
is governed by,

|~k f |=|~ki |=
2π

λ
=

E
h̄c

(C.6)

Starting from 2.1 and putting everything together,

q =
4π

λ
sin θ =

2E
hc

sin θ =
2π

d
(C.7)

So that,
~q = ~Ghkl (C.8)

120 Appendix C. Calculations

Every Laue spot collected by the detector is characterized by the intensity, I, energy,
E, and three dimensional coordinates,x, y and z

h̄c~q = h̄c

 qx
qy
qz

 =
E
s

 x
y− s

z

 , (C.9)

where s is the distance between the sample and the Laue spot at the detector plane:

s =
√

x2 + y2 + z2 (C.10)

The error σ~q depends on the precision of position and energy of the spot such that:

δqx =
| x |

s
δE
h̄c

+
E

s3h̄c
[(y2 + z2)δx+ | xy | δy+ | xz | δz] (C.11)

δqy =
(s− y)

s
δE
h̄c

+
E

s3h̄c
[(x2 + z2)δy+ | yx | δx+ | yz | δz] (C.12)

δqz =
| z |

s
δE
h̄c

+
E

s3h̄c
[(x2 + y2)δz+ | zx | δx+ | zy | δy] (C.13)

The Miller indices can be found as follows:

~q.~ax = 2πh , ~q.~ay = 2πk , ~q.~az = 2πl. (C.14)

After finding the reflections indexation, the collected Laue spots are then as-
signed into spot-groups. Each group represents a set of Laue spots that are reflected
by different crystallographic planes belong to the same grain. To achieve that all
reflections are coupled and tested, covering all possible permutations. This can be
done by comparing the angles between the norms of the planes according to the
following formula:

cos φexp =
h1h2 + k1k2 + l1l2√

h2
1 + k2

1 + l2
1

√
h2

2 + k2
2 + l2

2

(C.15)

where the right hand side is the cosine of the angle between two pre-indexed re-
flections (planes), and it is often called the "theoretical value (cos φth)". The left hand
side is the geometrical calculation of the angle, so-called "experimental value (cos φexp),
and is calculated according to the setups. If the deviation between φexp and φth is less
than a predefined uncertainty, then both reflections are considered to be belonged to
the same grain.

121

Bibliography

1. Mayer-Schönberger, V. & Cukier, K. Big data: A revolution that will transform
how we live, work, and think (Houghton Mifflin Harcourt, 2013).

2. Forum, W. E. Big Data Doesn’t Interpret Itself <https://www.weforum.org/
agenda/2019/04>.

3. Lamanna, M. The LHC computing grid project at CERN. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 534, 1–6 (2004).

4. Bicer, T. et al. Real-time data analysis and autonomous steering of synchrotron light
source experiments in 2017 IEEE 13th International Conference on e-Science (e-
Science) (2017), 59–68.

5. Jaskolski, M., Dauter, Z. & Wlodawer, A. A brief history of macromolecular
crystallography, illustrated by a family tree and its Nobel fruits. The FEBS jour-
nal 281, 3985–4009 (2014).

6. Hauptman, H. A. History of X-ray Crystallography. Structural Chemistry 1,
617–620 (1990).

7. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data man-
agement and stewardship. Scientific data 3 (2016).

8. Tosson, A et al. EDLD-Tool: A real-time GPU-based tool to stream and analyze
energy-dispersive Laue diffraction of BIG Data sets collected by a pnCCD.
Journal of Instrumentation 14, P01008 (2019).

9. Tosson, A, Bahrami, D, Davtyan, A, Shokr, M & Pietsch, U. Deep learning ap-
plication for events classification of energy-dispersive Laue diffraction datasets
collected by pnCCD.

10. Tosson, A, Shokr, M & Pietsch, U. Application of Cloud Computing for Big Data
in the X-Ray Crystallography Community in Proceedings of the 3rd International
Conference on Software Engineering and Information Management (2020), 1–4.

11. Chatterjee, A. X-ray diffraction. Handbook of analytical techniques in concrete sci-
ence and technology, 275–332 (2000).

12. Guinier, A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies
(Courier Corporation, 1994).

13. Warren, B. E. X-ray Diffraction (Courier Corporation, 1990).

14. Braggs Law <https://upload.wikimedia.org/wikipedia/commons/
2/26/Braggs_Law.svg/>.

15. Woolfson, M. M. & Woolfson, M. M. An introduction to X-ray crystallography
(Cambridge University Press, 1997).

16. Merzbacher, E & Lewis, H. in Corpuscles and Radiation in Matter II/Korpuskeln
und Strahlung in Materie II 166–192 (Springer, 1958).

https://www.weforum.org/agenda/2019/04
https://www.weforum.org/agenda/2019/04
https://upload.wikimedia.org/wikipedia/commons/2/26/Braggs_Law.svg/
https://upload.wikimedia.org/wikipedia/commons/2/26/Braggs_Law.svg/

122 BIBLIOGRAPHY

17. Podgorsak, E. B. Basic radiation physics. Radiation oncology physics: a handbook
for teachers and students. Vienna: IAEA 7 (2005).

18. Giacovazzo, C. et al. Fundamentals of crystallography (Oxford University Press
Oxford, 2002).

19. Winick, H. & Doniach, S. Synchrotron radiation research (Springer Science &
Business Media, 2012).

20. Jordan, E. C. Reference data for engineers: Radio, electronics, computer, and commu-
nications (HW Sams, 1985).

21. O’Shea, P. G. & Freund, H. P. Free-electron lasers: status and applications. Sci-
ence 292, 1853–1858 (2001).

22. Send, S. Utilization of a frame store pnCCD for energy-dispersive Laue diffrac-
tion with white synchrotron radiation (2013).

23. Rhodes, J. Radioisotope X-ray spectrometry. A review. Analyst 91, 683–699
(1966).

24. Rodehorst, V. & Koschan, A. Comparison and evaluation of feature point detectors
in 5th International Symposium Turkish-German Joint Geodetic Days (2006).

25. Szpunar, J & Gerward, L. Energy-dispersive X-ray diffraction studies of the
texture in cold-rolled alpha-beta brass. Journal of Materials Science 15, 469–476
(1980).

26. Genzel, C. et al. Exploiting the features of energy-dispersive synchrotron diffrac-
tion for advanced residual stress and texture analysis. The Journal of Strain
Analysis for Engineering Design 46, 615–625 (2011).

27. Sonoda, M., Takano, M., Miyahara, J. & Kato, H. Computed radiography uti-
lizing scanning laser stimulated luminescence. Radiology 148, 833–838 (1983).

28. Amemiya, Y. et al. Imaging Plate Detector In X-Ray Diffraction Using Synchrotron
Radiation in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, As-
trophysics, and Synchrotron Radiation 1140 (1989), 167–175.

29. Takahashi, K. X-ray imaging by means of the photostimulable phosphor tech. rep.
(1990).

30. Henrich, B et al. PILATUS: A single photon counting pixel detector for X-ray
applications. Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 607, 247–249 (2009).

31. Johnson, I et al. Eiger: a single-photon counting x-ray detector. Journal of In-
strumentation 9, C05032 (2014).

32. Andritschke, R., Hartner, G., Hartmann, R., Meidinger, N. & Struder, L. Data
analysis for characterizing pnCCDs in 2008 IEEE Nuclear Science Symposium Con-
ference Record (2008), 2166–2172.

33. Strüder, L et al. The European photon imaging camera on XMM-Newton: the
pn-CCD camera. Astronomy & Astrophysics 365, L18–L26 (2001).

34. Leitenberger, W. et al. Application of a pnCCD in X-ray diffraction: a three-
dimensional X-ray detector. Journal of Synchrotron Radiation 15, 449–457 (2008).

35. F. Alghabi S. Send, U. S.A.A.U. P. & Kolb, A. Fast GPU-based absolute inten-
sity determination for energy-dispersive X-ray Laue diffraction, Ltd and Sissa
Medialab srl (2016).

BIBLIOGRAPHY 123

36. F. Alghabi S. Send, U. S.A.A.U. P. & Kolb, A. Fast GPU-based spot extrac-
tion for energy-dispersive X-ray Laue diffraction. Journal of Instrumentation 9
(2014).

37. Shokr, M et al. Applications of a pnCCD detector coupled to columnar struc-
ture CsI (Tl) scintillator system in ultra high energy X-ray Laue diffraction.
Journal of Instrumentation 12, P12032 (2017).

38. Granato, S. et al. Characterization of eROSITA PNCCDs. IEEE Transactions on
Nuclear Science 60, 3150–3157 (2013).

39. Foucar, L. et al. Cass—cfel-asg software suite. Computer Physics Communications
183, 2207–2213 (2012).

40. Abboud, A. et al. Sub-pixel resolution of a pnCCD for X-ray white beam ap-
plications. Journal of Instrumentation 8, P05005 (2013).

41. Das, S. R. Data science: theories, models, algorithms, and analytics (S. R, Das, 2016).

42. Patil, D. Building data science teams (" O’Reilly Media, Inc.", 2011).

43. Snijders, C., Matzat, U. & Reips, U.-D. " Big Data": big gaps of knowledge in
the field of internet science. International Journal of Internet Science 7, 1–5 (2012).

44. Demchenko, Y., De Laat, C. & Membrey, P. Defining architecture components of
the Big Data Ecosystem in 2014 International Conference on Collaboration Technolo-
gies and Systems (CTS) (2014), 104–112.

45. Peng, R. D. & Matsui, E. The Art of Data Science <https://bookdown.org/
rdpeng/artofdatascience/>.

46. Lyu, M. R. et al. Handbook of software reliability engineering (IEEE computer so-
ciety press CA, 1996).

47. Leinhardt, G. & Leinhardt, S. Chapter 3: Exploratory data analysis: New tools
for the analysis of empirical data. Review of research in education 8, 85–157
(1980).

48. Law, A. M. How to build valid and credible simulation models in 2008 Winter Sim-
ulation Conference (2008), 39–47.

49. Clayton, D. & Hills, M. Statistical models in epidemiology (OUP Oxford, 2013).

50. Sadiku, M. N., Shadare, A. E., Musa, S. M. & Akujuobi, C. M. Data Visual-
ization. International Journal of Engineering Research And Advanced Technology
(IJERAT) 2, 11–16 (2016).

51. Parkhill, D. F. Challenge of the computer utility (1966).

52. Gorelik, E. Cloud computing models PhD thesis (Massachusetts Institute of Tech-
nology, 2013).

53. Subramanian, K. Public clouds. A whitepaper sponsored by Trend Micro Inc (2011).

54. Raza, M. Public Cloud vs Private Cloud vs Hybrid Cloud: What’s The Difference?
<https://www.bmc.com/blogs/public-private-hybrid-cloud/>.

55. Hurwitz, J. S., Kaufman, M., Halper, F. & Kirsch, D. Hybrid cloud for dummies
(John Wiley & Sons, 2012).

56. Ashraf, I. An overview of service models of cloud computing. International
Journal of Multidisciplinary and Current Research 2, 779–783 (2014).

57. Mell, P., Grance, T., et al. The NIST definition of cloud computing (2011).

https://bookdown.org/rdpeng/artofdatascience/
https://bookdown.org/rdpeng/artofdatascience/
https://www.bmc.com/blogs/public-private-hybrid-cloud/

124 BIBLIOGRAPHY

58. SanthoshBaboo, S & Renjith Kumar, P. Next Generation Data Warehouse and
In-Memory Analytics. International Journal of Computer Applications 69, 25–30
(2013).

59. Saad, Y. SPARSKIT: a basic tool kit for sparse matrix computations 1994.

60. Bell, N. & Garland, M. Efficient sparse matrix-vector multiplication on CUDA tech.
rep. (Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008).

61. ScieBo - Die Campuscloud <https://www.zimt.uni-siegen.de/dienste/
campuscloud/>.

62. Garofalo, R. Building enterprise applications with Windows Presentation Founda-
tion and the model view ViewModel Pattern (Microsoft Press, 2011).

63. Syromiatnikov, A. & Weyns, D. A journey through the land of model-view-design
patterns in 2014 IEEE/IFIP Conference on Software Architecture (2014), 21–30.

64. .NET Cross-platform. <https://dotnet.microsoft.com/>.

65. Miller, J. S. & Ragsdale, S. The common language infrastructure annotated standard
(Addison-Wesley Professional, 2004).

66. Harinarayan, V., Rajaraman, A. & Ullman, J. D. Implementing data cubes effi-
ciently in Acm Sigmod Record 25 (1996), 205–216.

67. Gray, J. & Reichart, D. C. Efficient multidimensional data aggregation operator im-
plementation US Patent 5,822,751. 1998.

68. Kirk, D. B. & Wen-Mei, W. H. Programming massively parallel processors: a hands-
on approach (Morgan kaufmann, 2016).

69. Russell, S. J. & Norvig, P. Artificial intelligence: a modern approach (Malaysia;
Pearson Education Limited, 2016).

70. Davis, L. Handbook of genetic algorithms (1991).

71. AWS Total Cost of Ownership (TCO) calculator. <www.awstcocalculator.
com/>.

72. Kuck, D. J., Grest, G. S., McKay, S. R. & Christian, W. High performance com-
puting—challenges for future systems. Computers in Physics 11, 259–261 (1997).

73. Cybenko, G. & Kuck, D. J. Supercomputers-revolution or evolution? IEEE
Spectrum 29, 39–41 (1992).

74. Thornton, J. E. The cdc 6600 project. Annals of the History of Computing 2, 338–
348 (1980).

75. Kumar, V. Introduction to parallel computing (Addison-Wesley Longman Pub-
lishing Co., Inc., 2002).

76. Asano, S., Maruyama, T. & Yamaguchi, Y. Performance comparison of FPGA,
GPU and CPU in image processing in 2009 international conference on field pro-
grammable logic and applications (2009), 126–131.

77. Faggin, F., Hoff, M. E., Mazor, S. & Shima, M. The History of the 4004. IEEE
Micro 16, 10–20 (1996).

78. Ramanathan, R. Intel R© Multi-Core Processors. Making the Move to Quad-Core
and Beyond (2006).

79. McClanahan, C. History and evolution of gpu architecture. A Survey Paper, 9
(2010).

https://www.zimt.uni-siegen.de/dienste/campuscloud/
https://www.zimt.uni-siegen.de/dienste/campuscloud/
https://dotnet.microsoft.com/
www.awstcocalculator.com/
www.awstcocalculator.com/

BIBLIOGRAPHY 125

80. Krewell, K. What’s the Difference Between a CPU and a GPU. NVIDIA Corpo-
ration) Retrieved January 3, 2016 (2009).

81. Kirk, D. et al. NVIDIA CUDA software and GPU parallel computing architecture
in ISMM 7 (2007), 103–104.

82. Prasad, S., Gupta, A., Rosenberg, A., Sussman, A. & Weems, C. Topics in Parallel
and Distributed Computing (Springer, 2015).

83. Banker, R. D., Datar, S. M., Kemerer, C. F. & Zweig, D. Software complexity
and maintenance costs. Communications of the ACM 36, 81–95 (1993).

84. Abran, A., Khelifi, A., Suryn, W. & Seffah, A. Consolidating the ISO usability
models in Proceedings of 11th international software quality management conference
2003 (2003), 23–25.

85. Biolchini, J., Mian, P. G., Natali, A. C. C. & Travassos, G. H. Systematic review
in software engineering. System Engineering and Computer Science Department
COPPE/UFRJ, Technical Report ES 679, 45 (2005).

86. Martin, R. C. Agile software development: principles, patterns, and practices (Pren-
tice Hall, 2002).

87. Send, S. et al. Characterization of a pnCCD for applications with synchrotron
radiation. Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment 711, 132–142 (2013).

88. ROOT-Cern framework <https://root.cern.ch/>.

89. OpenCV Library <https://opencv.org/>.

90. Eigen Library <http://eigen.tuxfamily.org/>.

91. QCustomPlot widget <http://www.qcustomplot.com//>.

92. CUDA zone <https://developer.nvidia.com/cuda-zone/>.

93. Nokia, QT-Cross-platform application and UI framework <http://qt.nokia.
com/>.

94. Alghabi, F et al. Real-time processing of pnCCD images using GPUs (2012).

95. Alghabi, F et al. Fast GPU-based spot extraction for energy-dispersive X-ray
Laue diffraction. Journal of Instrumentation 9, T11003 (2014).

96. Ryan, C., Clayton, E, Griffin, W., Sie, S. & Cousens, D. SNIP, a statistics-sensitive
background treatment for the quantitative analysis of PIXE spectra in geo-
science applications. Nuclear Instruments and Methods in Physics Research Sec-
tion B: Beam Interactions with Materials and Atoms 34, 396–402 (1988).

97. Tomoyori, K, Hirano, Y, Kurihara, K & Tamada, T. Background elimination using
the SNIP algorithm for Bragg reflections from a protein crystal measured by a TOF
single-crystal neutron diffractometer in Journal of Physics: Conference Series 664
(2015), 072049.

98. Morháč, M., Kliman, J., Matoušek, V., Veselskỳ, M. & Turzo, I. Background
elimination methods for multidimensional coincidence γ-ray spectra. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 401, 113–132 (1997).

99. Morháč, M., Kliman, J., Matoušek, V., Veselskỳ, M. & Turzo, I. Efficient one-
and two-dimensional gold deconvolution and its application to γ-ray spec-
tra decomposition. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 401, 385–408
(1997).

https://root.cern.ch/
https://opencv.org/
http://eigen.tuxfamily.org/
http://www.qcustomplot.com//
https://developer.nvidia.com/cuda-zone/
http://qt.nokia.com/
http://qt.nokia.com/

126 BIBLIOGRAPHY

100. Morháč, M., Kliman, J., Matoušek, V., Veselskỳ, M. & Turzo, I. Identification of
peaks in multidimensional coincidence γ-ray spectra. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 443, 108–125 (2000).

101. Tomoyori, K. & Tamada, T. New data reduction protocol for Bragg reflections ob-
served by TOF single-crystal neutron diffractometry for protein crystals with large
unit cells in J. Phys. Conf. Ser. 762 (2016), 012040.

102. Mariscotti, M. A method for automatic identification of peaks in the presence
of background and its application to spectrum analysis. Nuclear Instruments
and Methods 50, 309–320 (1967).

103. Singh, A. K. Optimizing All-to-All and Allgather Communications on GPGPU
Clusters PhD thesis (The Ohio State University, 2012).

104. Abboud, A. et al. Single-shot full strain tensor determination with microbeam
X-ray Laue diffraction and a two-dimensional energy-dispersive detector. Jour-
nal of applied crystallography 50, 901–908 (2017).

105. Send, S. et al. Application of a pnCCD for energy-dispersive Laue diffraction
with ultra-hard X-rays. Journal of Applied Crystallography 49, 222–233 (2016).

106. Colom, R., Karama, S., Jung, R. E. & Haier, R. J. Human intelligence and brain
networks. Dialogues in clinical neuroscience 12, 489 (2010).

107. Turing, A. Intelligent machinery (1948). B. Jack Copeland, 395 (2004).

108. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in ner-
vous activity. The bulletin of mathematical biophysics 5, 115–133 (1943).

109. Samuel, A. L. in Computer Games I 366–400 (Springer, 1988).

110. Mueller, J. P. & Massaron, L. Artificial intelligence for dummies (John Wiley &
Sons, 2018).

111. Oxford Economics Ltd. <https://www.oxfordeconomics.com/>.

112. Baldi, P., Brunak, S. & Bach, F. Bioinformatics: the machine learning approach (MIT
press, 2001).

113. Larranaga, P. et al. Machine learning in bioinformatics. Briefings in bioinformat-
ics 7, 86–112 (2006).

114. Cleophas, T. J., Zwinderman, A. H. & Cleophas-Allers, H. I. Machine learning
in medicine (Springer, 2013).

115. Deo, R. C. Machine learning in medicine. Circulation 132, 1920–1930 (2015).

116. Ivezić, Ž., Connolly, A. J., VanderPlas, J. T. & Gray, A. Statistics, data mining, and
machine learning in astronomy: a practical Python guide for the analysis of survey
data (Princeton University Press, 2014).

117. Ball, N. M. & Brunner, R. J. Data mining and machine learning in astronomy.
International Journal of Modern Physics D 19, 1049–1106 (2010).

118. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Tech-
niques (Adaptive Computation and Machine Learning series). MIT Press, Aug
31, 2009 (2009).

119. Sra, S., Nowozin, S. & Wright, S. J. Optimization for machine learning (Mit Press,
2012).

120. Zhang, C. & Ma, Y. Ensemble machine learning: methods and applications (Springer,
2012).

https://www.oxfordeconomics.com/

BIBLIOGRAPHY 127

121. Mitchell, T. M. The discipline of machine learning (Carnegie Mellon University,
School of Computer Science, Machine Learning . . ., 2006).

122. Crisci, C, Ghattas, B & Perera, G. A review of supervised machine learning
algorithms and their applications to ecological data. Ecological Modelling 240,
113–122 (2012).

123. Khanum, M., Mahboob, T., Imtiaz, W., Ghafoor, H. A. & Sehar, R. A survey on
unsupervised machine learning algorithms for automation, classification and
maintenance. International Journal of Computer Applications 119 (2015).

124. Drugan, M. M. Reinforcement learning versus evolutionary computation: A
survey on hybrid algorithms. Swarm and evolutionary computation 44, 228–246
(2019).

125. Learned-Miller, E. G. Introduction to supervised learning. I: Department of Com-
puter Science, University of Massachusetts (2014).

126. Park, H. An introduction to logistic regression: from basic concepts to interpre-
tation with particular attention to nursing domain. Journal of Korean Academy
of Nursing 43, 154–164 (2013).

127. Peng, C.-Y. J., Lee, K. L. & Ingersoll, G. M. An introduction to logistic regres-
sion analysis and reporting. The journal of educational research 96, 3–14 (2002).

128. Triola, M. F. Bayes’ theorem. PDF. Dostupno: http://faculty. washington. edu/tam-
re/BayesTheorem. pdf (2010).

129. Freund, Y. & Mason, L. The alternating decision tree learning algorithm in icml 99
(1999), 124–133.

130. Yampolskiy, R. V. & El-Barkouky, A. Wisdom of artificial crowds algorithm for
solving NP-hard problems. International Journal of Bio-inspired computation 3,
358–369 (2011).

131. Yuan, C. & Yang, H. Research on K-Value Selection Method of K-Means Clus-
tering Algorithm. J 2, 226–235 (2019).

132. Shafeeq, A. & Hareesha, K. Dynamic clustering of data with modified k-means al-
gorithm in Proceedings of the 2012 conference on information and computer networks
(2012), 221–225.

133. Hamerly, G. & Elkan, C. Learning the k in k-means in Advances in neural informa-
tion processing systems (2004), 281–288.

134. Shokr, M. From pnCCD to pnCCD+ CsI (Tl) scintillator: characterizations and
applications (2019).

135. SciPy library <https://www.scipy.org/>.

136. Matplotlib <https://matplotlib.org/>.

137. Cherukara, M. J., Nashed, Y. S. & Harder, R. J. Real-time coherent diffraction
inversion using deep generative networks. Scientific reports 8, 16520 (2018).

138. Park, W. B. et al. Classification of crystal structure using a convolutional neural
network. IUCrJ 4, 486–494 (2017).

139. Agrawal, H. et al. Deep Learning Methods for Visual Fault Diagnostics of Den-
tal X-ray Systems (2018).

140. Laanait, N., Zhang, Z. & Schlepütz, C. M. Imaging nanoscale lattice variations
by machine learning of x-ray diffraction microscopy data. Nanotechnology 27,
374002 (2016).

https://www.scipy.org/
https://matplotlib.org/

128 BIBLIOGRAPHY

141. LeCun, Y., Bengio, Y & Hinton, G. Deep Learning. Nature 521, 436–44 (May
2015).

142. Esteva Andre Kuprel, B. N.R.A.K.J.S.S.M.B.H.M.T. S. Dermatologist-level clas-
sification of skin cancer with deep neural networks. Nature 542 (2017).

143. Kriesel, D. A brief introduction on neural networks (2007).

144. Nguyen, T. Total number of synapses in the adult human neocortex. Under-
graduate Journal of Mathematical Modeling: One+ Two 3, 26 (2010).

145. Rosenblatt, F. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review 65, 386 (1958).

146. Síma, J. Introduction to neural networks (1998).

147. De Veaux, R. D. & Ungar, L. H. A brief introduction to neural networks. Un-
published: http://www. cis. upenn. edu/˜ ungar/papers/nnet-intro. ps (1997).

148. Dougherty, M. A review of neural networks applied to transport. Transporta-
tion Research Part C: Emerging Technologies 3, 247–260 (1995).

149. Gardner, M. W. & Dorling, S. Artificial neural networks (the multilayer per-
ceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment 32, 2627–2636 (1998).

150. Montana, D. J. & Davis, L. Training Feedforward Neural Networks Using Genetic
Algorithms. in IJCAI 89 (1989), 762–767.

151. Ren, J. S. & Xu, L. On vectorization of deep convolutional neural networks for vision
tasks in Twenty-Ninth AAAI Conference on Artificial Intelligence (2015).

152. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998).

153. Szegedy, C. et al. Going deeper with convolutions in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (2015), 1–9.

154. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

155. Understanding Edge Detection: Sobel Operator <https://medium.com/datadriveninvestor/>.

156. Schmidhuber, J. Deep learning in neural networks: An overview. Neural net-
works 61, 85–117 (2015).

157. Tzutalin. LabelImg <https://github.com/tzutalin/labelImg/>.

158. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

159. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified,
real-time object detection in Proceedings of the IEEE conference on computer vision
and pattern recognition (2016), 779–788.

160. ImageAI, State-of-the-art Recognition and Detection AI with few lines of code. <http:
//imageai.org//>.

161. Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron backscatter
diffraction in materials science (Springer, 2000).

162. Raabe, D, Keichel, J & Gottstein, G. Investigation of crystallographic slip in
polycrystalline Fe3Al using slip trace measurement and microtexture deter-
mination. Acta Materialia 45, 2839–2849 (1997).

https://medium.com/datadriveninvestor/
https://github.com/tzutalin/labelImg/
http://imageai.org//
http://imageai.org//

BIBLIOGRAPHY 129

163. Gao, J. et al. Dependence of film texture on substrate and growth conditions for
CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 29, 051507 (2011).

164. Yi, L. & Chang, T. Loading direction dependent mechanical behavior of graphene
under shear strain. Science China Physics, Mechanics and Astronomy 55, 1083–
1087 (2012).

165. Huang, M., Chen, M. & Zheng, T. Direction-dependent functions of physi-
cal properties for crystals and polycrystals. Acta Mechanica Sinica 25, 639–649
(2009).

166. Hammond, C. & Hammond, C. The Basics of Cristallography and Diffraction (Ox-
ford, 2001).

167. Cullity, B. D. Elements of X-ray Diffraction (2001).

168. Dahms, M, Brokmeier, H., Seute, H & Bunge, H. Ouantitative Texture Ana-
lysis in Multiphase Materials with Overlapping Bragg Reflections. This volume
(1988).

169. Suwas, S. & Ray, R. K. Crystallographic texture of materials (Springer, 2014).

170. COJOCARU, V. D., RĂDUCANU, D., Cinca, I. & CĂPRĂRESCU, A. TEX-
TURE ANALYSIS BY (110) POLE FIGURE FOR A SPD PROCESSED Ti-25Ta-
25Nb ALLOY. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC
BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE 74, 213–222
(2012).

171. Analysis Tools for Electron and X-ray diffraction <http://www.atex-software.
eu/>.

172. Wcislak, L & Bunge, H. Diffraction Profile Pole Figures Measured with a Po-
sition Sensitive Detector. Texture, Stress, and Microstructure 26, 19–38 (1996).

173. Rozaliya, B., Gene, I., et al. Strain and dislocation gradients from diffraction: spatially-
resolved local structure and defects (World Scientific, 2014).

174. Shokr, M. In situ observations of single grain behavior during plastic deformation in
polycrystalline Ni using EDLD (Materials Science and Engineering A, 2019).

175. Yao, W. & Guo, S. VHCF test and life distribution of aluminum alloy LC4CS.
International Journal of Fatigue 30, 172–177 (2008).

176. Bacher-Hoechst, M. & Issler, S. Assessment of very high cycle fatigue (VHCF)
effects in practical applications. Procedia Engineering 66, 26–33 (2013).

177. Alvarez-Armas, I et al. Growth of short cracks during low and high cycle
fatigue in a duplex stainless steel. International Journal of Fatigue 41, 95–100
(2012).

178. Hüsecken, A. K. Untersuchung der Auswirkung von sehr hohen Lastspielzahlen
auf einen austenitisch-ferritischen Duplexstahl mittels in-situ Röntgendiffrak-
tion an der Strahllinie BL10 an der Synchrotronstrahlungsquelle DELTA (2017).

179. OpenGL Library <https://www.opengl.org/>.

http://www.atex-software.eu/
http://www.atex-software.eu/
https://www.opengl.org/

131

Acknowledgements
Finally, I would like to thank all my colleagues who contributed to the success of
this thesis and all the people who supported me during this time:

• I wish to express my sincere appreciation to my supervisor, Prof. Dr. Ullrich
Pietsch, who convincingly guided and encouraged me to do the right thing
even when the road got tough. Without his persistent help, the goal of this
project would not have been realized.

• I would like to acknowledge PNSensor GmbH and in particular Prof. Dr.
Lothar Strüder and Robert Hartmann for the providing of the pnCCD system
and for their technical support.

• I am grateful to my colleges in Solid State Physics group, University of Siegen:
Dr. Shokr, Dr. Al Hassan, Dr. Bahrami, Dr. Davtyan, Al Humaidy and Dr.
Abboud for helping during the beamtimes and for all the fun we have had.

• I am also immensely grateful to V. Pankova, Bonn University for her comments
that greatly improved the manuscript.

• I would like to show my gratitude to my colleges in Conze Informatik GmbH
for their support.

• I am very thankful to my family and my parents for the never-ending support.

This research was supported by Bundesministerium für Bildung und Forschung
(BMBF) and Deutsche Forschungsgemeinschaft (DFG).

132 BIBLIOGRAPHY

	Title page
	Abstract
	Zusammenfassung
	List of publications
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	1.1 Crystallography community
	1.2 FAIR data concept
	1.3 The vision
	1.4 Structure

	Chapter 2 - X-ray Diffraction theoretical framework and empirical concerns
	2.1 X-rays sources
	2.2 Detector technology
	2.3 Energy-Dispersive Laue Diffraction (EDLD)

	Chapter 3 - Big Data Fundamentals
	3.1 5V’s theory
	3.2 Data disciplinary
	3.3 Data Clouding
	3.4 Data warehousing and In-Memory databases
	3.5 Application of Big Data for the X-ray crystallography community
	3.6 System analysis and conclusion

	Chapter 4 - High performance computing and parallel programming
	4.1 Introduction
	4.2 Central Processing Unit (CPU) Vs Graphics Processing Unit (GPU)
	4.3 Sequential Vs Parallel programming
	4.4 Keys to success
	4.5 Application of HPC in EDLD
	4.6 Results and discussion

	Chapter 5 - Artificial Intelligence (AI)
	5.1 Introduction
	5.2 Machine Learning (ML)
	5.3 Deep Learning (DL)

	Chapter 6 - Application of EDLD in material texture analysis
	6.1 Introduction
	6.2 Crystallography behind the scene
	6.3 EDLD for texture analysis
	6.4 Technical description of the tool
	6.5 Conclusion

	Chapter 7 - Summary and conclusion
	Appendix A - Design patterns in softwareengineering
	Appendix B - Codes
	Appendix C - Calculations
	Bibliography
	Acknowledgements

