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Wearable-based Affect Recognition: Advances in wearable-based sensor
technology like smartphones and watches allow to monitor users in a minimally
intrusive way. At the point of writing, wearables are, for instance, used to count
steps or estimate burned calories. Recently, a first generation of smartwatches
entered the consumer market offering data driven insights into affective states.
Over the course of this thesis physiological and motion data recorded using wear-
ables have been employed to detect the affective state (e.g., stress or amusement)
of users. The contributions made are threefold: First, a comprehensive litera-
ture review of the state-of-the art in wearable-based affect recognition was con-
ducted. Second, concluding from this review a lack of publicly available multi-
modal datasets was identified. This gap was closed by recording, benchmarking,
and publishing a lab study dataset for WEarable Stress and Affect Detection (WE-
SAD). Third, a field study was conducted recording physiological and motion data
as well as affective labels from 11 healthy subjects. Prior to the field study guide-
lines for smartphone-based labelling apps were formulated and they were evaluated
using the field study data. Furthermore, data and labels acquired during the field
study were used to train both feature-based and latest end-to-end trainable ma-
chine learning classifiers, detecting affective states on different scales. Both types
of classifiers performed on par (averaged F) score across scales: ~ 45%). Hence,
potential pitfalls for wearable-based affect recognition were discussed in detail and
implications for further research were provided.

Emotionserkennung basierend auf tragbarer Sensorik: Der technologische
Fortschritt im Bereich tragbarer Sensorik ermdoglicht die minimalinvasive Erfassung
von Nutzerdaten wie beispielsweise zuriickgelegte Schritte oder verbrauchte Kalo-
rien. Zudem ist die neueste Generation Smartwatches in der Lage, basierend auf
physiologischen Daten affektive Zustédnde der Nutzer zu schétzen.

Im Rahmen dieser Arbeit wurden physiologische und Bewegungsdaten mithilfe
tragbarer Sensorik aufgenommen. Diese wurden zur Erkennung affektiver
Zustande (z.B. Stress) verwendet. Die geleisteten Beitridge sind die folgenden:
Der aktuelle Stand der Forschung im Bereich der Emotionserkennung basierend
auf tragbarer Sensorik wurde umfassend dargestellt. Dabei zeigte sich ein Man-
gel an offentlich verfiigbaren und multimodalen Datensétzen. Diese Liicke wurde
durch die Aufzeichnung und Publikation eines Laborstudiendatensatzes (WE-
SAD) geschlossen. Des Weiteren wurden im Rahmen einer Feldstudie physiol-
ogische, Bewegungs- sowie affektive Daten von 11 Versuchspersonen aufgezeich-
net. Im Vorfeld dieser Feldstudie wurden Empfehlungen fiir Smartphone-basierte
Fragebogen-Apps entwickelt und diese wurden anhand der gesammelten Einblicke
iberprift. Zudem wurden die Klassifizierungsraten von feature-basierten Klas-
sifikatoren sowie aktuellsten Convolutional Neural Networks untersucht. Dabei
zeigte sich, dass die Erkennung affektiver Zustédnde im Feld auf unterschiedlichen
Skalen nur eingeschrénkt moglich ist (iiber Skalen gemittelter F} Score: ~ 45%).
Daher wurden Fallstricke fiir Emotionserkennung basierend auf tragbarer Sensorik
diskutiert und Auswirkungen fiir die weitere Forschung dargelegt.
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Introduction

1.1 Motivation and Scope

Affective computing is an emerging field, inspired by the vision to improve human
machine interaction by building empathic machines. In general, affective computing
research can be divided into two directions. The first direction is the synthesis of
affective states within avatars or robots. This topic has gained a lot of attention in
recent Science-Fiction movies like "A.L." (Spielberg [2001]), "I, robot" (Sietz [2004]),
and "Ex Machina" (Garland [2015]). However, there is still a long way to go before
humanoid robots, like the ones portrayed in these movies, can be realized. Never-
theless, a first generation of semi-humanoid robots has been developed, recognizing
and reacting to human emotions, see for instance Pepper by SoftBankRobotics. The
second direction of affective computing is affect recognition, aiming to detect affec-
tive states, like emotions or stress, based on observables. The motivation for this
research direction originates from different areas of application:

First, considering a cybernetic point of view, human decision making is strongly
linked to the affective state. Hence, in order to build a holistic user model the affec-
tive state of the user is key. As a result, in human machine interaction the machine
could adapt its behaviour to the current state of the user. This could find application
in industry 4.0 applications, where a machine, for instance, reduces its throughput
once it "recognizes" that the workload is too high for the operator. Considering an
affect-aware (autonomous) vehicle the affective state of the driver/passengers could
be used to provide services, ranging from re-routing options (e.g., when the car de-
tects that the driver/passengers is/are stressed) to "coffee break stops" (e.g., when
driver /passenger fatigue is detected). The latter case has, for instance, been ad-
dressed by a driver drowsiness detection system developed by Bosch [2019]. Second,
considering affect recognition from the viewpoint of the "quantified self" move-
ment, the affective state is an interesting property. Assessing affective states in a
continuous and data driven way, could increase users’ awareness of their affective



states. In addition, such a system could help to correlate certain affective states
with locations or events and thus help users to avoid a subset of stressful situa-
tions. The smartphone app Daylio [2019], where users track activities and moods
manually, promises this kind of insight. Third, considering psychological care,
automated affect recognition could aid diagnostics and treatment. Griinerbl et al.
[2015], for instance, presented an approach to detect state changes in bipolar dis-
order patients. Such a system could automatically schedule an appointment with
a psychiatrist once a certain state, e.g., manic-episode is detected. Fourth, from a
health care point of view, continuous and automated stress detection is a partic-
ularly interesting application of affect recognition. This is due to the severe side
effects of long-term stress, which range from headaches and troubled sleeping to an
increased risk of cardiovascular diseases, see McEwen and Stellar [1993], Chrousos
and Gold [1992], Rosmond and Bjorntorp [1998]. One approach for assessing stress
in mobile environments was, for instance, presented by Hovsepian et al. [2015].

Depending on the setting, a number of affect recognition systems relying on dif-
ferent input modalities are available: In an automotive context, for instance, Eyeris
[2019] and Vayyar [2019] utilize video data and vital signs to detect the driver’s
state. Furthermore, companies like Beyondverbal [2019] or Vokaturi [2019] offer
audio-based emotion recognition. Considering the findings of Tzirakis et al. [2017]
and Mirsamadi et al. [2017], emotions are detected reliably using audio and/or video
data. In addition, stress detection based on audio samples is feasible, as presented
by Lu et al. [2012]. The high performance of these systems is strongly linked to re-
cent advances in the computer vision and audio analysis domain, where the advent
of convolutional and long short-term memory neural networks led to breakthroughs.
Depending on the application, audio and/or video might be valid modalities (e.g.,
in callcenter applications or for human machine interaction (HMI)). However, these
modalities exhibit two crucial limitations: First, recording audio and/or video data
continuously is intrusive in terms of privacy. Second, from a technical point of view,
continuous recording is difficult. Consequently, these modalities are only available
in specific settings and circumstances (e.g., HMI or vehicles). However, the aim
of affect recognition is to detect affective states continuously and in unconstrained
environments, e.g., in the everyday life of the subjects. As a result, audio and
video data are inappropriate modalities for most long-term affect recognition and
monitoring scenarios.

Recent advances in wearable-based sensor technology and computing facilitate
new opportunities in the domain of ubiquitous computing and human monitoring.
Up-to-date smartphones or watches are used by many to count steps, assess sleep
quality, or monitor physiological parameters, like cardiac activity. One advantage
of these devices, smartwatches in particular, is that they facilitate long-term mon-
itoring of physiological parameters (e.g., cardiac activity) while being only mini-
mally intrusive. Some affective states, like stress, exhibit a distinct influence on
certain physiological parameters and lately a first generation of smartwatches has
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Figure 1.1: Schematic representation of the scope of the presented thesis. Modalities
not considered are indicated in gray.

been launched, promising insights into personal stress levels, see Garmin [2019]
or Apple [2019]|. Inspired by these devices and the link between affective states
and physiology, the performance of wearable-based affect recognition systems using
physiological data, like cardiac and electrodermal activity, and motion information
is explored in this thesis. However, this work not only aims to detect stress, but
also aspires to investigate the properties of systems detecting additional affective
states (like amusement or other points in valence-arousal space). For this pur-
pose both classical (feature-based) machine learning and deep learning methods are
applied. Considering the minimally intrusive nature and the broad acceptance of
smartwatches, the focus of this thesis lies on data collected using this type of device.
Smart fabrics and garments are on the verge of being the next big thing in the wear-
able domain. Hence, modalities potentially integrated in smart clothes recording
physiological data from the torso of subjects are also explored. The above detailed
considerations boil down to two main inclusion criteria: First, the wearables consid-
ered in this work have to be worn directly on the body, which facilitates the recording
of physiological and motion data. Second, they should be only minimally intrusive
and facilitate long-term monitoring. Figure 1.1 displays a schematic overview of the
scope of this thesis outlining the input modalities, the employed machine learning
systems, and the targeted affective states. Due to the inclusion criteria formulated
above the following modalities are not in scope of this work:

o Smartphones: Smartphones are very popular among users. They are equipped
with numerous sensor modalities, which can be used to generate contextual
information (e.g., location logging). However, smartphones are not necessarily
worn directly on the subject’s body. This is best illustrated considering the
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following example: As smartphone screens become larger and larger they tend
not to fit into trouser pockets any more. Consequently, phones are often placed
somewhere (e.g., on the table) and not kept directly on the body. Due to this,
the data (e.g., activity, or location) do not always represent the actual activity.
Hence, smartphone-based sensory data (e.g., location) are excluded from the
considered inputs.

Smart Glasses and Farables: Academic research has shown that smart glasses
and earables are able to measure physiological parameters like skin-temperature
or heart rate, see for instance Yasufuku et al. [2016] or Budidha and Kyriacou
[2014]. However, at the moment of writing, smart glasses and earables have
not experienced a breakthrough on the consumer market. Consequently, these
potential modalities are not considered here.

FElectroencephalogram and Electrooculography: — Both EEG and EOG require
the placement of electrodes on the scalp/face of the user. In addition, despite
being popular among researchers, EEG and EOG are not available on the
consumer market. Hence, these devices are not very frequently employed by
users. Reflecting on their intrusive nature and small market share, EEG and
EOG will not be considered.

Audio and Video: In constrained settings, e.g., a living room or a car interior
constant video and audio recordings of subjects might be possible. However,
outside this constrained setting currently no ubiquitous audio/video recording
infrastructure is available. Due to the strong privacy concerns of ubiquitous
audio and video surveillance it seems unlikely that these modalities will be
available. Hence, long-term monitoring based on audio and video data in
unconstrained environments is not possible. As a result, audio and video are
modalities not considered in the scope of this work.




1.2 Research Questions

The aim of this thesis is to investigate the performance of purely wearable-based
affect recognition (AR) systems. The employed algorithmic approaches are based on
multi-modal data, focusing on physiological indicators and motion patterns. Using
these modalities, the aim is to recognize and distinguish affective states like stress,
anxiety, or other points in valence-arousal space. For this purpose, data is collected
using wearables and different AR systems are trained based on this data (or the
derived features). The presented thesis addresses the following research questions:

RQ 1

RQ 2

What is the current state-of-the-art in wearable-based affect recog-
nition?

Since the term affective computing has been coined by Picard [1995], a lot of
research has been conducted. However, the community currently lacks a com-
prehensive literature review focusing on wearable-based AR. To target this
issue a detailed analysis of the state-of-the-art is performed (see Chapter 2)
and related work is examined carefully. The aim of this review is to provide
an introduction into psychological constructs targeted in AR. In addition, the
commonly employed classification chain is presented, focusing on the prepro-
cessing, feature extraction, and classification steps. This review can be used
by other researchers to obtain a full overview of the methodology employed in
wearable-based AR. This review was published in:

Schmidt, P., Reiss, A., Diirichen, R., Van Laerhoven, K., Wearable-
Based Affect Recognition - A Review, In Sensors 2019, 19(19), 4079;
DOI: 10.3390/s19194079, https://doi.org/10.3390 /19194079

How is benchmarking and direct comparison of different algorithmic
approaches for wearable-based affect recognition feasible?

One key finding of the literature review is that wearable-based AR is a well
investigated research topic. However, the comparison of different algorithmic
approaches is difficult as the community is missing a common benchmarking
dataset. Such a benchmarking dataset should meet the following criteria:

I. The data should be acquired using high quality wearables only. In order to
perform a high resolution spectral analysis, the employed sensors should
be sampled at high frequencies. Considering smartwatches and smart
fabrics, the data should be acquired in a redundant fashion from different
locations (e.g., chest and wrist).

II. For the purpose of creating a benchmarking dataset, acquiring data in a
laboratory setting is absolutely satisfying. However, the subjects should

11
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have some freedom with regards to their posture and movements. This
is motivated by the fact that in real world applications, strong motion
artefacts are to be expected. Hence, in order to be more realistic the
dataset should not be completely free of motion artefacts.

ITI. Each study participant should experience multiple affective states. The
different affective states should be elicited using appropriate stimuli and
be reproducible. A binary stress/no-stress dataset would not be sufficient,
due the strong physiological stress response.

IV. In order for the results to be of statistical relevance, the dataset should
contain physiological data and self-reports from at least 10 subjects.

V. A benchmark, should be created employing a standard set of features and
classifiers.

This work aspires to fill the identified gap by introducing WESAD - a dataset
for WEarable Stress and Affect Detection. In Chapter 3, the study protocol
and the employed modalities are detailed. In addition, WESAD is bench-
marked using a number of classical (feature-based) machine learning classi-
fiers. The WESAD dataset and benchmark was introduced in the following
conference contribution:

Schmidt, P., Reiss, A., Diirichen, R., Marberger, C., Van Laerhoven,
K., Introducing WESAD, a Multimodal Dataset for Wearable Stress
and Affect Detection. In Proceedings of the 20th ACM International
Conference on Multimodal Interaction, ICMI 18,

DOI: 10.1145/3242969.3242985, http://doi.acm.org/10.1145/3242969.
3242985.

What is the performance of machine learning systems that detect
multiple affective states in unconstrained environments?

Wearable-based AR has the potential to facilitate long-term affect detection in
everyday life. However, to-date only a few field studies have been conducted,
aspiring to detect the affective state of the participants in unconstrained envi-
ronments using wearable-based physiological and motion data. Most of these
field studies, e.g., Healey et al. [2010] or Gjoreski et al. [2017], rely on classical
feature-based machine learning methods. However, deep learning methods like
convolutional neural networks (CNNs), can be used to learn features automat-
ically. This has the potential to eliminate the need for feature engineering.
CNNs have found application in the human activity recognition domain, see
for instance Ordonez and Roggen [2016] or Miinzner et al. [2017]. Motivated
by these approaches, the performance of automated feature extractors shall
be investigated comparing them to classical feature-based machine learning
methods.


http://doi.acm.org/10.1145/3242969.3242985
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In order to tackle this, a field study has been conducted, recording physiological
time series data, context information, and labels (see Chapter 4). As there
is no standard procedure for wearable-based AR field studies RQ 3 is divided
into the following two subtasks:

RQ 3a

RQ 3b

What is an appropriate way to label affective states in everyday life reli-
ably?

In lab studies, stimuli can be designed carefully. In unconstrained en-
vironments, in contrast, affective states occur naturally. Hence, an ap-
propriate way to label these needs to be developed. In related litera-
ture, smartphone apps scheduling questionnaires (so called ecological-
momentary-assessments (EMAs)) were employed for this purpose. How-
ever, it seems that no guidelines for the development and application
of smartphone-based EMA apps are available. Hence, the labelling tool
used in the conducted field study and its design are presented in detail.
Further, based on the insights gained during the real life data acquisi-
tion guidelines and lessons learned, for the development and application
of EMA apps (see Section 4.3) are formulated. Parts of this work were
presented in:

Schmidt, P. , Reiss, A., Diirichen, R., Van Laerhoven, K., La-
belling Affective States "in the Wild": Practical Guidelines and
Lessons Learned. In Adjunct Proceedings of the 2018 ACM In-
ternational Joint Conference and 2018 International Symposium
on Pervaswe and Ubiquitous Computing and Wearable Comput-
ers, UbiComp 18, DOI: 10.1145/3267305.3267551, http://doi.
acm.org/10.1145/3267305.3267551.

What is the performance of classifiers trained on labels generated with an
ecological-momentary-assessment tool?

Gjoreski et al. [2017| presented an approach detecting stress of five study
participants using physiological and context data in the field. For this
purpose, classical machine learning methods relying on features were em-
ployed. Furthermore, Taylor et al. [2017| developed a machine learning
model, using multilayer perceptrons, to predict tomorrow’s mood, health,
and stress based on today’s data. This model used context, survey in-
formation, and physiological indicators as input modalities. Inspired by
these approaches, the current affective state of users based only on phys-
iological and motion data shall be detected. Hence, a single-task and
multi-class affect detection problem is posed, using the physiological and
motion data as well as the labels acquired during the field study. In
addition, the performance of CNNs is explored formulating the classifica-

13
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tion of multiple affective states as multi-target and multi-class problem
(see Section 4.4). The performance of both the single and the multi-task
machine learning systems is surprisingly low. Hence, pitfalls and key chal-
lenges for wearable-based AR are discussed thoroughly. These results and
discussion can also be found in the following conference paper:

Schmidt, P.; Diirichen, R., Reiss, A., Van Laerhoven, K., Plotz,
T., Multi-target Affect Detection in the Wild: An Exploratory
Study, In Proceedings of the 23rd International Symposium on
Wearable Computers, ISWC '19, DOI: 10.1145/3341163.3347741,
http://doi.acm.org/10.1145/3341163.3347741.


http://doi.acm.org/10.1145/3341163.3347741

Interdisciplinary Background and Related Work

Wearable-based affect recognition (AR) aspires to detect the affective state of a
person based on observables. Hence, from a theoretical point of view, AR can be
seen as a signal processing and pattern recognition problem, see D'mello and Kory
[2015]. However, due to the concepts (e.g., stress, emotions) targeted by AR and the
used signals, wearable-based AR is a highly interdisciplinary research field with links
to signal processing, machine learning, psychology, and behavioural neuroscience.

In this chapter, the interdisciplinary background and related work is summarized.
First, in Section 2.1, the terminology frequently used in AR will be defined and psy-
chological models for emotions and stress will be presented. Next, Section 2.2 details
the influence of affective states on physiological parameters. In addition, sensory
setups measuring these changes are listed. Protocols eliciting emotions in a labora-
tory setting and information on methods and questionnaires commonly employed in
AR field studies are detailed in Section 2.3. Furthermore, publicly available datasets
are listed and described. At the end of this chapter (see Section 2.4), the classical
data processing pipeline of time series data is reviewed. Special attention is given
to feature extraction based on physiological time series data and the state-of-the-art
performance of wearable-based affect recognition systems is presented.

The content of this chapter has been published as Schmidt et al. [2019b].

15



2.1 Interdisciplinary Background

In this section an overview of the terminology used in affect recognition (AR) will
be provided. For this purpose different psychological and physiological constructs
of affective states will be presented and summarized.

2.1.1 Working Definitions of Affective Phenomena

In order to tackle AR, working definitions of different affective states are required.
Psychologists have been studying human emotions intensively. Hence, the emotional
models and terms employed in AR are "borrowed" from psychology. In this section
terms commonly used in AR are defined and models for emotions and stress are
introduced.

Despite a growing body of research, it is still difficult to define the terms affect,
emotion, and mood in a precise way. Below working definitions are provided and
differences between the constructs are highlighted. Russell [2003] defines affect to
be a neurophysiological state. This neurophysiological state is consciously accessible
as simple raw (nonreflective) primitive feeling Liu [2017]. Affect is not directed at a
specific event or object and lasts only for a very short time. In contrast, emotions
are intense and directed feelings, which have a short duration. Emotions are an
indicator of affect, and arise from a cognitive process evaluating a stimulus (e.g., a
specific object, an affect, or a thought). Hence, emotions are directed at a stimulus.
To illustrate these aspects, Liu [2017] uses the example of watching a scary movie:
If you are affected, the movie elicits the feeling of being scared. The mind processes
this feeling (scared), adds an evaluation ( ‘this is really spooky’), and expresses it to
you and your surroundings as an emotion (fear) by, e.g., crying Liu [2017]. In AR
literature, the terms mood and emotion are often used interchangeably. However,
in contrast to emotions (and affects), mood is commonly defined to be less intense,
more diffuse, and to last for a longer time period. This difference between mood
and emotion is best illustrated by considering the following example: One can get
angry very quickly, but it is hard to stay angry for a longer time period. However,
the emotion anger might lead to an irritable mood, which can last for a long time
Liu [2017].

In the remainder of this thesis the term affective state will be used to describe
the internal state of a person, which can be referred to as emotion, mood, and/or
affect.

2.1.2 Emotion Models

In this section, emotional models frequently employed in AR literature are de-
tailed. These are grouped into two distinct types:

16



1. Categorical models: Here different emotions are represented in discrete
categories.

2. Dimensional models: Following this approach, emotions are mapped into a
multidimensional space, where each of the axes represents a continuous vari-

able.

Categorical models date back to ancient Greek and Roman philosophers Poria
et al. [2017]. Cicero, for instance, distinguished four basic categories of emotions,
namely fear, pain, lust, and pleasure. Darwin also conducted studies on emotions,
and came to the conclusion that emotions have an evolutionary history and, hence,
are shared across cultures. Similar to Darwin, Ekman [1992] argues that basic emo-
tions are shared across cultures and appear to be universally recognised. Following
Ekman and Friesen, six basic emotions can be distinguished: Joy, Sadness, Anger,
Fear, Disgust, and Surprise Ekman and Friesen [1978, 1976|. These basic emotions
are discrete and have distinct physiological patterns, e.g., facial muscle movement.
Being able to express basic emotions can be attributed with a number of (evolu-
tionary evolved) physiological and communicative functions: Disgust, for example,
is often expressed by a certain facial expression and a wrinkled nose. On a phys-
iological level this facial expression limits inhalation of malodorous particles. On
the communicative level, this distinct facial expression, performed for instance as
reaction to rotten food, has the potential to warn others.

In 1980, Plutchik [1980] developed another taxonomy to classify discrete emo-
tions. The so-called 'wheel of emotions’ comprises of eight primary emotions: Grief,
Amazement, Terror, Admiration, Ecstasy, Vigilance, Rage, and Loathing. Following
Plutchik [1980], the primary emotions mix, and give rise to more complex emotions.
In addition, emotions are expressed at different intensity levels. In the domain
of wearable-base AR, categorical models were for instance used by Zenonos et al.
[2016]. In their study the authors presented an approach to distinguish eight dif-
ferent emotions and moods (ezcited, happy, calm, tired, bored, sad, stressed and
angry).

The above presented model of basic emotions is not unquestioned and one point
of criticism is that some languages do not have words for certain basic emotions
Russell [1979]. According to Soleymani et al. [2012a] in polish, for instance, there is
no exact translation for the English word disgust.

Dimensional models where emotions are mapped into a multidimensional space,
mitigate this shortcoming. The first dimensional approach dates back to Wundt
[1863], who describes momentary emotions as a single point in a three-dimensional
space Becker-Asano [2008]. Wundt’s emotional space is spanned by the pleasure-
displeasure, excitement-inhibition, and tension-relaxation axes. At the end of the
1970s, Russell [1979] postulated a two-dimensional model, namely the circumplex
model (see Figure 2.1). This model has been very impactful and in the circumplex
model, affective states are represented as discrete points in a two-dimensional space,
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Figure 2.1: Schematic representation of the circumplex (valence-arousal) model.
Adapted from Valenza et al. [2014].

spanned by the axes valence and arousal. The valence axis indicates the percep-
tion on how positive or negative the current affective state is. On the arousal axis,
the state is rated in terms of the activation level, e.g., how energised or enervated
one feels. The four quadrants of the circumplex model (low arousal/low valence
(LALV), low arousal/high valence (LAHV), high arousal/low valence (HALV) and
high arousal /high valence (HAHV)) can be attributed with sad, relazed, angry, and
happy. By adding further orthogonal axes, e.g., dominance, the circumplex model
is easily extended. In AR, the circumplex model and its variants are frequently em-
ployed, see Kim and André [2008|, Koelstra et al. [2012], Valenza et al. [2014], Abadi
et al. [2015]. Using the Self-Assessment Manikins (SAM) of Morris [1995], the cir-
cumplex model can easily be assessed. These Manikins offer an easy graphical way
for subjects to report their current affective states (see Figure 2.2). In addition, the
SAM are easily understood across cultures, due to their simple graphical representa-
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Figure 2.2: Exemplary Self-Assessment Manikins Morris [1995], used to generate
labels in the valence-arousal space. Adapted from Jirayucharoensak et al.
[2014].

tion. Another possible reason for the popularity of dimensional models might arise
from a machine learning (ML) point of view. The (at least two) independent axes
of the circumplex model offer an interesting set of different classification tasks: The
valence and arousal axes, for instance, can be binned into multiclass classification
problems, e.g., low/medium/high arousal or valence. In addition, posing classifi-
cation problems based on the four quadrants named above is a frequently pursued
task in AR, see for instance Kim and André [2008|, Subramanian et al. [2017].

2.1.3 Stress Models

In everyday life, stress or being stressed are terms used to describe the feeling of
being under pressure. Stress is commonly elicited by an external and/or internal
stimulus called stressor. However, from a scientific point of view, stress is primar-
ily a physiological response. At the beginning of the 20th century Cannon [1929]
coined the terms homeostasis and "fight or flight" response. Homeostasis describes
a balanced state of the organism where its physiological parameters stay within an
acceptable range (e.g., a body temperature of 37 C°). Following Cannon [1929], both
physiological and psychological stimuli can pose threats to homeostasis. Stressors
can be seen as threats, disrupting homeostasis. In order to maintain homeostasis,
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even under extreme conditions, feedback loops (e.g., a fight or flight response) are
triggered, Cannon [1929].

Selye [1974] defined stress to be or result in a nonspecific response of the body
to any demand upon it’. Following this definition, 'nonspecific’ refers to a shared
set of responses triggered regardless of the nature of the stressor, e.g., physical or
psychological. Recent stress models, e.g., McEwen and Stellar [1993|, incorporate
multiple effectors and advocate that the stress response is to some degree specific.
The stress response is mainly influenced by two aspects: First, the stressor itself and,
second, the organism’s perceived ability to cope with the posed threat Goldstein
and Kopin [2007]. Depending on the coping ability of the organism and estimated
chances for success, eustress (positive outcome) and distress (negative outcome)
are distinguished Lu et al. [2012]. Eustress can have a positive (motivating) effect,
while distress is perceived to be hindering (feeling worried or anxious). In order
to illustrate this the following example can be used: Assume a person has to take
an exam. Here, this exam represents an external stressor and the body reacts with
a physiological stress response, e.g., by increasing the blood glucose level. If the
person feels well prepared for the exam and is looking forward to the challenge ahead,
this can be interpreted as eustress. In contrast, if the person is not well prepared
and feels like failing the exam, this can result in distress. Considering wearable
stress recognition, distinguishing between eustress and distress is a largely unsolved
problem due to the lack of adequate physiological indicators. However, long-term
stress in general is associated with many severe health implications ranging from
troubled sleeping and headaches to an increased risk for cardiovascular diseases,
see McEwen and Stellar [1993], Chrousos and Gold [1992], Rosmond and Bjérntorp
[1998]. Due to these severe side effects of long-term stress, the detection of stress is
a frequent task in AR: Mozos et al. [2017|, Plarre et al. [2011], for instance target
binary stress recognition tasks (stress vs. no stress) and Gjoreski et al. aimed at
distinguishing different levels of stress (no stress vs. low stress vs. high stress).

Above different emotion and stress models were summarised. Although stress is
not an emotion, a link between dimensional models and stress is readily established:
Following Sanches et al. [2010], a direct link between stress and arousal can be drawn.
Valenza et al. [2014] maps stress into the high arousal/negative valence (quadrant
IT) of the circumplex model (see Figure 2.1). Following Thayer [1990] and later
Schimmack and Reisenzein [2002], the arousal dimension of the ’classical circumplex’
model can be split into tense arousal (stressed-relaxed) and energetic arousal (sleepy-
active). According to Schimmack and Reisenzein [2002], this split is justified by the
observation that only the energetic arousal component is influenced by the sleep-
wake cycle. Considering the wearable affect and stress recognition literature, a
recent study conducted by Mehrotra et al. [2017] uses this three-dimensional emotion
model (valence, tense arousal, and energetic arousal) to investigate correlation and
causation between emotional states and cell phone interaction.
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2.2 Physiological Changes and Objective Measures

In this section the affect-related changes in physiology and devices to measure
these are presented. Section 2.2.1 provides background on the physiological changes
and in section Section 2.2.2 commonly used sensors are presented.

2.2.1 Affective States and their Physiological Indicators

Affective states and physiological changes are clearly linked, e.g., if someone cracks
a good joke we laugh or at least smile. With this physiological response we express
amusement. Negative emotional states have even stronger physiological indicators.
For instance, when being afraid or anzious one might start sweating, get a dry
mouth, or feel sick.

Stress was characterised primarily as a physiological response to a stimulus, see
Section 2.1.3. The most severe physiological reaction to a stressor is the so called
'fight or flight’ response Cannon [1929]. During this response the body prepares for
a severe action, like fight or flight, releasing a mixture of hormones, like cortisol and
adrenaline. This leads, for instance, to an increased breathing/heart rate, pupil dila-
tion, and muscle tension. The induced physiological responses are quite distinct and
are a good example for the link between affective states and physiological changes.

Above the link between affective states and physiological responses was established
using examples. The direction/causality, e.g., do affective states cause physiological
changes or vice versa, is still an open research question: At the end of the 19th cen-
tury James [1884] postulated, that physiological changes precede emotions and that
emotions arise from these changes. This is best illustrated considering the following
example: Picture someone encountering a gigantic poisonous spider. Following this
encounter the heart rate and the activity of the sweat glands of the subject would
increase. Following this James-Lange-Theory, these physiological changes are
not symptoms of fear/disgust, but rather involuntary physiological responses. Ac-
cording to James [1884] these physiological responses, become an emotion/feeling,
like fear/disgust, once a cognitive evaluation occurred. Hence, the subject could
describe the process as "I feel afraid, because I have a racing heart". This theory
is supported, for instance, by experiments conducted by Levenson et al. [1990], who
found evidence that performing voluntary facial muscle movements exhibit similar
changes in peripheral physiology as if the corresponding emotion is experienced. For
instance, when the subjects were asked to make an angry face the heart rate was
found to increase. This theory, is not unchallenged. Following common sense, a
stimulus is perceived, it elicits an feeling, and then the physiological responses are
triggered. Hence, the subject could describe the process as "I have a racing heart,
because I'm afraid of the poisonous spider". Following the Cannon-Bard-Theory,
the perceived stimulus is processed in the brain and the physiological response and
affective states arise simultanecously Friedman [2010]. Hence, the subject could de-
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Table 2.1: Major functions of the sympathetic nervous system and parasympathetic
nervous system.
Sympathetic nervous system (SNS) | Parasympathetic nervous system (PNS)

associated with ’fight or flight’ e associated with 'rest and digest’
pupils dilate e pupils constrict

decreased salivation and digestion e increased salivation and digestion
increased heart and respiration rate e decreased heart and respiration rate

increased electrodermal activity
increased muscle activity
adrenalin and glucose release

scribe the process as "The spider makes me feel afraid and I have a racing heart".
The debate outlined above is, from a theoretical point of view, very interesting.
However, it is out of scope of this thesis. Wearable-based AR utilizes these affect-
related changes in physiology.

Affective states occur spontaneously and are accompanied by certain physiological
pattern. These physiological responses are hard or even impossible to control for
humans. The autonomic nervous system (ANS) directs these unconscious ac-
tions of the organism. Hence, the ANS plays a key role in directing the physiological
response to an external (e.g., event) or internal (e.g., thought) affective stimulus.
The ANS has two major branches: the sympathetic nervous system (SNS) and the
parasympathetic nervous system (PNS). In Table 2.1, the key contributions of the
SNS and PNS are displayed. As the SNS is mainly associated with the ’fight or
flight’ response, an increased activity of the SNS indicates high arousal states. In
other words, the main function of the SNS is to provide energy by increasing a num-
ber of physiological parameters (e.g., respiration rate, glucose level, etc.). The PNS,
in contrast, regulates the rest and digest’ functions McCorry [2007].

The interplay of SNS and PNS is best illustrated considering the cardiovascular
system. In reaction to a potential threat, the SNS increases the heart rate (HR).
Once the threat is over, the PNS reduces the HR, bringing it back to normal Choi
et al. [2012]. A common measure to quantify the interaction of SNS and PNS is
the heart rate variability (HRV). The HRV is defined as the variation in the
beat-to-beat intervals. An increased/decreased HRV indicates increased activity of
the PNS/SNS, respectively. As a result, the HRV is a rather simple but efficient
measure to quantify the contributions of the PNS/SNS. Hence in related work, the
HRYV is employed to detect stress Choi et al. [2012]. Changes in the electrodermal
activity (EDA) are another simple but effective measure to assess the SNS activ-
ity, too. This is due to the fact, that changes in EDA are governed by the SNS Choi
et al. [2012]. Hence, following Dawson et al. [2000] the EDA is particularly sensitive
to high arousal states, like fear, anger, and stress. EDA has two main components,
namely the skin conductance level (SCL) and the skin conductance response (SCR).
The SCL, also known as tonic component, represents a slowly varying baseline con-
ductivity. In contrast, the SCR, also called phasic component, refers to peaks in the
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Table 2.2: Four exemplary affective states and their physiological response Kreibig
[2010]. Abbreviations: | indicate a decrease, 1 indicates an increase, 1) in-
dicate both increase and decrease (depending on the study), — indicates no
change in the parameter under consideration, # number of.

Sadness .
Anger (non-crying) Amusement | Happiness

Cardiovascular:
Heart rate (HR) T + ™ T
Heart rate variability (HRV) 1 i) k0 i)
Electrodermal:
Skin conductance level (SCL) 0 i) 4+ -
# Skin conductance responses (SCRs) 0 d 0 0
Respiration:
Respiration rate I 1 I 1 \ 1

EDA signal. For most other vital parameters, the contributions of PNS and SNS
are more interleaved. Hence, their responses are less specific. Nevertheless, also
considering respiration and muscle activity, certain patterns can be attributed
to different affective states. For instance, the respiration rate increases and becomes
more irregular when a subject is more aroused Kim and André [2008]|. Later, in
Section 2.4, a detailed description of physiological features will be provided.

As outlined above, the SNS contributions to high arousal states are quite distinct.
In a recent meta analysis, Kreibig [2010] investigated the specificity of the ANS
response to certain affective states. A subset of these findings, including two positive
and two negative affective states, is presented in Table 2.2. Considering for instance
anger: A majority of the analysed studies showed that it coincides with an increased
HR, SCL, number of SCRs, and a higher breathing rate. Since anger represents a
high arousal state, governed by the SNS, these reactions were expected. Non-crying
sadness was found to decrease HR, SCL and number of SCRs, while increasing the
respiration rate. In the circumplex model (see Figure 2.1), sadness is mapped into
the third quadrant (low valence, low arousal). Hence, the arousal level is expected to
drop which is confirmed by Table 2.2. Amusement and happiness are both positive
affective states with a similar arousal level. Hence, it is not surprising that they
have a similar physiological fingerprint.

The findings of Kreibig [2010] suggest that affective states have certain physiolog-
ical fingerprints which are to some degree specific. These findings are promising, as
they indicate that distinguishing affective states based on physiological indicators
is feasible. However, in the context of wearable-based AR, the following aspects
should be considered Broek et al. [2009]:

1. Physiological measures are indirect measures of an affective state.
2. Emotions are subjective, but physiological data are not.
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3. Although some physiological patterns are shared across subjects, individual
responses to a stimulus can differ strongly.

4. According to D’mello and Kory [2015|, multimodal affect detecting systems
reach higher accuracies than unimodal systems.

5. The physiological signal quality often suffers from noise, induced by motion
artefacts and misplacement.

2.2.2 Frequently Employed Sensors

This section provides an overview of the sensor modalities frequently employed
in wearable-based AR. The clear aim of AR is to find robust methods assessing the
affective state of a user in everyday life. Hence, as detailed in Section 1.1, a major
goal is to use sensor setups which are worn directly on the body of the subjects
and are only minimally intrusive, posing only minor limitations to the mobility
of the user. As defined in Table 2.1 and Table 2.2, physiological changes in the
cardiac system and electrodermal activity are key indicators for affective states.
Therefore, most studies utilise these modalities. Nevertheless, sensors measuring
other physiological parameter, like respiration or muscle activity, can also contain
valuable information on the affective state of a person Kreibig [2010]. Table 2.3
lists the most relevant sensors, grouped according to their placement on the human
body. Further, each of the listed modalities is discussed, detailing advantages and
limitations.

In order to assess the heart rate (HR), heart rate variability (HRV) and other
parameters related to the cardiac cycle, the electrocardiogram (ECG) serves as
gold standard. For a standard three-point ECG, three electrodes are placed on the
subject’s torso, measuring the depolarisation and repolarisation of the heart tissue
during each heartbeat. ECG samples are collected with frequencies up to 1024 Hz.
However, when acquired with such high frequency the signal can be downsampled
to 256 Hz without loss of information Soleymani et al. [2012a]. Furthermore, experi-
ments of Mahdiani et al. [2015] indicate that a 50 Hz ECG sampling rate is sufficient
to obtain HRV-related parameters with a reasonable error. Using photoplethys-
mogram (PPGQG) also provides information about the cardiac cycles. In contrast
to ECG, PPG utilises an optical method: The skin voxel, beneath the sensor, is il-
luminated by a LED and a photodiode measures the amount of backscattered light.
Alternatively if the detector is on the opposite side of the respective body part
(e.g., fingertip or earlobe), the amount of transmitted light is measured. Hence,
the cardiac cycle is captured by the PPG signal, where the pulsatile part of the
PPG signal reflects the pulsatile component in arterial blood flow Tamura et al.
[2014]. Data obtained from a PPG sensor tends to be noisier than ECG data. This
is due to artefacts caused by motion, light from external sources, or different skin
tones, which influence the reflection/absorption properties of the skin. PPG sensors
can be attached to the ear, wrist Gjoreski et al. [2017] or the finger tip Lin et al.
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Table 2.3: Sensor modalities and derived indicators used in the wearable-based AR.

Physiological Signal Type | Derived Indicators
Electroencephalogram Electr.ic potential changes
of brain neurons
Head /Face Electromyogram Facial muscle activity
(e.g., zygomaticus major)
Electrooculography Eye movements
Photoplethysmogram (ear) HR and HRV
Electrocardiogram HR and HRV
Electrodermal activity Tonic and phasic component
Torso/Back | Electromyogram Muscle activity
Inertial sensor Physical activity /body pose
Respiratory inductive Plethys- Respiration rate and volume
mograph
Body thermometer Temperature
Electrodermal activity meter Tonic and phasic component
Blood Oxymeter Blood oxygen saturation
Hand/Wrist | Sphygmomanometer Blood pressure
Inertial sensor Physical activity
Photoplethysmogram HR and HRV
Thermometer Temperature
Feet,/Ankle Elect}rodermal activity Tonic. and pbafsic component
Inertial sensor Physical activity
Context Sensors of a mobile phone Location, Sound, Activity,
(GPS, microphone, etc.) Interaction

[2014] of subjects. The PPG modality finds broad application in fitness trackers
and smartwatches, which can be attributed to the small form factor of the sensory
setup. Typical sampling rates of PPG devices are below 100 Hz.

The electrodermal activity (EDA) is commonly measured at locations with a
high density of sweat glands, e.g., palm/finger Choi et al. [2012] or feet Healey and
Picard [2005]. Alternative locations to measure an EDA signal is the wrist Gjoreski
et al. [2017]. In order to assess EDA, the resistance between two electrodes is mea-
sured. From a technical point of view, see Dawson et al. [2000], EDA data is recorded
employing either constant-current (measuring skin resistance) or constant-voltage
systems (recording skin conductance). However, due to the more linear relationship
between the skin conductance and the number of active sweat glands, Lykken and
Venables [1971] argues strongly for a direct measure of the skin conductance using
constant-voltage systems. In recent AR research the Empatica Fj is a frequently
employed device to collect EDA data Gjoreski et al. [2017], Di Lascio et al. [2019],
Heinisch et al. [2019]. Having the form factor of a smartwatch, the E4 samples
the EDA signal at 4 Hz, which is sufficient to distinguish the SCR from the SCL.
Although the EDA is strongly influenced by the SNS, external parameters such as
humidity, temperature, or the physical activity have a strong influence.
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Although respiration can be assessed indirectly from measuring the blood oxygen
level, a direct measurement contains more information about the actual respira-
tion pattern. Commonly, a chest belt (respiratory inductive plethysmograph
(RIP) Plarre et al. [2011]), which is either worn thoracically or abdominally, is
utilised to measure the respiration pattern directly. During a respiration cycle (in-
halation and exhalation), the thorax expands and constricts. Hence, the chest belt
experiences a sinusoidal stretching and destretching process, from which different
physiological parameters like respiration rate and volume can be derived. Healey
and Picard [2005] sampled their respiration sensor at 31 Hz. However, following
the Nyquist theorem a lower bound on the sampling rate of a RIP setup can be
around 10-15 Hz. Nowadays, chest belts are mainly used by athletes monitoring
their training progress. However, these devices have not found broad applications
outside this domain.

Muscle activity is measured using surface electromyogram (EMG). For this
purpose, a pair (or array) of electrodes is attached to the skin above the muscle
under consideration. The electrical potential is generated when the muscle cells are
activated, and the surface electrodes are used to recorded changes in the electric
potential. The frequency range of the muscle activity ranges from 15 to 500 Hz
van Boxtel [2001]. Hence, in order to capture the full spectral range, the minimal
sampling rate of the EMG modality should be around 1000 Hz. One source of
noise in surface EMG are potential changes in adjacent muscles and heart rate
activities. Depending on the measurement position, the QRS complex (indicating
depolarization of the cardiac ventricles and the following contraction) can cause
artefacts which require postprocessing beyond normal filtering. Considering related
work in AR literature, EMG electrodes are often placed in the face (e.g. on the
zygomaticus major Koelstra et al. [2012]) or on the shoulder (e.g. on the upper
trapezius muscle Kim and André [2008], Wijsman et al. [2010], Koelstra et al. [2012]).

As the blood flow to the extremities is restricted during a ’fight or flight’ response,
changes in peripheral temperature is an interesting parameter. These changes in
skin-temperature (TEMP) can be measured using either an infrared thermopile
or a temperature-dependent resistor. A common confounding variable for body
temperature measurements is the ambient temperature, which can have a strong
influence on the recording depending on the location of the thermopile. As changes
of the body temperature are low-frequent, a sampling rate of 1 Hz is sufficient.

The physiological modalities detailed above are only minimally intrusive. Hence,
they are frequently employed in AR lab and field studies Lisetti and Nasoz [2004],
Choi et al. [2012], Healey and Picard [2005], Kim et al. [2004]. In addition to the
modalities listed above electroencephalogram (EEG) and electrooculography
(EOG) are also often applied in AR lab studies. EEG, measuring the ionic current
of brain neurons using electrodes placed on the scalp, was for instance employed by
Soleymani et al. [2012b] to detect video-elicited emotions. EOG, which records hor-
izontal and vertical eye movements by placing electrodes above /below and left /right
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of the eye, has been used by Koelstra et al. [2012]. In our opinion, these modalities
have the following disadvantages:

e Both require the placement of electrodes on the face/scalp. Hence, both EEG
and EOG are quite intrusive.

e They pose strong limitations on the movement of the participants and, hence,
are not really applicable in real world scenarios.

e EOG and EEG are prone to noise generated by muscle activity.

As stated in Section 1.1, EEG and EOG are not in scope of this work. Therefore,
these modalities will be given very little attention in the remainder of this chapter
and both modalities will be not employed in the studies presented later in Chapter 3
and Chapter 4.

Inertial sensors, incorporating a 3-axes acceleration (ACC), gyroscope, and
magnetometer, are commonly used in human activity recognition (HAR). In AR
field studies the ACC signal can provide context information about the physical
activity of the user. Gjoreski et al. [2017], for instance, used ACC data to classify
six different activity types (lying, sitting, standing, walking, running, and cycling).
These activities, were then used as an additional input into a stress detection system.
This certainly highlights the value of contextual information. However, results of
Ramos et al. [2014] indicate that in order to detect stress it is sufficient to estimate
the intensity level of an activity instead of performing an exact activity classification.

Finally, following Muaremi et al. [2013|, smartphones offer an ideal platform to
collect context information. This contextual data is aggregated by utilising po-
sition (GPS), sound snippets, calendar events, ambient light, and user interaction
with the phone Muaremi et al. [2013], Mozos et al. [2017], Kanjo et al. [2019].

Table 2.4: Affective states and sensor signals frequently employed in wearable-based
AR. Table 2.9 provides further detail on algorithms, location and per-
formance. Abbreviations: 3-axes acceleration (ACC), blood pressure (BP), elec-
trocardiogram (ECG), electrodermal activity (EDA), electroencephalogram (EEG),
electromyogram (EMG), electrooculography (EOG), heart rate (HR), magnetoen-
cephalogram (MEG), pupil diameter (PD), photoplethysmogram (PPG), respiration
(RESP), skin-temperature (TEMP), arterial oxygen level (SpO2), low arousal /low va-
lence (LALV), low arousal/high valence (LAHV), high arousal/low valence (HALV),
high arousal/high valence (HAHV)

Author Affective States Sensor Signals
Picard et al. Neutral, anger, hate, grief, joy, EDA, EMG, PPG,
platonic/romantic love, reverence RESP
§ Haag et al. Low /medium /high arousal and ECG, EDA, EMG,
‘J positive/negative valence TEMP, PPG, RESP
Lisetti and Sadness, anger, fear, surprise, frustration, ECG, EDA, TEMP
Nasoz amusement
Liu et al. Anxiety, boredom, engagement, frustration, ECG, EDA, EMG
anger
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Wagner et al.

Joy, anger, pleasure, sadness

ECG, EDA, EMG,
RESP

28

ué Healey and Three stress levels ECG, EDA, EMG,
“'| Picard RESP
5 | Leon et al. Neutral/positive/negative valence EDA, HR, BP
Zhai and Relaxed and stressed EDA, PD, PPG, TEMP
Barreto
Kim et al. Distinguish high/low stress group of PPG
© individuals
S | Kim and Four quadrants in valence-arousal space ECG, EDA, EMG,
Andreé RESP
Katsis et al. High /low stress, disappointment, euphoria ECG, EDA, EMG,
RESP
Calvo et al. Neutral, anger, hate, grief, joy, ECG, EMG
= platonic/romantic love, reverence
< Chanel ot al. Positively /negatively excited, calm-neutral (in | BP, EEG, EDA, PPG,
valence-arousal space) RESP
Khalili and Positively /negatively excited, calm (in BP, EEG, EDA,
Moradi valence-arousal space) RESP, TEMP
Healey et al. Points in valence arousal space. moods ACC, EDA, HR, audio
Baseline, different types of stress (social, ACC, ECG, EDA,
_, | Plarre et al. cognitive, and physical), perceived stress RESP, TEMP,
3 ambient temperature
“' ["Hernandez Detect stressful calls EDA
et al.
Valenza et al. Five classes of arousal and five valence levels ECG, EDA, RESP
Hamdi et al. Joy, sadness, disgust, anger, fear, surprise ECG, EEG, EMG
Agrafioti et al, Neutcral, gore, fe.a}r, disgust, excitement, ECG
~ erotica, game elicited mental arousal
i
S | Koelstra et al. | Four quadrants in valence-arousal space gf/[%” %%%,E}:{EE%’R
TEMP, facial video
Soleymani Neutral, anxiety, amusement, sadness, joy, ECG, EDA, EEG,
et al. disgust, anger, surprise, fear RESP, TEMP
~ | Sano and Stress vs. neutral ACC, EDA, phone
5 | Picard usage
“'["Martinez et al. | Relaxation, anxiety, excitement, fun EDA, PPG
=t | Valenza et al. Four quadrants in valence-arousal space ECG
S | Adams et al. Stress vs. neutral (aroused vs. non-aroused) EDA, audio
Hovsepian Stress vs. neutral ECG, RESP
| et al.
§ Abadi et al. High/Low valence, arousal, and dominance ECG? EOG, EMG,
near-infrared face
video, MEG
Rubin et al. Panic attack ACC, ECG, RESP
© | Jaques et al. Stress, happiness, health values EDA, TEMP, ACC,
S phone usage

Rathod et al.

Normal, happy, sad, fear, anger

EDA, PPG




Zenonos et al. | Excited, happy, calm, tired, bored, sad, ACC, ECG, PPG,
© stressed, angry TEMP
= | Zhu et al. Angle in valence arousal space ACC, phone context
“ ["Birjandtalab Relaxation, different types of stress (physical, ACC, EDA, TEMP,
et al. emotional, cognitive) HR, SpO2
Gjoreski et al. | Lab: no/low/high stress; ACC, EDA, PPG,
Field: stress vs. neutral TEMP
- | Mozos et al. Stress vs. neutral ACC, EDA, PPG,
S audio
Taylor et al. Tomorrow’s mood, stress, health ACC, EDA, context
Girardi et al. High vs. low valence and arousal EEG,EDA EMG
Zhao et al. LALV, LAHV, HALV, HAHV EDA, PPG, TEMP
xQ -
g | Santamaria- LALV, LAHV, HALV, HAHV ECG, EDA
Granados
et al.
Heinisch et al. | High positive pleasure high arousal, high EMG, PPG, TEMP
negative pleasure high arousal, and neutral
Hassan et al. Happy, relaxed, disgust, sad, and neutral EDA, PPG, EMG
o (from DEAP)
S | Kanjo et al. Five valence classes ACC,EDA,HR, TEMP,
environmental, GPS
Di Lascio Detect laughter episodes ACC, EDA, PPG
et al.

Table 2.4 summarises recent wearable-based AR studies aspiring to detect dif-
ferent affective states, based on wearable-based data. A detailed comparison of
the employed classification algorithm, number of target classes, setting (e.g., lab
or field), number of subjects, validation procedure and obtained accuracy, will be
presented in Table 2.9. In the studies presented in Table 2.4, the target affective
states are rather diverse: Almost 39% of the presented studies aimed to detect stress.
For this purpose, different types of stressors (e.g., mental, physical or social Plarre
et al. [2011], Birjandtalab et al. [2016]) or different stress levels Gjoreski et al. [2017]
are distinguished. Both the severe health implications and the strong physiological
stress response (see Section 2.1.3), explain the popularity of stress recognition. Ac-
cording to Table 2.4, various studies aim to recognise different emotional categories,
distinguishing up to eight different affective states. Dimensional models of emotions
(e.g., valence-arousal space) were used in 36% of the analysed studies. Only in 14%
of the considered studies EEG was recorded. Nevertheless, there exists a large body
of work, utilizing EEG data to classify different affective states. However, as men-
tioned in Chapter 1 this modality is not in scope of this review. As a result, studies
utilizing EEG data are given less attention here. Concluding from Table 2.4, sensor
modalities monitoring cardiac activity are employed in 86% of the studies. EDA
data was recorded in 75% of the studies. The popularity of these signals, certainly
is linked to the strong impact of arousal-related changes on cardiac and electroder-
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mal activity (see Section 2.2.1). In 32% of the considered studies, respiration data
was acquired. Kim and André [2008] pointed out that increased arousal can lead to
irregular respiration pattern. EMG and TEMP data were recorded in 32% of the
studies. Finally, ACC was employed in 30% of the studies presented above. In sum-
mary, it is observed that sensors measuring parameters directly influenced by the
SNS are most popular. Sensory setups recording less distinct changes are employed
less frequently.
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2.3 Affect-related User Studies

Picard et al. [2001] pointed out that, in order to generate high quality physiological
data for affect detection, carefully designed study protocols are required. In order to
reduce subject bias it might be necessary to disguise the true purpose of the study.
However, if a deception is necessary for the protocol it is essential to uncover the
true aim at the end of the protocol. Moreover, every study should be reviewed and
approved by an ethics (or a similar) committee.

The arguably most important decision is whether the experiment is to be con-
ducted in a laboratory setting or in the wild. A key issue when designing a field
study is accurate label generation. In contrast, during a lab study, obtaining high
quality labels is a minor issue as either the study protocol can be used or dedicated
time slots for questionnaires can be reserved. However, considering lab studies, the
desired affective states have to be elicited by a carefully chosen set of stimuli. If
these stimuli are not appropriate, the desired effects might not occur. On the other
hand, during field studies, affective stimuli do not have to be designed, as different
affective states occur naturally. Section 2.3.1 provides an overview of protocols em-
ployed for user studies in the lab. Section 2.3.2 summarises related work on how
to plan and conduct affect-related field studies. Finally, as conducting an own user
study is always a time consuming task, publicly available datasets are described.

2.3.1 Affect-related User Studies in Laboratory Settings

Humans differ in their personality. Hence, generating data that corresponds to
a particular emotional state is a challenging task Hamdi et al. [2012]. However,
due to the controlled lab environment, researchers can conduct studies following
well-designed protocols. Another advantage of lab studies is that their replication is
possible, due to the well defined experimental protocol. Below a detailed overview
of stimuli frequently employed to elicit affective states in AR lab studies is provided:

Images: The International Affective Picture System (IAPS) Lang et al. [1999]
is a dataset comprised of colour photographs. The TAPS was compiled such that
each image elicits an emotional reaction. Each image was rated multiple times by
study participants, providing labels in the valence and arousal space. Mikels et al.
[2005] identified a subset of IAPS images, which elicits certain discrete emotions.
Hence, depending on the desired emotion, one can choose particularly strong images
from this subset. In the AR domain, the IAPS has for instance been used by Leon
et al. [2007] and by Hamdi et al. [2012]. In the experiments presented by Leon et al.
[2007], 21 images from the IAPS were used to elicit three different affective states
(neutral, positive, negative). Hamdi et al. [2012] exposed their study participants
to ten images from the TAPS and aimed at recognising six basic emotions (disgust,
joy, surprise, sadness, fear, anger) based on physiological data.

Videos: According to Gross and Levenson [1995], short audiovisual clips are very
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suitable to elicit discrete emotions. Hence, video clips are frequently, e.g., Soleymani
et al. [2012a], Abadi et al. [2015], Koelstra et al. [2012], employed as stimuli. A
common procedure to select a set of videos evoking certain target emotions is to chose
them from a large pool of videos. The process of identifying the most appropriate
subset often happens in two steps: First, the clips are watched and rated by a
large number of individuals. Second, the clips which elicit a certain emotion most
reliably are chosen as stimuli in the study, see for instance Soleymani et al. [2012b],
Koelstra et al. [2012]. Recently, Samson et al. [2016] published a study on 199
short amateur clips which were rated by 411 subjects with respect to three affective
categories (neutral, positive, negative). In AR literature, there are many examples
where audiovisual clips have been used to elicit different affective states. Koelstra
et al. [2012] chose in their experiments music clips with a length of 60 seconds. After
each stimulus, the progress was displayed and a 5 second baseline was recorded.
Soleymani et al. [2012b]| showed their participants 60 to 120 seconds long excerpts
from movies and after each clip a short neutral clip (15 seconds) was displayed.

Acted Emotions: In the above detailed protocols, emotions are event-elicited.
Another way of generating affective states is to ask the subjects to purposefully elicit
emotions, e.g., act an emotion. For instance, Hanai and Ghassemi [2017| asked the
study participants to tell at least one happy and one sad story. Other researchers
Castellano et al. [2008|, Dobriek et al. [2013] asked trained actors to perform certain
emotions. These types of approaches are frequently employed in sentiment analysis
and emotion recognition from audio/video data.

Game elicited emotions: Another way to elicit a target affective state is to
ask the subjects to perform a certain task. Using a Breakout engine and applying
latency between the user’s input and the reaction in the game, Taylor et al. [2015a]
elicited frustration in their study participants. Martinez et al. [2013] used four
different versions of a Maze-Ball game to generate pairwise preference scores. The
scores were generated by asking the subjects which of two games felt more anzious,
exciting, frustrating, fun, and relazing.

Stress inducing study protocols: There are numerous protocols aiming at
eliciting stress in the study participants. Mason [1968] showed that in order to
trigger a (physiological) stress response, the situation has to be either novel, and /or
unpredictable, and/or beyond control for the subject Lupien et al. [2007]. Stressors
frequently employed in AR literature can be categorised as follows:

C1 Social-evaluative Stressors: A task creating a socially relevant situation for the
subject. For example, performing a task in front of a panel which evaluates
the subject.

C2 C(Cognitive Stressors: A task demanding significant mental engagement and at-
tention. For example, performing an (challenging) arithmetic task under time
pressure.

C3 Physical Stressors: A task creating a physically uncomfortable situation. For
example, being exposed to extreme hot or cold.
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A well-studied and frequently employed stress elicitation protocol is the Trier
Social Stress Test Kirschbaum et al. [1993]. The Trier Social Stress Test (TSST)
has two conditions: A public speaking/job interview type of situation and a mental
arithmetic task. Hence, the TSST incorporates both a social-evaluative (C1) and
cognitive stressor (C2). Due to its reliability and easy set-up, the TSST was ad-
ministered in numerous AR studies, e.g., Mozos et al. [2017], Plarre et al. [2011],
Hovsepian et al. [2015], Gjoreski et al. [2016]. Another stressor employed to target
cognitive load is the so called Stroop color test Stroop [1935]. In this condition, the
subjects have to read out loud a sequence of colours written on a screen. However,
the font colour does not match the written colour (e.g., green, blue, etc.). As a re-
sult, the task inflicts a high cognitive load and, hence, is a C2 stressor. The Stroop
colour test has for instance been employed by Choi et al. [2012], who aimed for the
development of a wearable-based stress monitoring system.

Using computer tasks, stress can also be elicited reliable. Wijsman et al. [2013], for
instance, asked the subjects to perform a calculation, to solve a logical puzzle, and
to do a memorisation task. These tasks can all be seen as C2 stressors. These tasks
had to be completed under time pressure. In addition, the subjects were distracted
with sounds and parts of the protocol (memorisation task) were also recorded on
video. Furthermore, as the participants of Wijsman et al. [2013] were told that their
scores would be made available to their colleagues, the study protocol also had a
social-evaluative component (see C1).

The cold pressor test, applied by Plarre et al. [2011], can be used to evoke physical
stress, corresponding to a C3 stressor. Following this test, the subjects are asked to
place their hand into a bucket of ice cold water and leave it there for a predefined
time (e.g., 60 seconds).

Now as a common set of stimuli has been detailed, the issue of obtaining ground
truth in a lab setting is discussed briefly. Following for instance Plarre et al.
[2011], employed conditions (e.g., stressors) can be used as ground truth. One way
to ensure the validity of the employed stimulus is to utilize ezactly the same set
up as in a related study. In addition, questionnaires integrated into the protocol
can be used to verify that the desired affective states were successfully evoked.
Typically, these questionnaires are used directly after each affective stimulus or
condition. Ramos et al. [2014], for instance, collected subjective stress levels after
each stressor. In addition, the State-Trait Anxiety Inventory (STAI) also has been
used to capture different stress levels Gjoreski et al. [2017]. In order to generate
labels in valence-arousal space the SAM are employed frequently Koelstra et al.
[2012], Soleymani et al. [2012b]. In addition, as the perception of a stimulus can be
influenced by personality traits, collecting this type of information, can be useful
too Subramanian et al. [2017].
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2.3.2 Affect-related User Studies in the Field

To develop affect-aware systems designed for everyday usage, data collection in
the wild is essential. However, as the affective states occur naturally, the generation
of a reliable ground truth has to be ensured differently. In this setting one can dis-
tinguish between questionnaires used in ecological-momentary-assessments (EMAs)
and questionnaires employed during the pre- and post study phase. In the latter
case constructs which are said to be constant for a longer time period (e.g., person-
ality traits) are being queried. To assess the momentary affective state of a user,
EMASs, also known as the experience sampling method, are employed. EMAs are a
short set of questionnaires which the study participants file occasionally, to report
their current affective state.

Using EMAs, an important trade-off has to be considered. On one hand the
affective state of the subject should be probed frequently. On the other hand, the
subject should not be overloaded with questionnaires. The scheduling of EMAs
can be either done interval-based (e.g., at certain/random times during the day) or
event-triggered. In a study of Zenonos et al. [2016], for instance, the subjects were
prompted every two hours during their working hours. The EMAs employed by
Zenonos et al. [2016], inquired eight different moods, asking for each the question
How have you been feeling for the last two hours?. Another approach is to distribute
a defined number of EMAs randomly over a time period. Muaremi et al. [2013], for
instance, divided the day into four sections, and during each section subjects had
to complete a randomly scheduled self-report. If the focus of a study lies on certain
affective states or events, event-triggered self-reports can be utilized. In a study
conducted by Hernandez et al. [2011] call centre employees rated personal stress level
after each call. Another example of event-based scheduling can be found by Rubin
et al. [2015]: Here subjects were asked to file an EMA once they became aware of the
symptoms of a panic attack. In order to gain a deeper understanding of EMAs filed
by the subjects daily screenings can be conducted. Following Healey et al. [2010],
these screenings can be used to correct/extend participants’ annotations.

Besides the frequency of EMAs, the length and complexity of each single ques-
tionnaire are also important factors defining the burden for the subjects. In order
to avoid overloading study participants, EMAs should focus on the main goal of the
study and their completion should require only little effort.

In Table 2.5 questionnaires used during the pre- and post study as well as ques-
tionnaires employed in EMAs are displayed. As mentioned earlier the pre- and post
study questionnaires, are used to aggregate information about longer time periods or
traits of the subjects. Subjects’ personality traits can have an influence on their
affective perception and physiological response Subramanian et al. [2017|. Therefore,
completing a personality-related questionnaire can provide valuable insights.
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Table 2.5: Questionnaires utilized in recent wearable-based AR field studies.

Ab-

breviations: Number of Items (I), Big Five Inventory (BFI), Photo Affect Meter
(PAM), Positive and Negative Affect Schedule (PANAS), Patient Health Question-
naire (PHQ-9), Pittsburgh Sleep Quality Index (PSQI), Perceived Stress Scale (PSS),
Self-Assessment Manikins (SAM), Stress Response Inventory (SRI), State-Trait Anx-

iety T

nventory (STAI).

] Questionnaires employed prior or after the study.

|

symptoms

standard instrument

Goal Tool and description I Source Example use
PSS: subject’s perception and 10 Cohen et al. Sano and
awareness of stress [1983] Picard [2013]
Stress level SRI: score severity of 22 Koh et al. Kim et al.
stress-related symptoms within [2001] [2008]
time interval
Depression level PHQ-9: score DSM-IV manual 9 | Kroenke et al. Wang et al.
[2001] [2014]
Lonel; UCLA loneliness scale: addressing | 20 | Russell [1996] Wang et al.
oneliness level . L .
loneliness and social isolation. [2014]
Sleep behaviour| PSQI: Providing information 19 | Buysse et al. Sano and
and quality about sleep quality [1989] Picard [2013]
Measure suc- Flourishing scale: measure 8 Diener et al. Wang et al.
cess areas success, self-esteem, purpose, and [2010] [2014]
optimism
izrii(s)nahty BFT: indicating personality traits | 44 é]figzss:\i [T2£Z)yll;i eStaig
[1999] et al. [2015]

] Questionnaires employed in ecological-momentary-assessment (during study). ‘
Valence-arousal| Mood Map: a translation of the 2 Morris and Healey et al.
representation | circumplex model of emotion Guilak [2009] [2010]
Positive and Shortened PANAS 10 | Muaremi et al. | Muaremi et al.
negative affect [2013] [2013]
Positive Affect | PAM: choose one of 16 images, 1 Pollak et al. Wang et al.
of PANAS mapped to the valence-arousal [2011] [2014]

space
Subjective Smartphone app querying user’s 8 HealthyOffice Zenonos et al.
mood mood app [2016]
Adaptation of PSS for 5 Hovsepian Hovsepian
ambulatory settings et al. [2015] et al. [2015]
tress level Gjoreski et al. Gjoreski et al.
Sssessment Log current Stress Level 1 J 12017] J 12017]
Hernandez Hernandez
et al. [2011] et al. [2011]
Severity of Symptoms from the DSM-IV and Shear et al. Rubin et al.
panic attack Panic Disorder Severity Scale 15 [1997] [2015]
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These BFI personality traits were, for instance, used by Sano et al. [2015] as features
for predicting subjects’ mood. In addition, Taylor et al. [2017] used personality
traits to perform a groupwise personalization. Moreover, Wang et al. [2014] used
questionnaires assessing the mental health of their participants. For this purpose,
the depression level (e.g., PHQ-9) and loneliness level (UCLA loneliness scale) were
recorded. As shown by Sano and Picard [2013] and Sano et al. [2015], information on
subjects’ sleep quality can be useful in affect-related studies. The PSQI, inquiring
information about the past four weeks, can serve as a suitable questionnaire for sleep
behaviour and quality assessment. In order to assess the overall stress level of the
study participants the PSS, measuring the perception and awareness of stress, can
be employed. The PSS has been used in field studies (e.g., Sano and Picard [2013],
Wang et al. [2014]) and in ambulatory setting Hovsepian et al. [2015]. The severity
of stress-related symptoms can be scored using the SRI, or a simplified version of it,
as shown by Kim et al. [2008].

As detailed in Table 2.4, wearable-based AR studies, typically rely on well-known
psychological constructs. Hence, in order to generate labels using EMAs these con-
structs are employed, too. However, standard questionnaires are often quite long and
as a result not really applicable in EMAs. In order to mitigate this issue, standard
questionnaires can be shortened, e.g., using only a subset of items with the highest
factor loads on the targeted construct. Such an approach was for instance presented
by Muaremi et al. [2013] using a shortened version of the PANAS as EMA, which
consisted of five positive affect items (relazed, happy, concentrated, interested, and
active) and five negative affect items (tired, stressed, sleepy, angry, and depressed).
One particularly frequently employed construct is the valence-arousal space. In or-
der to generate valence and arousal labels, Healey et al. [2010], for instance, used
a tool called Mood Map. Furthermore, Wang et al. [2014] used the PAM, assessing a
similar construct. The PAM is implemented as smartphone app, and the user selects
from a set of 16 images the one that corresponds best to his/her current affective
state. Zenonos et al. [2016] provides an example for a custom EMA tool used for
overall mood assessment: Participants were asked to rate eight different moods on
a scale from 0-100. The stress level of subjects can be assessed using a Likert-scale
Hernandez et al. [2011], Gjoreski et al. [2017]. Moreover, the severity of a certain
event can be scored using its’ symptoms. Rubin et al. [2015], for instance, aimed to
quantify the severity of panic attacks. Hence, they created a questionnaire including
15 panic attack symptoms. In case a panic attack occurred, subjects were asked to
rate the severity of each of the 15 symptoms, using a severity rating of 1 (none) to
5 (extreme).

Historically, personal notebooks or journals were used for EMAs. However, these
tools have been predominantly replaced by smartphone apps, as they offer an ideal
platform to facilitate self-reports: Subjects do not need to carry a study-specific de-
vice, EMAs are automatically scheduled and uploaded, and contextual information
available on the smartphone can be logged together with the ground truth informa-
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Table 2.6: Questionnaires employed during recent field studies, focusing on the ap-
plied scheduling (Pre-, During, or Post-study).

Author

Employed Questionnaires and their scheduling.

Healey et al.
[2010]

During study: Participants completed EMAs whenever they felt a change in
their affective/physiological state. EMAs included a form of the circumplex
model and a field for free text. Conducted Interviews at the end of each

=
2 workday to generate additional labels and revision.
g Rubin et al. During study: Start/stop time and severity ratings of 15 panic attack
M| [2015] symptoms were reported by the subject using a mobile app.
Jaques et al. During study: Students reported health, stress and happiness twice a day
[2016] (morning and evening).
Hernandez During study: Nine employees of a call center rated all their incoming calls on
et al. [2011] a 7 point likert scale (endpoints marked as "extremely good/bad").
Muaremi During: Participants were asked to fill in a shortened PANAS four times
et al. [2013] between 8 a.m and 8 p.m. Before going to sleep they answered the question:
"How stressful have you felt today?"
Kim et al. Pre-study: In order to divide the subjects into two groups they filled out a
[2008] simplified SRI.
Sano and Pre-study: Participants filled in a PSS, PSQI, and BFI.
Picard [2013] During study: Morning/evening EMAs on sleep, mood, stress level, health,
@ etc.
g Post-study: Participants filled in questionnaires on health, mood, and stress.
| Adams et al. Pre-study: Participants completed a PANAS, PSS, and a measure of
[2014] mindfulness.
During study: Self-reports approximately every 30 min. (with small random
variations). Participants reported on momentary stress and affect. Additional
reports and a small free text field were available too.
Post-study: Semi-structured interview at the end of the end data collection.
Hovsepian During study: EMAs randomly scheduled approximately 15 times. During
et al. [2015] each EMA subjects filled in a shortened version of the PSS containing 6 items.
Gjoreski et al. | During study: Subjects replied to 4 to 6 randomly scheduled EMAs. During
[2017] each EMA subjects reported on their current stress level.
Wang et al. Pre-study: Subject filled in a number of behavioural and health surveys.
[2014] During study: Every participant filled in 8 EMAs every day. The EMAs
include measures on mood, health, stress and other affective states.
Post-study: Interviews and the same set of behavioural and health surveys
were administered.
Sano et al. Pre-study: subjects filed BFI, PSQI, and Morningness-Eveningness Horne and
[2015] Ostberg [1976] questionnaire.
5 During study: similar to Sano and Picard [2013] subject filled EMAs in
§ morning and evening reporting on: activities, sleep, social interaction,

health,mood, stress level and tiredness.
Post-study: Subjects filed in a PSS, STAI, and other questionnaires related to
physical and mental health.

Zenonos et al.
[2016]

During study: EMAs were scheduled every two hours. For the EMAs an app
was used, containing sliders from 0-100 for 8 moods. Additionally, a free text
field was provided.
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tion. A key to both frequency and completeness of EMA is participant’s motivation
and using an appropriate reward system was proven to be beneficial: Participants
of the study conducted by Healey et al. [2010] received a base reward and an in-
cremental reward, depending on the number of annotations made per day. Another
reward structure was introduced by Wang et al. [2014]: They offered all subjects
a base reward, and the participants who completed most EMAs had the chance to
win additional prizes.

In Table 2.6 an overview of recent wearable-based AR field studies is provided
and the employed EMAs as well as their scheduling is summarized. This table
illustrates that commonly a combination of pre-/post-study questionnaires are used.
The pre-/post-study questionnaires can be employed as additional features or to
group the participants Taylor et al. [2017], Kim et al. [2008]. In contrast, the data
gathered via EMAs is often used as a subjective ground truth Rubin et al. [2016],
Gjoreski et al. [2017].

2.3.3 Publicly Available Datasets

Conducting a user study is both a time consuming and challenging task. However,
there are a number of publicly available datasets. Depending on the research idea
these datasets make the overhead of recording an own dataset obsolete. Furthermore,
considering research question RQ 2, these datasets facilitate benchmarking and
allow a direct comparison of different approaches. Up-to-date the wearable-based AR
community has only a handful of publicly available datasets containing data solely
gathered via wearables. Therefore, we extend the scope of this section to datasets
with a broader relevance to wearable AR. Below we present datasets which meet
one of the following criteria: a) being publicly available, b) including data recorded
from study participants being subject either to emotional stimuli or a stressor, and
¢) including at least a few sensor modalities which can be (theoretically) integrated
into consumer-grade wearables, which are applicable in everyday life. The datasets
included in our analysis are summarized in Table 2.7. Considering the population
column in Table 2.7 it becomes apparent, that the data available originates mostly
from a young cohort of subjects. Only the data set recorded by Taamneh et al.
[2017], features two different age groups, namely an elderly (>60) and a young group
(between 18 and 27). This is certainly a limitation that needs to be considered when
working with these datasets. Below we describe the datasets in detail.

The Eight-Emotion dataset Picard et al. [2001] includes data of one (female)
study participant who was subject to the same set of stimuli over a time span of 20
days. The stimuli, a set of personally-significant imagery, were chosen by the subject
to elicit the affective states neutral, anger, hate, grief, platonic love, romantic love,
joy, and reverence. The physiological signals (ECG, EDA, EMG, and RESP) were
sampled at 20 Hz. Major limitations of this dataset are: a) only one subject is
included, and b) due to the low sampling rate aliasing artefacts are likely to occur.
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DEAP (Database for Emotion Analysis using Physiological signals), recorded
by Koelstra et al. [2012], features physiological data of 32 study participants. In
DEAP, one minute excerpts of music videos were used as stimuli. In total 40 clips
were selected from a larger pool according to valence, arousal, and dominance ratings
gathered during a pre-study. The physiological signals were all sampled with 512
Hz and later downsampled to 256 Hz. DEAP includes subjects’ ratings of the
videos (valence, arousal, dominance, and liking). However, due to the employed
protocol and the sensor setup, the DEAP participants were very limited in terms
of movement. Therefore, one can expect that models trained on the DEAP dataset
will have a limited performance in real-life settings.

The MAHNOB-HCI dataset, Soleymani et al. [2012a], includes physiological
data from 27 study participants (16 female). The dataset includes face and body
video data from six cameras, and data from an eye gaze tracker and audio. The
physiological data (ECG, EDA, EEG, RESP and TEMP) was sampled at 1024 Hz.
Apart from EEG data, the physiological data was downsampled to 256 Hz. The
MAHNOB-HCI dataset includes data from two experiments: First, study partici-
pants watched a set of 20 video clips, each associated with an emotional keyword
(disgqust, amusement, joy, fear, sadness, and neutral). The goal of the second ex-
periment was implicit tagging: Subjects were exposed to 28 images and 14 videos,
and reported on the agreement with the displayed tags. For the AR community,
especially the first experiment is of interest.

DECAF (DECoding user physiological responses to AFfective multimedia con-
tent) Abadi et al. [2015] was recorded in a laboratory setting with 30 subjects (14
female). The data recording consisted of two sessions for each subject, presenting
music videos and movie clips, respectively. In the first session (music videos) the
same set of clips as in DEAP were employed. For the second session, 36 movie clips
were used as stimuli. From this pool of videos always nine correspond to a quadrant
in the valence-arousal space. These 36 movie clips were selected from a larger pool
during a pre-study based on valence-arousal ratings from 42 participants. For a
detailed description, we refer the reader to Abadi et al. [2015]. DECAF contains
image (near-infrared face videos), magnetoencephalogram (MEG), and peripheral
sensory data (ECG, EOG, and EMG). A clear limitation of DECAF is that, due to
the MEG recordings, subjects were very restricted in their movements. Therefore,
in contrast to real-life data DECAF is almost free from motion artefacts.

In ASCERTAIN (multimodal databASe for impliCit pERsonaliTy and Affect
recognitloN using commercial physiological sensors), recorded by Subramanian et al.
[2017], the same 36 movie clips as in DECAF were employed as stimuli. ASCER-
TAIN provides data from 58 subjects (21 female), and includes physiological modal-
ities (ECG, EDA, EEG) as well as data recorded from a facial feature tracker. In
addition, self-reports including arousal, valence, engagement, liking, and familiarity
obtained for each video are included. Moreover, the dataset contains the Big Five
personality traits for each subject. Hence, based on the recorded data, not only mo-
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Table 2.7: Publicly available datasets relevant for wearable affect and stress recog-
nition. Abbreviations: Number of subjects (Sub), Location (Loc), Lab (L), Field
(F), Field with constraint (FC), Population (Pop) reported as mean age or as cate-
gory, College Student (CS), Graduate Student (GS),
electrocardiogram (ECQG), electrodermal activity (EDA), electroencephalogram (EEG),
electromyogram (EMG), electrooculography (EOG), magnetoencephalogram (MEG),
respiration (RESP), arterial oxygen level (SpO2), skin-temperature (TEMP)

3-axes acceleration (ACC),

well-being, stress,
academic performance

Name Labels Pop. | Sub. | Loc. | Included Modalities
Eight- Neutral, anger, hate, GS 1 L ECG, EDA, EMG, RESP
Emotion! grief, joy, platonic love,
romantic love, reverence
Continuous scale of 26.9 32 L ECG, EDA, EEG, EMG,
DEAP? valence, arousal, liking, EOG, RESP, TEMP, face
a dominance, Discrete video (not all subjects)
: scale of familiarity
.9 Discrete scale of ECG, EDA EEG, RESP,
g MAHNOB- valence, arousal, 26.06 97 L TEMP, face and body
5 | HCI? dominance, video, eye gaze tracker,
predictability, audio
Emotional keywords
DECAF* Discrete scale of 27.3 30 L ECG3 EMG, EOG, MEG,
valence, arousal, near-infrared face video
dominance
Discrete scale of 30 ECG, EDA, EEG, facial
ASCERTAIN® | valence, arousal, liking, 58 L activity data (facial
engagement, familiarity, landmark trajectories)
Big Five
USI_TLaughs 6| Detect and distinguish 1 26.70 1o\ | 1| \cc gpa, PPG, TEMP
laughter from other
events
Driver” Stress levels: low, - 24 FC | ECG, EDA, EMG, RESP
medium, high
Four types of stress CS ACC, EDA, HR, TEMP,
D Non-EEG® (physical, emotional, 20 L SpO2
% cognitive, none)
3;3) Distracted Driving being subject to | Elder EDA, heart and
Driving? no, emotional, + 68 L respiration rate, facial
cognitive, and Young expressions, eye tracking
sensorimotor distraction
Sleep, activity, CS .
StudentLife!® | sociability, mental + 48 F ACC, audio, context, GP,
as smartphone usage

! Picard et al. [2001],
® Subramanian et al. [2017],
8 Birjandtalab et al. [2016],
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2 Koelstra et al. [2012],

3 Soleymani et al. [2012a,
5Di Lascio et al. [2019],
9 Taamneh et al. [2017]

4 Abadi et al. [2015],

" Healey and Picard [2005],
10 Wang et al. [2014],



dels predicting emotions can be created, but also personality traits can be assessed.

USI Laughs has been recently published by Di Lascio et al. [2019]. The dataset
contains physiological data recorded from 34 participants (6 female) recorded via an
Empatica E4 smartwatch (ACC, EDA, PPG, TEMP). Similar to prior work funny
clips were used to induce laughter. Following Di Lascio et al. the main aim of the
dataset is to facilitate the detection of laughter episodes based on physiological data.
Here, the laughter episodes are to be considered as surrogate to positive emotions.

The Driver stress dataset Healey and Picard [2005| includes physiological data
(ECG, EDA, EMG, and RESP) from 24 participants. The dataset was recorded
during one rest condition and two driving tasks (city streets and on a highway
near Boston, Massachusetts). Depending on traffic the two driving tasks had a
duration between 50 and 90 minutes. Using questionnaires and a score derived from
observable events, the three study conditions (rest, highway, city) were mapped
onto the stress levels low, medium, and high. Therefore, the dataset facilitates the
development of real-life stress monitoring approaches. However, one limitation of
the dataset is that the sensor data was acquired at low sampling rates.

Distracted Driving, recorded by Taamneh et al. [2017], includes multimodal
(physiological and eye tracking) data from 68 subjects driving in a simulator on a
highway. All participants were subject to four different distractions: no, emotional,
cognitive, and sensorimotor distraction. As the dataset includes among other modal-
ities EDA, heart and respiration rate. This data can be used to study the influence
of different distractions on these parameter.

Non-EEG Birjandtalab et al. [2016] is a dataset containing physiological data
(EDA, HR, TEMP, SpO2, and ACC) from 20 subjects (4 female). The dataset was
recorded during three different stress conditions (physical, cognitive, and emotional)
and a relaxation task. Physical stress was evoked by asking the subjects to jog on
a treadmill at three miles per hour. In order to elicit cognitive stress, the subjects
had to count backwards from 2485 doing steps of seven. Lastly, emotional stress was
triggered by anticipating and watching a clip from a zombie apocalypse movie. This
dataset is particularly interesting as it contains only wearable-based data. Although
the data collection was conducted in a lab setting, the subjects were (compared to
the other datasets) less motion constrained due to the minimally intrusive nature
of the sensors. However, a major limitation of the Non-EEG dataset is the low
sampling rate of the employed devices (1 Hz and 8 Hz). In addition, as no ECG
or PPG data was recorded, the HRV information can not be retrieved, a parameter
shown to be relevant for stress recognition by various previous work (e.g., Kreibig
[2010]).

StudentLife Wang et al. [2014] contains data from 48 college students (10 fe-
male). All participants were monitored over one academic semester (10 weeks).
Unlike the afore described datasets StudentLife was recorded in the field. Consider-
ing the progress of the semester, it is expected that the students were more stressed
towards the end of the data collection. This can be attributed to the examination pe-
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riod. StudentLife contains data recorded from the students’ smartphones (e.g., ACC,
microphone, light sensor, and GPS/Bluetooth data). Moreover, various information
related to the students’ context (e.g., class attendance) and smartphone usage (e.g.,
conversation frequency and duration) were recorded. In addition, StudentLife in-
cludes a large number of self-reports targeting physical activity, sleep, perceived
stress, mood, mental well-being, etc. Due to the popularity of smartphones, the
dataset is certainly of interest by facilitating affect and stress recognition purely
based on smartphone usage patterns.” However, a drawback of StudentLife is that
it does not include any physiological data.
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2.4 Data Processing and Classification

In wearable-based AR similar methods as in HAR are employed. Following the
classical time series analysis pipeline, presented by Bulling et al. [2014], the raw data
is first synchronised, filtered, segmented, features are computed, and finally feature-
based classifiers are employed. The remainder of this section is structured as follows:
In Section 2.4.1 the preprocessing of the raw data and segmentation is described.
Section 2.4.2 provides an overview of features commonly used in wearable-based AR.
The last step in the standard data processing pipeline is the classification. During
this step a mapping between the computed feature and labels (e.g. emotion classes)
is learned. Section 2.4.3 details common classification methods, applied validation
schemes, and the results achieved in related work.

Data
Acquisition

-}[ Preprocessing ]-}[ Segmentation ]

Feature
Extraction

-»[ Classification ]

Figure 2.3: Standard time series classification chain.

2.4.1 Preprocessing and Segmentation

When multimodal systems are employed, synchronisation of the different raw
data streams might be necessary as a first step. Clear events, e.g., pressing an event
marker button or double tap gestures, can facilitate the synchronisation process.
Depending on the transmission protocol of the recorded data, wireless data loss
might be an issue. Different methods for handling missing values have been reviewed
by Garcia-Laencina et al. [2010]. Omitting cases with missing data, is arguably the
simplest of these method. However, it comes at the cost of losing a lot of information.
Imputation, estimation of missing data points is another more elaborate approach.

A common step in preprocessing is to apply denoising filters, in order to improve
overall signal quality. The type of filtering strongly depends on the respective sen-
sor modality. Therefore, below an overview of the different filtering and further
preprocessing techniques, applied to the modalities in scope (see Section 2.2.2) are
detailed.

1. 3-axes Acceleration Preprocessing: A detailed analysis of preprocessing
applied to ACC data can be found in Figo et al. [2010]. In AR, the ACC
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data is often considered as a surrogate for the performed activity Mozos et al.
[2017], Gjoreski et al. [2017].

. Electrocardiogram Preprocessing: In the raw ECG signal the R-peaks

need to be identified. For this purpose, the Pan and Tompkin’s algorithm can
be applied Pan and Tompkins [1985]. Once the R-peaks have been detected,
the next step is to determine the RR intervals and assess their validity. For
example, Hovsepian et al. [2015] present an algorithm to assess the validity of
a candidate RR intervals. Behar et al. [2013|, presented an approach to assess
the ECG signal quality in regards to arrhythmia in the context of intensive
care units. Similar approaches could also be utilized to assess the ECG quality
during affect-related user studies.

. Photoplethysmogram Preprocessing: A detailed description on PPG sig-

nal preprocessing methods applied to PPG data can be found in Elgendi [2012],
Biswas et al. [2019]. In order to remove motion artefacts, adaptive (filtering)
approaches can be applied Lee et al. [2010], Ram et al. [2012]. In more re-
cent work, e.g., Reiss et al. [2019], Salehizadeh et al. [2016], peak matching
approaches in the spectral domain were employed to remove movement arte-
facts. For the determination of RR intervals from identified R-peaks, similar
algorithms as mentioned with ECG preprocessing can be applied. In addi-
tion, as shown by Li and Clifford [2012|, the quality of a PPG signal can
be assessed using a combination of dynamical time warping and multilayer
perceptron (MLP).

. Electrodermal Activity Preprocessing: In order to remove artefacts from

EDA data different approaches were presented. The approaches can be grouped
into filtering and machine learning-based approaches. Only changes in the
low-frequency domain of the EDA signal are physiologically plausible. Hence,
low-pass filtering with a cut-off of e.g. 5 Hz Setz et al. [2010] can be applied
to remove high-frequency noise. After the noise removal, e.g., Soleymani et al.
[2012a], detrended the EDA signal by subtracting a moving average, computed
on smoothed version of the signal. Machine learning-based approaches, using
support vector machines (SVMs) or convex optimization, to identify and re-
move artefacts in EDA data can be found in Taylor et al. [2015b], Greco et al.
[2016]. As detailed in Section 2.2, the EDA signal consists of two compo-
nents: A slowly varying baseline conductivity referred to as SCL and a series
of peaks referred to as SCR. In literature different approaches to separate these
two components can be found: Benedek and Kaernbach [2010], for instance,
present an approach to separate SCL and SCR relying on nonnegative devo-
lution. Alternatively, Choi et al. [2012] utilized, a regularized least-squares
detrending method, to separate the two components.

. Electromyogram Preprocessing: Raw EMG data is often filtered to re-

move noise. For example, Wijsman et al. [2010] report on a two step procedure.
First, a bandpass filter, allowing frequencies from 20 to 450 Hz, was applied.



Then, in order to remove residual power line interference from data, notch
filters were applied. The notch filters attenuated the 50, 100, 150, 200, 250
and 350 Hz components of the signal. Cardiac artefacts are another common
source of noise in EMG data. Hence, Willigenburg et al. [2012| propose and
compare different filtering procedures to remove ECG interference from the
EMG signal.

6. Respiration Preprocessing: Depending on the signal quality, noise re-
moval filtering techniques (e.g., bandpass filter with cut-off frequencies at 0.1
and 0.35 Hz) have to be applied. In addition, the raw respiration signal can
be detrended by subtracting a moving average Khalili and Moradi [2009].

In the classical processing chain these preprocessing steps are followed by the
segmentation. During this procedure the data is segmented using a sliding win-
dow of fixed size. The appropriate window size is crucial and depends on several
aspects, such as the classification task or the considered sensor modality. Below
appropriate choices for the window length of motion (ACC) and physiological data
will be provided. In HAR, ACC data is most frequently employed to detect ac-
tivities and there exists a body of work, e.g., Huynh and Schiele [2005|, Reiss and
Stricker [2012], Healey et al. [2010], identifying appropriate window sizes for HAR.
A common finding is that in HAR the relevant patterns occur on short time scales.
Therefore, window sizes of ~ 5 seconds are common.

The time scales on which physiological responses to emotional stimuli occur are
hard to define. Hence, considering physiological signals, finding an appropriate
window size is difficult Healey et al. [2010]. Moreover, due to inter-subject and
inter-modality (e.g., ECG vs. EDA) differences, defining an appropriate window
size becomes even more challenging. However, a meta analysis conducted by Kreibig
[2010] found that physiological features are commonly aggregated over fixed window
lengths of 30 to 60 seconds.

2.4.2 Physiological Feature Extraction

Following the classical time series classification pipeline, features are computed on
the segmented data. These features aggregate information present in the signal, and
serve as inputs into the classifier. Extracted features can be grouped in various ways,
such as time- or frequency-domain features, linear or non-linear features, unimodal
or multimodal features, etc. Considering computational complexity, extracted fea-
tures range from simple statistical features (e.g., mean, standard deviation) to often
modality-dependent complex features (e.g., number of SCR peaks). Table 2.8 gives
an overview of features commonly extracted and applied in the wearable-based AR
literature. In the remainder of this section, we give a brief description of features
commonly extracted from different wearable sensors. As mentioned previously EEG
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and EOG are not in scope of this work and, hence, will not be detailed here. For a
comprehensive review on EEG-based AR we refer the reader to Kim et al. [2013].

From the HAR domain, a large set of ACC-based features is known. These fea-
tures are often also employed in AR. Statistical features (mean, median, standard
deviation, etc.) are often computed for each channel (z, y, z) separately and com-
bined. Parkka et al. [2007] showed that the absolute integral of acceleration can be
used to estimate the metabolic equivalent of physical activities, which can be an
interesting feature for affect recognition as well. Mozos et al. [2017] used the first
and second derivative of the accelerometer’s energy as feature, e.g., to indicate the
direction of change in activity level. Considering frequency-domain features, the
power ratio of certain defined frequency bands, the peak frequency, or the entropy
of the power spectral density (PSD) have been applied successfully.

From ECG and PPG data, various features related to cardiac activity are de-
rived. Below, we provide a description of features commonly used in AR. For an
in-depth analysis of features based on the cardiac cycle we refer to Malik [1996].
Commonly the HR is used as feature. Based on the location of the R-peaks (or
the systolic peak in the PPG signal) the inter beat interval (IBI) can be computed.
The IBI serves as a new time series signal, from which various HRV features can be
derived, both in time- and frequency-domain. For instance, from the IBI the number
and percentage of successive RR intervals differing by more than a certain amount of
time (e.g. 20 or 50 milliseconds) can be computed. These feature are referred to as
NNX and pNNX, where X is the time difference threshold in milliseconds. Based on
the Fourier-transformation of the IBI time series, various frequency-domain features
can be computed, which reflect the sympathetic and parasympathetic activities of
the ANS. Four different frequency bands are established in this respect Rubin et al.
[2016]. The ultra low frequency (ULF) and very low frequency (VLF) bands range
from 0 to 0.003 Hz and from 0.003 to 0.03 Hz, respectively. Changes in low fre-
quency (LF) band, ranged between 0.03 and 0.15 Hz, are mostly associated with
the activity of the SNS. In contrast, the high frequency (HF) band, ranged from
0.15 to 0.4 Hz, is believed to reflect mostly the activity of the PNS Rubin et al.
[2016]. Therefore, the LF/HF ratio quantizes is a descriptive feature indicating the
influence of both, SNS and PNS, on the cardiac activity. In literature, e.g., Healey
and Picard [2005], it was shown that the LF/HF ratio is a good indicator for stress.
In addition to time and frequency domain-based features, non-linear features de-
rived from ECG data were employed successfully wearable-based AR. Rubin et al.
[2016], for instance, presents a detailed description of non-linear ECG features (e.g.,
maximal Lyapunov exponent, standard deviations (SD; and SD,) along major axes
of a Poincaré plot, the SD;/SD, ratio, sample entropy, etc.). Moreover, Valenza
et al. [2012], aiming to detect five levels of valence and arousal, compared the per-
formance of linear and non-linear features. Their results indicate that non-linear
features are able to improve classification scores significantly. Another class of fea-
tures based on the cardiac cycle are referred to as geometrical features. An example
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is the triangular interpolation index (TINN): A histogram of the RR intervals is
computed, a triangular interpolation performed, and the baseline of the distribution
is computed. The TINN is, for instance, used by Malik [1996], Valenza et al. [2012],
and Rubin et al. [2016]. Finally, the respiration is known to have an impact on the
ECG signal. In literature, there exist different approaches for quantifying the effect
of the respiration on ECG data: Hovsepian et al. [2015], for instance, employed the
respiratory sinus arrhythmia (RSA), which is calculated by subtracting the shortest
RR interval from the longest RR interval within one respiration cycle. In addition,
Choi et al. [2012] proposed a method of decomposing the HRV into a respiration-
and a stress-driven component.

Considering the EDA signal, basic statistical features (e.g., mean, standard devi-
ation, min, max) are commonly used, e.g., Setz et al. [2010]. In addition, Koelstra
et al. [2012] provide a list of statistical (e.g., average rising time and decay rate) and
frequency domain-based (spectral power values in the 0-2.4 Hz frequency bands)
EDA features. Furthermore, the EDA is known to consist of two components -
the skin conductance level (SCL) and skin conductance response (SCR) component.
Approaches to separate these components were, for instance, presented by Choi
et al. [2012] or Lim et al. [1997]. Following Choi et al. [2012] the degree of linear-
ity of the SCL component was shown to be a useful feature. Considering the SCR
component, the identified SCR segments are counted and further statistical features
derived: sum of the SCR startle magnitudes and response durations, area under the
identified SCRs Healey and Picard [2005]. The SCR-related features were found to
be particularly interesting as they are closely linked to high arousal states Kim and
André [2008].

From the EMG signal, various time- and frequency-domain features can be ex-
tracted. Christy et al. [2012], working on the DEAP dataset, computed statistical
features such as mean, median, standard deviation, and interquartile ranges on the
EMG data. Other researchers used frequency-based features such as peak or mean
frequencies Kollia [2016], Wijsman et al. [2013]. Another frequently used feature is
the signal energy of either the complete signal, see Koelstra et al. [2012], or specific
frequency ranges (e.g. 55-95 Hz, 105-145 Hz), as in Abadi et al. [2015]. Wijsman
et al. [2013] performed a reference voluntary contraction measurement to compute
a personalised EMG gap feature. This feature is defined as the relative time the
EMG amplitude is below a specific percentage of the amplitude of the reference
measurements.

Soleymani et al. [2012a] pointed out that slow respiration is linked to relaxation.
In contrast, irregular and quickly varying breathing patterns correspond to more
aroused states like, anger or fear Rainville et al. [2006], Kim and André [2008].
Therefore, different respiration patterns can provide valuable information for the
detection of affective states. Plarre et al. [2011] describe a number of time-domain
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Table 2.8: Features commonly extracted and applied in wearable-based AR.

Features
Time-domain: Statistical features (e.g. mean, median, standard deviation,
absolute integral, correlation between axes), first and second derivative of

ACC | acceleration energy
Frequency-domain: Power ratio (0-2.75 Hz and 0-5 Hz band), peak frequency,
entropy of the normalised PSD
References: Reiss and Stricker [2012], Figo et al. [2010], Parkka et al. [2007],
Mozos et al. [2017]
Time-domain: Statistical features (e.g. mean, median, 20th and 80th percentile),
HR, HRV, statistical features on HRV (e.g., Root Mean Square of Successive
Differences (RMSSD), Standard Deviation of the RR Intervals (SDNN)), number
and percentage of successive RR intervals differing by more than 20 ms (NN20,
pNN20) or 50 ms (NN50, pNN50), pNN50,/pNN20 ratio,

ECG/ Frequency-domain: Ultra low (ULF, 0 — 0.003 Hz), very low (VLF,

PPG 0.003 — 0.03 Hz), low (LF, 0.03 — 0.15 Hz), and high (HF, 0.15 — 0.4 Hz)
frequency bands of HRV, normalised LF and HF, LF/HF ratio
Non-linear: Lyapunov exponent, standard deviations (SD; and SDs) from
Poincaré plot, SD;/SDs ratio, sample entropy
Geometrical: TINN
Multimodal: Respiratory sinus arrhythmia, motion compensated HR, ,
respiration-based HRV decomposition
References: Malik [1996], Healey and Picard [2005], Choi et al. [2012], Valenza
et al. [2012], Hovsepian et al. [2015], Rubin et al. [2016]
Time-domain: Statistical features (mean, standard deviation, min, max, slope,
average rising time, mean of derivative, etc.)

EDA Frequency-domain: 10 spectral power in the 0-2.4 Hz bands
SCL features: Statistical features, degree of linearity
SCR features: Number of identified SCR segments, sum of SCR startle
magnitude and response durations, area under the identified SCRs
References: Lim et al. [1997], Healey and Picard [2005], Setz et al. [2010], Choi
et al. [2012], Taylor et al. [2015Db], Greco et al. [2016]
Time-domain: Statistical features, number of myoresponses

EMG . .
Frequency-domain: Mean and median frequency, energy
References: Kim and André [2008], Wijsman et al. [2010], Koelstra et al. [2012]
Time-domain: Statistical features (e.g. mean, median, 80th percentile) applied
to: inhalation (I) and exhalation (E) duration, ratio between I/E, stretch, volume

RESP | of air inhaled/exhaled
Frequency-domain: Breathing rate,mean power values of four subbands (0-0.1
Hz, 0.1-0.2 Hz, 0.2-0.3 Hz and 0.3-0.4 Hz)
Multimodal: Respiratory sinus arrhythmia
References: Rainville et al. [2006], Kim and André [2008], Plarre et al. [2011],
Kukolja et al. [2014], Hovsepian et al. [2015]

TEMP Time-domain: Statistical features (e.g., mean, slope), intersection of the y-axis
with a linear regression applied to the signal
References: Gjoreski et al. [2017], Taylor et al. [2015a]
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features which aggregate information about breathing cycles: breathing rate, in-
halation (I) and exhalation (E) duration, ratio between I/E, stretch (the difference
between the peak and the minimum amplitude of a respiration cycle), and the vol-
ume of air inhaled /exhaled. Considering frequency-domain features, Kukolja et al.
[2014] used mean power values of four frequency subbands (0-0.1 Hz, 0.1-0.2 Hz,
0.2-0.3 Hz and 0.3-0.4 Hz) in order to classify different types of emotions. As dis-
cussed previously features relation cardiac and respiratory activities (like RSA are
frequently employed Plarre et al. [2011], Hovsepian et al. [2015].

Changes in body temperature might be attributed to the ’fight or flight’ re-
sponse (see Section 2.2). During this physiological state, the blood flow to the
extremities is restricted in favour of an increased blood flow to vital organs. Hence,
temperature-based features can be relevant indicators for a severe stress response.
Gjoreski et al. [2017], for instance, extract the mean temperature, the slope, and
the intersection of a linear regression line with the y-axis as features.

2.4.3 Classification

In AR the classification is either done using statistical approaches (e.g., ANOVA)
or machine learning (ML) methods (e.g., support vector machine (SVM), k-nearest
neighbour (kNN)). For both types of analyses, features similar to the ones described
in Section 2.4.2 are combined into a feature vector, associated with a label and used
as inputs. Since statistical analysis plays only a minor role in wearable-based AR lit-
erature, we focus in this section on classification approaches utilising ML techniques.
In Table 2.9 the same studies are presented as in Table 2.4. However, here we focus
on the employed classification algorithms, number of target affective classes, setting
of the study, number of participants, evaluation schemes, and achieved classification
performance. The performance is, if possible, reported as accuracy, indicating the
overall percentage of correctly classified instances. The rest of this section discusses
and compares the different approaches and their performance.

The algorithm column in Table 2.9 indicates that the SVM is the most common
classification algorithm. It is employed in 48% of the considered studies. This is
to some degree surprising as the SVM requires careful adjustment of the kernel size
~ and the trade-off parameter C'. For this adjustment the recorded data has to be
split into training, validation, and test sets. The best set of hyperparameters can
be found by performing a grid-search Hovsepian et al. [2015], Mozos et al. [2017],
evaluating the current hyperparameter on the validation set. The performance of
the final model is then evaluated on the test set. Hence, when using a SVM, it is
important to report the final test error (and not the validation error).

kNN and decision-tree (DT), are the second most popular classifiers both applied
in 20% of the considered studies. In comparison to the SVM, kNN and DT require
only little hyperparameter tuning and, hence, are applied (almost) in an off-the-shelf
way.

49



Concluding from Table 2.9, ensemble-based methods (e.g., random forest or Ad-
aBoost) are employed less frequently. This is astonishing as ensemble methods have
been proven to be strong classifiers. Fernandez-Delgado et al. [2014] evaluated 179
classifiers on more than hundred different datasets and found that the random forest
family ’is clearly the best family of classifiers’. In the wearable-based AR commu-
nity, Rubin et al. [2016] for instance employed random forests to detect panic and
pre-panic states, reaching a 97% and 91% accuracy, respectively. Randomized deci-
sion trees (ET), introduced by Geurts et al. [2006], are another tree-based ensemble
method, considering a random subset of features. In contrast to the random forest,
where the most discriminative splits are found, for the ET classifiers the splits are
drawn randomly for each feature. In addition, boosting was found to be a strong
classifier Fernandez-Delgado et al. [2014], and Leo Breiman even considered it to be
the "best off-the-shelf classifier in the world’ Friedman et al. [2000]. Mozos et al.
[2017] applied the AdaBoost method to detect stress, reaching an accuracy of 94%.
For a detailed description of random forests we refer the reader to Breiman [2001]
and an introduction into boosting can be found in Freund and Schapire [1999].

Linear discriminant analysis and quadratic discriminant analysis also find applica-
tion in the work presented in Table 2.9. These classifiers learn a linear or quadratic
decision boundary and a detailed description can be found in Bishop [2006].

Fernandez-Delgado et al. [2014] also found neural networks (NN) to be among the
top-20 classifiers. Haag et al. [2004] and Jaques et al. [2016] used NN, in the form
of multi-layered perceptrons, to detect different affective states.

Convolutional neural network and long short-term memory-based classification
techniques, which are becoming popular in the field of human activity recognition
Hammerla et al. [2016], Miinzner et al. [2017]|, have not found broad application
in the domain of wearable-based AR domain yet. Martinez et al. [2013| compare
the performance of learned and hand-crafted features to detect the affective states
relazxation, anxiety, excitement and fun. The learned features were extracted using
a set of convolutional layers, and the final classification step was performed using
a single-layer perceptron. The experiments of Martinez et al. [2013] indicate that
learned features lead to an improved classification performance (compared to the
hand crafted features). Another advantage of end-to-end trainable classifiers is that
they easily facilitate unsupervised pre-training, using for instance auto-encoders. In
the image analysis domain auto-encoders are a popular pre-training methods and in
the time series classification domain auto-encoders were, for instance, employed by
Zheng et al. [2016].
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Table 2.9: Comprehensive comparison of algorithms, validation methods, and accu-
If not stated differently, scores
are reported as (mean) accuracy. Abbreviations: Setting (Set.), Lab (L), Field (F),
Field with constraint (FC), Validation (Val), cross-validation (CV), Leave-One-Out
(LOO), leave-one-subject-out (LOSO), Leave-One-Trial-Out (LOTO), Arousal (AR),
Valence (VA), Dominance (DO), Liking (LI), AdaBoost (AB), Analysis of Variance
(ANOVA), Bayesian network (BN), deep belief network (DBN), gradient boosting
(GB), Gaussian Mixture Model (GMM), hidden Markow model (HMM), linear dis-
criminant analysis (LDA), linear discriminant function (LDF), logistic regression (LR),
naive Bayes (NB), neural networks (NN), passive aggressive classifier (PA), random
forest (RF), Decision/Regression/Function Tree (DT/RT/FT), ridge regression (RR),
quadratic discriminant analysis (QDA)

racies of recent wearable-based AR studies.

Author Algorithm Classes| Set. | Sub. | Val Accuracy
Picard et al. kNN 8 L 1 LOO 81%
Haag et al. NN contin.| L 1 3-fold | AR: <96%, VA: <90%
§ split
C\\]/ Lisetti and kNN, LDA, NN 6 L 14 LOO 72%; 75%; 84%
Nasoz
Liu et al. BN, kNN RT, 5 L 15 LOO 74%; 75%; 84%; 85%
" SVM
S| Wagner et al. kNN, LDF, NN 4 L 1 LOO 81%; 80%; 81%
“["Healey and LDF 3 FC 24 | LOO 97%
Picard
5| Leon et al. NN 3 L 8+1 | LOSO | 71%
Zhai and DT, NB, SVM Bin. L 32 20-fold | 88%; 79%; 90%
Barreto CV
®| Kim et al. LR Bin. FC 53 | 5-fold ~ 63%
S Ccv
. | LDA 4 L 3 LOO sub. dependent/inde-
Kim and André pendent: 95%/70%
Katsis et al. SVM 4 L 10 | 10-fold | 79%
Ccv
Calvo ot al BN, FT, LR, 8 L 3 10-fold | one subject: 37%-98%,
' NB, NN, SVM (6\Y all subjects: 23%-71%
2| Chanel et al. LDA, QDA, 3/Bin. L 10 | LOSO | <50%; <47%; <50%,
S SVM Bin. <70%
Khalili and QDA 3 L ) LOO 66.66%
Moradi
o| Healey et al. AB,DT, BN, Bin. F 19 10-fold | None?
- NB (A
Plarre et al. AB, DT, SVM/ | Bin. | L/F | 21/17] 10-fold | 82%; 88%; 88%/ 0.71°
- HMM cv
S| Hernandez SVM Bin. F 9 LOSO | 73%
et al.
Valenza et al. | QDA 5 L 35 | 40-fold | >90%
Ccv
Hamdi et al. ANOVA 6 L 16 |- None ?
| Agrafioti LDA Bin. L 31 | LOO Active/Pas AR: 78/52%
S| et al. Positive/Neg VA: <62%

51




Koelstra et al. | NB Bin. L 32 | LOO AR/VA/LL: 57%/63% /59%
Soleymani SVM 3 L 27 | LOSO | VA: 46%, AR: 46%
et al.
Sano and kNN, SVM Bin. F 18 10-fold | <88%
| Picard CvV
S| Martinez convolutional 47 L 36 | 3-fold learned features: <75%,
et al. neural network ()Y hand-crafted: <69%
(CNN)
=| Valenza et al. | SVM Bin. L 30 LOO VA: 79%, AR: 84%
S| Adams et al. GMM Bin. F 7 - 74%
| Hovsepian SVM/BN Bin. | L/F | 26/20] LOSO | 92%/~40%
S| et al.
N Abadi ot al. | NB, SVM Bin. | L | 30 | LOTO | VA/AR/DO: 50-60%
Rubin et al. DT, GB, kNN, Bin. F 10 | 10-fold | Bin. panic: 73%-97%
LR, PA, RF, CV Bin. pre-panic: 71%-91%
RR, SVM
| Jaques et al. LR, NN,SVM Bin. F 30 | 5-fold <T6%; <86%; <88%
= cv
“"Rathod et al. | Rule-based 6 L 6 - <87%
Zenonos et al. | DT, kNN, RF 5 F 4 LOSO | 58%; 57%; 62%
Zhu et al. RR 1 F 18 LOSO 0.247 ~ 43°°
Birjandtalab GMM 4 L 20 | - <85%
et al.
Gjoreski et al. | AB, BN, DT, 3/Bin.| L/F | 21/5 | LOSO | <73%/ <90%
- kNN, RF, SVM
= Mozos et al. AB, kNN, SVM | Bin. L 18 [ CV 94%; 93%; 87%
“[Taylor et al. Single/Multitask | Bin. F 104 | Cust.® | Mood:<78%,
LR, NN, SVM Stress/Health<<82%
Girardi et al. DT, NB, SVM Bin. L 19 LOSO Flar/va < 63.8/58.5%
Zhao ot al. NB, NN, RF, | 4/Bm.| L | 15 |LOSO | 76%
o SVM
=| Santamaria- CNN Bin. L 40 | - Val: <75%, AR<82%
“ Granados
et al.
Heinisch et al. | DT, kNN, RF 3 L 18 | LOSO | <67%
Hassan et al. DBN-+SVM 5 L 32 10-fold | 89.53% use DEAP
=2 Ccv
S| Kanjo et al. CNN-+LSTM 5 FC 34 | User” <95%
Di Lascio LR, RF, SVM Bin. L 34 LOSO <81%
et al.

L Given as pairwise preferences.
2DT overfit, other classifiers performed worse than random guessing.

3 Correlation between self-reported and output of model.

4 No significant differences could be found between the affective states.
5 Mean absolute error of mood angle in circumplex model.
680/20% split of the entire data+5-fold CV.
" User specific models. Trained random on 70/30% splits with non-overlapping windows.
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Considering the setting, three different types of studies are distinguished: lab (L),
field (F), and field with constraints (FC) studies. Studies conducted in a vehicle
on public roads are referred to as FC studies, as subjects are constrained in their
movement. In addition, studies were subjects followed a specific (outdoor) path,
e.g., Kanjo et al. [2019] are referred to as FC studies. Most, 29 out of 44, studies
presented in Table 2.9, solely base their results on data recorded in a lab setting.
The popularity of lab studies is easily explained: In lab studies the study protocol is
designed to elicit a set of specific target affective states (see Section 2.3.1). Hence,
the signal to noise ratio is much higher than in field studies. Furthermore, once the
set of stimuli is chosen the same protocol is applied to multiple subjects, which makes
lab studies very efficient. However, models trained on data gathered in constrained
environments, are likely to exhibit a poor performance in an less constrained setting.

In order to overcome this, field studies have become more frequent over the past
years. This ’out of the lab and into the fray’ tendency, coined by Healey et al.
[2010], is also related to recent advances in mobile sensor technology and the broad
acceptance of smart devices (watches, phones, etc.) among users, see e.g., Rogers
and Marshall [2017|. As wearable-based AR clearly aims to detect the affective state
users in unconstrained environments, this trend is certainly desirable. Recent work
aspiring to detect stress in lab and real life scenarios has for instance been conducted
by Taylor et al. [2017], Gjoreski et al. [2017], Hovsepian et al. [2015], Plarre et al.
[2011]. Their results indicate that stress detection, based on wearable-based data
and context information, is feasible, even in mostly unconstrained settings.

Finally, considering the number of study participants there is large variation: The
results reported in Table 2.9 are based on data originating from a single subject up
to 104 subjects. Clearly, a large and diversified subject pool is desirable. This would
allow to develop generalized models for wearable-based AR.

Judging from Table 2.9, n-fold cross-validation (CV) (n € [3,5,10,20,40]) is fre-
quently employed as validation method (30%). Following this method, the dataset
is randomly partitioned into n equally sized subsets. Then, n — 1 subsets are used
for training and the remaining one for testing. This procedure is repeated n times.
Hence, each of the n subsets is used exactly once as test set. In case the trained
model requires hyperparameter tuning, part of the training data can serve as valida-
tion set in each iteration. If features are extracted on overlapping windows and n-fold
CV is used as validation methods the results are often overoptimistic. This is due
to the strong correlation between the features extracted from overlapping windows.
Leave-One-Out (LOO) CV is also used in several studies listed in Table 2.9. This is
a specific version of the n-fold CV procedure, where n is equals to the total number
of available feature vectors. In the LOO case each feature vector is used once for
testing. A slightly different type of validation was performed by Abadi et al. [2015]:
Leave-One-Trial-Out (LOTO) CV. During LOTO CV, the model is trained on the
data of all subjects but leaving one trial/stimulus (e.g. video) aside. The trained
algorithm is then evaluated on the left-out data, and the procedure is repeated for

93



each trial. LOO, LOTO, and n-fold CV lead to subject-dependent results. In order
to obtain an subject independent score, corresponding to a more realistic results
for real-life deployment, leave-one-subject-out (LOSO) CV should be applied. For
this purpose, the algorithm under consideration is trained on the data of all but one
subject. The data of the left-out subject is then used to evaluate the trained model.
Repeating this procedure for all subjects in the dataset gives a realistic estimate of
the model’s generalisation properties on completely unseen data. As indicated by
Table 2.9, nowadays LOSO CV is widely accepted and applied. From the results
shown here, it can be concluded that using the LOSO validation method leads to
lower classification scores than applying n-fold or LOO CV. However, only LOSO
provides the information on how good the trained model is able to perform on com-
pletely unseen data (e.g. data of a new user). Hence, we recommend using this
validation scheme.

The affect and stress recognition approaches presented in Table 2.9 report accura-
cies between 40 % and 95 %. Due to the lack of benchmarking datasets, the results
obtained in different studies are hard to compare. On average, the classification
accuracies obtained using lab data are higher than the ones obtained in field study
data. Hovsepian et al. [2015], who conducted both a lab and a field study, report
on a 92% mean accuracy in detecting stress based on lab data. However, when
field data is considered, the accuracy drops to 62 %. Moreover, Healey et al. [2010]
conducted a field study and trained different classifiers on the collected data, but
none of them was able to perform better than random guessing. This indicates that
wearable-based AR in the field is very challenging. As indicated in Table 2.4, most
studies were conducted recording multimodal datasets. This might be motivated
by a recent review of D’mello and Kory [2015], who pointed out that the classifiers
relying on multimodal input reach on average higher classification scores than their
unimodal counterparts. Considering the accuracy of classifiers detecting high /low
arousal and high/low valence separately it becomes apparent, that arousal is clas-
sified more reliably Haag et al. [2004], Valenza et al. [2012], Agrafioti et al. [2012],
Abadi et al. [2015]. High arousal states are, from a physiological point of view,
directed by the sympathetic nervous system (SNS) (see Section 2.2). Physiological
changes directed by the SNS are quite distinct (e.g., increased HR, sweat produc-
tion, etc.). Hence, detecting high arousal states using these physiological indicators
is a feasible task. In contrast, detecting changes in a subject’s valence based on
physiological data is a more challenging.

The performance of standard ML classifiers depend strongly on the employed
features. Hence, the benefits of a careful feature selection can be threefold:

1. Feature selection can help to improve classification results.
2. Feature selection identifies cost-effective and yet strong predictors.

3. It provides a better understanding of the processes generating the data, Guyon
and Elisseeff [2003].
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According to Guyon and Elisseeff [2003], feature selection methods are grouped
into filter-based methods, wrappers, and embedded methods. Filter-based methods
select a subset of features (e.g., based on statistical a criterion) and do not take the
used classifier into account. Wrapper-based methods (e.g., sequential feature selec-
tion) treat the learning algorithm as black box and assess the quality of a subset of
features based on the final classification score Guyon and Elisseeff [2003|. Finally,
embedded methods perform variable selection during training. Hence, the selection
is commonly specific to the used classifier Guyon and Elisseeff [2003]. Feature se-
lection methods also find application in AR. Kim and André [2008|, for instance,
perform feature selection to improve the classification. Valenza et al. [2012] used
principal component analysis to project the features onto a lower dimensional space.
This linear method has the advantage that the features are condensed with only a
minimal loss of information. For a detailed review of feature selection methods, see
Guyon and Elisseeff [2003].
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2.5 Conclusion

In this chapter, RQ 1 (What is the current state-of-the-art in wearable-based
affect recognition?) has been addressed by providing a comprehensive, detailed,
and tutorial-style analysis of the state-of-the-art in wearable-based affect recogni-
tion (AR). For this purpose, in Section 2.1 working definitions of the terms affect,
emotion, and mood were provided. In addition, different psychological models for
emotions and stress were introduced. Furthermore, in Section 2.2 the effect of differ-
ent affective states on physiological parameters and the sensors employed to measure
them were presented. Judging from Table 2.4, sensors monitoring cardiac and elec-
trodermal activity are frequently employed in wearable-based AR. The popularity
of these two modalities presumably originates from two considerations: First, high
arousal states have a particularly strong effect on both the cardiac and the elec-
trodermal activity. Second, these changes can be easily detected using commercial
off-the-shelf devices.

Section 2.3 presents the stimuli frequently employed to elicit different affective
states in lab settings. Related work conducted in the field was reviewed in sub-
section 2.3.2. Questionnaires used for both long-term assessment and in ecological-
momentary-assessment (EMA) were presented in Table 2.5 and their scheduling has
been detailed in Table 2.6. Based on these two tables it becomes apparent that
there is little standardization in terms of labelling procedures for AR studies in
the wild. This open point is focused on in the first part of Chapter 4. Moreover,
publicly available datasets were presented in Table 2.7. Concluding, from Table 2.7
we identified a lack of commonly used purely wearable-based datasets for AR. This
limitation is addressed in Chapter 3.

In Section 2.4, the steps following the data collection and leading to classifica-
tion were detailed. For this purpose modality specific preprocessing (e.g., filtering),
segmentation, and commonly computed features were presented. In Table 2.9, the
most popular machine learning classifiers and validation methods were summarized.
In general, wearable-based AR utilizes mostly classical, feature-based, and super-
vised approaches. So far only little work has been done, employing semi-supervised
training methods or utilizing personalisation methods. Judging from Table 2.9,
subject dependent validation schemes like n-fold cross-validation or Leave-One-Out,
were found to be the common validation schemes in wearable-based AR. This is
to some degree astonishing, as these subject dependent validations schemes are to
some degree over-optimistic and do not reflect the generalization properties of the
trained classifiers on completely independent data. As a result, subject independent
schemes like leave-one-subject-out should be applied. Up-to-date automated feature
extraction methods, e.g., convolutional neural networks, have only received little at-
tention in AR. In the second part of Chapter 4, their performance is investigated
and compared to classical methods.
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Study |: Wearable-based Affect Recognition in
the Lab

The extensive literature review presented in Chapter 2, identified a lack of com-
monly used benchmarking datasets for purely wearable-based affect recognition
(AR). As detailed in RQ 2 (How is benchmarking and direct comparison of dif-
ferent algorithmic approaches for wearable-based affect recognition feasible?), such a
dataset should meet the following demands:

[. The recorded data should originate purely from high quality wearables. The
dataset should incorporate physiological "raw" data from multiple redundant
sources sampled at high frequencies, ideally recorded from different locations.

IT. The desired benchmarking dataset can be recorded in a lab setting but the
participants should have some freedom with regards to their postures.

ITI. The dataset should include data of at least three different affective states. The
employed stimuli should be reproducible and lead to distinct affective states.

IV. Data should be recorded from more than 10 subjects.

V. The dataset should be benchmarked using a standard set of features and well-
established machine learning classifiers.

This has been addressed by recording, benchmarking, and publishing WESAD, a
dataset for Wearable Stress and Affect Detection!. In this chapter, the recording
and benchmarking procedure is detailed. The remainder of this chapter is struc-
tured in the following way: First, in section 3.1, a quick introduction and overview
of related work is provided. Then, in section 3.2, the employed study protocol is
outlined. In Section 3.4, the used sensors, their placement, and the extracted fea-
tures are described. Section 3.4.3 details the obtained results and in section 3.5 we
discuss the methods and results critically.

Some passages in this chapter have been quoted verbatim from the following peer
reviewed source: Schmidt et al. [2018a].

'Publicly available from: https://ubicomp.eti.uni-siegen.de/home/datasets/icmil8/
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3.1 Related Work

As detailed in Chapter 2, a lot of research has been done aspiring to detect stress
and other affective states (e.g., emotions) in different settings. In the body of related
work, different approaches to detect emotions and stress based on physiological data
can be found (see Table 2.4 and Table 2.9). Due to the severe side effects of stress this
emotional state is certainly worth targeting. Distinguishing between stressful and
non-stressful states based on physiological data is feasible with high accuracies (at
least in constrained environments), see for instance Gjoreski et al. [2016]. However,
the physiological responses to high arousal states (e.g., stress) are quite pronounced
(see Section 2.2.1). Hence, in order to be of a practical relevance at least three
different affective states should be considered. Up-to-date combining stress and
emotion detection systems has only received little attention, e.g., Zenonos et al.
[2016].

Although there is intensive research in the domain of wearable-based AR, there
is only little data publicly available. An overview over these datasets has been pro-
vided in Section 2.3.3. However, the list of available datasets narrows if the exclusion
criteria, defined in Chapter 1 and the list of demands stated above are applied. Con-
sidering the datasets containing different emotions, the "Eight-Emotion" dataset, see
Picard et al. [2001], contains multiple affective states but was recorded from just one
subject. Further, the "DEAP", "DECAF", "ASCERTAIN", and "MAHNOB-HCI"
datasets were all recorded in constrained settings and most presented analyses rely
strongly on the electroencephalogram data. Considering USI Laughs, presented by
Di Lascio et al. [2019], the main purpose of the dataset is to distinguish laughter
from other events and, hence, it is also not suitable for our purpose. Next con-
sidering the datasets containing stress data, the "Driver Stress" dataset, presented
by Healey and Picard [2005], contains different modalities but they are all sampled
at rather low (15.5-496 Hz) frequencies. Further the "Non-EEG" and "Distracted
Driving" dataset contain data, where the participants are subject to different stres-
sors. However, different affective states are not targeted. Finally, the "StudentLife"
dataset was recorded using smartphone data only. Hence, a major shortcoming
(with respect to this thesis) is that no physiological has been recorded. Based on
the considerations detailed above none of the available datasets meets the formu-
lated demands and as a result we chose to record WESAD, a dataset for Wearable
Stress and Affect Detection. This dataset combines stress and emotion detection,
by containing three different affective states. These states are a neutral, stressed,
and an amused state.
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3.2 Lab Study Protocol, Self-reports, and Sensors

In this section, the employed lab study protocol, used questionnaires, and the
sensory setup are detailed. The goal of the lab study was to elicit three different
affective states namely: neutral, stress, and amusement. After the stress and amuse-
ment conditions, the subjects were asked to follow a guided meditation in order to
de-excite them. Below the different parts of the study protocol are presented in
detail:

1. Preparation: Prior to the study, the participants read and signed a consent
form. In addition, in the hour before the experiment was to begin, the par-
ticipants were asked to avoid caffeine and tobacco. Further, the subjects were
asked to do no strenuous exercise on the day of the study. Upon arrival at
the study location, the participants were equipped with the sensors. Next,
a short sensor test was conducted and then the sensor devices (Emaptica E/
and RespiBan) were synchronised manually via a double tap gesture.

2. Baseline condition: After the subjects had been equipped with the sensors,
a 20 minute baseline was recorded. The baseline condition aimed at induc-
ing a neutral affective state, hence, neutral reading material (magazines) was
provided.

3. Amusement condition: During the amusement condition, the subjects wat-
ched a set of eleven funny video clips. Each clip was followed by a short neutral
sequence of five seconds. Eight of the short clips were chosen from the corpus
presented by Samson et al. [2016]. The remaining three videos were chosen by
the authors. In total, the amusement condition had a length of 392 seconds.

4. Stress condition: The subjects were exposed to the well-studied Trier Social
Stress Test (T'SST), which consists of a public speaking and a mental arith-
metic task Kirschbaum et al. [1993]. Reflecting on Section 2.3.1 the TSST
incorporates stressors of category C1 (Social-evaluative nature) and C2 (Cog-
nitive load). These tasks are known to elicit stress reliably, as they are social
evaluative and inflict a high mental load on the subjects Plarre et al. [2011].
In our version of the TSST, the study participants first had to deliver a five
minute speech on their personal traits in front of a three-person panel, focus-
ing on strengths and weaknesses. The subjects were told that the three panel
members were human resources specialists from our research facility. In order
to boost their career options, the subjects, all students at our facility, should
try to leave the best possible impression. The study participants had three
minutes to prepare their speech but they were not allowed to use their notes
during the presentation. After the speech, the panel instructed the subjects
to count from 2023 to zero, doing steps of 17. Whenever the subjects made
a mistake, they had to start over. For both tasks, the subjects were given
five minutes by the panel. Hence, the TSST had a total length of about ten
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Version A

Preparation | Baseline I Amusement I Meditation I I Stress I Rest | Meditation II I Recovery

Version B

Preparation | Baseline I Stress I Rest | Meditation I I Amusement I Meditation II I Recovery

Figure 3.1: The two different versions of the lab study protocol. The gray boxes refer
to points in the protocol where self-reports were filed by the subjects.

minutes. After the TSST, the study participants were given a ten-minute rest
period.

5. Meditation: The amusement and stress conditions both aimed at exciting
the subjects, either in a positive or a negative way. These conditions were
both followed by a guided meditation. The aim of this meditation was to ’de-
excite’ the subjects and bring them back to a close to neutral affective state.
The meditation was based on a controlled breathing exercise, instructed via
an audio track found online. Subjects followed the instructions with closed
eyes, while sitting in a comfortable position. The meditation had a duration
of seven minutes.

6. Recovery: At the end of the protocol, the sensors were again synchronised
via a double tap gesture. Then, the sensors were removed. In addition, the
subjects were debriefed (e.g., informed that the panel members were not hu-
man resources specialists but just 'normal’ researchers). Further, during the
debriefing period subjects had the opportunity ask detailed questions about
the study protocol and its aim.

In total, the study had a duration of about two hours and Figure 3.1 depicts the
protocol. As detailed above, our lab protocol features two major stimuli: an amuse-
ment condition and a stressful condition. These two conditions were interchanged
(see Figure 3.1) between different subjects in order to avoid effects of order. In
addition to these conditions, a baseline and two meditation periods were recorded.
In order to induce variance in the subjects’ posture, the baseline, amusement and
stress conditions were conducted either standing or sitting. For each condition,
approximately half of the subjects were standing and the other half were sitting.
During the meditation, however, all subjects were seated.

Self-reports: During the study five self-reports were collected from each par-
ticipant. Their timing is indicated by the gray boxes in Figure 3.1. Each of the
self-reports contained several questionnaires. First, participants filled in a Positive
and Negative Affect Schedule (PANAS), which consists of 20 items (ten positive
and ten negative items) each rated on a five point Likert scale. PANAS reliably
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assesses positive (PA) and negative affect (NA), which are two largely independent
dimensions, according to Watson et al. [1988]. PA reaches from ’sad and lethargic’
(low value) to 'concentrated and energetic’ (high value). NA ranges from ’calmness’
(low value) to ’subjective distress’ (high value). Furthermore, we added the items
Stressed?, Frustrated?, Happy?, and Sad?, which were scored using the same scale
as in the PANAS. These items can be used to generate the same labels as used
by Plarre et al. [2011]. Second, similar to Gjoreski et al. [2016], we used six items
from the State-Trait Anxiety Inventory (STAI) to gain insight into the anxiety level
of the participants. The items were chosen according to their factor loads Barker
et al. [1977], and scored on a four point Likert scale. Third, similar to Koelstra
et al. [2012] we used the Self-Assessment Manikins (SAM) to generate labels in
valence-arousal space. Finally, after the TSST, nine items from the Short Stress
State Questionnaire (SSSQ), developed by Helton and Néswall [2015], were added
to the questionnaires in order to identify which type of stress (worry, engagement, or
distress) was most prevalent in the subjects. The values from these questionnaires
can be seen as subjective reports on how the participants felt during a condition.
Physiological Data: For the physiological data collection, we used both a chest-
and a wrist-worn device: As depicted in Figure 3.2, the RespiBan was placed
around the subject’s diaphragm. The RespiBan? itself is equipped with sensors
to measure 3-axes acceleration (ACC) and respiration (RESP), and can function
as a hub for up to four additional modalities. Using these four analogue ports,
electrocardiogram (ECG), electrodermal activity (EDA), electromyogram (EMG),
and skin-temperature (TEMP) were recorded. All signals acquired by the RespiBan
were sampled at 700 Hz. The RESP has been recorded via a respiratory induc-
tive plethysmograph (RIP) sensor. ECG data was acquired via a standard three
point ECG. For this purpose Ag/AgCl electrodes were employed and located at the
following positions: The plus electrode was placed on the center of the chest (ap-
proximately 5 cm below the jugular notch of the sternum), the minus electrode on
the lower left rib cage, and the ground electrode on lower part of the left abdomen.
The EDA data was recorded on the rectus abdominis. This is due to the following
consideration: Connecting the RespiBan hub to electrodes located on the subjects’
palm or finger tips would pose strong limitations on the subjects’ ability to move
freely. Hence, following a recent literature review from Taylor and Machado-Moreira
[2013], which indicates a high density of sweat glands on the abdomen, the EDA
data was recorded at this location. The TEMP sensor was placed on the sternum.
Similar to Wijsman et al. [2010] the EMG data was recorded on the upper trapezius
muscle on both sides of the spine. Using medical tape the wires connecting the
RespiBan hub to the electrodes/temperature sensors were attached firmly to the
subject’s torso. The entire RespiBan setup is a bit bulky, but the subjects were still
able to move freely. A strong advantage of the RespiBan is its high sampling rate.

2Manufacturer website: https://www.biosignalsplux.com /en
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Figure 3.2: Placement of the RespiBan and the ECG, EDA, EMG, TEMP sensors.

Furthermore, in future smart fabrics might be able to integrate the sensors housed
in RespiBan. In order to avoid wireless packet loss, the recorded data was stored
locally and transferred to a computer for further processing after the experiments.

In addition to the data acquired using the RespiBan, a device with the formfactor
of an smartwatch has been employed. This is due to the following observations:
First, the RespiBan is, considering the size of the hub and attached cables/sensors,
quite bulky. This poses strong limitations on the comfort and, hence, we believe
that such a setup would not be used by many in real life. In contrast, smartwatches
have almost the same formfactor as normal watches and are popular among users.
Secondly, comparing the performance of classifiers trained on data originating from
different devices is interesting. KEspecially, as in the desired setup the RespiBan
incorporates the gold standard sensors (e.g., ECG) sampled at high frequencies,
whereas a smartwatch is much closer to a consumer wearable. Due to the broad
acceptance of the Empatica E4? in the AR community, e.g., Gjoreski et al. [2016],
Heinisch et al. [2019], or Di Lascio et al. [2019], we chose to employ this device
too. In the presented experiment all subjects wore the Empatica Ej on their non-
dominant hand. The E4 records photoplethysmogram (PPG) (64 Hz), EDA (4 Hz),
TEMP (4 Hz), and ACC (32 Hz).

Saliva Probes: In addition to the self-reports and physiological data, saliva
probes were collected from the first six subjects. These samples were collected at
five different occasions during the above presented lab study protocol:

3Manufacturer website: https://www.empatica.com/en-eu/
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D.

Before the recording of the baseline stated. This will be referred to as Pre-
Base.

Immediately after the TSST, referred to as Post-TSST.

Ten minutes after the end of the TSST (referred to as TSST+10 and collected
at the end of the rest period in Figure 3.1).

After the meditation, which followed the rest period. This is referred to as
Post-Medi.

Directly after the amusement condition, called Post-Amusement.

The saliva probes were analysed with regards to their cortisol content, which is a
well-established stress hormone Kirschbaum et al. [1993].

Study Participants: Due to the deception necessary for the TSST, only grad-
uate students from our research facility were targeted as participants. The recruit-
ment process happened via Email. Exclusion criteria, stated in the study Email,
were pregnancy, heavy smoking, mental disorders, chronic conditions, and cardio-
vascular diseases. In total, 17 subjects participated in our study. However, due to
sensor malfunction, the data of two participants had to be discarded. The remaining
15 subjects had a mean age of 27.5 £ 2.4 years. Twelve subjects were male and the
other three subjects were female.
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3.3 Evaluation of Self-reports and Saliva Samples

In this section a qualitative analysis of the study protocol is performed. This
analysis is based on the self-reports collected from the participants and on the saliva
cortisol measurements. The overall goal of this analysis is to validate the study
protocol. Specifically, we evaluated if the employed experimental conditions were
suitable to manipulate the subjects’ affective state in the desired way.

For this purpose a statistical analysis (mean and standard deviation) of the col-
lected self-reports is displayed in Table 3.1. Comparing the self-reports after the
amusement and baseline condition reveals that the amusement condition had the
desired effect: The subjects report slightly higher valence and arousal values and
less anxiety (STAI), after the amusement condition. However, the effect of this
condition is rather small.

In contrast, the impact of the stress (TSST) condition is pronounced: The TSST
leads to a strong decrease in the mean valence value and an increase in the mean
STAI and arousal values. In addition, the analysis of the SSSQ scores indicates that
the subjects felt more engaged and worried than distressed during the TSST task
(Engagement: 11.7 + 2.3, Distress: 6.0 + 2.9, Worry: 10.6 & 2.3). The high 'En-
gagement’ score might result from the subjects’ high motivation to perform well in
the given task. The high "Worry’ score suggests that the subjects were determined
to leave a good impression on the panel. In our opinion, these scores demonstrate
that most subjects believed the employed cover story of the TSST. After the stress
condition, the PANAS showed increased scores with respect to positive (PA) and
negative affect (NA). The high PA score indicates that subjects felt energised and
concentrated during the TSST, which coincides with the high engagement values
reported in the SSSQ. The elevated NA score indicates an increased level of subjec-
tive distress. The statistical difference between the baseline and stress conditions
were confirmed with the Wilcoxon signed-rank test. Overall, based on the analysis
of the collected self-reports, the experimental protocol (especially with respect to
the stress condition) is suitable to induce the desired affective states.

Cortisol is a well-known stress hormone. Hence, an increase of the saliva cortisol
concentration can be interpreted as an indicator of a stressful event. During the
above presented study protocol saliva samples were collected from the first six study

Table 3.1: Evaluation of the questionnaires employed during the Lab study.
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. ‘PANAS . STAI DIM
positive | negative valence | arousal
Baseline 25.5+6.0 | 12.3+2.0 | 10.8£1.9 | 6.7+0.9 | 2.5£0.9
Stress 31.3+4.7 | 22.0+£6.4 | 18.5£2.0 | 4.5+1.6 | 6.8£1.8
Amusement | 25.845.1 | 11.4+2.1 | 9.3£2.0 | 7.5+ 0.6 | 3.0£1.6
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Figure 3.3: Saliva samples obtained from the first six subjects. The cortisol level is
plotted over the course of the study protocol, the vertical bars indicate
the standard deviation.

participants. Figure 3.3 displays the saliva cortisol level plotted against the different
conditions of the lab study protocol. The plot was generated by computing the
mean of the saliva cortisol level of the first six subjects for each condition and then
arranging the values according to version B of the study protocol (see Figure 3.1).
Although the sensor data of the first subject had to be discarded due to sensor
malfunction, the saliva probes of this subject are fully available and hence were
included in this evaluation.

From Figure 3.3 it becomes apparent that the highest mean saliva cortisol con-
centration was reached for the TSST+10 measurement. For this measuring point
the average saliva cortisol level is more than a factor two larger than mean value
collected prior to the baseline recording (indicated by Pre-Baseline in Figure 3.3).
In addition, it was found that the saliva cortisol concentration increases between the
end of the TSST (referred to as Post-TSST) and the sample collected at TSST+10.
These observations are in accordance with the findings of Kirschbaum et al. [1993].
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Nevertheless, these saliva cortisol reports have to be interpreted with caution. This
is due to the following considerations: First, only from a fraction (N=6) of the study
participants saliva samples were collected. Second, for each of these subjects only
a five samples were collected. Having these limitations in mind, the analysis of the
saliva probes still serves as plausibility check and indicates that the stress condition
was working well and that (physiological) stress was elicited successfully.
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3.4 Employed Sensors and Feature-based
Evaluation

The analysis and evaluation of the WESAD dataset follows the classical time series
data processing chain, presented in Section 2.4, consisting of the following steps:
data collection, preprocessing, segmentation, feature extraction, and classification
Bulling et al. [2014]. In this section focuses on the quantitative analysis of the data.
For this purpose the employed features, preprocessing, segmentation, and feature
extraction are detailed in a modality specific way. In addition, the recorded dataset
is benchmarked and the results are presented in Table 3.3 and Table 3.4.

3.4.1 Feature Extraction

Segmentation of the (preprocessed) sensor signals was done using a sliding window,
with a window shift of 0.25 seconds. The 3-axes acceleration (ACC)-features were
computed with a window size of five seconds, as similar window lengths are broadly
applied for acceleration-based activity recognition (e.g., Reiss and Stricker [2012]).
All features (except for statistical- and frequency-domain electromyogram (EMG)-
features, see below) based on physiological signals were computed with a window size
of 60 seconds. This window size was chosen following recent review by Kreibig [2010].
In Table 3.2, the features extracted from the different modalities are displayed.

On the raw ACC signal different statistical features, e.g., the mean pacc,; and
standard deviation o4cc; were computed. These features were computed both for
cach axis separately (i € {z,y,z}) and as absolute magnitudes, summed over all

axes (3 D). In addition, the peak frequency was computed for each axis separately
peak
ACC,i

From the ECG and PPG signal features related to the cardiac activity were com-
puted. For this purpose the R-peaks were identified first. In the ECG data the
R-peaks were identified with the help of Biosppy [2017]|. For the PPG data the min-
ima in the signal were used as surrogate R-peaks. Using these R-peaks, the heart
rate (HR) and corresponding statistical features (mean, standard deviation) were
computed. Moreover, from the location of the R-peaks the heart rate variability
(HRV) was derived, which is an important starting point for additional features.
For instance, the energy in different frequency bands (f§ ) was computed. The
frequency bands () used, were the very low (VLF: 0.01-0.04 Hz), low (LF: 0.04-0.15
Hz), high (HF: 0.15-0.4 Hz) and ultra high (UHF: 0.4-1.0 Hz) band. In Malik [1996]
the HR and HRV are described in detail.

As detailed in Section 2.2, the EDA is controlled by the sympathetic nervous
system (SNS). Hence, this signal is particularly sensitive to high arousal states.
First, similar to related work by Setz et al. [2010] and Sun et al. [2012], a 5 Hz
lowpass filter was applied to the raw EDA signal. Then, statistical features
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Table 3.2: List of extracted features. Abbreviations: # = number of, 3~ = sum of, STD =
standard deviation.

Feature Description
HACC,is OACC,i i€{zy,z3D} | Mean, STD for each axis and summed over axes
ACC I fACC,i I ie{z,y,2,3D} | Absolute integral for each/all axes
f ffgg j je{z,y,z} Peak frequency for each axis i
UHR, OHR, MHRV, OHRV Mean, STD of the HR, Mean, STD of the HRV
NN50, pNN50 # and percentage of HRV intervals differing by more
’ than 50 ms
TINN Triangular interpolation index
ECG TMSHRYV Root mean square of the HRV
and fiiry, =e{VLFLF,HF,UHF} | Energy in different frequency bands of the HRV
PPG I?;X/HF Ratio of LF and HF component
Zj: z€{ULF,LF,HF,UHF} >~ the freq. components in ULF-HF
relf Relative power of freq. component
LE,orm, HForm Normalised LF and HF component
WEDA, OEDA Mean, STD of the EDA signal
MINEDA, MATED A Min and max value
OEpAa, TANgeEpA Slope and dynamic range
EDA ISCL, OSCL,TSCR Mean, STD of the SCR/SCL
corr(SCL,t) Correlation btw SCL and time
#sCR # identified SCR segments
?gl i ch R > SCR startle magnitudes and response durations
SOR Area under the identified SCRs
HEMG;OEMG Mean, STD of EMG signal
rangegnG Dynamic range
I Szl Absolute integral
TEMG Median of the EMG signal
EMG Py Pivie 10th and 90th percentile
HFEMG fEmG, Mean, median and
pear, Peak frequency
PSD(femc) Energy in seven bands
#%e&ké # peaks
Kenics ogﬁpc Mean, STD of peak amplitudes
DS gn]\j[% >~ and normalised }_ of peak amplitudes
T Mean, STD of inhalation (I)
ze{l,E} and exhalation (E) duration
RESP | {/E Inhalation/exhalation ratio
TANGeRESP; Volinsp Stretch, Volume
TateRESP Breath rate
Y RESP Respiration duration
WTEMP, OTEMP Mean, STD of the TEMP
TEMP MINTEMP, MATTEMP Min, max TEMP
ranger gy p Dynamic range
Oremp Slope
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were computed (e.g., mean, standard deviation, dynamic range, etc.). In order to
separate the tonic (skin conductance level (SCL)) and a phasic (skin conductance
response (SCR)) component of the EDA signal, the method proposed by Choi et al.
[2012| was applied. After separating the SCL and SCR, additional features, e.g.,
number of peaks in the SCR (#scr), were computed. Details about the EDA-
related features can be found in Choi et al. [2012] and Healey and Picard [2005].

Two different processing chains were applied to the raw EMG signal. In the first
chain, the DC component was removed by applying a highpass filter. Then, the
filtered signal was cut into 5-second windows, and statistical and frequency-domain
features (e.g., peak frequency) were computed. In addition, the spectral energy
(PSD(femc)) was computed in seven evenly spaced frequency bands from 0 to 350
Hz. Following the second processing chain, a lowpass filter (50 Hz) was applied
to the raw EMG signal. Next, the processed signal was segmented into 60-second
windows. On these windows different peak features, e.g., number #%Lfg and mean
amplitude u’é’fﬂ;, were computed. For a more detailed description of EMG-based
features, we refer the reader to Wijsman et al. [2010].

Before computing features on the RESP signal, a bandpass filter (cut off frequen-
cies: 0.1 and 0.35 Hz) was applied. Next, a peak detector was used to identify
minima and maxima. Following Plarre et al. [2011] the mean and standard devia-
tion of the inhalation/exhalation (uy, o7, pg, and og) were computed. In addition,
as also detailed by Plarre et al. [2011], the ratio between inhalation and exhalation
(I/E), stretch rangegpsp, inspiration volume vol;,s,, respiration rate rateggsp, and
respiration duration were derived ) ppqp-

On the raw TEMP signal common statistical features (mean, standard deviation,
min, max, etc.) were computed. In addition, the slope of the signal drgyp is used
as a feature.

3.4.2 Classification Algorithms and Evaluation Metric

The extracted features, detailed above, serve as input for the classification. Within
the benchmark presented below five different feature-based machine learning (ML)
classifiers were compared: decision-tree (DT), random forest (RF), AdaBoost (AB),
linear discriminant analysis (LDA), and k-nearest neighbour (kNN). As the entire
data processing chain was implemented in Python, the scikit-learn implementation,
see Pedregosa et al. [2011], of the aforementioned algorithms has been used. For the
AB ensemble learner, DTs were used as base estimators. For each of the decision-
tree-based classification algorithms (DT, RF, AB), information gain was used to
measure the quality of splitting decision nodes, and the minimum number of samples
required to split a node was set to 20. The number of base estimators was set to
100 for both of the ensemble learners (RF and AB). Moreover, a LDA and a kNN
(with k=9) classifier were used for classification.

We used accuracy and Fij-score as evaluation metrics. Accuracy represents the
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number of correctly classified instances out of all samples. The F}-score is defined
as the harmonic mean of precision, indicating the reliability of the results in a
certain class, and recall, representing a measure of completeness. To obtain the
final F-score, precision and recall were computed for each class separately and then
averaged. Applying the Fi-score is recommended for unbalanced classification tasks,
which is the case when using WESAD (since the various conditions were carried out
at different lengths during the study protocol). All models were evaluated using the
leave-one-subject-out (LOSO) cross-validation (CV) procedure. Hence, the results
indicate how a model would generalise and perform on data of a previously unseen
subject.

3.4.3 Classification Results

Based on the features described above classical feature-based ML classifiers are
trained and their performance is compared. For the data analysis and evaluation
presented here, we only consider the data recorded during the baseline, stress (Trier
Social Stress Test (T'SST)), and amusement conditions of the study protocol (see
Figure 3.1). The analyses presented in section 3.3 indicated that the employed
study protocol elicited the desired targeted affective states. Hence, for the quantita-
tive analysis presented below the conditions of the study are used as ground truth.
Based on the affective states of the study protocol (baseline, stress, and amusement
condition), we distinguish two classification tasks. First, a three-class problem was
defined: baseline vs. stress vs. amusement. Results on this classification task are
presented in Table 3.3. Second, a binary classification task was defined by combin-
ing the states baseline and amusement to a non-stress class, posing the stress vs.
non-stress classification problem. Results of this classification task are presented
in Table 3.4. For both classification tasks, 16 different modality combinations are
evaluated:

1. Each of the four modalities of the wrist-based device separately (ACC, PPG,
EDA, and TEMP).

2. Each of the six modalities of the chest-based device separately (ACC, ECG,
EDA, EMG, RESP, and TEMP).

3. All modalities of one device (wrist or chest).

4. All physiological modalities of one device (same as last entry, but without
ACQC).

5. All modalities from both devices (wrist and chest) together.

6. All physiological modalities from both devices together (same as last entry,
but without ACC).

The evaluation was performed using each of the five machine learning algorithms,
specified previously. We performed a LOSO evaluation and for each subject each
setup (defined by the classification task, applied classifier, and included sensor
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modalities) was run five times, to report mean and standard deviation of the eval-
uation metrics (Fj-score and accuracy). Since LDA and kNN are deterministic
classifiers, only the mean values are reported.

The data considered here, belonging to the three affective states of interest,
amount to approximately 36 minutes per subject. With 15 subjects and using a
sliding window with a shift of 0.25 seconds, approximately 133000 windows were
generated. Out of these windows, 53 % belong to the baseline class, 30 % represent
the stress class, and 17 % originate from the amusement condition. In the last two
rows of Table 3.3 the baseline Fij-score/accuracy of a random and a sophisticated
guesser on the three-class problem are displayed. The random guesser is defined
to choose one of the three possible classes at random, thus reaching an accuracy of
33% and a Fj-score of 32%. In contrast, the sophisticated guesser would always
choose the majority class. Hence, a sophisticated guesser would reach an accuracy of
53%. However, its’ Fi-score would only be 32 %. In the two last rows of Table 3.4,
the same types of random and sophisticated guesser are presented for the binary
classification task.

Comparing the performance of the employed algorithms, on the three-class task
(Table 3.3) and binary classification task (Table 3.4), it becomes apparent that
the ensemble-based methods (RF, AB) and the LDA reached similar classification
scores. Depending on the input modalities, these classifiers reach scores up to 80 %
for the three-class problem and up to 93 % for the binary task, respectively.

Concluding from Table 3.3 and Table 3.4, the kNN had the overall worst perfor-
mance, reaching accuracies of at most 60 % on the three-class problem, and 78 % in
the binary task.

Using only motion-based features (wrist and/or chest ACC) leads to considerably
lower classification scores compared to results obtained using physiological features.
This suggests that the physiology-based features provide a deeper insight into the
affective states of the subjects than the motion patterns. Moreover, we can rule
out the possibility that our classifiers only learned to distinguish between motion
patterns or postures characteristic for the conditions of the protocol.

In the three-class problem the accuracies using one of the wrist-based physiologi-
cal modalities range from 59 % to 70 %. Using one of the physiological chest-based
modalities on the same classification problem, accuracies between 54 % and 72 %
are reached. In the binary classification task the accuracies using a wrist-based
input modality range from 69 % to 86 % and the accuracies using one of the chest-
based modalities range from 67 % to 88 %. In both classification tasks the RESP
is a particularly strong chest-based modality leading to the best result of a single
modality. Besides the stress-related changes in the respiration, this can be partially
explained considering the fact that the study participants spoke during the TSST.
Hence, the classifiers might have partially learned to distinguish between speaking
(stress condition) and non-speaking episodes (baseline and amusement condition).
In both classification tasks, using only the TEMP data, either chest or wrist-based,
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Figure 3.4: Confusion matrix of the best setup (AB classifier trained using the chest-
based physiological features) for the three-class problem.

as input leads to low classification scores. This shows that, TEMP is not a well-
suited modality to solely base the classification of affective states upon. Comparing
the results obtained using only the wrist- or chest-based EDA data, the latter seems
to hold more relevant information leading to somewhat higher accuracies in both
classification tasks. In contrast, comparing the performance of classifiers solely re-
lying on the PPG or ECG data, the former leads to slightly higher accuracies. The
results reached using all physiological chest-based modalities (three-class accuracy:
80 %, binary accuracy: 93 %) are higher than the ones obtained using all physio-
logical wrist-based modalities (three-class accuracy: 76 %, binary accuracy: 88 %).
When both wrist- and chest-based physiological modalities are combined, an accu-
racy of 79%/92 % is reached for the three-class/binary problem, respectively. This
is no improvement compared to results achieved using only the chest-based physi-
ological modalities. This indicates that if the chest-based modalities are available,
the wrist-based modalities become redundant. Nevertheless, the classification scores
reached using only the physiological wrist-based modalities are very promising, es-
pecially considering the minimal intrusive nature of the device used. Overall, the
best performance result (in terms of accuracy) on each of the classification task is:

e 80.34% (three-class problem, using all chest-based physiological modalities,
AB classifier)

e 93.12% (binary case, using all chest-based physiological modalities, LDA)

These results are comparable to the work of Gjoreski et al. [2016], who reported
an accuracy of 72% on a three-class problem (no, low, and high stress) and an
accuracy of 83 % in the binary case.
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In Figure 3.4, the confusion matrix of the best setup, AB classifier trained using
the chest-based physiological features, on the three-class classification problem is
displayed. The values indicate that the classifier was able to distinguish well be-
tween the baseline and the stress class. However, distinguishing between the classes
baseline and amusement was difficult. The explanation for this is twofold. First,
the physiological changes elicited by amusement are subtle. Second, the self-reports
indicate (see Table 3.1) that the subjects’ affective state was less influenced by the
amusement condition compared to the stress condition.

Using all physiological features and the DT classifier, the subject-specific accura-
cies range from 69% to 98% and from 82% to 100%, in the three-class classification
problem and the binary case, respectively. However, only weak correlations were
found between the subject-specific accuracies and the difference between the selfre-
ports of the corresponding conditions (e.g., Arousalsiyess — Arousaln, siress). Nev-
ertheless, the large inter-subject differences emphasise the need for personalisation
methods.

In order to assess the feature importance, a DT was trained for both the three-
class and the binary classification task, using all available features. The feature
importance is computed using the Gini criterion. The results of this experiment are
displayed in Table 3.5. In both cases (three-classes and binary classification) the
two most important features (ogESP’, and p5GY) were alike. This suggests that the
classifier in the three-class problem first learned to distinguish between stress and
non-stress states, before it learned to classify the baseline and amusement classes.

Table 3.5: Feature importance for the three-class and binary classification task con-
sidering all modalities.

Importance | Three-class || Importance | Binary Task
O 23 O_RESP, chest 0 35 O_RESP, chest
: E : E
0.11 ug%G, chest 0.20 MEI%G, chest
0.07 min¥rst 0.09 maz¥st
0.06 HAEE o 0.07 range'grist
0.05 rangeyp 0.05 e
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3.5 Conclusion

In this chapter, a detailed description and analysis of WESAD, a dataset for
multimodal wearable stress and affect detection, has been provided. Section 3.1
outlined related work, highlighting other available datasets and their limitations
(e.g., relying strongly on EEG data). In Section 3.2, the study protocol has been
presented and the its effectiveness was verified using the collected self-report data
(see Section 3.3). Further, saliva samples collected from a subset of participants were
used as additional validation of the lab study protocol. The analysis of these saliva
samples indicated that the Trier Social Stress Test had successfully induced stress
in the study participants. In Section 3.4 the employed sensors, their placement,
derived features, and the quantitative classification results were presented.

In research question RQ 2 (How is benchmarking and direct comparison of dif-
ferent algorithmic approaches for wearable-based affect recognition feasible?), five
demands for a wearable-based benchmarking dataset were defined. These are all
met by WESAD:

[. In contrast to other available datasets, WESAD contains all physiological
modalities commonly integrated in commercial and medical devices: photo-
plethysmogram (PPG), electrocardiogram (ECG), electrodermal activity (EDA),
electromyogram (EMG), respiration (RESP), skin-temperature (TEMP), and
3-axes acceleration (ACC). The data was recorded in a redundant fashion and
at high sampling rates (up to 700 Hz). By using these modalities, we hope
that our dataset will enable and support the development and evaluation of
new affect recognition systems.

IT. Although data was acquired in a lab setting, the sensor setup allowed the par-
ticipants to move as freely as possible. In addition, during the data recording
the effect of different postures (standing and sitting) was investigated.

III. The study protocol was tailored to elicit three different affective states (neutral,
stress, amusement), using a set of well studied stimuli. This enables not only
the detection of stress related arousal, but also of valence.

IV. WESAD contains data of 15 study participants.

V. A large set of standard features and classifiers has been used to benchmark
WESAD.

In the benchmarking experiments both a three-class (baseline vs. stress vs. amuse-
ment, accuracy 80 %) and a binary (stress vs. non-stress, accuracy 93 %) were tar-
geted. These results are promising, however, due to the limitations of WESAD, re-
garding the number of subjects, their age, and gender diversity, these results should
be interpreted with caution. Nevertheless, since using the leave-one-subject-out
(LOSO) evaluation scheme, the results indicate that generalisation is possible.

During the benchmarking of WESAD, a detailed analysis on the importance of the
two device locations as well as the different sensor modalities has been performed.
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In the experiments presented before, EDA, ECG, PPG and RESP were particularly
strong modalities. ACC, EMG, and TEMP, however, were only of minor impor-
tance. Considering the three-class problem, the overall highest classification results
(accuracy of 80 %) was archived using the chest-based physiological features (without
the motion information). Adding data of the wrist-based device lead to no further
improvement. Using only physiological data recorded from the wrist a three-class
accuracy of 76 % was reached. This result is very promising and motivating. It indi-
cates that using data gathered via a minimally intrusive device with the formfactor
of a smartwatch can be used to detect affective states surprisingly well. For future
(field) studies it seems that the burden of the quite bulky chest-based sensor can be
lifted by using a wrist worn device.

In this chapter, the feasibility of affect recognition purely based on physiologi-
cal data in the lab has been demonstrated. However, the laboratory environment
represents a constrained setting. This is mainly due to the following considerations:

1. Available Stimuli: In a lab setting strong emotional stimuli, like videos
or the Trier Social Stress Test are easily integrated into the study protocol.
These stimuli are well known from psychological research (e.g., Kirschbaum
et al. [1993], Lang et al. [1999], Samson et al. [2016]). Hence, the elicitation
of certain affective states is feasible.

2. Labelling: Due to the known starting and end points of the different con-
ditions, the ground truth is easily generated in a lab study (e.g., using the
study protocol). In addition, questionnaires can be used after each stimulus
to generate additional labels.

3. Data quality: Due to the constrained setting, the sources of noise which are
present in the acquired physiological data can be reduced to a minimum.

The clear goal of wearable-based affect recognition is to detect a person’s affec-
tive state in unconstrained environments. Hence, an appropriate next step is the
conduction of a field study. However, the above listed points concerning stimuli,
labelling, and data quality are more challenging in the field. So, as pointed out
in related literature, e.g., Plarre et al. [2011], a decrease in the performance of the
affect recognition systems is to be expected.
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Study Il: Wearable-based Affect Recognition in
the Field

Many users of commercial mobile devices are interested in automatically logging
information related to their physical health, e.g., counting steps, or tracking con-
sumed /burned calories. Recently, a first generation of commercial devices promising
insights into mental health, by detecting stress® 2, entered the consumer market.
Providing users with such data-driven insights into their, especially negative, affec-
tive states could increase awareness and lead to an overall health improvement.

As presented in Chapter 3, the detection of different affective states can be done
to a satisfying extent in lab environments, reaching high classification scores. This
has been observed both related in literature, e.g., Wijsman et al. [2010], Plarre et al.
[2011], and Soleymani et al. [2012b], and in own work (see Chapter 3). The overall
goal of affect recognition (AR) is to detect affective states in unconstrained envi-
ronments. Hence, a desirable next step is to investigate the performance of machine
learning methods detecting different affective states from data and labels gathered
in the field. For this purpose research question RQ 3 (What is the performance
of machine learning systems that detect multiple affective states in unconstrained
environments?) has been formulated and a field study dataset, containing affective
labels and physiological data, has been recorded.

In this chapter, the above stated research question is targeted and the remainder
of this chapter is structured as follows: First, in section 4.1, a brief recapitulation
of the current state-of-the-art in wearable-based AR field studies is provided. For a
more detailed description please refer to Section 2.3.2. In section 4.2, the field study
protocol, used sensors, and the labelling tool employed to target research question
RQ 3 are presented. In addition, paradigms and guidelines for the development of
labelling tools are formulated and lessons learned are provided in Section 4.3. This

Product website: www.apple.com/apple-watch-series-4/health/
2Product website: https://buy.garmin.com/en-US/US/p/567813
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directly addresses research question RQ 3a (What is an appropriate way to label af-
fective states in everyday life reliably?). The second part of this chapter (section 4.4)
addresses research question RQ) 3b (What is the performance of classifiers trained on
labels generated with an ecological-momentary-assessment tool?) and presents dif-
ferent quantitative analyses. For this purpose, the labels generated via the labelling
tool as well as the physiological and motion data acquired during the field study are
used to train different machine learning classifiers. The employed classifiers range
from classical feature-based algorithms to end-to-end trainable convolutional neural
networks.

Some passages in this chapter have been quoted verbatim from the following
sources: Schmidt et al. [2018b] and Schmidt et al. [2019a].
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4.1 Related Work

Experiments conducted by Bower [1981] indicate that human decision making and
memorization are strongly linked to their affective state. Hence, in order to build
holistic user models, the reliable detection of affective states in everyday life is key.
As discussed in Section 2.4.3, there has been a focus shift from lab to field studies
in the AR community.

In general, the common approach to AR is data-driven: Given some sort of input
data (e.g., physiological signals), machine learning models are trained to assess the
affective state of a person. Wearables, like smartphones and watches, facilitate
out-of-the-lab AR. This is due to three reasons: First, their passive, unobtrusive,
and ubiquitous sensing capability, second, their computational power, and third,
their broad acceptance by a large number of users. From a technical point of view,
smartphones offer an ideal platform to collect data and labels in the wild, see for
instance Healey et al. [2010], Muaremi et al. [2013], Gjoreski et al. [2016], Zenonos
et al. [2016], and Taylor et al. [2017] . However, in field studies no objective ground
truth, e.g., condition in a study protocol, is available. Hence, AR studies in the
wild rely solely on self-reports of the participants and these self-reports have to be
used in lieu of a protocol-based ground truth. These self-reports are often gathered
via ecological-momentary-assessments (EMAs), a method to assess the momentary
affective state of subjects in their natural environment using a set of questionnaires.

Table 4.1 presents a subset of recent AR field studies relying on EMAs. Due to the
severe health implications of long-term stress, e.g., increased risk of cardiovascular
diseases identified by McEwen and Stellar [1993], most of these studies focus on
stress detection, see Gjoreski et al. [2016], Hovsepian et al. [2015], or Muaremi et al.
[2013]. Emotions and mood, see Healey et al. [2010], Sano et al. [2015], Zenonos et al.
[2016], and Taylor et al. [2017], were targeted less frequently in AR field studies.

Table 4.1: Overview of recent AR field studies.
Author year | Target States
Muaremi et al. [2013] | 2013 | Stress
Hovsepian et al. [2015] | 2015 | Stress
Gjoreski et al. [2017] 2016 | Stress

Healey et al. [2010] 2010 | Emotion

Sano et al. [2015] 2015 | Mood

Zenonos et al. [2016] 2016 | Mood

Taylor et al. [2017] 2017 | Mood & Stress forecasting
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4.2 Field Study Protocol

The number of AR studies conducted in the wild is growing. Contributing to
this body of work, we conducted an AR field study collecting physiological, motion,
context, and affective data. The goal of this study was to investigate the performance
of multimodal real-life affect recognition systems. In this section, the study protocol,
and the employed labelling tool will be presented.

Study Protocol and Sensory setup: Physiological data was collected using the
Empatica E43 smartwatch. This choice is due to the following three considerations:

1. The E4 has the formfactor of a standard smartwatch, incorporates multiple
sensors, and the "raw" data is accessible. Furthermore, the E/ (unlike the
RespiBan) does not require the placement of electrodes and/or the connection
of any cables. Hence, using the £/ as measurement device reduces the burden
for the user to a minimum, while ensuring high data quality.

2. Based on the lab study results presented in Chapter 3, data acquired by the E4
can be used to classify the affective state to a satisfying extent (see Table 3.3).

3. The E4 (or Affectiva @ sensor) has been used in many studies with a similar
target, e.g., Gjoreski et al. [2016], Taylor et al. [2017], Gashi et al. [2018].
Hence, using the F4 to collect physiological data makes our results comparable
to related work.

The E4 houses four different sensor types: 3-axes acceleration (ACC) (32 Hz),
electrodermal activity (EDA) (4 Hz), photoplethysmogram (PPG) (64 Hz), and
skin-temperature (TEMP) (4 Hz). In total, physiological data of 12 healthy users
(all students at our facility) was recorded. The subjects were instructed to wear
the £/ on their non-dominant hand during their wake hours. During potentially
harmful activities for the E4 (e.g., showering, washing the dishes, etc.) the subjects
were asked to take off the F4. However, during such a period participants were
told that the E4 should not be switched off. Hence, the subjects recorded up to 17
hours of physiological and motion data every day. The outline of the data collection
protocol is depicted in Figure 4.1. During the week, the study leader met the study
participants twice a day:

1. Once the subjects arrived at the research facility in the morning, the study
leader met the participant to exchange the F/. During this procedure, the
subject received a new E/, which was then worn for the remainder of the day.
The study leader downloaded the data from the device worn during the prior
day.

2. Around noon/early afternoon, the study leader and subject met again for a
screening. During this screening, the study leader and the participant exam-
ined the collected data visually and a structured interview was conducted in
order to gain additional context information.

3Manufacturer website: https://www.empatica.com/en-eu/
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Figure 4.1: Weekday outline of the field study protocol.

During the weekend, this procedure was not feasible. Hence, on Friday the subjects
received a second E/ and were instructed to use it for the data collection on Sunday.
Consequently, on Mondays the study leader collected two E4s from the participants
and during Monday’s screening the data from Friday, Saturday, and Sunday was
inspected.

Context Logging and Labelling Tool: In order to aggregate context data,
the subjects installed a so called ContextLogger app on their smartphone. This
ContextLogger was designed to acquire context information in a passive fashion.
Passive, in this case, means that no interaction between the subject and app was
required. However, the ContextLogger was running for the entire period of the study
on the subject’s smartphone as a background application. The ContextLogger was
used to aggregate contextual information like weather, location, screen events, and
activities. As this context information is rather sensitive, the employed data logging
consent form allowed the subjects to select the recorded modalities individually. All
recorded contextual information was time-stamped and uploaded to a server at the
end of a each day.

Prior to the study, all participants completed a Perceived Stress Scale (PSS)
and a Pittsburgh Sleep Quality Index (PSQI) questionnaire. However, in order to
capture the subjects’ affective states on a regular basis, an Android EMA app was
developed and deployed on the subjects’ smartphone. All subjects were fluent in
German, hence, the app was developed in German. The app incorporated several
(shortened, well-established) questionnaires:

o The Self-Assessment Manikins (SAM), found in Morris [1995], and the Photo
Affect Meter (PAM), developed by Pollak et al. [2011], (exemplary screen
depicted in Figure 4.2b) were used to generate labels in valence-arousal space.

e One screen in the app was dedicated to emotional categories. Here the subjects
had the choice between the basic emotions, see Ekman and Friesen [1978|,
namely anger, fear, surprise, happiness, disgust, and sadness or were able to
select "None of them".

e Similar to Gjoreski et al. [2016] a shortened STAI was used and similar to
Plarre et al. [2011] the subjects reported their current stress level on a four
point Likert scale.
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Figure 4.2: Exemplary screens from the developed EMA app.

e Subjects reported the intensity of the physical activity they had been pursuing
during the past 10 minutes.

During an initial face-to-face meeting, the functionality of the E4 and both apps
(EMA app and ContextLogger) were explained to the subjects. Using the EMA app
the subjects filed automatically and manually triggered self-reports on their affective
states. Explanatory screens are displayed in Figure 4.2. For each subject, the EMA
app was customised to match their diurnal rhythm. During the configured time
span (e.g., 7.30 to 22.30) the EMA app was triggered automatically approximately
every 2 hours. After such a trigger the subjects received a notification that an EMA
should be filed. In addition to the standard questionnaires incorporated in each set
of EMAs, the first and last set of questionnaires included an additional screen:

e First questionnaire of the day: Similar to Sano et al. [2015], the subjects
were asked about their sleep duration and quality.

e Last questionnaire of the day: Like in Muaremi et al. [2013], the subjects
were asked about their overall stress and mood level throughout the day.

As depicted in Figure 4.2a, the subjects had the freedom to terminate the EMA
app by selecting the "Please no more disturbances for today" button. This button
paused the remaining automatically scheduled questionnaires and added the final
question screen (see Figure 4.2c) to the current set of questionnaires. During the
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initial face-to-face meeting, the subjects were also instructed to trigger an EMA
manually when they felt a change in their affective state. At the end of each day,
the labels acquired using the EMA app were automatically uploaded to a server.

Ethics and Demographic information: The study was approved by both the
workers council and the data security officer of our research facility. Participants
were mostly recruited via Email and all participants were students. In total, 12
healthy subjects (7 male, 5 female) participated in the study. Due to sensor mal-
function we had to exclude one participant (female). Hence, further analysis will
be based on the remaining 11 subjects (mean and standard deviation age: 26 £ 2.5,
mean and standard deviation participation duration: 16 £+ 1 days).
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4.3 EMA Guidelines, Implementation Details, and
Lessons Learned

As no ’best practice’ guidelines for wearable-based AR field studies are available,
the ways these studies have been conducted are diverse. This makes the direct
comparison of the results difficult. In this section, we provide practical guidelines
for AR field studies, focusing especially on frequent and high quality affective labels
generated via EMAs. In order to ensure optimal objectivity, reliability, and validity
of EMA data, four paradigms for EMA-based labelling tools are formulated:

Paradigms for ecological-momentary-assessment in AR field studies

1. Intrusiveness: EMAs should be only minimally intrusive.

2. Autonomy: Subjects can decide when to file an EMA.

3. Redundancy: Multiple sources facilitate validity /plausibility checks.
4. Motivation: Motivated subjects file more EMAs.

Following these paradigms, seven guidelines for the design and application of EMA
apps are provided below. In addition, the implementation of these guidelines into
the presented AR field study is detailed. Based on the 1248 EMAs collected during
the study the effectiveness of the formulated guidelines is evaluated and lessons
learned are formulated.

1) Sampling Rate and Scheduling:

Guideline: The trade-off between overloading and sampling the affective state
of a subject as frequently as possible needs to be balanced. In literature,
scheduling an EMA every two hours, Zenonos et al. [2016], or approximately
five times a day, Gjoreski et al. [2016], seems to be adequate.
Implementation: In accordance with Zenonos et al. [2016], we chose to trigger
an EMA automatically every 120 + z, = € (0 < z < 30) minutes. The lag
x was introduced to add randomness to the sampling points. Following an
automatic trigger, the subjects were notified that they should file an EMA. If
subjects did not complete the EMA within 30 minutes after the trigger event,
they received a second notification. However, the subjects had the freedom to
ignore these notifications and file the EMA some time later.

Insights & lessons learned: Figure 4.3 displays the distribution of EMAs filed
over a day. Our sampling rate ensures a mostly even distribution of EMAs.
In addition, none of our subjects reported to feel overloaded by the number
of scheduled EMAs. The deviations in the number of completed EMAs at
the beginning (6.00-9.00) and end (21.00-23.00) of the day can be explained
by the differences in the diurnal rhythm of the subjects. From Figure 4.3 it
becomes apparent that many EMAs were completed around 22.00. This is
easily explained by the fact that many subjects customized the EMA to not
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Figure 4.3: Distribution of questionnaires filed over a day.

be triggered after 22.00 and, hence, completed the last EMA of the day around
22.00.

Filing Time and Number of Items:

Guideline:  EMAs should target the core goal of the study, and they should
include as few items as possible. For example, Muaremi et al. [2013] report
that they had to reduce their EMA to 10 items after receiving complaints of
the study participants.

Implementation: While reporting various aspects of affective states (even in
a redundant fashion), the number of items is kept as low as possible, e.g.,
by reducing the number of STAI items. In addition, all questions could be
answered with a single click (no free text or audio reports were necessary).
Insights € lessons learned: In our study the median filing time of an EMA
was 40 seconds. As none of our subjects complained about the EMA length,
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Table 4.2: Comparison of automatically and manually triggered EMAs, with regards
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to the basic emotion label.
Automatic scheduled | Manually triggered | Total

EMAs 880 368 1248

With Basic Emotion | 204 \ 126 | 330

we believe that both filing time and EMA length were appropriate.

Manual Trigger of EMAs by Subject:

Guideline: Since automatically triggered EMAs are completely independent of
the affective state of the subjects, the chance of missing "interesting" events
is high. Due to memorization effects, e.g., the perception of the event un-
der consideration is influenced by the current affective state, labelling these
"interesting" events in hindsight is difficult. Hence, in addition to randomly
scheduled EMAs, subjects should also have the freedom to trigger EMAs man-
ually (e.g., by opening the EMA app).

Implementation: In our field study, the subjects were encouraged to trigger an
EMA whenever they felt an a change in their affective state by simply start-
ing the EMA app. In order to avoid overlapping labels and ensure adequate
spacing between the selfreports, after a manual trigger, the subsequent auto-
matically triggered EMA was postponed.

Insights € lessons learned: Table 4.2 summarises the total number of EMAs
filed during our field study. For most EMAs, the subjects reported no basic
emotion (by selecting the "None of them" button in the corresponding screen).
In addition, comparison of the absolute valence and arousal values shows higher
valence and arousal values for manually triggered EMAs. Further, the fraction
of reported "basic emotions" to "None of them" is substantially higher in the
manually triggered EMAs (34 vs 23%). In our opinion this bias is plausible
as discrete emotional are more constrained in their resolution. Hence, mixed
or ambiguous emotions are captured less reliably using a discrete model, see
for instance Eerola and Vuoskoski [2011]. Overall, these results suggest that
manually triggered EMAs contain reports on more intense and less ambigu-
ous emotional states. This supports our recommendation to allow the manual
trigger of EMAs.

Validity and Redundancy of EMAs:

Guideline: Self-reports are subjective. However, using well-established ques-
tionnaires increases the validity of the results and enables a comparison to
other studies. In addition, using multiple questionnaires assessing similar con-
structs (e.g., basic emotions and points in valence-arousal space) offers the
possibility to check the EMA values for consistency.
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Figure 4.4: Basic emotions of all subjects mapped to valence-arousal space.

Implementation: During the presented field study several well-established scales
(e.g., SAM, PAM, State-Trait Anxiety Inventory (STAI)) and a list of basic
emotions were used to generate affective labels. In addition, subjects reported
their stress level.

Insights € lessons learned: In Figure 4.4, the basic emotions reported by all
study participants are mapped into the valence-arousal space. Plots like these
help to facilitate plausibility checks: For instance, the subjects reported the
basic emotion 'Happy’ when having a positive valence. However, 'Happy’
seems to be not affected by the arousal value. In contrast, subjects only re-
ported ’Anger’ and 'Fear’ when being in a high arousal and low valence state.
"Sadness’ was mostly reported when the subjects were in a low valence and
low arousal state. This redundancy helps to check the labels for plausibility
and the depicted mapping is in accordance with other research (e.g., Eerola
and Vuoskoski [2011]).
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session. Vertical lines correspond to filed EMAs.

5) Context Information:

Guideline: In previous work, e.g., Gjoreski et al. [2017], Sano et al. [2015], it
has been shown that physical activities and sleep quality are important context
information in the domain of AR. Hence, we recommend to record this data
either automatically, e.g., using the Android Activity Recognition API, or as
part of the EMAs.

Implementation: In our field study, context information was gathered both
automatically and manually. First, the ACC data, recorded by the E/, can
be seen as some sort of context information as it can be employed to perform
an activity classification or alternatively estimate the intensity of the activity.
Second, using the subjects’ smartphones, a number of context information was
acquired both in a passive and an active fashion: Using location-based services
(e.g., weather information) and the Android Activity Recognition API, context
information was logged automatically. In addition, each EMA incorporated a
question on the physical intensity of the activity pursued during the past 10
minutes. Moreover, the first EMA of the day included items on sleep quality
and duration.

Insights & lessons learned: Based on the above detailed implementation the

recorded dataset contains different forms of context data.



6)

Daily Data-Driven Screening;:

Guideline: Understanding field data in hindsight is often difficult. Therefore,
related work suggests to conduct daily screenings to assess data quality, see
Healey et al. [2010], Hovsepian et al. [2015], Muaremi et al. [2013], Sarker et al.
[2016].

Implementation: Data-driven screenings on weekdays were an integral part of
this field study. During these screenings, a structured interview (asking the
the subjects about their health, workout sessions, etc.) was conducted. Plots
of EMAs label, motion, and physiological data were used to understand the
circumstances of important situations.

Insights € lessons learned: The plots helped to gather further context infor-
mation on major physical and mental events of the day. Figure 4.5 displays
the EDA of a subject during a workout. One immediately notices the strong
increase in EDA values. Spotting events like this and incorporating them (as
notes) into the structured interview provided a deep insight into labels and
raw data. In addition, the screenings also allowed data quality assessment on
a regular base. Hence, a reduced data quality (e.g., due to misplacement of the
E4) would become apparent timely and could be corrected by re-instructing
the subjects.

However, a drawback of these daily screenings is that they are rather time-
consuming (between 30 and 45min. per subject). Considering a large scale
study with a large number of participants and/or a long duration (e.g., three
months) this procedure quickly becomes infeasible. One way to mitigate this
issue could be to use an active labelling approach: In such a setup, a trig-
ger algorithm could be used to prompt the subject with an EMA whenever
a certain set of parameters enters an unusual state, e.g., dramatic increase of
the EDA value without a change in the ACC signal. In order to develop such
trigger algorithms data acquired from lab studies could be used.

Subjects’ Commitment:

Guideline: In order to motivate study participants to file EMAs, incremental
reward systems as in Healey et al. [2010], or the chance to win an additional
price via a lottery can be employed, e.g., Wang et al. [2014]. Following Berkel
et al. [2017], another way to increase subjects’ motivation is the use of gamifica-
tion. Keeping the subjects motivated will ensure high-quality labels, regarding
both frequency and completeness.

Implementation: In the conducted field study, every participant received a base
reward (20€ gift card for the completion of two full days). Further, among
the five participants providing the most EMAs, two were selected randomly
to receive an additional price.

Insights € lessons learned: Figure 4.6a displays the total number of EMAs
completed by each subject. Apart from S7 and S10, all of our study par-
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Figure 4.6: Plots indicating the subjects’ motivation.

ticipants filed more than 100 EMAs during their participation. Subject S8,
who participated the longest in the study, filed the highest total number of
questionnaires. In Figure 4.6b the average number of filed EMAs per day of
the study is displayed. It indicates that the number of filed EMAs stayed
almost constant over the course of the study. Hence, it can be concluded that
the participants stayed motivated and that the employed incentive system was
working well.

Based on participants’ feedback, two additional guidelines can be formulated:
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(i) Allow Hindsight Labelling:

During a intense affective event, e.g., stressful exam, it is difficult or even
impossible to complete an EMA. Relying on the subjects’ autonomy, allowing
short hindsight labelling could be beneficial to further improve label complete-
ness and quality. Further, allowing the subjects to adjust the time span of a
label, e.g., entire duration of the exam or just the final 15 min., could also
help to increase label accuracy.

Incorporate Reviewing Possibility:

Some of the study participants pointed out that the option to review items and
change the selection would have been beneficial. Relying again on the auton-
omy of the subjects, this issue could be mitigated by providing a back button
in the EMA app. Or displaying the final selection/scores before terminating
the EMA app and storing the questionnaire values.




However, as the guidelines i and ii were not incorporated in the EMA app employed
during our AR field study, no implementation details or lessons learned can be
provided.

4.3.1 Discussion

In order to make the design of EMA tools for affect recognition (AR) field studies
more comparable, four paradigms, regarding intrusiveness, autonomy, redundancy
and motivation, were formulated at the beginning of section 4.3. Based on these
paradigms seven guidelines were defined and implemented in the presented AR field
study protocol and EMA-based labelling tool. These guidelines refer to:

1 Sampling Rate and Scheduling 5  Context Information

2 Filing Time and Number of Items 6 Daily Data-Driven Screening
3 Manual Trigger of EMAs by Subject 7 Subjects’ Commitment

4 Validity and Redundancy of EMAs

Using the data and insights gained during the conducted field study the effectiveness
of the guidelines has been evaluated critically and lessons learned were formulated.
The above presented analyses indicated that the guidelines were successfully imple-
ment into our field study. A key finding is that (at least for the studied cohort of
participants) one can rely on the subjects’ autonomy and their motivation. This
finding is, for instance, emphasised by the subjects’ feedback, which lead to two
additional guidelines:

i Allow Hindsight Labelling ii Incorporate Reviewing Possibility

However, as these analyses are of a descriptive nature, the evaluation is no strict
proof of the guidelines. Nevertheless, the guidelines can be understood as a first
approach to standardize EMA-based labelling tools. As the field of wearable-based
AR is growing rapidly, we hope that the presented findings are helpful for other
researchers. Due to the limitations of the study, considering gender and age, these
guidelines have to be understood as pointers and we encourage the community to
modify them based on their findings.

In the next section the recorded labels, physiological, and motion data shall be
used to train affect recognition systems, detecting the affective state based on these
indicators.
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4.4 Quantitative Analysis of the Field Study Data

Based on the data gathered during our AR field study, presented in section 4.2, a
quantitative analysis of the data is performed in this section. The objective here is
to detect the affective state of a subject given only physiological and motion data.
The affective states considered in this analysis are arousal, STAI, stress, and valence
values. For this purpose both feature-based and end-to-end trainable classifiers are
employed.

4.4.1 Considered Data and Label

As detailed in section 4.2, labels have been generated by the subjects utilizing
a self-developed EMA-based labelling tool. For the quantitative analysis presented
here the following subset of labels is considered:

e Valence and arousal labels generated using the well-known self-assessment
mannequins Morris [1995].

e A shortened version (six items) of the STAI Spielberger et al. [1983]. Items
were chosen according to their factor loads, and scored on a four point Likert
scale.

e Stress level scored on a four point Likert scale Gjoreski et al. [2017].

The basic emotion labels are not considered for two reasons: First, in only about
26% of the available EMAs contain a "real" basic emotion (see Table 4.2). Second,
as discussed by Eerola and Vuoskoski [2011]| basic emotions are coarser than the
corresponding reports in valence-arousal space. Further, the labels generated via
the PAM are also not considered in this work. This is due to the fact that the PAM
also generates labels in valence-arousal space, which makes them redundant to the
ones generated using the SAM. The reason for relying on the SAM and not on the
PAM is their finer granularity.

For the quantitative analysis presented below the physiological and motion data
generated using the F4 will be utilized as inputs. As the motion data is strongly
linked to the activities the subjects are performing this can be seen as a form of con-
text information. As stated in the exclusion criteria detailed in Chapter 1, smart-
phones were excluded as sensing modality. Hence, the context information gathered
using the sensors integrated into the subjects’ smartphones will not be considered
in this analysis. During the data acquisition this data was, nevertheless, recorded
as it might be analysed in future work.

Using all EMAs filed by the subjects during the study period violin plots of the
considered label (arousal, STAI, stress, and valence) distributions of each subject
are depicted in Figure 4.7. These plots highlight strong inter-subject differences:
S4, S5, and S7, for instance, tend to be more stressed than the other participants.
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Figure 4.7: Violin plots depicting the label distributions for each label type and
subject. Mean value displayed in red. Median value shown in green.
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Figure 4.8: Cumulated arousal, STAI, stress, and valence values generated during
the field study using our EMA app.
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Further, the accumulated label distributions of all subjects are plotted in Figure 4.8.
From these plots the skewness of the corresponding label distributions (arousal,
stress, STAI, and valence) becomes apparent: In general, the histograms exhibit
only little mass in the high arousal, STAI, and stress bins. Judging form the valence
scale, the subjects are more often in a positive than in a negative valence state.

Using Pearson’s R, a correlation analysis has been performed for the labels. A
strong negative correlation (-.60) between the STAI and valence values was found.
Furthermore, a moderate positive correlation was found between the arousal and
STAI values (.44) and a strong correlation is also observed between the stress and
STAI values (.68). The above detailed correlations are significant (2-tailed p-values
< 0.001). We found no correlation between valence and arousal labels. This finding
emphasises that valence and arousal are independent scales.

Windowing and questionnaire binning

For the quantitative analysis presented below, we labelled the time period from
X — 600 sec to X 4 655 sec with the affective states reported in the EMA started
at time point X. The additional 55 seconds account for the completion of the entire
set of questionnaires and was empirically verified prior to the data collection. In the
next step, these time spans were segmented using a sliding window. Following, a
review by Kreibig, the window size for the segmentation was set to 60 sec Kreibig
[2010]. The window shift was 5 sec. Hence, for each valid time period, 240 windows
were extracted.

During the segmentation we excluded time periods where the FEj was either not
worn or one of the sensors had a malfunction. Questionnaires with incomplete data
in the corresponding interval have been rejected, too. After the above detailed
cleaning procedure, a total of 1083 valid questionnaires were retained.

We formulated a three class classification problem for the arousal, STAI, and
valence labels. The below detailed bins were chosen in order to establish equally
sized bins for the three class classification tasks. Arousal was binned according to
the following scheme: low (-5, -2|, medium (-2, 1], and high (1, 5|. For valence the

Table 4.3: Number of questionnaires in the different bins.
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Low Medium | High
Arousal 479 519 85
STAI 479 539 65
negative | neutral | positive
Valence 56 593 434
No stress | Stressed
Stress 504 579 -




same bins were used, yielding a negative, neutral, and positive class. The employed
STAI thresholds are (5, 12|, (12, 18|, and (18, 25|. Considering the skewness of the
stress distribution (Figure 4.8c), a binary classification problem was formulated. For
this purpose the labels with a value equal to 1 represent the "No stress" class. The
other (2, 3, 4) were used to represent the "Stressed" class. In Table 4.3 the number
of valid questionnaires per bin are displayed.

4.4.2 Evaluation Method and Metric

In order to validate the machine learning (ML) approaches, we employed leave-
one-subject-out (LOSO) and leave-target-questionnaires-out (LTQO) as validation
schemes. For LTQO a stratified N-fold 80%,/10%/10% (Train/Test/Validation) split
was performed using all valid questionnaires. The stratified nature of these splits
ensures similar label distributions in the different sets. However, in contrast to
simple N-fold cross-validation, this scheme ensures that all instances (segmented
windows/features) belonging to specific target questionnaires are placed in the same
set (e.g., training). Hence, this validation scheme provides an insight into the subject
dependent performance of the different classifiers. This scheme has been employed
to mitigate the large individual differences in the label distributions displayed in
Figure 4.7.

Due to the skewness of the considered dataset the macro F} score, corresponding
to the unweighted mean of the Fj scores for the different labels/classes, is used as
evaluation metric. The performance of the different ML classifiers is compared to
the performance of a sophisticated guesser (also known as Zero Rule). This classifier
always predicts the majority class found in the training data. Later, an investigation
of different types of classifiers (feature-based and end-to-end learning) is presented
and their performance is compared.

4.4.3 Classification Algorithms

Classical Approach: For the classical experiments we followed the human activity
recognition pipeline presented by Bulling et al. [2014] and extracted features from
windowed data (size 60 sec, shift 5 sec). In total 62 features were extracted and
used as input for the classical classifiers. We used the same set of £} features as
described in Table 3.2. These features range from plain statistical features (mean
and standard deviation), to complex physiological features like heart rate, heart
rate variability, or number of peaks in EDA data. Here, two different experiments
were performed: In the first experiment, the features were used directly as input.
In the second, a z-transformation, normalizing each feature to zero mean and unit
variance has been applied. For the classical evaluation the sklearn, see Pedregosa
et al. [2011], implementation of different tree-based classifiers (decision-tree (DT),
randomized decision trees (ET), and random forest (RF)) have been used.

97



For ensembles (RF and ET) the number of trees were chosen to be N=101. In

order to avoid overfitting, the minimal number of samples per split was set to 150
for all classical classifiers.
End-to-End Learning: In the end-to-end learning scenario, the windowed data
served as direct input into convolutional neural networks (CNNs). Below we present
an approach for affect recognition based purely on physiological and motion time
series data utilizing CNNs. Starting with the single-task CNN (ST-CNN) formula-
tion we extend this approach to a multi-task CNN (MT-CNN) classifier, predicting
arousal, STAI, stress and valence simultaneously. The multitask approach is mo-
tivated by the correlations found between the different label distributions. The
ST-CNNs and MT-CNNs architectures investigated here utilize four layer types:
convolutional, max-pooling, global-average pooling, see Lin et al. [2013], and fully-
connected (FC) layers. The CNNs receive the windowed E/ data (ACC, EDA, PPG,
TEMP) as input. As the PPG data has been down sampled by a factor of two, the
CNNs deals with two sampling frequencies (4/32 Hz).

Feature Extraction: The CNNs employ sensor-based late fusion, see Miinzner et al.
[2017]. This enables the network to learn modality-specific filters. The feature
extraction part of the CNNs is depicted in Figure 4.9. The architectural parameters
(e.g., kernel size, stride, etc.) were chosen to be the same in branches with the same
sampling frequency (ACC+PPG and EDA+TEMP) and a grid search has been
performed to identify appropriate settings. In each of these branches convolution
and max-pooling layers are alternated. Table 4.4 details the hyperparameters used
in the feature extraction branches. Throughout the network, RELUs are employed
as non-linearities. After the feature extraction a global average pooling operation is
performed.

Classification: Both the ST-CNN and MT-CNN approach utilize the feature ex-
traction architecture described above. The main difference between the two ap-
proaches lies in the classification part of the network: The ST-CNN uses a separate

Table 4.4: Overview of the numbers of convolutional layers in the different feature
extraction branches and the corresponding parameters. Abbreviations: #
number of fully-connected (FC), rectifying linear unit (RELU).

ACC and PPG branches | EDA and TEMP branches
Sampling rate 32 Hz 4 Hz
# Filter per Layer 4, 8,16, 32 8,16, 32
Kernel size 32,16,8,4 4.4,2
Stride 1 1
Padding ‘same’ ‘'same’
Max-pool 4,4,2 2,2
Non-linearity RELU RELU
Neurons in FC layers ‘ 64,32,16, Nyyt
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Figure 4.9: Feature extractor applying a four and three layered CNN architecture
to the windowed data. Abbreviations: N =number of filters, s = Kernel size.

feature extractor for each classification task and on top four FC layers (depicted in
Figure 4.10a), classifying one specific type of label each (e.g., valence). In contrast,
the MT-CNN share two FC layers, have multiple output branches (see Figure 4.10b),
and are trained to classify all labels types (arousal, STAI, stress, and valence) simul-
taneously. Apart from the last FC layer where a softmax is used, the FC layers also
use RELUs as non-linearities. In both cases the CNNs were trained using a cross-
entropy loss and mini-batches of size 1024 or 64. Following the hyperparameter
settings of Hannink et al. [2017], ADAM was used as optimizer.

Following LTQO the ST-CNNs were trained, validated, and tested on stratified
splits (80%/10%/10%) of the target questionnaire. In the MT-CNNs setup a strati-
fied split was performed along the arousal labels and the split for the arousal values
was then utilized for the other questionnaires, too. During training the F} score on
the validation set was monitored. For prediction the weights corresponding to the
highest score on the validation set were employed.

The number of trainable parameters differs between the ST-CNN and MT-CNN.
The binary ST-CNN stress detector has 21946 parameters. Each ST-CNN architec-
ture employed for arousal, STAI, and valence classification contains 21963 trainable
parameters. Hence, in the ST-CNN formulation predicting arousal, STAI, stress,
and valence would require four different CNNs with a total of 87835 parameters.
In contrast, a MT-CNN has a total of 23683 parameters and predicts all targets of
interest simultaneously. This is a factor 3.7 less parameters than in the ST-CNN
approach.

Unsupervised Pre-training: Similar to Zheng et al. [2016] unsupervised pre-training,
using convolutional auto-encoders (convolutional AE), has been investigated. Here
convolutional AEs were trained for each sensor modality separately, using ADAM
as optimizer and mean squared error loss. All convolutional AE were trained for 40
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(a) ST-CNN network architecture. (b) MT-CNN network architecture.

Figure 4.10: Hlustration of the ST-CNN and MT-CNN network architectures. Ab-

breviations: N =number of filters, s = Kernel size, FC = Fully Connected.

epochs, using all available windowed data (80%/20% train/test split). Apart from
the global average pooling operation the modality specific encoder employed the
same type of convolution and pooling operations as the feature extractors described
above. In the decoder part of the convolutional AE upscaling and convolutional
layers (reversing the number of kernels and filter sizes) were applied. Using these
convolutional AE weights two different experiments were performed:

1. The encoder weights were set to non-trainable during the fine-tuning (referred
to as frozen below). Hence, only the final FC classification layers were updated
during training.

2. Both the encoder weights and the classification layers were updated during
the training. This setup is referred to as not frozen.

Here ADAM, with hyperparameter settings as before, has been used. The CNNs
were implemented in keras using a tensorflow backend and trained on Nvidia GTX
1080 TT GPUs.

4.4.4 Classification Results

In this section the results obtained using different feature-based classification
methods and end-to-end learning are compared.
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Table 4.5: Mean F) score in |%)| using feature-based classifiers and the subject in-
dependent validation scheme (LOSO). The results are averaged over the
different subjects and five runs per subject. The last column displays the
Fy score averaged over the tasks. Abbreviations: Decision-tree (DT), Random
forest (RF), Randomized decision trees (ET), z-normalisation (zN), and Sophisticated
Guesser (Base).

Arousal STAI Stress Valence Average
DT 30.9 £3.8 314+34 46.7 £ 5.9 33.5£1.7 35.6 £3.7
DT+zN 30.8 £3.9 31.3+3.3 46.8 + 5.7 33.7£1.9 35.7£3.7
ET 31.4+£8.1 33.3£9.0 46.5+ 7.4 41.1+8.2 38.1+8.2
ET-+zN 31.4+8.1 33.6 +9.3 46.5 + 7.3 42.2+9.5 38.4+8.6
RF 30.6 £5.1 31.7+£7.6 46.2 £ 7.2 39.9£8.3 37.1+£7.1
RF+zN 30.6 £ 5.2 32.1+8.5 46.2 £ 7.3 39.9 £ 84 372+7.3
[ Base [ 199+95 [ 213£67 [ 39.0%£203 [ 264£79 [ 266+11.1 |

Table 4.6: Mean Fj score in [%] using feature-based classifiers and the subject de-
pendent validation scheme (LTQO). The displayed results are averaged
over five runs and the last column displays the Fj score averaged over
the tasks. Abbreviations: Decision-tree (DT), Random forest (RF), Randomized
decision trees (ET), z-normalisation (zN), and Sophisticated Guesser (Base).

Arousal STAI Stress Valence Average
DT 37.44+0.8 349+14 53.1+0.7 40.1+1.5 41.3+1.1
DT-+zN 38.7+2.2 37.5+1.0 52.3+0.4 39.6+14 42.0+1.3
ET 38.4+1.5 36.8+ 1.7 56.3 + 1.7 42.8 £3.1 43.6 £ 2.0
ET+zN 388+1.7 352+£19 57.9+ 3.2 43.3+1.2 43.8+2.0
RF 382+£22 37.4+2.0 549+1.6 42.24+0.6 43.24+1.6
RF+zN 38.0+25 36.0 +2.0 55.8+ 1.7 426+ 1.6 43.1+1.9
[ Base i 21.7 i 22.2 i 34.9 i 23.6 [ 256£55 ]

Feature-based Evaluation:

Using the above described features and evaluation schemes (LOSO and LTQO), the
performance of different classical decision tree-based classifiers has been investigated.
The performance of these classifiers is compared to a sophisticated guesser baseline,
predicting only the majority class found in the training set. Table 4.5 displays the
F scores generated using LOSO. The results were averaged over all subjects and per
subject five runs have been performed. Here, the decision tree-based classifiers are
able to outperform the sophisticated guessing baseline by a large margin. The results
of both the sophisticated guesser baseline and the decision tree-based classifiers
have rather large standard deviations. This is to be attributed to the large inter-
subject differences in the label distributions, which pose limitations on successful
generalization. Averaging the obtained F) scores over the different tasks, the ET
using the normalised features (ET-+zN) reached the highest combined Fj score.

In Table 4.6, the performance of the feature-based classifiers using the LTQO
evaluation scheme is reported. In this setup the RF and ET reach similar averaged
F} scores. The reasons for the increased F} scores following LTQO are twofold:
First, LTQO is subject dependent, which simplifies the problem. Secondly, due to
the stratified split the folds have the same label distributions, which decreases the
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Table 4.7: Mean F score in [%] using CNNs and LTQO as validations scheme. All
results were averaged over three runs and the last column displays the F
score, averaged over the different tasks.

[ [ Arousal [ [ STAI [ [ Stress [ [ Valence [ [ Average
Training CNNs from scratch
) ST-CNN 443+14 39.24+0.5 55.5+ 3.4 428+ 24 454+1.9
= MT-CNN 42.8+ 3.8 374+1.1 56.6 £ 1.6 440+ 24 45.2 +2.2
\L Fine-tuning: convolutional AE weights are frozen
g ST-CNN 43.1+4.1 36.9£0.7 58.3£0.8 43.2+2.0 45.44+1.9
5 MT-CNN 39.4+138 36.3 £0.5 56.8 £ 1.5 41.2+0.8 43.4+1.1
-
Eg Fine-tuning: convolutional AE weights are not frozen
ST-CNN 425+ 3.3 38.14+22 53.8 £6.0 404+14 43.7+1.9
MT-CNN 43.9+ 3.0 41.54+2.0 55.7 £ 2.7 39.0 £ 0.5 45.0 = 2.0
Training CNNs from scratch
< ST-CNN 42.9+ 3.0 37.0+0.9 56.9 £ 1.4 40.3+0.9 443+ 1.5
“H’ MT-CNN 421+1.0 383+ 1.6 57.0+1.1 44.6 £ 3.5 45.5+ 1.8
Q Fine-tuning: convolutional AE weights are frozen
_g- ST-CNN 40.5+ 1.6 35.1£0.7 54.2+£2.0 43.4+3.6 43.3+2.0
) MT-CNN 42.8+5.9 36.6 £ 1.2 56.6 £0.9 420+ 1.6 44.5+2.4
3
ad Fine-tuning: convolutional AE weights are not frozen
ST-CNN 41.94+ 3.9 38.8£0.7 55.8 £ 1.2 41.7+1.6 445+ 1.8
MT-CNN 40.6 £ 2.4 39.2+ 3.3 57.74+0.9 41.6 £ 0.9 44.8+1.9

standard deviation.

From both Table 4.5 and Table 4.6, two major observations can be made: First,
the normalisation has no crucial influence on the averaged F) scores. Second, the
overall F'1 scores are not satisfying. However, related work reported an F} score of
47%, using similar feature-based methods for a stress detection task, see Gjoreski
et al. [2017|. Hence, it can be speculated that the employed classifiers might not be
powerful enough to learn these relations. Therefore, the next step is to investigate
the performance of CNNs, which established the current state-of-the-art on many
human activity recognition tasks, see for instance Hammerla et al. [2016], Hannink
et al. [2017], or Miinzner et al. [2017].

End-to-End learning:

Table 4.7 displays the results from the CNN experiments using the LTQO validation
scheme. For the binary stress classification task the highest F} scores were reached.
Similar to the classical results presented in Table 4.6, the lowest scores are obtained
for the multi-class STAI classification. Using CNNs the arousal and valence classi-
fication tasks are solved with a similar performance. However, comparing classical
valence and arousal classification (see Table 4.6) to the CNN-based one, especially
the arousal task, is solved with a higher Fj score.

The mean F'1 score over the different tasks using CNNs is on average 1.8 per-
cent points better than the average F'1 score of the feature-based classifiers. In
general, this is only a minor improvement. The highest mean Fj scores reached by
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the CNNs is around 45.5%. This result is achieved by the ST-CNN trained from
scratch with Ny, = 1024 and the fine-tuned ST-CNN, where the weights of the
convolutional auto-encoders (convolutional AE) have been frozen. In addition, the
MT-CNN trained from scratch setting Ny, = 64 reaches an averaged F of 45.5%,
too. Hence, these best CNNs outperform the best classical approach (ET, averaged
F; = 43.8) by 1.6-1.7% percent points.

In general, the performance of the ST-CNNs and MT-CNNs are comparable. How-
ever, the MT-CNNs predict all labels simultaneously and require only little more
parameters than a single ST-CNN.

Judging from Table 4.7 both investigated batch sizes Nyuien, = [1024, 64] led to sim-
ilar performances. In addition, utilizing the pre-trained convolutional AE weights
did not improve the results. These observations hold for both experimental settings
(frozen and not frozen weights in the feature extractor).

The Fy scores presented in Table 4.7 are only a marginal improvement of the
scores reached by the classical approaches. However, the utilized CNNs operate
directly on the windowed data and, hence, make feature engineering obsolete. In
addition, the presented CNN are small (less than 25k parameters). Restricted Boltz-
mann Machines, requiring up to a factor of 140 more parameters, were successfully
deployed on a Snapdragon 400 platform Bhattacharya and Lane [2016]. Therefore,
the deployment of our models should be feasible on a similar platform.

4.4.5 Limitations and Further Considerations

Above the performance of feature-based classifies and convolutional neural net-
works (CNNs), applied to data originating from an affect recognition (AR) field
study have been investigated. Using a subject dependent evaluation scheme and
state-of-the-art CNNs it was challenging to reach an average F) score higher than
45%. From literature, see for instance Gjoreski et al. [2017] or Healey et al. [2010],
similar results were reported which underlines that this is a challenging problem.

4.4.5.1 Limitations of the Presented Approach

Assessing the above employed methods critically, the following algorithmic and
data-driven limitations can be identified in the presented work:

Algorithmic: The pipeline was tailored to directly classify the affective state based
on features, either learned or hand-crafted, from 60 sec data snippets. In this ap-
proach the temporal and sequential nature of the data are not captured. This
could be improved by adding a refinement step, e.g., voting over multiple adjacent
windows. Another approach would be to model the temporal nature of the data
explicitly by employing a Hidden Markow Model or recurrent neuronal networks,
for instance.
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Data and label quality: Data obtained from field studies are intrinsically noisy and
the labels are not completely reliable. Data noise ranges from sensor misplacement to
movement artefacts. Furthermore, label fuzziness can be attributed to the subjective
nature of ecological-momentary-assessments (EMAs). In Figure 4.8 an intrinsic bias
towards positive labels is observed, this is reflected by the skewed label distributions.
In our opinion the reasons for this skewness are twofold: First, the subjects are less
likely to respond to or trigger an EMA while being in a high arousal (e.g., stressed)
affective state. Secondly, according to the social desirability bias, see Edwards [1957],
subjects are less likely to report on states less socially desired (like being in a bad
mood). All in all, the data and label noise certainly has an adverse effect on the
results.

Amount of labelled data: Labels gathered via EMAs are discrete and sparse. For
the presented analysis we utilized 1083 valid EMAs. Training classifiers on such
small amounts of (skewed) data is difficult and combating both over- and under-
fitting is challenging, even if different types of regularization, e.g., dropout or L2
regularization, are employed.

Considered Subject Cohort: In the presented study, students were targeted. As a
result, the mean age of participants is 26 + 2.5 and most (7 out of 11) were male.
In addition, the study had "only" a duration of two weeks. These factors pose lim-
itations on the presented results. Conducting a similar study with a different /more
diverse (in an ideal case even representative) cohort of subjects monitored for a
longer duration would be one way to mitigate this.

4.4.5.2 Inherent Pitfalls of Affect Recognition in the Wild

Reflecting on the insights gained during the study and the classification procedure,
the following inherent pitfalls and lessons learned are formulated:

Curse of normality: Healthy users are unlikely to exhibit strong mood swings
across the entire affective spectrum. Assuming a (skewed) Gaussian shape of the
label distribution most labels will be reported around a mean value of "things are
okay/normal". As a result, extrema in the affective spectrum are broadly underrep-
resented. In the label data presented, see Figure 4.8, this "normal state" is indicated
by low arousal/positive valence and other states are underrepresented. Hence, clas-
sifying rare episodes where a user is in an extreme state is very challenging, due to
the low number of data points. However, treating extreme cases as outliers and ap-
plying methods from outlier detection is a direction worthwhile investigating. This
could also be used during data collection to trigger EMAs, once an outlier state is
detected.

Awareness of affective states: According to Mattila et al. [2006], between 5 and
18% of the general population has difficulties with identifying and describing their
emotions. Hence, label quality could be increased dramatically by providing mind-
fulness sessions for study participants. In addition, it might be interesting to explore
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other labelling techniques than EMAs, where subjects are given more time to reflect
about their affective state and then answer a set of questionnaires.

Representation of affect: Dimensional representations (e.g., valence and arousal)
of affective states are intuitive. Based on our study it seems, see Figure 4.7, that most
subjects do not utilize the entire spectrum. This might be due to personal biases
(e.g., personality traits). One way to mitigate this bias could be to normalize the
labels of each subject. However, this approach would require the label distribution
to be known. This is not the case, especially in a real world application. An
alternative approach would be to develop affective scales with a finer granularity
tailored to certain personality types. For instance, if someone claims to be a rather
positive person it might be beneficial to inquire finer granular levels of positivity
(e.g., 'less than normal’, 'normal’, 'more than normal’), instead of asking about
negative valence. Another idea would be to ask the user to compare events (e.g., "Are
you currently more/less aroused compared to your last report?"). Both approaches
would increase the variance in the label distribution, facilitating the uncovering of
hidden correlations.

Human activity recognition vs. affect recognition: Both wearable-based human ac-
tivity recognition and AR utilize similar inputs to create a user model. In the human
activity recognition domain, however, the employed sensors, 3-axes acceleration for
instance, offer direct measures of the performed activity (e.g., walking). In contrast,
considering AR, the available sensors only offer indirect measures. In our opinion
this contributes to the large performance gap between human activity recognition
and AR systems.

Modalities: In our evaluation, we aimed at classifying the affective state of a person
purely based on physiological data. Although subjects cannot actively influence
their physiological responses, there are many confounding variables. Judging from
our experiments, the classifiers had difficulties identifying these confounders. Based
on literature, see Gjoreski et al. [2017], context data might be able to alleviate this.
However, another direction could also be to add more informative biomarkers to
the picture, e.g., cortisol levels, blood pressure, or the chemical sweat composition.
Furthermore, Sano et al. [2015] showed that sleep quality is a powerful predictor for
mood. Hence, this information could also help to improve the classification results.
However, the sleep quality information should be acquired in a passive fashion.

Discrete vs continuous: In contrast to biophysical signals like electro-dermal ac-
tivity which is available continuously, other information like sleep quality or cortisol
measures are only available once a day or at discrete time points. Combining both
types of information in a single model can be challenging. One approach could be
to have different models for different scenarios (e.g., one specific mood classifier for
a high and one for a low cortisol level). Alternatively, these discrete values could
serve as one feature used by the classifiers.
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4.5 Conclusion

At the beginning of this chapter a quick overview of current field studies was
provided (see Section 4.1). In order to address the research question RQ 3 ( What is
the performance of machine learning systems that detect multiple affective states in
unconstrained environments?) a field study has been conducted. During this study,
physiological, motion, and label data were collected and in Section 4.2 the study
protocol was presented.

As pointed out previously, the labelling of affective states in the wild is challeng-
ing. In order to address this, research question RQ 3a (What is an appropriate way
to label affective states in everyday life reliably?) has been posed. Related work
suggests that smartphone-based ecological-momentary-assessment (EMA) tools can
be employed to label affective states in the wild. Although these tools are often
employed, little guidelines for the development of such apps were available. This
was addressed in Section 4.3 by presenting paradigms and formulating guidelines.
Using the EMA data gathered and experience gained during the study, a thorough
analysis of the guidelines was performed. Most of the analyses were of a descrip-
tive nature. Considering this, the evaluation is no strict proof of the formulated
guidelines. However, the overall plausible results suggest that the guidelines were
implemented successfully and can serve as starting points for other researchers

The physiological, motion, and label data gathered during the study were utilized
to address research question RQ 3b (What is the performance of classifiers trained on
labels generated with an ecological-momentary-assessment tool?). For this purpose,
classical feature-based and deep learning methods were employed (see Section 4.4).
The presented approaches target the arousal, State-Trait Anxiety Inventory, and va-
lence scales as a multi-class classification task. The stress classification was pursued
in a binary fashion. In addition to the multi-class classification tasks, a multi-target
classification task where all labels were predicted simultaneously using convolutional
neural networks (CNNs) was formulated. In the subject dependent formulation, the
performance of feature-based classifiers and different CNNs was analysed. The CNNs
lead, compared to the classical method, to a minor improvement of the average F}
score (1.8 percent points). These results indicate that despite state-of-the-art meth-
ods affect recognition in the wild is still very challenging. The challenges inherent
to wearable-based affect recognition arise from different sides:

e The employed physiological and motion data are only indirect measures of
affective states. Human physiology is influenced by many factors and the
affective state is only one of them. Hence, noise introduced by device mis-
placement or motion as well as other confounding factors, like humidity, result
in strong artefacts, posing limitations on the classification scores.

e The dataset considered in this work contained, after cleaning, 1083 valid self-
reports collected from 11 healthy participants. In order to train affect recogni-
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tion systems applicable in unconstrained environments much larger and ideally
representative datasets are required. However, at the point of writing no such
dataset meeting the criteria detailed in Section 1.1 was available.

e Kreibig [2010] pointed out that some affective states exhibit certain physio-
logical patterns. The way individual subjects perceive (e.g., label) and react
(in a physiological sense) to an affective stimulus can differ strongly. Hence,
personalisation is a direction worth investigating.

e For a healthy subject, swings across the entire affective spectrum are unlikely
to occur frequently. Hence, in order to detect the rare occurrences of excep-
tional cases methods from outlier detection might be applied successfully.

To achieve the goal of ubiquitous wearable-based affect recognition, these open
points need to be addressed.
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Résumeé

5.1 Results and Contributions

As detailed in Chapter 1, a holistic user model requires the affective state of a user
as an integral part. Wearables offer the ideal platform to monitor human activities
and physiological parameters in an unobtrusive and continuous fashion. Hence,
in the presented thesis the performance of wearable-based affect recognition (AR)
systems relying solely on physiological and motion data have been investigated. For
this purpose the presented thesis focused on different aspects, targeting three major
research questions:

RQ 1: What is the current state-of-the-art in wearable-based affect recognition?

This has been addressed in Chapter 2 and related literature has been
reviewed carefully identifying the state-of-the-art in wearable-based AR.
For this purpose the following aspects were covered: First, psychologi-
cal and physiological constructs for affects (Section 2.1 and Section 2.2)
were presented. Second, lab and field study protocols were detailed (Sec-
tion 2.3). Third, the common classification pipeline has been outlined
(Section 2.4). Chapter 2 is written in a tutorial style fashion, providing
a newcomer to the field a deep and broad overview of the constructs
and methods employed in wearable-based AR. Judging from this survey
two major shortcomings were identified: First, the wearable-based AR
community lacks a commonly used benchmarking dataset. Second, new
machine learning approaches, such as deep learning methods, have found
little application in wearable-based AR, yet.
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RQ 2: How is benchmarking and direct comparison of different algorithmic ap-
proaches for wearable-based affect recognition feasible?

This has been addressed by recording a lab study dataset and making it
publicly available !. During the lab study, presented in Chapter 3, physi-
ological and motion data as well as self-reports of 15 healthy participants
were collected. For the data collection, the Empatica Ej (smartwatch)
and the RespiBan (chest belt with additional sensor modalities) were
employed. Following the classical (feature-based) pipeline of Bulling
et al. [2014] the data was segmented, features were computed, and a
classification has been performed. The classification targeted three dif-
ferent affective states, namely: Neutral, stress, and amusement. It was
performed in a subject independent way using the leave-one-subject-out
validation scheme. The three class classification task (stress vs. neutral
vs. amusement) was solved with accuracies up to 80% (see Table 3.3).
In the binary classification task (stress vs. non-stressed) classification
accuracies up to 93% (see Table 3.4) were reached. These results are
very promising, indicating that the distinction between different affec-
tive states based purely on physiological and motion data is feasible in
a lab setting.

RQ 3: What is the performance of machine learning systems that detect multiple
affective states in unconstrained environments?

In order to target this research question, a field study has been con-
ducted, see Chapter 4. During the field study physiological and motion
data were recorded using the Empatica FEj smartwatch. The analy-
ses presented in Chapter 4 are based on the data of 11 healthy sub-
jects participating for at least 14 days each. Appropriate labelling of
affective states in the wild is commonly done via ecological-momentary-
assessments (EMAs). However, no guidelines and best practices were
available for the development of smartphone-based EMA labelling tools.
Hence, the following research question has been posed:

RQ 3a: What is an appropriate way to label affective states in everyday
life reliably?

Overall the use of smartphone-based EMA tools seems to be appropriate
to label affective states in the wild. Section 4.3 details and evaluates the
guidelines which influenced the development of the smartphone app used
as EMA labelling tool in the presented study. The formulated guidelines
target the following points:

'Download Link: https://ubicomp.eti.uni-siegen.de/home/datasets/icmil8/
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1 Sampling Rate and Scheduling 5 Context Information

2 Filing Time and Number of Items 6 Daily Data-Driven Screening
3 Manual Trigger of EMAs 7  Subjects’ Commitment

4 Validity and Redundancy of EMAs

i Allow Hindsight Labelling ii  Incorporate Reviewing

Possibility

Guidelines 1 to 7 were evaluated using the EMA data gathered during the
field study. Based on this analysis lessons learned were formulated. The
overall plausible findings, see Section 4.3, suggest that these guidelines
were successfully implemented into the presented field study. Guideline i
and ii were formulated based on subjects’ feedback after the completion
of the study. We encourage the wearable-based AR community to use
the guidelines listed above as a starting point for the development of
EMA-based labelling tools and update them with their own findings.

In order to facilitate AR in the wild, machine learning classifiers need to
be trained to perform a mapping between observables (e.g., physiological
indicators) and affective labels (e.g., valence value). As this type of
observables and labels were acquired during the field study the following
research question has been targeted:

RQ 3b: What is the performance of classifiers trained on labels generated
with an ecological-momentary-assessment tool?

To address this research question, the physiological and motion data
gathered using the Empatica E4 and labels collected via the EMA tool
were used (see Section 4.4). Different binary and multi-class classification
tasks were formulated, using both feature-based as well as deep learn-
ing methods. Using state-of-the-art methods and a subject-dependent
leave-target-questionnaires-out validation scheme, the Fj score averaged
across the different classification tasks barely exceeded 45%. Hence, the
poor performance of the presented approaches was discussed and struc-
tural issues for wearable, especially physiology- and motion-based, AR
systems were identified. One of the key findings is, that extreme states
in the affective spectrum of the participants occurred only rarely and
that most affective states are somewhere around the label "things are
okay/normal". Hence, detecting these outlier cases is difficult, as they
are underrepresented in the training data. As a result, reformulating the
classification task to an outlier detection task might be an interesting
approach.
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All in all this thesis made the following contributions:

1.

An extensive analysis of the current state-of-the-art in wearable-based AR,
focusing on stress and emotion, has been presented.

A lab study dataset (N=15) for WEarable Stress and Affect Detection WESAD
has been recorded and made publicly available. Although published recently
(October 2018), the dataset already exhibited a certain impact on the research
community.

. WESAD has been benchmarked using various classification algorithms and

posing different AR problems.

Paradigms and guidelines for EMA-based field studies were formulated. These
guidelines were evaluated using the EMA data collected during the AR field
study.

. A field study (N=11) has been conducted recording a large and realistic

dataset. Using different classical and end-to-end trainable machine learning
methods the dataset was analysed.

. Based on these results pitfalls for wearable-based AR, relying solely on physi-

ology and motion data, gathered in the field, were deduced.

The listed contributions are mainly of a practical nature. The extensive analysis
of the state-of-the-art and the formulated guidelines, for instance, are beneficial
for other researchers when planning an AR field or lab study. In addition, the
published and benchmarked WESAD lab study dataset is of direct value for the
entire research community. This is due to the fact that it incorporates data recorded
from a large number of (redundant) modalities while the participants were subject
to different affective stimuli. As a result, WESAD facilitates a direct comparison of
different sensor locations, features, and algorithmic approaches to wearable-based
AR. Moreover, the limitations and pitfalls identified in Chapter 4, are very relevant
for future work and need to be overcome in order to realize real life wearable-based
AR systems.
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5.2 Future Work

The contributions made in this thesis can be viewed as a step towards unobtrusive

and continuous wearable-based affect recognition. Some challenges, however, still
need to be addressed to facilitate the goal of high precision affect recognition systems
applicable in everyday life. Below possible next steps are outlined:
Algorithmic challenges: Humans perceive, react to, and evaluate affective stimuli
in different ways. This calls for personalisation. However, up-to-date little use of
personalisation methods is made in wearable-based affect recognition. One direction
for personalisation could be the use of online learning where a population-based
model is "fine-tuned" and gradually improved with the data of the current user.
Following such an approach, the user could provide or correct labels, whenever he
or she does not agree with the predictions of the model.

As detailed previously healthy subjects are unlikely to exhibit strong mood swings.
Hence, enforcing some continuity constraints on the predictions could be beneficial.
In addition considering the rare cases of extreme affective states, methods from
anomaly detection, like proposed by Popoola et al. [2018], could also find application
in wearable-based affect recognition.

Datasets: As of now there are only a few publicly available datasets (see Sec-
tion 2.3.3). However, most of these datasets were recorded in lab settings. In ad-
dition, the data originates mainly from healthy (graduate) students or researchers.
These two groups represent a rather specific cohort of subjects. This certainly in-
troduces biases into the available data and labels. Overcoming this by recording
large scale (representative) datasets and making them available to the community
would be very beneficial. Furthermore, as wearable-based affect recognition could
find application in clinical settings, see for instance Rubin et al. [2016] or Griinerbl
et al. [2015], datasets recorded from persons with specific health conditions could
be very valuable.

Labelling: In order to increase the amount of "interesting" labels, active labelling
approaches could find application in wearable-based affect recognition field studies.
For this purpose, ecological-momentary-assessment could be scheduled in an event-
based fashion, e.g., when a dramatic increase of the heart rate occurs without a
significant change in the motion data. This type of event-based labelling system
could also serve as a precursor for online learning and personalisation methods.
Hardware: Recent progress in flexible electronics enabled the development of sen-
sor patches (e.g., Vivalnk) and epidermal electronics. The potential of epidermal
electronics measuring different electrophysiological signals, like electrocardiogram,
electromyogram, and even electroencephalogram was demonstrated by Ameri et al.
[2016] or Sadri et al. [2018]. At the point of writing, these devices found little
application in wearable-based affect recognition. However, they have a great poten-
tial and their performance should be investigated in future affect recognition (field)
studies.
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Deployment on Embedded Devices: In this thesis wearable-based affect recog-
nition systems were investigated. As a result, the sensor modalities and the algo-
rithms used for classification were selected with (the computational capacity of)
wearables in mind. The deployment of such models on actual hardware, was not
scope of this work but is essential for a real-life applications.

Considering the large interest from academic, industrial, and consumer side in
wearable-based affect recognition systems we are confident that these open research
directions will be addressed soon.
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