
Learning Dictionaries for Inverse Problems
on the Sphere

DISSERTATION
zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von
Naomi Schneider, M. Sc.

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2020

gedruckt auf Papier nach DIN ISO 9706

1. Gutachter: Prof. Dr. Volker Michel, Universität Siegen
2. Gutachter: Prof. Dr. Nico Sneeuw, Universität Stuttgart

Tag der mündlichen Prüfung: 10. August 2020

To

Mum – for planting all necessary seeds in me
Dad – for protecting their growth

Genesis 21:22

So I say thank you

First and foremost, I thank the Lord for guiding me through the minor and the
major questions in life and this thesis with the hidden and the obvious hints.

Special thanks go to my supervisor Prof. Dr. Volker Michel for giving me the
opportunity to write this thesis, for his commitment to mentoring the next gener-
ation and, in particular, for creating an atmosphere in the work group that gives
you space to grow up as a scientist as well as a human being.

Furthermore, I thank Prof. Dr. Nico Sneeuw for his interest in my work.

The financial support of the “Deutsche Forschungsgemeinschaft (DFG)” is grate-
fully acknowledged.

Moreover, I thank all former and present members of the Geomathematics Group
Siegen for many thought-provoking impulses. In particular, I thank Dr. Roger
Telschow for providing me with an irregular data grid, Dr. Max Kontak for his
interest in all kinds of mathematical questions and Dr. Sarah Leweke for hand-
ing me implementations of the spherical harmonics during my Master’s Thesis
which were re-used.
Major thanks go to Bianca Kretz for so many invaluable conversations and sup-
port – so many things done, so many years to come.

Last but not least, many heartfelt thanks go to those who are closest to me and
without whom I would have surrendered long ago:
to my aunt for always being interested in me,
to my dad for his unquestionable support in every possible way,

for always listening and asking the right questions,
for so many hours on our feet,

to my feline Columbo for showing me everyday how little really matters for a
good life.

Naomi Schneider
Geomathematics Group Siegen
University of Siegen

Zusammenfassung

Die Berechnung des Gravitationspotentials auf der Erdoberfläche aus Satelliten-
daten ist ein schlecht gestelltes sphärisches inverses Problem. Die GRACE-Mis-
sion (NASA/DLR) liefert uns u. a. die monatlichen Abweichungen zu diesem
Potential. Dadurch erhalten wir Einblicke in den Massentransport auf der Erde
und können insbesondere den Klimawandel visualisieren.
Traditionell wird eine approximative Lösung eines inversen Problems in einer
Basis, wie z. B. Kugelflächenfunktionen, dargestellt. Dagegen bestimmen die In-
verse Problem Matching Pursuit (IPMP) Algorithmen iterativ eine Darstellung in
Dictionary-Elementen. Ein Dictionary enthält üblicherweise globale und lokale
Ansatzfunktionen wie Kugelflächenfunktionen, Slepian-Funktionen und radiale
Basisfunktionen. Man sieht leicht, dass die A-priori-Wahl eines endlichen Dictio-
narys prägend für den Verlauf der Algorithmen ist.
Daher entwickeln wir in dieser Arbeit die Learning Inverse Problem Matching
Pursuit (LIPMP) Algorithmen. Die Wahl eines Dictionary-Elementes in einem Ite-
rationsschritt wird hier um mehrere nichtlineare Optimierungsprobleme erwei-
tert. Auf diese Weise werden automatisch endlich viele optimierte Ansatzfunk-
tionen aus unendlich Vielen gelernt.
Zunächst fassen wir in dieser Arbeit grundlegende Resultate zusammen, die not-
wendig für das weitere Verständnis sind. Danach entwickeln wir die LIPMP-
Algorithmen. Dabei legen wir ein besonderes Augenmerk auf Satellitendaten des
Gravitationspotentials. Wir betrachten ebenfalls einige theoretische Aspekte der
Methoden. Außerdem präsentieren wir numerische Experimente, die die prakti-
sche Anwendbarkeit der Algorithmen für die Downward Continuation belegen.

Abstract

The downward continuation of the gravitational potential from satellite data is
a spherical ill-posed inverse problem in the geosciences. The GRACE mission
(NASA/DLR) supplied us, e. g., with monthly deviations from this potential.
This enables us to consider the mass transport on the Earth and, thus, visual-
ize the climate change.
Classically, an approximative solution of an inverse problem is expanded in a
suitable basis like spherical harmonics. Alternatively, the Inverse Problem Match-
ing Pursuit (IPMP) algorithms iteratively build a linear combination of dictionary
elements. A dictionary usually consists of global and local trial functions, such as
spherical harmonics, Slepian functions and radial basis functions. Consequently,
an a-priori choice of a finite dictionary is of major importance for the IPMP algo-
rithms.
Therefore, we develop the Learning Inverse Problem Matching Pursuit (LIPMP)
algorithms in this thesis. Here, the choice of a dictionary element in each iteration
is extended by several non-linear optimization problems. In this way, the LIPMP
algorithms automatically learn a finite number of optimized trial functions from
infinitely many possible ones.
First, we introduce the basic results necessary for the understanding of the novel
learning methods. Then we develop the LIPMP algorithms. There, we have a
closer look on the downward continuation of satellite data of the gravitational
potential. We also consider some of the theoretical aspects of the methods. Fur-
ther, we present numerical experiments which underline the applicability of the
strategies for the downward continuation problem.

Contents

List of Figures xiii

List of Tables xvii

1. About dictionary learning in geomathematics 1

I. Preparatory Work 9

2. From geodesy to inverse problems 11
2.1. Preliminaries . 11
2.2. Some aspects about polynomials on the sphere 15
2.3. A geodetic reference model: the gravitational potential 21
2.4. The exterior Dirichlet problem for satellite orbits 24
2.5. An overview of inverse problems 29

3. Particular real-valued trial functions on the sphere 39
3.1. A few aspects of scalar Slepian functions 39
3.2. An overview of spherical Sobolev spaces 49
3.3. From radial basis functions to low pass filters 57
3.4. Radial basis wavelets as band pass filters 66
3.5. Inner products and upward continued values 71

4. An algorithmic approach: matching pursuits 77
4.1. An introduction to matching pursuits 77

4.1.1. The classical matching pursuit 78
4.1.2. The orthogonal matching pursuit 83

4.2. A particular dictionary and problem notation 87
4.3. The regularized functional matching pursuit 90
4.4. The regularized orthogonal functional matching pursuit 93
4.5. Notes on further research . 104

II. A learning approach for spherical inverse problems 107

5. An introduction to learning 109
5.1. A bit about machine learning . 109

ix

Contents

5.2. The task of dictionary learning 111

6. Towards learning dictionaries 115
6.1. From the status-quo to the particular situation 115
6.2. Optimal, near-optimal and well-working dictionaries 119
6.3. An outlook . 121

7. A learning algorithm 123
7.1. Idea and main structure . 123
7.2. Optimization problems in detail 129

7.2.1. Formulation of parametrized optimization problems . . 129
7.2.2. Regarding gradient-based optimization 133
7.2.3. Inner products dependent on the operator 140
7.2.4. Inner products of linear combinations of dictionary ele-

ments . 149
7.2.5. Inner products of the penalty term 166

7.3. Additional features . 167
7.4. Pseudo-codes for the LIPMP algorithms 176

8. Theoretical aspects 181
8.1. On the convergence . 181
8.2. On the learning algorithm . 190

III. Numerical experiments 195

9. Experiment setting in general 197
9.1. The Earth Gravitational Model 2008 (EGM2008) 197
9.2. The Gravity Recovery And Climate Experiment (GRACE) . . . 197
9.3. Further experiment setting . 199

10. Comparisons with the IPMP algorithms 205
10.1. Previously published results . 205
10.2. Downward continuation of regularly distributed global data . . 207
10.3. Downward continuation of monthly Data 211
10.4. Learning a GRACE dictionary . 216

11. Further experiments with the LIPMP algorithms 219
11.1. Approximation . 219
11.2. Downward continuation of irregularly distributed global data . 222
11.3. Experiments with synthetic data 224

x

Contents

IV. Summary 231

12. Conclusion and Outlook 233

V. Technical Appendix 237

A. Computational aspects 239
A.1. Point grids . 239
A.2. Legendre polynomials and the Clenshaw algorithm 240
A.3. Associated Legendre functions and fully normalized spherical har-

monics . 242
A.3.1. Evaluation for high-degree and order 242
A.3.2. Particular terms to avoid singularities 243

A.4. Aspects of optimization . 249
A.4.1. Certain keywords . 250
A.4.2. The locally-biased DIRECT algorithm 253
A.4.3. The SLSQP algorithm . 255
A.4.4. The IPOPT algorithm . 257

B. Documentation 259
B.1. Common preprocessing . 264

B.1.1. First computations . 264
B.1.2. Generating the data . 269
B.1.3. Preprocessing . 271

B.2. Implementing an IPMP algorithm 275
B.2.1. The RFMP algorithm . 276
B.2.2. The ROFMP algorithm . 278

B.3. Implementing an LIPMP algorithm 282
B.3.1. Declaring the optimization problems 284
B.3.2. The iterations of the LIPMP algorithms 291
B.3.3. Processing a chosen candidate 294
B.3.4. Preprocessing of the learnt dictionary 297

Bibliography 301

Index 315

xi

List of Figures

2.1. Fully normalized spherical harmonics of degree 1 (first row), 2
(second row), 3 (third row), 4 (fourth row), 5 (fifth row). In each
row all non-negative orders are presented in increasing order. . 19

2.2. The gravitational potential as given by the EGM2008, i. e. an ex-
pansion in fully normalized spherical harmonics from degree 3 up
to degree 2190 and order 2159. We included the coastlines of the
continents for a better visualization. All values in m2/s2. 28

3.1. Slepian functions of band-limit 5 localized in a spherical cap with
c = π/4 and centre (0, 1, 0)T ordered by decreasing eigenvalues. 44

3.2. Abel–Poisson kernels with a fixed centre ξ in all plots but different
scales: h = 0.7, 0.8, 0.9, 0.97 (from left to right). 59

3.3. Abel–Poisson P-band pass filters with a fixed centre ζ in all plots
but different scales b = 0.7, 0.8, 0.9, 0.97 (left to right). 70

7.1. Schematic representation of the basic idea of the LIPMP algorithms.
The different types of lines are only used for an improved visual-
ization. The algorithm starts in the red circle. 130

7.2. The spline Sz1(t) for t ∈ [0, 2] and ε = 0.5. 170

9.1. Visualization of GRACE by an artist. Image credit: NASA/JPL-
Caltech. 198

9.2. Deviation of the mass transport on the Earth in 2008 captured by
the GRACE satellite mission (left to right: first row: January to
April, second row: May to August, third row: September to De-
cember). Note that the scales were adapted to improve the visual-
ization. All values in m2/s2. 199

10.1. Results of the RFMP with a manually chosen dictionary and the
learnt dictionary. Upper row: Results for EGM2008 data. Lower
row: Results for GRACE data. Left: Absolute approximation error
of RFMP with a manually chosen dictionary. Right: Absolute ap-
proximation error of RFMP with learnt dictionary. 3000 iterations
allowed in all experiments. The scale is adapated for improved
comparability. All values in m2/s2. 206

xiii

List of Figures

10.2. Absolute approximation errors of the experiment described in Sec-
tion 10.2. In both subfigures, the IPMP algorithm uses the manu-
ally chosen (left, upper row), the learnt (right, upper row), the non-
stationary learnt (left, lower row) and the learnt-without-Slepian-
functions (right, lower row) dictionary. The colour scale is adapted
for better comparability. All values in m2/s2. 209

10.3. The relative RMSE (left column) and relative data error (right col-
umn) of the RFMP (upper row) and of the ROFMP (lower row), re-
spectively, with respect to the experiment described in Section 10.2.
IPMP∗ uses the manually chosen, IPMP∗∗ the learnt, IPMP∗∗∗ the
non-stationary learnt and IPMP∗∗∗∗ the learnt-without-Slepian-functions
dictionary. The x-axis denotes the iterations and the y-axis the log-
arithm of the error values. 210

10.4. Approximation errors of the experiment described in Section 10.3.
In both subfigures, the IPMP algorithm uses the manually chosen
(left, upper row), the learnt (right, upper row), the non-stationary
learnt (left, lower row) and the learnt-without-Slepian-functions
dictionary (right, lower row). The colour scale is adapted for better
comparability. All values in m2/s2. 212

10.5. The relative RMSE (left column) and relative data error (right col-
umn) of the RFMP (upper row) and the ROFMP (lower row) algo-
rithm. IPMP∗ uses the manually chosen, IPMP∗∗ the learnt, IPMP∗∗∗

the non-stationary learnt and IPMP∗∗∗∗ the learnt-without-Slepian-
functions dictionary. The x-axis denotes the iterations and the y-
axis the logarithm of the error values. 213

10.6. Deviation from the mean field of the modified GRACE data in May
2009. The scale is adapted for better comparability with Figure 9.2.
All values in m2/s2. 216

10.7. Results of the experiment described in Section 10.4. Absolute ap-
proximation error obtained by the RFMP algorithm using the man-
ually chosen dictionary (left) and using the learnt GRACE dictio-
nary (right). The scale is adapted to improve the comparability. All
values in m2/s2. 217

11.1. Results of the experiment described in Section 11.1. 220
11.2. Results of the experiments described in Sections 10.2 and 10.3 ob-

tained by the LIPMP algorithms (using a stationary regulariza-
tion parameter and all four trial function classes). The scales are
adapted for a better comparison with Figures 10.2 and 10.4. All
values in m2/s2. 221

11.3. Irregularly distributed point grid used in Section 11.2. 223
11.4. Results of the experiments described in Section 11.2. All values in

m2/s2. 224

xiv

List of Figures

11.5. Chosen Abel–Poisson low pass filters for unperturbed data from
the experiment described in Section 11.3. 227

11.6. Chosen Abel–Poisson low pass filters for perturbed data from the
experiment described in Section 11.3. 228

A.1. Left: Driscoll-Healy grid with Gϕ = 91 and Gθ = 46, i. e. 4186 grid
points. Right: Reuter grid with G = 60, i. e. 4551 grid points. . . 240

B.1. Schematic representation of an implementation of the preprocess-
ing and the (L)IPMP algorithms. 298

B.2. Schematic representation of an implementation of an LIPMP algo-
rithm. 299

xv

List of Tables

10.1. Comparison of RFMP with a manually chosen dictionary (RFMP*)
and a learnt dictionary (RFMP**). Upper comparison with respect
to EGM2008 data. Lower comparison with respect to GRACE data.
3000 iterations allowed in all experiments. 207

10.2. Overview of the results at termination of the experiment described
in Sections 10.2 and 10.3. The IPMP∗ algorithm uses the manually
chosen dictionary, the IPMP∗∗ the learnt dictionary, the IPMP∗∗∗

the non-stationary learnt dictionary and the IPMP∗∗∗∗ the learnt-
without-Slepian-functions dictionary. All learnt dictionaries are it-
eratively applied. The maximal degree is the maximal degree of a
spherical harmonic included in the used dictionary. 215

11.1. With respect to the experiment described in Section 11.3, the cho-
sen Abel–Poisson low pass filters are presented. The filters with
negligible coefficients are understated in blue. 226

xvii

1. About dictionary learning in
geomathematics

In this thesis, an enhancement of matching pursuit algorithms for spherical in-
verse problems is presented. The novel methods are based on non-linear opti-
mization models for different types of trial functions and are applied to the down-
ward continuation of satellite data.
Geophysics is concerned with the investigation of the system Earth. Improv-
ing our understanding of this field is of major importance because – as the well-
known proverb goes – knowledge is power. It enables us to analyse past events,
take precautions against potentially dangerous developments and react quickly
to novel discoveries. In that respect, essential aspects of the system Earth that
are under investigation are, for instance, the behaviour of the magnetic field of
the Earth (see e. g. Akram and Michel, 2010; Friis-Christensen et al., 2006; Leweke
et al., 2018b; Mandea and Dormy, 2003; Olsen and Mandea, 2007; Olson and Amit,
2006), of volcanoes (see e. g. Blackett, 2014; Casagli et al., 2010; Senyukov, 2013;
Sparks and Aspinall, 2004; Vikulin et al., 2012) as well as of the climate change
(see e. g. IPCC, 2014; Fischer and Michel, 2013b; Lin et al., 2018; NASA, 2020;
Sneeuw and Saemian, 2019). For such studies, geomathematics aims to enhance
geophysical methods as well as reference values that are significant.
The gravitational potential is an example for a quantity of the Earth in need to
be monitored. The current reference model is the Earth Gravitational Model 2008
(EGM2008; see e. g. National Geospatial-Intelligence Agency, Office of Geomatics
(SN), EGM Development Team, 2008; Pavlis et al., 2012). The potential is given
in high-precision as an expansion in fully normalized spherical harmonics, i. e.
orthogonal polynomials on the sphere, up to degree 2190 and order 2159 and
is based on differently originated data like terrestrial as well as airborne mea-
surements. Besides the EGM2008, spaceborne models are available from satel-
lite missions like the Gravity Recovery and Climate Experiment (GRACE) and
its successor GRACE-Follow On (GRACE-FO; for both see e. g. Devaraju and
Sneeuw, 2017; Flechtner et al., 2014a,b; NASA Jet Propulsion Laboratory, 2020;
Schmidt et al., 2008; Tapley et al., 2004; The University of Texas at Austin, Centre
for Space Research, 2020). In contrast to the EGM2008, these models are time-
dependent. Thus, the mass transport of the Earth can be investigated with them.
This yields visualizations of seasonal short-term phenomena like the wet-season
in the Amazon basin as well as long-term developments like the climate change.
However, we are usually interested in the gravitational potential at the Earth’s

1

1. About dictionary learning in geomathematics

surface. Thus, spaceborne data need to be downward continued to be meaning-
ful. Hence, gravity field modelling is a critical challenge in physical geodesy (see
e. g. Baur, 2014; Kusche, 2015).
It is a challenge because, mathematically formulated, the downward continua-
tion of satellite data is an exponentially ill-posed inverse problem. Assume that
the Earth’s surface is the unit sphere Ω. Traditionally, the gravitational potential f
on Ω can be expanded in a suitable basis like the mentioned spherical harmonics
Yn,j, n ∈ N0, j = −n, ..., n. Then we have a pointwise representation

V(ση) = (T f)(ση) =
∞

∑
n=0

n

∑
j=−n
〈 f , Yn,j〉L2(Ω)σ

−n−1Yn,j(η) (1.1)

of the gravitational potential on a relative satellite orbit height σ > 1 for any point
η ∈ Ω (see e. g. Baur, 2014; Freeden and Michel, 2004a; Moritz, 2010; Telschow,
2014). In practice, we usually have perturbed measurements of V on discrete
points ση. Then the task is to determine (at least) an approximation of f , i. e.
we have to downward continue the potential to the Earth’s surface or, mathe-
matically speaking, we need to solve the inverse problem V = T f . For more
details on inverse problems in general, see the classical literature such as Engl
et al. (1996); Louis (1989); Rieder (2003). The challenge herein is due to the expo-
nentially decreasing singular values of T (confer (1.1)) as it holds σ > 1 (see e. g.
Michel, 2005; Telschow, 2014). Consequently, the respective inverse operator has
exponentially increasing singular values. This contradicts a continuous depen-
dence of the solution on the data. In other words, with perturbed data, the third
characteristic of a well-posed problem according to Hadamard is violated. Due to
this behaviour of the singular values, the problem of the downward continuation
of satellite data is said to be exponentially ill-posed. For the sake of complete-
ness, we mention that any solution f has to be in the range of T . In this case, it is
always unique.
Therefore, the approximation of the solution of an ill-posed inverse problem like
the downward continuation of satellite data demands for sophisticated mathe-
matical approaches. Traditionally, an approximation is sought as an expansion in
a predefined basis. However, the a-priori choice for a particular basis may not be
an easy one. This is in particular true if only irregularly distributed or local data
are available.
Due to the wide range of possible bases, we discuss some common but very dif-
ferent trial functions at this point. A first intuitive choice of basis functions are the
already mentioned global spherical harmonics. For more details on these func-
tions, see, for instance, Freeden et al. (1998); Freeden and Gutting (2013); Freeden
and Michel (2004a); Freeden and Schreiner (2009); Michel (2013); Müller (1966).
These orthogonal polynomials are commonly used for approximation. However,
it is well known that global functions lead to oscillations in data gaps. Further,
altering the data locally may have a global impact on the approximation. Local
functions like radial basis functions (RBFs), for instance the Abel–Poisson kernel

2

1. About dictionary learning in geomathematics

and wavelet (see e. g. Freeden et al., 1998; Freeden and Michel, 2004a; Freeden
and Schreiner, 1998, 2009; Freeden and Windheuser, 1996; Michel, 2013; Wind-
heuser, 1995), are better able to cope with data gaps or for local approximations.
In general, these functions attain one extremum at a certain centre χ ∈ Ω on the
unit sphere Ω and are nearly zero on the outside of a neighbourhood of χ. Thus,
they look like a ’hat’ placed at χ on the sphere. The size of the neighbourhood or
of the hat or – in short – the scale can be varied. This is helpful because, when
used as a basis for approximation, the scale may need to be related to the maximal
diameter of present data gaps. Otherwise the approximation could be overfitted
in the gap. However, using a function of a largely-sized hat may lead to an ap-
proximation which is smoother than necessary on regions with a high density of
data points. Similar problems occur when Slepian functions (see e. g. Albertella
et al., 1999; Grünbaum et al., 1982; Leweke et al., 2018a; Michel, 2013; Seibert,
2018; Simons and Dahlen, 2006) are used. These are band-limited optimally lo-
calized trial functions. However, if the localization region is large, they are more
similar to global functions. Otherwise, if the localization region is chosen to be
small, they are more localized. Then, however, we have to deal again with over-
fitting in data gaps. Hence, we see that the different types of trial functions all
carry particular advantages as well as disadvantages for approximation tasks.
In order to overcome the respective disadvantages, different approaches were
developed in order to improve the approximation process (see e. g. Antoni, 2012;
Barthelmes, 1986, 1989; Barthelmes et al., 1991; Claessens et al., 2001; DiMatteo
et al., 2001; Eicker et al., 2014; Jekeli, 2005; Lehmann, 1993; Lin, 2016; Lin et al.,
2014; Schall, 2019; Schall et al., 2011, 2014). In these methods, for instance, free
point masses or splines with free-knots are used, the data is manually separated
into global and local aspects or satellite tracks are considered as short arcs. The
procedures proved to be suitable in numerical experiments. However, most of
them work with only one type of trial functions which are or are similar to point
masses (in our language radial basis functions). Then the location of their ex-
tremum as well as their scale is usually (stochastically or regionally) optimized.
Hence, they do present automations for the selection of a certain type of trial
functions in approximation tasks.
Another and rather different approach is given by the (Regularized) Functional
Matching Pursuit ((R)FMP) and the (Regularized) Orthogonal Functional Match-
ing Pursuit ((R)OFMP) algorithm (see e. g. Berkel et al., 2011; Fischer, 2011; Fis-
cher and Michel, 2012, 2013a,b; Gutting et al., 2017; Kontak, 2018; Kontak and
Michel, 2018, 2019; Michel, 2015a; Michel and Orzlowski, 2017; Michel and Schnei-
der, 2020; Michel and Telschow, 2014, 2016; Telschow, 2014). Note that there ex-
ists also a weak variant, the (Regularized) Weak Functional Matching Pursuit
((R)WFMP) algorithm. However, this version will not be of interest here because
the weakness strategy contradicts the improvements by learning. If we refer to
either the RFMP or the ROFMP algorithm of these methods, we use the abbrevi-
ation Inverse Problem Matching Pursuit (IPMP) algorithms in this thesis.
The IPMP algorithms originate from the Matching Pursuit (MP) algorithm devel-

3

1. About dictionary learning in geomathematics

oped by Mallat and Zhang (1993) and the Orthogonal Matching Pursuit (OMP)
algorithm introduced by Vincent and Bengio (2002) and Pati et al. (1993) (the
RWFMP algorithm also utilizes ideas from Temlyakov (2000)). The (O)MP algo-
rithms were then further developed to the IPMP algorithms in order to handle
inverse problems. The strategy of the IPMP algorithms is as follows: let D be a
dictionary, i. e. a set of trial functions like spherical harmonics, Slepian functions
and RBFs. In particular,Dmay contain global and local functions simultaneously.
An IPMP algorithm iteratively chooses dictionary elements and corresponding
real coefficients such that the Tikhonov functional of the current approximation
is minimized. Hence, they produce a linear combination of a ’best basis’ that ap-
proximates the solution of an inverse problem. In the (R)OFMP algorithm, the
chosen dictionary elements additionally fulfil a certain orthogonality relation. In
comparison to the previously mentioned approaches, the IPMP algorithms are
able to automatically construct global parts of the signal (by choosing global trial
functions) and local ones (by choosing rather local trial functions). Furthermore,
their particular advantages are an increased accuracy in comparison to traditional
methods like for instance spline approximation and an improved interpretability
due to the mixture of different types of trial functions. Moreover, the algorithms
are stable because choosing a dictionary element does not involve inverting a ma-
trix or solving a large system of linear equations. Additionally, working with trial
functions yields a non-discretized result. At last, they are also capable of a joint-
inversion of multiple-source data. The IPMP algorithms have already been suc-
cessfully applied to several tasks like the downward continuation, the (linear and
non-linear) inverse gravimetric problem as well as the inversion of magnetoen-
cephalography (MEG) or electroencephalography (EEG) measurements (see e. g.
Fischer, 2011; Fischer and Michel, 2012, 2013b; Kontak, 2018; Kontak and Michel,
2018; Michel and Telschow, 2014; Leweke, 2018; Leweke et al., 2018b; Telschow,
2014). In some of these publications, the algorithms have also been compared to
traditional methods such as spline approximation and proved to be numerically
competitive. All in all, an IPMP algorithm represents a simple and stable method
that aims to combine the advantages of different types of trial functions.
In the previous summary of the IPMP algorithms, we did not discuss the dictio-
nary D in further details. However, for the best basis, only dictionary elements
can be used. Thus, it depends on the dictionary how well a computed approxi-
mation can be. The IPMP algorithms as previously published can only work with
a finite dictionary. How can we be sure to choose a-priori a finite dictionary from
infinitely many trial functions such that we obtain a satisfying approximation?
In other words, how can we prevent the approximation to be (too) biased by the
dictionary? For previous publications, usually, a finite dictionary was chosen in a
trial-and-error or rule-of-thumb fashion. Hence, the need to investigate how the
IPMP algorithms can be made independently of an a-priori manual choice of dic-
tionary occurs. Moreover, the manually chosen dictionaries usually needed to be
large such that a competitive approximation is obtained. This approximation is,
however, represented by a relatively small subset of the dictionary in most cases.

4

1. About dictionary learning in geomathematics

In particular for an increasing number of data points, a large dictionary leads to
a very high storage demand and a long CPU-runtime. Hence, in order to be com-
petitive with respect to memory capacity and runtime, the IPMP algorithms need
to be further developed for a use in large-scale experiments.
The (O)MP algorithms are also based on a dictionary and, thus, faced the same
questions. This launched the development of dictionary learning strategies. Sum-
marized, these strategies aim to determine an approximation and a sparse dic-
tionary parallelly. The usual procedure is to alternate between improving the
dictionary and computing the respective next (better) approximation. Prominent
examples of these methods are the K-SVD and the MOD algorithm. For more
details, see, for instance, Bruckstein et al. (2009); Engan et al. (1999a,b); Rubin-
stein et al. (2010). However, these approaches cannot be taken over to the IPMP
algorithms straight-forwardly because of strategic aims of the methods and math-
ematical differences in the underlying tasks. The (O)MP algorithms aim to solve
discretized approximation problems. Then the dictionary can be interpreted as
a matrix and learning a dictionary means modifying the matrix entries. When
it comes to the IPMP algorithms, we do not want to abandon their continuous
output for a discretized one. Moreover, constructing new dictionary elements
which are tailored for a specific task is also not favoured in our case because the
comparability with traditional models might be lost. Furthermore, if RBFs are
included in the dictionary, it was shown in previous publications that the IPMP
algorithms allow for a multiscale expansion and, thus, a multiresolution analysis
(see e. g. Fischer, 2011; Fischer and Michel, 2012, 2013a,b; Michel and Telschow,
2014; Telschow, 2014). That means, using well-known trial functions, the IPMP
algorithms are able to reveal hidden detail structures. Most important, however,
is the difference in the mathematical task which needs to be solved. The (O)MP
algorithms consider pure interpolation / approximation problems. The IPMP
algorithms are able to solve (the more general) ill-posed inverse problem. That
means, the “dictionary matrix” is now a matrix of discretized values of dictionary
elements applied in an operator, e. g. the upward operator T from (1.1). Thus, us-
ing traditional dictionary learning approaches like the K-SVD or MOD algorithm
only yields optimized values of, e. g., upward continued dictionary elements. De-
termining the dictionary elements themselves leaves us, again, in need of solving
ill-posed inverse problems. At last, if we work with a non-discretized approach
and established trial functions, we are also able to use well-known singular value
decompositions of a given inverse problem.
The dictionary learning given by Prünte (2008) follows a more theoretical ap-
proach. Similar to common approaches in machine learning, it considers the
optimization of a quality measure in order to learn a dictionary. Even though
the number of different trial functions considered there is smaller than we would
like to use, using an error function seems promising because the IPMP algorithms
themselves already consider a possible measure with the Tikhonov functional.
Hence, the problem at hand is to develop a novel strategy to automatize the de-
termination of a dictionary for the IPMP algorithms. For this, we develop the

5

1. About dictionary learning in geomathematics

Learning Inverse Problem Matching Pursuit (LIPMP) algorithms in this thesis. In
particular, we introduce the Learning Regularized Functional Matching Pursuit
(LRFMP) and the Learning Regularized Orthogonal Matching Pursuit (LROFMP)
algorithm. These methods enhance the original IPMP algorithms by the follow-
ing approach. In an iteration of an IPMP algorithm, the next dictionary element is
chosen such that it minimizes the Tikhonov functional of the current approxima-
tion. For practical purposes, this minimization can be exchanged with the maxi-
mization of a different objective function. Using a finite dictionary, the objective
function can be evaluated at discrete points and their values can be compared.
The dictionary element that yields the maximal value is chosen in the current
iteration. In order to overcome the use of a finite dictionary, we now model non-
linear constrained optimization problems for maximizing the objective function.
In this way, we are able to consider infinitely many possible RBFs and Slepian
functions. Learning spherical harmonics is essentially learning a maximally suit-
able degree. The learnt maximal degree follows straight-forwardly from the char-
acteristic behaviour of the IPMP algorithms which is inherited by the LIPMP al-
gorithms as the remaining routine of the IPMP algorithm is taken over to the
LIPMP algorithms. Summarized, the learning technique computes a finite num-
ber of new candidates in each iteration by solving continuous optimization prob-
lems where possible. This set then works again as a finite dictionary.
Thus, the advantage of the LIPMP algorithms is that they are able to work with an
infinite dictionary and, in this way, resolve the need to manually choose a finite
dictionary a-priori. Furthermore, the best basis chosen by the LIPMP algorithm
represents a learnt dictionary which can be used in an IPMP algorithm. By build-
ing the LIPMP algorithms closely to their non-learning predecessors, we will see
that they inherit the existing convergence results. Our numerical results show
the applicability of this approach with respect to the downward continuation of
satellite data.
The thesis is divided into five parts which cover the mathematical basics, the de-
velopment of the learning algorithms, numerical experiments, a summary and a
technical appendix.
The first part consists of three chapters that summarize the mathematical problem
specification, the trial functions under consideration and the IPMP algorithms.
Chapter 2 introduces polynomials on a sphere which are necessary to model the
gravitational potential afterwards. Next, the mathematical description of an ex-
terior Dirichlet problem follows as this models the related direct problem of the
upward continuation and, thus, also the inverse downward continuation. At last,
we generalize the task at hand one more step and summarize the main aspects of
inverse problems: ill-posedness, the singular value decomposition of linear and
compact operators, regularization strategies and the choice of a regularization
parameter. In Chapter 3, we introduce further trial functions which will be used
as dictionary elements here. In particular, we discuss scalar Slepian functions as
well as radial basis low and band pass filters. For the latter ones, we first summa-
rize aspects of spherical Sobolev spaces. We close the chapter with an overview

6

1. About dictionary learning in geomathematics

on the values of certain inner products as well as upward continued values of the
presented trial functions. As a last chapter in this part, we state the algorithmic
approaches of the matching pursuits in Chapter 4. In particular, we summarize
the operator-free variants as well as the IPMP algorithms. Additionally, we have
a closer look at the notation of the dictionary and summarize open questions with
respect to the IPMP algorithms.
The second part consists of four chapters that present a motivation for dictionary
learning, its theoretical formulation, the development of the LIPMP algorithms
(with a detailed look at its formulation in the case of the downward continuation
of satellite data) and its theoretical analysis. We start the part with a general view
on learning itself and, in particular, machine and dictionary learning in Chapter 5.
Then we summarize in Chapter 6 previous approaches of dictionary learning,
outline the differences to our situation and close with a novel characterization of
desirable dictionaries. This enables us to develop the LIPMP algorithms in Chap-
ter 7. We present their main structure, formulate the newly risen optimization
problems in general as well as for the downward continuation and summarize
additional features. We close the chapter by giving pseudo-codes for the LIPMP
algorithms. In Chapter 8, we end this part by considering the theoretical aspects
of the novel algorithms. This includes discussing convergence results as well as
evaluating the learning process.
In the third part, we present numerical experiments with the LIPMP algorithms.
Hence, in Chapter 9, we first state a general test setting and introduce the used
data from the EGM2008 and the GRACE mission. In Chapter 10, we consider
the applicability of the learnt dictionary and compare it to the results obtained
using a manually chosen dictionary. We consider this comparison for the down-
ward continuation of both data origins presented in Chapter 9. We also include
first and previously published results using less trial functions and a smaller ver-
sion of the LRFMP algorithm. At last, we present a, from the LRFMP algorithm,
learnt GRACE (year-)dictionary and apply it to unseen test data. In Chapter 11,
we then consider the LIPMP algorithms as standalone approximation methods.
In particular, we show results for the approximation of surface data as well as
the downward continuation from a regular and irregular grid. We close the pre-
sentation of our numerical results with a test on synthetic data to show that the
LROFMP algorithm is able to distinguish between global trends and local anoma-
lies.
The fourth part contains a conclusion and an outlook of this work. At last, the
technical appendix deals with aspects for practical purposes (Appendix A) and a
detailed documentation (Appendix B) of the implementation of an (L)IPMP algo-
rithm. In particular, Appendix A summarizes point grids, Legendre polynomials,
associated Legendre functions, fully normalized spherical harmonics as well as
an overview of optimization algorithms used in our experiments.

7

Part I.

Preparatory Work

9

2. From geodesy to inverse problems

We start with a mathematical view on the determination of the gravitational po-
tential. For this, we first summarize some basic notation and results. Then we
introduce spherical harmonics which are used, for instance, in one representa-
tion of the potential. Next, we shortly derive from Newton’s law of gravitation
different representations of the gravitational potential of the Earth. This allows
us to formulate the potential also on a satellite orbit. The use of satellite data,
however, turns the task of determining the potential on the surface of the Earth
into a spherical inverse problem. Such problems will be discussed at the end of
this chapter.

2.1. Preliminaries

First, we define a common notational language and recall some fundamental the-
orems in agreement with Fischer (2010); Heuser (2001, 2004, 2006); Königsberger
(2004a,b); Michel (2013); Yosida (1995).
The common sets of numbers are denoted as follows:

Z integers,
N positive integers,
N0 non-negative integers,
R real numbers,
R+ positive real numbers,
R+

0 non-negative real numbers,
C complex numbers,
Rd d-dimensional vector space of real numbers,
Rr×s matrices with r rows and s columns and real coefficients.

Further, we use the common quantifiers ∀, i. e. “for all”, and ∃, i. e. “there exists”.
If we consider the j-th component of the i-th vector x(i) ∈ Rd, we write

x(i)j .

Further, we use x · y with x, y ∈ R3 for the Euclidean inner product of two vectors.
For two indices x and y, the symbol δx,y stands for the Kronecker delta:

δx,y :=
{

1, x = y,
0, x 6= y.

11

2. From geodesy to inverse problems

In this thesis, the application under investigation will be a spherical inverse prob-
lem like the downward continuation of the gravitational potential of the Earth.
For this, we introduce an abbreviation for the sphere which is commonly used
within geomathematics (see e. g. Freeden et al., 1998; Freeden and Gutting, 2013;
Freeden and Schreiner, 2009; Michel, 2013). The sphere of radius a ∈ R+ and
centre 0 is denoted by

Ωa :=
{

x ∈ R3
∣∣∣ |x| = a

}
.

In particular, we set Ω := Ω1. The ball of radius a ∈ R+ and centre 0 is given by

Ba :=
{

x ∈ R3
∣∣∣ |x| ≤ a

}
.

Again, we set B := B1. Further, we denote the inner of a set D as D̊ and the
boundary as ∂D.

Some function spaces The unit sphere Ω will be of interest as the domain of
scalar real-valued functions f : Ω→ R, also called (scalar) spherical functions.
In general, we consider the following function spaces. The set of k-times con-
tinuously differentiable real functions on ∅ 6= D ⊆ Rd compact is denoted by
C(k) (D) := C(k)(D, R) for k ∈ N0.The space can be equipped with the maximum
norm

‖ f ‖∞ := max
x∈D
| f (x)|.

Then, as D is presumably compact, (C(0) (D) , ‖ · ‖∞) is a Banach space (see e. g.
Heuser, 2006, Example 9.7). Further, for p ∈ [1, ∞[, we set

Lp(D) := Lp(D, R) :=
{

f : D → R

∣∣∣∣D ⊆ Rd,
∫

D
| f (x)|p dx < ∞

}
.

This is not a normed space yet as the Lebesgue integral vanishes on sets with
zero measure which yields some ambiguity. Thus, to obtain a normed space, we
consider the space

N p(D) := N p(D, R) :=
{

f : D → R

∣∣∣∣D ⊆ Rd,
∫

D
| f (x)|p dx = 0

}
.

Then the space

Lp(D) := Lp(D)/N p(D)

is a Banach space with the norm

‖ f ‖Lp(D) := p

√∫
D
| f (x)|p dx.

12

2.1. Preliminaries

Moreover, for p = 2, the space L2(D) is a Hilbert space with the inner product

〈 f , g〉L2(D) :=
∫

D
f (x)g(x) dx

(see e. g. Heuser, 2006, Examples 9.11 and 18.5). A function f ∈ L2(D) is also
called square-integrable because the respective norm is given by

‖ f ‖L2(D) :=
√∫

D
| f (x)|2 dx < ∞.

Further aspects of a spherical geometry In general, a point x in R3 is character-
ized by spherical coordinates r ∈ R+

0 , ϕ ∈ [0, 2π[and θ ∈ [0, π]. Note that the
latter one can be exchanged by t = cos(θ) ∈ [−1, 1]. Then the point x is given by

x(r, ϕ, t) :=

r
√

1− t2 cos(ϕ)

r
√

1− t2 sin(ϕ)
rt

 or x(r, ϕ, θ) :=

r sin(θ) cos(ϕ)
r sin(θ) sin(ϕ)

r cos(θ)

 , (2.1)

respectively. Therefore, we immediately obtain a local orthonormal basis of R3

with

εr(ϕ, t) :=

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 , (2.2)

εϕ(ϕ, θ) :=

− sin(ϕ)
cos(ϕ)

0

 (2.3)

and

εt(ϕ, θ) :=

− cos(θ) cos(ϕ)
− cos(θ) sin(ϕ)

sin(θ)

 . (2.4)

If we compare (2.1) and (2.2), we observe that εr is the outer normal unit vector
of the unit sphere Ω. Thus, εϕ and εt must be tangential vectors. In fact, εϕ gives
a longitudinal direction and εt a latitudinal one. An illustration can be found, for
instance, in Michel (2013, p. 86).
This local orthonormal basis enables a spherical view on the gradient. We have

∇ = εr ∂

∂r
+

1
r
∇∗ = εr ∂

∂r
+

1
r

(
εϕ 1√

1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
. (2.5)

Further, remember that a function f : R3 → R is called harmonic if it holds

∆ f = (∇ · ∇) f = 0.

If we emphasize the derivation argument of the Laplace operator ∆, we write

∆x f = (∇x · ∇x) f =
3

∑
i=0

∂2 f
∂x2

i
.

13

2. From geodesy to inverse problems

Some functional analysis The local orthonormal basis of R3 has 3 elements.
In spaces like L2(Ω), a basis must be infinite. For these cases, we recall some
fundamental relations from functional analysis (see e. g. Heuser, 2006) or (Michel,
2013, p. 22).

Theorem 2.1.1. For a Hilbert space (H, 〈·, ·〉H) and a countable orthonormal system
{gn}n∈N0 in H, it is equivalent that

(i) the system {gn}n∈N0 is complete,
(ii) every element f ∈ H has a representation as a Fourier series in {gn}n∈N0 , i. e.

lim
N→∞

∥∥∥∥∥ f −
N

∑
n=0
〈 f , gn〉Hgn

∥∥∥∥∥
H

= 0

for the induced norm ‖ · ‖H,
(iii) the Parseval identity holds, i. e.

〈 f , h〉H =
∞

∑
n=0
〈 f , gn〉H〈h, gn〉H,

(iv) the system {gn}n∈N0 is a basis, i. e.

span{gn | n ∈ N0}
‖·‖H

= H.

Note that, for property (iv), we also say that {gn}n∈N0 is closed in H in the sense of the
approximation theory.

Thus, we have a representation of each f ∈ L2(Ω) as a Fourier series by

f =
∞

∑
n=0
〈 f , gn〉L2(Ω)gn

for a complete and countable orthonormal system {gn}n∈N0 of L2(Ω). Note that
this equality holds in the sense of (L2(Ω), 〈·, ·〉L2(Ω)). The term 〈 f , gn〉L2(Ω) is
called a Fourier coefficient.
Next, an operator is a mapping

T : X → Y

between two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y). If Y = R, then the map-
ping is called a functional. Dependent on the norms of X and Y, the continuity of
the operator is defined as usual. An operator is called linear if

T(αx1 + βx2) = αTx1 + βTx2

for α, β ∈ R and x1, x2 ∈ X. The operator is bounded if

sup
x∈X, ‖x‖X=1

‖Tx‖Y < ∞.

14

2.2. Some aspects about polynomials on the sphere

A linear operator is continuous if and only if it is bounded. A simple example of a
linear and bounded operator is a matrix A ∈ Rm×n, m, n ∈ N, with A : Rn → Rm

and the common matrix-vector-multiplication Ax = y, x ∈ Rn, y ∈ Rm.
At last, we summarize some properties of matrices A(c) ∈ Rn×n that are depen-
dent on a scalar c ∈ R. In particular, we are interested in their determinant. Recall
that, for an eigenvector ρ(c) of A(c), it holds

0 = det (A(c)− ρ(c)I) , (2.6)

where I is the identity matrix of the same size as A(c). The derivative of a deter-
minant det B(ν) with respect to ν ∈ R and for a parametrized matrix B ∈ Rn×n is
obtained via

d
dν

det B(ν) =
n

∑
j=1

n

∑
k=1

(−1)j+k
(

d
dν

(B(ν))j,k

)
det (B(ν))j,k , (2.7)

where (B(ν))j,k denotes the (j, k)-th component of B(ν) and (B(ν))j,k stands for
the (n − 1) × (n − 1)-matrix that is obtained when removing the j-th row and
k-th column from B(ν). Equation (2.7) can be derived using linear algebra. In
the special case that B(ν) is tridiagonal and symmetric, the determinant itself can
also be determined via a three term recursion:

s0 = 1,
s1 = (B(ν))1,1,

si = (B(ν))i,isi−1 − (B(ν))2
i−1,i−1si−2, i = 2, ..., n,

det B(ν) = sn, (2.8)

confer, e. g., Muir (1882, Chapter 3, Continuants).

2.2. Some aspects about polynomials on the sphere

Next, we introduce an example of a complete and countable orthonormal system
in L2(Ω). We will use this system in the formulation of the gravitational potential
as well as for several aspects of our learning algorithm.
An intuitive approach to construct a complete and countable orthonormal sys-
tem is based on polynomials. The corresponding polynomials on the sphere are
the so-called spherical harmonics. They are defined to be homogeneous and har-
monic (for the latter see Section 2.1) in the following way. This section is based on
Freeden et al. (1998); Freeden and Gerhards (2013); Freeden and Gutting (2013);
Freeden and Michel (2004a); Freeden and Schreiner (2009); Michel (2013); Müller
(1966).

15

2. From geodesy to inverse problems

Definition 2.2.1. Let n ∈ N0 be an integer. A polynomial p : R3 → R of degree n is
homogeneous if

p(x) = ∑
|ν|=n

Cνxν,

Cν ∈ R, ν ∈ N3
0, |ν| := ν1 + ν2 + ν3, xν := xν1

1 xν2
2 xν3

3 .

The set of all homogeneous and harmonic polynomials p : R3 → R of degree n is called
Harmn

(
R3). The set Harmn(Ω) is defined as the set of all homogeneous and harmonic

polynomials of degree n on R3 which are restricted to the sphere Ω, i. e.

Harmn(Ω) :=
{

p|Ω
∣∣∣p ∈ Harmn

(
R3
)

, p|Ω : Ω→ R, p|Ω(η) = p(η), η ∈ Ω
}

.

The elements of Harmn(Ω) are called (scalar) spherical harmonics of degree n and are
denoted by Yn.

In the common literature on spherical harmonics mentioned above, we also find
the following result (see e. g. Freeden and Gutting, 2013, p. 139).

Theorem 2.2.2. For an integer n ∈ N0, the dimension of the spaces Harmn
(
R3) and

Harmn(Ω), respectively, is

dim Harmn

(
R3
)
= dim Harmn(Ω) = 2n + 1. (2.9)

Thus, we can define an orthonormal system in Harmn(Ω).

Definition 2.2.3. For n ∈ N0, the system{
Yn,j ∈ Harmn(Ω)

}
j=−n,...,n

denotes an orthonormal system in Harmn(Ω), i. e. for

Yn,k1 , Yn,k2 ∈
{

Yn,j ∈ Harmn(Ω)
}

j=−n,...,n ,

it holds

〈Yn,k1 , Yn,k2〉L2(Ω) = δk1,k2 . (2.10)

We call n the degree and j the order of the spherical harmonic Yn,j.

Due to (2.9), the orthonormal system{
Yn,j ∈ Harmn(Ω)

}
j=−n,...,n

is a basis of Harmn(Ω). Note that only spherical harmonic basis functions have
two indices.
For spherical harmonics of a fixed degree, the following prominent result, see e. g.
Freeden and Schreiner (2009, p. 82) or Michel (2013, pp. 103-107), will be used at
several points in our learning approach.

16

2.2. Some aspects about polynomials on the sphere

Theorem 2.2.4. (Addition theorem for spherical harmonics) For an orthonormal
system {Yn,j}j=−n,...,n, n ∈ N0, it holds

n

∑
j=−n

Yn,j(η)Yn,j(χ) =
2n + 1

4π
Pn(η · χ), ∀ η, χ ∈ Ω,

where Pn denotes the n-th Legendre polynomial.

For the theory of orthogonal polynomials such as the Legendre polynomials, we
refer the reader, for instance, to Abramowitz and Stegun (1972); Freeden and Gut-
ting (2013); Magnus et al. (1966); Michel (2013); Szegö (1975).
Let us now consider spherical harmonics of distinct degrees. We first note that an
orthogonality relation can be shown also in this case (see e. g. Freeden et al., 1998,
p. 36).

Lemma 2.2.5. For n and m ∈ N0, each two spherical harmonics Yn ∈ Harmn(Ω) and
Ym ∈ Harmm(Ω) are orthogonal with respect to the L2(Ω)-inner product, i. e.

〈Yn, Ym〉L2(Ω) = 0, n 6= m. (2.11)

Thus, together with (2.10), it holds

〈Yn,j, Ym,k〉L2(Ω) = δn,mδj,k (2.12)

for n, m, j, k ∈ N0 with −n ≤ j ≤ n,−m ≤ k ≤ m. Furthermore, spherical
harmonics of distinct degrees are linearly independent. Therefore, we consider
their union.

Definition 2.2.6. For N ∈ N0, we define the space

Harm0,...,N (Ω) :=
N⊕

n=0
Harmn (Ω) .

Further, we set

Harm0,...,∞ (Ω) :=
∞⋃

n=0
Harm0,...,N (Ω) .

Due to (2.9), Definition 2.2.3 and (2.11), we have the orthonormal basis

N⋃
n=0

{
Yn,j ∈ Harmn(Ω)

}
j=−n,...,n

of Harm0,...,N(Ω) for N ∈ N0. Note that for every N ∈ N0, it holds

dim Harm0,...,N (Ω) = (N + 1)2

17

2. From geodesy to inverse problems

due to (2.9). Thus, for Harm0,...,∞(Ω), we have

∞⋃
n=0

{
Yn,j ∈ Harmn(Ω)

}
j=−n,...,n

as a basis of Harm0,...,∞(Ω). It can be shown that this system is also a basis of
L2(Ω).

Theorem 2.2.7. In the sense of the approximation theory, any orthonormal system of
spherical harmonics {

Yn,j ∈ Harmn(Ω)
}

n∈N0; j=−n,...,n

is closed in (L2(Ω), ‖ · ‖L2(Ω)).

For the lengthy proof, see, for instance, Michel (2013, pp. 112-122).

An example: Fully normalized spherical harmonics For practical purposes,
we consider the fully normalized spherical harmonics. These functions are ob-
tained by a separation ansatz for an orthonormal basis of L2(Ω) in spherical coor-
dinates. Their construction in this way is for instance explained in Michel (2013,
Section 5.2). At this point, we state the result similarly to Freeden and Gutting
(2013, p.142).

Example 2.2.8. Let n ∈ N0 be a degree and j ∈ N0 with −n ≤ j ≤ n an order.
Further, we consider spherical coordinates ϕ ∈ [0, 2π[and t ∈ [−1, 1]. Moreover,
we use associated Legendre functions Pn,j : [−1, 1]→ R given by

Pn,j(t) :=
(

1− t2
)j/2 dj

dtj Pn(t) (2.13)

for j ≥ 0 and where Pn : [−1, 1] → R is the n-th Legendre polynomial. Then we
define the fully normalized spherical harmonics Yn,j : Ω→ R by

Yn,j(η(ϕ, t)) :=

√
2n + 1

2
(n− |j|)!
(n + |j|)! Pn,|j|(t)

1√
2π

√

2 cos(jϕ), j < 0,
1, j = 0,√

2 sin(jϕ), j > 0.
(2.14)

For aspects of the implementation of either the Legendre polynomials, the asso-
ciated Legendre functions or the fully normalized spherical harmonics, we refer
for instance to Fengler (2005, Technical Appendix).
Examples of fully normalized spherical harmonics are given in Figure 2.1. Blue
colour stands for minimal values and red colour for maximal ones. The fully
normalized spherical harmonics from degree 1 to degree 5 with non-negative or-
der are depicted. Thus, from left to right, in the first row, the fully normalized

18

2.2. Some aspects about polynomials on the sphere

Figure 2.1.: Fully normalized spherical harmonics of degree 1 (first row), 2 (sec-
ond row), 3 (third row), 4 (fourth row), 5 (fifth row). In each row all
non-negative orders are presented in increasing order.

spherical harmonics Y1,0 and Y1,1 are given. The second row contains Y2,0, Y2,1
and Y2,2. The third row shows Y3,0, Y3,1, Y3,2 and Y3,3. The fourth row depicts
Y4,0, Y4,1, Y4,2, Y4,3 and Y4,4. And the last row shows the functions Y5,0, Y5,1, Y5,2,
Y5,3, Y5,4 and Y5,5. First of all, we notice that the fully normalized spherical har-
monics indeed show a polynomial structure on the whole sphere and, thus, are
global functions. Note that a fully normalized spherical harmonic is by construc-
tion perfectly localized in frequency because it represents exactly one degree and
order. However, it is nowhere localized in space. Further, we see that, for a van-
ishing order (j = 0), the spherical harmonics have extrema only in the latitudinal
and none in the longitudinal range (see the figures in the first column). In this
case, they are called zonal harmonics. For equal degree and order (|j| = n), ex-
trema are only observed in the longitudinal range (see the last figures in each
row). These functions are called sectorial harmonics. At last, in all other cases
(0 6= |j| 6= n), there exist functions which attain several extrema in the latitudinal
as well as the longitudinal range (see for instance the figure in the second row
and the second column). These functions are called tesseral harmonics (see e. g.
Freeden and Michel, 2004b).

For fully normalized spherical harmonics, we obtain the following properties.

Remark 2.2.9. Note that there exist also complex spherical harmonics (see e. g.
Dahlen and Tromp, 1998; Freeden and Gutting, 2013). In general, let f be a real
square-integrable function on the sphere. Its expansion in real spherical harmon-
ics and in complex spherical harmonics is related by the Fourier coefficients in

19

2. From geodesy to inverse problems

the following way (see e. g. Dahlen and Tromp, 1998, pp. 858-859). For n, j ∈ N0
with −n ≤ j ≤ n, let c f ∧(n, j) denote a Fourier coefficient of f with respect to the
complex basis of spherical harmonics and r f ∧(n, j) a Fourier coefficient of f with
respect to the real basis of spherical harmonics. Then it holds

c f ∧(n, j) =

(−1)j 1√

2
(r f ∧(n, j) + i r f ∧(n,−j)) , −n ≤ j < 0,

r f ∧(n, 0), j = 0,
1√
2
(r f ∧(n,−j)− i r f ∧(n, j)) , 0 < j ≤ n

(2.15)

and

r f ∧(n, j) =

√

2 Re (c f ∧(n, |j|)) , −n ≤ j < 0,
c f ∧(n, 0), j = 0,

−
√

2 Im (c f ∧(n, j)) , 0 < j ≤ n,
(2.16)

where i denotes the imaginary unit. In this thesis, we will mainly consider real
spherical harmonics. If complex spherical harmonics are necessary at a certain
point, we will emphasize that. Thus, we refer to the real fully normalized spheri-
cal harmonics and drop the “real” in the sequel.

Further, the derivative with respect to the longitude ϕ of a fully normalized
spherical harmonic can be expressed as a spherical harmonic as well.

Lemma 2.2.10. Let n, j ∈ N0 with −n ≤ j ≤ n be fixed. Then it holds

∂

∂ϕ
Yn,j(η(ϕ, t)) = jYn,−j(η(ϕ, t)) (2.17)

for the fully normalized spherical harmonic Yn,j of degree n and order j.

Proof. We start at the left-hand side and insert the definition of the fully normal-
ized spherical harmonics:

∂

∂ϕ
Yn,j(η(ϕ, t))

=
∂

∂ϕ

√2n + 1
2

(n− |j|)!
(n + |j|)! Pn,|j|(t)

1√
2π

√

2 cos(jϕ), j < 0,
1, j = 0,√

2 sin(jϕ), j > 0

=

√
2n + 1

2
(n− |j|)!
(n + |j|)! Pn,|j|(t)

1√
2π

√

2 ∂
∂ϕ (cos(jϕ)) , j < 0,

∂
∂ϕ (1) , j = 0,√

2 ∂
∂ϕ (sin(jϕ)) , j > 0

20

2.3. A geodetic reference model: the gravitational potential

=

√
2n + 1

2
(n− |j|)!
(n + |j|)! Pn,|j|(t)

1√
2π

−
√

2j sin(jϕ), j < 0,
0, j = 0,√

2j cos(jϕ), j > 0

= j

√
2n + 1

2
(n− |j|)!
(n + |j|)! Pn,|j|(t)

1√
2π

√

2 sin(−jϕ), j < 0,
1, j = 0,√

2 cos(−jϕ), j > 0

= jYn,−j(η(ϕ, t)).

Outer harmonics In the geosciences, we are not only interested in functions on
a sphere but also in functions outside a sphere. The spherical harmonics can be
extended for this purpose in the following way (see e. g. Freeden and Schneider,
1998).

Definition 2.2.11. Let {Yn,j}n∈N0; j=−n,...,n be a basis system of spherical harmonics.
Further, let Bext

a := R3\Ba be the outer space of the ball Ba with radius a ∈ R+. We
define the outer harmonics as follows:

H−n−1,j(a; x) :=
1
a

(
a
|x|

)n+1

Yn,j

(
x
|x|

)
for x ∈ Bext

a .

Theorem 2.2.12. For a ∈ R+, n ∈ N0 and j ∈ {−n, ..., n}, an outer harmonic
H−n−1,j(a; ·) fulfils the following properties

(i) H−n−1,j(a; ·) ∈ C(∞) (Bext
a),

(ii) ∆xH−n−1,j(a; x) = 0 for x ∈ Bext
a ,

(iii) H−n−1,j(a; ·)|Ωa = a−1Yn,j for Ωa = ∂Ba.
For another outer harmonic H−m−1,k(a; ·), m ∈ N0 and k ∈ {−m, ..., m}, we have the
relation 〈H−n−1,j(a; ·), H−m−1,k(a; ·)〉L2(Ωa) = δn,mδj,k.

Thus, we have that {H−n−1,j(a; ·)|Ωa}n∈N0; j=−n,...,n for a ∈ R+ is a complete or-
thonormal system in L2(Ωa).

2.3. A geodetic reference model: the gravitational
potential

As a geophysical application, we consider the gravitational potential in more de-
tail in this thesis. In this section, we will derive a formula for the potential from
Newton’s law of gravitation and show that it is a harmonic function. This section
is based on Barthelmes (2014); Demtröder (2006); Halliday et al. (2007); Heuser
(2004); Königsberger (2004b).

21

2. From geodesy to inverse problems

Newton’s law of gravitation Newton (1687) formulated the law of gravitation.
Let m1 and m2 be two point-shaped masses and r be the distance between them.
Then the magnitude of the attracting force between m1 and m2 is given by

F = G
m1m2

r2 , (2.18)

where G is the gravitational constant. Furthermore, the attracting force of m2 that
effects m1 is given by the vectorial version of (2.18) as

F̂ = Gm1m2
x− y
|x− y|3 ,

where y denotes the centre of m1 and x denotes the centre of m2. Now, we would
like to consider m2 to be the Earth. Obviously, the Earth is not one mass particle
but rather a body full of infinitely many mass particles in which every single one
attracts m1. Thus, the attracting force of the Earth is the sum over the attracting
forces of each mass particle. Mathematically speaking, for the mass density ρ of
the Earth, the attracting force is given by

F̂(y) = −Gm1

∫
Earth

ρ(x)(y− x)
|x− y|3 dx = Gm1

∫
Earth

ρ(x)(x− y)
|x− y|3 dx, (2.19)

for any centre y of the mass m1 outside the closed body of the Earth. The surface
of the Earth is naturally a regular region, i. e. a bounded region whose bound-
ary is an orientable piecewise smooth Lipschitzian manifold of dimension 2 (see
Freeden and Gutting, 2013, Definition 6.1.1). Note that (2.19) is a volume integral
as we substitute the mass m2 by density times volume. From this attracting force,
we obtain the acceleration â(y) of m1 from the Earth due to a division by the mass
m1:

â(y) = G
∫

Earth

ρ(x)(x− y)
|x− y|3 dx. (2.20)

This is independent of a second mass and, thus, describes the gravitational field
of the Earth. The gravitational potential V is given in a straight-forward fashion
by

â(y) = ∇V(y),

i. e. the acceleration is the gradient of the potential. Thus, we obtain the following
well-known result which can be found, for instance, in Barthelmes (2014).

Theorem 2.3.1. For the gravitational constant G, the gravitational potential V of the
Earth is given by

V(y) = G
∫

Earth

ρ(x)
|x− y| dx + C, (2.21)

where C ∈ R is constant and y ∈ R3\Earth.

22

2.3. A geodetic reference model: the gravitational potential

Proof. The differentiation and integration can be interchanged in this case due to,
e. g., Heuser (2004, Theorem 201.13). Then we have for i = 1, 2, 3,

∂

∂yi
V(y) =

∂

∂yi

(
G
∫

Earth

ρ(x)
|x− y| dx + C

)
= G

∫
Earth

ρ(x)
∂

∂yi
|x− y|−1 dx

= G
∫

Earth
ρ(x)

(
−|x− y|−2

) ∂

∂yi
|x− y| dx

= G
∫

Earth
ρ(x)

(
−1

2
|x− y|−3

)
· (−2) · (xi − yi) dx

= G
∫

Earth

ρ(x)(xi − yi)

|x− y|3 dx.

This equals the i-th component of (2.20).

With a suitably chosen value of C, the gravitational potential is always positive
and zero at infinity. Then its value equals the necessary energy to move the mass
m1 from its current point in space to infinity.
For a full model of the acceleration of a mass particle from the Earth, one has to
take into account the centrifugal acceleration of this particle due to the rotation
of the Earth as well. The centrifugal acceleration needs to be added and, in the
same manner as we did above, this sum defines the gravity potential of the Earth.
However, in this thesis, we will concentrate only on the gravitational potential of
the Earth, i. e. we consider only the potential without any centrifugal force.
A potential like the gravitational potential or the gravity potential can be visual-
ized in two ways. Either we consider its value on a given surface. Or we give
one of its equipotential surfaces, that is, the surfaces where the potential attains
only one value. A well-known equipotential surface of the gravity potential de-
termines the geoid. This is the surface of the gravity potential that equals the
surface of the undisturbed sea. It is used as a reference height for the real surface
of the Earth in order to compute the heights of mountains and depths of the sea.

Harmonicity of the gravitational potential For further investigations of the
gravitational potential, its harmonicity is of major importance. Thus, we state
it at this point (see e. g. Heuser, 2004, Chapter 220).

Theorem 2.3.2. The gravitational potential V of the Earth is harmonic outside the Earth,
i. e.

∆V(y) = 0,

y ∈ R3\Earth.

Proof. We already mentioned in the proof of Theorem 2.3.1 that due to, e. g.,
Heuser (2004, Theorem 201.13) the differentiation and integration can be inter-
changed with respect to the gravitational potential V. This can also be done for a

23

2. From geodesy to inverse problems

second partial derivative. We obtain

∆yV(y) = G
∫

Earth
ρ(x)∆y

1
|x− y| dx

with the linearity of the integral. Thus, we consider the Laplace operator with
respect to y of the function |x− y|−1, x, y ∈ R3, x 6= y, in more detail:

∂

∂yi
|x− y|−1 =

(
− 1
|x− y|2

∂

∂yi
|x− y|

)
=

(
− (−2) · (xi − yi)

2|x− y|3
)
=

xi − yi

|x− y|3 .

Next, we obtain

∂

∂yi

xi − yi

|x− y|3 =
−|x− y|3 + 3|x− y|(xi − yi)

2

|x− y|6 = − 1
|x− y|3 + 3

(xi − yi)
2

|x− y|5

and, thus, for the Laplace operator of |x− y|−1

∆y|x− y|−1 =
3

∑
i=1

(
− 1
|x− y|3 + 3

(xi − yi)
2

|x− y|5
)

= − 3
|x− y|3 +

3
|x− y|5

3

∑
i=1

(xi − yi)
2 = − 3

|x− y|3 +
3

|x− y|3 = 0.

Hence, we have

∆V(y) = G
∫

Earth
0 dx = 0.

2.4. The exterior Dirichlet problem for satellite orbits

Next, we take a first step to embedding the geodetic task of determining the grav-
itational potential in a mathematical context. For this, we first discuss the exterior
Dirichlet problem. Then we consider a more realistic setting of using satellite data
instead of terrestrial ones. This section is based on Freeden and Michel (2004a);
Freeden and Schneider (1998); Kellogg (1967); Telschow (2014).

Approximation on a surface: the exterior Dirichlet problem In Theorem 2.3.1,
we derived a first representation of the gravitational potential outside the Earth
as a volume integral. Due to the harmonicity and the regularity towards infinity
(i. e. the potential decreases with increasing distance to the Earth and is zero in
infinity), we can reformulate (2.21) to a surface integral as follows.
First, we make an assumption for the modelling of the problem in this thesis.

Remark 2.4.1. In this thesis, we identify the surface of the Earth with a sphere Ωa
of radius a.

24

2.4. The exterior Dirichlet problem for satellite orbits

Naturally, the gravitational potential is assumed to be continuous. Further, we
assume that we know the values of the potential on the surface of the Earth.
Then the determination of the potential outside of the Earth is a classical exte-
rior Dirichlet problem.

Definition 2.4.2. Let Bext
a := R3\Ba denote the exterior of a closed ball Ba and let

u : Bext
a → R be a function that fulfils

(i) u ∈ C(0)(Bext
a) ∩C(2)(Bext

a), (continuity)
(ii) ∆u = 0 in Bext

a , (harmonicity)
(iii) lim sup|y|→∞ |u(y)y| < ∞ as well as lim sup|y|→∞ |∇u(y)||y|2 < ∞.

(regularity at infinity)
Further, let the boundary values of u at the boundary Ωa = ∂Ba be given by a function
f := u|Ωa . Then the determination of u is called the exterior Dirichlet problem (EDP).

The definition of the exterior Dirichlet problem can be found in many textbooks.
We used a formulation similar to Telschow (2014, p. 33).

Theorem 2.4.3. The EDP from Definition 2.4.2 has a unique solution. This solution
u : Bext

a → R is given by

u(y) =
1

4πa

∫
Ωa

f (η)(|y|2 − a2)

|y− η|3 dω(η), y ∈ Bext
a , (2.22)

u(y) = f (y), y ∈ Ωa = ∂Bext
a .

For a proof, see, for instance, Freeden and Michel (2004a, pp. 52-53). Thus, we
obtained a representation of the gravitational potential V outside the Earth if we
are given values of the potential on the boundary sphere Ωa (here f). Note that,
in comparison to (2.21), this representation of the solution is independent of the
mass density ρ.

About the function space of the EDP solution We investigate the function
space of EDP solutions.

Definition 2.4.4. For Bext
a := R3\Ba, we define

Pot
(
Bext

a
)

:=

{
u

∣∣∣∣∣ u ∈ C(2) (Bext
a
)

, ∆u(y) = 0 ∀ y ∈ Bext
a ,

lim sup
y→∞

|u(y)y| < ∞, lim sup
y→∞

|∇u(y)||y|2 < ∞

}
.

For k ∈ N0, we set

Pot(k)
(

Bext
a

)
:= Pot

(
Bext

a
)
∩C(k)

(
Bext

a

)
.

25

2. From geodesy to inverse problems

Then the EDP can be reformulated (see e. g. Freeden and Schneider, 1998): for a
function f ∈ C(0) (Ωa), determine

u ∈ Pot(0)
(

Bext
a

)
such that

u↘Ωa(x) := lim
τ↘0

u(x + τν(x)) = f (x)

for x ∈ Ωa and ν(x) is the outer normal unit vector. Then the set of boundary
values is given as follows.

Definition 2.4.5. For a sphere Ωa with radius a ∈ R+, we define the set of boundary
values as

B↘Ωa :=
{

u↘Ωa

∣∣∣ u ∈ Pot(0)
(

Bext
a

)}
.

Due to the existence and uniqueness of the EDP solution, it holds

B↘Ωa = C(0) (Ωa)

and, thus,

L2(Ωa) = B↘Ωa

‖·‖L2(Ωa) = span
n∈N0; j=−n,...,n

{H−n−1,j(a; ·)|Ωa}
‖·‖L2(Ωa)

Hence, any function f ∈ L2(Ωa) can be approximated by a solution of the EDP
and any solution can be expanded in outer harmonics by

u(x) =
∞

∑
n=0

n

∑
j=−n

〈
f , H−n−1,j(a; ·)|Ωa

〉
L2(Ωa)

(
a
|x|

)n+1

H−n−1,j(a; ·)|Ωa

(
x
|x|

)
(2.23)

for x ∈ Bext
a . A further reason is given as follows: as the outer harmonics are in-

deed harmonic, the series on the right-hand side of (2.23) is harmonic as well
for |x| > a. Due to the completeness of the outer harmonics in L2(Ωa), we
know that the series converges for |x| = a to the Fourier series of f , see Theo-
rem 2.1.1. Furthermore, the regularity at infinity is also fulfilled because we have
(an)/(|x|n+1) ≤ 1 for all x ∈ Bext

a . Thus, the series representation is also a solu-
tion of the EDP. Due to the uniqueness of the solution of the EDP, (2.23) coincides
with (2.22).
Note that the series expansion (as well as the integral representation) holds point-
wise for x ∈ Bext

a . However, if x ∈ Ωa = ∂Bext
a , the series expansion holds only in

the sense of L2(Ωa) due to Theorem 2.1.1.

26

2.4. The exterior Dirichlet problem for satellite orbits

Using satellite data: the downward continuation problem If we have mea-
surements of the gravitational potential on the surface of the Earth, we can com-
pute V(y) via the unique solution of the EDP for points y outside the Earth. An
interpolation of these measurements yields the potential on the surface.
However, in practice, we are given satellite data: we have values of the potential
above the Earth’s surface. Such values are obtained by, e. g., GRACE (Gravity Re-
covery and Climate Experiment) and its successor GRACE-FO (Follow On) (see
e. g. Flechtner et al., 2014a; NASA Jet Propulsion Laboratory, 2020; Schmidt et al.,
2008; Tapley et al., 2004). Then the altitude of the satellite or the satellite orbit
defines the radius b of a sphere Ωb with b > a. We make another assumption for
this thesis.

Remark 2.4.6. In this thesis, we assume that satellites have a constant altitude,
i. e. the radius b of the satellite orbit Ωb is constant. The theory as well as the
algorithms are also suitable for varying altitudes as well. However, we neglect
this to keep the notation better readable.

We can consider the EDP of the gravitational potential with respect to a satellite
orbit in the same manner as we did above. Then we obtain a representation of
the gravitational potential for every point outside a satellite orbit which depends
only on the values of the potential on this orbit. However, the more interesting
challenge is to compute the gravitational potential on the Earth’s surface from
values of the potential on a satellite orbit. That means, we are not so much in-
terested in the values of the potential at points with greater distance to the Earth
than the satellite but much more in the values of the potential at points with less
(to no) distance to the Earth in comparison to a satellite. To obtain the gravita-
tional potential at the surface of the Earth we need to continue its value from a
satellite orbit downwards onto a sphere with smaller radius, i. e. to the inner of
the sphere Ωb. To do this, we first change the perspective.
Assume, we have the gravitational potential on the surface of the Earth Ωa and
we want to compute it on a satellite orbit Ωb with b > a. This continuation of
the potential upwards into space is defined by the solution of the EDP. For the
gravitational potential V, we have the representation

V(y) =
1

4πa

∫
Ωa

V(η)(|y|2 − a2)

|y− η|3 dω(η)

for y ∈ Bext
a := R3\Ba and given boundary values V(η), η ∈ Ωa. This can be

written in short by means of an operator

aT b : B↘Ωa → Pot(0)
(

Bext
a

)
for a < b as

V(·)|Ωb
:=aT bV(·)|Ωa ,

aT bV(·)|Ωa =
1

4πa

∫
Ωa

V(η)(| · |2 − a2)

| · −η|3 dω(η)

27

2. From geodesy to inverse problems

Figure 2.2.: The gravitational potential as given by the EGM2008, i. e. an expan-
sion in fully normalized spherical harmonics from degree 3 up to de-
gree 2190 and order 2159. We included the coastlines of the continents
for a better visualization. All values in m2/s2.

or, with the use of relative satellite orbits,

V(·)|Ωb/a
:= T V(·)|Ω :=1T b/aV(·)|Ω, (2.24)

1T b/aV(·)|Ω =
1

4π

∫
Ω

V(η)(| · |2 − 1)
| · −η|3 dω(η). (2.25)

This is the integral representation of the upward continuation operator. We used
a notation similar to, e. g., Telschow (2014, p. 62). With (2.23), we obtain a series
representation of the upward continuation operator which is useful in practice.
For further literature, see also, for instance, Michel and Fokas (2008) and the ref-
erences therein.

Theorem 2.4.7. In terms of spherical harmonics {Yn,j}n∈N0; j=−n,...,n, the upward con-
tinuation operator is given by

(T V)(ση) =
∞

∑
n=0

n

∑
j=−n
〈V, Yn,j〉L2(Ω)σ

−n−1Yn,j(η), σ > 1, η ∈ Ω. (2.26)

Note that σ refers to the satellite orbit b/a. For practical purposes, we use fully
normalized spherical harmonics in the representation (2.26) of the upward con-
tinuation operator. This system is also used by the EGM Development Team at
the National Geospatial-Intelligence Agency that developed the current reference
model of the gravitational potential of the Earth, the Earth Gravitational Model

28

2.5. An overview of inverse problems

2008 (EGM2008). An evaluation of this model is given in Figure 2.2. There, the
model from degree 3 up to degree 2190 and order 2159 is evaluated. Note that
this resembles only the more local structures of the gravitational potential as the
degrees below 3 are left out. The EGM2008 is the current official model of the
gravitational potential. However, it is expected to be superseded by a successor
model which shall be published in 2020 (see e. g. Barnes et al., 2015).
For the representation (2.26), we immediately obtain the following result.

Lemma 2.4.8. The upward continued value of a spherical harmonic basis function Ym,k,
for a fixed m, j ∈ N0 with −m ≤ j ≤ m, is given by

(T Ym,k)(ση) = σ−m−1Ym,k(η) (2.27)

for all σ > 1 and η ∈ Ω.

Proof. We start on the left-hand side of the equation:

(T Ym,k)(ση) =
∞

∑
n=0

n

∑
j=−n
〈Ym,k, Yn,j〉L2(Ω)σ

−n−1Yn,j(η)

=
∞

∑
n=0

n

∑
j=−n

δn,mδj,kσ−n−1Yn,j(η) = σ−m−1Ym,k(η).

The upward continuation operator gives us the gravitational potential on a satel-
lite orbit while it uses only values of the potential at the Earth’s surface. In other
words, we obtain the effect, i. e. the potential on the orbit, with only knowledge of
the cause, i. e. the potential at the surface. However, our actual interest of contin-
uing the potential downwards onto the Earth’s surface is described by the inverse
task. In other words, we want to know the cause while we only have knowledge
of its effect. This is a description of an inverse problem.

2.5. An overview of inverse problems

In this section, we summarize some aspects of the theory of inverse problems.
We start with a general model and give criteria for the well- and ill-posedness of
such a problem, i. e. for whether it can be solved easily or not. Then we introduce
regularization schemes which are used to remedy the ill-posedness. We state the
Tikhonov-Philipps regularization as an example of such a strategy. This section is
based on Engl et al. (1996); Hofmann (1999); Kirsch (1996); Kontak (2018); Rieder
(2003).

A general model Modelling a physical law is often done by the formulation of a
relation between the cause and its effect. For instance, the gravitational potential
at the Earth surface is caused by the mass density in the Earth (inverse gravime-
try). The same potential measured in space depends on its value at the surface of

29

2. From geodesy to inverse problems

the Earth (downward continuation). Also in medical imaging similar problems oc-
cur. For instance, the activity of the neural currents in the brain cause an electric
as well as a magnetic field outside the head (electro- and magnetoencephalography
problem). Further, the amount of radiation that can be measured behind an ob-
ject under investigation is determined by the inner of the object itself ((computer)
tomography). Thus, the use of cause-effect-relations in diverse applications gives
rise to an abstract, mathematical formulation.

Definition 2.5.1. Let X and Y denote Hilbert spaces. The space X stands for the causes
and Y for the effects. The relation of a cause and its effect is modelled by an operator
T : X → Y such that

Tx = y

for x ∈ X and y ∈ Y. The determination of y if x is known is called the direct problem.
Conversely, if y is known and x is sought, the problem is called an inverse problem. If
X and Y are function spaces of spherical functions, the inverse problem is also called a
spherical inverse problem.

Example 2.5.2. An example of an inverse problem is the downward continua-
tion of the gravitational potential. The Hilbert spaces are X = L2(Ω) and Y =
L(2)(Ωb/a). However, note that T is only well-defined on B↘Ω and T(B↘Ω) =

Pot(0)(Bext) with Bext := R3\B. The cause x ∈ B↘Ω is given by the values of the
potential at the surface of the Earth and the effect y ∈ Pot(0)(Bext) is the potential
outside the Earth, for instance on a satellite orbit Ωb/a. Then we have T = T from
(2.25) .

It is intuitive that not all inverse problem are easy to solve. In fact, the direct
problem is mostly much easier to handle. Next, we consider a characterization
for inverse problems.

Definition 2.5.3. (Well- and Ill-Posedness in the sense of Hadamard) Let X, Y be
Hilbert spaces and T : X → Y an operator. The inverse problem Tx = y for x ∈ X and
y ∈ Y is called well-posed if the following three properties are fulfilled:
the solution x ∈ X

(I) exists,
(II) is unique, and

(III) depends continuously on y, i. e. the inverse operator T−1 is continuous.
If at least one property is violated, the problem is called ill-posed.

In the sequel, we consider inverse problems with linear and bounded operators
T.

30

2.5. An overview of inverse problems

A look on ill-posed inverse problems We start with a detailed look on criteria
(I) and (I I) of Definition 2.5.3. Let T : X → Y be a linear and bounded operator
between Hilbert spaces X and Y. From property (I), we obtain that T must be
well-defined on the whole space X and be surjective, i. e. T(X) = Y. However,
if the range T(X) is a real subset of Y and y ∈ Y\T(X), then we can consider an
element x ∈ X whose image Tx ∈ Y has a minimal distance to y. In the sequel,
this element denotes a solution of the inverse problem as follows. For a better
readability, we assume that T is well-defined on the whole space X from now on.
At first, we consider the so-called normal-equation, see, for instance, Engl et al.
(1996, p. 35) or Rieder (2003, pp. 21-22).

Theorem 2.5.4. Let X, Y be Hilbert spaces, T : X → Y be a linear and bounded operator
and T∗ is the adjoint operator, i. e. 〈Tx, y〉Y = 〈x, T∗y〉X for all x ∈ X and y ∈ Y. The
normal equation

T∗Tx = T∗y,

has at least one solution if y ∈ T(X) ⊕ T(X)⊥. The set of solutions of the normal
equation is closed and convex. Thus, there exists a unique solution with minimal norm.
Further, for a fixed y ∈ Y and a linear and bounded operator T, each solution minimizes
the residual ‖Tx− y‖Y.

The existence and uniqueness of such a solution yields the following.

Definition 2.5.5. Let X, Y be Hilbert spaces and T : X → Y be a linear and bounded
operator. The generalized inverse T† : T(X)⊕ T(X)⊥ → X or Moore-Penrose inverse is
defined by

T†y = x†

with ∥∥∥x†
∥∥∥

X
< ‖x̃‖X

for all x̃ ∈ X, x̃ 6= x†, which fulfil T†Tx̃ = T†y. The solution x† is called the minimum
norm solution and is the unique solution of the normal equation that fulfils

x† = arg min
x∈X

‖Tx− y‖Y.

With the generalized inverse and the minimum-norm solution of an ill-posed in-
verse problem, we found a way to circumvent problems caused by property (I)
and (I I) in Definition 2.5.3. Thus, with respect to ill-posed inverse problems, we
are only concerned with property (I I I) in the sequel. For our solution, the gener-
alized inverse, this property can be reformulated (see e. g. Rieder, 2003, p. 23-24).

31

2. From geodesy to inverse problems

Theorem 2.5.6. The generalized inverse T† as defined in Definition 2.5.5 is continuous
if and only if the range of T is closed, i. e. T(X) = T(X).

Definition 2.5.7. (Well- and Ill-Posedness in the sense of Nashed) Let X, Y be
Hilbert spaces and T : X → Y be a linear and bounded operator. The inverse problem
Tx = y for x ∈ X and y ∈ Y is called well-posed in the sense of Nashed if the range of
T is closed in Y, i. e. T(X) = T(X). Otherwise, the inverse problem is called ill-posed in
the sense of Nashed.

Note that it obviously holds T(X) ⊆ T(X). For determining whether an inverse
problem is ill-posed, we have to show that T(X) ⊆ T(X).
For practical applications, the continuity of the inverse is of major importance.
The effect y ∈ Y is usually obtained from physical experiments. For instance, we
use measurements from a satellite mission. However, naturally, these measure-
ments are defective. Thus, we only have perturbed data yδ ≈ y instead of the
exact y where δ is called the noise level. This may cause problems when solving
an inverse problem. If the problem is ill-posed, a – however obtained – solution
xδ of the perturbed inverse problem Txδ = yδ can be far from the solution x of the
exact problem Tx = y due to the missing continuity. Thus, an approach to solve
an ill-posed inverse problem needs to take care of this instability.
One possible approach is to regularize the problem before solving it. Before we
define regularization strategies in general and give an overview of the Tikhonov-
Philipps regularization in particular, we first outline that the downward continu-
ation is ill-posed. For this, we consider compact operators next.

Definition 2.5.8. Let X and Y be normed spaces. An operator T : X → Y is compact
if the image (Txn)n∈N0 of every bounded sequence (xn)n∈N0 ⊂ X has a convergent
subsequence.

Theorem 2.5.9. Every linear and compact operator is also bounded.

Example 2.5.10. Let Gi ⊂ Rd, i = 1, 2, be non-empty and compact sets and let
be k ∈ L2(G1 × G2). We consider the Fredholm integral operator of the first kind
T : L2(G2)→ L2(G1)

T f (·) :=
∫

G2

k(·, y) f (y) dy.

It can be shown that this operator is compact (see e. g. Heuser, 2006, Chapter 87)
if G1 and G2 are intervals. Analogously, it holds for compact subsets G1 and G2 of
higher dimension. An example is the upward continuation operator T as given
in (2.24) if we set k ∈ L(2)(Ω×Ωb/a) with

k(χ, ση) :=
1

4π

σ2 − 1
|χ− ση|3 . (2.28)

32

2.5. An overview of inverse problems

Now, for two Hilbert spaces X and Y, let T : X → Y be a linear and compact
operator. Further, we assume that its inverse T−1 exists. If T−1 is continuous,
then the identity I = T−1 ◦ T is compact as well. However, it is known (see e. g.
Rieder, 2003, pp. 27-28) that this only holds if X has a finite dimension. Thus, for
compact operators between infinite dimensional spaces like the Fredholm inte-
gral operator of the first kind, the inverse T−1 cannot be continuous. That means
the corresponding inverse problem is ill-posed.

Remark 2.5.11. We note the following aspects:
(a) In the sequel, we consider inverse problems between infinite dimensional

spaces.
(b) The previous considerations show that the downward continuation of satel-

lite data is an ill-posed inverse problem.

The singular value decomposition of a linear and compact operator In the last
section, we have seen that the gravitational potential allows a series representa-
tion in outer harmonics. This approach can be generalized for compact operators.

Definition 2.5.12. Let X be a normed space and T : X → X a linear and bounded
operator. If µI − T, µ ∈ C, has a continuous inverse, then µ is called a regular value of
T. The set of non-regular values is called the spectrum of T. A non-regular value µ of T
is called an eigenvalue, if (µI − T)v 6= 0 for at least one 0 6= v ∈ X. Then the element
v ∈ X is called an eigenvector or eigenfunction of T with respect to µ.

We use this result for the product T∗T of the compact linear operator T and its
adjoint operator T∗ (for the latter see Theorem 2.5.4). It can be shown that the
non-regular values of T∗T are real and positive (see e. g. Rieder, 2003, p. 31) if not
zero. Then we can define the singular system of T.

Definition 2.5.13. Let X, Y be Hilbert spaces and T : X → Y be a compact linear
operator. Except for the zero value, the non-regular values of the self-adjoint product T∗T
of the operator T and its adjoint operator T∗ are positive and, thus, can be ordered as
µ0 ≥ µ1 ≥ · · · > 0. For n ∈ N0, the respective orthonormal system of eigenvectors is
denoted by {vn} ⊂ X. At last, we set

σn :=
√

µn, un := σ−1
n Tvn.

The system

{(σn; vn, un) | n ∈ N0} ⊂]0, ∞[×X×Y

is called a singular system of T. The values σn are called singular values and the elements
vn and un are called singular functions or singular vectors. Further, there exists an
expansion of T as

Tx =
∞

∑
n=0
〈x, vn〉Xσnun (2.29)

which is called the singular value decomposition (SVD) of T.

33

2. From geodesy to inverse problems

Compare (2.23) and in particular (2.26) with (2.29): for the upward continuation
operator, we have

Tx =
∞

∑
n=0

n

∑
j=−n
〈x, vn,j〉Xσn,jun,j

and, hence, σn,j = σ−n−1 for all j = −n, ..., n and with σ > 1. With the singular
value decomposition, we obtain another condition for a well-posed problem (see
e. g. Rieder (2003, pp. 31-32) or Kirsch (1996, pp. 241-242)).

Theorem 2.5.14. (Picard condition) Let X, Y be Hilbert spaces and T : X → Y be a
compact linear operator with a singular system {(σn, vn, un) | n ∈ N0}. Any element
y ∈ T(X) is also an element of T(X) if and only if

∞

∑
n=0

|〈y, un〉Y|2
σ2

n
< ∞. (2.30)

That means, an inverse problem Tx = y is well-posed in the sense of Nashed if
and only if (2.30) holds for all y ∈ T(X).

Remark 2.5.15. To have (2.30) fulfilled for all y ∈ T(L2(Ω)), the coefficients
〈y, un〉Y need to have a faster decrease rate than the singular values. With re-
spect to the upward continuation, we have seen that the singular values σ−n−1 =
(a/b)n+1, for σ = b/a > 1, are exponentially decreasing. Thus, the condition
(2.30) cannot be fulfilled in general for y ∈ L(2)(Ωb/a). Thus, we see again that
the downward continuation is an ill-posed inverse problem.

Approximating the ill-posed problem: regularization strategies Solving an ill-
posed inverse problem Tx = y has its difficulties as we have seen. It is even worse
if we need to solve the perturbed problem Txδ = yδ for a noise level δ > 0. We
already mentioned that regularization strategies are a possible approach for han-
dling this. In the sequel, we assume that yδ ∈ Y.
The idea how to obtain the solution of Txδ = yδ is as follows. We do not aim
to solve the problem as best as possible but as best as necessary (see Hofmann,
1999, p. 127). Mathematically, we substitute the operator T with a certain approx-
imate one Tλ(δ,yδ) such that Tλ(δ,yδ) corresponds to a well-posed inverse problem
Tλ(δ,yδ)x

δ = yδ. This problem yields an approximate solution xδ of x – at least,
both vectors are solutions in the sense of the minimum-norm solution (i. e. for a
solution related to unperturbed data x, we are given the respective unperturbed
minimum-norm solution x† and, for a solution related to perturbed data xδ, we
are given the respective perturbed minimum-norm solution (x†)δ). When solv-
ing the approximate problem instead of the original one, we trade the exactness
of the solution for a guarantee to be near the exact solution.
The approximative problem Tλ(δ,yδ)x

δ = yδ and, thus, the solution xδ is obtained
via a regularization strategy.

34

2.5. An overview of inverse problems

Definition 2.5.16. Let X, Y be Hilbert spaces and T : X → Y be a linear and bounded
operator. A noise level of the related inverse problem is given by δ > 0. Further,
T† denotes the generalized inverse and x† the minimum-norm solution. At last, let
(T†

λ(δ,yδ)
)λ(δ,yδ)∈R+ with T†

λ(δ,yδ)
: Y → X be a family of continuous (not necessarily

linear) operators. If, for all y ∈ T(X), it holds

lim
δ↘0

sup
{∥∥∥∥T†y− T†

λ(δ,yδ)
yδ

∥∥∥∥
X

∣∣∣∣ yδ ∈ Y,
∥∥∥y− yδ

∥∥∥
Y
≤ δ

}
= 0

and

lim
δ↘0

sup
{

λ
(

δ, yδ
) ∣∣∣ yδ ∈ Y,

∥∥∥y− yδ
∥∥∥

Y
≤ δ

}
= 0, (2.31)

then (T†
λ(δ,yδ)

)λ(δ,yδ)∈R+ is called a regularization. The mapping λ : R+ × Y → R+

is called a parameter choice rule, a particular value λ
(
δ, yδ

)
is called a regularization

parameter and a particular operator T†
λ(δ,yδ)

is called regularization strategy.

Thus, a regularization is a family of approximative operators for which the so-
lutions of the related inverse problems converge to the minimum norm solution
for a decreasing noise level. Such a strategy can be investigated with respect to
its convergence rates and optimality. A way to construct a regularization strat-
egy is given by certain filters. However, in this thesis, we are only interested in
their definition and the properties of a particular strategy. Thus, for further de-
tails on general properties and construction methods, we refer the reader to the
common literature on the regularization of inverse problems, for instance, Engl
et al. (1996); Hofmann (1999); Kirsch (1996); Rieder (2003).
The regularization of interest in this thesis is the so-called Tikhonov-Philipps reg-
ularization. We introduce the method next. The example is based on Kontak
(2018, Subsect. 6.1.3 and 6.1.4) and Rieder (2003, pp. 70-71 and Chapter 4) where
more details can be found as well.

Example 2.5.17. Let X, Y be Hilbert spaces and T : X → Y be a linear and
bounded operator. A noise level of the related inverse problem is given by δ > 0.
Further, let λ : R+ ×Y → R+ be a parameter choice rule, i. e. fulfil (2.31).
In the Tikhonov-Philipps regularization, we set

T†
λ(δ,yδ)

:=
(

T∗T + λ
(

δ, yδ
)

I
)−1

T∗,

where I is the identity operator on X. Then we have

T∗yδ =
(

T∗T + λ
(

δ, yδ
)

I
) (

T∗T + λ
(

δ, yδ
)

I
)−1

T∗yδ

=
(

T∗T + λ
(

δ, yδ
)

I
)

T†
λ(δ,yδ)

yδ,

35

2. From geodesy to inverse problems

which is called the regularized normal equation (compare with Theorem 2.5.4).
Its unique solution is denoted by

x†
λ(δ,yδ)

:= T†
λ(δ,yδ)

yδ.

This solution is equivalently obtained by

x†
λ(δ,yδ)

:= arg min
x∈X

J
(

x; T, λ
(

δ, yδ
)

, yδ
)

:= arg min
x∈X

(∥∥∥yδ − Tx
∥∥∥2

Y
+ λ

(
δ, yδ

)
‖x‖2

X

)
.

This functional is called the Tikhonov-Philipps functional. The first summand is
called data fidelity term or data error and the second summand is called penalty
term or approximation error. The convergence rate of the Tikhonov-Philipps reg-
ularization is estimated by∥∥∥∥xλ(δ,yδ) − x†

λ(δ,yδ)

∥∥∥∥
X
≤
(

1
2
√

m
+ m

)
c1/3δ2/3

with a constant m ∈ R+ and ‖z‖X ≤ c ∈ R+ with x†
λ(δ,yδ)

= T∗Tz. Note that an
iterated Tikhonov-Philipps regularization exists in the literature. In this regular-
ization the penalty term is modified to

J
(

x; T, λ
(

δ, yδ
)

, yδ, i
)

:=
∥∥∥yδ − Tx

∥∥∥2

Y
+ λ

(
δ, yδ

) ∥∥∥∥∥x−
(

x†
λ(δ,yδ)

)i
∥∥∥∥∥

2

X

where (
x†

λ(δ,yδ)

)i
:= arg min

x∈X
J
(

x; T, λ
(

δ, yδ
)

, yδ, i− 1
)

.

Hence, in the iterated Tikhonov-Philipps regularization, not the solution itself
is considered to stabilize the problem but the distance between two successive
iterates. The iterated variant is used, for instance, in order to improve the speed
of the convergence.

About the choice of a regularization parameter The choice of the regulariza-
tion parameter is of importance because it influences which summand in the
Tikhonov-Philipps functional has more weight. Either, if λ(δ, yδ) = 0, we only
consider the data fidelity of a solution and neglect any regularization. Or, if
λ(δ, yδ) is chosen such that ‖yδ − Tx‖2

Y � λ(δ, yδ)‖x‖2
X, the solution will not

be very true to the given yδ.

36

2.5. An overview of inverse problems

There exists a wide range of parameter choice rules or methods which are ap-
proaches to determining the best suitable value λ(δ, yδ) for a given perturbed
inverse problem (see e. g. Bauer et al., 2015; Bauer and Lukas, 2011; Gutting et al.,
2017, and the references therein). Further, we can use a separation ansatz for the
parameter choice rule, e. g., by

λ
(

δ, yδ
)

:= λ0(δ)
∥∥∥yδ
∥∥∥

Y

for a λ0 : R+ → R+. In this way, the value λ0(δ) can be viewed as a percentage
of the norm of the data yδ.
In future works, the following approaches could be considered for the determi-
nation of λ0. In principle, the separation ansatz can be extended by the use of a
total variation (see e. g. Chambolle and Lions, 1997; Defrise et al., 2011; Li et al.,
2013; Rudin et al., 1992). The total variation can be able to distinguish the signal
and the noise because it penalizes high frequencies in the signal. It can be either
used instead of the norm ‖yδ‖Y. Or, with respect to the Tikhonov regularization,
we can also use it as a second penalty term. Then the regularization is similar to
an elastic-net approach (see e. g. Daubechies et al., 2004; De Mol et al., 2009; Zou
and Hastie, 2005).
A description of how we choose the regularization parameter in our numerical
experiments will be given later in dependence of our algorithms for ill-posed in-
verse problems.

37

3. Particular real-valued trial
functions on the sphere

The aim of this thesis is to develop a dictionary learning strategy for spherical
inverse problems. In other words, we want to automatically select trial functions
for the approximation of real-valued signals on the sphere. Thus, the main con-
cern of this thesis is about choosing specific functions which are suitable for this
need. The gravitational potential as our example of a given signal has certain
mathematical idiosyncrasies like, e. g., having a global support. Therefore it is
sensible to preselect types of trial functions from the range of possible ones.
We have already introduced spherical harmonics in Section 2.2 which are a tradi-
tional choice of global trial functions. In this chapter, we introduce further types
of trial functions which can be used in the learning approach for spherical inverse
problems that are similar to the downward continuation of satellite data of the
gravitational potential of the Earth. We start with scalar Slepian functions which
can be viewed as a bridge between global and local functions. After that, we dis-
cuss radial basis functions and related wavelets as examples for local functions.
For this discussion, we first take a look at spherical Sobolev spaces. The section
closes with an overview of the values of the upward continued trial functions as
well as certain inner products of them.

3.1. A few aspects of scalar Slepian functions

We use spherical harmonics to construct another type of trial functions: (scalar)
Slepian functions. Due to this construction, they inherit the polynomial struc-
ture of spherical harmonics. However, they are built as optimally localized func-
tions. In this way, they build a bridge between purely global and local functions.
The Slepian functions discussed here are based on, e. g., Albertella et al. (1999);
Grünbaum et al. (1982); Leweke et al. (2018a); Michel (2013); Seibert (2018); Si-
mons et al. (2006).
Due to well-known uncertainty principles, a function cannot be simultaneously
perfectly localized in space and frequency. We have seen that, for example, spher-
ical harmonics are localized in frequency but not in space. On the contrary, we
will see later that, for instance, the Abel–Poisson kernel is spatially localized, but
has infinitely many non-vanishing Legendre coefficients. To combine these con-
cepts, we consider band-limited functions, i. e. functions with a truncated Fourier
expansion.

39

3. Particular real-valued trial functions on the sphere

Definition 3.1.1. Let N ∈ N0 be fixed. A function gN : Ω → R, g ∈ L2(Ω), is
band-limited if

gN =
N

∑
n=0

n

∑
j=−n

g∧(n, j)Yn,j (3.1)

for spherical harmonics Yn,j and Fourier coefficients (gN)∧(n, j) ∈ R.

Thus, band-limited functions are – to some extent – localized in frequency and it
is not possible for them to be perfectly localized in space as well. Therefore, we
consider the approach to have a band-limited function which is only optimally
localized in space. For this, we define a parameter to measure how well a band-
limited function is localized in space. This parameter is called the energy ratio.

Definition 3.1.2. Let gN ∈ L2(Ω) be a band-limited function on the sphere. The energy
ratio ρ ∈ [0, 1] with respect to gN and a localization region R ⊆ Ω is given by

ρ :=

∥∥gN
∥∥2

L2(R)

‖gN‖2
L2(Ω)

.

This quotient is the most intuitive approach to measure how well localized a func-
tion gN ∈ L2(Ω) is in a particular region R. The energy ratio gives us the share
of the energy of gN in a subset R ⊆ Ω in the energy of gN on the whole sphere.
Obviously, the value ρ is a real number between 0 and 1. This means, if ρ is nearly
one, the energy of gN in the localization region nearly equals the energy of gN on
the whole of its domain. Then, if the localization region is much smaller than the
sphere, the function must nearly vanish outside of it. If ρ is nearly 0, the energy
of gN in the localization region is negligible in comparison to the energy on the
sphere. Thus, if ρ is large, gN is localized in R. If ρ is small, gN is localized in the
complement Ω\R.
For a characterization of optimally localized functions, we consider the energy
ratio in more detail. Using (3.1), the ratio can be reformulated to an algebraic
eigenvalue problem. For N, n, n′, j, j′ ∈ N0 with −n ≤ j ≤ n and −n′ ≤ j′ ≤ n′,
we have

ρ =
∑N

n=0 ∑n
j=−n ∑N

n′=0 ∑n′
j=−n′

(
gN)∧ (n, j)

(
gN)∧ (n′, j′)〈Yn,j, Yn′,j′〉L2(R)

∑N
n=0 ∑n

j=−n (gN)
∧ (n, j) (gN)

∧ (n, j)

=
(ĝN)TL(R)ĝN

(ĝN)T ĝN (3.2)

for the vector notation

ĝN =

((
gN
)∧

(0, 0), ...,
(

gN
)∧

(n, j), ...,
(

gN
)∧

(N, N)

)

40

3.1. A few aspects of scalar Slepian functions

of real coefficients (gN)∧(n, j) and the localization matrix L(R) ∈ R(N+1)2×(N+1)2

defined by

L(R) :=
(
〈Yn,j, Yn′,j′〉L2(R)

)
n,n′=0,...,N; j,j′=−n,...,n

. (3.3)

Note that L(R) is a Gramian matrix. Thus, it is symmetric, real and positive defi-
nite. Due to the Principal Axis Theorem, its eigenvalues are real and positive and
the respective eigenvectors are real and pairwise orthonormal. By construction,
the eigenvectors of L(R) are built from the Fourier coefficients (gN)∧(n, j) of the
band-limited function gN under consideration. Thus, we define scalar Slepian
functions via the solutions of the eigenvalue problem (3.2).

Definition 3.1.3. Let Yn,j, n, j ∈ N0, n ≤ N ∈ N0, −n ≤ j ≤ n, denote spherical
harmonics. A (scalar) Slepian function on the sphere localized in a region R ⊆ Ω is a
band-limited function g(k,N)(R, ·) : Ω→ R, k = 1, ..., (N + 1)2, with

g(k,N)(R, ·) =
N

∑
n=0

n

∑
j=−n

g(k,N)
n,j (R)Yn,j, (3.4)

where g(k,N)
n,j (R) := ((g(k,N))∧(n, j))(R) is the (n, j)-th entry of the k-th eigenvector of

the Gramian matrix L(R) as given in (3.3). The related eigenvalue is denoted ρ(k,N)(R)
and equals the energy ratio of the Slepian function g(k,N)(R, ·).

Note that the functions g(k,N), k = 1, ..., (N + 1)2, are usually ordered such that
g(1,N) corresponds to the highest eigenvalue and g((N+1)2,N) corresponds to the
lowest one. We constructed Slepian functions as band-limited linear combina-
tions of spherical harmonics. Thus, a Slepian function is obviously an element
of L2(Ω). However, a set of Slepian functions cannot be closed in infinite-dimen-
sional spaces like, e. g., L2(Ω) due to the finite band-limit. Nonetheless, they have
an interesting property for a dictionary.

Theorem 3.1.4. For k and N ∈ N0, a system of Slepian functions{
g(k,N)(R, ·)

∣∣∣ k = 1, ..., (N + 1)2
}

with respect to a localization region R ⊆ Ω is an orthonormal system in the space
(L2(Ω), 〈·, ·〉L2(Ω)) as well as an orthogonal system in (L2(R), 〈·, ·〉L2(R)).

Proof. Let g(k,N) and g(m,N) be Slepian functions with band-limit N for k, m ∈ N0
and k, m ≤ (N + 1)2. We first consider the space (L2(Ω), 〈·, ·〉L2(Ω)). It holds

〈
g(k,N), g(m,N)

〉
L2(Ω)

=
N

∑
n=0

n

∑
j=−n

ĝ(k,N)
n,j ĝ(m,N)

n,j = δk,m

41

3. Particular real-valued trial functions on the sphere

as the eigenvectors of the localization matrix L(R) form an orthonormal basis in
R(N+1)2

. From the eigenvalue problem (3.2), we obtain the generalization〈
g(k,N), g(m,N)

〉
L2(R)

= ρ
〈

g(k,N), g(m,N)
〉

L2(Ω)
= ρδk,m

and, thus, the orthogonality in (L2(R), 〈·, ·〉L2(R)).

At least, for a band-limit N ∈ N0, the set of Slepian functions of band-limit N
is a basis of Harm0,...,N(Ω) because they are a linear combination of all spherical
harmonic basis functions up to degree N.
From the approach taken, it is clear how to compute Slepian functions for prac-
tical purposes. We have to compute the Gramian matrix L(R), R ⊆ Ω, and solve
the respective eigenvalue problem. However, a difficulty evolves from this naive
ansatz. Numerical experiments (see e. g. Albertella et al., 1999; Khalid et al., 2016;
Leweke et al., 2018a; Plattner and Simons, 2014; Seibert, 2018; Simons, 2010; Si-
mons and Dahlen, 2006; Simons et al., 2006) show that the obtained eigenvalues
ρ(k,N)(R), k = 1, ..., (N + 1)2, are situated either in a neighbourhood of 1 or near
0. On the one hand, this is good because it underlines the idea of constructing
optimally localized functions. Slepian functions related to an eigenvalue, or en-
ergy ratio, near 1 are usually called well-localized in the localization region as the
energy ratio shows that they have nearly all their volume in the specified region
R. Slepian functions related to a nearly vanishing energy ratio are called poorly-
localized because they are nearly vanishing in the localization region. Thus, the
separation of the eigenvalues shows that a clear distinction in well- and poorly lo-
calized functions is obtained by this approach. On the other hand, the separation
of eigenvalues in being nearly 1 and being nearly 0 means that the localization
matrix is nearly singular due to a high condition number. Hence, the numerical
computation of Slepian functions can be problematic.
However, for particular regions such as a spherical cap, the instability of the lo-
calization matrix can be bypassed. Thus, we consider spherical caps as particular
localization regions next.

Example 3.1.5. We consider Slepian functions which are localized in a spherical
cap with an arbitrary centre on the sphere. Thus, for ε3 = (0, 0, 1)T, we have the
localization region

R
(

c, Aε3
)

:=
{

η ∈ Ω
∣∣∣ ∣∣∣η − Aε3

∣∣∣ ≤ c
}

for c ∈ [−1, 1] and a rotation matrix A ∈ SO(3). Note that for A = I (I the identity
matrix in R3×3), we consider the spherical cap around the North Pole, i. e. with
the centre of the localization region given by ε3, and simply write R(c, ε3).
We can parametrize the Slepian functions with the cap size c and the centre of
the localization region. The latter one is given by the rotation of ε3 about A. We

42

3.1. A few aspects of scalar Slepian functions

obtain the following notation:

g(k,N)
((

c, Aε3
)

, ·
)

:= g(k,N)
(

R
(

c, Aε3
)

, ·
)

:=
N

∑
n=0

n

∑
j=−n

g(k,N)
n,j

(
R
(

c, Aε3
))

Yn,j(·).

An example of a set of Slepian functions with respect to a fixed band-limit and
localization region is given in Figure 3.1. There, the 36 Slepian functions of band-
limit 5 which are localized in a spherical cap of size c = π/4 and centre of the
spherical cap at (0, 1, 0)T are presented. They are ordered with respect to decreas-
ing eigenvalues of the commuting matrix (see Theorem 3.1.11). Thus, the fig-
ures start with well-localized functions and end with poorly-localized ones. Note
that, as usual, one of the well- and poorly-localized functions have exactly one
extremum. Obviously, the Slepian functions inherit the polynomial structure of
the – in this case – fully normalized spherical harmonics (see Figure 2.1). Further,
we notice that in the range of the Slepian functions the well-localized functions
attain their polynomial structure only in the desired localization region (see the
first row). Moreover, the poorly-localized functions show the same behaviour in
the complement of the localization region (see the last row). At last, there are
functions which are neither localized in the localization region nor in its compli-
ment (see the third and fourth row). This separation is naturally seen with Slepian
functions because they form an orthonormal system in (L2(Ω), 〈·, ·〉L2(Ω)).

About rotating Slepian functions From Example 3.1.5, we can generalize the
idea of rotating a standard localization region to obtain arbitrary regions. In the
sequel, we consider the localization region R of a Slepian function to be the result
of the rotation of a standard region R′ by means of a rotation matrix A ∈ SO(3)
where ε3 = (0, 0, 1)T is the centre of R′. Then we consider Slepian functions to
be localized in R′ and rotated by means of A ∈ SO(3). Therefore, we investi-
gate some properties of rotation matrices next (see e. g. Dahlen and Tromp, 1998;
Freeden and Gutting, 2013; Gutting, 2007).

Definition 3.1.6. A rotation matrix A(α, β, γ) ∈ SO(3) is a 3× 3−matrix of the form

A(α, β, γ)

=

cos(α) cos(β) cos(γ) − cos(α) cos(β) sin(γ) cos(α) sin(β)
− sin(α) sin(γ) − sin(α) cos(γ)

sin(α) cos(β) cos(γ) − sin(α) cos(β) sin(γ) sin(α) sin(β)
+ cos(α) sin(γ) − cos(α) cos(γ)

− sin(β) cos(γ) sin(β) sin(γ) cos(β)

(3.5)

43

3. Particular real-valued trial functions on the sphere

Figure 3.1.: Slepian functions of band-limit 5 localized in a spherical cap with c =
π/4 and centre (0, 1, 0)T ordered by decreasing eigenvalues.

with the Euler angles α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π). With such a matrix, we
can rotate a point η′ ∈ Ω towards another point η ∈ Ω via the relation η = A(α, β, γ)η′.
Note that it holds η′ = AT(α, β, γ)η ∈ Ω as well. If for all η′ ∈ R′ it holds that
η = A(α, β, γ)η′ ∈ R and vice versa, we write R = A(α, β, γ)R′ for this relation.

Obviously to rotate the Slepian functions, we could work with the values of the
spherical harmonics at the rotated points, i. e.

g(k,N)(R, η) =
N

∑
n=0

n

∑
j=−n

g(k,N)
n,j (R′)Yn,j

(
A (α, β, γ)T η

)
, (3.6)

R = A(α, β, γ)R′, R′, R ⊆ Ω, η = A(α, β, γ)η′, η′, η ∈ Ω, A(α, β, γ) ∈ SO(3).

However, this is not useful in practical applications. It is more convenient to work
with a rotated function gk(R, ·) than with rotated evaluation points. For this, the
rotation of spherical harmonics needs to be considered. Then we obtain a rotated
function gk(R, ·) which can be evaluated in the unaffected points η′, i. e.

g(k,N)(R, η′) =
N

∑
n=0

n

∑
j=−n

g(k,N)
n,j (R)Yn,j(η

′), (3.7)

R = A(α, β, γ)R′, R′ ⊆ Ω, A(α, β, γ) ∈ SO(3), η′ ∈ Ω.

44

3.1. A few aspects of scalar Slepian functions

In the sequel, we derive the relation between (3.6) and (3.7). At first, we consider
Wigner rotation matrices (see e. g. Choi et al., 1999; Dahlen and Tromp, 1998; Free-
den and Gutting, 2013; Gutting, 2007).

Definition 3.1.7. For n, k, j ∈ N0, the n-th Wigner rotation matrix Dn is a complex
matrix of size (2n + 1)× (2n + 1). The rows and columns are indexed from −n to n.
The matrix Dn depends on the Euler angles α, β, γ. For −n ≤ k ≤ n, the matrix is
iteratively given by

D0(α, β, γ) = 1,

D1(α, β, γ) =

1+cos(β)

2 ei(α+γ) sin(β)√
2

eiα 1−cos(β)
2 ei(α−γ)

− sin(β)√
2

eiγ cos(β) sin(β)√
2

e−iγ

1−cos(β)
2 ei(γ−α) − sin(β)√

2
e−iα 1+cos(β)

2 e−i(α+γ)

 ,

Dn
k,j = an

k,jD
1
0,0Dn−1

k,j + bn
k,jD

1
1,0Dn−1

k−1,j + bn
−k,jD

1
−1,0Dn−1

k+1,j,

− n + 1 ≤ j ≤ n− 1

Dn
k,j = cn

k,−jD
1
0,−1Dn−1

k,j+1 + dn
k,−jD

1
1,−1Dn−1

k−1,j+1 + dn
−k,−jD

1
−1,−1Dn−1

k+1,j+1,

− n ≤ j ≤ n− 2

Dn
k,j = cn

k,jD
1
0,1Dn−1

k,j−1 + dn
k,jD

1
1,1Dn−1

k−1,j−1 + dn
−k,jD

1
−1,1Dn−1

k+1,j−1,

− n + 2 ≤ j ≤ n

with

an
k,j =

√
(n + k)(n− k)
(n + j)(n− j)

, an
k,j = 0 for k = ±n,

bn
k,j =

√
(n + k)(n + k− 1)

2(n + j)(n− j)
, bn

k,j = 0 for k = −n or k = −n + 1,

cn
k,j =

√
2(n + k)(n− k)
(n + j)(n + j− 1)

, cn
k,j = 0 for k = ±n,

dn
k,j =

√
(n + k)(n + k− 1)
(n + j)(n + j− 1)

, dn
k,j = 0 for k = −n or k = −n + 1.

With the Wigner rotation matrices, the following result is known for the rotation
of complex spherical harmonics (see e. g. Freeden and Gutting, 2013, p. 192).

Theorem 3.1.8. Let n, j ∈ N0 with −n ≤ j ≤ n be fixed. The value of a complex
spherical harmonic Yn,j at a point η′ can be obtained as the linear combination of all
complex spherical harmonics of the same degree at a point η in the following way:

Yn,j(η
′) =

n

∑
k=−n

Dn
k,j(α, β, γ)Yn,k(η) (3.8)

45

3. Particular real-valued trial functions on the sphere

where η = A(α, β, γ)η′. The complex value Dn
k,j(α, β, γ) is the (k, j)-th entry of the n-th

Wigner rotation matrix with respect to the Euler angles α, β, γ.

Therefore, we can write the Slepian functions localized in an arbitrary region R of
the sphere in relation to the Slepian functions localized in a region R′ of the same
form which contains ε3.

Theorem 3.1.9. Let Yn,j, n, j ∈ N0, n ≤ N ∈ N0, −n ≤ j ≤ n, denote complex
spherical harmonics. For η ∈ Ω, A(α, β, γ) ∈ SO(3), a Slepian function can be written
with the use of Wigner rotation matrices dependent on Euler angles α, β, γ as

g(k,N)(R, η) :=
N

∑
n=0

n

∑
i=−n

g̃(k,N)
n,i (R)Yn,i(η)

=
N

∑
n=0

n

∑
i=−n

n

∑
j=−n

Dn
i,j(α, β, γ)g̃(k,N)

n,j (R′)Yn,i(η) (3.9)

if R = A(α, β, γ)R′, R, R′ ⊆ Ω.

Proof. We start with a representation of gk similar to (3.6) only in complex spher-
ical harmonics and insert (3.8) into it.

g(k,N)(R, η) =
N

∑
n=0

n

∑
j=−n

g̃(k,N)
n,j (R′)Yn,j

(
A (α, β, γ)T η

)
=

N

∑
n=0

n

∑
i=−n

n

∑
j=−n

g̃(k,N)
n,j (R′)Dn

i,j(α, β, γ)Yn,i(η)

:=
N

∑
n=0

n

∑
i=−n

g̃(k,N)
n,i (R)Yn,i(η).

Note that the coefficients g̃(k,N)
n,j denote the coefficients with respect to an expan-

sion in complex spherical harmonics. These coefficients are related to the coeffi-
cients g(k,N)

n,j from Definition 3.1.3 as described in Remark 2.2.9.

Example 3.1.10. Considering in particular a spherical cap as the localization re-
gion R of a set of Slepian functions (see Example 3.1.5), we obtain the following
notation from (3.9):

g(k,N)
((

c, A(α, β, γ)ε3
)

, ·
)
=

N

∑
n=0

n

∑
i=−n

n

∑
j=−n

Dn
i,j(α, β, γ)g̃(k,N)

n,j

(
c, ε3

)
Yn,i(·)

for k ∈ N, k ≤ (N + 1)2 with a band-limit N ∈ N and for R
(
c, A (α, β, γ) ε3) =

A(α, β, γ)R′
(
c, ε3) with A(α, β, γ) ∈ SO(3) and c ∈ [−1, 1].

We showed the relation of the case of an arbitrary localization region R with the
case of a localization region R′ of the same form but containing ε3. Thus, for the
next considerations we can work with solely the latter kind of regions.

46

3.1. A few aspects of scalar Slepian functions

A view on the computation and representation of Slepian functions In the be-
ginning of this section, we mentioned stability problems emerging from the naive
approach of computing Slepian functions. In detail, the numerical solution of the
eigenvalue problem in the background of the Slepian functions can be problem-
atic due to the high condition number of the localization matrix L(R). However,
if the Slepian functions are localized, e. g., in a spherical cap, we can circumvent
this situation. We summarize how the numerical computations can be stabilized
next. These results are taken from, e. g., Grünbaum et al. (1982); Seibert (2018);
Simons (2010); Simons et al. (2006).
For the numerical computation of Slepian functions, we consider the following
localization region:

R
(

c, ε3
)
=
{

η ∈ Ω
∣∣∣ ∣∣∣η − ε3

∣∣∣ ≤ c
}

(3.10)

which can be parametrized by

R
(

c, ε3
)
= {(ϕ, t) | ϕ ∈ [0, 2π[, t ∈ [c, 1]}

for practical purposes. For this region, a commuting differential operator on the
set of twice continuously differentiable functions on the sphere can be found. We
look for the eigenfunctions of the commuting differential operator to bypass the
ill-conditioned localization matrix L(R(c, ε3)). These investigations show that the
Fourier coefficients of an eigenfunction of the commuting operator are obtained
as the coefficients of an eigenvector of a certain matrix M(c) dependent on the
size of the spherical cap c ∈ [−1, 1]. Furthermore, it can be shown that the ma-
trix M(c) commutes with the localization matrix L(R(c, ε3)). The entries of the
matrix M(c) are L2(Ω)-inner products of a spherical harmonic and the image of
a spherical harmonic under the commuting differential operator. If we choose
fully normalized spherical harmonics, the matrix M(c) is given as follows, see,
for instance, Grünbaum et al. (1982) or Seibert (2018, p. 212).

Theorem 3.1.11. Let N ∈ N0 be the band-limit. Further, let c ∈ [−1, 1] define the size
of a spherical cap with centre ε3. A (N + 1)2× (N + 1)2-dimensional matrix M(c) with
entries

M(n,j),(n,j)(c) = −n(n + 1)c,

M(n,j),(n+1,j)(c) = (n(n + 2)− N(N + 2))

√
(n + 1− j)(n + 1 + j)

(2n + 3)(2n + 1)
,

M(n+1,j),(n,j)(c) = M(n,j),(n+1,j),

M(m,k),(n,j)(c) = 0, else,

commutes with the localization matrix L(R(c, ε3)) from (3.3) if R(c, ε3) is given by
(3.10) and fully normalized spherical harmonics are used in the representation (3.4) of
the Slepian functions.

47

3. Particular real-valued trial functions on the sphere

Obviously, M(c) is real and symmetric. If the rows and columns are ordered for
fixed j ∈ N0 with −n ≤ j ≤ n and running n ∈ N0, the matrix M(c) is block-
tridiagonal. Note that L

(
R
(
c, ε3)) also has a block structure if fully normalized

spherical harmonics are used and the matrix is ordered analogously. However,
L
(

R
(
c, ε3)) is not tridiagonal. As the matrices commute and due to their par-

ticular structures, it can be shown that they have identical eigenvectors (see e. g.
Seibert, 2018, pp. 209-215). Therefore, for practical purposes, it suffices to com-
pute the eigenvectors of the substitute matrix M(c) to obtain Slepian functions
which are localized in a spherical cap.
The computation of the eigenvectors of the matrix M(c) is the next aspect we
consider. Although there exist many algorithms for numerically solving alge-
braic eigenvalue problems, (see the usual literature on numerical mathematics, e.
g., Hanke-Bourgeois, 2009; Schwarz and Köckler, 2011; Stoer and Bulirsch, 1973;
Stummel and Hainer, 1971), we need a particular solution. The gradient-based
learning algorithm needs an explicit representation of the eigenvectors of the ma-
trix M(c). For this, we first recall the Gauß algorithm for solving tridiagonal
systems of linear equations (see e. g. Stummel and Hainer, 1971, pp. 120-121).

Theorem 3.1.12. Let M be a real, symmetric, tridiagonal matrix of dimension n ∈ N0,
i. e.

a1,1 a1,2 0
a2,1 a2,2 a2,3

.

an−1,n−2 an−1,n−1 an−1,n
0 an,n−1 an,n

.

An equivalent system of Av = f is given by

vj + bj,j+1vj+1 = f̃ j, vn = f̃n

for j ∈ N0, j = 1, ..., n− 1 and with

b1,2 =
a1,2

a1,1
, bj,j+1 =

aj,j+1

aj,j − aj,j−1bj−1,j
,

f̃1 =
f1

a1,1
, f̃ j =

f j − aj−1,j f̃ j−1

aj,j − aj,j−1bj−1,j
, f̃n =

fn − an−1,n f̃n−1

an,n − an,n−1bn−1,n

for j = 2, ..., n − 1. A solution of Av = f is obtained by first computing the values
bj,j+1 and f̃ j for j = 1, ..., n− 1 (increasing) and then computing vj for j = n− 1, ..., 1
(decreasing).

This means, for the solution of an eigenvalue problem as given in the computa-
tion of Slepian functions, we have the explicit representation of the eigenvectors
as follows.

48

3.2. An overview of spherical Sobolev spaces

Theorem 3.1.13. For c ∈ [−1, 1] and N ∈ N0, let Mj(c) be the sub-block of M(c)
from Theorem 3.1.11 with respect to a fixed j ∈ Z with |j| ≤ N for the band-limit N of
the Slepian functions under investigation. That means, the entries of Mj(c) are given by
(Mj(c))(p,|j|),(q,|j|) for p, q = |j|, ..., N. The matrix Mj(c) is real, symmetric and tridi-
agonal. Further, Mj(c) has the dimension N− |j|+ 1. For an eigenvalue ρ of Mj(c), we
consider the system (Mj(c)− ρI)v = 0 for the identity matrix I ∈ R(N−|j|+1)×(N−|j|+1)

in order to determine a related eigenvector v(c) ∈ RN−|j|+1. The eigenvector v is given
by

vi(c) + bi,i+1(c)vi+1(c) = 0, vN−|j|+1 ≡ τ

for i = 1, ..., N − |j|, a degree of freedom τ 6= 0 and with

b1,2(c) =

(
Mj(c)

)
(|j|,|j|),(|j|+1,|j|)(

Mj(c)
)
(|j|,|j|),(|j|,|j|) − ρ

and

bi,i+1(c) =

(
Mj(c)

)
(i,|j|),(i+1,|j|)(

Mj(c)
)
(i,|j|),(i,|j|) − ρ−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

for i = 2, ..., N − |j|. In practice, the eigenvector is obtained by first computing the
values bi,i+1(c) for j = 1, ..., N − |j| (increasing) and then computing vi for i = N −
|j|+ 1, ..., 1 (decreasing).

Proof. The assumed characteristics of Mj(c) are obtained straightforward from
the definition of M(c) as given in Theorem 3.1.11. The application of Theo-
rem 3.1.12 to the matrix Mj(c) gives the representation of its eigenvector.

Note that it suffices to compute the eigenvectors of the matrices Mj(c), for j ∈ N0
with −N ≤ j ≤ N, to obtain the eigenvectors of the full matrix M(c) and, thus,
of the matrix L

(
R
(
c, ε3)) because Mj(c) represents one block in the rearranged

matrix for each j.

3.2. An overview of spherical Sobolev spaces

Spherical harmonics form an orthonormal basis of L2(Ω). However, we want to
consider another set of Hilbert spaces, so-called Sobolev spaces, as well because
of practical and theoretical reasons. The local trial functions we want to con-
sider in a dictionary are strongly related to these spaces. Thus, we introduce the
Sobolev spaces first. These spaces generalize the concept of the function space
L2(Ω). The section is based on Freeden et al. (1998); Michel (2013); Telschow
(2014).

49

3. Particular real-valued trial functions on the sphere

Definition 3.2.1. For a real sequence (An)n∈N0 with An 6= 0 for all n ∈ N0, we define
a (spherical) Sobolev spaceH((An); Ω) as the completion of the set{

f ∈ C(∞)(Ω)

∣∣∣∣∣ ∞

∑
n=0

n

∑
j=−n

A2
n〈 f , Yn,j〉2L2(Ω) < ∞

}
.

Its inner product is correspondingly

〈 f , g〉H((An);Ω) :=
∞

∑
n=0

n

∑
j=−n

A2
n〈 f , Yn,j〉L2(Ω)〈g, Yn,j〉L2(Ω)

for f , g ∈ H((An); Ω).

Note that the spaceH((An); Ω) is a generalization of the space L2(Ω) as we have
H((1); Ω) = L2(Ω). Further note that these Sobolev spaces are not empty. Ex-
amples for elements of a Sobolev space H((An); Ω) are for instance spherical
harmonics.

Lemma 3.2.2. Let Ym,k, m, k ∈ N0 with −m ≤ k ≤ m, be a spherical harmonic. Then
it holds that Ym,k ∈ H((An); Ω) for a real sequence (An)n∈N0 with An 6= 0 for all
n ∈ N0.

Proof. We have to prove that

∞

∑
n=0

n

∑
j=−n

A2
n〈Ym,k, Yn,j〉2L2(Ω) < ∞.

With the use of (2.12), we obtain

∞

∑
n=0

n

∑
j=−n

A2
n〈Ym,k, Yn,j〉2L2(Ω) =

∞

∑
n=0

n

∑
j=−n

A2
n
(
δn,mδj,k

)2
= A2

m < ∞.

Remark 3.2.3. Note that also a Slepian function is an element of a Sobolev space
H((An); Ω) for a real sequence (An)n∈N0 with An 6= 0. Let g(p,M)(R, ·) be a
Slepian function of band-limit M ∈ N0. Then we have

∞

∑
n=0

n

∑
j=−n

A2
n

〈
g(p,M)(R, ·), Yn,j

〉2

L2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n

(
M

∑
m=0

m

∑
k=−m

g(p,M)
m,k (R)〈Ym,k, Yn,j〉L2(Ω)

)2

=
M

∑
n=0

n

∑
j=−n

A2
n

(
g(p,M)

n,j (R)
)2

< ∞.

50

3.2. An overview of spherical Sobolev spaces

We have a more detailed look at the inner product of a Sobolev space. At first,
we consider the case of the inner product of an arbitrary function and a spherical
harmonic.

Lemma 3.2.4. Let f ∈ H((An); Ω) and Ym,k, m, k ∈ N0 with −m ≤ k ≤ m, be a
spherical harmonic. Then it holds

〈 f , Ym,k〉2H((An);Ω) = A2
m〈 f , Ym,k〉2L2(Ω).

Proof. We start at the left-hand side. Using (2.12), we obtain

〈 f , Ym,k〉2H((An);Ω) =
∞

∑
n=0

n

∑
j=−n

A2
n〈 f , Yn,j〉2L2(Ω)〈Ym,k, Yn,j〉2L2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n〈 f , Yn,j〉2L2(Ω)δn,mδj,k = A2

m〈 f , Ym,k〉2L2(Ω).

Now we consider the inner product of two arbitrary elements f , g ∈ H((An); Ω)
and obtain the following result.

Theorem 3.2.5. For a real sequence (An)n∈N0 with An 6= 0 for all n ∈ N0, the system{
A−1

n Yn,j

}
n, j∈N0; j=−n,...,n

is an orthonormal basis of the Sobolev spaceH((An); Ω).

Proof. The orthonormality is easily seen with the use of Lemma 3.2.4:〈
A−1

n Yn,j, A−1
m Ym,k

〉
H((An);Ω)

= 〈Yn,j, Ym,k〉L2(Ω) = δn,mδj,k.

Due to Theorem 2.1.1, we can show the completeness by showing that the Parse-
val identity holds:

〈 f , g〉H((An);Ω) =
∞

∑
n=0

n

∑
j=−n

A2
n〈 f , Yn,j〉2L2(Ω)〈g, Yn,j〉2L2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A4
n

A2
n
〈 f , Yn,j〉2L2(Ω)〈g, Yn,j〉2L2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A−2
n 〈 f , Yn,j〉2H((An);Ω)〈g, Yn,j〉2H((An);Ω)

=
∞

∑
n=0

n

∑
j=−n

〈
f , A−1

n Yn,j

〉2

H((An);Ω)

〈
g, A−1

n Yn,j

〉2

H((An);Ω)
.

Thus, the Parseval identity holds and the system is complete.

51

3. Particular real-valued trial functions on the sphere

Note that Slepian functions are not orthogonal with respect to the H((An); Ω)-
inner product because of the additional values of sequence elements in each sum-
mand (compare also (3.28)).
A first non-trivial example for a Sobolev space is given by the choice of An =
(n + 0.5)s , s ∈ R and n ∈ N0 (see e. g. Freeden et al., 1998, p. 83). In particular,
we consider the Sobolev space H(((n + 0.5)2); Ω) in more detail throughout this
thesis (see e. g. Freeden and Michel, 2004a, p. 131).

Example 3.2.6. The spherical Sobolev space H2(Ω) := H(((n + 0.5)2); Ω) is the
Sobolev space with

An = (n + 0.5)2 , n ∈ N0,

i. e. the completion of the set of functions with{
f ∈ C(∞)(Ω)

∣∣∣∣∣ ∞

∑
n=0

n

∑
j=−n

(n + 0.5)4 〈 f , Yn,j〉2L2(Ω) < ∞

}
.

Its inner product is correspondingly

〈 f , g〉H2(Ω) =
∞

∑
n=0

n

∑
j=−n

(n + 0.5)4 〈 f , Yn,j〉2L2(Ω)〈g, Yn,j〉2L2(Ω)

for f , g ∈ H2(Ω).

We mentioned that the space L2(Ω) is identical with H((1); Ω). Thus, the ques-
tion arises how two Sobolev spaces are related. We formulate the obvious state-
ment similar to Michel (2013, Theorem 6.7) and Telschow (2014, Theorem 2.8.5).

Theorem 3.2.7. Let (An)n∈N0 and (Bn)n∈N0 be two real sequences with
(i) An 6= 0 and Bn 6= 0 for all n ∈ N0 and

(ii) |An| ≤ |Bn| for all n ∈ N0 with n ≥ n0 ∈ N0.
Then it holds

H((Bn); Ω) ⊆ H((An); Ω).

In this context, we have a relation between L2(Ω) andH2(Ω).

Lemma 3.2.8. Let f ∈ H2(Ω). Then it holds f ∈ L2(Ω).

Proof. Set An ≡ 1 and Bn = (n + 0.5)2 in Lemma 3.2.8.

Remark 3.2.9. Note that, in general, it does not hold that f ∈ H2(Ω) for all f ∈
L2(Ω). Consider the following counter example. Let f ∈ L2(Ω) with

〈 f , Yn,j〉L2(Ω) :=
1

(n + 1)2 .

52

3.2. An overview of spherical Sobolev spaces

Then it follows that

‖ f ‖2
L2(Ω) =

∞

∑
n=0

n

∑
j=−n
〈 f , Yn,j〉2L2(Ω) =

∞

∑
n=0

n

∑
j=−n

1
(n + 1)4 =

∞

∑
n=0

2n + 1
(n + 1)4 < ∞

but

‖ f ‖2
H2(Ω) =

∞

∑
n=0

n

∑
j=−n

(n + 0.5)4〈 f , Yn,j〉2L2(Ω) =
∞

∑
n=0

n

∑
j=−n

(n + 0.5)4

(n + 1)4

=
∞

∑
n=0

(2n + 1)(n + 0.5)4

(n + 1)4 = ∞.

That means that if a function f is an element of H2(Ω), then its Fourier coeffi-
cients 〈 f , Yn,j〉L2(Ω) must decrease in a way such that ‖ f ‖H((An);Ω) < ∞. However,
for a f ∈ L2(Ω), we only have that it holds ‖ f ‖L2(Ω) < ∞. Due to the additional
factor (n+ 0.5)4 in ‖ · ‖H2(Ω), we cannot derive ‖ f ‖H2(Ω) < ∞ from ‖ f ‖L2(Ω) < ∞
in general. Thus, one can say, the elements of H2(Ω) must be “smoother” than
an arbitrary element of L2(Ω).

We also obtain a relation between the norms of two nested Sobolev spaces.

Theorem 3.2.10. Let (An)n∈N0 and (Bn)n∈N0 be two real sequences with
(i) An 6= 0 and Bn 6= 0 for all n ∈ N0 and

(ii) |An| ≤ |Bn| for all n ∈ N0 with n ≥ n0 ∈ N0.
Then there exists a c ∈ R+ such that for any f ∈ H((Bn); Ω) it holds

‖ f ‖H((An);Ω) ≤ max{c, 1}‖ f ‖H((Bn);Ω).

Proof. First of all, we separateH((An); Ω) into

H((An); Ω) = Harm0,...,n0(Ω)⊕ (Harm0,...,n0(Ω))⊥

= Harm0,...,n0(Ω)⊕Harmn0+1,...,∞(Ω)
‖·‖H((An);Ω) .

Thus, a function f ∈ H((An); Ω) can be written as

f = f0,...,n0 + (f0,...,n0)
⊥ .

Then we obtain

‖ f ‖2
H((An);Ω) = ‖ f0,...,n0‖2

H((An);Ω) +
∥∥∥(f0,...,n0)

⊥
∥∥∥2

H((An);Ω)

≤ c‖ f0,...,n0‖2
H((Bn);Ω) +

∥∥∥(f0,...,n0)
⊥
∥∥∥2

H((Bn);Ω)

≤ max{c, 1}‖ f ‖2
H((Bn);Ω)

53

3. Particular real-valued trial functions on the sphere

due to property (ii) and the fact that all norms are equivalent in the finite dimen-
sional case. Note that because f0,...,n0 is a finite linear combination of spherical
harmonics, the separation of f is also identical in both Sobolev spacesH((An); Ω)
andH((Bn); Ω).

The Sobolev spaces have a tight relation to the trial functions which we introduce
in the next section. These functions are examples for reproducing kernels.

Definition 3.2.11. For a Hilbert space (H, 〈·, ·〉H) of functions on a domain D ⊆ Rn,
n ∈ N0, a function RH : D× D → R is called reproducing kernel of H if the following
properties are fulfilled:

(i) RH(z, ·) ∈ H for all z ∈ D and
(ii) 〈RH(z, ·), f 〉H = f (z) for all f ∈ H and all z ∈ D.

Then the Hilbert space H is called a reproducing kernel Hilbert space.

Reproducing kernels can be used for instance in the construction of spherical
splines. In this thesis, however, we concentrate on different aspects of repro-
ducing kernels, namely that they are basis systems of certain Sobolev spaces. In
particular, we consider Sobolev spaces whose corresponding sequences are called
summable.

Definition 3.2.12. A real sequence (An)n∈N0 with An 6= 0 for all n ∈ N0 and with

∞

∑
n=0

2n + 1
4π

A−2
n < ∞

is called summable.

Obviously, the sequence An = (n + 0.5)2, n ∈ N0, from the Sobolev spaceH2(Ω)
(see Example 3.2.6) is summable.
Now we can relate a reproducing kernel to a Sobolev space as it is usually done
in the literature (see e. g. Freeden et al., 1998, p. 90-91).

Theorem 3.2.13. For a real, summable sequence (An)n∈N0 with An 6= 0 for all n ∈ N0,
the corresponding Sobolev space H((An); Ω) is a reproducing kernel Hilbert space with
the reproducing kernel

kH((An);Ω)(χ, η) :=
∞

∑
n=0

2n + 1
4π

A−2
n Pn(χ · η)

for χ, η ∈ Ω.

For summable sequences, the Sobolev lemma gives us another embedding of
Sobolev spaces. We recall a simplified version.

54

3.2. An overview of spherical Sobolev spaces

Lemma 3.2.14. (Sobolev lemma) Let (An)n∈N0 be a real summable sequence with
An 6= 0 for all n ∈ N0. Then it holds

H((An); Ω) ⊆ C(0) (Ω) .

Further, the L2(Ω)-Fourier series of each f ∈ H((An); Ω) is uniformly convergent.

For a proof, see, for instance, Michel (2013, pp. 154-155) and replace (Bn)n∈N0
with the constant sequence of 1.
The reproducing kernels also form a basis in different spaces under certain as-
sumptions.

Theorem 3.2.15. Let H((An); Ω) be a Sobolev space with a real, summable sequence
(An)n∈N0 . Further, we consider a countable and dense set X ⊆ Ω. The system of
reproducing kernels {

kH((An);Ω)(χ, ·)
∣∣∣ χ ∈ X

}
is closed in the spaces(
H((An); Ω), ‖ · ‖H((An);Ω)

)
,
(

C(0)(Ω), ‖ · ‖C(Ω)

)
and

(
L2(Ω), ‖ · ‖L2(Ω)

)
in the sense of the approximation theory.

For a proof, see, for instance, Michel (2013, p. 175-177). Furthermore, these sys-
tems of reproducing kernels relate nested Sobolev spaces in the following way.

Theorem 3.2.16. Let H((An); Ω) and H((Bn); Ω) be Sobolev spaces with real, sum-
mable sequences (An)n∈N0 and (Bn)n∈N0 . Further, for the sequences (An)n∈N0 and
(Bn)n∈N0 , it holds

(i) An 6= 0 and Bn 6= 0 for all n ∈ N0 and
(ii) |An| ≤ |Bn| for all n ∈ N0 with n ≥ n0 ∈ N0.

At last, we consider a countable and dense set X ⊆ Ω. The system of reproducing kernels{
kH((Bn);Ω)(χ, ·)

∣∣∣ χ ∈ X
}

is closed in the space (
H((An); Ω), ‖ · ‖H((An);Ω)

)
in the sense of the approximation theory.

Proof. First of all, note that we have

span
{

A−1
n Yn,j

∣∣∣ n ∈ N0; j = −n, ..., n
}
⊆ H((Bn); Ω)

55

3. Particular real-valued trial functions on the sphere

because only finite linear combinations are possibly additionally inserted by the
span. However, we know that{

A−1
n Yn,j

}
n∈N0; j=−n,...,n

is a basis ofH((An); Ω), see Theorem 3.2.5. Thus, it yields

span
{

A−1
n Yn,j

∣∣∣ n ∈ N0; j = −n, ..., n
}H((An);Ω)

= H((An); Ω).

Hence, together with Theorem 3.2.7, i. e. H((Bn); Ω) ⊆ H((An); Ω), we can con-
clude that

H((Bn); Ω)
H((An);Ω)

= H((An); Ω).

That means: for all ε > 0 and for all f ∈ H((An); Ω), there exists a g ∈ H((Bn); Ω)
such that we have

‖ f − g‖H((An);Ω) ≤
ε

2
. (3.11)

Note that, due to Theorem 3.2.10, there exists a c ∈ R+ such that it holds

‖ f ‖H((An);Ω) ≤ max{c, 1}‖ f ‖H((Bn);Ω)

for all f ∈ H((Bn); Ω). Thus, due to Theorem 3.2.15, to the particular g ∈
H((Bn); Ω) from (3.11), there exists a linear combination

I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)
such that it holds∥∥∥∥∥g−

I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)∥∥∥∥∥
H((Bn);Ω)

≤ ε

2 max{c, 1} .

Therefore, we have∥∥∥∥∥g−
I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)∥∥∥∥∥
H((An);Ω)

≤ max{c, 1}
∥∥∥∥∥g−

I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)∥∥∥∥∥
H((Bn);Ω)

≤ ε

2

56

3.3. From radial basis functions to low pass filters

All in all, for the closedness in the sense of the approximation theory, we obtain
that for all ε > 0 and for all f ∈ H((An); Ω), there exists a g ∈ H((Bn); Ω) and a
linear combination ∑I

i=0 αikH((Bn);Ω)(χi, ·) such that∥∥∥∥∥ f −
I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)∥∥∥∥∥
H((An);Ω)

≤ ‖ f − g‖H((An);Ω) +

∥∥∥∥∥g−
I

∑
i=0

αikH((Bn);Ω)

(
χ(i), ·

)∥∥∥∥∥
H((An);Ω)

<
ε

2
+

ε

2
= ε.

3.3. From radial basis functions to low pass filters

The idea of using dictionary elements for approximating a signal enables us to
use a mixture of different kind of trial functions. We have already introduced
spherical harmonics and Slepian functions for this reason. In this section, we in-
troduce radial basis functions which enlarge the spectrum of possible dictionary
elements to local ones. For more details, the reader is referred to, e. g., Freeden
et al. (1998); Freeden and Michel (2004a); Freeden and Schreiner (2009); Michel
(2013) on which this section is based. Note that in some literature the term (scalar)
zonal functions is also used for radial basis functions.

Definition 3.3.1. A (spherical) radial basis function is defined as a kernel function
k• : Ω×Ω→ R with the property

k•(ξ, η) := k̂•(|ξ − η|) = k̃•(ξ · η)
for a fixed ξ ∈ Ω and all η ∈ Ω.

The latter equality is well-defined as for all ξ, η ∈ Ω it holds

|ξ − η|2 = |ξ|2 + |η|2 − 2ξ · η = 2(1− ξ · η).
In Definition 3.3.1, a radial basis function k depends on a fixed unit normal vector
ξ ∈ Ω and its domain is the sphere. Thus, we call ξ the centre of the radial basis
function. Then its value at a point η depends only on the distance of η to the
centre ξ of k•. In this way, k• can also be considered as a function on [−1, 1]. Note
that the • is a replacement character at this point: we can further develop radial
basis functions by means of an additional weight or scale which acts as a control
parameter for the localization.

Definition 3.3.2. For a scale s ∈]0, S], S ∈ R+, a (scaled) radial basis function is
defined as a kernel function ks : Ω×Ω→ R with the property

ks(ξ, η) := k̂s(|ξ − η|) = k̃s(ξ · η)
for a fixed ξ ∈ Ω and all η ∈ Ω.

57

3. Particular real-valued trial functions on the sphere

Note that a scaled radial basis function is a generalization of a radial basis func-
tion as the scale is irrelevant in the latter case (hence, the use of • in Defini-
tion 3.3.1). Thus, we will consider scaled radial basis functions in this thesis.
However, in the sequel, we will refer to them only as radial basis functions.
First of all, we note the particular case in which the range of the scale function
is bounded.

Lemma 3.3.3. A radial basis function ks : Ω×Ω→ R can be reformulated as a function
k : BS ×Ω→ R on the ball BS of radius S and centre 0 by

k(x, η) := k(sξ, η) := ks(ξ, η)

for fixed ξ ∈ Ω, x = sξ ∈ BS and for all η ∈ Ω.

Proof. The reformulation is done using x = sξ.

A well-known example of a radial basis function is the Abel–Poisson kernel (see
e. g. Freeden et al., 1998, p. 109).

Example 3.3.4. The Abel–Poisson kernel is defined as

Kh(ξ, η) :=
1

4π

1− h2

(1 + h2 − 2hξ · η)3/2

for all h ∈ [0, 1[, and ξ, η ∈ Ω. Equivalently, we can write

K(x, η) :=
1

4π

1− |x|2
(1 + |x|2 − 2x · η)3/2 (3.12)

for all x ∈ B̊ and η ∈ Ω. Note the similarity to the kernel of the Fredholm integral
operator of the first kind given in (2.28).
B̊ emphasizes that the Abel–Poisson kernel is well-defined only in the interior
of the ball. Examples of Abel–Poisson kernels are given in Figure 3.2. There,
four Abel–Poisson kernels are presented. Blue colour stands for minimal values
and red colour for maximal ones. All kernels have the same centre ξ, but have
different scales. Shown are an Abel–Poisson kernel with scale 0.7, 0.8, 0.9 and
0.97 (from left to right). We notice that each kernel is a localized function. It
attains only one extremum, has decreasing values in a neighbourhood of its centre
and nearly vanishes on the outside of this region. In this way, a radial basis
function has the form of a “hat” situated at its centre. Further, we see that the
scale controls the level of localization. If we compare the plot on the left-hand
side with the one on the right-hand side, we see that the higher h is the stronger
the function is localized.

Remark 3.3.5. We emphasize the following aspects:

58

3.3. From radial basis functions to low pass filters

Figure 3.2.: Abel–Poisson kernels with a fixed centre ξ in all plots but different
scales: h = 0.7, 0.8, 0.9, 0.97 (from left to right).

(a) Note the structure in our notation. A radial basis function ks(ξ, ·) is de-
fined on the sphere Ω and with an explicit scale s ∈]0, S], S ∈ R+. If we
consider its formulation on the ball, we use k(x, ·) because the scale is im-
plicitly given by its argument x = sξ ∈ BS. For the specific Abel-Poisson
kernel, we use the capital K(x, ·).

(b) In the sequel, we are interested in square-integrable kernels. As we will see,
the Abel–Poisson kernel is an example for such a kernel.

Next, we summarize an important property of radial basis functions which will
be a recurring topic in the sequel. With radial basis functions, we are able to
define a spherical convolution. We follow the line of Narcowich and Ward (1996)
and Freeden and Michel (2004a, p. 26) for this.

Definition 3.3.6. For functions g, h ∈ L2([−1, 1]) and a function f ∈ L2(Ω), a
spherical convolution is defined by

(g ∗ f)(η) :=
∫

Ω
g(η · χ) f (χ) dω(χ),

(g ∗ h)(η, ξ) :=
∫

Ω
g(η · χ)h(ξ · χ) dω(χ)

for all η, ξ ∈ Ω. Further, the Legendre coefficient of g is given as

g∧(n) := 2π
∫ 1

−1
g(t)Pn(t) dt. (3.13)

For specific functions f , the following results can be derived (see e. g. Freeden
and Gutting (2013, pp. 157-159) and Michel (2013, pp. 185-190)).

Theorem 3.3.7. For n ∈ N0, we consider the n-th Legendre polynomial Pn as well as a
spherical harmonic Yn of degree n. Further, let g, f ∈ Lp([−1, 1]) and η ∈ Ω. We have

(g ∗ Pn)(η, ξ) =
∫

Ω
g(η · χ)Pn(ξ · χ) dω(χ) = 〈g(η·), Pn(ξ·)〉L2(Ω)

= g∧(n)Pn(η · ξ),
(g ∗Yn)(η) =

∫
Ω

g(η · χ)Yn(χ) dω(χ) = 〈g(η·), Yn〉L2(Ω)

= g∧(n)Yn(η),

59

3. Particular real-valued trial functions on the sphere

(g ∗ f)(η, ξ) =
∫

Ω
g(η · χ) f (ξ · χ) dω(x) = 〈g(η·), f (ξ·)〉L2(Ω) = g∧(n) f ∧(n),

(g ∗ g)(η, ξ) =
∫

Ω
g(η · χ)g(ξ · χ) dω(x) = 〈g(η·), g(ξ·)〉L2(Ω) =

(
g∧(n)

)2 .

The first equation is also called the Funk-Hecke formula.

With this, we obtain the Legendre series of a radial basis function in spherical
harmonics (see e. g. Freeden and Schreiner, 2009, pp. 340-341).

Theorem 3.3.8. For all η, ξ ∈ Ω and a scale s ∈]0, S], S ∈ R+, a square-integrable
radial basis function ks : Ω×Ω→ R has the expansion

ks(ξ, η) =
∞

∑
n=0

2n + 1
4π

k∧s (n)Pn(ξ · η)

for the n-th Legendre polynomial Pn.

Proof. The Fourier expansion of ks is given as follows.

ks(ξ, η) =
∞

∑
n=0

n

∑
j=−n
〈ks(ξ, ·), Yn,j〉L2(Ω)Yn,j(η)

=
∞

∑
n=0

n

∑
j=−n

∫
Ω

ks(ξ, χ)Yn,j(χ) dω(χ)Yn,j(η)

=
∞

∑
n=0

∫
Ω

ks(ξ, χ)
n

∑
j=−n

Yn,j(χ)Yn,j(η) dω(χ)

=
∞

∑
n=0

2n + 1
4π

∫
Ω

ks(ξ, χ)Pn(χ · η) dω(χ)

=
∞

∑
n=0

2n + 1
4π

k∧s (n)Pn(ξ · η),

where the addition theorem for spherical harmonics from Theorem 2.2.4 and the
Funk-Hecke formula from Theorem 3.3.7 are used.

The expansion of an Abel–Poisson kernel in Legendre polynomials can be de-
rived independently of the computation of k∧s (n) as given in (3.13). This yields
the following result (see e. g. Michel, 2013, Theorem 3.16 and Example 6.23).

Lemma 3.3.9. For all η ∈ Ω and a point x = hξ ∈ B̊, an Abel–Poisson kernel K(x, η)
has the expansion

K(x, η) =
1

4π

1− |x|2
(1 + |x|2 − 2x · η)3/2 =

∞

∑
n=0

2n + 1
4π

|x|nPn

(
x
|x| · η

)
for the n-th Legendre polynomial Pn.

60

3.3. From radial basis functions to low pass filters

Note that it obviously holds

K∧(n) = |x|n = hn (3.14)

for the Abel–Poisson kernel K. Thus, radial basis functions are built to be spatially
localized functions, but, in general, are not well-localized in frequency. Hence, for
practical purposes, the Abel–Poisson kernel has an advantage due to its closed
form as given in Example 3.3.4.

Further characteristic: multiresolution analysis Polynomials like the spherical
harmonics are global functions which are perfectly localized in the frequency do-
main. However, radial basis functions are generally not localized in the frequency
domain as we have seen in Theorem 3.3.8. Nonetheless, they have some advan-
tages for their use in approximating a signal. For instance, for a dictionary, we
are interested in radial basis functions that are so-called low pass filters as they
enable a multiresolution analysis. However, the construction of low pass filters
takes several steps. We first define scaling functions.

Definition 3.3.10. For S ∈ R+, let {ks}s∈]0,S] ⊆ L2(Ω × Ω) be a family of square-
integrable radial basis functions. This family is called a scaling function if the Legendre
coefficients k∧s (n) fulfil:
(S1) For s1 < s2, it holds k∧s1

(n) ≥ k∧s2
(n) for all n ∈ N0.

(S2) For all n ∈ N0, the limit of (k∧s (n))s∈]0,S] with respect to s↘ 0 equals 1.
(S3) The Legendre coefficient k∧s (n) is non-negative for all n ∈ N0 and s ∈ R+.

That means a scaling function is a particular system of radial basis functions with
non-negative scales. Note that we call the whole system of functions a scaling
function. In the sequel, we will not distinguish between a single function and the
system of functions and will name both a scaling function. It will be emphasized
which one is meant at the respective points.
The question arises how to construct a scaling function. For this, a generator of a
scaling function is defined in, e. g., Freeden et al. (1998, Definition 11.1.1).

Definition 3.3.11. A generator of a scaling function is a function κ : R+
0 → R which is

admissible, i. e.

∞

∑
n=0

2n + 1
4π

(
sup

τ∈[n,n+1[
|κ(τ)|

)2

< ∞

and fulfils:
(GS1) κ(0) = 1.
(GS2) κ is continuous at 0.
(GS3) κ is monotonically decreasing.

Having a generator for a scaling function, we can construct the latter one as fol-
lows (see e. g. Freeden and Michel, 2004a, Section 3.5.2).

61

3. Particular real-valued trial functions on the sphere

Theorem 3.3.12. Let κ be a generator of a scaling function. Then a scaling function
{ks}s∈]0,S] ⊆ L2(Ω×Ω), S ∈ R+, is obtained by setting its Legendre coefficients to

k∧s (n) := κ (sn)

for all n ∈ N0 and s ∈]0, S].

We consider a first simple example of a scaling function, see, e. g., Schreiner (1996)
or Freeden et al. (1998, p. 295).

Example 3.3.13. An example of a scaling function is the Cubic Polynomial Scaling
Function which is constructed through the generator

κ(τ) :=
{
(1− τ)2(1 + 2τ), 0 ≤ τ < 1,

0, 1 ≤ τ.

Its admissibility as well as property (GS1) is obvious. As the generator is a prod-
uct of continuous functions on [0, 1[, property (GS2) is also fulfilled. The mono-
tonicity with respect to τ ∈ [0, 1[needs to be clarified. For this, we consider the
derivative of κ with respect to τ. We obtain

d
dτ

κ(τ) =

{
τ(6τ − 6), 0 ≤ τ < 1,

0, 1 ≤ τ.

As 6τ − 6 < 0 if τ ∈ [0, 1[, the gradient of κ is non-positive and, thus, κ is mono-
tonically decreasing. All in all, κ is a generator of a scaling function.

If we are given a scaling function, we obtain a spherical multiresolution analysis
(for the scale discrete case, see e. g. Michel, 2013, pp. 207-209).

Theorem 3.3.14. For S ∈ R+, let {ks}s∈]0,S] ⊆ L2(Ω×Ω) be a scaling function. We
define the sets

Vs :=
{

ks ∗ ks ∗ f
∣∣∣ f ∈ L2(Ω)

}
=

{
∞

∑
n=0

n

∑
j=−n

(
k∧s (n)

)2 f ∧(n, j)Yn,j

∣∣∣∣∣ f ∈ L2(Ω)

}
.

Then the spaces Vs, s ∈]0, S], represent a multiresolution analysis. That means, it holds:
(MRA1) For all s1, s2 ∈]0, S] with s1 < s2 it holds Vs2 ⊂ Vs1 ⊂ L2(Ω).
(MRA2) The union of the sets Vs is dense in L2(Ω), i. e.

⋃
s∈]0,S]

Vs
‖·‖L2(Ω)

= L2(Ω).

62

3.3. From radial basis functions to low pass filters

Note that the multiresolution analysis also holds for f ∈ H2(Ω) ⊆ L2(Ω). Fur-
thermore, we want to emphasize that the convolution of two scaling functions ks1

and ks2 , s1, s2 ∈]0, S], can be obtained via their Legendre coefficients as it holds

(ks1 ∗ ks2)
∧ (n) = k∧s1

(n)k∧s2
(n),

see Theorem 3.3.7. Thus, we immediately obtain that the convolution ks1 ∗ ks2 of
two scaling functions ks1 and ks2 is again a scaling function.
The multiresolution analysis gives us a hint on the particular scaling functions
that are sensible in a dictionary. The space Vs2 contains the part of f that remains
after applying the convolution with the scaling function ks2 twice to f . Due to
(MRA1), this part contains less information than if the convolution with the scal-
ing function ks1 is twice applied to f if s1 < s2. Thus, we see that the convolution
ks ∗ ks acts as a filter on a signal f , e. g. the gravitational potential. For example, if
the Legendre coefficients k∧s (n) are nearly zero for all n ∈ N0 with n ≥ n0 ∈ N0,
then the convolution represents a so-called low pass filter of a signal.

Definition 3.3.15. For S ∈ R+, let {ks}s∈]0,S] ⊆ L2(Ω×Ω) be a scaling function. If
for all s ∈]0, S] and ε > 0, there exists a n0 ∈ N0 such that for all n ≥ n0 it holds

k∧s (n) < ε,

then the system {ks ∗ ks}s∈]0,S] is called a low pass filter.

Note that, again, we call the whole system as well as a member of this system a
low pass filter in the sequel.

Theorem 3.3.16. For all η ∈ Ω, a centre ξ ∈ Ω and a scale s ∈]0, S], S ∈ R+, a low
pass filter ks ∗ ks : Ω×Ω→ R has the expansion

(ks ∗ ks) (ξ, η) =
∞

∑
n=0

2n + 1
4π

(
k∧s (n)

)2 Pn(ξ · η)

for the n-th Legendre polynomial Pn.

Proof. Combine Theorems 3.3.7 and 3.3.8.

Next, we give an example of a low pass filter which we will use in our dictionary
(see e. g. Freeden and Michel, 2004a, p. 432).

Example 3.3.17. We consider the generator of a scaling function κ : R+
0 → R

κ(τ) := exp(−τ).

It is clear that this is a generator of a scaling function. Due to Theorem 3.3.12, the
Legendre coefficients of the scaling function equal

k∧s (n) = exp (−sn) = (exp (−s))n

63

3. Particular real-valued trial functions on the sphere

for n ∈ N0. As we have seen in (3.14), these are the Legendre coefficients of the
Abel–Poisson kernel if we use

h := exp (−s) .

Therefore, a scaling function is given by

{K (exp (−s) ξ, ·)}s∈R+

for ξ ∈ Ω. The respective low pass filters are obtained by{
K
(

exp
(
−s2

)
ξ, ·
)}

s∈R+
= {K (exp (−s) ξ, ·)}s∈R+

for ξ ∈ Ω. Hence, we use the Abel–Poisson low pass filter given by

{K(hξ, ·)}h∈[0,1[= {K(x, ·)}x∈B̊

in the sequel. That means, for a dictionary element, we do not have to bear in
mind the convolution of two radial basis functions in this case because the usual
Abel–Poisson kernel is already a low pass filter.

Some aspects of low pass filters and Sobolev spaces We have seen in Theo-
rem 3.2.13 that a Sobolev spaceH((An); Ω) is a reproducing kernel Hilbert space
with the reproducing kernel

kH((An);Ω)(χ, η) :=
∞

∑
n=0

2n + 1
4π

A−2
n Pn(χ · η)

for χ, η ∈ Ω and if (An)n∈N0 is summable and An 6= 0 for all n ∈ N0. If we
compare this with Theorem 3.3.16, we see that a low pass filter is the reproducing
kernel of the Sobolev space with

An =
(

k∧s (n)
2
)−1/2

=
(
k∧s (n)

)−1 , n ∈ N0,

for a fixed s ∈]0, S], S ∈ R+, if the sequence is summable as well as k∧s (n) 6= 0
and An 6= 0 for all n ∈ N0. The summability is always given for a scaling function
obtained by a generator of a scaling function.
In the case of the Abel–Poisson low pass filters, we obtain due to Lemma 3.3.9 the
spacesH((An); Ω) with

An = h−n.

Note that, in this case, the sequence (An)n∈N0
= (h−n)n∈N0

is summable due
to h ∈ [0, 1[by definition. By virtue of Theorem 3.2.15, we obtain the following
result

64

3.3. From radial basis functions to low pass filters

Lemma 3.3.18. For S ∈ R+, let s ∈]0, S] be fixed and Ξ ⊂ Ω be dense and countable.
If it holds

k∧s (n) 6= 0

for all n ∈ N0 and the sequence ((k∧s (n))
−1)n∈N0 is summable, then the system of low

pass filters

{(ks ∗ ks)(ξ, ·) | ξ ∈ Ξ}
is closed in the space (L2(Ω), ‖ · ‖L2(Ω)) in the sense of the approximation theory.

Proof. Apply Theorems 3.2.13, 3.2.15 and 3.3.16.

In particular, we obtain the following result.

Lemma 3.3.19. For a value h ∈ [0, 1[and a dense and countable set Ξ ⊂ Ω, the system

{K(hξ, ·) | ξ ∈ Ξ} =
{

K(x, ·)
∣∣∣ x

h
∈ Ξ

}
of Abel–Poisson kernels is closed in the space (L2(Ω), ‖ · ‖L2(Ω)) in the sense of the
approximation theory.

Proof. Apply Lemma 3.3.18.

At last, we consider the relation of a low pass filter and the particular space
H2(Ω). In general, we obtain the following result.

Lemma 3.3.20. For S ∈ R+, let s ∈]0, S] be fixed and Ξ ⊂ Ω be dense and countable.
If it holds

k∧s (n) 6= 0

for all n ∈ N0,

(n + 0.5)2 ≤
∣∣∣(k∧s (n))−1

∣∣∣
for all n ∈ N0 with n ≥ n0 ∈ N0 and the sequence ((k∧s (n))

−1)n∈N0 is summable,
then the system of low pass filters

{(ks ∗ ks)(ξ, ·) | ξ ∈ Ξ}
is closed in the space (H2(Ω), ‖ · ‖H2(Ω)) in the sense of the approximation theory.

Proof. Apply Theorems 3.2.13, 3.2.16 and 3.3.16.

In particular for the Abel–Poisson kernels, this yields the following.

Lemma 3.3.21. For a fixed h ∈ [0, 1[, the system of Abel–Poisson kernels

{K(hξ, ·) | ξ ∈ Ξ} =
{

K(x, ·)
∣∣∣ x

h
∈ Ξ

}
,

where Ξ ⊂ Ω is dense and countable, is closed in the space (H2(Ω), ‖ · ‖H2(Ω)) in the
sense of the approximation theory.

Proof. Apply Lemma 3.3.20.

65

3. Particular real-valued trial functions on the sphere

3.4. Radial basis wavelets as band pass filters

In Section 3.3, we introduced low pass filters based on radial basis functions. Low
pass filters extract the information of the signal which is below a certain thresh-
old in the range of the frequency. However, it is also interesting to insert band
pass filters in a dictionary as well because such filters yield the information of a
signal which lies between two thresholds. Band pass filters are mathematically
described by wavelets. This section is based on Freeden et al. (1998); Freeden and
Michel (2004a); Michel (2013). For further literature on spherical wavelets, see,
e. g., Freeden and Schreiner (1998); Freeden and Windheuser (1996); Windheuser
(1995).

Definition 3.4.1. Let S ∈ R+. Further, let {ks}s∈]0,S] ⊂ L2(Ω × Ω) be a scaling
function. If the Legendre coefficients of the families {ws}s∈]0,S] and {w̃s}s∈]0,S] fulfil

w∧s (n)w̃
∧
s (n) =

(
k∧s/2(n)

)2 −
(
k∧s (n)

)2

for all n ∈ N0 and s ∈]0, S], we call these families a (scaled) primal and dual radial basis
wavelet, respectively. The radial basis wavelets wS and w̃S are called (scaled) radial basis
mother wavelet. Further, we set w2S := w̃2S := kS. The solution

w∧s (n) := w̃∧s (n) :=

√(
k∧s/2(n)

)2
− (k∧s (n))

2

for all n ∈ N0 and s ∈]0, S] is called the (scaled) radial basis P-wavelet. The solution

w∧s (n) := k∧s/2(n)− k∧s (n), w̃∧s (n) := k∧s/2(n) + k∧s (n)

for all n ∈ N0 and s ∈]0, S] is called the (scaled) radial basis M-wavelet.

Similar to radial basis functions, also radial basis wavelets can be constructed via
a generating function (see e. g. Michel, 2013, Theorem 7.24).

Definition 3.4.2. Let κ : R+
0 → R be a generator of a scaling function. Further, let the

functions ψ, ψ̃ : R+
0 → R be admissible and fulfil

ψ(τ)ψ̃(τ) =
(

κ
(τ

2

))2
− (κ (τ))2

for all τ ∈ R+
0 . Then ψ and ψ̃ are called generators of a primal and a dual radial basis

mother wavelet, respectively.

Theorem 3.4.3. Let ψ, ψ̃ : R+
0 → R be generators of a primal and a dual radial basis

mother wavelet, respectively, and κ : R+
0 → R the related generator of a scaling function.

Then, for S ∈ R+, the families {ws}s∈]0,S] and {w̃s}s∈]0,S] obtained via

w∧s (n) := ψ (sn) , w̃∧s (n) := ψ̃ (sn) , w∧2S(n) := w̃∧2S(n) := κ(Sn)

for all n ∈ N0 and s ∈ R+ are a primal and a dual radial basis wavelet, respectively.

66

3.4. Radial basis wavelets as band pass filters

Note that in our approach wavelets are based on a radial basis function. Thus,
by construction, they are functions ws(ζ, η), w̃s(ζ, η) ∈ R with a fixed argument
ζ ∈ Ω for all η ∈ Ω. Further, their value at a point η ∈ Ω also depends only on
the distance between ζ and η. Thus, in analogy to radial basis functions, we call
ζ the centre of the primal and dual radial basis wavelet, respectively. Moreover,
the wavelets inherit the dependence on the scale s from the corresponding radial
basis function. The scale is still a measure for their localization. Again, we can
reformulate the wavelets with respect to their domain.

Theorem 3.4.4. For S ∈ R+, let the systems {ws}s∈]0,S] and {w̃s}s∈]0,S] be a primal
and dual radial basis wavelet, respectively. The wavelets can be written as functions
w, w̃ : Ba ×Ω→ R on the ball Ba with radius a ∈ R+ by

w(x, η) := w (sζ, η) := ws(ζ, η), w̃(x, η) := w̃ (sζ, η) := w̃s(ζ, η)

for all η ∈ Ω.

Note that, in the sequel, we will use an analogous notation as we did with the
radial basis functions, Remark 3.3.5 (a).

Towards band pass filters We have seen that the low pass filters enable a mul-
tiresolution analysis. Wavelets are defined as the difference of scaling functions
such as low pass filters. Thus, we obtain a similar result here.

Definition 3.4.5. For S ∈ R+, let the systems {ws}s∈]0,S] and {w̃s}s∈]0,S] be a primal
and dual radial basis wavelet, respectively. The spaces

Ws :=
{

w̃s ∗ ws ∗ f
∣∣∣ f ∈ L2(Ω)

}
=

{
∞

∑
n=0

n

∑
j=−n

w̃∧s (n)w
∧
s (n) f ∧(n, j)Yn,j

∣∣∣∣∣ f ∈ L2(Ω)

}

for s ∈]0, S] are called detail spaces.

Compare with Michel (2013, Theorem 7.29). With the detail spaces, we obtain the
scale-step property of wavelets (see e. g. Michel, 2013, Theorem 7.30).

Theorem 3.4.6. (Scale-Step Property) For S ∈ R+, let {ks}s∈]0,S] ⊂ L2(Ω×Ω) be
a scaling function and the systems {ws}s∈]0,S] and {w̃s}s∈]0,S] the corresponding primal
and dual radial basis wavelet, respectively. Further, let s ∈]0, S] and N ∈ N. For any
f ∈ L2(Ω) it holds

ks/2N ∗ ks/2N ∗ f = ks ∗ ks ∗ f +
N−1

∑
n=0

w̃s/2n ∗ ws/2n ∗ f

67

3. Particular real-valued trial functions on the sphere

and

f = ks ∗ ks ∗ f +
∞

∑
n=0

w̃s/2n ∗ ws/2n ∗ f

where the latter equality holds in the sense of L2(Ω).

Hence, in analogy to low pass filters, we define band pass filters.

Definition 3.4.7. For S ∈ R+, let {ws}s∈]0,S] and {w̃s}s∈]0,S] be a primal and dual
radial basis wavelet, respectively. If, for all s ∈]0, S] and for all ε > 0, there exist
n1, n2 ∈ N0 such that, for all n ≤ n1, it holds∣∣w∧s (n)∣∣ < ε as well as

∣∣w̃∧s (n)∣∣ < ε

and, for all n ≥ n2 it holds∣∣w∧s (n)∣∣ < ε as well as
∣∣w̃∧s (n)∣∣ < ε,

then the system {w̃s ∗ws}s∈]0,S] is called a band pass filter. If the wavelets are P-wavelets,
the band pass filters are called P-band pass filters. If the wavelets are M-wavelets, the band
pass filters are called M-band pass filters.

Note again that we call the systems as well as a single function a band pass filter.
Band pass filters shall be used as possible dictionary elements. For band pass
filters, we inherit a Legendre representation.

Theorem 3.4.8. For all η ∈ Ω, a fixed ζ ∈ Ω and a primal and dual radial basis wavelet
{ws}s∈]0,S] and {w̃s}s∈]0,S] with S ∈ R+, respectively, the corresponding band pass
filter has the expansion

(w̃s ∗ ws) (ζ, η) =
∞

∑
n=0

2n + 1
4π

w̃∧s (n)w
∧
s (n)Pn(ζ · η)

for the n-th Legendre polynomial Pn.

Proof. Also for wavelets, the equalities from Theorem 3.3.7 hold.

As an example for radial basis wavelets, we develop Example 3.3.17 further (see
also e. g. Freeden et al., 1998, pp. 289-290).

Example 3.4.9. Again, we consider the generator of a scaling function κ : R+
0 → R

given by

κ(τ) := exp(−τ).

The Legendre coefficients of the scaling function are given by

k∧s (n) = exp (−sn) = (exp (−s))n .

68

3.4. Radial basis wavelets as band pass filters

We have seen in Example 3.3.17 that this gives us the Abel–Poisson kernel or
scaling function as well as a low pass filter. We want to construct the related
P-band pass filter. The Legendre coefficients of the primal and dual radial basis
wavelet are defined by

w∧s (n) := w̃∧s (n) :=

√(
k∧s/2(n)

)2
− (k∧s (n))

2

=

√(
exp

(
− s

2
n
))2
− (exp (−sn))2

=
√

exp (−s)n − exp (−2s)n.

Similarly to the case of low pass filters, we need to consider the convolution of
the primal and the dual radial basis wavelet to construct band pass filters. Only
the convolutions yield the respective detail spaces and the scale-step property
needed for a decomposition of the multiresolution analysis, see Theorem 3.4.6.
For η ∈ Ω and a fixed sζ ∈ B̊, we obtain in this case

W(x, η) := (w̃ ∗ w) (x, η) =
∞

∑
n=0

(
w∧s (n)

)2 2n + 1
4π

Pn(ζ, η)

=
∞

∑
n=0

(
exp (−s)n − exp (−2s)n) 2n + 1

4π
Pn(ζ, η)

= K (exp (−s) ζ, η)− K (exp (−2s) ζ, η) .

Thus, for b := exp (−s), we have

W(x, η) := W(bζ, η) := K (bζ, η)− K
(

b2ζ, η
)

.

As the Abel–Poisson kernel is defined for arbitrary b ∈ [0, 1[, an Abel–Poisson
P-band pass filter is equivalently defined and can be reformulated as follows:

W(x, η) := K (x, η)− K (|x|x, η) (3.15)

for x = bζ ∈ B̊, b ∈ [0, 1[and ζ ∈ Ω. Note that the closed form of the Abel–
Poisson kernel as seen in Example 3.3.4 makes also the respective P-band pass
filters advantageous for practical purposes. Examples of Abel–Poisson P-band
pass filters are given in Figure 3.3. In the plots, four Abel–Poisson P-band pass
filters are shown. Blue colour stands for minimal values and red colour for max-
imal ones. All P-band pass filters are given a fixed centre ζ. However, they attain
different scales. Presented are an Abel–Poisson P-band pass filters with scale
0.7, 0.8, 0.9 and 0.97 (from left to right). Each P-band pass filter is a localized
function and depicts the usual wavelet form. Further, the scale inherits the con-
trol of the level of localization from the Abel–Poisson kernels. A comparison of
the plot on the left-hand side with the one on the right-hand side shows that, for
higher scales, the wavelets are stronger localized.

69

3. Particular real-valued trial functions on the sphere

Figure 3.3.: Abel–Poisson P-band pass filters with a fixed centre ζ in all plots but
different scales b = 0.7, 0.8, 0.9, 0.97 (left to right).

Some aspects of band pass filters and Sobolev spaces In Section 3.3, we de-
rived that, under certain assumptions, a low pass filter is the reproducing kernel
of a specific Sobolev space. As in our approach the band pass filters are tightly
related to the low pass filters, the properties are obtained analogously in this case.
The derivation with respect to low pass filters used the Legendre representation
of a radial basis function. We considered the Legendre expansion of band pass
filters in Theorem 3.4.8. Further, we defined the related wavelets by their Legen-
dre coefficients. Thus, we obtain that the Sobolev space H((An); Ω) related to a
band pass filter {w̃s ∗ ws}s∈]0,S], S ∈ R+, is defined by

An =
(
w̃∧s (n)w

∧
s (n)

)−1/2

if w̃∧s (n)w∧s (n) 6= 0 for all n ∈ N0 and the sequence (An)n∈N0 is summable. In
the case of the Abel–Poisson P-band pass filter, we obtain

An =
(

bn − b2n
)−1/2

.

Note that, again, this sequence is summable due to b ∈ [0, 1[. All in all, we obtain
similar results as before.

Lemma 3.4.10. Let s ∈]0, S], S ∈ R+, be fixed and Z ⊆ Ω be dense and countable. If
it holds

w̃∧s (n)w
∧
s (n) 6= 0

for all n ∈ N0 and the sequence ((w̃∧s (n)w∧s (n))−1/2)n∈N0 is summable, then the sys-
tem of band pass filters

{w̃s(ζ, ·) ∗ ws(ζ, ·) | ζ ∈ Z}
is closed in the space (L2(Ω), ‖ · ‖L2(Ω)) in the sense of the approximation theory.

Proof. Apply Theorems 3.2.13, 3.2.15 and 3.4.8.

Lemma 3.4.11. For a value b ∈ [0, 1[and a dense and countable set Z ∈ Ω, the system
of Abel–Poisson P-band pass filters

{W(bζ, ·) | ζ ∈ Z} =
{

W(x, ·)
∣∣∣ x

b
∈ Z

}
is closed in the space (L2(Ω), ‖ · ‖L2(Ω)) in the sense of the approximation theory.

70

3.5. Inner products and upward continued values

Proof. Apply Lemma 3.4.10.

Lemma 3.4.12. Let s ∈]0, S], S ∈ R+, be fixed and Z ⊆ Ω be dense and countable. If
it holds

w̃∧s (n)w
∧
s (n) 6= 0

for all n ∈ N0,

(n + 0.5)2 ≤
(
w∧s (n)w̃

∧
s (n)

)−1/2

for all n ∈ N0 with n ≥ n0 ∈ N0 and the sequence ((w̃∧s (n)w∧s (n))−1/2)n∈N0 is
summable, then the system of band pass filters

{w̃s(ζ, ·) ∗ ws(ζ, ·) | ζ ∈ Z} ,

is closed in the space (H2(Ω), ‖ · ‖H2(Ω)) in the sense of the approximation theory.

Proof. Apply Theorems 3.2.13, 3.2.16 and 3.4.8.

Lemma 3.4.13. For a value b ∈ [0, 1[and a dense and countable set Z ∈ Ω, the system
of Abel–Poisson P-band pass filters

{W(bζ, ·) | ζ ∈ Z} =
{

W(x, ·)
∣∣∣ x

b
∈ Z

}
is closed in the space (H2(Ω), ‖ · ‖H2(Ω)) in the sense of the approximation theory.

Proof. Apply Lemma 3.4.12.

3.5. Inner products and upward continued values

For practical purposes, we consider some particular inner products and the up-
ward continued values of the introduced trial functions at this point.
At first, we consider the L2(Ω)-inner products where one argument is a spherical
harmonic. We obtain the following results.
For two spherical harmonics, we already pointed out (see (2.12)) that it holds〈

Ym,k, Yn,j
〉

L2(Ω)
= δn,mδj,k

for n, m, k, j ∈ N0 with −m ≤ k ≤ m and −n ≤ j ≤ n. For an Abel–Poisson
kernel and a spherical harmonic, we obtain

〈
K(x, ·), Yn,j

〉
L2(Ω)

= K(x, ·)∧(n)Yn,j

(
x
|x|

)
= |x|n Yn,j

(
x
|x|

)

71

3. Particular real-valued trial functions on the sphere

for a x ∈ B̊ and an n, j ∈ N0 with −n ≤ j ≤ n due to (3.14). Using this result, we
obtain for an Abel–Poisson P-band pass filter that it holds〈

W(x, ·), Yn,j
〉

L2(Ω)
=
〈
K (x, ·) , Yn,j

〉
L2(Ω)

−
〈
K (|x|x, ·) , Yn,j

〉
L2(Ω)

=
(
|x|n − |x|2n

)
Yn,j

(
x
|x|

)
for a x ∈ B̊ and an n, j ∈ N0 with −n ≤ j ≤ n. At last, for a Slepian function
g(k,N) with band-limit N and a spherical harmonic, we have

〈
g(k,N)(R, ·), Yn,j

〉
L2(Ω)

=

{
g(k,N)

n,j (R), n ≤ N,
0, else

by construction. With these inner product, we consider the upward continu-
ation of the specified trial functions, see (2.26). Again, we already showed in
Lemma 2.4.8 that it holds

T Ym,k = σ−m−1Ym,k

for m, k ∈ N0 with −m ≤ k ≤ m. For the upward continuation of an Abel–
Poisson kernel, we obtain

T K(x, ·) =
∞

∑
n=0

n

∑
j=−n

〈
Yn,j, K(x, ·)

〉
L2(Ω)

σ−n−1Yn,j =
∞

∑
n=0

n

∑
j=−n

|x|n
σn+1 Yn,j

(
x
|x|

)
Yn,j

=
∞

∑
n=0

|x|n
σn+1

2n + 1
4π

Pn

(
x
|x| ·

)
=

1
σ

K
(x

σ
, ·
)

(3.16)

for a x ∈ B̊. Thus, for an Abel–Poisson band pass filter, it yields

TW(x, ·) = T K (x, ·)− T K (|x|x, ·) = 1
σ

K
(x

σ
, ·
)
− 1

σ
K
(|x|x

σ
, ·
)

(3.17)

for a x ∈ B̊ as T is linear. Last but not least, the upward continued value of a
Slepian function of band-limit N is derived as

T g(k,N)(R, ·) =
∞

∑
n=0

n

∑
j=−n

〈
g(k,N)(R, ·), Yn,j

〉
L2(Ω)

σ−n−1Yn,j

=
N

∑
n=0

n

∑
j=−n

g(k,N)
n,j (R)σ−n−1Yn,j. (3.18)

At last, for a penalty term in our computations, we need the values of theH2(Ω)-
inner products of all combinations of the introduced trial functions. We derive

72

3.5. Inner products and upward continued values

them at this point. Let n, m, j, k, o, p, L ∈ N0 with −n ≤ j ≤ n, −m ≤ k ≤ m
and o, p ≤ (L + 1)2. Further, let x, x′ ∈ B̊ and R, R′ ⊆ Ω.

〈
Yn,j, Ym,k

〉
H2(Ω)

= A2
nδn,mδj,k (3.19)

〈K(x, ·), Ym,k〉H2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n
〈
K(x, ·), Yn,j

〉
L2(Ω)

〈
Ym,k, Yn,j

〉
L2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n|x|nYn,j

(
x
|x|

)
δn,mδj,k

= A2
m|x|mYm,k

(
x
|x|

)
(3.20)

〈W(x, ·), Ym,k〉H2(Ω)

= 〈K (x, ·) , Ym,k〉H2(Ω) − 〈K (|x|x, ·) , Ym,k〉H2(Ω)

= A2
m

(
|x|m − |x|2m

)
Ym,k

(
x
|x|

)
(3.21)

〈
g(o,L)(R, ·), Ym,k

〉
H2(Ω)

=
L

∑
l=0

l

∑
i=−l

g(o,L)
l,i (R) 〈Yl,i, Ym,k〉H2(Ω)

=

{
A2

mg(o,L)
m,k (R), m ≤ L
0, else

(3.22)

〈
K(x, ·), K

(
x′, ·
)〉
H2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n
〈
K(x, ·), Yn,j

〉
L2(Ω)

〈
K
(
x′, ·
)

, Yn,j
〉

L2(Ω)

=
∞

∑
n=0

A2
n
(
|x|
∣∣x′∣∣)n

n

∑
j=−n

Yn,j

(
x
|x|

)
Yn,j

(
x′

|x′|

)

=
∞

∑
n=0

A2
n
(
|x|
∣∣x′∣∣)n 2n + 1

4π
Pn

(
x
|x| ·

x′

|x′|

)
(3.23)

73

3. Particular real-valued trial functions on the sphere

〈
W(x, ·), K

(
x′, ·
)〉
H2(Ω)

=
〈
K (x, ·) , K

(
x′, ·
)〉
H2(Ω) −

〈
K (|x|x, ·) , K

(
x′, ·
)〉
H2(Ω)

=
∞

∑
n=0

A2
n
(
|x|
∣∣x′∣∣)n 2n + 1

4π
Pn

(
x
|x| ·

x′

|x′|

)
−

∞

∑
n=0

A2
n

(
|x|2

∣∣x′∣∣)n 2n + 1
4π

Pn

(
x
|x| ·

x′

|x′|

)
=

∞

∑
n=0

A2
n

(
|x|n − |x|2n

) ∣∣x′∣∣n 2n + 1
4π

Pn

(
x
|x| ·

x′

|x′|

)
(3.24)

〈
g(o,L)(R, ·), K

(
x′, ·
)〉
H2(Ω)

=
L

∑
l=0

l

∑
i=−l

g(o,L)
l,i (R)

〈
Yl,i, K

(
x′, ·
)〉
H2(Ω)

=
L

∑
l=0

l

∑
i=−l

A2
l g(o,L)

l,i (R)
∣∣x′∣∣l Yl,i

(
x′

|x′|

)
(3.25)

〈
W(x, ·), W

(
x′, ·
)〉
H2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n
〈
W(x, ·), Yn,j

〉
L2(Ω)

〈
W
(
x′, ·
)

, Yn,j
〉

L2(Ω)

=
∞

∑
n=0

A2
n

(
|x|n − |x|2n

) (∣∣x′∣∣n − ∣∣x′∣∣2n
) 2n + 1

4π
Pn

(
x
|x| ·

x′

|x′|

)
(3.26)

〈
g(o,L)(R, ·), W

(
x′, ·
)〉
H2(Ω)

=
L

∑
l=0

l

∑
i=−l

g(o,L)
l,i (R)

〈
Yl,i, W

(
x′, ·
)〉
H2(Ω)

=
L

∑
l=0

l

∑
i=−l

A2
l g(o,L)

l,i (R)
(∣∣x′∣∣l − ∣∣x′∣∣2l

)
Yl,i

(
x′

|x′|

)
(3.27)

〈
g(o,L)(R, ·), g(p,L) (R′, ·)〉

H2(Ω)

=
∞

∑
n=0

n

∑
j=−n

A2
n

〈
g(o,L)(R, ·), Yn,j

〉
L2(Ω)

〈
g(p,L) (R′, ·) , Yn,j

〉
L2(Ω)

=
L

∑
n=0

n

∑
j=−n

A2
ng(o,L)

n,j (R)g(p,L) (R′)n,j (3.28)

74

3.5. Inner products and upward continued values

Note that for those values which are represented by a series, an approximate
value can be obtained by truncating the series. The truncated series can be com-
puted with the use of the Clenshaw algorithm, see Appendix A.

75

4. An algorithmic approach:
matching pursuits

In Chapter 2, we have seen that the downward continuation of satellite data is
an example of an ill-posed inverse problem. Such problems cannot be solved
easily in general. With the use of the generalized inverse, we obtain the unique
minimum-norm solution. However, stability of this solution can usually only
be achieved with regularization strategies. Such strategies give us an approxi-
mate well-posed problem to solve instead. As an example, we introduced the
Tikhonov-Philipps regularization in Example 2.5.17. In this particular strategy,
we have to solve either the regularized normal equation or a minimization prob-
lem to obtain a solution. In the first case, traditionally, the problem is reformu-
lated to a system of linear equations. In the latter case, one particular approach
is given by certain inverse problem matching pursuit (IPMP) algorithms. In its
most general sense, such methods approximate a solution of a given inverse prob-
lem with the use of a dictionary. In contrast to the solution of a system of linear
equations, this approximation is given as a function and not as discretized values.
In this chapter, we introduce the reader to matching pursuits in general and the
IPMP algorithms in particular.

4.1. An introduction to matching pursuits

We consider an approximation problem: we are given measurements of a signal
at discrete points of a certain domain. Our aim is to determine a representation of
this signal as a function. In general, such an approximation task can be solved by
well-known methods which expand the solution in an orthonormal basis, splines
or wavelets (see e. g. Freeden et al., 1998; Hanke-Bourgeois, 2009; Magnus et al.,
1966; Michel, 2013; Schwarz and Köckler, 2011; Szegö, 1975). A matching pursuit,
however, follows a different route. It assumes that the signal can be well repre-
sented as a linear combination of so-called dictionary elements.
This section is based on Mallat and Zhang (1993); Pati et al. (1993); Vincent and
Bengio (2002) for the basic matching pursuits and Fischer and Michel (2013a);
Gutting et al. (2017); Kontak (2018); Kontak and Michel (2018); Michel (2015a,
2020); Michel and Orzlowski (2017); Michel and Telschow (2016); Telschow (2014)
for the functional matching pursuits. First of all, we express the idea of using dic-
tionaries.

77

4. An algorithmic approach: matching pursuits

Why use a dictionary? “We can express a wide range of ideas and at the same
time easily communicate subtle difference between close concepts, because nat-
ural languages have large vocabularies, that include words with close meanings.
[...] Such decompositions are similar to a text written with a small vocabulary.
Although this vocabulary might be sufficient to express all ideas, it requires to
use circumvolutions that replace unavailable words by full sentences.” – Mallat
and Zhang (1993)
This description from Mallat and Zhang points out one of the main advantages
of a matching pursuit. It might be a useful tool for a better understanding to rep-
resent a signal in a given (possibly orthonormal) basis. However, this concept is
not necessarily a very natural one. With a broader vocabulary, one can be more
accurate with less words and more precise due to using more suitable words. A
matching pursuit aims to incorporate this idea into mathematics.

Similar works with different names The term matching pursuit was originally
coined in works related to signal processing. Similar approaches have been de-
veloped in statistics and are known as projection pursuit (regression) (see e. g.
Friedman and Stuetzle, 1981; Huber, 1985; Jones, 1987). Further, in approximation
theory, similar algorithms were called greedy algorithms (see e. g. Temlyakov,
2011). Note that a matching pursuit indeed has a greedy component as we will
see. However, it is no greedy algorithm in the sense of computer science, i. e. it
may not produce the global solution of an optimization problem. We will dis-
cuss the difference of such problems to a matching pursuit in a bit more detail in
Chapter 6.

4.1.1. The classical matching pursuit

We start with some notations needed for discussing any matching pursuit. Fur-
ther, we also formulate the classical matching pursuits with a (discretization) op-
erator.

Remark 4.1.1. At first, we consider the following approximation problem: for a
set of grid points

η(i) ∈ R3, i = 1, ..., ` with ` ∈ N,

let

y = (yi)i=1,...,` ∈ R` with yi = f
(

η(i)
)
∈ R (4.1)

denote measurements of a given signal . We are interested in the function f ∈ H
for a Hilbert space (H, 〈·, ·〉H).
In order to use a consistent notation, we immediately relate the approximation
problem to an inverse problem.

78

4.1. An introduction to matching pursuits

Remark 4.1.2. For each yi, i = 1, .., ` from Remark 4.1.1, we can write yi =
(I f)(η(i)) with the identity operator I. We exchange the operator I by a sys-
tem of (discretization) functionals Ii

k such that Ii
k f = (I f)(η(i)) = yi holds for

i = 1, ..., `. The Hebrew letter k is used to emphasize that the system (Ii
k)i=1,...,`

is a discretization of I. Then we can write Ik := (Ii
k)i=1,...,` and have the approxi-

mation problem in the familiar formulation

Ik f = y.

Note that, by using the operator Ik, we obtain Ik f ∈ R`.

The usual approach for this approximation problem is to represent the unknown
signal f by its truncated Fourier series

f ≈
N

∑
n=0
〈 f , gn〉H gn

for some basis gn of (H, 〈·, ·〉H). However, we have seen in the last chapters that
diverse bases have their particular (dis-)advantages and, thus, it may be difficult
to determine a suitable one. Further, using the truncated Fourier series gives rise
to numerically difficult computations, for instance, if we have to solve a large sys-
tem of linear equations. In a matching pursuit, we exchange the basis functions
with dictionary elements.

Definition 4.1.3. Let (H, 〈·, ·〉H) be a Hilbert space of functions. A dictionary is a family

D ⊆ H\ ker Ik with ker Ik = {d ∈ D | Ikd = 0},

i. e. a dictionary is an arbitrarily large set of functions in which each one does not map to
zero under Ik. Each d ∈ D is called a dictionary element. Further, we set

V := VD := spanD‖·‖H ,

V := VD := span { Ikd | d ∈ D}‖·‖R` (4.2)

and

VDN := spanDN, DN ⊆ D, |DN | = N, (4.3)
VDN := span{IkDN}, IkDN := { Ikd | d ∈ DN}

for N ∈ N. We say a dictionaryD is complete if and only if V = H. We say a dictionary
D is overcomplete if and only if there exists a proper subset D? ⊂ D which is complete.

Note that the smallest possible complete dictionary consists of a basis of H. The
largest possible complete dictionary is naturally H itself (see Mallat and Zhang,
1993).

79

4. An algorithmic approach: matching pursuits

Remark 4.1.4. For a closed linear subspace U ⊆ X (X = H for a Hilbert space of
functions (H, 〈·, ·〉H) or X = R`), we denote the orthogonal projection of x ∈ X
onto U by PUx and the orthogonal complement of U with respect to the inner
product 〈·, ·〉X as U⊥. Then, for U ⊆ X and any x ∈ X, we have

x = PUx + PU⊥x. (4.4)

Further, let the elements of VN ⊆ R`, N ∈ N be pairwise orthogonal and enu-
merated. Then we have

PVN Ikg =
N

∑
n=1

〈Ikg, Ikdn〉R`

‖Ikdn‖2
R`

Ikdn (4.5)

for any g ∈ H and dictionary elements dn ∈ DN.

Definition 4.1.5. For a Hilbert space (H, 〈·, ·〉H) of functions, the aim of the classical
matching pursuit is to solve an approximation problem from given data y ∈ R`. For
this, it constructs an approximation fN, N ∈ N, of the solution f ∈ H. From now
on, N ∈ N will always be the current iteration. The approximation fN is given as a
decomposition in a best basis DN = {dn | dn ∈ D, n = 1, ..., N}, i. e. in the form

fN :=
N

∑
n=1

αndn (4.6)

for dictionary elements dn ∈ D ⊆ H\ ker Ik and real coefficients αn. The residual is
denoted by

RN := y− Ik fN ∈ R` (4.7)

for a vector of measurements y as in (4.1). For an approximation fN, it should hold

lim
N→∞

∥∥∥RN
∥∥∥

R`
= 0.

The system

{(αn, dn)}n=1,...,N (4.8)

is called a structure book.

We have to determine the coefficients αn and the dictionary elements dn of the
decomposition (4.6) for n = 1, ..., N, i. e. the best basis (or its structure book). In
the classical matching pursuit (see e. g. Mallat and Zhang, 1993; Pati et al., 1993;
Vincent and Bengio, 2002), this is done by iteratively minimizing the norm of
the residual RN: we first assume that f0 is some initial approximation. In most

80

4.1. An introduction to matching pursuits

cases, we do not have a sophisticated guess for f0 and, thus, set f0 ≡ 0. Then we
iteratively add dictionary elements. We set

fN+1 := fN + αN+1dN+1

for iteration N such that ∥∥∥RN+1
∥∥∥

R`
≤
∥∥∥RN

∥∥∥
R`

. (4.9)

Thus, the questions is how to determine (αN+1, dN+1) in each iteration. With (4.9),
we aim to minimize∥∥∥RN+1

∥∥∥2

R`
= ‖y− Ik fN+1‖2

R`

= ‖y− Ik fN − αN+1 IkdN+1‖2
R`

=
∥∥∥RN − αN+1 IkdN+1

∥∥∥2

R`
(4.10)

and choose

(αN+1, dN+1) = arg min
(α,d)∈R×D

∥∥∥RN − αIkd
∥∥∥2

R`
. (4.11)

Note that, for a finite dictionary, this minimum is surely attained. If the dictio-
nary is infinite, we actually cannot be sure that the minimum exists and, thus,
should only consider the infimum. However, in order to stay in accordance to the
literature, here, we take over the notation with the minimum.
Hence, the finite set of in this way chosen dictionary elements DN is called a best
basis as an analogy to a representation in a traditional basis. However, it is a best
basis because each dictionary element dn ∈ DN is chosen as the minimizer of the
norm of Rn.
For practical purposes, we consider the quadratic term of (4.11) in more detail
and can determine a coefficient α ∈ R in dependence of a dictionary element
d ∈ D as follows:

0 =
∂

∂α

∥∥∥RN − αIkd
∥∥∥2

R`
=

∂

∂α

(∥∥∥RN
∥∥∥2

R`
− 2α

〈
RN, Ikd

〉
R`

+ α2 ‖Ikd‖2
R`

)
= −2

〈
RN, Ikd

〉
R`

+ 2α ‖Ikd‖2
R` .

Thus, we eliminate the factor 2 and obtain

α =

〈
RN, Ikd

〉
R`

‖Ikd‖2
R`

. (4.12)

81

4. An algorithmic approach: matching pursuits

Hence, the corresponding coefficient αn is fixed for any choice of basis element
dn ∈ DN and it suffices to choose dN+1 such that ‖RN+1‖ is minimized. For this,
we insert (4.12) into ‖RN − αIkd‖2

R` (confer (4.10) and (4.11)) and obtain

∥∥∥RN − αIkd
∥∥∥2

R`
=
∥∥∥RN

∥∥∥2

R`
−
(〈

RN, Ikd
〉

R`

‖Ikd‖R`

)2

.

Hence, in each iteration N, the norm of the residual RN+1 is minimized if we
choose the next best basis element dN+1 ∈ D such that

dN+1 := arg max
d∈D

(〈
RN, Ikd

〉
R`

‖Ikd‖R`

)2

. (4.13)

Note that there might exist more than one dictionary element that maximizes this
quotient. Moreover, similarly as before, for an infinite dictionary, we actually
should seek a supremum to be precise. Again, in order to be in accordance with
the literature, we maintain the formulation with the maximum. Further, note
that this maximization also means that the normalized vector of values IkdN+1 of
the dictionary element dN+1 ∈ D with respect to grid points η(i), i = 1, ..., `, is
chosen which is most collinear in the Euclidean sense to the current residual RN

(see e. g. Vincent and Bengio, 2002). We obtain a pseudo-code for this classical
matching pursuit as given in Algorithm 1. Note that for practical purposes, the
values 〈Ikdi, Ikdj〉R` , di, dj ∈ D, can be preprocessed and used in the update rule

〈
RN+1, Ikd

〉
R`

=
〈

RN, Ikd
〉

R`
− αN+1 〈IkdN+1, Ikd〉R`

of the N-th iteration in order to improve the efficiency. Note that, in practice,
the algorithm needs at least one termination criterion. We will discuss some pos-
sibilities in Section 4.5 after we introduced the IPMP algorithms. Further, note
that the classical matching pursuit does not need to solve a large system of linear
equations for the approximation task.
However, a classical matching pursuit faces two problems (see e. g. Pati et al.,
1993; Vincent and Bengio, 2002): on the one hand, the choice of the structure
book {(αn, dn)}n=1,...,N does not represent an optimal N-term approximation in
general because the coefficients αn, n = 1, ..., N, of previous iterations are fixed
in the current step as well as in future steps. On the other hand, if the coefficients
αn, n = 1, ..., N, are recomputed in each iteration N such that they are optimal
with respect to the chosen dictionary elements dn, n = 1, ..., N + 1, and the coef-
ficient αN+1, then at least the latest chosen dictionary element dN+1 may not be
the optimal choice any more. To solve these problems, the orthogonal matching
pursuit was developed.

82

4.1. An introduction to matching pursuits

Data: y ∈ R`

Result: approximation fN
initialization: D, f0, R0 := y− Ik f0 ;
N = 0;
while (stopping criteria not fulfilled) do

dN+1 := arg maxd∈D

(
〈RN , Ikd〉

R`

‖ Ikd‖
R`

)2

;

αN+1 := 〈R
N , IkdN+1〉R`

‖IkdN+1‖2
R`

;

RN+1 := RN − αN+1 IkdN+1;

N be increased by 1;
end
return fN = ∑N

n=1 αndn;

Algorithm 1: Pseudo-code for the matching pursuit.

4.1.2. The orthogonal matching pursuit

For the first problem, the classical matching pursuit was extended such that it
simulates a choice of best coefficients α1, ..., αN+1 after the dictionary element
dN+1 is chosen as the maximizer of (4.13) in the current iteration N. As the dictio-
nary element is chosen first, the technique was called back-fitting (see e. g. Mallat
and Zhang, 1993; Vincent and Bengio, 2002).
The second problem is dealt with the so-called pre-fitting technique (see e. g. Vin-
cent and Bengio, 2002). As it mimics the simultaneous choice of an optimal dic-
tionary element dN+1 and optimal coefficients α1, ..., αN+1, we will concentrate
on this method in more detail next. Note that the back-fitting and the pre-fitting
mechanisms both rely on an orthogonal projection. Thus, a matching pursuit
is called orthogonal matching pursuit if one of these techniques is included. In
the sequel, we consider matching pursuits with pre-fitting (which includes back-
fitting naturally) as the orthogonal matching pursuit.
The idea of the orthogonal matching pursuit is as follows. With the pre-fitting
technique, we want to choose a dictionary element dN+1 simultaneously with an
optimal set of coefficients α1, ..., αN+1. Hence, we consider

(
α(N+1), dN+1

)
= arg min

(α,d)∈RN+1×D

∥∥∥∥∥y−
N

∑
n=1

αn Ikdn + αN+1 Ikd

∥∥∥∥∥
2

R`

for α = (α1, ..., αN+1) ∈ RN+1. Similar as in the non-orthogonal case, it would
be more precise to speak of an infimum instead of the minimum, but we again

83

4. An algorithmic approach: matching pursuits

maintain the formulation with the minimum as was usually done in the literature.
In each iteration N, we re-compute the coefficients α1, ..., αN. Hence, we introduce
some additional superscripts to emphasize that the value after a certain iteration
is meant. For instance, α

(N)
1 stands for the value of the coefficient α1 after the

update in the N-th iteration. In general, the value of the superscript must always
be equal or higher than the value of the subscript. If they are equal, then the
coefficient is not updated yet, i. e.

α
(N+1)
N+1 = αN+1.

With respect to the given data y ∈ R` and, in iteration N, the set VN := VDN with
DN consisting of the N previously chosen dictionary elements, the best approxi-
mation f (N+1)

N+1 we can get fulfils

Ik f (N+1)
N+1 :=

N+1

∑
n=1

α
(N+1)
n Ikdn = PVN+1y.

We consider this in more detail. With the use of (4.4), we have for the N-th itera-
tion (compare with Telschow, 2014)

PVN+1y = PVN y + α
(N+1)
N+1 PV⊥N IkdN+1

=
N

∑
n=1

α
(N)
n Ikdn + α

(N+1)
N+1

(
IkdN+1 −PVN IkdN+1

)
=

N

∑
n=1

α
(N)
n Ikdn − α

(N+1)
N+1

N

∑
n=1

β
(N)
n (dN+1) Ikdn + α

(N+1)
N+1 IkdN+1

=
N

∑
n=1

(
α
(N)
n − α

(N+1)
N+1 β

(N)
n (dN+1)

)
Ikdn + α

(N+1)
N+1 IkdN+1

(4.14)

with projection coefficients β
(N)
n (dN+1), n = 1, ..., N, of the N-th iteration ob-

tained from the Gram-Schmidt orthonormalization (compare with (4.5)). Note
that these projection coefficients are generally not unique. A more detailed look
on them will be provided with respect to the IPMP algorithms, confer Theo-
rem 4.4.2 and Theorem 4.4.3. With the update rule for the coefficients

α
(N+1)
n := α

(N)
n − α

(N+1)
N+1 β

(N)
n (dN+1) , (4.15)

we can write

PVN+1y =
N

∑
n=1

α
(N+1)
n Ikdn + α

(N+1)
N+1 IkdN+1 = Ik f (N+1)

N+1 .

84

4.1. An introduction to matching pursuits

Hence, we define the residual as

RN+1 := y− Ik f (N+1)
N+1 = y− Ik f (N)

N − α
(N+1)
N+1 PV⊥N IkdN+1

= RN − α
(N+1)
N+1 PV⊥N IkdN+1

We summarize these considerations.

Definition 4.1.6. For a Hilbert space (H, 〈·, ·〉H) of functions, the orthogonal matching
pursuit constructs an approximation

Ik f (N)
N := PVN y =

N

∑
n=1

α
(N)
n Ikdn (4.16)

for coefficients α
(N)
n ∈ R, n = 1, ..., N, and dictionary elements dn ∈ D ⊆ H\ ker Ik.

Therefore, the residual is denoted by

RN+1 := y− Ik f (N+1)
N+1 = RN − α

(N+1)
N+1 PV⊥N IkdN+1.

Then, in analogy to the classical matching pursuit, the aim of the N-th iteration
of the orthogonal matching pursuit is to determine(

α
(N+1)
N+1 , dN+1

)
= arg min

(α,d)∈R×D

∥∥∥RN − αPV⊥N Ikd
∥∥∥2

R`
, (4.17)

where we again maintain the formulation with the minimum as was done in the
literature instead of the (more precise) infimum. Similar as before, we consider
the derivation with respect to α first:

0 =
∂

∂α

(∥∥∥RN − αPV⊥N Ikd
∥∥∥2

R`

)
=

∂

∂α

(∥∥∥RN
∥∥∥2

R`
− 2α

〈
RN,PV⊥N Ikd

〉2

R`
+ α2

∥∥∥PV⊥N Ikd
∥∥∥2

R`

)
= −2

〈
RN,PV⊥N Ikd

〉2

R`
+ 2α

∥∥∥PV⊥N Ikd
∥∥∥2

R`
.

Thus, we have with

α =

〈
RN,PV⊥N Ikd

〉
R`∥∥∥PV⊥N Ikd

∥∥∥2

R`

(4.18)

a dependence on the dictionary element d ∈ D for a coefficient α ∈ R and can
concentrate on the determination of the dictionary element dN+1. Inserting (4.18)
into (4.17) , yields

∥∥∥RN+1
∥∥∥2

=
∥∥∥RN

∥∥∥2
−

〈

RN,PV⊥N Ikd
〉

R`∥∥∥PV⊥N Ikd
∥∥∥

R`

2

.

85

4. An algorithmic approach: matching pursuits

Data: y ∈ R`

Result: approximation f (N)
N

initialization: D, f0, R0 = y− Ik f0 ;
N = 0;
while (stopping criteria not fulfilled) do

dN+1 := arg maxd∈D

〈

RN ,PV⊥N
Ikd
〉

R`∥∥∥∥PV⊥N Ikd
∥∥∥∥

R`

2

;

α
(N+1)
N+1 :=

〈
RN ,PV⊥N

IkdN+1

〉
R`∥∥∥∥PV⊥N IkdN+1

∥∥∥∥2

R`

;

RN+1 := RN − α
(N+1)
N+1 PV⊥N IkdN+1;

if (N ≥ 1) then
α
(N+1)
n = α

(N)
n − α

(N+1)
N+1 β

(N)
n (dN+1) , n = 1, ..., N;

end

N be increased by 1;

end

return f (N)
N = ∑N

n=1 α
(N)
n dn;

Algorithm 2: Pseudo-code for the orthogonal matching pursuit.

Again, we obtained an equivalent maximization problem: instead of minimizing
‖RN+1‖2, we can equivalently seek the (generally not unique) dictionary element
dN+1 by

dN+1 := arg max
d∈D

〈

RN,PV⊥N Ikd
〉

R`∥∥∥PV⊥N Ikd
∥∥∥

R`

2

.

Analogously as before, we maintain the notation with the maximum instead of
a supremum. Note that, again, the next chosen dictionary element is the one
which is most collinear to the residual. In the orthogonal matching pursuit, it is,
simultaneously, also orthogonal to the previously chosen basis elements (see e. g.
Telschow, 2014). Due to the latter property, each dictionary element can only be
chosen once in an orthogonal matching pursuit. We obtain the pseudo-code for
the orthogonal matching pursuit as given in Algorithm 2. Note that the algorithm
allows certain update rules for an efficient implementation (e. g. with respect to
the projection coefficients). We refer to Vincent and Bengio (2002) for this.

86

4.2. A particular dictionary and problem notation

4.2. A particular dictionary and problem notation

Before we introduce the IPMP algorithms, we consider a particular dictionary in
more detail. For spherical inverse problems with a global signal, the trial func-
tions introduced in Chapter 2 and Chapter 3 are possible (and sensible) dictio-
nary elements. Next, we will introduce a novel notation (compare Michel and
Schneider, 2020) of a dictionary for spherical inverse problems of scalar signals
including these trial functions in order to standardize the declaration of a dic-
tionary for future publications. At first, we define sets of indices (compare with
Freeden et al., 1998, p. 58).

Definition 4.2.1. The set of pairs of indices of degree n and order j is given by

N := {(n, j) | n ∈ N0, j = −n, ..., n}.

Further, the set of pairs of a band-limit L and numbering k is defined as

L :=
{
(k, L) | L ∈ N0, k = 1, ..., (L + 1)2

}
.

The set N is used for the indices of spherical harmonics whereas the set L is
used for the superscript indices of Slepian functions. Further, note that the group
SO(3) has a universal 2-sheeted covering that is diffeomorphic with

S3 :=
{

x ∈ R4
∣∣∣ |x| = 1

}
(see e. g. Bröcker and tom Dieck, 1985; Grafarend and Kühnel, 2011). As

[−1, 1]× S3 = B4 :=
{

x ∈ R4
∣∣∣ |x| ≤ 1

}
we will use here the abbreviation B4 instead of [−1, 1]× SO(3) for denoting a dic-
tionary. Then we define a dictionary consisting of spherical harmonics, Slepian
functions as well as Abel–Poisson low and band pass filters as follows.

Definition 4.2.2. Let N ⊆ N , S ⊆ B4 ×L and BK, BW ⊆ B̊ for the open unit ball B̊.
We define the following (spherical scalar) trial function classes [·]• by

[N]SH :=
{

Yn,j
∣∣ (n, j) ∈ N

}
for spherical harmonics,

[S]SL :=
{

g(k,L)
((

c, Aε3
)

, ·
) ∣∣∣ ((c, A), (k, L)) ∈ S

}
for Slepian functions,

[BK]APK := {K(x, ·) | x ∈ BK }

87

4. An algorithmic approach: matching pursuits

for Abel Poisson low pass filters K(x, ·) and

[BW]APW := {W(x, ·) | x ∈ BW }

for Abel Poisson band pass filters W(x, ·). Then a (spherical scalar) dictionary D ⊆
H2(Ω)\{0} ⊆ L2(Ω)\{0} is defined as the union of trial function classes, i. e.

D := [N]SH + [S]SL + [BK]APK + [BW]APW

:= [N]SH ∪ [S]SL ∪ [BK]APK ∪ [BW]APW. (4.19)

Note that the notation of a trial function class is similar to the notation of an
equivalence class in basic (linear) algebra. Further, note that, with respect to this
definition, a dictionary can be finite as well as infinite.
If not all four trial function classes are considered, the dictionary is defined as the
union of the actually used trial function classes. The notation can easily be trans-
ferred to other inverse problems. For instance, for spherical vectorial problems,
we can use lower-case instead of capital letters for the subscript in the definition
of a trial function class.

Remark 4.2.3. We immediately obtain that the dictionary from Definition 4.2.2 is
complete in L2(Ω) and H2(Ω) if [BK]APK or [BW]APW fulfils the assumptions of
either Lemma 3.3.19, 3.3.21, 3.4.11 or 3.4.13, i. e. [BK]APK or [BW]APW contains a
basis system of the respective function space.

Further, we reckon a particular advantage of a matching pursuit if a dictionary
like (4.19) is used. It is well-known that none of the introduced trial function
classes is perfect for the approximation of a signal on its own. Each one was de-
veloped for a particular use. Most importantly, the functions of the diverse classes
are distinct in their degree of localization. Thus, it seems sensible to use spher-
ical harmonics to approximate global structures of a signal. However, adding
global functions to an approximation has a global impact. Thus, localized func-
tions produce better results if only local structures need to be added. However,
if only local functions are used, the approximation can be very inaccurate in be-
tween the grid points at which we have given measurements. In this way, the
combination of diverse trial function classes in one dictionary and an algorithm
which automatically selects one suitable trial function after the other seems to be
a promising approach for better results.

How to extend a matching pursuit to inverse problems – the idea We intro-
duced an (orthogonal) matching pursuit in order to solve an approximation prob-
lem. However, in geomathematics, we are actually interested in inverse problems
Tx = y. As shown before, if T = I is the identity operator or T = Ik is a dis-
cretization operator (thus, the Hebrew letter k), an approximation problem can
be viewed as a particular inverse problem. In that sense, we are interested in gen-
eralizations of the (orthogonal) matching pursuit to inverse problems.

88

4.2. A particular dictionary and problem notation

For this, we obviously have to take the operator T as well as its ill-posedness into
account. The latter one is usually treated with the use of a regularization like the
Tikhonov-Philipps regularization, see Example 2.5.17. Both matching pursuits
introduced before aim to minimize the norm of the current residual in each itera-
tion. If we compare this approach with the Tikhonov-Philipps regularization, we
see that each of the matching pursuits aims to minimize only a data fidelity term.
Thus, the matching pursuits for inverse problem aim to minimize both a data fi-
delity as well as a penalty term in each iteration in order to solve the problem and
treat the ill-posedness as well.
We introduce some (to Definition 4.1.3, Remark 4.1.4 and Definition 4.1.5) ad-
ditional notation that is needed when discussing matching pursuits for inverse
problems (compare with Michel and Schneider, 2020).

Remark 4.2.4. We consider a spherical scalar inverse problem where the right-
hand side y ∈ R` is a vector of measurements from a physical experiment. We set
X = H2(Ω) for the function space of the solution as well as the approximation.
Thus, for a better readability, we write f ∈ H2(Ω) instead of x ∈ X. Note that in
previous publications, the choice L2(Ω) was also used. However, as we pointed
out in Lemma 3.2.8 and Remark 3.2.9, we obtain a smoother (and, in practice,
better) approximation if we demand f ∈ H2(Ω). Note that it also holds D ⊆
H2(Ω)\{0} for D as defined in Definition 4.2.2 (see Remark 4.2.3).
Further, we have Y = R` for ` ∈ N and the right-hand side y ∈ R` similar
to Remark 4.1.1. However, now, each yi, i = 1, .., `, depends on a grid point
ση(i) ∈ R3 with 1 < σ ∈ R and η(i) ∈ Ω. In particular, we have yi = (T f)(ση(i)).
The operator T is exchanged by a system of (discretization) functionals Ti

k such
that Ti

k f = (T f)(ση(i)) = yi holds for i = 1, ..., `. Again, the Hebrew letter k is
used to emphasize that the system (Ti

k)i=1,...,` is a discretization of T. Then we
can write Tk := (Ti

k)i=1,...,` and have the linear inverse problem in the familiar
formulation

Tk f = y.

Furthermore, the Tikhonov-Philipps functional is given by

J
(

f ; Tk, λ
(

δ, yδ
)

, yδ
)

:=
∥∥∥yδ − Tk f

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ f ‖2

H2(Ω) (4.20)

for perturbed data yδ and a regularization parameter λ(δ, yδ) dependent on the
perturbed data and the noise level δ.

Next, we introduce the IPMP algorithms in detail. In particular, we explain meth-
ods that are advancements of the classical matching pursuit as well as the orthog-
onal matching pursuit.

89

4. An algorithmic approach: matching pursuits

4.3. The regularized functional matching pursuit

We start with the introduction of the regularized functional matching pursuit
(RFMP) algorithm. This algorithm is the advancement of the classical matching
pursuit to inverse problems. First, we recall details of its derivation. Then we
summarize its theoretical results. We end this section with some aspects of the
algorithm in practice. This section is based on Kontak (2018); Michel (2015a);
Michel and Orzlowski (2017); Telschow (2014), although there exists a far wider
range of literature on the algorithm (see e. g. Berkel et al., 2011; Fischer, 2011;
Fischer and Michel, 2012, 2013a,b; Gutting et al., 2017; Kontak and Michel, 2019,
2018; Michel and Telschow, 2014).
We use the notation introduced in Definitions 4.1.3 and 4.1.5 (with Tk instead of
Ik) as well as Remarks 4.1.4 and 4.2.4.

Derivation of the RFMP algorithm In the classical matching pursuit, we con-
sidered the minimization of ‖RN+1‖R` with respect to the next coefficient αN+1
and dictionary element dN+1 for an approximation fN+1. Now, we do the same
but for the Tikhonov-Philipps functional of our discretized setting, see (4.20).
Again, we aim to approximate the solution f iteratively by a linear combination
of dictionary elements d ∈ D. Thus, we consider

J
(

fN + αd; Tk, λ
(

δ, yδ
)

, yδ
)

:=
∥∥∥yδ − Tk(fN + αd)

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN + αd‖2

H2(Ω) . (4.21)

in the N-th iteration. Then the objective is to determine

(αN+1, dN+1) := arg min
(α,d)∈R×D

(
J
(

fN + αd; Tk, λ
(

δ, yδ
)

, yδ
))

= arg min
(α,d)∈R×D

(∥∥∥yδ − Tk(fN + αd)
∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN + αd‖2

H2(Ω)

)
= arg min

(α,d)∈R×D

(∥∥∥RN − αTkd
∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN + αd‖2

H2(Ω)

)
(4.22)

for a dictionary D and the residual RN given as in (4.7) (exchange Ik with Tk
there). Note that we take over the notation with the minimum instead of an infi-
mum from the non-regularized case. Again, we consider the optimal α first:

0 =
∂

∂α

(∥∥∥RN − αTkd
∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN + αd‖2

H2(Ω)

)

90

4.3. The regularized functional matching pursuit

=
∂

∂α

(∥∥∥RN
∥∥∥2

R`
− 2α

〈
RN, Tkd

〉
R`

+ α2 ‖Tkd‖2
R`

+λ
(

δ, yδ
)
‖ fN‖2

H2(Ω) + 2αλ
(

δ, yδ
)
〈 fN, d〉H2(Ω) + α2λ

(
δ, yδ

)
‖d‖2

H2(Ω)

)
= −2

〈
RN, Tkd

〉
R`

+ 2α ‖Tkd‖2
R` + 2λ 〈 fN, d〉H2(Ω) + 2αλ‖d‖2

H2(Ω)

with the abbreviation λ := λ
(
δ, yδ

)
in the last equation. Similar as before, we

obtain a formula for the coefficient α dependent on a dictionary element d:

α =

〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

. (4.23)

Hence, again, it is sufficient to consider the minimization of (4.22) only with re-
spect to the dictionary element d. If we insert (4.23) into (4.21), we obtain∥∥∥RN+1

∥∥∥2
+ λ

(
δ, yδ

)
‖ fN+1‖2

H2(Ω)

=
∥∥∥RN − αTkd

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN + αd‖2

H2(Ω)

=
∥∥∥RN

∥∥∥2

R`
− 2α

〈
RN, Tkd

〉
R`

+ α2 ‖Tkd‖2
R`

+ λ
(

δ, yδ
)
‖ fN‖2

H2(Ω) + 2αλ
(

δ, yδ
)
〈 fN, d〉H2(Ω) + α2λ

(
δ, yδ

)
‖d‖2

H2(Ω)

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN‖2

H2(Ω)

− 2

〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

〈
RN, Tkd

〉
R`

+ 2

〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

λ
(

δ, yδ
)
〈 fN, d〉H2(Ω)

+

〈RN, Tkd
〉

R` − λ
(
δ, yδ

)
〈 fN, d〉H2(Ω)

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

2

‖Tkd‖2
R`

+

〈RN, Tkd
〉

R` − λ
(
δ, yδ

)
〈 fN, d〉H2(Ω)

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

2

λ
(

δ, yδ
)
‖d‖2

H2(Ω)

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN‖2

H2(Ω) − 2

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

+

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

91

4. An algorithmic approach: matching pursuits

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

)
‖ fN‖2

H2(Ω) −

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

.

(4.24)

Thus, the minimization of (4.22), i. e. of the Tikhonov-Philipps functional of the
N-th iteration, is equivalent to choosing

dN+1 := arg max
d∈D

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

(4.25)

and αN+1 via (4.23) with d = dN+1. In analogy to above, we use the maximum in-
stead of the supremum here. Note that this derivation is independent of whether
the dictionary is finite or infinite. Nonetheless, a solution might not be unique.
However, it is obvious that, if we are given an infinite dictionary, the determi-
nation of the maximizer of (4.25) among the dictionary is not trivial. Thus, in
previous works, only finite dictionaries were feasible for practical purposes.

Remark 4.3.1. In this thesis, the RFMP algorithm is always used with a finite
dictionary. Then the value of the maximization objective (4.25) can be computed
and compared for all dictionary elements d ∈ D in order to obtain the next basis
element dN+1 for the approximation fN+1.

A pseudo-code of the RFMP algorithm is given in Algorithm 3. Note that for
λ(δ, yδ) = 0, the RFMP algorithm is also called functional matching pursuit
(FMP) algorithm and coincides with the classical matching pursuit if Tk = Ik.
Further note that, similar to the classical matching pursuit, the RFMP algorithm
(with a finite dictionary) can be implemented very efficiently (see Michel, 2015a;
Telschow, 2014). The values Tkd as well as 〈d, d̃〉H2(Ω) for d, d̃ ∈ D can be com-
puted before the actual iteration process. Furthermore, the additional update rule

〈 fN+1, d〉H2(Ω) = 〈 fN, d〉H2(Ω) + αN+1〈dN+1, d〉H2(Ω) (4.26)

for d ∈ D can be used for the computation of the nominators of (4.23) and (4.25),
respectively. For an overview on an implementation routine including those pre-
processing tools, see also Appendix B.

A summary of theoretical results of the RFMP algorithm There exist several
theoretical results for the RFMP algorithm. We summarize them at this point. As
we generalize the RFMP algorithm to a learning algorithm in Chapter 7, we will
state the results in a theoretical view on the learning algorithm in Chapter 8 in
more detail.
For the RFMP algorithm, the convergence of the sequence of Tikhonov func-
tionals (confer (4.21)), the coefficients and the residual is known. With these re-
sults, the convergence of the approximation dependent on the dictionary can be

92

4.4. The regularized orthogonal functional matching pursuit

Data: y ∈ R`

Result: approximation fN
initialization: D, f0, R0 = y− Tk f0 ;
N = 0;
while (stopping criteria not fulfilled) do

dN+1 := arg maxd∈D

(
〈RN ,Tkd〉

R`−λ(δ,yδ)〈 fN ,d〉H2(Ω)

)2

‖Tkd‖2
R`+λ(δ,yδ)‖d‖2

H2(Ω)

;

αN+1 :=
〈RN ,TkdN+1〉R`−λ(δ,yδ)〈 fN ,dN+1〉H2(Ω)

‖TkdN+1‖2
R`+λ(δ,yδ)‖dN+1‖2

H2(Ω)

;

RN+1 := RN − αN+1TkdN+1;

N be increased by 1;

end
return fN = ∑N

n=1 αndn;

Algorithm 3: Pseudo-code for the regularized functional matching pursuit
(RFMP).

proven. Furthermore, there are results for the stability of the approximation and
the convergence of the regularization. At last, the convergence rate of the resid-
uals as well as the approximation can also be estimated. These results are pub-
lished, for instance, in Kontak (2018); Kontak and Michel (2019); Michel (2015b);
Michel and Orzlowski (2017).

4.4. The regularized orthogonal functional matching
pursuit

Though the RFMP algorithm works well in practice, it has the same optimality
problems as the classical matching pursuit: again, it would probably be better if
the next dictionary element dN+1 and all coefficients αn, n = 1, ..., N + 1, were
chosen simultaneously. Thus, on the basis of the orthogonal matching pursuit,
the regularized orthogonal functional matching pursuit (ROFMP) algorithm was
developed for spherical inverse problems. Analogously as before, we derive the
orthogonal IPMP algorithm in this section. Then we consider the projection co-
efficients, which were first used in (4.14) and will also play a role in the ROFMP
algorithm, in more detail. At last, we summarize the theoretical results of the
ROFMP algorithm and make some comments on its practical realization. This
section is based on Michel and Telschow (2016); Telschow (2014).

93

4. An algorithmic approach: matching pursuits

Derivation of the ROFMP algorithm First of all, note that we use the same
notation for the inverse problem as given in Definitions 4.1.3 and 4.1.5 (with Tk
instead of Ik) as well as Remarks 4.1.4 and 4.2.4. Further, as we have Tkd ∈ R`

for all dictionary elements d ∈ D, we rewrite (4.2) and (4.3) as

V = VD = span {Tkd | d ∈ D}R`

and

VN = VDN = span {TkDN}
R`

, TkDN := {Tkdn | dn ∈ D, n = 1, ..., N}. (4.27)

Similarly, we use V⊥ and V⊥N for their Euclidean orthogonal complements. To
extend the orthogonal matching pursuit to inverse problems, we use a similar
approach as with the RFMP algorithm. However, we now consider (confer (4.22))

(
α(N+1), dN+1

)
:= arg min

(α,d)∈RN+1×D

∥∥∥∥∥yδ −
N

∑
n=1

αnTkdn − αN+1TkdN+1

∥∥∥∥∥
2

R`

+λ
(

δ, yδ
) ∥∥∥∥∥ N

∑
n=1

αnTkdn + αN+1TkdN+1

∥∥∥∥∥
2

H2(Ω)

 (4.28)

for a vector of coefficients

α = (α1, ..., αN+1) ∈ RN+1.

Also here, we maintain the formulation with the minimum as was done in the
literature instead of using the infimum. From the orthogonal matching pursuit,
we obtain that the first term in the sum of (4.28) can be rearranged to∥∥∥RN − αPV⊥N Tkd

∥∥∥2

R`

for α ∈ R and d ∈ D (confer (4.17)). The second term can then be written as
follows in order to assure that the images of chosen dictionary elements under Tk
are orthogonal in R`. Assume we are in the N-th iteration, i. e. the approximation
f (N)
N (confer (4.16)) is given as an orthogonal expansion. We aim to obtain

f (N+1)
N+1 =

N+1

∑
n=1

α
(N+1)
n dn,

with updated coefficients α
(N+1)
n , n = 1, ..., N + 1. Due to (4.15), (4.16) and with

the abbreviation

b(N)
N (dN+1) :=

N

∑
n=1

β
(N)
n (dN+1)dn,

94

4.4. The regularized orthogonal functional matching pursuit

this is equivalent to

f (N+1)
N+1 =

N

∑
n=1

α
(N)
n dn − αN+1

N

∑
n=1

β
(N)
n (dN+1)dn + α

(N+1)
N+1 dN+1

= f (N)
N − α

(N+1)
n+1 b(N)

N (dN+1) + α
(N+1)
N+1 dN+1

= f (N)
N + α

(N+1)
N+1

(
dN+1 − b(N)

N (dN+1)
)

(4.29)

which also leaves us with the determination of α ∈ R and d ∈ D. All in all, in
contrast to the minimization of J (see (4.21)) in the RFMP algorithm, the func-
tional we minimize in the ROFMP algorithm in order to implement a pre-fitting
technique is given by

JO

(
f (N)
N + αd; Tk, λ

(
δ, yδ

)
, yδ
)

:=
∥∥∥RN − αPV⊥N Tkd

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N + α

(
d− b(N)

N (d)
)∥∥∥2

H2(Ω)
.

(4.30)

That means, we seek

(αN+1, dN+1)

= arg min
(α,d)∈R×D

(∥∥∥RN − αPV⊥N Tkd
∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N + α

(
d− b(N)

N (d)
)∥∥∥2

H2(Ω)

)
(4.31)

in the N-th iteration. Note that we take over the formulation with the minimum
(instead of the infimum) from before. Again, we consider the coefficient α on its
own:

0 =
∂

∂α

(∥∥∥RN − αPV⊥N Tkd
∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N + α

(
d− b(N)

N (d)
)∥∥∥2

H2(Ω)

)
=

∂

∂α

(∥∥∥RN
∥∥∥2

R`
− 2α

〈
RN,PV⊥N Tkd

〉
R`

+ α2
∥∥∥PV⊥N Tkd

∥∥∥2

R`

+ λ
(

δ, yδ
) ∥∥∥ f (N)

N

∥∥∥2

H2(Ω)
+ 2αλ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

+α2λ
(

δ, yδ
) ∥∥∥d− b(N)

N (d)
∥∥∥2

H2(Ω)

)
= −2

〈
RN,PV⊥N Tkd

〉
R`

+ 2α
∥∥∥PV⊥N Tkd

∥∥∥2

R`

+ 2λ
(

δ, yδ
) 〈

f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

+ 2αλ
(

δ, yδ
) ∥∥∥d− b(N)

N (d)
∥∥∥2

H2(Ω)
.

95

4. An algorithmic approach: matching pursuits

Thus, we have the coefficient α given by

α =

〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)∥∥∥PV⊥N Tkd

∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

. (4.32)

The coefficient depends on the chosen dictionary element and, once again, it suf-
fices to determine the latter one. Inserting (4.32) into the functional JO, we obtain
– similarly as with the RFMP algorithm – that the minimization ofJO with respect
to α ∈ R and d ∈ D reformulates in the following way:∥∥∥RN+1

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N+1)
N+1

∥∥∥2

H2(Ω)

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N

∥∥∥2

H2(Ω)

− 2α

(〈
RN,PV⊥N Tkd

〉
R`

+ λ
(

δ, yδ
) 〈

f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)

+ α2
(∥∥∥PV⊥N Tkd

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

)

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N

∥∥∥2

H2(Ω)

− 2

〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)∥∥∥PV⊥N Tkd

∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

×
(〈

RN,PV⊥N Tkd
〉

R`
+ λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)

+

〈

RN,PV⊥N Tkd
〉

R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)∥∥∥PV⊥N Tkd

∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

2

×
(∥∥∥PV⊥N Tkd

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

)

96

4.4. The regularized orthogonal functional matching pursuit

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N

∥∥∥2

H2(Ω)

− 2

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

+

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

=
∥∥∥RN

∥∥∥2

R`
+ λ

(
δ, yδ

) ∥∥∥ f (N)
N

∥∥∥2

H2(Ω)

−

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

. (4.33)

Thus, we can equivalently determine (the generally non-unique) dN+1 via the
maximization

dN+1 := arg max
d∈D

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

(4.34)

with respect to d ∈ D. Note again that these derivations are independent of the
size of the dictionary and we formulate (4.34) with the maximum instead of the
supremum as this is usually done in the literature.

Remark 4.4.1. In this thesis, the ROFMP algorithm will always be used with a
finite dictionary. Then the values (4.34) can be computed and compared for all
dictionary elements in order to obtain the next basis element dN+1.

Further, note that, if λ
(
δ, yδ

)
= 0 and Tk is the discretization of the identity, the

ROFMP algorithm coincides with the orthogonal matching pursuit.

The iterated ROFMP As we will see with the theoretical results of the ROFMP
algorithm, the residual RN will be constant after a certain number of iterations.
As this probably will not be a desired approximation, an iterated version of the
ROFMP algorithm was developed by Telschow (2014) as well. This algorithm is
similar to the use of an iterated Tikhonov-Philipps regularization, but enforces
more accuracy. In particular, after a certain number of iterations K ∈ N, the
ROFMP algorithm is “restarted”.

97

4. An algorithmic approach: matching pursuits

For a description, we extend our previous notation. In the iterated ROFMP al-
gorithm, we divide the iterations into parts of the size of K. Each part is called
an ROFMP step. In theory, we allow the iterated ROFMP algorithm to make in-
finitely many ROFMP steps k ∈ N0. The set of images under Tk of previously
chosen dictionary elements as well as its orthogonal complement are then given
by

kVN and kV⊥N , 0 ≤ N ≤ K, k ∈ N0.

The restart is done by setting all current projection coefficients to zero at the be-
ginning of an ROFMP step k, i. e. we have

kV0 = ∅ and kV⊥0 = R`.

In this way, previously chosen dictionary elements dn, n = 1, ..., K, can be cho-
sen a second time which allows again an improvement of the approximation in
the next ROFMP step. Further, we analogously have kb(N)

N and, in particular,

kb(0)0 = 0. As the projection coefficients are set to zero after the ROFMP step

k0, the coefficients k0α
(K)
n for n = 1, ..., K will not be updated in the next ROFMP

steps k > k0. That means, we fix the obtained approximation at the end of every
ROFMP step. Thus, for the approximation, we set

k f (N)
N = k−1 f (K)K +

N

∑
n=1

kα
(N)
n kdn, 1 ≤ N ≤ K, k ∈ N. (4.35)

This is done in order to improve the accuracy in the result of the algorithm in
comparison to if we set k f (0)0 = 0. At last, for the residual, we have 1R0 = y and

kRN = y− Tkk f (N)
N

= y− Tkk−1 f (K)K −
N

∑
n=1

kα
(N)
n Tk kdn

= k−1RK −
N

∑
n=1

kα
(N)
n Tk kdn

= kRN−1 − kα
(N)
N PkV⊥N−1

Tk kdN,

which implies kR0 = k−1RK. Then the iterated ROFMP considers the minimiza-
tion problem

(kαN+1, kdN+1) = arg min
(α,d)∈R×D

(∥∥∥kRN − αP
kV⊥N Tkd

∥∥∥2

R`

+λ
(

δ, yδ
) ∥∥∥k f (N)

N + α
(

d− kb(N)
N (d)

)∥∥∥2

H2(Ω)

)

98

4.4. The regularized orthogonal functional matching pursuit

or the maximization

kdN+1 := arg max
d∈D

(〈
kRN,P

kV⊥N Tkd
〉

R`
− λ

(
δ, yδ

) 〈
k f (N)

N , d− kb(N)
N (d)

〉
H2(Ω)

)2

∥∥∥P
kV⊥N Tkd

∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− kb(N)
N (d)

∥∥∥2

H2(Ω)

,

respectively. Note that, by construction, the choice of the next dictionary element
is generally not unique in the iterated ROFMP as well. Further, note once more
that we took over the formulations with the minimum and maximum instead of
the infimum and supremum, respectively, as this is in accordance to the literature.
Experiments have shown that the iterated ROFMP algorithm improves the basic
ROFMP algorithm very well. A pseudo-code for the iterated ROFMP algorithm
is given in Algorithm 4.

Projection coefficients in detail At this point, we discuss the terms β
(N)
n (d) for

d ∈ D and n = 1, ..., N, N ∈ N, in more detail. They are not unique in general
and we follow the idea from Telschow (2014). Note that the following consider-
ations have not been stated in previous publications with respect to the ROFMP
algorithm. The projection coefficients were first used in (4.5) with respect to the
orthogonal matching pursuit. They occur in the (Euclidean) projection onto the
span of VN as given in (4.27). In the setting of the ROFMP algorithm, this means,
we have

PVN Tkd =
N

∑
n=1

β
(N)
n (d)Tkdn.

The terms β
(N)
n (d) are related to the Gram-Schmidt orthonormalization scheme.

However, for practical purposes, we need to obtain a recursive as well as an ex-
plicit definition of the coefficients in the iteration N. We start with a recursive
definition which is useful for an efficient implementation.

Theorem 4.4.2. The projection coefficients β
(N)
n (d), n = 1, ..., N, N ∈ N, are given by

β
(N)
N (d) :=

〈
PV⊥N−1

Tkd,PV⊥N−1
TkdN

〉
R`∥∥∥PV⊥N−1

TkdN

∥∥∥2

R`

=

〈
Tkd,PV⊥N−1

TkdN

〉
R`∥∥∥PV⊥N−1

TkdN

∥∥∥2

R`

(4.36)

β
(N)
n (d) := β

(N−1)
n (d)− β

(N)
N (d)β

(N−1)
n (dn), n = 1, ..., N − 1, (4.37)

for any dictionary element d ∈ D. Then it holds

PV⊥N Tkd = Tkd−
N

∑
n=1

β
(N)
n (d)Tkdn. (4.38)

99

4. An algorithmic approach: matching pursuits

Data: y ∈ R`

Result: approximation k f (N)
N

initialization: D, f0, R0 = y− Tk f0, K ∈ N;
N = 0;
while (stopping criteria not fulfilled) do

kdN+1 := arg maxd∈D(〈
kRN ,P

kV⊥N
Tkd

〉
R`
−λ(δ,yδ)

〈
k f (N)

N , d−kb(N)
N (d)

〉
H2(Ω)

)2

∥∥∥∥PkV⊥N
Tkd

∥∥∥∥2

R`
+λ(δ,yδ)

∥∥∥d−kb(N)
N (d)

∥∥∥2

H2(Ω)

;

kα
(N+1)
N+1 :=

〈
kRN ,P

kV⊥N
Tk kdN+1

〉
R`
−λ(δ,yδ)

〈
k f (N)

N , kdN+1−kb(N)
N (kdN+1)

〉
H2(Ω)∥∥∥∥PkV⊥N

Tk kdN+1

∥∥∥∥2

R`
+λ(δ,yδ)

∥∥∥kdN+1−kb(N)
N (kdN+1)

∥∥∥2

H2(Ω)

;

kRN+1 := kRN − kα
(N+1)
N+1 PkV⊥N Tk kdN+1;

if (N ≥ 1) then

kα
(N+1)
n := kα

(N)
n − kα

(N+1)
N+1 kβ

(N)
n (kdN+1) , n = 1, ..., N;

end

N be increased by 1;

if (N == K) then
kVN = ∅;
N = 0;
k be increased by 1;

end
end

return k f (N)
N = ∑k−1

κ=1 ∑K
n=1 κα

(K)
n κdn + ∑N

n=1 kα
(N)
n kdn;

Algorithm 4: Pseudo-code for the iterated regularized orthogonal functional
matching pursuit (ROFMP) algorithm.

100

4.4. The regularized orthogonal functional matching pursuit

Proof. First of all, note that the second equality in (4.36) holds due to simple or-
thogonality reasons. We show that (4.38) holds when using (4.36) and (4.37) via
an induction over the iteration N. Let N equal 1. Then we have

β
(1)
1 (d) =

〈Tkd, Tkd1〉R`

‖Tkd1‖2
R`

.

From Schmidt’s orthogonalization scheme, we know that it holds

PV⊥1 Tkd = Tkd− 〈Tkd, Tkd1〉R`

‖Tkd1‖2
R`

Tkd1 = Tkd− β
(1)
1 (d)Tkd1.

Now, we consider the case N + 1. We have to show that it holds

PV⊥N+1
Tkd = Tkd−

N+1

∑
n=1

β
(N+1)
n (d)Tkdn

with

β
(N+1)
N+1 (d) :=

〈
PV⊥N Tkd,PV⊥N TkdN+1

〉
R`∥∥∥PV⊥N TkdN+1

∥∥∥2

R`

and

β
(N+1)
n (d) := β

(N)
n (d)− β

(N+1)
N+1 (d)β

(N)
n (dN+1).

The induction hypothesis is

PV⊥N Tkd = Tkd−
N

∑
n=1

β
(N)
n (d)Tkdn.

Note that, by construction, we have

TkdN+1 ∈ VN+1

and, thus,

PV⊥N TkdN+1 = TkdN+1 −PVN TkdN+1 ∈ VN+1

due to (4.5). Further, it also holds that

PV⊥N+1
Tkd ∈ V⊥N+1

for all d ∈ D. Hence, we have

PV⊥N TkdN+1 ⊥ PV⊥N+1
Tkd

101

4. An algorithmic approach: matching pursuits

and, moreover, it holds

PV⊥N+1
Tkd = PV⊥N Tkd−

〈
PV⊥N Tkd,PV⊥N TkdN+1

〉
R`∥∥∥PV⊥N TkdN+1

∥∥∥2

R`

PV⊥N TkdN+1,

again, due to (4.5). Thus, we obtain

PV⊥N+1
Tkd

= PV⊥N Tkd−

〈
PV⊥N Tkd,PV⊥N TkdN+1

〉
R`∥∥∥PV⊥N TkdN+1

∥∥∥2

R`

PV⊥N TkdN+1

= Tkd−
N

∑
n=1

β
(N)
n (d)Tkdn − β

(N+1)
N+1 (d)

(
TkdN+1 −

N

∑
n=1

β
(N)
n (dN+1)Tkdn

)

= Tkd−
N

∑
n=1

(
β
(N)
n (d)− β

(N+1)
N+1 (d)β

(N)
n (dN+1)

)
Tkdn − β

(N+1)
N+1 (d)TkdN+1

= Tkd−
N

∑
n=1

β
(N+1)
n (d)Tkdn − β

(N+1)
N+1 (d)TkdN+1

= Tkd−
N+1

∑
n=1

β
(N+1)
n (d)Tkdn.

Next, we give an explicit formulation of the projection coefficients β
(N)
n (d).

Theorem 4.4.3. For any dictionary element d ∈ D, the projection coefficients β
(N)
n (d),

n = 1, ..., N, N ∈ N, of the N-th iteration of the ROFMP algorithm are given by

β
(N)
n (d) = β

(n)
n (d)−

N

∑
j=n+1

β
(j)
j (d)β

(j−1)
n (dj), n = 1, ..., N,

=

〈
PV⊥n−1

Tkd,PV⊥n−1
Tkdn

〉
R`∥∥∥PV⊥n−1

Tkdn

∥∥∥2

R`

−
N

∑
j=n+1

〈
PV⊥j−1

Tkd,PV⊥j−1
Tkdj

〉
R`∥∥∥∥PV⊥j−1

Tkdj

∥∥∥∥2

R`

β
(j−1)
n (dj)

=

〈
Tkd,PV⊥n−1

Tkdn

〉
R`∥∥∥PV⊥n−1

Tkdn

∥∥∥2

R`

−
N

∑
j=n+1

〈
Tkd,PV⊥j−1

Tkdj

〉
R`∥∥∥∥PV⊥j−1

Tkdj

∥∥∥∥2

R`

β
(j−1)
n (dj)

102

4.4. The regularized orthogonal functional matching pursuit

Proof. Again, we consider this via induction over the iteration N. For N = 1, we
have

β
(1)
1 (d) = β

(1)
1 (d)− 0.

We consider the iteration N + 1. Let n ∈ N with n < N + 1. From the previous
theorem, we know that

β
(N+1)
n (d) = β

(N)
n (d)− β

(N+1)
N+1 (d)β

(N)
n (dN+1).

With the induction hypothesis

β
(N)
n (d) = β

(n)
n (d)−

N

∑
j=n+1

β
(j)
j (d)β

(j−1)
n (dj)

for all n = 1, ..., N − 1 with N ∈ N, we immediately obtain

β
(N+1)
n (d) = β

(n)
n (d)−

N

∑
j=n+1

β
(j)
j (d)β

(j−1)
n (dj)− β

(N+1)
N+1 (d)β

(N)
n (dN+1)

= β
(n)
n (d)−

N+1

∑
j=n+1

β
(j)
j (d)β

(j−1)
n (dj).

A summary of theoretical results For the ROFMP algorithm, there exist not as
many theoretical results as for the RFMP algorithm. The few existing ones are
summarized next, confer also with Chapter 8.
In the unregularized case, the residuals of the so-called orthogonal functional
matching pursuit (OFMP) algorithm vanish at a certain point. In the regular-
ized case (i. e. for the (iterated) ROFMP algorithm), the convergence of the se-
quence of functionals (4.30) can still be shown. However, the residuals stagnate
at a certain point in the ROFMP algorithm. Thus, the iterated ROFMP algorithm
is much more interesting also with respect to theoretical results. For this vari-
ant, the convergence of the approximation can be shown under certain technical
assumptions. However, the actual limit is unknown up to now.

Realization in practice An implementation of the iterated ROFMP algorithm is
naturally a bit more complex than an implementation of the RFMP algorithm.
However, in Telschow (2014), there is an overview of an efficient implemen-
tation of the algorithm. In this implementation, certain terms (e. g. the values
Tkd and 〈d, d̃〉H2(Ω) for dictionary elements d and d̃) are computed before the
iteration process starts. This is similar as with the RFMP algorithm. Further,
this implementation has some ’preprocessing’ in each iteration to compute the
terms (4.32) and (4.34) more efficiently, in particular, with respect to the terms
b(N)

n (d), d ∈ D, n = 1, ..., N, N ∈ N. We give an overview of an implementation
in Appendix B as well.

103

4. An algorithmic approach: matching pursuits

Important to note is that the term (4.34) is not well-defined for functions from the
span of previously chosen dictionary elements. Thus, such functions should be
avoided when evaluating the quotient. If a finite dictionary is used, this can be
done manually by checking whether PV⊥N Tkd is numerically zero.

4.5. Notes on further research

A third flavour: the (regularized) weak functional matching pursuit ((R)WFMP)
algorithm A second improvement of the RFMP algorithm is the RWFMP algo-
rithm which was developed by Kontak (2018). This algorithm relies on the weak
matching pursuit (Temlyakov, 2000). The general idea is also mentioned in Mal-
lat and Zhang (1993). The problem it addresses is the runtime of the RFMP al-
gorithm. In sensible experiments, a finite a-priori manually chosen dictionary
needs to be sufficiently large to increase the probability that it contains dictionary
elements that enable a good approximation. However, in each iteration of the
RFMP algorithm, the quotient (4.25) needs to be evaluated for each dictionary
element. This accounts for the biggest part of the runtime of the iteration process
(that means, preprocessing is excluded) of the RFMP algorithm. The RWFMP al-
gorithm aims to determine a dictionary element which only yields a value ’near’
the maximum of (4.25). The description ’near’ is measured with a so-called weak-
ness parameter. First experiments show that the RWFMP significantly improves
the runtime of the RFMP while maintaining a similarly low approximation error
(see Kontak and Michel, 2019).

Task 1: determining the dictionary As we already mentioned at several points
throughout this chapter, the dictionary obviously plays an important role with
an IPMP algorithm: each of them can choose a best basis only among the dictio-
nary. Thus, the obtained approximation can only be as good as the dictionary. In
previous works, the dictionary had to be finite due to practical reasons. In Part
II of this thesis, we develop learning algorithms which are able to use an infinite
dictionary.

Task 2: suitable termination criteria An open question for the IPMP algorithms
(i. e. the RFMP, ROFMP and the RWFMP) is what suitable termination criteria can
be. In the same line of thought, the question of the size of K in the iterated ROFMP
algorithm is open. With respect to the termination criteria, experiments up to now
use a maximal number of iteration, a minimal size of the coefficient |αN+1| or a
minimal size of ‖RN+1‖. These criteria work well in practice, but are mostly set
manually, except if we can relate the minimal allowed size of ‖RN+1‖ to a noise
level. In the future it would be desirable if these criteria could be investigated
as to how they influence the result. This may also lead to a unified strategy for
setting the termination criteria in future work. As the IPMP algorithms solve –

104

4.5. Notes on further research

in a certain sense – an optimization problem, it might also be possible to find
such a most suitable termination criterion similar to the well-established termi-
nation criteria of optimization algorithms. In particular, it might be possible to
determine which values that are naturally inherent in the algorithms (e. g. the
Tikhonov functional, the relative data error, the H2(Ω)-norm of the approxima-
tion) are most influential. Then the iteration process could be ended if this value
only changes slightly anymore.

Task 3: parameter choice strategies As usual in inverse problems, the question
for a suitable parameter choice rule is also an open question with respect to the
IPMP algorithms. A first survey has shown that only some well-known meth-
ods work well with the R(O)FMP (see Gutting et al., 2017). However, all of these
rules for determining a specific value λ(δ, yδ) demand that the algorithms are run
with several test values. Dependent on the size of the experiment and the spe-
cific IPMP algorithm, this is very expensive with respect to time. Thus, it would
be desirable if a parameter choice rule that automatically determines an optimal
value λ(δ, yδ) specifically for the IPMP algorithms can be developed.
For example, we could aim to not only determine the next basis element dN+1
in an iteration N of an IPMP algorithm but also an optimal value of the regular-
ization parameter. If we still adhere to the procedure of an IPMP algorithm, we
have to define a model of the parameter choice strategy. This model should still
take the noise level δ and the perturbed data into consideration. Furthermore, it
may now also dependent on the dictionary elements. For the RFMP algorithm, a
starting point of such an investigation may be to use

λ
(

δ, yδ, d
)
=
‖ fN‖H2(Ω)

‖d‖H2(Ω)
10−100δ

∥∥∥yδ
∥∥∥

R`
.

This approach still gives a relative value with respect to the noise and the data.
Furthermore, it relates a prospective basis element with the current approxima-
tion. If the latter one is rather smooth, it allows to choose more local dictionary
elements in the next steps. If the approximation is not that smooth, it penalizes
the choice of such functions. Hence, such a strategy would adjust itself along the
iteration process.

105

Part II.

A learning approach for spherical
inverse problems

107

5. An introduction to learning

In the first part of this thesis, we outlined the basic mathematical and geophysical
results that are necessary for the task of learning a dictionary for the downward
continuation of satellite data. Our novel algorithm will be presented in this sec-
ond part.
We start our explanation with a wider look on machine learning. However, the
author admits that, nowadays, the term ’learning’ is, in general, widely used and
well-understood due to the recent successes of, in particular, deep learning meth-
ods. Therefore, such an introduction will be incomplete by nature. Nonetheless,
as we will develop a learning algorithm in the following chapters, it is appropri-
ate to give a broader view on learning in this thesis as well. At least, this shall
shed some light on where our algorithm is located in the literature.

5.1. A bit about machine learning

We consider different types of learning that can be found in natural as well as ar-
tificial intelligence. The explanations with respect to machine learning are based
on Cucker and Smale (2002); Ghahramani (2004); Kaelbling et al. (1996); Poggio
and Shelton (1999); Poggio and Smale (2003); Russell and Norvig (2010); Sutton
and Barto (2018).
We start our considerations at a very general point of view. As an extension to
Russell and Norvig (2010), we say:

learning occurs in the absence of skills.

If we lack the knowledge or the ability that is needed to do a task, we are forced
to learn what we are missing. For example, some of the “intelligent systems”
learn to brake if an obstacle appears, do a facial recognition or collect trash while
maintaining enough battery power to get back to the charging station. In nature,
learning is a life-saving ability of all creatures. Though it is said to be unable
(or unwilling) to learn, even a cat acquires certain abilities such as hunting mice
when growing up.
Dependent on the given information as well as what skills we are missing, learn-
ing takes place in different approaches. For artificial intelligence, these are usu-
ally separated into techniques of unsupervised and supervised learning. A par-
ticular case of the latter one is reinforcement learning. Naturally, they all have a
(more or less complicated) mathematical foundation. However, in the absence of
skills, we are mostly unable to derive a mathematical model analytically. Hence,

109

5. An introduction to learning

learning always includes – at least some kind of – training data. Next, we shortly
explain the different learning approaches.
At first, let us consider the cat. A well-known idiosyncrasy of any feline is that
it regularly patrols its realm to ensure that everything is in order. Thus, as a first
step – before actually deciding whether there is danger or not – the cat has to
compare a memorized state to the current state of its environment. This compar-
ison allows a categorization in normal and not normal. Similarly, an intelligent
system in a car has to check the frontal environment. It categorizes the road ahead
either as clear or with an obstacle. In both cases, the system and the cat do not
need an external feedback. However, they are only able to sort the input into cat-
egorizations or, in other words, they find patterns or relationships in the input.
In particular, they do not evaluate them. The recognition of patterns is a classical
task for unsupervised learning where the ’agent’ (or learner) only works with sin-
gle input. Mathematically, unsupervised learning is heavily indebted to statistical
modelling. A class with practical relevance are algorithms of the k-means-type
for unsupervised learning.
We easily see that the questions behind many real-world problem demand dif-
ferent kind of answers than can be provided with unsupervised learning. For
instance, let us consider typical yes-no-questions: if our cat lives with its brother,
it has experienced that meeting another cat provides no danger. Now picture the
cat on its daily patrol in the backyard and the neighbour’s cat is visiting for the
first time. In contrast to its past with its brother, this one may be a hurtful en-
counter. The cat receives that it projected the wrong decision and, thus, has to
re-evaluate (i. e. learn) meeting another one of its kind.
Also an intelligent system is able to recognize more than just patterns if this is
necessary. For instance, it is able to learn whether a customer is in a specific tar-
get group of age or whether a particular person is entering a mall. Hence, if the
agent trains with pairs of input and output (i. e. correct evaluations of related in-
puts), it is able to learn to project the output of unknown input data.
In these cases, we speak of supervised learning approaches. Such methods en-
able to learn from examples (i. e. by training instead of programming) how to
correctly evaluate a problem. Mathematically, the input-output pairs enable to
model an approximation or interpolation problem. Its solution then serves as a
generalization of the training data and allows to project the output of unknown
input. Naturally, the question arises how well this projection is. Usually, this is
modelled via a loss or error function or a – more general – quality measure. The
optimization of this measure yields the desired function. Problems that occur
when computing a projection are classical ones: is the approximation problem
well-posed? Can the projection be represented by only a few basis functions (i. e.
is the projection sparse)? How well is the bias-variance problem balanced? The
latter problem is also known as the ’trade-off between the curse of dimensionality
and the blessing of the smoothness’ (see e. g. Poggio and Smale, 2003, Section 4).
In other words, we have to balance the number of examples to the size of the
function space we assume the projection is from (also called hypothesis space in

110

5.2. The task of dictionary learning

machine learning). Hence, this problem is closely connected to over- and under-
fitting problems in practice.
However, if the difficulty of the task increases, a more flexible feedback appears
to be a better learning setup. For our cat, this is the case when it learns how to
catch a mouse. Of course, the cat receives the previously mentioned feedback of
success or failure. Looking closely, it perceives much more information from its
environment: was the hiding spot well chosen? Was the cat silent enough when
creeping up to the mouse? In which direction did the wind blow? How (else)
could the mouse get an early start on the cat’s attack? Was the cat nowhere near
the mouse or was it a last second flight from the cat’s claws? Taking these an-
swers into account as well, the cat is able to build a much more distinguished
picture of its last attempt and, thus, naturally learns more easily to become a
better hunter. Also some intelligent systems have to learn complex tasks and
are better off when taking into account as much environmental information as
possible. For instance, let us consider a robot that collects trash and runs on a
rechargeable battery. Naturally, every now and then, it must decide whether to
keep cleaning or to withdraw to the charging station. This decision may be based
solely on the battery status. Moreover, it could also depend on the robot’s dis-
tance to the charging station or its experiences of where it can expect to collect a
huge amount of trash.
The learning approach that takes into account a distinguished feedback (also
called reward) and decides for one of diverse possible actions is modelled by
reinforcement learning techniques. In this particular learning situation, the trade-
off between exploration and exploitation needs to be taken into consideration as
well. This tradeoff summarizes that, for a maximal long-time success, it is not
safe per se to always decide for the maximal success in the short-term.

5.2. The task of dictionary learning

As stated in Section 4.5, an open task with respect to the IPMP algorithms is the
choice of the dictionary. Here we aim to learn such a dictionary. This task, as easy
as it is said, includes two aspects: on the one hand, we want to know which exact
dictionary should be used for a particular inverse problem; on the other hand,
we want to define a routine that determines this dictionary automatically. In this
sense, we lack the knowledge (in theory and practice) what a “well-working” dic-
tionary is and we lack the ability to reasonably determine one. Or in other words:
we need to learn what trial functions should be inserted in a dictionary, why they
should be picked and how they can be determined. Naturally, the answers to
these questions are tightly connected to each other.
Before we develop our results, we give a brief summary of dictionary learning so
far. This section is based on Aharon et al. (2006); Bruckstein et al. (2009); Rubin-
stein et al. (2010). Note that these are mostly surveys up to the state-of-the-art.
Thus, the interested reader is also referred to the references therein.

111

5. An introduction to learning

First of all, the underlying problems of previous dictionary learning approaches
are mostly approximation or interpolation ones just like we described them in
Section 4.1. In particular, for a signal given via discrete values y ∈ R`, a repre-
sentation in dictionary elements is sought. However, this representation should
be “sparse”. Here, sparsity means that only a few dictionary elements with es-
sential coefficients are combined in this representation (or in other words, most
dictionary elements have nearly vanishing coefficients in such a representation).
Dictionary learning then aims to seek a set of trial functions which provides a
sparse representation for at least all training data.
Implicitly, the determination of such a set includes that we need to be able to find
a sparse representation of a signal. Unfortunately, this is proven to be an NP-hard
challenge (see e. g. Bruckstein et al., 2009; Garey and Johnson, 2009).
Nonetheless, this approach was a fruitful research area which was also coined
“SparseLand” (Bruckstein et al., 2009). Mathematically speaking, finding a rep-
resentation of a signal y can be modelled as an underdetermined system of linear
equations. This formulates as

yδ = Dα with D =
(

Ikdj
)

j=1,...,M and α = (α1, ..., αM) ,

where we use the same notation as in Chapter 4 and, in particular, dictionary
elements dj ∈ D for j = 1, ..., M = |D|. Then finding the sparsest representation
is done by minimizing a sparsity measure (such as the l0 measure) subject to the
underdetermined system of linear equations:

‖α‖l0 → min! subject to yδ = Dα

with

‖ · ‖l0 := |{i | αi 6= 0}|.

However, obviously it depends also on the dictionary how sparse a solution can
be. Therefore, in dictionary learning approaches, also the elements of D are vari-
able. The most natural set that is able to provide sparsity is probably an overcom-
plete dictionary. Historically, this lead to an increase of specifically constructed
trial functions in order to find the most suitable basis for a given signal. Note that
we also introduced several different types of trial functions in the first part of this
thesis. Such tailored basis functions usually enable an efficient implementation
due to an analytic formulation of the functions. Further, they provide a certain
localization and a multiresolution. However, the approach to determine basis
functions via a sophisticated mathematical modelling bears its difficulties when
it comes to adapting them to the signal as well as to higher dimensions.
Therefore, at the end of the 1990s, the literature saw a shift from constructed to
trained dictionary elements. Though the efficiency of an analytic expression of
the basis functions is lost in most cases, a trained dictionary appears to be more
adaptive to the signal than a particularly modelled basis. In general, the shift to

112

5.2. The task of dictionary learning

training a dictionary from examples naturally enables a decoupling of determin-
ing the dictionary and the representation of the signal. Mathematically, this can
be formulated as a doubled minimization problem

arg min
D,α∈RM

∥∥∥yδ − Dα
∥∥∥2

R`
subject to ‖α‖l0 < A0, A0 ∈ N.

In practice, this mostly leads to alternating algorithms: first a dictionary is deter-
mined, then a sparse representation of the signal in this dictionary is computed.
In Aharon et al. (2006), several criteria for dictionary learning approaches are
summarized. These criteria are:

• flexibility
The method should decouple the dictionary design and the data coding
and, in this way, allow the combination of the learning algorithm with any
pursuit algorithm.

• simplicity
It should be easy to explain the method. In particular, this is fulfilled if the
method implements some natural generalization of the k-means algorithm.

• efficiency
The method should be numerically efficient and converge fast. However,
the authors already admit that alternating techniques have a limited effi-
ciency by nature.

• well-defined objective
There must exist a well-defined objective function that measures the success
of the method mathematically. Note that this corresponds to the mentioned
quality measure in machine learning.

Further, Prünte (2008) demands that also the given data as well as the dictionary
structure should be included in the learning process. Note that the training itself
is data-based by nature. However, also in this respect, some current techniques
vary. Recent approaches consider only a partial view on the training data at a
time and call this method online dictionary learning.
Moreover, in contemporary approaches, different version of “parametrized dic-
tionaries” are developed. In our context, the most interesting approach of these
tries to combine trained and analytic dictionaries. The suggestion in this ap-
proach is to find a representation D = BA for an analytic dictionary B and a
sparse matrix A.

113

6. Towards learning dictionaries

In this chapter, we begin our description of the novel learning algorithms for the
IPMP algorithms. As we put it before, we have to explain which dictionary ele-
ments we insert into the learnt dictionary, why we choose exactly those and how
we determine them. In the first section, we develop the idea of our learning al-
gorithms. We base it on previous works on dictionary learning and our unique
situation of dealing with spherical ill-posed inverse problems. Then we elabo-
rate theoretical aspects that shall answer the question why we choose certain trial
functions as learnt dictionary elements. The question how we learn these dictio-
nary elements will be answered in the next chapter. Our novel algorithms auto-
matically also answers the question which particular dictionary elements shall be
chosen.

6.1. From the status-quo to the particular situation

Naturally, dictionary learning is characterized as a supervised learning task as we
do not want to only find “similar” dictionaries but “better” ones. In that respect,
we have to evaluate the learnt dictionaries at some point for which we need out-
puts for comparison.
One of the major advantages of the IPMP algorithms are their ability to combine
established trial functions in order to determine a better approximation than tra-
ditional methods. Thus, we do not aim to determine the most suitable type of
trial function for a signal as was done in the harmonic analysis approaches of
dictionary learning: we want to work with diverse bases. Further, we also do not
want to modify the given trial functions as was usually done in purely trained
dictionaries.
Hence, to some extent, we pursue a learning method that combines training with
analytical elements similar as some of the latest approaches mentioned previ-
ously. In particular, we aim to learn a best basis from a range of well-known ana-
lytical trial functions. That means, we pursue a set of trial functions that is most
suitable for the approximation of a given signal. How suitable they are shall be
measured mathematically. Further, this set shall still contain the advantages of
analytical basis functions like efficiency, localization and multiresolution.
The difference in our situation, however, lies in the

115

6. Towards learning dictionaries

• operator in use
We have to work with operators related to spherical ill-posed inverse prob-
lems (not only the identity). Further, we aim to obtain a dictionary and,
thus, an approximation consisting of the trial functions themselves and not
their discretization.

• measure to be minimized
The IPMP algorithms are equipped with an H2(Ω)-penalty term. In their
development, it was discovered that such (or similar) measures yield a far
better result for spherical ill-posed inverse problems than measures that are
purely aiming on sparsity.

• training data
The problem is that we do not have classic training data in all the cases of
spherical ill-posed inverse problems in which we are lacking a dictionary. If
we consider, for example, the downward continuation of GRACE satellite
data, we are able to work with such classical sets of data. The GRACE mis-
sion provided about 10 years of monthly data of the gravitational potential.
The on-going GRACE-FO mission is about to continue these measurements.
In this case, we could learn a dictionary “for GRACE” from several months
and use it for approximating the signal measured in a different month. That
means, in this case, we have classical training data. However, if we con-
sider, for example, the gravitational potential of the EGM2008, we do not
have several data but only a one-time measurement. Nonetheless, also for
the approximation from these values, we only have rule-of-thumb dictio-
naries up to now.

Therefore, we see that we need to develop a very specific strategy which is tai-
lored for the IPMP algorithms. Nonetheless, at some points, we will be able to
build some bridges to certain aspects of (dictionary) learning as well.
We start the development of such a dictionary learning approach by considering
the criteria given by Aharon et al. (2006) and re-interpret them for our case:

• flexibility
Flexibility can and, therefore, should only be ensured in the sense that the
fundamental idea should be applicable for all IPMP algorithms.

• simplicity
As an ill-posed inverse problem poses a different challenge than a purely
least-squares optimization, we refrain from the idea of the k-means algo-
rithm, but rather propose the respective IPMP algorithm as the basic algo-
rithm. Note that, in this way, we incorporate as much information as we
have in the learning process.

116

6.1. From the status-quo to the particular situation

• efficiency
Of course, the learning algorithm should be efficient such that it can be used
in practice. With respect to the simplicity, we propose that our learning al-
gorithm is said to be efficient if computing the learnt dictionary and apply-
ing it in an IPMP algorithm does not take longer (in comparable CPU-time)
than running only the respective IPMP algorithm with a rule-of-thumb-like
chosen dictionary. If we learn a dictionary for and from one input data (like
the EGM2008), we can reasonably define the efficiency of our learning al-
gorithm in this way. If we use a set of training data (like it is possible with
the monthly GRACE data), however, we have no reasonable comparison
time. Therefore, we assume that, if the efficiency of the learning algorithm
is acceptable for a single input, the efficiency for a set of training data is, too.

• well-defined objective
Last but not least, we have to consider a mathematical justification of our
learning algorithm as well. That means, our algorithm shall have a well-
defined objective that explains why we pick a certain dictionary element. In
other words, we have to formulate our goal, i. e. learn a “well-working” dic-
tionary mathematically, and investigate its properties. Naturally, this well-
defined objective needs to be well-connected with the “what” and “how” to
pick as well.

On the way to develop such a well-defined objective for our learning algorithm,
we first make some observations. First of all, we will only establish such a goal
for learning a dictionary for the RFMP algorithm. This is due to the fact that
we only have valid theoretical results for this one. For the ROFMP algorithm,
unfortunately, we currently still lack proper convergence proofs. However, we
assume that a well-defined learning measure should be related to such results.
Thus, we will only transfer the learning idea to the orthogonal algorithm.
For the RFMP algorithm, we considered the objective

(αN+1, dN+1) := arg min
(α,d) ∈ R×D

J
(

fN + αd; Tk, λ
(

δ, yδ
)

, yδ
)

in the N-th iteration, see (4.22). Ideally, the dictionary D would be (over-) com-
plete and, thus, infinite. In this case, we write DInf instead and consider

(αN+1, dN+1) := arg min
(α,d) ∈ R×DInf

J
(

fN + αd; Tk, λ
(

δ, yδ
)

, yδ
)

. (6.1)

Note that, as we pointed out before, in particular in the case of an infinite dic-
tionary, the existence of this minimum is in question and we better consider the
infimum. Hence, in a perfect world, this approach would yield the solution

inf
f∞ ∈ spanDInf

J
(

f∞; Tk, λ
(

δ, yδ
)

, yδ
)

(6.2)

117

6. Towards learning dictionaries

for N → ∞ and

f∞ =
∞

∑
n=1

αndn.

Here, a perfect world stands for the case that we can assure that the sum of greedy
steps also yields the overall optimal solution. However, problems like this are
of the travelling salesman type. Thus, they are known to be NP-hard (see e. g.
Garey and Johnson, 2009, p. 114). That means, we cannot be sure that we obtain
the optimal approximation by greedily choosing dictionary elements. Apart from
that, we also have to admit that, in practice, the nearest to the optimum we can get
is to compute the optimal best-N-term approximation. The smallest problem at
this stage may actually be to compute the next basis element dN+1 from infinitely
many trial functions. Nonetheless, we should be aware that this feature might be
a very costly one. With these things in mind, the best we can hope to determine
is

inf
fN ∈ spanDInf

J
(

fN; Tk, λ
(

δ, yδ
)

, yδ
)

(6.3)

with

fN =
N

∑
n=1

αndn (6.4)

for the iteration N at termination. In experiments with a finite D, the approxi-
mation obtained from the RFMP algorithm proved to be satisfyingly close to the
desired fN. Further, the aspect of learning the dictionary is contained in this for-
mulation as fN is chosen from the span of infinitely many elements. Hence, we
declare (6.3) as the main objective of our learning algorithm for the RFMP algo-
rithm. Note that this idea can be easily transferred to learning a dictionary for
the ROFMP algorithm as we only need to exchange the functional J with JO.
Summarized, our novel learning methods shall extend the IPMP algorithms to
an infinite dictionary. Hence, we call them learning inverse problem matching
pursuit (LIPMP) algorithms.
Let us consider the superset of the basis elements of (6.4) because this enables us
to retrieve the approximation fN from the learnt dictionary. In other words, we
know exactly which N dictionary elements should be at least in the learnt dictio-
nary. More generally speaking, this allows us to define an upper bound D ≥ N
for a learnt dictionary D where D should still be a subset of DInf. All in all, we
can reformulate (6.3) to

inf
D ⊂ DInf

|D| ≤ D

min
fN ∈ spanD

J
(

fN; Tk, λ
(

δ, yδ
)

, yδ
)

. (6.5)

Hence, we tailored a dictionary learning ansatz closely to the RFMP algorithm
and reformulated the natural objective to a doubled minimization problem for a

118

6.2. Optimal, near-optimal and well-working dictionaries

predefined dictionary size D. Obviously, such a problem represents the task of
finding a dictionary and an approximation simultaneously. As mentioned before,
such a task is common in the field of dictionary learning.
The question arises how we learn a dictionary from this objective. In practice,
(6.3) is exchanged by (6.1) in an iteration N. Then we have defined what we
pick in each iteration and can straight-forwardly define our learnt dictionary as a
superset of the basis elements of the structure book that defines (6.4).

Definition 6.1.1. Let B := {(αn, dn)}n=1,...,N be the structure book, see (4.8), of an
LIPMP algorithm after N ∈ N iterations with respect to perturbed data yδ and the oper-
ator Tk and using the regularization parameter λ(δ, yδ). For an infinite dictionary DInf,
the smallest learnt dictionary D∗N

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
⊂ DInf of the given inverse

problem is defined as

D∗N
(

f0, Tk, λ
(

δ, yδ
)

, yδ
)

:= { f0} ∪ {d | ∃α ∈ R : (α, d) ∈ B}.

In particular, this means, we obtain a sequence of smallest learnt dictionaries by the up-
date rule

D∗N+1

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
= D∗N

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
∪ {dN+1}.

Note that the details of how to pick these basis elements are given in Chapter 7.

6.2. Optimal, near-optimal and well-working
dictionaries

As we pointed out, ideally we would like to solve (6.2). DInf is an example of an
(over-) complete dictionary inH2(Ω), this means we obtain the solution of

inf
f∞∈H2(Ω)

J
(

f∞; Tk, λ
(

δ, yδ
)

, yδ
)

, f∞ =
∞

∑
n=1

αndn, dn ∈ H2(Ω), αn ∈ R.

In the sequel, we assume that the coefficients αn, n ∈ N, are decreasingly or-
dered. Though the solution f∞ is unique due to the theory of Tikhonov-Phillips
regularization, we see that any (over-) complete dictionary in H2(Ω) is able to
reproduce the solution. Thus, we define an optimal dictionary as follows.

Definition 6.2.1. An optimal dictionary D is an (over-) complete dictionary.

Theorem 6.2.2. Any basis system is an optimal dictionary.

Thus, we see that an optimal dictionary exists. However, it is anything but
unique. We immediately see that any optimal dictionary must be infinite and,

119

6. Towards learning dictionaries

thus, cannot be used in the IPMP algorithms as described in Section 4.3 and Sec-
tion 4.4. Further, in general, the solution f∞ cannot be revealed in practice because
we have to terminate a respective algorithm at a certain point.
Therefore, a more practical objective is given in (6.3). Though we still have an
infinite dictionary, we only seek a finite linear combination fN as an approxima-
tion of f∞. This is an element of a finite linear subspace of spanDInf as well as
spanDInf. What effect does it have on the dictionary? We saw that solving (6.3)
is equivalent to solving (6.5). This shows that the approximation fN of the solu-
tion f∞ can be obtained by a finite dictionary D as well. Hence, we propose to
consider nearly-optimal dictionaries.

Definition 6.2.3. Let f∞ be the solution of the regularized normal equation with respect
to the regularization parameter λ(δ, yδ) for perturbed data yδ and the operator Tk. Fur-
ther, let

f∞ =
∞

∑
n=1

αndn (6.6)

be a representation of f∞ in a complete dictionary DInf with decreasingly ordered val-
ues |αn|, n ∈ N. A nearly-optimal N-dictionary N-D

(
Tk, λ

(
δ, yδ

)
, yδ
)

is a finite
dictionary such that it contains d1, ..., dN.

Obviously, for a given optimal dictionary, at least one nearly optimal dictionary
exists.

Theorem 6.2.4. The smallest nearly-optimal N-dictionary contains only the dictionary
elements d1, ..., dN from the representation (6.6) of f∞.

However, because the representation of fN in dictionary elements is not unique,
a nearly-optimal N-dictionary is also not unique.
Even though learning a nearly-optimal N-dictionary by assuming we are able to
choose from infinitely many dictionary elements is a bit more practical, also this
objective lacks a fundamental aspect. Determining the solution f∞ and, thus, the
respective approximation fN is NP-hard (see e. g. Bruckstein et al., 2009; Garey
and Johnson, 2009).
In practice, we can only take iteratively greedy steps instead and hope for the
best. Therefore, we settle for a weaker characterization.

Definition 6.2.5. Let f∞ be the solution of the regularized normal equation with respect
to the regularization parameter λ(δ, yδ) for perturbed data yδ and the operator Tk. Fur-
ther, let

f∞ =
∞

∑
n=1

αndn (6.7)

be a representation of f∞ in a complete dictionary DInf with decreasingly ordered values
|αn|, n ∈ N. At last, let

(
DN

(
Tk, λ

(
δ, yδ

)
, yδ
))

N∈N0
be a sequence of finite dictio-

naries for which it holds:

120

6.3. An outlook

(SWW1) For all N ∈ N0, we haveDN
(
Tk, λ

(
δ, yδ

)
, yδ
)
⊆ DN+1

(
Tk, λ

(
δ, yδ

)
, yδ
)
.

(SWW2) For all di used in (6.7), we have di ∈
⋃∞

n=0Dn
(
Tk, λ

(
δ, yδ

)
, yδ
)
.

Then
(
DN

(
Tk, λ

(
δ, yδ

)
, yδ
))

N∈N0
is called a sequence of well-working dictionaries.

By construction, a sequence of well-working dictionaries exists: if each DN is
a nearly-optimal N-dictionary N-D, then the sequence is well-working. How-
ever, the order of the sequence elements is far from unique and, thus, the se-
quence itself is neither. Nonetheless, we assume that for some N the dictionary
DN(Tk, λ

(
δ, yδ

)
, yδ) of a sequence of well-working dictionaries will be able to

reconstruct a good approximation of f∞. Therefore, learning a dictionary that is
an element of a sequence of well-working dictionaries shall be the well-defined
objective for our dictionary learning algorithm.

6.3. An outlook

The previous formal characterizations of desired dictionaries are a novelty. How-
ever, note that we started our considerations with the solution of the Tikhonov
functional. The question arises whether this functional is the best quality mea-
sure for our task. In general, we can say it is a good starting point because the
(L)RFMP algorithm converges towards its solution (confer Chapter 8). However,
the author recognizes that, also in the light of Prünte (2008), an improved qual-
ity measure could probably be developed. In the future research, we could think
about combining the Tikhonov functional with a total variation TV dependent
on the residual and, thus, on the data. This could be done either as an additional
summand

inf
f∞ ∈ spanDInf

[
J
(

f∞; Tk, λ
(

δ, yδ
)

, yδ
)
− µTV

(
yδ − Tk f∞

)]
for µ ∈ R+,

considering it in the parameter choice rule

inf
f∞ ∈ spanDInf

J
(

f∞; Tk, λ
(

δ, yδ, TV
(

yδ − Tk f∞

))
, yδ
)

or for a dual approach such as

inf
f∞ ∈ spanDInf

J
(

f∞; Tk, λ
(

δ, yδ
)

, yδ
)

subject to TV
(

yδ − Tk f∞

)
≥ ∆

for a given threshold ∆ > 0. Note that the first suggestion would probably lead
to an elastic-net approach (see e. g. Daubechies et al., 2004; De Mol et al., 2009;
Zou and Hastie, 2005) in the learning algorithms and, as we will see, the IPMP
algorithms.

121

7. A learning algorithm

In the last chapters, we considered the theoretical aspects of learning a dictio-
nary: we formulated the task of learning a dictionary and developed a theoretical
criterion for a desirable dictionary. With these considerations in mind, we now
look again at the matching pursuits from Section 4.3 and Section 4.4. For both
the RFMP and ROFMP algorithm, we introduce a learning variant in this chap-
ter. These learning inverse problem matching pursuit (LIPMP) algorithms have
not only an approximation but also a learnt dictionary as a result. In particular,
in this chapter, we develop the learning regularized functional matching pursuit
(LRFMP) and the learning regularized orthogonal functional matching pursuit
(LROFMP) algorithm. We first introduce their main idea and routine. Then we
consider certain optimization problems in detail: how are they modelled? What
terms do they depend on in practice? What additional features are useful to guide
the learning process? At last, we summarize the LIPMP algorithms in pseudo-
codes.

7.1. Idea and main structure

In Chapter 6, we describe that the objective of any previously introduced match-
ing pursuit for inverse problems can be generalized with respect to an unknown
finite best dictionary. Further, we showed how this is related to a doubled mini-
mization problem which is a well-known starting point in the field of dictionary
learning. However, the task usually handed to an IPMP algorithm is not suitable
to be combined with classical dictionary learning methods as we pointed out in
the introduction to this thesis (Chapter 1). Thus, the novel approach we develop
next follows its own approach. Maybe in contrast to what could be expected, for
learning an IPMP dictionary, we do not concentrate on the dictionary itself but
on the inverse problem at hand.
We aim to solve the inverse problem simultaneously with the determination of
a dictionary. One reason is that, in our setting, it is mostly too expensive with
respect to time and/or storage to alternate between steps in the dictionary learn-
ing process and solving an inverse problem. Further, naturally, we cannot expect
to learn a good dictionary independent of, at least, some information about the
problem it should be used for.
We consider the probably most practical formulations of the dictionary learning

123

7. A learning algorithm

task from Section 6.1 again in more detail: for the LRFMP algorithm, we have

(αN+1, dN+1) := arg min
(α,d)∈R×DInf

(
J
(

fN + αd; Tk, λ
(

δ, yδ
)

, yδ
))

(7.1)

and, for the LROFMP algorithm, we look at(
α(N+1), dN+1

)
:= arg min

(α,d)∈RN+1×DInf

(
JO

(
f (N+1)
N + αN+1d; Tk, λ

(
δ, yδ

)
, yδ
))

, (7.2)

α = (α1, ..., αN+1) ∈ RN+1,

for an infinite dictionary

DInf := [N̂]SH +
[
B4
]

SL
+
[
B̊
]

APK +
[
B̊
]

APW (7.3)

with N̂ ⊂ N and using Definition 4.2.2. Note that we maintain the formulation
with the minimum instead of using the infimum as we did in Sections 4.3 and
4.4. Further, note that these trial functions are in particular suitable for spherical
inverse problems. If we compare (7.1) to (4.22) and (7.2) to (4.31), we see that
the IPMP algorithms are built to solve these kinds of minimization problems in
order to solve the related inverse problems – except that they are used with an
a-priori chosen finite dictionary. Hence, we concentrate on modelling these mini-
mization problems for an infinite dictionary. If we incorporate such a model into
the respective IPMP algorithm, we obtain an algorithm which solves an inverse
problem and is (nearly) independent of an a-priori dictionary choice. That means,
we have an advanced standalone matching pursuit for inverse problems.
From the way the underlying IPMP algorithm works, the obtained algorithm nat-
urally produces a learnt dictionary as well: in each IPMP iteration, a trial function
is chosen from a finite set of dictionary elements and is added to the structure
book (confer Definition 4.1.5, (4.8)). Furthermore, after termination, the approxi-
mation is a decomposition in this best basis. If we are able to choose each of these
basis elements from an infinite set of dictionary elements, the structure book de-
fines a finite best subset of these infinitely many ones – at least, for the experiment
setting from which it was obtained. Hence, the basis elements in the structure
book define our learnt dictionary. Then, in future runs of an IPMP algorithm, it
is sufficient to use the learnt dictionary of the respective LIPMP algorithm as a
dictionary.
In summary, if we are able to model an IPMP algorithm with an infinite dictio-
nary, we automatize the selection of a best basis among infinitely many possibili-
ties and, in this way, learn a dictionary. We make notes of these aspects.

Remark 7.1.1. Each LIPMP algorithm follows the same routine as its respective
IPMP algorithm. We also say that an IPMP algorithm underlies the respective
LIPMP algorithm. However, in each iteration N ∈ N0, we choose the next basis
element dN+1 from the infinitely many dictionary elements of DInf.

124

7.1. Idea and main structure

A further reason for this approach is that, by construction, the learnt dictionary is
tailored specifically for the underlying IPMP algorithm, for a given inverse prob-
lem and a particular Tikhonov regularization strategy. In this way, we incorporate
as much information in the learning process as we have. This usually supports
a better learning result and was also suggested in previous works on dictionary
learning as well (see e. g. Prünte, 2008).
Next, we concentrate on (7.1) and (7.2). We have seen in Section 4.3 and Sec-
tion 4.4 that these minimization problems are equivalent to the following max-
imization problems (confer (4.25) and (4.34), respectively). Let N ∈ N be the
current iteration. For the LRFMP algorithm, we consider

dN+1 := arg max
d∈DInf

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

(7.4)

and, for the LROFMP algorithm, we have

dN+1 := arg max
d∈DInf

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

.

(7.5)

In accordance to the use of the minimum, we formulate these definitions with the
maximum. Note that, in the following development of the LROFMP algorithm,
we will use the notation from the non-iterated ROFMP algorithm for better read-
ability. Further, note that the choice of dN+1 is still not unique in general. Hence,
we make the following definition.

Definition 7.1.2. For the Sobolev space H2(Ω), we define the objective function of the
LRFMP algorithm in the N-th iteration as

RFMP(d; N) :=

(〈
RN, Tkd

〉
R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

)2

‖Tkd‖2
R` + λ (δ, yδ) ‖d‖2

H2(Ω)

, (7.6)

where d ∈ DInf, RN is the current residual, fN the current approximation (for both
see Definition 4.1.5 using Tk instead of Ik), Tk depends on the inverse problem (see
Remark 4.2.4) and λ(δ, yδ) is given by the regularization strategy. In the sequel, we use
the abbreviations

a1(d) :=
〈

RN, Tkd
〉

R`
, a2(d) := 〈 fN, d〉H2(Ω) ,

b1(d) := ‖Tkd‖2
R` , and b2(d) := ‖d‖2

H2(Ω),

125

7. A learning algorithm

such that

RFMP(d; N) :=

(
a1(d)− λ

(
δ, yδ

)
a2(d)

)2

b1(d) + λ (δ, yδ) b2(d)
. (7.7)

Theorem 7.1.3. The minimization of J , see (4.22), in the N-th step of the LRFMP
algorithm with respect to a dictionary element d ∈ DInf and a real coefficient α as seen in
(7.1) is equivalent to the maximization of RFMP(·; N) with respect to d and

α :=
a1(d∗)− λ

(
δ, yδ

)
a2(d∗)

b1(d∗) + λ (δ, yδ) b2(d∗)

for the optimal d∗.

Proof. This was already shown in Section 4.3

Analogously, we obtain for the LROFMP algorithm the following result.

Definition 7.1.4. For the Sobolev space H2(Ω), we define the objective function of the
LROFMP algorithm in the N-th iteration as

ROFMP(d; N) :=

(〈
RN,PV⊥N Tkd

〉
R`
− λ

(
δ, yδ

) 〈
f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

)2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

∥∥∥d− b(N)
N (d)

∥∥∥2

H2(Ω)

(7.8)

where d ∈ DInf, RN is the current residual, f (N)
N the current approximation (for both

see Definition 4.1.6 using Tk instead of Ik), PV⊥N is the orthogonal projection onto V⊥N
(confer (4.27) for VN), b(N)

N is given by

b(N)
N (d) :=

N

∑
n=1

β
(N)
n (d)dn

with the projection coefficients β
(N)
n (d), n = 1, ..., N, as given in Theorem 4.4.2 or

Theorem 4.4.3, respectively, Tk depends on the inverse problem (see Remark 4.2.4) and
λ(δ, yδ) is given by the regularization strategy.

Note that, also here, the projection coefficients are generally not unique. Basic
functional analysis yields the following, more practical formulation of the objec-
tive function of the LROFMP algorithm.

126

7.1. Idea and main structure

Lemma 7.1.5. For the objective function of the LROFMP algorithm, it holds

ROFMP(d; N)

=

(〈
RN,PV⊥N Tkd

〉
R`

+ λ
(
δ, yδ

) (〈
f (N)
N , b(N)

N (d)
〉
H2(Ω)

−
〈

f (N)
N , d

〉
H2(Ω)

))2

∥∥∥PV⊥N Tkd
∥∥∥2

R`
+ λ (δ, yδ)

(
‖d‖2

H2(Ω) − 2
〈

d, b(N)
N (d)

〉
H2(Ω)

+
∥∥∥b(N)

N (d)
∥∥∥2

H2(Ω)

)
with the same notation as in Definition 7.1.4. Analogously to Definition 7.1.2, we abbre-
viate

a3(d) :=
〈

RN,PV⊥N Tkd
〉

R`
, a4(d) :=

〈
f (N)
N , b(N)

N (d)
〉
H2(Ω)

,

b3(d) :=
∥∥∥PV⊥N Tkd

∥∥∥2

R`
, b4(d) :=

〈
d, b(N)

N (d)
〉
H2(Ω)

,

b5(d) :=
∥∥∥b(N)

N (d)
∥∥∥2

H2(Ω)
.

Then we obtain

ROFMP(d; N) :=

(
a3(d) + λ

(
δ, yδ

)
(a4(d)− a2(d))

)2

b3(d) + λ (δ, yδ) (b2(d)− 2b4(d) + b5(d))
(7.9)

with a2(d) and b2(d) as in Definition 7.1.2.

Proof. Use the linearity of the inner product and the norm, respectively, for the
terms 〈

f (N)
N , d− b(N)

N (d)
〉
H2(Ω)

and
∥∥∥d− b(N)

N (d)
∥∥∥2

H2(Ω)
.

Theorem 7.1.6. The minimization of JO, see (4.31), in the N-th step of the LROFMP
algorithm with respect to a dictionary element d ∈ DInf and a real coefficient α as seen in
(7.2) is equivalent to the maximization of ROFMP(·; N) with respect to d and with

α =
a3(d∗) + λ

(
δ, yδ

)
(a4(d∗)− a2(d∗))

b3(d∗) + λ (δ, yδ) (b2(d∗)− 2b4(d∗) + b5(d∗))

for the optimal d∗.

Proof. This has already been shown in Section 4.4.

Now we consider the maximization of these objective functions. Though we do
not a-priori know a best basis for a given problem or which trial functions should
be contained in an optimal finite dictionary, the infinite dictionary DInf form (7.3)
is not even similarly unknown to us. We outline how the maximizations can be
done for the particular trial function classes of DInf, i. e. for spherical harmonics,

127

7. A learning algorithm

Slepian functions as well as Abel–Poisson low and band pass filters. As these
functions are very different, the maximization problems (7.4) and (7.5), respec-
tively, cannot be treated uniformly any further for the classes. Hence, we divide
the maximizations into smaller ones.

Remark 7.1.7. The maximization of either RFMP(d; N) or ROFMP(d; N) with re-
spect to d ∈ DInf is done by maximizing the respective objective function with
respect to d ∈ [·]• ⊆ DInf for • ∈ {SH, APK, APW, SL} separately. In particular,
we consider

RFMP(d; N)→ max! subject to d ∈ [·]• (7.10)

for the LRFMP algorithm and

ROFMP(d; N)→ max! subject to d ∈ [·]• (7.11)

for the LROFMP algorithm.

Naturally, one of the solutions of the smaller maximization problems (7.10) and
(7.11), respectively, for each trial function class also solves the unified maximiza-
tion problems (7.4) and (7.5), respectively. Therefore, we call any of the solutions
of (7.10) or (7.11) a candidate of the objective function of the respective LIPMP al-
gorithm. As the set of candidates is finite, we can evaluate the objective functions
RFMP(·; N) and ROFMP(·; N), respectively, for all of the candidates, compare
these values and choose the candidate with the maximal value as the next basis
element dN+1. That means, the set of candidates can be treated analogously to
a finite dictionary in an IPMP algorithm. In this way, we can choose a basis ele-
ment in the current iteration N from infinitely many dictionary elements. After
that, the LIPMP algorithm follows the structure of the underlying IPMP algo-
rithm to finish the iteration N. This includes computing the related coefficient
and necessary updates (confer Section 4.3 and Section 4.4, respectively).

Remark 7.1.8. The maximization of either RFMP(d; N) or ROFMP(d; N) with re-
spect to each trial function class under consideration yields a finite set of candi-
dates from the infinite dictionary DInf. The next chosen basis element dN+1 is the
candidate that has the highest value when inserted into the respective objective
function.

We note two properties that are included in this approach.

(a) When computing the candidates, the algorithm considers all trial function
classes the user allows. In the language of machine learning, this is a phase
where the agent (i. e. the decision maker for dN+1) “explores” its opportu-
nities. Then the candidate is chosen that yields the highest value in the
respective objective function. That means, the agent decides for the possi-
ble action which yields the most success or – in other words – “exploits” its
opportunities. Hence, this learning approach takes care of balancing explo-
ration and exploitation in each iteration.

128

7.2. Optimization problems in detail

(b) By exploring all trial function classes and autonomously deciding for a can-
didate, the LIPMP algorithm simultaneously decides which trial function
classes are indeed useful for a decomposition in a best basis. Hence, in an
analysis of the structure book of the LIPMP algorithm, we see a hint that a
class is not necessary for a decomposition if the number of chosen functions
from this class is negligible in comparison to other classes. Further, the user
does not need to know beforehand which trial function classes are indeed
the most suitable ones (except for a reduction of runtime).

All in all, the LIPMP algorithm follows the general structure as given in Fig-
ure 7.1. We start in the red circle with a similar initialization as in the underlying
IPMP algorithm. Then we step into the iteration process. First, we consider the
optimization problems for the different trial function classes. This yields a set of
candidates from which we choose the best candidate as the next basis element
dN+1. We compute some updates (dependent on the respective IPMP algorithm;
for details see Telschow (2014) and Appendix B). If at least one termination cri-
terion is fulfilled, we stop the LIPMP algorithm and give the basis elements of
the structure book as our learnt dictionary as well as the obtained approximation
as our results. If no termination criterion is fulfilled yet, we step into the next
iteration. Note that the termination criteria we use in practice are inherited from
the IPMP algorithms.
Next, we explain how to solve the optimization problem for each trial function
class in an iteration of the LIPMP algorithms.

7.2. Optimization problems in detail

In this section, we look at the optimization problems for spherical harmonics,
Slepian functions and Abel-Poisson low and band pass filters in more detail. We
derive as much as we can from the optimization problems for an arbitrary opera-
tor Tk. As an example for practical purposes, we consider the discretized upward
continuation operator Tk (confer Theorem 2.4.7 and Remark 4.2.4) where a par-
ticular one is needed.

7.2.1. Formulation of parametrized optimization problems

In (7.10) and (7.11), respectively, we formulated optimization problems which
need to be modelled for practical purposes. In general, the idea is to parametrize
each trial function class via their particular characteristics. What remains can be
solved with established numerical algorithms for optimization. Though it would
be interesting to also have some theoretical results with respect to the optimiza-
tion problems, e. g. whether each problem is convex, the complicated objective
functions RFMP(·; N) and ROFMP(·; N), respectively, forbid any further investi-
gation in this direction.

129

7. A learning algorithm

initialize LIPMP

next iteration

low pass
filters

band pass
filters

spherical
harmonics

set of
candidates

Slepian
functions

choose best
candidate
as dn+1

stop LIPMP
check

termination
criteria

updates
of IPMP

learnt dictionary
and approximation

yes no

Figure 7.1.: Schematic representation of the basic idea of the LIPMP algorithms.
The different types of lines are only used for an improved visualiza-
tion. The algorithm starts in the red circle.

130

7.2. Optimization problems in detail

Spherical harmonics The spherical harmonics (see Definition 2.2.3) are distin-
guished by their degree n ∈ N0 and order j = −n, ..., n. The computation of
high degrees (and arbitrary orders) is expensive in practice. Furthermore, in the
line of thought of a matching pursuit, it is not sensible to allow the use of high
degrees in an approximation: high degrees have a small amplitude and, thus, ap-
proximate local structures. As they are global functions, overall, this might have
a bad influence on the approximation. In the sense of the matching pursuits, they
are not the right vocabulary for local structures which is the reason why we also
consider low and band pass filters in DInf. Hence, it is sensible to consider only
spherical harmonics up to a fixed, relatively low degree in DInf. That means, we
consider a proper subset N̂ ⊂ N . However, this degree is unknown to us. Thus,
in our learning algorithms, we aim to learn the maximal degree ν0 ∈ N0 of the
spherical harmonics.
We proceed as follows: in each iteration N ∈ N0, we consider all spherical har-
monics up to a certain degree ν ∈ N where we suppose that ν0 < ν < ∞ holds,
i. e.

N̂ = {(n, j) | n = 0, .., ν, j = −n, .., n}

This is a finite number of polynomials. Thus, for each Yn,j ∈ DInf up to degree ν,
we can compute RFMP(Yn,j; N) and ROFMP(Yn,j; N), respectively. In particular,
we have

RFMP(d; N)→ max! subject to d = Yn,j,

n ∈ N0 n ≤ ν, j ∈ Z, −n ≤ j ≤ n

and

ROFMP(d; N)→ max! subject to d = Yn,j,

n ∈ N0, n ≤ ν, j ∈ Z, −n ≤ j ≤ n

respectively, and can determine the maximum by comparing the values among
all spherical harmonics in DInf. As we suppose that ν0 < ν < ∞, the spherical
harmonics Yν,j, j = −ν, ..., ν, will not be chosen as basis elements. Thus, we define
the learnt maximal degree ν0 as

ν0 := max{n | ∃j = −n, ..., n ∃i = 1, ..., N0 ∃αi ∈ R :
Yn,j = di with (αi, di) ∈ {(αn, dn)}n=1,...,N0} (7.12)

for a maximal iteration N0 and the structure book {(αn, dn)}n=1,...,N0 . That means,
the learnt ν0 is the maximal degree of chosen spherical harmonics. Furthermore,
the learnt spherical harmonics are exactly the spherical harmonics from the struc-
ture book.
Note that ν0 is obtained after the LIPMP algorithm is terminated. In each iter-
ation, the search for the most suitable spherical harmonic up to degree ν is ex-
ecuted in the same way as in the (non-learning) IPMP algorithms. Thus, for an

131

7. A learning algorithm

efficient implementation of the LIPMP algorithm with respect to spherical har-
monics, it is sensible to perform a preprocessing in the same manner as with the
underlying IPMP algorithm. Hence, we run the LIPMP algorithm with a finite
starting dictionary which contains at least all spherical harmonics up to degree
ν. However, of course, the starting dictionary should only have a formal or effi-
ciency reason and not have (a major) influence on the learnt dictionary in order
to have a truly automatized selection of basis elements from infinitely many pos-
sibilities. For spherical harmonics, this means, it should hold that ν0 < ν.

Slepian functions A set of Slepian functions of band-limit L ∈ N is character-
ized by their localization region R ⊆ Ω. In the case that R is a spherical cap,
the Slepian functions can be parametrized by the size of the localization region
c ∈ [−1, 1] and its centre A(α, β, γ)ε3 (see Example 3.1.5 and Example 3.1.10),
where A ∈ SO(3) describes a rotation matrix dependent on the Euler angles
α, γ ∈ [0, 2π[and β ∈ [0, π] (see Definition 3.1.6). However, if we look closely
at Definition 3.1.7, we see that we can also use α, γ ∈ R as the Wigner rotation
matrices are 2π-periodic in these arguments. Due to certain symmetry relations
(see e. g. Edmonds, 1996, Section 4.2), the matrices are in general not π-periodic
in β which means that this constraint must not be violated. Thus, for Slepian
functions, we consider the optimization problem

RFMP
(

g(k,L)
((

c, A(α, β, γ)ε3
)

, ·
)

; N
)
→ max! (7.13)

subject to k = 1, ..., (L + 1)2, c ∈ [−1, 1], β ∈ [0, π] (and α, γ ∈ [0, 2π[)

and

ROFMP
(

g(k,L)
((

c, A(α, β, γ)ε3
)

, ·
)

; N
)
→ max! (7.14)

subject to k = 1, ..., (L + 1)2, c ∈ [−1, 1], β ∈ [0, π] (and α, γ ∈ [0, 2π[)

respectively. With respect to c, α, β and γ, this is a continuous optimization
problem with a non-linear objective function and bound constraints. Thus, to
solve it and, by this, determine an optimized localization region R∗ of a Slepian
function in the current iteration, we can use well-known routines like the DI-
RECT and / or the SLSQP algorithm (see Appendix A.4). With this region R∗,
the particular k-th Slepian function g(k,L)(R∗, ·) can be obtained by comparing
the values RFMP(g(i,L)(R∗, ·); N) and ROFMP(g(i,L)(R∗, ·); N), respectively, for
all i = 1, ..., (L + 1)2 as the band-limit L < ∞ is finite.
In general, numerical optimization routines may terminate more easily with a
good solution if the optimization process starts at a point not too far away from
the solution. Hence, we suggest to insert a few sets of Slepian functions of band-
limit L (i. e. all Slepian functions related to a few localization regions) in the finite
starting dictionary.

132

7.2. Optimization problems in detail

Abel–Poisson low and band pass filters The Abel–Poisson low and band pass
filters are both based on Abel–Poisson kernels K(x, ·) for x ∈ B̊ (see Examples
3.3.4, 3.3.17 and 3.4.9). The argument x ∈ B̊ defines the scale of the localization
(via |x|) and the centre of the localization (via x/|x|) and, thus, characterizes each
of the filters. Due to x ∈ B̊, we obtain the following continuous optimization
problem with a non-linear objective function and a non-linear constraint:

RFMP(K(x, ·); N)→ max! subject to ‖x‖2
R3 < 1, (7.15)

ROFMP(K(x, ·); N)→ max! subject to ‖x‖2
R3 < 1, (7.16)

respectively, for the Abel–Poisson low pass filters; and

RFMP(W(x, ·); N)→ max! subject to ‖x‖2
R3 < 1, (7.17)

ROFMP(W(x, ·); N)→ max! subject to ‖x‖2
R3 < 1, (7.18)

respectively, for the Abel–Poisson band pass filters. These problems can be solved
with established methods like the DIRECT and / or the SLSQP algorithm (see Ap-
pendix A.4). With the same justification as for the Slepian functions, we suggest
to insert also a few Abel–Poisson low and band pass filters into the starting dic-
tionary.
Note that we have to take into account that a dictionary must not include the
nullspace of the operator Tk because otherwise the functions RFMP(·; N) (Defini-
tion 7.1.2 and ROFMP(·; N) Definition 7.1.4) are not well-defined. Any nullspace
of a linear operator includes the zero function. If the regularization parameter
satisfies λ(δ, yδ) > 0, the zero function is also the only problematic trial func-
tion. Note that the Abel–Poisson band pass filter for x = 0 is constantly 0. That
means, actually, we would have an additional constraint in this case: 0 < ‖x‖2

R3 .
However, in our experiments, neither does the algorithm choose this function
as the next best basis element nor does it cause trouble for the used optimiza-
tion software if we neglect this constraint. In the light of keeping the number of
constraints low, we therefore do without this aspect in this thesis. Nonetheless,
a prospective user should bear this situation in mind if problems occur in future
tests. At last, note that, due to Theorem 2.4.7, the nullspace of the downward con-
tinuation operator contains only the zero function. This might be different if this
learning approach is transferred to other operators of spherical inverse problems.

7.2.2. Regarding gradient-based optimization

Some of the (previously mentioned) optimization routines are gradient-based
methods. It is well-known that numerical optimization algorithms are more ef-
ficient if they are gradient-based as they need less iterations than derivative-
free ones. Thus, we want to use these methods in the LIPMP algorithms (as
well). Therefore, we consider the partial derivatives of the objective functions
RFMP(d; N) and ROFMP(d; N), respectively, for an Abel–Poisson low and band

133

7. A learning algorithm

pass filter d(z), z ∈ R3, as well as for a Slepian function d(z) := d(z(c, α, β, γ)),
z ∈ R4, at this point. For readability, we abbreviate

ai := ai(d(z)), i = 1, ..., 4,
bj := bj(d(z)), j = 1, ..., 5,

and

λ := λ
(

δ, yδ
)

from Definition 7.1.2 and Lemma 7.1.5 as well as

δz :=
{

3, d(z) = K(z, ·) or d = W(z, ·)
4, d(z(c, α, β, γ)) = g(k,L) ((c, A(α, β, γ)ε3) , ·

) (7.19)

for the next considerations. Then, with the common rules for differentiation and
for zj, j = 1, ..., δz, we have

∂

∂zj
RFMP(d(z); N) (7.20)

=
2 (a1 − λa2)

(
∂

∂zj
a1 − λ ∂

∂zj
a2

)
(b1 + λb2)− (a1 − λa2)

2
(

∂
∂zj

b1 + λ ∂
∂zj

b2

)
(b1 + λb2)

2

∂

∂zj
ROFMP(d(z); N)

=
2 (a3 + λ (a4 − a2))

(
∂

∂zj
a3 − λ

(
∂

∂zj
a4 − ∂

∂zj
a2

))
(b3 + λ(b2 − 2b4 + b5))

(b3 + λ (b2 − 2b4 + b5))
2

−
(a3 + λ (a4 − a2))

2
(

∂
∂zj

b3 + λ
(

∂
∂zj

b2 − 2 ∂
∂zj

b4 +
∂

∂zj
b5

))
(b3 + λ (b2 − 2b4 + b5))

2 . (7.21)

Note that we parametrized the Abel–Poisson low and band pass filters via a ball,
i. e. via a traditional spherical setting. However, we consider the Cartesian deriva-
tives at this point in order to avoid singularities at the poles that are otherwise
inherited from a spherical parametrization.
For practical purposes, we consider the terms ai(d(z)), i = 1, ..., 4, and bj(d(z)),
j = 1, ..., 5, in detail. Further, for the derivatives of RFMP(·; N) and ROFMP(·; N)
as seen in (7.20) and (7.21), respectively, we also discuss

∂

∂zj
a1(d(z)) =

∂

∂zj

〈
RN, Tkd

〉
R`

,

∂

∂zj
a2(d(z)) =

∂

∂zj
〈 fN, d〉H2(Ω) =

∂

∂zj

〈
f (N)
N , d

〉
H2(Ω)

,

134

7.2. Optimization problems in detail

∂

∂zj
a3(d(z)) =

∂

∂zj

〈
RN,PV⊥N Tkd

〉
R`

,

∂

∂zj
a4(d(z)) =

∂

∂zj

〈
f (N)
N , b(N)

N (d(z))
〉
H2(Ω)

,

∂

∂zj
b1(d(z)) =

∂

∂zj
‖Tkd‖2

R` ,

∂

∂zj
b2(d(z)) =

∂

∂zj
‖d‖2

H2(Ω) =
∂

∂zj
〈d, d〉H2(Ω) ,

∂

∂zj
b3(d(z)) =

∂

∂zj

∥∥∥PV⊥N Tkd
∥∥∥2

R`
,

∂

∂zj
b4(d(z)) =

∂

∂zj

〈
b(N)

N (d(z)), d
〉
H2(Ω)

∂

∂zj
b5(d(z)) =

∂

∂zj

∥∥∥b(N)
N (d(z))

∥∥∥2

H2(Ω)
=

∂

∂zj

〈
b(N)

N (d(z)), b(N)
N (d(z))

〉
H2(Ω)

for the case that d(z) is either a Slepian function or a Abel–Poisson low or band
pass filter. Before we consider these terms, we clarify a general aspect of the
differentiation of Slepian functions.

Differentiating a Slepian function with respect to the localization region Due
to Definition 3.1.3, we see that the partial derivative ∂/∂zm, zm ∈ {c, α, β, γ},
acts only on the Fourier coefficients g(k,L)

n,j (c, A(α, β, γ)ε3) of a Slepian function

g(k,L)((c, A(α, β, γ)ε3), ·). This is also the case for the upward continued function,
see (3.18), and, thus, builds the basis for all further considerations. Hence, we
have to formulate

∂

∂zm
g(k,L)

n,j

(
c, A (α, β, γ) ε3

)
(7.22)

for practical purposes. That means, we have to compute the derivative of an
eigenvector of the Slepian problem with respect to the spherical cap it is localized
in. In Theorem 3.1.9, we have seen that the complex coefficients g̃(k,L)

n,j of a Slepian
function localized in an arbitrary spherical cap can be represented via Wigner
rotation matrices and the complex coefficients with respect to the spherical cap
with centre ε3. We have the relation

g̃(k,L)
n,j

(
c, A(α, β, γ)ε3

)
=

n

∑
i=−n

Dn
j,i(α, β, γ)g̃(k,L)

n,i

(
c, ε3

)
.

Note that the exchange from real coefficients to complex ones (see Remark 2.2.9)
is linear and, hence, we only have to consider the derivative of the complex coef-

135

7. A learning algorithm

ficients in the sequel. In particular, we have

∂

∂c
g̃(k,L)

n,j

(
c, A(α, β, γ)ε3

)
=

n

∑
i=−n

Dn
j,i(α, β, γ)

∂

∂c
g̃(k,L)

n,i

(
c, ε3

)
(7.23)

and

∂

∂zm
g̃(k,L)

n,j

(
c, A(α, β, γ)ε3

)
=

n

∑
i=−n

(
∂

∂zm
Dn

j,i(α, β, γ)

)
g̃(k,L)

n,i

(
c, ε3

)
(7.24)

for zm ∈ {α, β, γ}. Thus, note that, in practice, we only need to compute the
derivatives of the Wigner rotation matrices with respect to the Euler angles and
the derivative of the real Slepian coefficients with respect to the size of the spheri-
cal cap. Next, we consider these derivatives in detail. We first consider the deriva-
tives with respect to the Euler angles. With the definition of the Wigner rotation
matrices (Definition 3.1.7), we obtain the following recursion formulae.

∂

∂zm
D0(α, β, γ) = 0, (7.25)

∂

∂α
D1(α, β, γ) =

1+cos(β)
2 iei(α+γ) sin(β)√

2
ieiα 1−cos(β)

2 iei(α−γ)

0 0 0

− 1−cos(β)
2 iei(γ−α) sin(β)√

2
ie−iα − 1+cos(β)

2 ie−i(α+γ)

 , (7.26)

∂

∂β
D1(α, β, γ) =

− sin(β)

2 ei(α+γ) cos(β)√
2

eiα sin(β)
2 ei(α−γ)

− cos(β)√
2

eiγ − sin(β) cos(β)√
2

e−iγ

sin(β)
2 ei(γ−α) − cos(β)√

2
e−iα − sin(β)

2 e−i(α+γ)

 , (7.27)

∂

∂γ
D1(α, β, γ) =

1+cos(β)
2 iei(α+γ) 0 − 1−cos(β)

2 iei(α−γ)

− sin(β)√
2

ieiγ 0 − sin(β)√
2

ie−iγ

1−cos(β)
2 iei(γ−α) 0 − 1+cos(β)

2 ie−i(α+γ)

 , (7.28)

136

7.2. Optimization problems in detail

∂

∂zm
Dn

k,j = an
k,j

((
∂

∂zm
D1

0,0

)
Dn−1

k,j + D1
0,0

∂

∂zm
Dn−1

k,j

)
+ bn

k,j

((
∂

∂zm
D1

1,0

)
Dn−1

k−1,j + D1
1,0

∂

∂zm
Dn−1

k−1,j

)
+ bn
−k,j

((
∂

∂zm
D1
−1,0

)
Dn−1

k+1,j + D1
−1,0

∂

∂zm
Dn−1

k+1,j

)
, (7.29)

− n + 1 ≤ j ≤ n− 1,

∂

∂zm
Dn

k,j = cn
k,−j

((
∂

∂zm
D1

0,−1

)
Dn−1

k,j+1 + D1
0,−1

∂

∂zm
Dn−1

k,j+1

)
+ dn

k,−j

((
∂

∂zm
D1

1,−1

)
Dn−1

k−1,j+1 + D1
1,−1

∂

∂zm
Dn−1

k−1,j+1

)
+ dn
−k,−j

((
∂

∂zm
D1
−1,−1

)
Dn−1

k+1,j+1 + D1
−1,−1

∂

∂zm
Dn−1

k+1,j+1

)
, (7.30)

− n ≤ j ≤ n− 2,

∂

∂zm
Dn

k,j = cn
k,j

((
∂

∂zm
D1

0,1

)
Dn−1

k,j−1 + D1
0,1

∂

∂zm
Dn−1

k,j−1

)
+ dn

k,j

((
∂

∂zm
D1

1,1

)
Dn−1

k−1,j−1 + D1
1,1

∂

∂zm
Dn−1

k−1,j−1

)
+ dn
−k,j

((
∂

∂zm
D1
−1,1

)
Dn−1

k+1,j−1 + D1
−1,1

∂

∂zm
Dn−1

k+1,j−1

)
, (7.31)

− n + 2 ≤ j ≤ n.

Now, we look at the derivative with respect to the size of the cap c ∈ [−1, 1]. In
Theorem 3.1.13, we stated an explicit formulation for the coefficients of a Slepian
function. There, for a band-limit L ∈ N and an order j ∈ Z0, −L ≤ j ≤ L, we first
compute the values bi,i+1, i = 1, ..., L− |j|, and afterwards the values of the vector
vi, i = L− |j|+ 1, ..., 1. In the same routine, we obtain the derivatives. First, we
state the derivatives of the entries of the commuting matrix, see Theorem 3.1.11.
We have

∂

∂c
Mj

(m,k),(n,j)(c) =
{−n(n + 1), (m, k) = (n, j)

0, else. (7.32)

Before we can state the derivatives of bi,i+1 and vi, respectively, we have to look
at the derivative with respect to c of an eigenvalue ρ(c). We know (see (2.6)) that
an eigenvalue solves, in our case, the equation

F (c, ρ(c)) := det
(

Mj(c)− ρ(c)I
)
= 0.

We consider the total differential of F and use the chain rule for this:

0 =
d
dc

F (c, ρ(c)) =
∂

∂c
F (c, ρ(c)) +

∂

∂ρ
F (c, ρ(c)) ρ′(c).

137

7. A learning algorithm

Therefore, we obtain

ρ′(c) = −
∂
∂c F (c, ρ(c))
∂

∂ρ F (c, ρ(c))

if ∂
∂ρ F (c, ρ(c)) 6= 0. However, we know, for example from Seibert (2018), that,

for the matrix Mj with j = −L, ..., L, each eigenspace has dimension 1. Thus, it
holds ∂

∂ρ F (c, ρ(c)) 6= 0 for all eigenvalues ρ(c) of Mj. For ρ′(c), we consider the
nominator and denominator separately and start with the former one:

∂

∂c
F (c, ρ(c)) =

∂

∂c
det

(
Mj(c)− ρ(c)I

)
=

L−|j|+1

∑
i=1

L−|j|+1

∑
m=1

(−1)i+m
(

∂

∂c

(
Mj(c)(i,|j|),(m,|j|) − ρ(c)δi,m

))
× det

(
Mj(c)− ρ(c)I

)i,m

=
L−|j|+1

∑
i=1

L−|j|+1

∑
m=1

(−1)i+m (−i(i + 1)δi,m)det
(

Mj(c)− ρ(c)I
)i,m

= −
L−|j|+1

∑
i=1

i(i + 1)det
(

Mj(c)− ρ(c)I
)i,i

where we used (2.7) and (7.32). For the denominator, we obtain in a similar fash-
ion the following result:

∂

∂ρ
F (c, ρ(c)) =

∂

∂ρ
det

(
Mj(c)− ρ(c)I

)
=

L−|j|+1

∑
i=1

L−|j|+1

∑
m=1

(−1)i+m
(

∂

∂ρ

(
Mj(c)(i,|j|),(m,|j|) − ρ(c)δi,m

))
× det

(
Mj(c)− ρ(c)I

)i,m

=
L−|j|+1

∑
i=1

L−|j|+1

∑
m=1

(−1)i+m (−δi,m)det
(

Mj(c)− ρ(c)I
)i,m

= −
L−|j|+1

∑
i=1

det
(

Mj(c)− ρ(c)I
)i,i

.

Hence, we see that

ρ′(c) = −∑
L−|j|+1
i=1 i(i + 1)det

(
Mj(c)− ρ(c)I

)i,i

∑
L−|j|+1
i=1 det

(
Mj(c)− ρ(c)I

)i,i
,

138

7.2. Optimization problems in detail

where we obtain det
(

Mj(c)− ρ(c)I
)

i,i , i = 1, ..., L− |j|+ 1, in the (de-)nominator
with the use of the three term recursion (2.8).
Using the result, we have for the derivatives of the values bi,i+1(c) (confer Theo-
rem 3.1.13):

∂

∂c
b1,2(c) =

∂

∂c

(
Mj(c)

)
(|j|,|j|),(|j|+1,|j|)(

Mj(c)
)
(|j|,|j|),(|j|,|j|) − ρ(c)

=

(
∂
∂c
(

Mj(c)
)
(|j|,|j|),(|j|+1,|j|)

) ((
Mj(c)

)
(|j|,|j|),(|j|,|j|) − ρ(c)

)
((

Mj(c)
)
(|j|,|j|),(|j|,|j|) − ρ(c)

)2

−
(

Mj(c)
)
(|j|,|j|),(|j|+1,|j|)

((
∂
∂c
(

Mj(c)
)
(|j|,|j|),(|j|,|j|)

)
− ρ′(c)

)
((

Mj(c)
)
(|j|,|j|),(|j|,|j|) − ρ(c)

)2

= −
(

Mj(c)
)
(|j|,|j|),(|j|+1,|j|) (−|j|(|j|+ 1)− ρ′(c))((

Mj(c)
)
(|j|,|j|),(|j|,|j|) − ρ(c)

)2

=

(
Mj(c)

)
(|j|,|j|),(|j|+1,|j|) (|j|(|j|+ 1) + ρ′(c))((
Mj(c)

)
(|j|,|j|),(|j|,|j|) − ρ(c)

)2 (7.33)

and

∂

∂c
bi,i+1(c)

=
∂

∂c

(
Mj(c)

)
(i,|j|),(i+1,|j|)(

Mj(c)
)
(i,|j|),(i,|j|) − ρ(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

=

[
∂
∂c
(

Mj(c)
)
(i,|j|),(i+1,|j|)

]
[(

Mj(c)
)
(i,|j|),(i,|j|) − ρ(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

]2

×
[(

Mj(c)
)
(i,|j|),(i,|j|)

− ρ(c)−
(

Mj(c)
)
(i,|j|),(i−1,|j|)

bi−1,i(c)
]

−
(

Mj(c)
)
(i,|j|),(i+1,|j|)[(

Mj(c)
)
(i,|j|),(i,|j|) − ρ(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

]2

×
[

∂

∂c

(
Mj(c)

)
(i,|j|),(i,|j|)

− ρ′(c)− ∂

∂c

((
Mj(c)

)
(i,|j|),(i−1,|j|)

bi−1,i(c)
)]

139

7. A learning algorithm

= −
(

Mj(c)
)
(i,|j|),(i+1,|j|)

[
−i(i + 1)− ρ′(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|)

∂
∂c bi−1,i(c)

]
[(

Mj(c)
)
(i,|j|),(i,|j|) − ρ(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

]2

=

(
Mj(c)

)
(i,|j|),(i+1,|j|)

[
i(i + 1) + ρ′(c) +

(
Mj(c)

)
(i,|j|),(i−1,|j|)

∂
∂c bi−1,i(c)

]
[(

Mj(c)
)
(i,|j|),(i,|j|) − ρ(c)−

(
Mj(c)

)
(i,|j|),(i−1,|j|) bi−1,i(c)

]2 . (7.34)

This gives us the derivative of each eigenvector coefficient as

∂

∂c
vL−|j|+1(c) = 0 (7.35)

and, for i = 1, ..., L− |j|,

∂

∂c
vi(c) = −

∂

∂c
(bi,i+1(c)vi+1(c))

= −
(

∂

∂c
bi,i+1(c)

)
vi+1(c)− bi,i+1(c)

(
∂

∂c
vi+1(c)

)
. (7.36)

Next, we discuss the terms ai(d(z)), i = 1, ..., 4, and bj(d(z)), j = 1, ..., 5, from
Definition 7.1.2 and Lemma 7.1.5 as well as their derivatives as given in the be-
ginning of this subsection. Note that, for previously chosen basis elements, we
neglect the argument where possible and simply write dn := dn(zn).

7.2.3. Inner products dependent on the operator

First, we consider the terms a1(d(z)), a3(d(z)), b1(d(z)) and b3(d(z)) for z ∈
Rδz (confer (7.19)) with respect to Slepian functions as well as Abel–Poisson low
and band pass filters. We recall that, using (4.4) as well as Theorem 4.4.3 for
PV⊥N Tkd(z), we have

PV⊥N Tkd(z) = Tkd(z)−PVN Tkd(z) = Tkd(z)−
N

∑
n=1

β
(N)
n (d(z))Tkdn. (7.37)

For the derivative with respect to zj, j = 1, ..., δz, we obtain

∂

∂zj
PV⊥N Tkd(z) =

∂

∂zj
Tkd(z)−

N

∑
n=1

(
∂

∂zj
β
(N)
n (d(z))

)
Tkdn. (7.38)

140

7.2. Optimization problems in detail

Hence, we consider the derivative of the projection coefficients β
(N)
n (d(z)), n =

1, ..., N, of the current iteration N. It holds

∂

∂zj
β
(N)
N (d(z)) =

〈
∂

∂zj
Tkd(z),PV⊥N−1

TkdN

〉
R`∥∥∥PV⊥N−1

TkdN

∥∥∥2

R`

(7.39)

∂

∂zj
β
(N)
n (d(z))

=

〈
∂

∂zj
Tkd(z),PV⊥n−1

Tkdn

〉
R`∥∥∥PV⊥n−1

Tkdn

∥∥∥2

R`

−
N

∑
j=n+1

〈
∂

∂zj
Tkd(z),PV⊥j−1

Tkdj

〉
R`∥∥∥∥PV⊥j−1

Tkdj

∥∥∥∥2

R`

β
(j−1)
n (dn)

(7.40)

for n = 1, ..., N − 1. Thus, the derivatives of the projection coefficients depend
only on the derivatives of Tkd. Moreover, we now see that all terms a1(d(z)),
a3(d(z)), b1(d(z)) and b3(d(z)) depend only on Tk and cannot be discussed any
further for an arbitrary operator.
For the upward continuation operator T , we gave the upward continued values
of our dictionary elements in (2.27), (3.16), (3.17) and (3.18).
At this point, however, we consider an explicit form of T K(x, ·) and TW(x, ·)
(with x = z) which is useful for practical purposes. For any η ∈ Ω, we obtain for
the Abel–Poisson low pass filter K(x, ·)

T K(x, ·)(ση) =
1
σ

K
(x

σ
, η
)
=

1
σ

1−
∣∣ x

σ

∣∣2
4π
[
1 +

∣∣ x
σ

∣∣2 − 2 x
σ · η

]3/2

=
σ−2 (σ2 − |x|2

)
4πσ [σ−2 (σ2 + |x|2 − 2σx · η)]3/2

=
σ−2 (σ2 − |x|2

)
4πσσ−3 [σ2 + |x|2 − 2σx · η]3/2

=
σ2 − |x|2

4π [σ2 + |x|2 − 2σx · η]3/2 . (7.41)

Note that this is in accordance with the definition of the Abel–Poisson kernel on
a ball with radius σ (see e. g. Freeden et al., 1998, p. 86). Hence, for the Abel–

141

7. A learning algorithm

Poisson band pass filter W(x, ·), we obtain

TW(x, ·)(ση) =
1
σ

K
(x

σ
, η
)
− 1

σ
K
(|x|x

σ
, η

)
=

σ2 − |x|2
4π [σ2 + |x|2 − 2σx · η]3/2 −

σ2 − |x|4
4π [σ2 + |x|4 − 2σ|x|x · η]3/2 .

(7.42)

As we have seen, for the gradients of the terms a1(d(z)), a3(d(z)), b1(d(z)) and
b3(d(z)), we are interested in particular in ∂/∂xjT d(x) for an Abel–Poisson low
and band pass filters. In the sequel, we use

|x|2 =
3

∑
j=1

x2
j . (7.43)

Then, for the derivative of T K(x, ·), we obtain

∂

∂xj
T K(x, ·)(ση) =

∂

∂xj

σ2 − |x|2
4π [σ2 + |x|2 − 2σx · η]3/2

=
1

4π

(

∂
∂xj

(
σ2 −∑3

k=1 x2
k

)) [
σ2 + |x|2 − 2σx · η

]3/2

[σ2 + |x|2 − 2σx · η]3

−
(
σ2 − |x|2

)
∂

∂xj

[
σ2 + ∑3

k=1 x2
k − 2σ ∑3

k=1 xkηk

]3/2

[σ2 + |x|2 − 2σx · η]3

=

1
4π

(
− 2xj

[σ2 + |x|2 − 2σx · η]3/2

−
(
σ2 − |x|2

) 3
2

[
σ2 + |x|2 − 2σx · η

]1/2 (2xj − 2σηj
)

[σ2 + |x|2 − 2σx · η]3

=

1
4π

(
− 2xj

[σ2 + |x|2 − 2σx · η]3/2 −
3
(
σ2 − |x|2

) (
xj − σηj

)
[σ2 + |x|2 − 2σx · η]5/2

)
(7.44)

for η ∈ Ω and σ > 1. With this result, we obtain for the derivative of TW(x, ·)
with respect to xj that it holds

∂

∂xj
TW(x, ·)(ση) =

∂

∂xj
T K(x, ·)(ση)− ∂

∂xj
T K(|x|x, ·)(ση) (7.45)

142

7.2. Optimization problems in detail

=
1

4π

(
− 2xj

[σ2 + |x|2 − 2σx · η]3/2 −
3
(
σ2 − |x|2

) (
xj − σηj

)
[σ2 + |x|2 − 2σx · η]5/2

+
4|x|2xj

[σ2 + |x|4 − 2σ|x|x · η]3/2

+
3
(
σ2 − |x|4

) (
2|x|2xj − σ|x|−1xjx · η − σ|x|ηj

)
4π [σ2 + |x|4 − 2σ|x|x · η]5/2

)
. (7.46)

For the first term of the right-hand side of (7.45), we have already obtained (7.44).
For the second term, we obtain with (7.42) and (7.43) analogously

∂

∂xj
T K(|x|x, ·)(ση)

=
∂

∂xj

σ2 − |x|4
4π [σ2 + |x|4 − 2σ|x|x · η]3/2

=
1

4π

(

∂
∂xj

(
σ2 −

(
∑3

k=1 x2
k

)2
)) [

σ2 + |x|4 − 2σ|x|x · η
]3/2

[σ2 + |x|4 − 2σ|x|x · η]3

−

(
σ2 − |x|4

)
∂

∂xj

[
σ2 +

(
∑3

k=1 x2
k

)2
− 2σ

(
∑3

k=1 x2
k

)1/2 (
∑3

k=1 xkηk

)]3/2

[σ2 + |x|4 − 2σ|x|x · η]3

=
1

4π

 −4
(

∑3
k=1 x2

k

)
xj

[σ2 + |x|4 − 2σ|x|x · η]3/2 −
(
σ2 − |x|4

) 3
2

[
σ2 + |x|4 − 2σ|x|x · η

]1/2

[σ2 + |x|4 − 2σ|x|x · η]3

×
4

[
3

∑
k=1

x2
k

]
xj − 2σ

1
2

[
3

∑
k=1

x2
k

]−1/2

(2xj)

[
3

∑
k=1

xkηk

]
− 2σ

[
3

∑
k=1

x2
k

]1/2

ηj

=

1
4π

(
−4|x|2xj

[σ2 + |x|4 − 2σ|x|x · η]3/2

−
3
2

(
σ2 − |x|4

) (
4|x|2xj − 2σ 1

2 |x|−1(2xj)x · η − 2σ|x|ηj

)
[σ2 + |x|4 − 2σ|x|x · η]5/2

143

7. A learning algorithm

=
1

4π

(
−4|x|2xj

[σ2 + |x|4 − 2σ|x|x · η]3/2

−3
(
σ2 − |x|4

) (
2|x|2xj − σ|x|−1xjx · η − σ|x|ηj

)
[σ2 + |x|4 − 2σ|x|x · η]5/2

)

for η ∈ Ω and σ > 1. Taking all these things into consideration, we now give the
terms a1(d(z)), a3(d(z)), b1(d(z)) and b3(d(z)) for z ∈ Rδz (confer (7.19)). Note
that we use the discretized operator Tk in these terms. That means, we evaluate
T d at certain gridpoints ση(i), σ > 1, η(i) ∈ Ω, i = 1, ..., `. Correspondingly,
we use e(i) = (δj,i)j=1,...,` for the i-th canonical Cartesian basis vector. Further,
note that, for each of the terms discussed next, we give references to all previous
equations needed for computation. We obtain the following formulations of the
terms in question:

a1(K(x, ·)) =
`

∑
i=1

RN
i T i

kK(x, ·) =
`

∑
i=1

RN
i
(
σ2 − |x|2

)
4π
[
σ2 + |x|2 − 2σx · η(i)

]3/2 (7.47)

using (7.41),

∂

∂xj
a1(K(x, ·)) =

`

∑
i=1

RN
i

∂

∂xj
T i
kK(x, ·)

=
`

∑
i=1

RN
i

4π

− 2xj[
σ2 + |x|2 − 2σx · η(i)

]3/2 −
3
(
σ2 − |x|2

) (
xj − ση

(i)
j

)
[
σ2 + |x|2 − 2σx · η(i)

]5/2

(7.48)

using (7.44),

a3(K(x, ·)) =
`

∑
i=1

RN
i

(
e(i) · PV⊥NTkK(x, ·)

)
=

`

∑
i=1

RN
i

(
T i
kK(x, ·)−

N

∑
n=1

β
(N)
n (K(x, ·))T i

kdn

)
(7.49)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41) and (7.42),

∂

∂xj
a3(K(x, ·)) =

`

∑
i=1

RN
i

∂

∂xj

(
e(i) · PV⊥NTkK(x, ·)

)
=

`

∑
i=1

RN
i

(
∂

∂xj
T i
kK(x, ·)−

N

∑
n=1

(
∂

∂xj
β
(N)
n (K(x, ·))

)
T i
kdn

)
(7.50)

144

7.2. Optimization problems in detail

using (2.27), (3.18), (7.38), (7.39), (7.40), (7.41), (7.42) and (7.44),

b1(K(x, ·)) =
`

∑
i=1

(
T i
kK(x, ·)

)2
=

`

∑
i=1

(
σ2 − |x|2

)2

16π2
[
σ2 + |x|2 − 2σx · η(i)

]3 (7.51)

using (7.41),

∂

∂xj
b1(K(x, ·)) =

`

∑
i=1

∂

∂xj

(
T i
kK(x, ·)

)2
=

`

∑
i=1

2
(
T i
kK(x, ·)

) ∂

∂xj

(
T i
kK(x, ·)

)
(7.52)

using (7.41) and (7.44),

b3(K(x, ·)) =
`

∑
i=1

(
e(i) · PV⊥NTkK(x, ·)

)2

=
`

∑
i=1

(
T i
kK(x, ·)−

N

∑
n=1

β
(N)
n (K(x, ·)) T i

kdn

)2

(7.53)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41), (7.42),

∂

∂xj
b3 (K(x, ·)) =

`

∑
i=1

∂

∂xj

(
e(i) · PV⊥NTkK(x, ·)

)2

=
`

∑
i=1

2
(

e(i) · PV⊥NTkK(x, ·)
)(∂

∂xj
T i
kK(x, ·)−

N

∑
n=1

(
∂

∂xj
β
(N)
n (K(x, ·))

)
T i
kdn

)
(7.54)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.38), (7.39), (7.40), (7.41), (7.42) and
(7.44),

a1(W(x, ·)) =
`

∑
i=1

RN
i T i

kW(x, ·)

=
`

∑
i=1

RN
i

4π

(
σ2 − |x|2[

σ2 + |x|2 − 2σx · η(i)
]3/2 −

σ2 − |x|4[
σ2 + |x|4 − 2σ|x|x · η(i)

]3/2

)
(7.55)

145

7. A learning algorithm

using (7.42),

∂

∂xj
a1(W(x, ·)) =

`

∑
i=1

RN
i

∂

∂xj
T i
kW(x, ·)

=
`

∑
i=1

RN
i

4π

− 2xj[
σ2 + |x|2 − 2σx · η(i)

]3/2 −
3
(
σ2 − |x|2

) (
xj − ση

(i)
j

)
[
σ2 + |x|2 − 2σx · η(i)

]5/2

+
4|x|2xj[

σ2 + |x|4 − 2σ|x|x · η(i)
]3/2

+
3
(
σ2 − |x|4

) (
2|x|2xj − σ|x|−1xjx · η(i) − σ|x|η(i)

j

)
4π
[
σ2 + |x|4 − 2σ|x|x · η(i)

]5/2

 (7.56)

using (7.46),

a3(W(x, ·)) =
`

∑
i=1

RN
i

(
e(i) · PV⊥NTkW(x, ·)

)
=

`

∑
i=1

RN
i

(
T i
kW(x, ·)−

N

∑
n=1

β
(N)
n (W(x, ·))T i

kdn

)
(7.57)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41) and (7.42),

∂

∂xj
a3(W(x, ·)) =

`

∑
i=1

RN
i

∂

∂xj

(
e(i) · PV⊥NTkW(x, ·)

)
=

`

∑
i=1

RN
i

(
∂

∂xj
T i
kW(x, ·)−

N

∑
n=1

(
∂

∂xj
β
(N)
n (W(x, ·))

)
T i
kdn

)
(7.58)

using (2.27), (3.18), (7.38), (7.39), (7.40), (7.41), (7.42) and (7.46),

b1(W(x, ·)) =
`

∑
i=1

(
T i
kW(x, ·)

)2

=
`

∑
i=1

(
σ2 − |x|2

4π
[
σ2 + |x|2 − 2σx · η(i)

]3/2 −
σ2 − |x|4

4π
[
σ2 + |x|4 − 2σ|x|x · η(i)

]3/2

)2

(7.59)

using (7.42),

∂

∂xj
b1(W(x, ·)) =

`

∑
i=1

∂

∂xj

(
T i
kW(x, ·)

)2
=

`

∑
i=1

2
(
T i
kW(x, ·)

) ∂

∂xj

(
T i
kW(x, ·)

)
(7.60)

146

7.2. Optimization problems in detail

using (7.42) and (7.46),

b3(W(x, ·)) =
`

∑
i=1

(
e(i) · PV⊥NTkW(x, ·)

)2

=
`

∑
i=1

(
T i
kW(x, ·)−

N

∑
n=1

β
(N)
n (W(x, ·)) T i

kdn

)2

(7.61)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41), (7.42),

∂

∂xj
b3 (W(x, ·)) =

`

∑
i=1

∂

∂xj

(
e(i) · PV⊥NTkW(x, ·)

)2

=
`

∑
i=1

2
(

e(i) · PV⊥NTkW(x, ·)
)(∂

∂xj
T i
kW(x, ·)−

N

∑
n=1

(
∂

∂xj
β
(N)
n (W(x, ·))

)
T i
kdn

)
(7.62)

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.38), (7.39), (7.40), (7.41), (7.42) and
(7.46),

a1

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i T i

kg(k,L)
((

c, Aε3
)

, ·
)

=
`

∑
i=1

L

∑
n=0

n

∑
j=−n

RN
i g(k,L)

n,j

(
c, Aε3

)
σ−n−1Yn,j

(
η(i)
)

(7.63)

using (3.18),

∂

∂zm
a1

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i

∂

∂zm
T i
kg(k,L)

((
c, Aε3

)
, ·
)

=
`

∑
i=1

L

∑
n=0

n

∑
j=−n

RN
i

(
∂

∂zm
g(k,L)

n,j

(
c, Aε3

))
σ−n−1Yn,j

(
η(i)
)

(7.64)

using (7.24), (7.35) and (7.36),

a3

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i

(
e(i) · PV⊥NTkg(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i

(
T i
kg(k,L)

((
c, Aε3

)
, ·
)
−

N

∑
n=1

β
(N)
n

(
g(k,L)

((
c, Aε3

)
, ·
))
T i
kdn

)
(7.65)

147

7. A learning algorithm

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41) and (7.42),

∂

∂zm
a3

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i

∂

∂zm

(
e(i) · PV⊥NTkg(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

RN
i

(
∂

∂zm
T i
kg(k,L)

((
c, Aε3

)
, ·
)

−
N

∑
n=1

(
∂

∂zm
β
(N)
n

(
g(k,L)

((
c, Aε3

)
, ·
)))

T i
kdn

)
(7.66)

using (2.27), (3.18), (7.24), (7.35), (7.36), (7.38), (7.39), (7.40), (7.41) and (7.42),

b1

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

(
T i
kg(k,L)

((
c, Aε3

)
, ·
))2

=
`

∑
i=1

(
L

∑
n=0

n

∑
j=−n

g(k,L)
n,j

(
c, Aε3

)
σ−n−1Yn,j

(
η(i)
))2

(7.67)

using (3.18),

∂

∂zm
b1

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

∂

∂zm

(
T i
kg(k,L)

((
c, Aε3

)
, ·
))2

=
`

∑
i=1

2
(
T i
kg(k,L)

((
c, Aε3

)
, ·
))

×
(

L

∑
n=0

n

∑
j=−n

(
∂

∂zm
g(k,L)

n,j

(
c, Aε3

))
σ−n−1Yn,j

(
η(i)
))

(7.68)

using (3.18), (7.24), (7.35) and (7.36),

b3

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

(
e(i) · PV⊥NTkg(k,L)

((
c, Aε3

)
, ·
))2

=
`

∑
i=1

(
T i
kg(k,L)

((
c, Aε3

)
, ·
)
−

N

∑
n=1

β
(N)
n

(
g(k,L)

((
c, Aε3

)
, ·
))
T i
kdn

)2

(7.69)

148

7.2. Optimization problems in detail

using (2.27), (3.18), Theorem 4.4.3, (7.37), (7.41), (7.42) and, at last,

∂

∂zm
b3

(
g(k,L)

((
c, Aε3

)
, ·
))

=
`

∑
i=1

∂

∂zm

(
e(i) · PV⊥NTkg(k,L)

((
c, Aε3

)
, ·
))2

=
`

∑
i=1

2
(

e(i) · PV⊥NTkg(k,L)
((

c, Aε3
)

, ·
))

×
(

∂

∂zm
T i
kg(k,L)

((
c, Aε3

)
, ·
)
−

N

∑
n=1

(
∂

∂zm
β
(N)
n

(
g(k,L)

((
c, Aε3

)
, ·
)))

T i
kdn

)
(7.70)

using (2.27), (3.18), Theorem 4.4.3, (7.24), (7.35), (7.36), (7.37), (7.38), (7.39), (7.40),
(7.41) and (7.42).

7.2.4. Inner products of linear combinations of dictionary
elements

Next, we consider the terms a2(d(z)), a4(d(z)), b4(d(z)) and b5(d(z)) from Defi-
nition 7.1.2 and Lemma 7.1.5 and for z ∈ Rδz (confer (7.19)) and their derivatives.
We see that the terms a2(d(z)) and b4(d(z)) have a similar structure and, thus,
can be considered at once. Similarly, we can generalize the terms a4(d(z)) and
b5(d(z)). For both generalizations, we define a general linear combination of dic-
tionary elements by

cN :=
N

∑
n=1

γn(d(z))dn.

Hence, in particular, we have

γn(d(z)) ≡ αn

if cN = fN = f (N)
N as well as

γn(d(z)) = β
(N)
n (d(z))

if cN = b(N)
N . Then the terms a2(d(z)) and b4(d(z)) are particular cases of

〈cN, d〉H2(Ω).

Similarly, we obtain the generalization

〈cN, c̃N〉H2(Ω) (7.71)

149

7. A learning algorithm

with cN not necessarily equal to c̃N for the terms a4(d(z)) and b5(d(z)). We use
the linearity of the inner product and obtain

〈cN, d(z)〉H2(Ω) =
N

∑
n=1

γn(d(z))〈dn, d(z)〉H2(Ω) (7.72)

as well as

〈cN, c̃N〉H2(Ω) =
N

∑
n=1

N

∑
ñ=1

γn(d(z))γ̃ñ(d(z))〈dn, dñ〉H2(Ω). (7.73)

These term can be computed via the inner products given in (3.19) to (3.28) in
Section 3.5 as well as Theorem 4.4.3 if cN = b(N)

n (d(z)). Note that for an efficient
implementation, one can utilize the Clenshaw algorithm (Theorem A.2.1 and Al-
gorithm 8) for the truncated series as well as Algorithm 9 for the associated Leg-
endre functions. For (7.72), we have explicitly the formulas (7.74) to (7.76) where
we abbreviate A = A(α, β, γ).

150

7.2. Optimization problems in detail

〈c
N

,K
(x

,·)
〉 H

2(
Ω
)
=

N ∑ n=
1

γ
n
(K

(x
,·)

)

×

(m
+

1 2

) 4 |x
|m

Y m
,k

(x |x
|) ,

d n
=

Y m
,k

∑
∞ m
=

0

(m
+

1 2

) 4 (|x
||x
′ |)

m
2m

+
1

4π
P m
(x |x
|·

x′ |x
′ |) ,

d n
=

K
(x
′ ,
·)

∑
∞ m
=

0

(m
+

1 2

) 4 (|
x′
|m
−
|x
′ |2

m
) |x|m

2m
+

1
4π

P m
(x |x
|·

x′ |x
′ |) ,

d n
=

W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
k,

L)
l,i

(c,
A

ε3) |x
|l Y l

,i

(x |x
|) ,

d n
=

g(
k,

L)
((c,

A
ε3) ,·)

(7
.7

4)

〈c
N

,W
(x

,·)
〉 H

2(
Ω
)
=

N ∑ n=
1

γ
n
(W

(x
,·)

)

×

(m
+

1 2

) 4 (|
x|

m
−
|x
|2m
) Y m

,k

(x |x
|) ,

d n
=

Y m
,k

∑
∞ m
=

0

(m
+

1 2

) 4 (|
x|

m
−
|x
|2m
) |x′ |

m
2m

+
1

4π
P m
(x |x
|·

x′ |x
′ |) ,

d n
=

K
(x
′ ,
·)

∑
∞ m
=

0

(m
+

1 2

) 4 (|
x′
|m
−
|x
′ |2

m
)(|x
|m
−
|x
|2m
) 2m+

1
4π

P m
(x |x
|·

x′ |x
′ |) ,

d n
=

W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
k,

L)
l,i

(c,
A

ε3)(|
x|

l
−
|x
|2l
) Y l

,i

(x |x
|) ,

d n
=

g(
k,

L)
((c,

A
ε3) ,·)

(7
.7

5)

151

7. A learning algorithm

〈 c N
,g

(o
,L
)
(c,

A
ε3 ,·)〉

H
2(

Ω
)
=

N ∑ n=
1

γ
n

g(
o,

L)
((c,

A
ε3) ,·)

×

(m
+

1 2

) 2 g(
o,

L)
m

,k

(c,
A

ε3) ,
d n

=
Y m

,k
,

m
≤

L
0,

d n
=

Y m
,k

,
m

>
L

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
o,

L)
l,i

(c,
A

ε3) |x
′ |l

Y l
,i

(x′ |x
′ |) ,

d n
=

K
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
o,

L)
l,i

(c,
A

ε3)(|
x′
|l −
|x
′ |2

l) Y l
,i

(x′ |x
′ |) ,

d n
=

W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
o,

L)
l,i

(c,
A

ε3) g(
k,

L)
l,i

(c′
,A
′ ε

3) ,
d n

=
g(

k,
L)
((c′

,A
′ ε

3) ,·)
(7

.7
6)

152

7.2. Optimization problems in detail

As the dependence on d(z) in the term (7.71) is only given in the coefficients
γ(d(z)), we abstain from repeating all possible combinations of inner products
and once again refer to (3.19) to (3.28).
Next, we consider the partial derivatives of (7.72) and (7.73):

∂

∂zj
〈cN, d(z)〉H2(Ω)

=
N

∑
n=1

∂

∂zj

(
γn(d(z))〈dn, d(z)〉H2(Ω)

)
=

N

∑
n=1

((
∂

∂zj
γn(d(z))

)
〈dn, d(z)〉H2(Ω) + γn(d(z))

∂

∂zj
〈dn, d(z)〉H2(Ω)

)
(7.77)

as well as

∂

∂zj
〈cN, c̃N〉H2(Ω)

=
N

∑
n=1

N

∑
ñ=1

(
∂

∂zj
(γn(d(z))γ̃ñ(d(z)))

)
〈dn, dñ〉H2(Ω)

=
N

∑
n=1

N

∑
ñ=1

((
∂

∂zj
γn(d(z))

)
γ̃ñ(d(z)) + γn(d(z))

∂

∂zj
γ̃ñ(d(z))

)
〈dn, dñ〉H2(Ω).

(7.78)

Hence, we see that the derivatives (7.77) and (7.78) only depend on

∂

∂zj
γn(d(z)) =

∂

∂zj
αn, cN = fN = f (N)

N
∂

∂zj
β
(N)
n (d(z)), cN = b(N)

N

=

{
0, cN = fN = f (N)

N
∂

∂zj
β
(N)
n (d(z)), cN = b(N)

N

}
(7.79)

and

∂

∂zj
〈dn, d(z)〉H2(Ω). (7.80)

The derivatives of the projection coefficients β
(N)
n (d(z)), n = 1, ..., N, have al-

ready been discussed in (7.39) and (7.40). With these formulas as well as (3.19) to
(3.28), the derivative of (7.73) is clear.
Thus, it remains to discuss the derivative of (7.72) in detail. In particular, we have
to discuss the derivative of theH2(Ω)-inner product, see (7.80). We first consider
these terms for a Slepian functions d(z(c, α, β, γ)) = g(k,L)((c, A(α, β, γ)ε3), ·). In

153

7. A learning algorithm

(3.22), (3.25), (3.27) and (3.28), we see that, independent of dn, the inner product is
always a finite sum and the derivative acts again only on the Fourier coefficients
of the Slepian function. Thus, with (7.23) and (7.24), we obtain the respective
derivatives.
If d(x) (again, with x = z ∈ R3) is an Abel–Poisson low or band pass filter, we
have to divide the next considerations with respect to the type of dn. If dn is a
spherical harmonic or a Slepian function, we see in (3.20), (3.21), (3.25) and (3.27)
that the inner product is again a finite sum and the derivative acts on terms of the
form

∂

∂xj
|x|mnYn,j

(
x
|x|

)
(7.81)

for m, n ∈ N. We consider the whole gradient at once. This will make the next
investigations easier. That means, instead of (7.81), we consider

∇
(
|x|mnYn,j

(
x
|x|

))
.

With the use of (2.5), we obtain

∇x

(
|x|mnYn,j

(
x
|x|

))
= ∇x(r,ϕ,t)

(
rmnYn,j

(
x(r, ϕ, t)

r

))
=

(
εr ∂

∂r
+

1
r

(
εϕ 1√

1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

))(
rmnYn,j

(
x(r, ϕ, t)

r

))
= εr

(
∂

∂r

(
rmnYn,j

(
x(r, ϕ, t)

r

)))
+

1
r

εϕ 1√
1− t2

(
∂

∂ϕ

(
rmnYn,j

(
x(r, ϕ, t)

r

)))
+

1
r

εt
√

1− t2
(

∂

∂t

(
rmnYn,j

(
x(r, ϕ, t)

r

)))
= εr

(
∂

∂r
rmn
)

Yn,j

(
x(r, ϕ, t)

r

)
+ rmn−1εϕ 1√

1− t2

∂

∂ϕ
Yn,j

(
x(r, ϕ, t)

r

)
+ rmn−1εt

√
1− t2 ∂

∂t
Yn,j

(
x(r, ϕ, t)

r

)

= rmn−1

εrmnYn,j

(
x(r, ϕ, t)

r

)
+ εϕ j√

1− t2
Yn,−j

(
x(r, ϕ, t)

r

)

+ εt
√

1− t2

√
2n + 1

4π

(n− |j|)!
(n + |j|)! P′n,|j|(t)

√

2 cos(jϕ), j < 0
1, j = 0√

2 sin(jϕ), j > 0

 (7.82)

where the latter equation holds due to (2.17). We have to take a closer look at
(7.82) regarding possible singularities in t = ±1 as well as r = 0. We begin with
the case t = ±1. In that respect, the term (7.82) contains two probably problematic

154

7.2. Optimization problems in detail

terms:

j√
1− t2

Yn,−j

(
x(r, ϕ, t)

r

)
(7.83)

and √
1− t2

√
2n + 1

4π

(n− |j|)!
(n + |j|)! P′n,|j|(t). (7.84)

We consider (7.83) first. If j = 0, this is a removable singularity with a zero value.
In the case j 6= 0, using the definition of the fully normalized spherical harmonics
(see (2.14)), the term reformulates to

j√
1− t2

Yn,−j

(
x(r, ϕ, t)

r

)

=
j√

1− t2

√
2n + 1

4π

(n− |j|)!
(n + |j|)! Pn,|j|(t)

√

2 cos(jϕ), j < 0
1, j = 0√

2 sin(jϕ), j > 0

=
j√

1− t2

√
2n + 1

4π

(n− |j|)!
(n + |j|)!

(
1− t2

)|j|/2
(

d|j|

dt|j|
Pn(t)

)
√

2 cos(jϕ), j < 0
1, j = 0√

2 sin(jϕ), j > 0

= j

√
2n + 1

4π

(n− |j|)!
(n + |j|)!

(
1− t2

)(|j|−1)/2
(

d|j|

dt|j|
Pn(t)

)
√

2 cos(jϕ), j < 0
1, j = 0√

2 sin(jϕ), j > 0
.

(7.85)

Obviously, a problem exists only if

|j| − 1
2

< 0

which is equivalent to j = 0. As this was excluded in this case, the term (7.83) has
no singularity and can be used in (7.82). Note that an efficient implementation of
(7.83) is based, for instance, on Appendix A, Algorithm 14. For the second term
(7.84), we have√

1− t2pn,jP′n,|j|(t)

=
√

1− t2pn,j
d
dt

Pn,|j|(t)

=
√

1− t2pn,j
d
dt

((
1− t2

)|j|/2 d|j|

dt|j|
Pn(t)

)

=
√

1− t2pn,j

(
|j|
2

(
1− t2

)(|j|/2)−1
(−2t)

d|j|

dt|j|
Pn(t) +

(
1− t2

)|j|/2 d|j|+1

dt|j|+1
Pn(t)

)

155

7. A learning algorithm

= pn,j

(
−|j|t

(
1− t2

)(|j|−1)/2 d|j|

dt|j|
Pn(t) +

(
1− t2

)(|j|+1)/2 d|j|+1

dt|j|+1
Pn(t)

)
(7.86)

with the abbreviation

pn,j :=

√
2n + 1

4π

(n− |j|)!
(n + |j|)! . (7.87)

Again, the only possibly problematic term is

|j|
(

1− t2
)(|j|−1)/2

.

However, for j = 0, we have again a removable singularity. If j > 0, the expo-
nents are non-negative. Thus, also (7.84) contains no singularity. An efficient im-
plementation of (7.84) can be based, for instance, on Appendix A, Algorithm 15.
Next, we have to discuss (7.82) for r = 0. First, we note that, for mn > 1, the term
vanishes due to the factor rmn−1 in front and because the polynomial spherical
harmonics are bounded. Further, we see that, in this case, the values of ϕ and
t in 0 can, thus, be arbitrarily chosen. Left to discuss are n = 0 with m ∈ N

as well as n = 1 with m = 1. In the former case, we also have j = 0. Hence,
obviously, the first two summands in the brackets vanish. The third summand
vanishes because P′0,0(t) = P′0(t) = 0, i. e. the derivative of the Legendre poly-
nomial of degree 0 vanishes. Thus, we have a removable singularity for x = 0
and n = 0. Again, ϕ and t are arbitrary in this case. At last, we consider (7.82)
for x = 0, n = 1 and m = 1. We see that the factor rmn−1 in front is constant
1. Hence, again, due to the boundedness of the spherical harmonics, the term is
well-defined in this case as well. In particular, we see that the sum in the brackets
rearranges to

εrY1,j

(
x(r, ϕ, t)

r

)
+ εϕ j√

1− t2
Y1,−j

(
x(r, ϕ, t)

r

)

+ εt
√

1− t2

√
3

4π

(1− |j|)!
(1 + |j|)! P′1,|j|(t)

√

2 cos(jϕ), j < 0
1, j = 0√

2 sin(jϕ), j > 0

for |j| ≤ 1. With (2.2), (2.3), (2.4) (all with t = cos(θ)), (2.13), (2.14),(7.87) (note
pn,j = pn,−j) and (A.1) (in particular, P1(t) = t, P′1(t) = 1, P′′1 (t) = 0), we obtain

156

7.2. Optimization problems in detail

for |j| = 1

√

1− t2 cos(ϕ)√
1− t2 sin(ϕ)

t

 p1,±1

√
1− t2P′1(t)

{ √
2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1

±
− sin(ϕ)

cos(ϕ)
0

 1√
1− t2

p1,∓1

√
1− t2P′1(t)

{ √
2 sin(ϕ), j = −1√
2 cos(ϕ), j = 1

+

−t cos(ϕ)
−t sin(ϕ)√

1− t2

√1− t2p1,±1
d
dt

(√
1− t2P′1(t)

){ √2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1

=

(
1− t2) cos(ϕ)(
1− t2) sin(ϕ)

t
√

1− t2

 p1,±1

{ √
2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1

±
− sin(ϕ)

cos(ϕ)
0

 p1,∓1

{ √
2 sin(ϕ), j = −1√
2 cos(ϕ), j = 1

+

−t cos(ϕ)
−t sin(ϕ)√

1− t2

√1− t2p1,±1

(
− t√

1− t2

){ √
2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1

=

(
1− t2) cos(ϕ)(
1− t2) sin(ϕ)

t
√

1− t2

 p1,±1

{ √
2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1

±
− sin(ϕ)

cos(ϕ)
0

 p1,±1

{ √
2 sin(ϕ), j = −1√
2 cos(ϕ), j = 1

−
−t2 cos(ϕ)
−t2 sin(ϕ)

t
√

1− t2

 p1,±1

{ √
2 cos(ϕ), j = −1√
2 sin(ϕ), j = 1.

That means, for j = −1, we have

√
2p1,−1

 (
1− t2) cos2(ϕ) + sin2(ϕ) + t2 cos2(ϕ)(

1− t2) sin(ϕ) cos(ϕ)− cos(ϕ) sin(ϕ) + t2 sin(ϕ) cos(ϕ)

t
√

1− t2 cos(ϕ)− t
√

1− t2 cos(ϕ)

=
√

2p1,−1(1, 0, 0)T.

157

7. A learning algorithm

Analogously, for j = 1, we obtain

√
2p1,1

(
1− t2) cos(ϕ) sin(ϕ)− sin(ϕ) cos(ϕ) + t2 cos(ϕ) sin(ϕ)(

1− t2) sin2(ϕ) + cos2(ϕ) + t2 sin2(ϕ)

t
√

1− t2 sin(ϕ)− t
√

1− t2 sin(ϕ)

=
√

2p1,1(0, 1, 0)T.

At last, for j = 0, it similarly holds
√

1− t2 cos(ϕ)√
1− t2 sin(ϕ)

t

 p1,0P1(t) +

−t cos(ϕ)
−t sin(ϕ)√

1− t2

√1− t2p1,0P′1(t)

= p1,0

√

1− t2t cos(ϕ)√
1− t2t sin(ϕ)

t2

+

−
√

1− t2t cos(ϕ)

−
√

1− t2t sin(ϕ)
1− t2

 = p1,0

0
0
1

 .

Thus, we see that also for n = 1 with m = 1 the choice of the particular ϕ and t is
arbitrary if x = 0. All in all, we see that (7.82) is well-defined for t = ±1 as well
as x = 0 and, in the latter case, the values are independent of a specific choice of
ϕ and t.
It remains to consider (7.80) for the use in (7.72) if d(x) and dn is an Abel–Poisson
low or band pass filter. In (3.23), (3.24) and (3.26), we see that such an H2(Ω)-
inner product is a series. Thus, first of all, we have to take into consideration
the exchange of the limits. Using the Weierstrass M-test, we need to consider for
n ∈ N0: ∣∣∣∣∇x

(
A2

n
(
|x|
∣∣x′∣∣)n 2n + 1

4π
Pn

(
x
|x| ·

x′

|x′|

))∣∣∣∣
=

∣∣∣∣∣A2
n
∣∣x′∣∣n n

∑
j=−n

Yn,j

(
x′

|x′|

)
∇x

(
|x|nYn,j

(
x
|x|

))∣∣∣∣∣
=

∣∣∣∣∣A2
n
∣∣x′∣∣n n

∑
j=−n

Yn,j

(
x′

|x′|

)√
n(2n + 1)|x|n−1ỹ(2)n,j

(
x
|x|

)∣∣∣∣∣
≤ A2

n

√
n(2n + 1)

∣∣x′∣∣n n

∑
j=−n

∣∣∣∣Yn,j

(
x′

|x′|

)∣∣∣∣ |x|n−1
∣∣∣∣ỹ(2)n,j

(
x
|x|

)∣∣∣∣
≤ A2

n

√
n(2n + 1)

∣∣x′∣∣n n

∑
j=−n

√
2n + 1

4π

√
2n + 1

4π

≤ A2
n

√
n(2n + 1)

(2n + 1)2

4π

∣∣x′∣∣n
= O

(
n5
) ∣∣x′∣∣n ,

158

7.2. Optimization problems in detail

using |x| < 1, the gradient (note that |x| = r)

∇|x|mn =

(
εr ∂

∂r
+

1
r

(
εϕ 1√

1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

))
|x|mn

= εr ∂

∂r
|x|mn = mnεr|x|mn−1 = mnx|x|mn−2 (7.88)

for m, n ∈ N, and the estimates∣∣∣∣Ym,k

(
x
|x|

)∣∣∣∣2 ≤ n

∑
j=−n

(
Yn,j

(
x
|x|

))2

=
2n + 1

4π

as well as ∣∣∣∣ỹ(2)m,k

(
x
|x|

)∣∣∣∣2 ≤ n

∑
j=−n

∣∣∣∣ỹ(2)n,j

(
x
|x|

)∣∣∣∣2 =
2n + 1

4π

(see e. g. Freeden et al., 1998; Michel, 2013, 2020) where ỹ(2)m,k, m, k ∈ N0, k =
−m, ..., m, are the Edmonds vector spherical harmonics of type 2 (see e. g. Ed-
monds, 1996; Michel, 2020). Note that, for these estimates we utilize Theorem 2.2.4
as well as |Pn(t)| ≤ 1 for all t ∈ [−1, 1] (see e. g. Freeden and Schreiner, 2009,
p. 88). Note that (7.88) has a removable singularity for x = 0 as well as n = 0 or
n = 1 and m = 1 and is singularity-free if mn > 1.
If two Abel–Poisson low pass filters are under investigation, this gives us the nec-
essary upper bound as |x′| < 1 and fixed. In the other cases, we obtain similarly∣∣∣∣∇x

(
A2

n

(∣∣x′∣∣n − ∣∣x′∣∣2n
)
|x|n 2n + 1

4π
Pn

(
x
|x| ·

x′

|x′|

))∣∣∣∣
≤ O

(
n5
) (∣∣x′∣∣n − ∣∣x′∣∣2n

)
,

∣∣∣∣∇x

(
A2

n

(
|x|n − |x|2n

) ∣∣x′∣∣n 2n + 1
4π

Pn

(
x
|x| ·

x′

|x′|

))∣∣∣∣
=

∣∣∣∣∣A2
n
∣∣x′∣∣n n

∑
j=−n

Yn,j

(
x′

|x′|

)
∇x

((
|x|n − |x|2n

)
Yn,j

(
x
|x|

))∣∣∣∣∣
=

∣∣∣∣∣A2
n
∣∣x′∣∣n(n

∑
j=−n

Yn,j

(
x′

|x′|

)√
n(2n + 1)|x|n−1ỹ(2)n,j

(
x
|x|

)

−
n

∑
j=−n

Yn,j

(
x′

|x′|

)√
n(2n + 1)|x|2n−1ỹ(2)n,j

(
x
|x|

)

−
n

∑
j=−n

Yn,j

(
x′

|x′|

)
nx|x|2n−2Yn,j

(
x
|x|

))∣∣∣∣∣

159

7. A learning algorithm

≤ A2
n
∣∣x′∣∣n(n

∑
j=−n

∣∣∣∣Yn,j

(
x′

|x′|

)∣∣∣∣√n(2n + 1)|x|n−1
∣∣∣∣ỹ(2)n,j

(
x
|x|

)∣∣∣∣
+

n

∑
j=−n

∣∣∣∣Yn,j

(
x′

|x′|

)∣∣∣∣√n(2n + 1)|x|2n−1
∣∣∣∣ỹ(2)n,j

(
x
|x|

)∣∣∣∣
+

n

∑
j=−n

∣∣∣∣Yn,j

(
x′

|x′|

)∣∣∣∣ n|x|2n−1
∣∣∣∣Yn,j

(
x
|x|

)∣∣∣∣
)

≤ A2
n
∣∣x′∣∣n ((2n + 1)2

4π

√
n(2n + 1) +

(2n + 1)2

4π

√
n(2n + 1) +

(2n + 1)2

4π
n
)

= A2
n
∣∣x′∣∣n (2n + 1)2

4π

(
2
√

n(2n + 1) + n
)
= O

(
n5
) ∣∣x′∣∣n ,

∣∣∣∣∇x

(
A2

n

(∣∣x′∣∣n − ∣∣x′∣∣2n
) (
|x|n − |x|2n

) 2n + 1
4π

Pn

(
x
|x| ·

x′

|x′|

))∣∣∣∣
≤ O

(
n5
) (∣∣x′∣∣n − ∣∣x′∣∣2n

)
.

Hence, also in the cases of one Abel–Poisson low pass filter and one Abel–Poisson
band pass filter as well as two Abel–Poisson band pass filters, the geometric series
is a majorant series and we can exchange the limits of differentiation with the
series. Note that these considerations include the case ‖d(x)‖H2(Ω) as used in
b2(d(z)) (see Section 7.2.5).
We see that the differentiation of the inner products (3.23), (3.24) and (3.26) acts
only on terms of the form

∂

∂xj

(
|x|mnPn

(
x(i)∣∣x(i)∣∣ · x

|x|

))
, m ∈ N.

Again, we consider

∇
(
|x|mnPn

(
x(i)∣∣x(i)∣∣ · x

|x|

))

instead. This formulation yields

∇x

(
|x|mnPn

(
x(i)∣∣x(i)∣∣ · x

|x|

))
= ∇x(r,ϕ,t)

(
rmnPn

(
x(i)∣∣x(i)∣∣ · εr

))

=

(
εr ∂

∂r
+

1
r

(
εϕ 1√

1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

))(
rmnPn

(
x(i)∣∣x(i)∣∣ · εr

))

160

7.2. Optimization problems in detail

= εr
(

∂

∂r
rmn
)

Pn

(
x(i)∣∣x(i)∣∣ · εr

)

+
1
r

(
εϕ 1√

1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)(
rmnPn

(
x(i)∣∣x(i)∣∣ · εr

))

= εrmnrmn−1Pn

(
x(i)∣∣x(i)∣∣ · εr

)

+ rmn−1

(
εϕ 1√

1− t2
P′n

(
x(i)

|x(i)| · ε
r

)(
x(i)∣∣x(i)∣∣ · ∂

∂ϕ
εr

)

+εt
√

1− t2P′n

(
x(i)∣∣x(i)∣∣ · εr

)(
x(i)∣∣x(i)∣∣ · ∂

∂t
εr

))

= εrmn|x|mn−1Pn

(
x(i)∣∣x(i)∣∣ · x

|x|

)

+ |x|mn−1

(
εϕ 1√

1− t2
P′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ ·√1− t2εϕ

)

+ εt
√

1− t2P′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ · 1√

1− t2
εt

))

= |x|mn−1

(
mnεrPn

(
x(i)∣∣x(i)∣∣ · x

|x|

)

+ εϕP′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ · εϕ

)
+ εtP′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ · εt

))
(7.89)

For the Legendre polynomials and their derivatives in (7.89) , an efficient imple-
mentation is given, for instance, in Appendix A, (A.1) and (A.2).
We have to discuss the well-definedness of (7.89) for x = 0 or x(i) = 0, i. e. |x| = 0
or |x(i)| = 0. First of all, we note that the term originates from (3.23), (3.24) and
(3.26) and, hence, we discuss the well-definedness of (7.89) in the form∣∣∣x(i)∣∣∣m′n |x|mn−1

(
mnεrPn

(
x(i)∣∣x(i)∣∣ · x

|x|

)

+ εϕP′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ · εϕ

)

+ εtP′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)(
x(i)∣∣x(i)∣∣ · εt

))
(7.90)

for n, m and m′ ∈ N. In particular, for n = 0, we compute the derivative of a

161

7. A learning algorithm

constant function. Thus, if x = 0 or x(i) = 0, we have a removable singularity in
this case. We consider n ≥ 1 in the sequel and note that, for n ∈ N the Legendre
polynomials can be written as

Pn

(
x(i)∣∣x(i)∣∣ · x

|x|

)
=

n

∑
ν=0

cν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν

and, thus, their derivatives as

P′n

(
x(i)∣∣x(i)∣∣ · x

|x|

)
=

n

∑
ν=1

νcν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν−1

.

Then we have for (7.90)

∣∣∣x(i)∣∣∣m′n |x|mn−1

(
mnεr

n

∑
ν=0

cν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν

+ εϕ

 n

∑
ν=1

νcν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν−1
(x(i)∣∣x(i)∣∣ · εϕ

)

+ εt

 n

∑
ν=1

νcν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν−1
(x(i)∣∣x(i)∣∣ · εt

)
= mnεr

n

∑
ν=0

cν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν ∣∣∣x(i)∣∣∣m′n |x|mn−1

+ εϕ
(

x(i) · εϕ
) n

∑
ν=1

νcν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν−1 ∣∣∣x(i)∣∣∣m′n−1
|x|mn−1

+ εt
(

x(i) · εt
) n

∑
ν=1

νcν

(
x(i)∣∣x(i)∣∣ · x

|x|

)ν−1 ∣∣∣x(i)∣∣∣m′n−1
|x|mn−1

= mnεr
n

∑
ν=0

cν

(
x(i) · x

)ν ∣∣∣x(i)∣∣∣m′n−ν
|x|mn−1−ν

+ εϕ
(

x(i) · εϕ
) n

∑
ν=1

νcν

(
x(i) · x

)ν−1 ∣∣∣x(i)∣∣∣m′n−ν
|x|mn−ν

+ εt
(

x(i) · εt
) n

∑
ν=1

νcν

(
x(i) · x

)ν−1 ∣∣∣x(i)∣∣∣m′n−ν
|x|mn−ν

162

7.2. Optimization problems in detail

= mnεr
n

∑
ν=0

cν

(
cos

(
^
(

x(i), x
)))ν ∣∣∣x(i)∣∣∣m′n |x|mn−1

+ εϕ
(

x(i) · εϕ
) n

∑
ν=1

νcν

(
x(i) · x

)ν−1 ∣∣∣x(i)∣∣∣m′n−ν
|x|mn−ν

+ εt
(

x(i) · εt
) n

∑
ν=1

νcν

(
x(i) · x

)ν−1 ∣∣∣x(i)∣∣∣m′n−ν
|x|mn−ν.

We immediately notice that, if n > 1, all terms are bounded for x = 0 or x(i) = 0
and all m, m′ ∈ N. In particular, because mn − 1 > 0 and m′n − 1 > 0, the
gradient vanishes for x = 0 or x(i) = 0. At last, we discuss the case n = 1 for
x = 0 or x(i) = 0 and all m, m′ ∈ N. For x(i) = 0, the term also vanishes for all
n, m, m′ ∈ N and all x ∈ B̊. For x(i) 6= 0, the term vanishes in the case of x = 0 if
m > 1. Thus, we remain with the case x(i) 6= 0, x = 0 and n = m = 1 and m′ ∈ N.
For these values of n and m, we consider again the formulation (7.90) for x 6= 0
and x(i) 6= 0:

∣∣∣x(i)∣∣∣m′ (εr

(
x(i)∣∣x(i)∣∣ · εr

)
+ εϕ

(
x(i)∣∣x(i)∣∣ · εϕ

)
+ εt

(
x(i)∣∣x(i)∣∣ · εt

))
(7.91)

with P1(t) = t and P′1(t) = 1 for t ∈ [−1, 1] and x/|x| = εr. Obviously, the sum
in the brackets is a decomposition of x(i)/|x(i)| in the local orthonormal basis
εr, εϕ, εt. Thus, (7.91) equals∣∣∣x(i)∣∣∣m′ x(i)

|x(i)| =
∣∣∣x(i)∣∣∣m′−1

x(i).

That means, if n = m = 1, the gradient is independent of x and, hence, well-
defined for x = 0. Summarized, we have seen that (7.89) in the formulation (7.90)
(and, thus, in its use in the gradients of (3.23), (3.24) and (3.26)) is well-defined
for x = 0 or x(i) = 0. Furthermore, it is independent of a specific choice of ϕ and
t for x as well as x(i).
All in all, for the derivatives of (7.72), we obtain the formulas (7.92) to (7.94) which
can be computed via (3.19) to (3.28), (7.79), (7.82) and (7.89). Note that we again
abbreviate A = A(α, β, γ).

163

7. A learning algorithm

∇
〈c

N
,K

(x
,·)
〉 H

2(
Ω
)
=

N ∑ n=
1
(∇

γ
n
(K

(x
,·)

))
〈d

n
,K

(x
,·)
〉 H

2(
Ω
)
+

N ∑ n=
1

γ
n
(K

(x
,·)

)

×

(m
+

1 2

) 4 ∇
(|x|m

Y m
,k

(x |x
|)) ,

d n
=

Y m
,k

∑
∞ m
=

0

(m
+

1 2

) 4 2m
+

1
4π

(|x
′ |)

m
∇
(|x|m

P m
(x |x
|·

x′ |x
′ |)) ,

d n
=

K
(x
′ ,
·)

∑
∞ m
=

0

(m
+

1 2

) 4 2n
+

1
4π

(|x′ |
m
−
|x
′ |2

m
) ∇(

|x
|m

P m
(x |x
|·

x′ |x
′ |)) ,

d n
=

W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
k,

L)
l,i

(c,
A

ε3) ∇
(|x|l

Y l
,i

(x |x
|)) ,

d n
=

g(
k,

L)
((c,

A
ε3) ,·)

(7
.9

2)

∇
〈c

N
,W

(x
,·)
〉 H

2(
Ω
)
=

N ∑ n=
1
(∇

γ
n
(W

(x
,·)

))
〈d

n
,W

(x
,·)
〉 H

2(
Ω
)
+

N ∑ n=
1

γ
n
(W

(x
,·)

)

×

(m
+

1 2

) 4 ∇
((|x
|m
−
|x
|2m
) Y m

,k

(x |x
|)) ,

d n
=

Y m
,k

∑
∞ m
=

0

(m
+

1 2

) 4 2m
+

1
4π
|x
′ |m
∇
((|x
|m
−
|x
|2m
) P m

(x |x
|·

x′ |x
′ |)) ,

d n
=

K
(x
′ ,
·)

∑
∞ m
=

0

(m
+

1 2

) 4 2m
+

1
4π

(|x′ |
m
−
|x
′ |2

m
) ∇(

(|x|m
−
|x
|2m
) P m

(x |x
|·

x′ |x
′ |)) ,

d n
=

W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
k,

L)
l,i

(c,
A

ε3) ∇
((|x
|l −
|x
|2l
) Y l

,i

(x |x
|)) ,

d n
=

g(
k,

L)
((c,

A
ε3) ,·)

(7
.9

3)

164

7.2. Optimization problems in detail

∇
〈 c N

,g
(o

,L
)
((c,

A
ε3) ,·)〉

H
2(

Ω
)

=
N ∑ n=

1

(∇γ
n

(g(
o,

L)
((c,

A
ε3) ,·))

)〈 d n
,g

(o
,L
)
((c,

A
ε3) ,·)〉

H
2(

Ω
)
+

N ∑ n=
1

γ
n

(g(
o,

L)
((c,

A
ε3) ,·))

×

(m
+

1 2

) 2 ∂ ∂
z j

g(
o,

L)
m

,k
(c

,A
ε3)

,
d n

=
Y m

,k
,

m
≤

L
0,

d n
=

Y m
,k

,
m

>
L

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 |x
′ |l

Y l
,i

(x′ |x
′ |) ∂ ∂

z j
g(

o,
L)

l,i

(c,
A

ε3) ,
d n

=
K
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 (|
x′
|l −
|x
′ |2

l) Y l
,i

(x′ |x
′ |) ∂ ∂

z j
g(

o,
L)

l,i

(c,
A

ε3) ,
d n

=
W
(x
′ ,
·)

∑
L l=

0
∑

l i=
−

l(l+
1 2

) 4 g(
k,

L)
l,i

(c′
,A
′ ε

3) ∂ ∂
z j

g(
o,

L)
l,i

(c,
A

ε3) ,
d n

=
g(

k,
L)
((c′

,A
′ ε

3) ,·)
(7

.9
4)

165

7. A learning algorithm

7.2.5. Inner products of the penalty term

At last, we have to discuss the term b2(d(z)) for z ∈ Rδz (confer (7.19)) for Slepian
functions as well as Abel–Poisson low and band pass filters. These terms were
given in (3.23), (3.26) and (3.28) in Section 3.5. It remains to consider their deriva-
tives. For the Slepian functions, we have

∂

∂zj
b2

(
g(k,L)

((
c, Aε3

)
, ·
))

=
L

∑
l=0

l

∑
i=−l

(
l +

1
2

)4 ∂

∂zj

(
g(o,L)

l,i

(
c, Aε3

))2

= 2
L

∑
l=0

l

∑
i=−l

(
l +

1
2

)4

g(o,L)
l,i

(
c, Aε3

) ∂

∂zj
g(o,L)

l,i

(
c, Aε3

)
(7.95)

which is known due to (7.23) and (7.24). For the Abel–Poisson low and band pass
filters, we see that aH2(Ω)-norm is given by a series. We discussed that the limits
can be exchanged here in Section 7.2.4. Before we give an explicit formulation
of the terms ∇b2(K(x, ·)) and ∇b2(W(x, ·)), recall (7.88). Then we have for the
gradient of the term ∇b2(d(z)) with respect to the Abel–Poisson low and band
pass filters

∇b2(K(x, ·)) = ∇
(

∞

∑
n=0

(
n +

1
2

)4

|x|2n 2n + 1
4π

Pn(1)

)

=
∞

∑
n=0

(
n +

1
2

)4 2n + 1
4π

∇|x|2n

=
∞

∑
n=0

(
n +

1
2

)4 2n + 1
4π

2nx|x|2n−2

=
∞

∑
n=0

(
n +

1
2

)4 2n2 + n
2π

x|x|2n−2 (7.96)

and

∇b2(W(x, ·)) = ∇
(

∞

∑
n=0

(
n +

1
2

)4 (
|x|n − |x|2n

)2 2n + 1
4π

Pn(1)

)

=
∞

∑
n=0

(
n +

1
2

)4 2n + 1
4π

∇
(
|x|n − |x|2n

)2

=
∞

∑
n=0

(
n +

1
2

)4 2n + 1
2π

(
|x|n − |x|2n

)
∇
(
|x|n − |x|2n

)
=

∞

∑
n=0

(
n +

1
2

)4 2n2 + n
2π

(
|x|n − |x|2n

) (
x|x|n−2 − 2x|x|2n−2

)
.

(7.97)

166

7.3. Additional features

7.3. Additional features

Next, we describe some additional strategies that are either needed or, as we
experienced, are possibly improving the runtime and / or the results. We start
with a necessary feature for the LROFMP algorithm.

Splines for the LROFMP algorithm The objective function ROFMP(·; N) is not
well-defined for previously chosen dictionary elements. In the ROFMP algo-
rithm, we can manually avoid the evaluation for these trial functions because
the dictionary is finite. This is not possible for the LROFMP algorithm because
the optimization problems are solved in an infinite set of trial functions and we
cannot foresee which points are passed in the iterations of the optimization meth-
ods. In order to avoid neighbourhoods of previously chosen dictionary elements
in future evaluation, we could implement one additional constraint for each cho-
sen function. However, this is not sensible in practice because constraints usually
make it harder to find an solution.
Thus, we pursue the following approach: we multiply the function ROFMP(·; N)
with a spline in order to set it to zero in the mentioned neighbourhoods. Note
that it suffices to consider one spline per trial function class as mixed cases do not
yield an ill-definedness of ROFMP(·; N).
To be specific, by means of a spline, the objective function ROFMP(·; N) must
be altered such that it is well-defined and the transition to zero is twice continu-
ously differentiable in each iteration of the LROFMP algorithm. Let d(z(1)) be the
first chosen dictionary element with z(1) ∈ Rδz . Thus, in the second iteration, we
exchange the objective function with

ROFMPS(d(z); 1) := ROFMP(d(z); 1) · S∗z(1)(z).

In the case that d(z), z ∈ R3, and d(z(1)) are of the same type of Abel–Poisson
(low or band pass) filters, the function S∗

z(1)
is given by

S∗z(1) := S∗d(z(1))
∈ C(2) (B̊)

with

S∗z(1)(z) = 0, z ∈ Bε

(
z(1)
)

,

S∗z(1)(z) = 1, z ∈ B̊\B̊2ε

(
z(1)
)

,

S∗z(1)(z) ∈ (0, 1), z ∈ B̊2ε

(
z(1)
)
\Bε

(
z(1)
)

.

If d(z), z ∈ R4, and d(z1) are Slepian functions, we have

S∗z(1) := S∗d(z(1))
∈ C(2) ([−1, 1]× [0, 2π[×[0, π]× [0, 2π[)

167

7. A learning algorithm

with

S∗z(1)(z) = 0, z ∈ Bε

(
z(1)
)

,

S∗z(1)(z) = 1, z ∈ [−1, 1]× [0, 2π[×[0, π]× [0, 2π[\B̊2ε

(
z(1)
)

,

S∗z(1)(z) ∈ (0, 1), z ∈ B̊2ε

(
z(1)
)
\Bε

(
z(1)
)

.

In both cases, the function S∗
z(1)

only depends on the distance between z and z(1)

for z, z(1) ∈ Rδz . In the case of an Abel–Poisson low or band pass filter, this
distance is naturally given by ‖z− z(1)‖2

R3 . In the case of Slepian functions, any
z ∈ R4 consists of the size of the spherical cap c ∈ [−1, 1] as well as the Euler
angles α, γ ∈ [0, 2π[and β ∈ [0, π]. The dependence on the Euler angles can be
substituted by

z := A(α, β, γ)ε3 =

cos(α) sin(β)
sin(α) sin(β)

cos(β)

 (7.98)

due to (3.5). That means, we consider z = (c, z) ∈ R4, where the vector z gives us
the centre of the localization region. We can measure the distance between z and
z(1) as ∣∣∣z− z(1)

∣∣∣2 :=
(

c− c(1)
)2

+ arccos
(

z · z(1)
)

.

Note that we use arccos(z · z(1)) in order to measure the angle between the cen-
tre vectors z and z(1). To consider both cases (i. e. filters and Slepian functions)
simultaneously, we write ‖z− z(1)‖2 for ‖z− z(1)‖2

R3 as well as |z− z(1)|2. Then,
for z, z(1) ∈ Rδz , we have

ROFMPS(d(z); 1) = ROFMP(d(z); 1) · Sz(1)

(∥∥∥z− z(1)
∥∥∥2
)

for a function Sz(1) : [0, 2]→ R with

Sz(1)(τ) = 0, τ =
∥∥∥z− z(1)

∥∥∥2
∈ [0, ε],

Sz(1)(τ) = 1, τ =
∥∥∥z− z(1)

∥∥∥2
≥ 2ε,

Sz(1)(τ) ∈ (0, 1), τ =
∥∥∥z− z(1)

∥∥∥2
∈ (ε, 2ε).

The restriction (
Sz(1)

)
|(ε,2ε)

168

7.3. Additional features

can be modelled as an one-dimensional polynomial. Then the function Sz(1) is a
spline as the composition of this polynomial and constant zero functions on [0, ε]
and [ε, 2], respectively. To ensure that

ROFMPS(d(z); 1) ∈ C(2) (D) , D =

{
B̊, z ∈ R3

[−1, 1]× [0, 2π[×[0, π]× [0, 2π[, z ∈ R4,

the spline Sz(1) must be twice continuously differentiable. For this, only the points
τ = ε and τ = 2ε are problematic. This can be treated, if we compute the polyno-
mial

(
Sz(1)

)
|(ε,2ε) via the following conditions(

Sz(1)
)
|(ε,2ε) (τ)

:= a + b(τ − τ0) + c(τ − τ0)
2 + d(τ − τ0)

3 + e(τ − τ0)
4 + f (τ − τ0)

5

τ0 = ε, Sz(0)(τ0) = 0, S′z(0)(τ0) = 0, S′′z(0)(τ0) = 0,

τ1 = 2ε, Sz(0)(τ1) = 1, S′z(0)(τ1) = 0, S′′z(0)(τ1) = 0.

The derivatives are given by(
S′z(1)

)
|(ε,2ε)

(τ) := b + 2c(τ − τ0) + 3d(τ − τ0)
2 + 4e(τ − τ0)

3 + 5 f (τ − τ0)
4,(

S′′z(1)
)
|(ε,2ε)

(τ) := 2c + 6d(τ − τ0) + 12e(τ − τ0)
2 + 20 f (τ − τ0)

3.

The boundary values give us the system of linear equations

0 = a, 1 = a + bε + cε2 + dε3 + eε4 + f ε5

= dε3 + eε4 + f ε5,

0 = b, 0 = b + 2cε + 3dε2 + 4eε3 + 5 f ε4

= 3dε2 + 4eε3 + 5 f ε4,

0 = 2c, 0 = 2c + 6dε + 12eε2 + 20 f ε3

= 6dε + 12eε2 + 20 f ε3. (7.99)

We compute the spline for ε = 1 and then dilate it to an arbitrary ε > 0. For ε = 1,
the system of linear equations (7.99) rearranges to1

0
0

 =

1 1 1
3 4 5
6 12 20

d
e
f

 .

The solution of this system of linear equations is given by

d = 10, e = −15, f = 6

169

7. A learning algorithm

Figure 7.2.: The spline Sz1(t) for t ∈ [0, 2] and ε = 0.5.

and we have obtained the polynomial
(
Sz(1)

)
|(1,2) as

(
Sz(1)

)
|(1,2) (υ) := 10(υ− 1)3 − 15(υ− 1)4 + 6(υ− 1)5.

For an arbitrary ε > 0, we map the interval [ε, 2ε] to [1, 2] by

[ε, 2ε] 3 τ 7→ υ =
τ

ε
∈ [1, 2].

All in all, we have the sigmoidal-like spline Sz(1) (see also Figure 7.2) given by(
Sz(1)

)
|[0,ε] ≡ 0,(

Sz(1)
)
|(ε,2ε) (τ) := 10

(τ

ε
− 1
)3
− 15

(τ

ε
− 1
)4

+ 6
(τ

ε
− 1
)5

and (
Sz(1)

)
|[2ε,2] ≡ 1.

The spline Sz(1) serves our needs: if it is multiplied with ROFMP(·; 1), we obtain
a for all feasible argument values well-defined objective function ROFMPS(·; 1)
for the LROFMP algorithm. By induction, we obtain analogously for the iteration
N ∈ N

ROFMPS(d(z); N) = ROFMP(d(z); N) ·
N

∏
n=1

Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)

. (7.100)

For gradient-based optimization algorithms, we have to consider the gradient of
ROFMPS(d(z); N). Note that the partial derivatives of ROFMP(d(z); N) are given

170

7.3. Additional features

in (7.21). We obtain

∂

∂zj
ROFMPS(d(z); N) :=

(
∂

∂zj
ROFMP(d(z); N)

)
N

∏
n=1

Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)

+ ROFMP(d(z); N)

(
∂

∂zj

N

∏
n=1

Sz(n)

(∥∥∥z− z(n)
∥∥∥2
))

,

(7.101)

where

∂

∂zj

N

∏
n=1

Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)

=
N

∑
n=1

(
N

∏
ν=1,ν 6=n

Sz(ν)

(∥∥∥z− z(ν)
∥∥∥2
))

∂

∂zj
Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)

(7.102)

with

∂

∂zj
Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)
= 0

if ‖z− z(n)‖2 ≤ ε or ‖z− z(n)‖2 ≥ 2ε and

∂

∂zj
Sz(n)

(∥∥∥z− z(n)
∥∥∥2
)

=
∂

∂zj

10

∥∥∥z− z(n)

∥∥∥2

ε
− 1

3

− 15

∥∥∥z− z(n)

∥∥∥2

ε
− 1

4

+ 6

∥∥∥z− z(n)

∥∥∥2

ε
− 1

5

= 30

∥∥∥z− z(n)

∥∥∥2

ε
− 1

2

∂

∂zj

∥∥∥z− z(n)
∥∥∥2

ε
− 60

∥∥∥z− z(n)

∥∥∥2

ε
− 1

3

∂

∂zj

∥∥∥z− z(n)
∥∥∥2

ε

+ 30

∥∥∥z− z(n)

∥∥∥2

ε
− 1

4

∂

∂zj

∥∥∥z− z(n)
∥∥∥2

ε

if ‖z− z(n)‖2 ∈ (ε, 2ε). In particular, in the case of Abel–Poisson low or band pass
filters, we have (z = x ∈ R3)

∥∥∥x− x(n)
∥∥∥2

R3
=

3

∑
l=1

(
xl − x(n)l

)2
and

∂

∂xj

∥∥∥x− x(n)
∥∥∥2

R3
= 2

(
xj − x(n)j

)

171

7. A learning algorithm

which yields for the spline Sxn

∂

∂xj
Sx(n)

(∥∥∥x− x(n)
∥∥∥2

R3

)

= 60

∥∥∥x− x(n)

∥∥∥2

R3

ε
− 1

2

xj − x(n)j

ε
− 120

∥∥∥x− x(n)

∥∥∥2

R3

ε
− 1

3

xj − x(n)j

ε

+ 60

∥∥∥x− x(n)

∥∥∥2

R3

ε
− 1

4

xj − x(n)j

ε
.

if ε < ‖x− x(n)‖2
R3 < 2ε. Similarly, in the case of Slepian functions, we have

∂

∂c
Sz(n)

(∣∣∣z− z(n)
∣∣∣2)

= 60

∣∣∣z− z(n)

∣∣∣2
ε

− 1

2

c− c(n)

ε
− 120

∣∣∣z− z(n)

∣∣∣2
ε

− 1

3

c− c(n)

ε

+ 60

∣∣∣z− z(n)

∣∣∣2
ε

− 1

4

c− c(n)

ε
.

For the partial derivatives with respect to a Euler angles α, β, γ, we obtain

∂

∂zj

∣∣∣z− z(n)
∣∣∣2 =

∂

∂zj

((
c− c(n)

)2
+ arccos

(
z · z(n)

))
=

∂

∂zj
arccos

(
z · z(n)

)
= − 1√

1− z · z(n)
∂

∂zj

(
z · z(n)

)
= − 1√

1− z · z(n)

(
∂

∂zj
z

)
· z(n)

with

∂

∂α
z =

− sin(α) sin(β)
cos(α) sin(β)

0

 ,
∂

∂β
z =

cos(α) cos(β)
sin(α) cos(β)
− sin(β)

 ,
∂

∂γ
z =

0
0
0

 .

172

7.3. Additional features

All in all, in this last case, we have

∂

∂zj
Sz(n)

(∣∣∣z− z(n)
∣∣∣2)

= − 1

ε
√

1− z · z(n)

30

∣∣∣z− z(n)

∣∣∣2
ε

− 1

2(

∂

∂zj
z

)
· z(n)

− 60

∣∣∣z− z(n)

∣∣∣2
ε

− 1

3(

∂

∂zj
z

)
· z(n) + 30

∣∣∣z− z(n)

∣∣∣2
ε

− 1

4(

∂

∂zj
z

)
· z(n)

for zj ∈ {α, β, γ} and |z− z(n)|2 ∈ (ε, 2ε).

Features for guiding the learning process Taking into account that, in each it-
eration, we solve optimization problems with a complicated objective function
and – in some cases – non-linear constraints, it seems expectable that the learn-
ing process might need some guidance. During the development, we saw that
the following techniques may be helpful to improve the results. Each technique
addresses one out of two challenges:

(1) accurately solving the optimization problems in an acceptable time;
(2) obtaining an approximation with a low data and approximation error (if the

latter one is available).
With respect to challenge (1), there are several aspects that have to be considered:
is any solution of the respective optimization problem obtained? How accurate is
this solution? How long did the solver take? And, as we discovered, is the learnt
dictionary well applicable in an independent run of the IPMP?
Usually, published libraries or other software packages are built to solve even
very complicated optimization problems. However, they might need some guid-
ance as well. Most of such software expects at least one termination criterion.
Possible criteria rank from measuring the distance between values of the objec-
tive function between two successive iteration points, measuring the distance be-
tween such points themselves, having a maximally allowed number of iterations
or a maximally allowed time. Note that a theoretically based termination criterion
would be that the current iterate fulfils (numerically) the Karush-Kuhn-Tucker
(KKT) conditions. Furthermore, published software packages usually come with
all kinds of expert level techniques that provide for a best possible solving rou-
tine. For instance, it may be supportive to use scaling techniques. As our objec-
tive functions depend on given data, we discovered that such a scaling approach
may result in better approximations dependent on the structure of the data. We
described such a scaling in Michel and Schneider (2020). Note that, in previous
dictionary learning publications, the structure of the (training) data was taken
into account as well (see e. g. Prünte, 2008).

173

7. A learning algorithm

Remark 7.3.1. When using published software, it is helpful to investigate their
options and experiment with them to obtain better results in the learning algo-
rithms.

In the sequel, we concentrate on the effect of termination criteria. We set at least
one to ensure the termination of the numerical optimization process. However,
dependent on the specific criteria, we may lose valuable accuracy in our solution,
e. g. if we allow too few iterations. In particular with the LIPMP algorithms, if we
set a time limit, we might run into problems. At a first glance, it seems favourable
to set such a limit because it ensures that each iteration of an LIPMP algorithm
takes at most a pre-defined time. However, we have to evaluate one of the objec-
tive functions RFMP(·; N) or ROFMPS(·; N) in each iteration of the optimization
process at least once. Both of these functions depend on the linear combination
of previously chosen basis elements (see, for instance, the term a2(d(z))). That
means, in each iteration of the LIPMP algorithm, both objective functions contain
more summands in certain terms.

Remark 7.3.2. Each iteration of the optimization process takes longer than in the
optimization problem of the previous LIPMP iteration.

Hence, if we set a time limit for the optimization processes, the solvers can take
less steps in later iterations of the LIPMP algorithm which inevitably leads to a
loss in accuracy.

Remark 7.3.3. All in all, with task (1), we have to make a trade between runtime
cost and accuracy.

However, as one can expect, less accuracy leads to further problems. If the learnt
dictionary shall be used in an IPMP algorithm, its application may not behave
as expected for less accurate solutions. In general, it can be expected that the
IPMP algorithm picks the basis elements in the same order as the LIPMP algo-
rithm does because the learnt dictionary is a subset of the infinite dictionary DInf.
However, this order would not preserved if the learnt dictionary elements were
not computed accurately enough, i. e. if they were not near enough to the global
optimum. Unfortunately, this would ultimately lead to non-competitive results.

Remark 7.3.4. We suggest to favour more accuracy in general. If this is not possi-
ble due to high runtime costs, the application of the learnt dictionary in an IPMP
algorithm should be guided with an iterated application. In each step N ∈ N0 of
the IPMP algorithm, only the learnt dictionary elements dn, n = 1, ..., N + 1 are
allowed to be chosen. If N + 1 exceeds the number of learnt dictionary elements,
all possible elements can be chosen.

We also experimented with a restart technique similar (but not identical) to the
one from the iterated ROFMP algorithm. The evaluation of the objective function

174

7.3. Additional features

is responsible for the main part of the runtime of each optimization iteration and,
thus, of each optimization. As we outlined before, this time increases with the
iterations of the LIPMP algorithm.

Remark 7.3.5. In order to cut runtime costs, it seems sensible to reset all sums
that depend on previously chosen basis elements after a certain number of iter-
ations. Alternatively, we could also limit the number of summands and, thus,
obtain a L-BFGS-like reset method. Nonetheless, it must be evaluated for a spe-
cific problem whether a trade between speed-up and increasing approximation
error is acceptable.

With this restart, the LIPMP algorithm is similar to minimizing an iterated Tikh-
onov functional, see Example 2.5.17.
With respect to challenge (2), we consider the approximation we obtained and
whether it suits our expectation. It is well-known that, in any method for ill-
posed inverse problems, the choice of the regularization parameter is critical for
the obtained approximation. For the LIPMP algorithm, we discovered that the
choice of the regularization parameter is also critical for the application of the
learnt dictionary.

Remark 7.3.6. The learnt dictionary can only be well applied for the regulariza-
tion parameter with which it was learnt.

This still leaves us with the determination of a suitable regularization parame-
ter. From theory, we know that, if the regularization parameter is too high, any
method concentrates more on the penalty term and, thus, the obtained approxi-
mation is rather smooth. On the contrary, if the regularization parameter is too
low, the regularization has only little effect which means the method concentrates
only on the data fidelity term. This, however, may lead to artefacts in the approx-
imation. This also coincides with our experiences with the IPMP algorithms. If
the regularization parameter is chosen too high, the IPMP algorithms do not re-
produce many local structures which is caused by the fact that they choose more
global trial functions or not suitable local ones. If the regularization parame-
ter, however, is chosen very low, we obtain local artefacts because the algorithm
chooses local trial functions with very high scales.

Remark 7.3.7. It seems that the LIPMP algorithm is very sensitive to the choice of
the particular regularization parameter. Thus, if, for any reason, a constant value
for λ(δ, yδ) is not favoured, we suggest to use a non-stationary regularization
parameter of the form

λN

(
δ, yδ

)
:=

λ0(δ)
∥∥yδ
∥∥

R`

N + 1

for the N-th iteration of the LIPMP algorithm and with a constant λ0(δ) ∈ R.

175

7. A learning algorithm

In this way, the regularization parameter decreases in each iteration. For a suit-
able value λ0(δ), this leads to smoother choices of dictionary elements in the be-
ginning of the LIPMP algorithm and supports choices of local dictionary elements
in later iterations. Depending on the given data, approximating global structures
first appears to have a positive effect on how easily the optimization routines de-
termine candidates.
If a non-stationary regularization parameter is still not providing enough smooth-
ness in the approximation, we suggest a further mechanism.

Remark 7.3.8. It may also be sensible not to choose from all possible trial function
classes in DInf in each iteration.

For instance, we only choose spherical harmonics, possibly in addition with Slep-
ian functions, in the first iterations of the LIPMP algorithm. In later iterations, we
allow the LIPMP algorithm to also choose Abel–Poisson low and band pass fil-
ters. This technique resembles to run the LIPMP algorithm twice but with differ-
ent dictionaries and different initial approximations. First, we allow only possibly
smoother trial function classes (e. g. spherical harmonics and Slepian functions)
and start the first run of the LIPMP algorithm with any initial approximation f0.
The approximation obtained from this first run is denoted by fN0 for a N0 ∈ N0.
In the second run of the LIPMP algorithm, we also allow local trial functions.
However, we start the algorithm now with an initial approximation f̃0 = f0 + fN0 .
If f0 ≡ 0, the second run yields a refinement of fN0 . However, note that this
smoothing mechanism might influence the applicability of the learnt dictionary.
In this case, it should be combined with the iterated approach mentioned above.
We state which of these additional features are applied in our experiments when
we describe their settings in Chapter 9. In the following pseudo-code of the
LIPMP algorithms, we do without any of the features.

7.4. Pseudo-codes for the LIPMP algorithms

At the end of this chapter, we summarize the novel learning algorithm in pseudo-
codes. A description of an efficient implementation can be found in Appendix B.
The learning algorithms generalize a respective IPMP algorithm to an infinite
dictionary DInf. The main question of each iteration N ∈ N0 is how to determine
the next basis element dN+1 ∈ DInf.
We consider a finite number of spherical harmonics and determine a candidate
for dN+1 among the spherical harmonics by trial and error in order to learn a
maximal degree. Thus, the learning algorithm uses a starting dictionary which
contains at least these spherical harmonics. The determination of the maximizing
Abel–Poisson low and band pass filter as well as Slepian function is modelled as
optimization problems. To support numerical optimization routines, it is sensible
to insert a few of those trial functions into the starting dictionary as well. In the

176

7.4. Pseudo-codes for the LIPMP algorithms

Data: RN ∈ R`, N ∈ N0, Ds

Result: choice of next basis element dN+1
(1) determine

dSH
N+1 = arg max

d∈[·]sSH

IPMP(d; N);

(2) compute starting choices d(s,•)
N+1(z), • ∈ {APK, APW, SL}:

d(s,•)
N+1 = arg max

d(z)∈[·]s•
IPMP(d(z); N);

(3) compute global choices d(g,•)
N+1(z), • ∈ {APK, APW, SL}, z ∈ Rδz , using

starting choices as starting points in the optimization processes:

d(g,APK)
N+1 = arg max

d(z)∈[B̊]APK

IPMP(d(z); N);

d(g,APW)
N+1 = arg max

d(z)∈[B̊]APW

IPMP(d(z); N);

d(g,SL)
N+1 = arg max

d(z)∈[B4]SL

IPMP(d(z); N);

(4) compute local solutions d(l,•)N+1(z), • ∈ {APK, APW, SL}, z ∈ Rδz , using
global choices as starting points in the optimization processes:

d(l,APK)
N+1 = arg max

d(z)∈[B̊]APK

IPMP(d(z); N);

d(l,APW)
N+1 = arg max

d(z)∈[B̊]APW

IPMP(d(z); N);

d(l,SL)
N+1 = arg max

d(z)∈[B4]SL

IPMP(d(z); N);

(5) choose
dN+1 = arg max

d̂∈C
IPMP

(
d̂; N

)
,

C :=
{

dSH
N+1, d(s,•)

N+1, d(g,•)
N+1, d(l,•)N+1

∣∣∣ • ∈ {APK, APW, SL}
}

;

return dN+1;

Algorithm 5: Pseudo-code for choosing a dictionary element fromDInf for the
LIPMP algorithms.

177

7. A learning algorithm

Data: y ∈ R`

Result: approximation fN
initialization: Ds, f0, R0 = y− Tk f0 ;
N = 0;
while (stopping criteria not fulfilled) do

determine dN+1 via Algorithm 5 with IPMP(·; N) = RFMP(·; N);
compute

αN+1 =
〈RN ,TkdN+1〉R`−λ(δ,yδ)〈 fN ,dN+1〉H2(Ω)

‖TkdN+1‖2
R`+λ(δ,yδ)‖dN+1‖2

H2(Ω)

;

RN+1 = RN − αN+1TkdN+1;

N be increased by 1;

end
return fN = ∑N

n=1 αndn;

Algorithm 6: Pseudo-code for the learning regularized functional matching
pursuit (LRFMP) algorithm.

sequel, we denote the starting dictionary as

Ds =
[

N̂
]s

SH
+ [S]sSL + [BK]

s
APK + [BW]sAPW

for certain finite sets N̂ (see Section 7.2.1), BK, BW and S as given in Defini-
tion 4.2.2. We first compute the best candidate among the spherical harmonics
as well as starting choices for the other trial function classes from the starting dic-
tionary Ds. Then we solve the occurring optimization problems, i. e. dependent
on which LIPMP algorithm we run and using the starting choices, we maximize
the objective function

IPMP(d(z); N) :=
{

RFMP(d(z); N)
ROFMPS(d(z); N)

(7.103)

subject to the constraints

z ∈ B̊

in the case of the Abel–Poisson low and band pass filters and

z ∈ B4

in the case of the Slepian functions. Note that we use the objective function
ROFMPS in order to avoid ill-defined function values. We first solve these prob-
lems with global optimization routines in order to ensure to obtain a solution for

178

7.4. Pseudo-codes for the LIPMP algorithms

each problem that is at least located in the correct region. To improve these global
solutions, we then solve each optimization problem again with a local optimiza-
tion routine which uses the respective global solution as its starting point. In this
way, we obtain a set of candidates C given by

C :=
{

dSH
N+1, d(s,•)

N+1, d(g,•)
N+1, d(l,•)N+1,

∣∣∣ • ∈ {APK, APW, SL}
}

,

where the candidates with superscript (s, •) denotes the starting choices, with su-
perscript (g, •) the global solutions and with superscript (l, •) the local solutions
for • ∈ {APK, APW, SL}. We insert the starting choices in C as well to ensure
to have a candidate for every trial function class in case that the optimization
routine may fail. The set C is obviously finite and small. Thus, for each of these
candidates, we can evaluate the function IPMP(·; N). We compare these values
and set

dN+1 := arg max
d̂∈C

{
IPMP

(
d̂; N

)}
.

In this way, we obtain the maximizing trial function from DInf. This approach
of choosing a basis element from DInf is described in Algorithm 5. It replaces
the corresponding choice in Algorithm 3 and Algorithm 4, respectively. Thus,
for the LRFMP, we obtain the pseudo-code Algorithm 6, and, for the LROFMP,
the pseudo-code Algorithm 7. Note that, in Algorithm 7, we inserted the restart
procedure from the iterated ROFMP algorithm (and not the restart method from
the additional features). As the iterated ROFMP algorithm usually supersedes
the (stationary) ROFMP algorithm, this strategy is inherited by the LROFMP al-
gorithm.

179

7. A learning algorithm

Data: y ∈ R`

Result: approximation f (N)
N

initialization: Ds, f0, R0 = y− Tk f0, K ∈ N ;
N = 0;
while (stopping criteria not fulfilled) do

determine kdN+1 via Algorithm 5 with IPMP(·; N) = ROFMPS(·; N);
compute

kα
(N+1)
n+1 =

〈
kRN ,P

kV⊥N
TkdN+1

〉
R`
−λ(δ,yδ)

〈
k f (N)

N ,kdN+1−kb(N)
N (kdN+1)

〉
H2(Ω)∥∥∥∥PkV⊥N

TkkdN+1

∥∥∥∥2

R`
+λ(δ,yδ)

∥∥∥kdN+1−kb(N)
N (kdN+1)

∥∥∥2

H2(Ω)

;

kRN+1 = kRN − kα
(N+1)
N+1 PkV⊥N Tk kdN+1;

if (N ≥ 1) then

kα
(N+1)
n = kα

(N)
n − kα

(N+1)
N+1 β

(N)
n (kdN+1), n = 1, ..., N;

end

N be increased by 1;

if (N == K) then
kVN := {0};
N = 0;
k increased by 1;

end
end

return k f (N)
N = ∑k−1

κ=1 ∑K
n=1 κα

(N)
n κdn + ∑N

n=1 kα
(N)
n kdn;

Algorithm 7: Pseudo-code for the learning regularized orthogonal functional
matching pursuit (LROFMP) algorithm. Note that it includes the same restart
mechanism as the iterated ROFMP, see Algorithm 4.

180

8. Theoretical aspects

In this chapter, we outline the main theoretical aspects of the algorithms pre-
sented in Section 4.3, Section 4.4 and Chapter 7. We divide these aspects into two
topics. First, we discuss the convergence of the (L)IPMP algorithms. Note that we
did not summarize such results for the IPMP algorithms previously. As we now
see that the learning algorithms are generalizations of these methods, we discuss
the results at this point. The second topic considers how the LIPMP algorithms
are related to previous works on dictionary learning as well as the dictionary
properties developed in Section 6.2.

8.1. On the convergence

This section is based on Kontak (2018); Kontak and Michel (2019); Michel (2013,
2020); Michel and Orzlowski (2017); Michel and Telschow (2016); Telschow (2014).
First of all, we note the setting under which we investigate convergence.

Remark 8.1.1. We will discuss the convergence of the (L)IPMP algorithms with-
out any additional features but the spline in the case of the learning methods.
Hence, in particular, we consider a stationary regularization parameter λ(δ, yδ)
in the sequel. Note that, as we are considering results for infinitely many itera-
tions, the, in practice, possible iterated use of the dictionary (confer Remark 7.3.4)
has no influence here.

We start the discussion for the (L)RFMP algorithm. For the description of the
LRFMP algorithm, it was helpful to introduce the objective function RFMP(·; ·)
as a quotient, see Definition 7.1.2. However, for the theoretical discussion, it is
more convenient to reformulate it first. Recall the objective function of the N-th
iteration as given in (7.6). With

C(d) :=
√
‖Tkd‖2

R` + λ(δ, yδ)‖d‖2
H2(Ω)

, (8.1)

we obtain

RFMP(d; N) =

(
〈y− Tk fN, Tkd〉R` − λ

(
δ, yδ

)
〈 fN, d〉H2(Ω)

C(d)

)2

=

(〈
y− Tk fN, Tk

(
d

C(d)

)〉
R`

− λ
(

δ, yδ
)〈

fN,
d

C(d)

〉
H2(Ω)

)2

.

181

8. Theoretical aspects

Thus, for any dictionaryD and dN+1 ∈ D chosen via (4.25) and (7.4), respectively,
we see that dN+1 is equivalent to a choice

d̃N+1 ∈ D̃ := (C(·))−1)D :=
{

d̃
∣∣∣∣ d̃ =

d
C(d)

, d ∈ D
}

.

Note that it holds C(d̃) = 1 due to the bilinearity of the norms and the linearity
of the operator. Hence, if we consider the dictionary D̃, we obtain the coefficient
αN+1 corresponding to dN+1 by

α̃N+1 =
√

RFMP
(
d̃N+1; N

)
=
〈
y− Tk fN, Tkd̃N+1

〉
R` − λ

(
δ, yδ

) 〈
fN, d̃N+1

〉
H2(Ω) .

For these considerations, see also Kontak (2018); Michel (2020). In the sequel, we
will consider the formulations

RFMP(d; N) =
(〈

y− Tk fN, Tkd̃
〉

R` − λ
(

δ, yδ
) 〈

fN, d̃
〉
H2(Ω)

)2
(8.2)

and

αN+1 = 〈y− Tk fN, TkdN+1〉R` − λ
(

δ, yδ
)
〈 fN, dN+1〉H2(Ω) (8.3)

for a better readability in this chapter. Note that, analogously to (4.24), we still
have

J
(

fN+1; Tk, λ
(

δ, yδ
)

, yδ
)
= J

(
fN; Tk, λ

(
δ, yδ

)
, yδ
)
− RFMP(dN+1; N).

(8.4)

The equations (8.2) and (8.3) enable another helpful reformulation. First of all, for
v, w ∈ R` and f , g ∈ H2(Ω), we equip the product space R` ×H2(Ω) with the
inner product

〈(v, f), (w, g)〉R`×H2(Ω) := 〈v, w〉R` + 〈 f , g〉H2(Ω).

As R` and H2(Ω) are both complete, R` ×H2(Ω) is also a Hilbert space. Note
that ‖ · ‖R`×H2(Ω) is then the induced norm. In this space, we consider the opera-
tor

T̃k,λ(δ,yδ) : H2(Ω)→ R` ×H2(Ω), T̃k,λ(δ,yδ) f =

(
Tk f√

λ (δ, yδ) f

)
. (8.5)

We note the following, rather obvious aspects.

Lemma 8.1.2. For the operator T̃k,λ(δ,yδ), we have the following properties with respect
to the (L)RFMP algorithm.

182

8.1. On the convergence

a) With C(d) as in (8.1), we have for a dictionary element d ∈ D

C(d) =
∥∥∥T̃k,λ(δ,yδ)d

∥∥∥
R`×H2(Ω)

which justifies to speak of a normalization of the dictionary when considering D̃ =
(C(·))−1D.

b) The Tikhonov functional can be re-written as

J
(

f ; Tk, λ
(

δ, yδ
)

, yδ
)
=
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) f

∥∥∥2

R`×H2(Ω)
.

Thus, we have∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN+1

∥∥∥2

R`×H2(Ω)

=
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN

∥∥∥2

R`×H2(Ω)
− RFMP(dN+1; N).

c) The approximations of two different iterations M and N (M > N) are related by

T̃k,λ(δ,yδ) fM = T̃k,λ(δ,yδ) fN +
M

∑
n=N+1

αn+1T̃k,λ(δ,yδ)dn. (8.6)

d) The coefficient of an iteration N is given by

αN+1 =
〈
(y, 0)T − T̃k,λ(δ,yδ) fN, T̃k,λ(δ,yδ)dN+1

〉
R`×H2(Ω)

. (8.7)

Now we consider first results that will lead to the main convergence theorem of
the (L)RFMP algorithm.

Lemma 8.1.3. The sequence(
J
(

fN; Tk, λ
(

δ, yδ
)

, yδ
))

N∈N0

produced by the (L)RFMP algorithm is monotonically decreasing and convergent.

Proof. The sequence is monotonically decreasing due to (8.4). Further, it is obvi-
ously bounded from below by 0. Hence, it must be convergent.

Lemma 8.1.4. The sequence (αN+1)N∈N0 produced by the (L)RFMP algorithm is square
summable.

183

8. Theoretical aspects

Proof. We consider

N

∑
n=0

α2
n+1 =

N

∑
n=0

RFMP(dn+1; n)

=
N

∑
n=0

[
J
(

fn; Tk, λ
(

δ, yδ
)

, yδ
)
−J

(
fn+1; Tk, λ

(
δ, yδ

)
, yδ
)]

= J
(

f0; Tk, λ
(

δ, yδ
)

, yδ
)
−J

(
fN+1; Tk, λ

(
δ, yδ

)
, yδ
)

,

where the latter equality holds due to the telescoping sum. For N to infinity, the
right-hand side is convergent due to Lemma 8.1.3.

Corollary 8.1.5. For the sequence (αN+1)N∈N0 produced by the (L)RFMP algorithm, it
holds

lim inf
N→∞

|αN+1|
N−1

∑
n=0
|αn+1| = 0.

For the proof, see Jones (1987, Lemma 2). With these results, we are able to show
the theorem needed for the convergence of the (L)RFMP algorithm.

Theorem 8.1.6. The sequence produced by the (L)RFMP algorithm(
(y, 0)T − T̃k,λ(δ,yδ) fN

)
N∈N0

is convergent.

Proof. See also Kontak (2018); Michel (2020). We show that the sequence is a
Cauchy sequence. As R` ×H2(Ω) is a Hilbert space, the sequence is convergent
in this case. We show the Cauchy property by contradiction and, thus, assume
that (

(y, 0)T − T̃k,λ(δ,yδ) fN

)
N∈N0

is not a Cauchy sequence, i. e.

∃ε > 0 ∀ν ∈ N0 ∃N1(ν), N2(ν) ≥ ν :∥∥∥T̃k,λ(δ,yδ) fN1(ν)
− T̃k,λ(δ,yδ) fN2(ν)

∥∥∥
R`×H2(Ω)

> ε.

Let γ > 0 be fixed and, with Lemma 8.1.3, let

L := lim
N→∞

∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN

∥∥∥
R`×H2(Ω)

.

184

8.1. On the convergence

In particular, we have

L ≤
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN

∥∥∥
R`×H2(Ω)

(8.8)

for all N ∈ N0. Then there exists κ ∈ N0 such that∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN

∥∥∥2

R`×H2(Ω)
< L2 + γ ∀N ≥ κ.

Thus, for N1(κ), N2(κ) ≥ κ, we have∥∥∥T̃k,λ(δ,yδ) fN1(κ)
− T̃k,λ(δ,yδ) fN2(κ)

∥∥∥
R`×H2(Ω)

> ε,∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

∥∥∥2

R`×H2(Ω)
< L2 + γ (8.9)

and ∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN2(κ)

∥∥∥2

R`×H2(Ω)
< L2 + γ.

Further, there exist N3(κ) ∈ N0 with N3(κ) > max(N1(κ), N2(κ)) such that

|αN3(κ)+1|
N3(κ)−1

∑
n=0

|αn+1| < γ (8.10)

due to Corollary 8.1.5. With the triangle equality, we then obtain

ε <
∥∥∥T̃k,λ(δ,yδ) fN1(κ)

− T̃k,λ(δ,yδ) fN2(κ)

∥∥∥
R`×H2(Ω)

≤
∥∥∥T̃k,λ(δ,yδ) fN1(κ)

− T̃k,λ(δ,yδ) fN3(κ)

∥∥∥
R`×H2(Ω)

+
∥∥∥T̃k,λ(δ,yδ) fN3(κ) − T̃k,λ(δ,yδ) fN2(κ)

∥∥∥
R`×H2(Ω)

. (8.11)

We consider one of the summands in detail:∥∥∥T̃k,λ(δ,yδ) fN1(κ)
− T̃k,λ(δ,yδ) fN3(κ)

∥∥∥2

R`×H2(Ω)

=
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

∥∥∥2

R`×H2(Ω)
+
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

∥∥∥2

R`×H2(Ω)

− 2
〈
(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

, (y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

〉
.

185

8. Theoretical aspects

Due to (8.6) and the bilinearity of the inner product, this equals∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

∥∥∥2

R`×H2(Ω)
+
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

∥∥∥2

R`×H2(Ω)

− 2

〈
(y, 0)T − T̃k,λ(δ,yδ) fN3(κ) +

N3(κ)

∑
n=N1(κ)+1

αnT̃k,λ(δ,yδ)dn, (y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

〉

=
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

∥∥∥2

R`×H2(Ω)
−
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

∥∥∥2

R`×H2(Ω)

− 2
N3(κ)

∑
n=N1(κ)+1

αn

〈
T̃k,λ(δ,yδ)dn, (y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

〉
≤
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN1(κ)

∥∥∥2

R`×H2(Ω)
−
∥∥∥(y, 0)T − T̃k,λ(δ,yδ) fN3(κ)

∥∥∥2

R`×H2(Ω)

+ 2|αN3(κ)+1|
N3(κ)

∑
n=N1(κ)+1

|αn|

≤ L2 + γ− L2 + 2γ

= 3γ (8.12)

where the first inequality holds due to −a ≤ |a| for real a, the triangle inequality
and the maximization of (8.2) in an iteration of the (L)RFMP algorithm and the
second inequality holds due to (8.9), (8.8) and (8.10) (in that order). Note that
(8.12) holds analogously for N2(κ) instead of N1(κ). If we now choose γ < ε2/12,
we have∥∥∥T̃k,λ(δ,yδ) fN1(κ)

− T̃k,λ(δ,yδ) fN3(κ)

∥∥∥
R`×H2(Ω)

+
∥∥∥T̃k,λ(δ,yδ) fN3(κ) − T̃k,λ(δ,yδ) fN2(κ)

∥∥∥
R`×H2(Ω)

≤ 2
√

3γ = 2
√

ε2/4 = ε

which contradicts (8.11).

With this, the convergence of the approximation is easily shown.

Theorem 8.1.7. Let the regularization parameter λ
(
δ, yδ

)
be positive. Then the se-

quence of approximations (fN)N∈N0 produced by the (L)RFMP algorithm is convergent.
We denote the limit by

f∞ := lim
N→∞

fN.

Proof. We have seen that the sequence(
(y, 0)T − T̃k,λ(δ,yδ) fN

)
N∈N0

186

8.1. On the convergence

is convergent. As this convergence is component-by-component, we immediately
see the convergence of −

√
λ (δ, yδ) fN for N → ∞ in the second component, see

(8.5). The strictly positive regularization parameter guarantees the convergence
of fN for N → ∞.

Furthermore, we are also able to characterize this limit.

Theorem 8.1.8. For a complete dictionary D ⊆ H2(Ω)\{0}, a data vector y ∈ R`, a
regularization parameter λ

(
δ, yδ

)
> 0 and the limit f∞ of the sequence (fN)N∈N0 of

approximations produced by the (L)RFMP algorithm, it holds(
T∗kTk + λ

(
δ, yδ

)
I
)

f∞ = T∗ky,

i. e. the limit of the sequence (fN)N∈N0 produced by the (L)RFMP algorithm solves the
regularized normal equation.

Note that this solution is unique as we noted in Example 2.5.17.

Proof. Due to the square-summability (Lemma 8.1.4) of (αN)N∈N, we have the
convergence of αN+1 → 0 for N → ∞. With the formulation (8.7), this means〈

(y, 0)T − T̃k,λ(δ,yδ) fN, T̃k,λ(δ,yδ)dN+1

〉
R`×H2(Ω)

→ 0 for N → ∞

which is equivalent to

〈y− Tk fN, TkdN+1〉R` − λ
(

δ, yδ
)
〈 fN, dN+1〉H2(Ω) → 0 for N → ∞.

(8.13)

The (L)RFMP algorithm aims to maximize∣∣∣〈y− Tk fN, Tkd〉R` − λ
(

δ, yδ
)
〈 fN, d〉H2(Ω)

∣∣∣ (8.14)

for d ∈ D. Thus, due to the Sandwich Theorem using (8.13) and (8.14), for any
d ∈ D, we have

〈y− Tk fN, Tkd〉R` − λ
(

δ, yδ
)
〈 fN, d〉H2(Ω) → 0 for N → ∞.

In particular, for a d ∈ D, we obtain

〈y− Tk fN, Tkd〉R` − λ
(

δ, yδ
)
〈 fN, d〉H2(Ω)

= 〈T∗ky− T∗kTk fN, d〉H2(Ω) − λ
(

δ, yδ
)
〈 fN, d〉H2(Ω)

=
〈

T∗ky−
(

T∗kTk + λ
(

δ, yδ
)

I
)

fN, d
〉
H2(Ω)

→ 0

187

8. Theoretical aspects

for N → ∞. As we have seen that (fN)N∈N0 converges and because Tk and T∗k
are continuous (and, in particular, bounded), we obtain that(

T∗ky−
(

T∗kTk + λ
(

δ, yδ
)

I
)

fN

)
N∈N0

(8.15)

is bounded. Hence, for a convergent sequence dm → d ∈ H2(Ω), m → ∞, of
dictionary elements dm ∈ D, we can interchange the limits and have

lim
N→∞

〈
T∗ky−

(
T∗kTk + λ

(
δ, yδ

)
I
)

fN, d
〉
H2(Ω)

= lim
m→∞

lim
N→∞

〈
T∗ky−

(
T∗kTk + λ

(
δ, yδ

)
I
)

fN, dm

〉
H2(Ω)

= 0.

Due to the bilinearity of the inner product and the algebraic limit theorem, this
holds also for a convergent sequence (dm)m∈N0 ⊂ spanD with dm → d ∈ H2(Ω)
with m → ∞. Thus, the sequence (8.15) is weakly convergent to zero. Further,
from Theorem 8.1.6, we already know that the (strong) limit f∞ of the approxi-
mation exists. Hence, also the strong limit of (8.15) exists and coincides with the
weak limit:

T∗ky−
(

T∗kTk + λ
(

δ, yδ
)

I
)

f∞ = 0,

which is equivalent to the regularized Tikhonov-Philipps normal equation.

There are several other results for the convergence of (fN)N∈N0 produced by the
RFMP algorithm in particular situations which all follow straight-forwardly from
the last result. Hence, they can easily be transferred to the LRFMP algorithm as
well. Summarized, we obtain the following results:

• the stability of the solution, i. e. for decreasing noise level (see e. g. Michel,
2015a, Theorem 7),
• the convergence of the regularization, i. e. for a particularly decreasing reg-

ularization parameter (see e. g. Michel, 2015a, Theorem 8), and
• a characterization of the solution if D is only a spanning set for a proper

subspace ofH2(Ω) (see e. g. Michel and Orzlowski, 2017, Theorem 6).

Furthermore, we consider here only the truly regularized case λ(δ, yδ) > 0 as it is
more relevant in practice. Nonetheless, also for the unregularized case λ(δ, yδ) =
0 (the so-called FMP algorithm) similar convergence results were obtained (see
e. g. Fischer, 2011; Kontak, 2018; Kontak and Michel, 2019). Note that, currently,
we only know that the sequence (fN)N∈N0 obtained from the FMP algorithm con-
verges if the so-called semi-frame condition holds. This assumption states that
there should exist a positive constant c and an M ∈ N such that the inequality

c‖H‖2
H2(Ω) ≤

∞

∑
k=1

β2
k

188

8.1. On the convergence

holds true for all expansions H = ∑∞
k=1 βkdk of H ∈ H2(Ω) with βk ∈ R and

dk ∈ D from an (over-) complete dictionaryD and where |{j ∈ N | dj = dk}| ≤ M
for all k ∈ N. Obviously, the semi-frame condition is not easily verified. How-
ever, if the sequence converges, the algorithm yields the exact solution of the
inverse problem Tk f = y.
Now we consider the (L)ROFMP algorithm. Obviously, we cannot make a sim-
ilar a-priori normalization of the dictionary in the case of the ROFMP objective
function as the denominator of ROFMP(·; ·) (confer (7.8)) depends on previous
iterations of the algorithm. Further, as there exist less theoretical results for the
ROFMP algorithm, we cannot expect that we have more results for the LROFMP
algorithm.
First of all, similar as before, we obtain the convergence of the Tikhonov-Philipps
sequence.

Lemma 8.1.9. The sequence(
JO

(
fN; Tk, λ

(
δ, yδ

)
, yδ
))

N∈N0

produced by the (L)ROFMP algorithm is monotonically decreasing and convergent.

Proof. The proof follows the same argumentation as in the case of the (L)RFMP al-
gorithm in Lemma 8.1.3. The sequence is monotonically decreasing due to (4.33)
and is bounded from below by 0. Hence, it must be convergent.

A unique result of the (L)ROFMP algorithm discusses the convergence of the
residual.

Theorem 8.1.10. The sequence of residuals (RN)N∈N0 produced by the ROFMP algo-
rithm stagnates, i. e. RN = RN0 for N ≥ N0 ∈ N0.

Proof. We have either PV⊥N−1
TkdN = 0 or PV⊥N−1

TkdN 6= 0. Furthermore, we com-

pute the next residual via RN = RN−1 − αNPV⊥N−1
TkdN (confer Algorithm 4 and

Algorithm 7, respectively). Thus, we have RN = RN−1 in the former case. Be-
cause Tk maps to the finite-dimensional space R`, it is possible that PV⊥N−1

TkdN

vanishes while VN 6= R` or VN = R`. In the former case, it is still possible that it
holds PV⊥N TkdN+1 6= 0 in the next iteration. On the contrary, in the latter case, we
have PV⊥N Tkd = 0 for all dictionary elements d and all future iterations. Thus, the

residual stagnates at the latest if it holds VN = R` for some iteration N.

Unfortunately, the case that RN0 6= 0 but RN = RN0 for all N ≥ N0 might not
favourable for our approximation if it is caused by the orthogonalization proce-
dure and not by the usual behaviour of the regularization. Note that, in this case,
we are unable to retrieve the whole signal. As this situation depends on the or-
thogonality of the current basis element and all previously chosen basis elements,

189

8. Theoretical aspects

it is sensible to reset the space VN after a number of iterations to prevent the resid-
ual from stagnation in practice. Hence, the iterated ROFMP algorithm is much
more relevant in practice than the ROFMP algorithm. Further, the LROFMP al-
gorithm also generalizes the iterated ROFMP algorithm to an infinite dictionary.
Nonetheless, in both cases the objective function depends on choices made in
previous iterations. Therefore, the square-summability of the sequence of coef-
ficients is still an open question. As the convergence of the approximation pro-
duced by the (L)RFMP algorithm mainly depends on this property, an equivalent
proof for the case of the (L)ROFMP algorithm must follow a different routine for
now.
The only result in this respect obtained in previous works on the ROFMP algo-
rithm contained certain technical assumptions. The result and the proof can be
found in Telschow (2014). However, it remains unclear which of the assumptions
hold for the infinite dictionary DInf and, thus, can be transferred to the LROFMP
algorithm. In contrast to the (L)RFMP algorithm, it is also an open question what
a limit of the approximation actually is. As the additional results (for instance,
with respect to the stability of the solution or the convergence of the regulariza-
tion) rely on this knowledge, we are also lacking such results for the (L)ROFMP
algorithm.
If further theoretical results for the ROFMP algorithm will be discovered in future
research, we may be able to transfer them to the learning case as well. However,
the aim of this thesis was to introduce a dictionary learning algorithm for the
RFMP and ROFMP algorithms and not to fill the gap in the theory of the latter
one. Therefore, we leave a deeper investigation of the theoretical background of
the (L)ROFMP algorithm to future research.

8.2. On the learning algorithm

It remains to consider how the learning algorithms are related to machine learn-
ing and, in particular, dictionary learning as we introduced these topics in Chap-
ter 5 and Chapter 6.
First of all, we also notice that, by generalizing the IPMP algorithms, we simulta-
neously develop a very basic reinforcement learning algorithm, also named “ad-
hoc strategy” (see e. g. Kaelbling et al., 1996). The author recognizes that the con-
nection to reinforcement learning techniques may enable an advanced learning
algorithm in future research.
Secondly, we consider the use of the data. In general, we build the LIPMP algo-
rithm in such a way that we are able to learn a dictionary for specific input data,
i. e. without the necessity of a set of training data. This enables the algorithm to
produce a most suitable best basis for a certain signal. This should be convenient
for spherical ill-posed inverse problems for which we only have a one-time mea-
surement like the EGM2008. Additionally, if we have given a set of training data
(e. g. from GRACE), we suggest to compute a best basis for each training input

190

8.2. On the learning algorithm

and combine those bases to a general dictionary. This general dictionary should
be able to project a suitable approximation from unknown data of the same type
as the training data. For instance, let the training data be a set of 12 pairwise dis-
tinct GRACE measurements, e. g. the GRACE measurements of a year. If we run
an LIPMP algorithm for each of these measurements and combine the dictionar-
ies, we obtain a general dictionary for GRACE.
However, the use of the data can be also considered from another viewpoint. In
each iteration of the LIPMP algorithm, we include the current residual. In partic-
ular, this means that we consider the “not-learnt-yet” part of the signal values y.
Figuratively speaking, in each iteration, we peel off one layer of the input data.
On the one hand, we produce a whole set of training data from one measurement
in this way. On the other hand, we consider the input data part by part similarly
as is done in online dictionary learning.
Thirdly, in Section 6.2, we already developed a well-defined objective for the
LRFMP algorithm. However, it remains to investigate whether the LRFMP al-
gorithm fulfils it.

Remark 8.2.1. By construction, the infinite dictionary DInf used in the LRFMP
algorithm is an optimal dictionary. Due to Theorems 8.1.7 and 8.1.8, the approx-
imation produced by this algorithm converges for N → ∞ and this limit is the
unique solution of the Tikhonov-regularized normal equation.

This enables the following result.

Theorem 8.2.2. Let f∞ be the solution of the regularized normal equation with respect to
the regularization parameter λ(δ, yδ) for perturbed data yδ and the operator Tk. Further,
let

f∞ =
∞

∑
n=1

αndn

be a representation in a complete dictionary DInf with decreasingly ordered values |αn|
for n ∈ N produced by the LRFMP algorithm with respect to the initial approximation
f0 = 0. Then the sequence of learnt dictionaries

(
D∗N

(
f0, Tk, λ

(
δ, yδ

)
, yδ
))

N∈N0
as

defined in Definition 6.1.1 is a sequence of well-working dictionaries.

Proof. The existence of f∞ was noted in Remark 8.2.1. By construction, the se-
quence of learnt dictionaries is defined by

D∗N+1

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
= D∗N

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
∪ {dN+1}.

Thus, it is a nested sequence. As the trial functions d1, ..., dN ∈ DInf from the rep-
resentation of f∞ are contained in the learnt dictionary D∗N

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)
,

also the second property is fulfilled.

191

8. Theoretical aspects

However, this is unfortunately only a motivationally based characterization of
the dictionary. For a mathematical one, we need to consider the limit of the se-
quence. Naturally, such a limit would be defined by

D∗
(

f0, Tk, λ
(

δ, yδ
)

, yδ
)

:=
∞⋃

n=0
D∗n
(

f0, Tk, λ
(

δ, yδ
)

, yδ
)

=: lim
n→∞
D∗n
(

f0, Tk, λ
(

δ, yδ
)

, yδ
)

.

It would be interesting to investigate the properties of this limit. In particular,
with respect to Section 6.2, it is an open question whetherD∗

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)

is optimal, i. e. complete. At a first glance, it seems unlikely that this limit can
span the whole spaceH2(Ω). As the dictionary is dependent on the operator Tk,
a starting point may be to investigate whether TkD∗

(
f0, Tk, λ

(
δ, yδ

)
, yδ
)

spans
the image of Tk. However, note that the dictionary also depends on the data yδ.
Hence, it might be more likely that

⋃
i∈N0

TkD∗
(

f0, Tk, λ

(
δ,
(

y(i)
)δ
)

,
(

y(i)
)δ
)

spans the whole image of Tk if {(y(i))δ}i∈N0 is a basis of the image of Tk. How-
ever, note that, in practice, it might be impractical to compute that many dictio-
naries and we have to settle for a particular subset of the image of Tk again.
Nonetheless, in this line of thought, if we consider a set of pairwise distinct train-
ing data {(y(i))δ}i=1,...,I for I ∈ N, it would be interesting to consider whether the
dictionary continuously depends on the data. That means, if we compute

D∗
(

f0, Tk, λ

(
δ,
(

y(i)
)δ
)

,
(

y(i)
)δ
)

and D∗
(

f0, Tk, λ

(
δ,
(

y(j)
)δ
)

,
(

y(j)
)δ
)

for i, j ∈ N, i, j ≤ I, i 6= j with ‖(y(i))δ − (y(j))δ‖R` < ε, are the two dictionar-
ies similarly close as the data? Note that, for this consideration, we first have to
define how to measure the distance between two dictionaries. A first approach
for this could be the Hausdorff metric. However, due to the limited project time,
we leave these mathematically very challenging theoretical considerations of the
characterization of dictionaries to future research.
What is left to consider at this point are the criteria for our learning algorithm that
we proposed in Section 6.1. Immediately, we see that the flexibility and simplicity
are fulfilled by the LIPMP algorithms. The efficiency can only be checked with
the respective numerical results.
At last, we additionally consider the properties of the state-of-the-art dictionary
design (confer Rubinstein et al., 2010).

192

8.2. On the learning algorithm

• efficiency II
The learnt dictionary contains well-known trial functions which can be effi-
ciently computed due to their analytic nature.

• localization
We include trial functions with a varying degree of localization such that the
learnt dictionary includes such basis functions whose localization matches
the data.

• multiresolution
In previous works (see e. g. Michel and Telschow, 2014), it was shown that
the IPMP algorithms enable a multiresolution of the approximation if the
latter one is sorted for the different trial function classes and a significant
number of iterations has been performed. As our learning algorithm is de-
fined closely to the structure of these methods, it could be expected that it
inherits the multiresolution. Note that its own approximation can be repre-
sented as a multiresolution as well as the learnt dictionary enables a mul-
tiresolution in future use.

• adaptivity
We recognize that modifying established trial functions in order to learn a
dictionary may yield a more adaptive dictionary. However, in comparison
to a manually chosen dictionary, the learnt dictionary is, in all probability,
more adaptive to the data. This is due to the search for the most suitable
basis element based on continuous optimization problems.

We see that, in general, the LRFMP algorithm also contains these aspects.

193

Part III.

Numerical experiments

195

9. Experiment setting in general

In the third part of this thesis, we present our numerical results. In particular, we
consider the application of a learnt dictionary in Chapter 10 and the results of the
standalone LIPMP algorithms in Chapter 11.
In this chapter, we describe the general setting of our experiments. That means,
for a particular experiment, we set the parameters to the values given next if not
stated otherwise in the respective section. We also consider the different data
in use here: the Earth Gravitational Model 2008 (EGM2008) as well as satellite
data from the Gravity Recovery And Climate Experiment (GRACE). We give a
detailed explanation of the origin and the use of these data next.

9.1. The Earth Gravitational Model 2008 (EGM2008)

As a first example, we compute our data from the EGM2008 (see e. g. Pavlis et al.,
2012). This is a reference model for the gravitational potential and has already
been introduced at the end of Section 2.4. In particular, we compute the values
of the gravitational potential y = TkV via (2.26) for discrete grid points η from a
Reuter grid (see Definition A.1.2). The EGM2008 provides then the Fourier coeffi-
cients. The full model can be obtained from the National Geospatial-Intelligence
Agency, Office of Geomatics (SN), EGM Development Team (2008). Here, we use
only the coefficients from degree 3 to 2190 and up to order 2159. The degree 2
mainly makes up for the global shape of the Earth. We see in Figure 2.2 that if we
start the model at degree 3, we also see local structures like the Andean region,
the Himalayas as well as the Pacific Ring of Fire. Hence, we have data coming
from a signal with strongly varying smoothness. As it is a reference model it can
be interpreted as a static mean field of the gravitational potential.

9.2. The Gravity Recovery And Climate Experiment
(GRACE)

The GRACE satellite mission and its successor GRACE Follow On (GRACE-FO)
were launched in March 2002 and May 2018, respectively (see e. g. Flechtner et al.,
2014a; NASA Jet Propulsion Laboratory, 2020; Schmidt et al., 2008; Tapley et al.,
2004; The University of Texas at Austin, Centre for Space Research, 2020). The
original GRACE mission is a joint project of the National Aeronautics and Space

197

9. Experiment setting in general

Administration (NASA) and the German Aerospace Center. It was decommis-
sioned in 2017 after having successfully monitored changes in the Earth’s gravity
field with high accuracy for 15 years.

Figure 9.1.: Visualization of GRACE
by an artist. Image credit:
NASA/JPL-Caltech.

The mission is built as a low-
low satellite-to-satellite tracking (lo-
lo SST) (see e. g. Freeden et al.,
2002). That means, two spacecrafts
fly in the same polar orbit above
the Earth. For a visualization of
GRACE by an artist, see Figure 9.1.
The satellites are about 220 kilome-
tres apart and started at an altitude
of 500 kilometres. Both of them
measure each others distance using
K-band frequencies (see e. g. GFZ
Potsdam, 2000) and GPS satellites
give the locations of the GRACE
satellites. From these data, the grav-
itational potential can be obtained.
Diverse representations of the potential are available from the GFZ German Re-
search Centre for Geosciences (GFZ), the Jet Propulsion Laboratory (JPL) and the
Center for Space Research at the University of Texas (UTCSR).
Here, we choose the Level 2 Release 05 products which contain the coefficients
of an expansion in spherical harmonics up to degree 60. We use degree 3 and
higher. Hence, we can, again, use the upward continuation operator as given in
(2.26). Due to Sakumura et al. (2014), we use the arithmetic mean of the data
obtained from the three origins GFZ, JPL and UTCSR. The long life-span of the
mission produced an enormous amount of available data. In particular, the years
2006 to 2010 contain the least data gaps (NASA Jet Propulsion Laboratory, 2020).
The monthly data enable a new look on the gravitational potential. From the
years of measurement, we can compute the (arithmetic) mean field of the mea-
sured potential. If we subtract this mean field from the data of each month, we
obtain the monthly deviation. This is interesting because it allows us to have a
look on the mass transports on the Earth.
However, even for these high-end products, the satellite tracks are usually vis-
ible. There exist profound methods to erase these remainders (see e. g. Davis
et al., 2008; Klees et al., 2008; Kusche, 2007). As we are concerned with a novel
approximation algorithm for spherical inverse problems and not primarily with
the discovery of geophysical insights here, we abstain from such high-profile ap-
proaches and simply smooth the obtained data by means of the Cubic Polyno-
mial Scaling Function (see Example 3.3.13) as was done in Fengler et al. (2007). In
particular, we multiply each summand in (2.26) with κ(2−5n)2 for the respective
degree n = 3, ..., 60.

198

9.3. Further experiment setting

Figure 9.2.: Deviation of the mass transport on the Earth in 2008 captured by the
GRACE satellite mission (left to right: first row: January to April, sec-
ond row: May to August, third row: September to December). Note
that the scales were adapted to improve the visualization. All values
in m2/s2.

The monthly deviations from the mean field in January to December 2008 mea-
sured by GRACE are shown in Figure 9.2. We see, in particular, the change of the
wet and dry season in the Amazon basin as well as the emerging and lessening
summer on the Northern hemisphere. Note that we use reversed (in comparison
to the EGM2008 Figure 2.2) colours in order to emphasize wetter soil with blue
colour. Further, we equalize the scales for all months in order to provide a better
comparability. At last, note that the presented monthly differences obtained from
the GRACE data differ strongly from the EGM2008 with respect to their structure.
The monthly GRACE data contain overall much less structure and attain much
smaller values. In this way, it also provides an interesting new challenge for the
novel LIPMP algorithms.

9.3. Further experiment setting

Point grids For the evaluation of our data, we use a Reuter grid (see Defini-
tion A.1.2) with G = 100. Thus, we work with ` = 12684 grid points. For consid-
ering the approximation error, we compute the solutions at a Driscoll-Healy grid
(see Definition A.1.1) with Gφ = 361 and Gθ = 181, i. e. 65341 grid points.

Ill-posedness of the problem We consider satellite data with a satellite height
of 500 km. Note that, for computing the arithmetic mean of the monthly GRACE
data, we adapt the satellite height slightly in the latest experiments such that we

199

9. Experiment setting in general

obtain data on the same relative satellite orbit. Furthermore, we add 5% Gaus-
sian noise to each data point. That means, for a perfect value yi, i = 1, ..., `, we
compute the perturbed data yδ

i via

yδ
i = yi · (1 + 0.05 · εi), i = 1, ..., `, (9.1)

for a Gaussian distributed random number εi. For the penalty term of the Tik-
honov functional, we use the Sobolev norm corresponding to the Sobolev space
H2(Ω) (see Definition 3.2.1). Furthermore, we approximate the inner products
(3.23), (3.24) as well as (3.26) with the first 600 summands. At last, the choice of
the regularization parameter is of major importance for the results. In general, the
more perfectly the value is chosen, the better the expected results are. However,
for the determination of a good parameter, usually several ones have to be tested.
Hence, the search for a perfect value is very time-consuming. As we pointed out
in Section 4.5, Task 3, determining an optimal parameter choice strategy for the
(L)IPMP algorithms is a challenge for future research. Thus, for our experiments,
we test different magnitudes for the regularization parameter and choose the one
which minimized the relative root means square error (RMSE) after the relative
data error has fallen below or equal to the noise level (see also termination crite-
ria). The chosen values will be given with the respective experiments.

Termination Each (L)IPMP algorithm terminates if the relative data error falls
equal to or below 5%, i. e. the noise level. As safety criteria, we also terminate the
algorithm after 1000 iteration or if the relative data error rises above 200%. When
we run an orthogonal variant of the (L)IPMP algorithms, we execute the restart
procedure after 100 iterations.

Learning The optimization problems in the LIPMP algorithms are solved us-
ing methods from the NLopt library (see Johnson, 2019). In particular, for de-
termining a global solution, we use the implementation ORIG DIRECT L of the
DIRECT algorithm (see Appendix A.4.2). For refining this solution, we use the
local SLSQP approach (see Appendix A.4.3). For both methods, we narrow the
inequality constraints by 10−8 in order to avoid numerical problems at the bound-
aries. In particular, this means, we have

c ∈
[
−1 + 10−8, 1− 10−8

]
, β ∈

[
10−8, π − 10−8

]
and α, γ ∈

[
10−8, 2π − 10−8

]
for the Slepian functions and

‖x‖2
R3 ≤ 1− 10−8

for the Abel–Poisson low and band pass filters, confer (7.13), (7.14), (7.15), (7.16),
(7.17) and (7.18), respectively. Note that this sharpening of constraints is advised
in the documentation of the NLopt library. Additionally, in the case that the solu-
tion of the optimization process is infeasible, we do not consider it as a candidate.

200

9.3. Further experiment setting

Moreover, we set additional termination values for the optimization methods as it
is advised. We limit the absolute tolerance of the change in the objective function
between two successive iterates to 10−8. Analogously, the absolute tolerance be-
tween two successive iterates shall be at least of the same value. We also limit the
number of function evaluations to 5000 and the time spent in one optimization to
200 seconds.

Features Further, when running an LIPMP algorithm, we utilize the following
features (see Section 7.3). We set the size ε of the splines for the LROFMP algo-
rithm to 5 · 10−4. We choose a constant regularization parameter and demand that
the learnt dictionary is only applied with the same regularization parameter. We
allow all considered trial function classes in all iterations. However, we apply the
learnt dictionary only iteratively as described in Remark 7.3.4. Moreover, we do
without any further restart procedure (confer Remark 7.3.5). We do so in order to
present results obtained in a setting that is in accordance with the presented the-
ory of Chapter 8. However, note that this will probably lead to a higher runtime
of the learning algorithm. We tried to optimize our implementation with respect
to the runtime, but there are surely improvements possible. Nonetheless, we will
discuss the runtime for certain experiments in the sequel.

Dictionaries in use We work with all four trial function classes presented in this
thesis: spherical harmonics, Slepian functions as well as Abel–Poisson low and
band pass filters. By construction, the LIPMP algorithms choose from the infinite
dictionary as given in (7.3). However, as we explained in Chapter 7 (see e. g.
Algorithm 5), we need to define a starting dictionary. In the DIRECT algorithm
(see Appendix A.4.2), which we use for determining a global solution of each
optimization problem, the starting solutions of the Slepian functions as well as
the Abel–Poisson low and band pass filters will not be used. Thus, we can keep
the starting dictionary very small with respect to these trial function classes. Note
that the starting dictionary contains all considered spherical harmonics. Hence,
we define the starting dictionary as follows.

[Ns]SH =
{

Yn,j | n = 0, ..., 100; j = −n, ..., n
}

[Ss]SL =
{

g(k,5)
((

c, A(α, β, γ)ε3
)

, ·
)∣∣∣

c ∈
{π

4
,

π

2

}
, α ∈

{
0,

π

2
, π,

3π

2

}
, β ∈

{
0,

π

2
, π
}

,

γ ∈
{

0,
π

2
, π,

3π

2

}
, k = 1, ..., 36

}
[Bs

K]APK =

{
K(x, ·)

‖K(x, ·)‖L2(Ω)

∣∣∣∣ |x| = 0.94,
x
|x| ∈ Xs

}

201

9. Experiment setting in general

[Bs
W]APW =

{
W(x, ·)

‖W(x, ·)‖L2(Ω)

∣∣∣∣ |x| = 0.94,
x
|x| ∈ Xs

}

Ds = [Ns]SH + [Ss]SL + [Bs
K]APK + [Bs

W]APW

with a Reuter grid Xs with G = 10 (i. e. 123 grid points). All in all, this starting
dictionary contains 13903 trial functions.
In certain experiments, we will compare the results of an LIPMP algorithm with
the results of the respective IPMP algorithm. Note that we abstain from compar-
isons with classical approaches like spline approximation as those were made for
the IPMP algorithms in previous publications (see e. g. Fischer and Michel, 2013b;
Michel and Telschow, 2014; Leweke, 2018). The reference run of the respective
IPMP algorithm needs a manually chosen dictionary. We define this dictionary
similarly to those of previous publications. Note that we are aware that this ap-
proach may be arguable. A more independent ansatz would be to run an IPMP
algorithm with a set of randomly chosen dictionaries and compare our results
with the best one among them. Such a set of random dictionaries would need to
be sufficiently large in order to be meaningful. Then, however, this ansatz is not
practical due to its runtime. Note that this thesis emerged, in particular, because
this strategy cannot seriously be put into practice. Thus, we get back to our ex-
perience. In a way, such a randomized search of dictionaries was already done
manually in the development of the IPMP algorithms. Hence, we build our man-
ually chosen dictionary in analogy to one from Telschow (2014). In particular, we
choose the same scales for the Abel–Poisson low pass filters. However, for the
centres, we choose a smaller Reuter grid due to reasons of memory capacity. Fur-
ther, we also use these scales and centres for the Abel–Poisson band pass filters.
Note that these trial functions were not included in the dictionary in Telschow
(2014).
It follows that we compare the results of the LIPMP algorithms with a possibly
already well-done dictionary choice. Our manually chosen dictionary is defined
as follows:

[Nm]SH =
{

Yn,j
∣∣ n = 0, ..., 25; j = −n, ..., n

}
[Sm]SL =

{
g(k,5)

((
c, A(α, β, γ)ε3

)
, ·
)∣∣∣

c ∈
{π

4
,

π

2

}
, α ∈

{
0,

π

2
, π,

3π

2

}
, β ∈

{
0,

π

2
, π
}

,

γ ∈
{

0,
π

2
, π,

3π

2

}
, k = 1, ..., 36

}
[Bm

K]APK =

{
K(x, ·)

‖K(x, ·)‖L2(Ω)

∣∣∣∣ |x| ∈ Z,
x
|x| ∈ Xm

}

202

9.3. Further experiment setting

[Bm
W]APW =

{
W(x, ·)

‖W(x, ·)‖L2(Ω)

∣∣∣∣ |x| ∈ Z,
x
|x| ∈ Xm

}

Dm = [Nm]SH + [Sm]SL + [Bm
K]APK + [Bm

W]APW

with a Reuter grid Xm with G = 60 (i. e. 4551 grid points) and

Z = {0.75, 0.80, 0.85, 0.89, 0.91, 0.93, 0.94, 0.95, 0.96, 0.97}.

All in all, the manually dictionary contains 95152 trial functions.

Presented results We demonstrate our results from different points of view.
However, we concentrate on the most prominent aspects for each experiment.
That means, in most cases, we choose only some of the representations described
next. As we pointed out in Appendix B, we implemented our code in C/C++.
The visualization of the results presented in the next chapters, however, was done
with MATLAB R©. We have to run the reference tests with the manually chosen dic-
tionary of 95152 trial functions on a fat-node with 32 CPUs and 512 GB RAM. The
respective experiments with the LIPMP algorithm with all four trial functions can
be run on a node with 12 CPUs and 48 GB RAM.
Each algorithm presented in this thesis yields an approximation of the solution
to an inverse problem. We visualize these approximations either as they are or
by considering the absolute approximation error, i. e. the absolute value of the
difference between the approximation and the respective solution. Both func-
tions are evaluated at the mentioned Driscoll-Healy grid and displayed on a
two-dimensional projection of the sphere. Note that, if we compare the abso-
lute approximation errors of different results, we scale the plots for an improved
visibility. With respect to representing the errors, we give the relative data error,
i. e. ∥∥RN

∥∥
R`

‖R0‖R`

,

as well as the relative root mean square error (RMSE)√
∑65341

i=1 (fN(η̃(i))− f (η̃(i)))
2

65341√
∑65341

i=1
(

f
(
η̃(i)
))2

along the iterations. With respect to the relative RMSE, f gives a representation
of the solution, fN the current approximation and η̃i is a point from the used
Driscoll-Healy grid (see above).
Besides the visualization of approximation errors, we also summarize the results
of an experiment, possibly in a table, for better comparison. There, we consider

203

9. Experiment setting in general

the size of the used dictionary, the number of performed iterations, the final rel-
ative RMSE and data error, the maximal spherical harmonic degree in the dictio-
nary as well as, in some cases, the needed CPU-runtime. Note that the maximal
spherical harmonic degree of a learnt dictionary is the maximal learnt spherical
harmonic degree. Further, note that the size of a learnt dictionary is always given
as a “less or equal than” size. To be specific, the size of the dictionary we state is
the number of iterations performed in the respective LIPMP algorithm. That is,
we may have duplicates in the learnt dictionary even though this is very unlikely
for the Abel–Poisson low and band pass filters as well as the Slepian functions.
At last, we compare the runtime of an IPMP algorithm using the manually chosen
dictionary and the learnt dictionary. In particular, we compare the runtime for the
excessive preprocessing and application of the manually chosen dictionary with
the learning and application of the learnt dictionary. Note that we certainly tried
our best to optimize our implementation with respect to the runtime. Nonethe-
less, the given values here should be more viewed in relation to each other than
as precise values.

204

10. Comparisons with the IPMP
algorithms

In this chapter, we consider experiments in which we compare the IPMP algo-
rithms with a manually chosen and a learnt dictionary. In particular, we consider
the downward continuation of the EGM2008 and one month of GRACE data. At
last, we present an experiment in which we learn a dictionary from one year of
GRACE data and apply it to unseen test data.

10.1. Previously published results

In Michel and Schneider (2020), first results of a simpler form of the LRFMP have
already been published.

Particular setting The setting of the experiments in this paper differ from Chap-
ter 9 in the following way.
First of all, a dictionary is learnt only from a variant of the LRFMP algorithm
working with spherical harmonics and Abel–Poisson low pass filters. The start-
ing dictionary is given in the publication. Furthermore, only a one-step opti-
mization is done. That means, we do not divide the search into a global and a
local optimization. Furthermore, we use a different optimization software, the
so-called IPOPT solver (see e. g. Vigerske et al., 2016; Wächter, 2002; Wächter and
Biegler, 2005a,b, 2006, confer also Appendix A.4.4) with subroutines from HSL
(2018). Though this method is theoretically globally convergent, due to Vigerske
et al. (2016), the available implementation does not necessarily fulfil this. Partic-
ular settings of its parameters are described in Michel and Schneider (2020).
Moreover, in these experiments, we include all additional features described in
Section 7.3, paragraph 2. A detailed description of those is also given in Michel
and Schneider (2020). The publication shows that the features have a positive ef-
fect on guiding the learning process in this setting. However, it appears that they
are also needed due to the one-step optimization.
At last, note that the experiments in Michel and Schneider (2020) terminate when
they reach 3000 iterations as this is one of the predefined termination criteria. The
regularization parameter is chosen as 10−2 for the experiments with the manu-
ally chosen dictionary. For the experiments with the learnt dictionary, we use
10−4‖y‖R`/(n + 1), when working with the EGM2008, and 10−1‖y‖R`/(n + 1)

205

10. Comparisons with the IPMP algorithms

0 50 100 150 200 250 0 50 100 150 200 250

0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

Figure 10.1.: Results of the RFMP with a manually chosen dictionary and the
learnt dictionary. Upper row: Results for EGM2008 data. Lower
row: Results for GRACE data. Left: Absolute approximation error of
RFMP with a manually chosen dictionary. Right: Absolute approxi-
mation error of RFMP with learnt dictionary. 3000 iterations allowed
in all experiments. The scale is adapated for improved comparabil-
ity. All values in m2/s2.

in the case of GRACE data. In both cases, we have the current iteration n =
0, ..., 3000.

Results Figure 10.1 shows the results of this experiment obtained by the RFMP
algorithm. In particular, we show the obtained absolute approximation errors of
the RFMP algorithm using the manually chosen dictionary Dm = [Nm]SH + [Bm

K]
and a learnt dictionary. Note that we use the solution as given in Figure 2.2 and
Figure 9.2 (second row, first column). Table 10.1 lists the different error values at
termination as well as the CPU-runtime for a better comparison. Note that the
number of learnt dictionary elements coincides with the number of iterations this
variant of the LRFMP algorithm performed.

Evaluation As we point out in Michel and Schneider (2020), we first notice that
in both cases the algorithm is able to construct an approximation and the remain-
ing errors lie within regions of higher local structures. In particular, they can
be found in the Andes, the Himalayas and at the Pacific Ring of Fire. More-

206

10.2. Downward continuation of regularly distributed global data

relative relative CPU-runtime
#D RMSE data error in h

RFMP∗ 46186 0.000794 0.065830 299.82
RFMP∗∗ ≤ 3000 0.000455 0.047092 41.34
RFMP∗ 46186 0.001461 0.057765 295.49
RFMP∗∗ ≤ 3000 0.000306 0.046404 7.5

Table 10.1.: Comparison of RFMP with a manually chosen dictionary (RFMP*)
and a learnt dictionary (RFMP**). Upper comparison with respect to
EGM2008 data. Lower comparison with respect to GRACE data. 3000
iterations allowed in all experiments.

over, we see that the algorithm is able to construct a better approximation with
the learnt dictionary. This also holds true for regions with local anomalies. Fur-
ther, this is underlined by the smaller data and approximation error. At last, we
see that learning a dictionary and applying it takes here much less runtime than
preprocessing the huge manually chosen dictionary. Thus, in this setting, we ob-
tain overall better results when learning a dictionary and applying it than if we
choose manually a dictionary from spherical harmonics and Abel–Poisson ker-
nels. However, note that we used a few also manually chosen additional features
to support a better learning result.

10.2. Downward continuation of regularly distributed
global data

In this experiment, we compare the results with respect to the downward con-
tinuation of perturbed simulated satellite data of the respective IPMP algorithm
with a learnt and a manually chosen dictionary of all presented four trial func-
tions and with a two-step optimization.

Particular setting We present results of the manually chosen dictionary and of a
learnt dictionary of the LIPMP algorithms as described in Chapter 7. Further, we
consider a dictionary that is learnt by an LIPMP algorithm using a non-stationary
regularization parameter (in short: non-stationary learnt) and a dictionary that
is learnt from only spherical harmonics as well as Abel–Poisson low and band
pass filters (and again with a constant regularization parameter; in short: learnt-
without-Slepian-functions). The regularization parameter is chosen as 10−9‖y‖R`

for all (L)IPMP algorithms except when we use a non-stationary regularization
parameter. In this case, we choose λn = 10−6‖y‖R`/n for the iteration n ≥ 1. The
choices for these magnitudes were made as they minimize the approximation
error if the algorithms terminate when the relative data error is below or equal to
the noise level.

207

10. Comparisons with the IPMP algorithms

Results Figure 10.2 shows the results of this experiment obtained by the RFMP
and the ROFMP algorithm, respectively. In particular, we show the obtained ab-
solute approximation errors from the IPMP algorithms with the manually chosen
(left, upper row), the learnt (right, upper row), the non-stationary learnt (left,
lower row) and the learnt-without-Slepian-functions (right, lower row) dictio-
nary (Figure 10.2a for the RFMP and Figure 10.2b for the ROFMP algorithm).
Note that we use the solution as given in Figure 2.2. Further, we give the relative
data errors and the relative RMSEs along the iterations (Figure 10.3). In the first
two rows, Table 10.2 lists the different error values at termination as well as the
size of the used dictionary, the needed number of iterations, the maximal spher-
ical harmonic degree and the CPU-runtime for a better comparison. Note that,
in the cases where any learnt dictionary is used, the maximal spherical harmonic
degree is the learnt maximal degree.

Evaluation In the beginning, we note that these are the first results ever pub-
lished of the IPMP algorithms when using Slepian functions and that is also with-
out the learning technique. Thus, first of all, we notice that the algorithms are
again able to construct a good approximation and the remaining errors lie only in
regions with higher local structure. That means, the remaining errors lie within
regions where they can be expected if one takes into consideration that we use
perturbed upward continued data on a satellite orbit of 500 km. Moreover, in
comparison to the results of the RFMP algorithm in Section 10.1, we see that
using these four trial function classes improves the results. In particular, with
a roughly doubled manually chosen dictionary, we obtain much lower relative
data and approximation errors with less than a third of the iterations in the IPMP
algorithms. Hence, incorporating more diverse trial functions in the dictionary
improves the results of the IPMP algorithms.
Further, in Figure 10.2, we see that the approximation obtained using the man-
ually chosen and any learnt dictionary do not differ that significantly as before.
This is underlined by the values given in Table 10.2. If we terminate the algo-
rithms at noise level, we obtain very similar relative RMSEs in all cases. With re-
spect to the different regularization parameters and number of used trial function
classes, it is difficult to make a general statement here. From the values we see
here, we could assume that using a non-stationary regularization parameter may
improve the approximation error slightly while having a higher runtime. On the
contrary, using less trial function may lead to a slight loss in the approximation
but is undoubtedly faster. In anticipation of the next experiment (i. e. compare
with the last two rows in Table 10.2), such assumptions may also depend on the
data. It would be interesting to investigate this behaviour in view of statistically
relevant evidence in future research. Nonetheless, here we see that all of the dif-
ferent settings for learning a dictionary provide a suitable result.
Besides the relative RMSEs, we note that the CPU-runtimes are also very simi-
lar for the RFMP algorithm if we use either a manually chosen dictionary or a
learnt dictionary of all four trial function classes. However, if we do without

208

10.2. Downward continuation of regularly distributed global data

(a) Absolute approximation errors obtained by the RFMP algorithm.

(b) Absolute approximation errors obtained by the ROFMP algorithm.

Figure 10.2.: Absolute approximation errors of the experiment described in Sec-
tion 10.2. In both subfigures, the IPMP algorithm uses the manu-
ally chosen (left, upper row), the learnt (right, upper row), the non-
stationary learnt (left, lower row) and the learnt-without-Slepian-
functions (right, lower row) dictionary. The colour scale is adapted
for better comparability. All values in m2/s2.

209

10. Comparisons with the IPMP algorithms

Figure 10.3.: The relative RMSE (left column) and relative data error (right col-
umn) of the RFMP (upper row) and of the ROFMP (lower row), re-
spectively, with respect to the experiment described in Section 10.2.
IPMP∗ uses the manually chosen, IPMP∗∗ the learnt, IPMP∗∗∗

the non-stationary learnt and IPMP∗∗∗∗ the learnt-without-Slepian-
functions dictionary. The x-axis denotes the iterations and the y-axis
the logarithm of the error values.

the Slepian functions, we obtain a similarly good approximation but at a much
lower runtime (about only 25%). Unfortunately, this does not fully take over to
the ROFMP algorithm. We obtain again an equally suitable approximation with-
out Slepian functions at a much lower runtime. However, if we learn Slepian
functions as well, the runtime is, in particular, for the case of a non-stationary
regularization parameter, significantly higher in this experiment. Note that it is
well-known that the orthogonalization process yields higher runtimes also in the
non-learning case. Further, in the LROFMP algorithm, the projection coefficients
must be recomputed for the current ROFMP step in each iteration of the opti-
mization processes. In contrast, in the ROFMP algorithm, these values can be
updated. Thus, besides taking Slepian functions into account, the recomputation
could also be a reason for the higher runtime. However, again, we anticipate the

210

10.3. Downward continuation of monthly Data

next experiment (i. e. compare with the last two rows in Table 10.2). There we
see that the runtimes of learning and applying the learnt dictionary are generally
lower than using the manually chosen dictionary. Hence, the runtime could also
be heavily influenced by the structure of the data itself as data with more struc-
ture may demand more iterations. Note that the runtime of the IPMP algorithms
is mostly caused by the size of the manually chosen dictionary, whereas the run-
time of the learning algorithms is heavily influenced by solving the optimization
problems.
Moreover, in Table 10.2, we see that we are indeed able to learn a maximal spheri-
cal harmonic degree as the chosen degrees are generally below 100 (compare with
the starting dictionary). Note that, however, they are higher than the maximal
spherical harmonic degree used in the manually chosen dictionary. Furthermore,
the size of the learnt dictionary is about 1% of the size of the manually chosen dic-
tionary. Note that the IPMP algorithms also need less iterations when using the
learnt dictionary. In a certain sense, it produces a sparser approximation. At last,
recall that, for using a manually chosen dictionary of this size, a compute node
of more than 100 GB RAM is necessary whereas the learning process and the ap-
plication of the learnt dictionary can be computed with less than 48 GB RAM.
Summarized, we can say that learning a dictionary with the LIPMP algorithm
enables us to obtain equally good approximations at often less computational
costs.

10.3. Downward continuation of monthly Data

This experiment is analogous to Section 10.2 but with one month of GRACE data.
Note that, as seen in Figure 9.2 (second row, first column), this data is of very
different structure than the EGM2008.

Particular setting We remain with the setting as described in Chapter 9. Our
data values here are given by the GRACE monthly deviation in May 2008 (con-
fer Figure 9.2, second row, first column). Analogously as in Section 10.2, we run
the IPMP algorithms with the manually chosen, a learnt, a non-stationary learnt
and a learnt-without-Slepian-functions dictionary. The regularization parameter
is chosen as 10−4‖y‖R` for all (L)IPMP algorithms except when we use a non-
stationary regularization parameter. Then we choose, for the iteration n ≥ 1,
λn = 10−1‖y‖R`/n for the LRFMP and λn = 10−3‖y‖R`/n for the LROFMP algo-
rithm.

Results The results obtained by the RFMP and the ROFMP algorithm, respec-
tively, in this experiment are shown in Figure 10.4. In particular, we give the abso-
lute approximation errors obtained from the IPMP algorithms using the manually
chosen (left, upper row), the learnt (right, upper row), the non-stationary learnt

211

10. Comparisons with the IPMP algorithms

(a) Absolute approximation error obtained by the RFMP algorithm.

(b) Absolute approximation error obtained by the ROFMP algorithm.

Figure 10.4.: Approximation errors of the experiment described in Section 10.3. In
both subfigures, the IPMP algorithm uses the manually chosen (left,
upper row), the learnt (right, upper row), the non-stationary learnt
(left, lower row) and the learnt-without-Slepian-functions dictionary
(right, lower row). The colour scale is adapted for better compara-
bility. All values in m2/s2.

212

10.3. Downward continuation of monthly Data

Figure 10.5.: The relative RMSE (left column) and relative data error (right col-
umn) of the RFMP (upper row) and the ROFMP (lower row) algo-
rithm. IPMP∗ uses the manually chosen, IPMP∗∗ the learnt, IPMP∗∗∗

the non-stationary learnt and IPMP∗∗∗∗ the learnt-without-Slepian-
functions dictionary. The x-axis denotes the iterations and the y-axis
the logarithm of the error values.

(left, lower row) and the learnt-without-Slepian-functions (right, lower row) dic-
tionary (Figure 10.4a for the RFMP and Figure 10.4b for the ROFMP algorithm).
The solution of this experiment is given in the second row and the first column
of Figure 9.2. Further, we give the relative data errors and the relative RMSEs
along the iterations in Figure 10.5. In the last two rows of Table 10.2, we list the
different error values at termination as well as the size of the used dictionary,
the needed number of iterations, the maximal spherical harmonic degree and the
CPU-runtime for a better comparison. Note that the maximal spherical harmonic
degree equals the maximal learnt spherical harmonic degree in the cases where a
learnt dictionary is used.

Evaluation Similarly as in Section 10.2, at first, we notice that the IPMP algo-
rithms using all four trial functions produce a good approximation also for the

213

10. Comparisons with the IPMP algorithms

monthly GRACE data. Again, the use of all four trial functions already improves
the results with respect to the approximation errors and the number of iterations
(compare with Section 10.1).
As we consider the data of May 2008, the solution clearly has a local anomaly in
the Amazon basin. This is due to the fact that the wet season in this region just
ended at the time of the measurements. We see that, for both IPMP algorithms
using the manually chosen as well as the learnt dictionaries, the remaining errors
are mostly to be found in this area as well. Furthermore, we also see again that
the approximation obtained using any learnt dictionary is equally well as the ap-
proximation obtained using the manually chosen dictionary. This is underlined
by the final error values given in Table 10.2. However, even though we present
here the results with the lowest approximation errors we obtained when testing
several regularization parameters, it appears as if the choice of non-stationary pa-
rameter for the LROFMP algorithm could still be improved.
Moreover, in Table 10.2, we see that the non-stationary regularization parameter
as well as the Slepian functions do not influence the results in the same manner
as in the experiments with the EGM2008 data (Section 10.2). As we mentioned
before, the number of tests we compare here is too little to draw meaningful con-
clusions. However, the results suggest that an investigation of a significant num-
ber of tests would be interesting in the future.
In contrast to Section 10.2, we see here that learning and applying a learnt dictio-
nary has generally a shorter runtime than using the manually chosen dictionary
and the saving of time is significant in some cases (up to 80% less runtime). More-
over, we notice that we have again a truly learnt maximal spherical harmonic
degree and this degree is usually higher than in the manually chosen dictionary.
Further, the number of performed iterations is very similar if we choose the man-
ually chosen dictionary or a learnt dictionary. However, a learnt dictionary is of
only about 0.5% of the size of the manually chosen dictionary. Recall that also
here the experiments with the manually chosen dictionary have a much higher
storage demand than learning a much smaller dictionary.
Hence, the outcome of this experiment underlines the conclusions drawn in Sec-
tion 10.2: we are able to automatize the dictionary selection at lower computa-
tional costs.

214

10.3. Downward continuation of monthly Data

si
ze

of
co

m
pl

et
ed

m
ax

im
al

re
la

ti
ve

re
la

ti
ve

C
PU

-r
un

ti
m

e
di

ct
io

na
ry

it
er

at
io

ns
de

gr
ee

R
M

SE
da

ta
er

ro
r

in
h

EG
M

20
08

R
FM

P
∗

95
15

2
95

7
25

0.
00

04
66

0.
04

99
98

51
4.

03
R

FM
P
∗∗

≤
63

7
66

2
46

0.
00

04
71

0.
04

99
99

50
7.

22
R

FM
P
∗∗
∗

≤
67

0
67

0
34

0.
00

04
47

0.
05

00
00

53
3.

87
R

FM
P
∗∗
∗∗

≤
68

4
73

4
41

0.
00

04
84

0.
04

99
99

12
9.

57
EG

M
20

08
R

O
FM

P
∗

95
15

2
76

6
25

0.
00

04
63

0.
04

99
99

56
1.

76
R

O
FM

P
∗∗

≤
55

0
57

7
38

0.
00

04
67

0.
04

99
98

66
5.

76
R

O
FM

P
∗∗
∗

≤
68

6
70

1
35

0.
00

04
52

0.
04

99
99

84
0.

06
R

O
FM

P
∗∗
∗∗

≤
60

0
62

1
46

0.
00

04
68

0.
04

99
98

38
6.

08
G

R
A

C
E

R
FM

P
∗

95
15

2
39

3
25

0.
00

03
40

0.
04

99
97

52
2.

09
R

FM
P
∗∗

≤
38

4
48

3
32

0.
00

03
35

0.
04

99
99

34
1.

16
R

FM
P
∗∗
∗

≤
35

2
34

9
28

0.
00

03
11

0.
04

99
94

28
4.

85
R

FM
P
∗∗
∗∗

≤
47

9
53

5
39

0.
00

03
44

0.
04

99
94

90
.5

3
G

R
A

C
E

R
O

FM
P
∗

95
15

2
27

4
25

0.
00

03
28

0.
04

99
89

52
8.

67
R

O
FM

P
∗∗

≤
30

3
30

6
34

0.
00

03
30

0.
04

99
98

37
2.

31
R

O
FM

P
∗∗
∗

≤
29

2
29

0
33

0.
00

03
74

0.
04

99
98

35
8.

64
R

O
FM

P
∗∗
∗∗

≤
27

8
27

8
26

0.
00

03
22

0.
04

99
96

18
2.

19

Ta
bl

e
10

.2
.:

O
ve

rv
ie

w
of

th
e

re
su

lt
s

at
te

rm
in

at
io

n
of

th
e

ex
pe

ri
m

en
td

es
cr

ib
ed

in
Se

ct
io

ns
10

.2
an

d
10

.3
.T

he
IP

M
P
∗

al
go

-
ri

th
m

us
es

th
e

m
an

ua
lly

ch
os

en
di

ct
io

na
ry

,t
he

IP
M

P
∗∗

th
e

le
ar

nt
di

ct
io

na
ry

,t
he

IP
M

P
∗∗
∗

th
e

no
n-

st
at

io
na

ry
le

ar
nt

di
ct

io
na

ry
an

d
th

e
IP

M
P
∗∗
∗∗

th
e

le
ar

nt
-w

it
ho

ut
-S

le
pi

an
-f

un
ct

io
ns

di
ct

io
na

ry
.A

ll
le

ar
nt

di
ct

io
na

ri
es

ar
e

it
er

at
iv

el
y

ap
pl

ie
d.

Th
e

m
ax

im
al

de
gr

ee
is

th
e

m
ax

im
al

de
gr

ee
of

a
sp

he
ri

ca
lh

ar
m

on
ic

in
cl

ud
ed

in
th

e
us

ed
di

ct
io

na
ry

.

215

10. Comparisons with the IPMP algorithms

Figure 10.6.: Deviation from the mean field of the modified GRACE data in May
2009. The scale is adapted for better comparability with Figure 9.2.
All values in m2/s2.

10.4. Learning a GRACE dictionary

In this experiment, we aim to learn a dictionary for the GRACE satellite mission
from the LRFMP algorithm.

Particular setting We propose to learn a dictionary for GRACE from the LRFMP
algorithm in the following way. We run the algorithm with the data of one year
of GRACE measurements. We choose the data from 2008 for this (confer Fig-
ure 9.2). In particular, we run the LRFMP algorithm with all 12 monthly data sets
separately. In this way, we learn one dictionary for each month of the year. The
union of these (monthly) learnt dictionaries is then said to be our GRACE (year-)
dictionary. We test the GRACE dictionary by applying it in the RFMP algorithm
using test data from a different year. Note that here, naturally, we do not apply
the learnt dictionary iteratively. As test data, we choose May 2009 (confer Fig-
ure 10.6). We compare the results using the GRACE dictionary with the outcome
of the RFMP algorithm using the manually chosen dictionary to approximate the
same data from 2009. In order to keep the experiment practical, we choose the
same regularization parameter as in Section 10.3. That is, the regularization pa-
rameters in all runs are chosen as 10−4‖y‖R` .

Results The results of this experiment are shown in Figure 10.7. We give the ab-
solute approximation errors from the RFMP algorithm using the manually chosen
dictionary (left) and the learnt GRACE dictionary (right). The solution of this ex-
periment is given in Figure 10.6. Further, Figure 9.2 shows the data from which
the learnt dictionary is obtained. The behaviour of the errors along the itera-
tions is similar as in Section 10.3 and is, thus, omitted here. Using the manually

216

10.4. Learning a GRACE dictionary

Figure 10.7.: Results of the experiment described in Section 10.4. Absolute ap-
proximation error obtained by the RFMP algorithm using the manu-
ally chosen dictionary (left) and using the learnt GRACE dictionary
(right). The scale is adapted to improve the comparability. All values
in m2/s2.

chosen dictionary of 95152 trial functions, the algorithm terminates after 399 iter-
ations with a relative data error of 0.049999 and a relative RMSE of 0.000335. The
learnt GRACE dictionary consists of not more than 6701 elements and the max-
imal spherical harmonic degree is 50. Then the RFMP algorithm ends after 620
iterations with a relative data error of 0.049994 and a relative RMSE of 0.000346.

Evaluation As could be expected after Section 10.3, we see that the RFMP al-
gorithm using the manually chosen dictionary also approximates the data from
May 2009 well. Furthermore, the remaining errors are still to be found mainly
in the Amazon basin. Note again that, in this region, the wet season is about to
end around that time of the year. Thus, as we see in Figure 10.6, the most local
structures in the data are situated there. However, the maximal learnt spherical
harmonic degree of the learnt GRACE dictionary is again higher than the corre-
sponding degree included in the manually chosen dictionary.
Moreover, we see that the proposed approach to learn a GRACE dictionary pro-
duces a similar approximation. This shows that, in principle, we can learn a
GRACE dictionary from one year of measurements and use it for test data from
a different year. In particular, we conclude that, if to a certain extent the training
and test data are similar, then we can learn a dictionary from the training data
and use it for (unseen) test data. Note that this also hints at that the learnt dictio-
nary could indeed be continuously dependent on the data.
However, the final relative RMSE obtained when using the learnt dictionary is
slightly higher than with the manually chosen dictionary. Furthermore, as we see
in Figure 10.7, the respective approximation contains some artefacts which might
be caused by overfitting. We are aware that we present here merely a first strat-
egy to learn a GRACE dictionary. Refinements (and, thus, improvements) of this
dictionary could be done as follows in future research.

217

10. Comparisons with the IPMP algorithms

Here, we use the same regularization parameter for all months of the training
data. Of course, it might be even better to determine a new (and possibly differ-
ent) parameter for each month. Those parameters could also be determined with
higher precision than was done here. However, we have to take into account that,
in practice, there is surely a limit to the number of used training data and the ac-
curacy of the determined regularization parameter.
Moreover, in the previously presented tests, we always applied the learnt dictio-
nary iteratively. Naturally, this cannot be taken over to this experiment straight-
forwardly. Therefore, in the future research, instead of applying the union of the
monthly learnt dictionaries at once, we could apply, in the N-th iteration, the
union of only the first N learnt dictionary elements of each month.
At last, we might think of learning a dictionary from more than one year and
/ or only from similar months (here, this could be March to June). For this, it
may be sensible to use the data from 2006 to 2010 (confer Section 9.2). This ap-
proach might serve even better for test data from the successor mission GRACE-
FO. However, note that the there exists a time gap between the GRACE and the
GRACE-FO mission. As we assume at least some similarities between the test
and the trainings data, we have to bear in mind that, thus, the GRACE data may
not be good training data if the test data comes from the GRACE-FO mission. For
instance, the influence of the climate change we currently see will be captured by
the test data. However, it remains open whether these effects are strongly enough
visible in the GRACE training data.
Nonetheless, the union of the separately learnt 12 dictionaries overall has a size
of less than 10% of the size of the manually chosen dictionary. Recall that each of
the 12 runs of the LIPMP algorithm uses much less memory storage than the run
with the manually chosen dictionary. Moreover, if we once have learnt a dictio-
nary, for instance, for GRACE, its pure application will naturally have a shorter
CPU-time due to the much smaller dictionary size. Both of these aspects might
come in handy in future applications with more data values.

218

11. Further experiments with the
LIPMP algorithms

In this chapter, we present the results of the LIPMP algorithms in diverse experi-
ments. That means, we consider whether it is an approximation algorithm on its
own as well.

11.1. Approximation

The aim of this experiment is to show that with a – in theory – well-posed prob-
lem, the LIPMP algorithm itself yields a good approximation. Further, remaining
errors can be explained by the data. That means, the algorithm does not produce
intrinsic errors.

Particular setting We approximate a solution from data given at the surface of
the Earth, i. e. we have no satellite height. However, note that it was shown in
Michel (2020), that the IPMP algorithms yield better results with a non-vanishing
regularization parameter even if the problem here is theoretically well-posed. As
the infinite dictionary contains trial functions that are very localized (|x| up to
1− 10−8 is feasible for the Abel–Poisson low and band pass filters), we present
here also results for a positive regularization parameter. In particular, the regu-
larization parameter is chosen as 10−9‖y‖R` for both LIPMP algorithms. Further,
in contrast to the previous experiments, here the algorithms actually terminate
after 1000 iterations as they do not reach the noise level up to then.

Results We present the results of this experiment in Figure 11.1. In particular,
we show the approximations and the respective absolute approximation error
obtained from the LIPMP algorithm (Figure 11.1a and Figure 11.1b, respectively).
Note that the solution, i. e. the gravitational potential at the surface of the Earth, is
given in Figure 2.2. Further, we give the relative data errors and the relative RM-
SEs along the iterations in Figure 11.1c. For the sake of completion, in Figure 11.2,
we also give the absolute approximation errors obtained from the learning algo-
rithms (in the setting with a stationary regularization parameter and all four trial
function classes) in the experiments described in Sections 10.2 and 10.3.
For the surface data, the LIPMP algorithms end after 1000 iterations. The LRFMP
algorithm terminates with a relative RMSE of 0.000249 and a relative data error of

219

11. Further experiments with the LIPMP algorithms

(a) Approximation (left) and absolute approximation error (right) obtained by the
LRFMP algorithm. All values in m2/s2.

(b) Approximation (left) and absolute approximation error (right) obtained by the
LROFMP algorithm. All values in m2/s2.

(c) The relative RMSEs (left) and the relative data errors (right) along the iterations. The
x-axis denotes the iterations and the y-axis the logarithm of the error values.

Figure 11.1.: Results of the experiment described in Section 11.1.

220

11.1. Approximation

(a) Absolute approximation error obtained by the LRFMP (left) and LROFMP (right) al-
gorithm in Section 10.2.

(b) Absolute approximation error obtained by the LRFMP (left) and LROFMP (right) al-
gorithm in Section 10.3.

Figure 11.2.: Results of the experiments described in Sections 10.2 and 10.3 ob-
tained by the LIPMP algorithms (using a stationary regularization
parameter and all four trial function classes). The scales are adapted
for a better comparison with Figures 10.2 and 10.4. All values in
m2/s2.

0.075293. The LROFMP algorithm finishes with a relative RMSE of 0.000253 and
a relative data error of 0.075210. The learnt maximal spherical harmonic degree
is 75 for the LRFMP and 83 for the LROFMP algorithm.

Evaluation First of all, note that, as we do not compute an upward continua-
tion in this experiment, more local structures of the EGM2008 are contained in
the data used by the LIPMP algorithms. Hence, we can expect to need a higher
number of iterations and to remain with a higher relative data error, but also to
obtain a better relative RMSE. These expectations are met by the algorithms. In
fact, we see that we obtain a good approximation and the few remaining errors
are in regions with higher local structures like the Andean region, the Himalayas
and the Pacific Ring of Fire. Note that we use a positive regularization parameter,
perturb the data and the algorithms terminate after a certain number of iterations.

221

11. Further experiments with the LIPMP algorithms

Hence, it is reasonable that there are still some aspects that are not captured by
the approximation. Nonetheless, we see that the LIPMP algorithm can be used
as a standalone approximation algorithm as well. Note that we, again, have a
truly learnt maximal spherical harmonic degree with both LIPMP algorithms. In
comparison to the corresponding downward continuation experiment (confer Ta-
ble 10.2), we obtain higher values here. On the one hand, this is caused by data
given at the Earth’s surface. On the other hand, this is surely influenced by the
fact that our data is based on spherical harmonics. At last, note that these results
were also obtained on a node with 12 CPUs and 48 GB RAM.
For the sake of completeness, we present the absolute approximation errors ob-
tained by the LIPMP algorithms in the experiments described in Section 10.2 and
Section 10.3 when using a stationary regularization parameter and all four trial
function classes. That is, in Figure 11.2, we consider the absolute approximation
errors obtained by the LIPMP algorithms for the EGM2008 and GRACE data of
May 2008 upward continued to a satellite orbit. In particular, compare the left-
hand side of Figure 11.2a with Figure 10.2a, the right-hand side of Figure 11.2a
with Figure 10.2b, the left-hand side of Figure 11.2b with Figure 10.4a and the
right-hand side of Figure 11.2b with Figure 10.4b. The LIPMP algorithms ter-
minate when the relative data error fell below the noise level. The final relative
RMSEs were 0.000471 (LRFMP algorithm) and 0.000465 (LROFMP algorithm) for
the EGM2008 data and 0.000338 (LRFMP algorithm) and 0.000318 (LROFMP al-
gorithm) for the GRACE data. Hence, the approximations obtained by the LIPMP
algorithms are very similar to those of the IPMP algorithms which shows that the
learning algorithms can also be used as an approximation algorithm for ill-posed
inverse problems.

11.2. Downward continuation of irregularly
distributed global data

We underline the results obtained by the LIPMP algorithms in Section 10.2 by
exchanging the regular (Reuter) point grid with an irregular one.

Particular setting We remain with the overall setting as described in Chapter 9,
but replace the Reuter grid by an irregular one that mimics terrestrial data, i. e.
grid points that are denser over (approximately) the continents than over the
oceans. To be more specific, we evaluate the EGM2008 at the grid shown in
Figure 11.3 which contains 6968 grid points. The grid has already been used
in some experiments in Michel and Telschow (2014). We gratefully acknowledge
that Dr. Roger Telschow handed us this point grid. We choose the regularization
parameter as 5 · 10−9‖y‖R` for both LIPMP algorithms.

222

11.2. Downward continuation of irregularly distributed global data

Results We give the results of this experiment in Figure 11.4 where we show the
approximation and the absolute approximation error obtained from the LRFMP
(Figure 11.4a) and the LROFMP (Figure 11.4b) algorithm. Note again that the
respective solution was presented in Figure 2.2. The LRFMP algorithm terminates
after 975 iterations with a relative RMSE of 0.000472 and a relative data error of
0.050000. The LROFMP algorithm ends after 983 iterations with a relative RMSE
of 0.000521 and a relative data error of 0.049999. The learnt maximal spherical
harmonic degree is 50 for both LIPMP algorithms.

Evaluation First of all, we notice that the approximation obtained from the
LRFMP algorithm is similar to the results obtained from a regular data grid (con-
fer Section 10.2) and most remaining errors are in areas with higher local struc-
tures. That means they are found where one would expect them to be as we are
computing a perturbed downward continuation once again. With respect to the
LROFMP algorithm, we see that the final approximation error is higher than for
the LRFMP algorithm and for the experiments with regularly distributed data
(confer Section 10.2). Nonetheless, the remaining errors are again in areas with
higher local structure. Note that, if desired, a more thorough search for an opti-
mal regularization parameter might be helpful.
Moreover, if we look closely at the absolute approximation errors in Figure 11.4,
we see that, in comparison to the results presented in Figure 10.2, there are a few
additional errors. In particular, this is seen for the results of the LROFMP algo-
rithm. A comparison with Figure 11.3, however, shows that the approximation
appears to be slightly worse in areas where we have less data. This is notably
seen in the North Atlantic, in the Indian Ocean and at the north-east boundary
of South America. Hence, this slight loss in accuracy is naturally caused by the
irregular data grid. Note that, however, this shows that the algorithm is able dis-
tinguish regions with more or less data on its own and provide an approximation
where this is mirrored in the accuracy of the different regions. In particular, this
means, data gaps only have a local influence on the approximation of the LIPMP
algorithms.

Figure 11.3.: Irregularly distributed point grid used in Section 11.2.

223

11. Further experiments with the LIPMP algorithms

(a) Approximation (left) and absolute approximation error (right) obtained from the
LRFMP algorithm.

(b) Approximation (left) and absolute approximation error (right) obtained from the
LROFMP algorithm.

Figure 11.4.: Results of the experiments described in Section 11.2. All values in
m2/s2.

The size of the learnt maximal spherical harmonic degree is much higher as is the
number of iterations. In our experiments, we noticed that the algorithm chooses
many global functions. We assume this is due to the fact that we compute our
data as an expansion in spherical harmonics even though we are adding noise to
the data (compare also with the results in Section 11.3). Additionally, we see that
the LIPMP algorithm learns only 975 and 983 dictionary elements, respectively.
Even though this sparsity is an advantage when applying the learnt dictionary, it
prohibits a proper multiscale analysis here. Note that, in previous publications,
where a multiscale analysis of the approximation of an IPMP algorithm was con-
sidered, the number of iterations was much higher (i. e. an iteration number of
order 105).

11.3. Experiments with synthetic data

At last, we present experiments with synthetic data. This data is a combination
of spherical harmonics and Abel–Poisson low pass filters. In this way, we sim-

224

11.3. Experiments with synthetic data

ulate to have a signal that contains global trends as well as local anomalies. We
investigate whether the LROFMP algorithms can distinguish these differences by
choosing dictionary elements correspondingly. Due to the orthogonalization pro-
cedure, we expect that the LROFMP algorithm is better suited for this task than
the non-orthogonal variant.
First, we explain the exact choice of trial functions which we combine for this use.

Chosen synthetic data As our synthetic data, we evaluate the following linear
combination of spherical harmonics and Abel–Poisson low pass filters at the de-
scribed Reuter and Driscoll-Healy point grids:

f = Y9,5 (·) + Y5,5 (·) + Y2,0 (·)

+ K̃
(

x
(

0.5,
3π

2
,

π

4

)
, ·
)
+ K̃

(
x
(

0.75, 2π,−π

4

)
, ·
)
+ K̃

(
x
(

0.9,
π

2
,

π

4

)
, ·
)

where the left-hand notation from (2.1) is used and K̃ stands for the L2(Ω)-nor-
malized Abel–Poisson low pass filter. Then we have y = Tk f . In this way, we
combine trial functions that are rather localized either in the spectral or in the
spatial domain.

Particular setting Due to the composition of the synthetic data, we only con-
sider spherical harmonics and Abel–Poisson low pass filters in the learning pro-
cess and build the starting dictionary as

[Ns]SH =
{

Yn,j
∣∣ n = 0, ..., 10; j = −n, ..., n

}
[Bs

K]APK =

{
K(x, ·)

‖K(x, ·)‖L2(Ω)

∣∣∣∣ |x| = 0.94,
x
|x| ∈ Xs

}
Ds = [Ns]SH + [Bs

K]APK ,

where Xs is a Reuter grid with G = 2, i. e. 6 grid points. Then the Abel–Poisson
low pass filters included in the synthetic data are not contained in the starting
dictionary. We allow a maximum of 100 iterations because the data consists of
only six trial functions. We consider perturbed and noise-free data. In the case
of noise-free data, we also decrease the maximally allowed relative data error at
termination to 10−3. The regularization parameter is chosen as 10−11‖y‖R` . In a
second experiment, we additionally perturb the data (as described in Chapter 9)
with 5% Gaussian noise and terminate the algorithm if the relative data error
falls equal to or below this value. The regularization parameter is then chosen as
10−8‖y‖R` .

225

11. Further experiments with the LIPMP algorithms

synthetic data coefficient h ϕ t
1 0.50 -1.570796 0.785398
1 0.75 0 -0.785398
1 0.90 1.570796 0.785398

unperturbed data
0.172076 0.474187 -1.418096 0.983475

-0.122428 0.499957 -1.350861 0.989289
3.940949 0.550327 -1.568047 0.743685

-4.412483 0.578408 -1.564670 0.726832
1.422986 0.607543 -1.560222 0.712725

-0.151725 0.720342 -0.005947 -0.806070
0.002125 0.742486 0.048077 -0.858082
1.117564 0.743783 -0.001722 -0.788832
0.033284 0.819294 0.024012 -0.758898

1.129529 0.904131 1.571221 0.784891
-0.138560 0.935506 1.571704 0.782854

perturbed data
-0.016580 0.475243 -1.421212 0.982664
1.612762 0.515390 -1.568861 0.775215

-0.817765 0.550241 -1.565803 0.748109
0.210981 0.578198 -1.562345 0.730847

-0.022001 0.683267 -0.365453 -0.698176
-0.009561 0.683957 0.605419 -0.666855
1.132485 0.741828 0.000147 -0.792845

-0.114841 0.742278 0.047724 -0.858224

0.306316 0.872652 1.567703 0.788411
0.514873 0.903744 1.567918 0.784647
0.005352 0.910476 0.080067 0.819269
0.195857 0.935132 1.568059 0.782514

-0.012904 0.963790 -0.546163 -0.847209
0.016372 0.964061 -1.235509 0.772477
0.016041 0.965315 -2.966837 0.981299

-0.010882 0.965399 1.329488 0.951066
-0.008931 0.965480 0.669439 -0.963845
0.007888 0.967633 2.260697 -0.055792
0.013679 0.968115 -1.978317 0.761322
0.011965 0.968206 2.811542 0.774793
0.011639 0.968313 -1.302818 0.918312

Table 11.1.: With respect to the experiment described in Section 11.3, the chosen
Abel–Poisson low pass filters are presented. The filters with negligi-
ble coefficients are understated in blue.226

11.3. Experiments with synthetic data

Figure 11.5.: Chosen Abel–Poisson low pass filters for unperturbed data from the
experiment described in Section 11.3.

Results The experiment with noise-free data terminates after 14 iterations with
a relative data error of 0.000879 and a relative RMSE of 0.000017. The experiment
with perturbed data ends after 24 iterations with a relative data error of 0.049975
and a relative RMSE of 0.000076.
The algorithm chooses only the spherical harmonics Y2,0, Y5,5 and Y9,5 with the co-
efficients 0.999615, 0.999842 and 0.999693 (unperturbed data) as well as 0.997702,
0.999490 and 1.000894 (perturbed data), respectively.
The learnt Abel–Poisson low pass filters are presented in Figures 11.5 and 11.6.
The dots stand for the functions used in the synthetic data. The crosses symbolize
the chosen filters. The colour of the dots and the crosses stands for the scale |x|.
The size of the crosses represents the absolute value of the respective chosen co-
efficients α. The dots and the crosses are scaled for improved visibility. We view
the chosen Abel–Poisson low pass filters globally as well as zoom in to regions
of interest. Furthermore, we give the exact values of the chosen Abel–Poisson
low pass filter in Table 11.1. We sort them by increasing scales and group them
according to the scales of the filters used in the solution. Moreover, the wrongly

227

11. Further experiments with the LIPMP algorithms

Figure 11.6.: Chosen Abel–Poisson low pass filters for perturbed data from the
experiment described in Section 11.3.

chosen functions with lower coefficients are given in blue and, thus, understated
in the table.

Evaluation First of all, from the relative error values at termination, we learn
that the LROFMP algorithm also approximates a combination of spherical har-
monics and Abel–Poisson low pass filters well.
Further, the algorithm is able to determine exactly the spherical harmonics in-
cluded in the synthetic data for perturbed and unperturbed data. Additionally,
the coefficients are suitably good determined for these functions as well.
In the global view on chosen Abel–Poisson low pass filters in Figure 11.5 and Fig-
ure 11.6, we see that, in both cases, these functions cluster around those used in
the data. This is underlined by the local views on regions of interest. However,
in particular with perturbed data, the chosen filters are not clustered as near to
the solution as with noise-free data and we see more wrongly chosen functions.
Nonetheless, this can be expected due to the present noise.

228

11.3. Experiments with synthetic data

Note that we cannot expect that the choices are perfect in any of these cases due
to several reasons: in contrast to the spherical harmonics, the Abel–Poisson ker-
nels are not pairwise orthogonal. Hence, it is a higher challenge for the algorithm
to distinguish between the different filters included in the data. Furthermore, we
upward continue the data and use a positive regularization parameter.
Despite these aspects, we see that wrong choices of Abel–Poisson kernels gen-
erally have a small corresponding coefficient, i. e. have small crosses (see also
Table 11.1). Due to the small coefficients of wrongly chosen trial functions, we
assume that the algorithm corrects choices in the orthogonalization process. In
particular, this hypothesis is supported as we experienced that they were not
only chosen in later iterations.
At last, with respect to the coefficients given in Table 11.1, we see that the chosen
coefficients of well chosen filters sum up approximately to 1.
Thus, obviously, the LROFMP algorithm is able to distinguish between global
trends and local anomalies of a given signal.

229

Part IV.

Summary

231

12. Conclusion and Outlook
The gravitational potential is an important reference in geophysics as it provides
information, e. g., of the climate change. Here, we are interested in the IPMP
algorithms as methods to approximate this potential from satellite data. These
approaches iteratively minimize the Tikhonov functional by choosing dictionary
elements. Usually a set of global and local trial functions, such as spherical har-
monics, Slepian functions as well as radial basis low and band pass filters, is uti-
lized as a dictionary. However, there exist infinitely many trial functions which
can be used as dictionary elements. Most of them can be characterized by certain
continuous parameters. Therefore, we developed the LIPMP algorithms in this
thesis to avoid selecting manually a dictionary. They follow the same structure
as the IPMP algorithms. However, in each iteration, non-linear constrained opti-
mization problems based on the continuous parameters are additionally solved.
The LIPMP algorithms can be seen as enhanced, standalone methods for solv-
ing ill-posed inverse problems. The chosen dictionary elements of the LIPMP
algorithms define a learnt dictionary which can be used in the IPMP algorithms.
Hence, we automatized the selection of dictionary elements and, with the novel
methods, are able to work with an infinite dictionary as well.
As we built the LIPMP algorithms closely to the structure of the IPMP algorithms,
we have seen that they inherit the latter one’s convergence results as far as they
currently exist. Moreover, we introduced a first approach to characterizing dictio-
naries. In particular, we saw that any complete dictionary is optimal by nature. A
more practical property may be described by a sequence of well-working dictio-
naries that is able to reproduce the solution of the regularized normal equation.
We showed that the LRFMP algorithm produces such a sequence for infinitely
many iterations.
In our numerical experiments, we first note that the (L)IPMP algorithms are used
with Slepian functions for the first time. We saw that the use of all four types of
trial functions presented in this thesis for the downward continuation of satellite
data is in particular interesting as it provides a higher sparsity in the solution.
Hence, the experiments underline that all of these trial function classes have cer-
tain advantages in the (L)IPMP algorithms.
Moreover, we saw that the learning methods are widely applicable. We obtained
suitably good approximations and the remaining errors were only in areas where
more local structure is situated. As we mostly computed a downward continua-
tion and, in any case, had to set certain termination criteria, this can be expected.
From the experiments regarding the LIPMP algorithms, we see that, on its own,
the novel learning variants are indeed approximation algorithms for well- and

233

12. Conclusion and Outlook

ill-posed inverse problems. They can be used for regularly as well as irregularly
distributed point grids. Furthermore, if a given signal consists of global trends
and local anomalies, the LROFMP algorithm is able to distinguish between those
parts. In the experiments where we compared a manually chosen and a learnt
dictionary, we first of all saw that a dictionary learnt by the LRFMP algorithm
from training data can principally be applied to unseen test data – at least if both
data sets are to a certain extent similar. Furthermore, when we used all four trial
functions presented in this thesis, we usually obtained a similarly good approx-
imation no matter if we used a manually chosen dictionary or the learnt dictio-
nary. When we used less trial function classes, we saw that the learnt dictionary
may supersede the manually chosen one.
However, in general, the LIPMP algorithm needs less storage. Moreover, the run-
time is also much smaller in most of our experiments. In particular, it is currently
much smaller if no Slepian functions are used. Furthermore, the learnt dictio-
nary usually contains essentially less trial functions than the manually chosen
one used here. In particular, a learnt dictionary from and for a certain input data
is usually of less than 1% of the size of our manually chosen dictionary. Even the
GRACE dictionary we computed from a year of measurements is less than 10%
of this size.
Taking all the aspects of this thesis into consideration, we suggest that, if CPU-
runtime, storage demand and the implementation of many diverse suitable trial
functions is not a challenging factor for a certain problem, then the non-learning
variants can be of good use and are easier to implement. If, however, any of
these aspects are problematic, we suggest to take the higher effort and implement
the LIPMP algorithms. In particular, we favour the LRFMP algorithm because it
yields similarly good results than the orthogonal variant while its implementa-
tion is easier and it needs less runtime.
However, there remain some open questions. First of all, there are still unsolved
tasks for the IPMP algorithms which by construction are now also open for the
novel methods. In particular, this is the choice of a perfect regularization parame-
ter and further convergence results for the orthogonal variants of the approaches.
The importance of an optimal regularization is well-known for inverse problems.
However, there usually must be a trade-off between the optimality of the param-
eter and the practicability of its determination.
With respect to the learning technique itself, as could be expected, the accuracy
of the optimization solver has a huge influence on the results. As we pointed out,
in general, there exists a huge amount of optimization algorithms. Thus, if other
than the here used methods for optimization are appealing to us in the future,
it might be very interesting to see whether our current results can be improved
by them. Furthermore, it would be desirable if the efficiency of the LIPMP algo-
rithms with respect to the Slepian optimization problem could be improved.
Unfortunately, we have not been able to develop a theory for learning a dictio-
nary in the limited time of the project. We managed to relate a dictionary and
the Tikhonov functional and, thus, define what we understand as an optimal and

234

12. Conclusion and Outlook

a sequence of a well-working dictionary. Next, it would be desirable to prove a
relation between the limit of the sequence of learnt and well-working dictionary
and an optimal one. However, this relation may depend on the operator and
the data because the learnt dictionary does. Additionally, for a fixed operator,
it would be interesting to discuss the continuous dependence of the limit of the
sequence of learnt dictionary on the data.
Furthermore, we are aware that, in order to raise more interest in the geodetic
community, the number of data values needs to be massively increased. More-
over, we are interested in applying the matching pursuit in other applications as
well. As we now have developed a strategy to avoid choosing a dictionary man-
ually which is also faster and has a much lower storage demand, we are very
interested in approaching these challenges. In particular, both of these last two
aspects will be addressed in a follow-up Postdoc-project supported by the Ger-
man Research Foundation (DFG).

235

Part V.

Technical Appendix

237

A. Computational aspects

In the first part of this (technical) appendix, we summarize some aspects for prac-
tical purposes. These aspects contain examples for point grids, the Clenshaw
algorithm as well as fully normalized spherical harmonics.

A.1. Point grids

Throughout this thesis, we used diverse point grids. Most importantly, we as-
sume that the data y for the (L)IPMPs are given on such a grid. Further, for the
computation of the approximation error, we need a second grid. Thus, we sum-
marize some examples which we use in practice at this point.
We begin with the Driscoll-Healy grid (see e. g. Driscoll and Healy, 1994; Michel,
2013) which we use for evaluating the solution of, for instance, the EGM2008 or
GRACE data and our approximation.

Definition A.1.1. For Gϕ, Gθ ∈ N0, the Driscoll-Healy grid{
η(i,j) (ϕi, θj

)
∈ Ω

}
i=1,...,Gϕ, j=1,...,Gθ

is defined by

ϕi :=
2π

Gϕ
i, i = 1, ..., Gϕ,

θj :=
π

Gθ
j, j = 1, ..., Gθ.

The grid points are then obtained via (2.1).

Thus, the Driscoll-Healy grid is a mesh of a partition of the latitude and the longi-
tude. For Gϕ = 360 and Gθ = 180, we obtain one grid point for each combination
of longitudinal and latitudinal degrees.
An example is given in Figure A.1 on the left-hand side. Obviously, the point grid
is not very well distributed as the grid points around the poles are much closer
to each other than at the equator. A point grid with a better equidistribution is
the so-called Reuter grid (see e. g. Reuter, 1982; Freeden et al., 1998; Michel, 2013)
which is shown on the right-hand side of Figure A.1. Note that both point grids
have nearly the same number of grid points in the examples in Figure A.1. The
Reuter grid is defined as follows.

239

A. Computational aspects

Definition A.1.2. For a parameter G ∈ N, we set

θi :=
π

G
i, i = 0, ..., G,

γ0 := 1,

γi :=

2π

(
arccos

(
cos

(
π
G
)
− cos2 (θi)

sin2 (θi)

))−1
 , i = 1, ..., G− 1,

γN := 1,
ϕ0,1 := 0,

ϕi,j :=
(

j− 1
2

)
2π

γi
, i = 1, .., G− 1, j = 1, ..., γi,

ϕN,1 := 0

with the Gaussian bracket b·c. Then the Reuter grid is given by{
η(i,j) (ϕi,j, θi

)
∈ Ω

}
i=1,...,G, j=1,...,γi

with the use of (2.1).

Figure A.1.: Left: Driscoll-Healy grid with Gϕ = 91 and Gθ = 46, i. e. 4186 grid
points. Right: Reuter grid with G = 60, i. e. 4551 grid points.

A.2. Legendre polynomials and the Clenshaw
algorithm

Due to the addition theorem for spherical harmonics, the H2(Ω)-inner product
of the Abel–Poisson low and band pass filters, see (3.23), (3.24) and (3.26), is built
on Legendre polynomials. These polynomials Pn : [−1, 1]→ R, n ∈ N0, fulfil the

240

A.2. Legendre polynomials and the Clenshaw algorithm

three-term recursion

P0(τ) = 1,
P1(τ) = τ,

Pn(τ) =
2n− 1

n
τPn−1(τ)−

n− 1
n

Pn−2(τ), (A.1)

(see e. g. Abramowitz and Stegun, 1972; Freeden et al., 1998). This can be used
straightforwardly for implementing the polynomials. The first derivative of the
Legendre polynomials with respect to τ ∈ [−1, 1] is immediately obtained by

P′0(τ) = 0,

P′n(τ) =

nτPn(τ)−nPn−1(τ)
τ2−1 , τ 6= ±1, n ∈ N

n(n+1)
2 , τ = 1, n ∈ N, n ≥ 1

(−1)n+1 n(n+1)
2 , τ = −1, n ∈ N, n ≥ 1

(A.2)

which likewise can be easily implemented, see, for instance, Abramowitz and
Stegun (1972) and Fengler (2005, Technical Appendix). Our aim is to compute
the H2(Ω)-inner product for the Abel–Poisson low and band pass filters for the
(L)IPMPs from (3.23), (3.24) and (3.26). In practice, we can naturally only com-
pute an approximative truncated series for it. Due to the three-term recursion of
the Legendre polynomials (A.1), this sum can be efficiently computed with the
Clenshaw algorithm. We first state the general algorithm (see e. g. Deuflhard,
1976; Michel, 2013) and then explain how it is applied to our cases.

Theorem A.2.1. (Clenshaw algorithm) For functions Xn : R → R, n = 0, ..., N
with N ∈ N0, that fulfil a three-term recursion, i. e.

Xn
(
i
(
τ, τ′

))
− an

(
i
(
τ, τ′

))
Xn−1

(
i
(
τ, τ′

))
− bn

(
i
(
τ, τ′

))
Xn−2

(
i
(
τ, τ′

))
= 0
(A.3)

for n = 2, ..., N, with a real-valued function i(·, ·) and with known values an(i(τ, τ′)),
bn(i(τ, τ′)), X0(i(τ, τ′)) 6= 0 and X1(i(τ, τ′)) for all τ, τ′ ∈ Rd, d ∈ N, the sum

SN
(
τ, τ′

)
:=

N

∑
n=0

cn
(
τ, τ′

)
Xn
(
i
(
τ, τ′

))
(A.4)

can be calculated by

uN+1
(
i
(
τ, τ′

))
:= uN+2

(
i
(
τ, τ′

))
:= 0,

un
(
i
(
τ, τ′

))
:= an+1

(
i
(
τ, τ′

))
un+1

(
i
(
τ, τ′

))
+ bn+2

(
i
(
τ, τ′

))
un+2

(
i
(
τ, τ′

))
+ cn

(
τ, τ′

)
, n = N, ..., 1

SN
(
τ, τ′

)
=
(
c0
(
τ, τ′

)
+ b2

(
i
(
τ, τ′

))
u2
(
i
(
τ, τ′

)))
X0
(
i
(
τ, τ′

))
+ u1

(
i
(
τ, τ′

))
X1
(
i
(
τ, τ′

))
.

241

A. Computational aspects

Data: N ∈ N0, τ, cn(τ, τ′), n = 1, ..., N
Result: sum SN
initialization: u2 = u1 = u = 0 ;
for (n = N; n > 0; n- -) do

u2 = u1;
u1 = u;
u = 2n+1

n+1 i (τ, τ′) u1 − n+1
n+2 u2 + cn (τ, τ′);

end
return SN = c0(τ, τ′)− 1

2 u1 + ui(τ, τ′);

Algorithm 8: Code for the Clenshaw algorithm with respect to Abel–Poisson
low and band pass filters and with the use of (A.5) for the computation of
truncatedH2(Ω)-inner products (3.23), (3.24) and (3.26).

We use the Clenshaw algorithm for the truncated series of Legendre polynomials
given in (3.23), (3.24) and (3.26). Thus, with the use of (A.1), we have for τ, τ′ ∈ B

and n ∈ N with n ≥ 2

i
(
τ, τ′

)
=

τ

|τ| ·
τ′

|τ′| , an
(
τ, τ′

)
:=

2n− 1
n

i
(
τ, τ′

)
, bn(τ) := −n− 1

n
P0
(
i
(
τ, τ′

))
= 1 6= 0, P1

(
i
(
τ, τ′

))
= i

(
τ, τ′

)
in (A.3). Further, for cn(τ, τ′), n ∈ N0, from (A.4), we have

cn
(
τ, τ′

)
:=

A2

n(|τ||τ′|)n 2n+1
4π , confer (3.23),

A2
n
(
|τ|n − |τ|2n) |τ′|n 2n+1

4π , confer (3.24),

A2
n
(
|τ|n − |τ|2n) (|τ′|n − |τ|2n) 2n+1

4π , confer (3.26).

(A.5)

All in all, this yields an implementation of the Clenshaw algorithm for our needs
as given in Algorithm 8.

A.3. Associated Legendre functions and fully
normalized spherical harmonics

A.3.1. Evaluation for high-degree and order

Fully normalized spherical harmonics as given in (2.14) can be straightforwardly
evaluated if the associated Legendre functions are available. The definition given
in (2.13) is probably the shortest possible one for our needs. However, it does not
come in handy for an implementation. Furthermore, we have to take into account

242

A.3. Associated Legendre functions and fully normalized spherical harmonics

the normalization factor

pn,j :=

√
2n + 1

4π

(n− |j|)!
(n + |j|)! (A.6)

of the fully normalized spherical harmonics Yn,j. For increasing degrees n and
orders j, the stable computation of such terms is known to be problematic.
Therefore, we consider the recursive computation of “fully normalized associated
Legendre functions” as was done by e. g. Fengler (2005, Technical Appendix), i. e.
we look at the values of the functions

P̃n,j(τ) := pn,jPn,j(τ).

We recall an algorithm for low degrees and orders in Algorithm 9. Similarly, the
first derivative of a fully normalized associated Legendre function can be com-
puted recursively, see Algorithm 10. For both algorithms, see also Fengler (2005,
Technical Appendix).
These algorithms work well for computing spherical harmonics and Slepian func-
tions with a low degree and order for dictionaries. However, for the evaluation,
in particular, of the EGM2008, we need to evaluate the associated Legendre func-
tions up to high degrees and orders. In this case, these algorithms can produce
over- and underflow problems in practice. For this challenge, Fukushima (2012)
presented a method that circumvents these problems. We assembled this method
in Algorithm 11.

A.3.2. Particular terms to avoid singularities

For the LIPMP algorithms, we have to implement the gradient of inner prod-
ucts of the form 〈Cn, d(z)〉H2(Ω) and, thus, the formulas (7.82) and (7.89), respec-
tively. In particular, to maintain the well-definedness of the gradient, we have
to implement (7.85) and (7.86), respectively. Hence, we cannot use Algorithm 9
and Algorithm 10 for the computation of associated Legendre functions and their
derivatives due to the additional factors

√
1− t2 and (

√
1− t2)−1, respectively.

However, if we take a closer look at them, we see that we can modify these algo-
rithms for our purposes. The results are Algorithm 14 and Algorithm 15. To the
knowledge of the author, these algorithms are novel. Therefore, in contrast to the
previous algorithms, we give a few explanations for them.
We first consider (7.85). In particular, we are concerned with the computation of

P̂n,j(t) :=
P̃n,j(t)√

1− t2
=

pn,jPn,j(t)√
1− t2

(A.7)

for j > 0. Note that, for j = 0, the term (7.85) is zero. The Algorithm 14 computes
P̂n,j(t) with the normalization factor pn,j as given in (A.6).

243

A. Computational aspects

Data: N ∈ N0, τ ∈ [−1, 1]
Result: P̃n,j(τ) = pn,jPn,j(τ), n = 0, ..., N, j = 0, ..., n

initialize P̃0,0(τ) =
√

1
4π ;

for n=1,...,N do

P̃n,n(τ) =
√

2n+1
2n

√
1− τ2P̃n−1,n−1(τ);

end
for j=0,...,N-1 do

P̃j+1,j(τ) =
√

2j + 3τP̃j,j(τ);
for n=j+2,...,N do

P̃n,j(τ)

=
√

(2n−1)(2n+1)
(n−j)(n+j) τP̃n−1,j(τ)−

√
2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) P̃n−2,j(τ);

end
end
return P̃n,j(τ), n = 0, ..., N, j = 0, ..., n;

Algorithm 9: Computation of P̃n,j(τ).

Note that Algorithm 14 is very similar to Algorithm 9: the values for order 0 are
neglected for any degree and the start value is set to the next function with equal
degree and order which is

P̂1,1(t) =
p1,1P1,1(t)√

1− t2
=

√
3

8π

√
1− t2 1√

1− t2
=

√
3

8π

for t ∈ (−1, 1). After that we have the same formulas as in Algorithm 9 for the
other function values P̂n,j(t), n = 2, ..., N, j = 1, ..., n. This holds true because we
have eliminated one square root in P̂1,1(t) and the recursive formulas carry this
elimination to all other function values. All in all, the term

Yn,j

(
x(r,ϕ,t)

r

)
√

1− t2
,

as used in (7.82) for t ∈ [−1, 1], is obtained straightforwardly from the definition
of the fully normalized spherical harmonics if pn,jPn,j is substituted by P̂n,j from
Algorithm 14.
Next, we consider the computation of

Pn,j(t) :=
√

1− t2P̃′n,j(t) =
√

1− t2pn,jP′n,j(t) (A.8)

for j ≥ 0 and t ∈ (−1, 1). Note that, in Section 7.2, we see that the term vanishes
for t = ±1. We already considered the value pn,jP′n,j in Algorithm 10. We can

244

A.3. Associated Legendre functions and fully normalized spherical harmonics

Data: N ∈ N0, τ ∈ (−1, 1)
Result: P̃′n,j(τ), n = 0, ..., N, j = 0, ..., n
compute
P′n for n = 1, ..., N + 1 and
P̃n,j(τ) for n = 0, ..., N, j = 0, ..., n;
for n=0,...,N do

P̃′n,0(τ) =
√

2n+1
4π P′n+1(τ);

for j=1,...,n-1 do

P̃′n,j(τ) = −
jτ

1−τ2 P̃n,j(τ) +
√

(n+j+1)(n−j)
1−τ2 P̃n,j+1(τ);

end
P̃′n,n(τ) = − nτ

1−τ2 P̃n,n(τ);
end
return P̃′n,j(τ), n = 0, ..., N, j = 0, ..., n;

Algorithm 10: Computation of P̃′n,k(τ).

modify this algorithm to compute P′n,j(t) for n = 0, ..., N, j = 0, ..., n and for all
t ∈ (−1, 1) and obtain Algorithm 15. We give a proof for Algorithm 15.

Proof. First, we consider the case j = 0. We have

Pn,0(t) =
√

1− t2pn,0P′n,0(t) =
√

1− t2pn,0P′n(t) =

√
2n + 1

4π

√
1− t2P′n(t).

Next, we consider the other cases, i. e. we have j 6= 0:

Pn,j(t) =
√

1− t2pn,jP′n,j(t)

=
√

1− t2pn,j
d
dt

[(
1− t2

)j/2 dj

dtj Pn(t)
]

=
√

1− t2pn,j

[
j
2

(
1− t2

)j/2−1
(−2t)

dj

dtj Pn(t) +
(

1− t2
)j/2 dj+1

dtj+1 Pn(t)
]

=
√

1− t2pn,j

[
−jt

(
1− t2

)j/2−1 dj

dtj Pn(t) +
(

1− t2
)j/2 dj+1

dtj+1 Pn(t)
]

= pn,j

[
−jt

(
1− t2

)(j−1)/2 dj

dtj Pn(t) +
(

1− t2
)(j+1)/2 dj+1

dtj+1 Pn(t)
]

= −jtpn,j

(
1− t2

)(j−1)/2 dj

dtj Pn(t) + pn,j

(
1− t2

)(j+1)/2 dj+1

dtj+1 Pn(t).

Note that, in the case j = n, the second term vanishes because of the (n + 1)-st

245

A. Computational aspects

Data: N ∈ N0, τ ∈ [−1, 1], B = 2960

Result: P̃n,j(τ), n = 0, ..., N, j = 0, ..., n

initialize x(0, 0) =
√

1
4π ; ix(0, 0) = 0;

for n=1,...,N do

x(n, n) =
√

2n+1
2n

√
1− t2x(n− 1, n− 1); ix(n, n) = ix(n− 1, n− 1);

normalize x(n, n) and update ix(n, n) (see Algorithm 12);
end
for j=0,...,N-1 do

x(j + 1, j) =
√

2j + 3τx(j, j); ix(j + 1, j) = ix(j, j);
normalize x(j + 1, j) and update ix(j + 1, j) (see Algorithm 12);
for n=j+2,...,N do

compute x(n, j) and ix(n, j) via Algorithm 13;
normalize x(n, j) and update ix(n, j) (see Algorithm 12);

end
end
compute P̃n,j(τ) via
if ix(n, j) < 0 then

P̃n,j(τ) = x(n, j)B−1;
end
if ix(n, j) == 0 then

P̃n,j(τ) = x(n, j);
end
if ix(n, j) > 0 then

P̃n,j(τ) = x(n, j)B;
end
return P̃n,j(τ), n = 0, ..., N, j = 0, ..., n;

Algorithm 11: Computation of P̃n,j(τ) using Algorithm 12 and Algorithm 13.

Data: x(n, j), ix(n, j), B = 2960

Result: normalized x(n, j) and updated value ix(n, j)
if
(
|x(n, j)| ≥

√
B
)

then
x(n, j) = x(n, j)B−1; ix(n, j) = ix(n, j) + 1;

end

if
(
|x(n, j)| <

√
B−1

)
then

x(n, j) = x(n, j)B; ix(n, j) = ix(n, j)− 1;
end
return x(n, j) and ix(n, j);

Algorithm 12: Normalization of x(n, j) and corresponding update of ix(n, j).

246

A.3. Associated Legendre functions and fully normalized spherical harmonics

Data: x(n− 1, j), ix(n− 1, j), x(n− 2, j), ix(n− 2, j), B = 2960

Result: x(n, j), ix(n, j)
if ix(n− 1, j) ≥ ix(n− 2, j) then

ix(n, j) = ix(n− 1, j);
switch (ix(n− 2, j)− ix(n− 1, j)) do

case 0 do

x(n, j) =
√

(2n−1)(2n+1)
(n−j)(n+j) τx(n− 1, j)

−
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) x(n− 2, j);
end
case -1 do

x(n, j) =
√

(2n−1)(2n+1)
(n−j)(n+j) x(n− 1, j)

−
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) x(n− 2, j)B−1;

end
case ≤ −2 do

x(n, j) =
√

(2n−1)(2n+1)
(n−j)(n+j) τx(n− 1, j);

end
end

end
if ix(n− 1, j) < ix(n− 2, j) then

ix(n, j) = ix(n− 2, j);
switch (ix(n− 1, j)− ix(n− 2, j)) do

case 0 do

x(n, j) =
√

(2n−1)(2n+1)
(n−j)(n+j) τx(n− 1, j)

−
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) x(n− 2, j);
end
case -1 do

x(n, j) =
√

(2n−1)(2n+1)
(n−j)(n+j) x(n− 1, j)B−1

−
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) x(n− 2, j);
end
case ≤ −2 do

x(n, j) = −
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) x(n− 2, j);
end

end
end
return x(n, j) and ix(n, j);

Algorithm 13: Computing x(n, j) and ix(n, j) from x(n − 1, j), ix(n −
1, j), x(n− 2, j), ix(n− 2, j).

247

A. Computational aspects

Data: N ∈ N0, τ ∈ [−1, 1]
Result: P̂n,j(τ), n = 1, ..., N, j = 1, ..., n

initialize P̂1,1(τ) =
√

3
8π ;

for n=2,...,N do

P̂n,n(τ) =
√

2n+1
2n

√
1− τ2P̂n−1,n−1(τ);

end
for j=1,...,N-1 do

P̂j+1,j(τ) =
√

2j + 3τP̂j,j(τ);
for n=j+2,...,N do

P̂n,j(τ) =
√

(2n−1)(2n+1)
(n−j)(n+j) τP̂n−1,j(τ)

−
√

2n+1
2n−3

√
(n+j−1)(n−j−1)

(n−j)(n+j) P̂n−2,j(τ);

end
end
return P̂n,j(τ), n = 0, ..., N, j = 0, ..., n;

Algorithm 14: Computation of P̂n,j(τ) from (A.7).

derivative of Pn(t). For the first term, we have

−jtpn,j

(
1− t2

)(j−1)/2 dj

dtj Pn(t) = −jt
(

1− t2
)−1/2

pn,j

(
1− t2

)j/2 dj

dtj Pn(t)

= −jt
(

1− t2
)−1/2

pn,jPn,j(t)

= −jt
(

1− t2
)−1/2

P̃n,j(t)

= −jtP̂n,j(t).

For the second term, we use the equality√
(n + j + 1)(n− j)pn,j+1 = pn,j

and obtain

pn,j

(
1− t2

)(j+1)/2 dj+1

dtj+1 Pn(t) =
√
(n + j + 1)(n− j)pn,j+1Pn,j+1(t)

=
√
(n + j + 1)(n− j)P̃n,j+1(t).

All in all, this yields

Pn,j(t) = −jtP̂n,j(t) +
√
(n + j + 1)(n− j)P̃n,j+1(t)

for j 6= n and

Pn,n(t) = −ntP̂n,n(t).

248

A.4. Aspects of optimization

Data: N ∈ N0, τ ∈ (−1, 1)
Result: P′n,j(τ), n = 0, ..., N, j = 0, .., n
compute
P′n(τ), P̃n,j(τ) for n = 0, ..., N, j = 0, ..., n and
P̂n,j(τ) for n = 1, ..., N, j = 1, ..., n;
for n=0,...,N do

for j=0,...,n do
if j==0 then

P′n,0(τ) =
√

2n+1
4π

√
1− t2P′n(τ);

end
if 0 < j < n then

P′n,j(τ) = −jτP̂n,j(τ) +
√
(n + j + 1)(n− j)P̃n,j+1(τ);

end
if j==n then

P′n,n(τ) = −nτP̂n,n(τ);
end

end
end
return Pn,j(τ), n = 0, ..., N, j = 0, .., n;

Algorithm 15: Computation of Pn,j(τ) from (A.8).

A.4. Aspects of optimization

At last, we introduce some optimization algorithms which we use for our numer-
ical experiments. Optimization problems occur in many different tasks – ranging
from economics to science. Therefore, with respect to their specific details, al-
gorithms are often tailored for a particular problem. However, their underlying
principle may be a common one. Nonetheless, this leads to a huge variety of
available software which can and should be exploited for solving optimization
problems in practice. In this thesis, we mainly use the NLopt library (see John-
son, 2019) because it contains algorithms for global and local optimization tasks
and enables an easy exchange (and, thus, comparison) of algorithms.
Note that, in our learning algorithm, we formulate optimization problems. How-
ever, the learning algorithm itself is in general independent of a particular opti-
mization algorithm. Thus, in the sequel, we only summarize the main ideas of
the different algorithmic approaches that are of practical relevance in this thesis.

249

A. Computational aspects

A.4.1. Certain keywords

This section is based on Fletcher (1987); Geiger and Kanzow (2002); Glabonsky
and Kelley (2001); Johnson (2019); Jones et al. (1993); Kraft (1988, 1994); Nocedal
and Wright (2006); Rinnooy Kan and Timmer (1989); Runarsson and Yao (2000,
2005); Stein (2018); Zörnig (2014).
In an optimization problem, we either aim to minimize or maximize a result.
However, every maximization can be transferred into a minimization and vice
versa by multiplication with −1. In the sequel and for a mathematical definition,
we consider (as usually) minimization problems. We model such problems as

f (x)→ min! subject to gi(x) ≤ 0, i ∈ I , gj(x) = 0, j ∈ E (A.9)

with f , gi, gj : RN ⊃ D → R, I , E ⊂ N and I ∩ E = ∅. We call f the objective
function with respect to the optimization variable x ∈ RN. The functions gi, i ∈
I , are inequality constraints and gi, i ∈ E , are equality constraints. The set of
variables

G :=
{

x ∈ RN
∣∣∣ gi(x) ≤ 0, i ∈ I , gi(x) = 0, i ∈ E

}
is called the feasible set. For x ∈ G, the set

A(x) := {i ∈ I | gi(x) = 0}
is called the active set as it represents those inequality constraints which vanish
(i. e. become an equality constraint) in a point x. Note that we allow I = ∅ and
E = ∅ as well. If I = E = ∅, the problem is called unconstrained. Otherwise,
it is called constrained. The (inequality and equality) constraints as well as the
objective function may be linear or non-linear. Depending on f , we speak of a lin-
ear or a non-linear optimization problem, respectively. A particular case of linear
inequality constraints are bound constraints, i. e. there exist a, b ∈ RN such that
it holds ai ≤ xi ≤ bi for all i = 1, ..., N.
Note that, for our purpose, we consider optimization problems for a continuous
variable x ∈ RN. However, there is an extensive theory on discrete optimiza-
tion (x ∈ NN) as well. Another distinction can be made between deterministic
and stochastic optimization. In the latter case, the constraints and the objective
functions are not fully known (only, e. g., an expectation value). In this thesis,
however, we only deal with deterministic optimization problems. Nonetheless,
also in this case, stochastic algorithms may be useful.
The solution of the minimization problem (A.9) shall be denoted by x∗. Usually,
a solution x∗ is categorized as a global solution, i. e. it holds

f (x∗) ≤ f (x) ∀ x ∈ G,

or as a local solution, i. e. there exists an ε > 0 such that we have

f (x∗) ≤ f (x) ∀ x ∈ Bε(x∗) ∩ G.

250

A.4. Aspects of optimization

In practice, a global solution is often harder to find than a local one. Further,
many implementations of global algorithms are more concerned with finding a
neighbourhood of the global solution than the solution itself. Hence, it is recom-
mended to first try a global technique and use its solution as the starting point of
a local method afterwards in order to obtain a better approximate of x∗.
With respect to global optimization, we first consider the particular case in which
the feasible region G and the objective function f are both convex. In this case,
we know that every local solution is also a global solution. Thus, there is no need
for specific global optimization algorithms. However, if the problem is not con-
vex and cannot be rearranged to a convex one, there are several other strategies
currently available. Many of them, however, rely on local methods. The global
aspect is then added either externally (when starting with a local approach and
adding a global procedure), internally (when implementing the global aspect in
defining formulae) or via a smooth shift of emphasis between global and local
search for an optimum. This underlines again that the details of algorithms are
often tailored for a specific task at hand.
Next, we summarize the theoretical background of non-linear optimization prob-
lems and common, well-known algorithmic techniques in order to give a broader
view and, thus, enable a better understanding of the following subsections.
For unconstrained optimization problems, we recall fundamental results from
analysis: for a local minimum, a vanishing gradient and a positive semi-definite
Hessian is necessary; further, it is sufficient if we know that the gradient vanishes
and the Hessian is positive definite. We obtain similar results if we have to take
constraints into account as well. Then we consider the Lagrangian function

L(x, λ) = f (x)− ∑
i∈I∪E

λigi(x)

and formulate a first and a second order necessary condition under certain con-
straint qualifications as follows: if the set of gradients of active constraints

{∇gi(x∗) | i ∈ A(x∗)}
is linearly independent, the first order necessary condition of a local minimum is
given by the so-called Karush-Kuhn-Tucker conditions:

∇xL(x∗, λ∗) = 0,
gi(x∗) = 0, i ∈ E ,
gi(x∗) ≤ 0, i ∈ I ,

λ∗i ≥ 0, i ∈ I ,
λ∗i gi(x∗) = 0, i ∈ I ∪ E .

Furthermore, the second order necessary condition for a local minimum is given
(under the same assumptions) by

dT∇xxL(x∗, λ∗)d ≥ 0

251

A. Computational aspects

for vectors d ind ∈ Rn

∣∣∣∣∣∣
dT∇gi(x∗) = 0 ∀ i ∈ E ,
dT∇gi(x∗) = 0 ∀ i ∈ A(x∗) ⊆ I , λ∗i > 0,
dT∇gi(x∗) ≥ 0 ∀ i ∈ A(x∗) ⊆ I , λ∗i = 0

 , (A.11)

i. e. the Hessian of the Lagrangian function is positive semi-definite in (x∗, λ∗)
for certain vectors d. The set (A.11) is also called the critical cone. Similarly as in
the unconstrained case, the second order sufficient condition is that the Hessian
of the Lagrangian function is positive definite for all d 6= 0 in the critical cone
(A.11).
Optimization algorithms try to tackle the problem of finding x∗ with a derivative-
free or gradient-based technique. In the former case, the methods usually com-
pare the values of the objective function at different points. In the latter case, the
approaches often determine points where the necessary conditions are fulfilled.
In both cases, an algorithm usually produces a sequence of points {x(k)}k∈N0 with
improving (de- or increasing) function values. The next iterate x(k+1) ∈ RN is de-
termined by adding a step direction p(k) ∈ RN of a certain step size γk ∈ R\{0}
to x(k):

x(k+1) = x(k) + γk p(k). (A.12)

Classical choices of p(k) in gradient-based methods for unconstrained optimiza-
tion problems are

pk = −
∇x f

(
x(k)
)

∥∥∇x f
(
x(k)
)∥∥

Rn

(steepest descent),

pk = −
(
∇xx f

(
x(k)
))−1

∇x f
(

x(k)
)

(Newton method)

or

pk = −B−1
k ∇x f

(
x(k)
)
= −Hk∇x f

(
x(k)
)

(Quasi-Newton method).

Note that the second variant is only possible if the Hessian of f is available, pos-
itive definite and the next iterate x(k+1) yields a satisfactory improvement in the
objective function. If this is not the case, the third option tries to mimic the di-
rection obtained via the Hessian of f if Bk is chosen as an approximative matrix
of ∇xx f . For instance, such an approximation can be obtained via (L-)BFGS up-
dates. The choice of the step size γk is in general difficult because it must take
into account whether we are looking for a global or local solution, how much
improvement in the objective function shall be enforced and whether the new it-
erate may be infeasible for too large step sizes. However, in this summary, we do
without a detailed description of methods for this task. Nonetheless, we bear in
mind that this choice should be taken with care.

252

A.4. Aspects of optimization

For constrained optimization problems, there are two main approaches. Either
the original problem is quadratically approximated or it is modelled towards an
unconstrained one.
In the former case, the original optimization problem is approximated by a quad-
ratic one. A quadratic subproblem is obtained by applying the Newton method
to the gradient of the Lagrangian function making use of the current iterate x(k).
The subproblem produces a direction p(k) which is used for the next iterate. Either
x(k+1) is suitable as the solution of the original problem as it fulfils the Karush-
Kuhn-Tucker conditions (A.10). Or it can be used for the formulation of the next
quadratic subproblem. Hence, an optimum is obtained via solving a sequence of
quadratic approximative problems which gives the approach the name SQP (se-
quential quadratic programming). Note that, similar to the unconstrained case,
also here the Hessian of the Lagrangian function needed in the Newton method
can be substituted by an approximative, e. g. (L-)BFGS, matrix. An example of
such a method is the SLSQP algorithm summarized in Appendix A.4.3.
For the latter case, either a multi-objective approach optimizes the objective func-
tion and the constraints simultaneously in a new vector-valued objective func-
tion. Or additional terms based on the constraints are added to the objective or
Lagrangian function. The additional terms are either penalty terms (that penal-
ize infeasible points, aka penalty methods) or barrier terms (that forbid infeasible
points, aka barrier methods). Independent of whether penalty or barrier terms
are used, they are usually defined as linear combinations of the constraints. The
coefficients are called penalty parameters. In this way, again, an unconstrained
optimization problem is obtained which can be solved with established methods.
Mostly, a sequence of these new unconstrained optimization problems is solved
in which the penalty parameters are decreased and, thus, a solution of the original
problem is approximated. An example of such a method is the IPOPT algorithm
summarized in Appendix A.4.4.
These common aspects shall serve as a basis for the next discussion of particular
algorithms used in our numerical experiments.

A.4.2. The locally-biased DIRECT algorithm

The DIRECT (DIviding RECTangles) algorithm (Jones et al., 1993; Jones, 2001) as
well as its locally-biased variant (Glabonsky, 1998; Glabonsky and Kelley, 2001)
are global optimization algorithms. This section is based on these publications.
Without loss of generality, the feasible region is dilated into the unit hypercube.
The bound constraints then define its outer vertices. The inequality constraints
are incorporated separately.
The algorithm implements a branch-and-bound approach. That means, the hy-
percube is iteratively divided into more and more hyperrectangles which are
evaluated via bound values. Thus, the algorithm is a special form of a Lip-
schitzian optimization technique. A univariate Lipschitzian approach has the

253

A. Computational aspects

advantages that it is a global method, has easy proofs of convergence, is deter-
ministic, contains only a few parameters and has meaningful termination cri-
teria. However, for classic variants, the Lipschitz constant needs to be known,
the speed of convergence is relatively low and the computational complexity of
higher dimensions is impractical. The DIRECT algorithm aims to overcome these
challenges.
The main routine is dividing the hypercube into more and more hyperrectangles
while sampling their centre points as iterates. As a technical matter, the vertex-
to-centre diameter is measured in two different ways in the diverse variants of
the DIRECT algorithm. Either the Euclidean distance is used or we have the di-
ameter d = 3−l/2 if 3−l is the length of the longest edge of the hyperrectangle.
Note that the latter is a kind of l∞ measure.
The main question is how to divide which hyperrectangles. We first state how to
divide the hyperrectangles of a certain iteration. For each dimension i = 1, ..., n,
we store a counter ti for how often we have split a hyperrectangle along this di-
mension. Let us consider the j-th hyperrectangle. We determine the set of long
sides (i. e. the longest edges) of it. We trisect the side i with the lowest value ti and
increase ti by 1. If several long sides attain this value of ti, we choose the lowest
dimension. The left- and right-hand centre points (i. e. c(j) ± (dj/3)e(i) if we tri-
sect along i and with dj the length of the long side and e(i) the i-th standard basis
vector) are then added to the set of centre points. At the end of the iteration, we
determine the new value of fmin among the set of all centre points. If the termina-
tion criteria are fulfilled, we stop the iteration process and return the centre point
related to fmin as the approximative solution. Possible termination criteria are the
approximation error (if the global solution is known), the number of iterations or
the number of function evaluations. Note that this algorithm is derivative-free
and, thus, cannot check whether the necessary conditions are fulfilled. Thus, a
natural termination criterion would also be if there is only small progress in the
values of the objective function between successive iterates.
At last, we discuss which hyperrectangles should be divided. For this, the in-
equality constraints are combined with a penalty term for deviating from the
value at the global minimum f ∗ in an auxiliary function

h̃j(f ∗) = max
(

f
(

c(j)
)
− f ∗, 0

)
+

m

∑
i=1

bi max
(

gi

(
c(j)
)

, 0
)
≥ 0

for positive weights bi and the constraints gi, i = 1, ..., m. In practice, f ∗ is not
known in advance, but we may have a first estimate fmin − ε which we aim to
improve. Hence, we consider h̃ for all possible values f ∗ of the global minimum
between fmin − ε and −∞.
In the centre point c(j) of the j-th hyperrectangle/-cube, the auxiliary function is
positive as long as f (c(j)) is not the global optimum and decreases towards the
global minimum. Obviously, in larger hyperrectangles, this decrease does not
have to be as steep as in smaller ones. Hence, we consider the minimum rate of

254

A.4. Aspects of optimization

change which is defined by

hj(f ∗) =
h̃j(f ∗)

dj

where dj denotes the diameter of the j-th hyperrectangle. For this diameter, we
can use either one of the previously mentioned measures. As the Euclidean mea-
sure is usually larger than the l∞ one, the latter one incorporates a bias to local
search in the algorithm.
Then we plot the curves of hj(f ∗) for all hyperrectangles in a diagram. We start
at (fmin − ε, 0) and go upwards until we intersect the first curve. Then we follow
this curve for decreasing possible values of f ∗ (i. e. to the left) until we intersect
the next curve. We do so until we find a curve that is not intersected again. The
hyperrectangles related to the curves we followed are then the hyperrectangles
we divide in this iteration. For an illustration of this procedure, see Glabonsky
and Kelley (2001).
For other optimization problems, there exist other variants of this algorithm. The
classic DIRECT algorithm using the Euclidean measure of the diameter considers
only bound constrained problems. It is guaranteed to be convergent to the global
optimum if the objective function is continuous at least in a neighbourhood of the
optimum. For the locally-biased variant for bound constrained problems, explicit
convergence statements are not made in the mentioned literature.
The presented variant of the DIRECT algorithm is the for us most interesting one
as it incorporates also inequality constraints. Here, we find in the literature again
that convergence shall be guaranteed if the objective and constraint functions are
continuous in a neighbourhood of the optimum. Note that the objective function
and constraints in the LIPMP algorithm are obviously continuous on their do-
mains. Hence, the DIRECT algorithm should converge also in our experiments.

A.4.3. The SLSQP algorithm

In the experiments in which we use the NLopt library, we choose to use the
SLSQP algorithm (Kraft, 1988, 1994) for the local optimization problems. It is an
SQP method, but it uses a least squares approach (hence, sequential least squares
quadratic programming). This section is based on the mentioned publications as
well as (Geiger and Kanzow, 2002).
In each iteration, it is checked whether the current iterate fulfils the KKT condi-
tions of the original problem. If not, a quadratic subproblem is modelled by

1
2

dTBkd +
(
∇ f

(
x(k)
))T

d→ min! subject to
(
∇gi

(
x(k)
))T

d + gi

(
x(k)
)
= 0

(A.13)

255

A. Computational aspects

for i = 1, ..., m, m ∈ N0, m ≤ |I| + |E |, d ∈ RN and an approximate Bk ≈
∇2

xxL(x(k), λk). Note that, for the latter, one can fall back on a BFGS approxi-
mation or its limited memory variant. The next iterate (confer (A.12)) is then
obtained by

x(k+1) = x(k) + γkd(k),

where d(k) ≈ d∗ is the solution of the quadratic problem (A.13) and γk is chosen to
be either 1 or as the minimizer of a one-dimensional penalty function dependent
on x(k) and d(k) in order to guarantee global convergence. Hence, this model eval-
uates the original objective function and constraints as well as their gradients. We
see that, in general, the SQP method follows the idea of a (Quasi-)Newton method
for determining KKT points.
However, the subproblem (A.13) only contains equality constraints. For using
the model (A.13) also for inequality-constrained optimization problems, a com-
mon approach is an active set strategy. The active set of the current iterate en-
ables us to formulate the respective subproblem with only equality constraints
(i. e. the equality constraints plus the active inequality constraints of the origi-
nal problem). The non-active inequality constraints of the current iteration are
neglected. Note that the current active set does not need to be computed from
scratch for each subproblem (see e. g. Kraft (1988) as well as common literature
on constrained optimization such as Geiger and Kanzow (2002) or Nocedal and
Wright (2006)).
With the active set strategy, we can use (A.13) also for approximating arbitrary
optimization problems. The solutions are obtained in the SLSQP algorithm as
follows. It is known that a quadratic optimization problem has an equivalent
formulation as a least squares problem when using an LDLT factorization of the
matrix Bk. Using this in the SLSQP algorithm, the least squares problem is then
solved via certain reformulations. From the dual problem of the final formulation
of the least squares problem (a non-negative least squares problem), we easily ob-
tain the next iterate x(k+1) as well as its corresponding Lagrange multipliers.
As a particular SQP approach, the SLSQP algorithm is convergent under certain
assumptions: strict complementarity, linear independence constraint qualifica-
tions and the second order sufficient condition. However, in practical applica-
tions, most SQP-like algorithms do not use the Hessian of the Lagrangian func-
tion but an approximation. Furthermore, to the knowledge of the author, the
strict complementarity can only be checked during run-time. Hence, unfortu-
nately, we have no proof that the algorithm should converge in our experiments.
However, the SQP method is a very efficient approach with respect to function
evaluation and time for arbitrary constrained non-linear optimization problems.
Moreover, nowadays, it is viewed as a solid method.

256

A.4. Aspects of optimization

A.4.4. The IPOPT algorithm

We started our development of a learning strategy for the IPMP algorithms us-
ing the IPOPT software (see e. g. Vigerske et al., 2016; Wächter, 2002; Wächter and
Biegler, 2005a,b, 2006). Further, we used certain subroutines from HSL (2018).
This section is based on these publications. IPOPT is an optimization software
that implements an interior point line search filter algorithm.
Similar as the SLSQP algorithm, it also produces a sequence of iterates of the form
(A.12) via a line search approach. That means, first a direction p(k) is determined.
Afterwards the step length γk is computed. This is a common approach for un-
constrained optimization problems. Possible constraints are incorporated by the
“interior point” or barrier as well as the filter ansatz.
The optimization problem that is considered by the implemented software is
given by

min
x∈Rn

f (x) subject to g(L)
i ≤ gi(x) ≤ g(U)

i , i = 1, ..., I (A.14)

where g(L)
i = −∞ and g(U)

i = +∞ is possible. Note that, if gi is the identity, this

includes simple bound constraints. Furthermore, for g(L)
i = g(U)

i , this also takes
equality constraints into consideration. This optimization task is then reformu-
lated in the k-th iteration to a barrier approach. With

ϕµk(x) := f (x)− µk ∑
i∈IL

ln
(

gi(x)− g(L)
i

)
− µk ∑

i∈IU

ln
(

g(U)
i − gi(x)

)
we consider

min
x∈Rn

ϕµk(x) subject to c(x) := gi(x)− g(L)
i = 0, i ∈ IL,U

using

IL =
{

i ∈ I
∣∣∣ g(L)

i 6= −∞
}

,

IU =
{

i ∈ I
∣∣∣ g(U)

i 6= +∞
}

,

IL,U =
{

i ∈ I
∣∣∣ g(L)

i = g(U)
i

}
and parameters µk > 0. Further, we have that µk → 0 for k → ∞ such that in the
limit minimizing ϕµk equals minimizing f .
As usually in line search approaches, the step direction p(k) for the next iterate
x(k+1) is obtained from the linearization of the KKT-conditions with ϕµk as the
objective function. The step length γk is obtained in a backtracking manner, i. e. a
sequence of step lengths γk,l is computed until at least one acceptance criterion is
fulfilled.

257

A. Computational aspects

The acceptance criteria are∥∥∥c
(

x(k) + γk,l p(k)
)∥∥∥ ≤ (1− εc)

∥∥∥c
(

x(k)
)∥∥∥

and

ϕµk

(
x(k) + γk,l p(k)

)
≤ ϕµk

(
x(k)
)
− εϕ

∥∥∥c
(

x(k)
)∥∥∥

for constants εc, εϕ ∈ (0, 1). That means, an iterate is accepted if either the vi-
olation of equality constraints is sufficiently decreased or the objective function
is significantly improved. However, in order to avoid cycling, e. g., between two
points that alternately improve either one of these criteria, a filter is introduced.
The filter saves prohibited (e. g. worse) combinations of ‖c(·)‖ and ϕµk from some
of the previous iterates.
This is the main idea of the algorithm. However, when dealing with a general op-
timization problem like (A.14), one may encounter a wide range of problematic
situations such as that the step direction cannot be computed due to a singular
matrix, the Maratos effect (i. e. a step direction increases both the constraint vio-
lation and the objective function) or the progress made by the iterate is too small.
As we see in the literature mentioned before, the IPOPT algorithm includes a strat-
egy for many kinds of such troubles.
In theory, the IPOPT algorithm is globally convergent if a number of assumptions
hold true. They include continuity assumptions regarding the original objective
function and constraints as well as linear independence of active constraints but
also seemingly technical issues like uniformly boundedness or uniformly positive
definiteness of certain matrices on particular sets. However, it does not appear as
if, in particular, the technical assumptions can be checked a-priori. Furthermore,
as it was pointed out in Vigerske et al. (2016), the available software ensures only
local solutions to be found. Hence, unfortunately, also in this case, we can only
numerically determine whether the optimization software converges for the tasks
in the LIPMP algorithms.

258

B. Documentation

In this chapter, we explain an implementation routine for the (L)IPMP algorithms
introduced in this thesis. For both cases, we make use of the descriptions for prac-
tical use given in Telschow (2014) and use the same structure to preprocess certain
data, like e. g. the (starting) dictionary or the measurements. We present a near-
implementation pseudo-code based description.
We utilize the GNU Scientific Library (GSL; Galassi et al., 2019) as many of its
mathematical tools make the programming easier and the code better readable.
Moreover, for solving the optimization problems, we include the NLopt library
(Johnson, 2019) because it contains various optimization algorithms. Note that,
consequentially, we suggest to implement the algorithms in a high-level pro-
gramming language in order to use these libraries. Furthermore, this also enables
more efficiency and a higher possible data amount. Our implementation is writ-
ten in C/C++ and, hence, we often start counting at 0. Further, note that, if we
use objects from the GSL as for instance vectors or matrices, we have to free these
objects after use (at least at the end of the programme).
We structure the whole implementation process as follows. The main-function
is implemented in a file exec.c. There, we first define parameters of the exper-
iment. Then we step into the function matchingpursuit which runs all aspects
of the respective algorithm. First, we compute some general items, generate the
measurements y for the matching pursuit and process specific values such as the
inner products of the dictionary elements of a finite dictionary. At last, we run (at
least) one of the (learning) inverse problem matching pursuits. Note that with
start = clock()

{ do something }
end = clock()

cpu time used = ((double) (end - start))/CLOCKS PER SEC

we can measure the CPU-time for any part of the code (do something). Fur-
ther, with if-loops, we distinct the cases in which we either compute or read
certain values from files of previous computations (see also below do preproc

and do save). At last, we also distinct in this way necessary and unnecessary
computations with respect to which trial function classes are in the dictionary
contained (see also below do sh, do apk, do apw and do sl). Note that we ex-
plain the most simple form of implementing an (L)IPMP algorithm including an
efficient preprocessing for the application of the learnt dictionary. Hence, if one
aims to implement the IPMP and the LIPMP algorithms simultaneously, the vari-
ables need to be doubled in the preprocessing.
We start with the file exec.c. Note that this file contains all needed header files.

259

B. Documentation

In the main-function, we first define the experiment parameters.

1. Physical parameters
(see Bettadpur, 2012; Dahle et al., 2013; National Geospatial-Intelligence
Agency, Office of Geomatics (SN), EGM Development Team, 2008; Watkins
and Yuan, 2012)

• radius earth

The radius of the (spherical) Earth is fixed at 6378136.3 m or 6378136.46
m if the data from the GFZ is used.
• satellite height

A variable satellite height. For instance, 500000.0 m as the GRACE
orbiter started at roughly this height.
• grav constant

The gravitational constant is fixed to be 3986004.415 · 108 m3

s2 . This con-
stant corresponds to the product of the gravitational constant and the
mass of the Earth.

2. Data parameters

• reuter data

We explain the case for using a Reuter grid for the location of the mea-
surements η(i), i = 1, ..., ` (confer Remark 4.2.4). For this grid, we only
need to set a parameter for its size (confer Definition A.1.2).
• DH phi, DH t

For the evaluation of the approximation and the computation of the
approximation error, we suggest to use a Driscoll-Healy grid (confer
Definition A.1.1). For this grid, we need two parameters: one for the
number of steps in the longitude, i. e. DH phi, and one for the latitude,
i. e. DH t.
• degree data

Gives the maximal degree up to which we evaluate the solution f given
in spherical harmonics, for instance, if we use the EGM2008 or GRACE
data.
• name, name file

If name is set to 1, the coefficients from the file with filename name file

are used.
• name sol, name dat

Filenames where the solution f evaluated at the Driscoll Healy grid
(name sol) and the Reuter grid (name dat) is stored.
• do data sol, do data inp

If do data sol is set to 1, the solution f is evaluated at the Driscoll
Healy grid and stored in a file. If do data sol is set to 0, the solution
is not computed but read from a previously calculated file of the name
name sol. The value do data inp is similar to do data sol but with

260

B. Documentation

respect to the computation of the measurements at a Reuter grid and
the file name dat.
• scale J

Gives the scale J for the low or band pass filter (s = 2−J) of the Cubic
polynomial scaling function (confer Example 3.3.13) which is used for
destriping the GRACE data.

3. Dictionary parameters

• do sh, do apk, do apw, do sl

If set to 1, we use spherical harmonics (do sh), Abel–Poisson low pass
filters (do apk), Abel–Poisson band pass filters (do apw) or Slepian func-
tions (do sl) as dictionary elements.
• degree SH

Gives the maximal degree of the spherical harmonics in the dictionary.
• reuter ker, reuter wav

We include Abel–Poisson low and band pass filters with respect to a
set of centres χ ∈ Ω. This set is a Reuter grid. The value reuter ker

and reuter wav give the necessary parameter for the point grids (i. e.
G in Definition A.1.2). Note that the grids for the low and band pass
filter coincide if reuter ker = reuter wav.
• num scales ker, scales ker, num scales wav, scales wav

The values num scales ker and num scales wav give the number of
different scales of Abel–Poisson low and band pass filters, respectively,
that are used in the dictionary. The values themselves are stored in
scales ker and scales wav, respectively. Note that we combine each
scale with the Reuter grid of the centres.
• num caps, sphcaps

The value num caps gives the number of spherical caps used for Slepian
functions of the dictionary. In particular, this is the number of different
values of θ = arccos(c) ∈ [0, π] which are stored in sphcaps. Note that
each value is combined with each combination of Euler angles given
in Ealpha, Ebeta, Egamma.
• num Ealpha, Ealpha, num Ebeta, Ebeta, num Egamma, Egamma

The number of different values of the Euler angle α ∈ [0, 2π[used in
Slepian functions of the dictionary is given in num Ealpha. The val-
ues themselves are stored in Ealpha. Analogously, there are variables
num Ebeta and Ebeta for β ∈ [0, π] as well as num Egamma and Egamma

for γ ∈ [0, 2π[
• bandlimit

The band-limit of the Slepian functions in the dictionary.

4. Termination criteria

• iterations

Gives the maximal number of iterations for a matching pursuit.

261

B. Documentation

• size res

Gives the minimal size allowed for ‖RN‖R`/‖y‖R` in the matching
pursuit. Note that, in practice, this termination criterion is the most
sensible one. Thus, the number of iterations should be not too small.
Further, note that the value should depend on the noise level given in
noise perc.

5. Experiment setting

a) General

• regpar

Gives a value for λ0(δ) which defines λ(δ, yδ) = λ0(δ)‖y‖R` later.
• sobolev

Gives the value s of the Sobolev spaceHs(Ω).
• sobolev eval

Maximal degree at which the series of the H2(Ω)-inner products
of the Abel–Poisson low and band pass filters (confer (3.23), (3.24)
and (3.26)) are truncated.
• non ortho

If set to 1, the (L)RFMP is computed.
• ortho

If set to 1, the (L)ROFMP is computed.
• ortho it

Gives the number K for the iterated ROFMP (see Algorithm 4)
as well as for the restart of the LR(O)FMP (see Remark 7.3.5). A
restart technique is used in the (L)IPMP algorithms if ortho it is
lower than iterations. Then the restart takes place after ortho it

iterations.
• noise perc ∈ [0, 1]

Gives the percentage of the noise.

b) Learning

• splinesize

Gives the size ε for the spline in the LROFMP (confer Section 7.3).
• smoothing, smooth sh, smooth shsl

If smoothing is set to 1, the additional smoothing mechanism (con-
fer Remark 7.3.8) is used in the LIPMP algorithms. Hence, in the
first smooth sh iterations of the LIPMP algorithm, only spherical
harmonics are allowed to be chosen. In the next smooth shsl it-
erations, it is allowed to choose a spherical harmonic or a Slepian
function. If smoothing is set to 0, the full dictionary DInf is used
right from the start in the LIPMP algorithm.
• iterated application

If set to 1, the learnt dictionary is applied in an iterated fashion

262

B. Documentation

(confer Remark 7.3.4). If set to 0, the IPMP can choose from the full
learnt dictionary in each iteration.
• opt routine, local opt routine

The name opt routine defines the optimization routine from the
NLopt library used in the global optimization. Similarly, the name
local opt routine defines the optimization routine in the local
optimization.
• feasibility

Gives the tolerance for the feasibility in an optimization process.
We fix it to a small negative value (−10−8) such that infeasible val-
ues will not be considered as successful solutions.
• abs tol f

An optimization process terminates if the value of the objective
function at the current and the previous iterate differ less than this
value. We fix it to 10−8.
• abs tol x

An optimization process terminates if the current and the previous
iterate differ component-by-component less than this value. We fix
it to 10−8.
• maxeval

Maximal number of function evaluation in an optimization pro-
cess. From experience, this value should be at least of the size 104

for the here considered data.
• maxtime

Maximal time in seconds that an optimization process is allowed
to take. We propose to set it to 200.

6. General distinction

• raw, training

Determines whether an IPMP algorithm (raw=1) or an LIPMP algo-
rithm (training=1) or both (raw=training=1) are run.
• do preproc, do save

If do preproc is set to 1 the preprocessing, of e. g. inner products, is
computed. If also do save is set to 1, the preprocessing is saved in the
folder “Preproc”. If do preproc is set to 0, the respective data is read
from the files in the folder “Preproc”.

All of these values are the arguments of the function matchingpursuit. This func-
tion is the spine of the computation process in the sense that it contains most of
the declaration of variables and function calls to smaller computation units. Note
that, though most variables are declared in this function, their values are set in
the smaller units. In particular, these smaller units are:

263

B. Documentation

1. reuter size,
2. determine overall maximal degree of spherical harmonics with respect to

the dictionary,
3. precomputation,
4. initializeLookUp,
5. computedata,
6. computeD,
7. computeS,
8. rfmp,
9. rofmp,

10. lrfmp,
11. lrofmp,
12. copy learnt dictionary from structure book to LookUp,
13. computeDTDlearnt,
14. computeSlearnt.

We discuss number 1 – 7 in the next section, Appendix B.1. Number 8 and 9 are
explained in Appendix B.2 and number 10 – 14 are considered in Appendix B.3.

B.1. Common preprocessing

We discuss the preprocessing of the (L)IPMP algorithms, i. e. the part of the func-
tion matchingpursuit that contains the computations up to computeS (included).

B.1.1. First computations

We consider simple computations that follow directly from the parameters de-
fined in exec.c.

Immediate values We define some further variables:
• orbit, rel orbit

The value orbit gives the distance of the satellite orbit from the centre of the
coordinate system. Note that we consider constant satellite height. Hence,
the distance is constant as well. We scale the distance of the satellite orbit
such that the surface of the Earth is given by the unit sphere. This relative
distance is denoted by rel orbit.
• num sh data, size sh data

The value num sh data gives the number of spherical harmonics considered
in the data. The number of rows in the table of coefficients in name file is
given by size sh data.
• gridpointsDH

Gives the number of grid points of the Driscoll Healy grid.

264

B.1. Common preprocessing

• num sh

Gives the number of spherical harmonics in the dictionary.
• num sl, full num sl

The number of Slepian function per localization region is given by num sl.
The number of Slepian functions in the dictionary is given by full num sl.
• num dic ele

Gives the size of the dictionary.
• sobolevseq

Stores the values of the Sobolev sequence.
• l

The number of measurements yi ∈ R for i = 1, ..., `=l from Remark 4.1.1
and Remark 4.2.4. This value is computed via reuter size(·) using the
data parameter reuter data. This function computes the vector γ from Def-
inition A.1.2 because l is the sum of the entries of γ.
• phi eta, t eta, eta

Store the Cartesian values of η(i) (confer Remark 4.1.1 and Remark 4.2.4) in
eta as well as the longitude and the latitude of each point in phi eta and
t eta, respectively.
• max degree m

Gives the maximum of (all) degree SH and bandlimit.
• fnsh at data

Stores the values of the fully normalized spherical harmonics (2.14) up to
degree max deg m at the data points η(i).
• num cen ker, num cen wav

Similarly as with l, we compute the number of centres, i. e. Reuter grid
points, for the Abel–Poisson low and band pass filters from reuter ker and
reuter wav, respectively.
• phi xi, t xi, xi, phi zeta, t zeta, zeta

Store the values of the centres of the Abel–Poisson low pass filters in a Carte-
sian form in xi as well as the longitude and the cosine of the latitude of each
point in phi xi and t xi, respectively. Analogously, we have phi zeta,

t zeta, zeta for the Abel–Poisson band pass filters.
• ev sleps

Stores the Fourier coefficients together with the respective set of character-
istics θ = arccos(c), α, β, γ of the Slepian functions in the dictionary.
• wignercoeffs a, wignercoeffs b, wignercoeffs c, wignercoeffs d

Store the values of the coefficients an
k,j, bn

k,j, cn
k,j and dn

k,j from Definition 3.1.7
up to bandlimit. Note that we can often re-use these values throughout the
LIPMP algorithms.

After the declaration, we set the values of these variables in

265

B. Documentation

precomputation(radius earth, satellite height, reuter data, l,

phi eta, t eta, eta, DH phi, DH t, degree data,

do sh, do apk, do apw, do sl, degree SH,

reuter ker, num scales ker, reuter wav,

num scales wav, num caps, sphcaps, num Ealpha,

num scales wav, num caps, sphcaps, num Ealpha,

Ealpha, num Ebeta, Ebeta, num Egamma, Egamma,

bandlimit, sobolev, sobolev eval, orbit,

rel orbit, num sh data, size sh data, gridpointsDH,

sobolevseq, num sh, fnsh at data, max degree m,

num cen ker, phi xi, t xi, xi, num cen wav,

phi zeta, t zeta, zeta, num sl, full num sl,

ev sleps, wignercoeffs a, wignercoeffs b,

wignercoeffs c, wignercoeffs d, bandlimit,

num dic ele, do preproc, do save).

The function precomputation contains the following calculations:
1. orbit = radius earth + satellite height

2. rel orbit = orbit/radius earth

3. num sh data = (degree data+1)2

4. size sh data = 0.5(degree data + 2)(degree data + 1)

5. gridpointsDH = (DH phi+1)(DH t+1)

6. n = 0, ...,sobolev eval: sobolevseq(n) = (n + 0.5)2

7. Reuter(reuter data, l, phi eta, t eta, eta)

8. fnsh(max degree m, l, phi eta, t eta, fnsh at data)

9. num sh = (degree SH+1)2

10. Reuter(reuter ker, num cen ker, phi xi, t xi, xi)

11. Reuter(reuter wav, num cen wav, phi zeta, t zeta, zeta)

12. num sl = (bandlimit+1)2

13. full num sl

= num sl · num caps · num Ealpha · num Ebeta · num Egamma

14. initializewignercoeffs(bandlimit,

wignercoeffs a, wignercoeffs b,

wignercoeffs c, wignercoeffs d)

15. sleps(bandlimit, num sl, num caps, num Ealpha, num Ebeta,

num Egamma, sphcaps, Ealpha, Ebeta, Egamma, ev sleps,

wignercoeffs a, wignercoeffs b, wignercoeffs c,

wignercoeffs d)

16. num dic ele = num sh · do sh

+ num scales ker · num cen ker · do apk

+ num scales wav · num cen wav · do apw

+ full num sl · do sl

266

B.1. Common preprocessing

The function Reuter(G, l, phi, t, cart) as used in 7., 10. and 11. imple-
ments Definition A.1.2. The longitude is saved in the third argument phi and the
latitude in the fourth arguments t. Using (2.1), the Cartesian values of the grid
points are computed and stored in the fifth argument cart.
The function fnsh(N, len t, phi, t, fnsh eval) as used in 8. computes the
values of the fully normalized spherical harmonics up to degree N and at the len t

gridpoints given via their longitude and latitude in phi and t, respectively. The
values are stored in fnsh eval. The computation can be realized immediately
from definition (2.14). The associated Legendre functions can be computed either
via Algorithm 9 or Algorithm 11, Algorithm 12 and Algorithm 13 dependent on
max deg m.
In 14., the coefficients of the recursion formulas of the Wigner rotation matrices
is implemented in initializewignercoeffs(bandlimit, a, b, c, d). They are
directly obtained from Definition 3.1.7 and can be re-used in the optimization pro-
cess.
The computation of the coefficients of the Slepian functions in the dictionary is
done in

sleps(bandlimit, num sl, num caps, num Ealpha, num Ebeta,

num Egamma, sphcaps, Ealpha, Ebeta, Egamma, ev sleps,

wignercoeffs a, wignercoeffs b, wignercoeffs c,

wignercoeffs d).

The first arguments up to Egamma contain the characteristics of the Slepian func-
tions. The Fourier coefficients will be stored in ev sleps. The Wigner rotation
matrices as in Definition 3.1.7 up to bandlimit can be computed via a separate
call (i. e. initializewigner) in this function. Then the implementation of sleps
contains the following steps. For each size θ = arccos(c) stored in sphcap of the
spherical cap in the dictionary, we compute
• for each order j = −bandlimit, ..., bandlimit:

– compute localization matrix Mj as described in Theorem 3.1.11 and
thereafter

– solve eigenvalue problem
(e. g. with gsl eigen symmv from the GSL)

– save real-valued coefficient of the Slepian functions
• for each rotation specified in the dictionary (i. e. each triple (α, β, γ) ∈
Ealpha× Ebeta× Egamma:

– compute Wigner rotation matrices Dn as given in Definition 3.1.7 using
the coefficients computed in initializewignercoeffs and stored in
wignercoeffs x for x = a, b, c, d

– from the real-valued coefficients of the Slepian functions compute the
complex valued coefficients (confer (2.15))

– rotate the complex-valued coefficients of the Slepian functions using
the rotation matrices (confer Theorem 3.1.9 and Example 3.1.10)

267

B. Documentation

– from the rotated complex-valued coefficients of the Slepian functions
compute the (rotated) real-valued coefficients (confer (2.16))

– save the coefficients together with their characteristics (c, α, β, γ) in
ev sleps

The LookUp-Table A certain look-up table proved to be very convenient. The
matrix LookUp stores the characteristics of each dictionary element. First, we de-
fine its size. If the dictionary contains Slepian functions, we have

sizeLookUp = 5 + num sl (B.1)

in order to ensure that it is large enough to contain the Fourier coefficients of the
Slepian functions. If the dictionary does not contain Slepian functions, it suffices
to set

sizeLookUp = 6. (B.2)

Then we initialize LookUp in

initializeLookUp(do sh, do apk, do apw, do sl, degree SH,

num scales ker, num cen ker, scales ker, phi xi,

t xi, num scales wav, num cen wav, scales wav,

phi zeta, t zeta, num sl, full num sl, ev sleps,

LookUp).

Note that, in LookUp, we stick to the order of the dictionary (spherical harmonics
→ Abel–Poisson low pass filters → Abel–Poisson band pass filters → Slepian
function) which allows us later to find the respective dictionary element faster. In
general, the matrix naturally has different entries dependent on the trial function
class. However, the first column is used for categorizing the trial function classes
in all cases. We identify spherical harmonics with category 1, Abel–Poisson low
pass filters with 2, Abel–Poisson band pass filters with 3 and Slepian functions
with 4.
For a spherical harmonic Yn,j ∈ D, the respective row of LookUp is given by

1 n j

and, thus, stores the identifier, the degree n and the order j.
In the sequel, with respect to the Abel–Poisson low and band pass filters, the
elements of the set of centres x/|x| shall be ordered for i = 1 to num cen ker

or num cen wav, respectively. Similarly, we have the value rj for the jth value
of scales ker or scales wav for j = 1, ..., num scales ker or num scales wav, re-
spectively. Further, we denote ϕx and tx = cos(θx) as the related longitude and
latitude of x. Then we set the respective row of LookUp as

2 |x| ϕx tx i j

268

B.1. Common preprocessing

for an Abel–Poisson low pass filter K(x, ·) and

3 |x| ϕx tx i j

for an Abel–Poisson band pass filter W(x, ·). Note that we also save the indices
i and j in order to simplify the access to respective rows and columns in the up-
coming preprocessing. At last, we set

4 c α β γ g(k,L)
0,0 g(k,L)

1,−1 g(k,L)
1,0 ...

for the Slepian functions where the content of the columns 2 to sizeLookUp is
inherited from ev sleps. Hence, we see the reason for choosing the number of
columns in LookUp as given in (B.1) and (B.2), respectively.

B.1.2. Generating the data

Next, we generate necessary data from the solution f (confer Remark 4.2.4). We
need the following variables.

• phi sol, t sol, sol

Store the values of the gridpoints of the Driscoll Healy grid (for evaluation
of the solution and the approximation; confer Definition A.1.1) in a Carte-
sian form in sol as well as the longitude and the cosine of the latitude of
each point in phi sol and t sol, respectively.
• fnsh at sol

Stores the fully normalized spherical harmonics (2.14) evaluated up to de-
gree and order max degree m at the Driscoll Healy grid points sol.
• solution

Stores the values of the solution f at the Driscoll Healy grid points.
• data

Stores the value of the solution f at the Reuter grid points eta. We should
store a replica data tmp as well in case we run two algorithms successively.
• norm sol, norm data

Gives the Euclidean norm of the solution f evaluated at the Driscoll Healy
grid (norm sol) and at the Reuter grid (norm data).

269

B. Documentation

These are used in

computedata(gridpointsDH, DH phi, phi sol, DH t, t sol, sol,

max degree m, fnsh at sol, do apk, do apw, do sl,

do data sol, do data inp, orbit, rel orbit,

radius earth, grav constant, name, name file, scale J,

noise perc, degree data, size sh data, l, num sh data,

phi eta, t eta, solution, data, name sol, name dat,

norm sol, norm data, raw, training, do preproc,

do save).

Necessary data for an (L)IPMP algorithm is obtained by the following steps:

1. DriscollHealyMeshed(DH phi, phi sol, DH t, t sol, sol)

2. fnsh(max degree m, gridpointsDH, phi sol, t sol, fnsh at sol)

3. gsl rng * RNG = gsl rng alloc(gsl rng taus)

4. read coefficients from name file

5. compute a representation of f in spherical harmonics for each grid point of
the Driscoll Healy grid sol and at the surface of the Earth (compute each
grid point separately)

6. from these values ỹi, i = 0, ..., gridpointsDH-1 compute

norm sol =

√√√√gridpointsDH-1

∑
i=0

ỹ2
i

7. compute a representation of f in spherical harmonics for each grid point of
the Reuter grid eta at rel orbit (compute each grid point separately)

8. for each value yi = data(i) on the Reuter grid, add noise (confer (9.1)), e. g.
via
random = gsl ran gaussian(RNG, 1.0)

data(i) = data(i) · (1.0 + noise perc · random), i = 0...,l-1
9. from these values data(i) = yδ

i , i = 1, ..., l-1 compute

norm data =

√√√√l-1

∑
i=0

data(i)

The function DriscollHealyMeshed(num phi, phi, num t, t, cart) in 1. com-
putes the Driscoll Healy grid straight-forwardly from Definition A.1.1. The longi-
tude has num phi+1 distinct values and the cosine of the latitude contains num t+1

different values. The meshed values are stored in phi and t, respectively. The
corresponding Cartesian values (confer (2.1)) are saved in cart.

270

B.1. Common preprocessing

B.1.3. Preprocessing

At last, we consider the preprocessing as it was described by Telschow (2014).

The matrix D We evaluate the images of the dictionary elements under the op-
erator Tk. In our case, this means, we consider the upward continued dictionary
elements. These values can be efficiently stored in a matrix. For this, we define
the following variables

• xi times eta, zeta times eta

For all data points η(i), i = 0, ..., l-1 in eta, the values

x(j)∣∣x(j)
∣∣ · η(i)

are stored for all centres x(j) with j = 0, ..., num cen ker-1 of Abel–Poisson
low pass filters in xi times xi and x(j) with j = 0, ..., num cen wav-1 of
Abel–Poisson band pass filters in zeta times zeta.
• matrixD

The column i = 0, ..., num dic ele-1 stores the value Tkdi ∈ Rl (see (2.27),
(7.41), (7.42) and (3.18)) for all dictionary elements di.
• matrixDTD

The entry (i, j) for i, j = 0, ..., num dic ele-1 of this matrix stores the value
〈Tkdi, Tkdj〉Rl for all pairs of dictionary elements (di, dj).

and use them in

computeD(do apk, do apw, l, eta, num cen ker, xi, xi times eta,

num cen wav, zeta, zeta times eta, LookUp, rel orbit,

fnsh at data, degree SH, bandlimit, num dic ele, matrixD,

matrixDTD, do preproc, do save, raw, training).

Note that the latter two arguments are only used to specify filenames. In this
function, the following steps are taken:
1. compute

x(j)∣∣x(j)
∣∣ · η(i)

for all centres of
a) Abel–Poisson low pass filters, i. e. j = 0, ..., num cen ker-1

b) Abel–Poisson band pass filters, i. e. j = 0, ..., num cen wav-1

Note that, if num cen ker = num cen wav, step 1b can be substituted by copy-
ing the values of 1a to the respective structures.

271

B. Documentation

2. for all dictionary elements (i. e. i=0,...,num dic ele-1)
dependent on the type of trial function (i. e. LookUp(i,0) = 1, 2, 3 or 4)

for all Reuter grid points (i. e. j=0,...,l-1)
compute matrixD(j,i) = T di(η

(j)) via
(2.27) (LookUp(i,0)=1) using rel orbit,

LookUp(i,1),
fnsh at data,

(7.41) (LookUp(i,0)=2) using rel orbit, |x|,

xi times eta,

(7.42) (LookUp(i,0)=3) using rel orbit, |x|,

zeta times eta,

and (3.18) (LookUp(i,0)=4) using LookUp(i,:),
rel orbit,

fnsh at data.

3. compute matrixDTD = matrixDT· matrixD
Note that, if the fully normalized spherical harmonics are used, we may also
normalize the Abel–Poisson low and band pass filters with respect to the L2(Ω)-
norm in step 2. This also holds for the matrix S we describe next. Further, note
that we have to consider this normalization in the processing of candidates in the
learning algorithms as well. In the objective function (7.103), we do not have to
consider this normalization as it cancels out. At last, note that we could use the
symmetry of matrixDTD.

The matrix S We also aim to preprocess the H2(Ω)-inner products of all pairs
of dictionary elements. For this, we need
• fnsh at cen ker, fnsh at cen wav

Store the fully normalized spherical harmonics (2.14) evaluated either at
the centres of the Abel–Poisson low pass filters (fnsh at cen ker) or at the
centres of the Abel–Poisson band pass filters (fnsh at cen wav). Note that
we can save runtime if the centres of the Abel–Poisson low and band pass
filters coincide.
• xi times xi, xi times zeta, zeta times zeta

Store the inner products

x(i,K)∣∣x(i,K)∣∣ · x(j,K)∣∣x(j,K)
∣∣ , i, j = 0, ..., num cen ker-1,

in xi times xi,

x(i,K)∣∣x(i,K)∣∣ · x(j,W)∣∣x(j,W)
∣∣ , i = 0, ..., num cen ker-1, j = 0, ..., num cen wav-1,

272

B.1. Common preprocessing

in xi times zeta and

x(i,W)∣∣x(i,W)
∣∣ · x(j,W)∣∣x(j,W)

∣∣ , i, j = 0, ..., num cen wav-1

in zeta times zeta of the centres of the Abel-Poisson low and band pass
filters x(•). Note again that we can substitute some of the computation with
copying if num cen ker = num cen wav.
• cn hh, cn hb, cn bb

Give the coefficients from (A.5) for n = 0, ..., sobolev eval. The matrix
cn hh is used for all combinations of

τ =
∣∣∣x(i)∣∣∣ ∣∣∣x(j)

∣∣∣ , i, j = 0, ..., num cen ker-1,

cn hb for all i = 0, ..., num cen ker-1, j = 0, ..., num cen wav-1, and cn bb for
all i, j = 0, ..., num cen wav-1.
• matrixS

The entry (i, j) for i, j = 0, ..., num dic ele-1 of this matrix stores the value
〈di, dj〉H2(Ω) for any two dictionary elements di and dj. The first thing to note
is the symmetry of the inner product. Next, note that, in the case that we run
an LIPMP algorithm, we use matrixS small instead of matrixS and copy
the former one into the latter one afterwards. This is done in order to plan
ahead for an efficient preprocessing of the learnt dictionary. In particular, in
this case, we structure matrixS in quadrants QI to QIV:

QI QII
QIII QIV,

where QI = matrixS small is of the size num dic ele × num dic ele, QII is
of the size num dic ele × iteration number, QIII = QIIT and, accordingly,
QIV is of the size iteration number × iteration number. We refer to the
quadrants QII and QIV when describing how learnt dictionary elements
need to be processed for the next iteration in the LIPMP algorithm.

We compute and store the inner products in

computeS(sobolevseq, sobolev eval, num dic ele, LookUp, matrixS,

do apk, do apw, fnsh at cen ker, max degree m,

num scales ker, scales ker, num cen ker, phi xi, t xi, xi,

fnsh at cen wav, num scales wav, scales wav, num cen wav,

phi zeta, t zeta, zeta, xi times xi, xi times zeta,

zeta times zeta, bandlimit, do preproc, do save, raw,

training).

Again, the last two arguments are used for setting filenames if the preprocessing
shall be saved. The function computes the following steps:

273

B. Documentation

1. fnsh(max degree m, num cen ker, phi xi, t xi, fnsh at cen ker)

fnsh(max degree m, num cen wav, phi zeta, t zeta, fnsh at cen wav)

2. compute cn hh, cn hb and cn bb for n = 0, ..., sobolev eval with
sobolevseq and
|x•| ∈ scales ker or
|x(i)| ∈ scales ker, |x(j)| ∈ scales wav or
|x•| ∈ scales wav, respectively

3. compute xi times xi with x(•)/|x(•)| ∈ scales ker

4. compute xi times zeta with x(i)/|x(i)| ∈ scales ker

and x(j)/|x(j)| ∈ scales wav

5. compute zeta times zeta with x(•)/|x(•)| ∈ scales wav

6. for all combinations of dictionary elements (i. e. i, j=0,...,num dic ele-1)
dependent on the types of trial function
(i. e. LookUp(i,0), LookUp(j,0) ∈ {1, 2, 3, 4})

compute matrixS(i,j) = 〈di, dj〉H2(Ω) via
(3.19) if LookUp(i,0) = 1, LookUp(j,0) = 1

using sobolevseq, LookUp(i,:), LookUp(j,:)
(3.20) if LookUp(i,0) = 1, LookUp(j,0) = 2,

and vice versa

using sobolevseq, LookUp(i,:), LookUp(j,:),
fnsh at cen ker

(3.23) if LookUp(i,0) = 2, LookUp(j,0) = 2

using LookUp(i,:), LookUp(j,:),
xi times xi, cn hh, Algorithm 8

(3.21) if LookUp(i,0) = 1, LookUp(j,0) = 3,

and vice versa

using sobolevseq, LookUp(i,:), LookUp(j,:),
fnsh at cen wav

(3.24) if LookUp(i,0) = 2, LookUp(j,0) = 3,

and vice versa

using LookUp(i,:), LookUp(j,:),
xi times zeta, cn hb, Algorithm 8

(3.26) if LookUp(i,0) = 3, LookUp(j,0) = 3

using LookUp(i,:), LookUp(j,:),
zeta times zeta, cn bb, Algorithm 8

(3.22) if LookUp(i,0) = 1, LookUp(j,0) = 4,

and vice versa

using sobolevseq, LookUp(i,:), LookUp(j,:)
(3.25) if LookUp(i,0) = 2, LookUp(j,0) = 4,

and vice versa

using sobolevseq, LookUp(i,:), LookUp(j,:),
fnsh at cen ker

274

B.2. Implementing an IPMP algorithm

(3.27) if LookUp(i,0) = 3, LookUp(j,0) = 4,

and vice versa

using sobolevseq, LookUp(i,:), LookUp(j,:),
fnsh at cen wav

and (3.28) if LookUp(i,0) = 4, LookUp(j,0) = 4

using sobolevseq, LookUp(i,:), LookUp(j,:)
Note that we may have to take into consideration the L2(Ω)-normalization anal-
ogously as in computeD. The remaining interesting computation steps in the func-
tion matchingpursuit depend on the respective (L)IPMP algorithm we run. We
will explain the separate cases in the next sections. Other than these, the function
matchingpursuit takes care of freeing previously declared (structured) variables,
like gsl vector or gsl matrix, as well as reset data to its initial values by using
data tmp if we run several (L)IPMP algorithms.

B.2. Implementing an IPMP algorithm

For both IPMP algorithms, the first step is to declare a few more variables:
• IP data Tupd

Stores the values of a1(dj) for all dictionary elements dj with j = 0, ...,
num dic ele-1 (confer (7.7)). Initialized with

〈
y, Tkdj

〉
R` =

l-1

∑
i=0

data(i) · matrixD(i,j)

for all dictionary elements dj.
• IP appr d

Stores the values of a2(dj) for all dictionary elements dj with j = 0, ...,
num dic ele-1 (confer (7.7)). Initialized with zero entries.
• marks

Is an advanced structure book (confer (4.8)). Each row represents one iter-
ation. The columns are set analogously to LookUp. Additionally, between
the first and the second column, it contains an additional column to store
the value of the respective coefficients αN and α

(N)
N , respectively. Further-

more, it also saves the Cartesian coordinates of the centres of the chosen
Abel–Poisson low and band pass filters.
• Appr

Stores the current approximation fN and f (N)
N , respectively, evaluated on

the Driscoll Healy grid sol. Initialized with zero entries, i. e. we set f0 ≡ 0.
• TikhFun

Stores the value of the Tikhonov functional in each iteration. We set

TikhFun(0) = norm data2.

275

B. Documentation

• RDE

Stores the value of the relative data error in each iteration. We set

RDE(0) = 1.

• RAE

Stores the value of the relative approximation error in each iteration in the
(L)IPMP algorithm. We set

RAE(0) =

√
norm sol2

gridpointsDH

norm sol
.

• lambda0 = regpar · norm data

• num trials

We choose the next basis element from the first num trials dictionary ele-
ments. Initially, we set

num trials = num dic ele.

• iteration

Gives the current iteration. Initially, we set

iteration = 1.

B.2.1. The RFMP algorithm

We explain the next steps in the function

rfmp(l, data, norm data, LookUp, num dic ele, sizeLookUp, num sl,

matrixD, matrixDTD, matrixS, regpar, free,

iterated application, ortho it, iterations, size res,

gridpointsDH, solution, norm sol, fnsh at sol, sol).

after the declaration of the previously given variables. Note that the variable
free is set to 1 if we apply the learnt dictionary (i. e. training=1). If we use a
manually chosen dictionary (i. e. raw=1), then free is 0. The algorithm contains
the following steps.
1. do

a) lambda = regpar · norm data/iteration

(confer Remark 7.3.7)

b) num trials =

iteration, iterated application=1

& iteration < num dic ele

num dic ele, else
(confer Remark 7.3.4)

276

B.2. Implementing an IPMP algorithm

c) i = 0, ..., num trials-1:

objective function(i)
= (IP data Tupd(i) - lambda · IP appr d(i))2

/ (matrixDTD(i,i) + lambda · matrixS(i,i))
(confer Algorithm 3)

d) ν = max index(objective function)

(confer Galassi et al. (2019))
e) marks(iteration-1,0) = LookUp(ν,0);

marks(iteration-1,1)

= (IP data Tupd(ν) - lambda · IP appr d(ν))

/ (matrixDTD(ν,ν) + lambda · matrixS(ν,ν))
(i. e. α, confer Algorithm 3)

i = 1, ..., sizeLookUp:

marks(iteration-1,i+1) = LookUp(ν,i)
if(marks(iteration-1,0) = 2 or 3)

marks(iteration-1,7) = x1/|x|
marks(iteration-1,8) = x2/|x|
marks(iteration-1,9) = x3/|x|

(confer (2.1) and using LookUp(ν,2:3))
f) i = 0, ..., l-1:

data(i) = data(i) - marks(iteration-1,1) · matrixD(i,ν)
(i. e. RN, confer Algorithm 3)

RDE(iteration) =

√
∑l-1

i=0 data(i)2 / norm data

g) i = 0, ..., num dic ele-1:

IP data Tupd(i)
= IP data Tupd(i) - marks(iteration-1,1) · matrixDTD(ν,i)

(confer step 1f)
IP appr d(i)

= IP appr d(i) + marks(iteration-1,1) · matrixS(ν,i)
(confer (4.26))

h) i = 0, ..., gridpointsDH-1:

Appr(i)
= Appr(i) + marks(iteration-1,1)

×

fnsh at sol(idx,i), marks(iteration-1,0) = 1

(3.12), marks(iteration-1,0) = 2

(3.15), marks(iteration-1,0) = 3

tmp, marks(iteration-1,0) = 4
idx = marks(iteration-1,2) · marks(iteration-1,2)

+ marks(iteration-1,2) + marks(iteration-1,3)

tmp = ∑num sl-1
k=0 marks(iteration-1,k+6) · fnsh at sol(k,i)

(by definition of the trial functions; confer Algorithm 3)

277

B. Documentation

i) RAE(iteration)

=

√
∑gridpointsDH-1

i=0 (Appr(i) - solution(i))2

gridpointsDH

norm sol

j) TikhFun(iteration)

= TikhFun(iteration) - objective function(ν)
(confer (4.24))

k) if (iteration % ortho it == 0)

i = 1, ..., num dic ele: IP appr d(i) = 0

(confer Remark 7.3.5)
l) iteration = iteration+1

2. while(iteration < iteration number+1

&& RDE(iteration-1) < 2.0

&& RDE(iteration-1) > size res)

(confer Section 4.5)
3. save Appr, marks, RDE, TikhFun, RAE in files

B.2.2. The ROFMP algorithm

This algorithm needs additionally some orthogonalization variables:

• beta stands for β
(N)
n (d) from Theorem 4.4.2 for a dictionary element d

• mu

Counter for the restarts of the iterated ROFMP algorithm. Initially, we have
mu = 0.
• matrixB

Stores the projection coefficients β
(N)
n (di), di ∈ D, n = 0, ..., iteration-1,

N =iteration. Initially, the matrix is zero.
• ind cho, check cho

Recall that the dictionary is ordered as di for i = 0, ..., num dic ele-1. The
list ind cho saves the numbers i of the chosen basis elements. The list
check cho memorizes whether a dictionary element was already chosen in
the current ROFMP step. Both lists contain only zeros entries at the begin-
ning.
• Sik

Store the values a4(d), b4(d) and b5(d) for d ∈ D. They are computed at the
beginning of each iteration step. At initialization all values are set to zero.
• Val d Appr

In the (L)RFMP the approximation can be easily computed in each iteration.
For the (L)ROFMP, this leads to an increase of the runtime as the coefficients
α
(N)
n , n = 1, ..., N, change in every step. Hence, if we want to avoid this,

we evaluate the chosen basis element dN in each iteration N at the grid

278

B.2. Implementing an IPMP algorithm

points in sol, save the values in this matrix and combine the values with
the respective coefficients after the iterations.
• matrixDfresh, matrixDTDfresh

The former is a copy of matrixD and the latter one stores the main diagonal
of matrixDTD after the preprocessing. Both are used in the restart procedure
of the iterated ROFMP algorithm.

Then we consider

rofmp(l, data, norm data, LookUp, num dic ele, sizeLookUp, num sl,

matrixD, matrixDTD, matrixS, regpar, free,

iterated application, iterations, ortho it, size res,

gridpointsDH, solution, norm sol, fnsh at sol, sol).

This algorithm can be implemented as follows.
1. do

a) lambda = regpar · norm data/iteration

(confer Remark 7.3.7)

b) num trials =

iteration, iterated application=1

& iteration < num dic ele

num dic ele, else
(confer Remark 7.3.4)

c) k = 0, ...,num trials-1

i = mu, ..., iteration-2

s(i) = ∑iteration-1
j=mu matrixB(j,k) · matrixS(ind cho(i),ind cho(j))

Sik(0,k) = ∑iteration-1
i=0 marks(i,1) · s(i)

Sik(1,k) = ∑iteration-1
i=mu matrixB(i,k) · s(i)

Sik(2,k) = ∑iteration-1
i=mu matrixB(i,k) · matrixS(k,ind cho(i))

(confer Telschow (2014))
d) i = 0, ..., num trials-1:

if (check cho(i) = 0 && matrixDTD(i,i) > 1e-8)

(confer Section 4.4, Realization in practice)
objective function(i)

= (IP data Tupd(i) + lambda · (Sik(0,i) - IP appr d(i)))2

/ (matrixDTD(i,i) + lambda · (matrixS(i,i) + Sik(1,i)
- 2.0 · Sik(2,i)))
(confer Algorithm 4)

else

objective function(i) = 0

e) ν = max index(objective function)

(confer Galassi et al. (2019))
f) marks(iteration-1,0) = LookUp(ν,0);

marks(iteration-1,1)

279

B. Documentation

= (IP data Tupd(ν) + lambda · (Sik(0,ν) - IP appr d(ν)))
/ (matrixDTD(ν,ν) + lambda · (matrixS(ν,ν) + Sik(1,ν)

- 2.0 · Sik(2,ν)))
(i. e. α, confer Algorithm 4)

i = 1, ..., sizeLookUp:

marks(iteration-1,i+1) = LookUp(ν,i)
if(marks(iteration-1,0) = 2 or 3)

marks(iteration-1,7) = x1/|x|
marks(iteration-1,8) = x2/|x|
marks(iteration-1,9) = x3/|x|

(confer (2.1) and using LookUp(ν,2:3))
g) check cho(ν,1)
h) ind cho(iteration-1,ν)
i) i = 0, ..., l-1

data(i) = data(i) - marks(iteration-1,1) · matrixD(i,ν)
(i. e. RN, confer Algorithm 4)

RDE(iteration) =

√
∑l-1

i=0 data(i)2 / norm data

j) i = mu, ..., iteration-1

marks(i,1)

= marks(i,1) - marks(iteration-1,1) · matrixB(i,ν)

(update to α
(N+1)
n , confer Algorithm 4)

k) i = 0, ..., num dic ele-1:

(for this step, confer Telschow (2014))
IP appr d(i) = ∑iteration-1

j=0 marks(j,1) · matrixS(ind cho(j),i)
(due to (4.29) and (4.35), respectively)

if (check cho(i) = 0)

beta = ∑l-1
j=0 matrixD(j,i) · matrixD(j,ν)

beta = beta / matrixDTD(ν,ν)
(confer Theorem 4.4.2)

j = 0, ..., l-1:

matrixD(j,i) = matrixD(j,i) - beta · matrixD(j,ν)
IP data Tupd(i) = ∑l-1

j=0 data(i) · matrixD(j,i)
matrixDTD(i,i) = ∑l-1

j=0 matrixD(i,i)2

j = mu , ..., iteration-2

matrixB(j,i) = matrixB(j,i) - beta · matrixB(j,ν)
matrixB(iteration-1,i) = beta

matrixD(:,ν) = 0

matrixB(:,ν) = 0

matrixB(iteration-1,ν) = 1

l) i = 0, ..., gridpointsDH-1:

Val d Appr(iteration,i)

280

B.2. Implementing an IPMP algorithm

=

fnsh at sol(idx,i), marks(iteration-1,0) = 1

(3.12), marks(iteration-1,0) = 2

(3.15), marks(iteration-1,0) = 3

tmp, marks(iteration-1,0) = 4
idx = marks(iteration-1,2) · marks(iteration-1,2)

+ marks(iteration-1,2) + marks(iteration-1,3)

tmp = ∑num sl-1
k=0 marks(iteration-1,k+6) · fnsh at sol(k,i)

(by definition of the trial functions; confer Algorithm 3)
m) TikhFun(iteration)

= TikhFun(iteration) - objective function(ν)
(confer (4.33))

n) if (iteration % ortho it == 0)

(for the next steps, confer (Telschow, 2014))
matrixD = matrixDfresh

matrixB(:,:) = 0

i = 0, ..., num dic ele-1

check cho(i) = 0

IP data Tupd(i) = ∑l-1
j=0 data(i) · matrixD(j,i)

matrixDTD(i,i) = matrixDTDfresh(i)
mu = iteration+1

IP appr d(i) = 0

(for the last reset, confer Remark 7.3.5)
o) iteration = iteration+1

2. while(iteration < iteration number+1

&& RDE(iteration-1) < 2.0

&& RDE(iteration-1) > size res)

(confer Section 4.5)
3. j = 0, ...,iteration-1, i = 0, ..., gridpointsDH-1:

Appr(i) = Appr(i) + marks(j,1) · Val d Appr(j,i)
4. RAE

=

√
∑gridpointsDH

i=1 (Appr(i) - solution(i))2

gridpointsDH

norm sol

5. save Appr, marks, RDE, TikhFun, RAE in files
Note that with the ROFMP algorithm, in contrast to the RFMP algorithm, we omit
computing the approximation in every step of the iteration process as the coeffi-
cients α

(N)
n , n = 0, ..., N, are changing in each iteration N. However, to consider

the approximation error along the iterations, the computation of f (N)
N in each it-

eration is necessary. Thus, we abstain from these considerations due to efficiency
reasons.

281

B. Documentation

B.3. Implementing an LIPMP algorithm

Before we run one of the LIPMP algorithms, we declare some variables in addi-
tion to, in particular, the ones from the IPMP algorithms. First, we consider those
used for an efficient preprocessing of the learnt dictionary.

• matrixDlearnt

In the i-th column, the values Tkdi for the i-th chosen dictionary element
di are stored. As this matrix is for the use in an IPMP algorithm, in the se-
quel, we will use matrixDlearnt in order to distinguish between the similar
matrix of the starting dictionary and of the learnt dictionary.
• fnsh at cen cho

Stores the fully normalized spherical harmonics (2.14) evaluated at the cen-
tres of chosen Abel–Poisson low or band pass filters. Initially, the matrix is
zero.
• idx local sol

Assume the starting dictionary is ordered by i = 1, ..., num dic ele. Then
idx local sol stores the number i of chosen dictionary elements from the
starting dictionary. Initially, it is set to zero. Note that this vector is impor-
tant in particular with respect to chosen spherical harmonics.
• size learnt dictionary

Gives the size of the learnt dictionary after the LIPMP algorithm terminated.
Thus, it replaces num dic ele in future runs of an IPMP algorithm with the
learnt dictionary. Initially, it is set to zero.

Further, in an LIPMP algorithm itself, we use the following variables.

• max deg cho

Saves the currently maximal chosen degree of spherical harmonics, i. e. the
learnt degree ν0 (see (7.12)). Initially, we set it to zero.
• max val

Gives the value of the objective function IPMP(·; N) (see (7.103)) in an opti-
mization process.
• x wk, x sl, grad wk, grad sl

The vectors x wk and x sl store the values of the iterates for the optimization
problems. The vectors grad wk and grad sl analogously store the values of
the gradients of the objective function IPMP(·; N) (see (7.103)). The values
x wk and grad wk are related to the Abel–Poisson low and band pass filters.
The values x sl and grad sl are related to the Slepian functions.
• candidate values

List of candidates of the current iteration. In particular, we use the indices s,
g and l originating from Algorithm 5 and denoting whether it is a starting,
global or local solution. Then, with x or z as the vector of characteristics of

282

B.3. Implementing an LIPMP algorithm

the (locally or globally) optimized solution, we save the following:

IPMP
(
dSH

N+1; N
)

IPMP
(

d(s,APK)
N+1 (x); N

)
IPMP

(
d(g,APK)

N+1 (x); N
)

x

IPMP
(

d(s,APW)
N+1 (x); N

)
IPMP

(
d(g,APW)

N+1 (x); N
)

x

IPMP
(

d(s,SL)
N+1 (z); N

)
IPMP

(
d(g,SL)

N+1 (z); N
)

z

IPMP
(

d(l,APK)
N+1 (x); N

)
x

IPMP
(

d(l,APW)
N+1 (x); N

)
x

IPMP
(

d(l,SL)
N+1 (z); N

)
z

• fnsh tmp, fnsh at cen ker cho, fnsh at cen wav cho

Give the values of the fully normalized spherical harmonics (2.14) evaluated
at the centres of chosen Abel–Poisson low (fnsh at cen ker cho) as well as
band (fnsh at cen wav cho) pass filters. The vector fnsh tmp is temporarily
used for both cases. Initially, they are all set to zero.
• TK at eta, TW at eta, Tg at eta, Tg

Gives the image of an Abel–Poisson low (TK at eta) and band (TW at eta)
pass filter as well as a set of Slepian functions (Tg) and Tk. The respective
values of one Slepian function is given in Tg at eta. Initially, they are all
set to zero.
• ev sleps

Gives the set of Slepian Fourier coefficients of the current spherical cap in
the optimization process together with its characteristics. See also the func-
tion sleps(·). Initially, it is set to zero.

Moreover, particularly for the LROFMP algorithm, we need

• beta cur, beta g

The vector beta cur gives the values of the projection coefficient of an op-
timized trial function. The matrix beta g stores the vectors beta cur for a
whole set of Slepian functions. Initially, it is set to zero.
• PWnTd, PWnTg

In the optimization process, it gives the image of the current iterate under
Tk projected onto the orthogonal complement of the previously chosen ba-
sis elements. Initially, it is set to zero.
• Bsaved, Dsaved

To enable an efficient computation of arbitrary projection coefficients in the

283

B. Documentation

optimization process, it is convenient to store certain values along the itera-
tions. In Dsaved, we save the column i of matrixD of the N-th iteration if di is
chosen in this step. Further, Bsaved saves the respective column of matrixB.
• slepian centres cho, slepian centre cur

For a chosen Slepian functions, we store the centre of the localization re-
gion in addition to the Euler angles (see (7.98)) in slepian centres cho.
The centre of the localization region of a current candidate is stored in
slepian centres cur.

B.3.1. Declaring the optimization problems

In our summary of an implementation of an LIPMP algorithm, we will step into
the optimization process by calls of the type nlopt optimize((local)optname,

z, max val) where z stands for x wk and x sl, respectively, as described in John-
son (2019). Note that we use optname as a general handler of the optimization
problems. In particular, we use opt ker (low pass filters), opt wav (band pass
filters) and opt sleps (Slepian functions) for the global optimizations as well as
local opt ker, local opt wav and local opt sleps for the local problems.
Before we consider the workflow of the LIPMP algorithm, we explain our defi-
nition of a optimization problem. Based on Johnson (2019), we declare an opti-
mization problem as
nlopt opt opt name = nlopt create(opt routine,3)

nlopt set lower bounds(opt name,lb)

nlopt set upper bounds(opt name,ub)

nlopt set max objective(opt name, ipmp name, data obj fun z[0])

nlopt add inequality constraint(

opt name, constraint, NULL, feasibility)

nlopt set ftol abs(opt name, abs tol f)

nlopt set xtol abs1(opt name, abs tol x)

nlopt set maxeval(opt name, maxeval)

nlopt set maxtime(opt name, maxtime).

The function nlopt create declares an instance of an optimization problem us-
ing the algorithm specified by opt routine. Next, we set the values of the lower
and upper bounds of the optimization problem. These bounds are given by lb

and ub (see below). Note that most optimization routines need proper values
here even though, in theory, we could do with less boundaries. Then we pass
the objective function ipmp name (i. e. ipmp ker, ipmp wav or ipmp sleps) using
a certain structured object data obj fun z (see below). In particular, by using
nlopt set max objective, we ensure that the algorithm seeks the maximal value.
Hence, we do not have to take care of adjusting the sign of the objective function
by ourselves. In the case of the Abel–Poisson low and band pass filters, we de-
fine the inequality constraint (see below) by nlopt add inequality constraint.
The argument feasibility sets the size of a neighbourhood in which the con-

284

B.3. Implementing an LIPMP algorithm

straint condition is softened or narrowed. That is, if the theoretical constraint is
given by h(x) ≤ 0, then we consider h(x) ≤ feasibility in practice. In the case
of the Slepian functions, the function call nlopt add inequality constraint is
omitted. At last, we set the termination criteria abs tol f, abs tol x, maxeval

and maxtime as described before.

Additional structure We explain lb and ub as well as data obj fun z. The vec-
tors lb and ub store the lower and upper bounds of the optimization problems,
respectively. In particular, for bounds with respect to the Abel–Poisson low and
band pass filters, we have

lb[3] = { -1, -1, -1 } and ub[3] = { 1, 1, 1 }

as this is the smallest cube that contains the unit ball (confer (7.15) to (7.18)). Note
that these values are mathematically irrelevant, but the NLopt library demands
proper bound values for global optimization routines. With respect to the Slepian
functions, we have

lb[4] = { 0, 0, 0, 0 } and
ub[4] = { M PI, 2.0 · M PI, M PI, 2.0 · M PI }

(confer (7.13) and (7.14)). The objective function IPMP(d; N) depends on certain
other values than only the dictionary element d such as the current residual RN.
These arguments are passed to the implemented objective function ipmp name via
a so-called structured object data obj fun z. In particular, for the Abel–Poisson
low and band pass filters, the objects data obj fun k and data obj fun w of the
type add data wk contain

typedef struct{
l, iteration, sobolev eval, max degree m, bandlimit, mu,

num dic ele

lambda, rel orbit, splinesize, alpha

res, sobolevseq, beta cur, PWnTd, Td

marks, eta, matrixDlearnt, Dsaved, Bsaved, matrixS,

fnsh tmp

} add data wk

with Td = TK at eta or Td = TW at eta. Similarly, for the Slepian functions, we
use an object data obj fun sl of the type add data sl defined by

typedef struct{
l, iteration, bandlimit, idx slep, mu, num dic ele

lambda, rel orbit, splinesize, alpha

res, sobolevseq, slepian centre cur

285

B. Documentation

beta, PWnTd, Tg, evsleps, marks, fnsh at data,

fnsh at cen ker cho, fnsh at cen wav cho, matrixDlearnt,

Dsaved, Bsaved, matrixS, slepian centres cho,

wignercoeffs a, wignercoeffs b, wignercoeffs c, wignercoeffs d

} add data sl.

Note that with the assignment

data obj fun xx-><struct argument> = <variable>, (B.3)

each object is updated in order to contain the current values in each iteration of
an LIPMP algorithm.

The objective functions We introduce the implementation of the objective func-
tion ipmp name, that is the functions rfmp name and rofmp name, respectively. We
do this simultaneously, but highlight the additional computation necessary for
rofmp name.

For the filters For the Abel–Poisson low and band pass filters, the objective
functions are built as follows.

1. read data from data obj fun z

2. if rofmp name:

compute spline as the product given in (7.100)
execute the following computations 3. to 10. only if spline 6= 0

3. compute b2 via (3.23) and (3.26), respectively,
using sobolev seq

4. i = 0, ..., l-1:

compute x eta = x · eta(i,:)
Td at eta via (7.41) and (7.42), respectively,

using rel orbit and eta

DTd at eta via (7.44) and (7.46), respectively,
using rel orbit and eta

if rofmp name:

beta cur via Theorem 4.4.3, respectively,
using Td at eta, Dsaved and Bsaved

Dbeta cur via (7.39) and (7.40), respectively,
using DTd at eta, Dsaved and Bsaved

PWnTd via (7.37)
using Td at eta, beta cur and matrixD

DPWnTd via (7.38)
using DTd at eta, Dbeta cur and matrixD

286

B.3. Implementing an LIPMP algorithm

5. if rfmp name:

compute a1 via (7.47) or (7.55)
using Td at eta and data

b1 via (7.51) or (7.59)
using Td at eta

if rofmp name:

compute a3 via (7.49) or (7.57)
using PWnTd and data

b3 via (7.53) or (7.61)
using PWnTd

6. compute fnsh tmp as the evaluation of (2.14) at the current iterate
using fnsh(·)

7. if rofmp name

compute a4, b5 via (7.73)
using marks, beta cur and matrixS

8. i = mu, ..., iteration-1:

compute a2 via (7.74) and (7.75), respectively,
using marks, sobolev seq, fnsh tmp

and the Clenshaw algorithm
if rofmp name:

b4 via (7.74) and (7.75), respectively,
using beta cur, marks, sobolev seq, fnsh tmp

and the Clenshaw algorithm
9. set in data obj fun z:

value (= max val) via (7.7) and (7.9), respectively,
alpha as in Algorithm 3 and Algorithm 4,
Td, fnsh tmp

if rofmp name: beta cur, PWnTd

10. if grad:

execute aLfDerivPlus(·) implements Algorithm 15
using Algorithm 14

fnshQUOT(·) implements (2.14) but with the Algorithm 14
instead of e. g. Algorithm 9

j = 1, 2, 3
compute gradb2 via (7.96) and (7.97), respectively,

using sobolev seq

if rfmp name:

grada1 via (7.48) or (7.56)
using DTd at eta and data

gradb1 via (7.52) or (7.60)
using DTd at eta

287

B. Documentation

if rofmp name:

grada3 via (7.50) or (7.58)
using DPWnTd and data

gradb3 via(7.54) or (7.62)
using DPWnTd

grada4, gradb5 via (7.78)
using marks, beta cur, Dbeta cur

and matrixS

nabla x SH via (7.82)
using fnsh tmp and the results from
aLfDerivPlus(·) and fnshQUOT(·)

nabla x Pn via (7.89)
using sobolev eval and marks

as well as implementations of (A.1) and (A.2)
grada2 via (7.92) and (7.93), respectively,

using marks, sobolev seq,

nabla h SH and nabla h Pn

if rofmp name:

gradb4 via (7.92) and (7.93), respectively,
using beta cur, Dbeta cur, matrixS, marks,

sobolev seq, nabla h SH and nabla h Pn

splinegrad via (7.102)
set grad[j] via (7.20) as well as (7.21) and (7.101), respectively

For the Slepian functions Similarly, we have for the function ipmp sl

1. read data from data obj fun sl

2. compute slepsgrad(·) implements a similar routine as sleps
but additionally with Theorem 3.1.13, (7.33), (7.34), (7.35), (7.36)

and the rotation of the gradient vectors via (7.25), (7.26), (7.27),(7.28),
(7.29), (7.30), (7.31);

it stores the coefficients in evsleps

and the gradients in dz evsleps for dz = dc, da, db, dg

3. if rofmp sl:

compute spline as the product given in (7.100) and splinegrad via
(7.102)

execute the following computations only if spline 6= 0
4. m = 0, ..., bandlimit, k = −m, ..., m

a) compute b2 via (3.28)
using sobolev seq and evsleps

gradb2 via (7.95)
using sobolev seq and dz evsleps

288

B.3. Implementing an LIPMP algorithm

b) if rfmp sl:

compute a2 via (7.76)
using marks, sobolev seq, evsleps,

fnsh at cen ker and fnsh at cen wav

grada2 via (7.94)
using marks, sobolev seq, dz evsleps,

fnsh at cen ker and fnsh at cen wav

c) i = 0, ..., l-1:

compute Tg(:,m2 + m + k) via (3.18)
using evsleps, rel orbit and fnsh at data

DTg(:,m2 + m + k) via (7.22)
using dz evsleps, rel orbit and fnsh at data

if rofmp sl:

compute beta cur via Theorem 4.4.3, respectively,
using Tg, Dsaved and Bsaved

Dbeta cur via (7.39) and (7.40), respectively,
using DTg, Dsaved and Bsaved

PWnTd via (7.37)
using Tg, beta cur and matrixD

DPWnTd via (7.38)
using DTg, Dbeta cur and matrixD

d) if rfmp sl:

compute a1 via (7.63)
using Tg and data

b1 via (7.67)
using Tg

grada1 via (7.64)
using DTg and data

gradb1 via (7.68)
using DTg

if rofmp sl:

compute a3 via (7.65)
using PWnTd and data

b3 via(7.69)
using PWnTd

a4, b5 via (7.73)
using marks, beta cur and matrixS

a2, b4, via (7.76)
using marks, beta cur sobolev seq, evsleps,

fnsh at cen ker and fnsh at cen wav

grada3 via (7.66)
using DPWnTd and data

289

B. Documentation

gradb3 via (7.70)
using DPWnTd

grada4, gradb5 via (7.78)
using marks, beta cur, Dbeta cur and matrixS

grada2, gradb4 via (7.94)
using marks, sobolev seq, evsleps, dz evsleps,

fnsh at cen ker and fnsh at cen wav

e) set objective value sleps(m2 + m + k)
via (7.7) and (7.9), respectively,

alpha sleps(m2 + m + k) as α in Algorithm 3 and Algorithm 4,
gradgk(m2 + m + k,:)

via (7.20) as well as (7.21) and (7.101), respectively
5. idx=max index(objective value sleps)

(confer (Galassi et al., 2019))
6. set in data obj fun sl:

value = objective value sleps(idx),

alpha = alpha sleps(idx),

Tg, evsleps

if rofmp sl: beta cur, PWnTd, slepian centre cur

Note that, in 4., we compute the value of the objective function ipmp sl for all
Slepian functions of the current localization cap. These values are stored in the
vector objective value sleps. In 5., we determine the particular function which
produces the maximal value in objective value sleps.

The constraint In the case of the Abel–Poisson low and band pass filters, we
need to implement the inequality constraint x ∈ B̊, see (7.15) to (7.18). This is
straightforward done by

constraint(n, x, grad, data){
if(grad){

grad[0] = 2.0 · x[0]
grad[1] = 2.0 · x[1]
grad[2] = 2.0 · x[2]

} return (x[0] · x[0] + x[1] · x[1] + x[2] · x[2] - 1.0)

}

Note that we adhere to the definition of a constraint as given in Johnson (2019):
in the NLopt library, an inequality constraint h(x) is implemented such that it
holds h(x) ≤ 0. The function depends on the dimension of the optimization
problem n. In our case, we have n = 3. Furthermore, the general definition
enables the use of a structured object for additional input (as we used it with the
objective functions). In our case, this is not necessary and we pass a NULL pointer

290

B.3. Implementing an LIPMP algorithm

to it when calling nlopt add inequality constraint. Obviously, we need the
current point x ∈ B̊ and a memory for the gradient values grad. If the gradient
values are needed in the chosen optimization routine, we set them accordingly to
∇‖x‖2

R3 = (2x1, 2x2, 2x3)
T. At last, we return the value ‖x‖2

R3 − 1.

B.3.2. The iterations of the LIPMP algorithms

We explain the structure of the functions

lipmp(sobolevseq, sobolev eval, l, data, norm data, LookUp,

num dic ele, sizeLookUp, num sh, max degree m,

num scales ker, num cen ker, num scales wav, num cen wav,

full num sl, matrixD, matrixDTD, matrixS, regpar,

iterations, size res, ortho it, smoothing,

smooth sh, smooth shsl, do sh, do apk, do apw, do sl,

gridpointsDH, sol, solution, norm sol, fnsh at sol,

opt routine, local opt routine, opt routine sleps,

local opt routine sleps, feasibility, abs tol f, abs tol x,

maxeval, maxtime, rel orbit, eta, bandlimit, num sl,

fnsh at data, wignercoeffs a, wignercoeffs b,

wignercoeffs c, wignercoeffs d, xi, zeta, fnsh at cen ker,

fnsh at cen wav, marks, matrixDlearnt,

size learnt dictionary, fnsh at cen cho, idx local sol)

We introduce the structure for both algorithms simultaneously and mark those
parts that are only needed in the LROFMP algorithm. Note that we abstain from
describing the smoothing mechanism (Remark 7.3.8) in detail (see 1b). This is
done in order to avoid repetition. If smoothing = 1, then we choose only from
spherical harmonics and / or Slepian functions in the first iterations. Hence, in
this case, the remaining steps of 1. are executed but only with respect to the fewer
trial function classes. The interested reader will be able to transfer the steps.
1. do

a) lambda = lambda0/iteration

(confer Remark 7.3.7)
b) if (smoothing) ... else

(confer Remark 7.3.8)
c) if LROFMP

compute Sik as explained in the ROFMP algorithm
(Appendix B.2.2, step 1c)

d) for xxx ∈ { SH, SL, APK, APW }
if LRFMP

291

B. Documentation

compute step 1c of the RFMP algorithm (Appendix B.2.1)
and save the values of the trial function class xxx
in objective function xxx

if LROFMP

compute step 1d of the ROFMP algorithm (Appendix B.2.2)
and save the values of the trial function class xxx
in objective function xxx

νxxx = max index(objective function xxx)

(confer Galassi et al. (2019))
candidate values(LookUp(νxxx,0)-1,0)

= objective function xxx(νxxx)
e) for i = 2,3,4

switch(i)
case 2:

set data obj fun k via (B.3)
x wk via (2.1)

using LookUp(νAPK,2:3)

compute
check opt = nlopt optimize(optker, x wk, max val)

tmp = ∑2
i=0 x wk(i)2

if (check opt > 0 && tmp < 1)

candidate values(1,1) = max val

candidate values(1,2:4) = x wk

else

candidate values(1,1:4) = 0

compute
check opt

= nlopt optimize(local optker, x wk, max val)

tmp = ∑2
i=0 x wk(i)2

if (check opt > 0 && tmp < 1)

candidate values(4,1) = max val

candidate values(4,2:4) = x wk

else

candidate values(4,1:4) = 0

case 3:

Same as case 2, but with (i.o. = instead of)
data obj fun w i.o. data obj fun k

LookUp(νAPW,2:3) i.o. LookUp(νAPK,2:3)

(local)optwav i.o. (local)optker

candidate values(2,:) i.o. candidate values(1,:)

candidate values(5,:) i.o. candidate values(4,:)

292

B.3. Implementing an LIPMP algorithm

case 4:

set data obj fun sl via (B.3)
x sl via LookUp(νSL,1:4)

compute
check opt

= nlopt optimize(optsleps, x sl, max val)

if (check opt > 0 && x sl feasible)
candidate values(3,1) = max val

candidate values(3,2:5) = x sl

else

candidate values(3,1:5) = 0

compute
check opt

= nlopt optimize(local optsleps, x sl, max val)

if (check opt > 0 && x sl feasible)
candidate values(6,1) = max val

candidate values(6,2:5) = x sl

else

candidate values(6,1:5) = 0

f) (imax, jmax) = max index(candidate values)

g) if (jmax = 0)

processing a chosen candidate, case 1, Appendix B.3.3
else

idx local sol(iteration-1,-1)

if (imax = 1 | | imax == 4)

processing a chosen candidate, case 2, Appendix B.3.3
if (imax = 2 | | imax == 5)

processing a chosen candidate, case 2, Appendix B.3.3
if (imax = 3 | | imax == 6)

processing a chosen candidate, case 3, Appendix B.3.3

h) if LRFMP

possibly compute step 1k of the RFMP algorithm (see Appendix B.2.1)
and additionally set

mu = iteration+1

if LROFMP

compute step 1n of the ROFMP algorithm (see Appendix B.2.2) and
possibly additionally set

Bsaved(:,:) = 0

Dsaved(:,:) = 0

i) iteration = iteration+1

293

B. Documentation

2. while(iteration < iteration number+1

&& RDE(iteration-1) < 2.0

&& RDE(iteration-1) > size res)

3. if LROFMP

j = 0, ..., iteration-1

i = 0, ..., gridpointsDH-1:

Appr(i) = Appr(i) + marks(j-1,1) · Val d Appr(j-1,i)

RAE =

√
∑gridpointsDH-1

i=0 (Appr(i) - solution(i))2

gridpointsDH

norm sol

4. size learnt dictionary = iteration-1

5. save Appr, marks, RDE, TikhFun, RAE in files

B.3.3. Processing a chosen candidate

There are 3 necessary and different routines for processing a chosen candidate.
They are distinguished in: a candidate from the starting dictionary (in particular,
a spherical harmonic) is chosen, an optimized Abel–Poisson low or band pass
filter is chosen or an optimized Slepian function is chosen. In general, the pro-
cessing of a chosen candidate is similar as it was described in Telschow (2014).
However, note that, if we choose an optimized trial function d, certain H2(Ω)-
inner products need to be computed from scratch, e. g. for the updated term
〈 fN, d〉H2(Ω). Further, we additionally include aspects that process the learnt dic-
tionary for future runs of an IPMP algorithm.
Note that, in the sequel, if we compare steps to the RFMP or the ROFMP algo-
rithm, we refer to Appendix B.2.1 or Appendix B.2.2, respectively.

Choose a starting solution The steps are very similar to the RFMP and ROFMP
algorithm.
1. set ν = νxxx

marks(iteration-1,:)

as in 1e of the RFMP algorithm
or 1f of the ROFMP algorithm

2. if (marks(iteration-1, 0) = 2 or 3):

set the column iteration-1 of
fnsh at cen ker cho and fnsh at cen cho

using fnsh at cen ker(:,marks(iteration-1,5))

or fnsh at cen wav cho and fnsh at cen cho

using fnsh at cen wav(:,marks(iteration-1,5))

3. idx local sol(iteration-1) = ν

294

B.3. Implementing an LIPMP algorithm

4. if (marks(iteration-1, 0) = 1)

max deg cho = marks(iteration-1, 2)

5. if LRFMP:

a) store the ν-th column of matrixD of the chosen dictionary element in
the column iteration-1 of matrixDlearnt

b) compute 1f of the RFMP algorithm
c) compute 1g to 1j of the RFMP algorithm

if LROFMP:

a) if (marks(iteration-1, 0) = 4):

compute slepian centres cho(iteration-1,:)

b) compute 1i of the ROFMP algorithm
c) store the ν-th column of

matrixDfresh in the column iteration-1 of matrixDlearnt
matrixD in the column iteration-1 of Dsaved

d) update coefficients of the approximation as in 1j of the ROFMP algo-
rithm

e) update QIV:
i = 0, ..., iteration-1:

matrixS(num dic ele+i,num dic ele+iteration-1)

=

matrixS(idx local sol(i),ν), idx local sol(i) >= 0,

i < iteration-1

matrixS(ν,num dic ele+i)), idx local sol(i) < 0,

i < iteration-1

matrixS(ν,ν), i = iteration-1

and similarly below the main diagonal
f) compute 1k to 1m of the ROFMP algorithm

Choose an optimized filter In the second case, we execute the following steps.
1. set x wk = candidate values(imax,2:4)

and run ipmp name(3, x wk, grad wk, data obj fun z) to ensure that all
values in data obj fun z are related to the chosen candidate

2. read from data obj fun z: Td at eta, fnsh tmp, alpha

if LROFMP: also read beta cur, PWnTd

3. set the column iteration-1 of
fnsh at cen ker cho and fnsh at cen cho using fnsh tmp

or fnsh at cen wav cho and fnsh at cen cho using fnsh tmp

4. set marks(iteration-1,:) as in 1e of the RFMP algorithm
or 1f of the ROFMP algorithm

5. if LRFMP:

a) store Td at eta in the column iteration-1 of matrixDlearnt
b) compute 1f of the RFMP algorithm
c) update IP data Tupd as in 1g of the RFMP algorithm

295

B. Documentation

but using Td at eta and matrixD instead of matrixDTD
d) compute 〈dN+1, di〉H2(Ω) for all dictionary elements di ∈ Ds

analogously to computeS(·)
and update IP appr d and matrixS (i. e. QII and QIII)

e) compute 1h to 1j of the RFMP algorithm
if LROFMP:

a) store
Td at eta in the column iteration-1 of matrixDlearnt
PWnTd in the column iteration-1 of Dsaved
beta cur in the column iteration-1 and rows mu to iteration-1

of Bsaved
b) compute 1i of the ROFMP algorithm
c) update coefficients of the approximation as in 1j of the ROFMP algo-

rithm
d) compute 〈dN+1, di〉H2(Ω) analogously to computeS(·)

i. for all dictionary elements di ∈ Ds and update IP appr d, QII, QIII
and QIV of matrixS

ii. and for all previously chosen basis elements di ∈ DInf and update
QIV of matrixS

e) compute 1k to 1m of the ROFMP algorithm

Choose an optimized Slepian function At last, a Slepian function is processed
in the following way.
1. set x sl = candidate values(imax,2:5)

and run ipmp sleps(3, x sl, grad sl, data obj fun sl) to ensure that
all values in data obj fun sl are related to the chosen candidate

2. read from data obj fun sl: idx, Tg, evsleps, alpha

if LROFMP: beta g, PWnTg, slepian centre cur

3. choose beta cur from beta, Tg from Tg at eta and PWnTd from PWnTg

4. set marks(iteration-1,:) as in 1e of the RFMP algorithm
or 1f of the ROFMP algorithm

5. if LRFMP:
a) store Tg in the column iteration-1 of matrixDlearnt
b) compute 1f of the RFMP algorithm
c) update IP data Tupd as in 1g of the RFMP algorithm

but using Tg and matrixD instead of matrixDTD
d) compute 〈dN+1, di〉H2(Ω) for all dictionary elements di ∈ Ds

analogously to computeS(·)
and update IP appr d and matrixS (i. e. QII and QIII)

e) compute 1h to 1j of the RFMP algorithm
if LROFMP:

a) store

296

B.3. Implementing an LIPMP algorithm

Tg in the column iteration-1 of matrixDlearnt
PWnTd in the column iteration-1 of Dsaved
beta cur in the column iteration-1 and rows mu to iteration-1

of Bsaved
b) compute 1i of the ROFMP algorithm

c) update coefficients of the approximation as in 1j of the ROFMP algo-
rithm

d) compute 〈dN+1, di〉H2(Ω) analogously to computeS(·)
i. for all dictionary elements di ∈ Ds and update IP appr d, QII, QIII

and QIV of matrixS
ii. and for all previously chosen basis elements di ∈ DInf and update

QIV of matrixS
e) compute 1k to 1m of the ROFMP algorithm

B.3.4. Preprocessing of the learnt dictionary

Recall that the main aspects of the preprocessing introduced in Appendix B.1 and
Telschow (2014) are to compute the matrices LookUp, matrixD, matrixDTD and
matrixS. However, we constructed the LIPMP algorithms such the we obtain the
respective matrixD (= matrixDlearnt) of the learnt dictionary on the fly.

• LookUp

The matrix LookUp contains the elements of the matrix marks except for the
coefficients αi, i = 1, ..., iteration. That means, we copy LookUp(:,1) =

marks(:,1) and LookUp(:,2:end) = marks(:,3:end).
• matrixDTD

With matrixD, we again obtain matrixDTD via matrixDT · matrixD.
• matrixSlearnt

The computation of matrixSlearnt, i. e. matrixS with respect to the learnt
dictionary, depends on whether we run the LRFMP or the LROFMP. In the
former case, we use the function computeSlearnt (see below). In the latter
case, we can copy the respective elements from the respective matrixS (see
QIV) which we update during the LROFMP (see Appendix B.3.3).

At last, we explain the function

computeSlearnt(matrixS, idx local sol, sobolevseq,

sobolev eval, size learnt dictionary, marks,

matrixSlearnt, fnsh at cen cho, num dic ele,

bandlimit)

for matrixS as used and modified in the LRFMP algorithm. The computations in
computeSlearnt depend on the value of idx local sol(i) and idx local sol(j)

297

B. Documentation

of the ith and jth learnt dictionary element. In the case that at least one of them
is non-negative, i. e. either di or dj are chosen from the starting dictionary, we
read the value of 〈di, dj〉H2(Ω) from the updated matrixS. If both are negative, i. e.
both di and dj are optimized basis elements, we compute the inner product anal-
ogously to computeS but using marks(:,0) instead of LookUp(:,0) to distinguish
the different cases.
We summarize this appendix in Figure B.1 and Figure B.2. The former one sum-
marizes major functions. We start in the red box with the declaration of param-
eters in the file exec.c. Then we step into the function matchingpursuit which
contains the preprocessing (boxes precomputation(·) to computeS(·)) as well as
calls to the various (L)IPMP algorithms and the preprocessing of the learnt dic-
tionary (boxes “compute LookUp from marks” to computeSlearnt(·)) such that a
direct use in an IPMP algorithm is enabled. Note that, technically, we could also
end the process after any step between “lrfmp(·) or lrofmp(·)” and “rfmp(·) or
rofmp(·)” if we are less interested in the preprocessing of the learnt dictionary.
The workflow of an LIPMP algorithm is summarized in more detail in Figure B.2
where the structure of the optimization processes are highlighted in light blue.

initializeLookUp(·) precomputation(·) matchingpursuit(·)

computedata(·) exec.c

computeD(·) computeS(·)

rfmp(·) or rofmp(·) either one lrfmp(·) or lrofmp(·)

computeSlearnt(·) compute matrixDTD
from matrixDlearnt

compute LookUp
from marks

Figure B.1.: Schematic representation of an implementation of the preprocessing
and the (L)IPMP algorithms.

298

B.3. Implementing an LIPMP algorithm

lrfmp(·) or lrofmp(·)

compute
starting choices

structures

termination?

compute global
and local choices
via optimization

objective functions
and gradients

process a
chosen candidate constraints

no

Figure B.2.: Schematic representation of an implementation of an LIPMP algo-
rithm.

299

Bibliography

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York,
10th edition.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for de-
signing overcomplete dictionaries for sparse representation. IEEE Transactions
on Signal Processing, 54(11):4311–4322.

Akram, M. and Michel, V. (2010). Regularisation of the Helmholtz decomposition
and its application to geomagnetic field modelling. GEM – International Journal
on Geomathematics, 1(1):101–120.

Albertella, A., Sansó, F., and Sneeuw, N. (1999). Band-limited functions on a
bounded spherical domain: the Slepian problem on the sphere. Journal of
Geodesy, 73(9):436–447.

Antoni, M. (2012). Nichtlineare Optimierung regionaler Gravitationsfeldmodelle
aus SST-Daten. PhD thesis, University of Stuttgart. https://d-nb.info/

1020832185/34, last accessed 3 March 2020.

Barnes, D., Factor, J. K., Holmes, S. A., Ingalls, S., Presicci, M. R., Beale, J., and
Fecher, T. (2015). Earth Gravitational Model 2020. AGU Fall Meeting Abstracts,
pages G34A–03. Provided by the SAO/NASA Astrophysics Data System.

Barthelmes, F. (1986). Untersuchungen zur Approximation des äußeren
Schwerefeldes der Erde durch Punktmassen mit optimierten Positionen.
Veröffentlichung des Zentralinstituts der Physik der Erde Nr. 92, Potsdam.

Barthelmes, F. (1989). Local gravity field approximation by point masses with op-
timized positions. Gravity field variations, Veröffentlichungen des Zentralinstituts
der Physik der Erde, (102):157–167.

Barthelmes, F. (2014). Global models. In Grafarend, E., editor, Ency-
clopedia of Geodesy, pages 1–9. Springer, Cham. Revised version http:

//icgem.gfz-potsdam.de/GlobalModelsEncyclopedia.pdf, last accessed 31
March 2020.

Barthelmes, F., Dietrich, R., and Lehmann, R. (1991). Representation of the global
gravity field by point masses on optimized positions based on recent spherical

301

https://d-nb.info/1020832185/34
https://d-nb.info/1020832185/34
http://icgem.gfz-potsdam.de/GlobalModelsEncyclopedia.pdf
http://icgem.gfz-potsdam.de/GlobalModelsEncyclopedia.pdf

Bibliography

harmonics expansions. Poster presented at the XX. General Assembly of the
International Union of Geodesy and Geophysics, Vienna.

Bauer, F., Gutting, M., and Lukas, M. A. (2015). Evaluation of parameter choice
methods for the regularization of ill-posed problems in geomathematics. In
Freeden, W., Nashed, M. Z., and Sonar, T., editors, Handbook of Geomathematics,
pages 1713–1774. Springer, Berlin, Heidelberg, 2nd edition.

Bauer, F. and Lukas, M. A. (2011). Comparing parameter choice methods for
regularization of ill-posed problems. Mathematics and Computers in Simulation,
81(9):1795–1841.

Baur, O. (2014). Gravity field of planetary bodies. In Grafarend, E., editor, En-
cyclopedia of Geodesy, pages 1–6. Springer International Publishing Switzerland
AG, Cham.

Berkel, P., Fischer, D., and Michel, V. (2011). Spline multiresolution and numerical
results for joint gravitation and normal mode inversion with an outlook on
sparse regularisation. GEM – International Journal on Geomathematics, 1(2):167–
204.

Bettadpur, S. (2012). GRACE 327-742, UTCSR Level-2 Processing Standards Doc-
ument (Revd 4.0 May 29, 2012) (For Level-2 Product Release 0005). Technical
report, Center for Space Research, The University of Texas, Austin.

Blackett, M. (2014). Early analysis of Landsat-8 thermal infrared sensor imagery
of volcanic activity. Remote Sensing, 6(3):2282–2295.

Bröcker, T. and tom Dieck, T. (1985). Representations of Compact Lie Groups. Gradu-
ate Texts in Mathematics vol. 98. Springer, Berlin.

Bruckstein, A. M., Donoho, D. L., and Elad, M. (2009). From sparse solutions of
systems of equations to sparse modeling of signals and images. SIAM Review,
51(1):34–81.

Casagli, N., Catani, F., Del Ventisette, C., and Luzi, G. (2010). Monitoring, predic-
tion, and early warning using ground-based radar interferometry. Landslides,
7(3):291–301.

Chambolle, A. and Lions, P.-L. (1997). Image recovery via total variation mini-
mization and related problems. Numerische Mathematik, 76(2):167–188.

Choi, C. H., Ivanic, J., Gordon, M. S., and Ruedenberg, K. (1999). Rapid and sta-
ble determination of rotation matrices between spherical harmonics by direct
recursion. Journal of Chemical Physics, 111(19):8825–8831.

302

Bibliography

Claessens, S. J., Featherstone, W. E., and Barthelmes, F. (2001). Experiences with
point-mass gravity field modelling in the Perth region, Western Australia. Ge-
omatics Research Australasia, 75:53–86.

Cucker, F. and Smale, S. (2002). On the mathematical foundations of learning.
Bulletin of the American Mathematical Society, 39(1):1–49.

Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., and Neu-
mayer, K.-H. (2013). GFZ GRACE Level-2 Processing Standards Document for
Level-2 Product Release 0005. Technical report, GFZ German Research Centre
for Geosciences, Potsdam. Revised edition.

Dahlen, F. and Tromp, J. (1998). Theoretical Global Seismology. Princeton University
Press, Princeton.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint. Communications
on Pure and Applied Mathematics, 57(11):1413–1457.

Davis, J. L., Tamisiea, M. E., Elósegui, P., Mitrovica, J. X., and Hill, E. M. (2008).
A statistical filtering approach for Gravity Recovery and Climate Experiment
(GRACE) gravity data. Journal of Geophysical Research, Solid Earth, 113(B4).

De Mol, C., De Vito, E., and Rosasco, L. (2009). Elastic-net regularization in learn-
ing theory. Journal of Complexity, 25(2):201–230.

Defrise, M., Vanhove, C., and Liu, X. (2011). An algorithm for total variation reg-
ularization in high-dimensional linear problems. Inverse Problems, 27(6):065002
(16pp).

Demtröder, W. (2006). Experimentalphysik 1 – Mechanik und Wärme. Springer
Berlin, 3rd edition.

Deuflhard, P. (1976). On algorithms for the summation of certain special func-
tions. Computing, 17(1):37–48.

Devaraju, B. and Sneeuw, N. (2017). The polar form of the spherical har-
monic spectrum: implications for filtering GRACE data. Journal of Geodesy,
91(12):1475–1489.

DiMatteo, I., Genovese, C. R., and Kass, R. E. (2001). Bayesian curve-fitting with
free-knot splines. Biometrika, 88(4):1055–1071.

Driscoll, J. R. and Healy, D. M. (1994). Computing Fourier transforms and con-
volutions on the 2-sphere. Advances in Applied Mathematics, 15(2):202–250.

Edmonds, A. R. (1996). Angular Momentum in Quantum Mechanics. Princeton
University Press, Princeton, 4th edition.

303

Bibliography

Eicker, A., Schall, J., and Kusche, J. (2014). Regional gravity modelling from
spaceborne data: case studies with GOCE. Geophysical Journal International,
196(3):1431–1440.

Engan, K., Aase, S. O., and Husøy, J. H. (1999a). Method of optimal directions
for frame design. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), number 5, pages 2443–2446.

Engan, K., Rao, B. D., and Kreutz-Delgado, K. (1999b). Frame design using FO-
CUSS with method of optimal directions (MOD). In Proceedings of the Norwegian
Signal Processing Symposium, 65–69.

Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of Inverse Prob-
lems. Mathematics and Its Applications. Kluwer Academic Publishers, Dor-
drecht.

Fengler, M. J. (2005). Vector Spherical Harmonic and Vector Wavelet Based Non-
Linear Galerkin Schemes for Solving the Incompressible Navier-Stokes Equation on
the Sphere. PhD thesis, University of Kaiserslautern, Geomathematics Group,
Shaker-Verlag, Aachen.

Fengler, M. J., Freeden, W., Kohlhaas, A., Michel, V., and Peters, T. (2007). Wavelet
modeling of regional and temporal variations of the Earth’s gravitational po-
tential observed by GRACE. Journal of Geodesy, 81(1):5–15.

Fischer, D. (2011). Sparse Regularization of a Joint Inversion of Gravitational Data
and Normal Mode Anomalies. PhD thesis, University of Siegen, Geomathemat-
ics Group, Verlag Dr. Hut, Munich. http://dokumentix.ub.uni-siegen.de/

opus/volltexte/2012/544/index.html, last accessed 4 March 2020.

Fischer, D. and Michel, V. (2012). Sparse regularization of inverse gravimetry –
case study: spatial and temporal mass variations in South America. Inverse
Problems, 28(6):065012 (34 pp.).

Fischer, D. and Michel, V. (2013a). Automatic best-basis selection for geophysical
tomographic inverse problems. Geophysical Journal International, 193(3):1291–
1299.

Fischer, D. and Michel, V. (2013b). Inverting GRACE gravity data for local climate
effects. Journal of Geodetic Science, 3(3):151–162.

Fischer, G. (2010). Lineare Algebra. Vieweg+Teubner, Wiesbaden, 17th edition.

Flechtner, F., Morton, P., Watkins, M., and Webb, F. (2014a). Status of the GRACE
follow-on mission. In Marti, U., editor, Gravity, Geoid and Height Systems. Inter-
national Association of Geodesy Symposia, volume 141, pages 117–121. Springer,
Cham.

304

http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/index.html
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/index.html

Bibliography

Flechtner, F., Sneeuw, N., and Schuh, W.-D., editors (2014b). Observation of the
System Earth from Space – CHAMP, GRACE, GOCE and future missions. Springer,
Berlin.

Fletcher, R. (1987). Practical Methods of Optimization. 2nd edition. Wiley, Chichester.

Freeden, W. and Gerhards, C. (2013). Geomathematically Oriented Potential Theory.
Taylor & Francis Group, Boca Raton.

Freeden, W., Gervens, T., and Schreiner, M. (1998). Constructive Approximation
on the Sphere – with Applications to Geomathematics. Oxford University Press,
Oxford.

Freeden, W. and Gutting, M. (2013). Special Functions of Mathematical (Geo-)Physics.
Springer, Basel.

Freeden, W. and Michel, V. (2004a). Multiscale Potential Theory with Applications to
Geoscience. Birkhäuser, Boston.

Freeden, W. and Michel, V. (2004b). Orthogonal zonal, tesseral and sectorial
wavelets on the sphere for the analysis of satellite data. Advances in Compu-
tational Mathematics, 21(1–2):181–217.

Freeden, W., Michel, V., and Nutz, H. (2002). Satellite-to-satellite tracking and
satellite gravity gradiometry (advanced techniques for high-resolution geopo-
tential field determination). Journal of Engineering Mathematics, 43(1):19–56.

Freeden, W. and Schneider, F. (1998). Wavelet approximations on closed surfaces
and their application to boundary-value problems of potential theory. Mathe-
matical Methods in the Applied Sciences, 21(2):129–163.

Freeden, W. and Schreiner, M. (1998). Orthogonal and non-orthogonal multireso-
lution analysis, scale discrete and exact fully discrete wavelet transform on the
sphere. Constructive Approximation, 14(4):493–515.

Freeden, W. and Schreiner, M. (2009). Spherical Functions of Mathematical Geo-
sciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin.

Freeden, W. and Windheuser, U. (1996). Spherical wavelet transform and its dis-
cretization. Advances in Computational Mathematics, 5(1):51–94.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of
the American Statistical Association, 76(376):817–823.

Friis-Christensen, E., Lühr, H., and Hulot, G. (2006). Swarm: A constellation to
study the Earth’s magnetic field. Earth, Planets and Space, 58(4):351–358.

305

Bibliography

Fukushima, T. (2012). Numerical computation of spherical harmonics of arbitrary
degree and order by extending exponent of floating point numbers. Journal of
Geodesy, 86(4):271–285.

Galassi, M., Davies, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.,
and Ulerich, R. (2019). GNU Scientific Library Reference Manual (3rd Ed.). https:
//www.gnu.org/software/gsl/, last accessed 3 March 2020.

Garey, M. R. and Johnson, D. S. (2009). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York.

Geiger, C. and Kanzow, C. (2002). Theorie und Numerik restringierter Opti-
mierungsaufgaben. Springer, Berlin.

GFZ Potsdam (2000). Grace payload. http://op.gfz-potsdam.de/grace/

payload/payload.html, last accessed 2 April 2020.

Ghahramani, Z. (2004). Unsupervised learning. In Bousquet, O., von Luxburg, U.,
and Rätsch, G., editors, Advanced Lectures on Machine Learning. Springer, Berlin.

Glabonsky, J. (1998). An implementation of the DIRECT algorithm. Technical
Report CRSC-TR98-29, North Carolina State University, Center for Research in Sci-
entific Computation, pages 1–28.

Glabonsky, J. M. and Kelley, C. T. (2001). A locally-biased form of the DIRECT
algorithm. Journal of Global Optimization, 21(1):27–37.

Grafarend, E. W. and Kühnel, W. (2011). A minimal atlas for the rotation group
SO(3). GEM - International Journal on Geomathematics, 2(1):113–122.

Grünbaum, F. A., Longhi, L., and Perlstadt, M. (1982). Differential operators
commuting with finite convolution integral operators: some non-Abelian ex-
amples. SIAM Journal on Numerical Analysis, 42(5):941–955.

Gutting, M. (2007). Fast Multipole Methods for Oblique Derivative Problems. PhD
thesis, University of Kaiserslautern, Geomathematics Group, Shaker Verlag,
Aachen.

Gutting, M., Kretz, B., Michel, V., and Telschow, R. (2017). Study on parameter
choice methods for the RFMP with respect to downward continuation. Frontiers
in Applied Mathematics and Statistics, 3. Article 10.

Halliday, D., Resnick, R., and Walker, J. (2007). Physik. Bachelor Edition. Wiley-
VCH, Weinheim. Fundamental of Physics, extended 6th edition, 2001, John
Wiley & Sons.

Hanke-Bourgeois, M. (2009). Grundlagen der Numerischen Mathematik und des Wis-
senschaftlichen Rechnens. Vieweg + Teuber, Wiesbaden, 3rd edition.

306

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
http://op.gfz-potsdam.de/grace/payload/payload.html
http://op.gfz-potsdam.de/grace/payload/payload.html

Bibliography

Heuser, H. (2001). Lehrbuch der Analysis Teil 1. B. G. Teubner, Wiesbaden, 14th
edition.

Heuser, H. (2004). Lehrbuch der Analysis Teil 2. B. G. Teubner, Wiesbaden, 13th
edition.

Heuser, H. (2006). Funktionalanalysis. B. G. Teubner, Wiesbaden, 4th edition.

Hofmann, B. (1999). Mathematik inverser Probleme. B. G. Teubner, Stuttgart.

HSL (2018). A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/, last accessed 11 December 2018.

Huber, P. J. (1985). Projection pursuit. The Annals of Statistics, 13(2):435–475.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. IPCC, Geneva, Switzerland.

Jekeli, C. (2005). Spline representation of functions on a sphere for geopotential
modeling. Technical Report 475, The Ohio State University, Columbus.

Johnson, S. G. (2019). The NLopt nonlinear-optimization package. http://github.

com/stevengj/nlopt and https://nlopt.readthedocs.io/en/latest/, both
last accessed 2 April 2020.

Jones, D. R. (2001). DIRECT global optimization algorithm. In Floudas, C. A. and
Pardalos, P. M., editors, Encyclopedia of Optimization. Springer, Boston.

Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian optimiza-
tion without the Lipschitz constant. Journal of Optimization Theory and Applica-
tion, 79(1):157–181.

Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of pro-
jection pursuit regression. The Annals of Statistics, 15(2):880–882.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285.

Kellogg, O. D. (1967). Foundations of Potential Theory. Springer, Berlin. Reprint
from the first edition of 1929.

Khalid, Z., Kennedy, R. A., and McEwen, J. D. (2016). Slepian spatio-spectral con-
centration on the ball. Applied and Computational Harmonic Analysis, 40(3):470–
504.

Kirsch, A. (1996). An Introduction to the Mathematical Theory of Inverse Problems.
Springer, New York.

307

http://www.hsl.rl.ac.uk/
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://nlopt.readthedocs.io/en/latest/

Bibliography

Klees, R., Revtova, E. A., Gunter, B. C., Ditmar, P., Oudman, E., Winsemius, H. C.,
and Savenjie, H. H. G. (2008). The design of an optimal filter for monthly
GRACE gravity models. Geophysical Journal International, 175(2):417–432.

Königsberger, K. (2004a). Analysis 1. Springer, Berlin, 6th edition.

Königsberger, K. (2004b). Analysis 2. Springer, Berlin, 5th edition.

Kontak, M. (2018). Novel Algorithms of Greedy-Type for Probability Density Esti-
mation as well as Linear and Nonlinear Inverse Problems. PhD thesis, Univer-
sity of Siegen, Geomathematics Group, Verlag Dr. Hut, Munich. http://

dokumentix.ub.uni-siegen.de/opus/volltexte/2018/1316/index.html, last
accessed 4 March 2020.

Kontak, M. and Michel, V. (2018). A greedy algorithm for nonlinear inverse prob-
lems with an application to nonlinear inverse gravimetry. GEM – International
Journal on Geomathematics, 9(2):167–198.

Kontak, M. and Michel, V. (2019). The regularized weak functional matching
pursuit for linear inverse problems. Journal of Inverse and Ill-Posed Problems,
27(3):317–340.

Kraft, D. (1988). A software package for sequential quadratic programming.
Techreport DFVLR-FB 88-28, Deutsche Forschungs- und Versuchsanstalt für
Luft- und Raumfahrt, Institut für Dynamik der Flugsysteme, Oberpfaffen-
hofen.

Kraft, D. (1994). Algorithm 733: TOMP-Fortran modules for optimal control cal-
culations. ACM Transactions on Mathematical Software, 20(3):262–281.

Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of
time-variable GRACE-type gravity field models. Journal of Geodesy, 81(11):733–
749.

Kusche, J. (2015). Time-variable gravity field and global deformation of the Earth.
In Freeden, W., Nashed, M. Z., and Sonar, T., editors, Handbook of Geomathemat-
ics, pages 321–338. Springer, Berlin, Heidelberg, 2nd edition.

Lehmann, R. (1993). The method of free-positioned point masses – geoid studies
on the Gulf of Bothnia. Bulletin Géodésique, 67(31):31–40.

Leweke, S. (2018). The Inverse Magneto-electroencephalography Problem for the Spher-
ical Multiple-shell Model: Theoretical Investigations and Numerical Aspects. PhD
thesis, University of Siegen, Geomathematics Group. http://dokumentix.ub.
uni-siegen.de/opus/volltexte/2019/1396/, last accessed 4 March 2020.

Leweke, S., Michel, V., and Schneider, N. (2018a). Vectorial Slepian functions on
the ball. Numerical Functional Analysis and Optimization, 39(11):1120–1152.

308

http://dokumentix.ub.uni-siegen.de/opus/volltexte/2018/1316/index.html
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2018/1316/index.html
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2019/1396/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2019/1396/

Bibliography

Leweke, S., Michel, V., and Telschow, R. (2018b). On the non-uniqueness of grav-
itational and magnetic field data inversion (survey article). In Freeden, W.
and Nashed, M. Z., editors, Handbook of Mathematical Geodesy, pages 883–919.
Birkhäuser, Basel.

Li, C., Yin, W., Jiang, H., and Zhang, Y. (2013). An efficient augmented Lagrangian
method with applications to total variation minimization. Computational Opti-
mization and Applications, 56(3):507–530.

Lin, M. (2016). Regional gravity field recovery using the point mass method. PhD
thesis, University of Hannover.

Lin, M., Denker, H., and Müller, J. (2014). Regional gravity field modelling using
free-positioned point masses. Studia Geophysica et Geodaetica, 58(2):207–226.

Lin, Y., Yu, J., Cai, J., Sneeuw, N., and Li, F. (2018). Spatio-temporal analysis of
wetland changes using a kernel extreme learning machine approach. Remote
Sensing, 10(7):1129.

Louis, A. K. (1989). Inverse und schlecht gestellte Probleme. Teubner, Stuttgart.

Magnus, W., Oberhettinger, F., and Soni, R. (1966). Formulas and Theorems for the
Special Functions of Mathematical Physics. Die Grundlehren der Mathematischen
Wissenschaften 52. Springer-Verlag, Berlin, 3rd edition.

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dic-
tionaries. IEEE Tansactions on Signal Processing, 41(12):3397–3415.

Mandea, M. and Dormy, E. (2003). Asymmetric behavior of magnetic dip poles.
Earth, Planets and Space, 55(3):153–157.

Michel, V. (2005). Regularized wavelet-based multiresolution recovery of the har-
monic mass density distribution from data of the Earth’s gravitational field at
satellite height. Inverse Problems, 21(3):997–1025.

Michel, V. (2013). Lectures on Constructive Approximation – Fourier, Spline, and
Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser Verlag,
New York.

Michel, V. (2015a). RFMP – An iterative best basis algorithm for inverse prob-
lems in the geosciences. In Freeden, W., Nashed, M. Z., and Sonar, T., editors,
Handbook of Geomathematics, pages 2121–2147. Springer, Berlin, Heidelberg, 2nd
edition.

Michel, V. (2015b). Tomography – problems and multiscale solutions. In Freeden,
W., Nashed, M. Z., and Sonar, T., editors, Handbook of Geomathematics, pages
2087–2119. Springer, Berlin, Heidelberg, 2nd edition.

309

Bibliography

Michel, V. (2020+). Geomathematics. upcoming publication.

Michel, V. and Fokas, A. S. (2008). A unified approach to various techniques
for the non-uniqueness of the inverse gravimetric problem and wavelet-based
methods. Inverse Problems, 24(4):045019.

Michel, V. and Orzlowski, S. (2017). On the convergence theorem for the Reg-
ularized Functional Matching Pursuit (RFMP) algorithm. GEM – International
Journal on Geomathematics, 8(2):183–190.

Michel, V. and Schneider, N. (2020). A first approach to learning a best basis for
gravitational field modelling. GEM - International Journal on Geomathematics.
https://doi.org/10.1007/s13137-020-0143-5, last accessed 3 March 2020.

Michel, V. and Telschow, R. (2014). A non-linear approximation method on the
sphere. GEM – International Journal on Geomathematics, 5(2):195–224.

Michel, V. and Telschow, R. (2016). The regularized orthogonal functional match-
ing pursuit for ill-posed inverse problems. SIAM Journal on Numerical Analysis,
54(1):262–287.

Moritz, H. (2010). Classical physical geodesy. In Freeden, W., Nashed, M. Z., and
Sonar, T., editors, Handbook of Geomathematics, pages 253–289. Springer, Berlin,
Heidelberg, 2nd edition.

Muir, T. (1882). A Treatise on the Theory of Determinants. Macmillian and Co.,
London.

Müller, C. (1966). Spherical Harmonics. Springer, Berlin.

Narcowich, F. J. and Ward, J. D. (1996). Nonstationary wavelets on the m-sphere
for scattered data. Applied and Computational Harmonic Analysis, 3(4):324–336.

NASA (2020). Global Climate Change: Scientific Consensus. https://climate.

nasa.gov/scientific-consensus/, last accessed 3 March 2020.

NASA Jet Propulsion Laboratory (2020). GRACE Tellus. https://grace.jpl.

nasa.gov/, last accessed 2 April 2020.

National Geospatial-Intelligence Agency, Office of Geomatics (SN), EGM Devel-
opment Team (2008). Earth Gravitational Model 2008. http://earth-info.

nga.mil/GandG/wgs84/gravitymod/egm2008/, last accessed 3 March 2020.

Newton, I. (1687). Philosophiae naturalis principia mathematica. J. Societatis Re-
giae ac Typis J. Streater.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York,
2nd edition.

310

https://doi.org/10.1007/s13137-020-0143-5
https://climate.nasa.gov/scientific-consensus/
https://climate.nasa.gov/scientific-consensus/
https://grace.jpl.nasa.gov/
https://grace.jpl.nasa.gov/
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/

Bibliography

Olsen, N. and Mandea, M. (2007). Will the magnetic North Pole move to Siberia?
Eos Earth & Space Science News, 88(29):293–293.

Olson, P. and Amit, H. (2006). Changes in Earth’s dipole. Naturwissenschaften,
93(11):519–542.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet de-
composition. In Proceedings of 27th Asilomar Conference on Signals, Systems and
Computers, volume 1, pages 40–44.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012). The develop-
ment and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal
of Geophysical Research: Solid Earth, 117(B4). Correction in Volume 118, Issue 5.

Plattner, A. and Simons, F. J. (2014). Spatiospectral concentration of vector fields
on a sphere. Applied and Computational Harmonic Analysis, 36(1):1–22.

Poggio, T. and Shelton, C. R. (1999). Machine learning, machine vision, and the
brain. American Association for Artificial Intelligence, AI Magazine, 20(3):37–56.

Poggio, T. and Smale, S. (2003). The mathematics of learning: dealing with data.
Notices of the American Mathematical Society, 50(5):537–544.

Prünte, L. (2008). Learning: Wavelet-Dictionaries and Continuous Dictionaries. PhD
thesis, University of Bremen. https://elib.suub.uni-bremen.de/diss/docs/
00011034.pdf, last accessed 3 March 2020.

Reuter, R. (1982). Über Integralformen der Einheitssphäre und harmonische Splinefunk-
tionen. PhD thesis, RWTH Aachen, Geomathematics Group, Veröffentlichung
des Geodätisches Institut der RWTH Aachen, vol. 33.

Rieder, A. (2003). Keine Probleme mit inversen Problemen. Eine Einführung in ihre
stabile Lösung. Vieweg, Wiesbaden.

Rinnooy Kan, A. H. G. and Timmer, G. T. (1989). Chapter IX Global optimiza-
tion. In Nemhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J., editors,
Optimization, pages 631–662. Elsevier Science Publishers B.V., North-Holland.

Rubinstein, R., Bruckstein, A. M., and Elad, M. (2010). Dictionaries for sparse
representation modeling. Proceedings of the IEEE, 98(6):1045–1057.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259–268.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolution-
ary optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

311

https://elib.suub.uni-bremen.de/diss/docs/00011034.pdf
https://elib.suub.uni-bremen.de/diss/docs/00011034.pdf

Bibliography

Runarsson, T. P. and Yao, X. (2005). Search biases in constrained evolutionary op-
timization. IEEE Transactions on System, Man, and Cybernetics: Part C, 35(2):233–
243.

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence. A Modern Approach. Pear-
son Education, Inc., Upper Saddle River, 3rd edition.

Sakumura, C., Bettadpur, S., and Bruinsma, S. (2014). Ensemble prediction and
intercomparison analysis of GRACE time-variable gravity field models. Geo-
physical Research Letters, 41(5):1389–1397.

Schall, J. (2019). Optimization of point grids in regional satellite gravity analysis using
a Bayesian approach. PhD thesis, University of Bonn. Accepted.

Schall, J., Eicker, A., and Kusche, J. (2014). The ITG-Goce02 gravity field model
from GOCE orbit and gradiometer data based on the short arc approach. Jour-
nal of Geodesy, 88(4):403–409.

Schall, J., Mayer-Gürr, T., Eicker, A., and Kusche, J. (2011). A global gravitational
field model from GOCE gradiometer observations. In Proceedings of the 4th
International GOCE User Workshop, Munich, Germany. ESA SP-696.

Schmidt, R., Flechtner, F., Meyer, U., Neumayer, K. H., Dahle, C., König, R., and
Kusche, J. (2008). Hydrological signals observed by the GRACE satellites. Sur-
veys in Geophysics, 29(4–5):319–334.

Schreiner, M. (1996). A pyramid scheme for spherical wavelets. AGTM Report,
(170). Geomathematics Group, University of Kaiserslautern.

Schwarz, H. R. and Köckler, N. (2011). Numerische Mathematik. Vieweg + Teubner,
Wiesbaden, 8th edition.

Seibert, K. (2018). Spin-Weighted Spherical Harmonics and Their Application for the
Construction of Tensor Slepian Functions on the Spherical Cap. PhD thesis, Univer-
sity of Siegen, Geomathematics Group, universi – Universitätsverlag Siegen,
Siegen.

Senyukov, S. L. (2013). Monitoring and prediction of volcanic activity in Kam-
chatka from seismological data: 2000-2010. Journal of Volcanology and Seismol-
ogy, 7(1):86–97.

Simons, F. J. (2010). Slepian functions and their use in signal estimation and spec-
tral analysis. In Freeden, W., Nashed, M. Z., and Sonar, T., editors, Handbook of
Geomathematics, pages 891–923. Springer, Heidelberg.

Simons, F. J. and Dahlen, F. A. (2006). Spherical Slepian functions and the polar
gap in geodesy. Geophysical Journal International, 166(3):1039–1061.

312

Bibliography

Simons, F. J., Dahlen, F. A., and Wieczorek, M. A. (2006). Spatiospectral concen-
tration on a sphere. SIAM Review, 48(3):504–536.

Sneeuw, N. and Saemian, P. (May 2019). Next-generation gravity missions for
drought monitoring. ESA Living Planet Symposium, Milan, Italy.

Sparks, R. S. J. and Aspinall, W. P. (2004). Volcanic activity: Frontiers and chal-
lenges in forecasting, prediction and risk assessment. In Sparks, R. S. J. and
Hawkesworth, C. J., editors, The State of the Planet: Frontiers and challenges in
geophysics, Geophysical Monograph, Volume 150, pages 359–373. American Geo-
physical Union.

Stein, O. (2018). Grundzüge der Globalen Optimierung. Springer-Verlag, Berlin.

Stoer, J. and Bulirsch, R. (1973). Numerische Mathematik II. Springer, Berlin.

Stummel, F. and Hainer, K. (1971). Praktische Mathematik. B. G. Teubner, Stuttgart.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The
MIT Press, Cambridge, 2nd edition.

Szegö, G. (1975). Orthogonal Polynomials. American Mathematical Society Collo-
quium Publications Vol. XXIII. American Mathematical Society. Providence.

Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C. (2004). The gravity re-
covery and climate experiment: mission overview and early results. Geophys-
ical Research Letters, 31(9):L09607. doi:10.1029/2004GL019920, last accessed 3
March 2020.

Telschow, R. (2014). An Orthogonal Matching Pursuit for the Regularization of Spher-
ical Inverse Problems. PhD thesis, University of Siegen, Geomathematics Group,
Verlag Dr. Hut, Munich.

Temlyakov, V. N. (2000). Weak greedy algorithms. Advances in Computational
Mathematics, 12(2–3):213–227.

Temlyakov, V. N. (2011). Greedy Approximation. Cambridge University Press,
Cambridge.

The University of Texas at Austin, Centre for Space Research (2020). Grace gravity
recovery and climate experiment. http://www2.csr.utexas.edu/grace/, last
accessed 3 March 2020.

Vigerske, S., Wächter, A., Kawajir, Y., and Laird, C. (2016). Intro-
duction to IPOPT: A tutorial for downloading, installing, and using
IPOPT. https://projects.coin-or.org/Ipopt/browser/stable/3.11/Ipopt/
doc/documentation.pdf?format=raw, last accessed 11 December 2018.

313

http://www2.csr.utexas.edu/grace/
https://projects.coin-or.org/Ipopt/browser/stable/3.11/Ipopt/doc/documentation.pdf?format=raw
https://projects.coin-or.org/Ipopt/browser/stable/3.11/Ipopt/doc/documentation.pdf?format=raw

Bibliography

Vikulin, A. V., Akmanova, D. R., Vikulina, S. A., and Dolgaya, A. A. (2012). Mi-
gration of seismic and volcanic activity as display of wave geodynamic process.
Geodynamics & Techtonophysics, 3(1):1–18.

Vincent, P. and Bengio, Y. (2002). Kernel matching pursuit. Machine Learning,
48(1–3):165–187.

Wächter, A. (2002). An Interior Point Algorithm for Large-Scale Nonlinear Optimiza-
tion with Applications in Process Engineering. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, USA.

Wächter, A. and Biegler, L. T. (2005a). Line search filter methods for nonlinear
programming: Local convergence. SIAM Journal on Optimization, 16(1):1–31.

Wächter, A. and Biegler, L. T. (2005b). Line search filter methods for nonlinear
programming: Motivation and global convergence. SIAM Journal on Optimiza-
tion, 16(1):32–48.

Wächter, A. and Biegler, L. T. (2006). On the implementation of a primal-dual in-
terior point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57.

Watkins, M. M. and Yuan, D.-N. (2012). GRACE, JPL Level-2 Processing Stan-
dards Document, For Level-2 Product Release 05. Technical report, Jet Propul-
sion Laboratory, NASA, Pasadena.

Windheuser, U. (1995). Sphärische Wavelets: Theorie und Anwendung in der
Physikalischen Geodäsie. PhD thesis, University of Kaiserslautern, Geomathe-
matics Group.

Yosida, K. (1995). Functional Analysis. Springer, Berlin, Heidelberg, 6th edition.
Reprint of the 1980 edition.

Zörnig, P. (2014). Nonlinear Programming. An introduction. Walter De Gruyter,
Berlin.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B, 67(2):301–320.

314

Index

B↘Ωa , 26
B, 12
Ba, 12
C, 11
C(k) (D), 12
DN, 79
εr, εϕ, εt, 13
η, 78
H2(Ω), 52
H((An); Ω), 50
Harmn

(
R3), 16

Harmn(Ω), 16
Harm0,...,N (Ω), 17
Harm0,...,∞ (Ω), 17
〈·, ·〉L2(D), 13
〈·, ·〉R`×H2(Ω), 182
L, 87
Lp(D), 12
N, 11
N0, 11
N , 87
‖ · ‖∞, 12
‖ · ‖Lp(D), 12
‖ · ‖L2(D), 13
‖ · ‖R`×H2(Ω), 182
Ω, 12
Ωa, 12
Pot (Bext

a), 25
Pot(k)(Bext

a), 25
R, 11
R+, 11
R+

0 , 11
Rd, 11
RFMP(·; N), 125, 182

ROFMP(·; N), 126
Rr×s, 11
x∗, 250
T̃k,λ(δ,yδ), 182
V, 79
V , V⊥N , 79
y, 78
Yn, 16
Yn,j, 16
Z, 11

actions, 111
active set, 250
add data sl, 285
add data wk, 285
admissible, 61
approximation, 80, 85
artificial intelligence, 109
associated Legendre functions, 18

pseudo-code for
first derivative, 245
high degrees, 246
low degrees, 244

back-fitting, 83
ball, 12
band pass filter, 68

Abel–Poisson, 69
expansion, 68

band-limited, 40
barrier methods, 253
best basis, 80
bias-variance problem, 110
branch-and-bound approach, 253

Clenshaw algorithm, 241

315

Index

pseudo-code for filters, 242
closed in the sense of the approxima-

tion theory, 14
compact, 32
computeD(·), 271
computedata(·), 270
computeS(·), 273
computeSlearnt(·), 297
constraint qualifications, 251
constraint(·), 290
constraints

bound, 250
equality, 250
inequality, 250

data
EGM2008, 197
GRACE, 197
notation, 78

data fidelity term, 36
detail spaces, 67
diameter, 254
dictionary, 79

for spherical scalar inverse prob-
lems, 87

complete, 79
idea, 78
learnt, 119
nearly-optimal, 120
optimal, 119
overcomplete, 79
sequence of well-working, 121

dictionary learning, 111
criteria, 113
online, 113

DIRECT algorithm, 253
direct problem, 30
doubled minimization problem, 113,

118
dual problem, 256

eigenvalue (of an operator), 33
eigenvectors or eigenfunctions (of an

operator), 33

energy ratio, 40
Euler angles, 44
exploration and exploitation, 111
exterior Dirichlet problem, 25

integral solution, 25
series solution, 26

feasible set, 250
first order necessary condition, 251
fnsh(·), 267
Fredholm integral operator, 32

Gauß algorithm
for tridiagonal matrices, 48

generalized inverse, 31
geoid, 23
gradient of
|x|mnPn

(
x(i)
|x(i)| ·

x
|x|
)

, 160

|x|mnYn,j

(
x
|x|
)

, 154
|x|mn, 159

gravitational constant, 22
gravitational potential, 22

harmonicity, 23
gravity potential, 23

harmonic, 13
homogeneous, 16
hypothesis space, 110

ill-posed
in the sense of Hadamard, 30
in the sense of Nashed, 32

initializeLookUp(·), 268
initializewignercoeffs(·), 267
inner products of trial functions
H2(Ω), 72
L2(Ω), 71

inverse problem, 30
inverse problem matching

pursuit, 77, 275
convergence, 181
pseudo-code for

RFMP, 93, 276
ROFMP, 100, 278

316

Index

RFMP, 90
ROFMP, 93
RWFMP, 104

ipmp(·) for
the Abel–Poisson low

and band pass filter, 286
the Slepian functions, 288

IPOPT algorithm, 257

k-means algorithm, 110, 113
Karush-Kuhn-Tucker conditions, 251
Kronecker delta, 11

Lagrangian function, 251
law of gravitation, 22
(L-)BFGS updates, 252
learning inverse problem

matching pursuit, 123
convergence, 181
LRFMP, 123
LROFMP, 123
pseudo-code for, 291

choosing next basis
element, 177

LRFMP, 178
LROFMP, 180

schematic representation, 130
least squares, 256
Legendre polynomials, 17, 240

first derivative, 241
three-term recursion, 241

Lipschitzian optimization, 253
local orthonormal basis in R3, 13
loss / error function, 110
low pass filter, 63

Abel–Poisson, 64
expansion, 63

machine learning, 109
matching pursuit, 77

classical, 78
orthogonal, 83
pseudo-code for

classical, 83
orthogonal, 86

matrixD, 271
multiresolution analysis, 62

Newton method, 252, 256
noise level, 32
normal equation, 31

regularized, 36

objective function, 250
operator, 14

adjoint, 31
bounded, 14
linear, 14

optimization
algorithms, 249

derivative-free, 252
gradient-based, 252

problem, 250
constrained, 250
convex, 251
global solution, 250
linear, 250
local solution, 250
non-linear, 250
unconstrained, 250

theory, 251
optimization problem

RFMP(·; N), 125, 182
ROFMP(·; N), 126
gradient of RFMP(·; N), 134
gradient of ROFMP(·; N), 134
LIPMP algorithm

Abel–Poisson low and band
pass filters, 133

general, 128
Slepian functions, 132
spherical harmonics, 131

orthogonal complement, 79
orthogonal decomposition, 80
orthogonal projection, 79

in R`, 80
outer harmonics, 21

parameter choice rule, 35
parameters, 260

317

Index

data, 260
dictionary, 261
experiment setting, 262

general, 262
learning, 262

general, 263
physical, 260
termination, 261

Parseval identity, 14
penalty methods, 253
penalty parameters, 253
penalty term, 36, 72
Picard condition, 34
point grids, 239

Driscoll Healy, 239
general, 78
Reuter, 240

pre-fitting, 83
precomputation(·), 266
preprocessing, 264

for the learnt dictionary, 297
processing a chosen candidate, 294

optimized filter, 295
optimized Slepian function, 296
starting solution, 294

projection coefficients, 99
derivatives, 141

quadratic subproblem, 253, 255
quality measure, 110, 113
Quasi-Newton method, 252, 256

radial basis functions, 57
Abel–Poisson kernel, 58
expansion, 60
on the ball, 58
on the sphere, 57
scaled, 57

radial basis wavelets, 66
Abel–Poisson, 68
generator, 66

regular value, 33
regularization, 35

parameter, 35

strategy, 35
reinforcement learning, 109, 111
reproducing kernel, 54

Hilbert space, 54
residual, 80, 85
Reuter(·), 267
reward, 111
rfmp(·), 276
rofmp(·), 279
rotation matrix, 43

scaling function, 61
Abel–Poisson, 63
cp, 62
generator, 61
MRA, 62

second order
necessary condition, 251
sufficient condition, 252

set of candidates, 179
singular

functions or vectors, 33
system, 33
value, 33
value decomposition (SVD), 33

Slepian functions, 39
at spherical cap, 43, 46
commuting matrix, 47
definition, 41
derivative w.r.t R, 135
explicit, 49
rotated, 46

sleps(·), 267
SLSQP algorithm, 255
Sobolev lemma, 55
solution, 80
sparsity, 110, 112
spectrum, 33
sphere, 12
spherical cap, 42

at North pole, 47
spherical convolution, 59
spherical coordinates

gradient, 13

318

Index

point representation, 13
spherical harmonics, 16

complex, 19
fully normalized, 18
upward continued, 29

spherical Sobolev spaces, 49
SQP, 253
starting dictionary, 178
steepest descent, 252
structure book, 80
structure of an implemented

(L)IPMP algorithm, 264
summable, 54
supervised learning, 109, 110
synthetic data, 225

the curse of dimensionality
and the blessing
of the smoothness, 110

Tikhonov-Philipps regularization, 35
convergence rate, 36
functional, 36
iterated, 36

(spherical scalar) trial function class,
87

unsupervised learning, 109, 110
upward continuation operator, 28

in spherical harmonics, 28
integral representation, 28
series representation, SVD, 28

upward continued trial functions, 72
Abel–Poisson band pass

filter, 142
derivative, 142

Abel–Poisson low pass filter, 141
derivative, 142

Wigner rotation matrix, 45

319

	Title page
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	About dictionary learning in geomathematics
	Preparatory Work
	From geodesy to inverse problems
	Preliminaries
	Some aspects about polynomials on the sphere
	A geodetic reference model: the gravitational potential
	The exterior Dirichlet problem for satellite orbits
	An overview of inverse problems

	Particular real-valued trial functions on the sphere
	A few aspects of scalar Slepian functions
	An overview of spherical Sobolev spaces
	From radial basis functions to low pass filters
	Radial basis wavelets as band pass filters
	Inner products and upward continued values

	An algorithmic approach: matching pursuits
	An introduction to matching pursuits
	The classical matching pursuit
	The orthogonal matching pursuit

	A particular dictionary and problem notation
	The regularized functional matching pursuit
	The regularized orthogonal functional matching pursuit
	Notes on further research

	A learning approach for spherical inverse problems
	An introduction to learning
	A bit about machine learning
	The task of dictionary learning

	Towards learning dictionaries
	From the status-quo to the particular situation
	Optimal, near-optimal and well-working dictionaries
	An outlook

	A learning algorithm
	Idea and main structure
	Optimization problems in detail
	Formulation of parametrized optimization problems
	Regarding gradient-based optimization
	Inner products dependent on the operator
	Inner products of linear combinations of dictionary ele- ments
	Inner products of the penalty term

	Additional features
	Pseudo-codes for the LIPMP algorithms

	Theoretical aspects
	On the convergence
	On the learning algorithm

	Numerical experiments
	Experiment setting in general
	The Earth Gravitational Model 2008 (EGM2008)
	The Gravity Recovery And Climate Experiment (GRACE)
	Further experiment setting

	Comparisons with the IPMP algorithms
	Previously published results
	Downward continuation of regularly distributed global data
	Downward continuation of monthly Data
	Learning a GRACE dictionary

	Further experiments with the LIPMP algorithms
	Approximation
	Downward continuation of irregularly distributed global data
	Experiments with synthetic data

	Summary
	Conclusion and Outlook

	Technical Appendix
	Computational aspects
	Point grids
	Legendre polynomials and the Clenshaw algorithm
	Associated Legendre functions and fully normalized spherical harmonics
	Evaluation for high-degree and order
	Particular terms to avoid singularities

	Aspects of optimization
	Certain keywords
	The locally-biased DIRECT algorithm
	The SLSQP algorithm
	The IPOPT algorithm

	Documentation
	Common preprocessing
	First computations
	Generating the data
	Preprocessing

	Implementing an IPMP algorithm
	The RFMP algorithm
	The ROFMP algorithm

	Implementing an LIPMP algorithm
	Declaring the optimization problems
	The iterations of the LIPMP algorithms
	Processing a chosen candidate
	Preprocessing of the learnt dictionary

	Bibliography
	Index

