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Abstract

Today’s complex control systems such as trains, aircraft or cars are typically composed of
multiple networked components which are developed by geographically distributed man-
ufacturers. During their development process, integrating and testing the components
are central steps. However, the manufacturers’ locations complicate the process since
the components must be shipped to a central place and intellectual property must be
protected. Using a distributed co-simulation framework which supports Software- and
Hardware-In-The-Loop (SIL/HIL) testing can solve these issues. It enables a virtual inte-
gration and testing of the components via the Internet and protects intellectual property
if it operates on a network-centric abstraction level. In this case, it focuses on the data
exchange between the components and knowledge about their internal implementation is

not required.

In today’s state-of-the-art, a framework that operates on a network-centric abstraction
level and supports co-simulation, SIL and HIL testing together is not available yet. Besides
that, HIL testing involves hardware devices with real-time requirements. Connecting those
devices via public wide area networks such as the Internet, the accuracy of distributed HIL
tests is limited by the determinism of the network’s communication delays. The available
frameworks are mainly based on Quality of Service mechanisms such as differentiated
services. However, the communication cycles of the System Under Test (SUT) might
be smaller than the guaranteed latencies which leads to deadline misses. Hence, delay-

management mechanisms are required which ensure a timely forwarding of input data.

This thesis proposes a distributed co-simulation framework which operates on a network-
centric abstraction level and supports the above mentioned techniques. It synchronizes
the components of the SUT, coordinates their data exchange and includes fault-injection
to validate the dependability. By providing a generic component interface, heterogeneous
simulation tools and physical devices are supported. The main contributions of the thesis
are two delay-management mechanisms based on state-estimation and speculative exe-
cution. The first mechanism forwards estimated inputs to the component if (I) received
inputs are delayed or (II) as intermediary inputs. This reduces the number of communi-

cation activities inside the framework. The second mechanism divides a simulation setup
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into several subsets. Those subsets execute independent tasks in advance to forward data
to real-time devices in time. Using the mechanisms, the framework is able to connect
simulations, software algorithms and real hardware via public communication networks
while maintaining the SUT’s real-time requirements. Hence, there is no need to make all

simulation models or physical prototypes centrally available.

The evaluation using a distributed control application demonstrates the scalability of the
framework. The time to execute a simulation setup increases linearly with the simu-
lated time and is bounded by the growth of the component’s number in larger setups.
Furthermore, the evaluation shows the advantages of the delay-management mechanisms
for distributed real-time tests. After determining a proper real-time configuration of the
simulation host, the state-estimation mechanism can be used for a timely forwarding of in-
puts to the components. Using intermediary packets improves the accuracy of distributed
real-time tests and makes it independent from the network delays. While the speculative
execution enables real-time tests locally and in Local Area Networks, networks with larger
delays (e.g., the Internet) require less stringent temporal requirements of the SUT. From
a performance point of view, both mechanisms achieve significant speedups depending on

the setup’s size, the network topology and the communication period.
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Zusammenfassung

Heutige komplexe Steuerungssysteme wie Ziige, Flugzeuge oder Autos bestehen in der
Regel aus mehreren vernetzten Komponenten, die von geografisch verteilten Herstellern
entwickelt werden. Wahrend ihres Entwicklungsprozesses sind die Integration und das
Testen der Komponenten zentrale Schritte. Die Standorte der Hersteller erschweren je-
doch den Prozess, da die Komponenten an einen Ort geliefert werden miissen und Intellec-
tual Property geschiitzt werden muss. Die Verwendung eines verteilten Co-Simulations-
Frameworks, das Software- und Hardware-in-the-Loop (SIL/HIL) Tests unterstiitzt, kann
diese Probleme 16sen. Es ermoglicht eine virtuelle Integration sowie das Testen der Kom-
ponenten iiber das Internet und schiitzt Intellectual Property, wenn es auf einer netz-
werkzentrischen Abstraktionsebene arbeitet. In diesem Fall konzentriert es sich auf den
Datenaustausch zwischen den Komponenten und Kenntnisse iiber ihre interne Implemen-

tierung sind nicht erforderlich.

Nach dem heutigen Stand der Technik ist ein Framework, das auf einer netzwerkzen-
trischen Abstraktionsebene arbeitet und Co-Simulation, SIL- und HIL-Tests unterstiitzt,
noch nicht verfiighbar. Auflerdem werden beim HIL-Test Hardware-Gerédte mit Echtzeit-
anforderungen eingesetzt. Wenn diese Geréte iiber 6ffentliche Wide Area Networks wie
das Internet miteinander verbunden werden, ist die Genauigkeit verteilter HIL-Tests durch
den Determinismus der Netzwerklatenzen begrenzt. Die verfiigbaren Frameworks basieren
hauptsachlich auf Quality of Service Mechanismen wie z.B. Differentiated Services. Die
Kommunikationszyklen des Systems Under Test (SUT) kénnen jedoch kleiner als die
garantierten Latenzen sein, was zu Deadline-Uberschreitungen fithrt. Daher sind Mecha-
nismen zur Verwaltung von Verzogerungen erforderlich, die eine rechtzeitige Weiterleitung

der Eingangspakete gewahrleisten.

Diese Dissertation schlagt ein verteiltes Co-Simulations-Framework vor, das auf einer
netzwerkzentrischen Abstraktionsebene arbeitet und die oben genannten Techniken un-
terstiitzt. Es synchronisiert die Komponenten des SUT, koordiniert ihren Datenaus-
tausch und beinhaltet Fehlerinjektionsmechanismen zur Validierung der Zuverléassigkeit.
Durch die Bereitstellung einer generischen Komponentenschnittstelle werden heterogene

Simulationswerkzeuge und physikalische Gerdte unterstiitzt. Die wichtigsten Beitrége
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Zusammentassung

dieser Dissertation sind zwei Mechanismen zur Verwaltung von Verzogerungen, die auf
State-Estimation und spekulativer Ausfithrung basieren. Der erste Mechanismus leitet
vorhergesagte Pakete an die Komponente weiter, wenn (I) empfangene Pakete verzogert
werden oder (II) als zusétzliche Pakete zwischen den Empfangenen. Dadurch wird der
Nachrichtenaustausch innerhalb des Frameworks reduziert. Der zweite Mechanismus teilt
die Simulation in mehrere Untergruppen auf. Diese Untergruppen fiihren unabhéngige
Tasks im Voraus aus, um Daten rechtzeitig an Echtzeitgerite weiterzuleiten. Mit Hilfe
der Mechanismen ist das Framework in der Lage, Simulationen, Software-Algorithmen
und reale Hardware tiber o6ffentliche Kommunikationsnetze zu verbinden und gleichzeitig
die Echtzeitanforderungen des SUTs zu erfiillen. Es ist daher nicht notwendig, alle Simu-

lationsmodelle oder physikalische Prototypen zentral zur Verfiigung zu stellen.

Die Auswertung mit einer verteilten Steuerungsanwendung demonstriert die Skalierbarkeit
des Frameworks. Die Zeit fiir die Ausfithrung einer Simulation steigt linear mit der
simulierten Zeit und ist durch das Wachstum der Anzahl der Komponenten in grofieren
Setups begrenzt. Dariiber hinaus zeigt die Auswertung die Vorteile des Verzogerungsma-
nagements flir verteilte Echtzeittests. Nach der Bestimmung einer geeigneten Echtzeitkon-
figuration des Simulations-PCs kann der State-Estimation-Mechanismus fiir eine rechtzei-
tige Weiterleitung von Paketen an die Komponenten verwendet werden. Die Verwen-
dung von zusétzlichen Paketen zwischen den Empfangenen verbessert die Genauigkeit
von verteilten Echtzeittests und macht sie unabhéngig von den Verzogerungen im Netz-
werk. Wiahrend die spekulative Ausfithrung Echtzeittests lokal und in Local Area Net-
works ermoglicht, erfordern Netzwerke mit groferen Verzogerungen (z.B. das Internet)
weniger strikte zeitliche Anforderungen an das SUT. Aus Performance-Sicht erreichen
beide Mechanismen je nach Grofle des Setups, der Netzwerktopologie und der Kommu-

nikationsperiode erhebliche Speedups.
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1. Introduction

1.1. Motivation

Nowadays, embedded systems can be found almost everywhere: in transportation, factory
automation, smart buildings or grids, robotics and in health care [Marl8, p. 4ff.]. In 2011,
about 98% of all microprocessors were embedded. Using sensors and actuators, they are
able to interact with their environment and the connection via communication networks
establishes large-scale distributed embedded real-time systems [acall, p.5]. Typical exam-
ples of such complex systems are aircrafts [SP13], trains [JGSJS18] or a modern car. The
latter can contain 100 connected Electronic Control Units (ECUs) which control several
physical processes [WCAF15].

Typically, the connected control systems are developed by several, geographically dis-
tributed manufacturers. For trains as an example, the German ASC GmbH and Frauscher
Sensortechnik GmbH provide different types of sensors, the Interautomation Deutschland
GmbH concentrates on passenger WiFi or infotainment, Knorr-Bremse develops braking
systems and the Konvekta AG is supplier for Heating, Ventilation and Air Condition-
ing (HVAC) systems [Int19]. Besides them, UniControls a.s. from the Czech Republic
provides network units or I/O systems. Regarding the automotive domain, examples of
suppliers are Robert Bosch GmbH (e.g., electronics), Denso Corp. (e.g., powertrain con-
trol), Continental AG (e.g., advanced driver assistance), Infineon Technologies AG (e.g.,

micro-controllers) or Brose Fahrzeugteile GmbH (e.g., mechatronic systems) [Chal8].

During the development process, the components are designed separately, integrated once
they are available and tested afterwards. The final system is built incrementally by
repeating the steps [BST10, p. 233-236]. In this process, verification and validation
are major steps, which are even more important if the system under test is safety-critical.
Common examples of such systems are trains, aircrafts and parts of a car. Without a valid
safety argument, human life might be endangered while using those systems [SMS*13].
Besides this, validating a system early in the development process prevents issues in later

stages [BCPS11|. However, the distributed locations of the different suppliers complicate
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the process. To integrate and validate the components, they must be shipped to a central

place which introduces costs and causes delays. Furthermore, intellectual property must

be protected [HLV06].

Using techniques such as distributed co-simulation, Software- and Hardware-In-The-Loop
(SIL, HIL) testing can simplify the development process. They are common technologies
which enable a repeatable and controllable component testing. Since many simulation
tools are developed for dedicated purposes (e.g., Riverbed Modeler for communication
networks and MATLAB for controlled plants), they are coupled to co-simulate complex
systems [CDF*14]. Coupling them via the Internet or Local Area Networks (LANSs), it
is further possible to connect geographically distributed tools. In SIL testing, models of
control algorithms are replaced by their software implementation and validated against
models of the rest of the system [BCPS11]. This technology supports an early identifica-
tion of design faults. Furthermore, physical prototypes are not yet required which results
in less costs and no risk of damage or accidents [BVP10]. The validation of physical sys-
tem components is performed in HIL testing instead. If the tested hardware is a real-time
device, its temporal requirements must also be satisfied during the validation process. In
a setup distributed via the Internet, the network’s best effort character introduces inde-
terministic communication delays into the test system. While there are no consequences
on a System Under Test (SUT) without any real-time components (e.g., SIL setups), the
delays might lead to deadline misses in real-time components of a HIL test. Hence, delay-
management mechanisms are required which (I) detect the delays and stop the test and
(IT) cope with the unpredictability of the communication. Finally, fault-injection during
HIL and SIL testing allows to investigate a system’s behavior in case of faults. Since
the injection can be performed in a deterministic way, it is a widely used and effective

validation technique.

The difficulties caused by the manufacturers’ distributed locations can be addressed if the
systems under test are integrated via time-triggered real-time communication networks.
In such networks, the instants of all communication activities are a priori known [EBKO03].
Using the instants as events in a co-simulation helps to synchronize the time advance of
distributed simulations. Furthermore, instants for message reception denote the deadlines
for real-time hardware at which the packets have to be delivered. With this knowledge,

it is possible to mitigate delays in the test system.

This thesis introduces a framework which validates the component integration on a
network-centric abstraction level. Since it focuses on the data exchange via the linking
network interfaces, the components’ internal implementations need not be known during

the integration and validation process. By distributing the framework across LANs and



the Internet, the components can be validated at their manufacturers’ sites during early
development steps. In this way, shipping and integrating the components at a central
place is not required and intellectual property can be protected. Furthermore, it facili-
tates the interplay between the manufacturers which expedites the development process

and reduces costs.

As shown in this thesis, there is a lack of generic, network-centric frameworks which cover
the entire validation process including co-simulation, SIL and HIL testing. If they do so,
they suffer from suitable delay-management technologies which enable real-time tests via

the Internet or do not consider the injection of faults.

1.2. Objectives and Contribution of this Thesis

The framework developed in this thesis aims on validating the behavior of subsystems in
time-triggered networked control systems. Those systems are common for safety-critical
domains such as avionics, railway or automotive, but can be found also in other areas.
Their safety-critical character introduces research objectives which can be grouped into

five different categories. They are defined in the following.

Distributed Co-Simulation Framework The first objective is the development of a co-
simulation framework which is distributed via heterogeneous communication net-
works such as LANs or the Internet. In this way, it is possible to connect simu-
lations between geographically distributed locations, for example between sites of
different manufacturers. The distributed character and the transmission of poten-
tially confidential data requires the inclusion of suitable security mechanisms. To
validate the communication between the components, the framework operates on a
network-centric abstraction level. Hence, the data exchanged between the simula-
tions are the packets sent via the components’ network interfaces. Using a scalable
synchronization mechanism, the data exchange and the time advance of the simula-
tions need to be coordinated in the correct temporal order. At last, the framework

shall provide a generic interface to connect a large number of simulation tools.

Software- and Hardware-In-The-Loop testing Simulations are replaced gradually by
software applications and the real hardware during the development process. Hence,
the developed framework shall support Software- and Hardware-In-The-Loop test-
ing. The latter involves the execution in real-time wherefore the framework must
ensure a timely data exchange and the synchronization of the logical simulation time

and the physical time of the components in the HIL test. Furthermore, an interface
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is required which is able to capture and forward network traffic.

Real-time simulation hosts Connecting real hardware requires a communication bet-
ween the framework and the devices in real-time. Hence, also the connected simula-
tion hosts on which the framework is running have to provide real-time guarantees.

In this way, the packets can be forwarded to the hardware in time.

Delay-management for distributed real-time tests In addition to real-time execution
of the simulation host, the data transfer inside the framework must be performed
in time. However, heterogeneous communication networks such as the Internet
introduce indeterministic communication jitter and packet loss. Even if QoS mech-
anisms are applied, it is not able to provide the level of determinism required by
safety-critical applications. The distributed co-simulation framework shall provide
mechanisms which cope with delays leading to deadline misses as follows: (I) a de-
tection mechanism which stops the simulation and (II) mechanisms which ensure a

timely input reception for real-time devices.

Fault-injection support Fault-injection is an effective way to validate the behavior of a
system in the case of faults. Failures in components of a distributed SUT typically
propagate to other subsystems via faulty messages. Hence, the framework shall sup-
port a mechanism to inject faults into the communication between the subsystems
of the SUT. In this way, failures of the components can be mapped to the commu-
nication network. Since the communication may be safety-critical, the injection has

to follow related standards.

Within this thesis, a distributed co-simulation framework is proposed which covers all
these objectives. It operates on a network-centric abstraction level and supports Software-
and Hardware-In-The-Loop testing. Furthermore, a fault-injection mechanism is included
which covers all message errors defined in clause 7.4.11 of part two of the IEC 61508
standard for Functional safety of electrical/electronic/programmable electronic safety-
related systems [iec11]. Using the standard, the faults are injected directly into the
packets exchanged. The main contributions of this thesis are three delay-management
technologies which ensure real-time testing via the Internet. The first approach uses
state-estimation as a fall-back solution for a timely packet reception. By estimating
intermediary packets, the second approach forwards packets to the components in time
independent from the framework’s communication delays. Finally, a third mechanism
distributes the ensemble of components into subsets so that independent processes can
execute speculatively in advance. In this way, Internet-introduced delays can be mitigated

to maintain the deadlines in hard real-time devices.



1.3. Outline

The remainder of this thesis is organized as follows.

Chapter 2 starts with an overview about basic knowledge regarding topics covered in this
work. At first, it denotes the characteristics of distributed real-time systems as the
SUTs for which the distributed co-simulation framework is developed. Afterwards,
an overview about a typical development and validation process is given followed by
example technologies for validation. Those are distributed co-simulation, SIL and
HIL testing and fault-injection. Since the framework exchanges potentially confiden-

tial data, the chapter closes with a discussion about available security mechanisms.

Chapter 3 continues with an analysis of the current state-of-the-art. In addition to re-
lated work regarding the topics introduced in the previous chapter, further technolo-
gies are presented. Those are mechanisms to transform Linux into a real-time oper-
ating system and to realize Quality of Service via the Internet. Additionally, state-
estimation mechanisms and speculative execution as alternative delay-management
techniques are depicted. Based on the state-of-the-art analysis, the research gap for
this work is defined at the end of the chapter.

Chapter 4 introduces the developed network-centric co-simulation framework. It covers
the overall architecture and the simulation bridges as the main components. In the
subsequent sections, their functionality is described in detail with regard to SIL and
HIL testing. This includes the configuration, synchronization and packet handling
mechanisms together with the injection of faults. Finally, the application of VPNs

to secure the communication within the framework is explained.

Chapter 5 covers the three delay-management techniques developed. Two of these tech-
niques use state-estimation while the third one is based on speculative execution.

They target on enabling distributed real-time tests via the Internet.

Chapter 6 focuses on the evaluation of the distributed co-simulation framework and the
delay-management mechanisms. Before evaluation results are presented, a suitable
configuration for a real-time Linux simulation host is determined. Furthermore, a

fault-tolerant and scalable fan-control application is introduced as the SUT.

Chapter 7 concludes the thesis. In addition to a summary of the main contributions, it

depicts potential aspects for future work.






2. Fundamentals

2.1. Real-Time Systems

There are several characteristics of distributed real-time systems the developed frame-
work grounds on. This includes time and the synchronization of clocks, composability,
component-based design and determinism. Besides this, real-time communication, real-
time operating systems and the property of temporal accuracy are important aspects. All

of them are introduced in the following.

2.1.1. Characteristics of Real-Time Systems

In real-time systems, the correctness of a task does not only depend on the correctness
of the logical result, but also on its availability at a defined point in time [Sch05, p.40].
This point in time is called a deadline. If it is not met, there are different consequences
depending on the type of the real-time system. There are soft, firm and hard deadlines.
For soft deadlines, the result may be useful even if the deadline is missed. If the result
looses its usefulness instead, the deadline is called firm. When missing a deadline results

in catastrophic consequences on the system’s environment, the deadline is called hard

[Kop98b.

According to the above definitions, real-time systems can be classified as two types. Sys-
tems without any hard deadline are called soft real-time systems. If there is at least
one hard deadline that has to be met, we speak about hard or safety-critical real-time
systems. The latter have to guarantee a temporal behavior in all specified load and fault
conditions [Kop11, p.3]. Hence, determinism is a very important aspect during design and
test. Examples for soft and hard real-time systems are video and audio streaming where
missing a deadline only results in reduced quality (soft), and the flight control system
in an aircraft (hard) [Sch05, p.40]. If this system fails in meeting the deadline, it might

cause the aircraft to crash. Hence, it is classified as a hard real-time system.
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Computer systems may not provide their correct functionality throughout the entire op-
eration. Avizienis et al. [ALRL04] provide a detailed overview about the reasons for those
deviations and the resulting consequences in their paper. Typically, a fault causes an
error in the state of the system. Categories of faults are for example development and
operational faults, software and hardware faults, or natural and human-made ones. If the
error causes the system’s provided service to deviate from the specified one, one speaks
about a failure of the system. Those failures can be classified in their domain (temporal,
content), detectability, consistency or in their consequences. Without any countermea-
sures, a failure might propagate causing a fault in another subsystem. This may continue

the chain and cause further errors and failures.

The concepts of faults, errors and failures are covered in dependability which includes
reliability, maintainability, availability, safety and security [Mar06, p.2]. The first aspect,
reliability, describes the probability that a system will not fail over a defined period of
time under specified environmental conditions [Mul85]. If a failure occurs, maintainability
represents the time interval which is required to repair the system. Both aspects influence
the availability of a system. It is defined as the temporal fraction the system provides its
service [ALRT01]. If the reliability is low, the system fails often and must be repaired.
Similarly, the system cannot be used if it takes much time to repair it after a failure
occurred. Standards such as DO-178C [do111], IEC 61508 [iec10] or ISO 26262 [ISO11]
group critical failures into dedicated categories, for example the Safety Integrity Levels
1-4 in IEC 61508. The reliability against those modes is considered as the safety of a
system [ALR'01]. Finally, security covers the aspects of confidentiality, integrity and
authenticity of data. It is important to consider them, because faults could be introduced
intentionally [ALRLO4]. For example, the message errors listed in IEC 61508-2 clause

7.4.11 might be caused by malicious components or users.

Handling failures is an important requirement in safety-critical systems. Those systems
are used for safety-critical purposes having a direct impact on their controlled environment
[Mar06, p.2]. The associated Mean Time To Failure (MTTF) accounts to better than
10°h [LH94]. Since normal hardware can achieve only an order of 10*h up to 10°h,
fault-tolerance mechanisms are required [Kopll, p.272]. They use additional information
(e.g., parity bits) or redundant hardware and software which detect and correct errors
and failures [Sch05, p.182]. To realize this, the redundant components can be grouped
into so-called Fault Containment Regions (FCRs). Those regions are defined as correctly
operating subsystems unconcerned from any external fault. Using FCRs can prevent the
propagation of faults to components outside the region, but the faults can manifest as
erroneous data which is propagated. Hence, redundant FCRs are required to realize error
containment [LH94]. A widely used concept is Triple Modular Redundancy (TMR). Here,
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a component is triplicated and a voting mechanism determines the correct value [LV62].
The tolerated faults of a system are defined in the fault hypothesis [HS95]. Faults that are
not covered require a so-called never-give-up strategy which brings the system back into a
safe state [Kopll, p.154]. Systems where such a state can be reached upon the occurrence
of a failure are called fail-safe. However, there are systems like the flight control of an
aircraft where safe states are impossible. Those systems must be fail-operational and

provide a minimum level of service to prevent a catastrophe [KKS™15].

Internally, the execution of tasks and the communication with other systems is initiated
by two different control mechanisms. The first type is called event-triggered. Events
are state changes in the controlled object or activities within the computer system. One
example is the completion of a task [Obell, p.20]. If such an event occurs, the CPU
is activated by an interrupt and has to schedule the task which handles the event. This
requires a dynamic scheduling mechanism [Kopll, p.17]. Event-triggered systems exclude
events caused by the progress of time. The control mechanism based on this type of events
is called time-triggered. Each task or communication activity is released by a predefined
tick of a global clock. In a distributed real-time system, this requires a synchronized,

global time [Kop98b|. Typically, time-triggered activities repeat periodically [EBKO03].

The delay-management technologies developed in this thesis (cf. Chapter 5) concentrate
on time-triggered systems. Without delay-management, event-triggered systems are also

supported (cf. Chapter 4).

2.1.2. Time and Clock Synchronization

According to [Kop92|, real-time can be modeled by a dense and totally ordered set of
instants which are arranged on an directed time-line. In an ordered set, two instants p
and r occur either simultaneously or mutually precede each other. To call the ordered set

dense, there must be at least one instant ¢ between p and r which is not equal to r.

The interval between the instants p and r is called duration. In real-time systems, events
occur at instants of the time-line without having a duration [Kop07]. Since there is no
order relation between events arising at the same instant, an event set is only partially
ordered [Lam78]. To order them, their delivery and causal order are of interest. The
latter is used in a sequence of alarms to identify the primary event. It is more than the
temporal order since an event e; must not be the reason for an event e, which happens
later. Otherwise, the temporal order is required since the subsequent event e, cannot
be the cause of e; [Kop92]. The delivery order is not related to time and causality. It

ensures only the same perceived order of a set of events between all nodes in a distributed
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system [Kopll, p. 53].

Time in real-time systems is measured using physical, digital clocks. They contain a
counter which increments based on a periodic event. This event is caused by an oscil-
lation mechanism and is called a micro-tick. An important characteristic of a clock is
its granularity which is the duration between two successive micro-ticks. In time mea-
surements, the granularity leads to a digitalization error wherefore it must be small.
Measuring its value is only possible with a clock having a finer granularity. This can be
reached with reference clocks. These clocks typically have a very small granularity and
they are perfectly aligned with the international time standard. At runtime, an observer
queries the state of the counter to create a time-stamp once an event occurs. They can

be used to measure time intervals or to order events [Kop07].

Oscillators differ in quality and price wherefore clocks drift apart [KAHO04]. The value of
the clock drift represents the frequency ratio between a clock and its reference. It can be
calculated by dividing the granularity of the clock z by the number of micro-ticks n* in the
reference clock during this interval. Subtracting the drift by one and taking the amount
provides the drift rate p (cf. Equation 2.1). A perfect drift rate of 0 is impossible, but it
can be bounded by a maximum rate. This value typically lies in the order of magnitude
of 1072 to 1077, but it can also be less if better oscillators are used [Kopll, p. 54f.].

z(microtick, ) — z(microtickl)

k
k= —1 2.1
P; e (2.1)

Since every clock has a different drift rate, an ensemble of clocks must be synchronized.
There are two possibilities to reach this. In internal synchronization, the precision of the
clocks in the ensemble is bounded while external synchronization reduces the accuracy
between a clock and a reference [KO87]. Both values are based on the offset between two
clocks. It is determined using a reference clock which takes the time-stamps of one of the
clocks’ respective micro-ticks. The amount of their difference represents the offset. In a
set of clocks, the precision denotes the maximum offset between all pairs of clocks during
an interval of interest. Similarly, the accuracy represents the maximum offset with regard
to the reference clock [Kopll, p. 56].

As clock drift arises continuously, internal synchronization must be repeated periodically
after an interval R;,;. This process is shown in Figure 2.1. The resulting offset at the
end of the resynchronization is represented by the convergence function ® while the drift
offset I' denotes the maximum deviation of two clocks. It depends on the specified drift
rates of both clocks and the resynchronization interval. The synchronization mechanism

must ensure that the sum of the convergence function and the drift offset is always smaller

10
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than the precision II. Otherwise, a clock will leave the interval [KO87]. The convergence
function further defines the correction of the clocks. State-correction adapts the current
time value of a clock but leads to discontinuities in the time-base. Rate-correction prevents
this issue as the clock speed is adjusted either by adapting the number of micro-ticks per
macro-tick or by changing the oscillator voltage [Kopll, p. 72f.]. This mechanism can
also be used in external synchronization. A time gateway receives the current time from

an external server periodically and adjusts the other clocks in the system [KKMS95].
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Figure 2.1.: Periodic resynchronization with regard to [KO8T].

In distributed real-time systems, most nodes have an oscillator. Since it is not possible
to synchronize those clocks perfectly, the notion of a global time was introduced. It is an
approximated abstraction which uses selected micro-ticks of an internally synchronized
clock set of precision II. These ticks are called macro-ticks and the nodes use them to
create a local implementation of the global time. The best achievable synchronization
error is defined by the reasonableness condition. It bounds the maximum difference be-
tween global time-stamps of an event by at most one tick and the synchronization error
by less than the granularity of a macro-tick [Kop98a]. As a consequence, it is not pos-
sible to reconstruct the temporal order of two events whose global time-stamps differ by
one tick. To reconstruct them, the time-stamps must differ by at least two ticks and
the clocks must satisfy the reasonableness condition. Furthermore, the true duration of
an interval is bounded by the observed duration plus/minus twice the granularity of the
global time. Only reducing the global time’s granularity can improve this fundamental
limitation [Kopll, p. 59f.].

11
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The limitation explained before grounds in the usage of a dense time base. Here, events
are entitled to occur at every instant of the time-line [Kop92]. However, it is possible
to restrict their occurrence to active intervals of duration e which have an interval of
silence denoted as A in between. The resulting sparse time base is shown in Figure 2.2.
Events in the same e-interval are considered to occur simultaneously. Hence, a consistent
temporal order can be reconstructed if the events occur in consecutive e-intervals [Kop07]
and A is greater than three times the granularity [Kop95]. The architecture must ensure
that significant events (e.g., sending a message or observing the environment) occur only
in e-intervals. Otherwise, an agreement protocol must be used which requires additional
resources (e.g., time, bandwidth, etc.) [KAGS05]. Another benefit of the A-intervals is
the possibility to identify the state of the system clearly. The state represents all values
of variables, etc. and separates future activities from the past [Kopll, p. 85]. During
the A-intervals, there are no activities performed and the state can be determined. Using
a sparse time base is one central aspect to reach determinism in distributed real-time
systems [Kop07]. Since determinism in replicated components enables fault-tolerance,

composability is introduced in the following.
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Figure 2.2.: Sparse time-base (adapted from [KAGS05, Kop07]).

2.1.3. Composability

Large systems can be built from prefabricated components that are connected via stan-
dardized interfaces. In this way, knowledge about a component’s internal design or im-
plementation is not required as long as the component’s behavior at the interface is
correct [Kop98a]. In real-time systems, the temporal correctness is as important as the
correctness of computational results. Since there is no possibility to assign temporal ca-
pabilities to a software, it requires a virtual or real hardware unit for execution [Obell, p.
28]. Figure 2.3 illustrates an example system which consists of two connected clusters,
a physical plant and a Human Machine Interface (HMI). The different components and

interfaces are introduced in the following.

In distributed computer systems, a component must be separated from the communication
infrastructure. This infrastructure provides a unidirectional message exchange from a
sending component as unicast (one receiver) or multicast (multiple receivers) during a

defined time-interval. Since the message transfer is unidirectional, error propagation from
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a faulty receiver to a correct sender is avoided. This property is very important in fault-
tolerant systems, similar to multicasting [Kopl1, p. 80f.]. Multicasting supports a timely
correct reception of a single message by multiple receivers. This is required for active
redundancy and fault-tolerance [KAGS05].

HMI
Sensors & Actuators |
LI (I/O) LI (I/0) LI (I/0) LI (I/O) LI (I/0)
Nodey e Nodey Gateway Gateway Nodey,
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Figure 2.3.: Connected clusters (adapted from [Obell, p. 7], [Kopll, p. 81]).
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Messages exchanged via the communication infrastructure consist of a header, a data field
and a trailer. The header contains delivery information like the destination address or how
the message has to be handled. Besides this, the data field contains the message’s content.
Each message has to be delivered in its whole. Since the trailer contains checksums or
electronic signatures, a corruption and the authenticity of the message can be checked. If
it is not received completely or the trailer does not match, it is discarded. The transport
delay of a message is given by the time interval between the instants for sending and
receiving it. To prevent congestion of the receiver, it is possible to constrain the rate
messages are sent with [Kopll, p. 88f.]. This is realized using the so called minimum

inter-arrival time which has to elapse before another message instance can follow [AOA16].

A message can be either time-triggered or event-triggered. The latter type is sent with
regard to an event that occurred in the system. It contains information about this event
and it is unique, wherefore a receiver must process all messages to determine the new
state [Kop99]. Error detection can only be performed by the sender as the receiver does
not know whether an event occurred. Hence, it requires an explicit acknowledgement. As
the sender must decide whether the transmission failed within a defined real-time interval,
fault-tolerant systems cannot be built on systems that are not aware of the progression of
real-time [Kopll, p. 91]. In contrast, time-triggered messages are sent periodically at a
defined point in time and contain information about the system’s state [KS03]. Using the
temporal knowledge, congestion can be avoided and the receiver is able to detect errors.

If the receive instant elapsed without any reception, a failure occurred in the sender or
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the message is lost in the communication infrastructure [Kopll, p. 91].
There are four types of interfaces that components provide [Kopll, p. 92
1. Linking Interface (LIF)
2. Technology-Independent Control Interface (TICI)
3. Technology-Dependent Debug Interface (TDDI)
4. Local Interface (LI)

The linking interface provides the specified service and connects the component to other
components building a cluster (cf. Figure 2.3). It is message-based and must be indepen-
dent from the internal implementation of the component. Otherwise, it is not possible to
develop components independently [Kop02a]. The technology-independent control inter-
face is used to configure and control the component. Arriving messages are handled by
the hardware itself or by the operating system, but not by the application. In this way,
the application and the overall complexity of the node can be simplified [Kopll, p. 94].
Via the technology-dependent debug interface it is possible to debug the component. It
is intended for the component’s developer who can observe the state of variables and it
is irrelevant for the user [KS03]. Finally, the local interfaces connect the component with
its environment [Kop02a] as shown in Figure 2.3. Besides sensors and actuators in the

physical plant, this can be a human operator or another computer [Kopll, p. 95].

Components containing a local and a linking interface are called gateway components. At
cluster level, only the timing and the semantic content of the local interface are important.
Hence, its technology can be exchanged without any influence on the linking interface
[Kopll, p. 95f.]. Gateway components link two different systems which may have varying
data representations, data semantics or component interactions. Hence, a gateway has to

adapt the different technologies used between the systems [Kop98a).

The integration of components into a cluster requires four principles. First, the compo-
nent shall be developed independently. To reach this, it must define the specification
of the linking interface precisely. This covers the interface data structures in the value
and time domains and a conceptual interface model of the provided service. Second, the
component’s LIF must provide the specified service and the integration must not change
the functionality. Besides this, the component is not allowed to interfere with communi-
cation activities of other components. Finally, a component must be replica deterministic
to support fault-tolerance by replication [KO02]. With these principals, it is possible to
integrate the components building clusters. Those clusters can be connected further via

gateway components to develop large systems [Kop98a].
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2.1.4. Determinism

According to Bunge [Bunl7, p. 7|, a machine is called deterministic if it runs regular
and reproducible. As a consequence, determinism enables the prediction of future system
states and outputs based on an initial state, the sequence of inputs and the progress of
time. With this prediction, it is easier to understand the system’s real-time behavior and

testing is simplified. In addition, it enables fault-tolerance by replication [Kop08a].

A desired feature in a system with replicated components is replica determinism. If those
components start in the same state and receive the same inputs, they produce the same
outputs in approximately the same time. Using this property, it is possible to mask failures
of a component in a properly designed fault-tolerant system [Kop95]. A failure occurred
if one replicated component does not work according to its specification. In this case,
the system requires time to correct the failure using the outputs of the correctly working
components. How much time it takes must be deduced from the application dynamics
and can be bounded by the precision of the global time in time-triggered systems. To
ensure the correct behavior, it is important to prevent failures caused by the software.

Only random, physical faults are allowed to occur [Obell, p. 34].

Realizing (replica-)determinism in distributed real-time systems requires several aspects.
First, all components must agree on a consistent initial state and they must receive inputs
simultaneously [Obell, p.33]. Similarly, an agreement is required on the inputs of the
components. Due to digitalization errors, these inputs might differ in the temporal and
value domain [Pol94]. Using a dense time base, events can be observed in a different order
which leads to a significantly diverging behavior. A sparse time base prevents these errors
and enables the simultaneous provision of inputs to all components [Kop07]. Furthermore,

it facilitates the determination of a consistent state [Kopll, p. 128].

The second requirement covers certain computations. This includes arbitrary values such
as random numbers or the protection of shared resources via non-deterministic synchro-
nization mechanisms [Pol94]. Those mechanisms should be avoided. The same accounts
for preemptive scheduling. Here, a task may be interrupted due to an external event
leading to a deadline miss [Kopll, p. 129f.]. Non-preemptive scheduling prevents this
issue. If it cannot be used, all possible task preemptions must be considered during the
design [Obell, p.37].

Finally, the instants when messages are delivered should be known. Using a time-triggered
communication mechanism, all instants of the message delivery are defined in advance.
In addition, the temporal order of all messages equals at sender and receiver and there

are no arbitrary delays. Both aspects are further requirements [KAGS05].
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2.1.5. Real-Time Communication

Components in real-time embedded systems exchange data via communication networks.
The characteristics of real-time systems explained in Section 2.1.1 impose various require-
ments on those networks. This section presents the requirements and introduces typical

traffic types afterwards.

The stability of feedback control loops depends on the time between reading a sensor value
and performing an actuation. In networked control systems, this time is influenced by the
network delays and their variation [KOC*94] which is called jitter. Another big influence
on the control’s quality is the precision of the clock synchronization mechanism. Hence,
communication delays and jitter should be minimized and the synchronization mechanism
must provide a global time base with a proper precision [Kopll, p. 168]. Furthermore,
real-time behavior of the communication system and known jitter are required to comply
with the deadlines of the system [Kop00].

Further important properties are reliability and determinism. Reliability includes the
transmission of messages via replicated communication channels [GK91] and robust en-
coding with error-detecting or even correcting codes. As retransmission in case of a failure
increases the jitter significantly, it should be avoided. However, the communication sys-
tem should detect the faulty behavior of components and report it [Kopll, p. 168ff.]. In
addition, it should prevent the propagation of temporal faults between the components.
To realize this, temporal firewalls can be used. They exploit common knowledge about the
transmission instants to block faulty messages [Kop98b]. A deterministic message trans-
fer covers a correct message order on all channels and replicated messages must arrive at

simultaneous instants [Kop0O8b].

In distributed real-time systems, the standard communication type is a multicast as the
same data is required often by multiple components. One example is fault-tolerance using
replication. Hence, the communication network should support this type [GK91]. Due to
frequent changes in the configuration, it must be possible to add components dynamically.
This must not require changes and retesting of existing ones. Furthermore, a congestion
of the available bandwidth must be avoided [Kopll, p. 171].

Communication channels are often shared resources as the amount of costs and weight
due to wiring can be reduced. Multiplexing enables the transmission of multiple signals
via the same channel [TW11, p. 125]. The technology considered in this thesis is Time
Division Multiplexing, also called Time Division Multiple Access (TDMA). Every data
stream receives the entire bandwidth periodically for a dedicated amount of time. The

streams must be synchronized and small timing variations can be compensated using
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guard times [TW11, p. 135]. Time-triggered networks are based on this technology which
provides a deterministic transmission, low latency and low jitter. Additionally, different
traffic types such as time-triggered, rate-constrained and best-effort traffic can be sent via
the same network [SLK12]. Those types are depicted in Figure 2.4 and explained in the

following.
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Figure 2.4.: TDMA with time-triggered, rate-constrained and best-effort data streams.

The first traffic type introduced is called Best Effort (BE, colored in green). Whenever
a significant event occurs at the sender, the related output message is buffered until the
communication system is ready to forward it. The receiver buffers the message in an
input queue and consumes it later [Kop08b]. Both buffers can overflow if the network is
congested or the sending rate is larger than the receiver’s reception rate. These overflows
have to be handled using an event-triggered protocol [Kop91]. Without any limitations, it
is impossible to provide temporal guarantees. All senders may send messages at the same
instant overloading the network. Countermeasures would be buffering, delaying packets
at the sender’s site or dropping packets. All of them are not suitable for real-time data,

wherefore the following to traffic types were developed [Kopll, p. 178].

Rate-Constrained (RC) communication systems (colored in orange) guarantee a maximum
bandwidth including a bounded transport latency and jitter. To provide the guarantees,
the bandwidth parameters of each application are predefined. In contrast to time-triggered
traffic, rate-constrained communication is not deterministic as it does not follow a syn-
chronized time-base [Belll]. It is possible that some systems exceed their bandwidth as
long as other systems are not congested. In this case, the communication system sends
the additional messages as best effort. However, the senders are forced to delay their
packets if the network cannot handle the increased traffic. In this way, temporal error
detection and the protection from babbling idiot can be provided. Typically, there is less
traffic compared to the assumed peak [Kopll, p. 180f.].
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Finally, Time-Triggered (TT) communication (red-colored streams) is based on an a priori
known and periodically repeated communication schedule. Each time-triggered message
is sent at a dedicated phase in every period. Using the known schedule, the communica-
tion system can assign the required resources to those messages wherefore they are sent in
known intervals and without any collisions [Kop08b|. Furthermore, it provides determin-
ism since a sparse time base ensures a consistent temporal order of all messages [Kop07].
The time base can be realized using a synchronized global time which bounds the com-
munication jitter to its precision. Typically, it lies in the sub-microsecond range. An
alternative to this approach is using the period of a single leading process. This process

establishes a basic period from which all other cycles must be derived [Kopll, p. 184].

2.1.6. Real-Time Operating Systems

Operating systems are used to manage the resources of a computer system and to provide
a simplified interface for developing applications. It is realized as an additional software

layer on top of the bare hardware [TB15, p. 1].

The management of resources covers scheduling, access to memory and input/output de-
vices, protection and synchronization of resources between tasks and interprocess commu-
nication. Herein, Real-Time Operating Systems (RTOSs) must take care of a predictable
execution [SRO4]. This is different from general-purpose operating systems which focus
typically on a maximum throughput and fairness [Ler05]. Section 3.4 introduces ap-
proaches which try to provide real-time characteristics to standard operating systems.
The aim is to exploit comforts from the standard OS like graphical user interfaces, file

systems or standard APIs while providing real-time capabilities [Marl18, p. 203f.].

Resources in embedded systems are usually limited. Hence, it should be possible to remove
services from the operating systems which are not required. The concept of a micro-kernel
provides a configurable operating system according to the hardware resources and needs
of the application. Typical elementary functionalities are interprocess communication,
synchronization and a few functions for task management. The latter cover creation,
activation, blocking and termination of tasks. All remaining functionalities can be imple-
mented in additional modules based on the elementary services. Benefits are an improved
usage of limited resources, scalability and portability. Furthermore, the time required to
execute system calls is reduced and the micro-kernel is mostly preemptive. This improves
timeliness and determinism. As a disadvantage, the short duration of system calls results
in many context switches between user and kernel mode. Since less functions are executed

in the protected kernel-mode, the protection of resources is decreased further [WB05, p.
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346ff.]. However, some embedded systems are designed for a special purpose and tested

to be reliable which is why protection is not always required [Marl8, p. 200].

A task is the sequential execution of program code controlled by the operating system. It
contains functions and variables and can be divided into several threads [WBO05, p. 350].
These threads share the task’s resources and can be executed in parallel. In this way,
they can communicate via shared memory instead of exchanging messages as interprocess
communication. As a disadvantage, threads can interfere with each other which has to

be prevented using synchronization mechanisms [Will2, p. 5f.].
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Figure 2.5.: Task states and temporal parameters (adapted from [WB05, p. 352]).

A task/thread can be new (dormant), ready to run, running or blocked. In the blocked
state, tasks are waiting for an event to execute. This can be an input or the release
of a resource by another task [Stal2, p. 117ff.]. Each task has the following temporal
parameters. They are illustrated in Figure 2.5 together with the task states. At the arrival
time, the task is created (new) but dormant. It becomes runnable at the request time and
starts its execution once it is scheduled (starting time). The time difference between them
is called reaction time or release jitter as it is variable. After termination, the task returns
to the dormant state (completion time) and can be activated again during its next period
(if the task is periodic) [WBO05, p. 354ff.]. Important parameters for real-time tasks are the
deadline and the execution time. The latter represents the time required to complete an
action and is typically bounded by a value called Worst-Case Execution Time (WCET).
A guaranteed WCET can be used to schedule tasks deterministically [AB04]. Finally,
slack denotes the difference between the completion time and the deadline. It can be
reused to schedule tasks with a lower priority dynamically [LB05]. Besides the already
mentioned periodic tasks, there are aperiodic ones. If there is a minimum separation
between their request times and if they have a hard deadline, aperiodic tasks are called

sporadic [SSL89].

19



2.1. Real-Time Systems

Scheduling mechanisms take care of assigning the CPU to runnable tasks. In an RTOS,
they must guarantee to maintain all deadlines as long as the task-set is schedulable. This
requirement must be analyzed by a scheduling analysis which also figures out if a suitable
schedule exists and if it can be found [GR04]. There are different types of scheduling algo-
rithms: dynamic/static and (non-)preemptive scheduling. A dynamic scheduler calculates
the schedule and assigns the next task to the CPU at runtime introducing an overhead.
In contrast, a static schedule is defined at design time and stored in a table. A dispatcher
uses this table at runtime to assign the CPU to the tasks. In complex systems, static
scheduling is often the only way to reach predictability. Using preemptive scheduling it
is possible to suspend a task at runtime [Mar06, p. 128ff.]. Hence, it is used in case of
long execution times or if high-priority tasks request their execution. Non-preemptive
scheduling does not provide this capability. It is suitable for short execution times or if a
task shall not be interrupted [Kopll, p. 240].

Supporting concurrent tasks causes the problem of synchronization. Once those tasks
share common resources such as data or devices they are called dependent [WBO05, p.
378f.]. Without any synchronization mechanisms, accessing the resources might lead to
race conditions or deadlocks. Race conditions occur in situations where multiple tasks
read and write the same data and the final result depends on the order of the read/write
operations [CMSO01]. Deadlocks occur when multiple tasks wait for resources that are
held by each other instead [CMHS83]. There are two concepts to solve this issue. The first
is mutual exclusion where a resource is granted to one task exclusively until it releases
the resource. The second solution is to synchronize the sequential order of accessing the
resource [WBO05, p. 379f.]. Both concepts can be realized using condition variables, moni-
tors and semaphores. Condition variables allow blocking on a condition that has to be met
while a monitor is a module providing mutually exclusive functions to access its variables.
Semaphores are integer variables which provide atomic functions to increment/decrement
the counter. Only if the value is greater than zero, access can be granted [Din89]. A
binary semaphore is called a mutex [TB15, p. 132]. All these constructs require a context
switch once a task tries to access a locked resource. Hence, they can lead to a loss of
replica determinism [Kopll, p. 226]. Using a static schedule solves this issue as most

concurrent activities can be preplanned and prevented [Kop02b].

Even if real-time communication and RTOSs can provide guarantees for delays, jitter and
execution times, there are cases in which those guarantees are not sufficient to realize
a proper accuracy of real-time data. State-estimation as one solution for this issue is

presented in the next section.
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2.1.7. Temporal Accuracy and State-Estimation

The usage of state-estimation is motivated by the problem of the temporal accuracy of
real-time data. This data type is useful only during a limited time interval and the system
would fail if the accuracy is not given. State-estimation is one possibility to extend the
interval in which real-time data is valid [KESHOOT7].

Relevant state-variables in a computer system or in its environment are denoted as real-
time entities [Kop98b]. Observing the value of an entity results in an atomic data set
including the entity’s name, the time of the observation and the value. The latter is the
entity’s state or an event [EBKO03]. Since observations are also events, event information
describes the difference of the old and the new state [Kop02a]. In a distributed system
without global time base, determining the time of the observation can be impossible. The
missing global time base makes the provided time-stamp meaningless (cf. Section 2.1.2)
and the time of the message arrival cannot be taken instead. The reason is impreci-
sion caused by network delays and the unknown communication jitter. This imprecision

reduces the quality of the observation [Kopll, p. 113f.].
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Figure 2.6.: Temporal delay and accuracy interval (adapted from [Kopll, p. 117]).

Real-time entities are represented by real-time images. Those images are valid only during
a dedicated time interval and if the value is correct [Kop98b]. To construct them, it is
possible to use observations of states and events or the mechanism of state-estimation
[Kopll, p. 115f.]. The temporal relationship between entity and image is called temporal
accuracy. Accuracy is given if the deviation between the value of the image and the entity
is bounded for every instant during a so called accuracy interval. This interval represents

an ordered set of instants at which the entity was observed and its length is given by the
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entity’s dynamics. Due to transmission delays between the observing and the receiving
nodes, the image lags behind its entity causing an error in the image. Figure 2.6 shows an
accuracy interval of 0.5 time units between the real-time entity (solid line) and its image
(dashed line) as an example. In a properly designed system, the worst-case error’s order

of magnitude is similar to the error in the measurement [Kop98c].

A phase-aligned transaction consists of a sender (observer) and a receiver (actuator) task.
Its duration can be calculated by adding the WCETs of the tasks and the Worst-Case
Communication Delay (WCCOM) required to exchange the data. All those values are
known in a time-triggered system. The sum equals the time difference between observing
and using a real-time image. If the required temporal accuracy interval is smaller than

this duration, state-estimation is required to realize a sufficient accuracy [Kopll, p. 118].

Using state-estimation, the probable state of a real-time entity can be determined at
a selected future instant. To reach this, an estimation model is executed periodically
and the image is updated based on the result. One important aspect is a close agreement
between entity and image at the instant when an output must be provided to the system’s
environment [KESHOO07]. To build an adequate model, it must be possible to represent the
entity’s behavior by a known process. Otherwise, state-estimation cannot be used [Kopl1,
p. 121]. In some cases it is possible to use the first derivative of a continuous and
differentiable equation while other cases require a more detailed mathematical model.
However, state-estimation is a powerful technique to improve the accuracy between a real-

time entity and its image if the model describes the system’s behavior properly [Kop98c].

2.2. System Design and Validation

After presenting characteristics of the developed systems, this section focuses on the
development process itself. It covers the design of embedded real-time systems and their

verification and validation.

2.2.1. Design of Real-Time Systems

The development process of real-time systems comprises several, incrementally traversed
phases. Their order depends on the system development life-cycle used. Although there
are several models available (e.g., V-, spiral or waterfall model), all of them describe
similar phases [Marl8, p. 19ff].

Typically, the development starts with an analysis of the customer’s needs and a definition
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of requirements. From these requirements, the system architecture is derived. Regarding
distributed real-time systems, it includes the definition of components, clusters and their
interfaces. The next step in the process is the design of the components [Kopll, p. 264f.],
their implementation and validation. Once the validated components are available, an
incremental integration follows building the final system. This system is tested regarding
the functional specification first, followed by a validation whether all requirements are
fulfilled [BST10, p. 236]. In the following, two common design styles are presented.

Those are model- and component-based design.

In model-based design, the functionalities of the system and the system’s environment are
realized as models first. A model is an abstraction of the developed functionality covering
only relevant aspects. In many cases, it is possible to execute it on a computer as it con-
tains sequential instructions. Such a model is called a simulation [FLV14, p. 16]. During
the definition of the system’s architecture, models describing different functionalities are
integrated and the models are refined to be representable by a behavioral description. This
refinement is continued in the implementation phase to obtain the related software which
is adapted to the executing hardware platform [BST10, p. 234f.]. During the last years,
model-based design has proven to reduce development costs and time. Furthermore, it in-
creases the system’s quality and models can be reused. Due to these reasons, model-based

design is an attractive approach for embedded systems development [BKKS12].

Component-based design grounds on the concept of composability as described in Sec-
tion 2.1.3. Independently developed and potentially existing components are integrated
to build large systems via specified interfaces [KS03]. The components’ functional and
temporal behavior is well known since the requirements are derived top-down from the
application functions. In this way, it is not required to provide information about the
internal implementation of the components. During the design process, the capabilities of
the components are developed bottom-up. It is necessary that the capabilities match the
requirements, otherwise a new component has to be developed. In addition, the interface

specification must be easy to understand and use [Obell, p. 27f.].

2.2.2. Verification and Validation

Verification and Validation (V&V) ensures the conformance of a developed system with
its specification and requirements within a certain phase of its life-cycle. To reach this,
it utilizes reviews, static and dynamic analysis, testing and formal methods [Fis07, p. 3].
Since it is impossible to design tools which generate correctly working implementations,

every design has to be verified. In addition, there is no technique available which solves
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all problems wherefore different techniques need to be combined [Mar06, p. 199f.].

Comparing the abstraction levels of the specification and the implementation, the differ-
ence is quite large [Mar06, p. 199]. As a consequence, V&V must be seen as a comple-
mentary process to design and performed during the entire development life-cycle. Once
a development step has finished, V&V assesses the results analyzing different behaviors.
By providing feedback regarding quality and issues, it is possible to figure out system
failures or missing functionalities during early design stages [Fis07, p. 3ff.]. In addition,
new versions of a system must be validated to determine if already tested functionalities

are still working correctly [Lev00].

Although verification and validation are often mentioned together, there is a difference
between both. Verification refers to consistency between the system specification and the
developed system (called System Under Test (SUT)). Example techniques are (I) formal
mathematical analysis and (II) model checking using finite models of a system [CW96].
In contrast, validation considers the user’s intention instead of the system specification.
While the user’s intention describes the role of the system in an application context, the
system specification defines this intention from the developer’s point of view. Validation
usually uses testing to examine correctness in the real world [Kopll, p. 292]. Further

validation techniques are simulation and fault-injection.

Testing provides selected inputs to the system and compares the resulting outputs with
the expected ones [Mar06, p. 201]. Based on induction, it is assumed that the system
works correctly for all possible inputs. However, this probabilistic method requires testing
durations in the order of magnitude of the MTTF. For safety-critical systems with an
MTTF in the order of 10°h, such tests cannot be performed [Kopll, p. 292f]. To
select a proper set of test cases and the related inputs, different approaches can be used.
Examples are random tests using randomly selected inputs or functional testing. The
latter approach uses input data leading to a correct or faulty system behavior [JMV04].
Herein, data used for fault-injection should cover all faults defined in the fault hypothesis.
Besides the system’s functionalities, the selected data should cover aspects of the code

such as statements, branches or conditions [Kopll, p. 294f.].

A basic requirement of component-based design is the validation of components in the
temporal and value domains in isolation and the maintenance of the correct service after
their integration [Kop00]. The component developer can use the technology-independent
control interface to parametrize the user scenarios and the technology-dependent debug
interface to monitor the internal execution. After integrating the components, their val-
idation must be repeated by the component user since the interactions of components

might cause emergent behavior. If the components work correctly, the message exchange
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can be tested according to the specification of the linking interface [Kopll, p. 297f.].
Exploiting the capability of multicasting, it is possible to observe the message exchange

without probe-effects on the components [Kop08b].

Components can be used further to embody the models of a plant or a control algorithm
developed during model-based design [FLV14, p. 28]. These components can be linked
in a simulation environment to validate the interactions and to tune the closed loop
control parameters at early development stages. In later stages, the target application
can be derived from the models using a generator software [FVHRKO06]. Usually, the
simulations operate on different time-scales than the target system. Hence, the phase
relations of the message exchange in the simulation environment should be similar to the
final implementation. This avoids design errors and improves the simulation’s faithfulness
[Kopll, p. 299].

Formal methods use mathematical techniques and logical analysis during the specification,
design and verification stages [KZ10]. The process starts with a precise representation of
system requirements in natural language. This representation is then transformed into
a formal specification [EC98| which includes precise semantics and syntax. However, all
assumptions, omissions and misconceptions introduced will remain in the model limiting
the validity of the derived conclusions. Those are gained during the last step when the
model is analyzed and the results are interpreted [Kopll, p. 299f]. The benefit of
formal models is the usage of a precise language without any ambiguities. It is more
effective and inconsistencies, incomplete specifications or faults can be found early during
the development process [Rus93, p. 39f.]. Furthermore, formal methods can be used
to support the certification of functions in safety-critical systems [DBDCO03]. However,
the syntax and mathematical roots are intimidating wherefore formal methods are rarely
used in practice [GD13]. Apart from that, a formal description cannot cover all analyzed
system properties and the link between the informal user’s intention and the specification

is potentially missing [Kopll, p. 293].

2.3. Distributed Co-Simulation

Many models built during model-based design are executable wherefore they are called
a simulation [FLV14, p.16]. The execution is performed in a simulation tool which is
usually optimized for a respective domain. For example, Riverbed Modeler, OMNET
and NS2 are widely used network simulators while control systems can be simulated in
MATLAB. Since those tools might provide limited results if they are not used for their

intended purpose, simulating a complex system with different components should not be
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performed by a single tool [HSB10]. In addition, porting components to another tool is

time consuming and error prone [CDF*14].
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To solve this disadvantage, co-simulation was introduced. In this technique, a frame-
work couples specialized simulation tools which enables the simulation of complex sys-
tems [CDFT14]. Figure 2.7 shows an example where the Riverbed Modeler and MATLAB
are connected. While each tool maintains its own time and state, the framework synchro-
nizes them by coordinating their time advance and the exchange of data. Hence, the
simulation tools do not communicate directly. In a co-simulation environment, the data
exchange consists of shared variables, common design parameters and events. Events can
be separated into two types. The first type are time events which are scheduled at a defined
time. State events as a reaction on a state change represent the second type [FLV14, p.
18f.]. The simulation environment must ensure a communication mechanism providing a
consistent and timely message delivery. A message is delivered consistently, if its time-
stamp equals the current instant or if it is smaller. In this way, a correct delivery order
can be realized [CDFT14].

Complex systems typically consist of components with discrete and continuous dynam-
ics. Discrete systems are digital hardware, embedded software or communication systems
while physical processes or analogue circuits are examples for continuous dynamics [Liu98].
Accordingly, there are different simulation paradigms: continuous-time, discrete-time and
discrete-event simulation. The systems’ dynamics are represented by differential equa-
tions in continuous-time simulations. They define the transition between state variables
which occur continuously based on the simulation time [Fujo0, p. 30]. In discrete-time
simulation, the simulation time is discretized into equal time steps. The simulation time
advances to the next multiple of the time step first and the state variables are updated
afterwards. Since state changes do not only occur at those multiples but also in between,
changes might be missed and a step has to be recomputed considering the event [BAR10].
Instead of using equal time steps, discrete-event simulations jump between the events of
the system. They are stored in a chronologically ordered list which is traversed at run-
time. The environment selects the next event at the correct instant, simulates the effect

and adapts the simulation time using the time of the next event [Mis86].

To synchronize the time in a heterogeneous environment with continuous and discrete
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dynamics, a simple algorithm can be defined as follows. It is a step-wise algorithm in which
the discrete tool defines the step granularity and both tools have the same simulation time
at the beginning of a step. The discrete tool sends the size of the next time-step to the
continuous tool which advances in time. It stops once an event occurred or if the defined
duration is reached. Afterwards, it sends its internal time and the monitored variables
back to the discrete tool which advances to the same time [FLV14, p. 19f.]. As shown in

Section 3.2.1 there are many algorithms which are suited for real simulations.

Co-simulation must not be restricted to the execution on a single host as shown in Figure
2.8, again with the Riverbed Modeler and MATLAB as examples. Using a convenient
framework, co-simulation can be spread across geographically distributed locations. Each
tool is coupled with a local instance of the framework while these instances are connected
via LANSs or even the Internet. In this case, one speaks about distributed co-simulation
which has several advantages. It allows project decentralization which enables the parallel
execution of simulators on geographically distributed machines. As a consequence, it is
possible to design and validate a system by teams located in different sites or countries
and to share resources. In addition, simulator licenses and intellectual property can be
managed. The latter enables the simulation of components without publishing their de-
scriptions. One disadvantage is the overhead caused by the communication between the
distributed hosts which might increase the simulation’s execution time. This overhead
depends on the network delays wherefore it is not present in local co-simulation. Never-

theless, local co-simulation cannot provide the advantages mentioned above [AMOT02].

Distributed Co-simulation Framework
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Figure 2.8.: Distributed co-simulation framework via a communication network.

The synchronization of distributed discrete event simulations can be realized by merging
the local event lists to form a global one. This list is traversed by selecting the simulation
with the smallest time-stamp of the next event and allowing it to execute. The other

tools suspend their execution in the meantime. Once the simulation step has finished,
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data messages are exchanged and the next tool is scheduled for execution. If new events
arise during the execution, they are added to the global event list and considered in
the following [OAO15]. If time-stepped simulations are involved, several synchronization
points can be predefined. At runtime, the tools execute until they reach such a point and

exchange information afterwards [LVS*12].

2.4. Software- and Hardware-In-The-Loop Testing

Although co-simulation enables the validation of complex systems at early design phases,
it has several disadvantages. First, models are always abstractions of the developed
systems. Even without abstractions, there is the risk of introducing errors or losing
design details wherefore validating a model and the correctness of results is difficult.
Furthermore, there must be a trade-off between a model’s accuracy and the simulation
time required to process the results. This issue makes large simulations or simulations
with many design details impractical. Finally, the model’s code is typically not reused for
the final software increasing the development costs. Reasons are the design of simulation
tools for a usage during the design phase (flexibility, low cost, etc.) and possibly different
languages between the simulator and the software [DGKO07].

To save development costs and time, hardware and software can be developed in parallel.
As soon as prototypes of both parts are available, they are integrated and testing starts.
However, there are many cases in which serious integration problems arise. The reason
for these issues are side effects from the device’s technological aspects. If hardware and

software are developed independently, they cannot be considered [BCPS11].

Software-In-The-Loop (SIL) testing as illustrated by Figure 2.9 provides a solution to
these issues. Here, the interactions between a software-implemented control algorithm
and the model of a simulated plant are validated. Using SIL, it is possible to validate
the final software directly during the design phase without developing a related model.
This possibility saves time and costs. If the hardware is not available yet, a simulation
provides different validation setups and repeatable tests. Furthermore, the environmental
conditions of a simulated plant can be controlled which is not possible in field tests outside
a lab [DGKO7]. In this way, integration issues due to technological aspects can be elim-
inated early during the design [BCPS11]. However, there are also challenges remaining.
Examples are scalability in large setups, required modifications in the software to inter-
act with the simulator, breaking TCP connections between the software and a network

simulation, or timing issues combining event- and time-triggered paradigms [DGKO7].
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Figure 2.9.: Software- and Hardware-In-The-Loop testing.

While SIL validates the software against a simulated plant, Hardware-In-The-Loop (HIL)
testing includes actual physical devices into the simulation loop (cf. Figure 2.9). These
devices interact with the simulation models in real-time via input and output interfaces
of the HIL test bench [LWFMO7]. Applying this technique during the design phase has
several advantages. It avoids errors in later steps, increases the system’s reliability, pro-
vides efficiency [SY14] and improves the flexibility and rate of various tests. Furthermore,
it prevents damages of equipment or human lives and reduces costs and development
time [BCD'12]. If a model replaces its system and the remaining hardware and software
components are implemented exactly, high implementation costs arise. Hence, a trade-off
must be made between accuracy and the expenses of the hardware [SY14]. However, HIL
also has a major issue in distributed real-time tests via the Internet. Since real-time hard-
ware is connected, the execution must be performed in real-time also. In such setups, the
Internet’s delays, jitter and packet loss reduce the stability, accuracy and transparency
of the test. Hence, the HIL framework must provide a mechanism which mitigates these
issues [EBSF12]. Although both approaches have disadvantages, they are widely used in

the validation and verification process.

2.5. Fault-Injection

Fault-injection is an effective way to validate the dependability of a system. This includes
the tolerance mechanisms’ effectiveness and the system’s ability to detect errors, locate
them and to recover. In addition, fault-injection provides feedback to the developer
for improvements [PBC*96]. There are different targets where faults can be injected:
hardware, software and simulations [NL11]. The related injection techniques are presented

in the following.

Hardware-implemented fault-injection requires additional hardware to perform the injec-
tion. There are two different injection types depending on the faults and their location.

Both cause faults by inducing voltage or current into the system. The first type uses direct

29



2.5. Fault-Injection

contact via (I) active probes attached to pins or (II) sockets. While active probes may
destroy the system due to an inappropriate amount of current, sockets are separated from
the hardware. They are able to apply boolean operations on the signals like AND, OR or
inverting. The second injection type does not have a direct contact but uses radiation or
electromagnetic interference. Since it is difficult to determine the injection location and

time exactly, these techniques cannot be controlled precisely [HT197].

Software-implemented fault-injection provides a scalable and statistically verifiable means
to analyze the behavior of the target system for different types of faults. In contrast to
hardware-implemented fault-injection, the results are reproducible and do not cause dam-
ages in the hardware [SV05]. Tt is applicable for operating systems or applications without
using additional hardware. To inject faults into the operating system, the fault-injector
must be embedded into it. Otherwise, an additional layer can be added between the ap-
plication and the operating system. At runtime, the injection is performed using different
mechanisms. A timer may trigger an interrupt or an event or a condition may cause an
exception. Both inject the fault afterwards. Alternatively, the code may be changed to
cause the injection. However, these mechanisms have the following disadvantages. The in-
jection target must be accessible by the software, the execution might be disturbed or the
software might be changed. Furthermore, it has a limited time resolution whereby faults
with a short latency might not be captured. To prevent the latter, software-implemented

fault-injection should be combined with hardware monitoring [HTI97].

Finally, simulation-based fault-injection enables the observation of the behavior and the
propagation of faults [STB97|. It is a versatile, controllable and simple approach which
can be realized by simulator commands and modifications of simulators or models. The
first technique provides commands in the simulator to manipulate signal values or vari-
ables in the model. It does not require model modifications but injecting a large number
of faults is inconvenient. Modifications in the models are realized using saboteurs or mu-
tants. Saboteurs are separate modules which manipulate inputs and outputs. Although
the technique increases the complexity of the modules since multiple signals must be
added, it is possible to implement more faults compared to simulator commands. Mu-
tants are modified modules of the original target and replace it at runtime. They support
many types of faults but have to be built in advance. Furthermore, additional memory
space is needed for every mutant which is a disadvantage since their number in typical
fault-injection experiments is large. The third simulation-based technique are simulator
modifications. It simplifies the experiment and requires less simulation resources as de-
terministic or random injection can be performed easily. Furthermore, there is no need

to change the original semantics of the target in an event-driven engine [NL11].
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IT security is used to protect data and resources in computer systems from unauthorized
access or manipulation. In contrast to safety, it covers the analysis of threats and the
application of countermeasures against them. There are several protection goals defined
such as confidentiality, integrity and authenticity [Eck08, p. 5f.]. During the tests, the
framework exchanges data which may be legally protected by non-disclosure agreements
or intellectual property. Hence, it is necessary to protect it technically from manipulation

and unintended insights considering confidentiality, integrity and authenticity.

Symmetric or asymmetric encryption mechanisms ensure confidentiality and prevent un-
authorized insights into the exchanged data. Both types transform an original into a
cipher text using a key and an encryption function [PK79]. In symmetric mechanisms,
this key is the same for encryption and decryption. Many known algorithms are im-
plemented as block ciphers which transform n-bit blocks into the cipher text [AM12].
However, symmetric mechanisms have the disadvantage of depending on a secure dis-
tribution of the key between the communication partners. Asymmetric algorithms use
different keys instead: a private key which is known only by the user and a public key
which is open to everyone. The sender encrypts the data using the receiver’s public key
while the receiver is able to decrypt the data by means of his private key. Since it is com-
putationally infeasible to derive the private key from the public key, the communication
is confidential [TW11, p. 793f.] as long as the key is authentic [bsil9, p. 32]. Typical
examples such as RSA or elliptic curves are based on the problem of factoring large num-
bers and computing discrete logarithms modulo a large prime [RSA78, Kob87]. However,
the computations required for RSA are more complex compared to symmetric algorithms.
Hence, combinations are commonly used where a symmetric key for the communication

is exchanged via asymmetric means such as RSA [TW11, p. 796].

The integrity and authenticity of data can be protected using one-way hash functions
and digital signatures. A one-way hash function maps an input into a value taken from
a smaller set [Win84]. To be secure, the hash function must prevent collisions and it
must be impossible to calculate the input from the hash [Mer89]. Furthermore, changing
one bit must produce a very different output and the hash value must be sufficiently
large [TW11, p. 801]. To ensure data integrity, the hash function is applied on the data
and sent with it. The receiver can calculate his own hash value from the received data
and compares it with the received hash. If the hashes are equal, the data should be the
same [Eck08, p. 350]. Combining the hash function with a secret key, the authenticity

of the sender can be ensured. Such a function is called Message Authentication Code
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[BCK96]. Alternatively, digital signatures ensure the sender’s authenticity, the data’s
integrity and non-repudiation. They are created using asymmetric mechanisms. The
sender encrypts the message with his private key and the receiver can restore the original
content by applying the sender’s public key. While RSA provides both, encryption and
signatures [RSA78|, the Digital Signature Algorithm only provides the latter [NIS92].

In practice, the protection goals mentioned above can be realized using Virtual Private
Networks (VPNs). A gateway in a private network encapsulates the original packet and
sends it as payload in another packet [TW11, p. 821f.]. This technique is also called
tunneling. In this tunnel, the encapsulated payload is secured using a protocol such as
[PSec which provides a confidential and authentic data exchange [Eck08, p. 704f.]. A
second gateway in the receiving private network decapsulates the packet to forward it.
This VPN type is called Site-to-Site-VPN [Fri04] and shown in Figure 2.10a. While the
Site-to-Site VPN connects different sites of a company, a Remote-Access-VPN establishes

the connection between the company network and an end device [BH06] (cf. Figure 2.10b).
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Figure 2.10.: Different types of VPNs.
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3. Related Work

3.1. Real-Time Communication Systems

During the last years, there was a growing interest in real-time communication via Eth-
ernet. Hence, several technologies such as EtherCAT, PROFINET or AFDX were devel-
oped. Two further examples on which the distributed co-simulation framework focuses

are described in this section. Those are TTEthernet and Time Sensitive Networking.

3.1.1. TTEthernet

TTEthernet is a deterministic, time-triggered extension of the Ethernet standard which
is designed to support mixed-criticality systems [SB09]. The main objectives during the
development process were the integration of time-triggered and event-triggered communi-
cation via the same Ethernet network, transparent synchronization, scalability and fault-
tolerance [tte]. In November 2011, the technology was standardized in SAE AS6082
[sael1]. Due to the scope of the distributed co-simulation framework, this section concen-

trates on the three traffic classes provided by TTEthernet.

The first traffic class is the Time-Triggered (TT) message which has the highest priority.
It is used to ensure determinism, tight latency and jitter [Obell, p. 185f.]. To guarantee
the timing, the clocks of the nodes in the TTEthernet network establish a network-wide
synchronized time base [saell, p. 9]. Each TT message is sent at a defined point in
time which is determined by a period and an offset in this period [saell, p. 14]. The
length of the frame determines the required length of the related time-slot. Due to the
integration of synchronized with unsynchronized traffic, messages may be delayed by a
bounded interval. As a consequence, a so-called acceptance window has to be considered
during which a T'T message is received. It depends on the link latency and the precision
of the global time-base [Obell, p. 207f.].

Rate-Constrained (RC) traffic as the second class is used for less strict temporal re-

quirements without synchronization to a global time-base [SBHT09]. Using a sufficient
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bandwidth, delays and temporal deviations have defined limits and packet loss can be
avoided [tte]. Furthermore, it ensures a data-flow in which successive messages are for-
warded with a minimum offset [saell, p. 10]. The bandwidth is configured using a
transmission rate parameter. This parameter determines the maximum generation rate
and the minimum time interval between two subsequent packets. However, the maximum
time interval is not defined. Using a rate-enforcing algorithm, network switches ensure the
configured frame rates. Since TT traffic has a higher priority, it might block RC messages.
Including blank intervals in a sparse time-triggered schedule solves this issue [Obell, p.
212f].

Finally, Best-Effort (BE) messages represent the standard Ethernet traffic without any
guarantees. It has a lower priority than the other classes wherefore it uses the remaining

bandwidth [tte].

3.1.2. Time Sensitive Networking

Apart from TTEthernet, Time Sensitive Networking (TSN) is developed recently for
reliable communication with low packet-loss and guaranteed latency [NTAT18]. The
TSN task group [tsnl9] as part of the IEEE 802.1 working group advances the IEEE
802.1 Audio/Video Bridging (AVB) standards. Herein, the focus lies on AVB shortcom-
ings regarding crucial requirements for industrial automation. Those are reduced latency
and accurate determinism, independence from physical transmission rates, fault-tolerance

without additional hardware and improved interoperability, safety and security [WSJ17].

A TSN network reserves defined bandwidth, buffering and scheduling resources for a
traffic flow. This offers bounded latencies and prevents congestion loss. Furthermore, the
packets of a flow can be sequenced and sent via one or more redundant network paths.
Using sequence numbers, duplicated packets can be detected and eliminated. Together
with zero congestion loss, this capability provides reliable packet delivery. To ensure
real-time communication, the network devices and hosts are synchronized to an accuracy
between 1us and 10ns using a variant of the Precision Time Protocol (PTP), also known
as IEEE Std. 1588. Finally, TSN allows to add and remove traffic flows while maintaining
a proper transmission of the other flows. The remaining bandwidth can be assigned to

standard best-effort data flows which work in their usual manner [Finl8].

In store-and-forward bridging, every packet is buffered in a switch before it is forwarded via
its destination port [TW11, p. 356]. TSN defines a number of output queues for each port
in which incoming packets are buffered once their destination is determined. To provide

zero congestion loss, the buffer required in the worst case must be determined. This is
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possible because of the following two properties. First, the queuing algorithms which select
the next packet to forward define their own schedules. Besides this, the input rate of a
switch shall equal its output rate. To realize the latter, each TSN switch buffers a sufficient
amount of packets for a TSN flow. In this way, there is a transmission opportunity even if
a flow slows down or stops and a constant output rate can be provided for some duration
of time. The number of packets to buffer depends on the duration during which both rates
shall be maintained [Fin18]. There are different queuing algorithms available such as IEEE
Std. 802.1Qbv, IEEE Std.802.1Qch and IEEE Std. P802.1Qcr. The Time-Aware Shaper
defined in TEEE Std. 802.1Qbv even supports time-triggered traffic with deterministic
ultra-low latency requirements [NTAT18]. In Qbv, slots can be defined which are used
to forward scheduled traffic. During those time intervals, non-scheduled traffic is blocked
and interference with it is prevented [DD15]. However, high priority traffic still might
be blocked by unsynchronized low priority streams. To prevent this drawback of priority
inversion, the IEEE Stds. 802.1Qbu and 802.3br where introduced which provide packet
preemption [NTAT18].

3.2. Distributed Co-Simulation

As explained in Section 2.2.1, model-based design starts with developing models of the
components and validating them using distributed co-simulation. This section introduces
available co-simulation frameworks and two widely used simulation standards: the Func-
tional Mock-up Interface (FMI) and the High Level Architecture (HLA).

3.2.1. Distributed Co-Simulation Frameworks

This section starts with frameworks for distributed co-simulation. It focuses mainly on
the co-simulation of networked control systems, different synchronization mechanisms and

the connection of simulation tools between distributed hosts.

In the current state-of-the-art, several works can be found which co-simulate networked
control systems. Hasan et al. for example couple MATLAB/SIMULINK and OPNET
[HYGY08,HYCY09] while Mkondweni et al. [MT13] realize data exchange between Lab-
View and the NS-2 network simulator via UDP. Hence, this framework could also be used
in a distributed setup. In contrast, the NMLab environment couples NS-2 with MATLAB
via the Tel interface of NS-2 [HSB10]. Two approaches using SystemC for the network
simulation are provided by Quaglia et al. [QMBF12] and Zhang et al. [ZEK*14]. Similar to

this thesis, the latter consider TTEthernet as the network technology used to connect the
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components. Instead, ten Berge et al. focus on fieldbuses in their work [MOBO06]. Finally,
the Pia simulator developed by Hines and Borriello [HB97] supports network-centric,

distributed co-simulation of embedded systems including the protection of intellectual

property.

Besides networked control systems, co-simulation is commonly used to couple power with
network simulations. The FNCS framework [CDF*14] couples the simulators via a cen-
tral broker. It supports three different algorithms for synchronization. A conservative
approach uses the smallest next time step of the power grid simulators while the other
two exploit speculative execution to speed up the performance. VPNET integrates the
Virtual Test Bed (VIB) and OPNET [LMLDI11]. A coordinator manages a global com-
munication step time, starts and stops the tools and triggers the execution of a step.
Together with defined sampling periods, the global simulation time defines the instants
for communication. The middleware presented by Lai et al. [LSWT14] balances the re-
quirements of accuracy and efficiency for adjusting the simulation step size. To realize
this, it exploits information about communication delays and errors. Another tunable
synchronization mechanism is used in GECO [LVST12]. Tt is based on a global event list
which is ordered according to the event time-stamps. A scheduler identifies the next event

at runtime wherefore it is able to react on interaction requests without delays.

To enable distributed co-simulation, several works use TCP/UDP sockets. Bian et al.
[BKP*15] connect the OPAL-RT (power) and OPNET (network) simulators and provide
two synchronization mechanisms. In a non-real-time approach, the tools communicate
via files while the real-time solution requires an interface for synchronization and data
exchange. Another example is provided by Owda et al. [OAO15] who simulate networked
multi-core chips using OPNET and Gemb. The tools are connected via local commu-
nication controllers which exchange data and synchronize them based on a global event
calendar. Harding et al. [HGY07] couple MATLAB and OPNET using Java and threaded
sockets while Amory et al. exploit Unix sockets. Their work co-simulates hardware and
software via a simulator-independent backplane [AMO™02]. Finally, the FSKIT [KTS*15]
is based on the Message Passing Interface (MPI). An asynchronous API enables overlap-
ping of the communication with the execution activities and the synchronization is realized
using three mechanisms. A conservative approach synchronizes all events while the sec-
ond mechanism uses fixed-length intervals. The third technique is based on speculative

execution instead.
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3.2.2. The Functional Mock-Up Interface

As a tool-independent standard, the Functional Mock-up Interface (FMI) facilitates the
co-simulation and the exchange of dynamic models between different simulation tools
[BOA*11]. It is available in two versions (FMI 1.0 and 2.0) and supported by various
tools already [Assb]. FMI provides two types of interfaces. While the first type enables
the import and export of simulation models in other tools (FMI for model exchange),
FMI for co-simulation realizes an environment for the co-simulation of models. Together
with new features, version 2.0 integrates both interfaces in one standard which improves

usability and performance [BOAT12].

Mathematical equations and events can be used to represent dynamic system models
[BOA*11]. From a dynamic model, FMI for model exchange creates C-code which can be
included by other simulation tools as an input/output block. In FMI for co-simulation,
the different simulation tools are coupled by a master. Its purpose is the synchronization
of the tools and the exchange of data at discrete communication points. Between these
points, each simulation is executed individually [BOAT12]. Since there is no master
algorithm defined in the standard [CLT*16], there are various works focusing on this
topic. Examples are a deterministic solution [BBG*13], an extension of this work for co-
simulating continuous and discrete dynamics [CLT*16] and performance improvements
using different step sizes [SAC12].

Functional Mock-up Units (FMUs) are components implementing the FMI standard and
can be shared via an archive. This archive contains information about the model and
the definition of all environmental variables, the model code and additional data. As the
model is described using equations and events, their implementation has to be included
either as source code or as a binary. For co-simulation, there are functions to initialize
the communication with the simulation tool, to compute a step and to exchange data.

The additional data is optional and may represent documentation or included libraries
[BOAT11].

FMI is used in various frameworks which focus on different simulation problems. Since
cyber-physical systems couple continuous with discrete dynamics [L.S10, p.1], their prop-
erties must be considered during simulation. Tripakis [Tril5] encodes subsystems with
heterogeneous modeling formalisms. After creating related FMUs, they are co-simulated
using the results from Broman et al. [BBG'13]. The latter focus on deterministic exe-
cution and develop memoryless FMUs which implement a rollback or step-size prediction
mechanism. Together with a master algorithm that queries an FMU for the time of fu-

ture events, determinism can be reached. This solution is exploited further as a master
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algorithm in the FIDE framework [CLT*16] implemented by Cremona et al. Finally,
Elsheikh et al. combine different simulation tools and extend them by the flexible proto-
typing capabilities of Modelica using FMI [EAWP13]. In this way, they can simplify the

development of cyber-physical systems.

3.2.3. The High Level Architecture

The IEEE Standard 1516-2010 [ieelOb], also known as High Level Architecture (HLA),
is a widely applicable simulation standard. It is based on distributing a simulation into

subsystems which are called federates. The ensemble of all federates is called a federation
[APE*13].

The HLA standard consists of several parts. First, the HLA Framework and Rules Speci-
fication (IEEE Std 1516-2010, [ieel0b]) defines rules which guarantee a proper interaction
between the federates and their responsibilities. An HLA Federate Interface Specification
(IEEE Std 1516-2010.1, [ieel0a]) represents the second part. It defines the services pro-
vided by the HLA’s central component, the Runtime Infrastruture (RTT), including details
about their implementation. The third component is the HLA Object Model Template
(OMT) Specification (IEEE Std 1516-2010.2, [ieelOc]). It defines a specification about

the object models which intends to ensure a common data model for mutual interaction.

The HLA does not constrain what is represented, but the federates must document their
object models using the OMT. In this way, the standard facilitates information sharing
and reusability. Additionally, the HLA specifies interactions between the federates which
are performed via the exchange of data [DFW98]. Since it is language and platform
independent, the HLA further provides a solution for the most common interoperability
problems [APE*13].

The standard provides six main categories of management and a number of support
services. The most important ones are presented briefly in the following while a detailed

description can be found in [ieel0al.

Federation Management The services are used to connect a federate to the RTI, create
federation executions and join them. Once the simulation execution has finished, a
federate resigns from the federation, destroys it and disconnects from the RTI. Using
synchronization points, the HLA provides a barrier synchronization for participating

federates.

Declaration Management Data exchange is realized by attribute updates or interac-

tions following a publish/subscribe pattern. While the first type represents updated
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characteristics of an object, the latter is data which is sent explicitly.

Object Management These services handle the data exchange at runtime. They are
used to register object instances, discover them, send updates of object attributes

and to exchange interactions.

Ownership Management The HLA supports to transfer the ownership of instance at-
tributes between the federates. In this way, object instances can be modeled coop-

eratively across a federation.

Time Management Time management is one central element in this work. The HLA
supports two different approaches for time management, a conservative and an op-
timistic one. The conservative approach enables a federation-wide synchronization
so that messages are exchanged in a consistent order for all participating federates
(cf. Section 4.3.1). Instead, the optimistic approach enables the transmission of
messages without order consistency. Exploiting parallelism, it is able to increase

the simulation’s performance.

Data Distribution Management The services enable a more fine-granular data transfer
considering instance attributes. Its purpose is to limit the exchange of irrelevant

data by grouping instance attributes into regions.

Support Services Support services can be used to perform transformations between han-
dles and names, evoke callbacks, set advisory switches or manipulate regions. Fur-
thermore, there are services to get the message order type or name and to obtain

the handles of interactions, object instances or attributes.

Since the HLA was introduced, a lot of work has been done to improve it and there are
several frameworks available which use the standard. The first group of works focuses
on enabling real-time simulations via the standard. For example, they use real-time
operating systems and Quality of Service technologies [ZG04, CSSA14, BL05, GDKR16]
or focus on providing real-time guarantees via the RTT [MFF04, CNS11]. In this way, it
is also possible to establish HIL testing [JBN15]. To hide information between groups
of federates, Cai et al. introduce hierarchical federations. In their work, a gateway or a
federation proxy forwards data between these groups [CTGO1]. A similar approach is used
by Bréholée and Siron for scalability, security and interoperability [BS03]. Besides this,
optimistic synchronization is able to increase the performance of simulations in specific
scenarios [SQO06]. Hence, it is another common research objective [SQ12,SQ06, NSRMO09,
WTLGO05]. Finally, there are approaches which simulate network-centric systems. While
Rivera et al. [RTC*11] combine the HLA and high performance computing to investigate

tactical edge applications, other authors distribute their simulations via the standard
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[OIHVLO04, BBZ"13,YZ12]. Those works use the OPNET tool for network simulations.
The next section shows the possibility to combine the HLA with FMI. In this way, a

simpler and more generic interface to simulation tools can be provided.

3.2.4. Combinations of FMI and HLA

As explained in Section 3.2.2, there is no master algorithm defined in the FMI standard
and several authors concentrated on this topic. In this section, related works are presented

which use the HLA as a master.

Awais et al. published two approaches. The first [APE*13] aims on the usability of com-
ponents in various distributed environments which shows the possibility of integrating
the standards. In [APM™13], they implement a heterogeneous platform which couples
fixed time-stepped, continuous-time and discrete-event simulations. To reach this, they
exploit the HLA’s TimeAdvanceRequest service for the first two types while discrete sim-
ulations advance in time using the NextMessageRequest service. The work of Neema et
al. [NGL"14] focuses on cyber-physical systems. By using different solvers and step sizes,
discontinuities and non-linearity can be prevented in the simulation. Furthermore, dis-
tributing the simulations via the HLA and using it as a master algorithm enables flexibility

in connecting different simulation types.

Finally, Garro and Falcone [GF15] analyze the combination from two perspectives, HLA
for FMI (I) and FMI for HLA (II). To realize the first approach, they extend FMI to
include the HLA by modifying the model description file and adding HLA related func-
tionalities into the solvers. This improves performance and reduces development time
and costs since the FMUs become reusable. The second approach uses either an adapter
between the FMU and the RTI or a mediator to reduce dependencies and to lower the
coupling. The adapter manages the FMU’s lifecycle while the mediator realizes the com-
munication between the FMUs and a federate. This federate uses the FMUs to simulate

specific components.

3.3. Software- and Hardware-In-The-Loop Testing

After validating the models of a System Under Test, it is possible to replace them by
software-implemented control algorithms and the final hardware. Both technologies are
widely used in the automotive, railway and other domains. This section presents available
frameworks for SIL and HIL testing.
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In the automotive domain, the work of Yan et al. [YWLO02] uses SIL and HIL testing for the
development of chassis control systems. They implement a model of the vehicle dynamics
in Matlab/Simulink/Stateflow and couple it with control algorithms or the production
module. To realize this, they use the dSPACE Rapid Prototyping system and Targetlink.
Mitts et al. investigate the benefits of SIL testing for the development of next generation
engines and transmission systems. They provide a flexible SIL solution which is based
on the CosiMate tool-chain [MLRKO09]. Another SIL environment for developing trans-
mission systems is implemented by Zoppi et al. based on Matlab/Simulink [ZCTV13].
Using NI TESTSTAND and NI LabVIEW, Kulkarni et al. introduce a HIL system for
testing the after-treatment system in cars [KPB16]. Since these solutions suffer from
specialized use-cases and missing interoperability, several projects were started which
aim on solving the issues. The FMI standard, the Distributed Co-Simulation Proto-
col [KBB"18, BKD*19, KB18] or the ASAM standard family with the ASAM XIL API
for SIL and HIL [asal7] are example results of these projects. They all target on simpli-

fying the development and validation process.

Regarding the railway domain, Malvezzi et al. work on a HIL test rig to validate on-board
subsystems which is based on dSPACE Controldesk [MMPPO07]. Baccari et al. model the
most relevant electromechanical components of the powertrain and couple them with the
related electronic control units via real-time HIL [BCD*12]. A similar setup is presented
by Pugi and Allotta who integrate actuation systems into rig design [PA12]. Facchinetti
and Bruni propose a test bench for the interaction between a physical pantograph and
a numerical model of a centenary. Comprising stagger effects in the contact wire, they
reproduce the interaction in a 0-20 Hz frequency range [FB12]. While Verhille and Bous-
caryol simulate the traction system of an automatic subway in [VBBHO07a], they focus on
an anti-slip control mechanism for traction systems in [VBBH07b]. Both works exploit
HIL testing. Finally, the authors of [TKS99] concentrate on causality variations and the

hybrid nature of discrete and continuous vehicle control systems and simulations.

Besides automotive and railway, SIL and HIL can be found in various other domains.
ISIS+ is a SIL framework for unmanned aircraft simulation [RBP13] while Liu et al. ex-
amine a speed drive controller’s sensitivity for power quality deviations using HIL [LSRO05].
Huerta et al. apply power HIL to evaluate control strategies for power interfaces in a hi-
erarchical, model-based approach [HGPM16]. Validating space equipment on the ground
suffers from difficulties due to environmental and hardware limitations. To prevent these
difficulties, Sun et al. propose a HIL setup connecting real controllers and virtual de-
vices [SCM16]. Examples for distributed SIL and HIL setups can be found further.
The tool SPADES exploits distributed SIL testing via Unix sockets to support machine

learning in various applications of artificial intelligence [RR|. CEMTool is a distributed
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SIL environment connecting the nodes via Ethernet. To provide real-time guarantees, a
master-slave concept is used where a master synchronizes its slaves and exchanges data
in fixed time-slots [KC99]. Another approach is introduced by Ersal et al. They analyze
the negative effect of latency, jitter and packet loss in distributed HIL via the Internet to

develop suitable countermeasures [EBSF12].

In heterogeneous setups, the logical time of non-real-time simulations must be synchro-
nized with the physical time of real hardware. CORESIM [LFREO01] realizes interoperabil-
ity using a lock-step and a time-slicing approach. Both algorithms have the disadvantage
of freezing the real devices so that the simulations are able to catch up. Finally, HIL
testing introduces real-time requirements on the tests wherefore the execution environ-
ment must provide the related guarantees. Hence, Lu et al. extend the Virtual Test Bed
environment (VTB) by a real-time component (VIB-RT) [LWFM07]. Running the tool
on a Linux system modified by the Real-Time Application Interface (RTAI) enables the

execution of the tests in real-time.

3.4. Linux as Real-Time Operating System

Besides embedded RTOSs, there are approaches which extend standard OSs to provide
real-time behavior. For example, the Linux Operating System does not support critical
real-time applications since it cannot provide the required timing guarantees [RLBO0S].
This section focuses on approaches which transform Linux into an RTOS. Those are
RTAI, Xenomai, Preemp-RT and the Linux deadline scheduler.

The Real-Time Application Interface (RTAI) is based on a real-time nanokernel which
provides basic services such as scheduling or memory management. It was implemented
first as a Real-Time Hardware Abstraction Layer (RTHAL) which captures and redirects
hardware interrupts to a real-time handler or the Linux OS. To provide low response times
and jitter to real-time applications, the interrupt handling is fully preemptive [ZCY06].
Later, the approach has been extended to the ADEOS nanokernel. It virtualizes the
RTHAL functionalities into an event pipeline which hosts several domains. Each event
such as an interrupt or a system call is dispatched to a domain according to domain
priorities. To ensure a timely execution of real-time tasks, the highest priority is reserved
for them [DMO03]. The ADEOS approach is more complex, but the scheduling latencies
are only slightly higher compared to the RTHAL. Hence, ADEOS is capable of replacing
it [ZCYO06].

A similar approach to RTAI is Xenomai. Since they originate from the same project, they
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share most concepts [BLMT08]. Both technologies are interfaces to real-time tasks which
treat the Linux kernel as an idle task. While RTAI supports event handling using both, the
RTHAL and the ADEOS mechanisms, Xenomai only uses the latter [KC13]. Apart from
that, Xenomai allows the execution of real-time tasks in the user space which isolates their
memory space from the remaining Linux tasks. The resulting memory protection is not
available in RTAI where real-time tasks and Linux run in the same space. Disadvantages
of this execution mode are increased latency and jitter due to the Linux system. However,
performance evaluations have shown almost the same latencies in the real-time domain

compared to RTAT and those in the Linux domain are still acceptable [SLO6].

Block Resource Ri Finished
Blocked
A
Switch Finished i Release
B Block Resour.ce R
Resource R Switch Switch & Switch
C

Figure 3.1.: Priority Inversion (adapted from [WBO05, p. 390]).

Both mechanisms suffer from reduced usability since the execution in the kernel mode does
not allow the usage of normal system calls. This also aggravates debugging [BLM*08|.
Hence, researchers focus on turning Linux into an RTOS [Ber]. Instead of using an
additional nanokernel, the PREEMT-RT patch makes the Linux kernel fully preemptive
[LS11]. Herein, it focuses on reducing the maximum and average response time of a
real-time tasks. To realize this, the patch changes different parts of the kernel in the
following way. First, high resolution timers were introduced which have a resolution bound
to hardware capabilities. In addition, threaded interrupt service routines handle most
interrupts with some exceptions such as timers. By using a lower priority for the interrupt
handler thread than for the real-time processes, low priority interrupts do not affect high
priority threads. The third aspect is replacing almost all spin locks by mutexes. This
enables preemption in critical kernel sections and prevents busy waiting for blocked ones.
Finally, priority inversion as shown in Figure 3.1 is a normal issue where a low priority task
C blocks a resource which is required by a high priority task A. If a medium priority task B
now preempts C, A is also blocked for an undetermined time since it waits for the resource.
By implementing priority inheritance, C inherits A’s priority to release the resource. This
enables A to execute [RVHO07]. Performance evaluations have shown comparable results
with RTAT and Xenomai [SLO6] while the patch outperforms the standard Linux kernel
heavily regarding the maximum wakeup latency [SL06, CB13, BGD12|. However, there
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are setups where heavy load causes high latencies [Hen09].

A PREEMPT-RT patched kernel schedules its tasks based on priorities, but it does not
consider a task’s deadline. This may be one reason for high latencies in heavy load setups
since multiple tasks with the same priority might be scheduled at the same time. Lelli et
al. provide a scheduling algorithm which is based on ensuring the deadlines of periodic
tasks [LSAF16]. Based on resource reservations, the algorithm ensures temporal isola-
tion between the tasks which allows real-time scheduling. This reservation guarantees a
maximum execution time ); of a task during its period 7T;. In case the task exceeds its
maximum execution time, the algorithm throttles the task by preventing its execution
until the next period starts. To decide which task to execute next, the scheduler uses the
deadlines d; and the remaining runtime ¢; of each task and schedules them according to
the Earliest Deadline First algorithm. This also accounts for multiprocessor scheduling.
Since shared resources might block real-time tasks, the algorithm supports deadline in-
heritance similar to the priority inheritance of PREEMPT RT. However, the guarantee
of maintaining the deadlines is only provided if the overall utilization of all real-time tasks
>N % is below a certain threshold. This value is set to one for uniprocessor schedul-
ing, but cannot reach a value similar to the number of cores in a multiprocessor setup.
The authors’ evaluation has shown the applicability of the mechanism for real-time ap-
plications even in high load scenarios until a utilization of 90% on a uniprocessor PC. In
case of a multiprocessor, some deadline misses occur but the percentage is lower than for
the alternative Linux schedulers SCHED FIFO and SCHED OTHER. The algorithm
is available in the mainline kernel since version 3.14 and supports the combination with

PREEMPT-RT.

3.5. Technologies for Real-Time Tests via the Internet

Supporting HIL testing via the Internet requires the transmission of packets in bounded
time. However, this is hardly achievable due to the network’s best effort character. This
section presents technologies which may be used by the framework to mitigate insufficient
network delays. It starts with Quality of Service mechanisms and continues with two
technologies which come from different research topics. Those are state-estimation and

speculative execution.
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3.5.1. Quality of Service Protocols for the Internet

Due to its best effort packet transmission, the Internet is not suitable to provide Quality
of Service (QoS) guarantees [MS99]. Once the network demands exceed its capacities,
the provided service is degraded resulting in increased packet loss and jitter [PYPBO02].
Some means to provide predictability are Integrated Services (IntServ), Differentiated
Services (DiffServ), Multiprotocol Label Switching (MPLS) and Deterministic Networking
(DetNet). They are presented in this section.

Integrated Services are based on the Resource Reservation Protocol (RSVP). Using this
protocol, a path from the sender to the receiver is determined for the current data flow
first. Afterwards, the receiver replies with the requested bandwidth. The reply is sent
via the path and each router reserves the required amount of resources if possible [MS99].
In this way, the mechanism enables two service types. While the guaranteed service type
ensures a bounded end-to-end queuing delay, controlled load services share the overall
bandwidth between multiple flows. The provided service with almost no loss and delay

can be compared to an underutilized network [ZOS00].

Similar to Integrated Services, Differentiated Services support two service types, one with
absolute (premium service) and one with relative assurance (assured service) [ZOS00].
By forwarding packets according to assigned traffic classes, the mechanism works without
any reservations [MS99]. Packets of a traffic class are marked using the Type Of Service
(TOS) field in the IP header. The routers analyze the field and select the next packet to
forward based on their priorities. Since the complexity of classifying traffic is shifted to
the network boundary, the core router tasks remain simple. This enables the scalability of
the mechanism [ZOS00]. Comparing the performance, Differentiated Services have shown
lower end-to-end queuing delays. As a consequence, they can provide the QoS guarantees
for high traffic better than Integrated Services [SMO05].

MPLS is a routing mechanism where the header is settled between layer two and three.
Among others, MPLS packets contain a label and a Class Of Service (COS) field. While
the label is used to forward the packet in the routers, the COS field selects the router
interface’s service queue. This mechanism enables the definition of determined routes and
increases switching speed and efficiency [ZOS00]. Combining MPLS with differentiated
services, the mechanism can provide QoS to a data stream. In this case, the core routers
use the label and the COS field to forward the packets [XN99.

DetNet is a novel approach which is complementary to TSN. It focuses on zero packet
loss and a deterministically bounded latency and jitter on the routing layer. This enables

a reliable and redundant communication across LANs. DetNet specifies four flow types
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which are based on the required end-to-end latency and packet loss and sent via established
point-to-point links. To maintain the requirements, time synchronization of the network
devices and control parameters is needed. However, the research in this topic is not
finished yet and the approach is still under standardization [NTAT18]. Hence, this work
focuses on other techniques to enable real-time tests via the Internet even if DetNet may

be suitable in the future. Those technologies are presented in the following.

3.5.2. State-Estimation

State-estimation represents one technique to improve the accuracy of a real-time image.
It can be used if the observation frequency of the real-time entity is insufficient or if
there are large communication delays in a networked control system. This work uses
state-estimation to provide inputs of components in time and to increase the accuracy
of simulation results even if there are large communication delays in the test system (cf.
Section 5.1).

Several works exploit state-estimation to solve problems in the power distribution domain.
On the one hand, the works of Naka et al. [NGYF03], Baran and Kelley [BK94], Hiibner
et al. [HKH11] and Mathieu et al. [MKC12] estimate load in a power distribution system.
The estimation of these values can be used to reduce measurement costs as a major cost
factor in the domain [MKC12]. On the other hand, Xu and Abur [XA03] propose a state-
estimation algorithm which can be exploited to determine controller settings of flexible

AC transmission systems.

Runtime verification of an application determines whether an execution trace fulfills a
desired logical formula using emitted events. The introduced monitoring overheads can
be reduced by leaving out some of the events. A disadvantage of this technique is miss-
ing events which might indicate a faulty execution. To prevent this issue, Stoller et
al. [SBST11] fill the gaps using estimated events. In another work, Weiss et al. exploit
state-estimation for Micro Aerial Vehicle navigation. They provide estimated control in-
puts for real-time processing and as a fall-back solution if tracking errors occur WAL 13].
Stettinger et al. [SHBZ14], Benedikt and Hofer [BH13] address the compensation of cou-
pling errors in co-simulation using extrapolation. Similar to state-estimation, extrapo-
lation of a signal provides unknown inputs in a co-simulation setup with bidirectional
dependencies. Using a correction signal, the introduced estimation errors are reduced
further by Benedikt and Hofer [BH13|. The proposed state-estimation mechanism of this

work is similar to the last four works mentioned.
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3.5.3. Speculative Execution

The concept of speculative execution is widely used in today’s processor architectures
to improve their performance and resource utilization. Besides them, there are different

works which exploit the mechanism in other domains.

Increasing the performance of modern processors is based on a parallel usage of their
resources. However, value dependencies on outputs of subsequent code or predicate de-
pendencies on conditional statements limit the possible parallelism. Using speculative
execution, alternative paths are computed in parallel based on different inputs. Examples
are subsequent iterations in loops or alternative paths in if-statements. Since outdated
values might be used or false branches may be executed, there must be a mechanism to
restore the initial state. Furthermore, there must be a mechanism which discards results
from the operations that did not occur. Alternatively, the execution is performed on a
copy of the state. At the end of the path, the execution continues with either the original
state or the copy [YMS94].

To support speculative execution in high performance processors, Smith defines a technol-
ogy called boosting. It supports instruction-level parallelism across conditional branches
while it prevents negative effects of incorrect speculations on the program state [Smi92].
Gabbay uses value prediction to improve parallelism by handling value dependencies
[Gab96]. While Sahu and Adl-Tabatbai target speculative execution across synchro-
nization barriers [SAT07], Knauth et al. save and restore event counters in their work
[KRIT12]. Besides this, Younis et al. improve the performance of hard real-time systems
without affecting the WCET. Their approach is based on code transformation performed
by the compiler [YMS94].

In today’s state-of-the-art, speculative execution can also be found in other domains.
Nightingale et al. improve the performance in distributed file systems [NCF05] whereas
Mickens et al. fetch web page data speculatively [MEHL10,MHL*12]. Finally, speculative
execution is used to execute a back-up of slow tasks on alternative hosts in the parallel

computing framework MapReduce. In this way, a job’s execution time can be decreased
by up to 44% [DGO8].

3.6. Network-Centric Fault-Injection Tools

According to functional safety standards like ISO 26262 or TEC 61508, fault-injection

should be used to ensure a system’s safety even in the case of faults, errors and failures
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[SFV18]. This section introduces examples of fault-injection tools which focus on the

communication between systems. Furthermore, common message errors as defined in

IEC 61508-2 [iec11] and CENELEC EN 50159 [en510] are presented.

There are different frameworks available which allow the injection of communication
faults. The first example is called DOCTOR [HSR95] and can be used to analyze the
effects of message loss in distributed real-time systems. While NFTAPE corrupts bits
in the physical layer of a Myrinet LAN link [SFB*00], VirtualWire covers any network
protocol [DNCO03]. As stated in Section 3.1.1, the TTEthernet protocol is used for safety-
and mixed-criticality systems. Fejoz et al. [FRMN18] consider link failures and transmis-
sion errors to validate the clock synchronization mechanism. Besides this, Onwuchekwa
et al. [OO18] propose a framework which analyzes the influence of a babbling idiot failure
on the latency and jitter of the network. In another work, they use an FPGA-based
cut-through paradigm to inject faults into individual TTEthernet traffic classes [OOF18].
Finally, siCAN [GBBP13] and the work of Roque et al. [RPPF16] are two examples for
physical fault-injection into the CAN network.

The TEC 61508 standard series covers the functional safety of electrical/electronic/pro-
grammable electronic safety-related systems [iec10]. In this series, part two focuses on
requirements for electrical /electronic/programmable electronic safety-related systems and
lists different message errors in clause 7.4.11. These errors are defined in more detail in
the CENELEC EN 50159 standard for safety-critical data transmission in railway com-

munication systems [en510]. The definitions are listed below.
Delay: A Packet is received later than expected.
Replay: The same packet is received multiple times.
Omission: A packet is removed from the message stream.
Insertion: A packet is added to the message stream.
Resequencing: The packet order in the message stream is changed.
Corruption: Bytes in the packet are changed to a new value.

Manipulation: The sender address in the packet is changed, hence the packet’s

authenticity is corrupted. In ITEC 61508-2, it is named as masquerading.

Each error can be caused by system faults (unintended) or by an attacker (intended).
This work covers only system faults since intended ones require the application of security
mechanisms in the SUT. As explained in Section 4.5, faults related to the basic message

errors are injected into the packets forwarded by the framework.
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3.7. Security Mechanisms

During the last decades, several cryptographic algorithms and security protocols were
developed to realize the concepts described in Section 2.6. The German Federal Office for
Information Security (BSI) provides a technical guideline with recommendations regarding
cryptographic algorithms and key lengths [bsil9]. Based on this document, suitable algo-
rithms are presented for the concepts mentioned in the following. Furthermore, OpenVPN

as an example for Virtual Private Networks (VPNs) is presented.

To realize confidentiality, symmetric and asymmetric encryption algorithms can be used.
The recommended symmetric block cipher is AES with key lengths of 128, 192 or 256
bit since its security was analyzed intensively [bsil9, p. 21]. For asymmetric algorithms,
the complexity of problems in algorithmic number theory defines the security level. A
recommended algorithm is RSA (key length > 2000 bit) which is based on the factorization
of large prime numbers. Alternatively, discrete logarithms in the finite field I or on
elliptic curves can be used. One example algorithm for F7 is DLIES (key length > 2000
bit) while ECIES (key length > 250 bit) is an example for the latter [bsil9, p. 26f.].

Cryptographic hash functions are used to ensure authenticity and integrity of data. Rec-
ommended algorithms are the SHA-2 and SHA-3 families with hash lengths of 256, 384
and 512 bit [bsil9, p. 37f.] which can be used to generate an HMAC (Keyed-Hash Mes-
sage Authentication Code) of a message. Other possibilities to authenticate data and the
communication partner are digital signatures using RSA (key length > 2000 bit) or DSA.
Similar to DLIES and ECIES, the latter is based on discrete logarithms in I (key length
> 2000 bit) or on elliptic curves (key length > 250 bit) [bsil9, p. 43ff.].

The algorithms mentioned above are used in VPNs to secure the communication between
the connected hosts. OpenVPN is a widely used example. It is based on SSL (Secure
Socket Layer) which secures the communication on top of the transport protocol, e.g.
TCP [EH97]. OpenVPN supports both, site-to-site and remote access VPNs, and multiple
clients can connect to a private VPN server. Furthermore, the security algorithms and
key lengths can be selected by the user [INC]. In this way, it provides all the required

security services.

3.8. Research Gap

Although this chapter presents a large number of related work, there is no solution avail-

able which covers all the research objectives defined in Section 1.2. The main goal of this
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thesis is the development of a distributed co-simulation framework which facilitates the
validation and verification of time-triggered networked control systems. To realize this,
it works on a network-centric abstraction level and supports techniques such as SIL/HIL
testing and fault-injection. Furthermore, a delay-management mechanism is required
which mitigates Internet-introduced communication latencies for distributed real-time

tests. This section defines the research gap which is addressed in the following chapters.

The frameworks presented in Section 3.2 focus mainly on different synchronization mech-
anisms and distributed co-simulation. Even if some of them cover network simulations in
smart grids, they do not provide a generic interface to various simulation tools. Further-
more, the support of Hardware- and Software-In-The-Loop testing is missing. The FMI
solves these aspects by providing an interface which is implemented by several simulation
tools already. In addition to co-simulation, it can also support Software-In-The-Loop
testing if the functions to execute a simulation step are implemented accordingly. Since
FMI for co-simulation does not define a mechanism that synchronizes the tools, a lot
of work has been done in developing different master algorithms. One possibility is the
usage of the HLA which supports distributed co-simulation but requires a significant
amount of code for integration. This code must be hand-developed which is tedious and
error-prone [NGLT14]. However, a lack of frameworks which focus on the distributed val-
idation and verification of time-triggered networked control systems including HIL testing

and fault-injection remains.

Regarding the HLA, there are several concepts that can be extended to support dis-
tributed real-time tests. If geographically distributed manufacturers are involved, the
communication cycles of the SUT may be smaller than the latencies between the simula-
tion hosts. As a consequence, they may lead to deadline misses even if QoS techniques
are applied. Since most of the real-time solutions cited in Section 3.2.3 are based on this
approach, another mechanism for delay-management is required. It must cope with large
delays leading to deadline misses in the following way: (I) detect the delays and stop the
simulation or (II) cope with the delays’ unpredictability. Using optimistic synchroniza-
tion as an alternative time management mechanism improves the simulation performance
but requires state recovery to handle message causality errors. In real-time tests, state
recovery cannot be used wherefore causality errors must be prevented. Besides this, a
hierarchical federation can reduce the number of messages exchanged between the fed-
erates and the RTI for time management and data exchange. Instead of concentrating
on security and scalability, knowledge about the time-triggered communication can be

exploited to maintain the deadlines in distributed real-time tests.

Most of the frameworks focusing on HIL and SIL testing introduced in Section 3.3 are
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limited to either SIL or HIL. The only exceptions are the dSPACE Rapid Prototyping
system and ASAM XIL. However, the dSPACE system is a central unit which does not
provide distributed tests. The same accounts for the ASAM XIL standard which is further
dedicated to the automotive domain and supports only the CAN bus as the communica-
tion network. As a consequence, a distributed co-simulation framework is required that

integrates both, SIL and HIL testing on a network-centric abstraction level.

While Section 3.6 introduces different fault-injection tools for communication systems,
Section 3.7 covers suitable security mechanisms. Since the main focus of this thesis lies
on different topics, using a VPN between the simulation hosts provides a sufficient level
of security. In contrast, the fault-injection techniques presented cannot be used because
they represent stand-alone tools and do not support all message errors of IEC 61508-2
clause 7.4.11. Hence, a means must be included into the framework which is capable of

injecting faults related to all errors covered by the standard.

In the subsequent chapters, the distributed co-simulation framework is presented in detail
covering all the research objectives mentioned before. It is based on the HLA and includes
FMI as a generic interface to the simulation tools. Another possibility for data exchange
would have been the distributed co-simulation protocol [Assal. Indeed, it does not define
sufficient synchronization and delay-management mechanisms. A master can synchronize
non-real-time slaves by sending commands to execute a simulation step or to exchange
data. However, synchronization with real-time slaves is performed only implicitly by
using a time synchronization protocol such as IEEE 1588 [dcpl9] and synchronizing the
simulation start [KSK*19]. Besides this, there are no mechanisms specified that guarantee
consistency and a timely packet reception for hard real-time slaves. It is only possible
to detect dropped packets or an inconsistent transmission order using sequence numbers
[KB18]. Providing data more frequently can be reached using an extrapolation technique,
but the referred approach of Stettinger et al. is designed only for continuous system
dynamics [SHBZ14]. This work shall be used for discrete-event simulations instead. For
these reasons and since the protocol was standardized just in 2019, it is not considered

during the design phase.
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4. Network-Centric Distributed
Co-Simulation Framework

supporting HIL and SIL

4.1. Architectural Overview of the Framework

Providing a means to validate and verify geographically distributed SUTs is one main goal
of the distributed co-simulation framework. Based on the High Level Architecture (HLA)
simulation standard, it is able to connect subsystems via heterogeneous communication
networks such as the Internet or LANs. This section gives an overview about the frame-

work’s overall architecture and introduces the Simulation Bridges as its main components.

4.1.1. Overall Architecture

Typical networked embedded real-time systems can be described by the composited archi-
tecture introduced in Section 2.1.3. A main benefit of this architecture is the possibility
to develop components independently and to integrate them into a cluster using stan-
dardized interfaces. Hence, the internal implementation must not be known, only the

interface specification is required [Obell, p.26 f.].

During the last years, the integration of components using the Ethernet technology be-
came more common in industrial applications (using Ethernet IP, ProfiNet), avionics
(using ARINC 664-p7) or railway applications (using Ethernet Train Backbone (ETB),
Ethernet Consist Network (ECN)). All of them try to achieve end-to-end transmission
guarantees using a certain degree of Quality of Service (QoS). Deterministic time-triggered
communication can be reached using the TTEthernet protocol which enables the usage
of Ethernet in safety-critical systems [Obell, p.182]. Besides TTEthernet, there is an on-
going interest in standardizing deterministic real-time capabilities in the IEEE Standard

802.1 for Higher Layer LAN protocols. The technology used is Time Sensitive Networking
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(TSN) [LPS16].

The distributed co-simulation framework instantiates a test system that can be used to
validate composited SUTs. It operates on a network-centric abstraction level and assumes
the integration of the components via time-triggered communication networks. The de-
veloped framework focuses on time-triggered systems which use TTEthernet and TSN
for communication according to the ongoing interest in these protocols. Exploiting the
related network interfaces, the framework collects messages from a sender and forwards
them to the receiving component. To forward the data inside the framework, heteroge-
neous communication networks such as the Internet or LANs are used. In this way, it is
possible to validate the components at the sites of geographically distributed manufac-
turers. The support of Software- and Hardware-In-The-Loop (SIL/HIL) testing enables

the validation and verification of components throughout common development processes

further.

Figure 4.1.: Distributed SUT using Ethernet.

Figure 4.1 shows a distributed System Under Test (SUT) representing a simple, networked
real-time system. It consists of four End Devices (ED) which are connected via a four-
port Ethernet switch. Examples for such end devices can be sensors and actuators which
interact with the system’s environment or controllers. The latter process the sensor data

to initiate an actuation. The gray boxes represent the network interfaces of the end

devices (ETH;) and the ports of the switch (FP;).
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Figure 4.2.: Connecting the subsystems of an SUT using the distributed co-simulation
framework.
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4.1.1. Overall Architecture

The simulation framework operates on a network-centric abstraction level. Using it as
shown in Figure 4.2, the black wires between E'T'H; and P; are replaced by two simulation
bridges (blue boxes). To connect a device to a simulation bridge, the bridges provide an
interface which is implemented in a Wrapper Module (orange boxes). The technology used
to implement it depends on the properties of the simulation host on which the bridge is
executed and its operating system. The connection is transparent which means that a
bridge represents a device’s communication partner. For example, an end device considers

its bridge to be the switch it is connected to.

As the bridges operate on the OSI Data Link Layer, they capture the Ethernet frames
sent by their connected devices and forward them to the receiving ones. To reach this,
they use the HLA which is represented by its central component, the RTI. It is depicted
as a red box while the logical links between a simulation bridge and the RTT are printed as
red lines. In this example, there are only unicast links. To illustrate them in Figure 4.2,
black dashed lines are added in the RTI box. However, the HLA also supports multicast
data exchange through its publish-subscribe pattern. In this case, there would be multiple
logical links between the bridges. Using the time management services of the HLA, the
bridges ensure a packet transmission in the correct temporal order. In this way, they also
synchronize the time advance of the simulations. Only if all packets for the related event

are received, a time advance is granted and a simulation step is triggered.

While Figure 4.2 illustrates the connection of SUT subsystems from a logical point of view,
Figure 4.3 presents a possible topology in a heterogeneous network. Its characteristics
depend on the properties of the RTT used. The distributed co-simulation framework is
based on an open source solution called OpenRTI. It uses TCP sockets for communication
between the federates and supports a hierarchical RTT structure. Hence, it is possible to
use it for simulations on a local host, in a cluster, across a LAN or via the Internet.
Furthermore, the federates can be connected to local RTI instances, e.g. in a LAN or
on a local host, which are then connected to a global instance on a higher level in the

hierarchy. Connecting the federates to the global instance directly is further possible.

The topology shown in Figure 4.3 depicts the capabilities of the distributed co-simulation
framework. The representation of end devices, simulation bridges, the RTI and its com-
munication links is similar to the previous figure (cf. Figure 4.2). Each simulation bridge
and the RTT instances are processes running on a simulation host. Those hosts are named
as Host; and depicted as gray boxes. If a device is simulated or represents a software
application, it is executed on the same host like its simulation bridge. Real hardware
devices are connected to the host running the related bridge via an additional Ethernet

interface instead. This connection is shown as a black, dotted line between F D3 and S Bs.
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Figure 4.3.: Possible topology of the distributed co-simulation framework.

The simulation hosts in Figure 4.3 are connected via a heterogeneous communication
network with a Local Area Network (LAN) and a Wide Area Network (WAN). The global
RTI instance (RT1q) is executed on Hostrry, and there are two local RTI instances
connected to it. Ome of them is running in the LAN (RTI 4y on Hostpay) while the
other one is executed on Hosty (RTIf,s,). Besides the local RTI instances, there are
two direct connections to RT'Is from SBig and SBy;. They are both hosted by Host;.
Hosty represents a host on which multiple network simulations are executed (/N ETy, and
N ETy;) with their own RTI. Each of them might simulate one or multiple TTEthernet or
TSN switches, for example. In contrast, the end devices £ D3 and E D, are distributed via
Hosts and Hosty. They use the LAN to communicate with their local RTT instance. In
the figure, physical connections between devices in the LAN are depicted as black, solid

lines while dashed lines represent direct WAN connections.

Using a hierarchical RTI infrastructure can reduce communication load and speedup a
simulation. This accounts for large simulation setups where devices mainly communicate
locally in a LAN or on a host. Introducing a local RTI instance, those devices can
communicate with it wherefore long network delays can be reduced and only messages
related to remote devices have to be forwarded. As a single RTT instance would represent a
bottleneck in such setups, scalability can be improved. However, this depends on the setup
and the network delays between the devices. Synchronization data due to the HLA time
management still has to be exchanged between all federates, wherefore an inappropriate

topology may introduce further overheads.
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4.1.2. Functionality of Simulation Bridges

After introducing the simulation bridges as the central components of the distributed
co-simulation framework, this section focuses on their architecture. Figure 4.4 shows the
bridges’ building blocks and the data flow between the modules. Detailed descriptions for

each module follow later in this document.
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Figure 4.4.: Architecture of simulation bridges.

Each simulation bridge is connected to its device via a Wrapper Module. The wrapper
forwards data received from other simulation bridges to the device and captures its output
packets. Depending on the connected SUT and the implementation of the framework,
different technologies may be used for the Wrapper Interface. Once the wrapper captures
a packet, it encapsulates it into an HLA interaction including a time-stamp of the capture.
The interaction class is determined based on the packet’s MAC address. Afterwards, the
wrapper inserts the packet into the Output Packet Buffer and signals the availability to
the Egress Module.

To manage Internet-incurred delays, a mechanism based on state-estimation can be en-

abled. This mechanism estimates the next inputs of the device based on its captured
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outputs and a model of the remaining system under test. Once an output packet is in-
serted into the buffer, the wrapper notifies the Egress Module about its availability. The
latter gets the packet from the buffer and forwards it to the State-Estimation Module.
This module estimates the next inputs and inserts them into the Estimated Packet Buffer.
After finishing the estimation, the output packet can be sent via the RTIAmbassador and
the HLA. If the state-estimation mechanism is disabled, the packets are sent directly. The
egress module further requests a time advance to the next event using the HLA’s NextMes-
sageRequest service. In this way, the simulation bridge is able to react to unscheduled

events, e.g. the reception of an event-triggered message.

On the incoming site, input packets are received by the RTTAmbassador before a time ad-
vance is granted. The ambassador decapsulates the interaction parameters and creates an
interaction object. This object is inserted into the Input Packet Buffer and the ambassador
notifies the Ingress Module. The ingress module provides different functionalities depend-
ing on the configuration of the simulation bridge. Without using the state-estimation
mechanism, the module checks whether the network delay exceeds a configurable time
interval. For this, the instant of capturing the packet is subtracted from the time when
the packet was received. If the threshold is exceeded, the user is notified and the packet

is dropped. Otherwise, the ingress module forwards it to the fault-injection module.

Using the state-estimation mechanism, there are two possible functionalities. In the first
case, the connected device is a real-time device. Here, the ingress module is time-triggered
exploiting knowledge about the device’s communication and application schedules. Each
event is represented by its logical time. Adding it to the time of the simulation start results
in the physical point in time when the event has to be scheduled. Once the event occurred,
the ingress module checks if a packet is available in one of the buffers and forwards it
after injecting faults. Afterwards, a simulation step follows. If a packet is delayed and
cannot be found in the input packet buffer, the estimated packet is forwarded. In this
way, it is possible to provide guarantees about the message reception to the device (cf.
Section 5.1.2). The second case can be used further to reduce the communication overhead
with the RTI and other devices which improves the simulation’s performance. Here, a
larger bridge communication period is defined when packets are exchanged with other
bridges. In between, the simulation bridges estimate their devices’ inputs and forward
these packets at the correct point in time. This mechanism is described in Section 5.1.3.
In both cases, the accuracy of the forwarded data must satisfy a configurable threshold.
After receiving a packet, the state-estimation module calculates the difference between
the received and the estimated values. If the difference exceeds the threshold, the user is

notified and able to decide if the simulation must be stopped.
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Fault-injection is provided based on the message errors listed in IEC 61508-2 clause 7.4.11
(cf. Section 3.6). The message errors are implemented in the Fault-Injection Module
which injects the faults into input packets of the connected component. According to
the architecture of the distributed co-simulation framework, the components of the SUT
(switches, end devices, etc.) are considered as Fault-Containment Region (FCR). Hence,
the injection implies the propagation of an error from a faulty sending component via
a message. The required parameters for each fault can be defined in the configuration
data based on the logical time of the received packet. At runtime, the fault-injection
module checks whether there is a fault available related to the current time. If this check
evaluates to true and the packet is not omitted, the fault is injected. The injection is
described in detail in Section 4.5. Delayed and replayed packets are inserted into the
Faulty Packet Buffer and a new event is created for the related time. While resequencing
can be implemented by delaying the packets by a different time interval, corruption and
manipulation can be performed directly on the packet. Once the injection is finished and
the packet is not omitted, the ingress module can trigger the wrapper module to forward

the packet to the device.

By creating new events for the delayed and replayed packets, they are also considered
during the time synchronization process. After receiving a TimeAdvanceGrant, the RTT-
Ambassador notifies the ingress module. As there might be delayed, replayed or inserted
packets available, this module checks the faulty packet buffer also, forwards available

packets and triggers a simulation step via the wrapper module.

Since the simulation bridges provide different functionalities, a configuration mechanism
is required which sets the related parameters. To reach this, the bridges contain a Con-
figuration Module. Before the simulation starts, this module reads the configuration data
and sets the related parameters in the other modules. Hereby, it performs a check on
integrity and coherency already. The data includes, e.g., information about the devices,
their schedules, faults to be injected into the communication or the RTT connections. To
support an automated simulation execution, it is possible to start a new simulation run
once the previous one has finished. In this case, the execution is repeated using new con-
figuration data. After finishing the simulation, it is further necessary to access the buffers
and check if the functionality of the SUT was correct. Hence, a Monitoring Module has
access to the functions of each buffer which allow to access every packet inserted. Gained
information may be the content of each packet, the time-stamps of the packet capture
and the reception or information about faults. The monitoring module writes this data

into files which can be checked by the user once the simulation has terminated.
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4.2. Configuration and Simulation Execution

To configure the framework, two configuration models are required. The first model is
related to the HLA and defines the object model according to the IEEE standard 1516.2-

2010 [ieelOc]. The second model is used to configure the simulation bridges.

The main parts of the Object Model Template (OMT) are the federates’ object classes
including the related attributes and the exchanged interaction classes with their param-
eters. In addition, the template contains properties such as dimensions, transportation
types or update rates, among others. This information is used to configure the RTT via
a Federation Object Model (FOM). Since only interactions are exchanged between the

simulation bridges, solely those properties are described in the following.

By default, each interaction class is derived from the HLAinteractionRoot class building
a hierarchy. The only child class of the root interaction is called FEthernetInteraction
and represents the Ethernet frames exchanged by the framework. If the framework shall
support another Layer 2 protocol in the future, a related interaction class can be added in
this hierarchy level. The parameters of the Fthernetinteraction are the packet, its size and
the egress time-stamp in microseconds. The latter represents the time when the packet
was captured by the simulation bridge. The parameters are defined as child elements
together with the child interaction classes. In this case, the child classes are related to

the interactions exchanged between the simulation bridges which depend on the SUT.

Figure 4.5 introduces the configuration and initialization process of the simulation bridges.
Similar to the FOM, they are configured via a model. Its detailed definition is given in
Appendix A. At first, the connection with the RTI is configured and established in the
RTI Connection state. Afterwards, the configuration of the remaining modules follows in
the Configuration state. The configuration module starts with reading the configuration
data and checking its integrity. Each simulation bridge can be connected to one or more
federations for the application data exchange. Additionally, they are all members of a
federation to exchange synchronization meta data and control commands. If the model is
correct, the RTTAmbassador for each federation is configured including information such
as the RTT’s IP address or the FOM. In the next step, the simulation bridges establish
the connections to the RTT instances and join the related federation executions. Those
federation executions are created by the first bridge requesting the creation. Afterwards,
the ambassadors start a callback handler which receives the RTT replies. In this way, the
configuration effort can be reduced since some members require data provided by the RTT.
If one step failed, the other calls are unrolled in the Disconnect state and the simulation

bridge terminates printing a related error message.
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Figure 4.5.: Simulation bridge configuration and simulation execution.
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If the federation execution is joined successfully, the Configuration state follows. First, the
configuration module determines the wrapper type and sets its parameters. Afterwards,
the module configures the interactions the simulation bridge publishes or subscribes to
in the ambassadors. For each interaction, an EthernetInteraction object is created which
is related to the interaction class in the FOM. In addition to the interactions where the
destination is defined, there are two default interactions for sending and receiving. Once

an EthernetInteraction object is added to the ambassador, the ambassador is able to

request the handles for each parameter defined in the FOM from the RTI.
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Figure 4.6.: Parameters of tasks and messages.

The following activities are related to the definition of a time-triggered task and message
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schedule. Tasks and messages are represented as classes (cf. Figure 4.6). Their members
are their IDs, their period and the offset in this period, the length (for messages) and
WCET (for tasks), a real-time offset (used for estimation) and period and offset used for
a Bridge Communication Schedule (BCS). In addition, messages have a type (sending or
receiving) and tasks have references to their input and output message IDs. Based on this
information, a schedule can be calculated which is used for synchronization (cf. Section
4.3), fault-injection (cf. Section 4.5), state-estimation (cf. Section 5.1) and speculative

execution (cf. Section 5.2).

Table 4.1.: Configuration parameters of message errors.

Error Mode Parameters

All Errors Message 1D, Logical Time

Omission

Corruption & | Number of Changed Bytes, Changed Indexes, Changed Values,

Manipulation | Recalculate Checksum

Replay Replay Instants

Delay & Delay

Resequencing

Insertion Source IP, Destination IP, Transport Protocol,

Source Port, Destination Port, Data

Besides the schedule, the fault-injection module requires information about each fault.
The parameters are summarized in Table 4.1 following the error modes of IEC 61508-
2 clause 7.4.11. They are set in the related message objects. To identify the faults at
runtime, the fault-injection module requires the message’s ID and the logical time of
the instant at which the fault has to be injected. These instants are stored in fault-
schedules for each error mode. In case of omission, this data is sufficient whereas the
other message errors require additional information. Since manipulation is a specification
of the corruption error, they can be modeled in the same way using the same parameters.
Those are the indexes of the bytes to change in the packet, their number and the modified
values. Additionally, a boolean value is provided which states whether the packet’s CRC
checksum has to be recalculated or not. Another list is provided for the replay error
mode. Each instant in this list represents the logical time at which the replay occurs.
Resequencing two or more packets can be implemented exploiting the delay error. Both
modes use an integer value which represents the delay interval for each packet. Finally,
the simulation bridges support the insertion of additional packets. The previous errors
use the time-stamp to identify the message at runtime. Instead, packets for this mode

are created and inserted into the faulty packet buffer directly during the configuration.
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Furthermore, another reception event is added in the schedule. Creating a packet requires
the source and destination ports, IP and MAC addresses. In addition, the content of the
packet and the transport protocol are provided. The remaining packet content can be

calculated automatically.

To realize delay-management for data exchange via the Internet, there are three possibil-
ities. The first is a simple check whether the delay is larger than a configurable threshold
(mazDelay). Using state-estimation is the second possibility. In this case, two models are
used to estimate the next inputs (system model) and to compare the received with the es-
timated contents (device model). The configuration data contains information about the
models and the interface which is used to connect them to the state-estimation module.
Speculative execution as the third possibility is configured by defining the federations the

simulation bridge is connected to.

The wrapper module is initialized in the Synchronization state after finishing the config-
uration. Additionally, the state-estimation module is started if it is enabled. Before the
simulation bridges can continue with the publish/subscribe process, the HLA time man-
agement must be enabled. If there are simulation bridges connected to multiple federates,
deadlocks occur if the time management is enabled in one bridge and another bridge joins
a federation execution. Using synchronization points solves this issue. A synchronization
master is the last federate connected to the control federation. The master is responsible
to register the synchronization points while the other bridges are waiting for the points’
announcement. Since they are aware of the points due to the configuration file, they do
not continue their execution before all points are announced. Once the announcement has
finished, the points establish three synchronization barriers which synchronize the feder-
ates. After they reached the first barrier, the federates can enable the time management
(Enable TimeManagement). The second barrier is used to synchronize the publish/sub-
scribe process (PublishSubscribe) while the last barrier starts the simulation execution

(RunSimulation) in the Ezecution state.

Depending on the configuration, the ingress and egress modules start in parallel using
one of three different functions. The first pair is related to a connected device without
real-time requirements and disabled state-estimation (run). Using the state-estimation
mechanism, the function runFstimation is used. If the device is a real-time component,
the modules start the function runRT. In all cases, the ingress and egress modules take
a time-stamp which is used to calculate the duration of the simulation execution and as
a starting reference for real-time activities. Once the simulation execution has finished,
all parallel modules are joined and they obtain the related time-stamps for the end of

the run. Furthermore, the simulation bridges calculate the simulation duration and the
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ambassadors stop the callback handlers.

After stopping the callback handlers, the interactions are unpublished and unsubscribed in
the Disconnect state. The RTTAmbassadors disconnect from the RTI and the last bridge
deletes the federation execution. Apart from that, the wrapper and the state-estimation
modules are shutdown and the monitoring module logs information about the run. This
includes the simulation duration, pass-through times of the simulation bridges and the

ingress/egress modules and their scheduling delays among others.

4.3. Time Synchronization

This section focuses on the synchronization of simulation bridges in the distributed co-
simulation framework. They provide two different modes of execution which are based
on the HLA time management. The first mode synchronizes the bridges based on a
logical simulation time while the second mode supports the execution in real-time. Before
these algorithms are introduced, an explanation of the time management services is given

including a detailed example.

4.3.1. Time Management in the High Level Architecture

To realize time synchronization between the simulation bridges, the framework exploits
the time management services provided by the HLA. The explanation given in this section

is based on Chapter 8 of the HLA standard’s federate interface specification [ieel0a].

Time management is used to realize a consistent delivery of messages during the simulation
execution. Points along a time axis can delineate a federate’s logical time if it assigns
time-stamps to messages. While executing, a federate can advance to a logical time which
is greater than or equal to its current time. Fach time advance can be constrained by

other federates which ensures a correct and causally ordered data exchange.

Updates of attributes or the transfer of interactions are both considered as messages.
Including time-stamps into the messages, a federation-wide Timestamped Order (TSO)
can be established. By default, a joining federate does not use the time-management. This
state can remain as long as the federate does not require coordination with other federates.
Otherwise, it has to enable the time-management using the EnableTimeRegulation and
Enable TimeConstrained services. A time-regulating federate is able to send messages

including time-stamps while federates have to be time-constrained to receive them.
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The RTI establishes the TSO by placing a bound called Greatest Available Logical
Time (GALT) on each time-constrained federate. It represents the greatest logical time
to which those federates can advance without receiving a message in their past. The
GALT is calculated individually for each federate using their current logical time, the
time advance requests and a value called lookahead. The lookahead has to be set by
time-regulating federates once they request to become regulating. During execution, they
are only allowed to send messages with a time-stamp which is greater than or equal to
their current requested time plus the lookahead. Only if the requested time is smaller
than the GALT value, the RTT can guarantee that the federate will not receive messages
in the past. If the federate tries to advance beyond the bound, it has to wait until the

GALT has increased based on the time advances of the regulating federates.

Federates which intend to advance in time must use the TimeAdvanceRequest or NextMes-
sageRequest services including the requested time. Once the GALT value fulfills the con-
straint explained above, the RTI replies with a TimeAdvanceGrant whereby the granted
time included depends on the request used. A TimeAdvanceRequest is granted with the
requested time in every case and the RTI forwards all TSO messages with a time-stamp
smaller or equal to it. Hence, it is used for time-stepped federates where the time-step
is known and there are no messages sent in between. Using a NextMessageRequest, the
RTI may grant a time advance to an earlier time than the requested one if a message is
received at this point. As this service enables a federate to react on previously unknown

events, it is used for event-stepped federates.

The following scenario illustrates the time management services on a simple discrete-event
based application. This application consists of two end devices (ED) and one network
simulation (NET). For example, one end device (EDy) could host a sensor and an actuator
while the other one (E'D;) could represent a related controller. E D, periodically sends
a message My to ED; containing the current sensor value. Based on it, the controller
calculates the control input for the actuator and replies with M;. The actuator on ED,
can now set the received control input performing an actuation. In this example, data
is sent via the network simulation in both directions. To be able to react on receiving

events, time advances are requested using the NextMessageRequest service.

In each figure of the scenario (cf. Figures 4.7 to 4.12), there are three time-lines repre-
senting the logical times (LT) of each federate: the two end devices as well as the network
simulation. The messages (events) are denoted as arrows. While sent messages are printed
in dark blue, the received ones are painted light blue. One can see that each sent message
has a related received message at the same logical time. At tick 2 in each period, ED

sends its message to the network simulation (NET). After emulating the communication
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behavior, the network simulation forwards the message to D, at tick 4. F D, calculates
the control input and sends it to the network simulation at tick 6. Again, this message is
forwarded to the receiving federate E' Dy two ticks later. At tick 10, the period has finished
and the next period starts. While the green spots denote the current logical times of each
federate, the red ones represent the requested times for a time advance. Because of the
lookahead, the requested times are always one tick before the next sent message. At last,
the GALT is printed as solid black line from the initial time until the black circle. The
GALT value represents the logical time until when it is guaranteed that the federate will

not receive any TSO message and is calculated individually for each federate.
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Figure 4.7.: Initial step in the time management algorithm.

Figure 4.7 shows the initial step of the time management algorithm for the example use-
case. The logical times for each federate are 0 and they all request to advance until they
plan to send the next message (respecting the lookahead). Hence, ED; guarantees not
to send any message until tick 6, £ Dy until tick 2 and N ET until tick 4. Based on those
guarantees, the GALT values are calculated as follows: for ED; and NET, the value is
set to 2 since then they might receive a message from EDy. For EDy, the GALT equals
4 because of NET.
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Figure 4.8.: First step in the algorithm, time advance of EDj.

In the first step shown in Figure 4.8, the RTI can grant a time advance for £ D, to logical
time 1. The federate calculates the new sensor value and sends it in M, with time-stamp
2. In the figure, the color of event M, is changed to gray to outline that this event is
processed already. Federate £ Dy has no further message to send in this period, so it can

request to advance until tick 11 when the next sensor value needs to be sent.
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Since N ET has subscribed to message My, the RTI grants an advance to tick 2 and
forwards the message to the federate (cf. Figure 4.9). Using the input, NET emulates
the network behavior and sends M, to the receiving federate ED; with the assigned
time-stamp 4. Initially, My should have been emulated at tick 3. As the emulation is
performed already after receiving the message, the time advance to this tick is obsolete.
An alternative usage of the time management would be to just receive M, at tick 2 and
to request another time advance to tick 3 where the event is processed. In this example,

the first version is assumed which is why N ET already requests an advance to tick 7.
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Figure 4.9.: Time advance of NET as the second step.

Similar to the previous steps, ED; is granted to advance to tick 4 where it receives
message M. Afterwards, it sends M; containing the calculated control input to the
network simulation with time-stamp 6. Its next time advance request is for tick 15 in the

next period (cf. Figure 4.10).
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Figure 4.10.: Third step showing the time advance of ED;.
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Figure 4.11.: Fourth step in the time management algorithm, time advance of NET'.
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In the fourth step (cf. Figure 4.11), the network simulation receives message M; at tick
6 and forwards it with time-stamp 8 after simulating the network behavior. The federate

further requests to advance until tick 13.

Message M, is received by EDg at tick 8. After setting the control value and calculating
the next sensor value, the latter is sent in My with time-stamp 12 for the next period.
The current status of each federate as shown in Figure 4.12 is similar to step one. Hence,

there is a cyclic behavior from now on.
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Figure 4.12.: Fifth step with time advance of EDj.

The figures above show the contrast of the NextMessageRequest (NMR) service compared
to TimeAdvanceRequest (TAR). Using TAR, the RTI would grant only time advances to
the requested logical times and transmit the messages when it grants the advance. In this
way, the federate is able to react on messages only when the advance is granted and not
before. Hence, it is not possible to model a system where the federate’s behavior may
depend on events such as Best Effort traffic in TTEthernet. The NMR service solves this
problem since the RTI also grants time advances to logical times of received messages if
they occur earlier than the requested time. However, this may cause multiple invocations

of the NMR service by the federate to advance in time.

Based on this example, the next section illustrates the basic time synchronization mech-

anism of the simulation bridges which uses a logical simulation time.

4.3.2. Synchronization of Simulation Bridges

During normal simulation execution, the bridges jump between events defined in an ap-
plication and communication schedule. This schedule is calculated based on information
about the SUT’s time-triggered messages and tasks provided in the configuration data.
For each message and task, the schedule determines the number of events through dividing
the duration of the simulation execution by the task’s or message’s period. Afterwards, it

calculates the instants considering the offset in each period and stores them together with
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4.3.2. Synchronization of Simulation Bridges

scheduling information. Regarding the normal execution mode, the important schedul-
ing information is the event’s type (message or task) and a reference to the related task
or message object. This object stores further information such as the parameters for

fault-injection. The remaining scheduling information is used for the other modes.
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Figure 4.13.: Main loop in the ingress module.

Figure 4.13 illustrates the synchronization algorithm. At the beginning, the egress module
checks if a step needs to be performed. This is signaled by the flag stepPending. To
support unknown events in addition to the communication and application schedule, the
simulation bridges use the NextMessageRequest service. Hence, it is possible that the RTT
grants a time advance to a time before the requested event. One example is the reception
of an event-triggered message which causes the execution of a task sending additional
messages. In this case, there might be pending internal or additional, unknown events
from other devices and the request must be repeated. Otherwise, the RTTAmbassador
obtains the next event from the schedule and checks its time. The last event in the
schedule equals the time of the simulation’s end. If this value was returned, all events are
processed and the ambassador terminates the simulation. If not, the module sends the

NextMessageRequest.

Before the RTT grants the time advance to the simulation bridge, it sends all subscribed
interactions for this event. The simulation bridges forward them to the connected device
as described in Section 4.4. Once the TimeAdvanceGrant is received (TAG), the ingress
module triggers the execution of the next step. Its end is represented by the flag stepFin-
ished which enables the RTTAmbassador to send the available outputs. Afterwards, the

next time advance is triggered and the loop repeats.
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4.3.3. Synchronization in Real-Time

Compared to the basic synchronization mechanism, the execution in real-time for HIL
testing is more complex, because its continuous advance must be considered further. This
section introduces the related synchronization mechanism. For a proper functionality, it
requires the execution on a simulation host which is configured to run real-time appli-
cations as described in Section 6.2.2. This includes a synchronized global time for the
simulation bridges and the connected devices. The logical times in the HLA are synchro-
nized globally according to the time management. Furthermore, the algorithm expects
the availability of input packets in time. If the network connecting the bridges introduces

large delays, the management techniques introduced in Chapter 5 have to be applied.

Algorithm 1 Real-time execution in the ingress module

1: procedure RUNRT

2 set bool terminated to false;
3 declare packetPtr;

4 while not terminated do
5: wait, for next activation;
6

7

8

9

take time-stamp and compare it with the time of the next scheduled event;
if scheduled event occured then
if T'T-packet found in inputPacketBuffer then
: set packetPtr to input packet;
10: else if TT-packet found in faultyPacketBuffer then

11: set packetPtr to faulty packet;

12: end if

13: else if non-scheduled event occured then
14: if ET-packet found in inputPacketBuffer then
15: set packetPtr to input packet;

16: end if

17: end if

18: if packet found then

19: inject fault into packet if configured;
20: if not (omission or delay failure) then
21: forward packet of packetPtr;

22: end if

23: end if

24: end while
25: end procedure

Algorithm 1 illustrates the real-time operation mode of the simulation bridges which is
implemented in the ingress module. Detecting the correct point in time to forward a packet
requires the information provided by the device’s application and communication schedule.

The logical times in the schedule represent the logical duration from the simulation start
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to the time of the event. At runtime, this duration is added to the time-stamp of the
simulation start to map the logical times to physical points in time. The other way around,
each physical time interval is represented by a logical time similar to a sparse time base.
The resolution of the mapping is based on the temporal requirements of the SUT. For
example, a logical duration of 1 may represent 1ms. This resolution also represents the
period with which the simulation bridge is activated. After each activation, the bridge
takes a time-stamp and compares it with the physical time of the next scheduled event
(Line 5-6). If the activation time-stamp is equal or larger (due to wake-up delays) than
the physical time of the event, a scheduled event has occurred. In this case, the module
forwards available time-triggered packets (Lines 7-12). Since the ingress module aims
on forwarding data from other devices, the input packet buffer is checked first (Line
8). If there is no packet found, delayed, inserted or replayed packets may be available.
Hence, the faulty packet buffer follows (Line 10). In between the scheduled RT-events, it
is possible to select available event-triggered messages for the forwarding (Lines 13-16).
If a packet was found, the injection of faults is triggered and non-omitted packets are
forwarded to the device (Lines 18-23).

Algorithm 2 Advance in time for real-time execution for the egress module

1: procedure ADVANCEINTIMERTEGRESS(int64 logical TimeEvent)
2 set logical TimeFinishedEvent to logicalTimeEvent;

3 if logicalTimeFinishedEvent == logicalTimeLastEvent then
4 set rtSimulationFinished to true;

5: if simulationFinished then

6 terminate simulation and return;

7 end if

8 end if

9 if grantedTime == logicalTimeFinishedEvent then

10: get next event from schedule;

11: if event found then

12: call NextMessageRequest;

13: else

14: terminate simulation and return;

15: end if

16: end if

17: end procedure

During real-time execution, the logical time of the HLA federation must be synchronized
with the physical time of the device. This makes the synchronization with the RTT more
complex than in the normal execution mode. While the basic time management message
exchange with the other simulation bridges remains the same, the progress of real-time

must be considered further. On the one hand, the simulation bridge must wait for the
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device to finish an execution step and to provide all outputs (egress module). On the
other hand, the simulation bridge cannot request a time advance if the step is finished,

but the RTTAmbassador is still in the time advancing state.

Algorithm 2 depicts the function AdvancelnTimeRTegress of the RTTAmbassador which
is called once the simulation bridge has sent all outputs for the device’s current task.
It requires the logical time of the current, finished event and updates a member variable
accordingly (Line 2). Afterwards, it compares the time of the finished with the time of the
last event. A match of both time-stamps signals the end of the real-time execution which
is represented by setting rtSimulationFinished to true (Line 4). If all events are granted by
the RTI, the simulation has also finished (simulationFinished) and the simulation bridge
can terminate (Line 6). Otherwise, the function compares the granted time with the
time of the finished event. Only if the granted time is equal, a request to the current
event has been granted by the RTI and the device has finished the related task. The
RTTAmbassador can obtain the next event from the application schedule and request a
time advance if the event exists (Lines 9-12). A non-existing event represents an error
since the last event of the simulation is available in the schedule and the function checks

this case at its beginning. Hence, the simulation bridge also terminates (Line 14).

Algorithm 3 Advance in time for real-time execution in the RTTAmbassador

1: procedure ADVANCEINTIMERTINGRESS

2 if grantedTime == logicalTimeLastEvent then
3 set simulationFinished to true;

4 if rtSimulationFinished then

5: terminate simulation and return;

6 end if

7 end if

8 if grantedTime < logicalTimeFinishedEvent or rtSimulationFinished then
9: get next event from schedule;

10: if event exists then

11: call NextMessageRequest;

12: else

13: set simulationFinished to true;

14: if rtSimulationFinished then

15: terminate simulation and return;

16: end if

17: end if

18: end if

19: end procedure

Algorithm 3 is used to request a time advance from the RTTAmbassador to handle the case

if the HLA time synchronization is slower than the real device. During normal operation,
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a TimeAdvanceGrant message triggers the execution of a simulation step. Since the real
device runs independently from the simulation bridge, such a trigger is not necessary. As a
consequence, the RTTAmbassador can call the function AdvancelnTimeRTingress directly
once the bridge receives a TimeAdvanceGrant. The main differences to Algorithm 2 are
the conditions under which the next time advance can be requested and the simulation
bridge can terminate. A termination is possible if the currently granted time equals the
time of the last event and the real-time execution has finished also (Lines 2-7). If the
latter is not true, the other components were faster than real-time and the simulation
bridge has to wait until all events are finished by the real device. In this case, no further
NextMessageRequests are sent. To advance in time, the time management algorithm must
be processed as fast as the real-time execution or slower. This is represented by a granted
time which is smaller or equal to the currently finished event. This condition is sufficient
for the normal execution but may cause a deadlock if the real-time execution has finished

already. Hence, a request is also sent in this case (Lines 8-11).

4.4. Packet Handling in the Simulation Bridges

While Section 4.1.2 gives an overview about how packets pass the simulation bridges at
runtime, this section focuses on a detailed explanation about handling the packets. It
covers the packet capture in the wrapper module of the sending simulation bridges and

the forwarding process in the receiving ones.

How packets are captured depends on the connection of the device to the simulation
bridge in the wrapper module and the implementation of the wrapper interface. Cap-
tured packets are stored in objects of the type EthernetInteractionInstance. Besides the
packet itself, these objects contain meta data about it such as the logical time, egress and
ingress time-stamps or injected faults. Once a packet is available, the wrapper function
handlePacket creates the interaction instance object and sets the egress time-stamp which
represents the time the packet was captured. Afterwards, the packet is analyzed to deter-
mine the related interaction class, the packet’s size, its logical send-time or if the packet is
the last one for the current simulation step. To obtain the latter two values, an additional
protocol header can be added to each packet. This header can be placed between the
transport (e.g., TCP/UDP) and the application protocol (e.g., TRDP [iec15]) or on top
of the latter. It is not required if the temporal information is contained in the other head-
ers already. The same applies if the device and the bridge are timely synchronized and
the communication schedule is known. The packet size can be calculated by exploiting

the length values in the Ethernet and IP headers. In Ethernet networks, the destination
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MAC address determines the receiving network device. Besides communication with one
device (unicast), it is also possible to perform multicasts (a group of receivers) or broad-
casts (all devices in a network). The simulation framework provides two mechanisms to
map the destination MAC address to an HLA interaction. First, an interaction class can
be defined which is dedicated to a unique destination address. The second possibility is
the usage of a default interaction class which is destined to any address. At runtime, the
wrapper analyzes the address and sets the interaction class of the interaction instance
object accordingly. After copying the packet content into this object, it can be inserted

into the output packet buffer and the egress module is notified.

The information if the captured packet is the last one of the current step is required to
determine when a time advance request can be sent. If the simulation bridges only sup-
ported time-triggered traffic, all inputs and outputs of the device were known and a time
advance request could be performed once they are captured. However, technologies such
as TTEthernet also support best-effort traffic and a simulation step might produce mul-
tiple outputs sent at different times. The simulation bridge must forward all packets and
request a time advance afterwards. Without knowledge about the number of outputs, the
simulation bridge can advance only to the time of the latest packet captured. Otherwise,
packets may be missed or the TSSO might be violated. In case of large network delays
or a rare number of output packets, the synchronization delays caused by waiting for the

next packet might introduce severe overheads.

Once the egress module is notified, it queries the available packet from the buffer and
triggers the estimation of next inputs if the state-estimation mechanism is enabled. A
detailed description of the mechanism can be found in Section 5.1.2 for guaranteeing a
timely packet arrival and in Section 5.1.3 for an increased accuracy. If the current event
is denoted as an output event, the egress module calls the RTTAmbassador to forward the
packet. The ambassador retrieves the interaction class, its RTI handle and the handles of
its parameters from the interaction instance object and encapsulates the parameters into
a parameter handle value map. This map is sent to the RTI together with the interaction
handle and the send time if the latter is valid. Afterwards, a time-stamp is stored in the
interaction instance object representing the time the packet was sent. Once all packets are
forwarded, a NextMessageRequest is sent to the RTI. Depending on the simulation bridge
configuration, there are different constraints when this message is sent. These constraints
are explained in the related sections for the synchronization mechanisms (cf. Sections
4.3.2 and 4.3.3) and the usage of the state-estimation mechanism (cf. Sections 5.1.2 and
5.1.3).

At the incoming site, the RTIAmbassador decapsulates the parameters from the received
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interaction and saves a time-stamp of the reception. After creating and filling an inter-
action instance object, it inserts the latter into the input packet buffer and notifies the
ingress module. Once the packet is forwarded, the wrapper module stores the current
physical time as the ingress forward time-stamp. Together with the ingress time-stamp
representing the time of the reception, the pass-through time of the packet in the simula-

tion bridge can be calculated.

4.5. Fault-Injection based on IEC 61508-2

As mentioned in Section 4.1.2; the distributed co-simulation framework supports fault-
injection to validate the dependability of the SUT. Following the IEC 61508-2 standard,

the injection is performed on incoming packets from other devices at runtime.

After selecting the packet to forward, the ingress module triggers the fault-injection mod-
ule to inject an omission, corruption, delay or replay fault according to Algorithm 4.
The fault-injection module obtains the first entry of each fault-schedule and compares it
with the current logical time. In case the time matches for one or more faults, a related
boolean flag is set (Lines 2-7). This flag determines the injection of the related fault and
is checked in Line 8. If one flag is set, the fault-injection module obtains the message
object of the currently received interaction from the application schedule (Line 9). As
mentioned in Section 4.2, this object contains the parameters for the injection. An error
in the configuration leads to a missing object and the function returns true. As a conse-
quence, the packet is forwarded without any injection. Otherwise, the module checks for
packet omission and if the current time is available in the related fault list in the message
object. In case both checks are successful, the packet is omitted by setting a related flag

in the interaction instance object and returning false (Lines 10 to 13).

The remaining corruption, replay and delay errors can be configured to occur alone or
in combination. In every case, the fault information is obtained from the message object
(Lines 16, 20 and 27) and the event is removed from the fault-schedule after injecting the
fault (Lines 17, 24 and 30). In between, the injection is performed as follows. To corrupt
a packet (Line 17), the interaction instance object retrieves the parameters, makes a copy
of the packet and changes the faulty bytes to their new value. In case of replay, the
replay instants are added to the schedule and new packets are inserted into the faulty
packet buffer. By adding the events to the application schedule in the correct order,
they are automatically considered during the time advance process. Since the buffers
store references to the interaction instance objects, the reference to the original instance

is copied. Furthermore, a flag is set in the related object which signals the performed
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injection of the fault (Lines 21-24). Similarly, a copy of a delayed packet is added to the
faulty packet buffer for its new time of reception. To determine the instant, the fault-
injection module obtains the delay and adds it to the current time. Furthermore, this
instant is inserted into the application schedule and the delay interval is set in the related

member variable of the interaction instance object (Lines 27 to 30).

Algorithm 4 Fault-injection for omission, corruption, delay and replay errors

1: procedure INJECTFAULTS(int64 currentTime, EthernetInteractionInstance eii)
2 for all fault-event schedules do

3 get first event from fault-schedule and compare with current time;

4: if time matches then

5: set event-flag of related event to true;

6 end if

7 end for

8 if corruption, delay, omission or replay event-flag set then

9 get message object for current time from schedule;

10: if message found and omission event then

11: if logical event-time found in omission fault list of message object then
12: set packetOmitted in eii and return false;

13: end if

14: else if message found and no omission event then

15: if corruption event then

16: get corruption fault from fault list in message object;

17: corrupt payload in eii and remove event from fault-event list;

18: end if

19: if replay event then

20: get replay fault from fault list in message object;

21: for all replay instants do

22: add interaction to faulty packet buffer and event to schedule;
23: end for

24: set replayed member in eii and remove event from fault-event list;
25: end if

26: if delay event then

27: get delay fault from fault list in message object;

28: set delay member in eii and add new event to schedule;

29: insert packet into faulty packet buffer for current time plus delay;
30: remove event from fault-event list and return false;
31: end if
32: end if
33: end if
34: return true;

35: end procedure

Using the return value, the fault-injection module indicates whether the packet has to be

forwarded to the wrapper module or not. The first case is covered by returning true while
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false signals the omission or delay of the packet. Manipulation, resequencing and insertion
are not mentioned explicitly. As explained in Section 4.2, manipulation can be mapped to
corruption while delaying one or more packets results in resequencing. Apart from that,

the insertion of additional packets is performed during the configuration process.

4.6. Software- and Hardware-In-The-Loop Testing

In the previous sections, the handling of packets, the synchronization of simulation bridges
and the injection of faults are discussed. This section illustrates their combination to sup-
port Software- and Hardware-In-The-Loop (SIL, HIL) testing. SIL represents the default
operation mode of the simulation bridges and is used for co-simulation or the connection

of software-implemented control algorithms. HIL is used to connect real hardware instead.

To synchronize the simulation bridges for SIL with non-real-time devices, they use the
normal execution mode according to Section 4.3.2 automatically. In this mode, a time
advance to time ¢ signals the connected device to execute until the step starting at ¢ has
finished. Afterwards, its outputs are exchanged. If there are no packets available, the
device returns signaling that outputs are pending and the simulation bridge requests a

time advance to the next event.

Real-time execution via the distributed co-simulation framework uses the synchronization
mechanism described in Section 4.3.3. This mechanism expects a timely packet arrival
which must be ensured in two ways. Either the communication cycles in the device’s appli-
cation schedule are large enough so that all data is received in time or a delay-management
mechanism according to Chapter 5 must be applied. At runtime, the bridges capture and
forward packets according to Section 4.4. If real-time devices shall be synchronized using
the HLA time-management, a mechanism is required between the bridge and the device
which triggers the end of an execution step. A real device can be connected to the sim-
ulation host via a communication mechanism such as TTEthernet or TSN. In this case,
temporal synchronization is used and the simulation bridge can determine the end of a
step by exploiting information provided by the application schedule. Herein, all output
messages of a step are stored including their scheduled send-time. Alternatively, explicit

synchronization by exchanging control packets can be used.

Fault-injection is supported automatically for each operational mode as soon as there are
faults configured. In this case, the injection of insertion faults is performed during the
configuration of the simulation bridge (cf. Section 4.2) while the other faults are injected

at runtime as described in Section 4.5.
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4.7. Secure Communication

The main purpose of using the distributed co-simulation framework is the validation and
verification of distributed embedded systems via the Internet. Herein, the protection
of confidential data and intellectual property are central aspects. The Internet is an
open network which does not provide any security services. Hence, it is required to apply
mechanisms which ensure the confidentiality, integrity and authenticity of the transmitted
data.

This thesis focuses mainly on delay-management technologies to support real-time com-
munication via the Internet. Security is not a central topic, but one important aspect
in future validation and verification processes. Hence, this section suggests the usage of
a Virtual Private Network (VPN) to provide the required security mechanisms. As ex-
plained in Section 2.6, VPNs provide confidentiality, integrity and authenticity of data in
public communication networks. Using them, it is not required to implement any security
mechanisms in the simulation bridges because the communication between the hosts is
secured already. However, the encryption of data introduces additional delays, wherefore

it is the user’s responsibility to decide if those mechanisms are required or not.

At the University of Siegen, the open source solution OpenVPN is used to connect hosts
from other networks with the network of the university. It is a widely used technology for
secure and scalable communication with downloads by millions of people and companies

[INC]. Hence, it is also used in this thesis if communication via the Internet is required.
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Real-Time Tests via the Internet

5.1. Delay-Management using State-Estimation

The state-estimation mechanism estimates future inputs for the connected device based
on a model of the remaining system under test, previous device outputs and its commu-
nication schedule. Furthermore, received inputs are compared with the estimated ones to
ensure a valid accuracy of the estimation. There are two possibilities to provide the inputs
to the device. In the first, estimation is used as a fall-back solution if packets are delayed.
In the second possibility, a subset of the events in the application and communication
schedule is used to exchange data with the other bridges. In between, intermediary es-
timated packets are forwarded. Both possibilities expect a properly configured real-time

simulation host.

5.1.1. State-Estimation Models

As introduced in the overall architecture of the simulation bridges, there are two models
connected to the state-estimation module. While the system model is used to estimate
future inputs, the comparison between received and estimated ones is performed in the
device model. Since the models used depend on the SUT, they must be provided by
the system developer. Using a generic interface such as FMI to connect them provides a
variety of supported simulation tools as depicted in Section 3.2.2. In the following, the

interaction between both models and the state-estimation module is presented.

Once a packet has been received and there is enough time left before the next real-time
event occurs, the ingress module triggers the comparison with the estimated data. In
this way, the simulation bridges prevent delays in real-time activities caused by the state-
estimation module. However, the check might not be performed directly. Performing the

check also if the received packet is forwarded ensures a valid accuracy of future estimation
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results. To compare the inputs, the state-estimation module searches the interactions of
the reception time in the two buffers and forwards them to the device model. This model
decapsulates the inputs and compares their difference with a configurable error threshold
during the execution of its step. As the step size, the interval to the previous check is
used. If the result lies within the configured bounds, the model returns with status ok
while status error signals a difference which is too large. In this case, the simulation

bridge notifies the user and terminates.

Before captured packets are sent to the other simulation bridges, the egress module trig-
gers the state-estimation module to estimate the future device inputs. In this way, the
simulation bridge ensures an implicit synchronization between the egress and the ingress
module since both access the RTTAmbassador. As a consequence, potential delays caused
by sending the packet do not influence the availability of the estimated packet negatively.
Furthermore, estimated packets are available before the received ones which simplifies the

comparison algorithm in the device model.

The state-estimation module communicates with the system model similar to the wrapper
module (cf. Section 4.4). As simulation step size, the interval between the last and the
next packet reception time is chosen. After obtaining and analyzing the estimated packets
with regard to the interaction class and the reception time, the latter is used by the state-
estimation module to insert the packet into the estimated packet buffer. Since it is further
possible that inputs have to be estimated for the first simulation step, an initial estimation
is required. This estimation is triggered during the initialization process of the system
model. At run-time, the ingress module forwards either estimated or received inputs

depending on the estimation mechanism used.

5.1.2. State-Estimation as Fall-Back Solution for Timely Packet

Reception

The application of state-estimation as a fall-back solution to guarantee a timely packet
reception is the first estimation mechanism introduced. It extends the real-time synchro-
nization described in Section 4.3.3 and is used mainly in simulation bridges connected to
real-time devices. However, applying it for non-real-time components is also possible to

reduce the number of estimations in the real-time devices.

The extension for this state-estimation mechanism (cf. Algorithm 5) is applied on Al-
gorithm 1 introduced in Section 4.3.3. While the real-time synchronization mechanism
checks only the input and faulty packet buffers for available packets (Lines 11-14), the ex-

tension includes also the estimated packet buffer (Lines 15-16). Since the state-estimation
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module provides an input for every reception event, this mechanism can be used as a
fall-back solution if packets are delayed due to the network latencies. In this case, an
estimated packet is forwarded instead of the received one. Once a packet was received,
the RTTAmbassador signals its availability by adding a RECEIVE EVENT in the ingress
module. This event type is checked after all available real-time events are processed to
prevent delays. If the check was successful, the state-estimation module performs the
comparison between received and estimated inputs (Lines 24-25). The remainder of the
real-time synchronization algorithm remains similar to Algorithms 2 and 3 which realize

the time advance.

Algorithm 5 State-estimation in ingress module for real-time execution

1: procedure RUNRT

2 set bools terminated, estimationFinished to false;

3 declare packetPtr;

4: while not terminated do

5: if event in application schedule then

6 wait until time of next application schedule event;
7 else

8 wait for non-RT-event;

9: end if

10: if RT-event occured then

11: if packet found in inputPacketBuffer then

12: set packetPtr to input packet;

13: else if packet found in faultyPacketBuffer then
14: set packetPtr to faulty packet;

15: else if packet found in estimatedPacketBuffer then
16: set packetPtr to estimated packet;

17: end if

18: if packet found then

19: inject fault into packet if configured;
20: if not (omission or delay failure) then
21: forward packet of packetPtr;
22: end if
23: end if
24: else if RECEIVE EVENT then
25: check estimated input;
26: end if

27: end while
28: end procedure

Besides using state-estimation to ensure a timely packet reception in real-time tasks, it
is also possible to use it for non-real-time devices. Figure 5.1 shows a use-case with

two non- and one real-time device where large network delays cause a deadline miss in
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the latter. While the boxes in the figure denote tasks, sent messages are represented as
upwards pointing arrows and received messages as descending ones. Message M, is sent
by device ED1 after 20ms and received by ED2 after 40ms, wherefore the worst case
communication delay (WCCOM) accounts for 20ms. For M, the instants are 50ms
(sending) and 75ms (receiving), resulting in a delay of WCCOM = 25ms. However,
the network connecting the simulation bridges introduces a communication latency of
tcomm = 4bms which delays the task in £ D2 by 25ms. Even if the (simulated) execution
of the tasks finishes after 5ms and the communication delay is shorter than the scheduled
WCCOM, the deadline of the real-time task at 75ms is missed.

tcomm = 45ms tcomm = 20ms
ED1 (noRT) IM
0
ED2 (noRT) Mol TMl M, l TAM]
1
WCCOM = 20ms WCCOM = 25ms
A > t[ms]

0 10 20 30 40 50 60 70 80 90 100

Figure 5.1.: Communication delays causing a retarded execution of a real-time task.

Using state-estimation also in non-real-time tasks solves this issue. In this mode of op-
eration, activities in a non-real-time device are triggered in real-time. Additionally, an
offset can be defined in the configuration file which allows to prepone a task’s execu-
tion (rtOffset). In this way, it is possible to mitigate larger communication delays than
scheduled by the WCCOM. With regard to Figure 5.1, the execution of the task on £ D2
could be triggered at 40ms using an estimated Mj. Since the real communication delay
(tcommr = 20ms) is smaller than the WCCOM, the message would be received in time.
If the latency would account for a larger value (e.g., tcomn = 30ms), an offset of more
than 5ms could ensure a timely packet reception in the real-time device. To define this

offset, different parameters must be considered. Those are the:
1. Network delay between simulation bridge and device
2. Execution times of the simulation bridges (incoming and outgoing) and the RTI
3. Latency of transmitting the interaction including the data via the network
4. Time synchronization overhead introduced by the HLA time management

The first parameter in this list depends on the device and its connection to the simulation

bridge’s wrapper interface. In case of a real device, the delay depends on the network link
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and the library which captures the packet (e.g., PCAP). If the device is simulated and
loaded as a shared library (e.g., using FMI), there is a small latency as the simulation
bridge performs only a function call. This latency and the execution times of the bridges
and the RTI depend on the simulation hosts on which they are running. All parameters
and the network delay required to transfer an interaction have to be determined by the
user of the framework. Compared to the communication latency of a single interaction,
the synchronization overhead is much larger. The number of messages exchanged during
the time synchronization algorithm depends on the number of federates in the federation.
The message number has to be multiplied with the network delay to determine the commu-
nication costs of the synchronization. Accumulating all four parameters and subtracting
the result from the WCCOM provides the offset that has to be configured. However,

ascertaining them can be difficult especially if there are no QoS services available.

5.1.3. Increased Accuracy using Estimated Intermediary Packets

The previously described mechanism is useful if the communication slots of the SUT’s
schedule are in the same order of magnitude like the delays of the simulation bridges’
network. However, there might be SUTs with a dense schedule for which the network
latencies are too large. As a consequence, there would be many estimation activities
without forwarding any received packet. This section introduces a mechanism where the
number of synchronization messages exchanged between the simulation bridges is reduced.
In between, intermediary, estimated packets are forwarded to the device. Adapting the
communication activities to the network delays allows a timely packet reception in the

real devices while maintaining a sufficient accuracy.
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Figure 5.2.: Dense application schedule of two end devices connected via a switch.

Figure 5.2 shows an example with a dense schedule as mentioned above. An end device
hosting a sensor and an actuator (E£D1) is connected to a controller (FD2) via a switch.
The application schedule is time-triggered with a period of 5ms. At offset 1ms in each

period, the sensor collects the state of the environment and sends it to the switch in
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5.1. Delay-Management using State-Estimation

message My. After simulating the network latency of 1ms, the switch forwards the packet
to the controller (offset 2ms) which replies with a control value in M; after 3ms. Similar

to My, M, passes the switch and reaches ED1 after 4ms which performs the actuation.

To reduce the number of interactions exchanged, a bridge communication schedule is in-
troduced which represents a subset of the SUT’s application and communication schedule.
Within a selectable bridge communication period, this schedule determines the instants
at which the simulation bridges communicate. The idea is illustrated in Figure 5.3 where
four types of messages are shown. At first, black arrows pointing upwards represent inter-
actions which contain packets captured from the connected device. After using them for
the estimation, they are forwarded to the receiving bridges. The related received messages
are printed as red arrows pointing down. In contrast, the remaining two types are not
exchanged between the bridges. Captured packets that are used only to estimate future
inputs are printed in blue while the estimated inputs are represented by cyan-colored ar-
rows. Which messages are exchanged can be defined by the user of the framework and the
related events are stored in the bridge communication schedule. In this way, the mecha-
nism is adaptable to the SUT and the network delays ensuring a timely packet reception

by the real hardware.
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Figure 5.3.: Definition of events in bridge communication schedule.

An example for using the state-estimation algorithm based on a suitable bridge com-
munication schedule is depicted in Figure 5.4. An interval of 10ms is defined as bridge
communication period which is twice the period of the application schedule. In this case,
E D1 is a device running in real-time. The switch as a simulation and the controller as a
software application only have an implicit relation to the real-time based on the schedule.
At the beginning of the period, the I/O-device sends the sensor result to the switch at
Ims. Assuming a network delay (delay-net) of 1.5ms, the switch receives the message
after 2.5ms. Since it is simulated, the switch processes the message fast and forwards it
to the controller after 2.75ms. Due to the same network delay, this device receives the
input after 4.25ms. In the meantime, the simulation bridge connected to the 1/O-device
forwarded an estimated input at instant 4ms and the switch was able to simulate un-

til event 7. Since the next event in its application schedule is also a reception event of
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5.1.3. Increased Accuracy using Estimated Intermediary Packets

the bridge communication schedule, the switch has to wait for the controller. Similarly,
the controller can process its remaining events of the bridge communication period and it
sends the final control output to the switch after 5.5ms. While the message is transferred,
the simulation bridge of the I/O-device uses its output at 6ms to estimate the next input.
However, the switch is able to forward its output in time at 8.75ms due to the properly

selected schedule and the I/O-bridge can forward the received packet after 9ms.

delay-net delay-net delay-net delay-net
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. 123467 i 89 i
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Figure 5.4.: Application of state-estimation providing intermediary packets.

To implement a real-time simulation bridge for this mode of operation, the functions de-
fined in Section 4.3.3 can be reused with some adaptations. These refer to Line 10 of
Algorithm 2 (AdvancelnTimeRTegress) and Line 9 in Algorithm 3 (AdvanceInTimeRT-
ingress). Instead of obtaining the instant of the event for the next time advance from
the application schedule, both functions retrieve it from the bridge communication sched-
ule. Similarly, the egress module checks whether the current send time is available in the
bridge communication schedule before it forwards an interaction. This does not account

only for real-time execution, but also for the estimation of intermediary packets.

Algorithm 6 Advance in time for SIL in the RTTAmbassador

1: procedure ADVANCEINTIME(int64 timeEvent)

2 if not timeAdvanceGranted then

3 wait for TimeAdvanceGrant;

4 end if

5: set timeAdvanceGranted to false and get next application event;
6 if event found in bridge communication schedule then

7 call next message request;

8 else if event found in application schedule then

9 set timeAdvanceGranted to true;

10: add ESTIMATION_EVENT in ingress module

11: else if all events of application schedule processed then
12: terminate;
13: end if

14: end procedure

During real-time execution, the Algorithms 2 and 3 have to consider the progress of
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5.1. Delay-Management using State-Estimation

real-time in parallel to the time advance procedure. Instead, the RTTAmbassador has
to handle only the different schedules during non-real-time execution. The related pro-
cedure is depicted in Algorithm 6. To prevent multiple time advance requests, a flag
timeAdvanceGranted is used. While a request is processed, the flag is set to false (Line
5) and another thread calling the procedure has to wait (Lines 2-4). Afterwards, the
ambassador obtains the next application event and checks if it is available in the bridge
communication schedule. In this case, a NextMessageRequest can be sent to the RTT to
advance in time (Lines 6-7). If the event is only present in the application schedule, the
RTTAmbassador can set the flag timeAdvanceGranted to true and trigger an estimation
event in the ingress module (Lines 8-10). In case of a NextMessageRequest, the flag is set
during the TimeAdvanceGrant. Finally, it is also possible that all events are processed

already. This case signals the end of the simulation and the bridge terminates (Line 12).

Algorithm 7 State-estimation for intermediary packets in SIL

1: procedure RUNESTIMATION

2 set bools terminated, estimationFinished to false;

3 declare packetPtr;

4: while not terminated do

5: wait for event;

6 if ESTIMATION EVENT then

7 if faulty packet available for current step then
8 forward packet;

9

: else
10: get estimated packet and perform fault-injection;
11: if not (omission or delay failure) then
12: forward packet;
13: end if
14: end if
15: perform simulation step;
16: else if RECEIVE EVENT then
17: get received packet and perform fault-injection;
18: if not (omission or delay failure) then
19: forward packet;
20: end if
21: else if TAG EVENT then
22: if faulty packet available for current step then
23: forward packet;
24: end if
25: perform simulation step;
26: end if

27: end while
28: end procedure
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Similar to the normal and the real-time execution, a dedicated function is defined for
the ingress module to run the estimation of intermediary packets. The related algorithm
is presented in Algorithm 7. At the beginning of the main loop, the module waits for
one of the following events. An ESTIMATION FEVENT is triggered by the function
AdvancelnTime. In this case, the ingress module searches for faulty or estimated packets
to forward (Lines 7-14). As shown in Line 10, faults can also be injected into estimated
packets before forwarding them. A RECEIVE EVENT denotes the reception of a packet
from another device instead. Similar to an estimated packet, it is forwarded once the
injection of faults has finished (Lines 16-20). Finally, a TAG_EVENT is added in case
of a TimeAdvanceGrant. After forwarding available faulty packets, the ingress module
triggers a simulation step in the device (Lines 21-26). Once the step has finished, the
egress module handles the packets as described in Section 4.4. The only difference is
an additional check if the current send-time is available in the bridge communication
schedule. In this case, the transmission is scheduled and the egress module can forward

the interaction.

5.2. Delay-Management using Speculative Execution

Speculative execution was developed for processors to increase the utilization of resources
by speculatively executing commands in advance. This work provides a mechanism which
is able to distribute a federation into several independent subsets. In this way, indepen-
dent tasks can be processed in advance to provide real-time data in time. Furthermore,
the synchronization effort can be reduced which speeds up the overall simulation exe-
cution. The reason is a reduced number of messages that are exchanged between the
simulation bridges and the RTI. In this section, the overall concept and the extensions of

the simulation bridges to route data between different federations are described.

5.2.1. Concept of Speculative Execution

Complex distributed embedded real-time systems may comprise different types of com-
ponents or functionalities with varying temporal dynamics. One example can be a brake
together with a Human Machine Interface (HMI) system to control it. While the brakes
have to respond fast on inputs such as an emergency stop, user inputs via the HMI system
are slow. Hence, the latter can be executed with larger cycle times compared to the brake
control. If these components are integrated via the same network, all communication

activities need to be validated during the development process. In this case, a component
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with small cycle times performs much more activities than another component having
long cycles. As a consequence, the latter might be blocked gratuitously waiting for the

permission to execute.

HMIprqke Controlgrake

Switch

Emergency Stop Brake

Figure 5.5.: Distributed SUT with different cycle times.

Figure 5.5 shows an example SUT with a brake, the related controller, an emergency stop
component and an HMI. The components are connected via a switch and the related
schedule is illustrated in Figure 5.6. In this example, the brake, its controller and the
emergency stop component operate with a cycle time of 20ms while the HMI has a cycle
time of 100ms due to human response times. At the beginning of each period, the brake
reacts on the previously received control input and the emergency stop signal and sends
the current speed to the brake controller afterwards. Based on the received input and
the current destination speed, the controller determines the braking force and sends it to
the brake. The emergency stop component reacts on related sensor inputs and sends a
stop signal to the brake if required. During normal operation, a keep-alive signal is sent
instead. Since the emergency stop component does not receive any inputs from the brake
and its controller, it can be considered to be independent. Finally, the HMI component
receives the current speed, it outputs the value and the operator is able to brake. A related
message is sent to the brake controller around 80ms at the end of the HMI’s period. The

controller is responsible to adapt the braking force afterwards.
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Figure 5.6.: Schedule of example SUT.

In the example above, there are two cases for which a speculative execution is useful.

First, the emergency stop controller has its own sensors and does not depend on inputs of
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the brake or its controller. Second, the HMI component has a larger cycle time. In this
cycle, the HMI requires the brake’s output from the first period and the HMI’s output is
used by the brake controller during its last period. In between, there are no interactions
wherefore the HLLA’s time management would block the HMI’s simulation. The concept of
speculative execution prevents this drawback by splitting the federation into independent
subsets. These subsets can be executed in parallel and synchronization between them is
required only if there are messages exchanged beyond the subset boundaries. In this way,
independent non-real-time components can be executed earlier than scheduled since they
are not blocked waiting for non-related TimeAdvanceGrant messages. As a consequence,
there is more slack available to transfer real-time data between the simulation bridges in

time.
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Figure 5.7.: Different subsets of SUT.
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Figure 5.8.: Connecting the subsystems of the SUT using simulation bridges.

Figure 5.7 depicts the different subsets for this example. The brake, its controller and
the switch represent the first subset which might be available as real hardware in a HIL
setup. The second subset is the emergency stop component while the HMI represents the
last one. To exchange data between the different subsets, the related links are connected
via simulation bridges in different federations. As shown in Figure 5.8, there are three
RTT components: one for the link between the switch and the HMI, one for the emergency

stop component and one RTT which connects the brake and its controller with the switch.

Considering the HMI and the emergency stop component to be non-real-time components,
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their early execution is illustrated by Figure 5.9. Since the emergency stop task uses its
own inputs, the execution of its task instances can be performed directly at the beginning
of the simulation. Assuming that the third instance of the task causes an emergency
brake, a slack of about 43ms is created between sending the message and the scheduled
send time. Similarly, the HMI task can be executed once the input is available which

results in a slack of about 68ms.
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Figure 5.9.: Adapted schedule of example SUT with early execution of independent tasks.

As a main advantage of this mechanism over state-estimation, an estimation model is
no longer required. However, there can be limitations in the accuracy of the tests since
all synchronization and communication messages have to be exchanged via the network
connecting the simulation bridges. The related delays must be considered while defining
the subsets.

5.2.2. Extending Simulation Bridges to Simulation Gateways

Using the HLA time management, all simulation bridges connected to the same HLA
federation can ensure a timely correct order of all events in the global communication and
task schedule. As a consequence, a component with multiple simulation bridges connected
must not be aware of synchronizing its inputs. One example for such a component is the
switch in the braking example of Section 5.2.1. Once the simulation bridges are connected
to different, independent federations, a global event synchronization is not guaranteed
anymore. Hence, a new type of simulation bridges has to be introduced which realizes the
synchronization between multiple federations. This type is called a simulation gateway

and described in this section.

Figure 5.10 shows the architecture of the simulation gateways. To connect a component

to multiple federations, the following two changes are needed compared to the simula-
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5.2.2. Extending Simulation Bridges to Simulation Gateways

tion bridges described in Section 4.1.2. According to the network-centric character of the
simulation framework, a pair of simulation bridges replaces one network link of the SUT.
Hence, they are only capable of connecting one device and a component with multiple
network interfaces requires multiple bridges. Using the speculative execution, the federa-
tions can be divided only at components with multiple network interfaces such as switches
or routers. To ensure a correct synchronization between all its inputs, such a component
needs to be connected to a single simulation gateway. As a consequence, the gateway must
be extended to provide multiple wrapper interfaces. Those interfaces are managed by the
wrapper module. Similarly, connecting a gateway to multiple federations requires a corre-
lating number of RTTAmbassadors. They are aggregated by the RTTAmbassador Module.
To minimize the number of changes, the wrapper interface and the RTTAmbassador are
retained as designed for the simulation bridges. The changes regarding synchronization
and data exchange are performed in the RTIAmbassador, the wrapper module, the ingress

module and the schedule instead.
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Figure 5.10.: Architecture of simulation gateways.

Since the synchronization mechanism is based on an event calendar, the schedule is ex-
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5.2. Delay-Management using Speculative Execution

tended by a local schedule for each ambassador. This local schedule contains all task and
communication events related to the connected federation. Events affecting multiple fed-
erations are added to all associated local schedules. For example, ambassador A receives
a packet at time ¢ in its federation. If the packet has to be forwarded via ambassador B, a
task event is added for time ¢ in B’s local schedule. Merging the local schedules to a global
event list enables an overall synchronization of the events. In addition to the logical time,
each event is associated with a list of required input packets and references to the ambas-
sadors receiving a TimeAdvanceGrant. Those references are used by the RTTAmbassador
module to send the next time advance requests once the step has finished. The ingress
module selects the next event from the schedule and checks if all input requirements are
fulfilled. Afterwards, the ingress module forwards the packets and triggers a simulation

step as described before.
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Figure 5.11.: Local and global event schedules.

The synchronization mechanism including the local and global event schedules is illus-
trated in Figure 5.11. It depicts four schedules, one for each federation (RTTAmbassadors
A to C) and the global schedule. At instant 1, RTTAmbassador C' receives message M
which has to be forwarded via RTTAmbassador B at instant 2. Hence, there is one re-
ception event available in RTTAmbassador C' and one task event in B at this time. To
synchronize the federations, the ingress module blocks the gateway until both, My and the
TimeAdvanceGrant for the task are received. The next event in the global schedule is the
reception of message M at instant 4. Since the message is forwarded via RTTAmbassador
A which also receives the message, there is no additional event needed. Finally, the event
at instant 8 represents a task with multiple inputs (My, M5 and Ms) affecting all three
federations. Again, the task can only be executed once both messages and the related

TimeAdvanceGrants are received. The ingress module blocks the gateway accordingly.

Forwarding the packets to the correct SUT requires information about the related wrapper
interfaces. This knowledge is provided by adding a list of interface references to the

packets’ interaction classes. The wrapper module checks the list and forwards the packet
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to all receivers. The same accounts for the RTTAmbassadors to which the packet is
sent on the egress site. This list is checked by the RTIAmbassador module instead.
After forwarding the outputs, the RTTAmbassador module requests a time advance in all
RTTAmbassadors associated with the current event. Once all local events are processed,
the RTTAmbassador terminates and notifies the RTIAmbassador module. This module
maintains the status of all RTTAmbassadors and terminates the gateway after processing

all events in the global schedule.
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6. Evaluation using a Fault-Tolerant

Fan-Control Application

6.1. System Under Test for Framework Evaluation

To evaluate the framework, a distributed fan-control application is used as an SUT. It is
based on a fan component, a PID controller, a voter and a network simulation. These
components are connected in different setups to demonstrate the framework’s scalability
and the applicability of the developed fault-injection and delay-management mechanisms.
This section introduces the different setups and the implementation of the components as

FMUs and on real hardware.

6.1.1. Fan-Control Application

The components of the distributed fan-control application are a fan, a PID controller,
a voter and a switch which links the components. They are combined in the following
five setups starting with the fan and one PID controller. The second setup follows the
concept of triple modular redundancy where the PID controller is triplicated and a voter
is introduced. In the third setup, the voter is triplicated further while the fourth and fifth
setup duplicate and triplicate Setup 3. The components are connected via Ethernet and
communicate according to a periodic, time-triggered schedule. By increasing the number

of components, the setups shall demonstrate the scalability of the framework.

Setup 1: Fan-Control Without Redundancy

The first setup without any redundancy is illustrated in Figure 6.1. In this case, there is
only one PID controller which sends its control outputs to the fan directly. The fan closes
the loop by sending the current speed with a period of 10ms. In addition, the fan sends

a new speed set point to the PID controller every 10s.
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Control
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PID > Fan
Set Point ?

Figure 6.1.: Fan control application without redundancy.

Figure 6.2 introduces the time-triggered schedule for the first setup. While the x-axis
denotes the period’s time in ms, the components are shown on the y-axis. The dashed line
at time 10ms represents the end of the period which repeats afterwards. In every period,
an offset is assigned to a task’s execution or the transmission of a message. At offset 1ms,
the fan starts with sampling the current speed and sending it to the PID controller in the
message SensorRPM. In every setup, the worst-case communication delay of the network
links is set to 1ms. It is simulated by the network simulation which receives the message
at 2ms and forwards it to the PID controller at 3ms. After receiving the value, the PID
controller uses the difference between the current and the reference speed as input for the
PID algorithm (3ms). The result of this computation is sent back to the fan at offset
4ms and received by the fan at 5ms. The new reference speed (DestinationRPM) is sent
at the end of the 10s period (offset Oms). Since the period is different from the control

loop, the messages and the simulation task are colored in light gray.
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Figure 6.2.: Schedules in DUT without redundancy for one period of 10ms.

Setup 2: Fan-Control With Triplicated PID Controller
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Figure 6.3.: Fan control application with triplicated PID controller.
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In the second setup, triple modular redundancy is used to mask the failure of one PID
controller. To determine the correct control value that can be sent to the fan, a voter is

required. Figure 6.3 illustrates the closed loop of the control algorithm.

The schedule for this setup is shown in Figure 6.4 where the transmission of the Desti-
nationRPM every 10s remains equal. The same accounts for the fan’s execution at offset
1ms and the transmission of the current speed at 2ms. Since there are multiple receivers
for this value, the message can be sent as a multicast. The controllers execute the PID
algorithm after receiving the current speed (3ms) and send the result to the voter after-
wards. At the same time, it is possible to transmit only one message via the same link.
Hence, the outputs are sent in a sequence at 4ms (PID0), bms (PID1) and 6ms (PID2).
According to the triple modular redundancy concept, the voter compares the three inputs
at Tms. Based on a majority decision, it is able to detect a failure of one PID controller
if the other two outputs are equal. In case of three different outputs, it is not possible to
determine the correct value and the voter puts the system into a safe state. To reach this,
it forwards a control value which causes the fan to run at its maximum speed. However,
this mechanism has disadvantages if two controllers fail providing the same output. Due
to the majority decision, a faulty value is forwarded in this case. Using different PID
implementations can prevent this issue. The voting result is sent to the fan (message

PID) at offset 8ms and received 1ms later.

VBT L bed bedededd bl
Fan | SensorRPM | P> T DestinationRPM
DestinatiopRPM :
PIDo | SensorRPM |-/ PIDO |
I
DestinatiohRPM 1
PIDL | SensorRPM | 1PIDI1 !
I
DestinatiopRPM :
PID2 l SensorRPMi TPID2 !
|
Voter PIDO | PID1 | PID2 || PID
—> t{ms]

o 1 2 3 4 5 6 71 8 9 10

Figure 6.4.: Schedule in DUT with triplicated PID controller for one period of 10ms.

Setup 3: Fan-Control With Triplicated PID Controller and Voter

The third setup extends the triple modular redundancy concept to the voters. In this
way, it is further possible to mask failures in one of these components. The resulting

closed control loop is shown in Figure 6.5. On the one hand, the PID controllers must
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send their results to all voters. On the other hand, the fan task must also include a voting
mechanism which determines the correct control input. Similar to the previous setups,
the fan is responsible to send new destination speed set points. The temporal parameters

remain equal for this message type compared to Setup 2.
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Figure 6.5.: Fan control application with triplicated PID controller and voter.

Figure 6.5 presents the schedule for this setup. To maintain a period of 10ms, the fan has
to execute at offset Oms wherefore the current speed is sent as a multicast at 1ms. This
message is received by the PID controllers after 2ms which send the related control inputs
in a sequence at 3ms, 4ms and bms. Since there are multiple receivers for these messages,
they can also be sent as multicasts. The voters execute at offset 6ms and transmit the
outputs at 7ms (V0), 8ns (V1) and 9ms (V2). Before the fan is able to adapt and
sample the speed at the beginning of the next period, it must execute a voting on these

inputs. The algorithm is the same like the one of the voters.
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Figure 6.6.: Schedule in DUT with triplicated PID controller and voter.
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Setup 4: Duplicated Fan-Control Based on Setup 3

In this setup, the components of Setup 3 are duplicated representing two parallel appli-
cations (cf. Figure 6.7). While both fans are connected to the central switch (Switchl),
the PID controllers and voters of both applications are linked via Switch0 and Switch?2,
respectively. To simplify the figure and the schedule, the fan, PID and voter instances are
summarized in one box. Index 7 of the fan indicates the application index which is either
0 (red messages) or 1 (blue arrows). Index j denotes the PID and voter indexes similar

to the previous setups (0 to 2).

Switch( Switchl Switch2
Voterl; Voter2;

Figure 6.7.: Duplicated fan control application based on Setup 3.

To exchange all data in one period, it is extended to 20ms. The fan instances execute at
Ims sending their outputs at 2ms and 3ms, respectively. After passing the switches with
1ms delay, the PID controllers receive the values at 4ms and 5ms. While the exchange
of the PID outputs is similar to the previous setup, the voter outputs are sent with 2ms
delay in between. In this way, the message schedule is simplified. For the same reason,
the destination inputs are sent at the beginning of the period instead of the end.
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Figure 6.8.: Schedule of duplicated fan control application.
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Setup 5: Triplicated Fan-Control Based on Setup 3

| | |
SwitchO Switchl Switch2

| /N |
Voterl; PID3; Voter3; Voter2;

Figure 6.9.: Triplicated fan control application based on Setup 3.

Another set of instances is added in Setup 5 so that there are three parallel fan control
applications. As shown in Figure 6.9, the additional components are added to Switchl
and their messages are colored in cyan. The related schedule is similar to the one of
Setup 4 with some modifications (cf. Figure 6.10). On the one hand, all task instances
are delayed by 1ms wherefore the fans start at 3ms now. On the other hand, the gap
between the voter outputs is increased to 3ms to include the additional outputs of the

third application set.

PID3; St P 1P1 1P,
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Fan [P0 S 10215 Al i
Switch1| " bl
Switch0 bl bl
PIDI, P
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Figure 6.10.: Schedule of triplicated fan control application.
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6.1.2. FMUs of Fan, PID Controllers and Voter

This section starts with a description of the PID controllers, followed by the voting algo-
rithm. The fan is implemented in two ways: as a simulation model and on real hardware.
The implementations of the model is presented afterwards whereas the implementation
for the real hardware follows in the next section. Finally, the algorithms are combined to

construct the state-estimation models.

While the network model simply adapts the transmission time-stamps encoded into the
packets by the configured delays, the other FMUs are more complicated. Proportional,
Integral and Derivative (PID) controllers consist of proportional, integral and derivative
parts. The proportional part amplifies the input signal by a given constant [ZR17, p. 106].
Using only the proportional part, a difference to the reference set point remains. This
difference can be reduced using an integral part [ZR17, p. 116] while adding a derivative
gain enables the controller to react faster on disturbances [ZR17, p. 127]. Equation 6.1

depicts the superposition of the three gains as a continuous mathematical equation.

y(t) = Kpip le(t)—F;N/ote(t)dt—kvalﬂ (6.1)
The implementation of a digital controller requires the transformation of Equation 6.1
into the discrete domain as depicted in Equation 6.2. Calculating the integral part can
be realized by accumulating the inputs (e;) weighted by the integral gain (1/7Ty). The
difference between the current (ej) and the last input (eg_;) multiplied by the derivative

gain (7Ty) and divided by the sampling time (At) represents the derivative part.

1 k=l € — €1
yr = Kpip |ex + Z e; At + Ty ———

Ty < At
o i (6.2)
€k — €k—1
=K —ep 1 At + — A+ Ty ————
PID [Gk—i-TNek 1 +TN§)6 +1v At ]
1 k—2 er_1 4 en_
Yr—1 = Kpip [ekl + T D et + Tv% (6.3)
N =0 t

Accumulating the weighted inputs can be prevented if the sum is removed from the
equation. This can be realized using a recursive algorithm where the portion of the

current step is added to the previous output. Hence, the sum in Equation 6.2 is split into
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two parts. The first part represents the portion for the previous value while the second
part is the accumulated sum until e;_s. The same sum can be found in the calculation
for the previous output yx_; as shown in Equation 6.3. By calculating the difference
between the current and the previous output, the sum can be eliminated. This difference

represents the portion for the current input and is depicted in Equation 6.4.

— 2€p—1 — €2
At

1 e
Yk — Yk—1 = Kprp |(ex — ex—1) + Tiek—lAt + Ty =~ (6.4)
N

After reordering all parts, Equation 6.5 shows the resulting formula on which the discrete
PID algorithm is based. It depends only on the current and the previous two inputs (e;),
the proportional gain, the reset time Ty, the derivative time 7Ty, and the sampling time
At. If the system can guarantee a constant sampling time, all factors can be calculated

in advance which simplifies the execution.

B Ty At Ty Ty
Y = Yk—-1 + KPID [(1 + At) €L <1 E + 2At> €r_1 + E€k_2 (65)

Algorithm 8 Implementation of the PID algorithm

1: a0 = kp + (kd / deltaT);

2: al = -kp + (ki * deltaT) + (2 * kd / deltaT);
3: a2 = kd / deltaT;

4: procedure RUNPID

5: ek = referenceSpeed - currentSpeed;

6: vk =yk 1+ (a0 *ek) + (al * ek 1) + (a2 * ek_2);
7: if yk > MAX Y then

8: vk = MAX_Y;

9: end if

10: if yk < MIN_Y then

11: vk = MIN_Y;

12: end if

13: ek 2 =-cek 1;

14: ek 1 = ek;

15: vk 1 = yk;

16: encapsulate data into message;

17: send message;

18: end procedure

Algorithm 8 illustrates the implementation of the PID control algorithm. Assuming a

constant sampling time, the constant factors of Equation 6.5 are calculated in advance
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in Lines 1-3. In Line 6, they are multiplied with the current and previous inputs to
calculate the current PID control value. The current input is the difference between the
reference and the current speed (Line 5). A comparison with the maximum (MAX Y)
and minimum (MIN YY) control outputs (Lines 7-12) ensures a bounded fan speed. After
updating the previous output and inputs (Lines 13-15), the PID output is encapsulated
into a message and sent as an Ethernet frame (Lines 16-17). If a constant sampling time

cannot be guaranteed, the factors have to be calculated during each function call instead.

Once the voter received all inputs from the PID controllers, it can perform the majority
election according to Algorithm 9. During the election, the different combinations of the
PID inputs are checked to determine two equal values. This value is set as the PWM
output afterwards. The algorithm starts with checking the equality of all inputs in Line 2
which is given as long as there is no failure. Afterwards, the equality checks of PID0 and
PID1 (Line 4), PID0O and PID2 (Line 6) and PID1 and PID2 (Line 8) follow. Finally,
Lines 10-11 represent the case where all inputs differ. Since there is no chance to select the
correct output, a value of PWM__MAX is set which causes the fan to run at its maximum
speed. Similar to the PID controllers, the output is encapsulated into a message and sent

as an Ethernet frame in Lines 13-14.

Algorithm 9 Implementation of the voting algorithm

1: procedure RUNVOTING

2 if PIDO == PID1 and PID1 == PID2 then

3 PWDMout = PIDO;

4: else if PID0 == PID1 and PIDO != PID2 then
5: PWDMout = PIDO;

6: else if PID0 != PID1 and PID0 == PID2 then
7 PWDMout = PIDO;

8 else if PID0 !'= PID1 and PID1 == PID2 then
9: PWMout = PIDI;

10: else if PIDO != PID1 and PIDO != PID2 and PID1 != PID2 then
11: PWMout = MAX PWM;

12: end if
13: encapsulate data into message;
14: send message;

15: end procedure

The last device FMU described in this section is an Intel E97379-001 fan which can be
described by the superposition of two signals. Both signals can be modeled as first-order
delay elements. The first one represents a basic speed according to Equation 6.6. It
raises from 0RPM to 1000RPM during the first 3.5s and remains stable afterwards. The
second portion is controllable using a Pulse Width Modulation (PWM) and represented
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by Equation 6.7. At runtime, it is multiplied with the PWM input received from the
voter and added to the base speed. This results in the final speed of the fan.

a(t) =10 % (1 — en ) and G (s) = 150465 (6.6)
a(t) =10 (1 — 60%7> and G (s) = W (6.7)
1+ 0.87s

Besides the device FMUs, the models for the evaluation of the state-estimation mechanism
must be defined. All device models calculate the difference between the received and the
estimated input and compare it with the maximum error set during the configuration
process. If the error is too large, the FMU returns with status fme¢ status error while
a valid estimation returns fmi_status ok. To realize the system model, the algorithms
described above can be reused. Each system model must provide the same inputs like
the device from which the data is received. The resulting packets are inserted into the
estimated packet buffer at the scheduled reception time. Hence, the system model of
the devices consist of the following algorithms. The fan requires the PWM control value
provided by the PID controllers. Since TMR is not needed for the estimation, only
the PID algorithm is implemented and the voter is neglected. The inputs of the PID
controllers are the current fan speed instead which is provided by Equations 6.6 and 6.7.
In addition, they receive new reference values from the fan. Those values are encoded in
an array and the model creates the new destination’s packet after the period elapsed. The
same accounts for the fan model where the index of the reference speed array is updated
after this time. Implementing the voter’s system model is more complicated. The voter’s
inputs are the three PID outputs while it forwards one of these packets to the fan. Hence,
the system model has to calculate the fan speed and to execute the PID algorithm based
on it. Furthermore, it must triplicate the output by constructing three packets for the
scheduled reception times of the PID inputs. The other system models have to create

only one input.

6.1.3. Implementation of Fan on Zyng-XC7Z010 Hardware

After introducing the FMUs of the PID controllers, the voting algorithm and the fan
model in the previous section, this section focuses on the implementation of the latter
on real hardware. A Digilent ZYBO Z7 development board is used as a target device.
It is based on the Zyng-XC7Z010 variant of the Xilinx All Programmable System-on-
Chip architecture which integrates the Xilinx 7 FPGA logic with an ARM Cortex-A9
processor [Xilb].
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The fan control algorithm is executed on the ARM processor using version 10.1.1 of
FreeRTOS. FreeRTOS is an open source real-time kernel which is available for different
platforms including the Zynq architecture [Bar]. Furthermore, it supports IwIP, a light-
weight TCP/IP stack implementation for embedded systems [DW]. While Algorithm 10
introduces the initialization of the algorithm, Figures 6.11 and 6.12 depict the threads for

fan and execution control at runtime.

Algorithm 10 Initialization of the fan control algorithm.

1: procedure MAIN

2 start MainThread;

3 start scheduler;

4 while 1 do

5: run forever;

6 end while

7: end procedure

8:

9: procedure MAINTHREAD

10: initialize 1wIP;

11: create and start NetworkThread;
12: delete task and return;

13: end procedure

14:

15: procedure NETWORKTHREAD

16: initialize and activate network interface;
17: start IwIP packet reception thread;
18: start fan control thread;

19: start execution control thread;

20: delete task and return;

21: end procedure

To setup the fan and execution control threads, a thread hierarchy of 4 levels is required.
The procedures of Algorithm 10 are listed according to this hierarchy. The main function is
the root of the tree which starts the main thread and the FreeRTOS scheduler (Lines 2-3).
Afterwards, it starts a loop which runs forever (Lines 4-6). The main thread is responsible
to initialize lwIP (Line 10) and to start the network thread (Line 11). The latter is related
to the network interface used for the communication with the simulation host. In this way,
the application supports the communication via multiple network interfaces in parallel.
Each network thread needs to initialize and activate the interface (Line 16) and to start
a thread which handles the reception of packets (Line 17). Afterwards, the application
threads can be started as the fourth level and the leafs of the thread hierarchy. The
first thread (Line 18) controls the fan while the second one is used to exchange control

commands with the simulation host (Line 19). Hereby, the distributed co-simulation
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framework is able to start and stop the execution in synchronization with the remaining

simulations or real devices.

Figure 6.11 shows the execution control thread. It starts with the creation of a UDP socket
for the communication with the simulation bridge in the initialization state. Assuming a
usage of the fan control application in a train, the socket for application data is bound
to port 17224 which is assigned to the TRDP protocol. With regard to this protocol, the
control socket is bound to port 17225. Once the initialization is complete, the thread enters
its main loop. In the waiting states, the thread checks periodically if a packet is available
and if the command equals the one required to advance. Since the thread continues
its execution while the fan control thread is running, a continuous polling might cause
deadline misses. Hence, it is suspended for a short period between fetching the inputs.
For the evaluation in this chapter, a period of 10ms is used with an offset of 5ms. In this
way, the check is performed when there is no event scheduled for the fan control. After
receiving the correct command, the state machine advances to the start and stop states.

Herein, a shared variable is set to signal the related command to the fan control thread.
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Figure 6.11.: Execution control thread.

The state machine of the fan control thread is shown in Figure 6.12. Similar to the previous
one, it starts with the initialization of a UDP socket for the exchange of application data.
In contrast to the control commands, the fan sends its speed outputs to the PID controllers
as a multicast. Hence, the thread requests an IGMP membership for the related multicast
IP address afterwards. After finishing the initialization, the thread waits for the command
to start a simulation run. Once the command is received, the run is initialized by setting
the start time to the current FreeRTOS tick. Furthermore, the first offsets of the schedule
are initialized with regard to the start time. In the loop, the thread is suspended between
the different offsets according to the schedule. To ensure a valid synchronization with the
simulation host and a timely packet reception, a period of 100ms is used. At offset 10ms,
the thread determines the fan speed and encapsulates the value into a message. This

message is sent at offset 20ms before the thread waits for the reception of a PWM output
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value. After receiving the value at offset 80ms, the thread adapts the fan speed and the
loop repeats. The simulation bridge stops the run by sending a stop command. When
it is received, the member variables storing the current speed and the PWM output are

reset and the thread waits for the next run.
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Figure 6.12.: Fan control thread.

The implementation of the algorithm does not provide any fault-tolerance. It is only
possible to detect delayed packets if there is no packet available at the scheduled reception
time. In this case, a counter is increased. Its final value is printed while resetting the run
and can be checked by the user. Besides that, the thread always fetches the next packet
from the buffer. If a packet is delayed, replayed or inserted, the subsequent packets are also
delayed by one period. The consequences of this implementation are used to demonstrate

the fault-injection for HIL testing in Section 6.3.

6.2. Implementation of the Distributed Co-Simulation

Framework on Linux

In the previous two chapters, different algorithms for packet forwarding, synchronization
and delay management in the distributed co-simulation framework were presented. Based
on them, this section depicts implementation details of the framework’s simulation bridges
on a Linux host. Furthermore, a suitable configuration of a Linux PC for real-time
execution is determined. Herein, different mechanisms provided by Linux are validated

with regard to real-time performance.
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6.2.1. Implementation of Simulation Bridges

The simulation bridges as the main components of the distributed co-simulation frame-
work are implemented as a proof-of-concept in C++ and can be executed on a Linux
PC. They use several techniques provided by Linux such as the deadline scheduler for
real-time execution, the locking of memory pages or the PCAP library for capturing net-
work traffic. Furthermore, platform-independent libraries such as the Standard Template
Library (STL) of C++, FMI or the TinyXML2 parser are used.

To interface a device with a simulation bridge, there are two possibilities which depend
on the device’s representation. Simulated devices and software applications are connected
via FMI. Besides FMI, a software application can be connected further using the Linux
packet capture library PCAP. This library is also used for real hardware devices. Both
possibilities require parameters that are set by the configuration module. In case of FMI,
those parameters are the path to the FMU and a directory to extract it. The code of the
FMU is loaded as a shared library. PCAP requires the name of the Ethernet interface
and the MAC and IP addresses of the interface and the connected device instead. To read
the parameters, the configuration module uses the TinyXML2 parser [Tho].

Capturing packets via FMI is realized using interface variables. They can be set and
queried using setter and getter functions for the different FMI data types. Each variable
is stored in an array of its type and the index in this array is stored as a constant. This
constant can be used as a value reference in the setter and getter functions. A step is
executed by calling the doStep-function. If no packets are available, pending signals the
correct execution of the step without any outputs. Otherwise, the function returns with
status ok. In this case, the FMU provides the number of packets sent, the logical send time
for each packet and the packets themselves. The packet size has to be calculated using
information provided by the headers. Captured packets are represented as C char arrays
independent from the wrapper type. FMI wraps those arrays into strings and forwards
them using a related setter function. However, typical packet headers contain bits which
are interpreted as the terminating "\0’ character. In this case, parts of the packet are lost
wherefore a new setter function setPacket is implemented. This function passes only a
pointer to the FMU which refers to the beginning of the packet. In this way, the entire

packet is provided and the number of copy activities is reduced further.

If PCAP is used instead, the wrapper module starts a new thread which queries packets
from the network interface periodically using pcap next ex. In contrast to FMI, the
PCAP functions do not provide a means to determine the number of packets sent in one

step. The same accounts for the logical send time. Hence, an additional header can be
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added in the payload of the transport protocol. It contains the send time as a 64 Bit
unsigned integer and a char denoting if the packet is the last one sent in the current step.
If no packet will be received for the current step, the connected device can send an empty
packet with ether-type 0206 F'F or a TCP/UDP packet on port 17225. Both values are
not registered for any technology yet. After receiving such a packet, the bridge sends
the request to advance in time without forwarding any output. To forward packets, the
wrapper uses the function pcap_inject. In case there is no packet available for the current

step, a control packet sent via port 17225 can trigger the execution if required.

To enable a parallel capture and forwarding of packets, the ingress and egress modules
run in different threads. Hence, the packet buffers are implemented as monitors based on
Hoare and Brinch-Hansen [TB15, p.137]. The functions to insert and to query packets
are protected by mutexes and condition variables wherefore only one thread can access
the buffer at runtime. Each interaction instance object is created as a shared pointer
and inserted into an STL vector as a pair with its logical send time. Referencing the
objects as a shared pointer prevents unnecessary copying at runtime and deletes the
object automatically once all references on it are removed. In contrast, the input packet
buffer uses a map which stores pairs of the event time and the shared pointer to the
interaction instance object. The simulation bridges exploit the map’s implementation as
a tree and the simple search of its elements using the logical times as keys. Since an
Ethernet network interface can receive only one packet at the same time, a map prevents
the availability of multiple packets for the same event further. Similarly, the events of the

schedule are stored in a set of the STL to prevent duplications.

As explained in Section 3.4, Linux provides the deadline scheduler which is able to guar-
antee a defined bandwidth for periodic tasks since kernel 3.14. If real-time execution is
required, the scheduler is activated during the initialization of the simulation bridges.
Furthermore, the mlock mechanism is activated to prevent a removal of pages from the
memory. At runtime, the simulation bridge process is scheduled every millisecond which
represents the period of the deadline scheduler. The WCET and the deadline can be con-
figured manually depending on the system requirements. In addition to the scheduler and
mlock, Linux provides further technologies which support real-time execution or influence

it negatively. Those technologies are analyzed in the next section.

6.2.2. Configuration of Linux as Real-Time Host

Once real-time components are connected to the simulation bridges, the simulation host

must also support a real-time execution. Otherwise, it is not possible to guarantee a
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timely reception of packets to the real-time device. In this section, different setups are
examined to determine a sufficient real-time configuration of a general purpose Linux PC

under normal load conditions.

Real-time applications can be influenced by other tasks if they share the same resources.
Examples are the CPU including hyper-threading, memory or hard drives. Although
hyper-threading provides multiple logical processors to the operating system, the tasks
finally use the same physical execution units [KMO03]. Besides these resources, interrupts

can also affect the execution since the handler might block the real-time task.

Table 6.1 introduces six setups which combine the following mechanisms. As mentioned
in the previous section, the Linux deadline scheduler is used. This scheduler guarantees to
maintain the deadlines of real-time tasks as long as the overall utilization of all real-time
tasks SN, % is below a certain threshold [LSAF16]. In the setups for this evaluation,
two different WCETSs are examined (300us and 800us). Using different CPU frequency
governors, the Linux operating system can adapt the frequency of the CPU cores. The
governors considered in the second column are powersave to save energy or performance
which provides the highest possible frequency [PS06]. In the subsequent columns, hyper-
threading, USB interrupts, the logging of data to the hard drive and the locking of pages
in the memory are either enabled (check-marks) or disabled (x-marks). Setup A starts
with a WCET of 800us and the powersave governor. Furthermore, hyper-threading, USB
interrupts and logging are enabled while pages are not locked in the memory. In Setup
B, the governor is changed to performance while hyper-threading and USB interrupts
are disabled. Setup C' changes the WCET to 300us, Setup D disables data logging to
the hard drive and the mlock mechanism to lock memory pages is enabled in Setup E.
Finally, Setup F' uses the powersave governor again and re-enables hyper-threading and

USB interrupts. Each alteration compared to the previous setup is denoted as a gray cell.

Table 6.1.: Configuration of real-time host in different test cases.

Schedule | Frequency Hyper- Log
WCET Governor | Threading | USB | HDD | mlock
A | 800us powersave v v v X
B | 800us | performance X X v X
C | 300us | performance X X v X
D | 300us | performance X X X X
E | 300us | performance X X X v
F | 300us powersave v v X v

The evaluation is performed using Setup 2 of the fan-control application (cf. Section

6.1.1) considering the fan as the real-time component. A Dell PC with an Intel Core
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i7-8700 CPU (6 cores, 12 threads and 4.60 GHz maximum speed) and 16 GB RAM is
used as the simulation host. Table 6.2 and Table 6.3 illustrate the performance results
of the fan’s simulation bridge. In Table 6.2, the numbers of erroneous events and missed
packets is compared to the total number of events/packets. Table 6.3 shows the scheduling
delay of the ingress thread and the duration to process the ingress and egress events. To
determine the values, counters are added to the ingress module which count the number
of forwarded received and estimated packets before the deadline has passed. Furthermore,
the ingress and egress threads take a time-stamp once they are scheduled and when the
event is processed. Missed events can be determined by comparing these time-stamps

with the scheduled time-stamps of the events.

Table 6.2.: Missed events and packet loss.
Events Packets
Total  Errors Fraction | Forwarded Missed
2000000 66 0.033 [%o] 9999.43 0.57
2000000 38 0.019 [%o] 9999.74 0.26
2000000 56 0.028 [%o] 9999.58 0.42
2000000 2 0.001 [%o] 9999.98 0.02
2000000 0 0 [%o] 10000.00 0
2000000 0 0 [%o] 10000.00 0

liciielielivslies

Table 6.2 shows that the deadline scheduler on its own is insufficient to provide the
required real-time guarantees as long as data is logged and memory pages can be swapped
out. In Setup A, a fraction of 0.033%¢ events is not scheduled in time. This fraction can be
decreased to 0.019%0 in Setup B where the frequency governor is changed to performance
and hyper-threading and USB interrupts are disabled. Reducing the WCET in Setup
C has a negative effect since the guaranteed bandwidth of the real-time task is reduced
strongly. This results in an increased fraction of 0.028%o. The activation timestamps of
the threads and their durations show that each error is caused by a previous job that
exceeded its WCET. The scheduler then throttles the task and continues its execution
during the next period if there is no bandwidth to reclaim from other tasks. If multiple
periods are affected, this might delay the execution of the next event. Logging data to
the hard drive has a strong influence on this behavior since the related C++ function
fprintf is indeterministic. Disabling it in Setup D reduces the number of missed events
to 2 which corresponds to a fraction of 0.001%c. These two misses can be eliminated
further by locking all memory page in the RAM in Setup E. Finally, Setup F' shows
the independence of a valid real-time configuration from the frequency governor, hyper-
threading and USB interrupts. Even if those mechanisms are re-enabled, all events can

be processed correctly. These results are strongly related to the average number of timely
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forwarded packets. In Setup A, 0.57 packets are missed, 0.26 packets in Setup B and
0.24 packets in Setup C. The decreased number of missed events in Setup D is reflected
further by only missing 0.02 packets. Finally, all packets can be forwarded in time once

the events are processed correctly (Setups E and F).

As mentioned before, analyzing the time-stamps of the erroneous events shows large
scheduling delays and processing durations. These results are reflected by the maximum
scheduling delays and ingress durations for Setups A to C' in Table 6.3. The maximum
durations of the ingress threads range from 3040us to 6287us and exceed the bridge’s
WCET strongly. As a consequence, the execution of the subsequent events is delayed by
2124pus up to 4967us. However, the minimum delays of 0.00us and the average value of
up to 1.30us show the performance of the scheduler in the absence of erroneous events.
The same accounts for the minimum and average durations of the ingress and egress
threads. For every setup, they are in the same order of magnitude and remain under the
simulation bridge’s scheduling period. After removing the logging from the ingress thread,
the maximum scheduling delays can be bounded by a value of 65us and the maximum
durations of the ingress threads are lower than 600us. Although these durations are
sufficient to process all events, they exceed the configured WCET of 300us. This might
lead to deadline misses in heavy load situations. However, the WCET of the simulation
bridge can be increased up to a value which is still smaller than the period of 1000us.
Adding the maximum durations results in an upper bound of 765us in Setup F' which is

still smaller than this period.

Table 6.3.: Duration of ingress and egress threads and ingress scheduling delays.

Delay Ingress [us] | Duration Ingress [us] | Duration Egress [us]
Min Max Average | Min Max Average | Min Max Average
0.00 4967 1.30 3.41 6287 9.08 20.21 256 26.70
0.00 2124 0.50 1.93 3040 4.44 21.83 175 27.33
0.00 3534 0.92 1.88 4570 4.54 21.46 168 27.31
0.00 24 0.04 2.00 412 3.69 20.05 223 25.44
0.00 29 0.03 2.00 407 3.78 18.96 239 25.20
0.00 65 0.15 3.80 595 8.39 18.86 170 25.10

o = 0| Q| W =

To summarize the results of this section, it is possible to run real-time tests on a general
purpose Linux without any packet loss. A sufficient configuration for normal load scenarios
includes the Linux deadline scheduler and the mlock-mechanism to prevent the swapping
of memory pages from the RAM. Furthermore, the logging of data to the hard drive
must be disabled. In the next section, this setup is used to validate the influence of the

fault-injection mechanism on a HIL setup of the fan-control application.
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This section aims on demonstrating the functionality of the fault-injection mechanism by
manipulating the messages exchanged in Setup 2 of the distributed fan-control application.
As described in Section 6.1, the application uses a fault-tolerance mechanism based on
triple modular redundancy. It is able to detect faults in the three PID outputs wherefore
the injection should target one of the remaining messages. Those are the destination
speed messages exchanged during longer simulation runs for SIL testing and the fan’s
PWM control inputs in HIL testing.

6.3.1. Fault-Injection in SIL Testing

During longer simulation runs, the fan sends new destination speeds between 1000rpm
and 2000rpm to the PID controllers every 10s. These messages are manipulated in the

following.

Figure 6.13 shows the distribution of the application subsystems via the distributed co-
simulation framework. Each subsystem is executed on a separate host and a LAN is used
to connect the nodes. The tests are performed as SIL where the fan is executed as a
simulation model while the PID controllers and the voter are implemented as software
applications. As PID parameters, the following values are used: the proportional gain
is set to 0.0925, the integral gain equals 1.0 whereas the derivative gain remains 0.0.

According to the application schedule described in Section 6.1.1, a sampling time of 1ms

is used.
Hosty Hostg Hosts
PID0O SBy RTI SB3 Voter
Host, Host,
Hosty Hosts
PID2 SBy SBs NET

Figure 6.13.: Topology to demonstrate the fault-injection mechanism in a SIL test.

Based on IEC 61508-2 clause 7.4.11, Section 3.6 introduces seven message errors: delay,
replay, omission, insertion, resequencing, corruption and manipulation. Since manipula-

tion can be mapped to a corruption of the packet’s sender address, it is not considered
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6.3. Influence of Fault-Injection on Fan-Control

in the following. For the remaining errors, a simulation run of 50s is executed and faults

are injected into dedicated destination speed messages.

Table 6.4.: Configuration of message errors.

Error Message 1D Time Parameters Figure
Corruption DestinationRPM | 10001ms | numChangedBytes=“4" 6.14
changedIndexes="73,74,75,76"
changedValues="1,3,5,0"
recalculateChecksum="“true”
Delay DestinationRPM | 10001ms | delay="“8000" 6.14
Insertion DestinationRPM | 15001ms | srcIP=%172.16.1.10" 6.14
destIP=224.0.0.2"
transportProtocol=“"UDP”
srcPort="17224"
destPort="17224"
data="“DestinationRPM 1700”

Omission DestinationRPM | 10001ms 6.15
Resequencing | DestinationRPM | 10001ms | delay="15000" 6.15
Replay DestinationRPM | 10001ms | replayed=“25001" 6.15

Table 6.4 denotes the fault parameters for each message error according to the frame-
work’s configuration model. Since the fault-injection targets only on the destination speed
messages, the message ID is always set to DestinationRPM. The first error depicted is
the corruption of the destination speed received at 10001ms. Its value is changed from
1600rpm to 1350rpm, wherefore four bits starting at byte index 73 in the packet must be
adapted. Besides that, the packet’s checksum is recalculated to prevent packet dropping
in the destination devices. In the second run, the message of instant 10001ms is de-
layed by 8000ms while an additional packet for a destination of 1700rpm is inserted after
15001ms in the third run. This packet contains the IP addresses of the fan (172.16.1.10)
and the destination speed multicast message (224.0.0.2). As the transport protocol, UDP
via source and destination port 17224 is selected. The packet’s data payload includes the
message ID and the related speed. For omission, only the time of the injection at 10001ms
is required while resequencing the packets can be realized by delaying the message at in-
stant 10001ms by 15000ms. Finally, the destination speed message received at 10001ms
is replayed at instant 25001ms. To improve the readability of the results, the fan speed
graphs are printed in two Figures. The related number for each error is depicted in the
last column. Both Figures plot the simulated time in seconds on the x-axis and the fan

speed in revolutions per minute (rpm) on the y-axis.
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6.3.1. Fault-Injection in SIL Testing

Figure 6.14 illustrates the corruption, delay and insertion errors. To enable a comparison
with the initial signal, the fan speed without any fault is printed further in black. The
destination speed messages are sent with a period of 10s. This interval is large enough
so that the speed can reach the value as long as there is no error. According to the
corruption of the destination speed message received at 10001ms (10s = 10000ms period,
Ims offset), the fan accelerates only to a speed of 1350rpm instead of rising to 1600rpm
(green graph). Since the difference to the subsequent destination of 1200rpm is smaller
compared to the normal execution, this destination is reached faster afterwards. Due to
the inserted delay of 8s, the fan is not able to reach its destination of 1600rpm in the
red graph. However, the next destination (1200rpm) can be reached faster similar to
corruption. A converse effect can be observed in case of insertion (blue graph) where an
additional destination of 17007rpm is received after 15001ms. Although the first 5s interval
(10s to 15s) is too short to reach the destination of 1600rpm, the remaining difference is
small enough to achieve the inserted destination. In consequence of the larger value, the
fan requires more time to slow down to 1200rpm. Since there is no further fault-injection

performed in each case, the signal recovers after 30s.

2,000
1,800
1,600 |
B 1,400 |-
21,200 |
T 1,000
o,
n 800
= 2 x No Fault
600 Corruption | |
400 § - Delay |
200 & - Insertion |
\ \ \ \
0 10 20 30 40 50

Simulated time [s]

Figure 6.14.: Fan speed during normal execution, corruption, delay and insertion.

In Figure 6.15, the remaining message errors (omission, resequencing and replay) and the
non-error case (black graph) are shown. The omission of the 1600rpm destination speed

message at 10001ms is printed in green. In consequence of the fault, there is no activity
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6.3. Influence of Fault-Injection on Fan-Control

between 10s and 20s and the speed rises to a value of 1200rpm once the next destination
is sent. Delaying the value of 1600rpm by 15s results in resequencing with the 1200rpm
destination. Hence, there is no activity between 10s and 20s while the fan accelerates in
two steps between 20s and 30s (red graph). In both accelerations, the difference between
the destinations can be nearly compensated and only small errors remain. Since the
subsequent difference to 1800rpm after 30s is smaller compared to the non-error case, the
value can be reached faster. Finally, the blue graph illustrates the replay of the 1600rpm
destination after 25s. Until this time, the signal equals the one of the non-error case while
it is almost similar to resequencing afterwards. The related difference in the interval of
25s to 30s is caused by the remaining errors in the speed signals at 25s. After 25s, there

is no further fault-injection and all graphs are equal again after 40s.
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1,600
1,400 |
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400 § - Resequencing |
200 i Replay .

) 4 | | | |
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Figure 6.15.: Fan speed during normal execution, omission, resequencing and replay.

6.3.2. Fault-Injection in HIL Testing

According to Section 6.1.3, the fan control algorithm is executed on a Digilent ZYBO Z7
board during the HIL tests performed in this section. In the following, the PWM control
inputs received from the voter are manipulated and the consequences on the fan speed

are observed.
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The distribution of the application subsystems via the distributed co-simulation frame-
work is similar to the SIL tests from the previous section. Each subsystem except the fan
is executed as a simulation on separate hosts. Only the fan subsystem runs on a ZYBO
board as real hardware which is connected to Hosty via an additional Ethernet interface
on the host. To capture and forward the data, the simulation bridges use the Linux PCAP
library as the wrapper interface. Figure 6.16 shows the resulting topology. With Vivado
2019.1, Xilinx introduced a TSN subsystem for the Zynqg-7000 architecture of the ZYBO
board [Xila]. However, the documentation of the subsystem is protected and was not
available at the time of writing. Hence, the synchronization between the board and the
simulation host is limited to the host’s TSN driver and its egress time-slots. To prevent
synchronization issues, the fan schedule presented in Figure 6.4 is scaled by a factor of 10
resulting in a period of 100ms and the related offsets. Consequently, the PID parameters
are changed to 0.7 (proportional gain), 1.0 (integral gain) and a sampling time of 100ms.

The derivative gain of 0.0 remains.

Host Hostg Hosts
PID0 S By RTI S B3 Voter
Hosty Hosty
pPID1 | SB SBy | Fan
Hosty Hosts
PID2 S By SBs NET

Figure 6.16.: Topology to demonstrate the fault-injection mechanism in a HIL test.

The fault parameters for the message errors are presented in Table 6.5 which is structured
like Table 6.4 from the previous section. Each fault is injected into the PWM inputs of
the fan. For corruption, the input received after 180ms is selected and the first two bytes
of the value (indexes 62 and 63) are changed to 0. The checksum is recalculated to prevent
packet dropping. The delay error targets the message received at 280ms and delays it by
50ms while a packet is inserted after 230ms during the third run. This packet is destined
to the multicast address 224.0.0.6 and has an input value of 0. The remaining parameters
are similar to the SIL test since the packet is sent from the fan (IP address 172.16.1.10) via
UDP port 17224 for TRDP. While the packet received after 80ms is dropped to simulate
omission, resequencing changes the packet sequence of 980ms (I), 1080ms (II), 1180ms
(III) and 1280ms (IV). According to the delays injected, the resulting sequence is 1080ms
(I), 1200ms (I), 1280ms (IV) and 1330ms (III). The roman numbers denote the initial
order. Finally, the packet received after 1380ms is replayed after 3030ms.
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6.3. Influence of Fault-Injection on Fan-Control

Table 6.5.: Configuration of message errors.

Error Message ID | Time Parameters Figures

Corruption PWM 180ms | numChangedBytes="“2" 6.17 & 6.23
changedIndexes=“62,63"
changedValues=“0,0"
recalculateChecksum="true”

Delay PWM 280ms | delay="“50" 6.18 & 6.23

Insertion PWM 230ms | srcIlP="172.16.1.5" 6.19 & 6.23
destIP=224.0.0.6"
transportProtocol=“UDP”
srcPort="17224"
destPort="17224"
data=“PWM 0”

Omission PWM 80ms 6.22 & 6.24

Resequencing | PWM 980ms | delay="220" 6.21 & 6.24

PWM 1180ms | delay=“150"
Replay PWM 1380ms | replayed="3030" 6.20 & 6.24

To demonstrate the correctness of the injection, Figures 6.17 to 6.22 show Wireshark
packet captures of the related simulation runs. In each figure, the first packet represents
the simulation start command sent from the simulation bridge to the ZYBO board while
the remaining packets show the application data. Red colored packets denote the ones

affected by the fault-injection as elucidated in the following.

MNo. Time Source Destination Protocol | Info
10.0000. 172.16.1.14 472.46.1.16 UDP 17225 - 17225 Len=5
20.0246. 172.16.1.410 224.0.0.1 uppP 62510 - 17224 Len=29
r 3 0.0803. 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
! 4 0.1246.. 172.16.1.10 224.0.0.1 uppP 62510 - 17224 Len=30
50. . .0. .0.8.6 -
! 6 0.2246.. 172.16.1.10 224.0.0.1 uppP 62510 - 17224 Len=30
00 Ba 35 08 01 B2 58 ef 68 bd 10 4d ©8 Ob 45 10 5 X- h--M--E
@B 34 00 91 00 00 40 11 ee 90 ac 10 00 @1 e@ GO 4 @
58020 00 86 43 48 43 48 00 20 03 5d [ESClEClCENC[cENCIoRNEIT]
HolENOe 00 31 00 00 00 00 A0 00 00 50 57 4d 20 30 30
0040 Syl

Figure 6.17.: Packet capture with corruption error.

The corruption error affects packet number five as shown in Figure 6.17. According to
the configuration, this packet is received 180ms after simulation start and the first two
bytes of the PWM value are changed to 0.

Figure 6.18 presents the delay error. The target packet is scheduled 280ms after simulation
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6.3.2. Fault-Injection in HIL Testing

start. Applying the delay of 50ms results in a forwarding time at 0.3302s. Figure 6.18
shows that there is no packet available between 0.2260s and 0.3260s (the fan outputs).
Hence, packet number eight represents the delayed control input. As shown, there is an
offset of 6ms in the time-stamps of the packets sent by the board. It is caused by the
communication delays and a small offset between receiving the start command and the

actual execution start.

MNo. Time Source Destination Protocol  Info
10.00006. 172.16.1.14 472.16.1.416 UDP 17225 — 17225 Len=5
2 0.0260.. 172.16.1.40 224.0.0.1 uppP 62510 — 17224 Len=29
r 3 0.0804. 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
' 4 0.1266.. 172.16.1.410 224.0.0.1 uppP 62510 — 17224 Len=30
| 5 0.1805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
' 6 0.2260.. 172.16.1.410 224.0.0.1 uppP 62510 — 17224 Len=30
i 7 0.3260.. 172.16.1.40 224.0.0.1 uppP 62510 — 17224 Len=30
80 . 16.0.1 8.6 17224 17224 Len=24
9 0.3805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
BE Ba 35 B0 01 02 58 ef 68 b4 10 4d 88 DO 45 10 5 X h- M E
00 34 00 01 00 00 40 11 ee 90 ac 10 G0 01 =0 @O 4 @
00 06 43 48 43 48 00 20 ab 53 18 91 00 00 0O @O CHCH S
0O @0 31 00 00 00 00 OO @0 00 50 57 4d 20 31 39 1 PWM 19
30 oo 0]

Figure 6.18.: Packet capture with delay error.

For insertion, an additional packet is added to the data stream at 230ms. The packet
capture for this message error is shown in Figure 6.19. The injection instant is related to
packet seven captured at 0.2306s. Its content is as specified in the configuration with the
source [P address of the voter, the destination address of the PWM multicast and ports
17224. Furthermore, a PWM value of 0 is used.

MNo. Time Source Destination Protocol | Info

10.0000. 172.16.1.14 472.46.1.16 UDP 17225 - 17225 Len=5

20.0232. 172.16.1.10 224.0.0.1 uppP 62510 - 17224 Len=29

3 0.0806. 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23

4 0.1232. 172.16.1.10 224.0.0.1 uppP 62510 - 17224 Len=30

50.1807. 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24

6 0.2232. 172.16.1.10 224.0.0.1 uppP 62510 - 17224 Len=30

7 . 1. .0.8.6 17224 17224

8 0.2808. 172.16.0.1 224.0.0.6 uopP 17224 - 17224 len=24
00 Ba 35 080 01 82 bd 96 91 Zb 32 8e B8 00 45 10 5 +2 E
@0 31 00 91 00 00 40 11 ed 93 ac 10 01 01 ed @0 1 @
00 96 43 48 43 48 00 1d 09 93 00 00 46 00 0O QO CHCH F
61 00 00 0O 6e OO OO0 B OB GO0 50 57 4d 20 30 a n PlWM @

Figure 6.19.: Packet capture with insertion error.

Since there is a duration of 1650ms including 34 packets between the packet to replay and
the scheduled replay instant, the capture is split into Figures 6.20a and 6.20b. The packet
to replay is scheduled after 1380ms and replayed after 3030ms. The related absolute times
are 1.3806s and 3.0300s. Comparing the contents of both packets, they are fully equal
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6.3. Influence of Fault-Injection on Fan-Control

including the PWM input of 8. Furthermore, the subsequent packets 63 (3.0300s) and 64
(3.0806s) are both sent from the simulation host to the ZYBO board. This signals the

insertion of an additional packet into the data stream.

Mo. Time Source Destination Protocol  Info
10.0000. 172.16.1.1 172.16.1.10 UDP 17225 — 17225 Len=5
20.0248. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=29
r 3 0.0802. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
' 4 0.1248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=30
| 5 0.1806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
' 6 0.2248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=30
| 7 0.2805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
' 8 0.3248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 9 0.3805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
¢ 10 0.4248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 11 ©.4806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
¢ 12 ©.5248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 13 0.5806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=24
¢ 14 0.6248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 15 0.6806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
¢ 16 ©.7248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 17 0.7806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
¢ 18 0.8248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 19 ©.8805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
120 0.9248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 21 ©0.9806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
¢ 221.0248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 23 1.0806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
24 1.1248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 25 1.1805. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
¢ 261.2248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
| 27 1.2806.. 172.16.0.1 224.0.0.6 uppP 17224 — 17224 Len=23
¢ 28 1.3248.. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=31
1. .8.1 0.0.

2@ 1_A2AR 172 A6 1 1@ 224 A @ 1 LInD AR251M _— 17224 | an=21

BE Ba 35 B0 01 02 58 ef 68 b4 10 4d 88 DO 45 10

00 32 00 01 00 00 40 11 ee 92 ac 10 00 01 =0 @O

020 43 48 43 48 00 1le 64 05 00 B0
030 B 31 06 00 PO 6B 66 50 57 4d 2@ 38 @0

(a) Packet capture showing packet to replay.

62 3.0248.. 172.16.1.10 224.0.0.1 UDP 62510 — 17224 Len=31
17/2.16.0.1 224.0.0.6 UDP 17224 - 17224 Len=22

64 3.0806.. 172.16.0.1 224.0.0.6 UbDP 17224 — 17224 Len=22

00 Ba 35 00 U1 82 58 ef 68 bd 10 4d ©8 08 45 10 5] X-h--M--E
bE 32 00 01 00 00 40 11 ee 92 ac 10 00 01 ed OO0
43 48 43 48 B0 le 82 Bc
B 31 00 00 0O 00 60

0O20
DE30

(b) Packet capture with replayed packet.

Figure 6.20.: Wireshark packet captures with replay error.

Figure 6.21 illustrates the packet capture with the resequencing error. In this case, the
packets affected from the fault-injection are scheduled at 980ms (I), 1080ms (II), 1180ms
(III) and 1280ms (IV). The delay of 220ms results in a forwarding time at 1.2002s for
the first packet (packet 24). In addition to this packet, packet III is delayed by 150ms
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resulting in a forwarding time of 1.3300s (packet 28). As a consequence, the capture

shows a missing PWM input between packets 20 and 21 and an additional one between

27 and 29. According to the delays injected, the PWM input sequence is changed further.

No. Tirme Source Destination Protocol | Info
10.0000 172.16.1.1 172.16.1.10 UDP 17225 — 17225 Len=5
r 2 0.8227 172.16.1.10 224.8.0.1 uppP 62510 - 17224 Len=29
! 3 0.0801 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
| 4 0.1227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=30
! 5 0.1808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
| 6 0.2227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=30
! 7 0.2808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
| 8 0.3227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
! 9 0.3807 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
| 10 0.4227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
r 11 0.4807 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
| 12 ©.5228 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
13 9.5808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
| 14 ©.6227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
15 0.6808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
| 16 ©.7228 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
17 0.7808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
| 18 ©.8228 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
19 0.8807 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
20 0.9227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
1.6 .1.16 D). 0.
! 22 1.0808 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
| 23 1.1228 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=30
124 1.2002 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=23
| 25 1.2228 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
126 1.2801 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=22
| 27 1.3227 172.16.1.10 224.8.0.1 uppP 62510 — 17224 Len=31
128 1.3300 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=22
| 291.3807. 172.16.0.1 224.0.0.6 UDP 17224 - 17224 Len=22
B1 00 5e DO 00 01 G0 Ba 35 00 01 02 ©8 00 45 60 A 5 E
@0 3b 00 6c B0 08 ff 11 2e 2a ac 10 01 Ba ed @B HE | *
00 81 T4 2e 43 48 00 27 d7 e9 fc 03 00 00 0O QO .CH.'
@0 PO 31 00 0O 00 60 BR 00 B0 53 65 6e 73 6T 72 1 Sensor
52 50 4d 20 31 31 34 32 00 RPM 1142

Figure 6.21.: Packet capture with resequencing error.

No. Tirme Source Destination Protocol | Info
10.0000. 172.16.1.1 172.16.1.10 UDP 17225 — 17225 Len=5
2 172.16.1.10 224.8.0.1 17224 Len=29
30.1246. 172.16.1.10 224.0.0.1 uppP 62510 — 17224 Len=30
! 4 0.1804. 172.16.0.1 224.0.0.6 uppP 17224 - 17224 Len=24
B1 00 S5e GO PO 01 OO0 Ba 35 00 01 2 OB QO 45 GO A 5 E
00 39 00 2a 00 80 ff 11 2Ze 6e ac 10 01 Pa ed QO 9.* .n
@0 1 T4 2e 43 48 @0 25 f3 23 14 00 00 G0 00 OO .CH- % -#
00 B0 31 00 00 B0 00 08 00 00 53 65 6e 73 6 72 i Sensor
52 50 4d 20 32 31 @0 RPM 21

Figure 6.22.: Packet capture with omission error.

Finally, the packet selected for omission is received at 80ms. As shown in the packet

capture of Figure 6.22, there is no packet forwarded between the sensor outputs at 0.0246s

and 0.1246s wherefore the omission was successful.
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6.3. Influence of Fault-Injection on Fan-Control

Similar to the previous section, the presentation of the speed results is split into two
figures. Figure 6.23 starts with the first three errors (corruption, delay and insertion) as
depicted in the last column of Table 6.5. In addition to the these cases, the initial fan
speed without any error is printed in black. The simulated time of 5s is plotted in seconds
on the x-axis while the y-axis shows the fan speed in rpm. Absent from any fault, there
is an overshoot up to 1400rpm during the first second. Afterwards, the speed reaches
the destination of 1000rpm without further oscillation. As explained in Section 6.1.2,
the fan speed can be modeled as two parts, a base speed and a proportion influenced
by the PWM outputs. Corrupting the input scheduled at 180ms results in a decreased
portion of the PWM part wherefore the speed is lower at this instant (green graph). The
PID controllers compensate this fault with larger PWM outputs resulting in an increased
overshoot. After around 0.8s, the signal is recovered. Caused by the delay error, there
is no actual packet available at 280ms (red graph). In contrast, the insertion of a 0
control input occasions a negative peak at 310ms (cyan graph). The behavior until the
end of the execution is similar for both cases. Due to the missing fault-tolerance, the fan
algorithm uses a control input which is destined for the previous period. This results in

larger overshoots and oscillations afterwards until 2.5s.
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Figure 6.23.: HIL fan speed during normal execution, corruption, delay and insertion.

Figure 6.24 continues with the remaining errors. Again, the fault-free case is plotted
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additionally in black. Omitting the packet scheduled at 180ms shows a similar signal like
its corruption (green graph). However, the difference to the speed signal without any error
is much smaller. Changing the sequence of the PWM inputs results in an oscillation with
several additional peaks. This case is shown in red. Finally, the signal in the replay case
is not changed until the additional packet is inserted. According to the inserted value of
8, there is an additional peak in the speed signal at 3030ms (cyan graph). Afterwards, the

signal recovers directly without further changes since the speed signal was stable already.
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Figure 6.24.: HIL fan speed during normal execution, omission, resequencing and replay.

6.4. Framework Scalability

After demonstrating the fault-injection mechanism for SIL and HIL testing in the previous
section, this section focuses on the scalability of the distributed co-simulation framework.
To show this property, the setups introduced in Section 6.1.1 are executed on different
topologies and the results are analyzed focusing on the following aspects. First, the
number of messages exchanged during the synchronization mechanism of the RTI is de-
termined and an equation to estimate this number is provided. Afterwards, the simulated

times of the different setups are correlated to the runtime of the tests.
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6.4.1. Synchronization Data Exchange

The simulation bridges in this framework are based on the OpenRTI implementation of
the HLA. In this section, the most important message classes used by the synchronization
algorithm are introduced. Furthermore an upper bound of the message numbers is defined
based on the number of federates, the number of events to process every period, the
number of data messages exchanged and the simulation duration. To determine this
formula, the data exchange of the simulation bridges is analyzed using the RTI’s source

code and Wireshark. The message types are:

NMC Next Message Commit

TAC Time Advance Commit

CLBTSRM Commit Lower Bound Time Stamp Response Message
LBNMR Locked By Next Message Request

To advance in time, the simulation bridges send a NextMessageRequest which is repre-
sented by the first message type, Next Message Commit. It includes the time of the
requested event and a commit ID which is used to identify the request. In addition to
the next message commit, the simulation bridge sends a Time Advance Commit which
contains the bridge’s current logical time. Both messages are sent as broadcasts and
the receiving bridges reply with a Commit Lower Bound Time Stamp Response Message.
This unicast-response acknowledges the reception of the next message commit and its
ID. In the following, the simulation bridges exchange time advance commits with increas-
ing time-stamps. If a bridge received time advance commits from all other bridges with
time-stamps larger than its requested time, a time advance is granted and a step can be
computed. Afterwards, the output data is sent and the next event is requested using a

further next message commit.

The time-stamps in the TAC message increase usually based on the lookahead defined.
However, the simulation bridges also omit logical times if all requested times are larger
(not smaller or equal) than the sum of the current time and the lookahead. This results in
a significant speedup of the simulation duration which is exploited by the state-estimation
mechanism. Figure 6.25 shows an example based on three components. The logical time of
the simulation is depicted on the x-axis. While the NMC messages of the components are
colored in red, the TAC messages are printed in blue. The figure illustrates the following
situation. ED2 and the switch have sent a TMC with instant 5 to ED1 which performs the
step for instant 4. After finishing the step, it sends the NMC for the next period and the

TMCs for instants 5 and 6. The switch receives the messages before ED2 and also sends
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the TMC for 6. If ED2 receives the messages from both components before it replies, it
is aware about the requested and the current times. According to the related guarantee
of not receiving any data message, it can send a TMC for instant 9 without considering
the intermediary instants. The same accounts for the other components wherefore a time
advance is granted to the switch directly. Figure 6.25 shows that the TAC messages are
sent for each time-stamp in the NMCs from each component. Furthermore, the messages
are sent for at most the subsequent two instants after the requested times. Hence, the
number of TAC messages can be bounded although an exact number depends on the order

of the synchronization data exchange.

TAC l i T |
EDL NMC v
TAC ST i
Suiten l {1 T
NMC * NMC i
TAC /—\
| ! I
NMC h NMC

; t > t[ms]

Figure 6.25.: Time advance in sparse schedule.

The locked by NextMessageRequest signals the waiting for a different commit ID. Whether
it is sent or not depends on an alternating boolean. Its value is set to false if (I) the
federate is not time constrained, (II) a TimeAdvanceRequest is used or (III) if the federate
is waiting for a commit ID which differs from the currently received one. If none of these
cases occurred, the boolean is set to true. A new commit ID is received in a commit lower
bound time stamp response message after sending a next message commit. This update
is idempotent. Similar to the TAC, the number of LBNM requests also depends on the
order of the synchronization messages received. Hence, a determinate number cannot be

given but it is possible to bound it as explained below.

Based on the above analysis, the following assumption can be made about the number of
messages a federate sends. Herein, messages with multiple receivers are considered as one
multicast message. The set N, . represents the set of events e for which the component ¢
sends an NMC message. Accumulating the amount of events for each component (| N, .|)
results in the number of total events nrp. Besides this, the set Npg represents the disjoint
set of all sets N, . and can be used to determine the set Nrac. The latter is constructed by
taking all events e € Nppg, adding the additional instants (e+1) mod P and (e+2) mod P
(P is the period) and calculating the disjunction. To determine the number of CLBTSR
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messages (nor), the amount of N, . must be subtracted from the number of total events.
Finally, the number of LBNM requests (nr) is bounded by the number of disjoint events

multiplied by two. Table 6.6 summarizes the sets and numbers based on Figure 6.25.

Table 6.6.: Numbers and sets of synchronization data exchange.

Value Computation ED1 | Switch | ED2
Ne {4} | {3.8} | {2,9}
nre > (|Ne,CD 5
Npg UNee {2,3,4,8,9}

Nrac % {e,(e+1) mod P,(e+2) mod P} | {2,3,4,5,6,8,9,0,1}

eENe,c
ner nre — [Nedl 4 | 3 | 3
NLR 2|Npg| 10

The total number of messages is the sum of the number of NMC, TAC, CLBTSRM,
LBNMR and data messages per period as shown in Equation 6.8. The analysis shows
that the number of messages per period depends mainly on the number of events in the
setup. Table 6.7 varies this number according to the setups defined in Section 6.1.1. These
theoretical results are compared to real tests in the following sections. While Section 6.4.2
varies the number of federates and the simulated time, a variation of the period length and
the number of events in it is considered in Section 6.5.2. Since the simulation bridges are
implemented to support a reaction on event-triggered messages, the lookahead remains
equal with a value of 1ms. This value is reflected further by the period of the deadline

scheduler as explained in Section 6.2.1.

MSgs,
Z Pg = |Ne,c| + |NTAC'| +nCR+nLR+nData7c

ST
stgsc = ? <|Ne’c‘ + ‘NTAC” + nrg — |Ne’c| + 2’NDE| + npam,c) (68)

ST
stgsc =5 (|INrac| + nre + 2|Npg| + "pata,c)

Table 6.7 denotes the number of events and messages for the different setups based on
Equation 6.8. The numbers of the total events, the disjoint events and the TAC messages
are equal for every component whereas the output data messages vary. All values are
derived from the schedules introduced in Section 6.1.1. In Setups 2 to 5, there are multiple
instances of the components. Since each instance sends the same number of messages,
they are summarized in one line. The lines colored in gray denote the gradients the
number of messages and components increase with in the different setups. Herein, the

message gradient is calculated for a sequential and a parallel data transmission. All
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gradients are determined by dividing the values for the larger setups by the one of Setup
1. Besides that, the period is doubled in Setups 4 and 5 (20ms instead of 10ms) which is
why the message gradients are divided by 2 in these cases. The gradients for a sequential
transmission are much larger than those of the number of components but the absolute
component numbers lie in the same order of magnitude. This property is shown in Figure
B.1. Considering a fully parallel execution of the components, the gradients are smaller
instead. This case is represented by the average number of messages of all components.
Consequently, both gradients imply the scalability of the framework which is evaluated

in detail in the following sections.

Table 6.7.: Number of events and messages per period in the different setups.

Component Type Setup 1 | Setup 2 | Setup 3 | Setup 4 | Setup 5
nre 5 13 22 54 7
|Npg| 5 9 10 16 19
| Nt ac| 7 10 10 18 20
P 10 10 10 20 20
Fan, TData 1 1 1 1 1
’ msgs/ P 23 42 53 105 136
PID, TData 1 1 1 1 1
msgs/P 23 42 53 105 136
TData 1 1 1 1 1
t .
Voter msgs/ P 42 53 105 136
. NData 3 5 7 8 15
tchl
Swite msgs/ P 24 46 60 112 150
. NData 7 7
tch0/2
Switch0/2 |- s/ P 111 142
>-msgs/P 70 256 431 1804 3290
Gradient,,sgs | sequential 1 3.657 6.157 12.886 | 23.500
Gradient,,sgs | parallel 1 1.829 2.309 2.274 2.938
NComponents 3 6 8 17 24
Gradient comp 1 2 2.667 5.667 8

6.4.2. Simulation Runtime and Simulated Time

To evaluate the scalability of the distributed co-simulation framework, the SUTs are
allocated to the simulation hosts using three different topologies. These topologies are
shown in Figure 6.26. The figure is based on Setup 1 which includes a fan, its PID
controller and a switch connecting the components (cf. Section 6.1.1). In the local

topology (cf. Figure 6.26a), all components and the RTT are executed on the same host
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and communicate via local TCP sockets. Topologies two and three are summarized in
Figure 6.26b. The components are executed on different hosts and the communication
is realized via a LAN or the Internet. In the latter case, a VPN is required further to
protect confidential data. Both possibilities are represented by the Network-cloud. The

other setups introduced in Section 6.1.1 are distributed in a similar way.

Fan Local Host PID PID S By Network -
SB; _-_ SBy Hosty Hostrrr
|
SBy
Fan SBy SBs Switch
Switch Host, Hostsy

(a) Local setup.

(b) Communication via LAN or the Internet.

Figure 6.26.: Different topologies used during the evaluation based on Setup 1.
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Figure 6.27.: Simulation durations for SIL in a local topology.

Using the different framework topologies, the simulated time is correlated to the time
required to execute the test. In each test, ten simulation durations are chosen. Those
are 1s, 2s, 5s, 10s, 20s, 50s, 100s, 200s, 500s and 1000s. Figure 6.27 starts with the
local setup where each case is executed 100 times. The simulated times are placed on the
x-axis while the y-axis shows the average simulation duration of the setup. Both times are

given in seconds and a black solid line represents the real-time case where the simulated

128



6.4.2. Simulation Runtime and Simulated Time

time equals the simulation duration. For each setup, there is a linear correlation between
the simulated time and the simulation duration which reflects Equation 6.8. The related
regression slopes are analyzed later in this section. However, only the first two setups with
three and six components can be executed in real-time. The average runtime of Setups

3, 4 and 5 with eight, 17 and 24 components is slower instead.
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Figure 6.28.: Simulation durations for SIL in a LAN setup.

Figure 6.28 continues with the simulation durations of the LAN-topology for 50 runs.
Although the communication delays are increased because of the network, the average
durations of Setups 1, 2 and 3 are similar to those of the local topology. Besides this, the
durations for Setups 4 and 5 are significantly smaller. The reason for this effect is the
distribution of the setup across two simulation hosts and the execution of the RTI on a
a third PC. As a consequence, more processes run in parallel. Considering Setup 5 as an
example, the number of processes per host is reduced to twelve instead of 24. Another
influence on the simulation execution is the kernel of the operating system. Whereas the
simulation hosts use a real-time patched kernel, the kernel of the RTT PC runs the standard
kernel. Since the latter is optimized for throughput and performance, the RTT’s execution

on this PC is faster than using the real-time kernel. This speeds up the execution further.

The influence of the communication delays on the simulation duration is shown if the
Internet is used for the communication. The results of this topology are illustrated in
Figure 6.29. In every setup, the simulation durations are much slower than in the previous

topologies and far from the real-time case. For example, the durations for Setup 2 in the
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local topology are close to real-time whereas a simulation of 1000s via the Internet requires
41751s. However, the order of the graphs is similar to the number of components again
and the durations increase linearly. The graph with the shortest duration refers to Setup
1, followed by Setups 2 and 3. According to the long simulation durations in this case,
the tests for this topology are executed only 10 times. Furthermore, only the first three

setups are considered.
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Figure 6.29.: Simulation durations for SIL in a setup with communication via the Internet.

Each of the previous figures (cf. Figures 6.27 to 6.29) shows a linear correlation between
the simulated time and the simulation duration. The related regression slopes are depicted
in Table 6.8 and correlated to the number of federations and messages per setup. Their
numbers and gradients are printed in the first lines as introduced in the previous section.
The subsequent lines of Table 6.8 denote the regressions slopes for each setup in the Local,
LAN and Internet topologies and their rise compared to Setup 1. Starting with the local
topology, the regression slope of Setup 1 accounts for 0.515. In the other setups, the slope
is increased to values of 0.951 (Setup 2), 1.116 (Setup 3), 1.1650 (Setup 4) and 3.537 (Setup
5). The related gradients account for 1.847 (Setup 2), 2.167 (Setup 3), 3.204 (Setup 4)
and 6.868 (Setup 5). Compared to the factors the number of components increases with,
the slopes rise with smaller values. The same accounts for the message gradient of a
sequential transmission. However, the parallel gradients are smaller for larger setups.
Furthermore, there is no linear relationship as Setup 5 shows a slope which is 2.144 times
larger than the one of Setup 4 (1.650 and 3.537). Considering the usage of a Dell PC with
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an Intel Core i7-8700 CPU (six CPU cores and twelve hardware threads), this rise can be
explained with the number of concurrent processes that need to be executed. In Setup
5, six of the PID controllers and voters run in parallel, respectively. Each process further
consists of three concurrent threads: a thread for the communication with the RTT, one
for the ingress and one for the egress parts of the simulation bridges. In total, the number
of threads exceeds the number of hardware threads wherefore the processes block each

other. This causes increasing simulation durations in the larger setups.

Table 6.8.: Correlation between slopes of average runtime, number of components and
number of messages.

Topology Setup 1 | Setup 2 | Setup 3 | Setup 4 | Setup 5
Components Number 3 6 8 17 24
P Gradient 1 2 2.667 | 5.667 8
>-msgs/P 70 256 431 1804 3290
Messages Gradient seq. 1 3.657 6.157 12.886 | 23.500
Gradient par. 1 1.829 2.309 2.274 2.938
Local Regression Slope | 0.515 0.951 1.116 1.650 3.537
Gradient 1 1.847 2.167 3.204 6.868
Regression Slope | 0.595 1.002 1.064 1.246 1.740
LAN .
Gradient 1 1.684 1.788 2.094 2.924
Regression Slope | 22.820 | 41.781 | 46.169
Internet ]
Gradient 1 1.831 2.023

In the LAN topology, the simulation durations are similar or shorter than on a single
host as explained before. Starting with a slope of 0.595 in Setup 1, the values increase
to 1.002 by a factor of 1.684 (Setup 2), to 1.064 (Setup 3, factor 1.788), to 1.246 (Setup
4, factor 2.094) and to 1.740 in Setup 5 (factor 2.924). This rise is smaller than the one
of the components and also smaller than the message gradients for a parallel execution.
As a consequence, a distribution via multiple PCs in a LAN provides scalable simulation

durations even if the communication latencies are slightly longer than on a local host.

According to the long simulation durations when the Internet is used to communicate, the
regression slopes are much larger than in the other topologies. Hence, only the first three
setups are executed in this case. The related slopes of the regression lines account for
22.820 (Setup 1) 41.781 (Setup 2) and 46.169 (Setup3). The rise of these slopes is similar
to those in the local setup which shows the main influence of the communication delays on
the simulation duration. The number of messages exchanged during the synchronization

process remains in the same order of magnitude even if the delays are increased.

The results presented in this section show the scalability of the framework in different

131



6.5. Quality Improvement of Distributed Co-Simulation using State-Estimation

use-cases. This covers a linear relationship between simulated time and runtime of the
setups and proportional durations considering an increasing number of components. Fur-
thermore, the upper bound of the number of messages provided by the previous section is
validated by the results. In the next section, the state-estimation mechanism is evaluated

with regard to real-time tests via the Internet and the achievable performance speedup.

6.5. Quality Improvement of Distributed Co-Simulation

using State-Estimation

After analyzing the temporal characteristics of the distributed co-simulation framework,
this section concentrates on the state-estimation mechanism as the first delay-management
technique. On the one hand, it shows the improvements of using the mechanism for
real-time tests via the Internet. Herein, the section covers the possibility to guarantee
a timely packet reception and an improved simulation accuracy if intermediary pack-
ets are forwarded. On the other hand, a performance speedup in non-real-time tests is
demonstrated by comparing the temporal characteristics of using different communication

periods with those of Section 6.4.

6.5.1. Timely Packet Reception for Real-Time Devices

To evaluate the state-estimation mechanism, Setup 2 with a triplicated PID controller
is used as described in Section 6.3.2. The DUT is distributed across six PCs and the
fan is executed on real hardware. Since the device works in real-time, Hosts has to be

configured according to Section 6.2.2.

Before the benefits of using the state-estimation mechanism are shown, Figure 6.30 denotes
the fan speed in a simulation run without any delay-management mechanism. The speed
is depicted on the y-axis while the x-axis illustrates the simulated time. As the fan is a
real-time device, the execution stops after the selected duration of 100s. The sampling
time is set to 100ms and each graph represents the result for a different communication
period: 100ms (black), 200ms (green), 500ms (red) and 1000ms (cyan). To connect
the simulation hosts, a VPN is established via the university’s eduroam network. This
results in network delays of approximately 8ms between the hosts and the RTI for each
synchronization message. Since the state-estimation is disabled, these latencies lead to
delayed packets for the communication periods of 200ms and 500ms. As a consequence,

the fan control is instable due to oscillations. If the communication period is set to
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1000ms, there is enough time left in every period to receive all packets in time. Hence,
there are no oscillations but the speed’s accuracy is decreased compared to the black

graph. In this graph, state-estimation is enabled to provide a reference signal.
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Figure 6.30.: Fan speed without state-estimation and increasing communication periods.

Figure 6.31 demonstrates the usage of the state-estimation mechanism to guarantee a
timely packet reception. In this run, the control loop’s parameters are equal and the same
communication periods are used like before. Those periods represent setups in which the
network delays lead to a decreased number of packets that can be transmitted in time.
Even if packets are delayed in this use-case, the state-estimation can provide an estimated
input to the fan wherefore there are no oscillations in the signal. However, its accuracy
is decreased for longer periods. Since the time interval between subsequent packets is
increased, the step response requires more time. As a consequence, the fan reaches its
steady-state value later. As an example, the step from 1000rpm to 1600rpm finishes after
approximately 7s if the communication period is set to 1000ms. In contrast, a period
of 100ms reduces this time interval to 0.7s although a similar number of communication

and computation cycles is executed.
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Figure 6.31.: State-estimation enabled to guarantee a timely packet reception.

Finally, Figure 6.32 illustrates the fan speed if the state-estimation mechanism is applied
to forward intermediary packets between the received ones. Hence, the simulation bridge
can forward an input to the device for every scheduled event independent from the net-
work latencies. This results in similar speed signals for every communication period. As
a consequence, the simulation accuracy is limited only by the system model’s quality,
the bridge’s execution time and the communication delays between the bridge and the

connected device.

To sum up, the results presented show the importance of using a delay-management
mechanism for distributed real-time tests via the Internet. In a more realistic setup, the
network delays are even longer than the 8ms measured for this topology. For example,
pinging a DNS server located in New York, USA (e.g., 141.155.0.68) from Siegen requires
approximately 100ms. Furthermore, there can be more components connected to the
federation which results in more messages exchanged between the simulation bridges and
the RTT (cf. Section 6.4). The test results without state-estimation would be even worse

in such a setup as the accuracy is deteriorated strongly.
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Figure 6.32.: State-estimation enabled to forward intermediary packets.

6.5.2. Performance Speedup using State-Estimation

Using longer periods for the data exchange between the simulation bridges, the state-
estimation mechanism can mitigate Internet-introduced delays. In this way, it supports
real-time tests via the network as shown in the previous section. These periods can be
used further to speed up non-real-time simulations. Hence, this section focuses on the

achievable speedup using different communication periods.

Figures 6.33 and 6.34 depict the simulation durations of Setup 1 in the local topology for
different simulated times and communication periods. The durations for the simulated
times from 1s to 100s are shown in Figure 6.33 while Figure 6.34 prints the remaining
values for 200s to 1000s. Splitting the times into two figures improves the readability
of the results. For the same reason, Figure 6.33 shows two different scales for the times
of 1s to 5s and 10s to 100s, respectively. Both scales are separated using a dashed line.
The durations for the different times and communication periods are shown as a bar
chart. Herein, the gray bars represent the durations without state-estimation where the
communication period corresponds to 10ms. In the black graphs, a period of 100ms is

used while the periods of 200ms, 500ms and 1000ms are colored in green, red and cyan.
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Both figures show a large speedup if the state-estimation mechanism is enabled. The
largest gain can be reached with a communication period of 100ms compared to a period
of 10ms. Using longer periods, a speedup is still possible but the factor compared to the
next smaller period is much smaller. For example, a simulated time of 100s is executed
in 50.59s. Using a communication period of 100ms, the duration is reduced to 6.6s
by a factor of 7.665. Scaling the period further to 1000ms, the duration accounts to
1.64s which corresponds to a speedup of 4.024. These values reflect the approximation
of Section 6.4.1 as the number of messages per period is independent from the period’s
length. This results in severe speedups for longer periods. In the following, the speedups

for the different topologies and communication periods are analyzed in more detail.
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Figure 6.35.: Speedup using state-estimation in the local topology.

Starting with the local topology, Figure 6.35 illustrates the correlation between the com-
munication periods and the regression slope gradients of the simulation durations. The
periods are shown in ms on the x-axis of the chart while the gradients are printed on the y-
axis. For each communication period and setup, the simulation durations are determined
and a linear regression is calculated similar to Section 6.4.2. The resulting gradients are
plotted against the communication periods and a regression is calculated. In contrast to
the linear relationship between the simulated times and the time required to execute the
test, there is a potential correlation in this case. The detailed parameters for the plots can
be found in Appendix D including the equations for the regression graphs. Focusing on
the local topology, the graphs for Setup 1 and Setup 2 are quite similar whereas the gap

to the larger setups increases. This gap represents the increasing slopes shown in Figure
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6.27. As implied by Figures 6.33 and 6.34, the most significant gain can be reached with
communication periods between 10ms and 100ms for Setup 1 and Setup 2. For Setup
3, the gain can be extended to a period of 200ms whereas Setup 4 and Setup 5 show an
approximating speedup for periods longer than 500ms. The reason for the reduced gains

of longer periods is the increasing overhead of computing the intermediary packets.
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Figure 6.36.: Speedup using state-estimation in a LAN.

The speedups for the LAN topology are depicted in Figure 6.36. Although the potential
relationship between the communication periods and the slopes remains, there are larger
variations between the points and the regression graphs of Setup 2 and Setup 3. For the
periods greater than 100ms, the coordinates of Setup 2 are similar to those of Setup 1
and Setup 3 conforms to Setup 4. Similar to the local topology, the largest gain for Setup
1 and Setup 2 can be found between periods of 10ms and 100ms. For Setup 3 and Setup
4, this bound can be moved to a period of 200ms whereas Setup 5 still benefits from a

period of 500ms.

Finally, Figure 6.37 shows the results during the Internet tests. The graph of Setup 3
almost equals the one of Setup 2 and the distance between the graphs reflects the results
of Figure 6.29. However, a communication period of 500ms can be used to achieve a
perceptible speedup in all setups. This characteristic is contrary to the previous topologies
but can be explained with the significant network delays the Internet introduces. For these
tests, the delays of a ping via the Internet lie around 25ms whereas the LAN introduces

delays less than 1ms. As a consequence, the reduced number of messages exchanged has
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a large influence on the execution’s performance.
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Figure 6.37.: Speedup using state-estimation via the Internet.

The majority of the presented results shows speedups up to a communication period
of 500ms. Hence, Table 6.9 summarizes the related speedups for the different topologies
compared to a period of 10ms. Since there are considerable variations between the values,
a general conclusion cannot be drawn. However, a larger number of components also
results in larger speedups in most cases. In the local topology, the speedups range from
17.779 to 28.755 with an outlier in Setup 2 (49.280). Regarding the LAN, there are
variations between 14.548 to 20.069. Again, there is an outlier with Setup 3 (9.815) where
the speedup is much smaller than in the other cases. These outliers are not available in
the Internet tests where the results range from 36.425 to 40.620. Considering the median
values, speedups of up to 25 (Local), 16 (LAN) and 37 (Internet) are achievable.

Table 6.9.: Achievable speedups for a communication period of 500ms.

Setup | Local | LAN | Internet
Setup 1 | 25.495 | 14.548 | 36.425
Setup 2 | 49.280 | 17.641 | 37.668
Setup 3 | 28.755 | 9.815 | 40.620
Setup 4 | 17.779 | 16.438
Setup 5 | 19.771 | 20.069

On the opposite side, these significant speedups reflect the influence of an increasing

number of events and messages on the simulation durations. While there is a linear
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relationship between the durations, the simulated times and the number of federates per
federation, the durations grow exponentially for large numbers of events. However, periods
of 10ms are mapped to 10 ticks of the RTI and the deadline scheduler requires periods of
Ims to ensure a timely execution (cf. Section 6.2.2) As long as the periods of the SUT
are in this order of magnitude, reasonable results can be achieved using the distributed

co-simulation framework.

6.6. Performance Speedup using Speculative Execution

The concept of the speculative execution is the distribution of the setup into independent
federations which run in parallel. This section focuses on the achievable speedup of the

mechanism which does not require additional estimation models.
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Figure 6.38.: Subsets of Setup 3.

During these tests, the setups are split into federations according to their sizes and topolo-
gies. To forward data between the federations, the switches are connected to simulation
gateways. Figure 6.38 illustrates the federations for Setup 3 where the triplicated compo-
nents are summarized by one box and an index j. Since there are only two components
available in Setup 1 (fan and PID controller), this setup is distributed into two federa-
tions and the voters are removed. The other two setups are divided into three federations
which include the fan, the PID controllers and the voters. In the figure, the federations

are shown using cyan-colored dashed lines.
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Figure 6.39.: Subsets of Setup 5.
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Figure 6.39 covers the federations of Setup 5 which can be divided using three cases. The
first case covers the three federations colored in cyan. Each federation includes the com-
ponents connected to the three switches while the bridges of Switch0 and Switch2 operate
as simulation gateways. The green colored federations cover the second case with five sub-
sets. Herein, Switchl is connected to a third simulation gateway and the links between
the switches are moved into dedicated federations. These dedicated federations remain in
the final case with nine federations which is colored in orange. The other federations are
split further so that each group of similar components (fans, PID controllers and voters)
are located in separate sets. Since the PID controllers and voters of the third fan-control
application are not available in Setup 4, these federations are omitted resulting in seven

subsets. The remaining cases are similar to Setup 5.
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Figure 6.40.: Speedup for Setup 5 using speculative execution (200s to 1000s).

Since Setup 5 supports the largest number of different federations, its local execution
is selected to demonstrate the achievable speedup using the speculative execution. The
different simulation durations for each case are shown in Figure 6.40 and Figure 6.41
including the case without any distribution. This case is shown as a gray bar. The other
bars are colored with regard to Figure 6.39. While the simulated times are plotted on the
x-axis, the y-axis denotes the simulation durations. To improve the readability, Figure
6.41 uses two different scales for the simulated times, one for 1s to 5s and one for 10s to
100s. The results show a speedup of more than two if the Setup is distributed via three

federations (cyan) compared to the initial case. Similar results can be seen for the cases
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with five and nine federations whereas the difference between three and five federations

is quite small.
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Figure 6.41.: Speedup for Setup 5 using speculative execution (1s to 100s).

Detailed speedup values for all setups in the local and LAN topologies are depicted in
Table 6.10. For Setup 1 and Setup 2, the speedups on a local host are smaller than in the
LAN whereas the results are reverse for Setup 3 to Setup 5. The largest gain in the local
topology can be reached in Setup 5 (4.399). Here, the reduced number of components
per federation leads to a significant reduction of the number of synchronization messages
exchanged. As a consequence, the simulation can be executed faster. In Setup 1, this
effect is minimal since there are only two federations with two components and both
federations must be synchronized. This results in a speedup of 1.077. As shown in Figure
6.40 and Figure 6.41, a similar effect can be seen between the usage of three and five
federations in Setup 4 and Setup 5. In these cases, the links between the switches are
moved to separate federations, but the number of messages exchanged is small. Hence, a

large speedup is not achievable.

Using a LAN to distribute the components, the slopes and the resulting speedups differ
between the setups. While the slopes of Setup 2, Setup 3 and Setup 4 (three and five
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federations) are similar to those of the local tests, using seven federations in Setup 4 results
in a larger slope. For Setup 1 and Setup 5, the slopes are smaller instead. These results
can be explained again with the distribution of the components between the hosts and
the resulting faster execution (cf. Section 6.4.2). Herein, Setup 4 must be contemplated
as an outlier. The distribution is also the reason for the smaller speedups compared to
a local execution since the reference results for one federation are smaller already. Apart
from that, smaller federations still perform faster than larger ones. This can be seen in

the results of Setup 4 and Setup 5, but also for Setup 1 and Setup 2.

Table 6.10.: Speedups for local and LAN topologies.

Local LAN

Setup | Federations | Slope | Speedup | Slope | Speedup
Setup 1 1 0.515 1 0.595 1

2 0.478 1.077 | 0.394 1.510
Setup 2 1 0.951 1 1.002 1

3 0.651 1.461 0.620 1.616
Setup 3 1 1.116 1 1.064 1

3 0.720 1.550 | 0.745 1.428
Setup 4 1 1.650 1 1.246 1

3 0.701 2.354 | 0.702 1.775

5 0.627 | 2.632 | 0.686 1.816

7 0.430 | 3.837 | 0.542 2.299
Setup 5 1 3.537 1 1.740 1

3 1.705 2.074 1.023 1.701

5} 1.459 2.424 0.804 2.164

9 0.804 | 4.399 | 0.564 | 3.085

In real-time tests, the simulated time equals the simulation duration resulting in a slope of
1. To support such tests, the slope of the simulation durations must be smaller than this
value, otherwise messages are received too late. Using the speculative execution on a local
host, almost all cases show slopes smaller than this value. The only exceptions are the
cases with three and five federations of Setup 5. Distributing the setups via a LAN, the
slopes are also smaller if Setup 5 is distributed via five federations. These examples show
the possibility to use the speculative execution for real-time tests if a proper configuration
can be found. This configuration depends on the size of the test, the independence of the

different components and the delays of the network connecting the simulation bridges.

To speedup the simulation further, the RTI can be located close to the components with
the largest amount of traffic. While the influence of the location on the duration is low
for small network delays, the tests via the Internet show larger differences. In Table 6.11,

the column Local RTI denotes the cases where the RTI instances are placed on the same
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hosts like the fan, PID and voter components. The other column Remote RTI represents
the runs where the RTI instances are executed on the network host. Setup 1 shows the
case where only two simulation bridges are connected to the same federation. In this
case, both bridges exchange the same number of messages wherefore there is no difference
between the slopes. The speedups for this setup lie around a value of 2.2 while the other
setups achieve larger speedups for the local case. Here, the values are almost similar with
2.359 (Setup 2) and 2.432 (Setup 3). If the RTIs are located at the network simulation,
more message experience a longer network delay which results in a speedup of 1.865 for
Setup 2. For the same reason, the speedup is reduced to a value of 1.554 in Setup 3. Here,

the number of remote components is even increased compared to Setup 2.

Table 6.11.: Speedups for distributed simulations via the Internet.

Local RTI Remote RTI
Setup | Federations | Slope | Speedup | Slope | Speedup
Setup 1 1 22.820 1 22.820 1
3 10.208 2.236 10.420 2.190
Setup 2 1 41.781 1 41.781 1
3 17713 | 2.359 | 22.399 1.865
Setup 3 1 46.169 1 46.169 1
3 18.987 2.432 29.702 1.554

All in all, the results for the Internet topology strengthen the characteristics determined
for the local topology and the LAN. During the synchronization algorithm, the location of
the RTT plays a major role for the performance of the execution. Hence, it is important to
determine the number of messages exchanged when configuring the speculative execution.
As shown before, a valid upper bound is given by Equation 6.8 introduced in Section
6.4.1. A real-time execution is not possible in this case and longer communication periods

than the selected 10ms are still required.
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7. Conclusion and Future Work

7.1. Summary and Contribution

Aircrafts, trains and cars are common example for today’s large-scale distributed real-time
systems. These systems are composed of several components which are developed and
integrated within an incremental process. In this process, validation and verification are
important steps, especially if the system under test is safety-critical. However, the typical
inclusion of several specialized but geographically distributed manufacturers aggravates
the development. Components must be shipped to a central place for the integration and

validation procedure and intellectual property must be protected [HLV06].

Distributed co-simulation, Software- and Hardware-In-The-Loop (SIL, HIL) testing can
be used to simplify the process. They are able to couple simulation tools, software-
implemented control algorithm and real hardware devices via heterogeneous communica-
tion networks such as LANs or the Internet. Another widely used validation technique is
fault-injection which allows to investigate the system behavior in case of faults. A dis-
tributed co-simulation framework supporting these mechanisms enables the integration
and testing of distributed components at early development steps. However, HIL testing
involves hardware components with real-time requirements. The indeterministic network
delays introduced by the Internet have an adverse effect on the quality of the tests as
deadlines might be missed. As a consequence, mechanisms must be included into the

distributed co-simulation framework which manage these delays.

This thesis proposes a framework which enables distributed co-simulation, SIL and HIL
testing via heterogeneous communication networks (cf. Chapter 4). It operates on a
network-centric abstraction level and provides a generic interface to support a large variety
of simulation tools, software applications and real hardware. Using the HLA simulation
standard, the framework provides a synchronization mechanism which coordinates the
time advance between non-real-time components. An additional mechanism synchronizes
the advance of the logical simulation time with the physical time of real hardware devices.

Besides this, the framework supports the injection of faults into the communication of the
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SUT. This mechanism covers the error modes introduced in Section 3.6 which are based
on IEC 61508-2 clause 7.4.11.

To support real-time HIL testing via the Internet, two delay-management technologies
based on state-estimation and speculative execution are provided (cf. Chapter 5). The
state-estimation mechanism can be used (I) to guarantee a timely forwarding of received
or estimated data to the devices (cf. Section 5.1.2) and (II) to reduce the RTI message
exchange by extending the communication periods and forwarding intermediary, estimated
packets (cf. Section 5.1.3). Alternatively, the speculative execution distributes the SUT
into independent subsets (cf. Section 5.2). These subsets are executed in parallel as
separate federations and data is routed via gateways. In this way, real-time data can
be provided in time and the synchronization effort of the RTI can be reduced. Both
mechanisms exploit the available knowledge of time-triggered schedules where the instants

of all communication activities are a-priori known [EBKO3].

The framework is evaluated based on a distributed, fault-tolerant fan-control application.
This application consists of four types of subsystems which are combined in five setups
(cf. Section 6.1). The framework itself is implemented as a proof-of-concept for the
Linux operating system. Using its deadline scheduler and the locking of memory in the
RAM, the simulation hosts can be configured to schedule the framework in real-time (cf.
Section 6.2.2). Furthermore, the usage of a TSN driver and a suitable network interface
card enables a timely communication with the device. These technologies are used in
Section 6.3 to validate the fault-injection mechanism for HIL and SIL. During these tests,
faults covering all error modes of CENELEC EN 50159 are injected into the destination
speed messages sent from the fan (SIL) and into the PWM values this component receives
(HIL). The manipulations of the resulting fan speed are shown by plotting the signal and

using Wireshark packet captures of the data transfer.

To demonstrate the scalability of the framework, the five fan-control setups consist of an
increasing number of components. Furthermore, multiple simulation durations from 1s
to 1000s are defined and the framework is executed in different topologies: locally, in a
LAN and via the Internet. The results presented in Section 6.4 show a linear relationship
between the simulated time and the resulting simulation duration. This accounts for
all topologies and the longer durations of the Internet tests arise from the increasing
network delays. Another scalability parameter is the number of components in a setup.
Comparing the slopes of the simulation durations with the setup’s scaling factor, the
factor represents an upper bound for the durations’ slopes. Hence, the synchronization
mechanism also scales for larger setups. This is reflected further by Equation 6.8 which

determines the number of messages exchanged via the RTI (cf. Section 6.4.1). In this
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equation, all parameters are linear.

Finally, the delay-management mechanisms are evaluated with regard to the capabil-
ity of supporting real-time tests in heterogeneous communication networks. The state-
estimation mechanism can be used to provide received or estimated inputs to the device
in time independent from the network delays. Furthermore, the forwarding of interme-
diary packets can increase the accuracy of the tests to be limited only by three aspects.
Those are (I) the system model’s quality, (II) the computation times of the simulation
bridges and (III) the communication delays between a bridge and the connected device

(cf. Section 6.5.1). As a disadvantage, the creation of a valid model might be challenging.

The speculative execution represents an alternative mechanism. As it is based on smaller
federations with a downscaled RTI message exchange, an additional estimation model is
not required. However, the results of Section 6.6 show the mechanism’s dependence on
the communication network and the schedule of the SUT to support a real-time execution.
For example, an application with periods of 10ms cannot be executed in real-time if the
simulation bridges communicate via the Internet. Using a LAN or local host instead, the
achievable speedup is sufficient to run real-time tests with some exceptions in the larger

setups.

From a performance point of view, the state-estimation provides significantly better results
compared to the speculative execution. The resulting speedup depends on the setup, the
topology and the communication period (cf. Section 6.5.2). For example, a value of 9
is the minimum speedup for periods of 500ms. To select a valid communication period,
a trade-off must be made between the simulation’s accuracy and the speedup required.
Considering all topologies and setups using the speculative execution, the speedup reaches
a value of at most 4.4 (cf. Section 6.6). All in all, both mechanisms are able to enhance
the quality and the performance of the tests. Detailed improvements depend on the SUT

and its schedule in both cases.

7.2. Future Work

The scope of this thesis focuses on time-triggered distributed real-time systems which
communicate via the Ethernet protocol and its extensions such as TSN or TTEthernet.
Hence, there are different topics that could be addressed in future research projects. These

topics are introduced briefly in this section.
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Alternative protocols

According to the current interest to support real-time communication via Ethernet, this
protocol and its extensions were selected for this thesis. However, there are several alter-
native technologies used in distributed (real-time) systems. Examples are the CAN [iso15]
or FlexRay [iso13] communication systems from the automotive domain, Wireless LAN
technologies from the IEEE 802.11 standard family [ieel6] or Wireless Personal Area
Networks defined in 802.15 [oEEE] (e.g., Bluetooth, ZigBee). Supporting additional pro-
tocols, the application field of the distributed co-simulation framework can be extended

to further domains such as industrial or medical systems.

Support for Rate-Constrained and Best Effort traffic in state-estimation and

speculative execution

Currently, the state-estimation and speculative execution technologies are based on the
a-priori knowledge of time-triggered real-time schedules. However, protocols such as
TTEthernet support additional traffic types like rate-constrained and best-effort traffic.
Although both traffic types are supported by the distributed co-simulation framework,
the delay-management mechanisms can only recognize large delays. This is caused by
the uncertain transmission times. In future work, an algorithm can be developed which
predicts these times using machine learning and artificial intelligence. Such an algorithm
enables the support for state-estimation at runtime and could be used at design time to

configure the federations for the speculative execution.

Adaptation and dynamic creation of system model for state-estimation

As shown in this thesis, the state-estimation mechanism is a valid technique to support
distributed real-time tests via the Internet including real hardware. Furthermore, a sig-
nificant speedup can be reached if only non-real-time components are involved. However,
its main drawback is the creation of a valid system model. If the model is inaccurate,
the difference between the estimated and received inputs can become too large and the
simulation has to stop. Using a rollback mechanism could bring the system model and
the outputs back into a valid range, but this is not applicable for real hardware. Those
devices run in parallel to the simulation bridges and they typically interact with their en-
vironment. Rolling back the environment is difficult or even impossible wherefore it is not
supported by the current version of the state-estimation. Besides that, the system model

needs to be adaptable, otherwise the same error will occur later in the simulation. In the
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future, artificial intelligence might be used to adapt the system model at runtime before
the error occurs. Furthermore, it might be used during the execution of co-simulation

setups to create a valid system model for later development stages.

Speculative execution using optimistic synchronization without rollback

In addition to the time-management algorithm used for this work, the HLA supports
another algorithm based on optimistic synchronization. This synchronization mechanism
allows to request the transmission of future interactions with the risk of missing mes-
sages that are not available yet in the RTI. Exploiting the knowledge of a time-triggered
schedule, the simulation bridges can use these services to advance in time even if they are
constrained by other, independent components. The available knowledge about the sched-
ule can also prevent the necessity of a rollback mechanism. Such a mechanism is required

predominantly by works of the current state-of-the-art using optimistic synchronization.

Further optimization

Finally, there are some aspects which concern the implementation of the framework.
These aspects cover the support for additional operating systems such as Windows or the
implementation on real hardware. Using real hardware, the simulation bridge could be
connected to a device similar to a switch in a network. This reduces the delays introduced
by the simulation host and solves issues with real-time capabilities of general purpose PCs.
Besides that, there are several commercial alternatives to the OpenRTI which is used for
this work. Examples are the MAK-RTI or the Pitch pRTI. While the MAK RTT promises
a high-performance solution for small and large federations [VT |, the Pitch pRTI is
optimized for a local, cloud-based or virtual deployment [Tec|]. In future work, those

alternatives should be evaluated according to their usage in several other projects.
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A. Configuration Model

This annex introduces the configuration model of the distributed co-simulation frame-
work. The element DCSF is the origin and must contain four sub-elements: Federations,
Federates, SynchronizationPoints and SimulationEzecution (cf. Figure A.1). While the
latter defines only the start and stop times of the simulation execution, the other elements

have more attributes. These attributes are introduced in the following.

R DCSF R
1..1 1..1
Federations SimulationExecution
StartTime
StopTime
l 1..1 1..1 1
Federates SynchronizationPoints

Figure A.1.: Main elements of the configuration file.

In a simulation setup, there might be multiple federations representing a subset of the

setup. The related attributes are depicted in Figure A.2.

Federations

1.%

Federation

ExecutionName
RTIip
RTIprotocol
RealTimeTest
FOMFile
MimFile

Figure A.2.: Attributes of the federations.

The attributes of the different federates (simulation bridges or gateways) in a simulation

setup are shown in Figure A.3. Each federate can be located in one or more federations
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publishing or subscribing to multiple interactions. For each of these federations, a task
and message schedule is defined. Besides this, the federate includes one or more wrapper
interfaces with the related type. The elements FaultInjection, DelayManagement and

StateFEstimation must be available exactly once.

.1
FaultInjection ‘Wrapper * 0 TypeFMI
WrapperType FmuPath
1.1 M FmuTmpPath
1%

StateEstimation TypePCAP
Enabled MAC
SystemModelPath 0.1 1P
SystemModelTmpPath EthDevice
DeviceModelPath 1..1 EthDeviceMAC
DeviceModel TmpPath EthDevicelP

Federates R LK Federate R 1.1 DelayManagement
ID MaxDelay
FederateType
IsRTdevice *
1..1 11 1.*
MessageSchedule TaskSchedule Federations
FederatelD FederatelD Count
1
1.*% 1.* 1.%
Federation Federation Federation
ExecutionName ExecutionName ExecutionName
+ * IsTimeConstrained
IsTimeRegulating
1..1 1..1 Lookahead
TTMessages PeriodicTasks
3 y 1.%
Interaction
1.% 1.*
ID
TTMessage PeriodicTask DestMacAddr
D 1D Type
Period Period TSO
Offset Offset Estimation
Length Wi CET
RToffset RToffset
PeriodBCS PeriodBCS
OffsetBCS OffsetBCS
Type InputMsgIDs
OutputMsglDs
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Figure A.3.: Attributes of the federates.
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Figure A.4 illustrates the attributes of the different message error modes for the fault-

injection. Each mode is optional in the configuration model.

Replay Omission Delay
MessagelD MessagelD MessagelD
ReceiveTime ReceiveTime ReceiveTime
Replayed Delay

0..1
0..1 0..1
Corruption 0..1 R FaultInjection R 0..1 Insertion

MessagelD . ; MessagelD
ReceiveTime InsertionTime
NumChangedBytes SrcIP
ChangedIndexes DestIP
ChangedValues TransportProtocol
RecalculateChecksum SrcPort

DestPort

Data

Figure A.4.: Attributes of error modes for the fault-injection.

Finally, Figure A.5 shows the synchronization points used during the initialization of the
simulation bridges. Each synchronization point is announced by a dedicated host called

SynchMaster while the registering federates are defined in the attribute ManageFederate.

SynchronizationPoints

Host="SynchMaster’ v

4

1.1 1.1
1.1

SynchronizationPoint SynchronizationPoint SynchronizationPoint
ID="EnableTimeManagement’ ID="PublishSubscribe’ ID="RunSimulation’

[

1% ManageFederate 1%
FederatelD

Figure A.5.: Attributes of synchronization points.
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B. Synchronization Messages

This annex shows the linear relationship between the number of components and the
number of synchronization messages per period. It further depicts the reduction of the

message number using longer communication periods.

1,750 |
1,500 | -
1,250 | Jani
1,000 | - |
750 | = .
500 x .

Number of messages

250 g a

ol | | | | | | | | |

0 2 4 6 8 101214 16 18 20 22 24
Number of components

Figure B.1.: Number of synchronization data messages per period.

Table B.1.: Number of messages for a simulated time of 1s.

CP | Setup 1 | Setup 2 | Setup 3 | Setup 4 | Setup 5
10 7000 25600 43100 | 180400 | 329000
100 700 2560 4310 18040 32900
200 350 1280 2155 9020 16450
500 140 512 862 3608 6580
1000 70 256 431 1804 3290

Figure B.1 plots the number of components on the x-axis while the y-axis depicts the
number of synchronization messages per period. The values are derived from Table 6.7

and show the linear relationship. As explained in Section 6.4.1, the number of messages
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per period is multiplied with the fraction of the simulated time and the period to determine
the total number of messages in the run. In Table B.1, this number is determined for
a simulated time of 1s with regard to the communication periods chosen. The results
show an exponential reduction which is reflected by the achievable speedups using the

state-estimation mechanism (cf. Section 6.5.2).
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C. Simulation Durations without

Delay-Management

In this annex, the simulation durations and their deviations are illustrated for the different

setups and topologies without considering any delay-management mechanism. It is related

to Section 6.4.2.

Table C.1.: Simulation durations and deviations for Setup 1.

Simulated Local results [s] LAN results [s] Internet results [s]
Time Duration | Deviation | Duration | Deviation | Duration | Deviation
1 0.507 0.071 0.605 0.024 23.016 0.326
2 1.038 0.136 1.214 0.040 46.489 0.732
5 2.545 0.313 3.000 0.063 117.759 0.962
10 4.968 0.447 5.973 0.107 235.874 2.797
20 10.012 0.948 11.970 0.241 469.749 7.833
50 25.831 2.423 29.816 0.530 1151.577 35.883
100 50.591 4.158 59.779 0.857 2297.814 79.523
200 101.262 9.338 119.155 1.888 4662.179 171.339
500 257.083 24.471 298.832 4.897 11332.691 | 565.943
1000 515.487 48.952 595.004 8.586 22857.437 | 829.183
Table C.2.: Simulation durations and deviations for Setup 2.

Simulated Local results [s] LAN results [s] Internet results [s]
Time Duration | Deviation | Duration | Deviation | Duration | Deviation
1 0.999 0.104 1.011 0.032 44.082 2.148
2 1.958 0.161 1.989 0.051 88.828 4.497
5 4.849 0.355 4.952 0.097 221.435 10.878
10 9.638 0.754 9.830 0.148 442.336 17.187
20 19.215 1.280 19.795 0.307 839.284 28.747
50 47.754 3.186 49.467 0.709 2064.156 97.710
100 95.354 6.163 99.390 1.380 4058.514 | 125.191
200 190.756 12.755 198.903 2.645 8223.501 | 245.490
500 475.533 32.151 499.589 5.633 20955.291 | 616.151
1000 951.296 63.899 1001.938 9.453 41751.530 | 630.075
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Table C.3.: Simulation durations and deviations for Setup 3.

Simulated Local results [s] LAN results [s] Internet results [s]
Time Duration | Deviation | Duration | Deviation | Duration | Deviation
1 1.125 0.120 1.105 0.038 43.088 0.997
2 2.244 0.197 2.204 0.059 86.146 2.214
d 5.531 0.419 5.405 0.117 217.808 5.679
10 10.952 0.858 10.679 0.125 437.430 12.449
20 21.760 1.653 21.357 0.248 882.488 30.820
50 04.737 3.546 53.008 0.525 2222.672 68.768
100 109.661 6.776 106.523 1.097 4530.210 142.667
200 219.091 14.427 212.723 2.940 8864.005 306.378
500 549.608 33.986 530.033 5.362 22590.943 | 1792.854
1000 1118.347 D7.368 1064.416 7.239 46319.824 | 1887.877
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Table C.4.: Simulation durations and deviations for Setup 4.

Simulated Local results [s] LAN results [s]
Time Duration | Deviation | Duration | Deviation
1 1.613 0.038 1.247 0.043
2 3.230 0.109 2.539 0.096
) 8.138 0.346 6.457 0.181
10 16.546 0.559 12.502 0.334
20 32.931 1.183 25.114 0.578
20 82.272 2.837 62.848 1.275
100 164.000 5.739 125.919 2.257
200 328.928 9.858 250.283 4.120
500 824.432 15.359 624.070 8.810
1000 1649.943 29.419 1246.363 7.304

Table C.5.: Simulation durations and deviations for Setup 5.

Simulated Local results [s] LAN results [s]
Time Duration | Deviation | Duration | Deviation
1 3.757 0.300 1.756 0.012
2 7.472 0.480 3.496 0.025
) 18.469 0.714 8.729 0.051
10 36.497 1.410 17.476 0.110
20 72.575 2.788 34.910 0.247
20 181.657 5.922 86.945 0.858
100 363.746 9.513 173.996 2.116
200 730.843 11.681 348.883 2.444
500 1846.789 |  36.999 868.292 8.052
1000 3509.915 | 352.563 | 1740.511 | 12.389
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This appendix shows the regression slopes, the simulation durations and their deviations
for the different setups. It further depicts the power functions which illustrate the resulting

simulation speedups. The results refer to Section 6.5.

Table D.1.: Regression slopes of Setups 1, 2 and 3 for the different topologies and com-
munication periods.
Setup 1 Setup 2 Setup 3

CP | Local | LAN | Internet | Local | LAN | Internet | Local | LAN | Internet
10 0.515 | 0.595 | 22.820 | 0.951 | 1.002 | 41.781 | 1.116 | 1.064 | 46.169
100 | 0.069 | 0.092 | 3.093 | 0.077 | 0.088 | 5.419 | 0.132 | 0.180 | 5.800
200 | 0.040 | 0.062 | 1.480 | 0.046 | 0.063 | 2.654 | 0.072 | 0.137 | 2.826
500 | 0.020 | 0.041 | 0.627 | 0.019 | 0.057 | 1.109 | 0.039 | 0.108 | 1.137
1000 | 0.014 | 0.032 | 0.336 | 0.014 | 0.048 | 0.614 | 0.027 | 0.095 | 0.657

Table D.2.: Local and LAN regression slopes of Setups 4 and 5 for different communication
periods.

Setup 4 Setup 5
CP | Local | LAN | Local | LAN
10 1.650 | 1.246 | 3.537 | 1.740
100 | 0.371 | 0.238 | 0.854 | 0.379
200 | 0.190 | 0.128 | 0.432 | 0.193
500 | 0.093 | 0.076 | 0.179 | 0.087
1000 | 0.050 | 0.067 | 0.099 | 0.059

Table D.3.: Power functions for regression of speedups.
Local LAN Internet

Setup | Base | Exponent | Base | Exponent | Base | Exponent

1 2.973 -0.797 2.214 -0.643 197.190 -0.921
6.985 -0.932 3.183 -0.666 357.360 -0.923
6.577 -0.822 2.885 -0.534 403.140 -0.934
10.382 -0.760 5.212 -0.664
24.635 -0.781 10.401 -0.752

Ol = W N
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Table D.4.: Simulation durations and deviations for Setup 1.

Local results [s]

LAN results [s]

Internet results [s]

CP ST | Duration | Deviation | Duration | Deviation | Duration | Deviation
1 0.068 0.013 0.098 0.007 2.983 0.078
2 0.130 0.022 0.191 0.011 6.051 0.062
5 0.329 0.059 0.460 0.021 15.440 0.132
10 0.653 0.121 0.945 0.050 30.908 0.182
100 20 1.262 0.183 1.842 0.065 62.114 0.472
50 3.251 0.378 4.588 0.151 155.213 0.951
100 6.599 0.852 9.201 0.318 312.306 2.194
200 13.545 1.889 18.311 0.473 622.672 6.277
500 34.350 4.150 46.014 1.263 1690.499 | 269.045
1000 | 68.845 7.957 92.323 1.990 3037.643 179.391
1 0.039 0.011 0.062 0.006 1.386 0.024
2 0.075 0.015 0.125 0.009 2.866 0.032
5 0.187 0.038 0.310 0.015 7.298 0.044
10 0.382 0.081 0.618 0.030 14.679 0.144
200 20 0.731 0.111 1.223 0.045 29.451 0.228
50 1.889 0.369 3.093 0.134 73.737 0.323
100 3.855 0.616 6.152 0.214 147.180 0.454
200 7.858 1.356 12.372 0.450 294.941 1.311
500 19.625 2.961 30.970 0.837 738.289 1.884
1000 | 39.971 7.169 61.832 2.079 1480.746 7.213
1 0.024 0.009 0.040 0.005 0.538 0.013
2 0.044 0.018 0.081 0.006 1.166 0.030
5 0.102 0.037 0.200 0.010 3.031 0.065
10 0.215 0.077 0.401 0.015 6.098 0.077
500 20 0.430 0.139 0.813 0.019 12.395 0.228
50 1.141 0.400 2.021 0.055 30.847 0.283
100 2.270 0.713 4.053 0.078 62.167 0.617
200 4.631 1.556 8.068 0.176 124.335 1.119
500 10.228 1.938 20.432 0.292 311.500 2.751
1000 | 20.210 3.913 40.897 0.679 626.969 7.538
1 0.018 0.009 0.031 0.005 0.250 0.015
2 0.038 0.017 0.063 0.005 0.587 0.027
5 0.085 0.038 0.155 0.007 1.578 0.024
10 0.152 0.058 0.310 0.012 3.279 0.089
1000 20 0.326 0.131 0.624 0.017 6.645 0.198
50 0.861 0.341 1.580 0.025 16.636 0.127
100 1.644 0.578 3.164 0.047 33.371 0.336
200 3.614 1.487 6.346 0.084 67.015 0.864
500 6.715 0.775 16.050 0.168 168.196 1.575
1000 13.951 2.364 32.269 0.322 335.203 2.540
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Table D.5.: Simulation durations and deviations for Setup 2.

Local results [s]

LAN results [s]

Internet results [s]

CP ST | Duration | Deviation | Duration | Deviation | Duration | Deviation
1 0.178 0.043 0.102 0.020 5.133 0.083
2 0.360 0.053 0.194 0.031 10.529 0.093
5 0.833 0.186 0.468 0.056 27.014 0.965
10 1.604 0.411 0.907 0.111 53.460 0.487
100 20 3.125 0.806 1.796 0.183 106.862 0.246
50 7.173 2.097 4.474 0.427 269.436 1.310
100 11.302 3.511 8.886 0.614 543.326 4.499
200 15.460 7.826 17.848 1.083 1101.497 8.194
500 38.972 19.194 43.958 1.586 2775.096 29.897
1000 | 78.645 38.514 88.381 3.414 5393.089 151.262
1 0.111 0.026 0.073 0.017 2.543 0.039
2 0.226 0.068 0.152 0.031 5.292 0.056
5 0.604 0.094 0.345 0.077 13.737 0.276
10 1.259 0.192 0.682 0.131 27.503 0.269
200 20 2.594 0.440 1.370 0.258 55.167 0.512
50 5.322 1.938 3.250 0.492 137.854 0.989
100 7.081 3.209 6.528 0.970 275.672 2.095
200 8.508 3.726 12.825 1.620 570.008 13.221
500 22.643 10.440 31.567 3.286 1375.723 24.218
1000 | 47.135 22.578 63.117 6.621 2637.267 43.819
1 0.069 0.019 0.051 0.010 0.834 0.013
2 0.138 0.043 0.112 0.018 1.909 0.038
5 0.417 0.047 0.286 0.043 5.138 0.054
10 0.857 0.135 0.588 0.081 10.700 0.118
500 20 1.656 0.376 1.205 0.153 21.482 0.166
50 3.041 1.784 2.919 0.280 54.376 0.417
100 4.397 2.363 5.772 0.417 109.796 0.604
200 4.034 0.786 11.475 0.742 218.463 1.759
500 10.053 2.079 28.657 2.034 549.115 2.725
1000 | 20.296 4.069 56.711 3.663 1110.605 5.903
1 0.037 0.020 0.038 0.008 0.331 0.012
2 0.089 0.041 0.083 0.012 0.925 0.024
5 0.326 0.039 0.231 0.022 2,717 0.038
10 0.644 0.171 0.468 0.048 5.723 0.152
1000 20 1.303 0.451 0.937 0.047 11.692 0.117
50 2.447 1.567 2.379 0.144 29.612 0.265
100 3.284 1.645 4.742 0.374 59.482 0.262
200 3.075 0.334 9.583 0.502 119.898 0.776
500 7.465 0.962 24.025 1.442 301.268 2.303
1000 15.059 1.906 48.457 1.707 615.550 9.760
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Table D.6.: Simulation durations and deviations for Setup 3.

Local results [s]

LAN results [s]

Internet results [s]

CP ST | Duration | Deviation | Duration | Deviation | Duration | Deviation
1 0.183 0.025 0.208 0.013 5.450 0.067
2 0.338 0.050 0.416 0.027 11.167 0.092
5 0.770 0.108 1.024 0.073 28.506 0.827
10 1.474 0.239 2.045 0.120 57.440 0.336
100 20 2.927 0.484 3.975 0.252 115.426 0.950
50 7.064 1.225 9.938 0.500 291.301 1.297
100 13.764 2.625 19.533 0.982 641.017 100.549
200 26.857 5.759 38.191 1.949 1148.486 26.583
500 66.091 13.081 91.761 5.328 2798.674 45.354
1000 | 131.906 25.350 179.562 11.794 5845.029 101.171
1 0.107 0.023 0.145 0.011 4.065 0.231
2 0.224 0.029 0.295 0.023 8.916 0.404
5 0.516 0.088 0.752 0.044 22.904 0.738
10 0.963 0.175 1.485 0.124 36.103 5.650
200 20 1.805 0.307 2.928 0.227 60.802 1.132
50 4.328 0.802 7.376 0.408 149.208 1.281
100 8.186 1.949 14.524 1.029 302.307 2.126
200 14.720 3.638 28.599 2.174 552.212 4.791
500 36.478 8.647 70.380 5.603 1396.253 23.388
1000 | 72.404 16.309 136.309 12.239 2841.560 74.613
1 0.067 0.019 0.096 0.009 0.960 0.037
2 0.138 0.025 0.212 0.013 2.216 0.061
5 0.372 0.062 0.542 0.046 6.203 0.774
10 0.715 0.139 1.095 0.066 12.192 0.195
500 20 1.342 0.235 2.224 0.142 24.520 0.245
50 3.215 0.753 5.469 0.363 61.864 0.458
100 5.279 1.488 11.251 0.674 123.741 0.756
200 7.943 1.986 22.332 1.474 231.856 3.025
500 19.830 4.648 55.844 2.562 572.934 8.769
1000 | 39.207 8.535 107.859 7.291 1137.368 10.425
1 0.041 0.014 0.075 0.009 0.371 0.008
2 0.110 0.026 0.177 0.009 1.059 0.019
5 0.312 0.061 0.459 0.029 3.049 0.049
10 0.602 0.116 0.938 0.083 6.466 0.067
1000 200 1.035 0.214 1.896 0.182 13.220 0.148
500 2.812 0.518 4.795 0.357 33.444 0.189
100 4.637 1.679 9.641 0.900 66.723 0.365
200 5.172 0.700 19.682 1.250 133.418 0.774
500 13.499 2.095 48.565 3.568 333.113 2.244
1000 | 27.594 4.309 94.649 6.591 655.566 7.593
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Table D.7.: Simulation durations and deviations for Setup 4.

Local results [s]

LAN results [s]

CP ST | Duration | Deviation | Duration | Deviation
1 0.333 0.039 0.272 0.007
2 0.655 0.076 0.519 0.015
5 1.680 0.130 1.246 0.032
10 3.586 0.127 2.462 0.054
100 20 7.321 0.211 4.863 0.102
50 18.417 0.555 12.147 0.231
100 36.824 1.044 24.137 0.566
200 73.898 2.081 48.178 1.021
500 | 185.234 5.174 120.152 2.548
1000 | 370.380 10.422 239.118 6.841
1 0.177 0.020 0.168 0.007
2 0.345 0.037 0.301 0.012
5 0.846 0.089 0.704 0.018
10 1.732 0.131 1.364 0.039
200 20 3.661 0.163 2.667 0.083
50 9.381 0.304 6.590 0.182
100 18.875 0.526 13.161 0.357
200 37.764 1.135 26.388 0.859
500 94.548 2.798 65.021 2.061
1000 | 189.556 5.570 127.837 5.089
1 0.126 0.357 0.119 0.013
2 0.169 0.008 0.219 0.013
5 0.415 0.010 0.493 0.037
10 0.807 0.017 0.944 0.077
500 20 1.687 0.080 1.740 0.147
50 4.526 0.354 4.027 0.328
100 9.162 0.747 8.332 0.738
200 18.440 1.499 16.287 1.461
500 46.378 3.884 39.079 2.616
1000 | 92.695 7.580 75.602 6.865
1 0.054 0.007 0.079 0.012
2 0.107 0.012 0.175 0.022
5 0.235 0.017 0.426 0.043
10 0.454 0.031 0.864 0.086
1000 20 0.887 0.067 1.628 0.200
50 2.385 0.037 3.851 0.456
100 4.859 0.075 7.519 0.671
200 9.818 0.153 14.405 1.341
500 24.681 0.374 34.960 3.347
1000 | 49.463 0.778 66.649 7.628
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Table D.8.: Simulation durations and deviations for Setup 5.

Local results [s]

LAN results [s]

CP ST | Duration | Deviation | Duration | Deviation
1 0.687 0.113 0.392 0.011
2 1.512 0.078 0.768 0.019
5 4.117 0.046 1.897 0.055
10 8.394 0.056 3.777 0.091
100 20 16.895 0.127 7.594 0.148
50 42.484 0.280 19.063 0.344
100 85.054 0.598 37.896 0.782
200 | 170.224 1.139 75.253 1.568
500 | 426.127 2.809 189.667 3.809
1000 | 853.475 5.368 378.451 6.138
1 0.336 0.033 0.214 0.007
2 0.679 0.076 0.410 0.009
5 1.947 0.087 0.988 0.022
10 4.173 0.040 1.955 0.039
200 20 8.481 0.066 3.856 0.098
50 21.417 0.209 9.663 0.183
100 42.895 0.384 19.396 0.386
200 86.097 0.975 38.465 0.700
500 | 215.569 2.422 96.229 1.977
1000 | 431.475 4.735 192.852 3.150
1 0.133 0.009 0.115 0.007
20 0.277 0.024 0.204 0.008
5 0.706 0.074 0.473 0.011
10 1.585 0.073 0.918 0.024
500 20 3.422 0.024 1.790 0.055
50 8.802 0.095 4.411 0.104
100 17.727 0.215 8.819 0.250
200 35.605 0.449 17.604 0.437
500 89.209 1.234 43.894 0.911
1000 | 178.813 2.549 86.562 2.155
1 0.065 0.004 0.070 0.007
2 0.152 0.008 0.163 0.010
5 0.396 0.025 0.360 0.018
10 0.790 0.069 0.676 0.033
1000 20 1.764 0.079 1.292 0.071
50 4.767 0.029 3.138 0.159
100 9.691 0.073 6.239 0.272
200 19.575 0.345 12.320 0.578
500 49.069 0.616 30.400 1.258
1000 | 98.471 1.054 58.874 3.443




E. Speedup Using Speculative

Execution

Finally, this annex depicts the simulation durations and their deviations using the specu-

lative execution mechanism. From these results, the speedups in Section 6.6 are derived.

Table E.1.: Simulation durations and deviations for Setup 1 (Local and LAN).

Simulated Local results [s] LAN results [s]
Federations Time Duration | Deviation | Duration | Deviation
2 1 0.461 0.072 0.425 0.042
2 2 0.890 0.118 0.862 0.085
2 ) 2.169 0.253 2.064 0.174
2 10 4.391 0.539 4.125 0.355
2 20 8.733 0.814 8.066 0.633
2 50 22.084 2.167 20.171 1.451
2 100 45.920 3.969 39.040 1.567
2 200 93.369 7.155 79.474 4.514
2 500 237.302 16.287 196.774 8.582
2 1000 478.356 28.579 394.673 17.260

Table E.2.: Simulation durations and deviations for Setup 1 via the Internet.

Simulated | Results local RTT [s] | Results remote RTT [s]
Federations Time Duration | Deviation | Duration | Deviation
2 1 9.997 0.128 10.151 0.304
2 2 20.053 0.274 20.474 0.267
2 5 51.105 0.549 55.198 0.675
2 10 102.578 1.922 123.688 7.956
2 20 204.564 2.311 278.380 30.500
2 50 512.693 4.562 541.067 8.928
2 100 1029.854 17.888 1046.211 13.144
2 200 2103.796 59.256 2019.613 20.112
2 500 5266.874 201.924 4989.317 36.846
2 1000 10145.756 | 289.171 | 10528.737 | 260.282
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Table E.3.: Simulation durations and deviations for Setup 2 (Local and LAN).

Simulated Local results [s] LAN results [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 0.803 0.110 0.675 0.071
3 2 1.567 0.117 1.354 0.089
3 ) 3.863 0.603 3.174 0.283
3 10 7.842 1.204 6.186 0.341
3 20 12.201 1.067 12.303 0.577
3 20 31.540 3.415 31.061 1.185
3 100 63.289 5.414 61.536 2.296
3 200 128.276 10.079 123.280 3.647
3 500 323.980 21.625 307.791 9.024
3 1000 651.085 34.372 621.245 17.599

Table E.4.: Simulation durations and deviations for Setup 2 via the Internet.

Simulated | Results local RTT [s] | Results remote RTI [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 17.761 0.182 23.962 0.911
3 2 35.843 0.291 47.492 0.564
3 5 89.146 0.540 120.423 1.514
3 10 177.566 1.409 238.533 2.204
3 20 355.213 2.508 446.255 22.204
3 50 896.553 3.945 1065.972 5.252
3 100 1835.921 32.947 2113.100 2.361
3 200 3668.204 116.814 4367.162 99.786
3 500 8807.984 268.222 | 11248.975 369.584
3 1000 17739.610 | 550.607 | 22364.392 | 1202.987
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Table E.5.: Simulation durations and deviations for Setup 3 (Local and LAN).

Simulated Local results [s] LAN results [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 0.803 0.061 0.795 0.050
3 2 1.616 0.093 1.595 0.103
3 ) 3.818 0.268 3.816 0.200
3 10 7.756 0.623 7.644 0.280
3 20 14.209 1.301 15.093 0.559
3 50 35.684 3.300 37.893 1.286
3 100 72.064 6.696 75.427 2.293
3 200 144.737 14.154 150.632 3.707
3 500 359.477 31.400 372.424 7.420
3 1000 720.618 29.759 745.607 14.009

Table E.6.: Simulation durations and deviations for Setup 3 via the Internet.

Simulated | Results local RTI [s] | Results remote RTT [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 19.028 0.094 27.384 0.266
3 2 37.870 0.320 55.977 0.194
3 5 95.503 0.623 138.704 1.231
3 10 191.324 2.580 275.607 0.878
3 20 378.819 2.361 556.704 3.113
3 50 954.609 16.373 1408.824 15.355
3 100 1945.225 50.815 2890.253 10.889
3 200 3958.592 163.626 5718.621 160.893
3 500 9467.390 431.471 | 14516.948 | 1087.374
3 1000 19001.124 | 1068.624 | 29795.943 505.008
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Table E.7.: Simulation durations and deviations for Setup 4.

Simulated Local results [s] LAN results [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 0.671 0.092 0.809 0.043
3 2 1.337 0.116 1.585 0.094
3 ) 3.471 0.214 3.801 0.163
3 10 6.983 0.426 7.348 0.306
3 20 13.943 0.821 14.446 0.494
3 20 34.914 2.064 35.555 1.148
3 100 69.977 4.149 70.492 2.186
3 200 139.884 7.896 139.584 4.408
3 200 350.159 19.844 347.216 9.259
3 1000 701.178 40.919 685.264 14.600
5 1 0.589 0.075 0.893 0.075
d 2 1.187 0.133 1.802 0.132
> ) 3.065 0.260 4.171 0.370
D 10 6.184 0.458 8.185 0.612
D 20 12.439 0.867 16.081 1.014
d 20 31.185 2.040 39.083 2.823
S 100 62.359 4.090 76.413 5.554
5) 200 125.022 8.118 148.453 9.275
D 500 312.822 20.601 357.806 17.702
D 1000 627.000 40.586 701.488 25.998
7 1 0.409 0.042 0.779 0.029
7 2 0.807 0.060 1.538 0.085
7 5 2.056 0.137 3.690 0.259
7 10 4.175 0.248 7.399 0.358
7 20 8.354 0.476 14.259 1.100
7 20 21.123 1.356 34.363 2.931
7 100 42.135 2.461 66.216 5.450
7 200 84.063 4.327 125.609 10.748
7 500 212.043 12.595 287.558 25.010
7 1000 430.562 19.806 538.992 39.122
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Table E.8.: Simulation durations and deviations for Setup 5.

Simulated Local results [s] LAN results [s]
Federations Time Duration | Deviation | Duration | Deviation
3 1 1.618 0.045 1.070 0.128
3 2 3.339 0.037 2.032 0.144
3 ) 8.528 0.123 5.106 0.339
3 10 17.076 0.289 10.011 0.718
3 20 34.240 0.539 19.975 1.149
3 50 85.945 1.659 51.205 3.750
3 100 170.289 2.632 99.739 5.510
3 200 339.616 4.422 206.120 16.362
3 500 861.981 13.481 499.368 19.303
3 1000 1700.891 32.626 1026.970 42.100
5 1 1.382 0.047 0.955 0.088
) 2 2.841 0.045 1.831 0.191
) 5 7.154 0.108 4.437 0.419
) 10 14.334 0.202 8.785 0.814
) 20 29.538 1.133 17.814 1.388
5 50 74.693 3.286 44.550 3.688
) 100 149.340 6.183 87.921 6.052
) 200 300.427 13.533 170.258 10.702
) 500 741.147 26.425 413.376 20.531
) 1000 1454.757 | 133.422 801.574 16.430
9 1 0.706 0.039 0.795 0.043
9 2 1.466 0.052 1.499 0.114
9 5 3.832 0.123 3.723 0.311
9 10 7.803 0.238 7.216 0.517
9 20 15.683 0.580 13.505 0.983
9 50 39.520 1.222 32.164 2.264
9 100 80.046 1.738 63.932 4.053
9 200 160.519 3.405 122.233 6.999
9 500 401.576 8.753 285.712 21.503
9 1000 803.829 17.130 565.571 38.590
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