
Fault-Tolerant Real-Time Architecture
for Elderly Care

DISSERTATION
zur Erlangung des Grades eines Doktors
der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt von
Dipl.-Inform. Michael-Christian Schmidt

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2020



Betreuer und erster Gutachter:
Prof. Dr.-Ing. habil. Roman Obermaisser
Universität Siegen

Zweiter Gutachter:
Prof. Dr.-Ing. habil. Marcin Grzegorzek
Universität zu Lübeck

Tag der mündlichen Prüfung: 08.12.2020

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.



Abstract

The ongoing transition from traditional elderly care to the use of modern technologies from
the field of Cyber Physical Systems (CPSs) results in new challenges for both industry and
research. This shift is mainly motivated by the increasing share of elderly people in the
population which is causing a notable shortage of nursing staff. With the availability of
new technologies, the CPSs for elderly care are also enabling new fields of applications in
the area of biomedicine and robotics. Use cases like the automatic injection of insulin and
robotic assistance are prominent examples for these application fields. These new appli-
cation fields impose new requirements on architectures in the field of elderly care, such as
deterministic real-time behavior and dependability along with an open-world assumption
in which dynamic changes within the composition of the system can occur at run-time.
Likewise, the application of robotic systems in the field of elderly care introduces stringent
real-time requirements to the whole CPS, affecting the integration of complex and het-
erogeneous sensors, the control of actuators and the communication network. Moreover,
the application of fault-tolerance and mixed-criticality techniques is required to establish
a dependable CPS that is able to tolerate faults in order to prevent dangerous situations
for human life. Furthermore, CPSs have to encompass different integration levels like the
local network and the Internet in order to support services from professional stakeholders
like medical services from caregivers or a doctor.

The proposed architecture for elderly care takes into account the new emerging appli-
cation fields in elderly care as well as the associated challenges, which are (1) real-time
support, (2) dependability and (3) support of an open-world assumption while taking into
account multiple integration levels and the heterogeneity of the underlying technologies.
A review of state-of-the-art architectures for elderly care shows that there is no archi-
tecture available at present that meets all these challenges. The proposed architecture
addresses this gap by taking advantage of a broad range of well-known technologies and
standards from the state-of-the-art like ISO/IEEE 11073 and Time Sensitive Networking
(TSN) while further introducing new concepts and technologies, such as fault containment
among containers for high-critical applications as well as real-time container-to-container
communication with latencies and jitter in the low microsecond range. A huge challenge
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is further to address the open-world assumption while providing real-time guarantees and
fault-tolerance. In particular, this puts further requirements to the real-time system like
the capability of a dynamic rescheduling of real-time resources like the real-time network.
This is addressed by the introduction of a service for the dynamic rescheduling of real-
time communication resources that takes care about topology and service management,
scheduling, configuration building and distribution of communication schedules. By this
way, changes within the physical model (e.g. a new network switch or end system) and
the logical model (e.g. a new service) are supported at run-time of the system.

In the field of software architectures, the use of microservices has reached a strong tech-
nical maturity in recent years. The proposed architecture is embracing this trend and
introduces platform services as microservices. Finally, several proof-of-concept implemen-
tations are presented and evaluated in different experiments ranging from a real scenario
to experiments in a laboratory in order to show that the proposed architecture for elderly
care is able to address the shift in traditional elderly care to the use of modern technologies
from the field of CPSs.
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Zusammenfassung

Der fortschreitende Wandel von einer traditionellen Altenpflege hin zum Einsatz moder-
ner Technologien aus dem Bereich der Cyber Physical Systems (CPSs) führt zu neuen
Herausforderungen für Industrie und Forschung. Dieser Wandel ist vor allem durch den
zunehmenden Anteil älterer Menschen an der Bevölkerung begründet und führt bereits
jetzt zu einem bemerkenswerten Mangel an Pflegepersonal. Mit der Verfügbarkeit neuer
Technologien ermöglichen die CPSs auf den Gebiet der Altenpflege neue Anwendungsfelder
im Bereich der Biomedizin und Robotik. Die automatische Verabreichung von Insulin oder
die Roboterunterstützung im Bereich der Pflege sind prominente Beispiele für diese Anwen-
dungsfelder. Diese neuen Anwendungsfelder stellen neue Anforderungen an Architekturen
im Bereich der Altenpflege, wie z.B. deterministisches Echtzeitverhalten und Zuverlässig-
keit. Diese müssen zusammen mit einer Open-World-Annahme gelöst werden, bei der dyna-
mische Veränderungen innerhalb der Zusammensetzung des Systems zur Laufzeit auftreten
können. Ebenso stellt der Einsatz von Robotersystemen im Bereich der Altenpflege stren-
ge Echtzeitanforderungen an das gesamte CPS, welche sich auf die Integration komplexer
und heterogener Sensoren, die Steuerung von Aktoren und das Kommunikationsnetzwerk
auswirken. Darüber hinaus ist die Anwendung von Fehlertoleranz- und Mixed-Criticality-
Techniken erforderlich, um gefährliche Situationen für den Menschen zu verhindern. Zudem
muss das CPS verschiedene Integrationsebenen, wie das lokale Netzwerk und das Internet,
berücksichtigten, um Dienstleistungen von professionellen Stakeholdern, wie medizinische
Dienstleister oder Ärzte zu unterstützen.

Die in dieser Arbeit vorgeschlagene Architektur berücksichtigt die neu entstehenden
Anwendungsfelder in der Altenpflege, sowie die damit verbundenen Herausforderungen,
nämlich (1) Echtzeit-Unterstützung, (2) Zuverlässigkeit und (3) Unterstützung einer Open-
World-Annahme unter Berücksichtigung mehrerer Integrationsebenen und der Heteroge-
nität der zugrunde liegenden Technologien. Ein Überblick über Architekturen für die Al-
tenpflege im Stand der Technik zeigt, dass es derzeit keine Architektur gibt, welche allen
Herausforderungen gerecht wird. Die vorgeschlagene Architektur schließt diese Lücke, in-
dem sie sich eine breite Vielfalt bekannter Technologien und Standards aus dem Stand
der Technik wie ISO/IEEE 11073 und Time Sensitive Networking (TSN) zunutze macht
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und gleichzeitig neue Konzepte und Technologien einführt, wie z.B. Fehlereindämmung zwi-
schen Containern für sicherheitskritische Anwendungen, sowie echtzeitfähige Container-zu-
Container-Kommunikation mit Latenzen und Jitter im niedrigen Mikrosekundenbereich.
Eine maßgebliche Herausforderung besteht weiterhin darin, die Open-World-Annahme zu
unterstützen und gleichzeitig Echtzeitgarantien und Fehlertoleranz zu bieten. Dies stellt zu-
sätzliche Anforderungen an das Echtzeitsystem, wie beispielsweise die Fähigkeit einer dyna-
mischen Umplanung von Echtzeit-Ressourcen. Diesen Anforderungen wird bspw. durch die
Einführung eines Dienstes für die dynamische Umplanung von Echtzeit-Kommunikations-
ressourcen Rechnung getragen, welcher für Topologie- und Dienstmanagement, Zeitpla-
nung, Konfigurationsbildung und Verteilung von Kommunikationsplänen verantwortlich
ist. Auf diese Weise werden Änderungen innerhalb des physikalischen Modells (z.B. ein
neuer Netzwerk-Switch oder ein neues Endgerät) und des logischen Modells (z.B. ein neu-
er Dienst) zur Laufzeit des Systems unterstützt.

Im Bereich der Software-Architekturen hat der Einsatz von Microservices in den letzten
Jahren eine nennenswerte technische Reife erreicht. Die vorgeschlagene Architektur greift
diesen Trend auf und führt Plattformdienste als Microservices ein. Schließlich werden meh-
rere Proof-of-Concept-Implementierungen vorgestellt und in verschiedenen Experimenten,
die von einem realen Szenario bis hin zu Experimenten im Labor reichen, evaluiert, um zu
zeigen, dass die vorgeschlagene Architektur für die Altenpflege in der Lage ist, den Wandel
in der traditionellen Altenpflege hin zur Nutzung moderner Technologien aus dem Bereich
CPSs zu bewältigen.
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1 Introduction

Aging of the population is an ongoing trend visible in the increasing share of elderly
people in the structure of the population. According to the aging report of the European
Commission from 2015 [Eur15], by 2030 around 25% of the EU population will be over
65 and the amount of people aged from 65 to 80 will rise by nearly 40% between 2010
and 2030. This demographic change in combination with the wish of elderly people for a
self-determined life and the extensive costs for the assistance and care for elderly people led
to an upcoming interest in systems for elderly care and Ambient Assisted Living (AAL).
This change is also leading to a shortage of skilled workers in the field of elderly care.

In order to provide assistance in activities of elderly people in their everyday life, sys-
tems for elderly care and AAL are typically realized as Cyber Physical System (CPS)
[HAR14][RLSS10]. The comprehensive survey of Geisberger et. al even see CPS as the
only way for future AAL and elderly care applications [GB12]. New application fields in
the area of elderly care and AAL like the automatic injection [Dan20] of insulin or robotic
assistance [LMA+19] put additional requirements to these CPSs, like real-time support,
dependability and support of an open-world assumption. These requirements turn the
underlying CPS into a real-time system which has to meet deadlines. These systems are
denoted as safety-critical systems which must prevent critical failures where the system
poses unacceptable risks to human health or to the environment. In addition, the ongo-
ing trend towards multi-core processors and highly integrated System-on-a-Chips (SoCs)
provides CPSs with the capability to run a large variety of services and applications at
the same time. This requires the use of mixed-criticality techniques, since applications
with high criticality are executed concurrently with applications with low criticality. In
addition, techniques for spatial and temporal isolation are required to limit the impact of
faults.

The new fields of application further require the integration of complex heterogeneous
sensors and actuators, such as a glucose meter or an insulin pump. These sensors often
have to be integrated into the system at runtime, taking into account the open-world
assumption that dynamic changes to the system are possible at any time. One possible
scenario here is the use of a CPS to allow automatic detection of an emergency situation
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such as the fall of an elderly person. Further, the integration of different types of sensors
needs to offer a high degree of autonomy in order to provide easy handling by the elderly
person or by a caregiver. In addition, dynamic setups must be supported with variable
numbers of users while supporting multiple sensors per user at the same time. In order
to support everyday life, systems for AAL must not focus on the apartment or house of
the elderly people. Rather, a AAL system must also support external scenarios, such as
situations in which elderly people go for a walk or visit a doctor’s office. These distributed
AAL solutions requires a highly adaptive and technology-independent architecture.

This thesis will provide an architecture for elderly care which will provide flexibility, reli-
ability and technology-independence by introducing a fault-tolerant, distributed message-
oriented system architecture using a modern microservices approach. In a microservices
based architectures, applications are built as a suite of small services instead of one mono-
lithic application. Each service is realized as a small autonomous component with its
own life-cycle, making the services independently maintainable and deployable. In com-
parison to a monolithic architecture, this has several advantages, such as the facilitation
of technology diversity, better maintainability as well as an improved scalability of the
distributed system. The proposed architecture is embracing this trend and introduces
platform services as microservices. This includes services for service orchestration and
discovery, fault-tolerance, real-time communication, temporal and spatial partitioning of
resources, clock synchronization, sensor integration, maintenance as well as a service for
the dynamic reconfiguration of real-time communication resources.

1.1 Objectives

The main objective of this dissertation is the definition of an architecture for elderly care
that supports reliable and safe applications in addition to typical applications in AAL and
elderly care such as daily activity reports or exercises for mental training. A prominent
example for a safety relevant application is the automatic injection of insulin. In particu-
lar, safety critical applications put further requirements on the underlying system such as
the adoption of techniques for fault-tolerance and the establishment of real-time commu-
nication. Here, the support for fault-tolerance is of utmost importance since the injection
of insulin is safety-critical and can lead to dangerous situations in case of a failure. For
example, the injection of too less insulin can result in a hyperglycemia which further can
lead to vascular diseases or even cardiac dysfunction. Therefore, the system must be able
to tolerate faults, like design faults in the application, hardware faults and even interaction
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faults caused by the user. In addition, safety critical applications like robotic assistance
with tight control loops require the establishment of real-time communication.

This work aims to provide an architecture that is flexible and easy to use by application
developers and also provides maintenance interfaces for administrators. This is particularly
important because the success of an architecture also depends on broad approval and
acceptance. The presented architecture for elderly care will extend the state-of-the-art
with innovative technologies needed to meet the new challenges of demographic change
in society. With this regard, this thesis presents a completely new architecture based on
microservices incorporating state-of-the-art technologies from industry and research.

In particular, the presented architecture addresses the following challenges:

Fault-Tolerance Taking systems for the automatic injection of insulin as an example,
the application of fault-tolerance techniques is mandatory in order to prevent catastrophic
system failures that can lead to dangerous situations for users of the system, which are in
particular elderly people. Further, the nursing staff and relatives might also be affected
by the system failure. Fault tolerance techniques are also needed to prevent malicious
applications from monopolizing network traffic, which could e.g. lead to unstable control
loops. For example, in the above example of automatic insulin injection, messages may
be lost due to an unstable control loop between the Continious Glucose Monitor (CGM)
(which measure blood glucose levels) and the insulin pump. In the worst case, this can
result in too little insulin being delivered.

Real-Time Support Critical control loops require an underlying real-time system that
can provided the execution of task within a bounded limit of time. Furthermore, CPS
for robotic assistance are typically realized as a distributed system, where the underlying
communication network must provide a successful message transport as well as bounded
limits for latency and jitter.

Multiple Integration Levels Distributed systems comprise multiple distributed services
running concurrently across different physical machines that are connected by a communi-
cation network located at different integration levels like the Local Area Network (LAN)
or the Internet. Depending on the integration level, different types of devices are involved
in the communication and different techniques have to be applied in order to establish and
maintain the communication between the services.
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Open-World Assumption Many use cases in the field of elderly care require the integra-
tion of heterogeneous sensors. A prominent example is the use case of an artificial pancreas
which is addressed by the project OpenAPS [Dan20]. Here, different types of CGMs and
insulin pumps have to be supported in order to provide a solution for an artificial pancreas
that complies with the needs of a broad range of different users. Further, the integration
of sensors often has to be conducted at run-time demanding a dynamic reconfiguration
of the system where other components have to be informed about the new configuration.
This adaptability requirement that comes with the open-world assumption is also a huge
challenge for real-time systems since typical real-time systems are scheduled in advance
and do not support changes in the composition of the system at run-time. In order support
the open-world assumption, a dynamic reconfiguration of real-time resources is required.

Heterogeneity of the Underlying Technologies When integrating sensors, a main chal-
lenge is the technological heterogeneity. For example, in the field of elderly care and AAL,
complex medicals sensors like a pulseoximeter should be supported as well as simple sen-
sors like a weighting scale. Medical and health device communication standards can help
to cope with this challenge.

Mixed-Criticality In today’s Cyber-Physical Systems and smart devices, there is an on-
going trend towards multi-core processors and highly integrated SoC allowing to run a
large variety of services and applications at the same time on a single device. This imposes
multiple challenges for systems that run applications with different levels of criticality.
These so called mixed-criticality systems have to provide mechanisms for spatial and tem-
poral isolation of the system resources in order to run applications with a high criticality
concurrently with applications of low criticality. This isolation is required since concurrent
applications can interfere each other. E.g. a low critical application might occupy the
whole CPU which can lead to a starvation of a high-critical task. Further, techniques for
the temporal and spatial isolation can provide a solid basis for modular certification [LO17]
and e.g. can further prevent the elevation of criticality in the system.

1.2 Contributions

This thesis offers several contributions which extend the state-of-the-art of architectures
for elderly care and AAL applications:
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Modern Microservice-Based System Architecture This thesis promotes a service ori-
ented architecture based on a microservices approach. The introduction of a best-effort
communication service based on a modern message-based communication protocol is the
fundamental building block to overcome the heterogeneity of the underlying technologies.

Real-Time Support in an Open-World Scenario One main contribution is the sup-
port of real-time applications in an open-world scenario. Typically, real-time systems are
scheduled in advance and therefore do not allow the integration of new applications and
components like network switches and service gateways at runtime. The proposed solution
in this thesis extends the state-of-the-art by supporting the dynamic reconfiguration of
real-time communication resources and applications in order to comply with the dynamic
nature of elderly care scenarios.

Support for Mixed-Criticality Applications A further contribution of this thesis is the
temporal and spatial partitioning of critical resources in order to establish isolation among
applications with different criticalities. This allows to run applications with high-criticality
besides applications with low-criticality without any interference.

Sensor Integration with ISO/IEEE 11073 A major contribution of this work is the
large variety of possibilities for integrating sensors. This is particularly achieved by the
integration and extension of ISO/IEEE 11073, which is a standard for medical and health
device communication. Most notably is the extension of the standard in order to work
with a modern microservice based architecture and Bluetooth LE devices.

Reliable Real-Time Container-To-Container Communication This thesis further pre-
sents a hierarchical real-time communication approach which includes a solution for real-
time communication between containers on the same service gateways and between con-
tainers on different service gateways.

1.3 Structure of this Thesis

This thesis is structured as follows. Since the definition of the presented architecture
requires knowledge in a broad range of topics such as aspects of dependability, service
orchestration, real time operating systems and networks, the introductory Chapter 2 de-
scribes comprehensively the necessary basis concepts and technologies, which are necessary
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to understand the later definitions and design of a fault-tolerant and real-time capable ar-
chitecture for elderly care. The starting point is the introduction of real-time systems
followed by the presentation of real-time communication systems and real-time operat-
ing systems. Further, the concept of dependability is introduced and different threats to
dependability as well as means to achieve dependability are presented.

Afterwards, Chapter 3 introduces the key challenges which a fault-tolerant real-time
architecture for elderly care has to address before presenting relevant state-of-the-art ar-
chitectures for elderly care and AAL. The discussion about state-of-the-art architectures
is followed by Chapter 4, which introduces the building blocks and the fundamental con-
cepts of the fault-tolerant architecture presented in this thesis. This is supplemented by
a requirements analysis of the underlying technologies. Afterwards, the different platform
and system services of the presented architecture are introduced and the fault assump-
tions of this thesis are presented. The following Chapter 5 gives an overview about the
services with the respective models and algorithms, which includes services for service
orchestration and discovery, fault-tolerance, best-effort and real-time communication as
well as clock synchronization and the dynamic reconfiguration of real-time communication
resources. Subsequently, Chapter 6 describes the implementations that were established
to evaluate the architecture. The purpose of Chapter 7 is then to present and discuss the
evaluation using several scenarios and experimental setups. Finally, this thesis is concluded
by Chapter 8 which summarizes the results and presents potential future work.
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The purpose of this introductory chapter is to explain the basic concepts and technologies
that are used within this thesis. The presented concepts and technologies cover a broad
range since the definition of an architecture for elderly care has to address a lot of differ-
ent topics, such as aspects of configuration, service orchestration, operating systems and
networks. Therefore, the methodology of this chapter is as follows: First, the definition
and the basic ideas of the concept of the technology is introduced. Afterwards, the as-
pects of the introduced technology relevant to this work are highlighted and explained in
detail. The starting point of this chapter is the introduction of real-time systems followed
by the presentation of real-time communication systems and real-time operation systems.
All of them are often used in combination to build distributed and dependable real-time
systems where dependability refers to the attributes of a system regarding it’s reliability,
safety, maintainability, availability and security which are introduced in the next section
of this chapter. Subsequently, medical and health device communication standards like
ISO/IEEE 11073 and Bluetooth Health Device Protocol (HDP) are introduced. A further
important technique for the architecture of this thesis is afterwards presented, which is the
virtualization of hardware resources like CPU, memory and network resources. Finally,
several architectural patterns like service discovery and Microservices are introduced and
explained.

2.1 Real-Time Systems

This section will introduce the topic of real-time systems. Systems that perform safety-
critical tasks are often real-time systems, such as the Anti-lock Braking System (ABS) in
a car or the fly-by-wire control in an aircraft. Within real-time systems, the correctness
of the behavior does not only depend on the logical result of the computations, but also
on the physical instant in time at which the results are produced [Kop11a]. That means
in particular that a real-time system has strict temporal requirements in addition to its
functional requirements and results have to be available within a bounded period of time.
The instants in time when results have to available are called deadlines (c.f. Section 2.1.1)
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and missing these deadlines can lead to catastrophic accidents or even the in loss of life
of human people. Real-time systems that are distributed over a set of computing and/or
sensor nodes are typically interconnected by a real-time communication network (c.f. Sec-
tion 2.2).

2.1.1 Classification of Real-Time Systems

Real-time systems are classified by several attributes that describe their behavior in dif-
ferent situations.

One of these attributes is the temporal behavior of the system regarding deadlines where
a deadline is the instant in time when a (computational) result must be available. If the
result is useful even after the deadline has passed, the deadline is called a soft deadline. If
severe consequences like the harm of a human life can result in missing the deadline, the
deadline is called a hard deadline. Otherwise it is called a firm deadline.

Systems that are able to meet hard deadlines are called hard real-time systems. The
design of hard real-time systems completely differs from the design of soft real-time systems
like for example a video-streaming system. Hard real-time systems often have to provide
a response time (e.g. for a computation) that is within the order of a milliseconds or
less whereas soft real-time systems have a response time that is in the order of seconds.
Another difference is the behavior of the system in peak-load scenarios. A hard real-time
system has to provide predictable behavior even at the peak-load of a system. In contrast,
in soft real-time systems a degraded performance is tolerable.

Real-time systems that carry out a safety-critical function are further classified regarding
their behavior after a failure. This behavior has already be defined during the design phase
of the system. If a safe state can be identified that the system can enter in case of a failure,
the system is called fail-safe. A prominent example of a fail-safe system is a traffic light
control. Whenever there is a failure in the system, the system can enter a safe state where
all signals are changing to red which prevents accidents by preventing cars to enter the
crossing accidentally. If no safe state can be identified that the system can enter in case of
failure, the system has to preserve a minimum functionality. That means that the system
must remain functional even in case of a failure. One such system is the flight control
system in an aircraft, where the pilot must still be able to land the aircraft safely in case
of a failure.

A further attribute that is used to classify real-time systems is the location of control.
In event-triggered systems, decisions and actions are based on sporadic events like external
triggers (e.g. interrupts in a micro-controller) or the arrival of a control message on the
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communication network. In a time-triggered real-time system, all activities are carried
out at predefined periodic instants. The instants are determined by the clock ticks of a
real-time clock that is under the internal control of the real-time system.

2.1.2 Temporal Requirements

As noted, real-time systems have to comply with (stringent) temporal requirements. These
temporal requirements mostly depend on the requirements of the control loops executed
by the real-time systems. However, temporal requirements can also arise from the user
interface. Nevertheless, the time constraints in this case are not as tight as, for example,
in the control system of a nuclear power plant. If a real-time system is used to control an
object based on the information of a sensor another requirement comes into place: minimal
latency jitter. Jitter denotes the variability in the control loop latency regarding its time-
liness. The main problem here is that jitter by its definition is not deterministic and thus
cannot be compensated automatically. Therefore latency jitter can lead to degradation of
the service quality of the control loop or even to a complete failure of the control loop.

2.2 Real-Time Communication Networks

The focus of this section is real-time communication in Ethernet based networks. Real-
time communication systems are required whenever the need for packet transmission has to
happen within tight timing constraints like in industrial or automotive control applications.
At present, real-time communication systems also become increasingly important in the
field of bio-medicine. For example, consider robotic systems for surgery that already assist
surgeons during their work. According to [KLK13], in the near future it will “be possible to
perform surgical procedures that are limited only by available communication technologies
even at extreme distances between the surgeon and the patient by computerized mediation
of the surgeon’s actual hand motions to the surgical instruments affecting the patient’s
tissue”.

The main requirements of real-time communication networks and the corresponding in-
frastructure are “low protocol latency with minimal jitter, the establishment of a global
time base, fast error detection at the receiver and the need for temporal error containment
by the communication system” itself [Kop11a]. Regarding this, prioritization of packets
is not sufficient because the transmission of a frame with lower priority that is already
in transmission will first be finished before a frame with a higher priority can be sent.
This can lead at every hop to additional message transport delay and accumulates inde-
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terministically to a high amount of time. Therefore, real-time communication networks
are typically based on scheduled traffic. This section will introduce to the basic concepts
of scheduled traffic and clock synchronization before continuing with the introduction of
two state-of-the-art real-time communication protocols TTEthernet and Time Sensitive
Networking (TSN). Further, the results of the Deterministic Networking (DetNet) task
group of the Internet Engineering Task Force (IETF) relevant for this work are presented.

2.2.1 Scheduled Traffic

In real-time communication systems, low protocol latency alongside with minimal jitter is
typically achieved by the establishment of scheduled traffic where packets are injected to
the communication network at predefined instants in time. These communication networks
are also often called time-triggered networks. Minimal protocol latency is required in order
to keep the dead time of critical control loops as short as possible. The dead time of a
control loop is the interval between the observation of a significant state variable and
the beginning of the reaction of the system to the observed state variable. Jitter in the
communication network affects the dead time of the control loop and reduces the quality
of service if not being compensated correctly.

In time-triggered networks it has to be assured that the transmission of non-critical
communication traffic has to be finished sufficiently far in advance to the time-critical
traffic in order to not affect the time-critical traffic. The most common way is to establish a
guarding band in advance to the transmission window of the time-critical traffic. Typically,
the length of the guarding band is as long as it takes to transmit a frame with a maximum
size. However, a more efficient approach is to evaluate the length of the packets in the
queue that are going to be submitted next and choose a guarding band length accordingly.

The scheduling of time-triggered networks requires knowledge about the network struc-
ture and communication requirements of the services running on the end systems. This
knowledge is typically represented in a network description document. The network de-
scription should abstract from the specific hardware and must define global properties like
the topology of the network which includes all communication nodes (switches and end
systems), the cabling and the properties of the communication links. Further, the network
description may contain information about redundancy and fault-tolerance requirements
of the network nodes. This network description is then used to create the communication
schedule of the network. Ideally, the network description is available in a machine-readable
markup language like Extensible Markup Language (XML) which can be automatically
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checked for syntactical (document is well-formed) and semantic (document is valid) cor-
rectness.

In order to prevent faulty communication nodes from sending packets at non-scheduled
time points (e.g. in the event of a "babbling idiot" failure), time-triggered communication
networks usually use guardians at ingress ports where the guardians just allow the passing
of messages during the scheduled time points. This is possible because of the a-priori
knowledge provided by the communication schedule. In contrast, this is not possible in
event-driven communication networks such as standard Ethernet, because the location of
control is not located within the communication network. Instead, the transmission of the
packet lies within the control of the application or is triggered by external events.

2.2.2 Clock Synchronization

In real-time networks the communication activities of all nodes are often synchronized in
order to coordinate the behavior of the communication system. This is achieved by the
establishment of a global time base. However it is not sufficient to synchronize the clocks
only at the startup of the communication network. Furthermore, clocks have to be syn-
chronized at periodic intervals. That is because each physical clock has an individual drift
rate. The drift rate also changes during the lifetime of the clock by aging of the crystal
oscillator and is further influenced by changes in the environment like a change in the ambi-
ent temperature. Also the addition, removal or failure of communication nodes or changes
in the network configuration (e.g. new time schedules) influences the resynchronization
process.

In order to synchronize the clocks, several clock synchronization protocols are available
like IEEE 1588 [IEE08b] and 802.1AS (Timing and Synchronization for Time-Sensitive
Applications). The Precision Time Protocol (PTP) defined in IEEE 1588 provides pre-
cise synchronization of clocks in measurement and control systems in the sub-microsecond
range with a high degree of accuracy and precision at low network and local clock com-
puting resources requirements [IEE08b]. The clock synchronization is organized into a
master-slave synchronization hierarchy where the clocks of the slaves are synchronized to
the clocks of the masters. The clock at the top of the hierarchy is called the grandmaster
clock and determines the reference clock for the whole communication system. The grand-
master clock itself can be for example synchronized with an external time source like the
Global Positioning System (GPS). PTP further recommends that timestamps are gener-
ated as close as possible to the network interface (e.g. at the physical layer (PHY)), which
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helps to reduce the jitter in IEEE 1588 synchronized communication networks. Detailed
information about PTP is covered by the book of John C. Eidson [Eid06].

The generalized Precision Time Protocol (gPTP) defined in 802.1AS (Timing and Syn-
chronization for Time-Sensitive Applications) is based on IEEE 1588. However, there are
several fundamental difference to IEEE 1588. The most crucial difference of gPTP is that
it only differentiates between end stations and bridges while PTP differentiates between
the different clock types in the system like ordinary, boundary or end-to-end transparent
clocks. Another important difference is that gPTP systems can only communicate with
other systems directly that implement gPTP. That also means that there can be no bridges
in the system that are not time-aware according to gPTP like it is the case in IEEE 1588.
Further differences are explained in the IEEE 1588 standard [IEE08b].

2.2.3 TTEthernet

TTEthernet implements the time-triggered communication paradigm by introducing de-
terministic communication with bounded latency to the switched Ethernet standard IEEE
802.3. Large parts of TTEthernet are standardized in SAE AS6802 (Society of Automotive
Engineers) [AS611]. SAE AS6802 establishes deterministic communication by introducing
synchronous time-triggered frame transport besides non time-triggered asynchronous frame
transmission as it is the case for standard best-effort Ethernet frames. In addition to time-
triggered synchronous traffic, the standard defines an algorithm for clock synchronization
that allows the synchronization of the clocks down to a sub-microsecond precision. Further,
TTEthernet introduces fault-tolerant communication by providing redundant channels at
the switches. While end systems can also be standard Ethernet devices, all switches have
to be switches that implement the TTEthernet standard. This is required in order to
protect the communication system against end systems that are sending messages outside
their specified time interval (babbling idiot failure).

TTEthernet classifies the network traffic into three different classes: Time-Triggered
(TT), Rate-Constrained (RC) and Best-Effort (BE) [Obe11]. In TTEthernet, TT messages
are sent at predefined instants of times and can be used when tight latencies with minimal
and bounded jitter are required. Unlike TT messages, RC messages are not sent by a
predefined schedule. Instead, sufficient bandwidth is allocated in order to provide upper
bounds for latency and jitter [Obe11]. However, these bounds are larger than those which
are provided by the TT message class. Finally, BE messages use the remaining bandwidth
and do not provide any guarantees for delivery or timeliness. In order to resolve conflicts
(e.g. when TT messages becomes ready while a RC message is already in transmission),
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TTEthernet provides three conflict resolving methods, namely preemption, timely blocking
and shuffling. A comprehensive discussion about timely blocking techniques is provided
by [AO17].

For uploading of schedules and configurations to the end-systems and switches, TTEth-
ernet uses ARINC615A. ARINC 615A is an avionics standard that defines a Data Loading
Protocol (DLP) which can be used to load software into network switches or end-systems
that support the ARINC 615A standard. The latest version of the standard is ARINC
615A-3 which basically uses Trivial File Transfer Protocol (TFTP) as the underlying pro-
tocol. ARINC 615A defines three different modes of operation: (1) information retrieval,
(2) data uploading and (3) data downloading. The first mode can be used to get infor-
mation about the hardware and further to query the current configuration of the target.
The second mode can be used to upload new software or configuration files to the target
hardware. The last operation mode can be used for example to download files from the
target hardware.

2.2.4 Time Sensitive Networking (TSN)

TSN is a family of standards that is still under development by the TSN task group which is
a part of the IEEE 802.1 working group. The main goal of TSN is to achieve deterministic
latency bounds within 802.1 networks which allows to run real-time applications with hard
deadlines on top of these networks. The TSN task group has evolved from the former 802.1
Audio Video Bridging (AVB) task group whose goal was to improve the synchronization for
switched Ethernet networks in combination with low-latency and high reliability. However,
AVB was designed to achieve low latency in contrast to TSN which achieves deterministic
latency bounds which are required for dependable real-time applications.

In order to achieve deterministic latency bounds, TSN introduces within the standard
802.1Qbv (Enhancements for Scheduled Traffic) the concept of the Time-Aware Shaper
(TAS). The basic idea of the TAS defined in 802.1Qbv is to block non time-sensitive
traffic in reserved time intervals to have idle time for sending time-sensitive traffic. The
TAS allows the transmission of packets in an end station or a bridge by predefined time
schedules (which is called scheduled traffic or protected traffic) and supports up to eight
different traffic classes. According to this, TSN defines eight transmission queues per port
where each transmission queue has one transmission gate that determines if a frame from
the corresponding queue can be selected for transmission. The transmission queues are
under the control of a Gate Control List (GCL) which contains a timely ordered list that
defines the instant in time when a gate is open or closed for a particular queue. Figure 2.1
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shows the relationship between GCL, transmission queues and transmission gates. The
processing of the GCL leads to so called gate-close and gate-open events on every queue.

The instants at which the events occur can be determined from the sequence of the gate
events in the GCL. Further, the GCL is processed in gating cycles which define the “period
of time over which the sequence of operations in a GCL repeats” [IEE16a].

Figure 2.1: Transmission selection in TSN with Transmission Gates [IEE16a]

As already mentioned, the gate operations at the transmission gates are controlled by
the GCL. However, the GCL and the distinct gate operations at each port are controlled
by three different state machines, which are the cycle-timer state machine, the list-execute
state machine and the List Config state machine. The cycle-timer state machine initiates
the execution of the GCL and ensures that the gate cycle time for the associated port is
maintained [IEE16a]. The list-execute state machine executes the gate operations defined
in the GCL in sequence and ensures an appropriate delay between each operation. Finally,
the list configuration state machine is responsible for all actions required when a new
schedule is applied (e.g. updating the current schedule, stopping and starting of the other
state machines). Further, the TAS allows to open more than one gate at the same time
[IEE16a] by a schedule. In this case, the transmission selection algorithm will refer to a
second scheduling algorithm like priority queuing or the Credit Based Shaper (CBS) from
the TSN predecessor AVB.

However, the TAS from TSN only targets cyclic traffic and requires precise clock syn-
chronization among all participants. For other traffic types besides cyclic traffic, TSN
introduced the Asynchronous Traffic Shaper (ATS) in IEEE 802.1Qcr. In comparison to
TAS, ATS does not require any clock synchronization or reference clock. A good insight
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about ATS is given in [ZBRY19]. A detailed comparison between TAS and ATS is provided
by [NTA+19].

The upcoming TSN standard does not put any needs on end-systems that just receive
scheduled traffic to implement the TAS defined in IEEE 802.1Qbv. However, if the node is
part of a critical control loop, the clock of the node has to be synchronized with all other
clocks. A prerequisite for using the TAS of TSN is to have all clocks synchronized by the
substandard 802.1AS (Timing and Synchronization for Time-Sensitive Applications) that
is explained in Section 2.2.2.

For reliability and error detection, TSN further introduces IEEE 802.1CB (Frame Repli-
cation and Elimination for Reliability). For that purpose, IEEE 802.1CB defines mecha-
nisms for identification (e.g. by destination address or VLAN identifier) and replication
of packets for redundant transmission (over multiple paths), identification of duplicate
packets, and elimination of duplicate packets [IEE17].

Summarized, TTEthernet and TSN use the same concepts and are based on sched-
ule traffic. However, in contrast to TTEthernet, which requires dedicated TTEthernet
switches, TSN will be available in standard Ethernet hardware in the near future. A
comprehensive comparison between TTEthernet and TSN can be found in [ZHLL18].

2.2.5 Deterministic Networking (DetNet)

The DetNet Working Group as part of the IETF focuses on deterministic networks with
latency guarantees and ultra-low packet loss beyond LAN boundaries. This includes in
particular “data paths that operate over layer 2 bridged and layer 3 routed segments, where
such paths can provide bounds on latency, loss, and packet delay variation (jitter), and
high reliability” [iet15]. DetNet operates at the IP layer and delivers service over lower-
layer technologies such as Multiprotocol Label Switching (MPLS) and TSN as defined by
IEEE 802.1 [FTVF19]. The envisioned use cases of DetNet show that there is a very high
demand on such systems even beyond the “classical case of Industrial Automation and
Control Systems (IACSs)” [Gro19].

The primary goals of DetNet are minimum and maximum end-to-end latency from source
to destination with timely delivery and bounded jitter, bounded packet loss ratio and
bounded out-of-order packet delivery [FTVF19]. In order to achieve these goals, the DetNet
Working Group proposes three different techniques, which are resource allocation, service
protection and explicit routes. The allocation of resources alongside the path of a DetNet
flow includes for example the reservation of sufficient buffer space in the routers. This is
very important to avoid buffer congestion which could lead to packet loss due to contention.
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Further, resource allocation allows to establish a maximum end-to-end latency. In order
to protect services, DetNet recommends several techniques to handle random media errors
and equipment failures. One of these techniques is the establishment of redundancy by
introducing packet replication and elimination for DetNet flows. Lastly, the paths that
DetNet flows use are typically explicit routes which avoid the interruption of the flows by
the convergence of routing or bridging protocols [FTVF19].

2.3 Real-Time Operating Systems

This section gives an overview of the basic concepts and fundamental properties of real-time
operating systems. Unlike general purpose operating systems such as Linux or Windows,
a real-time operating system is designed for real-time applications that place stringent
requirements on timing. A Real-time operating system is often the basis for a real-time
system (cf. Section 2.1).

Real-time operating systems are usually designed with the following capabilities: min-
imum interrupt latency, short critical regions and preemptive task scheduling [Wan17].
Interrupts in a real-time operating system are the most crucial part since in an interrupt-
driven software system, a transient error on the interrupt line may upset the temporal
control pattern of the complete node and may cause the violation of important deadlines
[Kop11a]. Therefore, real-time operating systems must provide mechanisms for continu-
ously monitoring the (minimal) time intervals between subsequent interrupts. Short critical
regions such as access to shared data objects are another challenge for real-time operating
systems, where a non-critical task could cause a critical task to fail if the critical regions
are not left in time. Preemptive task scheduling where a non-critical task can be pre-
empted by a critical task is the most frequently used instrument to ensure that deadlines
(cf. Section 2.1.1) are met.

Regarding the temporal behavior of real-time operating system, Kopetz [Kop11a] pro-
vides a more precise definition: a real-time operating system is an operating-system where
the worst-case administrative overhead regarding its temporal performance is known a
priori. Based on this knowledge, the temporal behavior of the whole system can be de-
termined. The exact knowledge of the temporal performance of the underlying operating
system is required to implement predictable services that can execute a specific task within
a bounded amount of time without missing its deadline. Further, “a real-time operating
system must provide a predictable service to the application tasks such that the temporal
properties of the complete software in a node can be statically analyzed” [Kop11a]. That
is one of the reasons why real-time operating systems are typically based on a small kernel
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with a limited number of Lines Of Code (LOC). These lightweight real-time systems can
be further distinguished regarding their kernel type. FreeRTOS [Ser17] for example uses
a micro-kernel which means that all real-time applications are running in the user space
with different priorities. Zephyr, which is a project from the Linux Foundation follows a
different approach and uses a monolithic kernel where all applications are running in kernel
mode besides kernel components like device drivers and power management.

+Higher 
Priority

-Lower 
Priority

sched/deadline.c

sched/rt.c

sched/fair.c

SCHED_DEADLINE

SCHED_RR
SCHED_FIFO

SCHED_OTHER
SCHED_IDLE
SCHED_BATCH

Figure 2.2: Hierachy of Linux Task Schedulers

However, there are also general purpose operating systems available that provide deter-
ministic timely behavior. Taking Linux as an example, there are currently two competing
solutions available. The first approach is a patchset called PREEMPT_RT which makes
the Linux kernel preemptive for applications running in the user space. This reduces the
affects of kernel tasks on real-time tasks. The second approach is SCHED_DEADLINE,
which a deadline scheduler that is available since Linux kernel version 3.14. The SCHED-
_DEADLINE scheduler adds a real-time policy to the kernel which has even a higher prior-
ity than the POSIX-compliant real-time fixed-priority scheduling policies SCHED_FIFO
and SCHED_RR (cf. Figure 2.2). SCHED_DEADLINE allows predictable task schedul-
ing by implementing both the Earliest Deadline First (EDF) and Constant BAndwidth
Server (CBAS) algorithms. CBAS allows reservation based scheduling while EDF takes
care that tasks with the earliest deadline gets executed first. Each real-time task can run
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for a maximum runtime Qi every period Ti as long as the total utilization ∑N
i=1

Qi

Ti
of all

real-time tasks is below a certain threshold [LSAF16].

2.4 Dependability

This section introduces to dependability, which is a generic concept that describes the
“ability of a system to avoid failures that are more frequent and more severe than it is
acceptable” [ALRL04]. The dependability of a system is defined by its attributes which
are reliability, availability, maintainability, integrity and safety. In recent scientific discus-
sions the security of dependable systems gets a more prominent role. This adds a further
attribute to dependability, which is confidentiality. After introducing these five attributes,
this chapter will discuss the threats to dependability, which are faults, errors and failures.
Subsequently, two special means of achieving reliability are explained, which are fault
tolerance and fault prevention.

2.4.1 Dependability attributes

In the state-of-the-art dependability is determined by its attributes, which are reliability,
availability, maintainability, integrity, safety and confidentiality. The first attribute relia-
bility denotes the probability that a system will provide the required service for a specified
amount of time, given that the system was fully operational at the beginning. The second
attribute availability is a system property that measures the ability of the system to
provide the correct service and is denoted by the ratio of correct and incorrect service.
Next property is maintainability, which is a measure for the capability of the system to
be kept or reset in an operational status. Further, integrity describes the freedom from
improper changes within the system such as the corruption of data. The last attribute
confidentiality comes into place when addressing the security of a system. Confiden-
tiality describes the extent to which information is not disclosed without authorization.
Having this in mind, security can be seen as a meta attribute and is defined a “compos-
ite of the attributes of confidentiality, integrity, and availability, requiring the concurrent
existence of 1) availability for authorized actions only, 2) confidentiality, and 3) integrity
with ’improper’ meaning ’unauthorized’ ” [ALRL04]. The last attribute of dependability
is safety which describes the reliability regarding critical failures where the system carries
unacceptable risks to human health or to the environment.
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2.4.2 Threats to Dependability

Avizienis et al. [ALRL04] defined the fundamental concepts of fault, error and failure in
dependable systems and pinpointed them as the major threats to the dependability and
security of the system. A failure of the system is an event that occurs when a service that
the system delivers deviates from the intended behavior (correct service). The way in which
the deviation from the correct service occurs and how the failure is manifesting can have
different forms which are called failure modes. A failure is the result of an error, which
is an unintended state of the system. The cause of an error is called a fault. Figure 2.3
shows the causal chain between fault, error and failure. Examples for faults are hardware
faults (e.g. a hardware defect in a processor), natural faults (e.g. voltage peaks in the
power supply through electromagnetic interference) and developments faults during the
system development like race-conditions in the developed algorithms. A comprehensive
taxonomy of faults, errors and failures can be found in [ALRL04].

Figure 2.3: Threats to Dependability - Faults, Errors and Failures [Kop11a]

An error within one component can propagate to other components. In the worst case
this can lead to a performance degradation or even a failure of the entire system. Also,
a failure can cause faults in other components which in turn can lead to a failure as well.
Therefore it is important to apply techniques for fault-containment.

2.4.3 Means to achieve Dependability

Dependability can be achieved by different means. Fault prevention can help to mitigate
faults already at the beginning of the design of the system. A typical technique for fault
prevention is encapsulation in object-oriented languages, where, for example, a mutator
method checks the value for validity before the new value is assigned to a variable. Another
fault prevention technique is Continuous Testing which is often combined with Continuous
Integration. Fault tolerance is another mean to establish dependability. Fault tolerance
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targets at avoiding failures by first detecting errors and provide mechanisms to recover
to a system state that has no error or fault (which could be activated again) [ALRL04].
For example, redundancy like Triple-Modular Redundancy (TMR) is a frequently used
mean to detect an error. Further techniques can be used to recover from an error, such as
rollback (return to a saved system state without error) and roll-forward (move forward to
a system state without the error).

2.5 Medical and Health Device Communication Standards

Interoperability with a standard for connected health devices offers a great benefit because
interoperability enables the integration of a compatible sensor with less effort at the user
level. With this regard, this chapter introduces two important standards for connected
health devices: ISO/IEEE 11073 and Bluetooth HDP.

2.5.1 ISO/IEEE 11073

The ISO/IEEE 11073 family of standards provides interoperability for “medical devices as
well as for health and fitness devices which are used by professional healthcare organizations
or by users at their home” [IEE12]. Figure 2.4 depicts an overview of the ISO/IEEE 11073
family of standards.

11073-10404
Pulse Oximeter

11073-10407
Blood Pressure

11073-10417
Glucose

11073-10406
Pulse

11073-10415
Weighting Scale

11073-10471
Living Activity 

Hub
...

Serial IrDA Bluetooth USB ZigBee

Figure 2.4: IEEE 11073 Family of Standards - Overview
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ISO/IEEE 11073 distinguishes between two device types: agents and managers. Agents
are data sources, typically sensor devices like weighting scales or an ECG. Managers are
data sinks, collecting the data from the agents. ISO/IEEE 11073 assumes limited com-
putational power and limited energy for agents, therefore the communication model of
ISO/IEEE 11073 puts the main burden for processing data on the managers. ISO/IEEE
11073 is transport agnostic, which means, that it can be used with almost any packet-based
communication protocol like Bluetooth or ZigBee.

Device Specialization Standards In order to support a variety of sensor classes, the
ISO/IEEE 11073 family of standards defines appropriate device specialization standards.
The ISO/IEEE 11073-104xx device specialization standards are available for common de-
vice types like pulse oximeter (ISO/IEEE 11073-10404), glucose meter (ISO/IEEE 11073-
10417) or insulin pump (ISO/IEEE 11073-10419).

Optimized Exchange Protocol One central part of ISO/IEEE is the Optimized Ex-
change Protocol, which is standardized in ISO/IEEE 11073-20601. This standard describes
the structure and the behavior of agents and managers by defining three different models:
a domain information model, a service model and a communication model.

The Domain Information Model (DIM) describes a set of atomic parts and shows how
these are put together to form a larger element that might be used in a piece of software
[IEE14]. The Medical Device System (MDS) is used to describe the structure of agent de-
vices and is modeled as a set of objects where objects have a corresponding class and can
have hierarchies. Objects in turn have attributes that contain for example measurement
data. Depending on the corresponding class, attributes can be mandatory for objects.
Figure 2.5 shows an exemplary DIM of a peak expiratory flow monitor modeled as a UML
object diagram. The MDS object at the top represents the peak expiratory flow monitor
itself which has four numeric objects PEF (Peak Expiratory Flow), FEV1 (Forced Expira-
tory Volume of a subject under forced conditions at 1 second), FEV6 (Forced Expiratory
Volume of a subject under forced conditions at 6 seconds) and Personal Best besides one
enumeration object Reading Status.

The service model defines the interaction with objects and their attributes. The interac-
tions are modeled as data exchange services where agent and manager exchange messages
using the Abstract Syntax Notation One (ASN.1) in order to define the data structures
within the messages. The service model differs between association services and object
access services. Association services are used to build up and release a logical connection
whereas the object access services are used to access attributes defined in the MDS.
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The communication model describes the communication between agents and managers
by defining their corresponding state machines and valid interactions within each state. It
also describes how the messages corresponding to each service are encoded and decoded
to and from binary format to be transmitted over the transport channels [IEE12].

Figure 2.5: Peak expiratory flow monitor - Domain Information Model [IEE14]

State Machines Like most protocols, the ISO/IEEE 11073 session layer is controlled
by a state machine. Most states and state transitions of the manager state machine are
symmetrical to the elements described below for an agent. Figure 2.6 shows the state
machine of an agent according to the Optimized Exchange Protocol.

The basic states for the agent are:

• Disconnected. When an agent is turned on for the first time, the state of the agent
is Disconnected. This means that there is no connection between the agent and
the manager. An agent can return to the disconnected state after a connection has
been established if the connection was intentionally terminated or unintentionally
disconnected.

• Connected. When a connection is established between the agent and the manager,
the agent changes its state to Connected and remains in this state as long as the
connection exists. The agent then changes to the Unassociated state.

• Unassociated. The agent is in this state if it has no application layer association
with a manager. This can be caused by the fact that a new connection has just been
set up, the manager rejects an association, or a member of the active association
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Figure 2.6: Peak expiratory flow monitor - Agent State Machine [IEE10]

terminates it. The agent remains in the unassociated state until it starts associating
with the manager.

• Associating. When an agent starts an association with the manager, the agent
switches to the associating state and sends a connection request to the manager.
If an association fails, an agent can request a new association with new association
parameters.

• Associated. If the manager determines that the agent and the manager are using
shared versions and protocols, the association is accepted. In doing so, the manager
sends an association response to the agent. When the agent receives this message,
it switches to the associated state and remains in this state until the agent sends
or receives a release or termination request for association. The initial sub-state
depends on whether the manager has responded to the association request with an
indication that the configuration of the agent is recognized or not.

• Operating. If a manager already knows the configuration of an agent, the agent
switches to the operating state. If the configuration is not known, the configuration
is transferred alternatively.
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• Configuring. If the manager does not know the configuration of the agent, it first
accepts the association, but then reports to the agent that the configuration must
be transferred. The agent remains in the configuring state until the agent transfers
the configuration information and the manager confirms the configuration.

• Disassociating. When the agent determines that it should release the current as-
sociation, the agent switches to the disassociating state and sends a request to the
manager to release the association. In the event of a timeout, the agent sends an
abort request and switches to the unassociated state.

2.5.2 Bluetooth HDP

Bluetooth HDP is Bluetooth profile that aims to ensure interoperability between connected
health devices based on Bluetooth. The motivation of the Medical Devices Workgroup
(MED WG) as part of the Bluetooth Bluetooth Special Interest Group (Bluetooth SIG)
was to establish an interoperable wireless standard that replaces the variety of existing
proprietary data protocols and formats. Formerly, “there was not even agreement over the
best profile to base these on” [WG09]. Until HDP, the mostly used profile was the Serial
Port Profile (SPP) which only emulates a standard RS-232 serial cable. However, other
Bluetooth profiles like the Dial-up Networking Profile (DUN), the Fax Profile (FAX) and
the Human Interface Device Profile (HID) were also in use.

Figure 2.7: Bluetooth HDP Protocl layers [WG12]

At the top layer, HDP uses the already introduced ISO/IEEE 11073-20601 Optimized
Exchange Protocol in association with ISO/IEEE 11073-104xx device specialization spec-
ifications in order to provide application level interoperability. Figure 2.7 shows the com-
plete protocol stack of HDP. At the lower layers, HDP uses the Multi-Channel Adap-
tation Protocol (MCAP) in combination with the Logical Link Control and Adaptation
Protocol (L2CAP) to establish the communication channels. Precisely, the MCAP is a
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L2CAP-based protocol that provides a Control Channel to create and manage a set of
Data Channels [WG08]. However, HDP adds further requirements to L2CAP such as
the Enhanced Retransmission Mode and Streaming Mode. The Enhanced Retransmission
Mode intends to set up reliable L2CAP channels while the Streaming Mode adds support
for streaming applications. Further, HDP enforces authentication and encryption for all
communication links. The HDP profile also provides optional clock synchronization by
using the Clock Synchronization Protocol (CSP). CSP is a feature of the MCAP protocol
and allows to synchronize the clocks of two or more devices with a high accuracy in the
range of microseconds [WG08].

2.6 Virtualization Techniques

Mixed-Critical systems are typically designed using a bottom up strategy where the foun-
dation of the system is based on a safety hypervisor at the lowest level dividing the system’s
resources into so called partitions. This provides full spatial and temporal isolation among
the partitions allowing to run safety-critical applications together with non-critical ap-
plications on the same platform. The strict isolation among the partitions prevents any
interference from non-critical applications towards critical applications.

In contrast to hypervisors with full hardware virtualization (type-1 hypervisor) that
run directly on the hardware, hypervisors at OS-level (type-2 hypervisor) use technologies
and mechanisms from the operating system (OS) kernel to provide virtualization for the
resources of the host. Nowadays, OS-level based hypervisors are very commonly used in
cloud environments for the virtualization of resources. In cloud infrastructures, container-
based virtualization techniques have been proven to be a solid solution for building up
highly scalable, flexible and distributed applications. Containers are easy to use and ideally
suited for the packaging and deployment of distributed software. Applications based on
containers are extremely scalable by simple setting up multiple instances of a container
and distributing the work load among the instances.

However, today’s OS-level based hypervisors cannot provide complete spatial and tempo-
ral isolation in order to build up a mixed-criticality system. Though, first approaches have
already been done to overcome these limitations. One of these approaches is MemGuard,
a memory bandwidth reservation system for efficient performance isolation in multi-core
platforms [YYP+13] providing spatial and temporal isolation for the memory resources.
Another approach was done by Luca Abeni et. al who proposed a real-time deadline-
based scheduling policy to provide temporal scheduling guarantees to different co-located
containers [ABC19].
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(a) Baremetal Hypervisor (b) Hosted Hypervisor

Figure 2.8: Hypervisor-Types: Baremetal vs. Hosted Hypervisor

Hypervisors allow to run multiple so called virtual machines on one host and are typically
classified to two types: type-1 (bare-metal hypervisor) and type-2 (hosted or OS-level
hypervisor) as shown in figure 2.8b. Type-1 hypervisors can provide temporal and spatial
isolation. However, they are expensive and not efficient regarding the underlying resources
(e.g. free resources of one partition cannot be used for another partition). In contrast to
type-1 hypervisors, which run directly on the host hardware, type-2 hypervisors run on
an common operation system. An example for a type-2 hypervisor is Linux Containers
(LXC), which uses features of the Linux kernel like namespaces (e.g. pid, network and
user) and control groups (cgroups) to build up lightweight containers.

An interesting approach is implemented by the Apache Mesos project [APA20], which
can also use Linux containers to isolate tasks. Apache Mesos is implemented in C++
and runs on Linux, Solaris and OS X by using the libprocess library developed by the
University of California, Berkeley. However, it currently only supports the isolation of
CPU cores and memory but it is planned to support network and I/O isolation in Linux
in the future [HKZ+11].

2.7 Architectural Patterns

2.7.1 Service Oriented Architectures

Many modern software architecture designs are driven by a service oriented architectural
approach. Instead of one complex monolithic application, the software is designed as an
ensemble of services where each service fulfills a precisely specified task within this ensem-
ble. Services are loosely coupled by using message based communication, encouraging an
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easy re-usability of services and good maintainability of the overall system. Typically, a
message broker is used for the dissemination of messages between the services. The stan-
dard communication model of most message brokers is Publish-Subscribe, where a mes-
sage is distributed from the origin service (Publisher) to one or multiple receiving services
(Subscriber). Figure 2.9 shows the main concept of the Publish-Subscribe communication
paradigm.

publish "22°C, cloudy"

1 subscribe to topic
"weather-station"

2 publish sensor data

Figure 2.9: Publish-Subscribe Paradigm

A broker may support further communication models like Remote Procedure Calls
(RPCs) or e.g. can be used for load balancing among multiple instances of one service.
Complex services are generally realized by the composition of services using predefined
service contracts, similar to interface definitions in programming languages. By this ab-
straction, no internal knowledge about the implementation is required to use the service.

2.7.2 Microservices

Microservices are an approach for designing and building applications as a suite of small
services instead of building a monolithic software application. Figure 2.10 illustrates the
difference between the two approaches.

Services are realized as small autonomous components with their own life-cycle, which
makes them independently maintainable and deployable. Instead of in-memory function
calls, services communicate with lightweight mechanisms using protocols like AMQP or
Message Queuing Telemetry Transport (MQTT) for message exchange and remote pro-
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Figure 2.10: Monolithic Architecture vs. Microservices Architecture

cedure calls. This also facilitates technology diversity where for example services can be
implemented in different programming languages, choosing a programming language which
fits best for the service. In typical client-server architectures the program logic is located
on a webserver with a single monolithic application that serves the requests of the clients.
In scenarios with many clients and high load, typically load balancers are used for dis-
tributing the load in order to provide scalability to the application. Though, this implies
the scaling of the whole application rather than just scaling the parts of the application
that require greater resources. Applications that are based on a Microservices approach
do not have this downside. Services that need more resources are just realized by creating
multiple instances of the service and distributing the workload among the instances located
either on one node (scaling up) or on multiple nodes (scaling out).

2.7.3 Message Oriented Communication

In service oriented architectures often Representational State Transfer (REST) is used for
the communication between services. However REST is based on a synchronous commu-
nication model where one service has to wait the response of another service. This is not
ideal since it brings in dependencies among services. A better approach is to use message
oriented communication based on the Publish-Subscribe paradigm where message queues
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replace the direct synchronous calls. This avoids the mentioned dependencies between
services because requests to other services can be sent in a fire and forget manner.

AMQP

Advanced Message Queuing Protocol (AMQP) is a binary message protocol which is stan-
dardized (ISO/IEC 19464:2014 and OASIS) and operates in the OSI model layer 7. Fig-
ure 2.11 shows AMQP in the OSI model. AMQP is a message protocol that uses the
concept of a message broker for receiving messages from Publishers and routing them to
Subscribers. AMQP is commonly used in version 0.9.1, although there is already version
1.0 available. The following concepts refer to version 0.9.1 where messages are sent by
the publishers to AMQP entities called exchanges. There are different types of exchanges
available that define how messages are routed in the Message Broker. An exchange type
that is relevant for this work is the topic exchange, which routes messages based on the
routing key in the message and routing schemes (also called bindings) to zero or more
further AMQP entities called queues. The general purpose of queues is to store messages
before they are consumed by the consumers. A queue has to be declared by the consumer
and the consumer has to subscribe to the queue before message can be forwarded to the
consumer. Queues can be configured to persist even after the (last) consumer has cancelled
the subscription to that queue. This allows for example to update or replace consumers
in a hot plug and play manner where no data is lost during the absence of the consumer.
Topic exchanges further allow to use patterns as routing schemes, which enables a broad
range of possible use cases for this type of exchange, such as distributing data to differ-
ent consumers depending on their type (e.g. sensor or service) or multicast routing of
messages.

AMQP

TLS

Application

TCP

IP

Application Layer (4-7)

Transport Layer (3)

Network Layer (2)

Figure 2.11: AMQP in the OSI model

A state-of-the-art message broker for AMQP is RabbitMQ Message Broker (RabbitMQ)
which is an open-source message broker that can be used to let heterogeneous applications
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communicate and interact via a common message protocol. Additionally, RabbitMQ sup-
ports the distribution of work load (load balancing) by allowing to queue messages and
distribute them automatically to multiple workers. In this way, architectures and plat-
forms built on top of RabbitMQ can easily scale with an increasing amount of users during
their lifetime.

MQTT

MQTT is a lightweight publish/subscribe message protocol, particularly designed for the
limitations of Machine to Machine (M2M) communication and IoT devices where a small
footprint is required and the usage of network is generally desired to be infrequent due to
restricted power resources. In 2014, MQTT was standardized as an OASIS (Advancing
open standards for the information society) standard [OAS14] and further became an ISO
standard [ISO16] in 2016. The MQTT protocol requires a central message broker for
the message exchange. The broker can handle multiple clients at the same time where
clients can be publishers and/or subscribers. Messages in MQTT are published in message
exchanges called topics. Clients can publish messages to a topic or subscribe to topics in
order to get messages that they are interested in. Topics can be arranged hierarchically (e.g.
sensors/person_id/heart_rate), which allows a very dynamic filtering on topics. Applying
wild card filters is possible as well, e.g. sensors/#/heart_rate would deliver the heart
rate measurements of all users. MQTT allows three different QoS metrics for message
delivery. With QoS level 0 the broker will deliver a message once, without confirmation
just like a best-effort approach without any guaranty that the message will be delivered
at all. QoS level 1 assures that the message is delivered at least once, though the message
may be delivered more than once (which must be handled by the subscribers). At Quality
of Service (QoS) level 3 MQTT delivers the message exactly once.

2.7.4 Service Orchestration and Discovery

In dynamic and distributed systems where services and devices (e.g. sensors) can enter and
leave at run-time, it is of utmost importance that this change within the system is detected
by the system. This can be achieved by two techniques, which are Service Discovery and
Service Registration (cf. Figure 2.12).

Service Registration is an active step that is taken by a service itself where the service
typically contacts a central Service Registry in order to announce its service details and
service contact points. This technique is also called Service Self-Registration. In contrast
to this, Service Discovery is an active process by the system. Here, new services are
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(a) Service Self-Registration
(b) Third-Party Service Registration

Figure 2.12: Service Self-Registration vs. Third-Party Service Registration [Ric15]

announced to the Service Registry by a service registrar. In order to detect changes
within the system (e.g. new service), a service registrar for example listens to events or
actively scan the system. This technique is also called Third-Party Service Registration.
In order to discover new services, a service registrar may use different Service Discovery
Protocols. Examples of Service Discovery Protocols are the Service Location Protocol
(SLP), Domain Name System (DNS) Service Discovery (DNS-SD) and Zero-configuration
networking (Zeroconf).

Coordinating tasks and processes in a distributed architecture is a challenging topic.
This particularly counts when the coordinating of tasks has to be managed in a fault-
tolerant way. With this regard, ZooKeeper from the Apache Foundation can help to es-
tablish a fault-tolerant service orchestration. ZooKeeper is an open-source software project
that targets the coordination of large distributed systems with high availability. Therefore
it provides a centralized coordination service besides other features like group management
or leader election. ZooKeeper facilitates the coordination of services by using a shared hi-
erarchical namespace of nodes which is similar to a UNIX filesystem. ZooKeeper nodes can
be either persistent or ephemeral. Once created, persistent nodes will exist until they are
explicitly deleted. Persistent nodes are well suited for storing data which should be shared
among all other components inside the system. In contrast, the lifetime of ephemeral
nodes ends when the component that has created the node disconnects from Zookeeper.
An important aspect of ephemeral nodes is, in contrary to the persistent nodes, the in-
ability of having child nodes [HKJR10]. An exemplary namespace hierarchy is provided in
Section 6.1.
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A fault-tolerant real-time architecture for elderly care has to address several key challenges.
A major challenge is the support of high-criticality applications which implies the applica-
tion of techniques for fault-tolerance and partitioning of (hardware) resources. Especially
medical applications with tight control loops require a deterministic real-time behavior
of the system, which in particular puts challenges on the provisioning of computational
and communication (e.g. network, memory) resources. Further challenges are the het-
erogeneity of the underlying technologies and the different integration levels at which the
architecture is applied.

After introducing the different challenges, this chapter will present different state-of-
the-art architectures for elderly care and AAL. The presented architectures are evaluated
regarding the presented architectural challenges and advantages as well as disadvantages
are pointed out. A further motivation of the presented state-of-the art analysis is to
pinpoint research gaps that have to be addressed. Some parts of this chapter were published
in [SO18].

3.1 Fault-Tolerance

As noted in Section 2.4.3, the main target of fault tolerance as a mean for dependability
is the avoidance of failures. Fault tolerance is of utmost importance for safety-critical
systems, where even the failure of a single component can lead to catastrophic accidents
or even the loss of life of human people. In order to avoid failures, fault tolerance provides
mechanisms to recover to a system state that has no error or fault. However, this requires
first an autonomous detection of errors by the system itself. In order to be able to detect
errors autonomously, the system must have knowledge about the intended state or behavior
of the system as well as knowledge about the possible errors that can occur. An example
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for error detection is a bus guardian in a time-triggered real-time network that uses a priori
knowledge to detect temporal failures of a component.

The design of any fault-tolerant system starts with the precise definition of a fault-
hypothesis, which defines what types of errors have to be tolerated by the system [Kop11b].
By this way, the fault-hypothesis segregates faults into two domains: normal faults (faults
that have to be tolerated by the fault-tolerant system) and rare faults (faults that are not
considered by the fault-hypothesis). Figure 3.1 shows an overview about the state space of
a fault tolerant system. As shown, faults that are covered by the fault-hypothesis (normal
faults) lead to a system state that can be recovered by fault tolerance techniques to a
correct state of the system. Faults that are outside the fault-hypothesis (rare faults) can
for example be addressed by a never-give-up (NGU) strategy. A never-give-up strategy
could for example result in a fast restart of a complete system, if the never-give-up strategy
assumes transient faults in case that two components fail simultaneously.

Correct 
States

Normal Faults NGU 
Strategy

Rare Faults

Fault-Tolerance 
Mechanisms

States covered 
by the fault 
hypothesis

States not covered 
by the fault 
hypothesis

Figure 3.1: State space of a fault-tolerant system [Kop11b]

The fault-hypothesis enables to mask all faults that are within the fault-hypothesis and
allows to apply fault tolerance techniques that are able bring the system back into a correct
operation state. Therefore the fault-hypothesis must specify the Fault-Containment Units
(FCUs) and the corresponding failure modes with their associated failure rates. A FCU
precisely describes a unit of failure and must be defined in a way that the FCU will fail
independently from other FCUs. For example, components that share the same power
source will fail simultaneously if the power source has a failure. Here it is obvious that
these components cannot be part of two separate FCUs and must be allocated in the same
FCU. The independence of FCUs is a critical issue, which means that they have to be
engineered in a way that a fault cannot cause more than one FCU to fail due to a common
cause. The fault-hypothesis “is a central part in any safety-relevant system and provides
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the foundation for the design, implementation and test of the fault-tolerance mechanisms”
[Obe11]. A failure mode describes the way in which the incorrect behavior of a faulty
service deviates from its correct service. [ALRL04] provides a detailed taxonomy of failure
modes and characterize them by four different viewpoints: failure domain, detectability,
consistency and consequences. Figure 3.2 provides an overview about possible failure
modes from the domain viewpoint. The failure rate of a service with a given failure mode
is denoted as the probability that the service will fail with this failure mode in a given
interval of time.

Figure 3.2: Failure modes with respect to the failure domain viewpoint [ALRL04]

A common mean to establish a fault hypothesis is the Failure Modes and Effects Analysis
(FMEA). The FMEA is a bottom up process that helps to identify possible failure causes
and failure modes with their effects on other system functions [DIN06]. Further, error
detection methods are planned within the FMEA process. Another technique to analyze
possible hazards of a system is the System Theoretic Process Analysis (STPA). In contrast
to FMEA, STPA is a top-down approach which is especially tailored for safety-related
system analysis and it uses a functional control diagram to model a system [Lev11]. A
detailed comparison between FMEA and STPA is provided by [SBFH19].

Current state-of-the-art architectures for elderly care are missing a fault-hypothesis
which also includes a solid fault-tolerance concept. As noted, in a system without fault-
tolerance, the failure of a single component can affect the safety of the whole system and
may even lead to failure of the complete system which in turn can lead to dangerous sit-
uations for human life. Further, fault-tolerance techniques must be implemented in order
to prevent for example fault propagation. This thesis will extend the state-of-the-art by
establishing a fault hypothesis within the presented architecture. This includes the defini-
tion of failure modes and failure rates of the established FCUs. In addition, fault-tolerance
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techniques like active redundancy and fault recovery building on the fault-hypothesis will
be introduced.

Besides means for tolerating hardware failures, there are also means to achieve fault-
tolerance at the level of the software. Typical fault-tolerance policies that are applied
are timeout, retry or fallback. For example, the timeout policy defines a period of time
during which the service must respond. If a service has a timeout, the retry policy can
define how often the involvement of the service should be retried until a fallback can
happen to a different service that can handle the request. In the state-of-the-art, there are
already frameworks available that implement software fault-tolerance policies like Eclipse
MicroProfile Fault Tolerance [Ecl20]. Eclipse MicroProfile Fault Tolerance is part of the
Eclipse MicroProfile project which is an open forum to optimize JAVA for a microservices
architecture with a goal of standardization [Ecl19].

3.2 Real-Time Support
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Figure 3.3: Distributed real-time system - Example

Having a look at elderly care scenarios with telemedicine in case of an emergency of
an elderly person, medical control loops enforce hard real-time requirements both for end-
systems and communication networks in order to be reliable and stable. Regarding commu-
nication networks, this requires a deterministic real-time network with bounded message-
transport latency and jitter. Time-triggered networks such as TTEthernet [KAGS05] or
the evolving Time Sensitive Networking (TSN) [IEE16b] standard are well suited to satisfy
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the required timing constraints and dependability. The stringent requirements on timely
behavior counts as well for the end-systems that run the critical services or that provide
critical sensor data. Further, all clocks have to be synchronized to a global time base in
order to have a consistent view about time and about the state of the system.

Figure 3.3 shows an example of a distributed real-time control system. The depicted
system consists of a real-time network that connects an actuator and a sensor to an end-
system which runs the control logic. A possible application scenario for the depicted control
loop could be a system where the controlled object is a boiler with water and the controller
(end-system that runs the control logic) has to maintain the temperature of the water with
a heater (actuator) within a small range around a specific temperature. The stability of
the control loop depends on the dead time (cf. Section 2.2.1) of the control loop and has
direct impacts on the temperature of the water in the boiler. The open-world assumption
introduced in Section 3.3 motivated the requirement that components can enter and leave
the system at run-time of the system. This implies a dynamic reconfiguration of the system
which counts especially for the computational and communication resources in real-time
scenarios.

3.3 Open-World Assumption

Many use cases that apply for architectures in the field of elderly care require the inte-
gration of heterogeneous sensors like wearables or stationary health sensors. Often, this
integration has to be conducted at run-time demanding a dynamic reconfiguration of the
system where other components have to be informed about the new configuration. Be-
sides the hardware components like sensors, this counts for applications and services as
well. This demand for a dynamic reconfiguration requires a flexible software architecture
that allows the integration and removal of components at run-time and avoids to put any
burden on the elderly people or nursing staff regarding the integration procedure.

In modern state-of-the-art architectures for distributed architectures, service orchestra-
tion and discovery (cf. Section 2.7.4) are used to track changes within the system regarding
services and applications. This typically aims at minimizing or even avoiding manual ad-
ministrative efforts regarding the configuration and management of services. Zhu et. al
provide a short overview about existing protocols for service discovery in pervasive envi-
ronments and compare them by introducing a taxonomy for the classification of service
discovery designs [ZMN05]. Thus, existing architectures are typically restricted to the local
domain like the Local Area Network and do not provide functionality for the integration
of services at Internet level (cf. Section 3.4). The integration of heterogeneous devices like
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wearables or stationary health sensors requires similar techniques or can even be realized
with protocols for service discovery. However, this requires a more complex logic in the
devices which are now required to implement these service discovery protocols. In order
to reduce the complexity and the overhead for the implementation in the devices, it is
important for modern architectures, to rely on communication standards like Bluetooth
HDP or IEEE/ISO 11073 (cf. Section 2.5).

The adaptability which is a requirement that comes with the open-world assumption is a
huge challenge for real-time systems. Typically, systems with hard real-time requirements
have a fixed network topology and are scheduled in advance. Predefined schedules provide
determinism and good analysis facilities. This means that there is no possibility to integrate
new components and to reconfigure the schedule at run-time. However, systems with
predefined schedules do not cope with the requirements for a dynamic change of the system
composition. For example, medical applications may require a dynamic integration of new
devices at run-time. Thus, the openness of the system, where devices and applications
have to be dynamically integrated, implies for example the dynamic scheduling of network
traffic where it is not feasible to prepare communication schedules beforehand.

Further, manual reconfiguration of the system by humans is error-prone and time con-
suming. To avoid errors, which may result in later failures of the system, the reconfig-
uration should be done automatically by the system itself. Self-adaptation of real-time
systems has already been addressed in prior work [HO13][BSP05][PZ12][RP05]. Though,
the self-adaptation focuses today on the reconfiguration of resources within a fixed net-
work topology. Currently, there is no solution in the state-of-the art for a self-adaptable
real-time system, that considers changes within the network composition. Owda et. al
[OAOD14] introduced the concept of a dynamic time-triggered platform based on TTEth-
ernet where the bandwidth of pre-defined Virtual Links (VL) is allocated dynamically.
However this concept does not support the introduction of new devices in the network.
Thus, the system is restricted to the dynamic integration of new software components.
This thesis will extend the state-of-the-art by introducing an authority for real-time com-
munication resources that allows the dynamic integration of new software components and
network nodes at run-time of the system.

3.4 Integration Levels

The definition of a distributed system used within this thesis comprises multiple (dis-
tributed) services running concurrently across different physical machines that are con-
nected by a communication network located at different integration levels like LAN or the
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Internet. Figure 3.4 shows an overview about the integration levels and typical devices
located at that level. Depending on the integration level, different types of devices are
involved in the communication and different techniques have to be applied in order to
establish and maintain the communication between the services.
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Figure 3.4: Architectural challenges - Multiple integration levels

Local Devices As shown in the figure, sensors and local gateways represent the lowest
level of the local devices. Sensors could be stationary or mobile and are typically connected
to a local gateway device which provides support during the integration process, e.g. in
order to minimize the administrative burden on the user. This is of especial interest, since
in the envisioned target field of elderly care, a typical user might be an elderly person or
a member of the nursing staff. In the most optimum way, a sensor integration should be
conducted automatically without any actions required by the user. Besides the sensors,
this integration level comprises applications and services running on the gateway device
as well. Services running on the same gateway can find each other for example by using
different service discovery techniques, which are discussed in Section 2.7.4. The same
applies to sensors, which can be integrated into the system in a similar manner or by using
communication standards like Bluetooth HDP or IEEE/ISO 11073 (cf. Section 2.5).
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Local Network (LAN) At the level of the Local Area Network (LAN), systems like
gateways are typically connected with IEEE 802.1 based communication technologies like
Ethernet or Wireless Local Area Network (WLAN). At this integration level, the discovery
of gateway devices has to be addressed in order to comply with the requirements for
distributed application scenarios that support the mobility of elderly people. This is of
special interest when thinking of a use case in a nursing home where a wireless sensor
reports continuously vital functions of an elderly person which is not restricted to resting
in bed. The depicted scenario includes gateway devices which are distributed over the
rooms of the nursing home. In order to support the mobility of the elderly person, a
handover of the sensor has to be conducted whenever the person is leaving the coverage
of one gateway device and enters the scope of another device. Apparently, this requires
techniques for discovery and peering of gateway devices to conduct a seamless handover
of the sensor device.

Internet Integration at the level of the Internet is especially important for supporting
services from professional stakeholders like informational or medical services from care-
givers or a doctor. Typically these service providers are not located in the same LAN
as the system of the caretaker or the elderly person. At the Internet integration level,
common Service Discovery protocols like DNS-SD or SLP cannot be applied.

3.5 Heterogeneity of the Underlying Technologies

Many use cases for elderly care and AAL require the integration of sensors. Therefore
an architecture for elderly care has to support techniques to access and disseminate the
data of the sensors to interested applications like a health monitoring application. When
integrating sensors, the main challenge is the technological heterogeneity of sensors. For
example, in the field of elderly care and AAL, complex medicals sensors like a pulse-
oximeter should be supported as well as simple sensors like a weighting scale. Further, the
integration of different types of sensors needs to offer a high degree of autonomy in order
to enable easy handling by the elderly person or the nursing staff. In addition, dynamic
setups must be supported with variable numbers of users and support for multiple sensors
per user at the same time. At last, it should be possible to disable a certain sensor for
example by the command of an elderly person or the nursing staff in order to comply with
privacy needs.

In order to deal with the heterogeneity of sensors on the one side and provide an easy
integration for applications of service providers on the other side, the support of medical

40



3.5 Heterogeneity of the Underlying Technologies

and health device communication standards is of utmost importance (cf. Section 2.5).
Regarding this, an architecture for AAL should for example support the ISO/IEEE 11073
family of standards which provides interoperability for medical devices as well as for health
and fitness devices. A further standard that should be supported is Bluetooth HDP in
order to comply with modern wireless health devices which mostly are based on Bluetooth
as the wireless communication technology. Further, there is an ongoing trend for health
and fitness devices to store sensor data in cloud based environments [DLNW13]. Due to
this fact, an architecture for elderly should also be able to integrate cloud services in order
to also support this type of sensor integration.

In addition, standards should be applied to the underlying communication technolo-
gies as well. Here, modern message protocols like AMQP or MQTT can facilitate the
integration of components from different service providers. Applying message oriented
communication also tackles with the challenge of heterogeneous programming languages
by providing an Application Programming Interface (API) for the most common program-
ming languages. This allows to use the most appropriate programming languages for a
specific problem or application. Furthermore, it is very helpful to use message oriented
communication based on the publish-subscribe paradigm, where a message is distributed
from the origin service (publisher) to one or multiple receiving services (subscriber). Tak-
ing again AMQP as an example, the publish-subscribe communication paradigm is even
the fundamental basis of the standard itself. A comprehensive overview about message ori-
ented communication is provided in Section 2.7.3. With a carefully designed hierarchical
topic namespace, new applications and sensors can be integrated into the system seam-
lessly without any action at the subscribers. This smart binding in AMQP is possible due
to topic wildcards where e.g. an asterisk matches any single word and a hash matches zero
or more words. For example, applications can subscribe with the topic sensors.kitchen.*
to receive the data from all sensors in the kitchen. Likewise, the topic sensors.# would
address all sensors.

Message oriented communication protocols like AMQP have further advantages beyond
choosing the appropriate programming language for a given task. One advantage is the
possibility to spread services over the entire network which allows a very flexible distributed
system. A second advantage is the possibility of queuing messages within the message
broker which allows an update or replacement of services even at run-time.
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3.6 Mixed-Criticality

Having a look at today’s Cyber-Physical Systems and smart devices, there is an ongoing
trend towards multi-core processors and highly integrated SoCs allowing to run a large
variety of services and applications at the same time on a single device. This imposes
multiple challenges for systems that run applications with different levels of criticality.
These so called mixed-criticality systems have to provide mechanisms for spatial and tem-
poral isolation of the system resources in order to run applications with a high criticality
concurrently with applications of low criticality. Mixed-criticality applications integrate
subsystems with different criticalities on a common platform. Herein, a criticality describes
a component’s assurance level towards failures [BD19]. Integrating those subsystems on
a common platform imposes requirements on using shared resources so that non safety-
critical subsystems do not interfere with safety-critical ones. Weber et al. [OW14] give
a profound analysis about these requirements. The next paragraphs summarize the most
important points of their analysis.

Partitioning A platform running a mixed-criticality system must provide an execution
environment for each subsystem including the corresponding resources. Such an environ-
ment is called partition and can be a hypervisor partition, a CPU in a multi-core processor
or a node in a distributed system. Using partitioning, the impact of faults can be limited
to a component. Hence, every component can be considered as FCU and interference with
other components is only possible by faulty inputs, not via shared resources. The primary
goal of partitioning is to simplify certification as the subsystems can be certified indepen-
dently without having to certify the entire system. This modular approach is supported
by different certification standards, e.g. IEC-61508 and DO-297. There are two types of
partitioning. While spatial partitioning separates multiple available resources into subsets
(e.g., one CPU in a multi-core processor) or areas (e.g., memory), temporal partitioning
assigns time-slots in which access to a shared resource is granted. In both types, different
resources must be considered. Examples are processor cores, memory, communication and
I/O resources.

Temporal Requirements Safety-critical subsystems are typically hard real-time applica-
tions. In those, the correctness of a computation depends not only on the correctness of
the result, but also on its availability in bounded time. Even in fault scenarios or high
load, the system must guarantee a response which regards to a computation’s deadline.
Hence, the worst-case behavior must be considered in the analysis of temporal aspects
such as communication and computation delays. Another important temporal aspect is
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jitter which is the difference between minimum and maximum delays. High jitter brings
additional inaccuracy in computations. However, low jitter enables the compensation of
known delays as long as temporal partitioning can give guarantees and determinism on
resource access.

Heterogeneity In addition to safety, mixed-criticality applications have different require-
ments on timing and models of computation. There are firm, soft, hard and non real-time
tasks and applications which communicate via shared memory or exchange of messages.
Although shared memory communication can simplify the data exchange, it results in
temporal unpredictability. Accessing the memory is not pre-planned, wherefore concur-
rent access must be solved dynamically. This accounts further for memory hierarchies. In
contrast, message passing avoids overheads for coherence protocols and is superior in the
typical cases of applications with a high communication/computation ratio. All in all, a
mixed-criticality platform must consider all these types of heterogeneity to support a wide
range of applications.

Adaptability At run-time, there is always the possibility of foreseen and unforeseen
changes in operational and environmental conditions. Mixed-criticality platforms require
mechanisms to detect such changes and to react on them. Typically, safety-critical sub-
systems switch between system-wide modes which represent statically defined scheduling
tables. In contrast, non safety-critical subsystems require a higher degree of flexibility.
The reconfiguration mechanism must be able to reconfigure the system safely, without un-
intended interference between the subsystems. Furthermore, reconfiguration must finish
in bounded time avoiding intermediate configurations. Here, some subsystems remain in
an outdated configuration state.

3.7 State-of-the-art Architectures for Elderly Care

This section gives an overview about relevant state-of-the-art architectures for elderly care
and AAL. All the presented architectures are implemented by research project as collab-
orative work of academia and industry. However, the list of the presented architectures
does not reflect the tremendous number of architectures developed in the field of AAL and
elderly care. A comprehensive survey of state-of-the-art AAL and healthcare frameworks,
platforms, standards and quality attributes was conducted by Memon et. al [MWP+14].
However, the survey did not focus on aspects like fault tolerance or non-functional prop-
erties like timing requirements of the applications.
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3.7.1 Relevant State-of-the-art Architectures

SOPRANO The SOPRANO (Service oriented programmable smart environments for
older Europeans) project [WSK08] aimed at the development of an open platform for AAL
solutions by creating an ontology-based architecture on top of Open Services Gateway ini-
tiative (OSGi). SOPRANO was an Integrated Project in the European Commission’s 6th
Framework Programme and aimed at enabling older Europeans to lead a more indepen-
dent life in their well-known environment, to integrate people with functional impairments
into social life and so to retain their dignity [SOP08]. The main technological goal of SO-
PRANO was the SOPRANO Ambient Middleware (SAM), which should be used in every
household to enable the users to interact with different sensors and actors. The project
targeted at including sensor for detecting smoke, measuring temperature, detecting door
status and tracking of users by radar or RFID. Potential actuators were “speech synthesiz-
ers, digital TVs with avatars, device regulators (for switching devices on/off or modifying
their behavior), emergency callers to a central, touch screen devices and more” [WSK08].

As the SOPRANO architecture is based on OSGi, it thus inherits all benefits and draw-
backs of OSGi. A great benefit of OSGi is its modularity that comes with the support of so
called bundles. A bundle encapsulates a certain functionality and provides this function-
ality via services to other bundles. Bundles can be dynamically integrated into the system
and have different life cycles during their stay in the system. The life cycle management
allows to replace, remove or add bundles at any time. This is for example very helpful for
the maintenance of bundles (e.g. installing an update required due to a bugfix) because it
allows to replace a bundle during the runtime of the system in a hot plug and play manner.
Further, OSGi allows to have different versions of bundles coexisting in the system at the
same time. OSGi also introduces a service registry that can be used by other bundles to
be responsive to the addition or removal of services. A further benefit of using OSGi is the
wide range of already included OSGi services like services for data logging, administration
of users and preferences or automatic detection of devices (e.g. by Universal Plug and Play
(UPnP)) [OSG20].

OSGi offers great benefits with the concepts of runtime adaptability, versioning and
modularity in the form of bundles. However, there are several challenges that arises due
to adaptability and versioning in combination with JAVA. Here, a big challenge are stale
references that lead to memory leaks. Stale references result when services from uninstalled
modules (or modules replaced with a newer version) are still referenced by active code
[GD08][HPMS11][RWDD09]. A further drawback of OSGi is the nature of OSGi itself,
which is based on JAVA. This restricts all modules and services to be implemented in
JAVA or to use Java Native Interface (JNI) in order to invoke C/C++ libraries. Further,
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bundles are restricted to a single host where the Java Virtual Machine (JVM) and the
OSGi framework is running. Some approaches like R-OSGI [RAR07] try to overcome
this issue by implementing another middleware layer on top of OSGi. Likewise, there are
currently no built-in fault tolerance techniques available in OSGi. However, there exist
some research activities like FT-OSGI [TCR09] and [AOS06] that propose extensions to
OSGi in order to achieve fault-tolerance at service level. However, fault tolerance at the
service level is not sufficient to provide a reliable basis for critical applications.

PERSONA The main goal of the PERSONA (PERceptive Spaces prOmoting iNdepen-
dent Aging) project was to find and develop AAL services for “social inclusion, for support
in daily life activities, for early risk detection, for personal protection from health and
environmental risks, for support in mobility and displacements” [COR20c]. The developed
AAL services are executed on the PERSONA technical platform which is based on OSGi
[TFRF10]. Thus, it has the same architectural benefits and drawbacks as discussed within
the SOPRANO architecture. To achieve extensibility of the system in an ad-hoc fashion
it was designed to use different buses for communication instead of using strictly defined
interfaces.

universAAL / ReAAL The main goal of the universAAL project [HMH+11] was to con-
solidate the results of existing initiatives and to provide an open standardized platform
for an economically development of AAL solutions. The OSGi approach from the univer-
sAAL project brings the same benefits and drawbacks as discussed within the SOPRANO
architecture. In order to reduce the technical and programmatic burden of OSGi for the
developers of AAL applications, several development tools were implemented within uni-
versAAL. A further goal was to implement an “application store, called uStore, through
which developers, service providers and end users can offer and obtain AAL applications”
[UNI20a]. A further outcome of universAAL was a ontological model for AAL applica-
tions, which was used to share knowledge about resources in the universAAL architecture.
Relevant for this work is the fact that the universAAL project introduced the concept of
scheduled traffic to OSGi in order to comply with needs for critical and time-sensitive ap-
plications [OAOD14]. After the lifetime of the project, the development of the universAAL
platform was continued as non-profit software platform for the Internet of Things (IoT),
called universAAL IoT [UNI20b].

The main objective of the EU-funded ReAAL project was a pilot study of reference
AAL service implementations involving over 7000 users in seven European countries. The
service implementations were based on the universAAL platform [REA20]. However, it
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turned out that the universAAL platform has to be revised with several further releases
in order to include the features and needed by the pilot and to fix bugs [REA08]. The
documentation of the universAAL platform also needed to be revised, and the developers
in ReAAL needed a significant amount of time to become familiar with the complexity
of the universAAL platform. One of the consequences of this was that the first pilots
developed in ReAAL used only a small subset of functions of the universAAL platform.

OASIS The EU funded project OASIS (Open Architecture for Accessible Services Inte-
gration and Standardisation) aimed at introducing an “innovative, ontology-driven, open
reference architecture and platform in order to facilitate interoperability, seamless connec-
tivity and sharing of content between different services and ontologies in all application
domains relevant to applications for the elderly” [COR20b]. The main target area were
applications for independant living, such as a nutritional advisor, an activity coach or
health monitoring. The design of the user interface followed a user-centered design in
order to achieve usability and acceptance as one of the main goals of OASIS. Within the
project, several tools were developed to work with ontologies. E.g. a tool called Concept
Anchoring and Alignment Tool (CAAT) was implemented to align Simple Object Access
Protocol (SOAP) based services with the service ontologies used in the project by using
the Web Services Description Language (WSDL) of the services.

MPOWER MPOWER (Middleware Platform for eMPOWERing cognitive disabled and
elderly) was an EU funded project had four overall technical goals: The MPOWER ar-
chitecture, the MPOWER middleware, the Model-Driven Software Development (MDSD)
healthcare framework and the MPOWER UML extensions. The MPOWER architecture
was designed as Service Oriented Architecture (SOA) and was implemented by using the
SOA reference architecture from IBM [MPO08a]. The MPOWERmiddleware implemented
reference services for three different categories, specifically communication services (e.g.
service for sending notifications to users), information services (e.g. calendar, medication
list), management services (e.g. managing user rights), security services (e.g. authentica-
tion and authorization of users) and sensor services (e.g. adding a sensor). The reference
services were realized as web services implemented in JAVA running on a Java Sun Ap-
plication Server. The MDSD healthcare framework added guidelines for the development
process of services and their configuration. Finally, the MPOWER UML extensions ex-
tended the MPOWER middleware, e.g. by providing an UML profile for services [WSM09].

The envisioned overall goal was to establish the MPOWER service platform that should
be used in smart homes and care centers. For the communication among the different plat-
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form instances MPOWER proposed to use HL-7 (Health Level Seven) messages. HL-7 is
set of international standards operating at Open Systems Interconnection (OSI) layer 7 for
transferring sensitive medical data between various medical and healthcare providers like
hospitals and nursing homes. Regarding the integration of different sensors, the MPOWER
middleware proposed the introduction of the Frame Sensor Adapter (FSA) which main goal
is was to overcome the communication burdens introduces by the usage of different sensor
protocols. After the integration of the sensor, the sensor could be used like a normal service
[MPO08b].

GENESYS The objective of the GENESYS (GENeric Embedded SYStem) project was
the implementation of a cross domain reference architecture for embedded systems suited
for different applications domains [COR20a], such as industry, automotive and avionics.
Starting point of the GENESYS architecture was the analysis of the requirements and
constraints documented by the ARTEMIS strategic research agenda. In particular, the
following three challenges have driven the development of GENESYS [OK09]: complexity
management, robustness and energy efficiency. A major contribution of the GENESYS
architecture is the introduction to the notion of components. A component is a self-
contained module that makes its local services available at the Linking Interface (LIF)
to other components. According to the underlying definition of a time aware system on
which GENESYS is based [GIJ+03], the LIF specification explicitly includes non-functional
requirements, such as time requirements of services. GENESYS further discussed the
problems that arises with the progression of time in distributed systems, like the drifting
apart of clocks due to the different drift rates of the clocks. In order to cope with these
challenges, GENESYS proposed the usage of a sparse time base in combination with clock
synchronization. Also, GENESYS discussed the presence of faults (e.g. design faults and
hardware faults) and the resulting impacts on the whole system.

3.7.2 Discussion

In this section, the presented state-of-the-art architectures are discussed with regard to the
previously introduced challenges for an architecture for elderly care that has to support
real-time applications in a fault-tolerant manner. The presented architectures from the
projects SOPRANO, PERSONA and universAAL are based on OSGi which offers great
benefits with the already discussed concepts of runtime adaptability, versioning and mod-
ularity. However, the adaptability of the SOPRANO and the PERSONA architecture is
limited to the dynamic integration of new bundles, services and sensors. Further these two
architectures do not consider temporal requirements of (real-time) applications. univer-
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sAAL goes a step further by introducing the possibility of a dynamic reconfiguration of
real-time communication resources during the run-time of the system [OAOD14]. However,
the dynamic adaptability is restricted to the available real-time communication resources
that were available at the start of the system. The approach of universAAL does not con-
sider the introduction (or removal) of new real-time communication hardware at run-time.
Thus, it also cannot adopt to the loss of resources e.g. due to a failure. A further drawback
of the presented OSGi architecture is the limitation to the integration level of local devices.
Though, there are as mentioned some research approaches like R-OSGI [RAR07] that try
to overcome this issue.
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Support for distributed
Real-Time Applications X X

Open-World
Assumption X X X X X

Multiple
Integration Levels

Heterogeneity of the
underlying technologies X

Support for
Mixed-Criticality X

Table 3.1: State-of-the-art - Overview

The architectures resulting from the projects OASIS and MPOWER both use the con-
cept of web services to establish the functionality of the system. While the architecture of
the project OASIS heavily used ontologies for services, the MPOWER architecture used
a model-based approach based on UML for building services. However, web services typi-
cally are based on REST or SOAP as interface for the communication with other services.

48



3.7 State-of-the-art Architectures for Elderly Care

Since both techniques are synchronous communication techniques (cf. Section 2.7.3), using
these techniques lead to dependencies among services which makes it extremely difficult
to scale services for performance (e.g. if a service has to be duplicated in case of a load
balancing scenario) or for fault-tolerance reasons. The architecture from the GENESYS
project is farther more advanced than the previously presented architecture since it already
considers timing-requirements of services and the occurrence of faults in the system. In
order to achieve fault-tolerance, the GENESYS architecture introduces well-defined FCUs.
However, the definition of the FCUs is missing assumptions about failure modes and fail-
ure frequencies. Further, the GENESYS architecture does not provide concepts about
the temporal and spatial isolation of services in order to provide a solid platform for the
concurrent execution of applications with different levels of criticality (mixed-criticality
system). Summarized, none of the presented architectures provides all required character-
istics for the establishment of distributed fault-tolerant real-time applications in the field
of elderly care.

The following aspects are not considered at all or only considered partly by the presented
architectures. First, there is no solution available that supports a dynamic reconfiguration
of computational and communication resources in real-time scenarios. Second, temporal
and spatial isolation of computational and communication resources for the support of
mixed-criticality is only partly addressed. The support for concurrent applications with
different criticality requires full temporal and spatial isolation as presented in this thesis.
Table 3.1 shows an overview about the presented architectures regarding the support for
the previously introduced challenges for a fault-tolerant real-time architecture for elderly
care.
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Architecture

This chapter will introduce the fundamental concepts of the fault-tolerant architecture pre-
sented in this thesis. As the previous chapter has shown, there are several challenges that
have to be tackled in order to establish a fault-tolerant and real-time capable architecture
for elderly care. Some of these challenges put requirements on the underlying platform.
This applies in particular to the real-time support of the presented architecture, which
e.g. requires an underlying real-time operating system and by reason of the distributed
character of the presented architecture also requires a real-time communication network.
Referring to this, this chapter will first introduce the requirements towards the underlying
platforms before presenting the overall system structure and the main building blocks of
the intended fault-tolerant real-time architecture. As a next step, this chapter will show
which services have to be provided for applications running on the resulting platform.
This includes e.g. service for real-time communication, service orchestration and clock
synchronization. Another goal of this chapter is to introduce the fault assumptions that
the presented architecture is based on. This includes in particular the establishment of a
fault-hypothesis and the definition of fault-containment regions (FCRs) for the presented
architecture. Some parts of this chapter were published in [SO18].

4.1 Requirements towards the underlying platforms

In order to comply with the architectural challenges that were introduced in Chapter 3, the
underlying platform has to fulfill several requirements. These requirements are presented
in the following.
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4.1.1 Real-Time Operating System

The real-time support of the presented architecture requires first of all an operating system
where the temporal behavior is known a priori and the execution of tasks is guaranteed to
happen within a bounded period of time. These guarantees can be provided by a real-time
operating system. The basic concepts and properties of real-time operating systems are
introduced in Section 2.3. Further, the presented architecture requires high level services
which must be provided by the underlying operating system such as networking, multi-
tasking or support for different programming languages. Further, it should be possible
to leverage existing tools, communities and to provide compatibility for already existing
applications. Due to these reasons the presented architecture is based on a fully featured
operating system like Linux or Windows Embedded. However, these operating systems
were originally not designed to provide deterministic behavior for real-time applications.
Though, there are several approaches that can be applied to achieve support for real-time
applications. For Linux for example there are two potential techniques that can be applied
to make Linux real-time capable, namely PREEMPT_RT, which is a patchset that makes
the Linux kernel preemptive and SCHED_DEADLINE, which is a deadline scheduling
policy for scheduling tasks in Linux.

4.1.2 Real-Time Networking

Besides the execution of real-time tasks, the operating system has to supply real-time
communication traffic between different nodes in the network. Here, time-triggered com-
munication protocols and standards have to be supported by the operating-system and
the networking hardware that provides the communication services. Here, the upcoming
family of TSN standards for real-time communication in Ethernet based networks is one
feasible solution. Although this family of standards is still in draft by the IEEE (see also
Section 2.2.4), there are already implementations available for some of the TSN standards.
In Linux for example, as with Linux Kernel version 5.2 there is a queueing discipline named
Time-Aware Priority Shaper (TAPRIO) (cf. Section 6.2) that implements the time-aware
scheduler defined in TSN enhancements for scheduled traffic. An additional queueing disci-
pline implements the offloading of the packet transmission to the network hardware, which
allows fine-grained control over the transmission time of Ethernet packets. However, the
hardware offloading has to be supported by the network hardware. For example, the net-
work card i210 from Intel is one of the networking cards that support packet offloading
besides support for clock synchronization protocols like the IEEE standard for Precision
Clock Synchronization and TSN Synchronization I(IEEE 802.1 AS).
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4.1.3 Wireless Connectivity

A further requirement towards the underlying platform is wireless connectivity which allows
a seamless and easy-to-use integration of wireless sensors and mobile medical devices into
the system. Wireless connectivity is of particular importance here, because there is an
ongoing trend in the market towards wireless devices. This applies in particular for the
consumer market but the trend is also visible in the market for professional medical and
healthcare devices. Bluetooth is the targeted wireless protocol in the presented architecture
since it is supported by the two medical device communication standards IEEE 11073 and
Bluetooth HDP.

4.2 System Structure and Building Blocks
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Figure 4.1: Overview of the proposed fault-tolerant system architecture

The following section introduces the structure of the system model including the main
parts of the proposed architecture. A high-level overview is given in figure 4.1. As depicted,
the system model comprises local devices like sensors and smart devices (e.g. smartphone
or tablet). These devices are either connected directly to the communication network or are
connected to a service gateway that runs the platform and system services of the presented
architecture. This includes a common set of core platform services for connectivity, message
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dissemination, sensor integration and service discovery. As noted, the ecosystem may
also include smartphones which can play several roles. At first place, a smartphone can
act as a sensor gateway in order to connect wearable devices, e.g. for personal health
applications. At second place, the smartphone can act as an end-user interface, for example
to configure services or to show alert messages. Further, the local ecosystem may also
comprise one or more network enabled stationary sensors, like the commercial product
SensFloor®. SensFloor is an intelligent floor underlay which is capable to detect a fall of a
person or can be used for gait analysis [STS+13].

As the figure also shows, the presented architecture applies several techniques for fault-
tolerance at the communication network and the service gateways. For example, redundant
paths are used to comply with use cases that required a highly reliable communication
between different nodes. Further, the architecture applies techniques for traffic policing
and traffic shaping in order to detect temporal failures of the network nodes.

The depicted system model of local interconnected ecosystems would already be sufficient
for small scale AAL solutions, e.g. for a private or retirement home. For example, think
about a solution that provides fall detection and automatically alerts the nursing staff in
case of an accident. Though, integrating professional services like information or medical
services from caregivers or a doctor should also be supported by an architecture for elderly
care. Therefore, the system model supports the interconnection of local services and sensor
ecosystems at Internet level by implementing a central interconnection server. By this way,
a doctor’s office can use the services and the sensor ecosystem as well in order to provide
professional medical services to the elderly people.

4.2.1 Service Gateway

The service gateway is the central component of the service and sensor ecosystem. It hosts
the runtime environment with the platform and system services, which are introduced
in Section 4.3. It is called service gateway because it will act as a gateway on the one
side for professionals to provide their health services. On the other side elderly persons
or their relatives will use the gateway to discover and employ the services provided by
the professionals. For privacy and data protection reasons, the architecture stipulates one
gateway per person.
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4.2.2 Smartphone and Sensors

At present there is an ongoing trend towards wearable devices for personal health appli-
cations. Some of these devices can be of great interest for AAL use cases. For example,
the E4 wristband provides sensors for photoplethysmography and electrodermal activity to
monitor physiological signals like heart rate variability or to detect stress or excitement of
a person [Emp15]. Another wearable to be promising for AAL use cases is the Jins Meme
eyewear that for example can be used for cognitive activity recognition [LSG18]. It has a
three-dimensional electrooculography sensor which can be used for example to recognize
activities like reading a newspaper or to detect emotional states of a person. Wearables are
typically connected to a smartphone by a wireless communication technology like Blue-
tooth or Bluetooth Low Energy in order to configure the wearable and to display and
monitor the sensor data. For this reason, the system model comprises an smartphone,
which will act as a sensor gateway in order to connect wearable devices and other sensors
as well. Further, the smartphone can be used as an end-user interface, for example to
configure services or the service gateway, to show alert messages and to find and apply for
professional health care services. Besides the ability to integrate sensors with the use of the
smartphone as a sensor gateway, stationary network enabled sensors can also be integrated
into the ecosystem by using the platform services of the service gateway. Section 6.4 will
provide detailed information about the integration of sensors into the architecture.

4.2.3 Real-Time Network

The service gateways and stationary sensors are interconnected by an Ethernet switch. In
order to comply with the need for distributed real-time applications, the network hardware
has to support a standard for real-time communication like TTEthernet or TSN. Both tech-
niques are based on Ethernet and are ideally suited for the intended application scenario
due to the compatibility to a vast amount of available hardware and software on the mar-
ket. Further, the TSN technologies will be included in COTS (Commercial off-the-shelf)
Ethernet network hardware in the near future. This provides real-time communication
hardware at a very low price compared to expensive industrial real-time communication
technologies like Profinet or Ethercat. Additionally, Ethernet allows a very flexible com-
munication infrastructure reaching from a simple star topology to even hierarchical star
topologies.
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4.2.4 Interconnection Server

In order to use professional services like information or medical services from caregivers or a
doctor within the local ecosystems, the system model introduces an interconnection server.
The interconnection server will allow to register public services from stakeholders like
professional caregivers. These services then can be discovered and used by the local service
gateways. Further, the interconnection server will allow to connect the local ecosystem of
a user with the ecosystem of other users. This is for example desirable when a relative
wants to take care for an elderly person or wants to be alarmed in case of an accident or fall
of the elderly person. In order to connect with the interconnection server, an additional
router is required within the network topology.

4.3 Platform and System Services

This section elaborates about the services that have to be provided in order to run elderly
care applications with fault-tolerance and real-time requirements. Figure 4.2 shows an
overview about the services grouped into core services and platform services. Further
shown are the services that have to be provided by the underlying technologies that were
introduced in Section 4.1. In the following sections each service is introduced and the
background is described that makes the respective service necessary for the presented
architecture.

4.3.1 Service Orchestration and Discovery

Service orchestration and discovery is important to keep the knowledge about services
within the system up-to-date. For example, the system should be able to detect new or
leaving services automatically. Likewise, services should be able to register themselves in
order to use all other services within the system and deregister themselves in order to leave
the system in a ordered way. For this it is necessary that the system provides the following
basic services.

Service Discovery As already mentioned, the system must be capable of detecting new
services that enter the system. This is especially interesting for services that only send
information or data to the system like a temperature sensor or an alarm button. For
this purpose, different service discovery protocols are already available. One potential
solution is Avahi, which is available for Linux and BSD based operating systems. Avahi
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is a free implementation of DNS Service Discovery (DNS-SD RFC 6763) over Multicast
DNS (mDNS RFC 6762). An Avahi compatible protocol implementation is Bonjour, which
is available for Apple MacOS based systems. Details on the mentioned protocols can be
found in Section 2.7.4.

Service Orchestration Knowledge of the available services in the system and their corre-
sponding status is especially of importance for real-time communication services introduced
in Section 4.3.3. However, other services need to find other required services within the
system. Furthermore, services should be informed when other services enter or leave the
system. One possible scenario is a service A that can provide a better service quality with
an additional service B that was not available at startup but became available later during
the runtime of the service A. In a service-oriented architecture that uses message-oriented
communication based on protocols like AMQP in the presented architecture, changes to
the system regarding the service composition can be announce on an dedicated message
exchange that all service have to subscribe to. However, this message exchange has to be
fed with messages by some authority that has the knowledge of the services and their sta-
tus within the system. Depending on the integration level, there are different solutions for
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the service orchestration available. Examples are Apache ZooKeeper [APA16], HashiCorp
Consul [Has20a] and Netflix Eureka [Net20], which are all open-source and available under
public licenses that also allows the use in commercial products. Netflix Eureka for example
is especially of interest when services should be orchestrated within the integration level
of the Internet.

4.3.2 Fault-Tolerance

Safety-critical services as well as services that have to guarantee a high level of availability
require fault-tolerance techniques like active redundancy or a membership service. For
services that have to provide a high level of availability, there should be a service authority
that can relay failed requests from faulty or failed services to healthy services or nodes. To
prevent a single point of failure, this authority should be replicated and distributed across
multiple nodes. Furthermore, the service authority should be able to start new instances
of a service if the requests cannot be handled by the existing instances of the service.
Likewise, the system should support the load-balancing of requests to multiple instances
of the services in order to ensure the quality of service of the involved service.

4.3.3 Real-Time Communication

Real-time communication is required whenever distributed safety-critical applications have
to be executed. Real-time communication provides deterministic bounds to message trans-
port latency. This is of utmost importance for example in medical control loops in which no
human shall be injured or hurt. It must also be assured that the services using the real-time
communication are not interfered or even stopped by other services. Moreover, the com-
munication activities of the services have to be scheduled and executed within strict timing
constraints. By this regard, the real-time communication services must be executed with
the highest priority in an preemptive system (like Linux with PREEMPT-RT, Windows
Embedded, QNX) or within a dedicated period of time (Linux with SCHED_DEADLINE
task scheduler).

4.3.4 Best-Effort Communication

Best-effort communication services are required for services that are not safety-critical but
can also be required by services that fulfill a safety-critical function, e.g. for registra-
tion of the service towards the service orchestration authority in the system. Best-effort
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communication is not restricted to one protocol (TCP, UDP, AMQP etc.) or message
transport technology (Ethernet, Bluetooth etc.). Best-effort communication by its word-
ing itself means that the successful message transport cannot be guaranteed, like it is the
case with TCP/IP communication in the Internet where packets can get lost during their
way through the Internet. This can have multiple reasons like buffer congestion in a router
that has to forward the packet to the next hop or the final destination of the packet.
However, best-effort communication is unreliable in terms of message transport latency
because it relies on an event-driven paradigm where message can be sent at any time. In
contrast to this, real-time communication often relies on a time-triggered paradigm with a
fixed assignment of time-slots for each communication partner which results in a predictive
behavior at the cost of a lower utilization of the communication resources. An example
for best-effort communication is message-oriented communication provided by a message
broker like RabbitMQ or Apache Kafka. Here in this open scenario where publisher and
subscriber can enter and leave at any time, it is impossible to provide temporal guarantees
regarding message latency and jitter.

4.3.5 Temporal and Spatial Partitioning

Temporal and spatial partitioning protects safety-critical applications from interference by
other applications in the system. For the approach introduced in this thesis, two types of
partitioning are of special interest. While spatial partitioning separates multiple available
resources into subsets (e.g., one CPU in a multi-core processor) or areas (e.g., memory),
temporal partitioning assigns time-slots in which access to a shared resource is granted. In
both types, different resources must be considered. Examples are processor cores, mem-
ory, communication and I/O resources. Services for partitioning must be provided at the
lowest level of the system. A feasible solution to achieve partitioning at a low level is
to use a (certified) baremetal hypervisor. The basic concepts of hypervisors and virtu-
alization techniques are introduced in Section 2.6. However, the operating system itself
can also offer services and techniques for partitioning. Linux for example introduced the
SCHED_DEADLINE scheduler with Kernel version 4.13 which allows the temporal parti-
tioning of CPU time where each task scheduled under SCHED_DEADLINE is associated
with a time budget Q (runtime) and a period P.

4.3.6 Authentication and Role Based Access Control

Sensors used in AAL and elderly care applications produce sensitive and private data. It
is of high importance that access to this data is controlled and restricted to authorized
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persons. This requires techniques for authentication and access control. By this means, a
role-based access control can help to minimize the configuration effort by using predefined
and user defined roles with associated rights. For example, there should be roles for the
owner, caregivers, relatives and doctors. Furthermore, the potential (hierarchical) access
rights should be defined in such a way that the complexity is low, but sufficient to support
all use cases. This counts especially for the data stored in the service gateways. Such data
comprises historical sensor data that enables a system to provide for example weekly or
monthy reports about activities or exceptional events.

4.3.7 Clock Synchronization

Clock synchronization is needed in order to have an overall correct temporal order of
events in a distributed system. This is because without time synchronization, timestamps
from different nodes cannot be linked together. This applies e.g. for timestamps that are
assigned to sensor data or data that is stored in a database. Incorrect temporal order can
lead to faulty behavior of the whole system. Furthermore, the temporal order is of high
importance in distributed safety-critical real-time systems for the establishment of real-
time communication. This requires the synchronization of all clocks within the distributed
system. Here, protocols like IEEE Standard for a Precision Clock Synchronization (IEEE
1588) and TSN - Timing and Synchronization (IEEE 802.1AS) can be used to synchronize
clocks via the communication network. Afterwards the synchronized network clock can be
used to synchronize the clock of the operating system which then is used as the reference
clock by all services running on the operating system. An implementation of IEEE 1588
(and parts of IEEE 802.1AS) is available from the LinuxPTP project [Ric18].

4.3.8 Sensor Integration

When integrating sensors, the main challenge is their heterogeneity e.g. regarding the
used communication technology (wireless vs. wirebound) or protocol (standardized vs.
proprietary). In order to lower this burden, an architecture for elderly care and AAL
should support communication standards like ISO/IEEE 11073 and Bluetooth HDP (cf.
Section 2.5). Furthermore, the platform should provide a mechanism to disable a certain
sensor for example by the command of an elderly person or the nursing staff in order to
comply with privacy needs.

Similar to services, a system has to keep knowledge about which sensors are connected to
the system and has to keep track of changes in order to always have up-to-date knowledge
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about the system’s state regarding sensors. This includes information about the properties
of the sensor like which type of data that is delivered by the sensor or in which interval the
data is delivered, which is especially interesting for real-time applications and scheduled
traffic (cf. Section 2.2).

4.3.9 Dynamic Reconfiguration

The open-world assumption introduced in Section 3.3 where components can enter and
leave during the runtime of the system implies the need for (autonomous) dynamic recon-
figuration of the system. This counts especially for the computational resources as well
as for the communication resources in real-time scenarios. There are further challenges
that have to be tackled when using a real-time communication network. First, the system
has to maintain detailed information about the network topology and further has to keep
this view always up-to-date. Second, it must adapt to changes within the communication
network and the composition of services that use the communication resources. Third, it
must be capable of carrying out a re-scheduling of all communication resources and further
be able to distribute the new schedules among all nodes.

4.3.10 Maintenance Services

Besides the services that provide the functionality of the system, further services are re-
quired in order to monitor the status of the system. This includes for example the status
of registered services and the load of the underlying operating system regarding CPU or
memory usage. Further, there should be a possibility to trace and to analyze the logfiles
of the system and the running services in order to get early indicators of problems and
potential failure risks. A further service should be available to maintain the system itself.
This is for example necessary to update or replace services of the platform. Taking a local
device and Linux as an example, parts of this maintenance service could be realized using
SSH or SCP. At the integration level of the local network or the internet, different solutions
like container-orchestration systems are available. Examples for state-of-the-art solutions
are Kubernetes and Docker Swarm.

4.4 Fault Assumption

Within distributed systems, fault-tolerance is important to prevent that a single failure
of one component can lead to a catastrophic system failure, which may lead to dangerous
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situations for human life. As introduced in Section 2.4.2, a failure is the deviation of the
system’s behavior from its specification. This failure is the result of an error, which is an
unintended state of the system caused by faults. In order to detect errors, knowledge about
the intended behavior of the system is required. This knowledge can be either provided a
priori to error detection mechanisms or for example can be derived by the comparison of
the results from redundant entities.

Due to these reasons, the presented system model includes a fault-hypothesis where all
FCUs for hardware including their failure modes and failure rates are defined. This section
will first introduce the fault-hypothesis following the fault-tolerance techniques which are
used within the presented system model.

4.4.1 Fault-Hypothesis

During the design of a fault tolerant system, the fault-hypothesis is the most important
document that states precisely which faults have to be tolerated by the system. It further
identifies the units of failure and the FCUs. The fault-hypothesis enables a system to
mask all faults that are within the fault-hypothesis and allows to apply fault tolerance
techniques in order to bring the system back into a correct operation state.

The presented system model assumes, that during a specific time interval the failure of
a single FCU must be tolerated (Single Fault Hypothesis). If more than one FCU of the
same type becomes faulty then more than one fault is occurring. For hardware faults, each
computing node (e.g. service gateway, sensors and smartphone) is regarded as a single
FCU since they are physically at a distance and it is realistic that they therefore will fail
independently. Further, each communication link is regarded as a FCU. By this way, the
presented fault-hypothesis clusters the FCUs into two domains: (i) network nodes and (ii)
communication links. Regarding software faults, each container (cf. Section 5.5) used for
the temporal and spatial isolation of applications can be denoted as a software FCU. The
following paragraphs explain the failure modes and failure rates of the FCUs in detail.

4.4.2 Failure Modes

Service Gateways For the computational nodes the failure mode is assumed to be arbi-
trary, where users may have a different view about the state of the node in case of a failure.
This inconsistent behavior is one of the most difficult failure modes to handle. Addition-
ally, it is assumed that a faulty network node will remain faulty until a fault-tolerance
mechanism brings the FCU back into a correct mode of operation (permanent failure).
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Communication Links Regarding the communication links in the local network domain,
Ethernet frames can be dropped or invalidated (transient failure), e.g. due to electro-
magnetic interferences. Additionally, a communication link can become unavailable and
remains in this faulty state (permanent failure).

Sensors Modern health and medical sensors are typically implemented as sensor nodes.
This means that the sensor itself is equipped with a CPU or microcontroller, which is
responsible for accessing the raw sensor and processing its data, as well as communicating
with an optional device such as a smartphone or service gateway. Therefore, the failure
mode of the sensors is assumed to be arbitrary, as with the service gateways.

Containers Within the proposed architecture, lightweight hypervisor-based containers
are used for the spatial and temporal isolation of applications in order to limit the impact
of faults. In this respect, faults that occur within one container do not affect other appli-
cations in different containers. Nevertheless, the fault can propagate within the container
and lead to an inconsistent behavior of the entire container. It is therefore assumed that
the failure mode of a container is arbitrary.

4.4.3 Failure Rate Assumptions

For our system architecture, the failure rate assumptions established in [OP06] are as-
sumed. Here, it is important to distinguish between permanent and transient failures
when considering the failure rate assumptions of hardware FCUs. Generally, transient
failures are much more common than permanent hardware failures. For transient failures,
the failure rate of FCUs with respect to hardware faults is about 1.000-1.000.000 FIT (Fail-
ures in Time, where 1 FIT is one failure per billion (10−9) hours) and strongly depends on
the environment. For permanent hardware failures, the failure rate is about 10-100 FIT.

4.4.4 Fault-Tolerance Techniques

The following section introduces the components and techniques that establish the fault-
tolerance in the presented architecture.

Triple Modular Redundancy Arbitrary failures of the computational nodes can be mas-
ked by applying Triple Modular Redundancy (TMR). Such a TMR configuration results
in fault-tolerant units (FTU), which consist of three timely synchronized deterministic
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FCUs where a voter is added to every FCU. Further, FCUs must to be connected by
two independent deterministic communication systems in order to tolerate a failure in the
communication links. Provided that a fault-tolerant global time base is available, a TMR
configuration can tolerate any arbitrary failure.

Rate-Constraint Communication In order to detect temporal failures of the network
nodes, our approach applies rate constrained communication similar to Avionics Full Du-
pleX Switched Ethernet (ARINC 664) (AFDX) (Arinc 664 Part 7) [ARI09]. Rate con-
strained communication establishes a priori knowledge about the temporal activity of the
FCUs which makes it possible to detect failures by comparing the activity pattern of the
FCU with the a priori knowledge. Additionally, rate constrained communication guaran-
tees a minimum bandwidth for each communication channel, assuring an upper bound for
both jitter and delay. The establishment of rate constrained communication with stan-
dard 802.1 Ethernet requires several techniques in order to avoid buffer congestion in the
switches and to establish the communication links. Two of the applied techniques are
traffic shaping and policing.

Traffic Shaping: Traffic shaping is required to bound the traffic sent to the network and
thus avoid buffer congestion in the switches. According to Vila-Carbó et. al, even the
switch delay is bounded, if all nodes limit their traffic [VCTMHO10]. Additionally, traffic
shaping is used to provide bandwidth reservation required for setting up the virtual links
with bounded transmission delay and jitter.

Traffic Policing: Traffic policing is required to avoid buffer congestion in the switches in
high load scenarios, where even high priority packets of the virtual links may be dropped
due to insufficient buffer. As within the approach of Vila-Carbo et. al we apply non-
preemptive priority scheduling within the switches. Their empirical results showed further,
that this approach can even be viable for the establishment of real-time communication
in distributed real-time systems with standard 802.1 Ethernet. Thus, for traffic policing
Commercial of The Shelf (COTS) switches are required that support priority scheduling
according to IEEE 802.1p (Traffic Class Expediting) or the ToS (Type of Service) field in
the IP Header (e.g. both are supported by COTS switches such as the GS1910-24 Gigabit
switch from ZyXEL).

Active Redundancy (Redundant Paths)

As introduced, redundancy in the communication links is required for setting up the TMR.
Redundancy is realized within the nodes by deploying two independent network interfaces
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which result in two independent communication links. Additionally, additional switches
are deployed for the redundant paths.

Membership Service

If one fault-containment region fails, the information about the failure must be reported to
all other FCUs with low latency. This is within the responsibility of the membership service
which was introduced by Katz et. al [KLR97]. Additionally, the membership service is
responsible for the “consistent activation of a never-give-up (NGU) strategy in case the
fault-hypothesis is violated” [Kop11b].

Fault-Tolerant Global Time Base

A fault-tolerant global time base has to be implemented in a redundant way by introduc-
ing two synchronized reference clocks where the time can for example be derived by an
external clock source like Network Time Protocol (NTP) or GPS. Further, precise clock
synchronization can be achieved by protocols like the IEEE standard for a precision clock
synchronization protocol [IEE08a].

Figure 4.3 shows the fault-model of this thesis. This UML model visualizes the correla-
tions between the fault-hypothesis, the fault-tolerance techniques and the FCUs. At the
top of the model we can see that the primary relationship is dependability (cf. Section 2.4).
The model further introduces means, threats and attributes of dependability.
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Based on the overall architecture and the identified services as introduced in the previous
chapter, this section introduces the models and algorithms of the services.
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Figure 5.1: Proposed services - Overview

Figure 5.1 gives an overview about the services of the service gateway regarding their
position within the different layers of the presented architecture. A relevant component at
hardware level is the network interface with its real-time clock and an IEEE 1588 compliant
hardware timestamping implementation. This compliance is of special importance since
it is required to implement real-time communication based on scheduled traffic. Further,
there is the clock of the host system which is synchronized to the real-time clock of the
network card by the clock synchronization service. The synchronization of the host clock
is required in order to establish the same notion of time in all service gateways for the es-
tablishment of distributed real-time applications that are scheduled by the task scheduling
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of the temporal and spatial partitioning service. The real-time clock of the network card
is in turn synchronized to the clocks of all other communication nodes within the network.
This is achieved by using the IEEE 1588 standard. Besides the mentioned service for
temporal and spatial partitioning, there are further services for dynamic reconfiguration,
service orchestration, sensor integration, maintenance, authentication and role-based ac-
cess control. Figure 5.1 further shows the introduction of fault-tolerance techniques at the
level of hardware and software, as introduced in Section 4.4. Some parts of this chapter
were published in [SO18][SO17][SOW18].

5.1 Service Orchestration and Discovery

SERVICE REGISTRY
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Figure 5.2: Service Orchestration

As introduced in the challenges, a service-oriented architecture requires techniques for
registration and discovery of services. Typically, a central or distributed service registry
is applied where services can register themselves (service self-registration) or can search
(service lookup) for other services. A service registry can also actively scan the local
network for new services or devices (service discovery). Likewise, the service registry has
to notify services in case of changes to the service registry, which includes the addition,
removal or failure of services. In particular, the latter case requires techniques to keep the
knowledge of existing services up-to-date. A typical example to address this challenge is
the sending of periodic keep-alive messages by the services towards the service registry.
Further, the information about the services has to be stored in a reliable way in order to
prevent a failure of the service registry in case of faults.
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As Figure 5.2 shows, the main component for the service orchestration is the service
registry. The service registry provides an interface for services for self-registration and for
service lookup. As storage backend, the service registry relies on a reliable and distributed
key-value storage. The service registry further uses techniques and protocols for service dis-
covery like the SLP, DNS Service Discovery (DNS-SD) and Zero-configuration networking
(Zeroconf) (cf. Section 2.7.4). As already mentioned, services can use the service registry
to register themselves or to search for needed services. Here, the interface supports both,
message-based requests (e.g. AMQP) and REST based request. This is required since a
service may not yet know the contact details for the best-effort communication service im-
plemented by a message broker which is used to provide the message-based interface of the
service registry. Since REST introduces dependencies among services (cf. Section 2.7.3),
the message-based interface should be the preferred interface used by services.

Services are registered at the service registry associated with their contact information
(e.g. IP-Address of the container and port) by using a hierarchical namespace stored in
the key-value store of etcd. Figure 5.3 shows the standard hierarchy. Each service gateway
has its own namespace identified by a unique Universally Unique IDentifier (UUID), e.g.
78ffb17c-6c65-11ea-bc55-0242ac130003. The UUID algorithm used is based on a time-
stamp and the Media Access Control (MAC) address of the service gateway and the UUID
is generated at the first start of the service gateway. At the first level of the hierarchy,
services are grouped by the main categories, namely platform-services, user-services, sen-
sors and messaging-services. The namespace tree in 5.3 further contains several sensors
(for body temperature, blood pressure, blood sugar level, SpO2 and heart-rate) and user-
services (user-interface and a database). Some services are optional like the RT-Broker
(cf. Section 5.9.2) as well as the real-time and rate-constraint communication services.
Multiple services or sensors for the same purpose might be present (e.g. two temperature
sensors in the kitchen) at the same time, and each service will get a unique ID at the first
registration. This is especially important for sensors to be able to distinguish between
their historical values in later stages. In addition, the presented namespace hierarchy is
flexible in a way that new types of sensors can be added without creating a namespace for
the sensor type first since the namespace for the sensor type is created automatically.
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Algorithm 1 Service Lookup at foreign service registries and interconnection server
1: procedure ServiceLookup(service)
2: if service.UUID == serviceGateway.UUID then
3: lookup local key-value store for requested service
4: if result.length() ≥ 1 then
5: filter(result, service.desiredAttributes) . e.g. reliability, resolution
6: return result
7: else
8: return emptyList
9: else if service.UUID = interconnectionServer.UUID then

10: forward request to interconnection server
11: wait for reply . Using timeout
12: return reply from interconnection server
13: else if service.UUID! = ”” then
14: if foreignRegistries.hasEntry(service.UUID) then
15: forward request to foreignRegistries.getEntry(service.UUID)
16: wait for reply . Using timeout
17: filter(result, service.desiredAttributes)
18: return reply
19: else
20: return emptyList
21: else
22: entries = new Map();
23: forward request to all known service registries
24: while replies != num(knownServiceGateways) do . Using timeouts
25: wait
26: combine replies in entries
27: filter(result, service.desiredAttributes)
28: return entries

Further, the presented namespace hierarchy in combination with message-oriented com-
munication based on publish-subscribe allows that services can apply wildcards (e.g. * and
#) in the subscription. A consumer subscribing with the topic sensors.kitchen.* would
receive the data from all sensors in the kitchen. Likewise, the topic sensors.# would ad-
dress all registered sensors. This also means, that with a careful designed hierarchical topic
namespace new applications and sensors can be integrated into the system seamlessly with-
out any action at the subscribers (e.g. performing a subscription for the new component).
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In order to keep services up-to-date regarding changes within the service composition in
the system (e.g. addition, removal or update of service information), the service registry
uses mechanism from the key-value storage. A typical way of how key-value storage solu-
tions notify services about changes are watches. Putting a watch on a key will result in
a notification for the watch holder in case of any update of the key. The service registry
also uses the mentioned concept of watches to keep track of changes within the key-value
storage. Whenever the service registry gets a watch notification, it publishes a message
through a dedicated service registry topic in order to notify all subscribed services.

Listing 5.1: etcd - Using the prefix option
$ etcdctl put service−gateway.78ffb17c−6c65−11ea−bc55− /
0242ac130003.sensors.kitchen.temperature "{’manufacturer’:’GoodTemperature’}"
OK
$ etcdctl put service−gateway.78ffb17c−6c65−11ea−bc55− /
0242ac130003.sensors.kitchen.humidity "{’manufacturer’:’GoodHumidity’}"
OK
$ etcdctl get −−prefix service−gateway.78ffb17c−6c65−11ea−bc55−0242ac130003.sensors
service−gateway.78ffb17c−6c65−11ea−bc55−0242ac130003.sensors.kitchen.humidity
{’manufacturer’:’GoodHumidity’}
service−gateway.78ffb17c−6c65−11ea−bc55−0242ac130003.sensors.kitchen.temperature
{’manufacturer’:’GoodTemperature’}

There are different approaches how current key-value storage solutions implement their
namespace hierarchy internally. Apache ZooKeeper [APA16] for example handles the
namespace hierarchy in hierarchical file-systems like structures whereas the reliable and
distributed key-value store etcd [Clo20a] uses internally a flat namespace (since etcd
version 3). That means that creating the key service-gateway.78ffb17c-6c65-11ea-bc55-
0242ac130003.platform-services.authentication is handled as a single string by etcd. By
this way, creating a hierarchy is very simple. The prefix option provided by etcd then
allows to match anything that starts with a particular key. Listing 5.1 shows how the
prefix option is used in etcd.

In order to support distributed applications, the service registry further is able to contact
other service registries running at the same level (another service gateway) or running at
a higher level (e.g. at the interconnection server). Likewise, other service registries in the
local network may want to query for services located at foreign service gateways. In order
to achieve this, the service registry announces itself in the local network. Other service
registries now can use this announcement and add the corresponding service gateway to a
list with known service gateways. Here, the UUID of the respective service gateway is used
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for storing the contact information of the foreign service gateway. Depending on the first
part of the namespace of the desired service (which is the UUID of the service gateway),
the service gateway now can decide, at which service gateway the service is located (cf.
Algorithm 1). If the UUID matches the UUID of the local service gateway, the service
registry directly can lookup the service details in the local key-value storage. If the UUID
does not match with the one of the local service gateway, the service registry will forward
the service lookup request to the respective service gateway. The response of this request is
then forwarded to the service that made the initial request. In order to comply with data
protection requirements, the foreign service registry will only reply with services which
are explicitly announced as public services. It is also possible to lookup services without
a UUID. In this case, the service registry will forward the service lookup request to all
known foreign service registries. Compared to that procedure, the service registry can be
configured to use a service registry located on the interconnection server. By this way, also
services registered at the interconnection server in the Internet can be used. The presented
service registry only handles best-effort services. Real-Time services are handled by the
RT-Broker and the RT-Client (cf. Section 5.9.2 and Section 5.9.3).
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Figure 5.3: Hierarchical namespace tree - Example
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5.2 Fault-Tolerance

As part of the fault-hypothesis in Section 4.4.1, which identified different failure modes
and failure rates in the presented architecture, different fault-tolerance techniques were
introduced. The presented techniques are means to establish fault-tolerance within the
two identified FCUs, namely the service gateway and the communication links in the
local network. Figure 4.3 shows both FCUs as part of the fault-model for the presented
architecture.

Regarding the detection of temporal failures of the service gateways regarding network
communication resources, the presented architecture provides two different approaches.
The first approach involves the use of rate constraint communication in combination with
traffic shaping at the service gateways and traffic policing at the network switches. At
the service gateways, the presented architecture implements a traffic shaping layer for
rate-constrained communication. The traffic shaping layer prevents nodes from producing
more network traffic than allowed, which would cause for example buffer congestion in
the switches. Secondly, the traffic shaping layer allows the calculation of a Bandwidth
Allocation Gap (BAG) for Ethernet packets. This allows to isolate failures of nodes within
the network, like faulty service gateways or sensors connected via the local network. The
definition of the BAG is specific for each application. Regarding ISO/IEEE 11073, the BAG
values could for example be integrated into the ISO/IEEE 11073 specialization standards as
a priori knowledge. This would allow a seamless integration of ISO/IEEE 11073 compatible
devices into the rate-constrained communication. The traffic shaping layer will also protect
against misbehaving application components that for example monopolize the network by
sending continuously data to the network (babbling idiot failures). Additionally, the traffic
shaping layer will add priorities to the network traffic in a way that the network switches
can apply traffic policing on the traffic based on the associated priorities.

Since Linux is used as the basis of the service gateways, the traffic shaping layer makes
use of existing kernel features in order to establish fault-tolerance. One of these features is
the Linux Traffic Control (LTC), which is a Linux kernel mechanism that determines, how
IP packets are sent to the network. LTC includes features for classification, scheduling and
policing of network traffic. Packets can be classified by a large set of filter mechanism like
dsmark (Differentiated Services Marker, provides filtering for IP header fields), iptables
or u32 (filtering of complete packet data). The resulting traffic classes can be assigned
to several queueing disciplines, that determine the scheduling of the packets. The default
queueing discipline in most Linux distributions is PFIFO_FAST, which is a classless FIFO
queueing discipline with three priority bands. A Linux distribution that for example is
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not using PFIFO_FAST is Arch Linux, which uses FQ_CoDel (Fair Queuing Controlled
Delay) as default queueing discipline. In contrast to classless queueing disciplines which
have just one level of queuing, classful queueing disciplines can have several levels and can
be arranged hierarchically.

The traffic shaping features are realized within the network stack of the Linux kernel
and support a full set of queueing disciplines like Hierarchical Token Bucket (HTB) and
Hierarchical Fair Service Curves (HFSC). As already mentioned, the traffic shaping layer
is required for several reasons. First, it prevents babbling idiot failures of software compo-
nents, which jeopardize the network by constantly sending high-priority messages. Second,
the traffic shaping layer establishes an a priori knowledge about the temporal activity of
the service gateway on the network. Therefore, it is possible to detect temporal failures
by comparing the activity pattern of the node with the a priori knowledge. Like in AFDX
(Arinc 664 Part 7) [ARI09], the traffic shaping layer establishes rate-constrained communi-
cation where a minimum bandwidth is guaranteed for each communication channel. Here,
the guaranteed bandwidth also ensures an upper bound for both jitter and delay.

DRR

HTB

PFIFO_FAST

PRIO

FIFO
FIFO
FIFO
FIFO
FIFO

FIFO
FIFO
FIFO

Rate-Contrained
Traffic

Streaming Data

Best Effort

Figure 5.4: Linux Traffic Control (LTC) Configuration - Example

Figure 5.4 shows a configuration of LTC with three traffic classes: rate-constrained,
streaming data and best-effort. These classes are scheduled using a priority (PRIO) queue-
ing discipline. The highest priority is provided to the rate-constrained traffic class which
is a Deficit Round Robin queueing discipline with multiple classes each containing a FIFO
queueing discipline. These FIFO queueing discipline represents the virtual links of the
rate-constrained communication. For each virtual link, the traffic shaping layer creates a
virtual network interface. Data that is sent to such a virtual network interface is marked
with a corresponding VLAN-ID which then is used by the LTC to classify the data for
the corresponding FIFO queue (respective virtual link). The streaming traffic class is
implemented by using a HTB queueing discipline. The last traffic class is for best-effort
communication using the queueing discipline PFIFO_FAST queueing discipline.
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The mentioned approach for rate-constrained traffic is reasonable for use cases that do
not include distributed real-time applications with strict timing requirements in the low
microsecond range. However, if distributed real-time applications with strict timing re-
quirements are executed within the presented architecture, the second approach for the
detection of temporal failures of the network nodes is more suitable, which is the intro-
duction of scheduled traffic based on a real-time communication network. As introduced
in Section 2.2, scheduled traffic is based on a communication schedule, which provides
a-priori knowledge of the communication behavior (e.g. at which instant of time data
shall be transmitted) of the involved network nodes. This a-priori knowledge allows for
example the introduction of guardians at ingress ports of switches in order to prevent
faulty communication nodes from sending packets at non-scheduled time points (e.g. in
the event of a "babbling idiot" failure). In order to run the communication schedule at the
service gateways, the presented architecture introduces a time aware network traffic sched-
uler on top of the network driver. Thus, this approach requires an underlying real-time
communication network as introduced in Section 4.1 that must further be synchronized
to a fault-tolerant global time base. The introduction of scheduled traffic further allows
to establish a membership service. Since scheduled traffic is based on a time-triggered
paradigm, the periodic communication time slots of the components are indirectly also
membership points (life signs) [KGR91]. Therefore it is possible to detect the failure of
a component by comparing the interval of two subsequent messages with the scheduled
behavior.

The afore mentioned techniques for the establishment of fault-tolerance are all means
that are applied at a higher level of the architecture, namely the service gateway and
the communication links in the local network. Within the service gateway, techniques
for software fault-tolerance can be applied (cf. Section 3.1). However, the application
of fault-tolerance techniques like Timeout, Retry or Fallback lies within the scope of the
applications running on the service gateway. Nevertheless, some means for fault-tolerance
at software level are already provided by the presented architecture. One example is the
application of a message broker that supports the queueing of messages in order to tolerate
the absence of consumers (e.g. due to a failure) without messages getting lost. Further,
the introduced temporal and spatial isolation (cf. Section 5.5) implements FCUs at the
level of the services. The partitioning of the resources in the temporal and the spatial
domain assures that a faulty service cannot affect further services in other FCUs. A
typical example is a faulty service that runs into an infinite loop. Without a temporal
isolation of the computational resources, the faulty service would have a negative impact
on the whole system. This is not the case when temporal isolation of the computational
resources is applied. Here, the computational resources are divided into several partitions
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and the services running within this partition can only use up the amount of resources that
are allocated to the partition. In this way, the availability of resources within a partition
is always guaranteed.

5.3 Best-effort communication

In the presented architecture, non real-time services are loosely coupled by using the
message-based communication protocol AMQP. AMQP is an application layer protocol
based on best-effort communication, which means that the transport latency for a message
is not known a priori and thus not guaranteed. The delivery of a message can for example
take 1 millisecond or 20 milliseconds depending on the route of the packets during their
transport. A message may even be dropped, e.g. due to buffer congestion in the network
switches. However, the best-effort communication must meet several requirements in the
presented architecture, which are routing, queuing, reliability and security. Most of these
four requirements are met by using a message broker for the message exchange. The most
commonly used communication model of message brokers is publish-subscribe, where a
message is distributed from the originating service (publisher) to one or more receiving
services (subscribers). The routing of the messages between publishers and subscribers is
typically based on so called topics (cf. Section 2.7.3). A topic is like a filter which is used
by the message broker to determine to which subscribers the message has to be forwarded.
As AMQP is an application layer protocol, the routing of messages also happens at the
application layer between the producers and the consumers. The aforementioned routing
is independent from the packet routing in the underlying network. Brokers that implement
queuing are connecting the subscribers to the subscribed topics with an intermediate queue.
This queue adds further reliability to the communication because it allows to tolerate the
absence of subscribers for a certain period of time (where the length of time depends on
the size of the queue buffer and the message sizes). The queuing mechanism also allows
to update a service with a new version during the run-time of the system without any loss
of data. Thus, the used message protocol AMQP operates at application layer, it is also
feasible to use communication security protocols like Transport Layer Security (TLS) in
order to establish a secure message communication. The routing of messages can further
be extended to support the transport of messages between brokers, which is called message
federating.

In order to use the communication services of the message broker, a service has to know
the communication endpoint of the message broker. The communication endpoint depends
on the used protocol. AMQP for example uses the Transmission Control Protocol (TCP)
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at port 5762 in the default configuration. As with all other services, details about the best-
effort communication service provided by the message broker is made available for other
services via the service registry (cf. Section 5.1). In Figure 5.3 details about the commu-
nication endpoints of the best-effort communication service can be found at the namespace
service-gateway.78ffb17c-6c65-11ea-bc55-0242ac130003.messaging-services.best-effort. The
namespace of the best-effort communication service after the service gateway UUID is al-
ways fixed and can therefore be integrated into the services in advance. However, the
details of the best-effort communication service may vary (e.g. name or used port). This
means that a service must contact the service registry immediately after its launch in or-
der to obtain the communication endpoint of the best-effort communication service. Since
a change to the best-effort communication service is possible (but unlikely), the service
should further subscribe to change notifications of the service registry (cf. Section 5.1).

5.4 Real-Time Communication

Real-time communication is required for distributed services that have timing requirements
regarding the communication latency. This precisely means that the message transport
latency as well as the jitter in the communication network have to be bounded. These
guarantees cannot be provided by a typical Standard Ethernet communication network.
As introduced in Section 4.1, a real-time communication network is required in order
to run distributed real-time applications. For example, TTEthernet and Time Sensitive
Networking (TSN) are appropriate already available solutions that can be applied. Both
real-time communication networks are explained in detail in Section 2.2.3 and Section 2.2.4.

As Figure 5.5 shows, appropriate network drivers handle the communication between
the network interface and the operating system. A scheduler is responsible for injecting
messages at scheduled instants of time to the real-time communication network. Linux for
example introduced with kernel version 5.2 the Time-Aware Priority Shaper (TAPRIO),
which is a queueing discipline that implements (a simplified version of) the Time-Aware
Shaper (TAS) defined in the enhancements for scheduled traffic in IEEE 802.1Qbv (cf.
Section 2.2.4). The basic idea of the enhancements for scheduled traffic defined in IEEE
802.1Qbv is to block non time-sensitive traffic in reserved time intervals in order to have
an idle port for sending time-sensitive traffic. The TAS allows the transmission of packets
in an end station or a bridge by predefined time schedules (called scheduled traffic or
protected traffic). By this way, the TAPRIO queueing discipline can partition resources
from a network adapter and thus allows to provide temporal partitioning for applications
regarding the network resources. Another requirement for real-time communication is to
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Figure 5.5: Real-Time communication - Overview

have all clocks synchronized in the network. As applications and services also have to
provide their results and messages at the correct instant of time, the clock of the service
gateway has to be further synchronized to the clock of the network card. Therefore,
clock synchronization in distributed real-time systems (as it is the case with the presented
architecture) is typically a two-step process. At first, all clocks of the network cards are
synchronized. Subsequently, the clock of each service gateways is synchronized to the clock
of the network card.

The real-time communication service must consider two different scenarios. The first
scenario covers the real-time communication between service gateways, where a real-time
service located on service gateway A wants to communicate with another real-time service
on service gateway B. However, this requires an underlying real-time communication net-
work like TSN. The second scenario considers two real-time services located on the same
service gateway. Since the implementation of the temporal and spatial isolation service is
based on Linux Containers (LXC) in order to isolate services with different criticalities,
the real-time services must communicate across the border of their respective container
environment. This requires a real-time container-to-container communication. A commu-
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nication via shared memory is not possible since the containers are also isolated regarding
their memory.

In order to support a dynamic system with real-time service entering and leaving at
run-time of the system, techniques for dynamic scheduling and configuration of the real-
time communication resources are also required. Section 5.9 addresses this challenge using
TTEthernet. For TSN, there is currently no configuration framework available which ad-
dresses all aspects of the reconfiguration process. However, there are some initiatives that
aim to address this topic by incorporating techniques from the TSN standard like net-
conf [EBBS11]. One example is AccessTSN [LHI20], a publicly funded research project
which was kicked-off in May 2018. AccessTSN pursues several objectives like the establish-
ment of a vendor-independent application interface as an abstraction layer for the different
TSN standards and the Linux system configuration and management tools for TSN and
AccessTSN.

5.5 Temporal and Spatial Partitioning

The temporal and spatial partitioning service belongs to the non-functional services pre-
sented in this thesis. Non-functional means that this service provides no functionality
to the applications and services running on the service gateway. The main goal of this
service is to establish temporal and spatial isolation among all services and applications
running on the service gateway. As introduced in Section 4.3.5, spatial partitioning sep-
arates multiple resources into subsets (e.g., one CPU in a multi-core processor) or areas
(e.g., memory) while temporal partitioning assigns time-slots in which access to a shared
resource is granted. This isolation can for example be established by the introduction of a
hypervisor at OS level (cf. Section 2.6).

Figure 5.6 shows an overview about the different components of the temporal and spatial
partitioning service. Since the service must be provided at a very low level of the system
(e.g. at the level of the operating system), the presented approach introduces a hypervisor
at OS-level (type-2 hypervisor) which uses mechanisms from the kernel of the operating
system to provide virtualization for the resources of the host (cf. Section 2.6). However,
the isolation provided by the hypervisor at OS level does not provide complete spatial and
temporal isolation of hardware resources. For a comprehensive isolation of all resources,
further techniques have to be applied.

The resources that have to be isolated depend strongly on the applications. A typical
application will use CPU, memory and I/O resources. Applications in distributed systems
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also may use network resources to fulfill their tasks. Table 5.1 shows an overview of the
intended technologies used to achieve spatial and temporal partitioning of shared resources
in Linux.

The temporal and spatial isolation by the use of an OS based hypervisor introduces a
further requirement to the scheduling of tasks. Since the tasks that run within a container
are executed within a separate PID hierarchy that is located under the hierarchy of the
underlying operating system, the overall scheduling of all tasks running on the service
gateway has to be performed in a hierarchical manner. Here, the presented architecture
incorporates the results achieved by Luca Abeni et. al [ABC19], who proposed a real-time
deadline-based hierarchical scheduling policy to provide temporal scheduling guarantees
to different co-located containers.

Spatial isolation of the network is also provided by Linux Namespaces. However, the
temporal partitioning of the network resources is special here, since it puts further require-
ments to the underlying platform. For example, network hardware that supports scheduled
traffic is required in order to achieve the required temporal partitioning of the network re-
sources. Besides proprietary hardware for the TTEthernet protocol, there is already first
hardware available for TSN. An example is the Intel®Ethernet-Controller I210, which is
a Gigabit-Ethernet controller that supports precise clock synchronization and hardware
timestamping (IEEE Standard for a Precision Clock Synchronization (IEEE 1588)) and
Forwarding and Queuing Enhancements for Time-Sensitive Streams (IEEE 802.1Qav).
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CPU RAM Disc I/O Network
SCHED_DEADLINE x(T P )

Memguard x(T P )

Linux control groups x(SP ) x(SP ) x(T P ) x(SP )

Disk Partitions x(SP )

TAPRIO x(T P )

TP: Temporal Partitioning
SP: Spatial Partitioning

Table 5.1: Technologies for spatial and temporal partitioning
of shared resources in Linux

TSN switches are also already available like the LRTN16R from TrustNode that supports
the following protocols: IEEE 802.1AS, IEEE 802.1Qbu (preemption of non-critical data
streams in case of a higher priority data stream), IEEE 802.1Qbv, IEEE 802.1CB and
IEEE 802.3br (enhancements for the precision of frame preemption).

For the temporal partitioning of the network resources, the presented architecture further
relies on TAPRIO which is a queueing discipline (QDISC) that implements (a simplified
version of) the TAS defined in the enhancements for scheduled traffic in IEEE 802.1Qbv.
TAPRIO was introduced with the mainline Linux Kernel in version 5.2 and thus a recent
Linux kernel version with a minimum version 5.2 is required for the temporal and spatial
partitioning service.

Since Linux control groups only provide the spatial partitioning of memory, other tech-
nologies are required to gain the temporal isolation of the memory. One possible technology
is MemGuard, which is a memory bandwidth reservation system that “distinguishes mem-
ory bandwidth as two parts: guaranteed and best effort” [YYP+13]. MemGuard supports
multi-core platforms and is available as a Linux Kernel module. Cgroups can also be used
to achieve temporal isolation of I/O by limiting the I/O throughput of a process. However,
the limitation of I/O only performs correctly since the introduction of the new generation
of cgroups (cgroup v2). The popular software Docker currently still relies on cgroups v1
and therefore is not able to handle the temporal isolation of I/O correctly. In contrast,
Linux Containers (LXC) is already using cgroups v2 and is therefore used in the presented
architecture.

However, applying a hypervisor as a basis for the temporal and spatial isolation also puts
a further challenge on the real-time communication. In particular, the communication now
follows an hierarchical model where the communication between different containers and
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the communication with other nodes in the network has to be coordinated and scheduled
(cf. Section 6.2).

The following sections present the different Linux kernel technologies used within the
implementations of the temporal and spatial partitioning service.

5.5.1 Linux Kernel Features and Techniques

Linux Control Groups

Linux control groups (cgroups) is a Linux kernel feature that allows to organize processes
into hierarchical groups that can be configured to limit and to monitor resources (e.g.
memory and CPU) of the processes associated to the group. While the organization
of groups is a feature of the cgroups core, cgroups controllers are responsible for the
distribution of resources along the resource hierarchy tree. A process belongs to exactly
one cgroup and all threads of this process and later forked processes belong directly after
their creation to the same cgroup.

As with Linux kernel 4.5, a new cgroup version (cgroup v2) was marked as non-experimen-
tal [Ekl20]. The main difference compared to v1 is that there is only a single hierarchy
for all resources instead of one hierarchy per resource. However, not every controller that
was available in cgroup v1 is yet available in cgroup v2. At present, cgroup v2 supports
the following controllers: CPU, Memory, IO, ProcessID (PID) (e.g prohibit forking of
processes), device controller (e.g. manage access to device files), Remote Direct Memory
Access (RDMA) as well as some other miscellaneous controllers.

Linux Namespaces

Linux namespaces is a Linux Kernel feature that allows to define virtual instances of the
resources of the host and the Linux Kernel. The virtual instances are completely separated
from each other and members of one instance cannot see or modify the resources of another
instance. That means that processes within the namespace have their own isolated instance
of one global resource. Linux namespaces are a key feature when it comes to container
based virtualization making resource assignments to a container completely isolated and
abstracted from the rest of the system and other containers. Linux currently provides the
following namespaces [LIN18]:

• Cgroups

• Inter-Process Communication (IPC)
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• Network (provides isolation of network devices, IP protocol stacks (both IPv4 and
IPv6), IP routing tables and firewall rules)

• Mount (provides isolation of the list of mount points)

• Process identifier (PID)

• Time (provided isolation for clocks)

• User (provides isolation regarding security-related identifiers and attributes like user
IDs and group IDs)

• Unix Time Sharing (UTS) (provides isolation for hostname and Network Information
Service (NIS) domain name)

5.5.2 Linux Containers (LXC)

The introduced hypervisor LXC is a userspace interface for the containment features of the
Linux kernel like kernel namespaces or control groups (cgroups). LXC is using both cgroups
and namespaces to achieve the spatial separation of CPU and memory resources. Linux
control groups and namespaces separate processes such that these processes cannot see the
resources in other groups. For example, the network namespace allows to establish different
and separate network interfaces with individual routing tables that are just visible to a
dedicated namespace. These network namespaces then can be connected to the physical
network interface by using a network bridge, which can be a standard Linux network bridge
or for example an Open vSwitch (OVS) bridge.

5.5.3 Linux Real-Time Scheduling

In today’s state-of-the-art there is a growing interest in making the Linux kernel suitable
for real-time applications. Reasons are the design of Linux, which guarantees reliability
and performance, and its open-source character that enables changes of the source code
according to user needs [LSAF16]. Some approaches to achieve real-time guarantees in
Linux are Xenomai [XEN19], the RealTime Application Interface (RTAI) [RTA18], the
PREEMPT-RT patch [LIN20a] or SCHED_DEADLINE [LSAF16].

Xenomai uses two kernels. A microkernel is responsible to control real-time tasks during
their time-critical operations. This kernel runs side-by-side with the regular Linux kernel
on which the remaining tasks are running. This way, the microkernel provides very low
latencies for real-time applications. Besides running in the microkernel, it is further pos-
sible to execute real-time tasks in the regular kernel [Yag08]. As the latencies are much
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higher in this case, the use of this scheduling technique depends on the requirements of
the application. RTAI follows a similar approach, the main difference is that a thread
migrating to the Linux space loses its real-time priority.

Fully Preemptive Kernel (PREEMPT_RT)

Besides the advantage of reaching real-time guarantees, both, Xenomai and RTAI have dis-
advantages in their applicability. Compared to regular Linux, they require a different API
for real-time tasks. The PREEMPT-RT patch instead transforms the regular Linux kernel
into a fully preemptive one without using a microkernel [LS11]. The developers replaced
most kernel spinlocks by preemptive mutexes supporting priority inheritance and moved
all interrupts to kernel threads. As a result, almost the whole kernel can be preempted
except some small regions of code which significantly improves the maximum and average
response time of the real-time tasks.

Using PREEMPT-RT, the kernel schedules tasks based on their priorities. Until kernel
version 3.14 there were two scheduling strategies to select the next task to execute, First
In First Out (SCHED_FIFO) and Round Robin (SCHED_RR). In SCHED_FIFO, the
first available task with the highest priority is chosen which runs until it is preempted
by a higher priority task, it terminates or until it relinquishes the CPU. Round robin
uses timeslices so that a running task is preempted once it consumed all its execution
time [LIN20e]. Both strategies suffer from starvation of lower priority tasks. Another
disadvantage of priority-based scheduling is the possibility of priority inversion assuming a
high-priority task tries to acquire access to a shared resource which was locked already by
a low-priority task. The high-priority task has to wait for the low-priority task to release
the resource. If a mid-priority task preempts the low-priority task, it also delays the high-
priority task for an arbitrary amount of time. Hence, the task priorities are inverted.
Using priority inheritance, the low-priority task receives the priority of the high-priority
task during its critical section. Once it released the resource, the high-priority task can
continue [SRL90]. Although arbitrary delays due to another task are limited, the execution
of the high-priority task is still delayed by the WCET of the low-priority task’s critical
section. Hence, another mechanism to prevent such a situation is preferable.

Deadline Scheduling (SCHED_DEADLINE)

In addition to the drawbacks of priority-based scheduling, PREEMPT-RT does not give
any guarantees on a task’s temporal behavior such as deadlines. Due to these reasons,
another real-time scheduling strategy called SCHED_DEADLINE was developed. The

85



5 Platform Services

deadline scheduler was included into the mainline Linux kernel in version 3.14. It enforces
temporal isolation between real-time tasks using resource reservation. Each real-time task
can run for a maximum runtime Qi every period Ti as long as the total utilization ∑N

i=1
Qi

Ti

of all real-time tasks is below a certain threshold [LSAF16]. The combination with Linux
control groups in [ABC19] can for example provide temporal scheduling guarantees to
different co-located containers as a lightweight virtualization mechanism.

5.5.4 Memguard

At our current knowledge, there is no container based virtualization technology avail-
able that provides isolation of memory bandwidth, which makes temporal isolation among
applications infeasible. One technology that can be used to achieve this isolation is Mem-
Guard, which is a memory bandwidth reservation system for efficient performance isolation
in multi-core platforms [YYP+13]. MemGuard distinguishes two parts of memory band-
width: guaranteed and best effort. For the guaranteed bandwidth, it provides bandwidth
reservation to achieve temporal isolation with efficient reclamation to allow a maximum
use of the reserved bandwidth. “It further improves performance by exploiting the best ef-
fort bandwidth after satisfying each core’s reserved bandwidth” [YYP+13]. In the current
version, MemGuard supports a per-task mode, where the task priority is used a weight for
the bandwidth assignment. In relation to containers, this allows to guarantee a reserved
memory bandwidth to the init process of the container.

5.6 Authentication and Role Management

An architecture based on microservices has many advantages such as the scalability of
the services and flexibility in the choice of the programming language used. Since sensors
and applications in the field of elderly care and Ambient Assisted Living (AAL) produce
very sensitive and private data, the presented architecture supports authentication and
authorization (based on roles), where authentication is the process of identifying the user
and authorization refers to what the user is allowed to do.

However, authentication and authorization in a microservices based architecture are
more challenging in comparison to a monolithic application design due to its distributed
nature. In a monolithic application, authentication and authorization are typically imple-
mented by a central security module. After the security modules has checked the identity
of a user (e.g. by username and password), the module generates a session with all informa-
tion about the user (e.g. permissions, roles, etc.) and returns the session ID (e.g. by using
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a Cookie) to the user. A common way to check the session in all requests of the client is
to use a security interceptor that only allows the processing of the request in case the user
has sufficient rights to execute the request. Security interceptors are also a typically used
approach in services that are based on Representational State Transfer (REST). However,
as mentioned in Section 2.7.3, REST is based on a synchronous communication model that
brings dependencies among services. In addition, using a session for authentication and
authorization prevents the services from being stateless, which hinders the scaling of the
services, e.g. for load balancing reasons. Due to these reasons, there are different solutions
available like JSON Web Tokens (JWT) [JBS15].

JWT is a standard for client tokens based on JavaScript Object Notation (JSON). In
contrast to sessions where the information is stored on the authenticating part, client
tokens are stored on the user side (e.g. in the LocalStorage of a Web-Browser). The client
token holds the identity of the user and is a Base64 encoded String that is composed of
three parts (concatenated with a dot), namely header, payload and signature. Listing 5.5
shows an example JWT Token that was computed by the header listed in Listing 5.2 and
the payload from Listing 5.3. The signature is calculated and can be verified by applying
the cryptographic hash function defined in the header of the JWT client token.

Listing 5.2: Example JWT Header
{
"alg": "HS256",
"typ": "JWT"

}

Listing 5.3: Example JWT Payload
{
"sub": "michael.schmidt@eti.uni−siegen.de",
"name": "Michael Schmidt",
"iat": 1584209607

Listing 5.4: Verifying a JWT
HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
ft−rt−architecture−%&

)
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JWTs can also be encrypted in order to provide secrecy between communication parties.
For the presented architecture, signed JWTs as mentioned in the example above are suf-
ficient since the signed tokens verify the integrity of the claims contained in the payload.
Encrypted tokens hide the claims from other parties.

Listing 5.5: Resulting JWT Token
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJtaWNoYWVsLnNjaG1pZHRAZXRp /
LnVuaS1zaWVnZW4uZGUiLCJuYW1lIjoiTWljaGFlbCBTY2htaWR0IiwiaWF0IjoxNTg0MjA5Nj /
A3fQ.SW4hDpB6N−rlAGacYpKgyAr48pI5NlAdRoLkkymojBs

Client tokens like JWTs are typically generated at a central authentication authority like
OAuth (cf. Figure 5.7) after the user (or a service) has provided the correct credentials
(e.g. username and password). Since client tokens are credentials, these must be handled
carefully to avoid security problems.

Figure 5.7: Getting a JWT client token from OAuth [AUT20]

5.7 Clock Synchronization

A fundamental basis of any distributed real-time system is clock synchronization among
all involved components since the clock synchronization establishes a global view about
time. This common view about time is for example required for the temporal ordering
of events in the system. Taking data and events from sensor nodes as an example, clock
synchronization allows to combine data from different sensor nodes (sensor data fusion)
or to guarantee the overall consistency of the sensor data (temporal order). The main
challenge with clock synchronization is that physical clocks have a varying drift rate that is
“influenced by environmental conditions, e.g. due to a change in the ambient temperature”
[Kop11a].

Clock synchronization can be established for example by applying a central master clock
synchronization algorithm where a central master node sends periodically the value of its
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time counter in synchronization messages to all other nodes (slave nodes). By incorporating
the delay of the synchronization message in the network, the slave nodes can calculate the
difference between the clock of the central master and their own one in order to correct the
local clocks. A further approach for clock synchronization in switched Ethernet networks
is the IEEE 1588 Precision Time Protocol (cf. Section 2.2.2).

Clock synchronization in the presented architecture is established in a two-step process.
The first step is the clock synchronization among all network hardware in the real-time
network by using the IEEE1588 standard. In a second step, the clock of the network
interface is synchronized with the clock of the service gateway.

5.8 Sensor Integration

When integrating sensors, a major challenge is the heterogeneity of the available sensors.
Additionally, it should be possible to disable a certain sensor for example by the command
of an elderly person or the nursing staff in order to comply with privacy needs. According
to the microservices approach, sensors are integrated into the architecture as services and
will use communication endpoints at the message broker to publish their sensor values.
The communication endpoints are dedicated message exchanges (cf. Section 2.7.3) within
the message broker which are administrated by the service registry. In the presented
architecture, sensors are registered in the same way as services. Therefore, each sensor has
its own namespace which is part of the namespace hierarchy introduced in Section 5.1.

There are two ways how sensors can be integrated. First, sensors can register themselves
at the service registry providing detailed information like type, measurement units and
metadata like an ontology membership for example. Second, ISO/IEEE 11073 compatible
sensors are registered at the service registry by an ISO/IEEE 11073 service running on top
of the open source ISO/IEEE 11073 software stack Antidote [Sig14].

Figure 5.8 depicts the procedure for sensors when registering the service registry. During
the registration of a sensor, the service registry will return the assigned namespace and
the communication endpoint where the sensor can publish data. Additionally, the service
registry announces the newly integrated sensor on a dedicated message exchange at the
message broker, providing information about the communication endpoint and namespace
of the sensor. This information can be used for example by other services to react to the
newly added sensors. One possible action could be the subscription to the communication
endpoint using the provided namespace to receive the data of the newly added sensor.

89



5 Platform Services

Sensor
(Sensor + Appl.)

Service Manager
(Zookeeper)

IEEE11073 Manager 
Appl.

IEEE11073 Stack
(Antidote)

IEEE11073 Sensor

Message Service
(RabbitMQ)

Pattern Recognition User Interface

1) Register
Sensor

3) Return communication endpoint
(sensor namespace)

2) Event: New Sensor

4) Publish sensor data with
given namespace

2a) Publish event:
new sensor

2a) Publish event:
new sensor

2b) Subscibe

5) Publish sensor data

1) Register
sensor

3) Return communication endpoint
(sensor namespace)

4) Publish sensor data

Figure 5.8: Registration of Sensors as services at the service registry

Discovery and peering of sensors based on ISO/IEEE 11073 is realized by implement-
ing an ISO/IEEE 11073 compliant manager application on top of the Antidote ISO/IEEE
11073 software stack. Based on the state machine introduced by ISO/IEEE 11073, the
manager will receive events from the stack whenever a device is associated to or disasso-
ciated from the ISO/IEEE 11073 stack. These events will be for example used to register
the sensor at the service registry. Whenever the manager receives measurements for the
associated sensors, the data will be published at the communication endpoint and the
namespace provided by the service registry during the sensor registration process. When-
ever a sensor is disassociated from the IEEE11073 stack the manager will de-register the
sensor at the service registry.

One downside of the ISO/IEEE 11073 stack is the missing support for Bluetooth Low
Energy (Bluetooth LE). In order to support Bluetooth LE as well as the ISO/IEEE 11073
stack, a sensor proxy with transcoding capabilities according to the Health Device Profile
Implementation Guidance Whitepaper [Blu09] is necessary. Figure 5.10 depicts the data
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Figure 5.9: Integration of ISO/IEEE 11073 compliant devices

flow of the communication model for Bluetooth LE devices. The implementation of the
sensor proxy with the transcoding feature provides the ability to map between Bluetooth
LE characteristics and ISO/IEEE 11073 device specializations. This will allow to integrate
Bluetooth LE devices as well.
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Figure 5.10: Integration of Bluetooth LE devices into ISO/IEEE 11073 - Example for a
Polar H7 heart rate sensor

5.9 Dynamic Reconfiguration of Real-Time
Communication Resources

As illustrated in Figure 5.11, the presented approach introduces two services for the dy-
namic reconfiguration of real-time communication resources: namely the Real-Time Broker
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Figure 5.11: System Model

(RT-Broker) and the Real-Time Client (RT-Client). Both services are introduced in detail
in Section 5.9.2 and Section 5.9.3. The RT-Broker is responsible for topology and service
management, scheduling, configuration building and distribution of communication sched-
ules. The RT-Broker is designed as a central instance and therefore exists only once in the
network. The counterpart of the RT-Broker is the RT-Client, which has to be installed
on a service gateway that runs services that want to use the real-time communication
network. The RT-Client is responsible for the administration of the services running on
the corresponding service gateway and informs the RT-Broker which services intend to use
the real-time communication services of the network. The RT-Client also provides a data
loading interface, which is used by the RT-Broker to push new network schedules for the
real-time communication services running on the different service gateways.

Figure 5.11 shows a high-level overview of the intended behavior and responsibilities
of the RT-Broker and RT-Client. As depicted, the RT-Broker waits for so called service
offers and service usage requests of the RT-Clients. Service offer requests are sent by
the RT-Client of the service gateways that offer real-time services. Service offer requests
also contain information about the communication requirements of the offered real-time
service. In contrast, service usage requests are sent by the service gateways that wants
to use a real-time service (on a different service gateway). Whenever a service usage
request arrives at the RT-Broker and real-time communication resources are available,
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Figure 5.12: RT-Broker and RT-Client

a new communication schedule is calculated that includes the new service usage. After
distributing the new schedules to the switches and the end systems, the RT-Broker and
the RT-Clients perform a consistent restart of all schedules (as shown in the state machine
in Figure 5.14). A detailed view on the internal structure and tasks of the RT-Broker and
RT-Client is given in Figure 5.12. As it can be seen, the scheduling of the communication
resources is not carried out by the proposed architecture. Furthermore, an external tool is
used.

5.9.1 Challenges of Dynamic Resource Allocation

Before introducing the main concepts of RT-Broker and RT-Client, the following para-
graphs discuss two scenarios that address the challenges of dynamic resource allocation in
self-adaptive switched real-time Ethernet networks. The first scenario covers a fixed net-
work topology as typically found in airplanes or cars. In a fixed topology, all network nodes
(switches and end systems) are known a-priori and do not change at runtime. The second
scenario follows an open-world assumption where network nodes can enter and leave at
run-time. In both scenarios, the location and composition of services is not fixed and can
change at runtime. It is assumed that the mentioned services are real-time services. After
the introduction of the two scenarios, further challenges are discussed that arise whenever
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a network node like an end system or a switch has to be reconfigured. The description of
the scenarios is generalized and hence abstracts from the presented architecture.

Fixed Network Topology The first scenario is based on a fixed network topology where
all end systems, switches and interconnections are known a-priori. Within this topology,
services are distributed among the interconnected end systems. A service is registered at
a global service management where it can be discovered by other services. This enables
dynamic service compositions where services can use other services in order to fulfill their
own task. Further, the global service management must have a global view on the commu-
nication resources of the network and their usage by services. To establish and maintain
this global view, services have to send a request to the global service management in or-
der to bind and use other services. This provides the global service management with
the capability to decide whether sufficient communication resources are available to fulfill
the pending service usage request. If sufficient resources are available, the global service
management can calculate a new communication schedule that has to be distributed to
all network nodes. This scenario thus shows a set-up where the physical model (network
topology, switches and end systems) is fixed, while the logical model can change (e.g.
different service compositions, new services, etc.).

Dynamic Network Topology The second scenario is comprised by a dynamic network
topology where network nodes can enter and leave dynamically during the run-time of
the system. This may require new schedules for the communication resources and can
affect already composed services, e.g. if a switch is removed that is part of a redundant
path of a service usage. In this case, the composed service has to find an alternative
redundant path. Within this scenario, the integration of a network node can either be
introduced manually or be automatically detected by a management component. Ideally,
this should happen automatically to avoid faults due to human failures. Though, this
requires topology discovery mechanisms in order to update automatically the global view
of all available communication resources and services. The presented scenario differs from
the previous scenario in that the physical model can also change concurrently with the
logical model.

Reconfiguration of Network Nodes In order to integrate new nodes into the network,
new communication schedules have to be calculated and distributed to all network nodes.
The manual distribution of new schedules to nodes is error-prone and time-consuming and
does not allow the system to automatically adapt to new services and nodes. Therefore,
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this task has to be done autonomously. After the new schedules are distributed to all
nodes, all affected nodes have to activate the schedule at the same instant of time.

5.9.2 Real-Time Broker

The RT-Broker fulfills several tasks in order to establish an autonomous and self-reconfigur-
able real-time network. As introduced, the RT-Broker is a server component and therefore
has only a single instance on the network. The RT-Broker can be implemented on a
dedicated management server or on any service gateway of the network. Figure 5.13 shows
a detailed model of the RT-Broker and the RT-Client as Unified Modeling Language (UML)
class diagram.

The following sections explain in detail the different parts of the RT-Broker with their
underlying concepts. In order to show how to map these concepts to an underlying com-
munication network, examples are given for the time-triggered communication network
TTEthernet.

Topology Management Information about the network topology and details about the
service gateways are maintained by a topology management sub-service. To keep the
view of the network topology and details of the service gateways up to date, the topology
management sub-service performs several distinct tasks, as follows.

With the topology management sub-service, the RT-Broker can automatically detect
network devices that support the ARINC 615A-3 standard, like the TTEthernet switch
(TTE Switch A664 Lab [TTT17c]) used in our experimental setup (cf. Chapter 7). For
network nodes that do not support the ARINC 615A-3 standard, the RT-Broker and
the RT-Client provide a new Data Loading Protocol (DLP). This protocol defines the
integration process initiated by the RT-Client and must contain the relevant information
about the device. In case of TTEthernet as the underlying communication protocol, the
following parameters are mandatory:

• name: The name of the device (unique, used for identification)

• type: The device type (e.g. service gateway or network switch)

• sync-role: The role of the device regarding clock synchronization (e.g. synchroniza-
tion or compression master)

• ports: A list of the physical ports of the device (including information like type or
MAC-address)
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Figure 5.13: UML Class Diagram of RT-Broker and RT-Client

• links: A list of all physical links (including information like media type or cable
length)

Depending on the device, the topology management sub-service of the RT-Broker decides
which action has to be performed. In case of a switch, a new schedule will be calculated and
distributed to all switches and service gateways. This reconfiguration is required because
new redundancy options might be available in the system that are required by services. In
the case of a service gateway, immediate reconfiguration is not necessary, since no services
of the newly integrated service gateway are yet registered or used.
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Service Management The service management sub-service of the RT-Broker maintains
information about all real-time services in the network. By this way, the service man-
agement sub-service establishes a knowledge of the communication requirements and the
location of all services in the network.

In case of TTEthernet, services can be registered by the RT-Client at the RT-Broker by
providing the following information:

• name: Name of service (unique, used for identification)

• device: Device name (unique name of corresponding end-system)

• messages: Messages sent by the service

name: Name of the message

type: Message type (Time-Triggered or Rate-Constrained)

frame-size: Maximum frame size

redundancy-level: Desired redundancy level

payload-size: Maximum payload size

Additionally, for time-triggered messages, the communication period has to be provided,
in which the time-triggered messages are sent. For rate-constrained messages, the fol-
lowing additional information has to be provided: the maximum allowed jitter and the
bandwidth allocation gap which defines the Minimum Inter-Arrival Time (MINT) between
two subsequent rate-constrained messages.

Services can request other services by using the RT-Client, which will in turn send a
service usage request to the RT-Broker. The RT-Broker first checks if a service is registered
with the desired properties. If a corresponding service is found, the RT-Broker registers
the service usage and carries out the rescheduling and reconfiguration of the network. If
no corresponding service is found, the RT-Client is asked by the RT-Broker whether the
service wants to wait for a registration of the desired service in the future. If this is the
case, the RT-Broker will store the service usage request. The RT-Client can revoke the
pending service usage request at any time.

If a service can no longer be provided, services can be de-registered at the RT-Broker
by using the RT-Client. The RT-Broker will inform all services about this event so that
they can react to the withdrawn service. In this case, the RT-Broker will not start a
rescheduling and reconfiguration process in order to avoid downtime of the communication
infrastructure due to the restart phase after activating the new communication schedules
in the network. However, the freed resources are made available for future scheduling
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processes. Although no rescheduling is triggered by the RT-Broker at this moment, the
rescheduling is most likely to take place because of changing service usages due to the
withdrawn service.

A service usage can be revoked at any time using the RT-Client. The RT-Broker will
not conduct a scheduling and reconfiguration due to the same reasons as during the de-
registration of services.

Figure 5.14: Finite State Machine (FSM) of dynamic reconfiguration service

Scheduling of the Communication Resources The global view of the topology and
services is further transposed into a requirements model, which forms the basis for the
scheduling of the real-time communication resources. Here, the scheduling is performed
on the basis of established knowledge of the network topology by the service management
sub-service. In most cases, the integration of a scheduler that is specific for the underlying
communication protocol is the reasonable choice. For example, in case of our experimental
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setup we used the scheduler for TTEthernet that was provided by the manufacturer TT-
Tech. In case of TSN, different solvers for the scheduling problems have to be used. A good
insight and comparison of scheduling in TTEthernet and TSN based real-time networks is
provided by [COA17]. In TTEthernet, the knowledge about the network topology is for-
mally stored in an Extensible Markup Language (XML) file. This file contains for example
information of all switches (ports, links, etc.), end systems (ports, partitions, etc.), links
(e.g. name, transmission speed, media type, ports, cable length, etc.) as well as virtual
links, periods and Bandwidth Allocation Gap (BAG) definitions.

Configuration Builder and Distributor After the new communication schedule is cal-
culated, the configuration for the network devices is generated, based on the individual
device information in the RT-Broker. This is done by the configuration builder sub-service
of the RT-Broker. After the generation, the configuration is distributed to the network
nodes by the configuration distributor sub-service. Similar to the topology management
sub-service, the configuration distributor sub-service can upload the configuration to the
network nodes in two ways, namely by using the RT-Client or by using ARINC 615A.
As already mentioned, whenever the node does not support the ARINC 615A standard
for loading new configurations, the node can use the RT-Client as data loading provider.
For this purpose, the RT-Client implements a data loading sub-service. In the presented
thesis, the data loading sub-service uses Secure Copy (SCP) as the underlying technology
to upload the new schedules. However, any other data transfer protocol like Trivial File
Transfer Protocol (TFTP) can also be used.

5.9.3 Real-Time Client

The counterpart of the RT-Broker is the RT-Client. The RT-Client has to be executed on
every service gateway in the network that wants to run services relying on the real-time
communication resources. All communication towards the RT-Broker is handled by the
RT-Client. Most features of the RT-Client have already been introduced in the context
of the RT-Broker. The RT-Client is mainly responsible for the management of the local
services running on the service gateways which are using the real-time communication ser-
vice. As shown in Figure 5.11, the RT-Client provides information about locally registered
services and information about the end system self (e.g. link speed) to the topology and
service management sub-services of the RT-Broker.

Further, the RT-Client implements the DLP which was introduced in Section 2.2.3.
The main purpose of DLP is to distribute new configurations and schedules to the service

99



5 Platform Services

gateways. After the RT-Broker has completely distributed all configurations and schedules,
the RT-Broker negotiates with all RT-Client about the instance of time when the network
schedules are activated.

5.10 Maintenance

In contrast to the other services, the maintenance service is a meta-service that is not
provided to applications or other services. The maintenance service is provided towards the
administrator of the service gateway and is composed of several subservices. These include
services for monitoring the system status, installing updates, configuring system properties
as well as managing task and network schedules. Since the proposed architecture does not
include or prescribe a specific user interface, the maintenance subservices are provided as
command line tools. Access to the command line tools is generally provided by a Secure
Shell (SSH) connection. To easily determine the IP address of the service gateway, the
service gateway publishes the contact details of the SSH service on the local network using
the zero-configuration network protocol Avahi. Listing 5.6 shows the Avahi service file to
advertise the SSH server on port 22 using Transmission Control Protocol (TCP).

Listing 5.6: Example Avahi service file to advertise the SSH server
<?xml version="1.0" standalone=’no’?><!−−∗−nxml−∗−−>
<!DOCTYPE service−group SYSTEM "avahi−service.dtd">
<service−group>
<name replace−wildcards="yes">%h</name>
<service>
<type>_ssh._tcp</type>
<port>22</port>

</service>
</service−group>

Although the Linux command line places additional demands on the knowledge of the
system administrator, access to the command line offers many advantages. This provides
an easy way to view log files or to install operating system updates, for example. While
some of the maintenance sub-services are provided by the underlying operating system
(e.g. installing operating system updates), a further part is provided by the other plat-
form services described in this chapter. As an example, the real-time communication
service implements a maintenance command line tool that allows to view the current com-
munication schedule and to replace the current schedule with a new one. The following
paragraphs outline the different available maintenance services.

100



5.10 Maintenance

Operating System. As mentioned, access to the operating system via SSH provides
access to all of the different tools and services that the operating system provides. This
includes for example services for installing operating system updates, viewing logfiles and
monitoring of the resource utilization of different hardware resources.

Partitioning. The temporal and spatial partitioning service provides a maintenance tool
for getting the status information of all involved partitioning techniques for the different
hardware resources.

Real-Time Communication. The real-time communication service provides a tool to
show all real-time task that are currently scheduled in the system. Further, the schedule
of a particular task can be manually exchanged with a new schedule.

Clock Synchronization. The clock synchronization service provides a tool that allows
to check for clock synchronization problems that may affect the precision of the clock
synchronization.

In addition to the mentioned command line tools, many applications and services also
provide a web interface, which is a convenient way to maintain a service. For example,
the message broker RabbitMQ offers a comprehensive web interface for managing and
monitoring all publishers, subscribers, topics and queues in the system. Furthermore, the
message rates as well as queued messages are visualized which gives a good overview of
the current load and performance to the administrator.
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As the previous chapters have shown, the establishment of a fault-tolerant and real-time
capable architecture for elderly care is a complex task, which also puts requirements to the
underlying platform (cf. Section 4.1). Several hardware building blocks (cf. Section 4.2)
and platform services (cf. Section 4.3) are required to establish a platform that allows
to run distributed real-time applications. Further, Section 4.4 has presented the different
means by which the presented architecture achieves fault-tolerance. This chapter now
introduces the details of the proof-of-concept implementations of the platform services
presented in Chapter 5. As underlying operating system, a modern Linux distribution
(Manjaro) with a recent kernel (5.6.16) was used for the proof-of-concept implementations.
Linux is particularly well suited as a basis for an architecture for elderly care, as Linux
provides a wide range of techniques required for the services presented. In particular, the
virtualization techniques provided by the Linux kernel are important for the establishment
of temporal and spatial isolation required to run critical applications. In addition, there
are several solutions that enable Linux to run real-time applications. Another valuable
aspect of Linux is that it is open source, which brings several advantages such as the use
of open standards, transparency, stability and security.

6.1 Service Orchestration and Discovery

As introduced in Section 5.1, the service registry from the service orchestration service uses
an underlying key-value store for managing the services in the service gateway. One feasible
solution is introduced in Section 2.7.4, namely ZooKeeper from the Apache Foundation.
Besides ZooKeeper, there are several other solutions available that can be used for setting
up a key-value store. However, the solution for a fault-tolerant real-time architecture has
to be reliable and support the intended namespace hierarchy of services and sensors (which
are in fact services as well).

Three different technologies were evaluated for their suitability concerning the presented
architecture, namely Apache ZooKeeper [APA16], etcd [Clo20a] and Consul [Has20b]. All
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three are very similar in their architecture, offer a hierarchical key-value store and are de-
signed to be fault-tolerant and scalable. etcd is mainly a key-value store and is implemented
in the programming language Go. It offers the definition of so-called watches. Watches
are like callbacks which are triggered whenever a change to the key defined in the watch is
detected. This for example allows a service to react to changes in the stored values. Fur-
ther, etcd features reliability by supporting the distribution over multiple nodes by using
Raft [OO14], which is a fault-tolerant consensus algorithm. Consensus is a fundamental
problem in fault tolerant systems where multiple nodes have to agree on data values. The
decision that all involved nodes have taken over the values is final, which means that the
values cannot be changes at a later instant without finding a new consensus. Just like
etcd, Consul is implemented in Go and is an open source project, but it is managed by a
company called HashiCorp. In contrast to etcd, Consul provides much more features like
dynamic load balancing, health checking and service discovery in large distributed systems.
A comprehensive comparison of ZooKeeper, etcd and Consul is provided by [GM19] and
[Clo20b].

For the presented architecture etcd is used. The biggest advantage of etcd are the pro-
vided reliability features. For example, etcd can operate over distributed etcd nodes for
fault-tolerance and unlike ZooKeeper, the provided watch mechanism is reliable and drops
no events even in case of the disconnection of a client. Furthermore, ZooKeeper watches
are one-time triggers where clients have to set a new watch after a watch was triggered.
Here, a major drawback is that events can get lost because of the latency between the
received watch event and the registration of the new watch. etcd further implements role-
based user permissions which perfectly fits into the presented architecture since it also uses
a role based authorization model. Further, etcd offers libraries for almost every popular
programming language and even provides a JSON-API via Representational State Trans-
fer (REST) that allows to query etcd from the command line, e.g. with the command
line tool curl. Based on etcd, the service registry allows applications and services to find
each other. For storing services and their data, the service registry uses the hierarchical
key-value store of etcd. In high-availability scenarios, distributed etcd nodes can be used
to avoid the loss of the service storage of the service registry. Compared to ZooKeeper,
etcd uses a flat namespace (keyspace in the terminology of etcd) hierarchy since version
3. This means that keys are not stored internally in hierarchical file-system like struc-
tures. Instead, keys like service-gateway.78ffb17c-6c65-11ea-bc55-0242ac130003.platform-
services.authentication are handled as a single string. However, this allows the same flexi-
bility as a hierarchical file-system while offering more consistency and efficiency in clustered
systems. The prefix option of etcd allows to match anything that starts with a particular
key value. For example, performing a get with the prefix service-gateway.78ffb17c-6c65-
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11ea-bc55-0242ac130003.platform-services would result in etcd returning all entries of the
registered platform services. Likewise, watches allow to use the prefix option to keep track
of changes of multiple keys stored in etcd.

Figure 6.1: Service registry - UML Class Diagram

The service registry is implemented in Java and uses jetcd, which is the official Java
library for etcd [Clo20c]. The key-value store etcd itself is running inside a LXC container
on the service gateway in order to provide temporal and spatial partitioning for the etcd
key-value store. The used version of etcd is 3.4.7 based on GO in version go1.14.2. Fig-
ure 6.1 shows a class diagram of the service registry and all involved components. As it
can be seen, the service registry uses PAC4J [CAS20] for authentication and authorization.
Further, Java Spark [Per20] in combination with Mustache [Chr20] as a template engine
is used to provide the REST interface for the communication with the service registry, e.g
in order to query the service database. Java Spark is a micro framework for creating small
web applications and has an integrated small embedded webserver based on Jetty. For
service discovery, the service registry uses DNS-SD provided by the Java library jmDNS.
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In this thesis, the service registry was implemented with only a REST interface. However,
the service registry uses the best-effort communication provided by the message-broker in
order to publish changes in the service registry, like e.g. the registration of a new service.

6.2 Real-Time Communication

This section presents the implementation of the real-time communication presented in
Section 5.4. The presented solution for real-time communication provides not only the
fundamental basis for closed-control loops in distributed medical scenarios with strict tim-
ing requirements, but it is also an essential component of the services for temporal and
spatial partitioning presented in Section 5.5. For this reason, the real-time communication
must also take the communication between different containers into account. Furthermore,
the presented real-time communication model must consider a hierarchical communication
model (cf. Figure 6.2).

Since Linux is used as the basis of the presented architecture, the implementation of the
real-time communication service relies on features and techniques provided by the Linux
Kernel. One of the used Kernel features is Time-Aware Priority Shaper (TAPRIO), which
is a queueing discipline (QDISC) introduced with Linux Kernel version 5.2 that implements
(a simplified version of) the Time-Aware Shaper (TAS) (cf. Section 2.2.4) defined in the
enhancements for scheduled traffic in IEEE 802.1Qbv. By this way, the TAPRIO queueing
discipline can provide temporal isolation of the network resources and thus is able to isolate
applications from each other regarding the network resources.

The TAPRIO queueing discipline can directly be applied to network interfaces. However,
the network interface has to provide multiple sending and receiving queues in order to map
the different traffic classes of TAPRIO. This can easily be checked by having a look at the
queues directory of the network interface in the Linux /sys/class/net folder. Listing 6.1
shows the directory structure for an Intel i210 network card, which has four dedicated
queues per direction.

Listing 6.1: Sending/Receiving Queues of a network interface
[michael@lxc−dev ~]$ ls /sys/class/net/enp5s0/queues/
rx−0 rx−1 rx−2 rx−3 tx−0 tx−1 tx−2 tx−3

Provided that the network interface supports multiple queues, the TAPRIO queueing
discipline can be assigned to the network interface using the command line tool tc. A
programmatic assignment of the TAPRIO queueing discipline is also possible (e.g. in a
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C++ program). Listing 6.2 shows an example tc command which assigns the TAPRIO
queueing discipline with three different traffic classes (num_tc 3 ) to the network interface
with the name enp5s0.

The current implementation of the TAPRIO queueing discipline uses the priority field
of the Linux socket buffer structure (sk_buf ) to determine the traffic class of the packet.
The traffic class implementation of the TAPRIO queueing discipline allows to define up to
16 different traffic classes. It should be mentioned that this is different to the TAS defined
in IEEE 802.1Qbv which defines a maximum limit of eight different traffic classes due to
the usage of the three-bit Priority Code Point (PCP) in the VLAN tag for identifying
the traffic class of the packet. Like other qdiscs, TAPRIO can be assigned to network
devices by using the tc (traffic control) command which is part of the iproute2 user space
utilities for managing and monitoring network related issues in the Linux kernel. The map
option of the queueing discipline command defines, how packets are mapped to these 16
different traffic classes. Therefore, the map option has to be defined as a list with 16 single
mappings. The example in Listing 6.2 can be read as follows: map priority 2 to traffic
class 1 (e.g. packets with deadline), map priority 3 to traffic class 0 (e.g. packets with
fixed transmission time) and map all other priorities to traffic class 2 (e.g. best-effort).

Listing 6.2: Using tc to configure a network card with the TAPRIO queueing discipline
[michael@lxc−dev ~]$ tc qdisc replace dev enp5s0 parent root handle 100 taprio \

num_tc 3 \
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 2@2 \
base−time 1590406880000000000 \
sched−entry S 01 300000 \
sched−entry S 02 300000 \
sched−entry S 04 400000 \
clockid CLOCK_TAI

The next parameter queues of the qdisc command defines, how TAPRIO maps the traffic
classes to the sending queues of the network interface (cf. Listing 6.1). The queues parame-
ter takes a list where each entry represents a traffic class. In the presented example, the list
must contain three entries since we have three distinct traffic classes. The first entry repre-
sents traffic class 0, the second entry represents traffic class 1 and the third entry represents
traffic class 2. The entries have to be defined with the schema queue_count@queue_offset.
In the example, 1@0 1@1 2@2 would now map traffic class 0 to queue 0 (queue_offset 0),
traffic class 1 to queue 1 (queue_offset 1) and traffic class 2 to the two queues 2 and 3 (be-
ginning at queue_offset 2). This means that the traffic classes for deadline and fixed-time
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scheduled packets will get one transmission queue each while the best-effort traffic class
will get two transmission queues of the network interface. The base-time parameter then
defines the start time of the schedule that is defined by the parameter sched-entry. The
sched-entry parameter in the example has three entries which define each a transmission
timeslot for the respective traffic class. The entries of the sched-entry parameter have to
be defined by the following format: sched-entry <command> <gatemask> <interval>.
Currently, the TAPRIO queueing discipline only supports "S" as <command>, which rep-
resents the Time Sensitive Networking (TSN) command SetGateStates (cf. [IEE16a]) and
opens the gate defined by <gatemask> for transmission. The parameter <gatemask> has
to be provided as a bitmask, where each bit represents one traffic class. The parameter
<interval> then defines how long the gate remains open and is a duration in nanoseconds.
The period is implicitly defined by the sum of the intervals of all schedule entries. In the
presented example, the period results in an total of 1ms.

Listing 6.3: Using tc to check assigned queueing discipline of a network interface
[lxc−dev ~]# tc qdisc show dev enp5s0
qdisc taprio 100: root refcnt 9 tc 3 map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2
queues offset 0 count 1 offset 1 count 1 offset 2 count 2
clockid TAI base−time 1593443961000000000 cycle−time 1000000 cycle−time−extension 0

index 0 cmd S gatemask 0x1 interval 300000
index 1 cmd S gatemask 0x2 interval 300000
index 2 cmd S gatemask 0x4 interval 400000

qdisc pfifo 0: parent 100:4 limit 1000p
qdisc pfifo 0: parent 100:3 limit 1000p
qdisc pfifo 0: parent 100:2 limit 1000p
qdisc pfifo 0: parent 100:1 limit 1000p

The TAPRIO queueing discipline was developed to work with physical network interfaces
like the Intel i210. However, having a look at the source code of the TAPRIO queueing
discipline, it can be seen that TAPRIO only puts the requirement of the support for
multiple sending and receiving queues on the underlying network interface. This means,
that the TAPRIO queueing discipline can be used for any network interface as long as
it supports multiple queues. This characteristic of the TAPRIO implementation is of
interest for the presented architecture, since it allows to use TAPRIO with virtual network
interfaces like veth or tun devices in Linux. Both virtual devices support multiple queues
for sending and receiving packets. Precisely, the network device has to support at least as
many queues as traffic classes are defined in the schedule of TAPRIO.
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The first experiments with TAPRIO in combination with virtual network devices trig-
gered a use-after-free bug resulting in a completely frozen operating system. Besides system
crashes like the one mentioned, use-after-free bugs can also lead to serious security issues
[BLCH19]. Here, my acknowledgments go to Vinicius Costa Gomes from Intel for fixing
this bug. He is the current maintainer of the TAPRIO queueing discipline. As with the
writing of this thesis, the bugfix was already integrated into the mainline Linux kernel
with version 5.4 [LIN20g].

veth devices are of special interest in combination with Linux Containers (LXC) (cf.
Section 5.9), which is used as the basis for temporal and spatial isolation. LXC can be
configured to use veth devices to provide network connectivity to the containers. Although
veth devices support multiple queues as already mentioned, LXC creates veth devices with
only a single queue per direction. As part of the presented implementation, a standard LXC
(version 4.0.2) was extended in such a way that during the start of a container, its virtual
ethernet devices (veth) are created with multiple tx and rx queues (instead of single queue
devices which is the original behavior). This is important since the TAPRIO queueing
discipline requires an underlying multiqueue capable network device in order to map the
traffic classes. veth devices represent a virtual connection, therefore veth devices are always
created in pairs, as it can be seen in Figure 6.2. The first veth device is connected to the
LXC container and the second veth is then connected to a virtual Linux network bridge
(cf. [Ben06, Chapter 16]).

Since the created veth devices now provide multiple queues by using the already men-
tioned multiqueue patch, TAPRIO can be applied to the veth device connected to the
virtual Linux network bridge. With the implementation in this thesis, a standard virtual
Linux network bridge was used. However, it is also possible to use a bridge provided by
Open vSwitch [LIN20f]. By the application of the TAPRIO queueing discipline, the pre-
sented approach establishes scheduled traffic among LXC containers. The virtual Linux
network bridge is further connected to the physical network interface, which is in this case
the Intel i210 of the service gateway. Having the TAPRIO queueing discipline also applied
to the physical network interface then establishes scheduled traffic among service gate-
ways. Combining both scenarios, the container-to-container and the host-to-host real-time
communication results in a hierarchical real-time communication as Figure 6.2 shows.
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Figure 6.2: Hierarchical real-time container communication model

6.3 Fault-Tolerant Clock Synchronization

The fault-tolerant clock-synchronization service fully relies on linuxptp [Ric18], which is
an implementation of Precision Time Protocol (PTP) for Linux maintained by Richard
Cochran. linuxptp supports hardware and software time stamping and further support
IEEE 802.1AS-2011 (in the role of end station), which is especially important to support
TSN networks.

PTP requires compatible network interfaces. A prominent PTP compatible network card
is the Intel i210, which supports a wide range of PTP protocol features such as hardware
timestamping. The Intel i210 is explicitly supported by linuxptp and thus used within
this thesis for the experiments. In Linux, the compatibility of network hardware can be
checked with ethtool, which is a configuration and diagnostic tool for wired network cards.
Listing 6.4 shows the output of ethtool for the Intel i210 network card.

Listing 6.4: Output of ethtool for the Intel i210 network card supporting PTP
[michael@lxc−dev ~]$ ethtool −T enp5s0
Time stamping parameters for enp5s0:
Capabilities:
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hardware−transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software−transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware−receive (SOF_TIMESTAMPING_RX_HARDWARE)
software−receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software−system−clock (SOF_TIMESTAMPING_SOFTWARE)
hardware−raw−clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

Here, it can be seen that the Intel i210 has a PTP compatible hardware clock and the
Media Access Control (MAC) supports hardware timestamping. The mentioned "PTP
Hardware Clock: 0" in Listing 6.4 is misleading, since it does not mean that there is no
hardware clock available. It means that the hardware clock with the ID 0 is selected as an
associated clock for hardware timestamping.

Listing 6.5 shows the output of ethtool where the MAC of the network card only supports
software time stamping.

Listing 6.5: Output of ethtool for network card that does not support PTP
[michael@lxc−dev ~]$ ethtool −T enp6s0
Time stamping parameters for enp6s0:
Capabilities:

software−receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software−system−clock (SOF_TIMESTAMPING_SOFTWARE)

PTP Hardware Clock: none
Hardware Transmit Timestamp Modes: none
Hardware Receive Filter Modes: none

The PTP implementation linuxptp consists mainly of two tools, which are ptp4l and
phc2sys. While ptp4l implements PTP and is responsible for the synchronization of the
real-time clocks of all network devices, phc2sys synchronizes the network clocks with the
clock of the host. The clock-synchronization service is started at boot time of the service
gateway using two systemd service files (ptp4l.service and phc2sys.service). The advan-
tage of using systemd is its capability to automatically recover and restart failed services,
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including the clock-synchronization service. This ensures a fault-tolerant behavior of the
clock-synchronization service.

6.4 Sensor Integration

This section presents the implementations that were created in the context of this thesis
concerning the integration of sensors. This includes several techniques like sensor integra-
tion using ISO/IEEE 11703, Bluetooth Low Energy (Bluetooth LE), sensor data provided
by cloud services and the possibility to store data in a database in order to be able to
monitor sensor data over a certain period of time or for getting a single historical value.

6.4.1 ISO/IEEE 11703

As introduced in Section 5.8, the presented architecture supports the integration of devices
that are compatible to ISO/IEEE 11703. Here, the sensor integration service relies on
the open source implementation Antidote of the ISO/IEEE 11703 communication stack
from Signove Tecnologia [Sig14]. For Bluetooth, Antidote uses the Linux Bluetooth stack
implementation bluez. However, in the current version of the Antidote stack, bluez is only
supported up to version 4.x. With the release of bluez in version 5 major changes in
the Application Programming Interface (API) took place. In order to work with newer
Linux Distributions, a patch was created as part of the implementation which modifies the
bluetooth plugin of the Antidote stack to work with current version of the bluez Bluetooth
stack in version 5 [Sch16].

Manager Application

As mentioned in Section 5.8, the main task of the implemented ISO/IEEE 11703 Manager
is to publish data from ISO/IEEE 11703 compatible devices to message broker and to keep
the service registry up-to-date regarding attached ISO/IEEE 11703 agents (e.g. notify in
case of a new agent). This allows the access of data from ISO/IEEE 11703 compatible
devices for all services running on the service gateway. Since Antidote is implemented in
C, the ISO/IEEE 11703 Manager Application (cf. Figure 5.9) is also implemented in C.
For the communication with the Message Broker of the best-effort communication service,
the Manager Application uses the official library rabbitmq-c provided by RabbitMQ.
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Transcoding Agent

ISO/IEEE 11703 compliant sensors can be directly connected to the service gateway by
directly using the Antidote stack. Antidote currently allows the connection of agents by
standard Bluetooth (via Health Device Protocol (HDP)) or TCP/IP. In addition, an ex-
tension of the Antidote stack for any other transport technology like ZigBee is feasible.
Extending the stack for Bluetooth LE would be possible as well, but this would require
the Bluetooth LE devices to be directly connected to the service gateway and the Antidote
stack would be extended by that single transport technology.

In order to open ISO/IEEE 11703 for further communication technologies, this thesis
follows a different approach by introducing an ISO/IEEE 11703 compliant transcoding
agent (cf. [WG15]). The transcoding agent takes data from an incompatible sensor de-
vice and converts it into ISO/IEEE 11703 compliant data. Precisely, the agent transcodes
received sensor data (JavaScript Object Notation (JSON)) to Application Protocol Data
Units (APDU) packets and forwards them to Antidote. The mapping of the data struc-
tures is carried out as proposed in the Personal Health devices transcoding white paper
[WG15] from the Bluetooth SIG. The white paper covers all mandatory attributes from the
ISO/IEEE 11703 device specializations and explains how to map them to the Bluetooth
LE device profiles. Figure 6.3 shows the data flow as proposed by the white paper.

Proxy Application Transcoding Agent

Transcodable GATT 
Characteristics

Non-Transcodable
GATT Characteristics

Device Specific Data 
to Transcode

Transcoding Rules

IEEE 11073 
Compliant 

Data

MQTT

Manager
(11073)

Some BLE Characteristics may not be
used in transcoding processBLE Sensor

Figure 6.3: IEEE11073 Transcoding Agent [WG15]

The reason for that decision is the trend of connecting medical and health care devices
using energy efficient communication protocols like Bluetooth LE, which allows more en-
ergy efficient devices. However, these devices are typically connected to a smartphone in
order to configure them or to display and monitor the data of the devices. Therefore,
the presented implementation uses a smartphone for the integration of these devices in
the ISO/IEEE 11703 ecosystem. In the presented implementation a dedicated application
on the smartphone was implemented, but the functionality for sending the data to the
transcoding agent could also be easily integrated into any proprietary application. The
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data format used for sending data to the transcoding agent is formatted in JSON with a
data structure as proposed by the Bluetooth SIG in the GATT REST API white paper
[BLU14]. In short, the white paper defines, how GATT resources can be made accessi-
ble using standard HTTP methods. Similar to the presented approach, the white paper
introduces a gateway device to which the Bluetooth LE devices are connected. The gate-
way device contains a RESTful web-service application that serves as an interface between
the clients (Hypertext Transfer Protocol (HTTP) requests) and the Bluetooth LE devices
(Generic Attribute Profile (GATT) profiles). The interface towards the clients is realized
as a stateless Representational State Transfer (REST) service. For standardization, the
concepts of the whitepaper were introduced as Internet Engineering Task Force (IETF)
draft in 2016 [BK16].

In comparison to the white paper, the presented implementation uses a small smart-
phone application which uses Message Queuing Telemetry Transport (MQTT) rather than
providing a RESTful API over standard HTTP. MQTT was chosen since it has a lower
footprint and implementation overhead in Android compared to Advanced Message Queu-
ing Protocol (AMQP). In order to be able to receive MQTT message, the MQTT plugin
of the message broker RabbitMQ was used. According to the state machine of ISO/IEEE
11703, the smartphone application announces every newly associated Bluetooth LE device
via MQTT to the ISO/IEEE 11703 compliant transcoding agent on the service gateway.
The transcoding agent then associates the sensor to the ISO/IEEE 11703 software stack
Antidote. In a similar manner, the smartphone application announces the disconnection
of a Bluetooth LE device. In this case, the agent would disassociate the sensor from the
ISO/IEEE 11703 software stack. For the identification of the Bluetooth LE devices, their
Media Access Control (MAC) addresses are used. Once a device is connected to the smart-
phone application and associated to the ISO/IEEE 11703 stack by the transcoding agent,
the smartphone application allows to transmit the data of one or more GATT attributes to
the transcoding agent. This can be triggered either manually or configured to be synchro-
nized with every GATT measurement notification (e.g. when a particular characteristic
changes on the Bluetooth LE device). The GATT attributes which shall be submitted
can be configured. The Bluetooth LE devices remain associated to the ISO/IEEE 11703
software stack Antidote until the transcoding agent receives an disconnect message from
the smartphone application. The application on the smartphone was implemented for
Android. Figure 6.4 shows the two main activities of the smartphone application.

Both, the transcoding agent and the smartphone application were implemented and
tested by integrating a Polar H7 heart rate sensor (cf. Figure 6.5). The Polar H7 heart
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(a) Start Acivity (b) GATT attributes of Bluetooth LE device

Figure 6.4: Implemented Android application

rate sensor was paired with an Android Smartphone running the presented smartphone
application. The Polar H7 heart rate sensor provides the following GATT attributes:

• Device Information Service (org.bluetooth.service.device_information, 0x180A)

• Heart Rate Service (org.bluetooth.service.heart_rate, 0x180D)

• Battery Information Service (org.bluetooth.service.battery_service, 0x180F)

The smartphone application was configured to forward data to the service gateway.
The smartphone application forwarded the heart rate measurement characteristic (UUID
0x2A37) of the Polar H7 to the dedicated topic exchange of the transcoding agent. Listing
6.6 shows an example MQTT data payload for the heart rate measurement characteristic
of the Polar H7.

Listing 6.6: GATT characteristic in JSON representation
{
"resource": "mqtt://smartphone:b4:9d:0b:5f:34:2c
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/gatt/nodes/00:22:d0:ce:dd:19/0x2a37/value",
"timestamp": 1484251974,
"handle": "0x2a37",
"value": 68,
}

Figure 6.5: Polar H7 - Heart rate sensor

Based on the subscription of the transcoding agent, the agent receives the heart rate
measurements from the Polar H7 heart rate sensor and transcodes the measurement data
to an APDU according to the device specialization for a Basic ECG (heart rate) ISO/IEEE
11703-10406 device. After the transcoding process, the agent forwards the generated
APDU to Antidote. The APDU then passes the Antidote stack and is forwarded to the
already introduced manager application. The manager application then forwards the re-
ceived data to a general sensor topic where the sensor data is forwarded to every subscriber
that has a filter on that topic.

6.4.2 Cloud Sensor Integration

As mentioned above, modern healthcare devices are increasingly connected via low-power
communication protocols such as Bluetooth LE. However, there is also a trend towards
transmitting sensor data to cloud-based health platforms. This has several advantages
for the users of these devices. An example would be summaries of activities performed
on a daily or weekly basis. The biggest advantage, however, is the ability to use the
health devices even when not being at home. Therefore, supporting these cloud platforms
is also very important for an architecture for elderly care. For this reason, the presented
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implementation also includes an exemplary implementation for such a cloud platform, wich
is the cloud platform of Withings.

Withings provides a public API in order to access the data of sensors in their cloud
platform [Wit20]. The access to the API is secured by using OAuth2, which is an industry
standard protocol [Har12] [JH12] that provides authorization flows for different kinds of
applications like cloud platform APIs.

WITHINGS
CLOUD

WITHINGS PULSE OX
(PULSE / SP02)

WITHINGS BPM
(BLOODPRESSURE)

WITHINGS GO
(STEPS) INTERCONNECTION 

SERVER

SMARTPHONE / 
TABLET

SERVICE GATEWAY

REGISTER (FOR
NOTIFICATIONS)

NOTIFICATIONS

SUBSCRIBE

PUBLISH
NOTIFICATION

GET DATA
(VIA WITHINGS API)

UPDATE
UI

HEALTH MATE: UPDATE
CLOUD

Figure 6.6: Withings Cloud Sensor Integration

As Figure 6.6 shows, the Withings Sensors first trasmit their measurements to a smart-
phone or tablet that runs the Withings App Health Mate. In the context of the presented
implementation, two sensors from Withings were used, namely the Withings Pulse Ox and
the Withings BPM. The Withings Pulse Ox is capable of pulse oximetry, which is a nonin-
vasive method for measuring the blood oxygen saturation (SpO2) of a person. Additionally
it can measure the heart beat (pulse) of the person. The Withings BPM is a blood pressure
monitor. Health Mate transmits the received data afterwards in predefined intervals to the
Withings cloud platform. In order to get notified about new data available, the Withings
cloud platform supports the registration of a Uniform Resource Locator (URL) as callback.

For the presented implementation, the callback URL is provided by a small server com-
ponent which just takes the data submitted with the callback URL and publishes it to
subscribed Consumers, which in the presented case is a small sensor service for Withings
sensor devices running on the service gateway. The Withings sensor service then starts
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a request to the Withings Cloud in order to obtain the new data. The Withings sensor
service as well as the small server component were implemented in Java. Figure 6.8 shows
a class diagram of the Withings sensor service.

6.4.3 Historical Sensor data

Besides the integration of sensors, it is also valuable to have access to historical sensor
data. This is of especial interest for generating daily or weekly reports about the activities
of elderly people. This helps elderly people to reflect their activities or to keep track of
their health status. Due to these reasons, the presented implementation contains a service
for the storage and access of historical data. In addition, the historical sensor data service
provides an easy and comfortable method to get the latest data of a sensor stored in
the database. This is for example helpful if a sensor only provides new data every hour or
every day. Thus, no data is being transmitted between the intervals and e.g. a visualization
framework would not have data for visualization.

Figure 6.7: Class Diagram of Historical Sensor Data Service

Within the presented implementation, the data of the sensors is stored in the document-
oriented database MongoDB. MongoDB uses a JSON based syntax for storing and access
of data. Listing 6.7 shows an example of the implemented JSON data structure.
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Listing 6.7: JSON data structure example for a temperature sensor
{
"info": {
"description": "This sensor measures the ambient temperature and the humidity in the kitchen",
"sensor_name": "Kitchen Temperature and Humidity",
"value_info": {
"1": {
"description": "Timestamp of data sample",
"name": "timestamp",
"unit": "unix−timestamp in seconds"

},
"2": {
"description": "Temperature in the kitchen",
"name": "temperature",
"unit": "celsius"

},
"3": {
"description": "Humidity in the kitchen",
"name": "relative−humidity",
"unit": "percentage"

}
}

},
"sensor_id": "service−gateway.78ffb17c−6c65−11ea−bc55−0242ac130003.sensors. /

kitchen.temperature.550e8400",
"timestamp_hour": "2018−03−14T14:00:00.000Z",
"user": "user",
"values": [
{
"timestamp": 1521033729280,
"value": [
1521033720592,
24,
56

]
}

]
}
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The historical sensor data service provides two methods for the data access, namely
PUSH and PULL. Both methods are implemented by using the Remote Procedure Call
(RPC) technique of AMQP. The PULL method can be used by a service that just wants
to get the latest entry from the database. The PULL method does not provide any func-
tionality to get more than this last entry. This is because the service is blocked until the
RPC returns the data. As mentioned in Section 2.7.3, this should be avoided since it
brings dependencies among services. Thus, the PULL method only queries the last entry
in the database, and the blocking time is kept as short as possible. In contrast, the PUSH
method allows to access all of the historical data in the databases. In order to keep the
blocking time in calling services as short as possible, the historical sensor data service first
creates a queue in RabbitMQ and then creates a thread to query the data in the database.
The created thread afterwards sends the result of the query via the previously created
queue. In addition to that, the PUSH method optionally creates another queue that has
a topic filter on the provided sensor-id. The calling service can then use this queue to get
all future data pushed by the sensor. Figure 6.7 show a class diagram of the implemented
historical sensor data service.
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6.5 Dynamic Reconfiguration of Real-Time
Communication Resources

Within the context of this thesis, the service for the dynamic reconfiguration of real-
time communication resources was implemented exemplarily based on TTEThernet as
underlying real-time communication protocol. However, the concepts and the models
introduced within this thesis can be adopted to other technologies, like for example Time
Sensitive Networking (TSN) [IEE16b].

The implementation of the Real-Time Broker (RT-Broker) and the Real-Time Client
(RT-Client) were both implemented in Java according to the class diagrams presented in
Figure 5.13. An overview about the classes for the specific TTEthernet implementation
is provided by Figure 6.9. For the communication between the RT-Clients and the RT-
Broker, the best-effort communication service based on RabbitMQ was used.

6.5.1 TTEthernet-Toolchain Integration

Due to TTEthernet as the underlying communication protocol, we integrated the TTEth-
ernet Toolchain [TTT17a] shown in Figure 6.10 into the RT-Broker implementation. The
assignment of the RT-Broker components to the specific TTEthernet tools is depicted in
Figure 5.12. The TTEthernet-Toolchain also uses a network description (see also Sec-
tion 2.2.3) to define the topology of the network. The TTEthernet network description is
not generated automatically and therefore has to be provided by the maintainer of the sys-
tem. Further, the network description contains information about the logical connections,
which are called Virtual Links (VLs). According to the traffic classes introduced in Sec-
tion 2.2.3, there are VLs for Time-Triggered (TT), Rate-Constrained (RC) and Best-Effort
(BE) messages available. The endpoints of the VLs are called Data Ports. As VLs are
unidirectional, a VL always has one sending Data Port and one or multiple receiving Data
Ports. The definition of a VL in the network description also includes the properties of the
messages, like maximum message size and period in which the data frames are transmitted.
Further, the network definition defines the network periods, that are required for the es-
tablishment of the cluster cycles and the VLs. For TT messages, the TTEthernet network
description additionally defines a synchronization domain that further specifies the behav-
ior of the clock synchronization within the network. By implementing a parser for the
TTEthernet network description, the RT-Broker can use an existing network description
from the TTEthernet-Toolchain as a starting point for the network topology management.
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Figure 6.9: RTBroker for TTEthernet with TTEthernet-Toolchain integration - class dia-
gram

Listing 6.8 shows an example output of the tool with one TTEthernet switch in the
network.

Listing 6.8: Switch Discovery with the TTEthernet Toolchain
tt_615a3_console −r −l 10.10.10.20 −m 255.255.255.0

Ver: 1.0.1.TT_615A3_VERSION_BUILD_NUMBER
Ver: 1.0.1.TT_615A3_VERSION_BUILD_NUMBER
Ver: 1.0.1.TT_615A3_VERSION_BUILD_NUMBER

E000: <INIT> operation finished successfully.
Local IP Address found: 10.10.10.20

Broadcast: host −> 10.10.10.10!!!
E000: <FIND> operation finished successfully.
Find operation list of clients:

Number of hosts found: 1
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Client ID: TTT−SWITCH−LAB_GROUND
IP address: 10.10.10.10
Target Hardware Identifier: TTT−SWITCH−LAB
Target Hardware Type Name: TTT24LAB
Target Hardware Position: GROUND
Literal Name: TTT−SWITCH−LAB−24P
Manufacturer Code: TTT
Opening listener ...
Success !!!
Closing listening thread ...
Exiting tt_615a3_tftp_open_listener
E000: <DISCOVER INFORMATION> operation finished successfully.
Discover information operation result:
−−−−−−−−−−−−−− BEGIN −−−−−−−−−−−−−−−−
Client ID: TTT−SWITCH−LAB_GROUND
Literal Name: TTT−SWITCH−LAB
Serial Number: 94702−00162
Part Number: TTT5401208803
Amendment: TTT−SWITCH−LAB 2.0.0 − ES: 1.6.38 (0x80011b74) /
SWE: Unknown Switch IP (0x00015432)
Part Designation Text: LAB USE ONLY
−−−−−−−−−−−−−−− END −−−−−−−−−−−−−−−−−

Figure 6.10: TTEthernet-Toolchain
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If a new communication schedule has to be calculated (e.g. due to new network nodes
or service usages), the broker uses the scheduler of the TTEthernet-Toolchain, which is
included in the tool TTE-Plan for TTEthernets (TTE-Plans). The outputs of this tool
are configuration files for each TTEthernet device in the network. Since our experimental
setup is based on TTEthernet, a further step is necessary in order to load the config-
urations on the devices. The configuration files have to be transformed with the tool
TTE-Build for TTEthernets (TTE-Builds) into binaries that can be uploaded to the de-
vices. The TTEthernet switches (TTE Switch A664 Lab) used for the experimental setup
support the ARINC 615A-3s (ARINC615As) standard. Therefore the RT-Broker uses the
TT-615A-Loaders (TT-615A-Loaders) of the TTEthernet-Toolchain in order to load the
configuration on the switch. The situation for the end systems (TTE End System A664)
is different, because these devices do not the support ARINC615As for data loading. As
introduced in the model, the RT-Broker uses in this case the data loading feature of the
RT-Client. During the execution of the data loading protocol, the RT-Broker transfers the
device configuration files using Secure Copy (SCP). Second, the RT-Client distributes the
configuration files to the corresponding services. Since the IDs of the VLs are assigned dy-
namically during the scheduling with the tool TTE-Plans, the services cannot use directly
the IDs of the VLs as virtual communication links. For this purpose, the RT-Client imple-
ments a link manager that must be used by the services in order to find their corresponding
VL. The required information in the link manager is also updated by the RT-Broker dur-
ing the execution of the data loading protocol. Finally, after the configuration files are
distributed, the RT-Broker and the RT-Client run an agreement protocol to negotiate the
restarting phase of the network. Table 6.1 shows a reconfiguration matrix that contains in-
formation about the cases when a reconfiguration of the real-time communication services
is necessary.

Action Reconfiguration necessary
New end system -

New switch X
New service X (If a pending request for this service is found)

Removal of an end system X
Removal of a switch X
Service revocation X

Table 6.1: Dynamic reconfiguration of real-time resources - Reconfiguration matrix
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While the last two chapters presented the models and implementations of the services,
the main objective of this chapter is to evaluate the results of this thesis, which includes
an evaluation of the implementations. The remainder of this chapter is structured as fol-
lows. First the evaluation objectives are presented. In a second step, various experiments
and their results are presented to provide a benchmark for the performance of the im-
plementations established in this work. Finally, the results are discussed with regard to
the key challenges presented in Chapter 3. Some parts of this chapter were published in
[SO18][SOW18].

7.1 Evaluation Objectives

As introduced in Chapter 3, a fault-tolerant real-time architecture for elderly care has to
cope with several key challenges. A major challenge is to provide support for applications
with different levels of criticality. In this respect, an architecture must be able to provide
techniques for fault tolerance and the isolation of resources. In addition, medical appli-
cations with tight control loops require a deterministic real-time behavior of the system,
which poses in particular challenges for the provisioning of computational and communi-
cation resources. Further challenges are the heterogeneity of the underlying technologies
and the different integration levels at which the architecture is applied. Regarding sensors,
this requires the support of standards for medical and health device communication. Like-
wise, it should be possible to add or remove sensors at run-time of the system. If sensors
are used in applications with real-time requirements, this requires techniques for dynamic
reconfiguration of the real-time resources.

The main objective is now to assess the results presented in relation to the key chal-
lenges mentioned above. The evaluation is based on several experiments, ranging from a
real scenario for the integration of sensors to experiments in a laboratory. However, the ex-
periments carried out concentrate on the open research questions of this thesis. From this
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perspective, only technologies and concepts that extend the state of the art are evaluated.
These experiments and their results are presented in the following.

7.2 Experiments

7.2.1 Dynamic Reconfiguration

As introduced in Section 3.3, many use cases that apply for architectures in the field of
elderly care require the integration of heterogeneous sensors like wearables or stationary
health sensors. Further, this integration has often to be conducted at run-time demanding
a dynamic reconfiguration of the system. This applies particularly to the composition
of sensors and services. The open-world assumption requires techniques for dynamic-
reconfiguration. This is especially true for real-time resources like communication resources
in the real-time network. Since the focus of this work is on the support for real-time
applications, this thesis includes a dynamic-reconfiguration service for the underlying real-
time communication network (cf. Section 5.9 and Section 6.5).

CONFIGURATION SERVER

CONFIGURATION SERVER
Ubuntu 14.04
TT-Tools 4.4
RabbitMQ message broker for the
communication with the RT-Clients

RT-Broker

END SYSTEM (NODE 2)
Ubuntu 14.04
TTE End System A664
TTE Drivers

RT-Client

SWITCH
TTE Switch A664 Lab

Data loading via ARINC 615A

END SYSTEM (NODE 1)
Ubuntu 14.04
TTE End System A664
TTE Drivers

RT-Client

TTE-SWITCH

ETHERNET-SWITCH

NODE 1

NODE 2

TTE communication

Configuration
Best-effort communicaton

Figure 7.1: Dynamic reconfiguration - Experimental setup

Figure 7.1 shows the experimental setup used for the evaluation of the dynamic recon-
figuration service. As depicted, the real-time communication network consists of two end
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systems equipped with TTEthernet network cards (TTE End System A664 [TTT17b]) and
one TTEthernet switch (TTE Switch A664 Lab [TTT17c]). These end systems are run-
ning each a RT-Client and are supposed to offer services or to use services. Additionally,
our setup comprises a management network based on Ethernet which is required for the
monitoring of the end system during the reconfiguration phases of the real time network.
This management network is also used in the presented experimental setup for the com-
munication between the RT-Broker and the RT-Clients since this management network
traffic does not require any temporal guarantees. The RT-Broker is running on a third
end system, the configuration server. As it can be seen in Figure 7.1, the configuration
server is not part of the real-time communication network and thus not connected to the
TTEthernet switch.

In the presented experimental setup, the rescheduling and the distribution of the de-
vice configuration files takes about 80 to 90 seconds in total (end system with Intel Core
i5-5200U and 4GB memory). During this time, the real time network is still fully oper-
ational. A downtime will first occur when the end systems and the switches adopt the
new configurations. Most time is required by the discovery (about five seconds) and data
loading (about 50-55 seconds) process of the switches using the ARINC 615A-3 standard.
Further, the generation of the network description with TTE-Plans typically needs five
to six seconds and the generation of the device configuration files with TTE-Builds takes
about 20 seconds. Finally, the configuration files are distributed in about five seconds to
the end systems.

As it can be seen, the measured durations for scheduling and data loading of the switches
are quite long. Since the current configuration of the network is still working while the new
configuration is calculated and loaded into the switches and end systems, the measured
durations are acceptable. Furthermore, the new configuration is validated by the switches
and the end systems prior to its activation. In case of a failed validation and in case
of a fault occurring during the switch of the configuration, a safe roll back to the old
configuration is conducted (cf. Figure 5.14).

7.2.2 Sensor Integration

Most use-cases for applications in elderly care require the data of sensors. Therefore, a
seamless and effortless integration of sensors in an architecture for elderly care is of utmost
importance. This includes complex medicals sensors like a pulse-oximeter as well as simple
sensors like a clinical thermometer. However, the biggest challenge is the heterogeneity
of the sensors and the underlying technologies used. This includes communication pro-
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tocols and data formats. Section 6.4 already presented the large variety of methods for
sensor integration supported by the presented architecture. A huge contribution for the
sensor integration is the integration of the ISO/IEE 11073 software stack Antidote with
several additionally implemented modules in order to extend the functionality of ISO/IEE
11073. For example, the transcoding agent in combination with the smartphone applica-
tion provides a comfortable way for the integration of Bluetooth LE sensors. Further, the
integration of sensor data provided by a cloud data storage was implemented. This allows
to collect data during the mobility of the elderly people. In addition, a historical sensor
data service was implemented to provide a convenient way of storing sensor data. This
allows to create daily or weekly reports. These reports can help, for example, to determine
whether a person has drunk enough during the day or during the week.

The integration of the sensors was evaluated in the context of the BMBF (Federal
Ministry of Education and Research) funded research project Cognitive Village. Here,
the historical sensor data service was used by the dashboard system open.DASH [Uni17a],
which was implemented at the University of Siegen in the context of the BMWi (German
Federal Ministry for Economic Affairs and Energy) funded project SmartLive [Uni17b].
Further, the Withings cloud sensor service was used to access the data of the deployed
Withings sensors during the project. Figure 7.2 shows a screenshot of open.DASH showing
the sensor values of a Withings Pulse Ox and Withings BPM.

Figure 7.2: Visualization of Withings Data on open.DASH
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The implementations were tested and evaluated by participating in a living lab experi-
ment of the Cognitive Village project. The main goal of the living lab was the collection of
sensor data during daily activities of the person living in the flat in order to train the pat-
tern recognition algorithms developed within the project. The research focus was on the
collection of physiological and behavioral data of the users in order to extract knowledge
about the physical, cognitive, and emotional status of the users [SG16].

In the living lab experiment, an intelligent floor underlay called SensFloor® [STS+13]
from the company FutureShape was installed in the whole flat (excluding the bathroom
for privacy issues). SensFloor® is a textile-based underlay with integrated microelectronics
and proximity sensors which can be used for activity monitoring, indoor localization and
especially for fall detection. Further, a set of Estimote Bluetooth Beacons were installed
in the flat for indoor localization as well. Besides these sensors, the person living in the
flat was asked to wear several mobile devices: a smartphone (LG G5) and a smartwatch
(Huawei Watch). Both devices were delivering sensor information about the movement of
body and the hand of the person. The data was collected by a smartphone application
which was implemented in a collaborative effort with other project members of the Cogni-
tive Village project. The main purpose of the smartphone app was the management of the
connectivity to the smartwatch and smartphone sensors. The smartphone was connected
to a service gateway (Asus VivoMini UN45H) which used different parts of the presented
architecture, e.g. for sensor data integration, data storage and service discovery. The main
application running on the service gateway was the already mentioned pattern recognition
software. Figure 7.3 shows a picture of the set of devices that were used during the living
lab experiment.

All involved sensors in the Living Lab used the sensor integration services and the
best-effort communication services from the presented architecture for sending their data.
For example, the pattern recognition application had a subscription to the corresponding
message exchanges at the message broker. The measurement data was stored in a database
by using the historical sensor data service.

Summarized, it can be stated that the presented architecture and implementations re-
garding the integration of sensors helped to overcome the heterogeneity of the underlying
technologies. Further, the flexibility of the proposed architecture regarding different pro-
gramming languages was a benefit in the project Cognitive Village and allowed a hetero-
geneity of used programming languages. For example, the pattern recognition application
was implemented both in C and in Python. The smartphone application was implemented
in Java, as well as the Withings cloud sensor service and the historical data services.
Further, the dashboard open.DASH used a combination of JavaScript and Java.

131



7 Evaluation and Results

Figure 7.3: Living Lab - Hardware setup

7.2.3 Rate-Constrained Communication

The effectiveness of the implemented fault-tolerance techniques was evaluated in an experi-
mental setup. The Traffic Shaping Layer as part of the presented fault-tolerance techniques
was evaluated. As depicted in figure 7.4, the experimental setup consists of three computing
nodes, each based on an Intel Atom processor (N270, 1.6 GHz) which runs a Linux kernel
at version 4.8.0-36 with FQ_CoDel (Fair Queuing Controlled Delay) as default queueing
discipline. Further, each node is connected to two separate networks. The first network is
a management network based on Ethernet. The main purpose of the management network
is to provide access to the node via Secure Shell (SSH). This network is only used in the
presented experiments and is not required in the final system. The second network is a
switched Ethernet network, which is exclusively used for the conducted measurements.
The network switch used in the measurement network is a 24-port GbE Smart Managed
Switch GS1900-24E from ZyXEL, which was limited to Fast Ethernet at each port for the
experiments.

The effectiveness of the Traffic layer was evaluated in three experiments as follows. The
results are listed in table 7.1. The measured latencies are Round-Trip Times (RTTs) of
the packets.
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Experimental Network
(ZyXEL GS1900-24E)

Node 1 Node 2 Node 3

Management Network

Management 
Node

Figure 7.4: Rate-Constrained Communication - Experimental setup

RC traffic only without Traffic Shaping In a first step, the jitter and the packet-loss
ratio for the rate-constrained traffic (User Datagram Protocol (UDP) packets with 560
bytes payload and period of 1ms) in an idle scenario were measured. In this scenario,
where low jitter and zero packet loss is expected, the rate-constrained messages are sent
from node 1 to node 2 without any other background network traffic. This results in
an average bandwidth utilization at the network link of 4.80% (4.80 Mbits/sec) with a
maximum jitter of 0.052 ms and zero packet loss (0 of 321330 sent packets).

RC and BE without Traffic Shaping In the next step, background workload (best effort)
was added by sending Transmission Control Protocol (TCP) messages with 560 Bytes
payload at maximum speed from node 1 to node 3. By sending the RC and the BE traffic
to two different nodes, the messages are enqueued at two different egress queues in the
switch and the RC traffic contends at the egress queue of node 1 with the BE traffic.
During this experiment, a packet loss ratio of 37% (117626 of 321330 sent packets) was
measured with an average bandwidth utilization of 4.75% (4.75 Mbits/sec) and maximum
jitter of 2.479 ms regarding the rate-constrained traffic. This experiment shows clearly
that without any traffic shaping mechanisms, the rate-constrained traffic is jeopardized by
the best effort background traffic.

Listing 7.1: Qdisc Configuration for Traffic Shaping
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tc qdisc del dev enp1s0 root
tc qdisc add dev enp1s0 root handle 1: prio bands 3
tc qdisc add dev enp1s0 parent 1:1 handle 10 prio bands 3
tc qdisc add dev enp1s0 parent 1:2 handle 20 tbf /
rate 80mbit latency 50ms burst 600k
tc qdisc add dev enp1s0 parent 1:3 handle 30 pfifo_fast
tc filter add dev enp1s0 parent 1:0 prio 1 protocol ip /
u32 match ip tos 0x28 0xff flowid 1:1
tc filter add dev enp1s0 parent 1:0 prio 2 protocol ip /
u32 match ip tos 0x48 0xff flowid 1:2
tc filter add dev enp1s0 parent 1:0 prio 3 protocol ip /
u32 match ip tos 0x58 0xff flowid 1:3

RC and BE with Traffic Shaping For the last scenario, Traffic Control in the Linux
kernel was used as shown in Listing 7.1. Here, the default root qdisc was changed to a
PRIO qdisc with 3 bands [LIN20c]. The first band with the highest priority is designated
for the rate-constrained traffic. For the experimental setup, rate-constrained traffic was
assigned the highest Type of Service (ToS) level and mapped to the first band by using
an ip tos filter. In addition, more complex filters can be applied to assign traffic to the
different bands. Further, a Token Bucket Filter (TBF) qdisc is assigned to the second
band in order to limit the traffic for streaming data. Finally, the third band is configured
as PFIFO_FAST qdisc for best effort messages.

The result shows the effectiveness of the Traffic Shaping Layer: the background traffic
does not affect any more the rate constrained traffic regarding the jitter (which is similar to
the jitter measured in the idle scenario) and leads to no packet loss of the rate constrained
traffic. The average bandwidth utilization was 4.80% (4.80 Mbits/sec) with a maximum
jitter of 0.061 ms and zero packet loss (0 of 321330 packets).

Traffic Payload max. Latency (RTT) max. Jitter Packet Loss
No traffic shaping

RC only 560 bytes (RC) 0.076 ms 0.052 ms 0 %
RC & BE 560 bytes (each) 7.988 ms 2.479 ms 37 %

Traffic Shaping Layer
RC only 560 bytes (RC) 0.076 ms 0.053 ms 0 %
RC & BE 560 bytes (each) 1.227 ms 0.061 ms 0 %

Table 7.1: Rate-Constrained communication - Traffic characteristics
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7.2.4 Real-Time Communication

The approach for real-time communication presented in this thesis establishes a hierarchical
communication model with a physical real-time communication network on the lowest level
and a virtual real-time communication network as a second level. The virtual real-time
communication network is used for the communication within one node between different
containers (cf. Figure 5.5). A bridge handles the routing between both levels. This section
shows the evaluation results of the virtual real-time communication network at second level
regarding the packet transport latency and jitter.

taprio-talker

taprio-listener

veth

veth

veth

veth

bridge

TAPRIO + ETF QDISCS

./udp_tai -i eth0 -b 1591537480000250000 -P 1000000 -t 3 -p 90 -d 150000 -u 7788

./udp_tai -i eth0 -t 2 -D -d 150000 -b 1591537480000550000 -u 7798 -E

iperf3 -s -I eth0

tcpdump -c 600000 -i eth0 -w /tmp/tmp.pcap -j host -tt --timestamp-precision=nano

iperf3 -c 10.0.3.76 -t 600 --fq-rate 100M

STRICT TRAFFIC
DEADLINE TRAFFIC

BEST-EFFORT TRAFFIC

MULTIQUEUE LXC PATCH
ls /sys/class/net/enp5s0/queues/
rx-0 rx-1 rx-2 rx-3 tx-0 tx-1 tx-2 tx-3

tcpdump -c 600000 -i eth0 -w /tmp/tmp.pcap -j host -tt --time-stamp-precision=nano

tc qdisc replace dev eth0 parent root handle 100 taprio \
num_tc 3 \
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 2@2 \
base-time 1593868534000000000 \
sched-entry S 01 200000 \
sched-entry S 0 100000  \
sched-entry S 02 300000 \
sched-entry S 0 100000  \
sched-entry S 04 50000 \
sched-entry S 0 250000 \
clockid CLOCK_TAI

CAPTURE TRAFFIC WITH PCAP

tc qdisc replace dev eth0 parent 100:1 etf \
delta 25000 clockid CLOCK_TAI

tc qdisc replace dev eth0 parent 100:2 etf clockid CLOCK_TAI \
delta 25000 deadline_mode

BEST-EFFORT TRAFFIC
CAPTURE TRAFFIC WITH PCAP

Figure 7.5: Hierarchical real-time communication - Experimental setup

The experimental setup shown in Figure 7.5 follows the hierarchical structure presented
in Figure 6.2 and introduces two Linux Containers (LXC) containers called taprio-talker
and taprio-listener. Both containers are based on the Linux distribution Arch Linux which
was also used as the basis for the system running the hypervisor LXC in version 4.0.2
patched with the multiqueue patch developed in the context of this thesis. Both containers
are connected via a virtual Linux network bridge. Since LXC is partly responsible for the
isolation of resources by using namespaces (cf. Section 5.5.1) for the spatial isolation of
network resources (cf. Table 5.1), the egress veth devices of the container are created in
the network namespace of the container. Since this network namespace is different from
the host and other containers, the network namespace of a container cannot be accessed
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without special permissions (which e.g. is available via the root user) from other containers
or the host. Further, LXC creates unnamed namespaces, which means that the created
network namespaces cannot be accessed without mounting the network namespace to a
network namespace mount under /run/netns. Since the presented experiments require
the application of the Time-Aware Priority Shaper (TAPRIO) queueing discipline at the
egress veth device of both containers, the following procedure is used to mount the network
namespace of a container (in the example the taprio-talker) in order get access to the
network namespace of the container. At first, the Process identifier (PID) of the container
has to be retrieved. This can be done by using the LXC command line tool lxc-info as
shown in Listing 7.2.

Listing 7.2: Output of the command line tool lxc-info for the taprio-talker container
Name: taprio−talker
State: RUNNING
PID: 1743
IP: 10.0.3.41
IP: 10.0.3.42
CPU use: 186.63 seconds
BlkIO use: 40.92 MiB
Memory use: 83.45 MiB
KMem use: 24.70 MiB
Link: taprio−talker
TX bytes: 106.29 GiB
RX bytes: 483.82 MiB
Total bytes: 106.76 GiB

The PID can then be used to mount the network namespace as shown in Listing 7.3 to
get a bash shell to the network namespace of the container. The bash shell is then used
in the experiments for assigning the TAPRIO queueing discipline to the veth device of the
corresponding container.

Listing 7.3: Mounting the network namespace of the taprio-talker container
mkdir /run/netns
touch /run/netns/taprio−talker
mount −o bind /proc/1743/ns/net /run/netns/taprio−talker
ip netns exec taprio−talker bash

Having a look at the Linux virtual network bridge, which connects the corresponding
pairs of the veth devices of the container, it can be seen that the bridge as well as the veth
are created within the namespace of the host (cf. Listing 7.4).
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Listing 7.4: Bridge and veth devices in host network namespace
[lxc−taprio ~]# ip addr show | egrep "lxcbr0|taprio−talker|taprio−listener"
4: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue state UP group default qlen 1000
inet 10.0.3.1/24 scope global lxcbr0

5: taprio−talker@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue master lxcbr0 state UP group default qlen 1000

6: taprio−listener@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue master lxcbr0 state UP group default qlen 1000

Throughout the experiments, different periodic schedules were created and evaluated. A
common attribute of all schedules was a cycle time of 1000000 nanoseconds (1 millisecond).
In TAPRIO the cycle time does not have to be defined explicitly, but the cycle time is
calculated from the sum of all periods defined by the sched-entry attributes: ∑N

i=1
Qi

Ti
.

Further, the Earliest TxTime First (ETF) queueing discipline was used. Main purpose of
the ETF queueing discipline is to ensure a correct chronological order of packets. TAPRIO
in combination with the ETF queueing discipline allows to send scheduled traffic in two
different modes: strict and deadline. The first mode strict allows to define a transmission
time for each packet. This allows a very precise control of the instant when a packet is sent
via the network interface. However, this requires a physical network interface that supports
hardware offloading (also named LaunchTime Control or Time-Based Scheduling) like the
Intel® i210 network card. The second mode deadline implements the behavior of the Time-
Aware Shaper (TAS) (cf. Section 2.2.4) defined in the enhancements for scheduled traffic
in IEEE 802.1Qbv. Packets that are sent with this mode are enqueued as soon as possible
within the assigned period. However, the packets are ordered according to their assigned
timestamps. If a packet cannot be sent within that period, it is dropped.

Listing 7.5: TAPRIO schedule and ETF settings
tc qdisc replace dev eth0 parent root handle 100 taprio \

num_tc 3 \
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 2@2 \
base−time 1593271066000000000 \
sched−entry S 01 200000 \
sched−entry S 0 100000 \
sched−entry S 02 300000 \
sched−entry S 0 100000 \
sched−entry S 04 50000 \
sched−entry S 0 250000 \
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clockid CLOCK_TAI

tc qdisc replace dev eth0 parent 100:1 etf \
delta 25000 clockid CLOCK_TAI

tc qdisc replace dev eth0 parent 100:2 etf clockid CLOCK_TAI \
delta 25000 deadline_mode

Figure 7.6 shows the concrete schedule used for the presented results. This schedule
consists of three scheduled time-slots for the traffic classes strict (periodic traffic with Linux
Socket Buffer (SKB) priority 3), deadline (periodic deadline traffic with SKB priority 2)
and best-effort (traffic with all other SKB priorities). Each time-slot is followed by a guard
band (GB) which is configured for the traffic classes strict and deadline to 100 microseconds
and for the traffic class best-effort to 250 microseconds.

STRICT DEADLINE BEGB GB GB

Figure 7.6: Hierarchical real-time communication - Communication schedule

Guard bands can be configured in TAPRIO by assigning the gatemask 0 to the cor-
responding sched-entry parameter. Here it is important to know that the sched-entry
parameter uses a bit mask for the transmission selection of the traffic classes. A bit mask
with the value of 0x01 means that the first traffic class is meant, which is in fact the traffic
class 0. A gatemask with a bit mask of 0x00 means that all gates are closed (cf. [IEE16a]).
The guard bands are required because packets can get queued in the transmission queues
of the network devices, which is also true for the used veth devices in this experiment.
Here, the guard bands allow the network device to empty the queues before the gate for
the next traffic class is opened by the TAPRIO queueing discipline. In this way, the guard
bands prevent the interfering of queued packets to the transmission windows of other traffic
classes.

The queues parameter of the TAPRIO schedule in Listing 7.5 then maps the three
traffic classes to the queues of the veth device. It is also possible to put a further queueing
discipline between the TAPRIO queueing discipline and the queues of the veth devices,
which is also done within the presented configuration. Here, two additional ETF queueing
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disciplines are introduced where the first queueing discipline (100:1) is responsible for the
strict traffic class and the second queueing discipline (100:2) is responsible for the deadline
traffic class (the option deadline_mode also indicates this). Figure 7.7 shows the packet
flow for each traffic class. The ETF queueing disciplines are used to have precise control of
the instant when a packet gets enqueued from the traffic control layer of the Linux network
stack into the network device, which is the veth device in the presented experimental
setup. In order to fulfill this task, the ETF queueing discipline uses the transmission time
(txtime) assigned to the packet in the SKB structure and sorts the packets in the queue
according to the transmission time (earliest transmission time first). Further, the ETF
queueing discipline has an optional parameter deadline_mode which changes the behavior
of the queueing discipline in such a way that the transmission time of the packet in the
SKB structure is set to now [LIN20b]. This has the effect, that enqueued packets are
enqueued as soon as possible by the ETF queueing discipline. However, if packets cannot
get enqueued during the specified interval, the ETF queueing discipline drops the packet.

CONTAINER NETWORK TRAFFIC
STRICT & DEADLINE & BE

QDISC
TAPRIO

tx-1tx-0 tx-2 tx-3 veth1

bridge

veth1-br

rx-1rx-0 rx-2 rx-3

QDISC
ETF

QDISC
ETF

QDISC
FIFO

QDISC
FIFO

rx-0 tx-0

rx-0 veth2

veth2-brrx-0tx-1tx-0 tx-2 tx-3

tx-0

tx-0

CONTAINER NETWORK TRAFFIC
STRICT & DEADLINE & BE

Figure 7.7: Container-to-container communication - Traffic flow

As it can be seen in Figure 7.7, all three traffic classes are first processed by the TAPRIO
queueing discipline which allows packets passing according to the schedule provided by the
sched-entry configuration parameters. The packets from both traffic classes strict and
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deadline are each mapped to the respective ETF qdisc. All other traffic classes (best-effort
traffic) are mapped to two First In First Out (FIFO) qdiscs. Further, all four queueing
disciplines are each mapped to a single transmission queue (tx-0 up to tx-3) of the veth
device. Since veth devices are technically interconnected by connecting the transmission
queues of the first veth device to the reception queues of the second veth device (and vice
versa), the packets are instantly received at the second veth device, which is itself further
connected to the Linux bridge. The bridge itself then forwards the packets to the target
veth device. The following system setup was used for the presented results:

• Intel® Core(TM) i7-8700 CPU @ 3.20GHz

• Linux kernel: 5.6.16-1-MANJARO (already contains the taprio use-after-free fix)

• Hyper-Threading and Turbo Boost disabled in BIOS

• Two additional Linux kernel boot parameters: processor.max_cstate=1 and idle=poll

• LXC in version 4.0.2 (with multiqueue patch)

CAPTURE PACKET 
TRAFFIC
(TCPDUMP)

PCAP FILE 
(IN TMPFS)

DUMP-CLASSIFIER

PARSE-RESULTS.PL

ERROR REPORT 
(E.G. MISSING

AND LATE PACKETS)

TRAFFIC ANALYSIS
(JITTER AND LATENCY)

STATISTICS
(E.G. LATENCY DISTRIBUTION)

Figure 7.8: Hierarchical real-time communication - Toolchain and methodology

For all experiments, the packet timestamps were measured with the command line tool
tcpdump, which itself uses libpcap for the capturing of packets. Figure 7.8 shows tcpdump
embedded in the toolchain used for the presented experiments. Regarding the packet
capturing, it is important to know that the Linux Network protocol stack has dedicated
measurements points for network taps like libpcap. When packets are received, the packets
are forwarded to the network tap directly after the SKB has been created for the packet
(in particular before a potential ingress queueing discipline). At the egress side, packets
are forwarded to the network tap directly when they leave the (last) queueing discipline
assigned to the network interface. Further, the packet dump files were written to a tmpfs
file system [LIN20d] in order to minimize the latency of the tcpdump thread. The packet
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dump files were then pre-processed by the command line tool dump-classifier [SP20b] and
the further processed by the Perl script parse-results.pl. parse-results.pl was implemented
within the scope of this thesis in order to check for missing or late packets and to generate
traffic statistics.

For the transmission of periodic (traffic class strict) and deadline (traffic class deadline)
traffic, the program udp_tai was used [SP20b]. Listing 7.6 shows the command syntax
for the traffic class strict and Listing 7.7 the command syntax for the traffic class dead-
line. Further, the program udp_tai was modified as part of the experiments to use the
SCHED_DEADLINE scheduler of the Linux kernel instead of the provided real-time pri-
orities for deadline traffic. The payload of each packet is always 256 bytes and contains
the timestamp at which the packet should be sent.

Listing 7.6: udp_tai command example for periodic traffic (traffic class strict)
[lxc−taprio ~]# ./udp_tai −i $IFACE −b $BASE\_TIME −P 1000000 −t 3 −d 150000 −u 7788

Listing 7.7: udp_tai command example for deadline (traffic class deadline) traffic
[lxc−taprio ~]# ./udp_tai −i $IFACE −t 2 −d 150000 −D −b $BASE\_TIME −u 7798 −E

Figure 7.9: Packet latency at the taprio-talker container

In addition to the strict and deadline traffic classes, the Linux network stack was loaded
with best-effort background traffic (here iperf3 was used) at a bit rate of 100Mbits per
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Figure 7.10: Packet latency at the taprio-listener container

second sent from the taprio-talker to the taprio-listener. Figure 7.9 and Figure 7.10 show
the respective measured latencies at the taprio-talker and at the taprio-listener. The
latencies are plotted on the y-axis, while the x-axis shows the progression of time as Unix
timestamp. The Unix timestamp represents a point in time as the numbers of seconds
passed since 00:00:00 UTC on January 1st 1970.

Both figures show that the latencies introduced by the Linux network stack and in
particular by the TAPRIO and the ETF queueing disciplines are at a low microsecond
range. By having a look at the latencies at the taprio-listener, one can see that the
latencies introduced by the Linux virtual switch are also in the low microsecond range.
The measured jitter is about 2 microseconds at the talker and about 6 microseconds at
the talker. Another remarkable aspect is the narrow band of the measured latencies in
Figure 7.11. During all experiments, no packets were dropped due to a missed deadline.

Listing 7.8: TAPRIO limiting the throughput of best-effort traffic
[root@taprio−talker ~]# iperf3 −c 10.0.3.223 −t 86400 −−fq−rate 1000M
[ 5] 159.00−160.00 sec 46.5 MBytes 390 Mbits/sec 0 35.4 KBytes
[ 5] 160.00−161.00 sec 46.6 MBytes 391 Mbits/sec 0 35.4 KBytes
[ 5] 161.00−162.00 sec 46.5 MBytes 390 Mbits/sec 0 35.4 KBytes
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Figure 7.11: Packet latency at the taprio-talker container as histogram

Another interesting aspect discovered during the experiments is that the TAPRIO queue-
ing discipline is capable of limiting the traffic throughput of a traffic class. As Listing 7.8
shows, the TAPRIO queueing discipline only allows best-effort traffic to be transmitted
with a bit rate of approx. 390 Mbits per second (instead of 1000Mbits/sec as requested
in the iperf3 command). This is due to the fact, that in the used TAPRIO schedule (cf.
Listing 7.5) only a transmission period of 50 microseconds is assigned for best-effort traffic.

Preemptive Linux Kernel A further experiment was executed with a Linux Kernel that
was patched with the PREEMPT_RT patch (5.6.14_rt7-2-MANJARO). As with the pre-
vious experiments, udp_tai was used to send deadline traffic in the corresponding period.
Here, a lot of packets were dropped by the ETF queueing discipline because of a missed
deadline. Dropped packets can be identified by using the SOF_TXTIME_REPORT_ER-
RORS flag of the SO_TXTIME Application Programming Interface (API) [SP20a]. A
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further method that was used for checking for missing and late packets is the Perl script
parse_results.pl.

Figure 7.12 shows the packet latencies measured with the preemptive Linux kernel. Here,
it can clearly be seen that the TAPRIO queueing discipline is periodically preempted by
a task. Packets that were dropped due to a missed deadline are drawn in Figure 7.12 in
red color. In the presented results, 28 packets out of a total number of 90041 deadline
packets were dropped due a missed deadline. A possible reason for the packet drops
when using the PREEMPT_RT patch is that the Linux kernel is made preemptive with
the PREEMPT_RT patch, and this also applies for the network stack as part of the
Linux kernel. Here, the processing and transmission of network packets in the queueing
disciplines, the veth devices and the Linux network bridge can be preempted by user space
applications (with high priorities).

Figure 7.12: Packet latency at the taprio-talker container (preemptive Linux Kernel)

Scalability In order to evaluate the scalability of the presented approach, further exper-
iments were executed with different amounts of containers. A real-time communication
setup with multiple containers can be achieved by several ways. The first approach is to
have a separate traffic class for each container. Here, the performance is equivalent to the
already presented approach with one taprio-talker and one taprio-listener. A downside of
the first approach is that it is limited by the maximum number of traffic classes, which
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is 16 for container-to-container communication and 8 for host-to-host communication us-
ing Time Sensitive Networking (TSN). However, this results in a predictable temporal
behavior, as already presented.

Figure 7.13: Packet latency for 5 taprio-talker containers (at network bridge)

Container Min. Latency
(nanoseconds)

Max. Latency
(nanoseconds)

Avg. Latency
(nanoseconds)

Jitter
(nanoseconds)

Missed
Deadline

taprio-talker-1 2272 12576 2951 10304 0
taprio-talker-2 1440 11808 2063 10368 0
taprio-talker-3 2976 10272 3379 7296 0
taprio-talker-4 2272 9504 2655 7232 0
taprio-talker-5 1632 8736 1920 7104 0

Table 7.2: Traffic statistics for 5 taprio-talker container (at network bridge)

A second approach is to let all containers share the same traffic class for time critical
traffic. This approach does not have a limitation regarding possible traffic classes. However,
it is expected that an increasing number of containers sharing the same traffic class will
introduce more latency as well as jitter to the real-time communication. A further way is
a combination of the first and the second approach. The goal of following experiments is
to evaluate the magnitude of the additional introduced latency and jitter when using the
second approach.
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Figure 7.14: Packet latency for 5 taprio-talker containers (at taprio-listener)

Container Min. Latency
(nanoseconds)

Max. Latency
(nanoseconds)

Avg. Latency
(nanoseconds)

Jitter
(nanoseconds)

Missed
Deadline

talker-deadline-1 5024 16416 8496 11392 0
talker-deadline-2 3680 26272 4822 22592 0
talker-deadline-3 4000 13728 4755 9728 0
talker-deadline-4 3616 31712 4629 28096 0
talker-deadline-5 3552 13216 5168 9664 0

Table 7.3: Traffic statistics for 5 taprio-talker container (at taprio-listener)

The following experiment comprises a setup of 5 taprio-talker containers sending traffic
to 5 taprio-listener containers. Figure 7.13 shows the measured latencies for the taprio-
talker containers at the ingress side of network bridge. It can be seen that the delay and
jitter at the bridge for the majority of the packets ranges from 2µs to 6µs. However,
there are some few packets having a maximum latency with up to 13µs. These exceptions
are probably due to spinlocks on the ingress side of the Linux kernel’s network stack or
due to the high workload of the memory controller when writing the captured packets to
the tmpfs memory filesystem. Table 7.2 shows a summary of the packet latencies for the
presented experiment. Figure 7.14 shows the latencies and jitter measured in the ingress
of the taprio-listener containers. The results show that the network bridge has added
some further delay and jitter to the communication. The majority of the packets have
a measured latency from 4µs to 15µs. However, as with the measurements at the bridge
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(cf. Figure 7.13) there are some few packets that exceed the band of 4µs to 15µs with a
measured latency up to 31µs. Table 7.3 shows a summary of the packet latencies measured
at the taprio-listener containers.

Figure 7.15: Packet latency for 15 taprio-talker containers (at taprio-listener)

The next experiment was conducted with a setup of 15 taprio-talker containers sending
traffic to 5 taprio-listener containers. Figure 7.15 shows the measured latencies in the
taprio-listener containers combined in one figure. The results show that the majority of
the packets reach the taprio-listener containers with a band of 9µs to 35µs. As with the
setup of five taprio-talker containers, there are some packets exceeding this band with a
measured latency up to 70µs. As with the previous experiments, these exceptions are
probably due to spinlocks on the ingress side of the Linux kernel’s network stack or due
to the high workload of the memory controller when writing the captured packets to the
tmpfs memory filesystem. Table 7.4 shows a summary of the packet latencies and jitter
for this experiment. One interesting fact is the increasing offset when the first packets are
sent. This offset has increased from about 2 microseconds (from the experiment with 5
taprio-talker containers) to about 8 microseconds (in the experiment with 15 taprio-talker
containers). A possible reason for this increasing delay could be management overhead in
the used queueing disciplines TAPRIO and ETF.

As expected, delay and jitter of the packet transmission increase with the number of
simultaneous containers using the same traffic class. However, a number of 20 concur-
rent containers within one traffic class leads to the loss of packets (cf. Table 7.5). The
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Container Min. Latency
(nanoseconds)

Max. Latency
(nanoseconds)

Avg. Latency
(nanoseconds)

Jitter
(nanoseconds)

Missed
Deadline

taprio-talker-1 34208 66336 40543 32128 0
taprio-talker-2 35040 70240 41537 35200 0
taprio-talker-3 27744 62560 34100 34816 0
taprio-talker-4 20320 54624 26446 34304 0
taprio-talker-5 8288 37536 11710 29248 0
taprio-talker-6 8096 15904 10960 7808 0
taprio-talker-7 34272 66464 40588 32192 0
taprio-talker-8 27104 59040 33371 31936 0
taprio-talker-9 19680 51104 25349 31424 0
taprio-talker-10 10976 39840 14575 28864 0
taprio-talker-11 26656 58656 32900 32000 0
taprio-talker-12 8096 40352 10360 32256 0
taprio-talker-13 19360 50464 24301 31104 0
taprio-talker-14 10592 38688 13831 28096 0
taprio-talker-15 11104 42592 14734 31488 0

Table 7.4: Traffic statistics for 15 taprio-talker containers (measured at taprio-listener)

packet loss is because of packets being dropped in the ETF queueing discipline due to a
missed deadline. The reason for the dropped packets are not expected to be due to insuf-
ficient bandwidth because even in the case of 20 concurrent containers, there is a lot of
unused bandwidth remaining (cf. Figure 7.16). Moreover, it seems that the administrative
overhead in the ETF queueing discipline seems to be the reason for the missed deadlines.

Regarding the scalability of the presented approach, it was shown that multiple container
can use the same traffic class without negative impacts like packet loss with an amount of
15 containers in a period of 100 µs (cf Table 7.4). For example, this allows a setup with up

Number of
Containers Latency Jitter

(nanoseconds)
Total
Packets

Missed
Deadlines

Missed
Deadlines (%)

Min. Max. Avg.

1 2144 7968 2493 5824 125291 0 0
5 2552 31712 5574 29160 385305 0 0
15 8096 70240 27077 62144 562410 0 0
20 5152 81312 25620 76160 600040 44 0,0074
25 5408 157920 42497 152512 600075 88 0,0147
30 6112 187040 47894 180928 601140 1168 0,1943

Table 7.5: Overall traffic statistics (measured at taprio-listener)
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Figure 7.16: Packet latency for 20 taprio-talker containers (at taprio-listener)

to 135 containers using hierarchical real-time communication in a cycle of 1ms with nine
periods of 100 µs each for time critical traffic and a period of 100 µs for best effort traffic.
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Figure 7.17: Packet latency for 30 taprio-talker containers (at taprio-listener)

1 5 15 20 25 30

Min. Latency 2,144 2,552 8,096 5,152 5,408 6,112

Avg. Latency 2,493 5,574 27,077 25,62 42,497 47,894

Max. Latency 7,968 31,712 70,24 81,312 157,92 187,04

Jitter 5,824 29,16 62,144 76,16 152,512 180,928
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Figure 7.18: Packet latency evaluation for multiple taprio-talker containers
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Hierarchical Communication In order to evaluate the performance of the hierarchical
real-time communication, a setup of two hosts was used as shown in Figure 6.2. The clocks
of the network interfaces as well as the clocks of both hosts were synchronized by using
linuxptp as described in Section 6.3 (linuxptp was used in version 2.0-00155-g61c6a70 for
this experiment). Further, Energy-Efficient Ethernet (EEE) of both Intel® i210 network
cards was disabled for the following experiment. EEE has to be disabled for time-critical
traffic since it introduces additional latency to the network communication. For example,
EEE can be deactivated by using the command line tool ethtool (cf. Listing 7.9).

Listing 7.9: Disabling EEE with the command line tool ethtool
# ethtool −−set−eee enp5s0 eee off

In order to establish a hierarchical communication between the virtual real-time com-
munication network that is connecting the containers and the physical network which
interconnects the two hosts, the network interface of the Intel® i210 network card has to
be connected to the Linux bridge of the virtual real-time communication layer on both
hosts. This can be achieved by using the iproute2 tools, as Listing 7.10 shows.

Listing 7.10: Attaching the physical network interface to the bridge
# ip link set enp5s0 master lxcbr0

In a further step, the TAPRIO queueing discipline and the ETF queueing discipline have
to be assigned to the network interface of the Intel® i210 and the network interfaces of
the containers. For this experiment, a different schedule than in the previous experiments
was used. One reason is that the Precision Time Protocol (PTP) packets have to be sent
separately from other network traffic in order to achieve the highest possible precision for
the clock synchronization of the network clocks.

In particular, this is achieved by using a dedicated Virtual Local Area Network (VLAN)
interface whose traffic is mapped to an independent traffic class. Listing 7.11 and List-
ing 7.12 show the required commands for setting up the clock synchronization with an
independent traffic class via two VLAN interfaces. In particular, Listing 7.11 shows the
creation of a VLAN interface that assigns a SKB priority of 7 to all outgoing packets. This
priority can afterwards be used in the configuration of the TAPRIO queueing discipline
to map the traffic to an independent traffic class. For the presented PTP setup, a Root
Mean Square (RMS) value of 5-12ns was achieved in linuxptp.

Listing 7.11: Setting up PTP on the taprio-talker host
ip link add link enp5s0 name enp5s0.3 type vlan id 3 egress−qos−map 7:7
ip addr add 10.50.3.2/24 brd 10.50.3.255 dev enp5s0
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ip addr add 10.50.1.2/24 brd 10.50.1.255 dev enp5s0
ip link set dev enp5s0.3 up
sudo ./setup_clock_sync.sh −i enp5s0.3 −s −v

Listing 7.12: Setting up PTP on the taprio-listener host
ip link add link enp5s0 name enp5s0.3 type vlan id 3
ip addr add 10.50.3.1/24 brd 10.50.3.255 dev enp5s0
ip link set dev enp5s0.3 up
./setup_clock_sync.sh −i enp5s0.3 −M −v

Figure 7.19 shows the hierarchical schedule used for the evaluation of the hierarchical
container-to-container communication. As it can be seen, the schedule at the level of the
host contains dedicated intervals for the PTP packets.

DBE HS

BE

HD

HDHS

DS BE HS HD S

PTP PTP PTP PTPBE HS HD

Cycle time 1000μs

Container-to-Container traffic

PTP Traffic for host clock synchronization
Hierarchical traffic

BE – Best Effort traffic
HS – Hierarchical strict traffic
HS – Hierarchical deadline traffic
S – strict traffic
D – Deadline traffic
PTP – Precision Time Protocol

Schedule at container level

Schedule at host level

Figure 7.19: Communication schedule for hierarchical traffic

Since the intervals for PTP traffic cannot be used for hierarchical traffic, the schedule
at the container level provides here intervals for real-time container-to-container commu-
nication for containers that are on the same host. It is important that both schedules are
in alignment with each other. Otherwise the TAPRIO queueing discipline would drop the
packets due to a closed gate. However, the schedule could be optimized by incorporating
the delays in the virtual Ethernet (veth) devices and in the bridge as an offset for the start
of the periods. Listing 7.13 shows the corresponding TAPRIO queueing discipline schedule
used at the host level.
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Listing 7.13: TAPRIO schedule of the taprio-talker host
qdisc replace dev eth0 parent root handle 100 taprio \

num_tc 4 \
map 3 3 0 1 3 3 3 2 3 3 3 3 3 3 3 3 \
queues 1@0 1@1 1@2 1@3 \
base−time 1596379522000000000 \
sched−entry S 08 100000 \
sched−entry S 01 100000 \
sched−entry S 02 100000 \
sched−entry S 04 200000 \
sched−entry S 08 100000 \
sched−entry S 01 100000 \
sched−entry S 02 100000 \
sched−entry S 04 200000 \
clockid CLOCK_TAI

qdisc replace dev eth0 parent 100:1 etf \
delta 200000 clockid CLOCK_TAI skip_sock_check

qdisc replace dev eth0 parent 100:2 etf \
delta 200000 clockid CLOCK_TAI skip_sock_check

A third step is required for the establishment of the hierarchical communication, which
is the (re-)classification of the network traffic. The reason is that the TAPRIO queueing
discipline uses the priority field of the SKB structure in the Linux Kernel. In the case of
the virtual real-time communication layer, the lifetime of the SKB structure ends as soon
as the packet passes the Linux bridge. Therefore, it is necessary to reclassify the packets
by setting the priority field of the SKB structure with the according traffic class of the
packet. One approach is to use the command line tool iptables, which is commonly used
to define packet filtering rules in the Linux kernel. Since iptables typically operates on a
higher level than the Linux bridge (which is at layer 2), the network traffic on the bridge
has to be exposed to iptables by activating the kernel module br_netfiler. Listing 7.14
shows the commands used for loading the kernel module and for the classification of both
traffic classes strict and deadline.

Listing 7.14: Classification of network traffic using iptables
# modprobe br_netfilter
# iptables −t mangle −A POSTROUTING −p udp −−dport 7798 −j CLASSIFY −−set−class 0:2
# iptables −t mangle −A POSTROUTING −p udp −−dport 7788 −j CLASSIFY −−set−class 0:3
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However, setting the priority field of the SKB structure is not sufficient, since the
SOCK_TXTIME option in the SKB structure is not set for all incoming packets. This
would lead to a packet drop in the ETF queueing discipline. Therefore, the skip_sock_check
option has to be used when setting up the ETF queueing discipline. This option disables
the SOCK_TXTIME check in the ETF queueing discipline. Further, the ETF queueing
discipline would still drop all packets, since no transmission timestamp is assigned to the
SKB structure. In this context, the default implementation of the ETF queueing disci-
pline has been extended within this experiments to assign the appropriate timestamp to
all packets and to dequeued packets directly to the network driver in order to make use
of the hardware offloading feature of the Intel® i210, which is called LaunchTime. The
hardware offloading feature allows the driver of the network card to pre-fetch Ethernet
frames from system memory to the transmission buffer inside the Ethernet Media Access
Control (MAC) controller ahead of its specified transmission time [Int20]. This allows a
very precise injection of packets with low jitter, as Figure 7.20 shows.

Figure 7.20: Intel® i210 LaunchTime feature evaluation

However, the hardware offloading feature of the Intel® i210 is only supported by the first
hardware transmission queue, which is tx-0 (cf. Section 6.2). This has to respected when
assigning the traffic classes to the hardware queues in the configuration of the TAPRIO
queueing discipline.

154



7.2 Experiments

Figure 7.21: Packet latency for hierarchical communication without LaunchTime

Figure 7.21 shows the performance of the hierarchical real-time communication without
using the hardware offloading feature of the Intel® i210. For this experiment, the ETF
queueing discipline was configured with hardware offloading disabled. It can be seen that
the majority of all packets are sent within a band of about 40 µs. However, there is also
a small number of packets transmitted outside this band, reaching up to a delay of 100
µs. Another interesting detail that can be seen in Figure 7.21 are the delay peaks that
occur at the taprio-talker container and the taprio-talker host about every 10 seconds. The
reason for these delay peaks could be narrowed down to the activated br_netfilter kernel
module. However, it can also be seen that the delay peaks do not have a negative impact
to the communication at the taprio-listener host and the taprio-listener container. Due to
this reason, no further investigations were made to mitigate the impacts of the br_netfilter
kernel module and this was left for future work.

Figure 7.22 and Figure 7.23 show the performance of the hierarchical real-time commu-
nication using the hardware offloading feature of the Intel® i210. Figure 7.22 shows the
results for the hardware offloading with enabled EEE. As it can be seen, the measured
jitter is within a band of 20 µs, which is lower than the measured jitter without hardware
offloading, but still not optimal. First, with EEE being disabled, the hardware offloading
feature of the Intel® i210 reaches its full performance, as Figure 7.23 shows. Now, the jitter
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at the taprio-listener container remains within a small band of about 10 µs. However, there
is also a small number of packets outreaching this band with an delay up to 80 µs.

During the experiments, several configurations for the transmission time used for the
hardware offloading feature of the Intel® i210 were evaluated. In Figure 7.22 and Fig-
ure 7.23 it can be seen that a transmission time for the hardware offloading was configured
to be at 250 µs. The results showed that transmission times for hardware offloading which
have a smaller offset than 50 µs from the start of the interval lead to an indeterministic
behavior of the hardware offloading feature. In future work, a detailed analysis of this
behavior is necessary in order to make smaller offsets possible.

Figure 7.22: Packet latency for hierarchical communication (LaunchTime enabled, EEE
enabled)
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Figure 7.23: Packet latency for hierarchical communication (LaunchTime enabled, EEE
disabled)

7.3 Results

The presented experiments have shown that the implementations performed in the context
of this thesis are capable of meeting the key challenges presented in Chapter 3. For exam-
ple, the rate-constrained communication as part of the fault-tolerance techniques allows
the establishment of a Bandwidth Allocation Gap (BAG) which in turn allows to isolate
failures of nodes within the network (cf. Section 7.2.3). The introduction of the hypervi-
sor LXC in combination with the Linux kernel technologies and further technologies like
MemGuard allow the isolation of resources within the service gateway in order to provide
a solid basis for mixed-criticality applications. The executed experiments concerning the
hierarchical real-time container-to-container communication (cf. Section 7.2.4) also showed
clearly that the presented solution is fully suitable for the isolation of network resources as
part of the temporal and spatial isolation strategy presented in this thesis. In addition, the
achieved performance regarding communication latencies and jitter in the low microsec-
ond range allows the establishment of distributed real-time applications with strict timing
requirements. Further, the introduction of SCHED_DEADLINE allows the temporal par-
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titioning of computational resources. In particular, SCHED_DEADLINE was used in the
experiments to schedule the real-time task that was responsible for sending the network
traffic for the deadline traffic class.

In addition, the experiments for the dynamic reconfiguration of real-time resources
showed that the presented architecture is capable to address the open-world assumption
as one central part of the presented key challenges. In order to address the heterogeneity
of the underlying technologies as part of the key challenges, the presented approach fosters
the integration of the medical health and device communication standard ISO/IEEE 11073
as well as the integration of cloud services as part of the ongoing trend for using cloud
services for modern health devices. Further, a solution was presented for storing sensor
data in order to have access to historical data. This is of interest in elderly care scenarios,
since this allows elderly people to reflect their activities or to keep track of their current
health status.

Further, the presented results show that scheduled traffic in Linux exhibits determin-
istic performance in terms of latency and jitter and is suitable for real-time applications
that have tight timing constraints in the low microsecond range even when being exe-
cuted in the hypervisor LXC. Further, it was shown that the scheduling of real-time task
with SCHED_DEADLINE task scheduler of Linux is also fitting to the needed real-time
constraints. By using the SCHED_DEADLINE task scheduler it is also possible to use
a regular Linux kernel for real-time tasks without making the Linux kernel preemptive.
It was also shown that a preemptive kernel may even have negative impacts on the real-
time performance of the Linux network stack. Further, the experiments showed that the
performance of the Linux kernel regarding real-time behavior is further influenced by the
powersaving and performance mechanisms of today’s CPUs like hyperthreading and c-
states of the processor of powersaving features of the network hardware like EEE. Further,
it is worth mentioning that the TAPRIO queueing discipline is capable of changing the
schedule during runtime. This especially allows a dynamic reconfiguration of the commu-
nication resources without any downtime of the network.

However, further experiments seem to be necessary in order to investigate the worse
performance of the preemptive Linux kernel. Several opportunities for optimization are
provided by the Linux kernel. For example, it is possible to pin the threads of the
transmission queues of the veth device to dedicated CPU cores (e.g. the core that is
running the real-time task). Further, the threads of the transmission queues could be
scheduled with SCHED_DEADLINE in order to meet the timing requirements, since the
SCHED_DEADLINE scheduler has a higher priority in the Linux kernel than SCHED_RR
and SCHED_FIFO which are both used to schedule tasks in the context of a preemptive
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Linux kernel. Another option is to implement the TAPRIO queueing discipline in a way
that it cannot be preempted by real-time tasks in the user space. Another possible option
to evaluate is to use the Power Management (PM) Quality Of Service Interface (PM QoS)
of the Linux kernel [Fou20] in the taprio qdisc in order to minimize the wake up latencies of
the CPU while processing the schedule. This would for example mitigate the requirement
of both kernel flags (processor.max_cstate=1 and idle=poll) used for latency optimization
during the experiments.
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The demographic change in society is characterized by a shift from traditional care for the
elderly to the use of modern technologies from the Cyber Physical Systems (CPSs) sector.
This transition also opens up new fields of applications in the domain of elderly care, such
as robot assistance or the development of an artificial pancreas [Dan20]. Taking up this
trend, this work has identified the key challenges that arise from this transition. These
are (1) real-time support, (2) reliability, and (3) support of an open-world assumption,
taking into account multiple integration levels and the heterogeneity of the underlying
technologies (cf. Chapter 3).

A review of state-of-the-art architectures has shown that there is currently no solution
available which addresses all of these challenges. The proposed architecture bridges this
gap by introducing a fault-tolerant real-time architecture for elderly care and Ambient
Assisted Living (AAL) based on microservices. In particular, the proposed architecture
provides support for distributed real-time applications, taking into account an open-world
assumption where dynamic changes in the composition of the system are possible at any
time. To meet the above mentioned challenges, the presented architecture (cf. Chap-
ter 4) introduces several services (cf. Chapter 5), including solutions for sensor integration
based on ISO/IEEE 11073, support for applications with mixed criticality and hierarchi-
cal real-time communication. In addition, several proof-of-concept implementations (cf.
Chapter 6) and experiments (cf. Chapter 7) were presented, demonstrating that the pro-
posed architecture is capable of meeting the challenges posed by the applications in the
field of elderly care and AAL. A major contribution of this thesis is the introduction of a
distributed and hierarchical real-time container-to-container communication. Further, new
concepts were introduced, such as fault containment among containers for high-critical ap-
plications as well as real-time container-to-container communication with latencies and
jitter in the low microsecond range using techniques based on standard Linux. In sum-
mary, it can be stated, that the presented architecture achieves all key challenges for a
fault-tolerant real-time architecture for elderly care.
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8.1 Future Work

The conducted experiments have shown that there are still open points left for future
work. For example, an important aspect to be examined is the negative impact of real-time
applications on the Linux network stack in case of a preemptive Linux Kernel is used. The
experiments indicate that it is even possible interference in the network stack is possible
when processing packets, which can lead to the drop of packets due to missed deadlines
in the Linux packet scheduler. Another field for future work concerns the integration of
standards for medical health records like openEHR [EHR20] and HL7 (Health Level 7)
[HL20]. This is especially important for an architecture for elderly care since the ongoing
trend in the health care sector for telemedicine will also affect the sector of elderly care in
the near future. This requires the integration of an architecture for the elderly care in more
complex environments including a telematic infrastructure connecting various stakeholders
in the health sector.
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