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Zusammenfassung

Im Bereich biologisch inspirierter Laufmaschinen konzentrierte sich die For-
schung meist auf die reine Bewegungskontrolle sowie das mechanische De-
sign. Obwohl ein Teil dieser Forschung sich auch mit der Erzeugung reak-
tiver Verhaltensweisen von Robotern beschäftigte, war dies auf einige wenige
reaktive Verhaltensweisen beschränkt; und zwar war auf einem Roboter nur
jeweils eine Verhaltensweise implementiert. Es gibt nur wenige Ansätze, die
sich mit der Erzeugung mehrerer reaktiver Verhaltensweisen einer Maschine
gleichzeitig beschäftigen. Im Allgemeinen wurden Laufmaschinen nur zum
Zwecke der reinen Fortbewegung konzipiert, d.h. ohne dass sie ihre Umge-
bung wahrnehmen konnten.

Diese Arbeit stellt biologisch inspirierte Laufmaschinen vor, welche mehre-
re verschiedene reaktive Verhaltensweisen zeigen. Inspiriert vom Hindernisver-
meidungs- und Fluchtverhalten der Skorpione und Kakerlaken wird ein solches
Verhalten in der Laufmaschine mittels eines negativen Tropismus erzeugt.
Andererseits wird ein akustisch motiviertes Verhalten, ein sog. “akustischer
Tropismus” (Sound Tropism), in Analogie zum Jagdverhalten von Spinnen,
als Beispiel eines positiven Tropismus angewendet. Um die oben beschriebe-
nen Verhalten in abstrahierter Weise reproduzieren zu können, wird außer-
dem der biologische Wahrnehmungsapparat der genannten Tiere im Hinblick
auf ihre prinzipielle Funktionalität untersucht. Zusätzlich werden die Mor-
phologien von Salamander und Kakerlake, welche für effiziente Bewegung
gebaut sind, für die Bein- und Körpergestaltung in Betracht gezogen.

Basierend auf einem modularen neuronalen Modell werden verschiedene
Verhaltenskontroller für die Erzeugung biologisch inspirierter reaktiver Ver-
haltensweisen entwickelt. Jede Verhaltenskontrolle besteht aus neuronalen
Signal-Vorverarbeitungseinheiten und Kontrollmodulen. Für die Vorverar-
beitung sensorischer Signale werden rekurrente neuronale Netze genutzt, eb-
enso wie für die Kontrolle und die Erzeugung von Laufbewegungen, sowie der
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ii Zusammenfassung

Änderung der Bewegung, z.B. Drehung nach rechts, links oder rückwärts, in
Abhängigkeit von Sensorsignalen. Die effektive neuronale Verarbeitung und
Kontrolle wird erreicht durch Ausnutzung der dynamisschen Eigenschaften
der rekurrenten neuronalen Netze, die zum Teil durch evolutionäre Algorith-
men konstruiert bzw. optimiert wurden. Den modularen Aufbau nutzend
führt eine Kombination der verschiedenen neuronalen Verarbeitungseinheiten
zu den gewünschten Verhaltenssteuerungen. Des weiteren werden diese Ver-
haltenssteuerungen zusammengeführt mittels einer Sensor-Fusions-Technik,
welche aus Tabellen- und “Time-Scheduling” -Methoden besteht. Damit
entsteht letztlich eine neue effektive verhaltenfusionierte Steuerung, die sich
auf verschiedenste Laufmaschinen übertragen läßt.

Abschließend werden alle diese reaktiven Verhaltenssteuerungen zusam-
men mit einem Sensorsystem in physikalischen Laufmaschinen implemen-
tiert, um sie zu testen und als künstliche Perzeptions-Aktions-Maschine zu
demonstrieren. Es wird gezeigt, dass die Laufmaschinen in der Lage sind in
der Umgebung umherzuwandern und auf Reize der Umgebung zu reagieren,
z.B. durch akustischen Tropismus (positiver Tropismus), durch Hindernisver-
meidung und sogar durch Entkommen aus Ecken und Sackgassen (negativer
Tropismus). Der entwickelte Kontroller ist universell in dem Sinne, dass
er auf Laufmaschinen mit unterschiedlicher Beinanzahl, hier vier und sechs
Beine, ohne Parameteranpassung mit vergleichbaren Ergebnissen implentiert
werden kann.



Abstract

Research in the domain of biologically inspired walking machines has fo-
cused for the most part on the mechanical designs and locomotion control.
Although some of this research has been concentrated on the generation of
a reactive behavior of walking machines, it has been restricted only to a few
of such reactive behaviors. However, from this research, there are only few
examples where different behaviors have been implemented in one machine
at the same time. In general, these walking machines were solely designed
for pure locomotion, i.e. without sensing environmental stimuli.

Therefore, in this thesis, biologically inspired walking machines with dif-
ferent reactive behaviors are presented. Inspired by obstacle avoidance and
escape behavior of scorpions and cockroaches, such behavior is implemented
in the walking machines as a negative tropism. On the other hand, a sound
induced behavior called “sound tropism”, in analogy to the prey capture be-
havior of spiders, is employed as a model of a positive tropism. The biological
sensing systems which those animals use to trigger the described behaviors
are investigated so that they can be reproduced in the abstract form with
respect to their principle functionalities. In addition, the morphologies of
a salamander and a cockroach which are designed for efficient locomotion
are also taken into account for the leg and trunk designs of the four- and
six-legged walking machines, respectively.

Different behavior controls for generating the biologically inspired reac-
tive behaviors are developed on the basis of a modular neural structure. Each
behavior control consists of a neural preprocessing module and a neural con-
trol module. Preprocessing is for sensory signals while the neural control
generates basic locomotion and changes the appropriate motions, e.g. turn-
ing left, right or walking backward, with respect to sensory signals. Neural
preprocessing and control are formed by realizing discrete-time dynamical
properties of recurrent neural networks. Parts of the networks are generated
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iv Abstract

and optimized by using an evolutionary algorithm. Utilizing the modular
neural structure, the coupling of the neural control module with different
neural preprocessing modules leads to the desired behavior controllers, e.g.
obstacle avoidance and sound tropism. Furthermore, these behavior con-
trollers are then fused by using a sensor fusion technique consisting of look-
up table and time scheduling methods to obtain an effective behavior fusion
controller, whereby different neural preprocessing modules have to cooperate.

Eventually, all of these reactive behavior controllers together with the
physical sensor systems are implemented on the physical walking machines
to be tested in a real world environment. The fully equipped walking ma-
chines can be seen as artificial perception-action systems. As a result, the
walking machine(s) is able to respond to environmental stimuli, e.g. wander-
ing around, sound tropism (positive tropism), avoiding obstacles and even
escaping from corners as well as deadlock situations (negative tropism). The
developed controller is universal in the sense that it can be implemented
on different types of walking machines, e.g. four- and six-legged walking
machines, giving comparably good results without changing parameters.
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Chapter 1

Introduction

The rational behind this thesis is to investigate the mechanisms underlying
different reactive behaviors of biologically inspired walking machines. The
systems, built for this study, are formed in a way that they can react to real
environmental stimuli (positive and negative tropism) using only the sensor
signals but no task planning algorithm or memory capacities. On the one
hand, they can be used as a tool in order to properly understand embod-
ied systems which, by definition here, are physical agents interacting with
their environment [124]. On the other hand, they can be represented as a
so-called “artificial perception-action system” which is inspired by an etho-
logical study. Most current physically-embodied systems from the domain of
biologically inspired walking machines have so far been limited to only one
type of reactive behaviors [50], [52], [69] although a few of them can display
different behaviors [4], [28]. This shows that less attention has been paid to
the walking machines which can interact with an environment. In general, re-
search on biologically inspired walking machines is focused for the most part
on the construction of such machine [26], [33], [169], [176], on a dynamic gait
control [85], [157] and on the generation of an advanced locomotion control
[40], [76], [87] for instance on rough terrain [3], [74], [152].

Thus, the work described in this thesis is focused on generating different
reactive behaviors of physical walking machines. One is obstacle avoidance
and escape behavior comparable to scorpion and cockroach behavior (neg-
ative tropism) and the other mimics the prey capture behavior of spiders
(positive tropism). In addition, the biological sensing systems used to trig-
ger the described behaviors are also investigated so that they can be emulated
in the walking machines.
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The presented models extend existing research by:

• using a modular neural structure where the neural control unit can be
coupled with the different neural preprocessing units to form the desired
behavior controls. The neural structures are simple to understand and
can be applied to control different types of walking machines;

• minimizing the complexity of the neural preprocessing and control1 by
utilizing dynamical properties of small recurrent neural networks and
applying an evolutionary algorithm;

• employing a sensor fusion technique to integrate the different behavior
controllers in order to obtain an effective behavior fusion controller for
activating the desired reactive behaviors with respect to environmental
stimuli;

• investigating morphologies of walking animals and their principle of
locomotion control to benefit the designs of the physical four- and six-
legged walking machines;

• presenting the autonomous walking machines as artificial perception-
action systems in a real environment where the systems are challenged
with unexpected real world noise.

In the next section, the background of research in the area of agent-
environment interactions, which is part of the motivation for this work, is
described, followed by the details of approaches to this work. The chapter
concludes with an overview of the remainder of the thesis.

1.1 Background

Attempts to create autonomous mobile robots that can interact with their
environments or can even adapt themselves into specific survival conditions
have been ongoing for over 50 years [6], [29], [38], [53], [62], [102], [106], [108],

1Here, the neural preprocessing is referred to the neural networks for sensory signal
processing (or so-called “neural signal processing”). And, the neural control is defined as
the neural networks that directly command motors of a robot (or so-called “neural motor
control”). These definitions are used throughout this thesis.
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[109], [121], [174]. There are several reasons for this which can be summarized
as follows: (1) such robotic systems can be used as models to test hypotheses
regarding the information processing and control of the systems [49], [59],
[110], [136], [143]; (2) they can serve as a methodology for study embodied
systems consisting of sensors and actuators for explicit agent-environment
interactions [72], [81], [101], [124], [135]; (3) they can simulate the interaction
between biology and robotics through the fact that biologists can use robots
as physical models of animals to address specific biological questions while
roboticists can formulate intelligent behavior in robots by utilizing biological
studies [46], [133], [165], [166].

In 1953, W.G. Walter [162] presented an analog vehicle called “tortoise”
consisting of two sensors, two actuators and two “nerve cells” realized as vac-
uum tubes. It was intended as a working model for the study of brain and
behavior. As a result of his study, the tortoise vehicle can react to light stim-
ulus (positive tropism), avoid obstacles (negative tropism) and even recharge
its battery. The behaviors were prioritized from lowest to highest order:
seeking light, move to/from the light source and avoid obstacles, respec-
tively. Three decades later, psychologist V. Braitenberg [25] extended the
principle of the analog circuit behavior of Grey Walter’s tortoise to a series
of “Gedanken” experiments involving the design of a collection of vehicles.
These systems responded to environmental stimuli through inhibitory and
excitatory influences directly coupling the sensors to the motors. Braiten-
berg created varieties of vehicles including those imagined to exhibit fear,
aggression and even love which are still used as the basic principles to create
complex behavior in robots up to now. One primitive excellent example of a
complex robot that interacts with its environment appeared in Brooks’s work
[28]. He designed a mechanism, built from completely distributed network
of finite state machines, which controls a physical six-legged walking ma-
chine capable of walking over rough terrain and following a person passively
sensed in the infrared spectrum. 1990 R.D. Beer et al. [17], [18] simulated
the artificial insect inspired by a cockroach and developed a neural model
for behavior and locomotion controls observed in the natural insect. The
simulation model was integrated with the antennas and mouth containing
tactile and chemical sensors to percept information from the environment,
that is, it performs by wandering, edge following, seeking food, and feeding
food. In 1994 Australian researchers A. Russell et al. [140] emulated ant
behavior by creating robotic systems that are capable of both laying down
and detecting chemical trails. These systems represent chemotaxis: detecting
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and orienting themselves along a chemical trail. 2000 B. Webb et al. [167],
[168] showed a wheeled robot that localizes sound based on close modelling
of the auditory and neural system in the cricket (cricket phonotaxis). As
a result, the robot can track a simulated male cricket song consisting of 20
ms bursts of 4.7 kHz sound. Continuously, such robot behavior was devel-
oped and transferred into an autonomous outdoor robot – Whegs – three
years afterwards [69]. The Whegs was able to localize and track the simu-
lated cricket song in an outdoor environment. In fact, Webb and her colleges
intended to create these robotic systems in order to better understand bio-
logical systems and to test biologically relevant hypotheses. The extension
of the work of B. Webb was done by T. Chapman in 2001 [32]. He focused
on the construction of a situated model of the orthopteran escape response
(the escape response of crickets and cockroaches triggering by wind or touch
stimulus). He demonstrated that a two wheeled miniature Khepera robot can
respond to various environmental stimuli, e.g. air puff, touch, auditory and
light, where the stimuli referred to a predatory strike. It performed antennal
and wind-mediated escape behavior where a sudden increase in the ambi-
ent sound or light was taken into account as well. In 2003, F. Pasemann et
al. [119] presented the small recurrent neural network which was developed
to control autonomous wheeled robots showing obstacle avoidance behavior
and photo tropism in different environments. The robots were employed to
test the controller and to learn about the recurrent neural structure of the
controller. At the same time, H. Roth et al. [137], [138] introduced a new
camera based on Photonic Mixer Device (PMD) technology with the fuzzy
logic control for obstacle avoidance detection of a mobile robot MERLIN
(Mobile Experimental Robots for Locomotion and Intelligent Navigation).
The system was implemented and tested on the mobile robot which results
in the robot perceiving environmental information, e.g. obstacles, through
its vision system. It can even recognize the detected object as a 3D image
for precisely performing an obstacle avoidance behavior.

1.2 Goals

The brief history of the research presented above shows that the principle of
creating agent-environment interactions combines various fields of study, e.g.
the investigation of the robotic behavior control and the understanding how
a biological system works. It is also the basis for the achievement of a so-
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called “Autonomous Intelligent System” which is an active area of research
and a highly challenging task. Thus, the work described here continues in
this tradition with the extension of the use of biologically inspired walking
machines as agents which are reasonably complex mechanical systems than
the wheeled robot, which has been used in most previous research. In ad-
dition, the creation of desired reactive behaviors has to be done by more
advanced techniques.

However, there are many different techniques and approaches for robotic
behavior control which can be classified into two main categories: one is de-
liberate control and the other is reactive control. Describing by R.C. Arkin
1998 [8], a robot employing deliberative reasoning requires relatively com-
plete knowledge about the world and uses this knowledge to predict its ac-
tions, an ability that enables it to optimize its performance relative to its
model of the world. This results in the possibility that the action may se-
riously err if the information that the reasoner uses is inaccurate or has
changed since being first obtained. On the other hand, reactive control is a
technique used for tightly coupling perception and action, and it requires no
world model to perform the action of robots. In other words, this reactive
system typically consists of a simple sensorimotor pair where the sensory ac-
tivity provides the information to satisfy the applicability of motor response.
Furthermore, it is suitable to apply for generating robot behavior in the dy-
namic world. This means that robots can react to environmental stimuli as
they perceive without concern for the time history or task planning.

For these reasons, the work of this thesis applies the concept of reactive
control to generate the behavior of the physical four- and six-legged walking
machines. In this thesis, a behavior controller based on a modular neural
structure is modelled with an artificial neural network using discrete-time
dynamics. It consists of two main modules: neural preprocessing and neural
control (see Figure 1.1).

The function of this kind of a neural controller is easier to analyze than
many others which were developed for walking machines, for instance by
using evolutionary technique [50], [75], [86], [112], [130]. In general, they were
too large to be mathematically analyzed in detail, in particular if they use
a massive recurrent connectivity structure. Furthermore, for most of these
controllers, it is hardly possible to transfer them successfully onto walking
machines of different types, or to generate different walking modes (e.g.,
forwards, backwards, turning left and right motions) without modifying the
network’s internal parameters or structure [17], [21], [40], [173].
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Figure 1.1: The diagram of the reactive control (or called behavior con-
trol) which consists of two main parts: neural preprocessing and control. It
percepts environmental information via sensors and then the neural prepro-
cessing does signal processing. After that, the preprocessed signals are sent
to neural control to command actuators. As a result, the robot displays a
corresponding action to interact with its environment. This sensorimotor
loop interacting with an environment can be also described as an artificial
perception-action system.

In contrast, the controller developed here can be successfully applied to
four- and six-legged walking machines without altering internal parameters
or the structure of the controller.

Utilizing the modular neural structure, different reactive behavior con-
trols can be created by coupling the neural control module with different
neural preprocessing modules. Because the functionality of the modules is
well understood, the reactive behavior controller of a less complex agent
(four-legged walking machine) can be applied also to a more complex agent
(six-legged walking machine) and vice versa. A part of the controller is de-
veloped by realizing dynamical properties of recurrent neural networks and
the other is generated and optimized through an evolutionary algorithm. On
the one hand, the small recurrent neural networks (e.g. one or two neurons
with recurrent connections [113], [114], [115]) exhibit several interesting dy-
namical properties which are capable of being applied to create the neural
preprocessing and control for the approach used in this work. On the other
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hand, the applied evolutionary algorithm ENS3 (Evolution of Neural Systems
by Stochastic Synthesis) [71] tries to keep the network structure as small as
possible with respect to the given fitness function. Additionally, every kind
of connection in hidden and output layers, e.g. self-connections, excitatory
and inhibitory connections, is also allowed during the evolutionary process.
Consequently, the neural preprocessing and control can be formed using a
small neural structure.

In order to build the physical four- and six-legged walking machines for
testing and demonstrating the capability of the behavior controllers, the mor-
phologies of walking animals are used as inspiration for the designs. The basic
locomotion control of the walking machines is also created by determining
the principle of animal locomotion. In addition, an animal’s behavior as well
as its sensing systems are also studied to obtain robot behavior together with
its associated sensing systems. Inspired by the obstacle avoidance and escape
behavior of scorpions and cockroaches, including their associated sensing sys-
tems, the behavior controller, called an “obstacle avoidance controller”, and
the sensing systems are built in a way that enables the walking machines to
avoid obstacles or even escape from corners and dead lock situations. This
behavior is represented as a negative tropism while a positive tropism is trig-
gered by a sinusoidal sound at a low frequency-200 Hz. The sound induced
behavior, in analogy to prey capture behavior of spiders, is called sound
tropism. It is driven by a so-called “sound tropism controller” together with
a corresponding sensory system, as a result, the walking machine(s) reacts
to a switched-on sound source (prey signal) by turning towards and finally
making an approach (capturing a prey).

Eventually, all these different reactive behaviors are fused by using a sen-
sor fusion technique2 to obtain an effective behavior fusion controller, where
different neural preprocessing modules have to cooperate. These reactive
systems also aim to work as artificial perception-action systems in the sense
that they percept environmental stimuli (positive and negative tropism) and
directly perform the corresponding actions. However, the created systems
have no appropriate benchmarks of judging their success or failure. Thus,
the ways to evaluate the systems are by empirical investigation and by actu-
ally observing their performance.

2This fusion technique consists of two methods: a look-up table which manages sensory
inputs by referring to their predefined priorities and a time scheduling which switches
behavioral modes.
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1.3 Organization of the thesis

Chapter 2 provides biological background which was investigated to serve
as an inspiration for the designs of reactive behaviors of walking machines,
the physical sensing systems, the structures of walking machines and their
locomotion control. It also shows how these biologically inspired systems are
applied to the work done in this thesis.

Chapter 3 contains a short introduction to a biological neuron together
with an artificial neuron model. Furthermore, it also describes, in detail, the
discrete dynamical properties of a single neuron with a recurrent connection
and an evolutionary algorithm. These are employed as the methods and tools
used throughout this work.

Chapter 4 describes the biologically-inspired sensory systems and walking
machines which are originally built with physical components in this work.
They serve as hardware platforms for experiments with the modular neural
controllers or even to display as artificial perception-action systems.

Chapter 5, which is the main contribution of this thesis, introduces the
neural preprocessing of sensory signals and neural control for the locomotion
of walking machines. It also presents different behavior controls which are
the products of the combination between the different neural preprocessing
units and the neural control unit. It ends up with the detail of behavior
fusion control that cooperates all created reactive behaviors and leads to an
achievement of versatile artificial perception-action systems.

Chapter 6 shows the detailed results of the neural preprocessing tested with
the simulated and real sensory signals. It also shows the capabilities of the
controllers implemented on the physical walking machine(s) which generate
different reactive behaviors.

Chapter 7 concludes what has been achieved in this thesis and suggests new
avenues for further research.



Chapter 2

Biologically inspired
perception-action systems

The majority of this work is to create and demonstrate so-called artificial
perception-action systems inspired by biological sensing systems (perception)
and animal behavior (action). Thus this chapter attempts to provide bio-
logical background for understanding the approach taken in this work. It
begins with a short introduction to some of the necessary principles of an-
imal behavior. Then it concentrates on the obstacle avoidance and escape
behavior of a scorpion and a cockroach and continues with prey capture be-
havior of a spider. Here, attention is given to the biological sensing systems
used to trigger the described behaviors. Furthermore, different morpholo-
gies of walking animals are presented as inspiration for the design of walking
machine platforms. Finally, biologically inspired locomotion control, called
a “central pattern generator” (CPG), is also discussed where this concept is
later employed to generate the rhythmic leg movements of the machines.

2.1 Senses and behavior of animals

How can robotic behaviors be designed or how can they be created in a ra-
tional way? How can the desired behaviors be cooperated? How are these
behaviors applied to sensors and actuators? What kind of primitive behav-
ior should be implemented in a robotic system, in particular a mobile robot,
before adding with more complex behaviors? These are example questions
which most roboticists always keep in mind before creating a robotic system

9
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that can interact with an environment. Therefore, all these questions some-
how must be answered to provide the principle idea for creating the robot
behavior as well as its physical system such as sensor and actuator types.
A possible solution to these problems may be to observe and study animal
behaviors (actions) as well as its sensing systems (perceptions) where they
serve as inspirations for design. It seems that animal behavior defines in-
telligence presenting in the way that an animal has the ability to improve
its prospects of survivals in the real world. From studying animal behaviors
in their natural environment, ethologist roughly classified the behaviors into
three major classes (from R.C. Arkin 1998 [8]).

• Reflexes are rapid, stereotyped response triggered by a certain envi-
ronmental stimulus. The response perseveres as long as the stimulus
is presented and depends upon the strength of the stimulus. Reflexes
allow an animal to quickly adapt its behavior to unexpected environ-
mental changes. Reflexes are usually employed for tasks such as pos-
tural control, withdrawal from painful stimuli, and the adaptation of
gait to uneven terrain.

• Taxes are orientation responses. These behaviors involve the orienta-
tion of an animal toward (positive tropism) or away (negative tropism)
from a stimulus. Taxes occur in response to visual, chemical, mechani-
cal and electromagnetic effects in a wide range of animals. For instance,
a wandering spider exhibits positive tropism; that is, it orients to the
airflow produced by a buzzing fly to capture the fly–known as “prey
capture behavior” [14], [64]. Another kind of positive tropism is also
evident in female crickets. They perform phonotaxis during courtship,
that is they turn into the direction of the calling of a male [103]. On the
other hand, the negative tropism can be compared with, for example,
an obstacle avoidance behavior during navigation or exploration in a
scorpion [2], [158] as well as in an insect. They try to turn away from
an obstacle which is perceived by their tactile sensing systems (e.g.
hairs, antennae) However, the obstacle avoidance behavior can also be
realized as part of the reflex response.

• Fixed − action pattern is a time-extended response pattern activated
by a stimulus; i.e. the action perseveres for longer than the stimulus
itself. The intensity and duration of the response are not controlled by
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the strength and duration of the stimulus. The triggering stimulus of a
fixed-action pattern is usually more complex and specific than reflexes.
In fact, once a fixed-action pattern has been activated, it will perform
to finish even if the activating stimulus is removed. An example of
a fixed-action pattern is the escape behavior of cockroaches. They
immediately turn and run away when a predator attacks [132].

The easy way to represent robotic behavior is perhaps by adopting the
concept of animal behaviors described above. They are a reaction to an envi-
ronmental stimulus perceived via the sensory system. Such reaction is called
a “reactive behavior”. It can be used to express how a robot should react
to its environment. To do so, a reactive robot system can also be clarified
as a perception-action system; i.e. a robot perceives some environmental
information and reacts to its environment without the use of background in-
formation or time history. This system is suitable for dynamic and hazardous
environments because it responds directly to the environment that it senses.

Here, two distinctive reactive behaviors of animals were investigated and
associated sensing systems were also focused upon. One is obstacle avoidance
and escape behavior which is represented by a negative tropism while the
other is a prey capture behavior which acts as a positive tropism. Both
behaviors are detailed in the following subsections whereby the information
presented forms the basis for the design of the robot behavior and its physical
sensing system (see Chapters 4 and 5).

2.1.1 Obstacle avoidance behavior

The obstacle avoidance behavior is discovered in most animals because they
are able to escape or avoid obstacles in cluttered real environments during
the performance of an ordinary task (e.g. wandering around or seeking food).
Indeed, if an animal is faced with an obstacle, it sometimes turns away from,
climbs over, follows or even makes an exploration of the obstacle. These
different behaviors usually depend on a situation and the property of the
obstacle. However, this work mainly focuses on avoiding an obstacle instead
of climbing, following or exploring it. The interesting parts of this desired
behavior are how the animal senses the obstacle and which sensory system
provides perceptual information of the obstacle. The biological evidence
which supports these hypotheses is described below.
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Scorpions are nocturnal and predatory animals that feed on a variety
of insects, spiders, centipedes, and even other scorpions. They have a very
poorly performing visual system with difficulties in detecting obstacles or
prey at long distances. Instead, it is mainly used as a photoreceptor for
distinguishing between day or night [34]. Thus they mostly perceive envi-
ronmental information via sensory hairs distributed over most parts of the
body. For example, F.T. Abushama [2] observed that the scorpion Leiurus
quinquestriatus uses the hairs on the distal-tarsal segments of the legs for
humidity sensing while the pedipalps (the pincers), the pectines and the poi-
son bulb appear to carry the hairs responsive to touch, odor and temperature
respectively (compare Figure 2.1).

On the other hand, A. Twickel [158] precisely observed the scorpion
Pandinus cavimanus (see Figure 2.1) in the situation where the hairs on
the pedipalps were used for collision detection. Here, the pedipalps play a
role in the active perception of obstacles. Once the hairs on the first pedi-
palp collided with an obstacle, the scorpion started to slowly turn away from
the side of the touch. During obstacle avoidance, it also performs a tactile
exploration of the obstacle through the active pedipalps. Using the tactile
hairs for obstacle perception, it is finally able to escape the obstacle. The
series of photos of the obstacle avoidance behavior is presented in Figure 2.2.

Figure 2.1: The scorpion Pandinus cavimanus (modified from S.R. Petersen
2005 [123] and A. Twickel 2004 [158] with permission).
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Figure 2.2: Obstacle avoidance behavior of the scorpion Pandinus
cavimanus (see from A to D). Small widows show the obstacle avoidance
behavior while large windows present obstacle detection in close-up view.
(reproduced with permission of A. Twickel 2004 [158]).

In analogy to obstacle avoidance behavior of scorpions, most insect species
(e.g. crickets, cockroaches, stick insects etc.) are also capable of escaping
from an obstacle or even their predators. Some of them mainly perceive the
information of obstacles or predators through antennal systems. The sensory
system consists of two actively mobile antennas that project from the head
of the insect, and are associated with the neural signal processing. Gener-
ally, insect antennas are exterior sensory structures composed of many tiny
segments. They are highly sensitive to touch stimuli, and may even be able
to discriminate textures [31]. They are flexible and each of them can be
swept independently. The insect actively moves the antenna by controlling
the muscle in specialized segments located at the base. An example of anten-
nas in the female cricket Gryllus bimaculatus and the cockroach Blaberus
discoidalis is shown in Figure 2.3.
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Figure 2.3: The antennas of insects. (A) The female cricket where arrow lines
indicate the position of antennas (reproduced with permission of T.P. Chap-
man 2001 [32]). (B) Front view of the cockroach where arrow lines indicate
based segments for moving antennas. (C) Side view of the cockroach where
arrow lines indicate the position of antennas (picture B and C reproduced
with permission of R.E. Ritzmann 2004 [125]).

In fact, insect antennas appear to serve an amazing variety of tasks.
For example, the use of antennas for chemical pheromone sensing has been
suggested by D. Schneider 1964 [144], 1999 [145]. They are also sensitive to
air currents [24], which is found in the carrion beetle, while in cockroaches
they have been determined for wind-mediated escape [20], [153]. Particularly,
through the sense of touch to be required for acting as mechanoreceptor, they
can probe for foothold in rough terrain [57] and make an active exploration
during walking [45] (e.g. antennas of stick insects). Furthermore, they are
used for wall-following [31] and even for touch-evoked behavior1 [36], [37],
[141] (e.g. antennas of cockroaches).

Ideally, the work in this thesis would concentrate on touch-evoked behav-
ior in cockroaches to understand how they react to touch stimuli through the
antennas. Touch-evoked behavior was precisely investigated by C.M. Comer

1The context implies to “an obstacle avoidance behavior” if antennas make contact
with an obstacle or to “a predatory escape behavior” if stimulus is produced by an attack
of its predator, e.g. a wolf spider.
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et al. [35], [37]. There, the reaction of a cockroach with a predatory wolf
spider was attempted. In the observed situation, at the beginning before
the antennas made contact with the spider, the spider was in motion toward
the cockroach while the cockroach was standing still. After that the right
antenna touched the striking spider and the cockroach started to turn to
the left. Finally, the cockroach was able to escape from its predator. The
described behavior [35] is shown in Figure 2.4.

Figure 2.4: A predatory escape behavior of a cockroach where the shaded
outlines indicate animal’s initial position (the spider on left and the cockroach
on right), numbers present position at successive video frames. They came
into contact on frame 8 and the cockroach began to turn and was able to
escape at the end (see from frame 8 to 13). The picture is from C.M. Comer
et al. [35].

In addition, other experiments to observe the evasive behavior (escape
behavior) of cockroaches were also done [35]. The behavior was triggered
by artificial touch stimuli at one antenna. The resulting response was that
cockroaches mostly oriented away from the side of touch with an average
vector suitable for escape. In this situation, the cockroaches turned to the
left side when the right antenna was tapped. The orientation of turns is
summarized as a circular histogram shown in Figure 2.5 and extremely short
latency was observed where the mean latency of the turn was 33 ms.

From the investigation above, the obstacle avoidance and escape behavior
of a scorpion and a cockroach can be determined as reactions to a negative
tropism. Such reactions are also standard. Animals actually turn away
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Figure 2.5: The circular histogram shows the orientation of turns which
respond to touch stimuli. The open arrow indicates the average angle of
turning while the black one represents the position where the right antenna
has been touched. The picture is from C.M. Comer et al. [35].

from the side on which contact is made using their sensing systems. This
negative tropism will be later taken into account for the behavior control of
walking machines in the way that the machines will turn away from the side
of the stimulus (e.g. obstacle detection). Another aspect from this biological
investigation states that biological sensory systems (e.g. the tactile hairs of
the scorpion and the antennas of the insects) at the anatomical level are
somewhat complicated. Thus, no attempt to model the detailed anatomy of
these sensors will be done in this work. Instead, physical sensors associated
with their neural preprocessing will be modelled in a simple way with respect
to the functionality of biological sensory systems.

2.1.2 Prey capture behavior

All spiders are really hairy creatures and most spiders have very poor eye-
sight like scorpions. Thus, they mostly rely on their hairs for sensing their
environment instead of their eyes. The hairs are used to perform a surprising
variety of tasks (see Figure 2.6 right). For example, tactile-sensitive hairs
on the legs help the spider to move freely around its terrain [147], [148].
There are also airflow-sensitive hairs which are important for detecting its
prey [12], [13]. Furthermore, the hairs on the pedipalps are used as chemore-
ceptors which are sensitive to taste and odor [43], [44] and also associated
with mate recognition [54], [111].
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Figure 2.6: Left: the wandering spider Cupiennius salei (Copyright 2002
by F. Tomasinelli and reproduced with permission [156]). Right: the layout
of the hairs on the spider leg (Copyright 2002 by Australian Museum and
reproduced with permission [9]).

From concise investigation on sensing systems of spiders, several attrac-
tive functions of the hairs have been mentioned. By now, the airflow-sensitive
hairs called Trichobothria of the spider Cupiennius salei (see Figure 2.6 left)
are closely considered. Actually, trichobothria are the sensillum (sense or-
gan), having the hair-like structure which arises from a socket in the cuticle.
They are low mass and flexible. Thus, they are extremely sensitive to the
airflow stimulus and the auditory cues2 in a low-frequency range between
approximately 40 and 600 Hz [12], [15]. Through the use of these hairs, the
spider is able to detect its prey (e.g. a buzzing fly) which generates the air-
flow at a frequency range of around 100 Hz. In other words, this sensing
system (the hairs together with associated neural signal processing) acts as
a matched filter. It reacts to the biologically significant signals (e.g. prey
signals) while it filters out surrounding noise as well as interfering signals
(e.g. background airflow). This is because most background noise has a very
low frequency (a few hertz) which nicely contrasts with the frequency of prey

2In 1883, F. Dahl found that the trichobothria respond to low tones produced by bowing
a violin, and thus he classified them as “auditory hairs” [41]. Later in 1917, H.J. Hansen
published an article describing sensory organs in arachnida where auditory hairs were also
mentioned [63].
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signals [11]. Figure 2.7 shows the response of the individual hair to the prey
signal (airflow generated by a buzzing fly during stationary flight with 5 cm
away).

Figure 2.7: The recorded signal of the trichobothria at location D1 on the
leg of the spider Cupiennius salei in response to the airflow produced by a
stationary buzzing fly. (modified from F.G. Barth 2002, pp. 253 [11]).

In fact, the spider Cupiennius salei has approximately 950 tirchobothria
with the length up to 1400 µm which are located on the tarsus, the metatar-
sus and the tibia of the spider leg (see Figure 2.7). This sensing system is
adequate to perform “prey capture behavior” when it is stimulated by the
airflow generated by a buzzing fly at a distance of up to approximately 30
cm. As a result, the spider orients its movement toward the direction of the
stimulus and then jumps to the targeted buzzing fly [14], [27], [64]. The
series of photos of prey capture behavior is shown in Figure 2.8.

As shown here, the prey capture behavior represents a positive tropism.
Such reaction is mostly found in predatory animals, e.g. spiders, scorpions
and so on. They respond to a prey stimulus through sensing systems, e.g.
sensory hairs. Consequently, they turn in the direction of the stimulus source
and then try to capture a targeted prey. These kinds of a positive tropism
and the described sensing system (trichobothria) of the spider are desired to
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Figure 2.8: The spider Cupiennius salei jumps toward a buzzing fly on a
leash (see from A to F). The action time is indicated on the lower left corner
of each photo. (modified from F.G. Barth 2002, pp. 257 [11]).

be reproduced on a walking machine in an abstract form whereby a puff of
the wind, which is normally generated by the buzzing fly, will be replaced by
a low-frequency sound around 200 Hz. Also, the biological airflow detectors
will be simplified to physical sound detectors instead. Thus, as a result, the
physical sound detectors together with associated artificial neural preprocess-
ing3 shall enable the walking machine to react to a switched-on sound source
by turning toward and making an approach to it at the end (like capturing
prey). This sound induced behavior is called “sound tropism”.

Eventually, these different reactive behaviors will be integrated into a
behavior controller of a walking machine, where the controller has to coop-
erate as in a versatile perception-action system. For example, the stimulus
through antenna-like sensors generates a negative tropism while the low-
frequency sound triggers a positive tropism, so that the walking machine
(i.e. a predator) follows a switch-on sound source (i.e. a prey signal) but
avoids obstacles.

3This physical sensing system together with its neural preprocessing shall perform
like trichobothria with associated biological neural processing (a matched filter); i.e. the
physical sensors detect the signal while the neural preprocessing acts as a matched filter
passing only the low-frequency sound (200 Hz) to trigger a so-called sound tropism.
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2.2 Morphologies of walking animals

In order to explore the neural control of the biologically inspired behaviors in
a physical agent, the specific agent’s body must be carefully designed because
it will define the kind of interactions with its environment. In addition, the
body of the agent will also determine the boundary conditions of an environ-
ment in which it can operate successfully. The design of the neural control
will depend on the morphology of the agent; i.e. the type in position of the
sensors and the configurations of the actuators. Choosing too simple design,
the behavior of the body may be of limited interest and it may obstruct the
need for an effective neural control for a complex system. To achieve this
potential, agents having morphologies similar to walking animals are pre-
ferred. In other words, biologically inspired walking machines are the robot
platforms for the approach of this work. On the one hand, such machines
are more attractive because they can behave somewhat like animals and they
are still a challenge for locomotion control. On the other hand, they combine
a relationship between biologists and engineers by realizing that biologists
try to understand principles of motion in animals while engineers attempt to
design better machines which are able to traverse on not only flat terrains
but also rough terrains.

To do so, two walking animals were observed to benefit the leg and trunk
designs of four- and six-legged walking machines (physical agents). The inspi-
ration for the structure of a four-legged walking machine came from biological
principles that a salamander uses to obtain an efficient walking pattern [26],
[128] while the design of the legs and the trunk of a six-legged walking ma-
chine follows the way that a cockroach walks and climbs [125], [169]. The
details of the morphologies of both walking animals are described below.

2.2.1 A Salamander

A salamander is a vertebrate walking animal belonging to the group of am-
phibian tetrapod. It is able to traverse both on land and water. It has small
limbs projecting beside its trunk for walking on land. Each limb is formed
of three main segments which are thigh, shank and foot (see Figure 2.9).

All limbs are quite small and far from each other causing difficulty for
locomotion, in particular on land. Therefore, it also uses the movement of
the trunk bending back and forth coordinated with the movements of the
limbs for an efficient walking pattern [73]. The trunk is mainly created from



2.2. MORPHOLOGIES OF WALKING ANIMALS 21

Figure 2.9: The limbs of a salamander. (reproduced with permission of G.
Nafis 2005 [105] (left photo) and K. Grayson 2000 [60] (right photo)).

muscles propagating along the backbone (musculature). This musculature
has the advantage of more flexible and faster motions and aids in climbing.
Generally, during locomotion on land, its trunk bends to one side causing
an increase in the step length of the two diagonally opposite lifted limbs
which are pushed forward while the other two limbs are pushed backward
simultaneously. As a result, it performs a trot gait. The locomotion of a
salamander on land is presented in the series of photos in Figure 2.10.

Figure 2.10: The locomotion of a salamander (see from left to right). An
open circle of each photo assumes to a backbone joint which connects the
first segment (1) with the second segment (2) and makes an active bending
movement of a trunk for locomotion. (courtesy of J.S. Kauer (Kauer Lab at
Tufts University)).

By realizing the salamander structure, the trunk of a four-legged walking
machine was designed with a backbone joint which can rotate in a verti-
cal axis. The joint then facilitates more flexible and faster motions like the
movement of a salamander. Each leg is modelled more simpler than a sala-
mander leg but still maintaining the operations of a salamander leg; i.e. it
can perform forward-backward and up-down motions (see in Section 4.2).
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2.2.2 A Cockroach

A cockroach is an invertebrate walking animal which is in the phylum of
arthropods. It has six legs and each leg composed of multiple segments: coxa,
trochanter, femur, tibia and tarsus (foot). The upper leg segments generally
point upwards and the lower segments downwards. The legs project out
from the trunk like a salamander. They orient around its trunk in the way
that the two front legs point forwards while the four rear legs typically point
backwards to maintain stability in walking (see Figure 2.11). Such orientation
can be also benefited in climbing over an obstacle; i.e. a cockroach can easily
move the front legs forward to reach the top of an obstacle while the rear
legs power its motion by rising a trunk up and push it forward. As a result,
it can climb over the obstacle (see also Figure 2.3C ) [169]. Moreover, front
legs are also used to detect stimulus coming from the front while rear legs
perceive stimulus from the back.

Figure 2.11: The legs of a cockroach and the orientation of legs around its
trunk. (modified from J.T. Watson et al. 2002 [164]).

Concerning its number of legs, a cockroach normally performs a typical
tripod gait for the walking pattern where the front and rear legs on one side
together with the middle leg on the other side do support the trunk (so called
“stance phase”) simultaneously while the other three legs are in the air (so
called “swing phase”). These support legs are then replaced by the other
three legs in the next step. While walking in normal condition, its trunk
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doesn’t bend back and forth like a salamander because the structure of its
trunk is different from a salamander. The trunk is not formed by a muscle.
Instead, it consists of three main segments: prothoracic (T1), mesothoracic
(T2) and metathoracic (T3) (compare Figure 2.11 left). This structure is
advantageous for climbing on an obstacle, as it has the transition between
vertical and horizontal surface. It can bend its trunk downward at the joint
between the first (T1) and second (T2) thoracic to keep the legs close to the
top surface of the obstacle for an optimum climbing position and even to
prevent unstable actions (see Figure 2.12).

Figure 2.12: A cockroach climbing over a large obstacle block. (adapted from
R.E. Ritzmann 2004 [125]).

Inspired by the morphology of a cockroach, the trunk of a six-legged walk-
ing machine was constructed with a backbone joint rotating in a horizontal
axis. Thus, the backbone joint performs like a connection between the first
and second thoracic of a cockroach. It will provide enough movement for the
machine to climb over an obstacle by rearing the front legs up to reach the
top of an obstacle and then bending them downward during step climbing.
Each leg was designed with respect to the movement of a cockroach leg. It
consists of three joints where the first joint can move the leg forward and
backward, the second one can move the leg up and down and the last one is
for elevation and depression or even for extension and flexion of the leg (see
more details in Section 4.2).
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2.3 Locomotion control of walking animals

The basic locomotion or rhythm for stepping of walking animals mostly relies
on the central pattern generator (CPG) [61], [122]. It is a group of intercon-
nected neurons that can be activated to generate a motor pattern without
the requirement of sensory feedback [42], [68]. The evidence which supports
this hypothesis was originally demonstrated by G. Brown in 1911 [30]. He
discovered that rhythmic patterned activity of leg muscles in a cat, similar
to those that appear during walking, could be activated although all input
from sensory nerves in the legs had been eliminated. This is because the pro-
cesses underlying cat locomotion are due to the spinal cord; i.e. if the dorsal
roots4 of a cat are cut, the ventral roots5 are still able to induce a rhythmic
patterned activity (compare Figure 2.13). Later on, in 1966, M.L. Shik et
al. [149] presented that cats without the higher levels of the nervous system
(the cerebral hemispheres and the upper brain stem (see Figure 2.13)) are
still able to walk in a controlled manner on a treadmill. This result has been
accumulated to support the original proposal of G. Brown that the basic
rhythm movements in each leg of the cat can be generated without sensory
input.

Figure 2.13: The spinal cord and lower brain stem of a cat are cut from
the cerebral hemispheres and the upper brain stem at the cross section A′ -
A (modified from K. Pearson 1976 [122] and Copyright 2005 by Pearson
Education with permission).

4The two nerve fiber bundles of a spinal nerve that carries sensory information to the
central nervous system.

5The part of a spinal nerve, consisting of motor fibers, that arises from the previous
section of the spinal cord.
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Moreover, S. Grillner and his colleagues [122] made the experiments on
the pattern of activity in the flexor and extensor muscles of cats after the
elimination of sensory input from the receptors in the legs. They found
that the rhythmic patterned activities in flexors and extensors of the cat’s
hind leg could still be generated although the spinal cord was cut from the
hind-leg segments. This important result leads to the discovery that the
rhythmic patterned activity is generated not only by the spinal cord but
also with the effect from a central rhythm generator for each leg. Similar
results were obtained by J.F. Iles et al. [122] in the studies of the cockroach.
After disconnecting all sensory input from the legs, the rhythmic patterned
activities in hind-leg flexor and extensor motor neurons remain functional.
The examples of the rhythmic patterned activities after all sensory input from
receptors in the hind leg of the cat and the cockroach had been eliminated
are shown in Figure 2.14.

Figure 2.14: Existence of a central rhythm generator for each leg of the cat
and the cockroach is presented by the fact that even after all sensory input
from receptors in the hind legs had been eliminated. The rhythmic bursts of
electrical activity were generated in the flexor and extensor muscles in the
hind legs of both animals (adapted from K. Pearson 1976 [122]).
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The rhythmic patterned activities of the CPGs together with the mecha-
nism that coordinates the motion of all legs form the basic walking patterns.
In the cat, there are four basic patterns (walking gaits): the walk, the trot,
the pace and the gallop. During walking, trotting and pacing the movements
of the two hind legs are out of phase with each other as are the movements
of the two forelegs. The difference between the three gaits are the timing of
the stepping of the two legs on one side of the animal. For example, during
slow walking, the left foreleg steps shortly after the left hind leg and before
the right hind leg. The stepping sequence is the following: left hind leg, left
foreleg, right hind leg and right foreleg, and so on. When the walking speed
is increased until the diagonal legs step at the same time, then the animal is
trotting. Pacing is described by the simultaneous stepping of the two legs on
one side. As a result, the animal can move with slightly higher speed than
trotting. The fastest movement of the animal is done by galloping where the
opposite legs move almost synchronously and the forelegs are out of phase
with the hind legs. In the cockroach, which of course has six legs, the walking
patterns can be simply determined by the walking speed. For fast walking
gait, the animal is always supported by at least three legs; e.g. the left rear,
right middle and left front legs step in phase while the remaining legs step
out of phase. For that reason, the gait is called the tripod gait. If the walking
speed decreases, the gait is changed and it can be described as a sequence
for the three legs on each side moving from the back to the front. The basic
walking gaits of the cat and the cockroach are presented in Figure 2.15.

Although central pattern generators mentioned above seem to underly
the production of all basic rhythmic walking gaits, this does not mean that
sensory inputs are unimportant in patterning of locomotion. In fact, the sen-
sory input also plays an important role, to change the walking patterns and
animal behaviors. For example, animals use the sensory feedback from the
moving legs to adapt the walking patterns for the irregular terrain. It is even
used to produce well-coordinated motor patterns which are mostly found in
stick insects [16]. In addition, the sensory input also controls animal behav-
ior responding to environmental stimuli and it of course effects to generate
the appropriate motions. Thus, on the one hand, the basic locomotion or the
rhythmic patterned activity of legs is generated by the CPGs performing as
a low level control while, on the other hand, the sensory input acting as a
high level control will command for different walking patterns; e.g. changing
a walking gait from slow to fast walking or vice versus as well as changing
the walking directions.
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Figure 2.15: Walking gaits of the cat and the cockroach are depicted (see
from left to right). Each white block indicates for a single step that the foot
has no ground contact (swing phase) while each black block indicates when
the foot touches the ground (stance phase). During slow walking, there is a
back-to-front sequence of stepping for both animals; the sequence are marked
by the ellipses (modified from K. Pearson 1976 [122]).

From the concept of the biologically inspired locomotion control, the basic
rhythmic movements of the legs of the four- and six-legged walking machines
will be basically generated by the CPG and the sensory information will be
also used to modify the leg movements to obtain the various walking patterns.
Consequently, the walking machines shall normally walk with the trot gait
for four legs and the tripod gait for six legs and the sensory inputs will steer
the walking directions of the machines in turning left, right and even walking
backward (see more details in Section 5.2).
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2.4 Conclusion

Animals are excellent models for the design of robotic systems. They show
several fascinating behavior which effects from their perception systems.
Therefore, they serve as inspiration for modelling the behavior control of
the walking machines including their physical sensing systems. Generally,
animals respond directly to their environment through their senses. This
reaction is defined as a reactive behavior and it is the basis to express how
the walking machines should react to their environment. In this work, dif-
ferent reactive behaviors together with the associated sensing systems are
investigated whereby one is an obstacle avoidance behavior represented as
the negative tropism and the other is a prey capture behavior clarified as the
positive tropism. Both behaviors are targeted to be emulated on the walking
machine(s) in abstract forms.

Not only the animal behaviors were determined but also morphologies
of walking animals were studied. The morphologies of a salamander and a
cockroach were taken into account so as to benefit the leg and trunk designs of
the four-and six-legged walking machines, especially their use of the backbone
joint or the interconnection joint between segments for efficient locomotion.
Furthermore, the basic locomotion control of the walking animals was also
studied. It mostly relies on a so-called “central pattern generator” (CPG)
which is the group of interconnected neurons producing rhythmic patterned
outputs without the requirement of sensory feedback. Thus, the locomotion
control of the two walking machines will be basically generated by realizing
the concept of the CPG and then will be modified by the sensory signals
with respect to environmental stimuli.



Chapter 3

Neural concepts and modelling

This chapter provides methods and tools which are to be used throughout this
work. It starts with a short introduction to a biological neuron together with
an artificial neuron and is followed by the comparison of network structures
between feedforward and recurrent neural networks. Then the discrete-time
dynamical properties of the single neuron with a recurrent connection are
described. Finally, an artificial evolution is presented as a tool to develop
and optimize neural structures as well as the strength of synapses.

3.1 Neural networks

As illustrated in much successful research which has applied artificial neural
networks (ANNs) to a wide field of applications, e.g. signal processing [90],
[95], [155], [160], [178], robot control [19], [23], [40], [73], [83], [94], [120],
robot learning [10], [51], [58], [142], [172], etc., all previous research has
shown that such a tool has a capability to deal with many kinds of problems
including nonlinear problems. Moreover, there are various reasons for using
neural networks in this work. First, they are based on biological neural pro-
cessing systems. Therefore, they are parallel-distributed processing patterns;
i.e. their structure can consist of a very large number of synapses and neu-
rons that can convey and process information simultaneously with a strong
fault tolerant behavior. In other words, many synapses or neurons must be
damaged before the overall neural network system stops to work properly.
Second, they have a number of excellent properties; i.e. they are robust,
they can be adaptive if a suitable on-line learning method is designed, they
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have an ability to handle small variations of noise and they even exhibit dy-
namical behavior (oscillatory, hysteresis, chaotic patterns, etc.), in particular
recurrent neural networks (RNNs). A last reason, which is discussed here, is
that they are able to build a robot brain as a composition of different neural
modules interacting in a cooperative or competitive way to produce a desired
robot behavior. This means that it can make an extension of the existing
neural system to improve a robot behavior or even obtain a robust behavior.

3.1.1 A biological neuron

In this section, a biological neuron is briefly discussed in order to provide
a basic idea of how its structure looks like including its principle functions.
Thus the physiological processes are not detailed here but are discussed fur-
ther in the following references J.A. Anderson 1995 [5], R. Rojas 1996 [134]
and R.H. Nielsen 1990 [107].

It is obvious that the human brain is the most complex structure in the
universe. It consists of approximately 1011 neurons. They are highly inter-
connected and they communicate through a connection network having a
density of approximately 104 synapses per neuron. This produces approxi-
mately 1014 synapses in the whole network. Figure 3.1 shows the biological
neuron model consisting of four main components which are the dendrites,
the cell body called “soma”, the axon and the synapses.

Dendrites transmit information from other neurons to the soma. The
axon makes connections to other neurons via synapses. Synapses can be ex-
citatory if they cause firing in the form of spikes (increasing the activation
level of a neuron) or they can be inhibitory if they prevent the firing of the
response (decreasing the activation level of a neuron). The firing condition
occurs when the excitation exceeds the inhibition by the amount called the
threshold of the neuron, typically a value of roughly +40mV [7]. Since a
synaptic connection causes the excitatory or inhibitory reactions, it is useful
to assign positive and negative weight values, respectively, to such connec-
tions.

However, there are a large number of various types of real neurons in the
human brain and they have also different dendritic shapes. The examples of
real neurons are shown in Figure 3.2.
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Figure 3.1: A diagram of the generic neuron and a sample of an electrical
impulse (modified from J.A. Anderson 1995, pp. 7 [5]).
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Figure 3.2: Four different types of biological neurons are shown, each spe-
cialized for the specific function which they perform. (from S.W. Kuffler et
al. 1984, pp. 10 [84]).
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3.1.2 An artificial neuron

It is clear that the biological neuron has a high complexity in its structure and
function. Thus, it can be modelled at many detailed levels. If one tried to
simulate an artificial neuron model similar to the biological neuron, it would
be impossible to work with and it even needs very high computing power.
Therefore, an artificial neuron has to be created in an abstract form which
still provides the main features of the biological neuron. In the abstract form
for this approach, it is simulated in discrete time steps and a neural spiking
frequency (or called a firing rate)1 is reduced to only the average firing rate.
It is given by one simple output value. Moreover, the amount of time that a
signal travels along the axon is neglected.

Before describing the artificial neural model, in more detail, one can com-
pare the correspondence between the respective properties of biological neu-
rons in the nervous system and abstract neural networks to see how the
biological neuron is transformed into the abstract one. This comparison is
shown in Table 3.1 (from R. Pfeifer and C. Scheier 1999 [124]).

Table 3.1: Comparison of biological and artificial neurons

Nervous system Artificial neural network

Neuron Processing element, node, artificial neuron,
abstract neuron

Dendrites Incoming connections
Cell body (Soma) Activation level, activation function, transfer function,

output function
Spike Output of a node
Axon Connection to other neurons
Synapses Connection strengths or multiplicative weights
Spike propagation Propagation rule

1The number of spikes that neuron produces per second.
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The structure of a standard additive neuron model is shown in Figure
3.3. This neural structure together with the given activation function and
transfer function is employed throughout this work.

Figure 3.3: The structure of an artificial neuron. Each neuron can have
multiple input connections, which can originate from other neurons or from
a sensor, but there is only one output signal. Then the single output signal
can be distributed in parallel (in other words, multiple connections carrying
the same signal) to other neurons or to an external system, e.g. a motor
system.

All weighted inputs (coming from sensors or other neurons, indicated by
oj) and a bias term used as a fixed input bi are simply summed and passed
through an activation function to produce a level of activation. Therefore,
the activation function of the standard additive neuron is given by

ai =
n∑

j=1

wijoj + bi, i = 1, . . . , n (3.1)

where ai is the activity of neuron i, n denotes the number of units, wij

represents the synaptic strength or weight of the connection from neuron j
to neuron i, bi refers to a fixed internal bias term together with a stationary
input to neuron i and oj is the inputs. In discrete time steps, the activation is
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then updated at each time step t defined as an integer value. Thus equation
3.1 can be rewritten as:

ai(t + 1) =
n∑

j=1

wijoj(t) + bi, i = 1, . . . , n . (3.2)

The activation function is then transformed by a transfer function fi to
obtain a neuron output oi. The most widely used transfer functions are
shown in Figure 3.4.

Figure 3.4: Most widely used transfer functions. (A) Linear threshold trans-
fer function. (B) Linear transfer function. (C) Nonlinear sigmoid transfer
function.

The linear threshold transfer function is similar to a step function. It sums
the inputs and the activation level of the neuron is inactive (zero or -1) until
the threshold value Θ is reached, at which point the neuron becomes active
(+1) (Figure 3.4A). For the linear transfer function (Figure 3.4B), it simply
sums the input and it is often used as a buffer between external input signals
(e.g. coming from sensors) and the determined network. The last transfer
function which has been commonly used in a neural network model is the
sigmoid or logistic transfer function (Figure 3.4C). It is a smooth version of a
step function. Its output value is zero (or ≈-1) at a lower bound for low input.
At some point, it starts increasing rapidly and then it saturates (≈ +1 for an
upper bound) at higher levels of input. The sigmoid transfer function with a
lower bound at ≈ -1, called the “hyperbolic transfer function” (tanh(x)), is
used throughout the rest of this work because it is more convenient to apply
for controlling a robot. And it can be justified by the observation that many
biological neurons have nonzero spontaneous firing rate. The equation of this
transfer function is given by
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f(ai) = tanh(ai) =
2

1 + e−2ai
− 1. (3.3)

This transfer function is bounded between -1 and +1. Its boundary can
be interpreted as the summation of synaptic inputs at the dendrites and cell
body level in biological neurons. By applying the sigmoid transfer function,
the neuron output oi is determined as follows:

f(ai) = tanh(
n∑

j=1

wijoj + bi). (3.4)

In any case, if the inputs to neuron i come from other neurons (i.e. out-
puts of neuron j) instead of sensors, the activation function of the standard
additive neuron in the discrete-time domain can be described by

ai(t + 1) =
n∑

j=1

wijtanh(aj(t)) + bi, i = 1, . . . , n . (3.5)

3.1.3 Models of artificial neural networks

The arrangement of artificial neurons and their interconnections can have
a profound effect on the processing capabilities of the neural networks. In
general, all neural networks have the set of neurons receiving inputs from the
outside world (e.g. sensor data). This set is indicated as the “input neurons”.
Many neural networks also have one or more internal neurons called the
“hidden neurons” which receive inputs from other neurons or themselves.
The set of neurons that represents the final result of the neural network
which is sent out to control external devices (e.g. motors) is determined as
the “output neurons”. In addition, described neuron sets above that have
similar characteristics and are connected to other neurons in similar ways are
called “layers” or “slabs”.

Concerning connection topologies that define the direction of data flows
between the input, hidden, and output neurons, these can be classified into
two different types of network architectures, so-called feedforward network
and recurrent network. A feedforward network has a layered structure. Each
layer consists of neurons which receive their input from neurons in a layer
directly below and send their output to neurons in a layer directly above. This
network does not have internal feedback; in other words, there exists only
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forward connections which produce forward activities of neurons. Therefore
feedforward networks are static; that is, their outputs depend only on the
current inputs and the networks represent just simple nonlinear input-output
mappings (see Figure 3.5 left).

On the contrary, if feedback exists within connection structure which al-
lows cyclic propagation of activity (or backward activities), the network is
called a recurrent network (see Figure 3.5 right). The outputs of the network
depend on the past inputs; thus, the network can represent various dynam-
ical properties (e.g. hysteresis, oscillation, and even deterministic chaos).
Some dynamical behaviors of the network are useful for signal processing
and robot control being the approach of this work. Therefore, this work
is concentrated on applying recurrent neural networks together with their
dynamical behavior to create so-called “versatile artificial perception-action
systems” described in Chapter 5. However, there are two exceptions of ap-
plying the network to create the neural controller of the system where input
neurons can receive only input from the outside world (sensor data) and the
number of the input and output neurons is determined by the number of
sensors and motors used, respectively.

Figure 3.5: Examples of a feedforward network (left) and a recurrent net-
work (right). Generally for robot control, the inputs of the networks can be
provided by sensors while their outputs can be sent out to control motors.



38

3.2 Discrete dynamics of the single neuron

The single neuron with a self-connection, namely a recurrent neuro-module,
has several interesting (discrete) dynamical properties which have been in-
vestigated by F. Pasemann [115], [117]. From the investigations, the single
neuron with an excitatory self-connection appears a hysteresis effect while
the stable oscillation with period-doubling orbit can be observed for an in-
hibitory self-connection. However, both phenomena are occurred for specific
parameter domains of an input and a self-connection weight.

In this work, the hysteresis effect is utilized for preprocessing sensor sig-
nal as well as robot control (described later). By now, the recapitulation of
the used dynamical property of a recurrent neuro-module is discussed by em-
ploying the single neuron model presented in the previous section. The cor-
responding dynamics is parameterized by the input I and the self-connection
w. The discrete dynamics of the single neuron with a self-connection is given
by

a(t + 1) = w · f(a(t)) + θ (3.6)

with the hyperbolic transfer function

f(a) = tanh(a) =
2

1 + e−2a
− 1 (3.7)

where the parameter θ stands for the sum of the fixed bias term b and the
variable total input I of the neuron. The model neuron with a self-connection
for the investigation is presented in Figure 3.6.

Figure 3.6: The model neuron with a self-connection.
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As mention above, the hysteresis effect is observed only for an excitatory
self-connection with the specific parameter domains; thus, the dynamics of an
excitatory self-connection is shown here while the dynamics of an inhibitory
self-connection as well as the detail of mathematical proof are referred to
[115], [117].

By simulating the dynamical behavior of varying the excitatory self-
connection w together with the input θ, two different domains in the (θ,
w)-space are observed (see Figure 3.7).

Figure 3.7: The dynamics of a neuron with an excitatory self-connection.
Left: Parameter domains for one stable fixed point (I), two stable and one
unstable fixed points (II). Right: The cusp catastrophe with respect to
the dynamics of the neuron. One can compare between the left and right
diagrams to obviously see two stable fixed points and one unstable fixed
point which exist in region II. There are also transition states shown on the
right diagram where the system changes from one (low) stable fixed point to
another (high) stable fixed point and vice versa (modified from F. Pasemann
2005 [116]).

In region I, there exists a unique stable equilibrium (one fixed point
attractor) for the system while three stationary states (one unstable fixed
point and two coexisting fixed point attractors which are the low and high
points) are found in region II. In fact, the hysteresis effect of the output
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appears when the input θ crosses the region I and II to and fro; e.g. θ
sweeps over the input interval between -2 and +2 for a fixed w = 2 (see also
an arrow line between c and d in Figure 3.7). If w is increased to 4 while θ
still varies over the input interval (between -2 and +2); i.e. θ doesn’t pass
back and forth through the region I and II (see also an arrow line between
a and b in Figure 3.7). Instead, it varies inside the region II; consequently,
the output O will stay at one fixed point attractor (either high or low fixed
point attractor) depending on where the input starts. Furthermore, the
width of the hysteresis loop is defined by the strength of the self-connection
w >+1; i.e. the stronger the self-connection, the wider the loop is [70]. The
comparison of the width of the hysteresis loop is presented in Figure 3.8.

Figure 3.8: Comparison of the “hysteresis effects” between the input θ and
output O for w = 2.0, 4.0 and 6.0, respectively (modified from F. Pasemann
2005 [116]).

One can utilize such different sizes of a hysteresis loop for robot control,
e.g. the turning angle of a mobile robot for avoiding obstacles can be deter-
mined by the width of a hysteresis loop. In other words, the wider the loop,
the larger the turning angle is (see also Section 5.1.3). Additionally, there is
an example situation shown in Figure 3.9 where the hysteresis effect depends
on the frequency of a dynamic input, e.g. slowly and fast varying inputs.

In this situation, the hysteresis will appear if the dynamic input has low
frequencies; i.e. the system will move from point e to f ′ through f in one
path and it will return to point e again in another path resulting in the
hysteresis loop. On the other hand, if the frequency of the dynamic input
is high, the system will move from point e to point f and it cannot jump
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Figure 3.9: The example of the dynamics of the recurrent neuron with the
dynamic input. Left: The dynamic input θ varies between ≈ -1 which is
in region I and ≈ 0.5 which is near to the border where the system can
jump from one fixed point (low) to another fixed point (high). Right: The
hysteresis effect of the dynamic input for a fixed w = 2, see text for details,
(modified from F. Pasemann 2005 [116]).

to point f ′ because of the transient; i.e. the signals change so rapidly that
transient cannot die out. It will then return to point e again at slightly the
same path; therefore, the hysteresis loop cannot be observed. By utilizing
this phenomenon, the single neuron with excitatory self-connection for the
specific parameter domains is applied to filter the signals having different
frequencies; i.e. the neuro-module can perform as a low-pass filter (see more
details in Section 5.1.1).

3.3 Evolutionary algorithm

In this section, the evolutionary algorithm is described. It is used to develop
network’s structure as well as optimize synaptic weights. This algorithm is
inspired by the principles of natural evolution based on variation and selection
rules where they are applied to a population of individuals that are evaluated
according to their fitness. However, there are several evolutionary algorithms
which have been developed over the last 30 years; e.g. Genetic Algorithms
(GAs) have been introduced by J.H. Holland in 1970s [67], Evolutionary
Strategies (ESs) were developed in the 1960s by I. Rechenberg [129] and
H.P. Schwefel [146] and Evolutionary Programming (EP ) was presented
by L.J. Fogel in the early 1960s [55], [56].
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Here, Evolution of Neural Systems by Stochastic Synthesis (ENS3)
[71] was employed to produce a neural control unit as well as a neural pre-
processing unit for the approach of artificial perception-action systems. It
has a capability to develop size and connectivity structure as well as simul-
taneously optimize parameters of neuro-modules2 like the synaptic weights
and bias terms. It has been successfully applied to various optimization and
control problems in robotics as well as signal processing, e.g. [52], [98], [159],
[170], [171], [177].

The ENS3 algorithm is an implementation of a variation-evaluation-selec-
tion cycle (see Figure 3.10) operating on a population3 of n neuro-modules
(pi, i = 1,..., n).

Figure 3.10: The general function of the ENS3 algorithm. The algorithm
can start with the empty network (upper picture on the left) or the given
network structure (lower picture on the left). The initial network is then
presented to a variation-evaluation-selection process (cycle diagram shown
in the middle). There is no formal stop criteria; i.e. it is repeated until the
user has to manually decide to stop the process which may imply that the
reasonable network (picture on the right) is found.

2Here, neuro-modules are sometimes referred to as neural networks, neural modules or
even just neural nets. However, all these terms mean exactly the same thing.

3One population can be determined as one problem or one fitness function.
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A population pi consists of two sets which are parents P (t) and offspring
P̂ (t) where the parameter t denotes the generation of the population. It
can be initialized (t = 0) by a population of an empty network consisting of
only input and output neurons without any hidden neurons and connections
or it can start with a given network structure (see Figure 3.10). However,
there are two restrictions for using this evolutionary algorithm. One is that
the transfer function of all neurons has to be the same. The other is that
input neurons are solely used as buffer; thus, no feedback connections to the
input neurons are permitted. On the other hand, every kind of connection
in hidden and output layers, e.g. self-connections, excitatory and inhibitory
connections, is allowed.

Several operators in a variation-evaluation-selection cycle of the algorithm
have to be considered for the evolutionary process. They can be formally
represented as follows:

p(t + 1) = S(E(V (R p(t)))), (3.8)

where p ∈ P (t) ∪ P̂ (t) is a population of individuals and R, V , E and S are
the reproduction, variation, evaluation and selection operators respectively.

• The reproduction operator R creates a certain number of copies of
each individual neuro-module from the parent group P (t). The copies
represent as the group of offspring P̂ (t) in generation t. The number of
copies is calculated by the selection operator S. This number is initially
set to 1 for each module at the beginning (t = 0).

• The variation or mutation operator V is a stochastic operator and
it is applied to offspring P̂ (t) while the parents P (t) are not allowed
to change. It realizes the combinatorial optimization and real-valued
parameter optimization. On the one hand, the combinatorial optimiza-
tion refers to the fact that the number of hidden neurons and connec-
tions can be increased or decreased during the evolutionary process.
It is determined by per-neuron and per-connection probabilities which
are calculated according to a given probability and a random variable
(0 , 1). On the other hand, the real-valued parameter optimization
refers to the variation of the bias and weight terms. It is calculated by
using a Gaussian distributed random variable (0 , 1).

• The evaluation operator E is defined in the term of a fitness function F
that measures the performance or fitness value of each neuro-module.
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To keep the size of the evolved networks within limits, the fitness value
takes into account the number of hidden neurons and connections; i.e.
the desired number of neurons and connections can be negatively added
to the fitness function by means of cost factors.

• The selection operator S is a stochastic operator. It selects which
neuro-module from the group of the parent and offspring should be
reproduced and passed to the next generation. This is achieved by
taking into account the fitness value based on a ranking process and a
Poisson distribution. A neuro-module becomes member of the parent
set of the next generation if its number of offsprings is >0.

This evolutionary process has no formal stop criteria. Thus it is repeated
as long as the interruption by the user takes place. This means that the user
has to manually decide when the process has to or can stop by observing all
essential parameters, e.g. fitness values.

The ENS3 algorithm was integrated as a part of the Integrated Structure
Evolution Environment (ISEE). It is a powerful software platform not
only for structure evolution but also for non-linear analysis of evolved struc-
tures and even for connecting different simulators as well as physical robot
platforms. This ISEE platform combines three different components which
are the evolution program EvoSun, the execution program Hinton and the
simulators. The schematic of the ISEE is presented in Figure 3.11.

At the beginning, individual neuro-modules are created in EvoSun (re-
production process) and then EvoSun sends the neuro-module information
to Hinton for processing (evaluation process). Hinton executes one indi-
vidual neuro-module at a time and communicates with a simulator. Two
kinds of simulators, the Y et Another Robot Simulator (Y ARS) and the
Data Reader, are provided for the evolutionary process. Hinton has to be
connected to one of them depending upon the desired task. If Hinton is
connected to the YARS, then the motor and sensory data will be sent and
received respectively. In this case, the YARS is used to simulate walking
machines together with their sensors (see also Section 4.2) in a virtual envi-
ronment to test and optimize the neural control. The simulator processes a
certain number of steps with the update frequency of 75 Hz which is similar
to the update frequency of the target system (a preprocessing of antenna-like
sensors on a mobile processor). On the other hand, if Hinton is interfaced
with the Data Reader, sensory data together with target data (or known as
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Figure 3.11: The schematic of the evolutionary process with the ISEE mod-
ified from B. Mahn 2003, pp. 32 [91] (see text for details).

training data) will be received instead. It is used as the buffer of the sensory
data and target data for evolving the neural preprocessing where the evolu-
tion task is the minimization of an error function. In this case, the executed
neuro-module will be processed at an update frequency with respect to the
update frequency of simulated or recorded sensor data. For example, it will
be updated at 48 kHz if the sensor data is simulated or recorded through
the sound card at a sampling rate of 48 kHz on a 1 GHz personal computer
(PC). On the other hand, it will be updated at ≈ 2 kHz if the sensor data is
recorded via a mobile system consisting of a personal digital assistant (PDA)
and the Multi-Servo IO-Board (MBoard).

In both cases, the executed neuro-module is updated in accordance with
the sensory data coming from the YARS or the Data Reader and a new
output signal of the neuro-module is then calculated. The resulting output
signal will be returned as motor data to the simulator, if Hinton is linked to
the YARS. This updated execution-simulation process is continuously per-
formed as long as a specified number of cycles is not fulfilled and a fitness
value is constantly calculated according to a given fitness function. After
that, the final fitness value of the executed neuro-module is sent back to
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EvoSun and a new individual neuro-module is again sent to Hinton for the
execution and evaluation process until all individual neuro-modules of one
generation are evaluated. EvoSun then selects a certain number of the neuro-
modules (selection process) by taking into account the fitness value based on
the ranking process. The selected neuro-modules, consisting of the parent
and the offspring, are reproduced to the next generation and the offspring
continues to the variation process afterwards. Each individual neuro-module
of a new generation is again executed at Hinton and evaluated with the
help of the simulator. This variation-evaluation-selection cycle is repeatedly
run through, until the evolutionary process is stopped by the user. Dur-
ing evolution the user is able to modify all essential evolution parameters:
e.g. population size, variation probabilities, evaluation steps, cost factors of
neurons and synapses, etc. Moreover, the user can do on-line monitoring of
population parameters, evolution dynamics, properties of individuals, per-
formance of individuals, and so on via EvoSun and the user can even analyze
the resulting neuro-module via the analyzer tool implemented on Hinton.

3.4 Conclusion

From the brief introduction and discussion of the artificial neural networks
above, it is clear that this effective method is widely applied to various ar-
eas. The neural networks have a number of excellent properties; e.g. they
can process information simultaneously, they can be adaptive, they exhibit
dynamical behavior and they are even able to build a robot brain as an inte-
gration of different neuro-modules. Especially, for recurrent neuro-modules
with specific parameter domains hysteresis effects can be observed. This dy-
namical effect can be benefited for preprocessing sensory signal as well as
for robot control. Therefore, artificial neural networks can be adequately
employed for the approach of this work. Furthermore, the evolutionary algo-
rithm ENS3 was also presented which is realized by the principles of natural
evolution in the form of variation, selection and evaluation rules. On the one
hand, the algorithm permits every kind of connection in hidden and output
layers. On the other hand, it maintains a network structure as small as possi-
ble with respect to the given fitness function. Thus, recurrent neuro-modules
with a small network structure can be produced. Therefore, the ENS3 is ap-
plied as a tool for developing and optimizing the neural preprocessing and
control to achieve artificial perception-action systems.



Chapter 4

Physical sensors and walking
machine platforms

This chapter describes the development of the physical components that leads
to the artificial perception-action systems. It begins with the descriptions of
different physical sensors which are used to sense environmental information.
After that it is followed by the details of the walking machines simulated in
a physical simulation environment as well as real built robots. They are used
to display different reactive behaviors.

Inspired by the function of the hairs of a spider for sound detection and
a scorpion for tactile sensing, an artificial auditory-tactile sensor in analogy
to these sensory hairs is introduced. In addition, the set-up of a so-called
stereo auditory sensor together with its electronic circuit for sound tropism
approach is also presented. Afterwards, the use of physical infra-red sen-
sors as a functionally equivalent antenna model for detecting obstacles is
discussed. Finally, the designs and the constructions of biologically inspired
four- and six-legged walking machines with different morphologies as well as
their physical simulators are described.

4.1 Physical sensors

To generate the different reactive behaviors of the walking machines in ac-
cordance with an environmental condition, sensory information is required.
Three physical sensor systems for providing the signals to trigger several
behaviors were implemented and tested on physical walking machines.

47
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4.1.1 An artificial auditory-tactile sensor

As described in Chapter 2 concerning the function of the spider Cupiennius
salei’s hairs, they are used to detect a prey signal and also sensitive to
auditory cues. On the other hand, a scorpion Pandinus cavimanus uses its
hairs as tactile sensing to perform several tasks, e.g. an obstacle avoidance
task (see also Section 2.1). These kinds of biologically inspired sensor systems
help providing environmental information for a mobile robot.

There exist implementations of the tactile sensors [66], [77], [78] and the
auditory sensors [69] on real robots but roboticists have not yet implemented
these two sensor functions into one sensor system. However, M. Lungarella
[89] and H. Yokoi [175] introduced an artificial whisker sensor with a real
mouse whisker attached, hair-like, to a capacitor microphone. In the works
of M. Fend [47], [48], the whisker sensors were applied for an obstacle avoid-
ance task and texture discrimination while the use of the sensors for sound
detection was not mentioned.

Here, the whisker sensor is applied for the auditory-tactile application
[95]. It will enable autonomous mobile robots as well as walking machines to
move around for in-door applications. The sensor shall protect a robot’s body
and especially the legs of walking machines from colliding with obstacles, like
chair or desk legs. In addition, with the implementation of the sound tropism,
the robot will also be able to navigate.

A so-called “auditory-tactile sensor” consists of a mini-microphone (0.6
cm diameter) built in an integrated amplifier circuit, a root (a small rubber
wire) and a whisker-shaped material taken from a whisker of a real mouse
(4.0 cm long). The sensor and its components are shown in Figure 4.1.

In order to build this sensor, the mouse whisker was inserted into a root
which was glued onto the diaphragm of a microphone. The physical force
of the whisker vibrates the diaphragm of the capacitor microphone, which
results in a voltage signal.

The signal is amplified via the integrated amplifier circuit on the mini-
microphone. The maximum output voltage with respect to the given input
signals, e.g. a sine wave signal, is around 1.8 peak volt AC. To record the
signal via a line-in port of a personal computer (PC) sound card, it has to be
scaled in the range of a maximum output voltage at around 0.5 peak volt AC.
It was done by using a potentiometer which functions as a variable voltage
divider. The scaled output signal is then digitized on the sound card at a
sampling rate of 48 kHz for the purpose of monitoring and feeding it into the
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Figure 4.1: The auditory-tactile sensor consists of a whisker of a real mouse,
a rubber root and a capacitor microphone built in an integrated amplifier
circuit. Left: Assembly parts of a sensor. Right: The real sensor built in an
amplifier circuit.

neural preprocessing afterwards. The basic schematic of the sensor system is
shown in Figure 4.2.

Figure 4.2: The basic schematic of the auditory-tactile sensor system. The
detected signal is firstly amplified via an integrated amplifier circuit of the
mini-microphone, then the amplitude of an amplified signal is reduced by a
variable voltage divider. Eventually, the scaled signal goes into the line-in
port for digitizing which then feeds it into the neural processor.



50

By applying this sensor system to obtain tactile and auditory signals, one
should keep in mind that the tactile signal requires a high sampling rate of
an analog to digital converter (ADC), e.g. 48 kHz, while the auditory signal
depending on a used frequency can be digitized at a lower sampling rate.
The response of the sensor to an auditory signal and a tactile signal recorded
via the line-in port is exemplified in Figure 4.3.

Figure 4.3: (A) The response of the auditory-tactile sensor to an auditory
signal at a frequency of 100 Hz which is generated by a loudspeaker. (B)
The response of the sensor to a tactile signal which is generated by sweeping
the sensor over an object back and forth. All figures have the same scale in
x-axis while y-axis is different.

In comparison to the auditory and tactile signals (shown in Figure 4.3),
the tactile signal has a vibrating waveform with slightly higher frequency
while the auditory signal has a sine waveform with a lower frequency. Such
different signal properties are crucial to seek signal processing by using neural
network and evolutionary approaches (described in the next chapter).

4.1.2 A stereo auditory sensor

To perform a sound tropism which is inspired by prey capture behavior of the
spider Cupiennius salei (see also Chapter 2), a so-called “stereo auditory
sensor” is employed. The sensor together with its signal processing (described
in the next chapter) will enable a walking machine to detect sound1 and

1Here, sound having a sine waveform at the frequency of 200 Hz is used for a sound
tropism approach. The sound with this property is later called an auditory signal.
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discern the direction of the source. The processed sensor signals can then
control an autonomous mobile robot to move in the direction of the sound
source and make an approach to it in a real environment.

There are several examples of robot experiments that use an auditory
sensor–in a form of a microphone–for different purposes. Most researchers use
an array of four or more microphones to perform auditory source localization
[1], [154], [161], [163]. Such a system is too expensive to compute a signal
processor, too complex and also too energy consuming, despite the fact that
it can detect the signals in three-dimensional space and precisely localize
the source. There are other examples, for instance, the SAIL robot uses the
microphone for online learning of verbal commands [179] and a humanoid
robot called ROBITA uses two microphones to follow a conversation between
two persons [99]. However, in other articles from the domain of biologically
inspired robotics, the behavior generated by auditory signals is studied [69],
[131], [168]. They used two miniature microphones allowing the robot to
detect and move toward a simulated male cricket song-4.8 kHz [88], [100].

The study of the research above stated that the use of a microphone
can achieve several tasks and even two microphones are adequate to perform
sound source localization in two-dimensional space. Thus, in this work, the
stereo auditory sensor system was built from two miniature microphones with
a 0.6 cm diameter (for the left and the right detections in two-dimensional
space), a support circuitry and the Multi-Servo IO-Board (MBoard). The
system was suitably implemented on a four-legged walking machine.

Concerning time delay of arrival (TDOA) [39], [104] of the sound com-
ing from the two microphones (later called the stereo auditory sensor), the
microphones were installed on the (moving) fore left and rear right legs of
the walking machine. Consequently, they can scan the auditory signals in
the wider angle because they are moving with the legs. The locations where
the stereo auditory sensor (the left and right microphones) were installed are
shown in Figure 4.4.

The auditory signals are initially amplified via the microphones’ inte-
grated amplifier circuit, and then scaled to the range between 0 and 5 volts
by a support circuitry. Afterwards, they are digitized via ADC channels of
the MBoard at a sampling rate of up to 5.7 kHz. To obtain the sensor data,
the MBoard can be interfaced with either a PC or a personal digital assistant
(PDA) via a serial (RS232) port. The basic schematic of the sensor system
is shown in Figure 4.5.
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Figure 4.4: (A) The distance between the stereo auditory sensor is equal to
42 cm. (B) The real sensor built in a preamplifier circuit was installed on
the left foreleg of the walking machine. (C) The sensor was installed on the
right hind leg of the walking machine.

According to the dimension of the walking machine and the distance
between the fore left and the rear right microphones, the maximum time delay
between the left and the right is equivalent to one-fourth of the wavelength
of the frequency–200 Hz. The response of the sensor to the auditory signals
recorded via the MBoard and displayed on a 1 GHz PC is exemplified in
Figure 4.6.

As shown in Figure 4.6, the desirable occurrence of time delay between
the left and the right microphones in accordance with the location of the
sound source will be determined to seek signal processing to generate a sound
tropism. In addition, the amplitude of the signal will also be used to esti-
mate the distance between the walking machine and the source where high
amplitude indicates to approach the source and vice versa (see more details
in the next chapter).

4.1.3 Antenna-like sensors

In order to achieve versatile intelligent perception-action systems, the walk-
ing machine should not only do sound tropism, but it should also perform
other behaviors like an animal, e.g. wandering and avoiding objects or even
escaping from a deadlock situation.

Therefore, additional sensors which can detect obstacles are required.
Inspired by an insect antenna (cf. Chapter 2), the sensor which is similar
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Figure 4.5: The basic schematic of the stereo auditory sensor system. The
detected signals coming from the left and right microphones are initially am-
plified via the integrated amplifier circuit of the microphone. Then, amplified
signals are scaled to a range between 0 and 5 volts through the support cir-
cuitry. After that the MBoard digitizes the scaled output voltages to a 7-bit
value where 0 represents silence and 128 represents maximum volume. Even-
tually, the digital signals from the MBoard are displayed on a PC or a PDA
via an RS232 interface at a transfer rate of 57.6 kBits per second.
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Figure 4.6: (A) The sound source is close to the fore left microphone. This
results in the signal coming from the fore left microphone (dashed line) having
high amplitude and it is followed by the signal coming from the rear right
microphone (solid line) with a delay while the reverse case is presented in
(B). All figures have the same scale in x-axis and y-axis.

to an insect antenna is desired but insufficient time was available for its
development. Therefore, the antenna-like sensors were modelled using the
Infra-Red (IR) sensors. An IR sensor has a lot in common with an insect
antenna. Although an IR sensor acts differently from an insect antenna,
by measuring the brightness of the Infra-Red light reflected by objects, the
resulting measurement is the same. It is a well-known fact in robotics, that
using IR sensors instead of antennas is a simplification as well as a solution
with low power consumption. Most researchers use the sensors in a mobile
robot as well as in a walking machine for obstacle avoidance [50], [52], [94]
or even wall following [32].

In this work, three types of the IR sensor, later called “antenna-like sen-
sors”, were chosen to detect obstacles at a distance between 4-30 cm, 10-80
cm and 20-150 cm. The antenna-like sensors were implemented and tested
on two different walking machines (four-legged and six-legged walking ma-
chines). Two antenna-like sensors which can detect obstacles at a distance
between 10-80 cm were installed on the (moving) forehead of the four-legged
walking machine AMOS-WD022. They make an angle of approximately 25
degrees with respect to the horizontal body axis of the walking machine.

2Advanced MObility Sensor driven-Walking Device.
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The angle was manually adjusted for optimal operation. Consequently, the
walking machine is able to detect obstacles on the fore left and right of its
body (see Figure 4.7).

Figure 4.7: The antenna-like sensors implemented on the forehead of the four-
legged walking machine. Left: The outline of the sensors from a top view.
Right: The real sensors fixated on the forehead of the physical four-legged
walking machine AMOS-WD02 (arrow lines).

Due to the structure of the four-legged walking machine, its head, where
the sensors were implemented, can vertically turn left and right with respect
to the walking pattern by activating the backbone joint. Consequently, the
sensors can also scan obstacles in a wider angle. In other words, they perform
like an active antenna scanning an obstacle in two-dimensional space (see
Figure 4.8).

Normally, two antenna-like sensors on its left and right foreheads are
sufficient to perform an obstacle avoidance. However, to prevent the legs of
the walking machines from hitting obstacles, like chair or desk legs, more
sensors are needed and they can be installed on the (moving) legs.

Here, the six sensors were implemented on the six-legged walking machine
AMOS-WD06. Two of them, which can detect the obstacle at a long distance
between 20-150 cm, were fixated at the forehead while the rest of them,
operating at a shorter distance between 4-30 cm, were fixated at the two
forelegs and two middle legs. The configuration of the sensors on the AMOS-
WD06 and the idealized field of the sensors are presented in Figure 4.9.
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Figure 4.8: The idealized field of the antenna-like sensors when the backbone
joint of the walking machine is activated. Left: The outline of the idealized
field where the sensors can scan obstacles (dashed curve). Right: The visu-
alization of the sensors moving with the head of the walking machine when
the backbone joint turns right (upper picture) and left (lower picture).

Figure 4.9: Left: The visualization of the locations where the sensors are
implemented and the idealized field of the sensors protecting the walking
machine from crashing into obstacles (dashed line around the walking ma-
chine). Right: The six sensors on the physical walking machine (arrow lines).
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As shown in Figure 4.9, one pair of the forehead sensors performs like a
passive antenna detecting obstacles in front of the walking machine while the
other two pairs installed on the (moving) legs perform like active antennas
because they move along the legs. Therefore, these (active) sensors can scan
the obstacle in three-dimensional space; i.e. they move forward and backward
in parallel to the ground (compare Figure 4.9) and they also move up and
down in a vertical direction (see Figure 4.10).

Figure 4.10: Left: The idealized field of the antenna-like sensor on the right
foreleg of the six-legged walking machine (dashed curve) with the remaining
sensors operating on the other legs. The sensor moves in a vertical direction
when the basal and distal joints are activated. Right: The physical sensor
on the right foreleg.

To obtain the sensory data for controlling the behavior of the walking
machine, all sensors were interfaced and digitized via the ADC channels
of the MBoard at the sampling rate of up to 5.7 kHz. Subsequently, the
digital signals are sent to either a PC or a PDA through an RS232 interface
at a transfer rate of 57.6 kBits per second for the purpose of monitoring
and feeding the data afterwards into the preprocessing network. The basic
schematic of the sensor system is shown in Figure 4.11.
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Figure 4.11: The basic schematic of the antenna-like sensor system. Here,
two sensors are presented. They are connected to the ADC channels of the
MBoard. The digital signals from the MBoard will be displayed or analyzed
on a PC or a PDA via an RS232 interface.

The example of the sensor signals responding to a presented object is
shown in Figure 4.12.

Figure 4.12: The sensory signals coming from the left fore (A) and the right
fore (B) heads of the four-legged walking machine.
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As shown in Figure 4.12, the sensor signals have some noise resulting
in uneven signals and they might be difficult to apply for controlling the
behavior of the walking machines. Therefore, the preprocessing of these
sensor signals, described later, is required to eliminate the unwanted sensory
noise and to trigger the obstacle avoidance behavior of the walking machines.

4.2 Walking machine platforms

To demonstrate reactive behaviors and to experiment with neural controllers,
a mobile robot platform is required and it is desired to have its morphology
like a walking animal (cf. Section 2.2).

Much research from the domain of biologically inspired walking machines
has been studied for the last decade. There are several examples on the
construction of the four- and six-legged walking machines. Most previous
models of the walking machine were designed to have a trunk without a
backbone joint [33], [65], [79], [80], [126], [127], [151]. However, out of these
examples, some of them gain the benefits of having different configurations
which promote stability and flexibility of locomotion while maintaining ani-
mal characteristics [22], [26], [139], [169], [176].

Thus, the four- and six-legged walking machines were constructed with
different morphologies analogous to the principle structures of a salamander
and a cockroach, respectively. Their structures were initially designed and
visualized in 3D models before assembling the physical components in the
final stage. Furthermore, a physical simulation was used to create the walking
machines in the virtual world to test and experiment with neural controllers
before downloading them into the real world walking machines.

4.2.1 The four-legged walking machine AMOS-WD02

The AMOS-WD02 [92] consists of four identical legs and each leg has two
joints (two degrees of freedom (DOF)) which are a minimum requirement
to obtain the locomotion of a walking machine and which follow the basic
principle of movement of a salamander leg (cf. Section 2.2). The upper joint
of the legs, called thoracic joint, can move the leg forward and backward and
the lower one, called basal joint, can move it up and down.

The length of the levers which are attached to the basal joints is propor-
tional to the dimension of the machine. They are kept short to avoid greater
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torque in the actuators [125]. The configuration of the leg is shown in Figure
4.13.

Figure 4.13: The leg with two DOF. Left: The 3D model of the leg. Right:
The physical leg of the AMOS-WD02.

Inspired by vertebrate morphology of the salamander’s trunk and its mo-
tion (described in Section 2.2), the robot was constructed with a backbone
joint which can rotate around a vertical axis. It facilitates a more flexible and
faster motion3. The backbone joint is also used to connect the trunk where
two hind legs are attached with the head where two forelegs are installed.
The trunk and the head are formed with the maximum symmetry to keep
the machine balanced for the stability of walking. They are also designed
to be as narrow as possible to ensure optimal torque from the supporting
legs to the center line of the trunk. The construction of the walking machine
together with the working space of the legs and the backbone joint is shown
in Figure 4.14. The detail of the dimension is presented in Appendix A.

Moreover, a tail with two degrees of freedom rotating in the horizontal
and vertical axes was implemented on the back of the trunk. The actively
moveable tail was motivated by a scorpion tail with sting [2].

All leg joints are driven by analog modelcraft servomotors producing a
torque between 70 and 90 Ncm. The backbone joint is driven by a digital

3A walking speed is approximately 12.7 cm/s when the backbone joint is inactivated
while it is approximately 16.3 cm/s with the activation of the backbone joint in accordance
with the walking pattern. The measurements were done with the walking frequency of the
machine at 0.8 Hz.
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Figure 4.14: (A) The angle range of the backbone joint (top view). (B) The
angle ranges of all thoracic joints of the right side of the walking machine
with the left side being symmetric (top view). (C) The angle range of the
basal joint of the left foreleg with the remaining legs having the same angle
ranges (front view).

servomotor with a torque between 200 and 220 Ncm. For the tail joints,
micro-analog servomotors with a torque around 20 Ncm were selected. The
height of the walking machine is 14 cm without its tail and the weight of the
fully equipped machine (including 11 servomotors, all electronic components,
battery packs and a mobile processor) is approximately 3.3 kg. In addition,
this machine has two antenna-like sensors and two auditory sensors to per-
form different reactive behaviors; e.g. an obstacle avoidance and a sound
tropism, respectively. On the tail, a mini wireless camera with a built-in
microphone was installed for monitoring and observing while the machine is
walking. The 3D model of the walking machine and the real walking machine
are shown in Figure 4.15.

All in all the AMOS-WD02 has 11 active DOF, 4 sensors and 1 wireless
camera (more details of the AMOS-WD02 see Appendix A); therefore, it
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Figure 4.15: The four-legged walking machine AMOS-WD02. Left: The 3D
model of the walking machine. Right: The real world walking machine.

can serve as a reasonably complex platform for experiments concerning the
function of the neural perception-action systems.

However, to test the neural controller and to observe the resulting be-
havior of the walking machine (e.g. obstacle avoidance), they were firstly
visualized through a physical simulation environment, called “Yet Another
Robot Simulator (YARS)4” [158]. The simulator, developed at Fraunhofer
Institute in Sankt Augustin, is based on Open Dynamics Engine (ODE) [150].
It provides a defined set of geometries, joints, motors and sensors which is
adequate to create the four-legged walking machine AMOS-WD02 with IR
sensors in a virtual environment with obstacles (compare Figure 4.16).

Furthermore, the YARS enables an implementation, which is faster than
real time and which is precise enough to reproduce the behavior of the phys-
ical walking machine with sufficient quality. This simulation environment is
also connected to the Integrated Structure Evolution Environment (ISEE)
[71] which is a software platform for developing neural controllers (described
in Chapter 3).

In the final stage, a developed neural controller after the test on the sim-
ulator is then applied to the physical walking machine to demonstrate the

4http://www.ais.fraunhofer.de/INDY/, see menu item TOOLS.
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Figure 4.16: Different view of the simulated walking machine in its environ-
ment. The properties of all simulated components are defined with respect to
the physical properties of the real walking machine, e.g. weight, dimension,
motor torque and so on. The simulated walking machine consists of body
parts (head, backbone joint, trunk and limbs), servomotors and IR sensors
while the auditory sensor was not available in the simulation.

behavior in the real environment. The neural controller is programmed into
a mobile processor (a PDA). The PDA is interfaced with the MBoard–which
digitizes sensory signals and generates a pulse width modulation (PWM) sig-
nal at a period of 20 ms–to command the servomotors. The communication
between the PDA and the MBoard is accomplished via an RS232 interface
at 57.6 kBits per second.

4.2.2 The six-legged walking machine AMOS-WD06

Here, another type of walking machine platform is presented. The AMOS-
WD06 [93] consists of six identical legs and each leg has three joints (3 DOF)
which is somewhat similar to a cockroach leg. A thoracic joint has similar
functionality to the thoracic joint of the AMOS-WD02 while another two
joints, the basal and distal joints, are used for elevation and depression or
even for extension and flexion of the leg. The levers which are attached to
distal joints were built in the same manner as the levers of the AMOS-WD02.
The configuration of the leg is shown in Figure 4.17.
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Figure 4.17: The leg with three DOF. Left: The 3D model of the leg. Right:
The physical leg of the AMOS-WD06.

This leg configuration provides the machine with the possibility to per-
form omnidirectional walking; i.e. the machine can walk forwards, back-
wards, lateral and turn with different radii. Additionally, the machine can
also perform a diagonal forward or backward motion to the left or the right
by activating the forward or backward motion together with the lateral left
or right motion. The high mobility of the legs enables the walking machine
to walk over an obstacle, stand in an upside-down position or even climb over
obstacles (see Figure 4.18).

Figure 4.18: The walking machine AMOS-WD06 walking over an obstacle
with the maximum height of 7 cm (A), standing in an upside-down position
(B) and climbing over obstacles (C).
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Inspired by invertebrate morphology of the american cockroach’s trunk
and its motion (described in Section 2.2), a backbone joint which can rotate
in a horizontal axis was constructed. It is desired to operate like a cockroach
while the machine is climbing over obstacles (compare Figure 4.18C). How-
ever, this active backbone joint will be fixed under normal walking conditions
of the machine. Mainly, it is used to connect the trunk where two middle
legs and two hind legs are attached with the head where two forelegs are in-
stalled. The trunk and the head were designed using the same concept as for
the AMOS-WD02 described above. The construction of the AMOS-WD06
together with the working space of the legs is shown in Figure 4.19 (see also
in Appendix A).

Figure 4.19: (A) The angle ranges of all thoracic joints on the right side
of the walking machine with the left side being symmetric (top view). (B)
The angle ranges of the basal and distal joints of the left foreleg with the
remaining legs having the same angle ranges (front view). (C) The angle
range of the backbone joint (side view).
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Similar to the AMOS-WD02, one (active) tail with the same configuration
was also implemented on the back of the trunk. It has a similar function to
the AMOS-WD02 tail.

All leg joints are driven by analog servomotors producing a torque be-
tween 80 and 100 Ncm. For the backbone joint and the tail joints, the same
motors which were used on the AMOS-WD02 were employed. The height
of the walking machine is 12 cm without its tail and the weight of the fully
equipped robot (including 21 servomotors, all electronic components, battery
packs and a mobile processor) is approximately 4.2 kg. Like the AMOS-
WD02, a mini wireless camera with a built-in microphone was installed for
monitoring and observing the environment while walking. In addition, the
walking machine has six antenna-like sensors to help detect obstacles and one
upside-down detector which is implemented beside the trunk of the machine.
The 3D model of the walking machine and the real machine are shown in
Figure 4.20.

Figure 4.20: The six-legged walking machine AMOS-WD06. Left: The 3D
model of the walking machine. Right: The real walking machine.

All in all the AMOS-WD06 has 21 active DOF, 7 sensors and 1 wireless
camera (more detail of the AMOS-WD06 see Appendix A); thus it can also
serve as a testing platform like the AMOS-WD02.

The AMOS-WD06 was also simulated by YARS with the same virtual
environment and the same purpose as described above. The basic features
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of the simulated walking machine are closely coupled to the physical walk-
ing machine, e.g. weight, dimension, motor torque and so on. It consists
of body parts (head, backbone joint, trunk and limbs), servomotors, IR sen-
sors and an additional tail. The simulated walking machine with its virtual
environment is shown in Figure 4.21.

Figure 4.21: Different views of the simulated walking machine in its environ-
ment.

The final neural controller will also be implemented on the physical walk-
ing machine for testing its behavior in a physical environment. Again, the
controller is programmed on the same mobile processor system with the same
update frequency as the AMOS-WD02.

4.3 Conclusion

Sensor systems are required to enable a robot to perceive the surrounding in-
formation for a behavior control. Here, three types of physical sensor systems
which are an auditory-tactile sensor, a stereo auditory sensor and antenna-
like sensors were described and constructed. The auditory-tactile sensor,
which was inspired by the function of hairs of a scorpion and a spider, can be
used for tactile sensing as well as sound detection. Using the stereo auditory
sensor in analogy to the hairs of the spider, the sound can be detected and
the direction of the incoming sound can also be distinguished by determining
the time delay of arrival (TDOA) from the left and right auditory sensors.
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The antenna-like sensors are used to detect impediments as well as to protect
the legs of the walking machine from colliding with obstacles.

To show reactive behaviors in concert with the sensory information, this
is performed on the walking machines. Two walking machines with different
morphologies were built with physical components. They were also simulated
in a physical simulation environment which is intended to develop and test
neural controllers before implementation in the real world walking machines.
Thus, the walking machines together with the sensor systems can serve as
hardware platforms for experiments with neural controllers or even to display
as artificial perception-action systems.



Chapter 5

Artificial perception-action
systems

Where chapter 2 investigated the biologically inspired perception-action sys-
tems, this chapter focuses on applying the principles of the biological domain
to create artificial perception-action systems. First, several preprocessing
units of different types of sensory signals are presented. They are used to
filter and recognize the corresponding sensory signals and they can be de-
scribed as perception parts. Second, neural control of the four- and six-legged
walking machines is given. It generates and controls the locomotion of the
machines, and it can be defined as action parts. Third, the combination
of the neural preprocessing and the neural control gives rise to the ability
to control reactive behaviors such as obstacle avoidance and sound tropism.
Finally, both behavior controls are merged under a so-called behavior fusion
controller by applying a sensor fusion technique to give a versatile perception-
action system.

5.1 Neural preprocessing of sensory signals

Three different types of neural preprocessing modules, applying dynamical
properties of recurrent neural networks (described in Chapter 3), are pre-
sented. The first module is a so-called auditory signal processing which is
used to preprocess the auditory signals detected by means of a stereo auditory
sensor or auditory-tactile sensors. It consists of two subordinate networks,
one for filtering auditory signals to detect the low-frequency sound, and the
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other to distinguish the direction of detected signals between the right and the
left. The second module is known as the tactile signal processing which has
the capability to recognize the tactile information coming from an auditory-
tactile sensor. The last module does the preprocessing of antenna − like
sensor data which can eliminate the sensory noise and the outputs of the net-
work can control the walking machines to avoid obstacles or even to escape
from a corner.

5.1.1 The auditory signal processing

Inspired by the function of the sensory hair of the spider (cf. Chapter 2),
the auditory signal processing is studied whose function is similar to the de-
scribed sensory and sensing systems. It will enable the walking machine(s) to
recognize low-frequency sound and to distinguish the auditory signals coming
from the left or the right. In order to create such signal processing, first a sim-
ple network that acts as a low-pass filter is investigated [95]. Subsequently,
the other network which will help the machine(s) to discern the direction of
a sound source is constructed. At the end, the integration of both networks
leads to the complete auditory signal processing network. This effective net-
work is then applied to preprocessing the signals of the stereo auditory sensor
or the auditory-tactile sensors.

A low-pass filter for auditory signals

To have the network which can detect low-frequency sound, an artificial
neural network together with an evolutionary algorithm is employed. Also,
an input signal of sine shape which is a mixture of 100 Hz and 1000 Hz is
simulated on a 1 GHz personal computer (PC) with an update frequency of
48 kHz. The input signal is mapped to a range between -1 and +1 and then
it is buffered into the simulator called Data Reader (described in Section
3.3) for the purpose of feeding the data to evolve or test the network. To
keep the problem simple an ideal noise-free signal with constant amplitude
(see Figure 5.1A) is used at the beginning. If a network, which is found, can
distinguish between low-frequency (100 Hz) and high-frequency (1000 Hz)
sounds, the next step of the experiment is to apply the signal with varying
amplitudes (see Figure 5.1B) which is recorded via a physical auditory-tactile
sensor. The recorded signal is digitized through the line-in port of a sound
card at a sampling rate of 48 kHz on a 1 GHz PC.
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Figure 5.1: The input signal of sine shape mixed between 100 Hz and 1000
Hz. (A) The simulated noise-free signal with constant amplitude. (B) The
noisy signal with varying amplitudes recorded via the physical sensor. Both
signals are updated at the frequency of 48 kHz.

To design the neural preprocessing structure, a single model neuron con-
figured as a hysteresis element [115] is utilized; i.e., the network consists of
an input neuron and a neuron with a positive self-connection corresponding
to a dynamical neural Schmitt trigger [70] (see Figure 5.2A). The network
is constructed, experimented and analyzed through the Integrated Structure
Evolution Environment (ISEE) connecting with the Data Reader. It is the
software platform for developing neural controllers and it is implemented on
a 1 GHz PC (described more details in Section 3.3). In this case, the network
is updated at the frequency of 48 kHz. Applying the results from [70], the
weight (W1 = 1) from the input unit to the output unit and the bias term
(B = −0.1) are fixed while the self-connection weight W2 of the output unit
is varied from 0 to 2.5. The ideal noise-free signal with constant amplitude
(compare Figure 5.1A) is given to the network. For W2 = 2.45 the network
suppresses high-frequency sound of 1000 Hz, while low-frequency sound of
100 Hz passes through it. The resulting network, called “simple auditory
network”, is shown in Figure 5.2.

In addition, the resulting network is tested with varying frequencies of an
input signal from 100 Hz to 1000 Hz (see Figure 5.3A) and the output signal
shows that it can detect the signal at the frequency up to approximately 300
Hz (see dashed frame in Figure 5.3B) where this frequency is defined as the
cutoff frequency of the network which is represented in Figure 5.2B.
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Figure 5.2: (A) The simple auditory network realizing a low-pass filter; pa-
rameters are W1 = 1, W2 = 2.45 and B = − 0.1. (B) The characteristic
curve of this network with its cutoff frequency at approximately 300 Hz.

Figure 5.3: (A) The varying frequencies of an input signal from 100 Hz to
1000 Hz. (B) The output signal of the network. The dashed frame is the
frequency range (from 100 Hz to approximately 300 Hz) in which the network
can detect the auditory signal.

From the result, it can be observed that this simple auditory network
with the specific parameters has the property of a low-pass filter. By varying
a weight W2 of the self-connection of the output unit, one observes a splitting
of the output signal, due to the hysteresis effect, which is different at various
frequencies. This suggests that the hysteresis domain of a single neuron with
self-connection [115] can play an important role for the filtering of signals.
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To visualize this phenomenon, output versus input for low- and high-
frequency signals are plotted in Figure 5.4, and the different “hysteresis ef-
fects” can be compared in accordance with the different strengths of the
self-coupling.

Figure 5.4: Comparison of the “hysteresis effects” between input and output
signals of high- and low-frequency sounds for W2 = 0.25, 2.45 and 2.50,
respectively. (A) Low-frequency sound (100 Hz); (B) High-frequency sound
(1000 Hz).
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Figure 5.4 shows that the hysteresis effect for high-frequency sound has
already occurred for W2 = 0.25, although it can not yet be observed for low-
frequency sound. If W2 is increased up to W2 = 2.45, high-frequency sound
will almost be suppressed (a small amplitude of the output signal) whereas
the hysteresis effect for low-frequency sound switches the amplitude between
almost saturation values (between approximately -1 and +1). Increasing the
strength of the self-connection up to W2 = 2.50 low-frequency sound is also
suppressed.

As the bias term defines the base activity of the neuron, the amplitude of
high-frequency output is compensated and it oscillates with small amplitude
between -0.804 and -0.998; eventually it will never rise above 0 again. In
this situation, a low-pass filter function for a configuration with this specific
bias (−0.1) and weight (W2 = 2.45) is suggested (cf. Section 3.2). The
neural network behaves as a low-pass filter because the output amplitude
of high-frequency sound stays around -0.9 while the output amplitude of
low-frequency sound remains oscillating between -0.997 and 0.998.

Having established the single neuron to act as a low-pass filter for noise-
free signals of constant amplitude, the following step is to derive a network,
which behaves like a robust low-pass filter and which is capable of recognizing
low-frequency sound in the real environment. The input signal presented
to the network is recorded through the physical auditory-tactile sensor and
digitized at a sampling rate of 48 kHz. And then it is again mapped to a
range between -1 and +1 and preserved into the Data Reader (see Figure
5.1B). The simple auditory network is now improved by adding one self-
connected hidden unit, and by manually adjusting the weights via the ISEE.
With specific parameters, the network behaves like a robust low-pass filter;
i.e. it can detect the noisy low-frequency sound. The final result, an advanced
auditory network1, is shown in Figure 5.5.

One should remark that the network can recognize the input signal only
if the amplitude of an input signal is higher than the threshold, here 0.5. For
this reason, it is also relevant to the sensing system of the spider because it
can detect the signal of its prey at a close distance (see also Section 2.1.2)
meaning that the amplitude of a detected signal should also be higher than
the threshold.

1The network is named as the advanced auditory network because of its uncomplicated
neural structure and its performance that can detect the noisy low-frequency signal with
varying amplitudes.
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Figure 5.5: (A) The principal advanced auditory network, performing as a
low-pass filter of the noisy signal with varying amplitudes. The bias term B
is equal to -6.7 and all weights are positive, W1 = 0.01, W2 = 32, W3 = 1
and W4 = 0.27. (B) The characteristic curve of this network with its cutoff
frequency at approximately 400 Hz.

To consider the characteristics of the network, the input signal with vary-
ing frequencies from 100 Hz to 1000 Hz having constant amplitude is pre-
sented to the network (see Figure 5.6A). The output signal is plotted in
Figure 5.6B with respect to the given input.

In Figure 5.6B, it shows that the network can detect the signal at the
frequency up to approximately 400 Hz (see dashed frame) because the am-
plitude of higher-frequency output (>400 Hz) is smaller than a threshold
value, e.g. 0.5. To analyze and observe the network behavior, the input sig-
nal from the Data Reader is sent to the network implemented on the ISEE
and the signals from all neurons are monitored (see Figure 5.7).

As shown in Figure 5.7, the first synapse W1 and the excitatory self-
connection W3 of the hidden unit reduce the amplitude of the input. As
a result, the amplitude of a high-frequency sound becomes smaller than
the amplitude of a low-frequency sound due to the critical self-connection
(W3 = 1) performing as an effective integrator. Afterwards the signals are
again amplified by W2. Then the bias term B together with the excitatory
self-connection W4 of the output unit shifts the high-frequency sound to os-
cillate around -0.998 with very small amplitude. Consequently, the network
suppresses the high-frequency sound and only the low-frequency sound with
a high enough amplitude can pass through the network.
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Figure 5.6: (A) The varying frequencies of an input signal from 100 Hz to
1000 Hz. (B) The output signal of the network. The dashed frame is the
frequency range (from 100 Hz to approximately 400 Hz) in which the network
can detect the auditory signal. Here, the amplitude of the signal which is
smaller than a threshold value, e.g. 0.5, is neglected.

The final step is to implement the advanced auditory network into the
mobile system of the walking machine(s) [97]; i.e. the auditory signal2 de-
tected via either the stereo auditory sensor or the auditory-tactile sensor
is digitized via the Multi-Servo IO-Board (MBoard) at a sampling rate of
up to 5.7 kHz, and the signal processing network will be programmed on
a personal digital assistant (PDA) with an update frequency of ≈ 2 kHz.
For that, the parameters (weights and a bias) of the advanced auditory net-
work have to be recalculated. An evolutionary algorithm ENS3 (Evolution
of Neural Systems by Stochastic Synthesis), is applied to optimize the pa-
rameters of this network. It is implemented on the ISEE and received the
input signal for evolutionary process from the Data Reader (cf. Section 3.3).
The first population consists of the fixed network shown in Figure 5.8A and
the evolutionary process runs until a reasonable solution is reached which is
determined by the fitness value. The fitness function F that minimizes the
mean squared error between the target and the output signals is given by

F =
10

1 + E
· (5.1)

2In this set-up, the stereo auditory sensor is used to detect the auditory signal which
will be provided to the evolutionary process.
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Figure 5.7: The mixed signals between low- and high-frequency sounds with
varying amplitude from all neurons. (A) The signals from an input neuron.
(B) The signals from a hidden neuron. (C) The signals from an output
neuron.

For an ideal case, the maximum value of F should be 10 while the mean
squared error E should be equal to 0. The mean squared error E is evaluated
by the equation:

E =
1

N

N∑
t=1

(target(t)− output(t))2 , (5.2)

where N is the maximum number of time steps. Here, it is set to
N = 6000. The target signal is activated by oscillating between around
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-1 and +1 only if a low-frequency signal from 100 to 400 Hz3 is pre-
sented and it is around -1 in all other cases. This is exemplified in Figures
5.8B and C.

Figure 5.8: (A) An initial network structure with given weights and a bias.
(B) The varying frequencies of an input signal from 100 Hz to 1000 Hz.
The input signal is recorded from the physical stereo auditory sensor and
then digitized through the analog to digital converter (ADC) channel of the
MBoard at a sampling rate of up to 5.7 kHz. (C) A corresponding target
signal.

After 55 generations, the resulting network had a fitness value of F = 8.76,
which is sufficient to recognize the low-frequency signal in a desirable fre-
quency range. This is shown in Figure 5.9.

3The frequency range is proportional to the frequency range in which the sensory hair
of the spider can sense the signal of its prey.
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Figure 5.9: (A) The evolved advanced auditory network applied to the mobile
system is optimized by the evolutionary algorithm. It is able to filter the
frequency of the auditory signals that are higher than around 400 Hz. (B)
The output signal of the network is presented. In the dashed frame, there
are auditory signals at a low-frequency range approximately between 100 and
400 Hz. (C) The characteristic curve of this network with its cutoff frequency
at around 400 Hz where the amplification is smaller than a threshold value,
e.g. 0.6.

This evolved advanced auditory network has a similar property to the
sensory hair of the spider meaning that both of them act as low-pass filters at
the same frequency range relatively. In addition, this preprocessing network
can filter the noise at high frequencies (>400 Hz) which might occur from the
motors of the machine(s) during walking, standing or from the surrounding
environments (see demonstration in the next chapter).
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The sound-direction detection network

In the previous section, the neural preprocessing whose function is similar to
a low-pass filter was given. It is applied to filter undesirable signals coming
from, e.g. motors, motions, and environments while it will pass through the
sinusoidal sound at the frequency of 200 Hz4 to trigger a sound tropism.

To discern the direction of the auditory signals for a sound tropism [97],
the mentioned ENS3-evolutionary algorithm is again applied to find the ap-
propriate neural network based on the concept of the time delay of arrival
(TDOA) [39], [104]. Here, the input signals provided to the evolved net-
work are detected by the stereo auditory sensor and they are digitized via
the MBoard and then recorded on a PDA at an update frequency of ap-
proximately 2 kHz. According to the dimension of the four-legged walking
machine AMOS-WD02 and the distance between the fore left and the rear
right auditory sensors (see Chapter 4), the maximum time delay between
the left and the right signals is equivalent to one-fourth of the wavelength of
the frequency of 200 Hz. To evolve the neural network, the same strategy
as described above is employed. The initial neural structure is based on the
minimal recurrent controller (MRC) [70], and its parameters are shown in
Figure 5.10A. This neural structure consists of two input and two output
neurons. The input signals are firstly filtered via the evolved advanced au-
ditory network; as a result, only noise-free signals at the low frequencies can
pass through the evolved network. The input signals together with the delay
of each are shown in Figure 5.10B. The fitness function F is determined by
equation 5.1, and the mean squared error E is estimated by

E =
1

N

N∑
t=1

(
2∑

i=1

(targeti(t)− outputi(t))
2) . (5.3)

N is equal to 7000 referring to the maximum number of time steps and
i = 1, 2 refers to the signals on the right and the left respectively. The target
signals are prepared in such a way that they refer to the recognition of a
leading signal or to only one active signal. For instance (see Figure 5.10C),
Target1 (solid line) is set to +1 if the signal of Input1 (I1) leads the signal
of Input2 (I2) or only I1 is active indicating that “the sound source is on
the right side” and it is set to -1 in all other cases. Correspondingly Target2

4The selected frequency depends on the distance between two microphones from which
the time delay of two signals occurs.
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(dashed line) is set to +1 in the reverse cases indicating “the sound source
is on the left side”.

Figure 5.10: (A) An initial network structure with given weights. (B) The
input signals at the frequency of 200 Hz from the right (solid line) and the
left (dashed line) sensors involving the delay between them. At the first
period, the sound source is on the right of the walking machine until around
75 time steps it changes to the left. There, only the left sensor can detect
the sound implying that the sound source is a little far away from the right
sensor. Then after around 150 time steps, the walking machine gets closer
to the sound source resulting that the right sensor also detects the sound
while after around 210 time steps the sound source is again changed to its
right and a little far away from the left sensor. (C) Target1 (solid line) and
Target2 (dashed line) correspond to the directions of the signals on the right
and the left, respectively.
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The network resulting from the evolution after 260 generations has a
fitness value of F = 6.96 which is sufficient to solve this problem. This
sound-direction detection network as well as the inputs and the outputs are
presented in Figure 5.11.

Figure 5.11: (A) The resulting network called “sound-direction detection
network”. (B) The input signals from both sensors with the delay between
each other. At the first period, the sound source is on the left of the walking
machine while it changes to the right after around 110 time steps. (C) During
the first period, the signal of Output2 is active and the signal of Output1 is
inactive while the signal of Output2 becomes inactive after around 105 time
steps and the signal of Output1 becomes active after around 110 time steps.

The main feature of this network is its ability to distinguish the direction
of incoming signals by observing a leading signal or solely an active signal,
and it is easy to implement on the mobile processor because of its uncompli-



5.1. NEURAL PREPROCESSING OF SENSORY SIGNALS 83

cated neural structure. In addition, its outputs can directly be connected to
the neural control module such that it determines the walking direction of
the machine(s); e.g., the machine(s) turns left when the sound source is on
the left side and vice versa.

The output neurons of this small network are excited by straight and
cross connections coming from each of the input neurons. There are also ex-
citatory self-connections at both output neurons providing hysteresis effects.
They allow the switching between two fixed point attractors corresponding
to stationary output values of the output neurons, one low and the other high
(see Figure 5.12). The strength of a self-connection w >+1 determines the
width of the hysteresis interval in the input space (see also Section 3.2) [70].

However, if the strength of w is too large (for instance, the weight at
Output1 w1 >2.0 and at Output2 w2 >3.5), then the inputs will not sweep
back and forth across the hysteresis domains with the result that the output
signal will oscillate around the high output value when the input signal is
activated. This phenomenon is demonstrated in Figure 5.12 where Output2
versus Input2 for smaller self-connection weights (w1 = 2.0, w2 = 3.5) and
larger self-connection weights (w1 = 2.206, w2 = 3.872) are plotted.

Figure 5.12A shows the switching of the output of Output2 (O2) between
almost saturation values (corresponding to the fixed point attractors) while
I2 varies over the whole input interval and I1 is provided with a delay (see
Figure 5.13A). On the other hand, O2 in Figure 5.12B jumps and then stays
oscillating with very small amplitude around the high output value.

Moreover, one can also see this effect in Figure 5.13. The output signals
corresponding to the different strengths of the self-couplings are plotted for
w1 = 2.0, w2 = 3.5, and for the original weights, i.e. w1 = 2.206, w2 = 3.872
(compare Figure 5.11A). The sound source is on the left side causing I1 to
follow I2 with a delay (see Figure 5.13A). Also, the output of Output1 (O1)
is suppressed while O2 is activated (see Figures 5.13B and C).

For the smaller self-connection weights, O2 oscillates between the low
value (approximately -1) and the high value (approximately +1) as shown
in Figure 5.13B. For the larger self-connection weights, O2 oscillates finally
with a very small amplitude around the high value above a threshold which
can be set from the experiment and which depends on the system, e.g. 0.5
(compare Figure 5.13C). Furthermore, one can see that the output neurons
form a so-called “even loop” [114]; i.e. they are recurrently connected by
inhibitory synapses (see Figure 5.11A). This configuration guarantees that
only one output at a time can be positive, i.e. it functions as a switch,
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Figure 5.12: Comparing outputs for different self-connection weights at Out-
put1 and Output2 while I2 sweeps over the input interval (between -1 and
+1) and I1 is given by following Input2 with a delay. (A) Varying Output2
for smaller self-connection weights (w1 = 2.0, w2 = 3.5), and (B) for larger
self-connection weights (w1 = 2.206, w2 = 3.872). Black spots indicate the
initial output values, which are then following the indicated paths (dot line).
There is no hysteresis loop in (B) like it is in (A); instead it oscillates around
the high output value.
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Figure 5.13: (A) The input signals with a delay. (B) shows the corresponding
oscillating O2 (dashed line) for the smaller self-connection weights (w1 = 2.0,
w2 = 3.5) while O1 (solid line) is suppressed. (C) shows that O2 jumps and
stays higher than a threshold (here 0.5 (arrow lines)) for larger self-connection
weights (w1 = 2.206, w2 = 3.872).



86

sending the output to a negative value for the delayed input signal. The
output signals of this phenomenon can be observed in Figure 5.11C. By
utilizing the phenomena of the larger self-connection weights and the even
2-module, one can easily apply the output signals to control the walking
direction of the machine(s) for a sound tropism approach.

The auditory signal processing network

Here, the integration of the evolved advanced auditory network and the
sound-direction detection network leads to the conclusive auditory signal
processing network [97] (see Figure 5.14).

Figure 5.14: The auditory signal processing network which functions as a
low-pass filter circuit and which has an ability to detect the directionality of
the corresponding signals. The network is developed to operate at an update
frequency of approximately 2 kHz.
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This network has the ability to filter the auditory signals and to dis-
cern the direction of the input signals. First, the evolved advanced auditory
network filters the sensory inputs (Auditory Input1 and Auditory Input2 in
Figure 5.14) so that only low-frequency sounds can pass through. Secondly,
the outputs from the evolved advanced auditory network are connected to
the inputs of the sound-direction detection network. The sound-direction
detection network then indicates the direction of the corresponding signals.
Subsequently, the output neurons of the sound-direction detection network
will be connected to the modular neural controller (described later) to make
the walking machine(s) turn into the appropriate direction. Eventually, the
walking machine(s) will approach and stop near the source by checking a
threshold of the amplitude of the auditory signals (demonstrated in the next
chapter).

5.1.2 Preprocessing of a tactile signal

Employing the auditory-tactile sensor for sensing an environment in robotic
applications will enable mobile robots to detect sound, e.g. at low-frequency
(100 Hz), and to avoid collision. These sensor signals consist of an auditory
signal and a tactile signal. Both signals are digitized through the line-in
port of a sound card at a sampling rate of 48 kHz on a 1 GHz PC and the
preprocessing network will be updated at the same frequency of 48 kHz. The
auditory signal is produced via a loudspeaker. It is filtered and recognized
by applying the principal advanced auditory network shown in Figure 5.5.
For the tactile signal, it is simulated by sweeping the sensor over an object
back and forth. The recorded signal together with its Fast Fourier Transform
(FFT) spectrum5 is exemplified in Figure 5.15.

To process the tactile signal, the input signals consisting of the simulated
tactile signal and the low-frequency sound at 100 Hz with varying amplitude
are prepared on the Data Reader (see Figure 5.16A) and the ENS3-algorithm
is applied to evolve for an appropriate neural network via the ISEE. At the
beginning only one input and one output unit without connections are given.
The ENS3-algorithm then increases or decreases the number of synapses and
the hidden units throughout the evolutionary process, which optimizes the
parameters at the same time, until the output signals are good enough for

5The FFT spectrum is analyzed by FFTSCOPRE 1.2 software of Physics Dept. Rutgers
University.
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Figure 5.15: (A) The oscillating peaks are the tactile signal coming from
the auditory-tactile sensor. (B) The FFT spectrum displays the compound
frequency of the signal. By observing the compound frequency, the first and
the second resonance frequencies appear at around 1400 Hz and 5200 Hz.

a reasonable solution. The fitness function F is chosen in such a way that
the evolution minimizes the square error between the target and the output
signals; i.e., it is defined by

F =
1

N

N∑
t=1

(1− (target(t)− output(t))2) , (5.4)

where N is the maximum number of time steps, usually set to N = 25000.
For an ideal case, the maximum value of F should be +1 while the square
error between the target and the output signals should be equal to 0. The
target signal gives +1 if a tactile signal is presented, and -1 in all other cases.
This is exemplified in Figure 5.16B.

The resulting network, a tactile signal processing network, at 800 gen-
erations has a fitness value of F = 0.6 which is sufficient to recognize the
tactile signal (see the recognized output signal in Figure 5.18D). The network
consists of 2 hidden units and 7 synapses as shown in Figure 5.17.

To understand the network behavior, the signals from all neurons are
monitored by means of the ISEE and they are presented in Figure 5.18.

From observing the signals at the hidden and the output units, the am-
plitude of low-frequency sound (100 Hz) is reduced at the first hidden unit
because of the feedback from the second hidden unit. It becomes smaller than
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Figure 5.16: (A) A real input signal coming from the physical sensor. It is
mixed between the tactile signal and the low-frequency sound at 100 Hz. (B)
The corresponding target function.

Figure 5.17: The tactile signal processing network. It filters the low-
frequency sound. Its output signal follows the tactile signal, which consists
of many frequencies and which has resonance frequencies at relatively high.

the amplitude of the tactile signal. Afterwards the amplitudes of both signals
are again added in the second hidden unit. Then the excitatory synapse from
the input unit together with the excitatory self-connection of the output unit
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Figure 5.18: The mixed signals between low-frequency sound (100 Hz) and
the tactile signal from all neurons. (A) The signals from an input neuron.
(B), (C) The signals from hidden neurons. (D) The signals from an output
neuron.
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shifts the signal of low-frequency sound to oscillate around -0.78 with small
amplitude. As a result the tactile signal processing network suppresses the
signal of low-frequency sound and only the tactile signal is activated.

Here, the combination between the principal advanced auditory network
and the tactile signal processing network leads to an auditory-tactile signal
processing network. The network is able to distinguish the obtained sensory
signals which are low-frequency sound and a tactile signal from the physical
auditory-tactile sensor. This network, consisting of one input unit, three
hidden units and two output units, is shown in Figure 5.19.

Figure 5.19: The auditory-tactile signal processing network recognizes low-
frequency sound up to 400 Hz (O1), and the described tactile signal (O2). It
is developed to operate at the update frequency of 48 kHz.

The sensor signal is simultaneously provided for the input unit of the
principal advanced auditory network and the tactile signal processing net-
work. The signal of output1 (O1) is active and oscillates between values of
approximately 0.998 and -0.997 if low-frequency sound is recognized. And
the signal of output2 (O2) is active if a tactile signal is recognized. Otherwise
both output signals are inactive.
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5.1.3 Preprocessing of antenna-like sensor data

To obtain an obstacle avoidance behavior by using the sensory information of
Infra-Red (IR)-based antenna sensors, which is digitized via the ADC chan-
nels of the MBoard at the sampling rate of up to 5.7 kHz, the preprocessing
of the sensor data is required. Here, the property of the minimal recurrent
controller (MRC) [70] is again applied. The MRC has been developed to
control a miniature Khepera robot [101], which is a two-wheel platform. The
desired preprocessing network was developed and analyzed by using a physi-
cal simulation environment (YARS) connecting to the ISEE (cf. Sections 3.3
and 4.2). The simulation was implemented on a 1 GHz PC with an update
frequency of 75 Hz. Eventually, the effective preprocessing network will be
transferred to the mobile processor on a physical walking machine.

On the background of its well understood functionality [70] the param-
eters were manually readjusted during the simulation for using it in this
approach. First, the weights W1,2 from the input to the output units were
set to a high value to amplify the sensory signals, i.e. W1,2 = 7. As a re-
sult, under some conditions the sensory noise was eliminated. In fact, these
high multiplicative weights drive the output signals to switch between two
saturation domains, one low (≈ -1) and the other high (≈ +1). Then the self-
connection weights of the output neurons were manually adjusted to derive a
reasonable hysteresis interval on the input space. The width of the hysteresis
is proportional to the strength of the self-connections. This effect determines
the turning angle in front of the obstacles for avoiding them, i.e. the wider
the hysteresis, the larger the turning angle. Both self-connections are set to
5.4 to obtain the suitable turning angle of the AMOS-WD02. Finally, the
recurrent connections between output neurons were symmetrized and manu-
ally adjusted to the value -3.55. This guarantees the optimal functionality for
avoiding obstacles and escaping from sharp corners. The resulting network
is shown in Figure 5.20.

Generally, two IR-based antenna sensors installed on the forehead of a
walking machine (see also Section 4.1.3) together with the neural preprocess-
ing above are sufficient to sense the obstacles on the left front and the right
front. However, to enhance the avoiding capacity, e.g. protecting the legs
of a walking machine from hitting obstacles, like chair or desk legs, one can
easily install more sensors at the legs (cf. Section 4.1.3), and send all their
signals to the corresponding input neurons of the network. For instance, by
implementing six sensors on the six-legged walking machine AMOS-WD06,
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Figure 5.20: The signal processing network of antenna-like sensors with appropriate
weights. The network is developed to operate at an update frequency of 75 Hz.

the three sensory signals on each side are simply connected with hidden neu-
rons which are directly connected to the two original output neurons with
large weights. To stay in the linear domain of the sigmoid transfer function of
the hidden neuron, each sensory signal is multiplied with a small weight, here
0.15, and the bias term (B) is set to determine a threshold value of the sum
of the input signals, e.g. 0.2. When the measured value is greater than the
threshold in any of the three sensory signals, excitation of the hidden neuron
on the corresponding side occurs. Consequently, the activation output of
each hidden neuron can vary in the range between ≈ -0.245 (“no obstacle is
detected”) and ≈ 0.572 (“all three sensors on the appropriate side simulta-
neously detect obstacles”). And, the weights from the hidden to the output
units are set to a high value, e.g. 25, to amplify these signals. Again the other
parameters (self-connection and recurrent-connection weights of the output
neurons) were manually optimized in the similar way as described above. As
a result, they are set to 4 and -2.5, respectively. The optimization was firstly
done through the simulation and finally tested on the AMOS-WD06. The
improved structure of this neural preprocessing together with its optimized
weights is shown in Figure 5.21.

In both cases (see Figures 5.20 and 5.21), all sensory signals are linearly
mapped onto the interval [−1, +1] before feeding into the networks, with −1
representing “no obstacles”, and +1 “a near obstacle is detected”. The out-
put neurons of the networks have so-called “super-critical” self-connections
(>1.0) which produce a hysteresis effect for both output signals. A strong
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Figure 5.21: The signal processing network of antenna-like sensors for the six sensory
inputs. The network is also developed to operate at an update frequency of 75 Hz.

excitatory self-connection will hold the slightly constant output signal longer
than a smaller one, resulting in a larger turning angle to avoid obstacles or
corners. To visualize this phenomenon, the network shown in Figure 5.20
is exemplified and the hysteresis effect is plotted in Figure 5.22. There, the
different weights of excitatory self-connection can be also compared.

In addition, there is a third hysteresis phenomenon involved which is
associated to a so-called even loop [114] between the two output neurons. In
general conditions, only one neuron at a time is able to get a positive output,
while the other one has a negative output, and vice versa. The network shown
in Figure 5.20 is again used to illustrate this phenomenon (see Figure 5.23).

By applying the described phenomena, the sensory noise is eliminated
(compare Figure 5.22) and the walking machines are able to avoid the ob-
stacles and even to escape from a corner and a deadlock situation. The
machines will be driven to turn away from the objects with the angle that is
determined by the excitatory self-connections of the output neurons. Also,
due to the inhibitory synapses, they will determine the direction to which
the walking machines should turn when obstacles are detected.
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Figure 5.22: Comparison of the “hysteresis effects” with different self-connection weights
at the output neuron. (A) shows that the output signal (dashed line) decreases from
≈ +1 to ≈ -1 when the input signal (solid line) is inactive (≈ -1). This effect corresponds
to a very small turning angle of the walking machine in avoiding an obstacle. (B) shows
that the output signal (dashed line) stays longer at ≈ +1 and then decreases to ≈ -1 when
the input signal (solid line) is inactive. This effect corresponds to an appropriate turning
angle of the walking machine in avoiding an obstacle. (C) shows that the output signal
(dashed line) stays longest at ≈ +1 and then decreases to ≈ -1. This effect corresponds
to a larger turning angle of the walking machine in avoiding an obstacle.
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Figure 5.23: (A) to (D) present the input signals (solid line) of the sensors and the
output signals (dashed line) of the output neurons. Due to the inhibitory synapses and
the high activity of Output1 (A), the Output2 (B) is still inactive although Input2 is
active. (C) and (D) show the switching condition between Output1 and Output2 when
the activity of Input1 is low, meaning “no obstacles detected” and the activity of Input2
is still high, meaning “obstacles detected”. This phenomenon is responsible for escaping
from sharp corners as well as deadlock situations.

5.2 Neural control of walking machines

To generate the locomotion of walking machines and to change the appro-
priate motions, e.g. turning left, right or walking backward with respect
to sensor signals, an artificial neural network together with the principle of
dynamical properties of recurrent neural networks described in Chapter 3
is employed. The neural control [94] for this approach consists of two sub-
ordinate networks. One is a neural oscillator network which generates the
rhythmic leg movements while the other is the velocity regulating network
(VRN) which expands the steering capabilities of the walking machines.
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5.2.1 The neural oscillator network

The concept of neural oscillators for the walking machines has often been
studied, e.g. by H. Kimura [82]. There, a neural oscillator network with four
neurons is constructed by connecting four neural oscillator’s, each of which
drives the hip joint of each leg. That controller has been applied to control
a four-legged walking machine. Here a so-called “2-neuron network” [118] is
employed. It is used as a central pattern generator (CPG) which follows the
basic principle of locomotion control of walking animals (cf. Section 2.3). It
generates the rhythmic movement for basic locomotion of the walking ma-
chines without the requirement of sensory feedback. The network structure
is shown in Figure 5.24.

Figure 5.24: The structure of the 2-neuron network.

The network parameters are experimentally adjusted via the ISEE to
acquire the optimal oscillating output signals for generating locomotion of the
walking machines. The parameter set is selected with respect to the dynamics
of the 2-neuron system staying near the Neimark-Sacker bifurcation where
the quasi-periodic attractors occur [118]. Examples of different oscillating
output signals generated by different weights and bias terms are presented
in Figure 5.25.

Figure 5.25 shows that such network has the capability to generate var-
ious oscillating outputs depending on the weights and the bias terms. For
instance, if the bias terms are small (compare Figure 5.25A), the initial out-
put signals will oscillate with a very small amplitude and then the amplitude
will increase during a transient time while the amplitude of the output sig-
nals for large bias terms is high right from the beginning (compare Figure
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Figure 5.25: The oscillating output signals of neurons 1 (dashed line) and 2 (solid
line) from the network having different weights and bias terms. (A) for small bias terms
(B1 = B2 = 0.0001) while W1 = -0.4 , W2 = 0.4 and W3 = W4 = 1.5. (B) for larger
bias terms (B1 = B2 = 0.1) and all weights as in (A). (C) for smaller self-connection
weights (W3 = W4 = 1) while W1 = -0.4, W2 = 0.4 and bias terms = 0.01. (D) for
larger self-connection weights (W3 = W4 = 1.7) and all weights together with bias terms
as in (C). (E) for smaller connection weights between two output neurons (W1 = -0.25,
W2 = 0.25) while W3 = W4 = 1.5 and the bias terms = 0.01. (F) for larger connection
weights between two output neurons (W1 = -0.8 , W2 = 0.8) and all weights together with
bias terms as in (E).
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5.25B). Furthermore, different bias terms also affect the waveform of the
output signals. Different self-connection weights result in different ampli-
tude and waveforms of the oscillating output signals (compare Figure 5.25C
and D). To adjust the oscillating frequency of the outputs, one can also
control the connection weights between two output neurons; i.e. for large
connection weights, the output signals oscillate at high frequency while the
small connection weights make the outputs oscillate at low frequency with
different waveforms (compare Figures 5.25E and F). However, one can utilize
for such modifiable oscillating output behavior with respect to the weights
and the bias terms in the field of neural control, e.g. for controlling the type
of walking and the walking speed of legged robots.

Here, the actual parameter set for the network controller is given by
B1 = B2 = 0.01, W1 = − 0.4, W2 = 0.4 and W3 = W4 = 1.5,
where the sinusoidal outputs correspond to a quasi-periodic attractor (see
Figure 5.26). They are used to drive the motor neurons directly to generate
the appropriate locomotion of the walking machines [52], [94].

Figure 5.26: (A) The structure of the neural oscillator network with the synaptic weights
for locomotion control and B1 = B2 = 0.01. (B) The output signals of neurons 1 (dashed
line) and 2 (solid line) from the neural oscillator network. The output of neuron 1 is used
to drive all thoracic joints and an additional backbone joint and the output of neuron 2 is
used to drive all basal joints (and all distal joints for 3 DOF each leg).

This network is implemented on a PDA with an update frequency of 25.6
Hz. It generates a sinusoidal output with a frequency of approximately 0.8 Hz
(see Figure 5.27) analyzed by the free scientific software package Scilab-3.06.

6see also: http://scilabsoft.inria.fr/.
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Figure 5.27: (A) The sinusoidal output generated by the neural oscillator network is
recorded for 5 seconds. (B) The FFT spectrum of the recorded sinusoidal output shows
that the output has the eigenfrequency around 4 Hz. Then, the walking frequency of the
machines can be approximately (4/5) 0.8 Hz.

By using asymmetric connections from the oscillator outputs to corre-
sponding motor neurons, a typical trot gait for a four-legged walking machine
and a typical tripod gait for a six-legged walking machine are obtained which
are similar to the gaits of a cat and a cockroach, respectively (describe in
Section 2.3). In a trot gait as well as a tripod gait, (see Figures 5.28 and
5.29), the diagonal legs are paired and move together (see also Section 2.3).
These typical gaits will enable efficient forward motions.

5.2.2 The velocity regulating network

To change the walking modes, e.g. from walking forwards to walking back-
wards and from turning left to turning right, the efficient way is to perform
a 180 degree phase shift of the sinusoidal signals which drive the thoracic
joints. To do so, the velocity regulating network (VRN) is introduced. The
network used is taken from [51]. It performs an approximate multiplication-
like function of two input values x, y ∈ [−1, +1].

For this purpose the input x is the oscillating signal coming from the
neural oscillator network to generate the locomotion and the input y is the
sensory signal coming from the neural preprocessing network, e.g. the audi-
tory signal processing, the tactile signal processing or the signal processing
of antenna-like sensors, to drive the corresponding behavior. Figure 5.30A
presents the network consisting of four hidden neurons and one output neu-
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Figure 5.28: (A) The typical trot gait. X-axis represents time and y-axis represents the
legs. During the swing phase (white blocks) the feet have no ground contact. During the
stance phase (gray blocks) the feet touch the ground. (B) The orientation of the legs of
the AMOS-WD02.

Figure 5.29: (A) The typical tripod gait. X-axis represents time and y-axis represents
the legs. During the swing phase (white blocks) the feet have no ground contact. During
the stance phase (gray blocks) the feet touch the ground. (B) The orientation of the legs
of the AMOS-WD06.

ron. Figure 5.30B shows that the output signal gets a phase shift of 180
degrees, when the sensory signal (input y) changes from -1 to +1 and vice
versa.
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Figure 5.30: (A) The VRN with four hidden neurons and the given bias terms B which
are all equal to -2.48285. The Input1 x is the oscillating signal coming from the neural
oscillator and the Input2 y is the output signal of the neural preprocessing. (B) The
output signal (solid line) when the input y is equal to +1 and the output signal (dashed
line) when the input y is equal to -1.

Because the VRN behaves qualitatively to a multiplication function (pre-
sented in [51] on page 22), it then should also be able to increase and decrease
an amplitude of the oscillating signal. To explore the behavior of this net-
work, the fixed oscillating signal is connected to the input x of the network
while the input y gets constant input values to be multiplied with the oscil-
lating signal. The resulting outputs from the different y-input values which
are monitored via the ISEE are shown in Figure 5.31.

From a result shown in Figure 5.31, it can be seen that the network is not
only able to make a 180-degree phase shift of the oscillatory output signal
but, using the input y, it can also modulate its amplitude. Especially the
amplitude of the output will be 0 if the given input y is equal to 0. This
function of the network enables the machines to perform different motions
by making a 180-degree phase shift of the oscillatory signal. It even can
stop the walking machines by setting the input y to 0. Furthermore, the
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Figure 5.31: The output signal (solid line) when the input y is equal to positive value
and the output signal (dashed line) when the input y is equal to negative value. The
different given values of the input y result in the different amplitudes of the output signal.

different amplitudes of the oscillating signal will affect the walking velocity
of the machines; i.e. the higher amplitude of the signal the faster they walk
and vice versa.
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To compare the effect of the different amplitudes of the oscillating signal
with the walking velocity of the machines, the VRNs together with the neural
oscillator are implemented on the mobile processor of the physical four-legged
walking machine AMOS-WD02. The network is updated with 25.6 Hz.To
determine the walking velocity of the machine depending on the y-input
values, the time needed to cover a fixed distance (1 m) was measured several
times for every y-input. The average velocity values for the different y-input
are displayed in Figure 5.32.

Figure 5.32: Comparison of the walking velocity with different input y of the VRN.

Figure 5.32 shows that the amplitude of the oscillating signal influences
the walking velocity of the machine because the higher amplitude provides
the larger angle of the thoracic joints in moving forwards and backwards;
e.g. | input y | = 0.2 generates a very small amplitude (compare Figure
5.31) of the output resulting in a slow motion (0.027 m/s), on the other
hand | input y | = 1.0 causing a high amplitude and a fast motion (0.127
m/s). Therefore, the VRN together with the neural oscillator can accelerate,
decelerate or stop the motion of the walking machines simply driven by sensor
input through the so called y-input of the VRN.
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5.2.3 The modular neural controller

The integration of two different functional neural modules, the neural prepro-
cessing and the neural control (the neural oscillator network and the velocity
regulating networks), leads to an effective modular neural controller to per-
form the reactive behaviors. One oscillating output signal from the neural
oscillator network is directly connected to all basal joints, while the other
is connected to the thoracic joints, only indirectly, passing through all hid-
den neurons of the VRNs through the so called x-inputs (see Figure 5.30A).
The output signals of the neural preprocessing module go to Input1 (I1) and
Input2 (I2) of the VRNs (compare Figures 5.33 and 5.34). Thus, the rhyth-
mic leg movements are generated by the neural oscillator network and the
steering capabilities of the walking machines are realized by the VRNs in
accordance with the outputs of the neural preprocessing module. The struc-
ture of this controller and the location of the corresponding motor neurons
on the four-legged walking machine AMOS-WD02 are shown in Figure 5.33.

The same controller can be also applied to control even more complex
systems, e.g. the six-legged walking machine AMOS-WD06 with additional
distal joints, without changing the internal parameters or the structure of the
controller. One output of the neural oscillator network drives all basal and
distal joints. The other drives all thoracic joints by connecting through all
hidden neurons of the VRNs. The network structure and the corresponding
positions of the motor neurons of the AMOS-WD06 are shown in Figure 5.34.

5.3 Behavior control

The neural preprocessing and neural control modules of the walking machines
are introduced above. Here, the applications of those neural modules which
are aimed to be used on the mobile system7 are demonstrated where two
signal processing networks have been employed. One is the signal process-
ing network of the antenna-like sensors and the other is the auditory signal
processing network. Although the auditory-tactile sensor together with its
signal processing network was presented with the aim of being implemented
on the walking machine(s), the time pressure and the limitation of the ADC

7The controllers are implemented on the PDA with an update frequency of 25.6 Hz
and the sensor signals are digitized via the MBoard at the sampling rate of up to 5.7 kHz.
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Figure 5.33: The modular neural controller of the four-legged walking machine AMOS-
WD02. It generates a trot gait which is modified when I1 or I2 is changed by the sensory
signals. The bias terms B of the VRNs are all equal to -2.48285. The outputs from the
neural preprocessing module are directly connected to the input neurons (I1, I2) of the
neural control module.
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Figure 5.34: The modular neural controller of the six-legged walking machine AMOS-
WD06. The bias terms B of the VRNs are again all equal to -2.48285 .
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channels8 of the MBoard made it impossible to apply or even to run ex-
periments on the mobile system of the walking machine(s). Utilizing the
modular concept, each signal processing network from neural preprocessing
module is selected and connected to the neural control module of the four- or
six-legged walking machine. Thus different behavior controllers, for instance
obstacle avoidance and sound tropism controllers, can be created by taking
this concept into account. In order to achieve more complex behavior in the
walking machine(s), a sensor fusion technique is also applied, whereby it has
to cooperate or manage the sensory signals.

5.3.1 The obstacle avoidance controller

An obstacle avoidance behavior is a basic behavior which most autonomous
mobile robots should perform. To create the effective behavior controller
generating exploration and obstacle avoidance behaviors, the concept of a
modular system is applied. The obstacle avoidance controller is constructed
from two modules: the signal processing network of antenna-like sensors from
the neural preprocessing module and the modular neural controller from the
neural control module (see Figure 5.35).

Figure 5.35: The modular architecture of the obstacle avoidance controller consists of
the neural preprocessing and control modules. The preprocessing of antenna-like sensor
data from the neural preprocessing module is selected and linked to the modular neural
controller (of a four- or six-legged walking machine).

8The maximum sampling rate is 5.7 kHz which is too slow to acquire the tactile signals.
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The controller generates the obstacle avoidance behavior where the mod-
ular neural controller together with the preprocessing network will enable
the machines to walk as well as steer the walking directions of the machines
by changing the rhythmic leg movements at the thoracic joints in accordance
with the sensory signals. Furthermore, the controller even has the capabil-
ity to prevent the walking machines from getting stuck in a corner or in a
deadlock situation because of the hysteresis effects provided by the recur-
rent structure of the preprocessing network (compare Figures 5.22 and 5.23).
The structure of the obstacle avoidance controller for the four-legged walking
machine [94] is shown in Figure 5.36.

Figure 5.36: The controller is built from a combination of the preprocessing of antenna-
like sensor data and the modular neural controller of the four-legged walking machine.
The left and the right signals of the antenna-like sensors are directly connected to input
neurons of the signal processing network.

The same concept can also be applied to the six-legged walking machine
by connecting the preprocessing of antenna-like sensor data (see also Figure
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5.21) to the modular neural controller of the six-legged walking machine.
The structure of the obstacle avoidance controller for the six-legged walking
machine [96] is shown in Figure 5.37.

Figure 5.37: The controller is built from a combination of the preprocessing of antenna-
like sensor data and the modular neural controller of the six-legged walking machine.

As a result, the output signals of the preprocessing network together with
the velocity regulating networks determine and switch the behavior of the
walking machines; for instance, switching the behavior from “walking for-
ward” to “turning left” when there are obstacles on the right, and vice versa.
The output signals also determine the direction of the walking machines.
Practically, which way they should turn depends on which antenna-like sen-
sor signals have been previously active. In special situations, like walking
toward the wall, the antenna-like sensors of the fore left and the fore right
might get positive outputs at the same time, and, because of the velocity
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regulating networks, the walking machines are able to walk backward. Dur-
ing walking backward, one of the sensory signal might be still active while
the other might be inactive. Correspondingly, the walking machines will turn
into the opposite direction of the active signal and they can finally leave from
the wall.

5.3.2 The sound tropism controller

The controller that generates a sound tropism inspired by the prey capture
behavior of the spider Cupiennius salei is built by realizing a modular con-
cept.; i.e. the auditory signal processing of the neural preprocessing module
is assembled with the modular neural controller. The modular architecture
of the sound tropism is drawn in Figure 5.38.

Figure 5.38: The modular architecture of the sound tropism consists of the neural pre-
processing and control modules. The auditory signal processing of the neural preprocess-
ing module is chosen to connect to the modular neural controller (of a four- or six-legged
walking machine).

In the sound tropism controller [97], the auditory signal processing acts
as a low-pass filter by passing through the specific frequency sound (200 Hz)
to trigger a behavior and by filtering all high-frequency noise (> 400 Hz).
Additionally, it can discern the direction of the signals while the modular
neural controller has the capacity to enable and to control the motions of the
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walking machine(s). Consequently, the desired different walking patterns
which respond to a switch-on sound source are performed. Such that the
machine(s) walks straight, turns toward a switched-on sound source, then
makes an approach and then stops near to it by checking the amplitude
of the auditory signals. The controller structure of the four-legged walking
machine, generating a so-called “sound tropism” is presented in Figure 5.39.

However, due to the modular concept, the sound tropism controller can
be modified to be implemented on the six-legged walking machine as well.
This can be achieved by connecting the auditory signal processing network
with the modular neural controller of the six-legged walking machine.

5.3.3 The behavior fusion controller

The combination based on the modular concept of the mentioned controllers
leads to the versatile perception-action systems. This means that the result-
ing controller can produce different reactive behaviors in accordance with
the sensory inputs. For instance, the sensory signals of antenna-like sen-
sors should generate a negative tropism, while the auditory signals should
generate a positive tropism so that the machine(s) follows a sound source
but avoid obstacles. The modular architecture of the controller generating
different reactive behaviors is illustrated in Figure 5.40.

As shown in Figure 5.40, two signal processing networks of different sen-
sory inputs together with the modular neural controller are employed to
construct a so-called “behavior fusion controller”. Both different sensory sig-
nals have to be managed before directing to the modular neural controller
to execute a behavior. To do so, a fusion technique for the sensor signals
is required. It will make a combination of two different sensor data which
are the auditory signals coming from the stereo auditory sensor and IR sig-
nals coming from the antenna-like sensors. The preprocessed signals of both
sensors go into a fusion procedure in parallel. It manages all input signals
and provides only two output signals which are later connected to the modu-
lar neural controller. Consequently, the modular neural controller sends the
command to the motor neurons of the walking machine(s) to activate the
desired behavior. The controller structure is shown in Figure 5.41.

This fusion procedure consists of two methods which are a look-up table
and a time scheduling. The look-up table method for this approach is used
like a table that manages the input signals concerning their priorities. To
manage the priority of the sensory signals, the IR signals are desired to have
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Figure 5.39: The controller is built from a combination of the auditory signal processing
network and the modular neural controller of the four-legged walking machine. The left
and the right signals of the auditory sensors are directly connected to input neurons of
the auditory signal processing network.

higher priority than the auditory signals. If the obstacles and the auditory
signals are detected at the same time, the controller will execute the obstacle
avoidance behavior instead of the sound tropism. The sound tropism is per-
formed if and only if the obstacles are not detected. From these statements,
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Figure 5.40: The modular architecture of the behavior fusion controller, which com-
pletes the perception-action systems, consists of the neural preprocessing and control
modules. The auditory signal processing and the preprocessing of antenna-like sensor
data are selected to connect to the modular neural controller (of a four- or six-legged
walking machine).

16 actions in accordance with four sensory inputs can be executed where two
of them come from the stereo auditory sensor and the other two come from
the antenna-like sensors. The driven actions are shown in Table 5.1.

As a result, there are only two situations where the machine(s) is driven to
walk forward. One is when the obstacles are not detected (IRR or IRL = -1)
and the auditory signals are active (AR or AL = +1) at the same time which
rarely occurs because auditory sensors are installed on the AMOS-WD02 in
the diagonal locations, while the other one is the normal condition in which
the obstacles and auditory signals are not detected. Thus, the machine(s)
might have difficulties to approach the sound source although it finally can
reach and stop nears to the source (see demonstration in Section 6.2.2).

To overcome the described problem, a time scheduling technique is added
into the fusion procedure. It will switch between two behavioral modes,
namely obstacle avoidance mode (Om) and composite mode (Cm) made up
of the sound tropism and the obstacle avoidance behavior. The obstacle
avoidance mode is the mode in which the machine(s) cannot react to the
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Figure 5.41: The controller structure of behavior control compounds of preprocessing
sensory signals, a sensor-fusion procedure and the motion generator. It filters the input
signals at preprocessing channels and then it integrates and manages the signals at the
fusion channel. Finally, it sends the output commands to the motor neurons Mn via the
motion generator; where n = 3 is the number of thoracic motor neurons of the four-legged
waking machine and n = 5 is the number of thoracic motor neurons of the six-legged
walking machine.

auditory signals although the signals can be detected. On the other hand
the composite mode is the mode in which the walking machine(s) can react
to the auditory signals and can also avoid the obstacles but the performed
action is checked by the look-up table method (see Table 5.1).

Two behavioral modes are executed with different time scales and con-
stantly repeated until a processor time is expired; for instance, the obstacle
avoidance mode is primarily executed at approximately 3.2 s of the total
(approximately 16.9 s) while the composite mode is suspended. After that
the obstacle avoidance mode becomes a suspension and the composite mode
becomes executable for approximately 13.7 s. The process will repeatedly
run until the processor time is terminated (e.g. ≈ 15 minutes). The different
time scales of the behavioral modes can be calibrated and optimized by the
experiment depending on each system. Normally, the time scale of a com-
posite mode should be larger than the obstacle avoidance mode. The time
scheduling diagram is presented in Figure 5.42.
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Behavior Actions IRR IRL AR AL

Obstacle avoidance Turn Left +1 -1 -1 +1
Sound tropism Turn Left -1 -1 -1 +1

Obstacle avoidance Turn Right -1 +1 -1 +1
Sound tropism Turn Left +1 +1 -1 +1

Obstacle avoidance Turn Left +1 -1 +1 +1
Sound tropism Forward -1 -1 +1 +1

Obstacle avoidance Turn Right -1 +1 +1 +1
Obstacle avoidance Backward +1 +1 +1 +1
Obstacle avoidance Turn Left +1 -1 +1 -1

Sound tropism Turn Right -1 -1 +1 -1
Obstacle avoidance Turn Right -1 +1 +1 -1

Sound tropism Turn Right +1 +1 +1 -1
Obstacle avoidance Turn Left +1 -1 -1 -1

Wandering around (normal) Forward -1 -1 -1 -1
Obstacle avoidance Turn Right -1 +1 -1 -1
Obstacle avoidance Backward +1 +1 -1 -1

Table 5.1: The look-up table to manage the sensory inputs. IRR and IRL indi-
cate IR signals of the right and the left antenna-like sensors after preprocessing,
respectively; AR and AL indicate auditory signals of the right and the left audi-
tory sensors after preprocessing, respectively; +1 and -1 indicate the active and
the inactive signals, respectively.

From the described strategy, the walking machine(s) walks forward if
no obstacles and no sound are detected. It then orients its movement into
the direction of the sound source if the sound is detected with no obstacles
during execution of the composite mode. After that, it will be able to walk
forward for a while when the obstacle avoidance mode becomes active and
no obstacles are detected. Eventually, it will approach the sound source and
stop near it.

To prevent the walking machine(s) from colliding with the sound source
while approaching it, the amplitude of the auditory signals must be closely
observed and checked. If the amplitude is higher than the threshold, then
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Figure 5.42: The time scheduling diagram of the sensor fusion technique. At the start,
the obstacle avoidance mode (Om) is executed for t1 ≈ 3.2 s while the composite mode
(Cm) is suspended. After that the Cm becomes executable for ≈ 13.7 s and the Om
becomes suspension at the same time. At time t2 (≈ 16.9 s), the process is complete. It
then repeats itself by executing the Om and suspending the Cm. The switching between
executing and suspending of the Om and Cm is performed until the processor time is
terminated, e.g. ≈ 15 minutes.

the input signals (Input1 and Input2) which are connected to the modular
neural controller are set to 0. Consequently, the signals of the thoracic motor
neurons are inhibited causing the walking machine(s) to stop at a distance
determined by the amplitude threshold of the auditory signals.

The structure of the behavior fusion controller of the four-legged walking
machine together with the specific parameters is given in Figure 5.43.

To reproduce the sound tropism in the six-legged walking machine, the
modular neural controller of the four-legged walking machine can be replaced
by the controller of the six-legged walking machine. However, using the be-
havior fusion controller together with a sensor fusion technique, the output
signals from the preprocessing channels are prioritized and cooperated in
the fusion channel before sending out the final sensory signals to drive the
behavior through the modular neural controller. On the one hand, the out-
put signals of the preprocessing of the antenna-like sensors are clarified as
the negative response to stimulus which drives the machine(s) to turn away
from the obstacles. On the other hand, the output signals of the auditory
signal processing acts as the positive response to stimulus which drives the
machine(s) turn toward the sound source.
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Figure 5.43: The behavior fusion controller for generating the different reactive behaviors
of the four-legged walking machine.
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5.4 Conclusion

In this chapter, artificial perception-action systems were introduced to per-
form the different reactive behaviors of the walking machine(s). They are
built from a combination of the neural preprocessing for sensor data pro-
cessing and the neural control for locomotion of the walking machines. The
neural preprocessing and control are achieved by applying the dynamical
properties of the recurrent neural networks. In addition, the optimization of
the parameters of the neural preprocessing is done by the evolutionary algo-
rithm. Three different types of neural preprocessing modules are presented:
auditory signal processing, preprocessing of the antenna-like sensor data and
the tactile signal processing. Using the stereo auditory sensor, the sound is
processed by the auditory signal processing network acting as a low-pass filter
and also discerning the direction of the signals. For the preprocessing of the
antenna-like sensor data, it has a capability to eliminate the sensory noise
and to control the walking direction of the machines by utilizing the hys-
teresis effect. Applying the auditory-tactile sensor for collision detection and
low-frequency sound detection, the signal coming from the tactile channel is
recognized by the tactile signal processing network while the low-frequency
sound is recognized by a part of auditory signal processing network.

In order to obtain the different behavior controllers of the walking ma-
chine(s), e.g. an obstacle avoidance controller and a sound tropism controller,
each neural preprocessing module of the corresponding sensory signals can be
connected to a neural control called “modular neural controller”. This mod-
ular neural controller composes the neural oscillator network which generates
the rhythmic leg movements as the central pattern generator (CPG) and the
velocity regulating networks (VRNs) which expand the steering capabilities
of the walking machines.

Eventually, the combination of the neural preprocessing and neural con-
trol including the additional sensor fusion technique will lead to an effective
behavior fusion control which enables the walking machine(s) to respond to
environmental stimuli, e.g. wandering around, avoiding obstacles and moving
towards a sound source.
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Chapter 6

Performance of artificial
perception-action systems

In the previous chapter, the artificial perception-action systems have been
presented. To test the capability of such systems whereby they might get
an effect from unexpected noise and to prove that the developed systems are
suitable not only for a simulation but also for a real environment, several
experiments were carried out. First, the signal processing networks were
tested with the simulated signals and the real sensor signals. Afterwards
the physical sensors, the neural preprocessing and the neural control were
all together implemented on the physical walking machine(s) to demonstrate
different reactive behaviors.

6.1 Testing the neural preprocessing

This section describes the experiments which show the performance of the
neural preprocessing by testing it with the simulated data and the physical
sensor data. Afterwards the effective neural preprocessing together with the
physical sensor systems, known as an artificial perception part, will be applied
for behavior control of the reactive walking machine(s).

6.1.1 The artificial auditory-tactile sensor data

An artificial auditory-tactile sensor was built, together with its preprocessing
networks. The purpose of this sensor system is to provide environmental
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information for a sensor-driven system in wheeled robots as well as in walking
machines. Here the performance of the auditory signal processing of the
sensor, which helps recognizing low-frequency sound (e.g. 100 Hz) as well as
eliminating unwanted noise, was previously tested. Afterwards the capability
of the tactile signal processing of the sensor, which should detect a real tactile
signal, was presented. Thus, using the sensor coupled with the effective signal
processing will enable the sensor system to distinguish and to recognize the
real auditory and tactile signals.

First of all, the signal processing networks of the auditory-tactile sensor,
simple and principal advanced auditory networks, were created on the ISEE
(cf. Section 3.3) running on a 1 GHz personal computer (PC) at an update
frequency of 48 kHz. And then they were tested with a simulated sinusoidal
input1 having constant-amplitude signals and consisting of two different fre-
quencies, one low (100 Hz) and the other high (1000 Hz). Figure 6.1 shows
the ideal-noise free input signals and the output signals of the networks.

The same procedure was done with the noisy signals; i.e. the low- and
high-frequency sounds were produced by a powered loudspeaker system (30
Watts) and recorded via the sensor from a real environment (see Figure 6.2).
The output signals of the sensor were digitized through the line-in port of a
sound card at a sampling rate of 48 kHz.

The recorded signals with varying amplitudes consist of the low- and
high-frequency sounds, 100 Hz and 1000 Hz, respectively. These signals were
filtered through the networks that behave like a low-pass filter. That is, the
simple auditory network can almost pass through the low-frequency sound
having the highest amplitude. Although there is some remaining noise from
the high-frequency sound which has the highest amplitude input, the noise
can be ignored because all of it is low amplitude output (e.g. below -0.50).
On the other hand, the advanced auditory network has more capability to
pass through some other lower amplitudes of the low-frequency sound. These
processes are presented in Figure 6.3.

Finally, the sensor was applied to a real walking machine, i.e. one sensor
was implemented on one leg of the walking machine AMOS-WD02 (see Figure
6.4) and the signals were again recorded through the line-in port.

There were three different setting for recording signals to test the net-

1The signals were simulated with an update frequency of 48 kHz by the wave generator
software of Physics Dept. Rutgers University. They were buffered into the simulator called
“Data Reader”.
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Figure 6.1: (A) The simulated input consisting of two different frequencies
(100 Hz and 1000 Hz). (B) The corresponding output of the simple auditory
network. (C) The corresponding output of the principal advanced auditory
network. All figures have the same scale in x-axis and y-axis.

works. First setting was that the walking machine was switched on in the
initial standing position. The next setting was to let the machine walk and
the last setting was to generate the sound at 100 Hz while the machine walks
(the experimental set-up was similar to the set-up shown in Figure 6.7). The
signals of all settings are shown in Figure 6.5A and the resulting signals
after filtering by the simple and principal advanced auditory networks are
presented in Figures 6.5B and C, respectively.
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Figure 6.2: The experimental equipment to record real auditory signals via
the auditory-tactile sensor. (A) The loudspeaker producing the low- and
high-frequency sounds. (B) The auditory-tactile sensor system consisting of
the sensor, a voltage divider circuit and a PC having a line-in port.

Comparing the performance between the simple and principal advanced
auditory networks, Figure 6.1 shows that both networks are able to recognize
the low-frequency signal when the signal is noise-free with high-constant
amplitude. For the noisy signals shown in Figure 6.3, the principal advanced
auditory network is more robust and it can detect the low-frequency sound
with sufficiently high amplitude while the simple auditory network can detect
only the highest amplitude (compare Figures 6.3B and C). Additionally, both
networks can filter noise coming from the motor sound of the walking machine
during motions as well as in a still position but only the principal advanced
auditory network can recognize the low-frequency sound while the machine
walks and simultaneously listens to the sound.

Therefore, the principal advanced auditory network is appropriate for fur-
ther applications, e.g. one can blend the principal advanced auditory network
with the tactile signal processing network to acquire a so-called “auditory-
tactile signal processing network” of the auditory-tactile sensor (described
in Section 5.1.2). Moreover, one can even combine the evolved advanced
auditory network developed on the basis of the principal advanced auditory
network with the sound-direction detection network and then implement the
combined network, known as “auditory signal processing network”, on the
mobile system of the walking machine(s) to perform the sound tropism as
described in the previous chapter.
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Figure 6.3: (A) The real input signals (consisting of 100 Hz and 1000 Hz)
with varying amplitudes recorded via the physical auditory-tactile sensor.
(B) The corresponding output signals of the simple auditory network. (C)
The corresponding output signals of the advanced auditory network. All
figures have the same scale in x-axis and y-axis.

To show the capability of the auditory-tactile signal processing network
in detecting and distinguishing sound and a tactile signal, the network was
again implemented on the ISEE at an update frequency of 48 kHz and re-
ceived the input data via the Data Reader. The experiment was performed
with mixed signals between the low-frequency sound (100 Hz) with varying
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Figure 6.4: The auditory-tactile sensor was installed on one leg of the AMOS-
WD02. The sensor has the extension part (the whisker of a real mouse)
around 4.0 cm from the leg.

amplitudes and the tactile signal which come from the physical sensor. The
low-frequency sound was generated by a loudspeaker system and the tac-
tile signal was produced in a simple way; that is, the sensor was manually
moved back and forth across an object. The input data was recorded through
the line-in port and then buffered into the Data Reader connected with the
ISEE. The input and output signals of the auditory-tactile signal processing
network are exemplified in Figure 6.6.

As a result, the signal of Output1 (O1) is shifted to around -0.9 when the
low-frequency sound is not presented and the signal of Output2 (O2) is shifted
to around -0.77 when the tactile signal is not presented. Both output signals
will be activated in reverse cases. The output signals (O1, O2, see Figures
6.6B and C) of the network prove that the evolutionary algorithm ENS3 is
able to construct an effective network for a signal processing approach by
utilizing discrete-time dynamical properties of recurrent neural networks.

6.1.2 The stereo auditory sensor data

The supplemental application of an evolved advanced auditory network (com-
pare Figure 5.9) was attempted. It shall be used for producing a sound
tropism on the walking machine(s). The network is developed to work on
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Figure 6.5: (A) The real input signals consisting of three different condi-
tions (standing, walking and walking while listening to the sound). (B) The
corresponding output signal of the simple auditory network. (C) The cor-
responding output signal of the principal advanced auditory network. All
figures have the same scale in x-axis and y-axis.

a mobile system which consists of a personal digital assistant (PDA) hav-
ing an Intel (R) PXA255 processor coupled with the Multi-Servo IO-Board
(MBoard). They communicate via an RS232 interface at 57.6 kBits per sec-
ond.
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Figure 6.6: (A) The mixed signals between the low-frequency sound (100 Hz)
with varying amplitudes and the tactile signal. They were recorded via the
auditory-tactile sensor. (B) The response of the network to the low-frequency
sound. (C) The response of the network to the tactile signal. Both outputs
are active only for sound and the tactile signal. All figures have the same
scale in x-axis and y-axis.

All of the forthcoming experiments were carried out on the mobile system
of the four-legged walking machine AMOS-WD02. All tested signal process-
ing networks were programmed on the PDA which has an update frequency
of up to 2 kHz and the sensor signals coming from the fore-left and the
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rear-right auditory sensors were digitized via the analog to digital converter
(ADC) channels of the MBoard at a sampling rate of up to 5.7 kHz.

The first attempt was to test the evolved advanced auditory network
with the unexpected noise of three different conditions: standing, walking
without listening to sound and walking while listening to sound. In the last
condition, the walking machine was initially placed in front of a loudspeaker
at a distance of 30 cm, and the low-frequency sound at 200 Hz having a basic
sine shape was generated via the loudspeaker (see Figure 6.7). The sound
with this frequency was selected for testing because it will later be applied
to trigger the sound tropism.

Figure 6.7: The walking machine AMOS-WD02 was initially placed in front
of a loudspeaker at a distance of 30 cm to test the effect of motor noise while
it was walking and listening to the sound at the same time.

The inputs and the corresponding outputs of the network from the dif-
ferent conditions are illustrated in Figures 6.8 and 6.9.

As a result, Figures 6.8 and 6.9 show that the network is able to remove
most unwanted noise, e.g. the motor sound of the walking machine during
standing and unpredictable noise during the walk. This is because some of
them have a low-amplitude signal and most of them vibrate at high frequen-
cies. However, some unwanted noise still remains (see Figures 6.8B and 6.9B
right). Most low amplitude noise (e.g. below 0) can be ignored and some
part having high amplitudes (e.g. above 0) can be eliminated by the following
network, called a sound-direction detection network (demonstrated later).

The second attempt was to observe the behavior of the evolved advanced
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Figure 6.8: Left: The input signal coming from the fore left sensor under
three different conditions. Right: The output signal of the evolved advanced
auditory network with respect to the input on the left side. (A) The noisy
signal when the machine was in a standing position. (B) The noisy signal
during the walk. (C) The noisy signal which was compensated between the
sound and a noise during the walk. All figures have the same scale in x-axis
and y-axis.
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Figure 6.9: Left: The input signal coming from the rear right sensor under
three different conditions. Right: The output signal of the evolved advanced
auditory network with respect to the input on the left side. (A) The noisy
signal when the machine was in a standing position. (B) The noisy signal
during the walk. (C) The noisy signal which was compensated between the
sound and a noise during the walk. All figures have the same scale in x-axis
and y-axis.
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auditory network when the signal having different waveforms was applied.
Three waveforms were employed: sine, square and triangle shapes. All wave-
forms were generated at the same frequency-200 Hz via a function generator.
The signal from the function generator was directly connected to the analog
port and digitized via the ADC channel of the MBoard. The digital signal
then was provided as an input to the network. The input of the different
waveforms, the Fast Fourier Transform (FFT) spectrum of each and the cor-
responding output of the network are shown in Figure 6.10.

Figure 6.10: Left: The different waveforms of the input signal at 200 Hz
generated by a function generator. Middle: The output signal of the network
with respect to the input signal on the left side. Right: The FFT spectrum
of each input signal. (A) The signal having a sine shape. (B) The signal
having a square shape. (C) The signal having a triangle shape.

By testing with three different waveforms, the network apparently had a
difficult time recognizing a triangle shape although it contains low-frequency
signal (200 Hz). However, the network can obviously detect the signal of
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sine and square shapes even though the square shape is composed of more
than one frequency (compare Figure 6.10B right). Thus, it can be concluded
that not only the frequency but also the waveform of an input signal play
important roles in the signal detection; i.e. the network can recognize the
signal having sine and square waveforms at low frequencies while it cannot
recognize the signal having triangle waveforms. Nevertheless, this network
characteristics would be adequate for the approach of the work where the aim
is to detect a sine wave signal to activate the sound tropism of the walking
machine.

The last attempt was to show the performance of the sound-direction
detection network (compare Figure 5.11A) in filtering unwanted noise and
discerning the direction of the signals. The stereo input given to the network
was firstly filtered by the evolved advanced auditory network. However, there
is remaining noise which occurs from the locomotion of the walking machine.
The network has to get rid of such noise and discern the direction of the
stereo input signal based on the concept of the time delay of arrival (TDOA)
between left and right inputs. The capability of the sound-direction detection
network in filtering the remaining noise is presented in Figure 6.11.

The outputs of the sound-direction detection network (see Figures 6.11A
and B right) show that the network is able to filter the remaining noise which
comes from the machine while walking. As a result, no existing noise will
disturb the controller for generating the behavior of the walking machine.

To test the ability of the network to discern the direction of the sound
source, the walking machine was placed in front of a loudspeaker at a distance
of 30 cm (see also Figure 6.7) and the low-frequency sound at 200 Hz, having
a basic sine shape, was generated. Also, the walking machine was manually
turned to the opposite side during the experiment. The examples of input
and output signals of the network are drawn in Figure 6.12.

Figure 6.12 shows that the sound-direction detection network can distin-
guish the direction of the sound source by observing a leading signal or solely
an active signal. In these example situations, when the signal of Input2 (I2)
leads the signal of Input1 (I1) or only I2 gets activated, this indicates that
“the sound source is on the left” and the reverse case indicates that “the
sound source is on the right”.
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Figure 6.11: Left: The input signals which were firstly filtered via the evolved
advanced auditory network before going into the sound-direction detection
network. Right: The output signals of the sound-direction detection network.
(A), (B) The input and output signals of the sound-direction detection net-
work on the left and right, respectively. Both unwanted parts of noise were
all removed by the sound-direction detection network.

6.1.3 The antenna-like sensor data

In this section the preprocessing of the antenna-like sensor data (cf. Sec-
tion 5.1.3) was tested. The Infra-Red (IR)-based antenna sensors together
with the preprocessing shall be implemented on the walking machines for an
obstacle avoidance task.

The following experiments were performed on the mobile processor (the
PDA together with the MBoard) of the walking machines. The sensory inputs
were digitized via the ADC channels of the MBoard at the sampling rate of
up to 5.7 kHz. The preprocessing network was applied on the PDA with an
update frequency of 75 Hz and the communication between the board and
the PDA was done by an RS232 interface at 57.6 kBits per second.
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Figure 6.12: Left: The input signals of the sound-direction detection network
which were firstly filtered via the evolved advanced auditory network. Right:
The output signals of the sound-direction detection network. (A) The signal
of Input2 (I2, dashed line) led the signal of Input1 (I1, solid line) with the
result that the signal of Output2 (O2, dashed line) was active while the signal
of Output1 (O1, solid line) was inactive. The activated O2 indicates that the
sound source was on the left side. (B) I2 followed I1 with the delay resulting
in O2 being inactivated while O1 was activated. The activated O1 indicates
that the sound source was on the right side. (C) In this situation, the network
detected that the sound source was on the right side because I1 was solely
detected at the first period although I2 having in phase with I1 was also
detected after around 150 time steps.
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The experimental apparatus consists of two IR-based antenna sensors
installed on a forehead of the walking machine AMOS-WD02, the mobile
processor and the objects which are boxes. The objects were placed in front
of the walking machine at a distance of 25 cm for the left and right detec-
tors. In order to observe the network behavior when both inputs are very
highly activated, the objects were put at the closer distance of 10 cm. The
experimental set-up is shown in Figure 6.13.

Figure 6.13: (A) The situation where objects were presented on the left side
in front of the walking machine at a distance of 25 cm. (B) The situation
where objects were presented on the right side having the same distance like
in (A). (C) The situation where objects were presented on both sides at the
closer distance of 10 cm.

Two networks for signal processing were introduced, a standard version
working with two sensory inputs (compare Figure 5.20) and a developmental
version working with more than two sensory inputs (compare Figure 5.21).
However, only the performance of the standard version was shown in this
experiment because both networks behave in the same manner. Three sit-
uations were carried out to provide the sensory information to the network
(compare Figure 6.13). The sensory inputs from different situations are il-
lustrated on the left of Figure 6.14 and the resulting signals from the prepro-
cessing network are shown on the right.

The preprocessing network functions as an on-off switch (compare Figure
6.14); i.e. it switches on (Output neuron is active (≈ +1)) when the obstacles
are detected otherwise it switches off (Output neuron is inactive (≈ -1)). This
behavior of the network is mainly caused by the excitatory self-connection
weights at the output neurons and the strong synapses from the input to
the output units (compare Figure 5.20). One of their properties, the noise
of sensor data is eliminated. The resulting smooth outputs together with



6.1. TESTING THE NEURAL PREPROCESSING 137

Figure 6.14: (A) The situation where objects were fully presented on the
left side after around 170 time steps. The left input signal (I2, dashed line)
was active after around that time causing the signal of Output2 (O2, dashed
line) to become active (≈ +1) while the signal of Output1 (O1, solid line)
remained inactive (≈ -1). (B) The situation where the objects were fully
presented on the right side after around 120 time steps. The right input
signal (I1, solid line) was active after that time, causing O1 to become active
(≈ +1) while O2 remained inactive (≈ -1). (C) The situation where the
objects were presented on both sides. Although objects were presented on
both sensors at the same time, I2 was gradually activated to a high level and
directly afterwards I1 was activated to a high level following a similar pattern
to I2. Consequently, O2 was activated first after around 90 time steps while
O1 became activated after around 120 time steps.
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the velocity regulating networks VRNs (cf. Section 5.2.2) will control the
walking machines to avoid obstacles.

In some situations, like in a corner and in a deadlock, both input signals
might be active. If both of them do not get a very high activation value, like
the situation demonstrated in Figure 6.14C, the network will provide only
one active output (≈ +1) at a time. Such a situation was simulated and
shown in Figure 6.15.

Figure 6.15: (A)The input signals of the left (I2, dashed line) and right (I1,
solid line) sensors. (B) The signals of Output1 (O1, solid line) and Output2
(O2, dashed line) correspond to the right and left inputs, respectively. At
first, the left sensor detected one side of the corner after around 160 time
steps while another side of the corner was also detected by the right sensor
after around 300 time steps. Correspondingly, O2 was excited (≈ +1) while
O1 was inhibited (≈ -1). After around 600 time steps, the left sensor did not
detect the corner assuming that the machine had already turned right and
then walked away from the corner. However, the right sensor was still active
assuming that an obstacle was presented on the right side. This caused O2

to become inactive and O1 to become active.

As a result, the network is able to control the output signals corresponding
to the active input signals. Generally, only one output gets active at a time
which is determined by the previous active input. This phenomenon is mainly
affected by an even loop between the output neurons of the network (see
Section 5.1.3). By utilizing this effect to control the walking machines, they
are then able to escape from a corner or a deadlock situation without getting
stuck.
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6.2 Implementation on the walking machines

In this section, the performance of the behavior controllers derived from the
neural preprocessing and neural control will be presented. The controllers,
which generate the different reactive behaviors, were developed for a mobile
system. The first attempt was to test the capability of the obstacle avoidance
controller. After that the performance of the sound tropism controller was
demonstrated and the last attempt was to show the behavior fusion. It
is controlled by the behavior fusion controller combination with the sensor
fusion technique.

All the following experiments were performed on the four-legged walking
machine AMOS-WD02 with installed physical sensor systems (the stereo au-
ditory sensor and two antenna-like sensors) and all controllers were applied to
the PDA. Additionally, the six-legged walking machine AMOS-WD06 with
the installed six antenna-like sensors was also used to test the obstacle avoid-
ance controller.

6.2.1 The obstacle avoidance behavior

This section describes experiments carried out to assess the ability of the
obstacle avoidance controller to account for the obstacle behavior data. It
focuses solely on avoiding obstacles, with the stereo auditory sensor system
of the four-legged walking machine disabled at the sensor input level; i.e. the
machine cannot react to any auditory signal in these experiments.

The performance of the obstacle avoidance controller (of the four- and
six-legged walking machines) introduced in Section 5.3.1 was first tested in
a simulated complex environment (cf. Section 4.2). It was then loaded into
a mobile processor (the PDA) for a test on the physical autonomous walk-
ing machines2 However, the simulated walking machines and the physical
walking machines will apparently behave similarly. The functionality and
the property of the preprocessing of the antenna-like sensor data were shown
in the section above. Here, the output signals of the network were directly
connected to the neural control to modify the machine behavior as expected

2In the experiment, the AMOS-WD02 performs normal walking (without activating a
backbone joint) with a walking cycle at 1.25 s or a walking speed at ≈ 0.45 body lenght/s
(12.7 cm/s) while the AMOS-WD06 has a walking cycle at 1.52 s or a walking speed at ≈
0.175 body lenght/s (7 cm/s). With these optimal walking speeds, the walking machines
using battery packs can autonomously run for the experiments up to 35 minutes.
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from a perception-action system. If obstacles are presented on either the right
side or the left side, the controller will change the rhythmic movement of the
legs at the thoracic joints, causing the walking machines to turn on the spot
and immediately avoid the obstacles. In some situations, like approaching
a corner or a deadlock situation, the preprocessing network determines the
turning direction, left or right, with respect to the previously active input
signal (see Section 6.1.3). The ability of the controller for the four-legged
walking machine (compare Figure 5.36) which executes the obstacle avoid-
ance behavior is illustrated in Figure 6.16.

As shown in Figure 6.16, Motor0 (M0) and Motor1 (M1) of the thoracic
joints were turned to the opposite direction if the left sensor (IR2) detected
the obstacle (compare a left column in Figure 6.16); correspondingly Motor2
(M2) and Motor3 (M3) of the thoracic joints turned to the opposite direction
when the right sensor (IR1) was active (compare a middle column in Figure
6.16).

In special situations, e.g. walking toward the wall or detecting obstacles
on both sides, both antenna-like sensors might be simultaneously active.
Thus M0, M1, M2 and M3 of the thoracic joints turned to other directions
which causes the walking machine to walk backward (compare a right column
in Figure 6.16). While walking backward one of the sensors might still be
active causing the active sensory signal to make the machine turn to the
corresponding side until, eventually, it is able to leave the wall. Figure 6.17
displays a series of photos showing the avoidance of obstacles as well as the
machine leaving from a deadlock situation.

The photos on the left column in Figure 6.17 show that the walking
machine can avoid an unknown obstacle, and it can also escape from a corner-
like obstacle and a deadlock situation (see middle and right columns in Figure
6.17). By using two antenna-like sensors installed at the forehead of the four-
legged walking machine together with the neural controller, it demonstrates
that the walking machine has a capability to avoid the unknown obstacle as
well as to escape from the corner or the deadlock situation.

However, some difficult situations were experienced in the presents of
obstacles like the legs of a chair or a desk. To protect the legs of the machine
from colliding with these obstacles, more sensors need to be implemented on
each leg of the machine, as mentioned in Chapter 4, and the preprocessing
of the sensor data given in Section 5.1.3 are also required. The performance
of the preprocessing for six sensory inputs combined with the neural control
of the six-legged walking machine is exemplified in Figures 6.18 and 6.19.



6.2. IMPLEMENTATION ON THE WALKING MACHINES 141

Figure 6.16: Left: If the obstacles were presented on the left of the walking machine,
then the output signals of the motor neurons (M0, M1) on its right change their direction
as indicated by the arrow dashed lines in the lower picture. Middle: If the obstacles were
detected on the right of the walking machine, then the motors (M2, M3) on its left would
reverse as indicated by the arrow dashed lines in the lower picture. Right: In this situation,
the obstacles were simultaneously detected on both sides resulting in the reversion of all
motors (M0, M1, M2 and M3) as indicated by the arrow dashed lines in the lower picture
and the machine then walks backward.
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Figure 6.17: Examples of the behavior driven by the antenna-like sensors of the four-
legged walking machine AMOS-WD02. Left: The typical obstacle avoidance behavior.
Middle: Another situation where the walking machine was able to avoid a corner. Com-
paring the two photos at 3.0 s and 4.4 s, one may observe that the machine is able to
slightly step backward because both sensory signals were active at nearly the same time
(at around 3.0 s). While walking backward (at around 4.4 s), the right sensor was still ac-
tive while the left sensor was already inactive. Consequently, the walking machine turned
left and walked away from the obstacle afterwards. Right: The walking machine was also
able to escape from a deadlock situation without getting stuck.
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Figure 6.18: An obstacle detected by each of the right sensors (IR1, IR2 and IR3) at
different time steps; this caused the left motor neurons (M3, M4 and M5) to change into
the opposite direction as indicated by the arrow dashed lines in the lower picture. As a
result, the walking machine turns left.

The modification of the signals at the motor neurons of the thoracic joints
(M3, M4 and M5) into the reverse direction is shown in Figure 6.18. There,
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Figure 6.19: An obstacle was presented at each of the left sensors (IR4, IR5 and IR6)
at different time steps; this caused the right motor neurons (M0, M1 and M2) to change
into the opposite direction as indicated by the arrow dashed lines in the lower picture. As
a result, the walking machine turns right.

object was presented to each of the right sensors at different time steps. Also,
the controller changes the signals of the motor neurons (M0, M1 and M2)
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to the opposite direction when the object was presented to each of the left
sensors at different time steps (see Figure 6.19).

Figure 6.20 presents the example reactive behavior of the walking ma-
chine AMOS-WD06 driven from the sensory inputs together with the neural
controller.

A series of photos on the left and middle columns in Figure 6.20 shows
that the walking machine can protect its legs from colliding with the legs of
the desk as well as the legs of the chair. Moreover, the walking machine was
also able to turn away from the unknown obstacles which were firstly sensed
by the sensors at the forehead and then were detected by the sensors on the
left legs (see right column in Figure 6.20).

As demonstrated, the obstacle avoidance controller (of the four- and six-
legged walking machines) is adequate to successfully solve the obstacle avoid-
ance task. Additionally, the controller can protect the machines from getting
stuck in the corner or the deadlock situation. Thus, due to this functionality,
the walking machines can automatically perform an exploration task or a
wandering behavior.

6.2.2 The sound tropism

This section describes experiments carried out to test the capacity of the
model performing the sound tropism. By now, it concerns solely a behavior
reacting to an auditory signal. To do so, the stereo auditory sensor system
was enabled while all antenna-like sensors were disabled at the sensor input
level; i.e. the four-legged walking machine cannot avoid obstacles in these
experiments.

The neural preprocessing of the stereo auditory signal was tested in the
section above. The experimental results show that such preprocessing can
filter unexpected noise. In addition, it can recognize and discern the direc-
tion of the sound source at low frequencies. Here, the combination of this
preprocessing unit, called “auditory signal processing network”, and the neu-
ral control unit leads to a so-called “sound tropism controller” (compare Fig
5.39). As a result, it performs a desired sound tropism in the four-legged
walking machine AMOS-WD02.

The controller was applied to the PDA. It was then tested on the AMOS-
WD02 in a real environment. An auditory signal having a sine shape at
the frequency-200 Hz was produced by a powered loudspeaker system (30
Watts). The signal was detected via the stereo auditory sensor and was then
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Figure 6.20: Examples of the behavior driven by the antenna-like sensors of the six-
legged walking machine AMOS-WD06. Left: The walking machine was able to protect its
legs from colliding with the leg of the desk which was detected by the sensors installed on
the right legs of the machine. Middle: The machine was also able to avoid the legs of the
chair. Right: The walking machine turned away from the unknown obstacles which were
detected by the sensors at the forehead (IR1 and IR4) and then at the left legs (IR5 and
IR6).
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digitized through the ADC channels of the MBoard at a sampling rate of up
to 5.7 kHz.

For the first experiment, the maximum distance at which the system is
able to detect the signal was measured. During the test, the signal was
produced and the experiment was repeated six times at each of the different
locations shown in Figure 6.21.

Figure 6.21: The experimental set-up with the sound source and the markers (black
square areas) where the walking machine was placed.

The detection rates of the signal, i.e. the number of the correct detection3

divided by the number of the experiments, are shown in Table 6.1.

Table 6.1: Detection rate of the auditory signal at 200 Hz from different distances

Distance [cm] Detection rate
40 100%
60 67%
80 0%

From the table, it can be concluded that the system can reliably react to
the signal in the radius up to around 60 cm.

3The correct detection means that the machine can correctly discern if the signal is
coming from the left or the right.
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The second experiment was to show the ability of the controller which
can identify the location of the sound source (on the left or the right of the
walking machine) and to present the modified signals of the motor neurons of
the thoracic joints (M0, M1, M2 and M3). The sensory inputs coming from
the right and left auditory sensors (Input1 and Input2, respectively) and the
signals of the motor neurons were monitored. They are presented in Figures
6.22 and 6.23.

As shown in Figure 6.22, M2 and M3 of the thoracic joints turned to the
opposite direction if the sound source was on the left of the walking machine.
On the other hand, M0 and M1 of the thoracic joints would reverse to the
other direction when the sound source was on its right (compare Figure 6.23).
Due to these effects, the controller has the capability to enable the walking
machine to turn toward the sound source.

After the walking machine turns toward and approaches the sound source,
it will stop assuming that it is charging the energy or feeding its food. This
action can be performed by comparing the amplitude of either the left or right
signal with a threshold value; i.e. if and only if the amplitude of one signal
is larger than a threshold value, then the signal of motor neurons (M0, M1,
M2 and M3) will automatically be set to 0 with the result that the machine
cannot turn left, right nor even step forward. The monitored amplitudes of
the left and right signals together with the signals of the motor neurons are
shown in Figure 6.24.

The last task of this section was to display the sound tropism in the real
environment. The walking machine started from different initial positions
and the auditory signal-200 Hz having a sine shape generated by a loud-
speaker while the machine was walking. Figures 6.25 and 6.26 show a series
of photos of these example experiments.

By observing the behavior of the walking machine in the given examples,
one can see that the walking machine behaved almost the same. It turned
toward the sound source if it heard the sound, otherwise still walked forward
until a threshold value was reached. This can be compared with one of the
amplitude of the auditory signals. Finally, it stopped close to the sound
source.

Additionally, the experimental results show that the walking machine has
also oscillating-like movements when the sound is detected; i.e. it switched
back and forth between turning left and right until it came close to the sound
source. Also, it did not always reach the sound source with its head point-
ing to the source, but sometimes with the side of the body. However, these
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Figure 6.22: (A) The auditory input signals from the left sensor (dashed line) and the
right sensor (solid line) with the delay between each other. In this situation, Input2 led
to Input1, indicating that the sound source was on the left of the walking machine. (B)
The output signals after preprocessing via the auditory signal processing network. The
network drove Output2 became activated while it inhibited Output1. (C) and (D) The
signals of the right motor neurons which are controlled by Output1 had no effect. (E) and
(F) The signals of the left motor neurons were modified (see dashed frames) because they
are controlled by the activated Output2. The modified motors are also presented by the
arrow dashed lines in the lower picture. Consequently, the walking machine will turn left.
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Figure 6.23: (A) The auditory input signals from the right sensor (solid line) and the
left sensor (dashed line) with the delay between each other. In this situation, Input1 led
to Input2, indicating that the sound source was on the right. (B) The output signals after
preprocessing via the auditory signal processing network. The network drove Output1 be-
came activated while it inhibited Output2. (C) and (D) Due to the activation of Output1,
two motor neurons of the right thoracic joints were reversed (see dashed frames) while the
signals of left motor neurons in (E) and (F) had no effect. The dashed lines in the lower
picture also show the reversion of right motors. Consequently, the walking machine will
turn right.
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Figure 6.24: Left: The sound source was on the right of the walking machine. During
the first period, the walking machine was still far from the source and it walked closer
to the source. After around 510 time steps the auditory signals were recognized and the
signals of two motor neurons (M0, M1) were modified (indicated by arrow lines). The
machine then turned right and approached the source, after around 1200 time steps the
amplitude of the right signal was larger than the threshold value (here, 0.37). This results
in the signals of the motor neurons (M0, M1, M2 and M3) being automatically set to 0.
Right: In this situation, the sound source was on the left side. The auditory signals were
detected after around 400 time steps and the signals of two motor neurons (M2, M3) were
modified (indicated by arrow lines). Finally, the signals of the motor neurons (M0, M1,
M2 and M3) were set to 0 after around 1300 time steps because the amplitude of the left
signal was larger than 0.37.
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Figure 6.25: The example of the sound tropism whereby the sound source was initially
on the left of the walking machine which was generated during the walk. At the beginning,
it walked forward and then it started to turn left at around 3.9 s because it can detect
the sound. Subsequently, it was steered to start turning right at around 12.5 s because
the sound source now was on its right. Eventually, the machine made an approach and
stopped in front of the source because the amplitude of the left sensor signal was higher
than the threshold value.
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Figure 6.26: The example of the sound tropism where the sound source was initially
in front of the walking machine and was generated during the walk. In this situation,
the walking machine also behaved like the previous example. It walked forward and then
turned into the direction of the sound source when the sound was detected. After that, it
approached and stopped beside the sound source.
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oscillating-like movements and approaching positions would not matter; if
the walking machine reaches the sound source that is sufficient. In conclu-
sion, the walking machine can successfully perform the sound tropism at the
frequency-200 Hz at the distance of up to around 60 cm.

6.2.3 The behavior fusion

This last chapter will demonstrate the behavior fusion between an obstacle
avoidance including an exploration and a sound tropism in the four-legged
walking machine. In this situation, all sensors were activated to sense the
surrounding environment, e.g. detecting the obstacles via two antenna-like
sensors and listening to sound via a stereo auditory sensor. The behavior
fusion controller collaborating with a sensor fusion technique (see also Section
5.3.3) was employed for the behavior fusion approach. A part of the controller
was implemented on the PDA while the other was programmed on the servo
controller board. And, the sensor inputs were digitized via the ADC channels
of the MBoard at a sampling rate of up to 5.7 kHz.

The controller will switch between two modes whereby one is called “ob-
stacle avoidance mode (Om)” which enables the machine to solely avoid
obstacles, and the other is known as the “composite mode (Cm)” which is
capable of obstacle avoidance and sound detection. The executing time of
each mode was optimized experimentally. Here, it was set to around 3.2 s for
the obstacle avoidance mode and around 13.7 s for the composite mode; i.e.
the obstacle avoidance mode will be firstly executed for around 3.2 s after
that the composite mode will be executed for around 13.7 s. This process
will be repeated until a processor time is reached, e.g. ≈ 15 minutes. How-
ever, one can remark that these desired executing and processor times can
be adjusted depending on each physical perception-action system.

A series of photos in Figures 6.27 and 6.28 presents the combined reactive
behaviors of the walking machine AMOS-WD02 which can avoid the obsta-
cles, wander around and also respond to a switched-on sound source when
it can detect it. It is indicated at a lower left corner of each photo whether
or not the sound source was switched on (On) or off (Off). In addition, the
executed mode (Om or Cm) can be observed in the upper left corner and the
action time is also shown in the lower right corner of each photo.

As demonstrated in Figures 6.27 and 6.28, the behavior fusion controller
together with the sensor fusion technique has the ability to generate different
walking patterns which were driven by the sensory inputs, such that the
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Figure 6.27: At the first period, the source was switched off and the walking machine
was wandering around and avoiding obstacles if they were detected. The source then was
switched on to steer the walking machine at around 25.5 s; consequently, the machine
started to turn left until around 34 s and then the obstacle avoidance mode was executed.
Due to operate in the obstacle avoidance mode, and no obstacles being detected, the
machine walked forward and got close to the source. Again the composite mode became
activated at around 39.4 s which makes the walking machine turn slightly left and stop
nearby the source at the end because the amplitude of the sensor signal is larger than the
threshold value.
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Figure 6.28: The source was switched off and the walking machine was wandering
around and avoiding obstacles if they were detected at the beginning. Then the source
was switched on to control the walking machine to start turning right at around 14.2 s.
Afterwards the walking machine started to walk forward at around 20.1 s because the
obstacle avoidance mode was executed. It continued to walk forward until around 23.9
s, it turned right not because of the sound but because of a detected obstacle instead
(a loudspeaker), although the composite mode was operated. Eventually, the walking
machine approached and stopped beside the source.
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machine could walk straight if no obstacle and no sound were detected. And
then it turned toward a switched-on sound source and afterwards it would
again continue walking forward without making the oscillating-like movement
if and only if the obstacle avoidance mode is executed and no obstacle is
detected. Eventually, it will approach and stop close to the sound source by
determining one of the amplitudes of the auditory signals.

However, there was a circumstance found in Figure 6.28 at around 23.9 s.
The walking machine turned right while it should normally turn left because
the auditory signal of the left sensor was active. This occurred because the
obstacle (a loudspeaker) was also detected at the same time causing the IR
signal of the left antenna-like sensor to be activated. Subsequently, both
active signals (the left auditory signal and the left IR signal) were managed
by the sensor fusion technique in the composite mode (cf. Section 5.3.3). As
a result, the observed behavior was performed.

6.3 Conclusion

The results given in this chapter showed that the neural preprocessing of the
physical auditory-tactile sensor data has the ability to recognize two differ-
ent signals with different frequencies that come from the tactile and auditory
channels of the sensor. Also, the neural preprocessing of the stereo auditory
sensor was tested with the real signal. It eliminates unexpected noise occur-
ring from motor sound of the walking machine, lets a low-frequency sound
pass and discerns the direction of the sound source (on the left or the right
of the walking machine). Furthermore, the performance of the neural pre-
processing of antenna-like sensor data was presented. It removes the noise of
the sensor data and behaves like an on-off switch; i.e. it switches on (Output
neuron is active) when the obstacles are detected otherwise it switches off
(Output neuron is inactive).

The final section highlighted the co-operation between the different neu-
ral preprocessing units and the neural control unit leading to the behavior
controllers to generate different reactive behaviors of the walking machine(s).
First, the obstacle avoidance controller was implemented and tested on the
physical walking machines (AMOS-WD02 and -WD06). They were able to
avoid unknown obstacles and escape from a corner or a deadlock situation.
One of them (AMOS-WD06), having more sensors installed on the two front
and two middle legs, can protect its legs from colliding with obstacles, e.g.
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the legs of a desk or a chair. Second, the sound tropism was reproduced on
the AMOS-WD02 by employing the sound tropism controller. It enables the
walking machine to recognize the auditory signals coming from the left or the
right. The machine turned into the direction of the sound source, then ap-
proached it, and finally stopped beside the source at the distance determined
by a threshold of the amplitude of the signal. In the final demonstration,
both reactive behaviors are fused and performed on the AMOS-WD02 by ap-
plying a so-called behavior fusion controller which includes the sensor fusion
technique. It generates a desired behavior driven by both auditory and IR
stimuli. As a result, the walking machine wanders around, avoids obstacles
and walks towards and stops in front of the auditory signal (sound tropism).



Chapter 7

Conclusions

7.1 Summary of contributions

This thesis presents biologically inspired walking machines (four- and six-
legged walking machines) interacting with their real environmental stimuli as
agent-environment interactions. Different reactive behaviors of animals were
investigated for the behavior design of the walking machine(s). On the one
hand, the obstacle avoidance behavior, in analogy to the obstacle avoidance
and escape behavior of scorpions and cockroaches, was implemented in the
walking machines as a negative tropism. On the other hand, the sound
tropism which mimics prey capture behavior of spiders is represented, as a
positive tropism. It was simulated on the four-legged walking machine.

The biological sensing systems which are used to trigger the described
reactive behaviors were also investigated. Three types of sensory systems
which are an auditory-tactile sensor, a stereo auditory sensor and antenna-
like sensors were constructed with respect to the biological sensing systems.
The auditory-tactile sensor, which was inspired by the function of hairs of a
scorpion and a spider, is used for tactile sensing as well as sound detection.
Using the stereo auditory sensor in analogy to the hairs of the spider, the
sound can be detected and the direction of the incoming sound can also be
distinguished by determining the time delay of arrival (TDOA) from the left
and right auditory sensors. The antenna-like sensors, which were modelled
with respect to the basic function of insect antennas, are used to detect
impediments as well as to protect the legs of the six-legged walking machine
from colliding with obstacles.

159
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In addition, the morphologies of a salamander and a cockroach which
are used to perform efficient locomotion were also considered for the leg
and trunk designs of the four- and six-legged walking machines, respectively.
They were successfully built with mechanical constructions. The rhythmic
movements of the legs of the machines are basically generated by the central
pattern generator (CPG) which corresponds to the basic locomotion control
of walking animals.

The main interest of this thesis is not only to generate biologically-
inspired reactive behaviors of the physical walking machine(s) but also to
present the simple mechanism for the desired behavior controls. On the ba-
sis of a modular neural structure, they were built from a combination of
different neural preprocessing units for sensor data processing and the neu-
ral control unit for locomotion control of the walking machines. This means
that each neural preprocessing unit can be connected with a neural con-
trol unit to obtain a different behavior control. Neural preprocessing and
control were achieved by applying the discrete-time dynamical properties
of recurrent neural networks generated by the evolutionary algorithm ENS3

(Evolution of Neural Systems by Stochastic Synthesis). Three types of neu-
ral preprocessing were presented: auditory signal processing, preprocessing
of the antenna-like sensor data and the tactile signal processing. The use
of auditory signal processing is to recognize the low-frequency sound-200 Hz
for producing the sound tropism while it filters background noise at high fre-
quencies (>400 Hz). In other words, it acts as a simple low-pass filter with
its cutoff frequency at approximately 400 Hz. It also has the capability to
discern the direction of the auditory signals coming from either the left or
the right. For the preprocessing of the antenna-like sensor data, it is able to
eliminate the sensory noise and to control an obstacle avoidance behavior.
Applying the auditory-tactile sensor for collision detection and low-frequency
sound detection, the signal coming from the tactile channel is recognized by
the tactile signal processing network while the low-frequency sound is recog-
nized by a part of auditory signal processing called “the advanced auditory
network”.

The neural control was formed with two subordinate neural networks:
the neural oscillator network which generates the rhythmic leg movements
as a central pattern generator (CPG) and the velocity regulating networks
(VRNs) which expand the steering capabilities of the walking machines. This
neural control was created for generating a typical trot gait of the four-legged
walking machine. Then it was modified (still having the same structure
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except more output motor neurons) to move the six-legged walking machine
with a typical tripod gait.

Eventually, the integration between neural control and different types of
neural preprocessing leads to several behavior controllers. For example, the
obstacle avoidance controller is formed by connecting the preprocessing of
the antenna-like sensor data with the neural control while the sound tropism
controller is constructed by replacing preprocessing of the antenna-like sen-
sor data with the auditory signal processing. Furthermore, a sensor fusion
technique was employed. It cooperates all preprocessed sensory signals of
the preprocessing of the antenna-like sensor data and the auditory signal
processing to obtain a so-called “behavior fusion controller”.

Three behavior controllers together with the associated sensory systems
were successfully implemented and tested on the walking machine(s). First,
the obstacle avoidance controller was implemented on the physical walking
machines. The walking machines were able to avoid unknown obstacles and
escape from a corner or a deadlock situation. Moreover, one of them (the
six-legged walking machine), having more sensors installed on the two front
and two middle legs, can protect its legs from colliding with obstacles, e.g.
the legs of a desk or a chair. Second, the sound tropism was reproduced on
the four-legged walking machine by employing the sound tropism controller.
It enables the walking machine to recognize the auditory signals (sinusoidal
sound-200 Hz) coming from the left or the right at a distance of up to ap-
proximately 60 cm. The machine turned toward the source like a predator
reacting to a prey signal, then approached it, and finally stopped beside the
source at the distance determined by a threshold of the amplitude of the
signal (simulating that it is capturing a prey). In the final demonstration,
both reactive behaviors are combined to one controller and then implemented
on the four-legged walking machine. It generates the desired behavior, i.e.
positive and negative tropism. The walking machine, as a result, reacts to
the auditory signal, wanders around, avoids obstacles and even escapes from
corners as well as deadlock situations.

The resulting reactive behaviors of the physical embodied system(s) show
that the behavior controllers are robust and sufficient enough to deal with
real unexpected noise and due to the modular neural structure, they are then
flexible to adapt to the various target systems with a different complexity.
On the other hand, they prove that the discrete-time dynamical properties
of recurrent neural networks (e.g. hysteresis effect) together with the evolu-
tionary algorithm can be applied to find the appropriate solution of neural
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preprocessing and control in a robotic domain. However, the described sys-
tems can also be defined as versatile artificial perception-action systems; i.e.
they percept environmental stimuli and display the corresponding actions
without the knowledge of an environmental model.

7.2 Possible future work

The work done in this thesis was intended to be a basic step to achieve a so-
called “Autonomous Intelligent System”, which should maintain its energy
supply, survive in complex environments, show a certain degree of autonomy
(although no robotic system is totally autonomous), learn to behave in an
efficient way, etc. Thus, possible work based on the existing systems may be
extended to:

• add an additional sensor like an energy sensor to monitor the energy
consumption and to activate efficient walking gaits in a specific condi-
tion for maintaining the energy supply;

• add proprioceptors like foot contact sensors for ground sensing and
angle encoders of joints to detect the movement of the legs and so on;

• implement more reactive behaviors (e.g. avoiding a predatory attack,
photo tropism) and using an evolutionary algorithm to cooperate or
complete all these different reactive behaviors;

• use learning technique, e.g. reinforcement learning, to allow the walking
machines to behave in an efficient way (e.g. learning to find the fastest
way to escape from an undesired situation or to make an approach to
a target).

However, it would also be interesting to enable the walking machine to
interact not only with environmental stimuli but also with other machines
(agent-agent interactions). On the one hand, one may think about predator-
prey interactions. On the other hand, the walking machines can assist each
other when the requested signal is perceived. Generally, robotic models are
indeed suited to the investigation of how behavior decisions arise from mul-
tiple sources of sensory information and can establish these ideas in specific
neural mechanisms. Moreover, they can be used as tools to establish the
relationship between biology, (computational) neuroscience and engineering
as it was shown in this thesis.
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Appendix A

Description of the walking
machines

Two physical walking machines were built as mobile robot platforms. They
are used for experiments with the neural controllers so as to perform the dif-
ferent reactive behaviors and also to illustrate as artificial perception-action
systems.

A.1 The AMOS-WD02

The AMOS-WD02 is a four-legged walking machine of 2 degrees of freedom
by leg. Its body consists of a (active) tail and a central chassis which is con-
nected with its head through a (active) backbone joint rotating in a vertical
axis. Two rear legs are attached at the central chassis while another two are
fixated at the head (see Figure A.1).

Some basic characteristics that define the AMOS-WD02 are the following
ones:

Mechanics

• Dimension without the tail (L x B x H): 28 x 30 x 14 cm

• Weight: 3.3 Kg

• Structure of Polyvinyl Chloride (PVC) and Aluminum alloys AL5083

• 4 Legs with 2 degrees of freedom of each leg
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Figure A.1: The physical four-legged walking machine AMOS-WD02. Left:
Top view with turning its backbone joint. Right: Front view with standing
position.

• Backbone joint rotating in a vertical axis

• Active tail rotating in horizontal and vertical axis

• Driven by eight analog (90 Ncm), one digital (220 Ncm) and two micro
(20 Ncm) servomotors.

Electronics

• Multi-Servo IO-Board (MBoard)1 developed at Fraunhofer Institute
in Sankt Augustin. It is able to control up to 32 servomotors syn-
chronously. At the same time 32 (+4 optional) analog input channels
can be sampled and read with an update rate of up to 50 cycles per sec-
ond. The board has an RS232 interface, which serves as the standard
communication interface.

• Personal Digital Assistant (PDA) having an Intel (R) PXA255 proces-
sor for programming neural preprocessing and control. It communicates
with the MBoard via an RS232 interface.

• The support circuitry of the auditory sensors

• Battery of 4.8v NiMH 2100mAh for the servomotors

1see also: http://www.ais.fraunhofer.de/BE/volksbot/mboard.htm.
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• Battery of 4.8v NiMH 2100mAh for the support circuitry of the audi-
tory sensors

• Battery of 9v NiMH for the MBoard

• Battery of 9v NiMH for the wireless camera

• 2 distance measurement infrared sensors (antenna-like sensors) located
at the forehead

• 2 auditory sensors located at the fore left and rear right legs

• Mini wireless camera built in a microphone installed on the top of the
tail

Programming

• C programming on the MBoard for controlling servomotors and for
reading digitized sensor data

• Embedded Visual C++ on the PDA for programming neural prepro-
cessing and control

A.2 The AMOS-WD06

The AMOS-WD06 is a six-legged walking machine of 3 degrees of freedom by
leg. Its body consists of a (active) tail and a central chassis which is connected
to its head through a (active) backbone joint rotating in a horizontal axis.
Two legs are attached at the rear of the central chassis and another two are
installed at the fore of the central chassis while the rest are fixated at the
head (see Figure A.2).

Some basic characteristics that define the AMOS-WD06 are the following
ones:

Mechanics

• Dimension without the tail (L x B x H): 40 x 30 x 12 cm

• Weight: 4.2 Kg

• Structure of Polyvinyl Chloride (PVC) and Aluminum alloys AL5083
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Figure A.2: The physical six-legged walking machine AMOS-WD06. Left:
Top view with climbing position. Right: Front view with standing position.

• 6 Legs with 3 degrees of freedom of each leg

• Backbone joint rotating in a horizontal axis

• Active tail rotating in horizontal and vertical axis

• Driven by eighteen analog (100 Ncm), one digital (220 Ncm) and two
micro (20 Ncm) servomotors.

Electronics

• MBoard which is able to control up to 32 servomotors synchronously.
At the same time 32 (+4 optional) analog input channels can be sam-
pled and read with an update rate of up to 50 cycles per second. The
board has an RS232 interface, which serves as the standard communi-
cation interface.

• PDA having an Intel (R) PXA255 processor for programming neural
preprocessing and control. It communicates with the MBoard via an
RS232 interface.

• Battery of 6v NiMH 3600mAh for the servomotors

• Battery of 4.8v NiMH 800mAh for six distance measurement infrared
sensors
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• Battery of 9v NiMH for the MBoard

• Battery of 9v NiMH for a wireless camera

• 6 distance measurement infrared sensors (antenna-like sensors) located
at the front head and two front and two middle legs

• Mini wireless camera built in a microphone installed on the top of the
tail

• One upside-down detector located beside of the body

Programming

• C programming on the MBoard for controlling servomotors and for
reading digitized sensor data

• Embedded Visual C++ on the PDA for programming neural prepro-
cessing and control

A.3 Mechanical drawing of servomotor mod-

ules

The drawing of a set of joint modules for the digital and analog servomotors2

which were manufactured by aluminum alloys is shown in the following:

2The size of the servomotor (L x B x H) : 40.5 x 20 x 40.5 mm with the weight of 65 g.
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