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Abstract

Probabilistic forecasts in form of predictive distributions over future quantities have
become more and more important in many different fields, including meteorology, hy-
drology, epidemiology and economics.
Along with the growing prevalence of probabilistic models the need for tools to evalu-
ate the appropriateness of models and forecasts emerges. Various measures have been
developed to address this topic.
In their seminal paper, Gneiting and Raftery (2007) study so called proper scoring
rules as summary measures to evaluate probabilistic forecasts by assigning a single
numerical score based on the predictive distribution and the event that materializes.
Such a proper scoring rule encourages the forecaster to make careful assessments.
For univariate quantities there is a vast selection of proper scoring rules and their
properties are understood quite well. However, for multivariate quantities there is only
a small number of proper scoring rules available and there does not yet exist much
research on their properties. The most prominent example of a strictly proper multi-
variate scoring rules is the energy score.
A scoring rule should not only be strictly proper, but it should also assign significantly
different score values to probabilistic forecasts of models that are significantly wrong.
This property is refered to as discrimination ability of a scoring rule.
To assess the discrimination ability of a scoring rule we use the Diebold-Mariano test,
which is a crucial element in the evaluation of scoring rules. In this thesis we mainly
focus on the discrimination ability of scoring rules for multivariate distributions with
a special emphasis on the correct modelling of the dependence structure. The energy
score has been criticized for its poor ability to distinguish between forecasting distribu-
tions with different dependence structure, whereas it detects very well errors in location
and scale.
The discrimination ability of the energy score depends on the choice of the parameter
β, which is very often fixed to 1. However, β can be chosen to be any value in the
interval (0, 2). Thus, the main topic of this thesis is to study the discrimination abil-
ity of the energy score for various choices of the parameter β and to compare it with
other known scoring rules like the Dawid-Sebastiani score and the variogram score. An
extensive simulation study shows that the discrimination ability of the energy score
typically improves with smaller parameter β. Therefore, a new multivariate strictly
proper scoring rule is introduced that arises as a scaling limit of the energy score as β
tends to zero and its properties are studied.
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Zusammenfassung

Probabilistische Vorhersagen über zukünftige Größen in Form von Wahrscheinlichkeits-
verteilungen haben in vielen verschiedenen Bereichen, einschließlich der Metereologie,
der Hydrologie, der Epidemiologie und den Wirtschaftswissenschaften, immer mehr an
Bedeutung gewonnen.
Mit der zunehmenden Verbreitung probabilistischer Modelle wächst auch der Bedarf
an Methoden zur Bewertung der Angemessenheit von Modellen und Prognosen. Es
wurden diverse Maße entwickelt, um dieses Thema anzugehen.
In ihrer bahnbrechenden Arbeit untersuchen Gneiting and Raftery (2007) so genan-
nte proper scoring rules als Maße zur Bewertung probabilistischer Vorhersagen, in-
dem sie der vorhergesagten Verteilung und einem eingetretenen Ereignis einen score
zuweisen. Eine solche proper scoring rule bietet dem Ersteller der Vorhersage einen
Anreiz, sorgfältige Bewertungen vorzunehmen.
Für univariate Größen gibt es eine große Auswahl an geeigneten proper scoring rules
und ihre Eigenschaften sind recht gut bekannt. Für multivariate Größen gibt es jedoch
nur eine kleine Anzahl geeigneter proper scoring rules. Auch sind deren Eigenschaften
bisher noch nicht ausreichend erforscht. Das bekannteste Beispiel für eine strikte proper
scoring rule ist der energy score.
Eine scoring rule sollte allerdings nicht nur strikt proper sein, sondern auch proba-
bilsitischen Vorhersagen von Modellen, die signifikant falsch sind, signifikant unter-
schiedliche Werte zuweisen. Diese Eigenschaft wird als Fähigkeit zur Diskriminierung
einer scoring rule bezeichnet.
Um diese Unterscheidungsfähigkeit zu beurteilen, verwenden wir den Diebold-Mariano
Test, der ein entscheidendes Element bei der Bewertung von scoring rules ist. In dieser
Arbeit konzentrieren wir uns hauptsächlich auf die Unterscheidungsfähigkeit von scor-
ing rules für multivariate Verteilungen mit besonderem Augenmerk auf die korrekte
Modellierung der Abhängigkeitsstruktur. Der energy score wurde oft kritisiert, weil er
nicht in der Lage ist, zwischen Verteilungen mit unterschiedlicher Abhängigkeitsstruk-
tur zu unterscheiden, während er Fehler der Lokations- und Skalenparameter sehr gut
erkennt.
Die Unterscheidungsfähigkeit des energy scores hängt von der Wahl des Parameters β
ab, der häufig auf 1 festgelegt ist. Jedoch kann für β jeder beliebige Wert im Intervall
(0, 2) gewählt werden. Das Hauptthema dieser Arbeit ist daher die Untersuchung der
Unterscheidungsfähigkeit des energy scores für verschiedene Auswahlmöglichkeiten des
Parameters β und der Vergleich mit anderen bekannten scoring rules wie dem Dawid-
Sebastiani score und dem variogram score. Eine umfangreiche Simulationsstudie zeigt,
dass sich die Unterscheidungsfähigkeit des energy scores typischerweise mit kleinerem
Parameter β verbessert. Im Zuge dessen wird eine neue multivariate strikte proper
scoring rule eingeführt, die sich als skalierter Grenzwert des energy scores ergibt, wenn
β gegen Null geht, und ihre Eigenschaften werden untersucht.
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1. Introduction

A key desire of mankind is making forecasts about an uncertain future. As any predic-
tion is typically surrounded by uncertainty, forecasts should be probabilistic in nature,
taking the form of probability distributions over future quantities or events, see Dawid
(1984). Probabilistic forecasts allow to quantify the inherent uncertainty of a forecast
and thus serve for good decision making.
Accordingly, probabilistic forecasts in form of predictive distributions over future quan-
tities or events have become popular over the last few decades in many different fields,
including meteorology, hydrology, seismology, economics, finance, demographic and po-
litical science.
Prominent examples among others are the inflation reports iussed by the Bank of Eng-
land, see e.g. Bailey (2021), and the use of ensemble forecasts in meteorology, see
Gneiting, Raftery, et al. (2005), and Leutbecher and Palmer (2008). For a recent and
extensive review of probabilistic forecasts we refer to Gneiting and Katzfuss (2014).
Along with the growing prevalence of probabilistic models the need for tools to evalu-
ate the appropriateness of models and forecasts emerges. Over the past years various
measures have been developed to address this demand.
Proper scoring rules provide summary measures to evaluate probabilistic forecasts by
assigning a single numerical score based on the predictive distribution and the event
that materializes. A scoring rule is proper, if the forecaster minimizes the expected
score for an observation drawn from distribution F if he or she issues the probabilistic
forecast F , rather than G ̸= F . The scoring rule is strictly proper, if the minimum
is unique. Therefore, in prediction problems scoring rules encourage the forecaster to
make careful assessments.
While there exists a vast selection of proper and strictly proper scoring rules for uni-
variate quantities, there is only a very limited amount of scoring rules for multivariate
quantities available and many of them require that the forecast is given in form of a
probability density function.
The most commonly utilized multivariate strictly proper scoring rule is the energy
score, which draws back on Székely’s energy distance and can be seen as a multivariate
extension of the univariate continuous ranked probability score, see Székely (2003).
The energy score is also readily applicable to the important case of ensemble forecasts.
However, the energy score is frequently criticized in literature due to its apparently
poor ability to detect incorrectly specified correlations between the components of the
multivariate quantity, see for instance Pinson and Tastu (2013), and Scheuerer and
Hamill (2015).
The main focus of the work presented in this thesis will be the discrimination ability
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of the energy score. The energy score depends on a parameter β which in literature is
essentially fixed to 1. However, β can take any value in the interval (0, 2), so we study
the discrimination ability of the energy score for various parameters.
Furthermore, the poor discrimination ability of the energy score attributed in literature
draws back on the working paper of Pinson and Tastu (2013), in which the discrimi-
nation ability of the energy score is merely evaluated with the relative change in score.
In this thesis we will argue that this metric is not sufficient. We introduce the Diebold-
Mariano test which is a crucial element in score evaluation.
With these considerations in mind we are able to define a new strictly proper scoring
rule for multivariate distributions that arises as a limiting case of the energy score as
β tends to zero.

The structure of this thesis is as follows. In Chapter 2 we introduce the term prob-
abilistic forecast. A probabilistic forecast takes the form of a predictive distribution
over future quantities or events of interest. Probabilistic forecasting aims to maximize
the sharpness of the predictive distribution, subject to calibration, see Gneiting and
Katzfuss (2014).

In Chapter 3 we define the term (strictly) proper scoring rule. Proper scoring rules
provide summary measures to assess both calibration and sharpness of a probabilis-
tic forecast by assigning a single numerical value to a forecasting distribution based
on an event that materializes. We also introduce the most common scoring rules for
multivariate quantities, namely the energy score, the variogram score, and the Dawid-
Sebastiani score.

After considering the theoretical properties of probabilistic forecasts and proper scor-
ing rules, in Chapter 4 we deal with the reporting of probabilistic forecasts in practical
application. There are essentially two reporting options, namely reporting the fore-
casting distribution in form of its CDF or in form of an ensemble forecast. The second
reporting option is commonly used in practical application, particularly in weather and
climate prediction.

In Chapter 5 we introduce estimators for the score values corresponding to the scoring
rules introduced in Chapter 3. Note that we have to estimate the score values based on
an event that materializes and the forecasting distribution which is usually available
in form of an ensemble forecast. Particularly, it holds that the true distribution which
we aim to forecast generally is unkown in practice.

Chapter 6 deals with the evaluation of the predictive performance of a probabilistic fore-
cast. There are different measures for evaluation of the score values corresponding to
different probabilistic forecasts. The most important criterion is the Diebold-Mariano
test which is a test to determine whether two forecasts are significantly different.
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Afterwards we introduce the concept of discrimination ability of a proper scoring rule
in Chapter 7. This is a central concept in this thesis and refers to the ability of a scor-
ing rule to discriminate between different forecasting distributions. If a scoring rule
discriminates well between different probabilistic forecasts, the resulting score values
should also differ significantly. A crucial tool for the determination of the discrimina-
tion ability of a scoring rule is the Diebold-Mariano test.
In this chapter we execute several simulation studies to consider the discrimination
ability of the energy score, the variogram score and the Dawid-Sebastiani score with
repect to miscalibrated forecasting distributions. Our main focus here is to study the
discrimination ability of the energy score with different parameters β for forecasting
distributions that differ in their interdependence structure.

As the energy score is the scoring rule that overall has the best discrimination ability
of the considered scoring rules, we consider the related energy distance more closely in
Chapter 8.

Afterwards, we consider the limiting case of the energy score as β tends to zero in
Chapter 9. In the course of this we are able to define a new multivariate scoring rule
that is strictly proper relative to a broad class of distributions, so this scoring rule is
useful in application.

Finally, Chapter 10 summarizes the results of this thesis and gives a short overview on
future research questions.



Probabilistic forecasting 4

2. Probabilistic forecasting

It is a great human desire to make predictions about the future. As the future naturally
is uncertain, forecasts should be probabilistic in nature taking the form of probability
distributions over future quantities or events, see Gneiting and Katzfuss (2014). In the
past few decades probabilistic forecasts have become more and more popular in various
fields and one could witness a paradigm shift from single-valued or point forecasting to
distributional or probabilistic forecasting in various key applications, as reviewed by
Gneiting and Katzfuss (2014), Tay and Wallis (2000), Gneiting, Stanberry, et al. (2008),
Timmermann (2000), and many others. The transition from point to distributional
prediction is described in Stigler (1975) from a historical perspective.

2.1. Preliminaries on probabilistic forecasting

The term point forecasting denotes a forecasting method, where the future is merely
associated with a single expected outcome which is usually an average expected value.
In contrast, probabilistic forecasts assess the uncertainty associated with the forecast
by allocating a probability for different events to happen.
Probabilistic forecasts, therefore, provide a complete description of the uncertainty as-
sociated with a prediction in contrast to a point forecast which by itself contains no
description of the associated uncertainty, see Tay and Wallis (2000).

An easy example for both concepts is rolling a dice: No one will forecast the out-
come as 3.5, which corresponds to point forecasting the expected value. Instead, we
understand that we have a chance of 1/6 to get each of the numbers from 1 to 6.

Since we live in an uncertain world, probabilistic forecasts should be preferred to point
forecasts as they serve for optimal decision making by inherently assessing the un-
certainty associated with the forecast. While probabilistic forecasts for binary events
have been commonly iussed for several decades, today attention is shifting towards
more general types of events, including multicategorial and continuous variables.
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(a) Point forecast

(b) Probabilistic forecast

Figure 2.1.: Illustration of a point forecast and a probabilistic forecast via hypothetical
inflation rates. The line chart in both figures represents the observed
historical data. In the left figure we see a point forecast in form of the
expectation values illustrated by the individual dots. In the right figure
the probabilistic forecast is represented in form of a fan chart. The central
area represents a pointwise 10% prediction interval. The lighter shaded
areas extend this interval each by 10%, so that the inflation rate is expected
somewhere within these fans on 90 out of 100 occasions.
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A key application of probabilistic forecasting is weather and climate prediction, see
e.g. Gneiting, Raftery, et al. (2005), Palmer (2002), and Gel, Raftery, and Gneiting
(2004). One of the simplest examples is the issuing about rainfall in the form of the
probability of precipation, see Bianco (2021).
Other popular fields are hydrologic forecasting including flood risk assessment, see
Cloke and Pappenberger (2009), and also seismic hazard prediction, see T. Jordan et
al. (2011).
Probabilistic forecasting is also becoming increasingly popular in energy forecasting,
particularly in forecasting the availability of renewable energy sources such as wind
and solar power, see Pinson (2013). Other important fields are economic and financial
risk management, see Timmermann (2000).

Example 2.1.1. As an illustrating example we consider the probabilistic forecasts of
inflation rates iussed by the Bank of England’s Monetary Policy Commitee for about
two decades. Figure 2.2 is taken from the November 2021 report, see Bailey (2021).
It is a projection of the future UK consumer price index (CPI). The fan chart1 shows
the predictive distribution in terms of annual percentage change. The central area
represents a pointwise 30% prediction interval, and the lighter-shaded bands extend
this interval each by 30%. The inflation is therefore expected to lie within the fans on
90 out of 100 occasions. On the remaining 10 out of 100 occasions inflation can fall
outside the red area of the fan chart. Over the forecast period this is depicted as the
light grey background.

Figure 2.2.: November 2021 Bank of England forecast of inflation in the United King-
dom as a percentage increase in the consumer price index in percent for
the following years.

1The term fan chart was coined by the Bank of England which has been using these charts and this
term since 1997 in its inflation report to describe its forecasted inflation to the general public. It
is a commonly used tool in finance to visualize probabilistic forecasts, see Britton, Fisher, and
Whitley (1998).
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2.2. Mathematical framework

The concept of probabilistic forecasts can be formalized as described in the following
section. In their seminal paper Murphy and Winkler (1987) called for the considera-
tion of the joint distribution of the forecast and the observation. While their work was
focused on the setting of point forecasts, this framework was adapted and extended
by Gneiting and Ranjan (2013), Ehm, Gneiting, et al. (2016), and Strähl and Ziegel
(2017) to include the case of potentially multiple probabilistic forecasts.
In the following, we will introduce the key tool of a prediction space, and the notions
of calibration and sharpness. Furthermore, we will argue that probabilistic forecasting
should aim to maximize the sharpness of the predictive distribution subject to calibra-
tion, see Murphy and Winkler (1987), and Gneiting and Raftery (2007).
The general setting considers the joint distribution of forecasts and observations on a
probability space (Ω,A,Q), where the elements of the sample space Ω can be identified
with tuples

(F1, . . . , Fk, Y ),

whose distribution is specified by the probability measure Q. The probability distri-
butions F1, . . . , Fk are probability measures on the outcome space (ΩY ,AY ) for the
observation Y .
In this work we restrict our attention to real-valued observations, i.e. ΩY = Rd, unless
stated otherwise. In this case the probabilistic forecasts Fi can be identified with the
associated cumulative distribution function (CDF) Fi or probability density function
(PDF) fi if the distribution is absolutely continuous with respect to Lebesgue measure.
Note that this not only includes the case of forecasting a d-dimensional quantity but
also the important case of a (fully) d-step ahead forecast of an univariate time series,
where the complete d-step ahead distribution is covered. In particular, not only the
marginals for every time step are predicted but also the complete dependency structure.
Nevertheless, Ω can be any set. This of course also includes discrete sets.

2.3. Calibration and sharpness

In the following, we review the notions of calibration and sharpness, which are basic
and initial tools to evaluate probabilisitic forecasts for univariate quantities. So in this
section we are concerned with the case of a real-valued variable of interest Y , for which
a probabilistic forecast can be identified with the cumulative distribution function F
on the real line R.
As argued precisely in Gneiting and Raftery (2007) the general aim of probabilistic
forecasting is to maximize the sharpness of the predictive distribution subject to cali-
bration.
Calibration is a joint property of the predictive distribution and the associated observa-
tions. It concerns the statistical compatibility between the probabilistic forecasts and
the realizations. Essentially, the observations should be indistinguishable from random
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draws from the predictive distributions, see Gneiting and Katzfuss (2014).
Sharpness is a property of the forecast only. It refers to the concentration of the pre-
dictive distribution.
Various notions of calibration have been proposed in literature. For now, we focus on
probabilistic calibration. A probabilistic forecast F is probabilistic calibrated if the
probability integral transform (PIT) F (Y ) is uniformly distributed, with appropriate
technical adaptions in cases where F may have a discrete component, see Gneiting and
Raftery (2007) and Gneiting and Ranjan (2013).
Given that a probabilistic forecast is calibrated it should be as sharp as possible, as
more concentrated forecasting distributions indicate a higher information content in
the prediction. In the case of density forecasts for real-valued variables, sharpness can
be assessed in terms of the prediction intervals. The mean width of these intervals
should be as short as possible, subject to the empirical coverage being at the nominal
level, see Gneiting and Katzfuss (2014).
There exist various tools for assessing calibration and sharpness in practical applica-
tions. For CDF-valued probabilistic forecasts an essential device is provided by checks
of the uniformity of the PIT values. Given a sample of pairs of probabilistic forecasts
and observations (Fi, yi), i = 1, . . . , N calibration can be assessed by visual inspection
of the histogram of the PIT-values Fi(yi), i = 1, . . . , N , see Dawid (1984), and Gneiting
and Raftery (2007). Deviations of the PIT-values from the desired uniform distribution
may indicate miscalibration.
The shape of the histogram can point towards the reasons of miscalibration, e.g. an U-
shaped histogram indicates an underdispersed forecasting distribution with too narrow
prediction intervals, whereas an inverse U-shaped histogram indicates an overdispersed
forecasting distribution with too wide prediction intervals.
Checks of calibration via the uniformity of PIT histograms should by accompanied by
an assessment of sharpness. Otherwise misspecifications in the forecasting distributions
can remain undetected, see Gneiting and Raftery (2007), and Diebold, Hahn, and Tay
(1999).
Also formal statistical tests of the hypothesis that a probabilistic forecast is calibrated
can be applied, provided that these tests account for typically complex dependence
structures, particularly in the case of univariate time series forecasting, see Corradi
and Swanson (2006), and Knüppel (2015).
An alternative tool to assess calibration and sharpness is considering the coverage and
width of prediction intervals. The coverage of a (1−α) · 100%, α ∈ (0, 1), central pre-
diction interval is the proportion of validating observations located between the lower
and upper α/2 -quantiles of the predictive distribution. For calibrated probabilistic
forecasts it should be around (1− α) · 100%. Sharper forecasting distributions lead to
a narrower central prediction interval, therefore the width of these intervals depicts a
natural measure for the sharpness of a probabilistic forecast.
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3. Proper scoring rules

Proper scoring rules provide summary measures for assessing both calibration and
sharpness by assigning a numerical value based on the predictive distribution F and
the event y that materializes. The role of scoring rules in terms of elicitation is to
encourage the assessor to make careful assessments. In terms of evaluation the role of
scoring rules is to measure the quality of probabilistic forecasts and to rank competing
forecasts, see Gneiting and Raftery (2007).
Generally we assume scoring rules to be negatively oriented, i.e. a lower value indicates
that the probabilistic forecast has a better quality. Thus, a scoring rule can be viewed
as a penality that the forecaster wants to minimize. Some authors assume scoring rules
to be positively oriented, see Gneiting and Raftery (2007), so that the score rewards
the assessor. However, the following definitions and results can also be applied in this
case.

3.1. Notations and basics

As in the preceding section, let ΩY be the sample space, that is the set of possible
values of the variable of interest, and let AY be a σ-algebra on ΩY . Furthermore, let
P be a convex class of probability measures on (ΩY ,AY ). A probabilistic forecast is
any probability measure F ∈ P .

Definition 3.1.1. A scoring rule Sc is defined as an extend real-valued function

Sc : P × ΩY → R,

such that Sc(F, ·) is P-quasi-integrable for all F ∈ P .

This means a scoring rule is functional assigning a value to the association of a pre-
dictive probability measure F with an observation y from the real probability measure
of the random variable. We write

Sc(F,G) =

∫
Sc(F, y)dG(y) (3.1)

for the expected score under G when the probabilistic forecast is F . Note that G is the
distribution which we aim to forecast.

Definition 3.1.2. A scoring rule Sc is called proper relative to the class P if

Sc(G,G) ≤ Sc(F,G) for all F,G ∈ P , (3.2)
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i.e. the expected score is optimized if the true distribution of the observation is issued
as a forecast. It is called strictly proper relative to the class P , if (3.2) holds with
equality only if F = G.

Thus, a scoring rule is designed in a way that quoting the true distribution as the
forecasting distribution is an optimal strategy in expectation. This property is crucial,
as the use of improper scoring rules can lead to heavily misguided conclusions about
the predictive performance of a probabilistic forecast, see Gneiting and Raftery (2007),
Gneiting (2011), and Hendrickson and Buehler (1971).
The general idea of propriety dates back at least to Brier (1950), and Good (1952).
However, the term "proper" was apparently coined by Winkler and Murphy (1968).

Definition 3.1.3. A scoring rule Sc : ΩY × P → R is called regular relative the class
P , if Sc(F,G) is real-valued for all F,G ∈ P , expect that we allow Sc(F,G) = ∞ if
F ̸= G.

For a detailed mathematical analysis of properties and characterizations of proper
scoring rules we refer to Gneiting and Raftery (2007). In the subsequent section con-
nections to convex analysis are established by measure-theoretic representations, see
Rockafellar (1970). For related work on local proper scoring rules we refer to Ehm
and Gneiting (2012), Parry, Dawid, and Lauritzen (2012), and Ovcharov (2015). Local
proper scoring rules only depend on the forecast density through its value and the value
of its derivates at the observation y.

3.2. Score divergences

Directly associated with a given scoring rule Sc is the score divergence.

Definition 3.2.1. If the scoring rule Sc is regular and proper we call the non-negative
function

d(F,G) = Sc(F,G)− Sc(G,G) (3.3)

the associated divergence function, see Gneiting and Raftery (2007).

Clearly, the following holds:

Remark 3.2.2. If the scoring rule Sc is strictly proper, the associated divergence function
d(F,G) is strictly positiv, unless F = G.

Score divergences are closely related to the concept of Bregman-divergences, see
Bregman (1967). The connections can be revealed by representations of proper scoring
rules as supergradients of concave functions, see Gneiting and Raftery (2007), and
Hendrickson and Buehler (1971).

The result of the following theorem, see Gneiting and Raftery (2007), characterizes
proper scoring rules using the tools of convex analysis, see Rockafellar (1970).
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Theorem 3.2.3. The scoring rule Sc is proper relative to the class P if and only if
it is regular, and the expected score function (or entropy) e(F ) := Sc(F, F ) is concave
and Sc(F, ·) is a supergradient of e at the point F for all F ∈ P .

Example 3.2.4. Let P denote the class of probability measures with a square-integrable
Lebesgue-density f . Consider the quadratic score

QS(F, y) = −2f(y) +

∫
f 2(z)dz.

Then e(F ) is concave with supergradient QS(F, ·). Thus, QS is proper. An interesting
observation here is that although the linear score LS(F, y) = −f(y) has the same
expected score function e(F ), the linear score is not a supergradient, and, therefore, is
improper.

If the sample space is finite and the expected score function is sufficiently smooth, the
divergence function becomes the Bregman divergence, see Bregman (1967), which plays
a major role in optimization and has recently attracted the attention of the machine
learning community.
In case of infinite sample spaces, e.g. if ΩY = R, technical modifications such as
extensions to functional Bregman divergences are required, see Frigyik, Srivastava,
and Gupta (2008), and Ovcharov (2018).
The representations of proper scoring rules and the connection to Bregman divergences
reveal the close relation of proper scoring rules and convex analysis.
For real-valued quantities there is a broad range of scoring rules available and the
literature is rather sophisticated. However, for multivariate forecasts there is only a
very limited amount of scoring rules available. In the following, we will recall the major
important ones.

3.3. Continuous ranked probability score

The continuous ranked probability score (CRPS) is one of the most widely used scoring
rules for ΩY = R. Let P consist of the Borel probability measures on R. We identify
a probabilistic forecast, i.e. a member of the class P with its cumulative distribution
function F .

Definition 3.3.1 (see Matheson and Winkler (1976)). Let F be a CDF-valued prob-
abilistic forecast and y ∈ R be an observation. The CRPS is defined as

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1{y≤x})

2dx. (3.4)

Remark 3.3.2. The function

BSx(F, y) = (F (x)− 1{y≤x})
2

is a proper scoring rule itself, namely the Brier score, see Brier (1950).
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Figure 3.1.: Schematic CRPS. We use F = Φ(0, 1) the standard normal distribution
function, and y = 1.5 to illustrate the concept of the CRPS. The forecasting
distribution F is penalized for the grey shaded area left and right of the
realized value y through

∫ y

−∞ F (z)2dz and
∫∞
y
(1 − F (z))2dz respectively.

A lower score suggests a higher sharpness of the forecasting distribution
around the realization y.

If the first moment of F is finite, the CRPS can be represented alternatively. To
show this we need to following lemma, see Baringhaus and Franz (2004).

Lemma 3.3.3. Let X and Y be independent real random variables with finite expec-
tations. Let F be the distribution function of X, and G be the distribution function
of Y . Then

E|X − Y | =
∫ ∞

−∞
F (x)(1−G(x))dx+

∫ ∞

−∞
G(x)(1− F (x))dx.

Proof. We use

|X − Y | =
∫ ∞

−∞

[
1{X≤u<Y }(u) + 1{Y≤u<X}(u)

]
du
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and apply Fubini’s theorem. This leads to

E|X − Y | = E
(∫ ∞

−∞

[
1{X≤u<Y }(u) + 1{Y≤u<X}(u)

]
du

)
=

∫ ∞

−∞
E
(
1{X≤u<Y }(u)

)
du+

∫ ∞

−∞
E
(
1{Y≤u<X}(u)

)
du

=

∫ ∞

−∞
P(X ≤ u < Y )du+

∫ ∞

−∞
P(Y ≤ u < X)du

=

∫ ∞

−∞
P(X ≤ u) · P(Y > u)du+

∫ ∞

−∞
P(Y ≤ u) · P(X > u)du

=

∫ ∞

−∞
F (u) (1−G(u)) du+

∫ ∞

−∞
G(u) (1− F (u)) du.

Theorem 3.3.4. The CRPS can be stated equivalently as

CRPS(F, y) = E|X − y| − 1

2
E|X − X̃|, (3.5)

where X und X ′ are independent copies of a random variable with distribution F .

Proof. This statement follows directly form Lemma 3.3.3.

In the following, we will show that the CRPS is a strictly proper scoring rule relative
to the class P of probability measures on R. For Lemma 3.3.5 we refer to Baringhaus
and Franz (2004)

Lemma 3.3.5. Let X, X̃, Y, Ỹ be independent real random variables with finite ex-
pectations. Let X, X̃ be identically distributed with distribution function F , and let
Y, Ỹ be identically distributed with distribution function G. Then

E|X − Y | − 1

2
E|X − X̃| − 1

2
E|Y − Ỹ | ≥ 0, (3.6)

where equality holds if and only if F = G.

Proof. Inequality (3.6) follows from the fact that due to Lemma 3.3.3 the identity

E|X − Y | − 1

2
E|X − X̃| − 1

2
E|Y − X̃| =

∫ ∞

−∞
(F (x)−G(x))2dx

is true. Equality holds if and only if F = G λ-almost everywhere, where λ is the
Lebesgue measure on the Borel sets of R.

Theorem 3.3.6. Let P be the class of Borel probability measure on R. Then the
CRPS is a strictly proper scoring rule with respect to P
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Proof. We consider the associated divergence function of the CRPS

d(F,G) = CRPS(F,G)− CRPS(G,G)

= E|X − Y | − 1

2
E|X − X̃| −

(
E|Y − Ỹ | − 1

2
E|Y − Ỹ |

)
= E|X − Y | − 1

2
E|X − X̃| − 1

2
E|Y − Ỹ |,

where X and X̃ are i.i.d copies of a random variable with distribution function F and
Y and Ỹ i.i.d copies of a random variable with distribution function G. By applying
Lemma 3.6 the assertion follows.

The two representations of the CRPS already presented are the most frequently used
ones. However, note that the CRPS also can be represented quantile-based.

Definition 3.3.7. The pinball loss or quantile loss at level α ∈ [0, 1] with a predicted
α-th quantile q is defined as

Λα(q, x) = (α− 1{x<q})(x− q). (3.7)

−1.0 −0.5 0.0 0.5 1.0
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Figure 3.2.: The pinball loss function Λ0(0.3, x)

The CRPS can be represented as the pinball loss integrated over all quantile levels
α ∈ [0, 1]:

CRPS(F, y) =

∫ 1

0

2Λα(F
−1(α), y)dα, (3.8)
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where F−1(α) = inf{x|F (x) ≥ α} denotes the α-quantile of F .

The CRPS can also be generalized in order to emphasize certain parts of the forecast-
ing distribution F . Following Definition 3.3.1 we can add a threshold weight function
u : R → R+, see Diks, Panchenko, and Van Dijk (2011), so that

CRPSu(F, y) =

∫ ∞

−∞
(F (x)− 1{y≤x})

2u(x)dx. (3.9)

The quantile representation of the CRPS can be generalized as

CRPSν(F, y) =

∫ 1

0

2Λα(F
−1(α), y)ν(α)dα, (3.10)

where ν : [0, 1] → R+ is a quantile weight function. Note that Equations (3.9) and
(3.10) are in general not equivalent. In general, any non-negative function u and ν can
be utilized, provided that Equations (3.9) and (3.10) are convergent.

Emphasis Threshold weights Quantile weights
Uniform u(x) = 1 ν(α) = 1
Centre u(x) = ϕ(x) ν(α) = α(1− α)

Both tails u(x) = 1− ϕ(x)/ϕ(0) ν(α) = (2α− 1)2

Right tail u(x) = Φ(x) ν(α) = α2

Left tail u(x) = 1− Φ(x) ν(α) = (1− α)2

Table 3.1.: Possible weight functions for the CRPS. The weight functions u : R → R+

and ν : [0, 1] → R+ put additional emphasize on certain parts of the fore-
casting distribution. Forecasts with deviations on these parts are penalized
additionally and receive a higher score. Here ϕ and Φ denote the pdf and
cdf of the standard normal distribution.

Remark 3.3.8. Note that in this work we are concerned with evaluating multivariate
forecasts. With a little adjustment the CRPS can also be applied to multivariate quan-
tities. So let F be the multivariate d-dimensional probabilistic forecast with marginals
F1, . . . , Fd. Then the multivariate extension of the CRPS is definded as

CRPSa(F,y) :=
d∑

i=1

aiCRPS(Fi, yi),

where y = (y1, . . . , yd) is the d-dimensional observation and the coefficients a1, . . . , ad ∈
R allow us to emphasize or downweight certain coordinates.

3.4. Energy score

The energy score is a multivariate generalization of the CRPS and draws on Székely’s
energy distance, see Székely (2003). This scoring rule is very general and already
broadly discussed in literature. The energy score is defined as follows.
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Definition 3.4.1. Let Pβ, β ∈ (0, 2), denote the class of the Borel probability measures
on Rd such that E∥X∥β < ∞. As before, we identify a probabilistic forecast F ∈ Pβ

with its (multivariate) cumulative distribution function.
For a probabilistic forecast F and an observation y ∈ Rd the energy score is defined as

ESβ(F,y) = E∥X− y∥β − 1

2
E∥X− X̃∥β (3.11)

where X and X̃ are independent copies of a random vector with distribution F .

Remark 3.4.2. The case β = 1 seems to be the standard choice in practical application.
Obviously, the energy score reduces to the CRPS when β = 1 and d = 1.

In the following, we will show that the energy score is a strictly proper scoring rule
relative to the class Pβ. In literature a variety of proofs of this statement are proposed,
see e.g. Gneiting and Raftery (2007).
Here we essentially follow the proof of Baringhaus and Franz (2004). The idea is to
reduce the general case d > 1 to the special case d = 1 using the projection method.
Therefore, we assume that d > 1 for the rest of this section. Firstly, we have to
generalize Lemma 3.3.5.

Lemma 3.4.3. Let X, X̃, Y, Ỹ be independent real random variables with finite ex-
pectations. Let X, X̃ be identically distributed with distribution function F , and let
Y, Ỹ be identically distributed with distribution function G. Then for 0 < β < 2

E|X − Y |β − 1

2
EF |X − X̃|β − 1

2
EF |Y − Ỹ |β ≥ 0, (3.12)

where equality holds if and only if F = G.

Proof. We use the fact that |X−Y |β is a non-negative random variable and substitute
u = t

1
β . This yields

E|X − Y |β =

∫ ∞

0

P(|X − Y |β > t)dt =

∫ ∞

0

P(|X − Y | > t1/β)dt

=

∫ ∞

0

βuβ−1P(|X − Y | > u)du

=

∫
R
β|u|β−1 [P(X < u < Y ) + P(Y < u < X)] du

=

∫
R
β|u|β−1 [F (u)(1−G(u)) +G(u)(1− F (u))] du.

Similary, it holds that

E|X − X̃|β =

∫
R
2β|u|β−1F (u)(1− F (u))du,

E|Y − Ỹ |β =

∫
R
2β|u|β−1G(u)(1−G(u))du.
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Therefore, we have

2β

∫
R
|u|β−1

(
F (u)−G(u)

)2
du (3.13)

= 2β

∫
R
|u|β−1[F (u)(1−G(u)) + (1− F (u))G(u)

−F (u)(1− F (u))−G(u)(1−G(u))]du

= 2E|X − Y |β − E|X − X̃|β − E|Y − Ỹ |β. (3.14)

The Integral (3.13) is finite if |β − 1| < 1. Therefore, (3.14) is non-negative und finite
for all 0 < β < 2. The equality

2E|X − Y |β − E|X − X̃|β − E|Y − Ỹ |β = 0

holds if and only if F = G λ-almost everywhere, where λ is the Lebesgue measure on
the Borel sets of R.

Lemma 3.4.4. For each x ∈ Rd the representation

∥x∥ = γd ·
∫
Sd−1

|a′x|dµ(a) (3.15)

holds, where µ is the uniform distribution on Sd−1 := {x ∈ Rd : ∥x∥ = 1}, the surface
of the unit sphere in Rd, and

γd =

√
π(d− 1)Γ

(
d−1
2

)
2Γ
(
d
2

) . (3.16)

Proof. The result is clearly true for x = 0. So let x ̸= 0. It is well known, that the
uniform distribution on Sd−1 is invariant with respect to orthogonal transformations,
see Bryc (1995). Therefore, we have∫

Sd−1

|a′x|dµ(a) = ∥x∥
∫
Sd−1

∣∣∣∣a′ x

∥x∥

∣∣∣∣ dµ(a) = ∥x∥
∫
Sd−1

|a′e| dµ(a), (3.17)

where e = (1, 0, . . . , 0)′ ∈ Rd. To calculate the last integral we introduce the standard
normal random vector ξ = (ζ1, . . . , ζd)

′. It applies that ζ/∥ζ∥ is uniformly distributed
on the surface of the unit sphere, see Muller (1959).
Let X ∼ µ. Then it holds for X1 := X′e that

X1 ∼ τ :=
1

∥ζ∥
ζ1 =

ζ1√
ζ21 + · · ·+ ζ2d

.

Since ζ1, . . . , ζd are i.i.d standard normally distributed, ζ21 , . . . , ζ2d are i.i.d. gamma-
distributed with shape parameter α = 1/2 and rate parameter β = 1/2. The gamma
distribution is closed under convolution. Therefore,

ζ22 + · · ·+ ζ2d
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is gamma-distributed with parameters α = (d− 1)/2 and β = 1/2. It follows that

τ 2 =
ζ21

ζ21 + ζ22 + · · ·+ ζ2d

is beta-distributed with parameters α = 1/2 and β = (d − 1)/2. The density of
|τ | = |X′e| is given by

f(x) = 1[0,1](x)
Γ
(
d
2

)
√
πΓ
(
d−1
2

)2√1− x2
d−3

. (3.18)

To show this we consider the measurable function g : [0, 1] → [0,∞). We have

Eg(|τ |) = Eg
(√

τ 2
)
=

∫ 1

0

g(
√
x)

Γ
(
d
2

)
Γ
(
1
2

)
· Γ
(
d−1
2

) (1− x)
d−3
2

√
x

dx

=
Γ
(
d
2

)
√
π · Γ

(
d−1
2

) ∫ 1

0

g(
√
x)

(1− x)
d−3
2

√
x

dx

=
Γ
(
d
2

)
√
π · Γ

(
d−1
2

) ∫ 1

0

g(y)
(1− y2)

d−3
2

y
· 2y dy

=
Γ
(
d
2

)
√
π · Γ

(
d−1
2

) ∫ 1

0

g(y)2
√

(1− y2)
d−3

dy

Thus, u(y) = 1[0,1](y)
Γ( d

2)√
π·Γ( d−1

2 )
2
√

(1− y2)
d−3

is a density function of |τ |. So we have

E(|X′e|) =

∫
Sd−1

|a′e| dµ(a)

=

∫
1[0,1](y)

Γ
(
d
2

)
√
π · Γ

(
d−1
2

)2√(1− y2)
d−3

y dy

=
Γ
(
d
2

)
√
π · Γ

(
d−1
2

)2 ∫ 1

0

√
(1− y2)

d−3
y dy

=
Γ
(
d
2

)
√
π · Γ

(
d−1
2

) · 2 · 1

d− 1
= γ−1

d ,

which was to be proved.

Theorem 3.4.5. Let X, X̃,Y, Ỹ be independent d-dimensional random vectors. Let
X, X̃ be identically distributed with distribution function F and finite expectation
E∥X∥β <∞, and let Y, Ỹ be identically distributed with distribution function G and
finite expectation E∥Y∥β <∞. Then for 0 < β < 2 the inequality

2E∥X−Y∥β − E∥X− X̃∥β − E∥Y − Ỹ∥β ≥ 0 (3.19)

is true, and equality holds if and only if F = G.
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Proof. From Lemma 3.4.3 we have

2E|a′X− a′Y|β − E|a′X− a′X̃|β − E|a′Y − a′Ỹ|β ≥ 0 (3.20)

for each a ∈ Sd−1. Integrating with respect to the uniform distribution µ on Sd−1 we
obtain (3.19) from Lemma 3.4.4. Equality in 3.19 holds if and only if for µ-almost every
a ∈ Sd−1 the distributions of a′X and a′Y coincide. For each t ∈ R the characteristic
functions

φa′X := E exp(it(a′X)), a ∈ Sd−1,

and
φa′Y := E exp(it(a′Y)), a ∈ Sd−1,

are continuous. Thus, equality in (3.19) holds if and only if X and Y have the same
Fourier transform or equivalently the same distribution.

Corollary 3.4.6. It follows directly from Theorem 3.19, that the energy score ESβ is
a strictly proper scoring rule for β ∈ (0, 2) relative to the class Pβ of Borel probability
measures on Rd such that E||X||β <∞.

Lemma 3.4.7. In the limiting case β = 2 the energy score reduces to the squared
error.

ES2(F,y) = ∥µF − y∥2,

where µF denotes the mean vector of the distribution F .

Proof. This statement follows from a straightforward calculation:

ES2(F,y) = E∥X− y∥2 − 1

2
E∥X− X̃∥2

=
d∑

i=1

E(Xi − yi)
2 − 1

2

d∑
i=1

E(Xi − X̃i)
2

=
d∑

i=1

(
EX2

i − 2yiEXi + y2i
)
− 1

2

d∑
i=1

(
2EX2

i − 2(EXi)
2
)

=
d∑

i=1

(EXi)
2 − 2yiEXi + y2i

=
d∑

i=1

(EXi − yi)
2 = ∥µF − y˜|2.
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The associated divergence function is given by

dES2(F,G) = ES2(F,G)− ES2(F, F )

= E∥X−Y∥2 − 1

2
E∥X− X̃∥2 − 1

2
E∥Y − Ỹ∥2

=
d∑

i=1

E(Xi − Yi)
2 − 1

2

d∑
i=1

E(Xi − X̃i)
2 − 1

2

d∑
i=1

E(Yi − Ỹi)
2

=
d∑

i=1

(
EX2

i − 2EYiEXi + EY 2
i

)
− 1

2

d∑
i=1

(
2EX2

i − 2(EXi)
2
)

−1

2

d∑
i=1

(
2EY 2

i − 2(EYi)2
)

=
d∑

i=1

(EXi − EYi)2 = ∥EX− EY∥2,

where X, X̃ ∼ F and Y, Ỹ ∼ G.
Remark 3.4.8. Obviously the scoring rule ES2 is regular and proper as dES2(F,G) = 0
if F = G, that is

ES2(F, F ) ≤ ES2(F,G)

for all F,G ∈ P2. Note that ES2 is not strictly proper since we have dES2(F,G) = 0
whenever EX = EY, i.e. this score only depends on the first moment of the distribu-
tion.

3.5. Variogram score

The variogram score was introduced by Scheuerer and Hamill (2015) and is designed
particularly to be sensitive to misspecified correlations between the different compo-
nents of the forecast. The authors also hypothesize it is readily usable for ensemble
forecast diagnosis. The variogram score is motivated by the concept of a variogam,
which is also referred to as structure function.

Definition 3.5.1. Let Y be a d-dimensional random variable. The variogram of order
p > 0 is defined as

γp(i, j) :=
1

2
E|Yi − Yj|p, i, j,≤ d. (3.21)

The variogram is a popular tool in geostatistics and considers the pairwise differences
of the components of the multivariate variable of interest Y.
Remark 3.5.2. Let the order of the variogram be p = 2. Denoting µi := E(Yi), σ2

i :=
var(Yi) and ρij := corr(Yi, Yj) we have

E|Yi − Yj|2 = (µi − µj)
2 +

(
σ2
i − 2σiσjρij + σ2

j

)
. (3.22)
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m e as ur e t h at is s e nsiti v e t o di ff er e nt t y p es of mis c ali br ati o n of m ulti v ari at e f or e c asts.

D e fi ni ti o n 3. 5. 5. F or a gi v e n d - di m e nsi o n al o bs er v ati o n v e ct or y = ( y 1 , . . . , yd ) a n d a
m ulti v ari at e pr e di cti v e distri b uti o n F t h e v a ri o g r a m s c o r e of o r d e r p > 0 is d e fi n e d as

V S p (F, y ) =

d

i, j = 1

ω i, j |y i − y j |
p − E F |X i − X j |

p 2
, ( 3. 2 3)
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where Xi and Xj are the i-th and j-th component of a random vector X ∼ F . The
variogram score depends on the choice of the order p > 0 and the non-negatives weights
ωi,j.

The variogram score VSp measures the dissimilarity between approximations of the
variograms of order p of observations and forecasts over all pairs of components of the
variable of interest, see Scheuerer and Hamill (2015).
In applications standard choices for the order of the variograms are p = 0.5 or p = 1.
Also certain pairs of squared variogram differences can be emphasized or downweighted
by the choice of weights ωij. Common choices for the weights are ωij = 1 or inverse
distance weights. Especially in situations where there is some notion of the distance
between the i-th and j-th component the latter choice seems reasonable, as correlations
at short distances are typically stronger than those at larger distances.

Theorem 3.5.6. The variogram score is a proper scoring rule relative to the class of
probability distributions with finite (2p)-th moments of all components.

Proof. We consider a pair (i, j). For each pair the mean of the random variable Z :=
|Xi−Xj|p minimizes the expected squared deviation of Z for any fixed number a ∈ R,
i.e.

E(Z − E(Z))2 ≤ E(Z − a)2. (3.24)

This means inequality in (3.2) holds separately for any pair (i, j), but then it also holds
for the weighted sum over all pairs, for any choice of the non-negative weights.

Remark 3.5.7. Note that the variogram score is not strictly proper. For instance, large-
scale random errors that are the same for every component cancel out when differences
are considered. Also a bias that is the same for all components will not be recognized
which can be seen directly from the definition of the variogram score, see Scheuerer
and Hamill (2015). So particularly a shift of the forecasting distribution in comparison
to the true distribution will not be recognized.

3.6. Dawid-Sebastiani score

The Dawid-Sebastiani score is motivated by the logarithmic score (or log-score). The
log-score was proposed by Good (1992) and is defined as follows. Firstly let µ be a
σ-finite measure on the sample space (Ω,A). A probabilistic forecast F ∈ L1 is then
identified with its µ-density f , where L1 denotes the class of probability measures
dominated by µ.

Definition 3.6.1. The logarithmic score for the forecasting density f and observation
y ∈ Ω is defined as

LogS(f, y) := log(f(y)). (3.25)

Theorem 3.6.2. The logarithmic score is strictly proper relative to the class L1 of
probability measures dominated by µ.
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Proof. The associated divergence function becomes the classical Kullback-Leibler di-
vergence, see Kullback and Leibler (1951), so it follows directly that the logarithmic
score is strictly proper relative to the class L1.

Remark 3.6.3. Note that to apply this scoring rule we have to have a probabilistic
forecast available taking the form of a predictive density.

Based on the logarithmic score Dawid and Sebastiani proposed a scoring rule that
applies to the Borel probability measures on Rd and that depends on the predictive
distribution F only through its mean µ and its covariance matrix Σ.

Definition 3.6.4. Let F be a Borel probability measure on Rd with mean µ and
covariance matrix Σ. The Dawid-Sebastiani score for the forecasting distribution F
and observation y ∈ Rd is defined as

DSS(F,y) := log (det (Σ)) + (y − µ)′ Σ−1 (y − µ) . (3.26)

Remark 3.6.5. The first term penalizes dispersion (i.e. lack of sharpness) of the en-
semble. The second term penalizes lack of correspondence between the observed and
ensemble-mean vectors through the Mahalanobis distance, see Mardia, Kent, and Bibby
(1979).

Remark 3.6.6. Note that the Dawid-Sebastiani score can take values on the real line,
that is −∞ < DSS <∞.

Theorem 3.6.7. The Dawid-Sebastiani score is strictly proper relative to the convex
class of Gaussian measures.

Proof. Note that Equation 3.26 is a linear transformation of the log-likelihood function
for the multivariate Gaussian distribution, and so is related to the logarithmic score.
Therefore, it is strictly proper for Gaussian variables.

Remark 3.6.8. The Dawid-Sebastiani score can also be computed for forecasts and
observations where the first two moments of the underlying distributions are finite. In
this case it is proper but not strictly proper, see Gneiting and Raftery (2007).

Remark 3.6.9. The divergence function correspoding to the Dawid-Sebastiani score is
given by

d(F,G) = tr(Σ−1
F ΣG)− log

(
det(Σ−1

F ΣG)
)
+ (µF − µG)

′Σ−1
F (µF − µG)− d,

where tr(·) denotes the trace of a matrix.
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4. Reporting of probabilistic
forecasts

After introducing the theoretical concepts of probabilistic forecasts and their evaluation
by proper scoring rules we now deal with the reporting of the forecasting distribution
in practice.
As already stated above, we assume that the sample space is given by ΩY = Rd.
Moreover, let Y = (Y1, . . . , Yd)

′ be the d-dimensional random variable of interest with
cumulative distribution function G. We observe the realization y = (y1, . . . , yd) of Y.
Further, let X = (X1, . . . , Xd) be the forecast vector for Y with distribution F .
In practice there are essentially two options of reporting the distribution F that are
commonly employed, namely reporting the forecasting distribution F explicitly or re-
porting the forecast in form of an ensemble, see Gneiting, Stanberry, et al. (2008).

4.1. Explicit representation of the forecasting
distribution

This reporting option is quite self explaining. If we utilze this option, we have to report
the forecasting distribution F explicitly in form of its CDF, i.e. we report an estimate
of the CDF F of the underlying CDF G. This option is very general as it doesn’t
require any further conditions on the distribution.
It is also possible to report a term that provides equivalent information as the CDF.
If the distribution is (absolute) continuous with respect to the Lebesgue measure, it
admits a probability density function. Thus, reporting an estimate f of the density g
corresponding to the CDF G displays the same information as reporting the CDF in
this case. This forecasting technique corresponds to the term density forecast and is
commonly utilized in economics and finance, see Clements (2005).
As we are concerned particularly with the interdependence structure of multivariate
forecasts we also employ the following reporting option. The forecasting distribution
can be described using copulas. According to Sklar’s theorem we can decompose every
multivariate distribution in its marginals and a copula, which describes the dependency
structure, i.e.

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd))

and
G(x1, . . . , xd) = CG(G1(x1), . . . , Gd(xd)).
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That is, we can report the forecasting distribution by estimates F1, . . . , Fd of the
marginals G1, . . . , Gd and a copula estimate CF (·) of CG(·).
Another option is to report an estimate of the characteristic function ψX(t) = E(exp(it′X))
of ψY (t) := E(exp(it′Y)) which uniquely determines the distribution of Y.
Summing up, we report an estimate of the CDF or a term that yields equivalent in-
formation. To this end, it has to be noted that from an evaluation point of view we
must be able to draw a random sample from the reported distribution or solve some
characteristics such as the first two moments of the distribution.
For more sophisticated forecasting models reporting the distribution explicitly can be
very challanging or even impossible. However, the reporting option described in the
following section can still be applied in these cases. Accordingly, it has become the
standard alternative in practical application.

4.2. Ensemble forecast

Basically, an ensemble forecast is a collection of point forecasts for a specific quantity or
event. The ensemble forecast has been widely used in weather forecasting and climate
prediction, see Palmer (2002). Based on the original application in weather and climate
prediction such an ensemble prediction system consists of multiple runs of numerical
weather prediction models which differ either in initial conditions or in the model’s
parameterized analytical expression, see Gneiting and Katzfuss (2014). As the models
in this field are generally sophisticated the sample size is small. Typically, between
m = 10 and m = 50 runs are performed since these models require high computing
power, see Gneiting and Katzfuss (2014).
In the following, we denote an ensemble forecast by X = (X(1), . . . ,X(m)), where X(i)

is the outcome of one simulation run.
In practice, there are different approaches in building and interpreting these ensemble
models. Ideally, we would consider the ensemble system X as a collection of equally
likely scenarios, drawn from the same distribution. In this case the ensemble forecast
represents a Monte-Carlo simulation, particularly if the sample size m is large.
Therefore, one could argue that the distinction between the two described reporting
options is somewhat artifical. We can draw from a predictive distribution to obtain a
forecast ensemble and conversely estimate a predictive distribution given an ensemble
forecast system, particularly if the ensemble size is large.
However, this approach is rarely feasible in practice as ensemble forecasts are subject to
biases and dispersion erros, and, thereby call for statistical postprocessing, see Gneiting
and Katzfuss (2014). In general, there is no need to assume that the ensemble members
are equally likely or even draws from distributions at all. In literature, this methodology
is also known as ensemble simulation, path simulation, trajectory simulation or scenario
simulation. Depending on the field the meaning might differ as well.
However, in this work we will treat the ensemble forecast like a Monte-Carlo simulation.
Hence, we assume that the members of the ensemble forecast system are an i.i.d.
sample, and the sample size m is large. By these assumptions, it holds that the
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true underlying distribution function is described well by the simulated sample. This
approximation dates back to the multivariate Glivenko-Cantelli theorem. It states that
the multivariate empirical CDF is converging almost surely to the drawn distribution.
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5. Estimation of the score values

In this section we consider the estimators for the score values in practical application.
In this thesis we assume the observation y of the true distribution G is given and we
have the ensemble forecast X in form of an i.i.d. sample X(1), . . . ,X(m) available, that
is X(1), . . . ,X(m) are independent draws from the forecasting distribution F . Following
Ziel and Berk (2019), we formulate estimators for the different scoring rules.

5.1. CRPS

Basically, there are two options to estimate the CRPS which correspond to the different
representations (3.4) and (3.5). As the CRPS is a univariate scoring rule, we can only
compute the score for each marginal of the forecast and the observation.
By utilizing (3.4) one might be able to solve the corresponding integral in closed form
if the predictive distribution is reported explicitly.
If the forecast is reported in form of an i.i.d. sample X(1), . . . ,X(m) the integral can be
solved numerically by replacing the distribution function with an empirical distribution
function. The resulting estimator for the j-th component is given by

ĈRPSj :=

∫ (
1

m

m∑
i=1

1{X(i)
j ≤z} − 1{yj≤z}

)2

dz.

Alternatively, we can use (3.5) to estimate the two expectations. The resulting estima-
tor is a special case of the estimator of the energy score, see e.g. Taieb et al. (2016),
which we discuss in the following subsection.
Given the scores of each marginal we can compute the corresponding marginal score
by

ĈRPSa :=
d∑

j=1

aj · ĈRPSj

with constants a1, . . . , ad ∈ R.

5.2. Energy score

If the forecasting distribution is reported explicitly one might be able to provide a
closed-form formula for the energy score, for instance, in the case of multivariate Gaus-
sian distributions, see Pinson (2013), and Appendix A.3.
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In general, we have to estimate the two terms in (3.11) given the random sample
X = (X(1), . . . ,X(m)) of distribution F .
The calculation of the first part of the energy score is straightforward. We estimate
E∥X− y∥β as the sample mean

1

m

m∑
j=1

∥X(j) − y∥β.

The second part of the energy score E∥X − X̃∥β has multiple plausible options for
estimation as the definition implies that we require the independent copie X̃ of the
forecasting distribution.
By our assumption the members of the sample X(1), . . . ,X(m) are i.i.d. Therefore, we
might use one half of this set as draws from X and the other half as draws from X̃. So
the resulting estimator is given by

1

⌊0.5m⌋

⌊0.5m⌋∑
j=1

∥X(j) −X(⌊0.5m⌋+j)∥β

Note that the sum only contains ⌊m/2⌋ summands but they have nice statistical prop-
erties as they are i.i.d.
Another reasonable estimator is given by

1

m · (m− 1)

m∑
j=1

m∑
k=1

∥X(j) −X(k)∥β.

This estimator has the advantage of using a larger amount of summands for approxi-
mating the sum which should increase the precision of the estimator in general. Note
that the elements of the sum become pairwise dependent, so this improvement is weaker
as if the summands were independent.
The higher accuracy of the estimator goes hand in hand with a higher computational
demand. The amount of summands increases quadratically in m. Altogether, estima-
tors for the energy score are given by

ÊSiid
β =

1

m

m∑
j=1

∥X(j) − y∥β − 1

2
· 1

⌊0.5m⌋

⌊0.5m⌋∑
j=1

∥X(j) −X(⌊0.5m⌋+j)∥β

and

ÊSband
β =

1

m

m∑
j=1

∥X(j) − y∥β − 1

2
· 1

m · (m− 1)

m∑
j=1

m∑
k=1

∥X(j) −X(k)∥β.

5.3. Variogram score

The variogram score can be computed analogously to the energy score. If we apply
Reporting Option 1, we might be able to find closed-form solutions for the score value
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in some special case, like the case of multivariate normality.
In the standard case we can estimate the expectation (3.23) by the sample mean.
Thus, for a given weight matrix W = (ωi,j)i,j=1,...,d ∈ Rd×d

+ with non-negative weights
and order p > 0 we have

V̂ SW,p =
d∑

i,j=1

ωi,j

(
|yi − yj|p −

1

m

m∑
k=1

|X(k)
i −X

(k)
j |p

)2

.

Note that because of the symmetries |yi−yj| = |yj−yi| and |X(k)
i −X(k)

j | = |X(k)
j −X(k)

i |
computation costs can be halved in the implementation due to

V̂ SW,p = 2 ·
d∑

i=1

d∑
j=i+1

ωi,j

(
|yi − yj|p −

1

m

m∑
k=1

|X(k)
i −X

(k)
j |p

)2

. (5.1)

5.4. Dawid-Sebastiani score

The Dawid-Sebastiani score only depends on the first two moments of the forecasting
distribution. If Reporting Option 1 is used, we are usually able to compute these
moments explicitly.
In the case of Reporting Option 2 we can estimate the first two moments by their
sample counterparts

µ̂X =
1

m

m∑
k=1

X(k)

Σ̂X =
1

m− 1

m∑
k=1

(
X(k) − µ̂X

) (
X(k) − µ̂X

)′
.

Note that the sample mean and the sample covariance matrix are unbiased estimators.
So the estimator for the Dawid-Sebastiani score is given by

D̂SS = log
(
det
(
Σ̂X

))
+ (y − µ̂X)

′ Σ̂−1
X (y − µ̂X) .
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6. Evaluation of predictive
performance

In this chapter we discuss different measurements of the predictive performance of a
probabilistic forecast.
These measures not only allow to evaluate the predictive performance of different fore-
casts but also enable us to assess the discrimination ability, see Chapter 7, of different
scoring rules.
In this thesis we consider the following setting: Let G be the true underlying distribu-
tion which we aim to forecast by the forecasting distribution F . We assume that we
have the observations y1, . . . ,yN as random draws from the underlying distribution G
available.
Furthermore, we have the sample X

(1)
i , . . . ,X

(m)
i for i = 1, . . . , N available, where each

X
(k)
i is a random draw from the forecasting distribution F . In the following, we denote

the estimated score corresponding to the forecasting distribution F , and the observa-
tion yi of G as

Ŝc(F,yi),

where we utilize the random sample X
(1)
i , . . . ,X

(m)
i drawn from distribution F , and

the estimator Ŝc corresponding to the scoring rules Sc. The estimators of the scoring
rules considered in this thesis are discribed in Section 5. As an abbreviation we write
ScFi := Ŝc(F,yi). The sample mean

Sc
F
=

1

N

N∑
i=1

ScFi

will be the most relevant criterion when comparing the predictive performance of two
forecasting models.

6.1. Relative change in score

The relative change in score value is employed in Pinson and Tastu (2013). It consideres
the relative change in score value of a forecasting distribution F with respect to the
perfect forecast, where the forecaster reports the true underlying distribution correctly.
So let the underlying distribution be given by G, then the relative change in score is
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defined as

∆Sc(F,G) =
Sc

F − ScG

ScG
,

when the forecasting distribution is given by F . The score value ScG = 1
N

∑N
i=1 Sc

G
i

comes directly from the inherent uncertainty of the random variable which we aim to
forecast, see Pinson and Tastu (2013).
Note that in this definition the relative change in score is formulated in terms of the
empirical sample means of score values.
Alternatively, the relative change in score can also be defined in terms of the expected
score values, i.e.

RelChange(F,G) =
Sc(F,G)− Sc(G,G)

Sc(G,G)
,

which we will denote as the expected relative change in score.

6.2. Generalized discrimination heuristic

The relative change in score value can be adjusted to measure the discrimination ability
of scoring rules over multiple misspecified forecasting models, see Alexander et al.
(2022).
This generalized discrimination heuristic is defined as

GDHSc =
1

k

k∑
i=1

ScF
(i)

ScG
,

where F (1), . . . , F (k) are different forecasting distributions. A large value for the gen-
eralized discrimination heuristic may indicate that the ranking of the scores is reliable
and robust in the simulation of sample size N .

6.3. Error rate comparison

In Alexander et al. (2022) another metric for assessing the discrimination ability of a
scoring rule is proposed. The error rate is the probability of the event that the score
corresponding to a miscalibrated forecast is lower than the score corresponding to the
true model, i.e. the error rate is the probability that the score difference

ScFi − ScGi

is lower than zero for i = 1, . . . , N .
Note that the error rate is a binary metric and does not take the magnitude into
account by which the scores of misspecified models are smaller than that of the true
model. By averaging over a sample of scores the error rate decreases, until it reaches
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zero in case of strictly proper scoring rules as the sample size N increases.
Furthermore, the distribution of the absolute differences ScF1 −ScG1 , . . . , Sc

F
N −ScGN can

be studied.

6.4. Test for significance: the Diebold-Mariano test

The most important criterion for comparing probabilistic forecasts will be the Diebold-
Mariano test. To assess the quality of different probabilistic forecasts or the discrimina-
tion ability of a scoring rule the comparison of the sample means or the relative change
in score is incomplete as no consideration is given to the statistical significance of the
result. In any particular realization one forecast has to perform better, but one wants
to know if the difference in score value is statistically significant. Therfore, we want to
know whether a lower score value ’in sample’ was good luck, or truely an indicator of
a difference ’in population’, see Diebold (2015).
Hence, the need for a formal test for comparing predictive accuracy is obvious. Thus,
we want to give an overview of a test introduced by Diebold and Mariano that was de-
signed for point forecast evaluation, see Diebold and Mariano (2002). The test design
is very general and allows for several generalizations. In Weron and Ziel (2019) and
Uniejewski, Weron, and Ziel (2017) the Diebold-Mariano test is applied in multivariate
settings and in Möller, Lenkoski, and Thorarinsdottir (2013) the test is utilized in an
application for the energy score.
In the following, we describe the Diebold-Mariano test exactly for our setting. The
true distribution is given by G, and we have the two competing forecasts F (1) and F (2)

available. From an evaluation point of view we have the observations y1, . . . ,yN as
random draws from distribution G and the i.i.d. sample X

(1)
i , . . . ,X

(m)
i for i = 1, . . . N

as random draws from the distribution F (1) as well as the i.i.d. sample Z(1), . . . ,Z
(m)
i

for i = 1, . . . N as random draws from the distribution F (2) available.
The DM-test checks if the corresponding sample mean Sc

F (1)

is significantly different
from Sc

F (2)

. Therefore, score differences are required. Given the losses ScF
(1)

1 , . . . , ScF
(1)

N

and ScF
(2)

1 , . . . , ScF
(2)

N we define the loss differential between the two forecasts as

dF
(1)F (2)

j = ScF
(1)

j − ScF
(2)

j , for j = 1, . . . , N.

In this way, we can state the null hypothesis of the Diebold-Mariano test as

H0 : E(dF (1)F (2)

j ) = 0 for all j = 1, . . . , N

versus the alternative hypothesis

H1 : E(dF (1)F (2)

j ) ̸= 0.

The null hypothesis states that the competing forecasts have the same accuracy, whereas
the alternative hypothesis says that the forecasts have different levels of accuracy.
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The asymptotic test is constructed as follows. For the two forecasts we have the sample

loss differential
(
dF

(1)F (2)

j

)N
j=1

.

Note that in the setting of this thesis the loss differential series
(
dF

(1)F (2)

j

)N
j=1

is inde-

pendent. So under the null hypothesis H0 it holds that

d− µ√
σ2

N

D→ N (0, 1),

where

• µ = E(dF (1)F (2)

j ),

• d = 1
N

∑N
j=1 d

F (1)F (2)

j is the sample mean of the loss differential, and

• σ2 is the variance of the loss differential.

This result follows directly by the central limit theorem. Resulting from this the
Diebold-Mariano test utilizes the test statistic

DM =
d√
σ̂2

N

,

where σ̂2 is sample covariance of the loss differential. The null hypothesis of the
Diebold-Mariano test is rejected at a significance level α if |DM| > z1−α/2, where
z1−α/2 is the (1− α/2) - quantile of the standard normal distribution.
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7. Discrimination ability

In this thesis we are mainly concerned with the discrimination ability of the different
scoring rules. This means we want to know how well the scoring rules can distinguish
between different forecasting distributions.
The concept of discrimination ability is inspired by the work of Murphy (1993). Note
that the concept of discrimination ability is a property of the scoring rule only, not of
the forecasts themselves.
In general, the discrimination ability can not be assessed by the definition of the scoring
rule. We can only prove that a scoring rule is strictly proper.
The most important measurments to assess the discrimination ability of a scoring
rule is the Diebold-Mariano test as all other measures do not consider the statistical
significance of the results.

7.1. Introduction

Propriety is a property of scoring rules involving a predictive distribution and the real
distribution of the underlying process. In practice, the real distribution is generally
unknown, and one is left with comparing alternative forecasting distributions, say F (1)

and F (2), generated by two rival forecasters.
Propriety does not ensure that a difference in quality of the two forecasts F (1) and F (2)

would yield a difference between the resulting score values Sc(F (1),y) and Sc(F (2),y)
for any observation y ∈ Rd drawn from the true distribution G.
Consequently, Pinson and Tastu (2013) refer to discrimination ability as the property
of the scoring rule Sc such that

F (1) ≻ F (2) ⇐⇒ Sc(F (1),y) < Sc(F (2),y) (7.1)

for any observation y drawn from G. In the above F (1) ≻ F (2) means that F (1) is
a forecast of higher quality than F (2). A scoring rule is said to have a higher dis-
crimination ability if differences in quality between predictive distributions reflect in
significant differences in score values. On the opposite, a scoring rule is said to have no
discrimination ability, if the same score values are assigned to predictive distributions
of different quality.
Note that proper scoring rules as the variogram score may not need to have any dis-
crimination ability at all, since it is possible that they assign the same score values
to all predictive distributions F , as well as to the true underlying distribution G from
which the observation y was drawn. The situation is different for strictly proper scoring
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rules. They should at least discriminate between forecasting distributions that are in
the neighbourhood of G. However, for probabilistic forecasts significantly different from
the underlying distribution it is not safe to claim that the scoring rule discriminates
among predictive distributions.

7.2. Preliminaries on discrimination ability of
different scoring rules

Although the energy score is the most prominent multivariate strictly proper scoring
rule, it is frequently criticized in literature due to the apparently poor discrimination
ability with respect to the interdependence structure of probabilistic forecasts, see e.g.
Pinson and Tastu (2013), and Scheuerer and Hamill (2015).
In the study of Pinson and Tastu (2013) the discrimination ability of the energy score is
evaluated in a simulation study while considering the bivariate normal distribution. In
their simulation study the authors utilized the relative change in score value to assess
the discrimination ability of the energy score. They conclude that the energy score can
not separate differences in the dependency structure well.
In this working paper also an upper bound of the relative change in score of the energy
score in the multivariate Gaussian case is calculated. To this end, they compute the
relative change in score for the naive forecast which totally ignores the interdependence
between the components, while for the true distributions the components are perfectly
dependent. In this case they are able to find a closed-form solution for the relative
change in score.
They found that this upper bound is increasing in dimension size d, but it reaches an
asymptote of less than 15% for higher dimensions, see appendix A.3 with σ and β both
set to 1.
So overall, this made reseachers and practitioners skeptical in using the energy score.
In the following, we will discuss this simulation study in detail and draw some different
conclusions about it.

Following the conclusions of Pinson and Tastu (2013) and the resulting skepticism
about the discrimination ability of the energy score, new scoring rules have been pro-
posed. The most prominent example is the variogram score which was introduced to
overcome the reported problems of the energy score, see Scheuerer and Hamill (2015).
It is evident by its definition that this scoring rule is specifically designed to be sensitive
with respect to the interdependence structure of the forecasting distribution. However,
the variogram score has one major drawback, namely it is not strictly proper. Thus,
it can not identify the true underlying model.
It is also problematic that large-scale random errors that are the same for all compo-
nents cancel out when differences are considered; likewise, a bias that is the same for
all components will go undetected. Furthermore, the variogram score of order p is not
able to distuingish among distributions which have the same p-th moments but differ
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in higher moments.

Another reported plausible candidate is the multivariate log-score. This scoring rule
requires a multivariate density forecast which is not the case in many applications. As
discussed in A. Jordan, Krüger, and Lerch (2017), this density can be approximated.
Let us remark that these approximation methods suffer efficiency in higher dimension
and the results depend crucially on the chosen approximation methods.

Furthermore, we have the Dawid-Sebastiani score, see e.g. Gneiting and Raftery (2007).
This scoring rule evaluates the mean and covariance matrix of the distributions and
corresponds to the log-score in the multivariate Gaussian setting. Moreover, a char-
acterization only by the first two moments is not sufficient in many applications. In
general, it holds true that the Dawid-Sebastiani score is not strictly proper.

To address these considerations, Ziel and Berk (2019) introduced a new sort of scor-
ing rule that is sensitive to the interdependence structure of probabilistic forecasts
using copula theory.
The idea is to describe a given multivariate distribution by its marginals and the cop-
ula for the dependency structure. By extracting the dependency structure the authors
intend to construct a more sensitive measurement for evaluating dependencies. After-
wards, by combining a score for the marginals with one for the copula one obtains a
proper or even strictly proper scoring rule. However, the authors conclude that these
marginal-copula scores do not perform better than the original energy score in terms
of discrimination ability based on their simulation studies. This conclusion is not sur-
prising as the dependence structure given by the copula has to be assessed with one
of the available multivariate scoring rules. Note that the copula itself is a multivariate
distribution.
It also has to be mentioned that this paper is one of the very few that evaluates the
discrimination ability of a scoring rule with the Diebold-Mariano test.

Another newly proposed scoring rule is the CRPS-sum introduced by Salinas et al.
(2019). Various studies have shown that the energy score in particular, as well as the
variogram score and the Dawid-Sebastiani score seem to be not relieable metrics for
evaluating multivariate forecasts. Therefore, the CRPS-sum has gained a lot of promi-
nence lately, see Salinas et al. (2019).
While the CRPS-sum has been well-received in the scientific community, the properties
of the CRPS-sum are studied merely in Koochali et al. (2022). One major drawback
of the CRPS-sum is, that it is not strictly proper. Thus, it is not able to identify the
true model. Furthermore, the authors found that the CRPS-sum performs significantly
worse than the energy score in their simulation studies, see Salinas et al. (2019). for
this reason, and because this scoring rule is not strictly proper we will not consider it
any further.
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However, when we consider the results of a couple of researches, e.g. Pinson and Tastu
(2013) and Scheuerer and Hamill (2015), that mention the weak discrimination ability
of the energy score they all refer to the working paper simulation study of Pinson and
Tastu (2013). This study only considers the energy score with parameter β = 1 and
utilizes the relative change in score value as a measure to evaluate the discrimination
ability of a given scoring rule.
From a statistical point of view a comparison of the sample mean or the relative change
of the score values is incomplete as no consideration is given to the statistical signifi-
cance of the result.
In the following, we want to determine if the difference in the discrimination ability of
the scoring rules is statistically significant. In order to study the discrimination ability
of the different scoring rules we have to access the score values of forecasting distribu-
tions of different quality with the Diebold-Mariano test. If a scoring rule discriminates
well
between different forecasting distributions, the Diebold-Mariano test should detect that
the forecasting distributions differ significantly.
At this point, we would like to emphasize that the following simulation studies are
designed in such a way that we do not want to find the best probabilistic forecast for
an unknown distribution. Instead, we want to compare the different scoring rules with
respect to their discrimination ability. Therefore, we assume that both the forecasting
distributions and the underlying distribution are known.

7.3. Simulation study I: bivariate Gaussian process

As already stated above, Pinson and Tastu (2013) conclude that the energy score
nicely discriminates predictive distributions with different mean parameters, but has a
poor discrimination ability with respect to the interdependence structure of different
forecasts.
In their working paper, the authors considered solely the energy score with parameter
β = 1 and assessed the score values corresponding to the different forecasts with the
relative change in score. If the relative change in score value with respect to the true
model of a miscalibrated forecast is small, this means that the discrimination ability
of the scoring rule is rather poor.
However, note that by simply considering this measurement the statistical significance
of the results is not considered. Therefore, we extend the simulation study and assess
the score values of the different forecasts utilizing the Diebold-Mariano test with respect
to the true distribution.
In this study we not only consider the energy score with parameter β = 1 because we
conjecture that the choice of the parameter β also affects the discrimination ability of
the energy score.
Furthermore, we consider the variogram score und the Dawid-Sebastiani score which
is designed specifically for Gaussian distributions in order to compare them with the
energy score.
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For the calculation of the score values an ensemble size of m = 214 is utilized. As a
result, we can assume that the forecasting distribution is described well by the ensemble.
In contrast, Pinson and Tastu (2013) utilized an ensemble size of m = 1000.
Further, this experiment is replicated N = 29 times, i.e. we use N = 29 random draws
from the underlying distribution GY.
Analogous to the study of Pinson and Tastu (2013), let the distribution generating the
real process be given by a bivariate Gaussian distribution GY with mean µY = (µ, µ)′

and covariance structure
Σ(ρ) = σ2

(
1 ρ
ρ 1

)
.

For the forecasting model, we also consider a bivariate Gaussian distribution FX.
In the subsequent simulation study, we consider the following differences between the
distributions GY and FX:

• (Error in mean) The forecasting distribution FX is given by a bivariate Gaussian
distribution with correct covariance structure Σ(ρ) but a misspecified mean µX =
(µ̂, µ̂)′.
This means for every replication the forecaster iusses a forecast describing the
multivariate distribution of a random variable X such that

X ∼ N2(µX,Σ(ρ)).

The resulting difference between GY and FX is pictured in Figure 7.1a.

• (Error in variance) Here only the variance is misspecified, i.e. for every repli-
cation the forecaster iusses a forecast describing the multivariate distribution of
the random variable X such that

X ∼ N2(µY, Σ̂(ρ)),

where

Σ̂(ρ) = σ̂2

(
1 ρ
ρ 1

)
.

For the resulting difference between the distributions GY and FX see Figure 7.1b.

• (Error in correlation) In this case the forecaster makes an error when specifying
the dependency structure, while describing the mean µY and the variance σ2

of the process correctly. This means for every experiment the forecaster iusses
a forecast describing the multivariate distribution of a random variable X such
that

X ∼ N2(µY,Σ(ρ̂)),

where

Σ(ρ̂) = σ2

(
1 ρ̂
ρ̂ 1

)
.

The resulting difference between the distributions is pictured in Figure 7.1c.
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(a) errors in mean
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(b) errors in variance

y1
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(c) errors in correlation

Figure 7.1.: Illustration of different misspecifications in the process generating distri-
bution. Each distribution is represented by a single isoline of its corre-
sponding density. The volume over the area bounded by the ellipse equals
α. The solid red lines represent the density generating the real process,
the dotted black lines the misspecified densities. In (a) errors in mean are
shown. The misspecified densities are shifted copies of the real density
in direction of the major axis. In (b) errors in variance are shown. This
results in inflation (σ̂2 > σ2) respectively deflation (σ̂2 < σ2) of the ellipse.
In (c) errors in correlation are shown. This results in stretching the el-
lipse in direction of its major axis (ρ̂ > ρ) or in direction of its minor axis
(ρ̂ < ρ).

To evaluate the forecasting distributions we utilize the following multivariate scoring
rules:

• Energy score ES0.5, estimated by ÊS
band

0.5 ,

• Energy score ES1, estimated by ÊS
band

1 ,
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• Energy score ES1.5, estimated by ÊS
band

1.5 ,

• Variogram score VSW,1, estimated by V̂SW,1, with W =

(
1 1
1 1

)
,

• Dawid-Sebastiani score DSS, estimated by D̂SS.

As already stated above, in this simulation study we compute the relative change in
score and the DM-test statistic both with respect to the true model.

7.3.1. Errors in mean

First, we consider errors in mean: Let the real distribution Y be given by a bivari-
ate Gaussian process with mean µ = 5, correlation ρ = 0.5, and variance σ2, where
σ2 ∈ {1, 3, 5, 7, 9}. In order to characterize the sensitivity to the process variance the
following assessment is performed for different values of σ2.
Note that any other values of µ and ρ would yield qualitatively similar results.
As we aim to determine the sensitivity to a misspecified mean we assume the correla-
tion and the variance are reported correctly.
So let µ̂ be the mean parameter of the predictive distribution. We choose µ̂ out of the
grid {0, 0.5, 1, 1.5, . . . , 9.5, 10}. The relative change in score value ∆Sc is evaluated as
a function of the normalized error in mean (µ − µ̂)/σ. First of all, the energy score
and the Dawid-Sebastiani score are able to identify the correctly specified forecasting
distribution.
Furthermore, it can be noted that in particular for the energy score the relative pre-
diction error seems independently of the process variance.
Since the energy score is based on an Euclidean distance the relative change in energy
score solely depends on the magnitude of the normalized error in mean and not on
the direction of the shift of the distribution along the translation axis, see Figure 7.1a.
This means the discrimination ability is symmetric with respect to errors in mean.
Obvioulsy, the scale of the relative change in score value changes due to a different
coefficient β, see Figure 7.2a, Figure 7.2b and Figure 7.2c.
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Figure 7.2.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with ∆Sc, in terms
of their sensitivity to prediction errors in mean for bivariate Gaussian pre-
dictive densities.

The variogram score isn’t able to discriminate between the different distributions at
all, see Figure 7.2d, as the bias in mean is the same in every component, and, therefore,
cancels out. This follows directly from the definition of the variogram score.
Similar to the energy score, the Dawid-Sebastiani score is symmetric with respect to
errors in mean. This follows directly from the Definition (3.26) of the Dawid-Sebastiani
score.

To statistically evaluate these results we apply the Diebold-Mariano test and com-
pute the test statistic values corresponding to each forecasting experiment. Remember
that the null hypothesis H0 of equal predictive accuracy of two competing distributions
is rejected at significance level α if the absolute value of the test statistic is greater
than the (1 − α/2) - quantile of the standard normal distribution z1−α/2. A common
choice is α = 5% which corresponds to z1−α/2 = 1.9600.

First, we note that all scoring rules except the variogram score are capable of de-
tecting the calibrated forecast, see Figure 7.3. The Dawid-Sebastiani score and the
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energy score yield large values for the test statistics and are comparable sensitive with
respect to erros in mean. The energy score falsely accepts the null hypothesis of equal
predictive performance solely for a normalized error of 0.1667 and the Dawid-Sebastiani
score only for −0.1667.
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Figure 7.3.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with the Diebold-
Mariano test with respect to the true underlying distribution, in terms of
their sensitivity to prediction errors in mean for bivariate Gaussian predic-
tive densities. The statistics are capped at 10 to improve interpretability.

The energy score with greater parameter β falsely accepts the null hypothesis for a
broader range of normalized errors in mean. This means the discrimination ability of
the energy score decreases with an increasing parameter β.
As considering the relative change in score value indicates, nearly the DM-test statistic
values of all forecasts evaluated with the variogram score fall in the range from −1.96
to 1.96, i.e. the variogram score is not able to discriminate between the different
distributions.
Remark 7.3.1. As previously noted, it can be concluded from the simulation studies
that the discrimination ability of the energy score with respect to errors in mean is
independent of the process variance σ2.
To be more precise, the relative change in score and also the values of the DM-test
statistic seem to depend solely on the relative error in mean (µ− µ̂)/σ.
This is proven as followes:
Remember that the forecasting distribution is given by X ∼ N (µX,Σ(ρ)), where µX =
(µ̂, µ̂)′ and

Σ(ρ) = σ2

(
1 ρ
ρ 1

)
.

The true underlying distribution is given by Y ∼ N (µY,Σ(ρ)), where µY = (µ, µ)′.
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We can rewrite X = µX + σ ·U and Y = µY + σ ·U respectively, where

U ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
.

The expected relative change in score for the energy score is given by

RelChange(F,G) :=
E∥X−Y∥β − 1

2
E∥X− X̃∥β − 1

2
E∥Y − Ỹ∥β

1
2
E∥Y − Ỹ∥β

.

We can write these term as

E∥X− X̃∥β = E∥µX + σ ·U− µX + σ ·V∥β

= σβE∥U−V∥β,

E∥Y − Ỹ∥β = E∥µY + σ ·U− µY + σ ·V∥β

= σβE∥U−V∥β,

and

E∥X−Y∥β = E∥µX + σ ·U− µY + σ ·V∥β

= σβE
∥∥∥∥ 1σ · (µX − µY) +U−V

∥∥∥∥β ,
where U,V are independent, and

U,V ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
.

It follows that:

RelChange(F,G) :=
E∥ 1

σ
· (µX − µY) +U−V∥β − E∥U−V∥β

1
2
E∥U−V∥β

.

Hence, we can conclude that the relative change in score does not depend on the pro-
cess variance, but on the normalized error in mean (µ− µ̂)(σ).

This calculation can analogously be carried out for the Diebold-Mariano test. Re-
member that d denotes the sample mean of the loss differential.
We now consider the closed-form counterpart, i.e. the expected loss differential d :=
Sc(F (1), G)− Sc(F (2), G). In the current setting this yields

d = ES(F,G)− ES(G,G)

= E∥X−Y∥β − 1

2
E∥X− X̃∥β − 1

2
E∥Y − Ỹ∥β

= σβE∥ 1
σ
(µX − µY) +U−V∥β − σβE∥U−V∥β,
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where U,V are independent, and

U,V ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
.

Furthermore, it holds true for the variance of the loss differential that

Var

(
∥X−Y∥β − 1

2
∥X− X̃∥β − 1

2
∥Y − Ỹ∥β

)
= Var

(
∥X−Y∥β

)
− 1

4
Var

(
∥X− X̃∥β

)
− Var

(
∥Y − Ỹ∥β

)
.

We observe that the single terms can be rewritten as

Var
(
∥X−Y∥β

)
= Var

(
∥µX + σ ·U− µY + σ ·V∥β

)
= σ2βVar

(∥∥∥∥ 1σ (µX − µY) +U−V

∥∥∥∥β
)
,

Var
(
∥X− X̃∥β

)
= σ2βVar

(
∥U−V∥β

)
,

and

Var
(
∥Y − Ỹ∥β

)
= σ2βVar

(
∥U−V∥β

)
,

Therefore, the term σβ cancels out, and, thus, the Diebold-Mariano test statistic de-
pends on the normalized error in mean independent of the process variance.

7.3.2. Errors in variance

The setup for errors in variance is similar: We keep the mean and correlation param-
eters fixed as µX = µY = (0, 0)′ and ρ = 0.5. In this example, we evaluate ∆Sc as a
function of the relative prediction error in variance which is defined as (σ2 − σ̂2)/σ2,
where σ̂2 is the predictive variance.
We choose σ̂2 out of the grid {0, 0.5, 1, . . . , 9, 5, 10}. As above, the assessment is per-
formed for a set of σ2 with σ2 ∈ {1, 3, 5, 9} to characterize the sensitivity to the process
variance.
First, it can be stated that all three scoring rules are able to identify the calibrated
forecast. All curves are zero or close to zero if the normalized error in variance is zero.
Further, one can observe that the relative change in score value does not depend on
the process variance.
In contrast to errors in mean, the discrimination ability of all three scoring rules is
not symmetric. The relative change in score value ∆Sc increases much steeper for too
sharp densities than for densities that are too wide.
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One can confirm the statement of Pinson and Tastu (2013) that the scales of the rel-
ative change in energy score in Figure 7.2a and Figure 7.4a, Figure 7.2b and Figure
7.4b such as Figure 7.2c and Figure 7.4c differ by a factor of 20− 30, and the relative
changes in Dawid-Sebastiani score in Figure 7.2e and Figure 7.4e differ by a factor of
10.However, note that in this simulation study we compute the relative change in score
value as a function of the normalized error in variance in contrast to the previous study.
Therefore, this statement of Pinson and Tastu (2013) is initially not so meaningful.
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Figure 7.4.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with ∆Sc, in terms
of their sensitivity to prediction errors in variance for bivariate Gaussian
predictive densities.
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Afterwards, we apply the Diebold-Mariano test. As above, the statistics in Figure
7.5 are capped at 10. In this setting, the Dawid-Sebastiani score seems to have the best
discrimination abilities. For the calibrated forecast all values of the DM-test statistic
lie in the interval from −1.96 to 1.96, i.e. the null hypothesis is not falsely rejected
at significance level α = 5%. This also applies to the energy score with coefficients
β = 0.5 and β = 1 and the variogram score. However, it can be noticed that in general
the values of the DM-test statistic are greatest in case of the Dawid-Sebastiani score
followed by the energy score with coefficient β = 0.5. The values of the DM-test statistic
for the energy score with β = 1 and the variogram score are smaller. Both seem to
perform quite comparable in this simulation study. Lastly, we have the smallest values
for the enery score with β = 1.5. In other words, the interval of normalized errors in
mean for which the null hypothesis can (partially falsely) not be rejected is smallest
for the Dawid-Sebastiani score followed by the energy score with parameter β = 0.5.
So again, the Dawid-Sebastiani score has the best discrimination ability among the
considered scoring rules.
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Figure 7.5.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with the Diebold-
Mariano test, in terms of their sensitivity to prediction errors in variance
for bivariate Gaussian predictive densities.
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Remark 7.3.2. Similarly to the previous subsection, we can show that the relative
change in score and the values of the Diebold-Mariano test statistic as a function of
the normalized error in variance are independent of the process variance σ.
So let the forecasting distribution be given by X ∼ N

(
µY, Σ̂(ρ)

)
and the true under-

lying distribution is Y ∼ (µY,Σ(ρ)), where

Σ(ρ) = σ2

(
1 ρ
ρ 1

)
, and Σ̂(ρ) = σ̂2

(
1 ρ
ρ 1

)
.

Again, we can rewrite X and Y as X = σ̂ ·U and Y = σ ·U respectively, where

U ∼ N
(
0
0

)
,

(
1 ρ
ρ 1

)
.

First, note that the normalized error in variance can be rewritten as

σ2 − σ̂2

σ2
= 1− σ̂2

σ2
.

Hence, the relative change in score and the DM-test statistic values depend on the
ratio of σ̂ to σ. It holds for the expected relative change in score that

RelChange(F,G) =
E∥X−Y∥β − 1

2
E∥X− X̃∥β − 1

2
E∥Y − Ỹ∥β

1
2
E∥Y − Ỹ∥β

,

where

E∥X− X̃∥β = σ̂βE∥U−V∥β,

E∥Y − Ỹ∥β = σβE∥U−V∥β,

and

E∥X−Y∥β = σβE∥ σ̂
σ
U−V∥β,

where U,V are independent, and

U,V ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
.

Therefore,

RelChange(F,G) = =
σβE∥ σ̂

σ
U−V∥β − 1

2
σ̂βE∥U−V∥β − 1

2
σβE∥U−V∥β

1
2
σβE∥U−V∥β

=
2E∥ σ̂

σ
U−V∥β

E∥U−V∥β
− σ̂β

σβ
− 1.
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So, the expected relative change in score depends on the the ratio σ̂/σ. Next, we consider
the Diebold-Mariano test and calculated the expected loss differential d = Sc(F (1), G)−
Sc(F (2), G). It holds that

d = E∥X−Y∥β − 1

2
E∥X− X̃∥ − 1

2
E∥Y − Ỹ∥

= σβE∥ σ̂
σ
U−V∥β − 1

2
σ̂βE∥U−V∥β − 1

2
σβE∥U−V∥β

= σβE∥ σ̂
σ
U−V∥β − 1

2
E∥U−V∥β

(
σ̂β + σβ

)
,

where U,V are independent. Moreover, for the variance of the loss differential it holds
that

Var

(
∥X−Y∥β − 1

2
∥X− X̃∥β − 1

2
∥Y − Ỹ∥β

)
= σ2βVar

(
∥U− σ̂

σ
V∥β

)
+

1

4
σ̂2βVar

(
∥U−V∥β

)
+

1

4
σ2βVar

(
∥U−V∥β

)
.

Let us now consider
d2

Var
(
∥X−Y∥β − 1

2
∥X− X̃∥β − 1

2
∥Y − Ỹ∥β

)
=

(
σβE∥ σ̂

σ
U−V∥β − 1

2
E∥U− V∥β

(
σ̂β + σβ

))2
σ2βVar

(
∥U− σ̂

σ
V∥β

)
+ 1

4
σ̂2βVar (∥U−V∥β) + 1

4
σ2βVar (∥U−V∥β)

=
(
σ2βE∥ σ̂

σ
U−V∥2β − (σ2β + σ̂σ)E∥ σ̂

σ
U−V∥βE∥U−V∥β

+
1

4

(
σ̂2β + 2σβσ̂β + σ2β

)
E∥U−V∥β

)
·
(
σ2βVar

(
∥U− σ̂

σ
V∥β

)
+
1

4
σ̂2βVar

(
∥U−V∥β

)
+

1

4
σ2βVar

(
∥U−V∥β

) )−1

=

[
E∥ σ̂
σ
U−V∥2β −

(
(1 +

σ̂

σ

)
E∥ σ̂
σ
U−V∥βE∥U−V∥β

+
1

4

(
σ̂2β

σ2β
+ 2

σ̂β

σ
+ 1

)
E∥U−V∥β

]
·
(
Var

(
∥U− σ̂

σ
V∥β

)
+
1

4

σ̂2β

σ2β
Var

(
∥U−V∥β

)
+

1

4
Var

(
∥U−V∥β

) )−1

.

Therefore, the value of the DM-test statistic depends not on the process variance σ,
but on the ratio σ̂/σ of the forecasted variance and the process variance.

7.3.3. Errors in correlation

Lastly, we consider the discrimination ability of the scoring rules in terms of errors
in correlation: Here we keep the mean and variance parameters fixed as µY = (0, 0)
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and σ2 = 1, and calculate the relative change in score value ∆Sc as a function of the
predicted correlation ρ̂. The assessment is performed for different values of

ρ ∈ {−1,−0.8, . . . , 0.8, 1}.

For the predicted correlation we choose the denser grid

ρ̂ ∈ {−1,−0.9,−0.8, . . . , 0.9, 1}.

First of all, it can be noticed that the relative change in score value is quite small in
comparison to the previous forecasting experiments. Further, it can be observed that
the discrimination ability of the energy score, see Figure 7.6a, Figure 7.6b, and Figure
7.6c, and the Dawid-Sebastiani score, see Figure 7.6e, seems symmetric for positive and
negative correlations, whereas the variogram score, see Figure 7.6d, is more sensitive
for positive correlations. Regarding the energy score, one can note that the curve of
the relative change in score value is smoother for a smaller coefficient β, see Figure
7.6a, Figure 7.6b, and Figure 7.6c.
The greatest value for the change in energy score is visually ∆ESβ ≈ 0.20 for β = 0.5
and β = 1. For β = 1.5 the relative change in score value is even smaller than 0.15.
These values are obtained in the extreme case, where the real process is perfectly
correlated ρ = 1, and the forecast negatively correlated with ρ̂ = −1 and vice versa.
Obviously, these extreme cases are rather unusual in practice. So, for instance, let us
consider the case where the true correlation is given by ρ = 0.2, and the forecasting
correlation is ρ̂ = 0.8. For β = 0.5 and β = 1 the relative change in score is just
approximately 2.5%, for β = 1.5 even just approximately 1%.
In general, it can be stated that the majority of values for the relative change in score
value is within the range from 0 to 5%.
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(e) ∆DSS

Figure 7.6.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with ∆Sc, in terms
of their sensitivity to prediction errors in correlation for bivariate Gaussian
predictive densities. The process mean and variance parameters are kept
fixed as µ = (0, 0) and σ2 = 1.
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In the same situation as described above, where ρ = 0.2 and ρ̂ = 0.8, the relative
change in variogram score is approximately 45%. However, the situation of positive
correlation of the underlying process and the forecast favors the variogram score. If
the process correlation is given, for instance, by ρ−0.2, and the forecasting correlation
by ρ̂ = −0.8, the relative change in variogram score is approximately 1%. Note that
the relative change in score value for both negative process correlation and negative
forecasting correlation is relatively low. Lastly, we consider the Dawid-Sebastiani score.
Here the relative change in score value is approximately 80% for ρ = 0.2 and ρ̂ = 0.8.
Furthermore, the discrimination ability is symmetric for positive and negative values
of ρ. The relative change in score value for ρ = 0.2 and ρ̂ = 0.8 is also approximately
80% in contrast to the variogram score.

As in the preceding subsections, we apply the Diebold-Mariano test and calculate
the values of the DM-test statistic as a function of the predicted correlation ρ̂. The
statistics are capped at 10 to improve interpretability.
We notice that the discrimination ability of the energy score is roughly symmetric for
positive and negative correlations. Furthermore, one might infer that the discrimi-
nation ability of the energy score is better for a smaller coefficient β. This can be
concluded by the fact that the interval of predicted correlations, in which the values of
the DM-test statistic are smaller than 1.96, is shorter for a smaller coefficient β.
By computing the DM-test statistic, the asymmetry of the variogram score regard-
ing positive and negative correlations of the underlying process becomes evident. For
positive correlations the null-hypothesis of equal predictive accuracy is rejected with
significance level 5% for all forecasts except the calibrated one, i.e. the values of the
DM-test statistic are greater than 1.96 for all wrongly predicted correlations.
However, this does not apply to negative correlations of the underlying process. As an
example we consider ρ = −0.8. In this case, the DM-test statistic values are smaller
than 1.96 for the forecasting distributions with ρ̂ = −0.9,−0.8,−0.7, and −0.6, i.e.
the variogram score is not able to discriminate these distributions.

Lastly, we consider the Dawid-Sebastiani score. The discrimination ability of this
scoring rule is symmetric for positive and negative process correlation. It appears
that the Dawid-Sebastiani score is more sensitive for correlations with greater abso-
lute values. For process correlation ρ = −0.8 and forecasted correlation ρ̂ = −0.8 the
corresponding DM-test statistic is approximately 0, for ρ̂ = −0.9 the corresponding
DM-test statistic is greater than 4 and for −0.7 even approximately 6. In contrast, the
absolute values of the DM-test statistic corresponding to the forecasts with correlation
ρ̂ = 0.1, 0.2 and 0.3 are smaller than 1.96 for a process with correlation ρ = 0.2, i.e.
the Dawid-Sebastiani score is not able to discriminate between these distributions.
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Figure 7.7.: Discrimination ability of the energy score (a), (b), and (c), the variogram
score (d), and the Dawid-Sebastiani score (e) assessed with the Diebold-
Mariano test, in terms of their sensitivity to prediction errors in correlation
for bivariate Gaussian predictive densities. The process mean and variance
parameters are kept fixed as µY = (0, 0) and σ2 = 1.

7.3.4. Discussion of the study results

Considering the relative change in score our simulation study yields the same results
as the study of Pinson and Tastu (2013). So, based on that the conclusion of the bad
discrimination ability of the energy score with respect to errors in correlation can be
verified.
The authors emphasize their conclusion of the bad discrimination ability by calculating
an upper bound for the relative change in score for errors in correlation when the mean
and variances of the process are predicted correctly. For that, it is assumed that the
true distribution is given by the d-dimensional Gaussian distribution with zero mean
and perfectly correlated components. That is Y ∼ N (0,Σ) with

Σ = σ21(d×d),

where 1(d×d) is a d× d-matrix of ones. The forecast is given by the naive forecast that
totally neglects the interdependence structure between the single components, that is
X ∼ N (0, Σ̂) with

Σ̂ = σ2diag(1d),
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where 1d is a d-dimensional vector of ones. In this thesis, we extend the calculation
by the parameter β for the generalized energy score and are able to find a closed-form
solution for the relative change in score for a general parameter β in this extreme case,
see Appendix A.3.
It holds that

∆ESβ(F ) =
ESβ(F,G)− ESβ(G,G)

ESβ(G,G)

= 21−βn−β/2
√
π

Γ
(
d+β
2

)
Γ
(
d
2

)
Γ
(
1+β
2

)
·
(

2β/2√
d+ 1

2F1

(
d+ β

2
,
1

2
,
d

2
;

d

d+ 1

)
− 2β−1

)
− 1,

where 2F1 denotes the Gauss hypergeometric function. As already stated in Pinson
and Tastu (2013), this relative change in score is increasing in dimension size d, but
reaches an asymptote of less than 15% for higher dimensions if β = 1.
For a bivariate Gaussian distribution and β = 1 the upper bound is approximately
7.4%. This upper bound is considerably less than for making errors in predicting the
variance or mean parameter for the multivariate Gaussian process. Therefore, the au-
thors conclude that these findings confirm the apparently poor discrimination ability
of the energy score with respect to errors in correlation.
However, solely considering the relative change in score value is incomplete as the sta-
tistical significance of the results is not considered. Therefore, it is crucial to assess the
score values with the Diebold-Mariano test.
The values of the corresponding DM-test statistic indicate that the energy score not
only discriminates well among distributions with different mean and variance parame-
ters, but also discriminates well between forecasts with different interdependence struc-
ture.
This clearly contradicts the conclusions of Pinson and Tastu (2013). Further, it can
be noted that a smaller coefficient β leads to an improved discrimination ability of the
energy score. The energy score with parameter β = 0.5 has an even better discrimina-
tion abilility than the variogram score which is specifically designed to detect errors in
the interdependence structure.
Further, the energy score with parameter β = 0.5 and the Dawid-Sebastiani score per-
form quite similarly. However, note that the setting of this simulation study clearly
favors the Dawid-Sebastiani score because we consider a Gaussian distribution.

Therefore, the conclusion of the poor discrimination ability of the energy score as
stated e.g. by Pinson and Tastu (2013) has to be negated because the score values of
miscalibrated forecasts differ statistically significant from the score values of the perfect
forecast when the score values are assessed with the Diebold-Mariano test.
Lastly, we take a closer look at the influence of the parameter β on the discrimination
ability of the energy score.
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Figure 7.8.: Relative change in energy score as a function of β for a bivariate Gaussian
process, when the forecast is given by the naive forecast and the true
underlying distribution has perfectly correlated componentes. The mean
and variance parameter are reported correctly.
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Figure 7.9.: Relative change in energy score as a function of β for a Gaussian process of
dimension d = 5, when the forecast is given by the naive forecast and the
true underlying distribution has perfectly correlated componentes. The
mean and variance parameter are reported correctly.



Discrimination ability 66

For dimension d = 2, the relative change in score has the maximal value of approx-
imately 7, 99% for β ≈ 0.7247. For β = 0 and β = 2 the relative change in score is
obviously zero, see Figure 7.3.4.
For dimension d = 5, the maximal relative change in score is approximately 12.75%
for β ≈ 0.7496. So the parameter β, for which the relative change in score attains its
maximum, depended on the dimension d of the process, but in both cases it is smaller
than 1, see Figure 7.9.
However, considering the Diebold-Mariano test statistic values, see Figure 7.10, sug-
gests that choosing β as small as possible is optimal as the DM-test statistic value is
greater the smaller the parameter β is.
This contradicts the previous findings for which the relative change in score was con-
sidered.
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Figure 7.10.: DM-test statistic values as a function of β for a bivariate Gaussian process,
when the forecast is given by the naive forecast and the true underlying
distribution has perfectly correlated components. The mean and variance
parameter are reported correctly.

7.4. Simulation study II

In the subsequent section we reproduce and extend the simulation study of Scheuerer
and Hamill (2015). We compare the energy score with coefficients β = 0.5, 1, and 1.5,
the Dawid-Sebastiani score and the variogram score of order p = 0.1, 0.5, 1, and 2.
In contrast to the previous simulation study, we use inverse distance weights for the
weight matrix of the variogram score.
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In all experiments, we generate N = 5000 observations vectors of dimension d and a
m-member ensemble of forecast vectors of the same dimension with both correct and
misspecified means, variances or correlations.
In the previous simulation study a large ensemble (m = 214) was considered. In prac-
tice, this is rather unusual, particularly, in the field of weather forecasting. Therefore,
we consider a small (m = 20) and medium-sized (m = 100) ensemble in this study.
Furthermore, we aim to unterstand the impact of these different ensemble sizes on the
different scores.
Each experiment is repeated 10 times und the respective outcomes are visualized by
boxplots. This means we compute 10 score values for each probabilistic forecast.
Here we utilize another measurement for the discrimination ability of the different scor-
ing rules adapted from Scheuerer and Hamill (2015). The authors utilize the overlap-
ping of the boxes corresponding to different forecasting distributions as a measurement
for the discrimination ability of a given scoring rule. If the boxes corresponding to
different forecasting distributions do not overlap, this is interpreted as a good discrim-
ination ability of the scoring rule considered. Contrary, if the boxes corresponding to
different forecasts overlap, this is interpreted as a poor discrimination ability of the
scoring rule.
However, we do not solely consider the score values of the forecast. We extend the
study of Scheuerer and Hamill (2015) to some degree and additionally compute the
Diebold-Mariano test statistic for each of the 10 repetitions. The resulting test statis-
tic values are also visualized via boxplots.

To evaluate the forecasting distributions we utilize the following multivariate scoring
rules:

• Energy score ES0.1, estimated by ÊS
band

0.1 ,

• Energy score ES0.5, estimated by ÊS
band

0.5 ,

• Energy score ES1, estimated by ÊS
band

1 ,

• Energy score ES1.5, estimated by ÊS
band

1.5 ,

• Variogram score VSW,0.5, estimated by V̂SW,0.5 withW the inverse distance weight-
ing matrix, i.e. W = (wij)ij with wij = 1/

√
|i− j|,

• Variogram score VSW,1, estimated by V̂SW,1 withW the inverse distance weighting
matrix,

• Variogram score VSW,2, estimated by V̂SW,2 withW the inverse distance weighting
matrix,

• Dawid-Sebastiani score DSS, estimated by D̂SS.
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7.4.1. Miscalibrated marginal distributions

We already noted that the variogram score is unable to detect a bias that is the same
for all components, see Subsection 7.3.1. Therefore, we consider a situation where this
simple type of bias has been removed.
Specifically, let the observations be realizations of a Gaussian distribution Y of dimen-
sion d = 5 with zero mean, unit variance and correlation structure

corr(Yi, Yj) = exp

(
−|i− j|

r

)
, i, j = 1, . . . , d. (7.2)

In our simulation study we take r = 3. To compare the sensitivity of the different
scoring rules to misspecifications of means and variances, we generate forecasts X with
the true exponential correlation structure and

1. correct variances but biased means: µX = (−0.5,−0.25, 0, 0.25, 0.5)′,

2. correct means and variances,

3. correct means but too large variances: σ2
X = 1.5,

4. correct means but too small variances: σ2
X = 0.6667.

The resulting box plots are shown in Figure 7.11. Firstly, we note that the score values
improve for all three scoring rules with an increasing ensemble size. This shows that
the finite sample representation of the forecasting distribution FX has a noticable effect
on the score value.
However, this sampling effect does not have an impact on qualitive conclusions about
the predictive performance of the different forecasts, see Scheuerer and Hamill (2015).
Regarding the Dawid-Sebastiani score, a substantial change of the score values due to
the different ensemble size can be observed. Note the different scales for m = 20 and
m = 100, see Figure 7.11h.
The approximation of the process mean µX and covariance structure ΣX by the em-
pirical means and covariances from the small sample is so poor that it leads to wrong
conclusions about the predictive accuracy of the forecasts. The score value correspond-
ing to the overdispersive forecast is smaller than the score of the correctly reported
forecast, see Figure 7.11h.

For a larger ensemble size the score bias due to an insufficient representation of the
forecasting distribution FX plays a smaller role and the Dawid-Sebastiani score dis-
criminates well between the calibrated and uncalibrated forecasts.
The energy score effectively detects the erroneous linear trend corresponding to the
forecasts simulated according to 1) for all coeffecients β. However, the separation be-
tween the calibrated and over-/underdispersive forecasts is less dispersive for a greater
parameter β.Thus, the choice of the coefficient β clearly has an influence on the dis-
crimination ability of the energy score in this simulation study. Note that in particular
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the boxes corresponding to the over- and underdispersive forecasts separate from the
box corresponding to the calibrated forecast for β = 0.1 very clearly in contrast to the
overlapping boxes for β = 1.5.

Among the variogram scores of different orders p, the variogram score of order p = 0.5
has the best discrimination abilities. It identifies the miscalibrated mean less clearly
than the energy score, but it is more effective in detecting over- and underdispersion.
The variogram score of order p = 1 still has good discrimination abilities and detects
all types of miscalibration adequately.
It is noticeable that with an increasing order p the random variations between scores
obtained by the identical setup become larger, see Figure 7.11g, and blur the system-
atic differences between the scores of the calibrated and uncalibrated forecasts.
Recall that the variogram score is not strictly proper. In the present situation, for
instance, the effects of an erroneus linear trend and underdispersion cancel out. For
p = 2 this can directly be seen from (3.22).
Therefore, the authors emphasize that an analysis of the marginal distributions us-
ing univariate scoring rules should precede the analysis of multivariate properties, see
Scheuerer and Hamill (2015).
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Figure 7.11.: Energy score with coefficient β = 0.5 (a), β = 1 (b), and β = 1.5 (c), the
Dawid-Sebastiani score (d), and the variogram score of order p = 0.5 (e),
p = 1 (f), and p = 2 (g) for ensemble sizes m = 20 and m = 100. The
boxplots corresponding to the mean-biased, correct, over- and underdis-
persive forecasts are blue, green, magenta, and yellow, respectively. The
boxes cover the first to third quartile of the 10 outcomes, the line shows
the median, and the whiskers extend to the data extremes.
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After considering the score values of the forecasting experiments, we apply the
Diebold-Mariano test to each forecasting experiment. This means we compare the
different forecasting distributions with the true underlying process to test if they differ
significantly. To this end we compute the values of the DM-test statistic for the differ-
ent forecasting models 1) - 4) mentioned beforehand.

Regarding the energy score, there is an impact on the qualitative conclusions about the
predictive performance of the different forecasts due to the sampling size except for the
energy score with parameter β = 0.1. For the smaller forecasting ensemble m = 20 the
energy score is not able to discriminate the calibrated forecast and the underdispersive
forecast which corresponds the previous results. Only for β = 0.1 all DM-test statistic
values are greater than 1.96, that is the energy score with parameter β = 0.1 is clearly
ably to identify the true distribution. The values of the DM-test statistic corresponding
to the underdispersive forecast are a little bigger than the values corresponding to the
uncalibrated forecast.
The forecast with miscalibrated mean and the overdispersive forecast are detected for
all coefficients β for both ensemble sizes. For the large ensemble size m = 100 the
energy score is able to clearly detect the calibrated forecast for all parameters β. As
noted above, the energy score is very effective in detecting an erroneos linear trend and
the values of the DM-test statistic corresponding to the forecast with miscalibrated
mean are the greatest which holds for all coefficient β of the energy score. However,
the values of the DM-test statistic corresponding to the over- and underdispersive fore-
cast obtained by the energy score with coefficient β = 0.1 are greater than the values
obtained by the energy score with coefficient β = 0.5, β = 1 and β = 1.5 in this order.
The values obtained by the latter are the smallest and the separation between the
calibrated and the underdispersive forecast is rather indistinct.

Also the variogram score is clearly able to detect the calibrated forecast. The values
of the DM-test statistic corresponding to the forecast with a biased mean are smaller
than the values obtained by the energy score, but the null hypothesis of equal predic-
tive performance can clearly be rejected. It also can be observed that the variogram
score is more effective in detecting over- and undispersion than the energy score.
Note that for the larger ensemble size m = 100 the variogram score performs sim-
ilarly for all orders p when the score values are assessed with the Diebold-Mariano
test. For the smaller sample size the values of the DM-test statistic corresponding to
the underdispersive forecast and obtained by the variogram score of order p = 0.5 are
greater than for the orders p = 1 and p = 2. Even for the variogram score of order
p = 2, which seems to be the least sensitive variogram score, the values of the DM-test
statistic corresponding to the underdispersive forecast are greater than 3, i.e. the null
hypothesis of equal predictive accuracy with respect to the true distribution is clearly
rejected even in this case.
In contrast to the previous statement, which was merely based on the absolute score
values, the Dawid-Sebastiani score is able to detect the calibrated forecast for both
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ensemble sizes.
However, note that for m = 20 the values of the DM-test statistic for the overdisper-
sive forecast are negative and all smaller than −4.75, i.e. the null hypothesis of equal
predictive accuracy compared to the perfect forecast is rejected for all resulting values.
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(e) VG score of order p = 0.5 (f) VG score of order p = 1

(g) VG score of order p = 2 (h) DS score

Figure 7.12.: DM-test statistic values calculated with the energy score with coefficient
β = 0.5 (a), β = 1 (b), and β = 1.5 (c), the Dawid-Sebastiani score (d),
and the variogram score of order p = 0.5 (e), p = 1 (f), and p = 2 (g) for
ensemble sizes m = 20 and m = 100. The boxplots corresponding to the
mean-biased, correct, over- and underdispersive forecasts are blue, green,
magenta, and yellow, respectively.

7.4.2. Miscalibrated correlation strength

In the next experiment we focus on the correlation structure of the multivariate vari-
able of interest. We study the ability of the different scoring rules to detect whether the
correlations between the different components of the forecast are too weak, adequate
or too strong with respect to the true distribution of the observation.
Furthermore, we study the influence of increasing the dimension from d = 5 to d = 15
on the discrimination ability of the different scoring rules.
Again, we consider a zero mean, unit variance AR(1) process with correlation function
given in (7.2). As above, we choose r = 3 for the true underlying model and compare
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ensemble forecasts with the same correlation model, but with r = 2, r = 3, and r = 4.5.
This forecasting experiment confirms the conclusion of Pinson and Tastu (2013) that
the energy score is not able to discriminate multivariate forecasts that only differ with
respect to their correlations between the individual components regardless of the coef-
ficient β, see Figure 7.13b, Figure 7.13c, Figure 7.13b, Figure 7.14b, Figure 7.14c, and
Figure 7.14d.
Solely the boxes corresponding to the energy score with parameter β = 0.1 separate
for both dimension sizes for the larger ensemble size m = 100. Thus, we can infer that
the energy score with β = 0.1 is able to discriminate between the different forecasting
distributions, see Figure 7.13a, and Figure 7.14a.

Concerning the Dawid-Sebastiani score, see Figure 7.13h and Figure 7.14h, the con-
clusion is the same as in the previous experiment. The approximation of the mean
µY and covariance structure ΣY by the sample mean und sample covariance is rather
inaccurate for a small ensemble. Hence, the corresponding score values lead to false
conclusions about the predictive performance of the forecasts.
This representation issue is much less significant for the variogram score. For p = 0.5
and p = 1 the variogram score discriminates well between the calibrated and uncali-
brated forecast for both ensemble sizes.
Even the variogram score of order p = 2 outperforms the energy score for all parameters
except β = 0.1.
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genta), and too strong (yellow) correlations compared to the observations
for dimension d = 5.
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Note that a larger dimension size d, see Figure 7.14, has a slightly negative effect on
the discrimination ability of the variogram score. At first this seems surprising since a
larger dimension size yields more data that is used for the calculation of the variogram
score. However, increasing the number of summands in (5.1) does not lead to an
averaging of sampling error as our definition of VSW,p does not make any assumptions
about the correlation structure of forecasts and observations.
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(e) VG score of order p = 0.5 (f) VG score of order p = 1

(g) VG score of order p = 2
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Figure 7.14.: As in Figure 7.13, but for dimension d = 15.

The energy score with β = 0.1 is clearly able to discriminate between the forecasts
with correct and incorrect specified correlation when the Diebold-Mariano test is ap-
plied, see Figure 7.15a, and even the energy score with β = 0.5 to some degree, see
Figure 7.15b.
For the energy score with β = 0.1 the majority of DM-test statistic values are outside
the range from −1.96 to 1.96, so mostly the null hypothesis of equal predictive accuracy
in comparison to the calibrated forecast is correctly rejected. However, this is not true
for the energy score with β = 0.5, β = 1 and β = 1.5.

The variogram score is able to identify the calibrated forecast for all orders p. However,
note that for a larger order p the values of the DM-test statistic corresponding to the
forecast with too strong correlation are smaller, see Figure 7.15e, Figure 7.15f and Fig-
ure 7.15g. This is particularly true for the smaller ensemble size and also corresponds
to our findings above.
As noted above, the score values obtained by the Dawid-Sebastiani score for the small
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ensemble size are the smallest for the forecast with too weak correlation. However,
most of the values of the corresponding DM-test statistic are smaller than −1.96, i.e.
in most cases the null-hypothesis of equal predictive accuracy in comparison with the
perfect forecast is correctly rejected at significance level α = 5%.
It is also noticeable that the DM-test statistic values calculated with the Dawid-
Sebastiani score take greater values for the forecast with too strong correlation for
both ensemble sizes.
Note that the discrimination of the energy score is approximately the same when the di-
mension size is d = 15. Futhermore, the values corresponding to the Dawid-Sebastiani
score for the larger dimension d = 15 are similar to the values obtained when the
dimension size is d = 5.
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(e) VG score of order p = 0.5 (f) VG score of order p = 1

(g) VG score of order p = 2 (h) DS score

Figure 7.15.: DM-test statistic values for forecasts with too weak (green), accurate (ma-
genta), and too strong (yellow) correlations compared to the observations
for dimension d = 5.
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(g) VG score of order p = 2 (h) DS score

Figure 7.16.: Same as Figure 7.15, but for dimension d = 15.

7.4.3. Misspecified correlation model

In this subsection we focus on a misspecified correlation model. Here we not just vary
the correlation strength but the entire correlation model. We consider observations
with zero mean, unit variance, and correlation function:

(i) corr(Yi, Yj) =
(
1 + |i−j|

3

)−1

, and

(ii) corr(Yi, Yj) = exp
(
− |i−j|

4

) [
0.75 + 0.25 · cos

(
|i−j|π

2

)]
.

Both forecasting models yield correlations at lag 1 that are quite similar to the true
underlying distribution with the exponential model in (7.2) with r = 3. However,
model (i) has much stronger correlations at larger lags and model (ii) has a periodic
component that makes it oscillate around the exponential model.
In the following, we only consider the case where the dimension size is d = 15. This
experiment confirms many conclusions about the discrimination abilities of the different
scoring rules from the preceding forecasting experiments.
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(a) Energy score with β = 0.1 (b) Energy score with β = 0.5

(c) Energy score with β = 1 (d) Energy score with β = 1.5

(e) VG score of order p = 0.5 (f) VG score of order p = 1
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(g) VG score of order p = 2 (h) DS score

Figure 7.17.: As in Figure 7.11, but for forecasts with correct (left magenta boxplots),
and incorrect (right green boxplots) correlation structure, where the cor-
rect correlation function is that using model (i) in Section 7.4.3, and the
incorrect correlation function is the exponential model in (7.2) with r = 3.

As in the preceding forecasting experiment, the energy score lacks sensitivity to
misspecifications of the correlation structure, see Figure 7.17b, Figure 7.17b, Figure
7.17b, Figure 7.18b, Figure 7.18c, and Figure 7.17d. Only the energy score with β = 0.1
is able to discriminate between the different distributions as the boxes corresponding to
the correct and incorrect forecasts separate for ensemble size m = 100 to some degree,
see Figure 7.17a, and Figure 7.18a. However, this separation is not as clear as for the
variogram score or the Dawid-Sebastiani score.
The variogram score distinguishes well between the correct and incorrect specified
distributions. Again, the discrimination ability depends on p, where smaller values
yield better results.
The Dawid-Sebastiani score has similar issues as in the preceding experiments. When
the observations have long-range dependence both ensemble sizes are not sufficient to
yield a proper ranking between calibrated and uncalibrated forecast, see Figure 7.17h.
Even increasing the ensemble size to m = 100 does not reduce the score’s representation
bias enough to yield a proper ranking between the correct and incorrect forecast.
In the example of the oscillating correlation model on the other hand the Dawid-
Sebastiani score separates the two forecasts very well and yields the correct ranking
for both ensemble sizes, see Figure 7.18h.
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(a) Energy score with β = 0.1 (b) Energy score with β = 0.5

(c) Energy score with β = 1 (d) Energy score with β = 1.5

(e) VG score of order p = 0.5 (f) VG score of order p = 1
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(g) VG score of order p = 2 (h) DS score

Figure 7.18.: As in Figure 7.11, but for forecasts with correct (left magenta boxplots),
and incorrect (right green boxplots) correlation structure, where the cor-
rect correlation function is that using model (ii) in Section 7.4.3, and the
incorrect correlation function is the exponential model in (7.2) with r = 3.

(a) Energy score with β = 0.1 (b) Energy score with β = 0.5
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(c) Energy score with β = 1 (d) Energy score with β = 1.5

(e) VG score of order p = 0.5 (f) VG score of order p = 1

(g) VG score of order p = 2 (h) DS score

Figure 7.19.: DM-test statistic values for forecasts with correct (left magenta boxplots),
and incorrect (right green boxplots) correlation structure, where the cor-
rect correlation function is that using model (i) in Section 7.4.3, and the
incorrect correlation function is the exponential model in (7.2) with r = 3.
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The Diebold-Mariano test confirms the preceding statements. Considering the DM-
test statistic the energy score with β = 0.1 is clearly able to discriminate between
the correct and incorrect specified forecasting distributions. Also the energy score
with β = 0.5 is able to discriminate between these distributions to some degree. For
β = 0.1 the DM-test statistic values corresponding to the forecast with the misspecified
correlation model are all greater than 1.96 for ensemble size m = 100 for both forecast-
ing experiments, see Figure 7.19a, and Figure 7.20a. For β = 0.5 and ensemble size
m = 100 in the first forecasting experiment all DM-test statistic values corresponding
to the miscalibrated forecast are greater than 1.96 and in the second forecasting exper-
iment the majority of DM-test statistic values. For β = 1 and β = 1.5 most DM-test
statistic values corresponding to miscalibrated forecast are in the range from −1.96 to
1.96.
So as in the preceding experiment the discrimination ability of energy score depends
on β and the energy score with the smallest parameter yields the best discrimination
ability.
The DM-test statistic values of the uncalibrated forecast calculated with the variogram
score are significantly larger for both ensemble sizes and all orders p similar to the pre-
ceding forecasting experiment.
In the example of the correlation model with long-range dependence the Dawid-Sebastiani
score is able to identify the correct and incorrect forecast for m = 20, see Figure 7.19h,
but it may be that in this example the Dawid-Sebastiani score favors the correct fore-
cast by chance due to the finite representation of the predective distribution. This
assumption is supported by the fact that for m = 100 the Dawid-Sebastiani score is
not able to discriminate between the different forecast.

(a) Energy score with β = 0.1 (b) Energy score with β = 0.5



Discrimination ability 88

(c) Energy score with β = 1 (d) Energy score with β = 1.5

(e) VG score of order p = 0.5 (f) VG score of order p = 1

(g) VG score of order p = 2 (h) DS score

Figure 7.20.: DM-test statistic values for forecasts with correct (left magenta boxplots),
and incorrect (right green boxplots) correlation structure, where the cor-
rect correlation function is that using model (ii) in Section 7.4.3, and the
incorrect correlation function is the exponential model in (7.2) with r = 3.
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7.4.4. Discussion of the study results

Among the energy scores with different parameters β the energy score with β = 0.1
clearly has the best discrimination ability. Considering the values of the DM-test statis-
tic this scoring rule is able to discriminate between the true and the misspecified model
in all three settings. Thus, we conclude that the standard choice of β = 1 in application
has to be reconsidered as the energy score with a smaller parameter β clearly has a
better discrimination ability.
For this conclusion it is not even sufficient to consider the values of the DM-test statis-
tic, even the boxes corresponding to the score values discriminate well.
In this simulation study different orders p of variogram scores were considered. The
best results are obtained by p = 0.5, while p = 2 was clearly not an optimal choice.
In Scheuerer and Hamill (2015), the authors state that for Gaussian distributions the
choice p = 0.5 is optimal since the distribution of |Xi −Xj|0.5 is almost perfectly sym-
metric, and, therefore, has much better sampling properties than the strongly skewed
distribution that comes with p = 2. If the forecasting distribution itself is already
skewed, it might be optimal to choose a smaller power p to obtain a near-symmetric
distribution of |Xi−Xj|p. From a qualitative perspective, the energy score with β = 0.1
has a discrimination ability similar to the variogram score of order p = 0.5 and the
Dawid-Sebastiani score. From a quantitative perpective, the DM-test statistic values
corresponding to the miscalibrated forecast are greater for the variogram score of order
p = 0.5 and the Dawid-Sebastiani score. However, in all cases the DM-test statistic
values obtained by the energy score with β = 0.1 are sufficiently large to correctly
reject the null hypothesis of equal predictive accuracy.
Furthermore, the energy score is the only scoring rule among these three that gen-
erally is strictly proper, so we infer that it should be the standard choice to assess
probabilistic forecasts.

7.5. Simulation study III: bivariate Gumbel copula

In the previous sections we considered the discrimination ability with respect to Gaus-
sian distributions which are by definition elliptical distributions with a linear depen-
dence structure.
Now we are interested in forecasting a bivariate non-elliptical distribution Y, where
the dependence structure of the two components is given by the Gumbel copula

CGU
θ (u, v) = exp

(
−
[
(− log u)θ + (− log v)θ

]1/θ)
,

where the parameter 1 < θ < ∞ controls the dependence. For a short introduction to
copulas we refer to Appendix A.1.
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7.5.1. Uniformly distributed marginals

First, we consider a bivariate distribution Y with uniformly distributed marginals, i.e.
we only study the discrimination ability of the energy score, the variogram score and
the Dawid-Sebastiani score with respect to the copula. In the following, we assume the
distribution of Y is given by the bivariate Gumbel copula with parameter θ = 2. We
suppose the marginals are reported correctly, that is the probabilistic forecasts only
differ in the parameter θ̂ which is chosen out of the grid θ̂ ∈ {1, 1.5, . . . , 3.5}. As in the
preceding sections, the discrimination ability of the different scoring rules is assessed
with the relative change in score value and the Diebold-Mariano test.

(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5
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(e) Energy score with β = 1 (f) Energy score with β = 1.5

(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.21.: Energy score with coefficients β = 0.00001, β = 0.001, β = 0.1, β = 0.5,
β = 1, β = 1.5, and β = 1.9 as well as the variogram score with p = 0.5,
and the Dawid-Sebastiani score assessed with the relative change in score
value for an ensemble size m = 100. The boxplots corresponding to the
forecasts with the correct and incorrect specified parameter θ̂ are blue
and magenta, respectively. The boxes cover the first to third quartile
of the 10 outcomes, the line shows the median, and the whiskers extend
to the data extremes. The true underlying distributions is given by the
bivariate Gumbel copula with parameter θ = 2.
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Considering the relative change in score value, see Figure 7.21, one can observe that
the variogram score of order p = 0.5 and the Dawid-Sebastiani score are clearly able to
identify the calibrated forecast. Further, the boxes corresponding to the uncalibrated
forecasts separate distinctly from the boxes corresponding to the correctly reported
forecasting distribution.
For the energy score we also want to study the influence of the parameter β on the
discrimination ability. For a parameter β < 1 the energy score clearly performs best.
Here only the boxes corresponding to the forecast with parameters θ̂ = 2 and θ̂ = 2.5
overlap. It also holds that the correctly specified forecasting distribution with θ̂ = 2
yields the smallest values for the relative change in score, i.e. the energy score is able
to identify the true distribution.

(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5



Discrimination ability 93

(e) Energy score with β = 1 (f) Energy score with β = 1.5

(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.22.: As in figure 7.21, but assessed with the Diebold-Mariano test with respect
to the true distribution.

However, from looking at the boxplots it does not seem that a further reduction
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of the coefficient improves the discrimination ability of the energy score significantly.
The energy score with parameters β = 0.1, 0.001, and 0.00001 yields comparable results
concerning the discrimination ability of the score.
The energy score with parameters β > 1 performs noticeably worse and a greater coeffi-
cient even worsens the ability. The energy score with β = 1.9 is not able to discriminate
between all forecasting distributions at all. This is not surprising as the energy score
has the limiting case of the squared error in mean for β = 2 which soley depends on
the first moment of the forecasting distribution.

The Diebold-Mariano test supports the preceding statements. The null hypothe-
sis of equal predictive accuracy is rejected for all incorrectly reported forecasts when
the DM-test statistic is computed with the variogram score and the Dawid-Sebastiani
score. The test statistic values are all greater than 4. As a short reminder note that
the null hypothesis is rejected at significance level α if the absolute value of the test
statistic is greater than the 1− α

2
quantile of the standard normal distributions. Again

we make the standard choice of α = 5% so the corresponding quantile is given by 1.96.
Hence 1.96 and −1.96 are marked by the red dotted lines in the boxplots.
For the energy score it can be noted that for β = 0.5 some DM-test statistic values
corresponding to the forecast with parameters θ̂ = 0.5 and θ̂ = 3 are smaller than 1.96.
For β = 0.1 there are also some DM-test statistic values corresponding to the forecast
with parameter θ̂ = 0.5 smaller than 1.96, whereas for β = 0.00001 there are none.
For all parameters β < 1 the energy score is not able to discriminate between the
forecasts with paramters θ̂ = 2 and θ̂ = 2.5.

As an overall conclusion it can be stated that the variogram score clearly outperforms
the energy score in this setting. Interestingly the Dawid-Sebastiani score performs
similarly as the variogram score. This is surprising for the reason, that the Dawid-
Sebastiani score is specifically designed for Gaussian distributions and in the setting of
this simulation study the Dawid-Sebastiani score is not strictly proper.
Furthermore, this scoring rule is based on the sample mean and the sample covariance.
As our variable of interest is not elliptically distributed using the covariance in such a
situation might be very misleading.

In the following, we repeat the same forecasting experiment for the bivariate distri-
bution Y given by the Gumbel copula with θ = 10, so the upper tail dependence λU is
much greater as in the preceding case.
Here the energy score is not able to discriminate the forecasting distributions for all
parameters β. The variogram score is able to identify the calibrated forecast in the
sense that the relative change in score corresponding to the calibrated forecast is the
smallest. However, by looking at the DM-test statistic values the null hypothesis of
equal predictive accuracy can not be rejected for parameters θ̂ = 9.5 and θ̂ = 10.5 in
all experiments and also for θ̂ = 9 and θ̂ = 11 for the majority of experiments, see
Figure 7.24h.
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Interestingly the Dawid-Sebastiani score performs almost as good as the variogram
score. The DM-test statistic values are the smallest for θ̂ = 9.5 and θ̂ = 10. However,
also for parameters θ̂ = 9 and θ̂ = 10.5 the null hypothesis (falsely) cannot be rejected
for all 10 forecasting experiments. Even for parameters θ̂ = 8.5 and θ̂ = 11 the values
are partly above, partly below 1.96. Solely for θ̂ = 11.5 the null hypothesis is always
rejected, see Figure 7.24i.
Note that the overall better performance of the energy score, the variogram score, and
the Dawid-Sebastiani score for the distribution given by the Gumbel copula with pa-
rameter θ = 2 is obvious, as the differences in the distribution are much smaller for the
greater parameter θ. For instance, the upper tail dependence of the Gumbel copula
with θ = 2 is λU ≈ 0.5859 and for θ = 1.5 it holds true that λU ≈ 0.412599, whereas
for θ = 10 and θ = 9.5 we have λU ≈ 0.9282 and λU ≈ 0.9243, respectively. So the
differences in distribution with respect to differences in θ are much greater for a smaller
parameter θ.

(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5
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(e) Energy score with β = 1 (f) Energy score with β = 1.5

(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.23.: Energy score with coefficients β = 0.00001, β = 0.001, β = 0.1, β = 0.5,
β = 1, β = 1.5, and β = 1.9 as well as the variogram score with p = 0.5
and the Dawid-Sebastiani score assessed with the relative change in score
value for an ensemble size m = 100. The boxplots corresponding to the
forecasts with the correct and incorrect specified parameter θ̂ are blue and
magenta, respectively. The boxes cover the first to third quartile of the
10 outcomes, the line shows the median, and the whiskers extend to the
data extremes. The true underlying distribution is given by the bivariate
Gumbel copula with parameter θ = 2 and standard normal distributed
marginals.
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(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5

(e) Energy score with β = 1 (f) Energy score with β = 1.5
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(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.24.: As in Figure 7.23, but assessed with the Diebold-Mariano test with respect
to the true distribution.

7.5.2. Beta distributed marginals

To study the influence of the marginals on the discrimination ability with respect to
the dependence structure of the energy score, the variogram score and the Dawid-
Sebastiani score we now assume that the marginals of the bivariate distributions Y are
beta distributed with parameters (α, β) = (2, 2).
The density of the beta distribution is given by

f(x; a, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1,

where α, β > 0 and Γ(·) is the gamma function.
The dependency structure of the underlying distribution Y is given as the bivariate
Gumbel copula with parameter θ = 2 and the dependency structure of the forecasting
distribution X as the Gumbel copula with parameter θ̂, where θ̂ is chosen out of the
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grid {1, 1.5, . . . , 3.5}.
As above, we assess the discrimination ability of these scoring rules by the relative
change in score and the Diebold-Mariano test.
Since we are interested in studying the discrimination ability of the scoring rules with
respect to the dependence structure of the forecasts and underlying distribution, we
assume the marginals are reported correctly.
Considering the boxplots corresponding to the relative change in score value, the out-
come of this forecasting experiment with beta distributed marginals seems very similar
to the preceding experiment with uniformly distributed marginals of the forecasting
distribution X.
The values of the Diebold-Mariano test statistic match this statement, so we conclude
that the marginal distributions have no influence on the discrimination ability with
respect to the dependence structure of the different scoring rules, if the marginals
distributions are reported correctly.

(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5
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(e) Energy score with β = 1 (f) Energy score with β = 1.5

(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.25.: Energy score with coefficients β = 0.00001, β = 0.001, β = 0.1, β = 0.5,
β = 1, β = 1.5, and β = 1.9 as well as the variogram score with p = 0.5
and the Dawid-Sebastiani score assessed with the relative change in score
value for an ensemble size m = 100. The boxplots corresponding to the
forecasts with the correct and incorrect specified parameter θ̂ are blue
and magenta, respectively. The boxes cover the first to third quartile of
the 10 outcomes, the line shows the median, and the whiskers extend to
the data extremes.
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(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5

(e) Energy score with β = 1 (f) Energy score with β = 1.5
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(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.26.: As in Figure 7.25, but assessed with the Diebold-Mariano test with respect
to the true distribution.

7.5.3. Normal distributed marginals

The marginal distributions in the preceding sections only take values on the interval
[0, 1]. Therefore, we assume in this section the marginals follow a standard normal dis-
tribution and the dependence structure is given by the bivariate Gumbel copula with
parameter θ = 2. Furthermore, we assume that the distribution of the marginals is
reported correctly and the dependeny structure of the forecast is given as the bivariate
Gumbel copula with parameter θ̂, where θ̂ is chosen out of the grid {1, 1.5, . . . , 3.5}.
As above, we consider the relative change in score value and the values of the corre-
sponding Diebold-Mariano test statistic.
Similarly to the preceding simulation studies in this section, the variogram score and
the Dawid-Sebastiani score are able to identify the calibrated forecast assessed with
the relative change in score as well as assessed with the Diebold-Mariano test.
Also the energy score has the same discrimination ability as in the previous simulation
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studies. Assessed with the Diebold-Mariano test the energy score with parameters
β = 0.00001, β = 0.001, β = 0.1, and β = 0.5 are not able to discriminate between
the calibrated forecast with θ̂ = 2 and the uncalibrated forecast with θ̂ = 2.5. In both
cases the null hypothesis of equal predictive performance is not rejected. However, for
all other forecasting distributions the null hypothesis is correctly rejected. The energy
score with parameters β ≥ 1 perform significantly worse.
Overall, this simulation study yields qualitatively exactly the same results as the pre-
ceeding simulation studies.
Therefore, we can conclude, that the marginal distribution does not have an influ-
ence on the discrimination ability of the considered scoring rules with respect to the
interdependence structure of the forecasting distribution.

(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5
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(e) Energy score with β = 1 (f) Energy score with β = 1.5

(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.27.: Energy score with coefficients β = 0.00001, β = 0.001, β = 0.1, β = 0.5,
β = 1, β = 1.5, and β = 1.9 as well as the variogram score with p = 0.5
and the Dawid-Sebastiani score assessed with the relative change in score
value for an ensemble size m = 100. The boxplots corresponding to the
forecasts with the correct and incorrect specified parameter θ̂ are blue
and magenta, respectively. The boxes cover the first to third quartile of
the 10 outcomes, the line shows the median, and the whiskers extend to
the data extremes.
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(a) Energy score with β = 0.00001 (b) Energy score with β = 0.001

(c) Energy score with β = 0.1 (d) Energy score with β = 0.5

(e) Energy score with β = 1 (f) Energy score with β = 1.5
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(g) Energy score with β = 1.9 (h) VG score with p = 0.5

(i) DS score

Figure 7.28.: As in Figure 7.25, but assessed with the Diebold-Mariano test with respect
to the true distribution.

7.5.4. Misspecified dependence model

In this section let the true underlying distribution be given by a bivariate Gumbel cop-
ula. In the following, we compare two forecasting distributions, namely the calibrated
forecast and a forecast given by the bivariate Gaussian copula, so that the empirical
linear correlation (Pearson correlation) of both distributions coincide.
That is, we want to find out which scoring rule assessed with the relative change in
score and the Diebold-Mariano test is able to determine the correct forecast.
Note that the Pearson correlation does not satisfy all axioms for measures of multi-
variate concordance developed by Scarsini, see Joe (2014).
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(a) Gumbel copula with θ = 2
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(b) Gaussian copula with ρS = 0.7
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(c) Gumbel copula with θ = 12
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(d) Gaussian copula with ρS = 0.99

Figure 7.29.: 10.000 realizations of a Gumbel copula and a Gaussian copula with
N (0, 1) - marginals, so that the empirical linear correlation ρ̂S of the
Gumbel copula on the left side and the corresponding Gaussian copula
on the right side match.

The distributions of the Gumbel copula and the Gaussian copula differ significantly,
see Figure 7.29, even though their empirical linear correlations ρ̂S approximately co-
incide. One can clearly observe a sharper top right corner for the Gumbel copula
compared to the elliptical shape of the Gaussian copula which is known to be due to
the upper tail dependence. It should be clear that the tail dependence of the Gumbel
copula is greater for a greater dependence parameter θ.
Therefore, this forecasting experiment is performed for dependence parameters θ = 2
and 12 of the Gumbel copula.
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In this simulation study, the variogram score and the Dawid-Sebastiani score are able
to identify the calibrated forecast. Let us first consider the variogram score. Regard-
ing the relative change in score the boxes corresponding to the correct and incorrect
specified forecast clearly separate and the median of the relative change in score is
approximately 0 for the perfect forecast and approximately 0.03 for the misspecified
forecast, see Figure 7.30e. The corresponding DM-test statistic values, see Figure 7.31e,
match this result and the null hypothesis of equal predictive accuracy is clearly rejected
when the forecast is wrongly specified as the Gaussian copula.

(a) Energy score with β = 0.001 (b) Energy score with β = 0.1

(c) Energy score with β = 0.5 (d) Energy score with β = 1
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(e) VG score, p = 0.5 (f) DS score

Figure 7.30.: Energy score with coefficients β = 0.001, β = 0.1, β = 0.5, and β = 1
as well as the variogram score with p = 0.5 and the Dawid-Sebastiani
score assessed with the relative change in score value for an ensemble size
m = 100. The boxplots corresponding to the miscalibrated forecast given
by a Gaussian copula and the calibrated forecast given by the Gumbel
copula with dependence parameter θ = 2 magenta and blue, respectively.
The empirical linear correlation ρ̂S of both distributions approximately
match and ρ̂S ≈ 0.7. The boxes cover the first to third quartile of the
10 outcomes, the line shows the median, and the whiskers extend to the
data extremes.

The Dawid-Sebastiani score is also able to identify the calibrated forecast, at least
to a certain extent. Considering the relative change in score, the boxes corresponding
to the correct and incorrect specified forecast also separate, but not als distinctly as for
the variogram score. The median of the relative change in score corresponding to the
perfect forecast is approximately 0, and approximately −3× 10−3 for the misspecified
forecast, see Figure 7.30f. The Dawid-Sebastiani score can take negative and positive
values. Hence, the relative change in score can also take negative values. Therefore,
the relative change in score has to be considered in terms of absolute values here, so
the Dawid-Sebastiani score correctly favors the calibrated forecast.
The Diebold-Mariano test confirms these results. The DM-test statistic values of the
perfect forecast lie all in the range from −1.96 to 1.96, so the null hypothesis is correctly
not rejected. The median of DM-test statistic values corresponding to the uncalibrated
forecast is approximately 2.In 5 of the 10 simulation runs the null hypothesis is correctly
rejected and in the other 5 runs the null hypothesis is incorrectly not rejected, see
Figure 7.31f. Only the energy score is not able to identify the calibrated forecast for
all parameters β.
Further, all of these statements are true for the forecasting experiment, where the
Gumbel copula is given with dependence parameter θ = 12 and the corresponding
linear correlation ρ̂S ≈ 0.99, see Figure 7.32, and Figure 7.33.
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(a) Energy score with β = 0.001 (b) Energy score with β = 0.1

(c) Energy score with β = 0.5 (d) Energy score with β = 1

(e) VG score, p = 0.5 (f) DS score

Figure 7.31.: Same as Figure 7.30, but assessed with the Diebold-Mariano test.
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(a) Energy score with β = 0.001 (b) Energy score with β = 0.1

(c) Energy score with β = 0.5 (d) Energy score with β = 1

(e) VG score, p = 0.5 (f) DS score

Figure 7.32.: Energy score with coefficients β = 0.001, β = 0.1, β = 0.5 and β = 1
as well as the variogram score with p = 0.5 and the Dawid-Sebastiani
score assessed with the relative change in score value for an ensemble size
m = 100. The boxplots corresponding to the miscalibrated forecast given
by a Gaussian copula and the calibrated forecast given by the Gumbel
copula with dependence parameter θ = 12 magenta and blue, respectively.
The empirical linear correlation ρ̂S of both distributions approximately
match and ρ̂S ≈ 0.99. The boxes cover the first to third quartile of the
10 outcomes, the line shows the median, and the whiskers extend to the
data extremes.
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(a) Energy score with β = 0.001 (b) Energy score with β = 0.1

(c) Energy score with β = 0.5 (d) Energy score with β = 1

(e) VG score, p = 0.5 (f) DS score

Figure 7.33.: Same as Figure 7.32, but assessed with the Diebold-Mariano test.
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7.5.5. Discussion of the study results

Firstly, and probably most importantly, it can be stated that the discrimination ability
of all scoring rules with respect to differences in the interdependence structure does
not depend on the marginal distributions. This confirms the conclusion of Ziel and
Berk (2019), that the copula-scores do not have a better discrimination ability than
the known original multivariate scoring rules.
Furthermore, this simulation study again confirms the good discrimination ability of
the energy score when the parameter β is small, particularly, if it is approximately zero.
Contrary, as β tends to 2, the energy score becomes more insensitive as it converges to
the squared error in mean, which soley depends on the first moment of the forecasting
distribution.
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8. More on the energy distance

In almost all simulation studies the energy score is the evaluation measure which can
clearly separate the true model from all alternatives. This contradicts the conclusion of
Pinson and Tastu (2013) that the energy score is not suitable for evaluating differences
in the interdependency structure, especially correlations.
Furthermore, the energy score is a strictly proper scoring rule, whereas the variogram
score is only proper and the Dawid-Sebastiani score is strictly proper only for Gaussian
distributions. Moreover, the energy score is readily applicable to ensemble forecasts,
which is convenient for application. In contrast, to assess an ensemble forecast with
the Dawid-Sebastiani score we have to estimate the mean and covariance matrix of
the forecasting distribution first. As already stated in Section 7.4, the estimation of
these parameters is rather inaccurate for small ensemble sizes and in these cases the
Dawid-Sebastiani score may lead to false conclusion. As in some fields small ensemble
sizes are common, this is another major drawback of this scoring rule.
So altogether the performed simulation studies allow the conclusion that the energy
score should be the preferred evaluation measure for multivariate prediction. It also
can be concluded, that a parameter β < 1 should be utilized, especially for evaluat-
ing differences in the interdependency structure. Note that in literature the standard
choice is β = 1, even though a smaller parameter β (particularly β < 1) seems to
improve the discrimination ability of the energy score.
Therefore, the energy score seems the most promising evaluation criterion so far and
it is worth to study the corresponding energy distance in more detail.
Note that the energy distance allows for many statistical applications. It allows to
construct a general (non-parametric) test for equality of two multivariate distribu-
tions. For instance, the resulting test for multivariate normality has a better empirical
power than standard alternatives, see Szekely and Rizzo (2005). Another important
application of the energy distance is the construction of distance correlations which
is a general concept to characterize multivariate dependence, but not just linear de-
pendence as measured by Pearson correlation. As a result, it allows to construct the
energy test of independence which tests for multivariate independence.
The energy distance is defined as follows.

Definition 8.0.1 (Székely (2003)). The generalized energy distance between the d-
dimensional independent random variables X and Y is defined as

E (β)(X,Y) = 2E∥X−Y∥β − E∥X− X̃∥β − E∥Y − Ỹ∥β (8.1)

where E∥X∥β <∞, E∥Y∥β <∞ for some β ∈ (0, 2), X̃ is an i.i.d copy of X and Ỹ is
an i.i.d. copy of Y.
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One of the most important properties of the energy distance is, that it can be rep-
resented alternatively as a weighted L2-distance of the characteristic functions f̂(t) :=
E(exp(it′X) and ĝ(t) := E(exp(it′Y)). This means, in (8.3) we are measuring the
distance in the complex plane which is isomorphic to the 2-dimensional space R2.
Therefore, if the dimension size d is greater than 2, we measure the discrepancy in a
lower dimensional space. This gives an intuition, why the energy score works so well.
The following statements and proofs are essentially taken from Székely (2003).

Proposition 8.0.2. Let X and Y be independent d-dimensional random variables
with characteristic functions f̂ and ĝ. If E∥X∥β < ∞ and E∥Y∥β < ∞ for some
0 < β ≤ 2, then:

(i) For 0 < β < 2,

E (β)(X,Y) = 2E∥X−Y∥β − E∥X− X̃∥β − E∥Y − Ỹ∥β (8.2)

=
1

C(d, β)

∫
Rd

|f̂(t)− ĝ(t)|2

∥t∥d+β
dt, (8.3)

where

C(d, β) = 2πd/2 Γ(1− β/2)

β2βΓ
(
d+β
2

) ; (8.4)

(ii)
E (2)(X,Y) = 2∥E(X)− E(Y)∥2.

Proof. Statement (ii) clearly holds. For (i), let f(·) denote the complex conjugate of
f(·). Note that

|f̂(t)− ĝ(t)|2 =
(
f̂(t)− ĝ(t)

)(
f̂(t)− ĝ(t)

)
=
(
1− f̂(t)ĝ(t)

)
+
(
1− f̂(t)ĝ(t)

)
−
(
1− f̂(t)f̂(t)

)
−
(
1− ĝ(t)ĝ(t)

)
= E

[
(2 + exp(it′(X−Y))− exp(it′(Y −X)))

−
(
1− exp(it′(X− X̃))

)
−
(
1− exp(it′(Y − Ỹ))

)]
= E

[
2 (1− cos(t′(X−Y))−

(
1− cos(t′(X− X̃)

)
−
(
1− cos(t′(Y − Ỹ)

)]
,

therefore,∫
Rd

|f̂(t)− ĝ(t)|2

∥t∥d+β
dt

= E

∫
Rd

2 (1− cos(t′(X−Y))−
(
1− cos(t′(X− X̃)

)
−
(
1− cos(t′(Y − Ỹ)

)
∥t∥d+β

dt

 .
Consequently, for (i) all we need to prove is the following lemma.
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Lemma 8.0.3. If 0 < β < 2, it holds for all x ∈ Rd that∫
Rd

1− cos(t′x)

||t||d+β
dt = C(d, β)||x||βd ,

where t′x represents the inner product, C(d, β) is the constant (8.4) defined in the
previous proposition, t ∈ Rd. (The intergral at t = 0 and t = ∞ are meant in the
principal value sense: limϵ→0

∫
Rd\{ϵB+ϵ−1B}, where B is the unit ball centered at 0 and

B is its complement.)

Proof. Let us first consider the proof for β = 1. By applying the orthogonal transfor-
mation t 7→ z = (z1, . . . , zd) with z1 = (t′x)/||x|| and a change of variables s = ||x|| · z
we get ∫

Rd

1− cos(z1||x||)
||z||d+1

dz = ||x||
∫
Rd

1− cos(s1)

||s||d+1
ds,

where s = (s1, . . . , sd). Then

cd := C(d, 1) =

∫
Rd

1− cos(s1)

||s||d+1
ds =

π(d+1)/2

Γ
(
d+1
2

) .
Notice that 2 · cd is the area of the unit sphere in Rd+1. In the general case, where d
and β both can differ from 1 more technical steps are needed. Following Prudnikov
et al. (1988), we obtain by applying Formula 3.3.2.1, p. 585, Formula 2.2.4.24., p. 298,
and Formula 2.5.3.13, p. 287

A :=

∫
Rd−1

dz2dz3 . . . dzd

(1 + z22 + z23 + · · ·+ z2d)
d+β
2

=
π(d−1)/2

Γ
(
d−1
2

) ∫ ∞

0

xd−2dx

(1 + x2)
d+β
2

=
π(d−1)/2Γ

(
β+1
2

)
Γ
(
d+β
2

) ,

and

∂

∂a

(∫ ∞

0

1− cos(au)

u1+β
du

)
= aβ−1

∫ ∞

0

sin v

vβ
dv = aβ−1

√
πΓ
(
1− β

2

)
2βΓ

(
β+1
2

) .

By introducing new variables s1 := z1 and sk := s1zk for k = 2, . . . , d, this yields

C(d, β) = A×
∫ ∞

−∞

1− cos z1
|z1|1+β

dz1

=
π(d−1)/2Γ

(
β+1
2

)
Γ
(
d+β
2

) ×
2
√
πΓ
(
1− β

2

)
β2βΓ

(
β+1
2

) ,

which was to be proved.
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As described by Székely and Rizzo (2013), the energy distance also works for more
general functions than solely x 7→ ∥x∥β in its defintion.

Proposition 8.0.4. Let ϕ be a continuous symmetric function from Rd to R, and let
X and Y be independent d-dimensional random variables.

(i) A necessary and sufficient condition that

2Eϕ(X−Y)− Eϕ(X− X̃)− Eϕ(Y − Ỹ) ≥ 0, (8.5)

where X̃ is an i.i.d. copy of X and Ỹ is an i.i.d. copy of Y holds for all X,Y,
such that E

[
ϕ(X− X̃) + Eϕ(Y − Ỹ)

]
< ∞ is that ϕ is conditionally negative

definite.

(ii) In (8.5), a necessary and sufficient condition that

2Eϕ(X−Y)− Eϕ(X− X̃)− Eϕ(Y − Ỹ) = 0

if and if only X and Y are identically distributed is that ϕ is strictly negative
definite.

According to a characterization theorem of Schoenberg, a function is conditionally
negative definite, continuous, symmetric, and takes the value 0 at 0 if and only if it
is the negative logarithm of an infinitely divisible characteristic function, see Berg,
Christensen, and Ressel (1984), Theorem 3.2.2. The functions ϕ(x) = |x|β, 0 < β ≤ 2
correspond to infinitely divisible characteristic functions that are symmetric stable
with parameter β. Note that in the case ϕ(x) = |x|2 we have conditional negative
definiteness, but not strict conditional negative definiteness.
Other examples include x 7→ log(1 + |x|2), which corresponds to the characteristic
function of the Laplace distribution. In Baringhaus and Franz (2010) other examples
of strictly negative functions ϕ are given. So other possible choices are for example
ϕ(x) = 1− exp(|x|2/2), ϕ(x) = |x|/2 or ϕ(x) = |x|2/(1 + |x|2).
Thus, according to Proposition 8.0.4, the energy score can be generalized as we can
utilize different functions than x 7→ |x|β.



Limiting cases of the energy score 118

9. Limiting cases of the energy
score

In this section we consider the limiting cases of the energy score, as we found in the
previous simulation studies that the discrimination ability of the energy score improves
as β → 0 and worsens as β → 2. As a measure for the discrimination ability we eval-
uate the score values of the forecasting distributions with the Diebold-Mariano test
w.r.t. the true underlying distributions.
The case β → 2 is trivial, as the energy score reduces to the squared error ES2 =
∥E(X)− y∥2, which is just a proper and not a strictly proper scoring rule with respect
to the class P2 of Borel probability measures on Rd such that E ∥X∥2 is finite.
ES2 depends only on the mean of the forecasting distribution, which explains the lack
of sensitivity of the energy score with β → 2 particularly with respect to errors in
correlation.

So let us now turn to the case β → 0. As an illustrating example, we consider the fol-
lowing forecasting experiment. Let the forecasting distribution be given by a bivariate
Gaussian distribution with mean µ = (0, 0) and covariance structure

Σ̂ =

(
1 0.8
0.8 1

)
.

The true underlying distribution is also as a bivariate Gaussian distribution with mean
µ = (0, 0) and covariance structure

Σ =

(
1 0.5
0.5 1

)
.

The sample size is m = 210 and the experiment is repeated N = 210 times. For each
experiment we calculate the corresponding energy score values for all parameters β out
of the grid {0.1, . . . , 1.9}.
The resulting score values are assessed with the Diebold-Mariano test, see Figure 9.1.
Given that the predictive distribution does not match the true underlying distribution,
a higher value of the Diebold-Mariano test statistic indicates a better discrimination
ability of the corresponding scoring rule with which the probabilistic forecast was eval-
uated.
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Figure 9.1.: Values of the Diebold-Mariano test statistic corresponding to the energy
score values for different parameters β.

As already stated above, the discrimination ability of the energy score improves as
the parameter β gets smaller. So the question arises, if there exists a strictly proper
scoring rule to which ESβ converges analogous to the case where β → 2.

To answer this, we firstly consider the corresponding divergence function of the energy
score, namely the energy distance. Remember the energy distance has the following
two representations:

• E (β)(X,Y) = 2E∥X−Y∥β − E∥X− X̃∥β − E∥Y − Ỹ∥β,
where X and Y are d-dimensional independent random variables with E∥X∥β <
∞, E∥Y∥β <∞ for some β ∈ (0, 2) and X̃ is an i.i.d copy of X and Ỹ is an i.i.d.
copy of Y

• E (β)(X,Y) =
β2βΓ( d+β

2 )
2πd/2Γ(1−β

2 )

∫
Rd

|f̂(t)−ĝ(t)|2
∥t∥d+β dt.

Using the definition of the energy distance, we can set up the following lemma.

Lemma 9.0.1. Let X and Y be independent d-dimensional random variables, E∥X∥β <
∞, E∥Y∥β <∞ for some β ∈ (0, 2).
If X and Y are continuous random variables it holds that

lim
β→0

E (β)(X,Y) = 0. (9.1)
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If X and Y are discrete random variables both taking values on the same set
{x1,x2, . . . }, then

lim
β→0

E (β)(X,Y) =
∑
i

(pi − qi)
2, (9.2)

where pi := P(X = xi) and qi := P(Y = xi):

Proof. It holds that
lim
β→0

∥X−Y∥β = 1[X̸=Y].

Therefore, we have

lim
β→0

E (β)(X,Y) = lim
β→0

2E∥X−Y∥β − E∥X− X̃∥β − E∥Y − Ỹ∥β

= 2 · E
(
1{X̸=Y}

)
− E

(
1{X̸=X̃}

)
− E

(
1{Y ̸=Ỹ}

)
= 2 ·

(
1− E

(
1{X=Y}

))
−
(
1− E

(
1{X=X̃}

))
−
(
1− E

(
1{Y=Ỹ}

))
= E

(
1{X=X̃}

)
+ E

(
1{Y=Ỹ}

)
− 2 · E

(
1{X=Y}

)
=

∫
1{x=x̃}F (dx)F (dx̃) +

∫
1{y=ỹ}G(dy)G(dỹ)− 2 ·

∫
1{x=y}F (dx)G(dy),

where F denotes the distribution of X and G the distribution of Y.
In case of continuous distributions the random variables only match on a null set.
Therefore, the limit here is 0.
Now let X and Y be discrete distributed. We assume X and Y can take the values
x1,x2, . . . and the corresponding probabilities are denoted as pi := P (X = xi) and
qi := P (Y = xi).
It follows that∫

1[x=x̃]F (dx)F (dx̃) +

∫
1[y=ỹ]G(dy)G(dỹ)− 2 ·

∫
1[x=y]F (dx)G(dy)

=
∑
i

p2i +
∑
i

q2i − 2
∑
i

piqi

=
∑
i

(pi − qi)
2.

Remark 9.0.2. Note that in the discrete case the limit of the energy score corresponds to
the divergence function of the Brier score, see Gneiting and Raftery (2007), which is a
strictly proper scoring rule with respect to the class of discrete probability distributions
Pn := {(p1, . . . , pn) : p1, . . . , pn ≥ 0, p1 + · · ·+ pn = 1} on a finite discrete sample space
{x1, . . . ,xn}.
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9.1. Scaled limit of the energy score

As a motivation of this section, we consider representation (8.0.2) of the energy dis-
tance. When we take the limit of this term it obviously has to match the previous
results.
It holds that

lim
β→0

β2βΓ
(
d+β
2

)
2πd/2Γ

(
1− β

2

) ∫
Rd

|f̂(t)− ĝ(t)|2

∥t∥d+β
dt

=

(
lim
β→0

β2βΓ
(
d+β
2

)
2πd/2Γ

(
1− β

2

)) ·

(
lim
β→0

∫
Rd

|f̂(t)− ĝ(t)|2

∥t∥d+β
dt

)
,

if the limits are finite.
It can easily be seen that the first term converges to 0 regardless of whether the random
variables are discrete or continuously distributed.
For the second expression, however, we have to distinguish between discrete and con-
tinuous distributions. To match the previous results, it can be conjectured that this
term tends to a constant in case of continuous distributions and it does not converge
for discrete distributions.
Hence, the assumption follows that by scaling the energy distance by the factor 1/β it
yields a limit not equal to zero as β tends to 0.
Therefore, in the following, we consider the term

E (β)
sc (X,Y) :=

1

β
· E (β)(X,Y).

Before we consider the limit of this scaled energy distance, the following technical steps
are needed.

Lemma 9.1.1. The function gβ(x) = x− 1− xβ−1
β

with domain (0,∞) is non-negative
for 0 < β < 1.

Proof. We consider the derivate of gβ(x)

∂

∂x
gβ(x) = 1− xβ−1

which is zero only if x = 1. Further, it holds that

∂2

∂x2
gβ(x) = (1− β)xβ−2.

As
∂2

∂x2
gβ(1) > 0,

the function gβ(x) admits a minimum at x = 1. As ∂
∂x
gβ(x) > 0 for x > 1 and

∂
∂x
gβ(x) < 0 for 0 < x < 1 the function is monotone decreasing for 0 < x < 1 and

monotone increasing for x > 1. Therefore, the attained minimum in x = 0 is global.
Therefore the function is non-negative.
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Lemma 9.1.2. For β → 0 the family of functions gβ defined in Lemma 9.1.1 is mono-
tone in β with limit

lim
β→0

gβ(x) = x− 1− log(x).

Proof. It clearly holds that

lim
β→0

xβ − 1

β
= log(x),

so the limit
lim
β→0

gβ(x) = x− 1− log(x)

directly follows.
Next we want to show that sequence gβ(·) is monotone increasing as β → 0. We assume
β1 < β2 and define the function

d(x) = gβ1(x)− gβ2(c) =
xβ2 − 1

β2
− xβ1 − 1

β1
.

We have to show that the function d(x) is non-negative for all x > 0. It holds that

∂

∂x
d(x) = xβ2−1 − xβ1−1 = 0

only if x = 1. As it further holds that

∂2

∂x2
d(x) =

(β2 − 1)xβ2 − (β1 − 1)xβ1

x2
,

it follows that

∂2

∂x2
d(1) = β2 − β1 > 0.

Therefore, the function d attains its minimum at x = 1. Further, it holds that ∂
∂x
d(x) >

0 for x > 1 and ∂
∂x
d(x) < 0 for 0 < x < 1. Thus, the minimum at x = 1 is global.

Furthermore, it holds that d(1) = 0. Therefore, d(x) is non-negative.
Therefore, the sequence gβ(·) is monotone increasing as β → 0.

Utilizing Lemma 9.1.1 and Lemma 9.1.2, the subsequent theorem follows.

Theorem 9.1.3. Let X and Y be independent d-dimensional random variables. Then

lim
β→0

E
(
∥X−Y∥β − 1

β

)
= E (log(∥X−Y∥)) .

Proof. As already shown, the sequence

gβ(x) = x− 1− xβ − 1

β
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is non-negative for β ∈ (0, 1) and monotone in β. By the theorem of monotone con-
vergence it follows that

lim
β→0

E
(
∥X−Y|∥ − 1− ∥X−Y∥β − 1

β

)
= E (∥X−Y∥ − 1− log(∥X−Y∥)) .

The assertion follows by the linearity of the expectation.

In the following, we want to find conditions for the distributions of X and Y such
that the expectation E (log(∥X−Y∥)) is finite. Firstly, we can state the following
remark.
Remark 9.1.4. Note that for discrete distributed d-dimensional random variables X
and Y that take values on the same set {x1,x2, . . . } with corresponding probabilities
pi = P(X = xi) and qi = P(Y = xi) it applies that

E (log(∥X−Y∥)) =
∑
i,j

log(xi − xj)piqj = −∞.

Therefore, let the distributions of X and Y be continuous. Then we can formulate
the following two lemmas that set up further conditions on the distributions of X and
Y, such that E (log(∥X−Y∥)) > −∞.

Lemma 9.1.5. If the density of Z := ∥X − Y∥ is bounded on the interval (0, 1), it
holds that E(log(Z)) > −∞.

Proof. Let fZ be the density of Z. Then

E(log(∥X−Y∥) = E(log(Z))

=

∫ ∞

0

log(z)fZ(z)dz

=

∫ 1

0

log(z)fZ(z)dz +

∫ ∞

1

log(z)fZ(z)dz.

It is clear that the second integral is greater than −∞, as the logarithm takes only
positive values on the interval (1,∞).
Further, it holds for the first integral that∫ 1

0

log(z)fZ(z)dz ≥
∫ 1

0

log(z) · b dz = −b, (9.3)

as the density fZ is bounded by b on the interval (0, 1). Hence, the assertion follows.

The following lemma imposes conditions on the distributions of X and Y that ensure
that the density of Z is bounded.

Lemma 9.1.6. Let X,Y be d-dimensional continuous distributed independent random
variables. Further let the density of X be bounded. Then the density of Z := ∥X−Y∥
is bounded on (0, 1).
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Proof. If the density of X is bounded, it holds that P (X ∈ A) ≤ b · λ(A) for all
A ∈ B(Rd). It follows that for all ϵ > 0

P (a < Z < a+ ϵ) = P (a < ∥X−Y∥ < a+ ϵ)

=

∫
P (a < ∥X− y∥ < a+ ϵ)PY(dy)

≤
∫
b · λ(Aϵ)PY(dy)

= b · λ(Aϵ) = b ·

(
π

d
2 (a+ ϵ)d

Γ
(
1 + d

2

) − π
d
2ad

Γ
(
1 + d

2

))

= b ·
π

d
2

(
(a+ ϵ)d − ad

)
Γ
(
1 + d

2

) .

As an illustration note that in the bivariate case Aϵ is a circular ring. It follows that

fZ(a) = lim
ϵ→0

FZ(a+ ϵ)− FZ(a)

ϵ

= lim
ϵ→0

P (a < Z < a+ ϵ)

ϵ

≤ lim
ϵ→0

b ·
π

d
2

(
(a+ ϵ)d − ad

)
ϵ · Γ

(
1 + d

2

)
= lim

ϵ→0
b ·
π

d
2

∑d
k=1

(
d
k

)
ad−kϵk

ϵ · Γ
(
1 + d

2

)
= lim

ϵ→0
b ·
π

d
2

∑d
k=1

(
d
k

)
ad−kϵk−1

Γ
(
1 + d

2

)
= b · π

d
2d · ad−1

Γ
(
1 + d

2

) .
As the bound

b · π
d
2d · ad−1

Γ
(
1 + d

2

)
is monotone increasing in a, this yields that fZ is bounded by

b · π
d
2d

Γ
(
1 + d

2

)
on the interval (0, 1).

Example 9.1.7. Let X and Y be uniformly distributed on (0, 1). Then we can define
the random variable Z := |X − Y |. The corresponding density is fZ(t) = 2 − 2t for
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t ∈ [0, 1].
It follows that

E (log(∥X − Y ∥)) = E (log(Z))

=

∫ 1

0

log(t)(2− 2t)dt = −3/2.

Example 9.1.8. Let X and Y be distributed with density

f(x) =


0, x < 0

3x2, 0 ≤ x ≤ 1

0, x > 1.

The corresponding distribution function is given by

F (x) =


0, x < 0

x3, 0 ≤ x ≤ 1

1, x > 1.

The distribution of Z := |X − Y | can be calculated as

FZ(x) =

∫
(F (y + x)− F (y − x))f(y)dy

=

∫
F (y + x)f(y)dy −

∫
F (y − x)f(y)dy

=

∫ 1−x

0

(y + x)3 · 3y2dy +
∫ 1

1−x

3y2dy −
∫ x

1

(y − x)3 · 3y2dy

=
1

20

(
−2x6 + 40x3 − 90x2 + 72x

)
.

Accordingly, we obtain the density

fZ(x) =
1

20
(−12x5 + 120x2 − 180x+ 72), 0 ≤ x ≤ 1.

Therefore,

E (log(∥X − Y ∥)) = E(log(Z))

=

∫ 1

0

log(z) · 1

20
(−12x5 + 120x2 − 180x+ 72)dz

= −2.

Utilizing these results we can state the following theorem.
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Theorem 9.1.9. Let X and Y be independent d-dimensional random variables with
continuous distribution such that E∥X∥2 < ∞ and E∥Y∥2 < ∞. Further, we assume
that the density fX of X and the density gY of Y is bounded. Then it holds that

lim
β→0

1

β
E (β)(X,Y) (9.4)

= 2 · E(log ∥X−Y∥)− E(log ∥X− X̃∥)− E(log ∥Y − Ỹ∥). (9.5)

Proof. Firstly, we proof that the expectations in (9.5) are finite. So let X and Y be
independent d-dimensional random variables with continuous distributions. It holds
that

E (log ∥X−Y∥) = E

log

(
n∑

i=1

(Xi − Yi)
2

)1/2


= E

(
1

2
log

(
n∑

i=1

(Xi − Yi)
2

))
=

1

2
E

(
log

(
n∑

i=1

(Xi − Yi)
2

))

≤ 1

2
log

(
E

(
n∑

i=1

(Xi − Yi)
2

))
=

1

2
log

(
n∑

i=1

E((Xi − Yi)
2)

)
,

where we used Jensen’s inequality. So if E∥X∥2 < ∞ and E∥Y∥2 < ∞, it holds that
E (log ∥X−Y∥) < ∞. Further, if E∥X∥2 < ∞ and E∥Y∥2 < ∞, it obviously also
holds that 1/β · E (β)(X,Y) is finite for all β ∈ (0, 2).
According to Lemma 9.1.6 and Lemma 9.1.5, we have E (log ∥X−Y∥) > −∞ if the
densities of X and Y are bounded. Analogously, this result follows for E(log ∥X− X̃∥)
and E(log ∥Y − Ỹ∥).
By the linearity of the expectation we can write

1

β
E (β)(X,Y) = 2E

(
∥X−Y∥β − 1

β

)
− E

(
∥X− X̃∥β − 1

β

)
− E

(
∥Y − Ỹ∥β − 1

β

)
.

Thus, the assertion follows by Theorem 9.1.3.

Analogously to the energy score and its associated divergence function, namely the
energy distance, we can define a scoring rule corresponding to the function (9.5) which
arises as a scaled limit of the energy distance. This scoring rule is given by

Sclog(F,y) = E (log(∥X− y∥))− 1

2
· E
(
log(∥X− X̃∥)

)
.

In the following, we proof that this scoring rule is strictly proper with respect to a
broad class of distributions. To answer this, we first recall the following important
theorem which is the key result in the kernel construction of strictly proper scoring
rules, see Appendix A.2.
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Theorem 9.1.10 (Gneiting and Raftery (2007)). Let ψ be a continuous function on
[0,∞) with ψ′ completely monotone and not constant. For a Borel probability measure
F on Rd, let X and X̃ be independent random vectors with distribution F . The scoring
rule

S(F,y) = EFψ(∥X− y∥2)− 1

2
EFψ(∥X− X̃∥2)

is strictly proper relative to the class of the Borel probability measures F on Rd for
which EFψ(∥X− X̃∥2) is finite.

Theorem 9.1.11. The scoring rule

Sclog(F,y) := E (log ∥X− y∥)− E
(
log ∥X− X̃∥

)
(9.6)

is strictly proper relative to the class of continuous distributions such that E∥X∥2 <∞
and the density fX of X is bounded.

Proof. As E∥X∥2 < ∞ it follows that E
(
log ∥X− X̃∥

)
< ∞ by Jensen’s inequality,

see for this the proof of Theorem 9.1.9.
According to Lemma 9.1.6 and Lemma 9.1.5, it holds that E

(
log ∥X− X̃∥

)
> −∞

if the distribution of X is continuous and the density of X is bounded. As the func-
tion ψ(t) = log(t1/2) is continuous on [0,∞) with ψ′(t) completely monotone and not
constant as it holds true that φ(t) := ψ′(t) = 1/(2t) and

φ(k) = (−1)k
k!

2 · tk+1
.

Therefore, the assertion follows by Theorem 9.1.10.

9.2. Some properties of the scoring rule

Clearly, the scoring rule Sclog can take both positive and negative values. That makes
the interpretation of the score values received with Sclog harder when solely the score
values are considered.
For instance, in case of the energy score it holds that the closer the score is to zero,
the better is the quality of the forecast.

Example 9.2.1. So let for example the true distribution G be given by the uniform
distribution on (0, 1). Then the score of the perfect forecast is

Sclog(G,G) =
1

2
E(log ∥X − Y ∥) = −3

4
,

where X and Y are independent and both distributed with distribution G.



Limiting cases of the energy score 128

Remark 9.2.2. When we assess the resulting score values with the Diebold-Mariano
test, the scoring rule Sclog should perform just like the energy score with a very small
parameter β as we received the scoring rule Sclog by a linear transformation with factor
1/β of the energy score. As the Diebold-Mariano test is invariant with respect to linear
transformations the assertion follows.

Remark 9.2.3. The estimator can be implemented analogously to the energy score.
Given the i.i.d. sample X(1), . . . ,X(M) as draws from the forecasting distribution F
and the observation y from G, the first term can be estimated by

ŜcDlog :=
1

M

M∑
j=1

log
(∣∣∣∣X(j) − y

∣∣∣∣) .
The second term has multiple plausible options for the estimation. The definition
implies that we require the independent copy X̃ of the forecasting distribution.
As the members of the ensemble X(1), . . . ,X(M) are i.i.d. we might use one half of this
set as draws from X and the other half as draws from X̃. So the resulting estimator is
given by

ŜcIiidlog :=
1

⌊0.5M⌋

⌊0.5M⌋∑
j=1

log
(∣∣∣∣X(j) −X(⌊0.5M⌋+j)

∣∣∣∣) .
Note that the sum only contains ⌊M/2⌋ summands, but they have nice statistical
properties as they are i.i.d.
Another reasonable estimator is given by

ŜcIbandlog :=
1

M · (M − 1)

M∑
j=1

M∑
k=1
k ̸=j

log
(∣∣∣∣X(j) −X(k)

∣∣∣∣) .
9.3. Simulation study: bivariate Gaussian process

In the following, we repeat the simulation study of Pinson and Tastu (2013) for the
newly defined scoring rule Sclog to study its discrimination ability.
We also compare it to the energy score with β = 0.01 and β = 1. It should hold
that Sclog and ES0.01 perform quite similarly with respect to the discrimination ability
assessed with the Diebold-Mariano test.
We first consider errors in mean, that is the real distribution Y is given by a bivariate
Gaussian process with mean set to µ = 5, correlation ρ = 0.5 and variance σ2, where
σ2 ∈ {1, 3, 5, 7, 9}. In order to characterize the sensitivity to the process variance the
following assessment is performed for different values of σ2.
Further, let µ̂ be the mean parameter of the predictive distribution. We choose µ̂ out
of the grid {0, 0.5, 1, 1.5, . . . , 9.5, 10}. The DM-test statistic is evaluated as a function
of the normalized error in mean (µ− µ̂)/σ.
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(a) Sclog
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(b) Energy score with β = 0.01
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(c) Energy score with β = 1

Figure 9.2.: DM-test statistic values for errors in mean, the statistics are capped to
improve interpretability.

In case of a misspecified mean, the energy score with parameter β = 0.01 and Sclog
perform almost exactly the same. The absolute values of the DM-test statistic for both
scoring rules are only smaller than 1, 96 for the perfect forecasts. That is, all mis-
specified forecasting distributions are detected as not matching the true distribution.
However, as already stated above this result was to be expected due to the invariance
of the Diebold-Mariano test with respect to linear transformations.
Both scoring rules perform noticeably better than the energy score with β = 1 which
falsely does not reject the null hypothesis in two cases.
Next we consider errors in variance. As in Section 7.3.2, we keep the mean and cor-
relation parameters fixed as µY = (0, 0)′ and ρ = 0.5 and evaluate ∆Sc as a function
of the relative prediction error in variance, which is defined as (σ2 − σ̂2)/σ2, where σ̂2

is the predictive variance. We choose σ̂2 out of the grid {0, 0.5, 1, . . . , 9, 5, 10}. The
assessment is performed for a set of σ2 with σ2 ∈ {1, 3, 5, 9} to characterize the sensi-
tivity to the process variance. Here all three scoring rules perform the same and do not
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reject the null hypothesis only if the process variance is predicted correctly, i.e. only if
the normalized error in variance is zero.
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(a) Sclog

-2 -1.5 -1 -0.5 0 0.5 1
Normalized error in variance

-5

0

5

10

15

20

D
M

-te
st

 s
ta

tis
tic

 w
.r.

t. 
tru

e

(b) Energy score with β = 0.01
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(c) Energy score with β = 1

Figure 9.3.: DM-test statistic values for errors in variance, the statistics are capped to
improve interpretability.

Lastly, we consider the discrimination ability of the scoring rule Sclog with respect
to errors in correlation compared to the energy score with parameters β = 0.01 and
β = 1. As above we keep the mean and variance parameters fixed as µ = (0, 0) and
σ2 = 1 and calculate the Diebold-Mariano test statistic values as a function of the
predicted correlation ρ̂. The assessment is performed for different values of

ρ ∈ {−1,−0.8, . . . , 0.8, 1}.

For the predicted correlation we choose the denser grid

ρ̂ ∈ {−1,−0.9,−0.8, . . . , 0.9, 1}.
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(a) Sclog
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(b) Energy score with β = 0.01
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(c) Energy score with β = 1

Figure 9.4.: DM-test statistic values for errors in correlation, the statistics are capped
to improve interpretability.

In all three simulation studies the scoring rule Sclog and the energy score with β =
0.01 admit roughly the same Diebold-Mariano test statistic values. Furthermore, both
scoring rules admit a better discrimination ability than the energy score with the
standard choice of β = 1.

9.4. Simulation study II revisited

We now repeat simulation study II, see Chapter 7.4, and assess the probabilistic fore-
casts with the newly defined scoring rule Sclog. As the consideration of solely the score
values is not meaningful, we constrict ourselves to the consideration of the values of
the Diebold-Mariano test statistic.
Firstly, we consider the case of miscalibrated marginal distributions. So let the ob-
servations be realizations of a Gaussian distribution Y of dimension d = 5 with zero
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mean, unit variance, and correlation structure given by the exponential model (7.2)
with r = 3. The forecasting distributions X assign the true exponential correlation
structure and have

1. correct variances but biased means: µX = (−0.5,−0.25, 0, 0.25, 0.5)′,

2. correct means and variances,

3. correct means but too large variances: σ2
X = 1.5,

4. correct means but too small variances: σ2
X = 0.6667.

(a) Sclog (b) Energy score with β = 0.001

Figure 9.5.: DM-test statistic values corresponding to the score values of the mean-
biased, correct, over-, and underdispersive forecasts ( blue, green, magenta,
and yellow boxes) for ensembles sizes m = 20 and m = 100.

Afterwards, we consider errors in correlation strength for the dimension size d = 15.
The true distribution is given by a zero mean, unit variance AR(1)-process with corre-
lation function given in (7.2) with r = 3. The forecasting distributions have the same
correlation model, but with r = 2, r = 3 and r = 4.5.
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(a) Sclog (b) Energy score with β = 0.001

Figure 9.6.: DM-test statistic values corresponding to the score values of forecasts with
too weak (green), accurate (magenta), and too strong (yellow) correlations
compared to the observations.

Lastly, we consider the case of misspecified correlation models. Here we not just
vary the correlation strength but the entire correlation model, see Scetion 7.4.3. We
consider observations with zero mean, unit variance, and correlation function

(i) corr(Yi, Yj) =
(
1 + |i−j|

3

)−1

, and

(ii) corr(Yi, Yj) = exp
(
− |i−j|

4

) [
0.75 + 0.25 · cos

(
|i−j|π

2

)]
.

(a) Sclog (b) Energy score with β = 0.001

Figure 9.7.: DM-test statistic values corresponding to the score values of forecasts with
correct (left magenta boxplots), and incorrect (right green boxplots) corre-
lation structure, where the correct correlation function is that using model
(i) in Section 7.4.3, and the incorrect correlation function is the exponential
model in (7.2) with r = 3.
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(a) Sclog (b) Energy score with β = 0.001

Figure 9.8.: DM-test statistic values corresponding to the score values of forecasts with
correct (left magenta boxplots), and incorrect (right green boxplots) corre-
lation structure, where the correct correlation function is that using model
(ii) in Section 7.4.3, and the incorrect correlation function is the exponen-
tial model in (7.2) with r = 3.

In all simulation studies the energy score with β = 0.001 and Sclog yield almost
exactly the same DM-test statistic values which confirms the statement above that the
scoring rule Sclog is the scaled limiting case of the energy score as β tends to zero.



Summary and conclusion 135

10. Summary and conclusion

We analyzed the existing multivariate scoring rules in detail and also proposed a new
scoring rule which results as a limiting case of the energy score as β tends to zero. In
several simulation studies we found that the energy score, particularly, when the pa-
rameter β is small, discriminates well between forecasting distributions not only with
different mean and variance parameters, but also among forecasting distributions with
different interdependence structure between the components.
This contradicts the most common literature which states the energy score has a poor
discrimination ability with respect to differences in the correlation structure between
different forecasting distributions, see Pinson and Tastu (2013).
A crucial element in assessing the predictive performance of a probabilistic forecast or
the discrimination ability of a scoring rule is the Diebold-Mariano test.
It can also be stated that the energy score is reasonably applicable to ensemble fore-
casting systems of smaller ensemble sizes m = 100 and even m = 20 which frequently
arise in application, for instance, in weather and climate prediction due to the com-
plexity of the underlying models and limited computation power.
The probably most important property of the energy score is that it is strictly proper
to a broad class of distributions. Remember that the energy score is strictly proper
relative to the class of Borel-probability distributions F such that EF∥X∥β < ∞. For
a small parameter β this also includes the case of heavy-tailed distributions.
In contrast, the variogram score proposed by Scheuerer and Hamill (2015) is only
proper, but not strictly proper and the Dawid-Sebastiani score is only strictly proper
for Gaussian distributions. Therefore, these scoring rules are in general not able to
identify the true distribution. The variogram score of order p, for instance, is not able
to discriminate between distributions that have the same bias for every component.
Moreover, large-scale errors that are the same for every component cancel out, see
Section 7.3.1.
However, in some special cases the variogram score has a better discrimination ability
between forecasting distributions that differ in their interdependence structure.
Therefore, the energy score with a small parameter β should be the scoring rule of
choice in application.
The newly defined scoring rule Sclog that arises as a limiting case of the energy score
is also strictly proper to a broad class of distributions, namely the continuous distri-
butions with bounded densities and E∥X∥2 <∞. Similar to the energy score it is also
readily applicable to ensemble forecasts.
Overall a general guideline for forecasters is to do ensemble forecasts with a huge sam-
ple size and evaluate on the full dimensional with either the energy score with a small
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parameter β or the scoring rule Sclog. Afterwards, it is crucial to assess the resulting
score values with the Diebold-Mariano test for significance.
Optional the results can be backed up by other scoring rules. For instance, the vari-
ogram score can be utilized to additionally assess the interdependence structure of a
forecasting distribution or the CRPS can be applied to the marginals.

An interesting question, that should be studied further, is for what reason the energy
score with a smaller parameter β leads to a better discrimination ability. Apparantly,
the function x 7→ |x|β is strictly concave on (0,∞) for 0 < β < 1 similar to the function
x 7→ log(|x|) utilized in the scoring rule Sclog.
Furthermore, other functions than just x 7→ |x|β in the definition of the energy score
can be considered. The energy score also works out for every function which is the
negative logarithm of an infinitely divisible characteristic function. So, for instance,
the functions x 7→ log(1+ |x|2) or x 7→ 1− exp(|x|2/2) could be studied in this context.
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A. Mathematical appendix

A.1. Copulas

This section gives a short overview of copulas, mainly following Joe (2014).

Definition A.1.1. A function C : [0, 1]d → [0, 1] is called copula if there is a random
vector U = (U1, . . . , Ud) with uniformly distributed marginals on (0, 1) with distribu-
tion function C.

Consider a random vector X = (X1, . . . , Xd) with distribution function F . According
to the important result from Sklar we are able to consider the univariate marginals of
each variable Xi .

Theorem A.1.2. For every d-dimensional distribution function F with marginal dis-
tributions F1, . . . , Fn there exists a copula C, such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

holds for every x = (x1, . . . , xd) ∈ Rd. The copula C is unique if the marginals
F1, . . . , Fd are continuous.

Next we consider an important class of copulas. Archimedean copulas are often
applied in dependence modeling as it easy to generate random numbers.

Definition A.1.3. A copula with generator function ψ : [0,∞) → [0, 1] is called
Archimedean copula if it admits the functional form

C(u1, . . . , ud) = ψ(ψ−1(u1) + . . . , ψ−1(ud)).

The function ψ is the generator of the copula.
This construction yields a copula if ψ(0) = 1, limt→∞ ψ(t) = 0, and the function ψ is
n times differentiable with alternating signs, i.e.

(−1)kψ(k)(t) ≥ 0 for all t ≥ 0, k = 1, . . . , n.

This applies in particular if ψ is the Laplace transformed of a non-negative random
variable.

Example A.1.4. We now consider the generator functions of the one parametric Gum-
bel and the one parametric Clayton copula.
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• The copula with generator

ψ(t) = exp
(
−t1/θ

)
, , t ≥ 0, θ ≥ 1

is called Gumbel copula.

• The copula with generator

ψ(t) =
1

θ

(
t−θ − 1

)
, , t ≥ 0, θ ≥ 1

is called Clayton copula.

Remark A.1.5. For θ → 1 we obtain independence, whereas for θ → ∞ the Gumbel
copula converges to the Fréchet-Hoeffding upper bound.
The Gumbel copula which we consider in our simulation study is frequently used to
model data with assymmetric dependence. This copula is well known for its ability
to capture strong upper tail dependence and weak lower tail dependence. Due to
the restriction of the dependence parameter θ the Gumbel copula can not reach the
Fréchet-Hoeffding lower bound. This suggests that the Gumbel copula can not account
for negative dependence.

An important characteristic of random vectors (X1, X2) are the tail dependence co-
efficients for describing dependencies in the tails. These coefficients give an indication
of how likely it is that both random variables take very large/small values at the same
time.

Definition A.1.6. The upper tail dependence λU and the lower tail dependence λL of
a random vector (X1, X2) with continuous marginals are defined as

λL = lim
t→0

P
(
X2 ≤ F−1

2 (t)|X1 ≤ F−1
1 (t)

)
and

λU = lim
t→1

P
(
X2 > F−1

2 (t)|X1 > F−1
1 (t)

)
.

Remark A.1.7. In the definition, one can also swap the roles of X1 and X2 without
changing the values. The upper and lower tail dependence depend only on the values
of the copula on the diagonal.

Remark A.1.8. The parameter of the upper and lower tail dependence of the Gumbel
copula can be calculated by λU = 2− 21/θ and λL = 0.

Let us now consider the sampling a bivariate copula. In the case of continuous
random variables we utilize the PIT to transform X1 and X2 to standard uniform
random variables U1 = F1(X1) and U2 = F2(X2). The copula is the joint distribution
function of (U1, U2), i.e.

H(u1, u2) = P(U1 ≤ u1, U2 ≤ u2), 0 < u1, u2 < 1.
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Simulations of bivariate copulas can be generated as follows. First we generate random
numbers v1 and v2 from a uniform distribution on (0, 1). Then, we set

u1 = v1 and

u2 = c−1
u1
(v2),

where c−1
u denotes the quasi inverse of the conditional distribution function

cu(v) = P(V ≤ v|U ≤ u) =
∂C(u.v)

∂u
.

The sampling of Archimedean copulas is considered in Hofert (2008).
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A.2. Scoring rules and kernel functions

Now we turn to a far-reaching generalization of the energy score. In the course of this
we firstly introduce the kernel score. The following statements in this section are all
taken from Gneiting and Raftery (2007).

Let Ω be a nonempty set. A real-valued function g on Ω×Ω is said to be a negative
definite kernel if it is symmetric in its arguments and

∑n
i=1

∑n
j=1 aiajg(xi, xj) ≤ 0 for

all positives integers n, all a1, . . . , an ∈ R that sum to 0, and all x1, . . . , xn ∈ Ω. In
Berg, Christensen, and Ressel (1984) numerous examples of negatives definite kernels
are given.

Theorem A.2.1. Let Ω be a Hausdorff space and let g be a non-negative, continuous
negative definite kernel on Ω×Ω. For a Borel probability measure P on Ω, let X and
X̃ be independent random variables with distribution P . The scoring rule

Sc(P, y) = EP g(X, y)−
1

2
EP g(X, X̃) (A.1)

is proper relative to the class of the Borel probability measures P on Ω for which the
expectation EP g(X, X̃) is finite.

Example A.2.2. If Ω = Rd, β ∈ (0, 2) and g(x, x̃) = ∥x − x̃∥β, where ∥ · ∥ denotes
the Euclidean norm, then (A.1) recovers the energy score.

Utilizing this theorem the energy score can be generalized. For x ∈ Rd and α ∈
(0,∞], define the vector norm ∥x∥α = (

∑d
i=1 |xi|α)1/α if α ∈ (0,∞) and ∥x∥∞ =

max1≤i≤d|xi|.
According to Schoenberg’s theorem, see Berg, Christensen, and Ressel (1984), Theorem
3.2.2, and a strand of literature culminating in the work of Koldobsky (1992), and
Zastavnyi (1993) it holds that if α ∈ (0,∞] and β > 0, the kernel

g(x, x̃) = ∥x− x̃∥βα, x, x̃ ∈ Rd

is negative definite if and only if the following holds.

• d = 1, α ∈ (0,∞], and β ∈ (0, 2],

• d ≥ 2, α ∈ (0, 2], and β ∈ (0, α],

• d = 2, α ∈ (2,∞] and β ∈ (0, 1].

Theorem A.2.1 can be sharpened in the crucial case of Euclidean sample spaces. Firstly
recall that function ν on (0,∞) is said to be completely monotone if it has derivates
ν(k) of all orders and (−1)kν(k)(t) ≥ 0 for all non-negative integers k and all t > 0.
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Theorem A.2.3. Let ψ be a continuous function on [0,∞) with ψ′ completely mono-
tone and not constant. For a Borel probability measure F on Rd, let X and X̃ be
independent random vectors with distribution F . The scoring rule

S(F,y) = EFψ(∥X− y∥2)− 1

2
EFψ(∥X− X̃∥2)

is strictly proper relative to the class of the Borel probability measures F on Rd for
which EFψ(∥X− X̃∥2) is finite.

The proof of this result follows directly by Mattner (1997). In particular, if ψ(t) =
tβ/2, then the previous theorem ensures the strict propriety of the energy score relative
to the class of the Borel probability measures P on Rd for which EP∥X∥β2 is finite.
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A.3. An upper bound for the discrimination ability
of the energy score in the multivariate Gaussian
case

Analogously to Pinson and Tastu (2013), we can calculate an upper bound of the rela-
tive change in score for the multivariate Gaussian case which depends on the dimension
d and also the parameter β of the energy score in closed-form.
As an upper bound for the relative change in score we consider the case where the true
underlying distribution G is given by a d-variate Gaussian distribution Y ∼ N (0,Σ)
with the same variance σ2 on all dimensions, and a correlation of 1 between the different
components, i.e.

Σ = σ21(d×d),

where 1(d×d) is a d×d-matrix of ones. Thus, a process observation is given by y = y1d,
where 1d is a d-dimensional vector of ones and y is a realization ofN (0, σ2).
The forecast F is given by the naive forecast, which totally neglects the interdepen-
dence structure, i.e. all components are independent. In this case the covariance matrix
is given by Σ̂ = σ2diag(1d). The mean of the naive forecast is assumed to be zero.

Firstly, we compute the expected energy score for the naive forecast. It holds that
given a single process realization y = y1d,

∥X− y∥ =
√

(X1 − y)2 + (X2 − y)2 + . . . (Xd − y)2,

where
(Xi − y) ∼ N (−y, σ2)

for all i = 1, . . . , d. Thus,

Z =
d∑

i=1

(Xi − y)2

σ2
∼ non− central Chi− squared.

Consequently, following Harvey (1965), the parameters of the distribution are given by
d and

λ =
1

2

d∑
i=1

y2

σ2
.

Furthermore, it holds that

EF∥X− y∥β = EF

(
d∑

i=1

(Xi − y)2

)β/2

= EF

(∑d
i=1(Xi − y)2

σ2

)β/2

· σβ = σβEF (Z
β/2).
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So we need the β/2-moment of the non-central Chi-squared distribution.
Following Harvey (1965), it holds that

E(Zβ/2) =
√
2
βΓ
(
d+β
2

)
Γ
(
d
2

) 1F1

(
−β
2
,
d

2
,−λ

)
=

√
2
βΓ
(
d+β
2

)
Γ
(
d
2

) 1F1

(
−β
2
,
d

2
,−d

2
· y

2

σ2

)
,

where 1F1 denotes the confluent hypergeometric function. It follows that

EG

(
EF∥X−Y∥β

)
= σβ

√
2
βΓ
(
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Utilizing (4) on page 822 of Gradshteyn and Ryzhik (2014), stating that∫ ∞

0

exp(−st)tb−1
1F1(a, c, kt) = Γ(b)(s− k)−b

2F1(c− q, b; c; k/(k − s)

if |s− k| > |k| and Re(b) > 0,Re(s) > max(0,Re(k)). 2F1 denotes the Gauss hyperge-
ometric function in the above.
In our case we have s = 1/(2σ2), b = 1/2, c = d/2, a = −β/2 and k = −n/(2σ2). As
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it follows that
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Next, we calculate EG

(
EG∥X− X̃∥β

)
. Again we start with

∥X− X̃∥ =

√
(X1 − X̃1)2 + (X2 − X̃2)2 + . . . (Xd − X̃d)2,
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where Xi, X̃i ∼ N (0, σ2) and mutually independent for all i = 1, . . . , d. Let us define

Z = (
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i=1

(Xi − X̃i)
2)/(2σ2).

As
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Z follows a non-central Chi-squared distribution with parameters d and λ = 0. There-
fore, it holds that
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So altogether we have

EG∥X− X̃∥β = EG

(√
(X1 − X̃1)2 + (X2 − X̃2)2 + . . . (Xd − X̃d)2

β)

= EG

(∑d
i=1(Xi − X̃i)

2

2σ2

)β/2 √
2
β
σβ


= σβ

√
2
β
EG(Z

β/2)

= σβ
√
2
β
2β/2

Γ
(
d+β
2

)
Γ
(
d
2

)
= σβ2β

Γ
(
d+β
2

)
Γ
(
d
2

) ,

and, thus, it also holds that
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Altogether we receive the following closed-form solution for the expected score of the
naive forecast
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Next, we consider the score of the perfect forecast. It holds that
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where X, X̃ and Y are i.i.d. with distribution G.
Note that

X−Y = (X1 − Y1, . . . , Xd − Yd).

As
Σ = σ21(d×d),

it holds that X := X1 = · · · = Xd and Y := Y1 = · · · = Yd. Therefore, we have
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As Y ∼ N (0, σ2),

EG

(
EG∥X−Y∥β

)
= dβ/2σβ2β/2

Γ
(
1
2
+ β

2

)
√
π

∫ ∞

−∞
1F1

(
−β
2
,
1

2
,−1

2

y2

σ2

)
1

σ
√
2π

exp

(
− y2

2σ2

)
dy

= σβ−1dβ/22β/2−1/2π−1Γ

(
1

2
+
β

2

)
2

∫ ∞

0

exp

(
− y2

2σ2

)
1F1

(
−β
2
,
1

2
,−1

2

y2

σ2

)
dy

= σβ−1dβ/22β/2−1/2π−1Γ

(
1

2
+
β

2

)∫ ∞

0

exp

(
− t

2σ2

)
1F1

(
−β
2
,
1

2
,−1

2

t

σ2

)
t−1/2dt.

Again, utilizing (4) on page 822 of Gradshteyn and Ryzhik (2014) stating that with

a = −β/2
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the conditions

|s− k| = 1

σ2
>

1

2σ2
= |k|

Re(b) = 1/2 > 0

Re(s) =
1

2σ2
> 0 = max(0,Re(k))

are fulfilled, we obtain

EG

(
EG∥X−Y∥β

)
= σβ−1dβ/22β/2−1/2π−1Γ

(
1

2
+
β

2

)
Γ(1/2)σ 2F1

(
1 + β

2
,
1

2
,
1

2
;
1

2

)
= 2βdβ/2σβπ−1/2Γ

(
1 + β

2

)
.

Therefore, it holds that

ESβ(G,G) = 2β−1nβ/2σβπ−1/2Γ

(
1 + β

2

)
.

Consequently, for the relative change in score value we obtain
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B. Software

The introduced models in this thesis were implemented in MATLAB. The commer-
cial software package is provided by MathWorks. We want to note that not all used
functions are part of MATLAB’s standard version. Some special toolboxes like the
Econometrics toolbox are required. We used a student license provided by the univer-
sity that has all the required toolboxes. In the following, the most important functions
are described.

• copularnd: Generates copula random numbers. Possible copulas from the
Archimedean copula family are Clayton, Frank and Gumbel.

• random: Generates random numbers from different kinds of distributions. Used
distributions in this thesis are: Beta, Gamma, Gaussian and Uniform.

On demand the program code used in this thesis can be provided via sciebo.
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