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Abstract

Navigation is a key capability of Micro Aerial Vehicles (MAVs). It includes perception,
localization, motion control, cognition and obstacle avoidance as the main competences.
It may be accomplished by an external operator or onboard flight management system,
known as remotely piloted and autonomous systems respectively. The agility of MAVs
and complexity of their operating environments have favoured autonomous navigation so-
lutions, which are predominantly Global Navigation Satellite System (GNSS)-based, over
remotely piloted solutions. But GNSS technology is susceptible to intentional and unin-
tentional interferences, which challenges have motivated the quest for GNSS-independent
autonomous navigation solutions.

Although navigation is supported by several competences, this research focuses on
cognition, specifically, the problem-solving intellectual function. Within the navigation
task, one of the main problem solvers is the path planner. The key requirement of any path
planner is the ability to find feasible paths. Additionally, for MAVs with the inability to
conserve power while searching for a path online, the planner ought to be fast and scale well
with the environment. This led to the first goal of developing an online path planner with
such performance. Another problem to solve arises when the planned path length exceeds
the MAV’s endurance, a case common in coverage tasks. For this, a coverage path planner
capable of accounting for vehicle endurance in relation to path length and environment size
is required. Lastly, autonomous functioning has enabled deployment of mobile robots on
our world and beyond. But knowing the right amount of autonomy required to complete a
given task is still a challenge. Several autonomy evaluation frameworks have been proposed
over the last three decades, but most of these offer a low resolution categorical output or
have inconsistent metrics, raising the need for a better autonomy framework.

A path planning ensemble consisting of three concurrently executed single query ran-
domized sampling-based path planners has been proposed for online path planning. A
partitioning path planner capable of exact cellular decomposition of large areas of interest
into manageable cells using Voronoi decomposition, planning coverage paths and schedul-
ing them on a MAV or a fleet of either homogeneous or heterogeneous MAVs has been
proposed as well. Last but not least, a set of four autonomy evaluation metrics, namely
capabilities, trust factor, performance capacity and environmental complexity, and their
associated mathematical models have also been proposed.

Tested in a physics supported graphical simulator, the proposed path planning en-
semble demonstrated query adaptability, a high path finding success rate and a short
path planning time, suitable for online path replanning with allowance for path smooth-
ing. Also, the lack of implicit environment representation by sampling-based planners
meant that the ensemble planner scales well with the environment. The plausibility of
the proposed large-scale coverage path planner has been ascertained through a Software-
In-the-Loop (SIL) test. Such a planner guarantees coverage, ensures proper resource
management and proper mission planning. The autonomy evaluation framework has been
tested on three case studies, which together ascertained the plausibility of its models. This
framework provides a systematic approach for development and regulation of autonomy.
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Zusammenfassung

Die Navigation ist eine der wichtigsten Fähigkeiten von Mikro-Luftfahrzeugen (MAVs).
Sie beinhaltet die Hauptkompetenzen Wahrnehmung, Lokalisierung, Stabilitätskontrolle,
Kognition und Hindernisvermeidung. Die Navigation kann von einem externen Bedi-
ener oder einem bordseitigen Flugmanagementsystem ausgeführt werden, die als fernges-
teuerte bzw. autonome Systeme bekannt sind. Die Agilität von MAVs und die Komplex-
ität ihrer Betriebsumgebungen haben autonome Navigationslösungen, die überwiegend
auf dem Globalen Navigationssatellitensystem (GNSS) basieren, gegenüber ihren fernges-
teuerten Pendants bevorzugt. Aber die GNSS-Technologie ist jedoch anfällig für beab-
sichtigte und unbeabsichtigte Störungen. Diese Herausforderungen haben die Suche nach
GNSS-unabhängigen autonomen Navigationslösungen motiviert.

Obwohl die Navigation durch mehrere Kompetenzen unterstützt wird, liegt der Schw-
erpunkt hier auf der Kognition, Problemlösungskompetenz. Im Rahmen der Navigation-
saufgabe ist einer der wichtigsten Problemlöser der Pfadplaner. Die Hauptanforderung an
jeden Pfadplaner ist die Fähigkeit, realisierbare Pfade zu finden. Da MAVs jedoch nicht
in der Lage sind, während des Flugs Energie zu sparen, ist auch ein schneller Online-
Planer erforderlich, der ebenfalls unabhängig von der Kartengröße ist. Da die Flugzeit
von MAVs begrenzt ist, wird ein möglichst schneller Online-Planer benötigt. Desweiteren
soll die Berechnungsdauer möglichst unabhängig von der Kartengröße sein. Daraus wurde
das erste Ziel abgeleitet: die Entwicklung eines Online-Pfadplaners mit oben genannten
Fähigkeiten. Ein weiteres Problem ergibt sich, wenn die geplante Pfadlänge die Flugzeit
des MAVs übersteigt, was bei Aufgaben, in denen ein Gebiet überwacht werden muss,
häufig der Fall ist (engl. “coverage tasks”). Hierfür wird ein Pfadplaner benötigt, der die
Flugzeit des Fahrzeugs in Abhängigkeit von der Pfadlänge und der Größe der Umgebung
berücksichtigt. Schließlich hat die autonome Funktionsweise den Einsatz von mobilen
Robotern in unserer Welt und darüber hinaus ermöglicht. Es ist jedoch nach wie vor eine
Herausforderung, das richtige Maß an Autonomie zu finden, das ein System zur Erfüllung
einer bestimmten Aufgabe benötigt. In den letzten drei Jahrzehnten wurden mehrere
Methoden zur Bewertung der Autonomie vorgeschlagen, aber die meisten von ihnen bi-
eten eine gering aufgelöste kategorische Ausgabe oder haben inkonsistente Metriken, was
den Bedarf an einem besseren Framework erhöht.

Für die Online-Pfadplanung wurde ein Pfadplanungs-Ensemble vorgeschlagen, das aus
drei gleichzeitig ausgeführten Pfadplanern besteht, die zur Kategorie der single-query ran-
dom sampling Planern gehören. Dies ist ein partitionierender Pfadplaner, der in der Lage
ist, eine exakte Zerlegung von großen Interessenbereichen in handhabbare Teilstücke zu
zerlegen, indem eine Voronoi-Zerlegung angewendet wird. Anschließend erfolgt die Pfad-
planung, die zur Abdeckung notwendig ist. Möglichkeiten zur Anwendung dieser Pläne auf
ein einzelnes MAV oder homogene oder heterogene MAVs werden vorgeschlagen. Nicht
zuletzt wurden auch vier Autonomiemetriken vorgeschlagen, nämlich Fähigkeiten, Ver-
trauensfaktor, Leistungskapazität und Umgebungskomplexität mit ihren dazugehörigen
mathematischen Modelle.

In einem physikalisch unterstützten grafischen Simulator getestet, zeigte das vorgeschla-
gene Pfadplanungs-Ensemble die Anpassungsfähigkeit von Abfragen, eine hohe Erfolgsrate
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bei der Pfadfindung und eine kurze Pfadplanungszeit, die für die Online-Planung unter
Berücksichtigung der Pfadglättung geeignet ist. Das Fehlen einer impliziten Umgebungs-
darstellung bei stichprobenbasierten Planern bedeutete auch, dass der Ensemble-Planer
gut mit der Umgebung skaliert. Die Plausibilität des vorgeschlagenen Pfadplaners mit
großer Abdeckung wurde durch einen Software-In-the-Loop (SIL)-Test nachgewiesen. Ein
solcher Planer garantiert die Abdeckung, sorgt für ein angemessenes Ressourcenmanage-
ment und eine korrekte Missionsplanung. Die vorgeschlagene Methode zur Bewertung der
Autonomie wurde an drei Fallstudien getestet, die zusammen die Plausibilität der Mod-
elle bestätigten. Diese Bewertungsmethode bietet einen systematischen Ansatz für die
Entwicklung und Regulierung von Autonomie.
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Notation

Matrices

Matrices are represented by uppercase alphabets with an underline. For example A rep-
resents a matrix in variable A. In this case A ∈ Rm×n,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
... · · ·

...
am1 am2 am3 · · · amn

 = (aij) , i = 1, · · · ,m and j = 1, · · · , n.

Vectors

Vectors are represented by lowercase alphabets with an underline. For example, a repre-
sents a vector in viable a. In this case a ∈ R2,

a =
(
x
y

)
, or a = (x, y)T

All vectors in this work are column vectors.

Sets

The concept of sets appears in a few parts of this work. In which case, curly brackets have
been used to represent a set of elements. For example, {a1, a2, ...an} is a set of n elements.
Unlike in vectors, in sets the order of elements is not important. Some of the special sets
used include R for a set of scalars, Rn for a set of n-dimensional vectors and Rm×n for a
set of m× n matrices.

Functions

Functions are represented by f(·). For example, f(a, b) 7→ c is a function that maps a set
of parameters {a, b} into a scalar value c.

Derivatives

Herein Newton’s notation (the dot notation) has been adopted to represent derivative.
For example, ẋ represents the time derivative of a time function x(t).

Direction Cosine Matrix

A Direction cosine matrix (DCM) is a matrix belonging to the special orthogonal group,
which represents transformations between two reference frames. The matrices are repre-
sented with uppercase character R with a trailing superscript and a leading subscript. For
example, BRA is a transformation from frame {A} to frame {B}.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are members of the mobile robot family capable of
six degrees of freedom motion in the aerial domain. These vehicles find applications in a
number of fields that listing them all here would span quite a footprint. Interested readers
are therefore refer to articles [7] and [8] dedicated to this subject. Being mobile robots,
navigation is the most important competence of any Unmanned Aerial Vehicle (UAV)
flight management system. It is a meta-capability, which includes perception, localization,
motion control, cognition, obstacle avoidance and optionally mapping competences.

Having a human perform the main navigation subtasks with support from sensors con-
stitutes the simplest navigation solution, but the expanding application possibilities have
pushed UAVs into fields whose control demands surpass the capability of human-in-the-
loop control mechanisms. This expansion has motivated the quest for human-independent
navigation solutions, also known as autonomous navigation techniques. The UAV au-
tonomous navigation problem has been of interest since 2007 [9] with the initial focus
on GNSS-based solutions for open outdoor areas. But GNSS technology is vulnerable to
spoofing, jamming, environmental effects [10], and absent or unreliable in indoor, under-
ground, urban canyons, natural canyons and forest understories [11, 12]. These vulner-
abilities then motivated the quest for GNSS-independent variants of human-independent
navigation solutions. This is known as the GNSS-independent UAV autonomous naviga-
tion problem and is the focus of this work.

Solutions to the GNSS-independent UAV autonomous navigation problem have been
mostly supported by technological breakthroughs in sensor miniaturization and processor
performance, and algorithm development. This work reviews the existing solutions, their
technology maturity level, and also proposes complete indoor navigation frameworks. The
contribution in these frameworks is on the cognition sub-capability, represented by the
path planning problem solver within the navigation task. Developing autonomous sys-
tems requires replacement of human skilled operators with electronic modules capable of
delivering similar or better levels of performance. This requires characterization of tasks
to enable establishment of a set of quantitative metrics associating task to operator ca-
pability requirements and then task to robot capability requirements. Unfortunately, no
such metrics with consistent outputs exist. Therefore, this work additionally seeks to de-
termine a set of metrics and their associated combination models for autonomy estimation.
If available, such metrics would facilitate autonomy advancement and regulation.

Autonomy is purposive; it is defined with respect to a specific task. Herein, the focus
is on autonomous navigation as a task. Therefore, autonomy in this work is studied with
respect to the navigation task. The navigation problem is defined as follows : given a
starting and a goal configuration or a set of goal configurations defined in the same frame
of reference, a system should use prior knowledge if available or accumulated knowledge
to plan and execute a feasible trajectory from a start to a goal configuration.

1
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1.1 Motivation

Several solutions for the UAV autonomous navigation problem have been proposed over the
years, but most reliable among them are GNSS technology supported. As mentioned ear-
lier, GNSS technology is susceptible to intentional and unintentional interferences. These
vulnerabilities are explained in details in Sect. 1.1.1, and are the motivating factors for
research into GNSS-independent UAV navigation solutions, which includes the research
presented herein. Furthermore, this work acknowledges the need for large-scale coverage
path planners in Sect. 1.1.2, for fast online path planners in Sect. 1.1.3, and autonomy
assessment for UAV autonomous navigation systems in Sect.1.1.4, and additionally, es-
tablishes the technology readiness level so far achieved after over a decade of research
effort invested into solving the GNSS-independent UAV autonomous navigation problem.
The latter is necessary in justifying the need for any additional research effort and point-
ing out the directions in which it is best suited. Overall, this work examines the status
quo of GNSS-independent navigation solutions, as well as improving on their cognitive
intellectual function.

1.1.1 GNSS Vulnerabilities

There are four main satellite constellations providing global navigation services namely,
Global Positioning System (GPS), GLONASS, Galileo and BeiDou. The main services
provided by these satellite systems include Positioning, Navigation and Timing (PNT),
which support governments and consumer industries including aviation, automobile, agri-
culture, survey, military, railway, maritime, telecommunication, financial market, national
security and energy sectors [13].

The wide spread applications of GNSS for civilian and military sectors have made
it a potential target for malicious attacks. This claim is supported by the existence of
special bands and encrypted codes like P(Y) code on L1 and L2 GPS bands, and Galileo
Public Regulated Service (PRS) that were put in place to withstand malicious attacks and
minimize the likelihood of GNSS blackouts for these bands. Actual evidence of adversarial
attacks on GNSS systems have been presented by the German Aerospace Center in [14]
and a survey on GNSS spoofing in [15]. Also, a GNSS spoofing demonstration on a Hornet
Mini UAV is presented in [16].

Besides intentional malicious attacks, environmental and atmospheric effects like scin-
tillation, solar activities, multiple paths and shadowing may attenuate the GNSS signal
leading to breakage of the receiver-signal lock as a result of reduced signal-to-noise ra-
tio [10]. The two main environmental effects are known as Non-Line-Of-Sight (NLOS)
propagation for the case when a GNSS receiver receives reflected signals due to lack of
direct paths between the satellites and receiver, and multipath propagation when a GNSS
receiver receives signals propagated through two or more direct and indirect paths [17].
Zhang and Hsu demonstrated the multipath effects on GNSS positioning with a commer-
cial GNSS receiver operating in urban Hong Kong in [18]. The next section provides an
in-depth account of the intentional and unintentional GNSS interferences.

Intentional and Unintentional GNSS Interferences

Herein, the GNSS interferences are classified into two main categories namely, intentional
and unintentional interferences. Intentional interferences result from devices and/or struc-
tures whose sole purpose is to impede proper functioning of GNSS receivers, and may take
the form of jamming or spoofing. Jamming actions impede acquisition of a signal lock
and/or breaks existing signal locks while spoofing actions generate counterfeit GNSS sig-
nals intended to manipulate the belief of a receiver. On the other hand, unintentional
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interferences are non-deliberate negative effects on GNSS signal quality resulting from
other purposeful devices and/or structures within the vicinity of the GNSS receivers [13].

GNSS signals are very weak. Taking an example of GPS, it has a signal power of about
1.6 × 10−16 W. In typical environments, the background noise is on orders of magnitude
greater than this. As a result, typical jammer-to-signal-ratio is usually greater than one,
J/S > 1 [15]. Most jammers emit a continuous chirp signals at GNSS frequencies boost-
ing the background noise substantially, which makes it difficult to detect and lock onto
a satellite signal. Additionally, empty GNSS Pseudorandom Noise (PRN) codes could be
broadcast to penetrate anti-jamming filters [15, 13]. High power jammers are easily iden-
tifiable from their high-energy signature, but the low power jammers are quite challenging
to identify because this type of jamming could be a result of unintended signal blockage
by structures like trees and buildings in the environment.

Unlike jamming which is a brute force approach, spoofing takes a deceptive approach.
Spoofing signal generators broadcast imitative GNSS signals at a suitable strength and
frequency to break the receiver-signal lock. These imitative signals are normally simulated
or derived from legitimate signals with varying degrees of manipulation. Manipulation
could take the form of capture-delay-retransmit or capture-selective delay-retransmit also
known as meaconing and Security Code Estimation and Replay (SCER) or selective delay
respectively [15]. Like low power jamming, signal delays might result from spectral signal
reflection off structures like buildings and the ground during low altitude flights.

But as reported in [15, 16, 13], spoofing is a very complicated process requiring precise
knowledge of the position and velocity of the target to be able to generate spoofing signals
that are synchronised with GNSS received at the target. This makes it a less likely threat
for the highly agile UAVs. For military applications, spoofing is even less likely, thanks
to the availability of anti-spoofing capable GNSS military receivers with encrypted P(Y)
signal. Jamming on the other hand is an eminent threat as this could even occur naturally
from structural shielding and radio frequency interference. To address these problems,
several GNSS interference countermeasures presented in the next section are commonly
employed by the GNSS community.

GNSS Interference Countermeasures

GNSS interference countermeasures (specifically for radio interferences) have been launched
on two fronts namely, interference detection and interference mitigation fronts [13]. The
former focuses on development of algorithms for recognizing irregularities in the GNSS
signal that are attributable to interferences. The latter category includes interference mit-
igation techniques, which can be classified into four categories namely, signal processing,
cryptographic, antenna technology and correlation with other positioning systems [15].

The mitigation techniques listed above are effective in scenarios where access to le-
gitimate GNSS signal is still possible. Following this assumption, GNSS augmentation
solutions have been proposed over the years, for example GPS/Inertial Navigation Sys-
tem (INS) [19, 20, 21]. Like most radio-based systems, GNSS operates under Line-Of-
Sight (LOS) assumption—LOS assumption is violated in urban canyons, natural canyons,
forests understories, tunnels and indoors as these environments may occlude GNSS signals
partially or completely. In case of complete GNSS occlusions, the above-mentioned mitiga-
tion strategies fail [22]. This case calls for GNSS-independent navigation solutions, which
are the focus of this work. Furthermore, with the increasing likelihood of GNSS blackouts
for civilian users, it has become imperative to provide a redundant GNSS-independent
localization system even for GNSS-based navigation implementations for increased relia-
bility.
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1.1.2 Large-Scale Coverage Path Planning

According to the PwC global report on commercial applications of unmanned aerial tech-
nology [1], the two leading UAV application industries namely, infrastructure and agricul-
ture account for more than a half of the global market share Fig. 1.1. Clearly, all these
applications are large-scale and coverage in nature. Large-scale coverage industrial appli-
cations often exceed the coverage capability of most modern Micro Aerial Vehicle (MAV)s.
Luckily, the market price of Micro Aerial Vehicles (MAVs) have dropped substantially over
the years enabling acquisition of multiple platforms. The aggregate capability of a fleet of
such MAVs can easily satisfy most of these large-scale coverage applications. It should be
noted that even with a single platform, multiple flights can be conducted in a short period
of time, owing to the manoeuvrability and low operating costs of these aerial platforms.
To harness the cumulative power in numbers, coverage path planners with integrated par-
titioning schemes are necessary for systematically partitioning large areas into manageable
portions, generating coverage paths for each partition and then scheduling them on a fleet
of MAVs or flying them with one platform multiple times.

Figure 1.1: Predicted market value of UAV powered industrial solutions in US dollars [1].

1.1.3 Fast Online Path Planning

Different UAV operating environments afford different navigation solutions. This work fo-
cuses on building-like environments, which provide a structured environment. The struc-
tured nature comes at a cost of narrow pathways, increased collision possibilities and access
points whose state can change from one moment to the next. An example of the latter
is a doorway, which could be open in one moment and closed in the next. From a path
planner perspective, such state superposition is impossible to work with without real-time
environmental state updates. This can be circumvented by providing the planner with
an environmental model whose doorways are in an “open” state, then the vehicle replans
online on observing the door as impassable. This necessitates availability of a fast online
path replanning algorithm. Of course, the MAV vehicle class considered in this work is
capable of hovering to wait for path replannig to complete, but this waiting time has to
be minimized to avoid wasting of the already scarce onboard power. The planner should
be able to plan directly in 3D, enabling traversal of multi-floor building environments.
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1.1.4 Autonomy Assessment

Autonomous functioning has enabled deployment of highly dynamic robotic systems in
dangerous and complex areas on our world and other worlds like Mars. Knowing the right
amount of autonomy required for a system to complete a given task in such environments
with or without human intervention is a challenging necessity. A number of methods for
quantifying autonomy have been proposed over the last three decades, but most of these
either offer a low resolution categorical output (level classification) or have poor metrics
with inconsistent outputs. Therefore, there is a need for a set of quantitative autonomy
metrics that is easily measurable, broad enough to capture autonomy evolution in a system
and yields consistent outputs with good output resolution.

The deficiency of the existing frameworks can be exemplified by the SAE International’s
levels of driving automation published in SAE J3016 [23]. This framework classifies driving
automation systems into six levels, from level 0 that supports no driving automation to
level 5 that supports full driving automation. The assessment process asks at most five yes-
no questions, with answers based on qualitative performance knowledge for that vehicle.
If the vehicle does not fulfil the performance requirement of level 5, it is assessed for level
4, and so on until a yes is obtained or level 0 is reached. Such a framework assumes
that all vehicles of a specific level have the same degree of performance, but this is not
true as technology advancements and economic factors may lead to varying performance
even at a similar level. Against this background, it is asserted that autonomous systems
differ functionally as well as performance wise. Therefore, this works seeks to establish
a set of autonomy correlated metrics covering both functionality and performance, their
mathematical representations and a mapping function into a single measure of autonomy.

1.2 Research Scope

This research studies the autonomous navigation problem. The navigation problem is
addressed differently in different operating domains. This work focuses on navigation in
the aerial domain. Depending on the structure delimiting the aerial domain, different
structural configurations afford different navigation technologies. For example, outdoor
open spaces afford GNSS navigation, built-up areas provide perspective line features that
afford visual navigation and indoor areas are dominated by vertical walls that afford
map-based localization, to mention but a few. This work focuses on building-like indoor
environments, for which the prominent GNSS navigation technology is not applicable, due
to its absence or unreliability.

Navigation is a meta-capability of mobile robots, supported by a number of compe-
tences including perception, localization, cognition, motion control, obstacle avoidance and
optionally mapping. For UAVs, the availability of off-the-shelf autopilots is testimonial
to the achieved superiority in motion control. Hence, this competence is not addressed in
this research work. For perception and obstacle detection, several sensor technologies are
deployed, with disregard for their working principles, but their environmental effects are
considered. Therefore, the two main competences of focus are cognition and localization.
It should be noted that mapping is used in this work for visual localization.

For GNSS-challenged environments, a number of autonomous navigation solutions have
been proposed over the years. The techniques applied in these solutions are studied and
mapped back onto the general autonomous navigation problem structure to tell the level
of technology maturity so far achievable, as well as revealing any open questions, for which
answers are then proposed. These questions range from structural properties, algorithmic
to overall performance of GNSS-independent navigation solutions. The questions guiding
this research include the following:
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• How to develop complete indoor GNSS-independent UAV autonomous navigation
solutions?

• How to achieve fast online motion planning and replanning?

• How to generate motion plans for large-scale aerial coverage scenarios?

• How to develop high fidelity MAV navigation simulators?

• How to measure the autonomy of a UAV for a specific task?

• What is the actual technology readiness maturity level of GNSS-independent UAV
autonomous navigation solutions?

1.3 Outline of the Text
The work presented herein covers a wide range of topics centred around the subject of
GNSS-independent UAV autonomous navigation. For the interest of understandability,
the presented body of text has been organized into eight coherent chapters. Besides the
current chapter, Chapter 1, the content of the other seven chapters is as follows:

Chapter 2—puts this thesis work in context with existing and related literature. For
the interest of organisation, the literature has been clustered into informative sections
including autonomy, UAV navigation, localization, motion planning, integrity monitoring,
technology readiness assessment of navigation systems and trends in GNSS-independent
navigation for UAVs.

Chapter 3—focuses on aerial platforms, taking the reader through the journey of
classifying UAVs and selecting the most suitable class and configuration for this work.
This chapter is also divided into sections including UAV classification, vehicle selection,
and quadcopter dynamic and kinematic motion models.

Chapter 4—this chapter describes the thought pattern applied in the selection of
autonomy metrics and designing of mathematical models for mapping them into a single
measure of autonomy. Here autonomy is defined as a two-part measure, with the con-
stituent parts being level of autonomy and degree of autonomy. The chapter content is
presented in two main sections namely, autonomy measurement and autonomy framework
evaluation.

Chapter 5—here, the focus is on motion planners capable of generating feasible paths
for special scenarios like fast online path planning in multi-floor building environments,
and large-scale coverage path planning with a single vehicle or fleets of homogenous and
heterogeneous vehicles. The chapter content is divided into two main sections namely,
randomized sampling-based path planners and large-scale aerial coverage path planning.

Chapter 6—this chapter describes the localization techniques implemented and tested
as part of the proposed complete navigation frameworks. These include ultra-wideband-
aided inertial localization and visual odometry-aided inertial localization. In the chapter
are also their associated implementation descriptions, simulation and experimental results.

Chapter 7—this is a chapter on modelling and simulation. It offers a description of
mathematical and geometric models for the different sensors and vehicle platforms applied
in this work. Additionally, it describes modelling and embedding of the test environment
model into the Unity software framework, enabling utilization of its realistic physics rigid-
body behaviour in simulations.

Chapter 8—this is the last chapter of this body of text. It provides a summary of
concluding remarks of the works presented as well as proposals for future courses of action.



Chapter 2

Literature Review

If I have seen further it is by standing
on the shoulders of Giants.

Sir Isaac Newton

This chapter covers literature related to the research problems addressed in this thesis,
which are related to the navigation problem in autonomous aerial vehicles. As the title
suggests, it intersects a number of study fields including autonomy, state estimation, local-
ization, path planning, obstacle avoidance, and Unmanned Aerial Vehicle (UAV) classifi-
cation, control and navigation simulation. The subsequent sections cover literature related
to each of these study fields, starting with autonomy.

2.1 Autonomy

Autonomous robots are sought after in a number of applications due to their benefits,
among which include handling of complex applications and attaining time critical re-
sponses [24], replacing humans [25], operational domain qualification and delineation [26],
enhance system capabilities, basis for control architecture selection [27], safety risk as-
sessment, operator training and licensing [6], characterizing autonomous technologies and
assess technology maturity [28], and reducing human factor effects and operating mis-
sion costs while maximising mission success [29]. These have motivated a global surge in
the development and deployment of autonomous systems, resulting in a diverse selection
of autonomous systems with a wide range of capabilities, raising regulatory, safety and
ethical concerns. These concerns are solvable through proper engineering practices and
regulatory laws, but their enforcement requires the ability to characterize and/or measure
autonomous functioning.

A number of methods for quantifying autonomy have been proposed over the last three
decades. The derivations of these frameworks are founded on the researcher’s definition of
autonomy, which differs for different research groups and institutions. The next paragraphs
report on some of such frameworks found relevant and interesting with respect to the
problem statement of this work.

One of the earliest works on autonomy we could find is in [24], where autonomy is
defined as a measure of supervision. Based on this definition, they measured autonomy
using communication channel bandwidth. The logic of the bandwidth metric is as follows,
the less external commands the system requires during operation and the less data the
system sends to an external controller for interpretation, the more control tasks it is
capable of handling onboard, hence, the higher its level of autonomy. This approach
assumes all commands to have equal importance to the task, which might be true only

7
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for very simple tasks. Additionally, the entropy of each command may differ resulting in
varying amounts of information per command.

Autonomy Levels for Unmanned Systems (ALFUS) workgroup of National Institute
of Standards and Technology (NIST) defines autonomy as a system’s ability to use its
root autonomous capabilities to achieve its assigned goal [30]. Their proposed framework
differentiates between autonomy and level of autonomy, where the latter is a measure of the
degree of human intervention and the former is a function of human independence, mission
complexity and environmental complexity scores. To be more precise, they define level of
autonomy as a set of progressive indices that determine the ability of a system to perform a
given task with or without human intervention, which they quantify as a measure of human
independence. In this framework, neither explicit metrics nor mathematical models for
their usage are defined.

Autonomy has been likened to intelligence and performance by some researchers, which
is misleading. Usage of the label “misleading” is justified by the differences in the defi-
nitions of these terms, where intelligence is defined as the ability to acquire and/or use
knowledge and performance as the ability to achieve a desired goal. Intelligence is an aspect
of autonomous functioning that facilitates decision making and learning. Unlike auton-
omy, performance has no regard for consequences of the choices leading to the achievement
of a goal. An example is the work presented in [26], in which autonomy is defined as a
measure of performance with two measurement metrics namely, environmental complexity
and information. The author agrees with this work on the point of environmental com-
plexity being a key metric in determining autonomy and adapts the grid decomposition
approach taken in determining local obstacle densities in the operating environment.

Another level of autonomy framework, but designed with military application in mind
is the Autonomy Control Level (ACL) chart. It is based on four metrics namely, percep-
tion, analysis, decision making and capability [25]. These metrics were inspired by the
observe–orient–decide–act loop. The ACL chart divides autonomy into eleven levels rang-
ing from zero autonomy to full autonomy. A similar eleven level chart was proposed in
[30], but based on mission complexity, task complexity and human independence groups of
metrics. In chapter 4, a similar elven-level chart with level descriptions based on generic
UAV control strategies, where level 0 corresponds to remotely controlled systems with
no autonomy, level 10 to fully autonomous systems and levels 1 − 9 to semi-autonomous
systems is proposed.

The frameworks in [25], [28], [30] and seven others were evaluated on six UAVs in a case
study presented in [6]. The study revealed that only three of the frameworks were able to
classify all six vehicles, but only one of these was able to unambiguously classify all the
six. Unfortunately, even the one that unambiguously classified the vehicles, classified two
vehicles, one with some unsupervised capabilities and the other purely remote controlled
in one class. This highlights the need to continue the quest for better autonomy evaluation
frameworks.

Unlike all the previously presented approaches that focus on a discrete measure of
autonomy in form of levels of autonomy, the work presented in [27] proposed a contin-
uous measure of passive autonomy known as degree of autonomy. This is an important
addition as the difference between autonomous systems is not only of kind (functionality),
but also of degree (performance capacity). Their framework was based on the premise
that autonomous systems have an automated problem-solving process, so they measured
autonomy as the levels of automation of the problem-solving capability using two formu-
lations presented in Eq.2.1 and Eq.2.2. Level of automation is a simple metric, but it does
not account for the quality of decisions, which is a problem in complex systems. Other
propositions of a continuous autonomy measure include [31], where autonomy is given by
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Eq. 2.3 and [32], where autonomy is given by Eq. 2.4.

α = δD + δE + δS + δI + δV
n

(2.1)

where n is the number of autonomous capabilities considered and δD, δE , δS , δI and δV are
levels of automation for definition (D), exploration (E), selection (S), implementation (I )
and verification (V ) capabilities respectively.

α =
ηD,act

ηD,std
∗ 10 + ηE,act

ηE,std
∗ 10 + ηS,act

ηS,std
∗ 10 + ηI,act

ηI,std
∗ 10 + ηV,act

ηV,std
∗ 10

n
(2.2)

where the η quotients are the ratios of actual system behaviour to standard behaviour
for definition (D), exploration (E), selection (S), implementation (I ) and verification (V )
capabilities.

α =
∫ Tf

Ti

∫ Vf

Vi

∫ PL

PU
(Human_effort) dp da dt (2.3)

where p, a and t are performance, area and time respectively.

α = Cn

(
Cbits
Smsg

)−i (
tcont
tmiss

)−j
(2.4)

where Cbits is the number of control bits, Smsg is the total message size, tcont is the contact
time, tmiss is the total mission time, Cn, i and j are constants.

Unfortunately, all of the reviewed approaches either offer a categorical measure with
poor output resolution or yield inconsistent metrics outputs. From this, it is clear that
a set of autonomy metrics that is easily measurable, broad enough to capture autonomy
evolution in a system and generates outputs with good output resolution is still lacking.

2.2 UAV Navigation

The navigation capability is supported by perception, localization, cognition and motion
control competences. Additionally, environmental and mission complexity may necessitate
inclusion of obstacle avoidance and mapping. UAV navigation has received wide spread
interest since 2007 with the initial focus on outdoor applications [9], thanks to availability
of GNSS services. Soon applications expanded to indoor and other GNSS-denied environ-
ments, which necessitated a paradigm shift in the field of navigation.

Starting with the Unmanned Ground Vehicle (UGV) class, for which GNSS-denied
navigation techniques are more mature, attempts to apply these same navigation solutions
directly to aerial navigation were limited by the fact that the former operates in a 2D world
while the latter operates in a 3D world. Although, with the assumption of a quasi-fixed
operating altitude, 2.5D navigation solutions can be developed, enabling operation of
UAVs in a 3D world with only three controlled degrees of freedom (2D horizontal position
and heading) as presented in [12, 33], which is comparable to the planar motion of UGVs.

Common to all aspects of aerial navigation is the reliance on state information, which
could be available prior to mission, e.g. initial state, a path, landmark positions and a
map, and/or acquired during mission execution, e.g. distance to approaching obstacles.
Localization requires actual state observations and absolute or relative initial state infor-
mation for absolute and relative localization respectively. Motion planning in a closed
world requires only a map, whereas motion planning in an open world requires a map for
global path generation and real-time local state observations for environmental uncertainty
minimization. Motion control requires real-time state estimates to stabilize the vehicle.
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Velocity, heading, altitude, position and attitude are not only the most important states,
but also constitute a sufficient input set for navigation.

Autonomous navigation demands the interaction of all navigation components, but due
to the sheer complexity of the navigation problem, researchers have focused on addressing
individual components as indicated in Figure 2.1, with localization being the most studied
field, followed by approach and landing. The downside to this divide-and-conquer approach
is that once the individual navigation components are solved, formulating a full navigation
solution by aggregation risks exceeding computation, power and hardware capability of
any off-the-shelf deployment system. There have also been attempts to solve the full
navigation problem, which totalled to 16% of the reviewed literature, showing that there
is still a need for full GNSS-independent UAV navigation solutions.

Figure 2.1: Distribution of GNSS-independent UAV navigation research.

2.2.1 Navigation Sensors

UAV navigation sensors for GNSS-denied environments can be categorized into attitude,
localization, altitude, mapping and obstacle detection functional categories. Though, some
sensors serve more than one category. These sensors can also be classified by technology,
which includes inertial, vision, LiDAR, radio and acoustic. Another way to characterize
sensors is as active or passive depending on whether they emit energy into the world or not.
Again, some sensors are both passive and active like RGB-Depth sensors. Generally, pas-
sive sensors are lighter, cheaper and consume less power, but active sensors offer increased
measurement accuracy, higher signal-to-noise ratio and increased robustness against envi-
ronmental effects. Regardless, it is seldom that a single sensor performs satisfactorily over
long periods, hence the need for sensor characterization with the effort to discover com-
plementary sensors. One strategy for achieving this is to identify sensors that are superior
at measuring some degrees of freedom, but inferior at others. Other criteria include:

• Error dynamics

• Reliability

• Robustness

• Computational complexity

• Exteroceptive or proprioceptive

• Relative or absoluteness

• Representational richness

• Passive or active
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Sensor Selection

Selecting the right sensors is a daunting task given its criticality as it lays the foundation for
the choice of algorithm, resource usage and performance. Sensor selection criteria include
dynamic range, error characteristics, bandwidth, vehicle payload constrains, resolution,
response time, operating environment, flight settings, computational resources and power
availability. The most common UAV navigation sensors as of the preliminary review
include GNSS receivers, inertial sensors, vision sensors, LiDAR sensors, acoustic sensors,
radar sensors and Ultra-Wide Band (UWB) sensors.

For non-tactical civilian applications, inertial navigation systems employ small form
factor strap-down Micro Electro-Mechanical Systems (MEMS)-Inertial Measurement Unit
(IMU). A standard IMU consists of a triaxial rate gyroscope and a triaxial accelerometer.
The key IMU features are dynamic range, gyroscope in-run bias stability, accelerometer
in-run bias stability, gyroscope angular random walk and accelerometer velocity random
walk. Inertial sensors are applied to localization, attitude, altitude and velocity estimation.

The key vision sensor selection features include resolution, shutter type, maximum
frame rate, field-of-view and weight. Spatial deformation and blurring may occur in images
as a result of camera motion induced by vehicle motion, vibration and moving objects.
Rolling shutter cameras are more affected by this in comparison to global shutter cameras,
but could be improved by rolling shutter modelling as demonstrated in [34]. Vision sensors
from the preliminary review included monocular, stereo, depth, thermal and catadioptric
cameras. Vision sensors have been applied for localization [35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], localization and mapping [33, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], translational velocity estimation
[73, 74, 75], landing pad detection [76, 77], obstacle detection [59, 78], attitude estimation
[79, 47], and landing pad detection and landing [80, 81, 82, 83, 84, 76, 77].

LiDAR rangefinders have either a single fixed or a rotating beam. For the former,
important is the range and accuracy. For the latter it is range, accuracy, scan angle,
angular resolution and scan speed. LiDAR rangefinders have been applied for height
estimation[37, 85], obstacle detection and mapping.

The commonly applied acoustic sensor is ultrasonic rangefinder, which is characterized
by range, open angle, frequency and accuracy. Ultrasonic sensors operate on time-of-flight
principle with range given as 0.5 × C × t, where t is time of flight and C is the speed
of sound in the transmission medium. Since C is affected by temperature, pressure and
humidity, with temperature having the greatest influence of all [86], it is necessary to
account for them to obtain accurate ranging.

Radar sensors have in the past been limited by their relatively large size, weight
and power consumption to normal and large UAVs, but with recent technological break-
throughs, miniaturized radar modules fit for small and micro UAVs have started emerging.
These sensors have the longest line-of-sight measurement range, are robust against changes
in weather conditions, dust and lighting conditions. But relative to other sensor modali-
ties, the current miniaturised modules are still large and heavy, for example the on-board
radar dome in [87] has a volume of 0.280 m× 0.290 m× 0.285 m and mass 1.78 kg.

Generally, inertial sensors are proprioceptive, have high update rates of up to 1 kHz
[88], score highly on Size, Weight and Power - Cost (SWaP-C) scale, but drift. Vision
sensors are less effective for long-range perception, in low illumination and low textured
environments [89], exhibit lower update rates, normally under 100 Hz [88], but capture
diverse information, are lighter and relatively cheaper. LiDAR rangefinders are relatively
expensive, heavier and exhibit degraded performance under bad weather conditions and
direct sunlight [90], but deliver more accurate, direct and longer-range high frequency
measurements. Radar sensors are relatively bulky and consume the most power, but
deliver the longest-range and are insensitive to environmental conditions.
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Motion Capture Systems

When sensing is not the focus, motion capture systems can track and deliver direct state
information. They consist of synchronized active-passive optical sensors strategically po-
sitioned to accurately track objects within a pre-defined measurement volume. The three
ways in which motion capture systems were used in the reviewed literature include lo-
calization, absolute position initialization and ground truth measuring for performance
evaluation of state estimators . The downsides to these systems are high cost and lim-
ited measurement volume [57]. The different motion capture systems from literature are
presented in Table 2.1, all of which are marker-based.

Table 2.1: Motion capture systems.

Motion capture system Usage in Literature Papers
Vicon Performance evaluation [33, 91]

OptiTrack
Performance evaluation [36, 92]
Localization and attitude estimation [75, 50]

Qualisys Performance evaluation [93]

Motion analysis
Performance evaluation [62]
Position initialization [62]

In-house system
(five Kinect sensors network)

Localization [65]

2.3 Localization
Localization answers the “where am I?” question by estimating the position of a vehicle.
This capability is not only necessary for navigation, but also for object manipulation,
multi-robot coordination, exploration and mapping. As revealed in Figure 2.1, it is the
most researched navigation competence.

Robots are situated agents [94, 95]. This situatedness supports perception affordance
for inertial, visual, radar, radio, LiDAR and acoustic-based localization. As presented
in Table 2.2, each localization technique exhibits benefits and drawbacks. Drawing from
complementarity, localization solutions combining multiple techniques have yielded better
performance both in terms of accuracy and robustness.

Localization techniques require environmental representations, which could be made
available beforehand in form of geo-referenced aerial images [39, 96], Computer-Aided
Design (CAD) models [97, 98, 99], Digital Terrain Models (DTMs) [47], occupancy grid
maps and feature maps [37, 100], or built and used simultaneously, as in Simultaneous
Localization and Mapping (SLAM) [95].

Environmental representations could be generated simply by embedding artificial bea-
cons at known positions in the environment [45, 101], which are then tracked by on-board
sensors. The opposite is also possible, where beacons are mounted on the vehicle and
sensors fixed in the environment [50, 65] as is the case with marker-based motion cap-
ture systems. This concept has been extended to multi-robot localization, where a robot
with reliable localization capability provides a localization reference for other robots. An
example is [102] where a vehicle in a GPS-denied environment localizes itself relative to
GPS-enabled vehicles.

Aerial images are the most popular environmental representations, but finding image
representations that are illumination invariant and tolerant to slight view-point changes is
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challenging. Proposed solutions to address the former include image gradient patterns [40]
and learned features [39], and appearance-based matching methods [103] for the latter. For
a summary of localization techniques see Table 2.3 and for the distribution of localization
techniques among the reviewed full navigation solutions, see Figure 2.2.

Table 2.2: Pros and cons of the different localization technologies.

Mode Pros Cons

Inertial

• Very low SWaP (Size, Weight
and Power)

• Low cost

• Very high update rate

• Very short start-up time

• Jam proof

• Drifts over time

• Low signal-to-noise ratio at low accelera-
tions and angular velocities

• Overall accuracy dependent on the accu-
racy of the initial state

Vision
• Light weight

• Semantic information

• Jam proof

• Affected by weather and illumination

• Indirect state observation

• Computationally intensive

Radar

• Longest operating range

• Robust against illumination
and weather

• Direct measurements

• Range independent resolution

• Costly

• Bulky

• High power consumption

• May require environmental accessories like
transponders or reflectors

UWB

• Weather independent

• Provides a communication
channel

• Low power consumption

• Interference from conductive materials

• May require environmental installations

• Limited operating volume and range

• Low update rate circa 10 Hz

Magnetic

• No environmental installa-
tions required

• Very low power consumption

• Low cost

• Susceptible to magnetic interference

• Requires delicate calibration

• Low precision

LiDAR

• No environmental installa-
tions required

• Very precise

• Direct measurements

• High update rate

• Very costly

• Degraded by direct sunlight

• Influenced by reflecting surface properties,
like colour

• Limited range, up to 100 m

2.3.1 Inertial Localization

UAV inertial localization operates on the principle of dead reckoning, where accelerations
and/or velocities are integrated over time to obtain vehicle position and orientation with
respect to an inertial reference frame. As mentioned in Sect. 2.2.1, inertial systems employ
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Table 2.3: Practically tested localization solutions.

Localization Aiding Technology Papers
LiDAR SLAM N/A (not available) [33, 89, 92, 104, 105, 106, 107,

108]
Visual SLAM N/A [55, 11, 56, 57, 59, 21, 62, 64, 98,

97, 68, 69, 70, 71]
Visual Inertial
Odometry (VIO)

N/A [41, 60, 44, 48, 51, 63, 109, 66,
110, 67, 54, 72]

GPS [43]
Air-to-air cooperation GPS and vision-based bearing [102]

INS

Visual Odometry (VO) [19, 111]
Phased Array Radio System
(PARS)

[112]

Artificial markers [35, 38, 42, 91, 52, 101]
Machine learned vehicle model [113]
LiDAR scan matching [12]
UWB and vision [43]
Artificial Immune System (AIS) [114]

Beacons
Visual beacons [36, 53]
Radar beacons [87]
UWB [115]

Knowledge-based
localization

Radar propagation channel re-
sponse

[100]

Satellite image [39]
CAD model [99]

Radar odometry N/A [116]
Motion capture system N/A [50, 65]

Figure 2.2: Distribution of localization techniques in reviewed full navigation solutions.
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IMUs, which exhibit high update rates making them suitable for agile vehicles like UAVs.
However, integration causes drift.

To address drift, it is customary to fuse inertial with other complementary techniques
like vision, for example VIO as described in [88], visual odometry and optical flow, PARS
[112], LiDAR [12] and UWB [117] through state estimators like Kalman or particle filters.
Fusion could happen at raw data or state level, known as tightly coupled and loosely
coupled schemes respectively. Disparate performance studies have showed tightly coupled
schemes to be more accurate and robust than loosely coupled schemes [88, 118], but more
complex and inflexible [116].

Results from the preliminary study accentuated the indispensability of inertial localiza-
tion techniques in any modern GNSS-independent navigation solution, a conclusion drawn
based on their presence in 100% of the reviewed full navigation solutions as indicated in
Table 2.4. In all cases, these inertial techniques were aided by other techniques to mini-
mize drift. It is also evident that vision is the most popular inertial aiding method with
over 94% presence. From these observations, it is asserted that inertial-visual integration
holds the key to GNSS-independent navigation solutions of the future.

2.3.2 Visual Localization

Visual localization utilizes vision sensors and computer vision algorithms to extract loca-
tion information from visual scenes. Its popularity is attributed to the low SWaP-C of
vision sensors, as well as their rich environmental representation, which includes shapes,
colour and texture. However, vision algorithms are affected by illumination variations, low
feature density, motion blurring and consume relatively high computational resources.

Vision methods are categorised into indirect aka feature-based and direct aka appearance-
based methods [119, 120]. The former abstracts images to features making it faster, while
the latter operates directly on pixel intensities, a trait that results in improved robustness
against illumination variations. Of the two, feature-based methods are more popular given
their lower computational cost, sparsity and robustness against rolling shutter artefacts
[120], but exhibit degraded performance in featureless environments. It is also possible to
combine indirect and direct methods resulting in semi-direct methods [121, 122].

Essential to indirect methods is the choice of features. Features either occur naturally
in the environment or are specially designed and embedded into the environment to ease
computer vision processing. Table 2.5 presents a summary of features identified in the
reviewed literature and their associated properties.

To localize, correspondence must be established between features in consecutive frames,
either by (1) detecting features in one frame and tracking them into a local region in
the next frame or (2) detecting features in multiple images and matching them based
on local similarity [123]. The former finds application in sparse optical flow, feature-
based visual-SLAM and feature-based visual odometry, while the latter finds application
in image matching as in establishing correspondence between a large-scale image, e.g.
satellite images and a small-scale image for terrain-based localization as applied in [39].
Table 2.6 presents two sets of computational speed tests for Features from Accelerated
Segment Test (FAST), Scale Invariant Feature Transform (SIFT), Speeded Up Robust
Feature (SURF), Oriented FAST and Rotated BRIEF (ORB), shi-Tomasi, Harris corner
detectors, both of which indicate FAST feature detector as the fastest.

As indicated in Figure 2.2, visual localization, specifically SLAM dominates among full
navigation solutions. This dominance is attributed to its ability to simultaneously map
and localize a vehicle in an unknown or partially known environment. SLAM relies on
loop closure to reduce estimation drift [64, 60, 61], however, loop closing reduces on the
available overall flight time. It should also be mentioned that SLAM initialization is a
delicate step, which if not executed well can affect localization quality. SLAM initialization



16 CHAPTER 2. LITERATURE REVIEW

Table 2.4: Full navigation solutions.

Paper Perception Environment Localization Path
Planning

Obstacle
Avoidance

[33]
Vision, laser
rangefinders,
IMU

Known indoor 2D SLAM A* Online local
path planning

[35] Vision, IMU Known outdoor Visual-aided
INS

Ground con-
trol points N/A

[55]
Vision, laser
rangefinders,
IMU

Unknown cluttered
outdoor and indoor 2D SLAM A* Online local

path planning

[11] Vision, IMU Unknown, unstruc-
tured

Visual
SLAM

POMDPa

motion
planner

Ray casting

[59] Vision, IMU,
sonar Indoor and outdoor Visual

SLAM A* Obstacle grid
map

[41] Vision, IMU Structured known
indoor VIO

POMDPa

motion
planner

Online local
trajectory
generation

[92]
Vision, laser
rangefinders,
IMU

Indoor 2D SLAM N/A Online local
path planning

[62] Vision,
sonar, IMU Structured indoor Visual

SLAM
Dijkstra’s al-
gorithm

Online path re-
planning

[105]
Vision, laser
rangefinders,
IMU

Indoor 2D SLAM A* Artificial po-
tential fields

[66] Vision,
sonar, IMU

Unstructured, par-
tially known indoor

Visual
SLAM BI-RRTb Obstacle free

global path

[106]
Laser
rangefinders,
IMU

Unstructured, un-
known indoor and
outdoor

LiDAR
SLAM N/A Laser-based ob-

stacle mapping

[69] Vision and
IMU

Complex indoor
and outdoor

Visual
SLAM

Dijkstra’s al-
gorithm

Obstacle free
global path

[70] Vision and
IMU Known indoor Visual

SLAM
Weighted
lazy theta*

Online local
path planning

[71] Vision and
IMU

Partly known in-
door

Visual
SLAM A* Online local

path planning

[108]
Vision, laser
rangefinders,
IMU

Partly known in-
door

LiDAR
SLAM A* Obstacle free

global path

[54] Vision and
IMU

Cluttered indoor
and outdoor VIO Dijkstra’s al-

gorithm

Online local
trajectory
generation

[72] Vision and
IMU

Cluttered unknown
indoor and outdoor VIO A*

Online local
trajectory
generation

a Partially Observable Markov Decision Process (POMDP).
b Belief and Information based-Rapidly-exploring Random Tree (BI-RRT).
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methods found in literature include use of GPS [124], GPS/INS [21], pre-stored map [125],
feature points [89] and manual flight initial mapping [81]. More detailed accounts of UAV
visual localization techniques can be found in [126, 122].

2.3.3 LiDAR Localization

This navigation technique employs laser rangefinders, which actively illuminate the en-
vironment with a collimated light beam. Its measurement principle is based on either
time-of-flight or phase-shift between the transmitted and reflected beam. These sensors
are capable of measuring depth to a single point in the environment, a feature lacking
in wide open angle sensors like ultrasonic. Single beam laser rangefinders have been ap-
plied for Above Ground Level (AGL) ranging in [37, 85]. With a rotating or rotating and
nodding mechanism, they are capable of generating 2D and 3D localization point clouds
respectively.

Unlike vision sensors, laser rangefinders provide direct ranging, but are unable to
capture scene texture and colour, making them complementary to cameras that capture
such information. This complementarity has been exploited in [33, 55, 92, 89, 104] for
UAV localization.

2.3.4 Radio Localization

This section describes localization solutions supported by radio technology, which from
the reviewed literature include radar, UWB and PARS.

Radar Localization

Until recently, radar size, weight and power constraints had limited its usage to normal
and large aerial vehicles, but with recent technological breakthroughs, miniaturized radar
modules fit for small UAVs are starting to emerge, and hence the associated radar local-
ization solutions.

A demonstration of radar transponders deployed by a UAV at the onset of landing
phase is presented in [87]. The transponders together with a multi-channel radar sensor
constitute a wireless local positioning system. The position of on-board radar sensor is
determined from range and elevation measurements to each of the transponders. Although
the applied transponders are small in size (0.035 m× 0.015 m), the on-board dome sensor
is quite bulky and heavy at 0.280 m× 0.290 m× 0.285 m and 1.78 kg respectively.

Biological inspiration is a driving factor in a number of robotic solutions, from anthro-
pomorphic appearance of humanoid robots to evolutionary algorithms. Inspired by echo
location in cave swiftlets, [100] used a Frequency Modulated Continuous Wave (FMCW)
X-band radar transceiver mounted on a UAV to map propagation channel responses of
the environment pre-flight. On revisiting the area, the vehicle localizes itself through de-
termination of the closest match between the actual and stored channel responses. This
localization technique was found to have high sensitivity to antenna orientation differ-
ences during reference channel response gathering and localization, making it lacking in
robustness.

The proof-of-concept in [116] investigated radar-only 2D-localization of UAVs using
radar odometry. An ultralight FMCW radar transceiver with one transmitter antenna
and two receiver antennas mounted on a UAV measures azimuth and range to multi-
ple static corner reflectors in the environment. An Ordered Statistics-Constant False
Alarm Rate (OS-CFAR) detector is applied for target detection and Global Nearest Neigh-
bour (GNN) algorithm for multiple corner reflector tracking. This technique has difficulty
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Table 2.5: Visual features.

Features Properties Paper

FAST/ORB

• Computationally fast

• Accurate

• Rotation, scale and global illumination in-
variant

• High repeatability

[62, 19, 124]

SIFT
• Scale and rotation invariant

• More reliable local features

• Computationally slow

[56, 61, 49]

SURF
• Scale and rotation invariant

• Computationally slow (faster than SIFT)
[39, 60, 127, 48]

Shi-Tomasi
• Scale and rotation invariant

• Based on Harris corners with better selection
criteria

[42]

Adaptive and Generic Ac-
celerated Segment Test
(AGAST)

• Derived from FAST features

• Computationally fast

• Dynamically adapting corner detector

[69, 54]

Harris corners

• Rotation invariant

• Intensity shift invariant

• Intensity scaling invariant

• Sensitive to image scaling

[63, 128, 67]

Solid circles
• Easily identifiable

• Embed scale information
[36, 129]

Lines (edges or horizon)

• Easy to extract from noisy images

• Orientation of lines may be estimated with
sub-pixel accuracy

• Simple mathematical representation

[12, 47]

Semantic features

• Doors

• Roads (intersection
and centreline)

• Semantic understanding

• Complicated mathematical definitions

• Strong localization information

[42, 44, 130]

Learned features
• Not limited to human interpretation

• Generalize well

• Robust across heterogeneous images

[92]
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Table 2.6: Feature detector speed tests.

Time (msec)
Papers FAST ORB SIFT SURF Harris Corners Shi-Tomasi
[66] 2.8 15.6 91.1 112.3 16.7 N/A
[131] 4.1 N/A 33.4 23.6 N/A 16

differentiating rotation-only from translation-only motion. Furthermore, despite designa-
tion as ultralight, the applied SENTIRE Radar transceiver is relatively heavy, with a mass
of 0.186 kg.

Unlike [87] with deployable transponders and on-board multi-channel radar sensor, and
[100] requiring prior mapping of the environmental channel response, [116] utilizes a single
on-board transceiver with a single transmitting antenna and two receiving antennas. This
design is more compact, but still necessitated availing a dedicated battery to cope with
the high power demands of radar.

Ultra-Wideband and Phased-Array Radio Localization

Initially conceived for communication, UWB systems have been extended to incorporate
ranging functionality [117]. Their precise timestamping and message scheduling supports
Time Difference of Arrival (TDOA) and Two-Way Ranging (TWR) between tags and
anchors [115], usable for localization. These modules are lightweight, consume relatively
less power, but are more suitable for indoor open spaces as clutter leads to non-line-of-sight
signal paths resulting in low accuracy.

For 3D position measurement, UWB requires precise installation of anchors in the
environment limiting their usage to human accessible structured indoor environments.
Important to note is the limited vertical clearance in indoor environments, a factor that
results in poor height estimation accuracy relative to horizontal position accuracy. Addi-
tionally, UWB update rates scale inversely proportionally to the number of tracked tags.

The first reviewed work [115] demonstrated an indoor 3D UWB positioning system for
UAV localization that achieved ±0.20 m accuracy at 0.95 probability. The setup consisted
of eight UWB nodes installed at different heights around the experimental volume. Each
node ran a decaWave ScenSor DWM1000 transceiver module. The estimated position is
represented as a pseudo-range message to emulate GNSS signals for ease of integration.

Fusion of UWB position measurement and inertial position estimate in an extended
Kalman filter for UAV localization demonstrated in [117] achieved an accuracy of ±0.15 m
at 0.95 probability using only four ultra-lightweight UbiSense UWB anchors. UWB po-
sitioning together with visual QR-codes placed in the environment provided for inertial
drift correction. This approach is highly inflexible since it requires not only installation of
anchors at known locations in the environment, but also of QR-codes.

Following a strategy similar to [117], [132] loosely coupled inertial position estimates,
UWB position measurements and 3D laser scanner position estimates generated at 100 Hz,
10 Hz and 1 Hz respectively in a Kalman filter. The algorithm assumed knowledge of the
initial position and hovering at selected waypoints to enable the slow scanning process
to run to completion. Despite intermittent motion, the proposed system achieved sub-
centimetre accuracy when tested in simulation.

It is also possible to have UWB modules installed on mobile platforms as in [133] and
[134] for air-to-ground cooperative localization. In [133], the UGV estimates its pose in
the inertial frame using visual inertial odometry and shares it with the UAV via UWB
communication channel. Then the UAV localizes itself in the inertial frame from its
relative position to UGV and the shared UGV pose. In [134], the UGV localizes itself
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via Differential Global Positioning System (DGPS) while the UAV localizes itself from
its relative position to the UGV tracked by UWB. The UGV is assumed to operate in a
GNSS-enabled environment, while the UAV in a GNSS-denied environment.

PARS uses electronically steered radio waves for detection and ranging. [112] applied
PARS and achieved GNSS-level positioning accuracy (6.86 m RMSE). However, unlike
GNSS, PARS has a higher signal-to-noise ratio and supports encrypted communication.
PARS consists of an on-board module and a ground module at a known location, in this
case Radionor CRE2-189 and a 0.295 kg CRE2-144-M2-SMA module respectively. Phase
differences of the received signals by the ground receiver are used to resolve azimuth,
elevation and position of the vehicle. The authors assert that this aerial-ground radio
combination can support up to 114 km line-of-sight ranging.

2.3.5 Above Ground Level Estimation

This degree of freedom differentiates aerial robots from ground robots. AGL measure-
ments support not only take-off, cruise and landing flight phases, but also scale factor
determination in monocular vision as in [19, 56, 57] and optical flow algorithms.

Techniques for AGL estimation include altimeters, computer vision (stereo vision and
optical flow), inertial odometry and beacons. Altimeters are the most common, supported
by sensors like ultrasonic, laser rangefinders, barometers and radar. Less common are
inertial and computer vision, supported by IMU, and monocular, stereo-vision and RGB-
Depth cameras respectively. Inertial sensors double-integrate vertical IMU acceleration to
obtain AGL, but this approach is susceptible to drifting. Noteworthy, laser rangefinders,
ultrasonic, radar and vision sensors may generate false AGL in presence of ground obstacles
due to their vehicle-centric reference, but barometers, motion capture systems and beacons
are immune to this effect, an achievement attributed to their global reference nature.

Researchers have also fused complementary sensors to improve AGL estimation accu-
racy, robustness and reliability. Examples include IMU and barometer fusion in a comple-
mentary filter [135], IMU, 3D laser scanner and UWB fusion [132], IMU and barometer
fusion [115], visual odometry fused with UAV and satellite image alignment using a deep
convolutional network [39], IMU, ultrasonic and barometer fusion [101], fusion of IMU and
visual motion [61], fusion of INS and horizon profile matching [47], and fusion of IMU,
barometer and laser rangefinder in an Extended Kalman Filter (EKF) [92].

2.3.6 Operating Environments

Environments can be classified as structured/unstructured, known/unknown/partially
known, indoor/outdoor, 1D/2D/3D and static/dynamic. Each class offers different lo-
calization affordance. Structured environments may offer artificial markers, indoor envi-
ronments may offer perspective lines, outdoor environments may offer rich texture, stars
etc. Localization requires environment-to-map association through sensors, which should
be capable of perceiving either continuous or discrete environmental factors of variation
correlated with the position of the vehicle. Unfortunately, in an open world, environmental
properties may vary over time, which adds to environmental complexity.

Environmental complexity could be a factor of obstacle density, obstacle dynamics,
illumination intensity, spatial symmetry, signal attenuation, turbulence, structure, knowl-
edge of the environment and relative size of the free configuration space. Analysis of this
complexity is a key input to the aerial platform and sensor selection process, and is one
of the three factors, the others being mission complexity and human independence, that
determine the level of autonomy of unmanned systems according to NIST [136]. Therefore,
by the law of requisite variety, vehicle capability should match environmental complexity.
For indoor, forested and urban canyons, multi-rotor vehicles are a more suitable choice
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because of their Vertical Take-Off and Landing (VTOL) capability and agility, while for
open outdoor and high-altitude flights, fixed-wing vehicles are better suited.

GNSS-denied environments explored in the reviewed literature include indoor corridors
[137, 42], underground mines [109], urban canyons [18, 134, 106], forests [85, 55] and
outdoors [43]. This work focuses on indoor environments and urban canyons, which have
similar properties, i.e., both are bounded by walls and exhibit challenged or completely
denied GNSS reception.

2.4 Motion Planning

Situatedness implies that robots are an intrinsic part of their operating environment. This
obliges them to respect environmental geometric and kinematic constraints. This compli-
ance is achieved by either manually programming robot task sequences or automatically
generating task sequences compliant with such constraints. The former approach is te-
dious and time consuming, especially in high dimensional spaces, which motivated the
latter approach known as motion planning.

Motion planning consists of path and trajectory planning, where the former generates
an obstacle free path from a start to a goal configuration with no regard for vehicle dy-
namical constraints. The latter parametrizes a purely geometric path with time promoting
it to a trajectory and enables consideration of differential and torque constraints on the
generated path [138]. Since path planning and time scaling of the resulting path are per-
formed sequentially, the resulting trajectory is typically not time-optimal. A time-optimal
trajectory can be generated by planning directly in the state space [139].

Path planning may assume precise knowledge of all obstacles in the environment, which
assumption is unrealistic when operating in an open world. Path planners founded on such
an assumption are known as offline planners. Contrary to these are online planners, which
account for incomplete obstacle information.

Paths are searched within partially or fully known workspaces, which is a union of a
closed set of obstacle configurations and an open set of free configurations. Configurations
in the obstacle set involve collisions that violate geometric constraints, except in cases
where such contact is part of the task, e.g. grasping or landing on an object, in which case
the reachability structure becomes the closure of the free configuration. To simplify path
planning, a robot geometry is equated to a particle. This simplification ignores geometric
constraints, which are then incorporated through expansion of all obstacle boundaries by
the radius of the robot silhouette. The resulting space with expanded obstacle boundaries
is known as configuration space [140]. Paths can be easily planned in this space using one
of several path planning paradigms.

Path planning paradigms include sampling-based, combinatorial, potential field [141]
and reward-based planners. Sampling-based path planners probabilistically or determin-
istically sample the configuration space to build a data structure that captures the con-
nectivity of the free configuration space. Deterministic sampling results in a regular data
structure, which is resolution complete, while probabilistic sampling results in a ran-
dom data structure, which is probabilistically complete [138]. Sampling path planners
belong to either the Probabilistic Roadmap Method (PRM) multi-query subclass or the
Rapidly-exploring Random Tree (RRT) single-query subclass [66]. Combinatorial meth-
ods construct a roadmap from intersections of Voronoi roadmap segments. Potential field
methods build a mapping from configuration to a potential, known as a potential function.
Then techniques like gradient descent can be applied to this function, to guide a system
downhill to a goal located at the global minimum. Reward-based planners select actions
from a finite set of possible actions to maximize a future reward. As a result of the finite
set of possible actions, this approach is suboptimal. A summary of differences between
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the three classical path planning paradigms namely, combinatorial, sampling-based and
potential fields is presented in Table 2.7.

The quest for an optimal and efficient universal path planner has for decades persisted
with no solution in sight, i.e., no one path planning paradigm outperforms the others
at all planning scenarios [142], but among the four, only combinatorial methods exhibit
completeness—complete planners exit in finite time if no path exists. Potential field meth-
ods are suitable for online path planning and provide measures for feedback control, but
their gradient descent implementations are susceptible to local minima, leading to goal
unreachability [53]. Unlike combinatorial and potential field, sampling-based methods ap-
ply to a wide range of path planning problems, thanks to their ability to scale to higher
dimensional spaces and large problems with tractable computational costs [71, 72], but
generally produce non-smooth paths. If time is available, path simplification may be
applied to smoothen the path.

Table 2.7: Differences between sampling, combinatorial and potential field path planning
paradigms.

Sampling Combinatorial Potential fields

Builds a roadmap or tree Builds a roadmap Potential field function

No modelling of the obstacle
configuration space

Models the obstacle configu-
ration space

Models the obstacle configu-
ration space

Probabilistically or resolution
complete Generally complete No solution guaranteesa

Applicable to higher dimen-
sional configurations

Limited to lower dimensional
configurations

Limited to lower dimensional
configurationsb

Online variants exist Virtually always offline Online capable

Complexity is independent
of environmental complexity
[143]

Complexity scales exponen-
tially with problem dimen-
sionality

Complexity scales exponen-
tially with problem dimen-
sionality

a Potential field-based methods guarantee no solution except in case of a navigation function or ran-
domized potential planners. Despite completeness, both have a downside of requiring prior complete
knowledge of the configuration space [144].

b With random walk augmentation as a way to overcome local minimum, this approach was able to
plan in up to a 31 dimension configuration space [138].

Looking at Figure 2.3, Combinatorial methods dominate among global path plan-
ners, thanks to their completeness, while sampling-based global path planners are the
least applied of the three despite their growing attractiveness with properties like rela-
tively fast planning, computational complexity independent of environmental complexity
and the ability to handle nonholonomic constraints and high dimensional configuration
spaces. Furthermore, researchers have also developed real-time and asymptotically opti-
mal randomized sampling-based planners like real-time capable RRT-Connect [145] and
asymptotically optimal Rapidly-exploring Random Graph (RRG), PRM* and RRT* [146].
In Sect. 5.1, it is showed that despite non-optimality, the sampled paths are practical for
building-like environments, online implementable and are of acceptable quality if com-
bined with path smoothing post-processing. Additionally, a combinatorial method has
been applied for addressing the coverage path planning problem in Sect. 5.2.



2.5. INTEGRITY MONITORING OF UAV NAVIGATION SYSTEMS 23

Figure 2.3: Global Path Planners

2.5 Integrity Monitoring of UAV Navigation Systems

UAV mishaps may result in costly property damage and loss of lives especially when oper-
ating in urban areas. Failure analysis conducted by United States military on six normal-
sized UAVs over a period of 17 years revealed that 57% of the failures were attributed to
system design, i.e., propulsion and flight control systems [147]. Navigation, which is the
focus of this work, subsumes both propulsion and flight control systems making it a very
critical part of any UAV flight management system.

Navigation is supported by sensors, actuators, algorithms and the environment all
of which are fault-prone. To ensure reliability, it is imperative to detect and eliminate
faults before they compromise the system. In remotely piloted systems, human pilots may
easily detect faults and avert impending failure. In autonomous systems, faults are either
observed directly through sensors or indirectly through integrity monitoring systems.

Integrity monitors can be classified into model-based, signal processing-based, and
knowledge-based approaches [148]. Model-based approaches derive and incorporate equa-
tions of motion into either state observers, e.g. Luenberger observer in [4] or state esti-
mators like Kalman filters, e.g. in [149]. Signal processing-based approaches transform
signals into representations for which the normal and faulty signals can be separated.
Knowledge-based approaches derive a set of rules from expert knowledge capable of dis-
tinguishing known faulty from normal states.

A distribution is normally assumed on each state with normality defined to within
a standard deviation threshold and any state outside this threshold is considered faulty.
Mahalanobis distance function is commonly applied for this check. The threshold value
varies depending on the criticality of the system, task and environment. Therefore, dif-
ferent tasks and environments demand different Requirements of Navigation Performance
(RNP). A set of metrics including Protection Level (PL), Alert Limit (AL), Time-to-
Alert (TTA) and Integrity Risk (IR) has been adopted for integrity monitoring, but the
thresholds are not standardized as of this literature survey.

Faults could be detected at sensor or state levels. The former associates each sensor
with a fault detector, while the latter fuses sensor measurements together in an estimator
and analyses the estimated state for faults. An example of the former is presented in [4],
which is a model-based fault detector for an autonomous helicopter. For each sensor and
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its associated Luenberger observer, a residual is calculated and analysed for any anomalies.
The results indicated successful detection of different faults, but also revealed an inverse
relationship between drift magnitude and drift fault detectability.

It is also possible to combine mathematical models with data-driven models for fault
detection. The work presented in [149] detected faults in a triaxial gyroscope mounted on
a quadcopter using a neural network whose weights were updated by an Extended Kalman
Filter (EKF). The algorithm successfully detected bias, step and triangular faults.

Others have combined model and knowledge-based approaches for fault detection, like
the Adaptive Neuron Fuzzy Inference System (ANFIS) for position related fault detection
in a UAV navigation system presented in [150]. The algorithm determines an F-indicator
from R-Indicator and C-Indicator, which are functions of Kalman filter residual, and
applies it to fuzzy rules for fault detection. The training dataset is continuously updated
with every successful detection of a normal or a faulty state. Upon addition of a predefined
number of new faulty samples, the neural network is retrained, which then updates the
fuzzy rules. The approach is beneficial in terms of learning new rules to detect new faults,
a feature that is missing in knowledge-based fault detectors.

Unlike the data-driven models in [149] and [150] that require training, the approach
proposed in [151] applies a non-parametric training-free data-driven approach that com-
pares the current input to the previous normal inputs within a window of size n to deter-
mine if the current input is faulty. Before analysis, the input is filtered for noise reduction
then applied to a Mahalanobis distance function to decide if it falls within the standard
deviation threshold. This non-parametric, model free, unsupervised, online approach is
applicable to different domains and data sources, and has been tested on a UAV, vacuum
cleaning robot and electric power supply for fault detection.

In some cases, it is necessary not only to detect but also to eliminate faults or minimise
their effect. Fail-safe through hardware and software redundancy is demonstrated in [152].
Specifically, they demonstrated detection and recovery from actuator malfunction on a
coaxial octocopter. The two rotors per arm allow for continued performance in case one
of them fails. Rotor failure is observed indirectly through Euler angles measured by an
IMU. The detector analyses residuals—discrepancy between sensor and non-linear sliding
mode observer. Then the occurrence of a rotor failure is decided by a rule-based inference
algorithm. Besides actuator redundancy, software redundancy is also implemented, where
a different control law is executed during system recovery to account for changes in total
thrust.

Each navigation technique requires a dedicated integrity monitor as these methods
exhibit unique dynamics and hence failure modes. Of interest are vision-based navigation
systems. As mentioned in Sect. 2.3.1, vision sensors have become an indispensable part of
GNSS-denied navigation systems, but unlike GNSS, which exhibit fewer errors, in most
cases one per component, visual navigation systems exhibit numerous simultaneous error
sources. This complicates the fault identification process. The authors of [153] proposed
an integrity monitoring framework for a feature-based (ORB-SLAM2) visual localization
system. The framework applies an Iterative Parity Space Outlier Rejection (IPSOR)
method that evaluates the distribution of weighted sum of squared residuals to determine
whether an outlier measurement is present. This method relies on the assumption that
inliers have a high precision. The iterative nature allows for elimination of multiple outliers,
but not all outliers. It is assumed that at most a fault will ensue from the undetected
outliers. After outlier rejection, protection levels in x, y and z-directions are calculated
and used to determine system integrity.
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2.5.1 Fault Modes in Navigation Systems

Navigation faults exhibit varying dynamic behaviours like ramp, bias, periodic, step and
sporadic. The five commonly tracked faults and their likely causes are presented in Ta-
ble 2.8, which are classified into point, contextual and collective faults [154]. For point
faults, a single value is sufficient to rule on occurrence of a fault, while for a contextual
fault, context and value are required. Ruling on collective faults require analysis of a
sequence of values.

Table 2.8: Fault types and their likely causes (Adapted from [3, 4]).

Fault Classification Fault type Example Causes

Hard failure Point fault Complete failure Power disruption or communication
blackout

Soft failure

Contextual fault Bias fault Current or voltage bias due to tem-
perature change and or vibrations

Collective fault Drift fault Internal temperature change or out-
dated calibration values

Collective fault Multiplicative
fault

Environmental changes, component
ageing

Collective fault Periodic fault Environmental changes

Collective fault Outlier fault Environmental changes

2.5.2 Existing Challenges of Integrity Monitoring Systems

Despite decades of research, there are still a number of challenges that need addressing.
Following is a list of open challenges, this list is not in any way comprehensive:

• Multiple fault detection. Most solutions in literature assume a single fault yet
the complexity of navigation systems suggests a likelihood of multiple faults.

• Performance requirements. At the time of compiling this literature survey, there
were no standardized performance requirements for integrity monitoring in UAV
navigation systems.

• Faults elimination techniques. With the exception of obvious cases like outlier
rejection and simple hardware redundancy, fault elimination techniques are still
lacking.

• Predictive fault monitoring. The existing fault detectors respond to occurrence
of a fault, which in some cases might be too late for any correction measures.
Therefore, raising a need for predictive fault detection techniques.

• Computational complexity. Integration of integrity monitors into flight man-
agement systems may introduce competition for resources that may jeopardize
system stability. Hence, the need for low computational complexity integrity
monitoring-UAV navigation software architectures.



26 CHAPTER 2. LITERATURE REVIEW

2.6 Technology Readiness Assessment of UAV Navigation
Systems

This section uses a Technology Readiness Level (TRL) framework adapted by European
Space Agency (ESA) from the original TRLs developed by National Aeronautics and
Space Administration (NASA) and Unmanned Aerial System (UAS)-adapted Autonomy
and Technology Readiness Assessment (ATRA) [28] to determine the maturity of GNSS-
independent navigation solutions. This assessment serves as a progress evaluation step
and a justification for efforts so far invested in addressing this navigation problem. The
TRL technology readiness assessment framework consists of nine readiness levels [155].

Motivated by ATRA framework, the nine TRLs are divided into three clusters namely,
research and development (levels 1-3), integration, testing and evaluation (levels 4-7), and
production and deployment (levels 8-9). Levels 1-3 analyse the feasibility of the underlying
theoretical premise. All the reviewed research met this feasibility check. Levels 4-7 test
and evaluate navigation technology against environmental complexity and performance
metrics. Levels 8-9 look at deployment of the actual complete systems in real scenarios.
Table 2.9 presents a summary of TRLs ratings for all the full navigation solutions found
in the reviewed literature, from which it is evident that the GNSS-independent navigation
technology at the time of this survey is at TRL-6, interpreted as “Successful high fidelity
prototype demonstrations in relevant environments” [28]. This observation justifies the
need for more effort towards achieving levels 7 through 9 navigation solutions.

2.7 Future Trends in the Field of GNSS-Independent UAV
Navigation

As revealed herein, navigation has not reached full technology maturity. This section high-
lights the likely future trends in sensing technology, algorithms, communication technology
and simulation.

With the prevalence of off-the-shelf autopilots, it is asserted that UAV flight controllers
and their associated structural designs have reached full technology maturity. So, the
focus is now concentrated on perception, localization, high fidelity physics simulations,
fast online motion planning and replanning, and communication.

Towards perception, future research is expected to employ more advanced sensors
like signal-of-opportunity sensors, event cameras and miniaturized radar. With advanced
sensors also comes the need for advanced algorithms. Active vision, machine learning
techniques especially physics-informed neural networks and other adaptive Artificial In-
telligence (AI) techniques are expected to become popular solutions for addressing sensor
error modelling and semantic scene understanding. Last but not least, 5G communica-
tion technology is expected to become a key enabler for on-board data-driven navigation
systems with its high volume real-time data streaming capability.

Going beyond TRL-6 demands deployment and testing of the proposed navigation
solutions in their expected operating environments, a step that comes with great risks that
might ensue from mishaps. Therefore, it is imperative to test out these systems on high
fidelity simulators before deployment. Hence, the likely prevalence of high-fidelity UAV
navigation physics simulators featuring more physics-accurate vehicles and environment
behaviours. A solution to this has been presented in Chapter 7 of this writing.

Looking at GNSS-based navigation systems that support launch-and-forget, GNSS-
independent navigation solutions are soon to move towards such integrity, availability and
continuity levels. Of course, this will be preceded by clear definition and measures of
autonomy, and standardization of performance requirements for GNSS-independent UAV
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Table 2.9: TRL rating of the full navigation solutions from the reviewed literature.

Paper Perception Solution Description TRL

[33] Laser rangefinder,
IMU and vision

On-board 2D SLAM, tested on a prototype in a
partially known relevant environment

6

[35] Vision, IMU Visual-aided INS, tested in a simulated known
environment (Software-in-the-loop)

5

[55] Laser rangefinder,
IMU and vision

On-board LiDAR 2D SLAM, tested on a proto-
type in an unknown cluttered relevant environ-
ment

6

[11] Vision, IMU 3D visual SLAM, tested in a simulated unknown
unstructured environment

5

[59] Vision, IMU,
sonar

On-board 3D visual SLAM, tested on a proto-
type in relevant environment

6

[41] Vision, IMU Off-board VIO, tested on a prototype in a known
structured relevant environment

5

[92] Laser rangefinder,
IMU and vision

On-board 2D SLAM, tested on a prototype in a
relevant environment

6

[62] Vision, sonar,
IMU

On-board 3D visual SLAM, tested on a pro-
totype in a known structured relevant environ-
ment

6

[105] Laser rangefinder,
IMU and vision

On-board 3D SLAM, tested on a prototype in a
relevant environment

6

[66] Vision, sonar,
IMU

Off-board 3D visual SLAM, tested on a proto-
type in a partially known unstructured environ-
ment

6

[106] Laser rangefinder,
IMU

Off-board 2D LiDAR SLAM, tested on a proto-
type in an unknown unstructured relevant envi-
ronment

6

[69] Vision and IMU On-board 3D visual SLAM, tested on a proto-
type in a relevant environment

6

[70] Vision and IMU On-board 3D visual SLAM, tested on a proto-
type in a known relevant environment

6

[71] Vision and IMU On-board 3D visual SLAM, tested on a proto-
type in a partially known relevant environment

6

[108] Laser rangefinder,
IMU and vision

On-board 3D LiDAR SLAM, tested on a proto-
type in a partially known relevant environment

6

[54] Vision and IMU On-board 3D visual SLAM, tested on a proto-
type in a cluttered relevant environment

6

[72] Vision and IMU On-board 3D visual SLAM, tested on a proto-
type in a cluttered unknown relevant environ-
ment

6
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navigation, which did not exist at the time of compiling this literature survey. The former
has been addressed in Chapter 4 of this writing.

As indicated in Figure 2.3, sampling-based path planners were the least applied de-
spite their growing attractiveness, with the development of real-time and asymptotically
optimal randomized sampling-based planners like real-time capable RRT-Connect [145]
and asymptotically optimal RRG, PRM* and RRT* [146]. This attractiveness suggests a
likely prevalence in their application. In Sect. 5.1, randomized sampling path planners are
parallelized in an ensemble path planner resulting in a high success rate and fast planner
capable of supporting real-time global path planning and replanning.

The future trends presented in this section formed the basis for derivation of some
of the objectives addressed in this work. These objectives have been addressed through
several projects, whose results are presented in the subsequent chapters herein.

2.8 Chapter Summary
This chapter presents the existing scientific contributions related to the problems at hand.
It starts by looking for answers to the question of “How to assess the autonomy of a
system?”, for which two kinds of solutions have been proposed over the years namely, an
ordinal scale measure that assigns a level index to each autonomous system, and a ratio
scale measure that combines quantitative metrics into a single value measure of autonomy.
Then talks about existing navigation sensor technologies, which include GNSS, inertial,
vision, LiDAR, radio and acoustic, and their associated benefits and drawbacks. Then
reviews motion capture systems, commonly used as substitutes for onboard perception or
for performance evaluation of navigation solutions. These systems are characterized by
high accuracy and high frequency state information.

The GNSS-independent UAV navigation problem has been addressed to varying de-
grees. Of all reviewed works, full navigation solutions constituted only 16%, with majority
focusing on localization at 62% followed by approach and landing, translational veloc-
ity estimation, obstacle avoidance, attitude estimation, mapping and motion planning at
11%, 4%, 3%, 2%, 1% and 1% respectively. Amongst the reviewed full navigation solu-
tions, SLAM-based solutions dominated at 76% followed by visual inertial odometry and
vision-aided inertial solutions at 18% and 6% respectively. SLAM dominates the localiza-
tion techniques, followed by visual inertial odometry and visual-aided inertial localization.
This reveals optical and inertial as the dominant technologies. With the reliability and
high update rates of inertial systems, and rich representation power of vision systems,
it is conjectured that inertial-optical hybridizations hold the key to high performance
GNSS-independent UAV autonomous navigation solutions.

The last two sections look at integrity monitoring and technology readiness of GNSS-
independent UAV navigation solutions, where the former aims at detection and elim-
ination of faults through application of either model-based, signal processing-based or
knowledge-based approaches for fault detection, and software and/or hardware redun-
dancy for fault recovery. The latter applies TRLs for technology maturity assessment of
GNSS-independent UAV autonomous navigation solutions with a result of TRL-6, inter-
preted as “Successful high fidelity prototype demonstrations in relevant environments”.



Chapter 3

Unmanned Aerial Vehicles

UAVs (Unmanned Aerial Vehicles) have generated widespread interest in academia, indus-
try and military due to their applicability to remote sensing, logistics, inspection, search
and rescue to mention but a few. More applications can be found in dedicated articles
like [7, 8]. This chapter covers classification of UAVs in Sect. 3.1 , vehicle selection in
Sect. 3.2 and mathematical modelling of quadrotor-type UAVs in Sect. 3.3. The for-
mer two facilitate UAV regulation and vehicle selection, while the latter describes the
equations governing the motion of quadrotor Micro Aerial Vehicles (MAVs), which are
applied later on in Chapter 7 for vehicle simulation and analysis. With proper UAV
classification schemes in place, the task of matching appropriate vehicle performance to
task requirements is made simpler. Furthermore, this classification also serves as a basis
for establishment of regulations governing UAV usage, which is evident as national and
international regulations target not a single vehicle, but groups thereof. As the title of
this thesis suggests, the vehicle class of interest is MAV. The next section describes the
relations between MAV class and other UAV classes.

3.1 UAV Classification

This sub-section introduces a two-stage UAV classification process. The first stage classi-
fies UAVs based on their aerodynamical configurations, then the second stage classifies the
different aerodynamical classes based on Maximum Take-Off Weight (MTOW). The dif-
ferent aerodynamical configurations include blimps, flapping-wing, fixed-wing, rotorcrafts
and ducted-fan vehicles, and combinations thereof constructible known as hybrid vehicles.

Blimps overcome gravity by regulating the density and pressure of the gas filling their
hull making them lighter than ambient air. They are capable of very long endurances,
but are less manoeuvrable and bulky [156]. Fixed-wing vehicles regulate their speed and
the shape of their aerofoil wings to generate lift. They are capable of long endurance
and high cruise speeds, but require continuous forward motion to stay airborne [157].
Rotorcrafts overcome gravity by regulating the rotational speed of their propeller blades,
resulting in a lift force along the rotation axis in the direction established according to the
right-hand convention. This locomotion modality enables them to achieve Vertical Take-
Off and Landing (VTOL), hovering and high manoeuvrability, but consume more power.
Flapping-wing vehicles mimic birds and are normally characterised by very lightweight
chassis supported by relatively large wings. As mentioned in the title, this thesis focuses on
GNSS-denied environments, which are normally characterized by partially or fully enclosed
spaces with obstacles. This makes rotorcrafts the best choice given their manoeuvrability,
hovering and VTOL flight capability, hence, the vehicle of choice for this work.

The existing MTOW classification schemes as presented in [158] only support micro,
mini, small, lightweight, normal and large vehicle classes. But the recent surge in interest
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for nano vehicles both for civilian and military applications raises the need for their inclu-
sion as an independent class separate from micro vehicles. Equipped with this motivation,
a new MTOW classification scheme presented in Table 3.1, which is an adaptation of the
classification schemes from [159], [160] and [161] has been proposed. The weight range for
the nano class has been inspired by the existing nano UAVs from the preliminary literature
review.

Table 3.1: UAV classification.

Category Maximum Take-off Weight (kg)

Nano ≤ 0.25

Micro (0.25, 5.0]

Mini (5.0, 30]

Small (30, 100]

Lightweight (100, 250]

Normal (250, 5000]

Large > 5000

3.2 Vehicle Selection

A vehicle is an integral part of the environment in which it operates. Equipped with the
knowledge of the intended operating environment, i.e., enclosed with obstacles, rotorcrafts
made the best choice. In particular, quadrotor vehicles were selected. These vehicles are
characterised by low inertia and simplistic structural design. Quadcopter frames come in
two types namely, ×-configuration and +-configuration. The difference between the two
is that the former engages all four rotors during pure roll and pure pitch manoeuvres,
while the latter engages a different pair in each case. This puts the ×-configuration at an
advantage of increased agility. Therefore, for all the projects conducted in this research
work, two micro quadcopters of ×-configuration have been applied.

The two vehicles included an off-the-shelf DJI Matrice 100 developed by SZ DJI Tech-
nology Co., Ltd in Fig. 3.1a and a custom built quadcopter based on F450 chassis in
Fig. 3.1b, weighing 2.4− 3.4 kg and 1.0− 1.5 kg respectively. The actual weights depend
on the payload, which varied depending on the project. DJI Matrice 100 is a developer
platform, supporting custom built navigation applications to interface with the inbuilt au-
topilot. F450 comes with a chassis and propulsion system, but no sensors and autopilot.
This allowed for custom integration of sensors and autopilot. More details on the two
vehicles can be found in Appendix A. Now that we know the configuration, class and sizes
of UAVs used in this research, the next section builds on this by discussing the equations
governing the motion of these types of vehicles.

3.3 Quadcopter Dynamics and Kinematics

This section deals with derivation of the equations that define the motion of a quadcopter.
These equations are divided into three categories namely, dynamic translational, dynamic
rotational and kinematic equations. Details for each of the three categories are described
in the subsequent sub-sections.
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(a)

(b)

Figure 3.1: MAVs applied in the different research projects presented herein.

3.3.1 Dynamic Motion Model

The equations presented here describe the motion of a quadrotor-type rigid-body in re-
lation to the forces causing this motion. The equations describing the translational and
rotational motion of a generic rigid-body are derived from translational and rotational
variants of Newton’s second law of motion respectively, restricting their validity to an
inertial frame of reference. The inertial frame adopted is the North-East-Down (NED)
frame, fixed on the surface of the earth with the assumption that the earth’s accelera-
tion is relatively negligible. Besides properties like gravity and absolute position that are
measured in the inertial frame of reference, other states like acceleration and rotational
speeds are measured by strapdown IMU sensors in the body frame of reference with its
origin coincident with the centre of mass of the vehicle. The inertial and body frames are
indicated as {I} and {B} in Fig. 3.2 respectively. Since the inertial frame does not rotate,
it is evident that the relative orientation of the two frames changes during operation, rais-
ing the need to transform states from one frame of reference to another, which is achieved
through a Direction Cosine Matrix (DCM) toRfrom. Together this information yields the
translational equation of motion, which is presented in Eq. 3.1,

p̈ =
IRBfB
m

+ g (3.1)
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Figure 3.2: Vehicle reference frame, forces and moments.

where p is the position vector, IRB is the DCM for body to inertial transformation, f
B
is

total thrust generated by the propulsion system and g is the gravitation vector.
The rotational equation of motion is given by Eq. 3.2,

ω̇B = −J−1 (ωB × (J ωB)) + J−1MB (3.2)

where ωB is the body angular velocity vector, J is the moment of inertial matrix and MB

is a vector of moments.
Derivation of these equations is based on two main assumptions namely, gravitation

attraction is constant given by its value at sea-level and at that latitude. For low altitude
flights, the curvature of the earth can be considered insignificant, hence, assuming the
earth to be locally flat (flat-Earth assumption) [162]. The resulting equations, Eq. 3.1 and
Eq. 3.2 are thus known as the flat-Earth equations of motion.

3.3.2 Kinematic Motion Model

This section introduces the equations describing the motion of a quadrotor-like rigid-body
with disregard for forces producing this motion. These equations define the attitude of
the body frame relative to inertial frame. The aerospace Z − Y −X rotation convention
is adopted for inertial to body transformation, where Z − Y −X correspond to ψ degrees
rotation around the z-axis, θ degrees rotation around the y-axis and φ degrees rotation
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around the x-axis. The resulting inertial-to-body DCM is presented in Eq.3.3.

BRI =


c(θ)c(ψ) s(φ)s(ψ) −s(θ)

s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) s(φ)c(θ)
s(φ)s(ψ) + c(φ)s(θ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ) c(φ)c(θ)

 (3.3)

where c := cos and s := sin.
Applying BRI to the strapdown equation BṘI = −ωB×BRI and performing coefficient

comparison results in the sough after kinematic equations, presented here in Eq. 3.4,
where ωB = (p, q, r)T . For numerical stability, the pitch angle is limited to the range
θ ∈ (−90◦, 90◦).


φ̇

θ̇

ψ̇

 =


1 tan(θ)sin(φ) tan(θ)cos(φ)
0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)



p

q

r

 (3.4)

Together the translation equations Eq. 3.1, rotational equations Eq. 3.2, kinematic
equations Eq. 3.4 and navigation equation Eq. 3.5 are used to derive a set of first order
differential equations Eq. 3.6 used to simulate the quadcopter dynamics.

ẋ =I ṘBvB (3.5)
where x is the state vector and vB is the vehicle translational velocity measured in the
body fixed frame.

Force equations
v̇bx = −gsθ + rvby − qvbz
v̇by = gsφcθ − rvbx + pvbz

v̇bz = −U1
m

+ gcφcθ + qvbx − pvby
Navigation equations
ẋ = vbxc(ψ)c(θ) + vby (c(ψ)s(ψ)s(θ)− c(φ)s(ψ))

+ vbz (s(φ)s(ψ) + c(φ)c(ψ)s(θ))
ẏ = vbxc(θ)s(ψ) + vby (c(φ)c(ψ) + s(φ)s(ψ)s(θ))

+ vbz (c(φ)s(ψ)s(θ)− c(ψ)s(φ))
ḣ = vbxs(θ)− vby (c(θ)s(φ))− vbzc(φ)c(θ)
Moment equations

ṗ = (Jyy − Jzz)qr
Jxx

+ U2
Jxx

q̇ = (Jzz − Jxx)pr
Jyy

+ U3
Jyy

ṙ = (Jxx − Jyy)pq
Jzz

+ U4
Jzz

Kinematic equations
φ̇ = p+ qt(θ)s(φ) + rt(θ)c(φ)
θ̇ = qc(φ)− rs(φ)
ψ̇ = qs(φ)/c(θ) + rc(φ)/c(θ)



(3.6)
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where c := cos, s := sin and t := tan.
The model in Eq. 3.6 assumes symmetry in the frontal and sagittal planes of the vehi-

cle, as shown in Figure. 3.2. The state vector x ∈ R12 consists of three position coordinates
specifying the potential energy, three translational velocities specifying translational ki-
netic energy, three angular velocities specifying rotational kinetic energy and three Euler
angles specifying the attitude of the vehicle [162]. The inputs U1, U2, U3 and U4 are given
as indicated in Eq. 3.7.

U1 = F1 + F2 + F3 + F4

U2 = (F2 + F3) ly − (F1 + F4) ly
U3 = (F1 + F2) lx − (F3 + F4) lx

U4 = (M1 +M3 −M2 −M4) ·
√(

l2x + l2y

)


(3.7)

where Fi is the thrust for rotor i, Mi is the moment of rotor i, and lx and ly are the x and
y displacements of the rotors from the centre of mass respectively.

Designing simulations for a MAV employs such equations of motion together with
control algorithms. The control strategies require careful simulation before they can be
deployed on actual platforms, on which they take on the form of embedded implementation
of their discrete equivalents.

3.4 Chapter Summary
This chapter presents an extension of the existing MTOW UAV classification schemes
in Sect. 3.1. The extended scheme includes the nano class, which was subsumed by the
micro class in the previous schemes, bringing the number of classes to seven namely, nano,
micro, mini, small, lightweight, normal and large aerial vehicle classes. Then discusses the
vehicle selection process that resulted in selection of ×-configuration micro quadcopters
as the vehicles of interest in this research work, a choice attributed to their low inertia
and simplistic structural design. The chapter also introduces the equations of motion
in Sect. 3.3 that have been applied in numerical and graphical simulation of the two
selected quadcopters. The flat-Earth assumption made in the derivation process of these
equations limits their suitability to low altitude flights, which makes them appropriate
for the studies in this work since the applied quadcopters belong to the “Open” category
of unmanned aircraft systems according to the European Union Aviation Safety Agency
(EASA) categorization, which are legally restricted to AGL not greater than 120 m [163].



Chapter 4

Autonomy

Nevertheless the difference in mind be-
tween man and the higher animals,
great as it is, is certainly one of degree
and not of kind.

Charles Darwin

Robotic systems are finding applications in more complex and highly dynamic terri-
tories whose control demands exceed human regulation capability rendering such systems
under exclusive human control unstable under reasonable operating conditions. One pos-
sible solution to this instability is to slow down the controlled system’s dynamics. But a
more lucrative solution would be to move some or all the decision making onboard the
vehicle. Such a move would require platforms to have the ability to make one of three
deliberate choices namely, (1) choice of a goal or state, (2) choice of action for achiev-
ing a desired goal or state (3) choice of goal-action pair (behaviour). Systems with such
decision-making capability are known as autonomous systems.

The ability of autonomous functioning is known as autonomy, which is defined here
as the system’s ability to select an intermediate goal and/or course of action to achieve
that goal, as well as approve or disapprove any previous and future courses of action while
achieving its overall goal. The goals are the main drivers of any robot action and may
originate from an operator or from system constraints set by the designer. According to
the etymology of the word “robot”, it means a servant and that is what robots are intended
to be. Therefore, the possibility of systems generating their own ultimate goals and
constraints, which falls outside this definition is excluded. This means absolute autonomy
[24] is beyond such machines, hence unless otherwise stated, herein autonomy implies
relative autonomy.

The attractiveness of autonomy has resulted in a diverse selection of autonomous sys-
tems with a range of capabilities, raising the need to characterize and ultimately regulate
such systems. To quote H. James Harrington, “Measurement is the first step that leads
to control and eventually to improvement. If you can not measure something, you can
not understand it. If you can not understand it, you can not control it. If you can not
control it, you can not improve it.” Therefore, regulating autonomy requires the ability to
measure autonomy. Unfortunately, a set of autonomy metrics that is easily measurable,
broad enough to capture autonomy evolution in a system and with good output resolution
is still lacking.

This chapter introduces a set of proposed autonomy metrics and associated mathe-
matical models for mapping them to autonomy measures. The metrics were derived from
robot task characteristics, which themselves were determined by relating robot task char-
acteristics to human job characteristics as applied in industries. It has also been realized
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herein that autonomy is purposive and environmental specific, where the former means
autonomous functioning is designed to address a specific goal, while the latter highlights
the fact that autonomous functioning is tied to a predefined world setting. Therefore,
complete designation of autonomy for a system is defined with respect to a purpose, envi-
ronment and additionally, performance. The next section discusses proposed approaches
for quantifying autonomy.

4.1 Autonomy Measurement

The first step towards building an autonomous system is establishment of lower-level capa-
bilities to build into the system. The low-level capabilities interact to form and/or support
higher-level capabilities. Engineering specifications associated with these capabilities then
provide the structure and control system architectural design foundation for the robot.
Against this background, it is asserted that capabilities determine the fundamental struc-
ture of an autonomous system. This observation points to the fact that fully autonomous
systems ultimately differ in appearance from their manually controlled counterparts. It
should also be pointed out that to the end-users and regulatory authorities, it is not the
precise technology, but functional capabilities that are of at most importance.

Two categories of capabilities have been proposed namely, behavioural and cogni-
tive capabilities. Behavioural capabilities constitute the low-level behaviours of a robot,
while the cognitive capabilities include the intellectual functions of a robot. To claim
autonomous functioning, robots must possess both sets. Cognitive capabilities are im-
plemented in the planning layer or for a fixed plan, in the executive layer of the control
architecture, while behavioural capabilities span between behavioural and executive con-
trol layers as indicated in Fig. 4.1. Cognitive response is conditioned on knowledge that
shapes the belief of a system upon which decisions are made. Behavioural capabilities
depend on actuator, sensor and data-link technology, while cognitive capabilities depend
on microprocessor technology, and algorithm performance and computational complexity.

For a specific task in a specific environment, a list of capabilities is not sufficient for
determining the autonomy of a system. Additional information like the associated perfor-
mance capacity of the capabilities is also necessary, as autonomous systems differ not only
functionally (level of autonomy), but also performance wise (degree of autonomy). This
means that systems with similar capabilities may exhibit varying performances as a matter
of technological and economical factors. This raises a need for additional autonomy cor-
related information sources. Level of Autonomy (LoA) is an ordinal scale that indicates a
system’s independence from external intervention when in operation and ranges from tele-
operated or remotely operated to fully autonomous systems. Degree of Autonomy (DoA)
is a ratio scale measure of performance superiority of a system at its level of autonomy.
This distinction is important because it emphasizes the difference in performance that
exists among systems at a similar level of autonomy, which may result from technology,
structural design or system software and algorithmic differences.

After knowing the distinction between these two classes of autonomy, the next question
to ask is “how to measure LoA and DoA for a system?”. These classes can be assessed from
contextual perspective—derived from robotic platform, task and environmental character-
istics, or a non-contextual perspective—derived from only the robotic platform character-
istics [164]. Measuring LoA and DoA requires finding associated metrics or at least metrics
correlated with each class. These metrics ought to be easily measurable, broad enough to
capture autonomy evolution in a system, with good output resolution [25], highly sensitive
and generalizable to a broad range of systems.

Since the performance lower-bound of autonomous systems is human operator perfor-
mance, it is logical to start by analysing human-based jobs. Table 4.1 lists the four major
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human-job characteristics applied in industries. In the rightmost column is a mapping of
the human-job characteristics to robot-task characteristics. These robot-task characteris-
tics namely, capabilities, trust factor, performance capacity and environmental complexity
formed the basis upon which the proposed metrics were derived. In the review on auton-
omy assessment criteria presented in [27], it is indicated that 25% of the considered twenty
frameworks viewed autonomy from environment, mission and self-autonomy perspectives.
This in itself shows that the four selected characteristics have merit, but the fact that only
25% of the frameworks shared this view shows how oblivious the previous works were to
their strength.

Table 4.1: Human-job characteristics mapped to robot-task characteristics. The human-
job characteristics and importance weights are adopted from [5].

Human worker Characteristics Importance (%) Robot worker Characteristics
Skills 50 Capabilities
Responsibility 25 Trust factor
Effort 15 Performance capacity
Working conditions 10 Environmental complexity

Total 100

4.1.1 Autonomy Metrics

This section describes the four autonomy characteristics mentioned in Table 4.1, their
justification and mathematical representations. These characteristics form the basis for
autonomy measurement metrics.

Figure 4.1: Three-tiered architecture overlaid with capability classes. The intersection
between capability classes represents the fact that these classes can influence each other.
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Capabilities

Having control over the existing large variety of autonomous robotic systems is a long-
standing challenge, which is of interest to autonomous robot manufacturers and regulatory
authorities. The good news is that these autonomous systems operate within physical
limits and what they do in terms of behaviour is largely determined by the human operators
or developers during operation and system design respectively. As indicated in Table 4.1,
capabilities are the most important of all characteristics. Having a grasp of their influence
on the behaviour of autonomous systems is essential to achieving the benefits of regulated
autonomous functioning.

Capabilities are the most researched aspects of autonomous systems in relation with
autonomy evaluation. A review of twenty autonomous assessment frameworks presented in
[27] revealed that capabilities are the dominant approach followed by mission, interaction,
environment, etc. The same study listed the dominant capabilities as problem solving,
motion, perception, communication, acquisition and self-preservation. These capabilities
are mappable to our proposed capability classes of cognitive and behavioural capabilities,
with problem solving and perception belonging to cognitive capabilities, while motion,
communication, energy gathering and self-preservation belonging to behavioural capabil-
ities. This list is not exhaustive, so, a more comprehensive list of capabilities as of the
current level of research and technology in the field of robotics is provided, which includes
cognitive and behavioural capabilities on the left and right respectively:

• Basic perception

• Situation awareness

• Natural language processing

• Machine vision

• Learning

• Decision making or planning

• Mobility

• Object manipulation

• Communication

• Energy gathering

• Self-preservation

For humans, each job is associated with a set of skills. This concept is extendable
to robot tasks by associating each task with a set of capabilities. This associated set of
capabilities then becomes a tool for scoring the capability aspect of any robotic agents.

Trust Factor

Trust factor defines the risk level/uncertainty or performance tolerances acceptable during
execution of a specific capability. It encapsulates criticality of consequences that may
ensue as a result of execution mishaps by the robotic agent. If a system is built for a
specific task or a set of tasks, the trust factor can be relaxed or tightened by adjusting
the expected precision, hence admitting lower levels of autonomy and higher levels of
autonomy respectively.

This outlook on trust factor evaluation is beneficial in a way that it eliminates the
subjective urge to compare different capabilities with the aim of determining one as more
trustable compared to another. This changes the focus of trust factor assessment from the
capability itself to the required performance precision. An example of this would be lane
following by an autonomous vehicle. This task can be made more complex by demanding
the vehicle to follow the lane to within a tolerance of ±4% of the lane width or less complex
by demanding the vehicle to track the lane to within ±20% of the lane width. It should
be noted that in so doing, the underlying lane tracking technology enabling achievement
of the set tolerance is irrelevant. The actual precision achievable by the system and the
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desired precision are two different things, but their ratio encodes trust and responsibility in
the system for this particular task. Therefore, trust factor metric is represented as (CTF ),
which is the ratio of actual precision to desired precision of a system for a capability i.
Mathematically, it is expressed as indicated in Eq. 4.1, where σ2

des is the desired variance
that could be set by the operator or regulatory authorities for a particular task in a specific
environment and σ2

act is the actual variance of the system that is empirically determined.

CTF,i =
σ2
des,i

σ2
act,i

(4.1)

Generally, the expected value of a random variable is a location parameter, making
variance and trust factor location invariant. For events that involve observations of the
probability of success p of independent experimental trials, σ2 = p (1− p). When σ2

des,i =
0, two trust factor outcomes are possible as indicated in Eq. 4.2, which means the system
is either not trustable at all since it has a non-zero variance for the first case or is infinitely
trustable when its variance is zero. These cases are very unlikely as real systems generally
do not exhibit 100% certainty under natural operating conditions.

CTF,i =

 0 σ2
act,i 6= 0, σ2

des,i = 0
∞ σ2

act,i = 0, σ2
des,i = 0

(4.2)

Performance Capacity

Capabilities can be developed to varying capacities which collectively determine the re-
sponsiveness of a robotic system. The observable factor for this characteristic is response
time. This observable factor incorporates two important performance characteristics
namely, drive force and spatial extent of the system. The performance metric is derived
from response time as the capability execution temporal rate, representing a fraction of
capability executed in one second. Here we assume capability execution has a linear tem-
poral relationship. This performance capacity metric is represented by Eq. 4.3.

CPC,i = 1
Tcap,i

(4.3)

where Tcap,i is time in seconds needed to execute capability i. The resulting performance
capacity has units of s−1.

Environmental Complexity

Robotic platforms are part of the environment in which they operate, a concept known as
situatedness [94, 95]. Environments afford perception, localization, obstacle detection and
robot locomotion. But these perceptible affordances are dynamic which complicates the
associated processes. Environments impose both kinematic and geometric constraints on
the vehicle motion, which further exacerbate the situation. These factors together define
the environmental complexity.

Performance and environmental complexity have an inverse relationship [26]. In away,
the environment implicitly imposes performance requirements on any system that operates
on it, and autonomous systems are no exception. This inverse relationship is also mirrored
in the law of requisite variety, which is restated here as “only variety can control variety”
and is related to Shannon’s theorem, which is identical to entropy [165]. Hence, the use
of entropy to model environmental complexity in this work.

Herein, environmental complexity is inferred from spatial entropy as a measure of
certainty of finding a free space within a region delineated by a mask. The mask could be
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shaped as in Fig. 4.2, i.e., of one, two or three dimensions with size 1×3, 3×3 and 3×3×3
units respectively. This complexity analysis assumes a simple environment with only static
obstacles. To evaluate environmental complexity, assuming a planar environment, the first
step is to divide the world into a regular grid with squares equal to twice the radius of
the robot on the side. Any square partially or fully occupied by an obstacle is considered
blocked. This results in an approximate decomposition of the environment, an example
of which is shown in Fig. 4.3a, in which the dark cells are blocked and the light cells are
free. Fig. 4.3b shows a 3 × 3 mask in the upper left corner, used to determine the local
probability also known as the sampling density of the free space.

(a) (b) (c)

Figure 4.2: (a) One-dimensional mask. (b) Two-dimensional mask. (c) Three-dimensional
mask.

The environmental complexity CEC is specific to a vehicle, i.e., disparate vehicles would
view a similar environment differently as far as its complexity is concern. For this 2D case,
the applied 3 × 3 mask is associated with ten possible sampling densities as indicated in
Table 4.3. The sampling densities represent the probability of free squares within any
masked region with the assumption of uniform distribution. Each sampling density has
an associated entropy Eρi = −ρi · log(ρi), which indicates its local complexity. The overall
environmental complexity is then measured as the expected entropy resulting from sliding
the mask through the environment. This is mathematically expressed as in Eq. 4.4.

CEC =


r=9∑
i=0

P (ρ = ρi) · Eρi if P (ρ = ρ0) 6= 1

undefined if P (ρ = ρ0) = 1
(4.4)

where r is the mask size, P (ρ = ρi) is the probability of observing sampling density ρi in
the environment, determined by the frequency of this density during sliding of the mask
through (n − 2) × (m − 2) grid steps contained within the dashed polygon of Fig. 4.3b.
It should be noted that for the case P (ρ = ρ0) = 1, CEC is undefined as for such a
case the size of the free space is zero. This demonstration is for a 2D case, but the
steps can be applied to 1D and 3D environments as well, in which cases the masks are
also 1D and 3D in shape respectively. The sampling densities and associated entropies
for the 1D and 3D cases are indicated in Table 4.2 and Table 4.4 respectively. This
environmental complexity model accounts only for geometry related complexity resulting
from presence of static obstacles. Factors associated with environmental affordance like
changes in lighting conditions and weather affect only specific sensing technologies, hence,
do not affect environmental complexity in general.

In summary, the four metrics can be applied for the purpose of non-contextual or con-
textual autonomy assessment as indicated in Table 4.5, where the former defines autonomy
with no regard for environmental complexity, trust factor and performance capacity, while
the latter makes no such assumptions. These are also known as passive and active auton-
omy respectively [27].
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(a)

(b)

Figure 4.3: (a) Approximate decomposition of a robot environment. (b) A mask in the
upper-left corner used to measure sampling density. The mask is moved step-wise to all
squares within the dashed polygon.

Table 4.2: One-dimensional mask sampling densities and associated spatial entropies.

Sampling Densities
ρi 0/3 1/3 2/3 1
Eρi 0.000 0.528 0.390 0.000

Table 4.3: Two-dimensional mask sampling densities and associated spatial entropies.

Sampling Densities
ρi 0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1
Eρi 0.000 0.352 0.482 0.528 0.520 0.471 0.390 0.282 0.151 0.000
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Table 4.4: Three-dimensional mask sampling densities and associated spatial entropies.

Sampling Densities
ρi 0.000 1/27 2/27 3/27 4/27 5/27 6/27
Eρi

0 0.176 0.278 0.352 0.408 0.451 0.482

ρi 7/27 8/27 9/27 10/27 11/27 12/27 13/27
Eρi

0.505 0.520 0.528 0.531 0.528 0.520 0.508

ρi 14/27 15/27 16/27 17/27 18/27 19/27 20/27
Eρi

0.491 0.471 0.447 0.420 0.390 0.357 0.321

ρi 21/27 22/27 23/27 24/27 25/27 26/27 1
Eρi

0.282 0.241 0.197 0.151 0.103 0.052 0.000

Table 4.5: LoA and DoA characteristics.

Characteristics LoA DoA
Capabilities X X

Trust factor X

Performance capacity X

Environmental complexity X

4.1.2 Level of Autonomy and Degree of Autonomy

LoA is inherently non-contextual while DoA is inherently contextual. LoA considers only
presence/absence of mandatory autonomous capabilities, while DoA considers not only
capabilities, but also trust factor, performance capacity and environmental complexity.

The LoA assessment procedure applied here is similar to the commonly applied method
of capability comparison, where a list of required capabilities for each autonomy level for a
particular task are compared with the vehicle’s capabilities and the system is assigned to
the highest matched level. This approach applies to any autonomous system, but MAVs
are used for demonstration purposes as they are the platform of focus in these projects.

This work adopts a discretization resolution of eleven levels of autonomy as in [25]
and [28], ranging from remotely controlled systems at level 0 to fully autonomous systems
at level 10. The eleven levels and their descriptions are presented in Table 4.6. Level
0 systems are continuously externally controlled, levels 1 − 2 systems provide assistance
to the external controller, levels 3 − 4 systems share control (through cooperation or
collaboration) between the external controller and onboard system, levels 5 − 7 are fully
autonomous but still require presence of external supervision, while levels 8− 10 systems
are fully autonomous with no need of external supervision, but levels 8 and 9 offer only
conditional autonomous functioning.

Each level in Table 4.6 is associated with a set of capabilities for a particular task, which
act as a reference for LoA assessment. LoA for any system at performing a particular task
is given by the level whose capabilities’ control strategy matches that of the system.

Degree of autonomy (DoA) is determined from trust factor and performance capacity
using Eq. 4.5.

DoA =
n∑
i=1

(CTF,i × CPC,i) (4.5)

where CTF,i is the trust factor for capability i, CPC,i is performance capacity for capability
i and n is the number of relevant capabilities.
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Table 4.6: Level of autonomy chart.

Level Description

10 Fully autonomous.
9 Environment-dependent full autonomy.
8 Limited-performance full autonomy.

7 Fully autonomous with on-request supervision or consultation.
6 Fully autonomous with more unsupervised than there are supervised modules.
5 Fully autonomous with at least as many supervised as there are unsupervised modules.

4 Shared control (externally controlled and unsupervised modules, collaborative).
3 Shared control (externally controlled and supervised modules, cooperative).

2 Assisted external control with basic actuation.
1 Assisted external control with actuation proposition.

0 Externally controlled (Remote control).

Therefore, defining only the level of autonomy as it is being done to date is not sufficient
for defining autonomy of a robot. Herein, a three-part designation of autonomy including
level of autonomy, degree of autonomy and their associated environmental complexity is
proposed. Therefore, autonomy for any robotic system is specified as “α DoA at β LoA
in an environment of γ complexity”, where α and β, and γ are the DoA model output,
LoA level index and environmental complexity model output respectively.

4.2 Autonomy Framework Evaluation Results

In this section, application demonstrations of the proposed autonomy framework are pre-
sented. The demonstrations include a case study of a hypothetical MAV navigation sce-
nario, Defense Advanced Research Projects Agency (DARPA) subterranean challenge com-
petition rules analysis and a case study with six unmanned aerial systems used previously
to evaluate 10 existing autonomy evaluation frameworks in [6].

4.2.1 MAV Demonstration

Here, a generic autonomous MAV with the following capabilities (such capabilities would
normally be listed in the vehicle’s datasheet) is deployed for the task of indoor navigation:

• Supervised path tracking.

• A GNSS-independent onboard localization system with a standard deviation of
0.1 m.

• Supervised static obstacle avoidance.

• Unsupervised path planning.

• Unsupervised battery level monitoring and reporting.

The navigation environment is an office building showed in Fig. 4.4a with hallways wide
enough for this ∅1.0m × 0.35m airframe MAV to fly through. The goal here is to assess
the level of autonomy and degree of autonomy of this vehicle in this specified environment.
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(a)

(b)

Figure 4.4: (a) Isometric view of the test environment. (b) Top view of the test environ-
ment with an overlaid approximate decomposition grid.

Level of Autonomy Determination

LoA assessment is a two-step process. The first step compares vehicle capabilities to the
core navigation capabilities to ensure navigation viability. If passed, the control strategies
of the vehicle capabilities are then compared to Table 4.6 for level determination. As
evident from Table 4.7, the MAV possesses all the core navigation capabilities. But some of
them require supervision, which will impact the vehicle’s LoA. With reference to Table 4.6,
the MAV is of level of autonomy six (LoA 5).



4.2. AUTONOMY FRAMEWORK EVALUATION RESULTS 45

Table 4.7: List of navigation capabilities for LoA assessment.

Navigation Core Capability MAV Navigation Capability Operator Involvement
Path planning X Unsupervised
Localization X Unsupervised
Path tracking X Supervised
Obstacle avoidance X Supervised

Environmental Complexity Determination

Since the environment contains only vertical obstacles of similar height, sampling density
probabilities can be easily calculated by sliding a 3× 3 mask at any fixed height, instead
of a 3× 3× 3 mask at progressive height steps. The results of this process are showed in
Table 4.8, where environmental complexity is the sum of the right most column entries,
which in this case totals to 0.292 bits.

Table 4.8: Environmental complexity assessment.

ρ E P(ρ = ρi) P(ρ = ρi) ·E
0 0.00000 0.00542 0.00000

1/9 0.35221 0.00136 0.00048
2/9 0.48221 0.02439 0.01176
3/9 0.52832 0.04539 0.02398
4/9 0.51997 0.11314 0.05883
5/9 0.47111 0.06775 0.03192
6/9 0.38998 0.39295 0.15324
7/9 0.28200 0.02575 0.00726
8/9 0.15104 0.02981 0.00450
1 0.00000 0.29404 0.00000

1.00000 CEC = 0.29197

Trust Factor Determination

The trust factor determination process starts by assessing the trust factor of each of the
core navigation capabilities namely, path planning, path tracking, localization and obstacle
avoidance. Assuming the following desired performance requirements, 70% path planning
success rate, 90% path tracking success rate, 0.05 m localization standard deviation and
80% obstacle avoidance success rate.

Several test trials have been conducted with the aim of obtaining actual measurements
corresponding to the desired properties. The outcomes of these tests are summarised in
Table 4.9. For path planning, optimality is not considered since the path planner of choice
is a sampling-based path planner. Additionally, the path planning process was allowed
a maximum planning and path simplification duration of 1 sec. The actual localization
system has a standard deviation of 0.1 m. For this evaluation, ten navigation trials were
conducted with the same starting configuration, but random goal configurations in each
of the thirty rooms and one hallway in the test environment.
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Table 4.9: Trust factor assessment.

Capability σ2
des σ2

act CTF,i

Path planning 0.2100 0.2415 0.868
Localization 0.0025 0.0100 0.250
Path tracking 0.0900 0.1600 0.563
Obstacle avoidance 0.1600 0.1476 1.084

Performance Capacity Determination

Performance capacity metric is the execution frequency of a capability, number of execution
cycles in a second. In other words, it is the reciprocal of execution time Tcap,i. After
running several simulation trials, an average path planning time of 0.407 seconds was
obtained, the localization module published vehicle locations at a frequency of 20 Hz,
obstacle avoidance took a minimum of 0.92 seconds from stimulus to response execution
and path tracking nominal speed is 0.4 m/s. Applying these measurements to the proposed
performance capacity metric in Eq. 4.3 yielded the results summarised in Table 4.10.

Table 4.10: Performance capacity assessment.

Capability CPC,i (Hz)
Path planning 2.458
Localization 20.000
Path tracking 0.400
Obstacle avoidance 1.087

Degree of Autonomy Determination

Now that the trust factors and their associated performance capacities are known, these
are then applied to Eq. 4.5 to obtain the degree of autonomy of this MAV, which in this
case as indicated in Table 4.11 is 8.537 Hz. This is interpreted as efficiency adjusted
performance rate.

Table 4.11: Degree of autonomy assessment.

Capability CTF,i CPC,i CTF,i × CPC,i

Path planning 0.868 2.458 2.137
Localization 0.250 20.000 5.000
Path tracking 0.563 0.400 0.225
Obstacle avoidance 1.084 1.087 1.178

Total 8.540 Hz

Therefore, this MAV has a level of autonomy LoA 5, and a degree of autonomy of
8.540 Hz in an environment of complexity 0.292 bits.

4.2.2 DARPA Subterranean Challenge

This section compares the recently concluded DARPA subterranean (SubT) challenge
scoring criteria with the metrics proposed in this work. It also shows how application of
these metrics can provide a self-evaluation measure indicative of a team’s likelihood of
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qualifying for such competitions prior to actual qualification rounds. DARPA SubT chal-
lenge was a three-year (September 2018 - August 2021) robotics competition organised
by the DARPA to motivate development of state-of-art mapping, navigation and spatial
search solutions for dynamic complex unknown subterranean environments. The compet-
ing systems demonstrated autonomous functioning, perception, mobility and networking
capabilities. [166]. The challenge included two competitions namely, systems competition
and virtual competition, where the former involved actual hardware operating in actual
environments and the latter was exclusively virtual, with simulated vehicles operating in
graphically simulated environments.

The scoring objective for this competition was the total number of accurately reported
artefacts within a limited time window. Since the artefacts were spatially distributed
within the subterranean environment, and the exploration time limited, this implicitly
bounded the operating speed. Validity of an artefact detection depended on its accurate
identification and estimation of its 3D position to within ±5 m. The systems compe-
tition was evaluated based on one final run, which provided no statistical possibility of
accounting for performance variability. The decision of scoring only on the final round was
justified by avoidance of having to run a statistically significant number of trials in the
real environment that would require a lot of resources. In the virtual competition however,
the final score was averaged on m scenarios and n trial runs per scenario to account for
random variability in performance.

Looking at each of the SubT challenge meta-capabilities namely, mapping, navigation
and spatial searching from an autonomy assessment point of view revealed the following:
(1) Any mapping framework with a trust factor CTF < 1.0 has an increased probability of
reporting artefacts with position errors outside the allowed error range of ±5 m assuming
3σact u 5 m. (2) A mapping framework with CPC < 0.1 s−1 would not qualify for the
competition. (3) The final event had forty and twenty artefacts, but allowed only forty-five
and twenty-five reports per run for the systems and virtual events respectively. This meant
that for any system to stand a chance of searching and reporting all artefacts (assuming
perfect artefact position estimation and sufficient exploration speed), it needed to exhibit
an identification success rate variance of σ2

act ≤ 0.160 and σ2
act ≤ 0.099 for systems and

virtual competitions respectively. (4) For navigation, a speed reference value was neither
specified nor inferable from the run duration without environmental knowledge. This
should have made it difficult for the competitors to select a suitable exploration speed for
the vehicles to maximize coverage with no speed reference.

In summary, a procedure similar to that described in Sect. 4.2.1 can be applied to a
vehicle’s mapping, navigation and searching capabilities to determine its level of autonomy
and degree of autonomy for each respective task. LoA determination is necessary for the
systems competition since human intervention was allowed, hence the likelihood of systems
with different levels of autonomy. DoA would differentiate the superiority of systems at
similar levels of autonomy for the different subdomains.

4.2.3 Other Case Studies

Here, the proposed LoA chart in Table 4.6 is applied to the case study of six UASs that were
used to evaluate performance of the ten frameworks in [6]. A more detailed description of
the six vehicles is presented in Table B.1 of Appendix B. According to the source article,
UAS A is capable of unsupervised execution, but planning is done by an external operator.
This is indicative of a collaborative control strategy, hence belongs to level of autonomy
LoA 4. UAS B is continuously under external control, hence belongs to LoA 0. UAS
C has deterministic supervised behaviours, an external operator performs planning and
replanning, and the system executes the plan under supervision. This is indicative of a
cooperative control strategy, hence this vehicle is of LoA 3. UAV D has nondeterministic
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supervised behaviours, system plans, replans and executes all under supervision. This
makes it a LoA 5 system. UAS E and UAS F are both fully autonomous systems of LoA 10.
This is because autonomous systems are purposive, so, they are not expected to set their
own goals and constraints. This shows that the presented LoA chart is well formulated
and detailed enough to allow unambiguous classification of robotic systems than existing
frameworks. The complete autonomy level classification results of the proposed framework
and ten existing frameworks on these case studies is presented in Table B.2 of Appendix B.

4.3 Chapter Summary
Autonomy is a term that has been used on several occasions to describe performance of
products like automobiles, cranes, service robots to mention but a few. But what auton-
omy means quantitatively is undefined or defined ambiguously. This chapter provides a
clear description of autonomy and quantitative metrics for measuring it. Any robot task is
characterized by capability requirements, trust factor, performance capacity and environ-
mental complexity. Capabilities define a robot’s LoA for a particular task. Capabilities,
trust factor and performance capacity define a robot’s DoA in a specific environment. Be-
sides providing context, environmental complexity is also indirectly integrated into DoA
through desired trust factor requirements. Mathematical functions for the metrics and
DoA have also been proposed. Unlike the existing measures of autonomy that report only
LoA, the proposed framework outputs a three-part autonomy designation, resulting in a
less ambiguous, high resolution characterization of a system’s autonomy. The framework
output specifies the system’s DoA score, the associated LoA and complexity of the ex-
pected operating environment. Finally, demonstration results of the proposed autonomy
evaluation framework on three case studies are presented. The case studies include a
generic MAV, DARPA challenge SubT competition and a case study with six UASs that
was used to evaluate the performance of ten existing autonomy frameworks in [6].



Chapter 5

Path Planning

This chapter introduces a key competence of navigation known as path planning. The
output of any path planning process is a connectivity graph through the free space in the
operating environment. There are several approaches for generating such paths, but the
most popular are combinatorial, sampling-based and potential field-based path planners.
As mentioned in Sect. 2.4, combinatorial and potential field-based approaches do not
scale well to higher dimensional and large spaces, while sampling-based approaches scale
well to such spaces, but are incomplete in the general sense and produce poor quality
paths. Furthermore, potential field-based approaches render themselves well to online
implementation, but their gradient descent implementation is susceptible to local minima.

The work in this chapter aims at addressing two main goals namely, online implementa-
tion of sampling-based path planning with enhanced success rate and implementation of a
combinatorial coverage path planner for planning in large-scale scenarios. Sampling-based
path planners have in the past been labelled as having poor quality paths and generally
incomplete. This has contributed to their persistent unpopularity despite their growing
attractiveness that is attributed to properties like relatively fast planning, computational
complexity independent of environmental complexity, ability to handle nonholonomic con-
straints and high dimensional configuration spaces. Sect. 5.1.1 presents a high success rate,
relatively fast, online and adaptive sampling path planner with acceptable path quality.
Sect. 5.2 presents a solution to the large-scale coverage path planning problem, which is
a combinatorial type path planner, specifically, coverage path planner with exact cellular
decomposition functionality.

5.1 Randomized Sampling-based Path Planners

Combinatorial (generally complete) motion planners have prohibitively high computa-
tional complexity and memory requirements [167], both of which scale exponentially with
the dimensionality of the configuration space [141], hence impractical for complex higher
dimensional planning scenarios. Furthermore, they require explicit representation of the
obstacle configuration space. These limitations motivated the development of sampling-
based path planners whose computational complexity is independent of environmental
complexity [143]. Sampling-based methods output either deterministic or random sam-
ple sequences. In the former case, resolution tuning is necessary. Here, the focus is on
randomized sampling as it requires no parameter tuning, while exhibiting incremental
resolution improvement with increased sample density. The main disadvantages of ran-
domized sampling-based approaches are their non-deterministic nature, weak completeness
and relatively poor path quality. This work proposes an approach to sampling path plan-
ning that improves on these disadvantages, i.e., enabling online planning and replanning
and improving on success rate, environmental adaptability and short planning time.

49
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Randomized sampling-based planners randomly sample the configuration space to con-
struct a data structure representative of the free configuration space. These methods can
be primarily categorized into roadmap and tree-based methods, Probabilistic Roadmap
(PRM) and Rapidly-exploring Random Tree (RRT) respectively [139]. RRT is a variant
of Rapidly-exploring Dense Trees (RDTs) with random sampling sequences [138]. A basic
PRM randomly samples the configuration space for obstacle free configurations, connects
them to build a roadmap during the learning phase, the resulting roadmap from this
pre-processing step is saved and queried for paths during the query phase making PRM a
multi-query randomized planner. On the other hand, for every query, RRT probes the free
configuration space, but does not add random samples to the tree directly. Instead, adds
a free configuration between the randomly sampled configuration and a nearest neighbour
already in the tree determined by a state transition function and an input that minimizes
the distance between the random and neighbouring configuration. Unlike the basic PRM
that is intended for holonomic robots [168], basic RRT can incorporate nonholonomic
constraints [142].

Performance evaluation of sampling-based path planners is never conclusive, one can
hardly find persistent performance patterns. Even when patterns seem to exist, the per-
formance boundaries of different algorithms seem to overlap. This makes it hard to choose
one algorithm over another on average cases. It should also be noted that simple plan-
ners are preferred to complex ones if their performance is comparable [169], which is in
agreement with the law of parsimony. Together, these observations led to the choice of
working not with a single planner but multiple concurrent planners stack together to cre-
ate an ensemble from which the best planner (first to return a feasible path or one with
the shortest path) is selected at runtime.

5.1.1 Ensemble Planner

The ensemble is aimed at simulating repetitive planning trials with similar queries and
uncontrollable free-configuration map building. Building this ensemble necessitates se-
lecting candidate planner from a set of probabilistically complete planners that solve the
feasibility problem as fast as possible, permitting tractable concurrent queries. Optimal-
ity did not make the list because optimal variants of RRT and PRM sampling-based path
planners are over 30 times slower than their non-optimal variants [146].

From the preliminary planning speed experiments with PRM, RRT, PRM*, RRT*,
Bidirectional Transition-based Rapidly-exploring Random Tree (BiT-RRT), LazyPRM,
LazyRRT, RRT-Connect, Transition-based Rapidly-exploring Random Tree (T-RRT) and
Path-Directed Subdivision Tree (PDST), on a multi-floor planning problem, the bidirec-
tional planners BiT-RRT and RRT-Connect exhibited the shortest mean planning time,
with BiT-RRT running the fastest. This is in agreement with [169, 138] who asserted
that bidirectional tree expansion greatly improves on planner performance. Techniques
like lazy collision checking and kd-tree nearest neighbour search, which improve collision
checking speed and nearest neighbour search speed respectively [167], did not produce
consistently observable runtime improvement as bidirectional exploration.

RRT-Connect, BiT-RRT and RRT were selected as ensemble planners. This choice
was generally based on their implementation simplicity and rapid exploration capability.
Furthermore, the former two scored the highest on the planning time scale, while choice
of the latter was additionally influenced by the observation that for closer queries, the
bidirectional trees may explore a large unnecessary area before they can connect, which
degrades their bidirectional advantage [169]. Therefore, included the basic unidirectional
RRT to establish an upper bound on planning time for cases where the two bidirectional
planners lose their bidirectional advantage. The name ensemble was motivated by the fact
that the selected planners are derivatives of the same planner, i.e., RRT. The concurrent
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ensemble is expected to improve on the success rate and planning time. Furthermore,
RRTs are incremental as opposed to batch algorithms, hence single-query, while PRMs
are multi-query (build a free space representation once during the learning phase and use
it to answer multiple queries with the assumption of a fixed obstacle set [168]), a property
which makes them unsuitable for dynamic environments.

The incremental nature of RRT is beneficial for online implementation [146]. Online
problems do not require multiple queries since the environment is not fully known a priori
[146] or may change over time. Therefore, it is best to work with the incremental online,
single query RRTs as ensemble planners. Online and real-time capability of RRTs has
already been established in [167], who extended RRT with waypoint caching to enable
information reuse, which improved replanning and local minima avoidance, and applied
it to a team of ground robots. Despite those advantages, biasing the path search towards
a previously cached solution may hinder the possibility of finding a path that is orders of
magnitude better than the previously cached path, if the two are not homotopic. On the
contrary, the derivation process of the proposed planner opted for information gathering
diversification by deploying multiple planners. The selected planners were stack together
to create a non-interacting ensemble of path planners.

The idea of multiple sampling-based planners featured in [170], where RRT and mod-
ified versions of RRT were applied to quickly generate an initial solution to a query and
successively improve on the path quality respectively, as long as time allowed. This method
defers from the one presented here in that the latter considers concurrent planning and
also focuses primarily on boosting success rate and planning time. The choice of fast path
planners allowed time for path smoothing as a post-process. Next, are detailed descriptions
of the selected ensemble constituent planners.

RRT: Rapidly-exploring random tree (RRT) [142] is an incremental sampling algo-
rithm that samples the configuration space for free configurations q ∈ Qfree to build a
random tree capturing the connectivity of the free configuration space. It is a randomized
variant of RDTs. While oblivious to the geometric complexities of the obstacle space,
RRTs rely on collision checkers to eliminate invalid configurations. It encodes nonholo-
nomic constraints in a state transition function q̇ = f(q, u) , where u ∈ U is a set of
possible inputs. The uniqueness of RRT comes from the fact that the new configuration
state qnew is determined, not randomly selected. Initially, the tree contains only the initial
state qstart ∈ Qfree. Then iteratively, a random configuration qrand ∈ Qfree is selected.
The nearest neighbour search then looks up for the closest neighbour to qrand among the
tree vertices using a distance metric. Next, an input u that minimizes the distance be-
tween qrand and qnear, while ensuring a non-colliding configuration is selected. Finally, a
new configuration qnew determined by applying the selected input u to the state transition
function is added to the tree. Added with it is its associated edge and input u. RRT bears
interesting properties like probabilistic completeness, minimal, simplistic implementation,
relatively fast planning and ease of incorporation of nonholonomic constraints [142], but
it is not optimal [146] and allows no control over the path quality.

RRT-Connect: RRT-Connect is a single query randomized planner, which as the
name suggests is a variant of RRT. In the original research work that presented RRT, the
authors conjectured performance improvement by spawning two trees, one rooted at the
start configuration and the other rooted at the goal configuration [142]. This conjecture
is the basis for RRT-Connect. RRT-Connect constructs two trees rooted at the start
configuration and goal configuration respectively, with a greedy heuristic that tries to
connect the trees to each other [145]. This greedy heuristic biases the trees towards each
other hence introducing some degree of informedness.

Unlike the original RRT, RRT-Connect assumes no differential constraints. The ap-
proach works as follows, two trees are spawned, one rooted at the start configuration and
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the other at the goal configuration. Then an arbitrary tree TS is selected in which a near-
est neighbour qnear to a randomly selected configuration qrand ∈ Qfree is searched. After
the search, a sequence of new configurations {qnew,i, }, i ≥ 1 between qnear and qrand are
continuously sampled at an incremental distance ρ and added to TS until an obstacle is
encountered or qrand is reached. Next, an attempt is made to connect the latest qnew to
the second tree TG. If the connection is successful, a path is found, else, the second tree TG
is selected for expansion and the process repeats. The attractive properties of this planner
include an exact representation of the goal configuration, requires no pre-processing and
is real-time planning capable, but it exhibits weak completeness and allow no control over
the path quality.

BiT-RRT: BiT-RRT is derived from T-RRT, which is a cost-space planner derived
from an RRT scheme that generates a cost optimal path relative to a cost function. T-RRT
biases expansion towards low cost regions in the configuration space with a transition
probability derived from mechanical work using an exponential decay mapping. Downhill
expansions are accepted with probability one and uphill expansions are accepted with a
transition probability that is derived from an exponential decay mapping of mechanical
work done to move from current configuration to the new configuration. A parameter
T (Temperature), dynamically controls the climbing ability of the expansion step, with
higher temperatures enabling climbing and lower temperatures limiting the expansion to
lower gradient regions. T also serves to overcome local minima traps. T-RRT aims to
improve on both the planning speed and path quality, qualities that are inherited and
improved upon by the bidirectional variant of T-RRT called BiT-RRT [171].

BiT-RRT grows two trees rooted at the start and goal configurations respectively.
Unlike RRT-Connect, BiT-RRT only attempts to connect the two trees if the connection is
of downhill slope and the two vertices are close to within a distance {d|d < 10× δ}, where δ
is the expansion step size. The connect heuristic in BiT-RRT and RRT-Connect improves
the running time by a factor of three-to-four in uncluttered environments, but by less in
cluttered environments [145]. It has also been observed that in cluttered environments,
the two trees may expand into unnecessary regions before they can connect, than a single
tree would [171], thereby losing their bidirectional advantage. This is the reason why the
basic RRT was included in the ensemble, as it is easy to maintain over a small search area.

5.1.2 Ensemble Planner Implementation and Simulation

The individual planners were implemented in C++ using the Open Motion Planning
Library (OMPL) [172] as independent executable processes. The ensemble logic that
manipulated the individual planners was implemented in C# and deployed as a script in
the Unity software framework. Planning requires user inputs including maximum planning
time, path simplification setting, robot mesh, world mesh, start and goal configurations,
which are provided through a settings XML file. Upon planning completion, each planner
outputs a random sequence of configurations, path generation time and path simplification
time into the settings XML file. The complete architecture is as indicated in Figure 5.1.

To evaluate the ensemble performance, two test strategies were conducted, (1) winner-
take-all and (2) fixed-time-window. In the former strategy, all planners are run concur-
rently and the first to find a valid path is selected. Return of a valid path by the fastest
planner triggers termination of the other planning processes. In the latter strategy, all
planners are run concurrently for a fixed time lapse. Upon time expiration, plans from
successful planners are collected, analysed and the shortest of them all is selected for exe-
cution. These paths are composed of straight-line segments between waypoints. The best
path is suboptimal but has some properties of an optimal path, i.e., piece-wise smoothness
and keeps a minimum clearance from obstacles.

Non-optimal sampling-based path planners have path quality problems, the paths are
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Figure 5.1: Ensemble architecture.

highly irregular. The choice of fast path planners as ensemble planners allows extra time
for path smoothing, which is a crucial step towards path quality improvement for ran-
domized sampling path planners. Therefore, in this project, the path planning time is
the sum of path generation time and path simplification time. Fig. 5.2a and Fig. 5.2b
show two example sampling paths for a start configuration S on the ground floor and goal
configuration A on the first floor of an office building. From this, it is visually evident
that the path quality is greatly improved by the path simplification post processing step.

To test a path planner, an environmental representation is necessary. For this case, a
two-floor office building, with only two points of entry between the floors is used . The size
of the floors is 42.5 m× 37.20 m× 4.056 m and 42.5 m× 37.2 m× 3.885 m for the ground
and first floor respectively. For planning purposes, the environment is represented as a
3D model with 16944 triangle primitives. Six queries {(qS , qA), (qS , qB), (qS , qC), (qS , qD),
(qS , qE), (qS , qF )} were arbitrarily selected for performance assessment of the ensemble
planner. The target points are indicated by cubes A − F and the start point by cube S
in Fig. 5.3. Besides point A, all points are located on the ground floor. The coordinate
values of all query points are presented in Table 5.1.

Table 5.1: Query coordinate values.

S A B C D E F
x(m) 36.000 38.650 9.000 33.000 33.000 33.000 21.000
y(m) 27.800 25.325 27.800 25.000 27.800 2.000 27.800
z(m) 0.750 6.000 0.400 1.000 1.000 1.000 1.000

The two test strategies were tested in simulation on a personal computer with 16 GB
of physical memory, 64-bit Intel® CoreTM i7 processor with 2.60 GHz clock frequency
and six cores, and a 6.0 GB Nvidia GeForce GTX 1660 Ti GPU (Graphics Processing
Unit). The fixed-time-window strategy was conducted as a success rate test, where each
planner attempted to answer each query 400 times within fixed time windows of duration
t ∈ [0.01, 60] seconds. The average success rates for each of the six queries are indicated
in Fig. 5.4. In this figure, the query complexity decreases as one moves from left to right
then top-down. It is evident that BiT-RRT has an exceptional success rate for all queries,
followed by RRT-Connect and trailed by RRT.

Based on this, one might be tempted to choose a single planner e.g. BiT-RRT in this
case as opposed to an ensemble, but this figure shows just half the story. Looking at each
planner’s planning time in Figure 5.5, it is evident that, while BiT-RRT dominates at
complex queries, RRT dominates at simpler queries. The dominance of RRT is attributed
to the ease with which a single tree is maintained. So, for closer queries in open spaces,
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(a)

(b)

Figure 5.2: (a) and (b) are two different paths generated by the ensemble planner for a
similar query on two different planning trials. The lower cylinder is the start configuration,
while the upper cylinder is the goal configuration.
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Figure 5.3: Test environment. The first floor contains only target A, while the ground
floor contains targets B − F and the start point S.

Figure 5.4: Success rate simulation results for the six queries.

the bidirectional planners sporadically lose their bidirectional advantage.
Next, is the analysis of the winner-take-all simulation test on the six queries. Unlike

the previous test which involved a fixed time window, here the time is not restricted.
The three planners are run concurrently and the first to find a valid solution to a query is
returned whilst the other planning processes are terminated. For each query, the ensemble
ran 10,000 trials. The resulting contribution from each planner is represented in Figure 5.6,
in which a similar trend as for the fixed-time-window strategy emerged. BiT-RRT has a
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Figure 5.5: Runtime simulation results for the six queries.

probability pBiTRRT (SUCCESS) > 0.7 of finding a valid path for complex queries, but
this probability drops to pBiTRRT (SUCCESS) < 0.4 for easier queries. Although the
performance of RRT for complex queries is poor, it consistently exhibited a relatively
higher probability of finding a valid solution to easier queries.

With these results, it can be concluded that an ensemble improves not only on the
success rate of path planning, but also on the planning time and introduces a degree of
adaptability which improves on the overall performance. These benefits are not without
associated cost as running an ensemble of planners consumes relatively more computational
resources, but the choice of fast randomized sampling-based planners as ensemble member
planners bears the benefit of tractability and speed.

Figure 5.6: Percentage contribution of each planner in the ensemble evaluated over 10,000
trials per query.
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Replanning Simulation

To test for the re-planning ability of the proposed ensemble planner, a new set of ten
goal configurations was arbitrarily chosen. Unlike, in the planning tests, here the goal
configurations are distributed equally among the two floors, i.e., five goal configurations
on each floor as indicated in Fig. 5.7.

Figure 5.7: Replanning goal configurations. Goal configurations A-E are located on the
first floor, while goal configurations F-J are located on the ground floor.

The replanning function was implemented on top of the planning ensemble, with the
addition of an iterative replanning function and an external replanning trigger interface.
The former iteratively calls the planning function until a valid path is found, while the
latter allows for manual triggering of the replanning process. Upon triggering, one of the
ten goal configurations A-J is randomly set as the goal configuration and then planning is
executed. After incorporating these functions, the replanning module was tested.

Two hundred replanning trials were executed on the same computing machine as used
for the planning simulation tests and the replanning times recorded. Again, as mentioned
in the previous section, the planning/replanning time is the sum of path search time and
path smoothing time. The resulting path replanning time Gaussian distribution is showed
in Fig. 5.8. From this distribution, the expected replanning time is 1.34 seconds with a
standard deviation of 0.80 seconds , which is sufficient for online replanning.

5.2 Aerial Coverage Path Planning

Coverage Path Planning (CPP) is a type of path planning where the generated path
ensures the robot footprint or sensor field-of-view (FoV) covers all open spaces in the
Area of Interest (AOI). It differs from start-to-goal path planning where a path from
a start point to a goal is sought. CPP algorithms find applications in mobile ground
robotics like vacuum cleaning, lawn mowing, security and surveillance, de-icing of airports,
and harvesting or seeding, among others, and mobile aerial robotics like crop sensing,
geological documentation, urban planning, wetland management, search and rescue, land-
use monitoring, mapping and remote sensing among others.

Literature has many elegant solutions to the CPP problem. Unfortunately, most of
these solutions are specific to mobile ground robotic applications and do not scale optimally
to aerial robotics. This limited generalizability together with advances in aerial robotics
and remote sensing have fuelled intense research in the field of Aerial Coverage Path
Planning (ACPP), which is the subject of this section. Large-scale coverage industrial
applications often-times exceed the single flight coverage capability of modern multirotor
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Figure 5.8: Replanning time Gaussian distribution. The mean replanning time is 1.34 s
and replanning time standard deviation is 0.80 s.

MAVs. Luckily, dropping prices have enabled acquisition of multiple platforms, whose
aggregate capability can easily satisfy most of these large-scale coverage applications. It
should be noted that even with a single platform, multiple flights can be systematically
conducted in a short period of time, owing to manoeuvrability and low operating costs of
these aerial platforms. To harness the cumulative power in numbers, partitioning schemes
are necessary for systematically partitioning large areas into manageable portions and
assigning them to a fleet of MAVs or flying them with one platform multiple times. Such
a planner is key to autonomous robotics because it guarantees coverage, enables proper
task planning, impact assessment of operational costs as well as management of hardware
and human resources.

When designing coverage path planners, up to four factors can be considered namely,
environment, vehicle, coverage actuator/sensor and algorithm. Table 5.2 highlights the
properties underlying each of the factors. Literature contains CPP algorithms based on
one or a combination thereof. Interested readers can find more details on characterization
of CPP methods in [173], a survey article on coverage path planning in robotics.

Table 5.2: Design factors for coverage path planners.

Factor Properties
Environment Static/dynamic, 2D/3D/2.5D, non-differentiable, size
Vehicle Aerial/ground/amphibian, unmanned, holonomic/nonholonomic,

finite energy storage/infinite energy storage, single robot/multiple
robots

Coverage sensor/actuator Footprint shape, mounting (Gimbal or no gimbal)
Algorithm Offline/online, completeness, complexity, optimality (with respect

to number of turns, path length, time-to-completion, coverage
area per distance travelled or energy)

For complete coverage, spiral in Fig.5.9a and boustrophedon in Fig.5.9b are the most
commonly used flight path patterns for both fixed-wing and multirotor UAVs. An em-
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pirical performance assessment based on three metrics namely, energy, time and distance
showed that spiral trajectories were more suitable for fixed wing UAVs, whereas boustro-
phedon trajectories for multirotor UAVs [174]. Based on this conclusion, boustrophedon
path patterns are applied in this study for coverage path planning, since the deployment
platforms of interest are multirotor MAVs. But patterns alone do not solve the large-scale
problem, where the area of interest exceeds the coverage capability of the deployed vehi-
cles. Therefore, this section introduces a coverage path planner with large-scale coverage
capability, with focus on large-scale photogrammetric applications.

(a) (b)

Figure 5.9: (a) Spiral path pattern. (b) Boustrophedon path pattern.

Described herein is a large-scale aerial coverage path planner for multi-rotor type
MAVs. The planner is capable of planning coverage paths for a single platform and
homogeneous or heterogeneous multi-rotor fleets. The proposed approach analyses the
AOI, then non-deterministically partitions it into manageable portions with respect to
maximum available endurance and assigns each cell the most suitable MAV (with minimum
coverage time). The proposed approach accounts for the home point and MAV endurance
to ensure vehicle recovery, i.e., platforms do not travel further than their endurance can
support, guarantees complete coverage and resolution, but does not guarantee optimality.
Guarantee of coverage is through exact cellular decomposition of AOI, and designing paths
that ensure complete coverage of each cell.

The path planning process consists of three steps namely, input area preparation, area
partitioning and coverage path planning. Unlike start-to-goal planners, which input a
start and goal configuration, coverage planners input a set of vertices defining the area of
interest. The resulting input area could be convex, concave or complex in geometry.

5.2.1 Area Preparation

The planner presented here inputs an unordered set of vertices, which as mentioned before
could result in complex or simple polygonal areas. Operating on complex or non-convex
input areas adds unnecessary levels of complexity and needs to be avoided whenever pos-
sible by transforming such areas into convex areas. Since coverage sensors or actuators
have a non-zero footprint, a composition of such footprints is incapable of exact represen-
tation of complex input areas. An illustration of this can be seen in Fig. 5.10, where the
complex input area in Fig. 5.10a is transformed into a simple polygon by a composition
of sensor footprints in Fig. 5.10b. This justifies the transformation of complex input areas
into simpler geometries.

To simplify the input geometry, two steps are implemented namely, sorting and convex
hull approximation. During sorting, vertices are first transformed into polar coordinates
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(a)

(b)

Figure 5.10: (a) Input area of interest as a complex polygon. (b) Complex area of interest
automatically transformed into a simple polygon by sensor footprint coverage.

and then sorted in a counter-clockwise manner with ties broken through radii comparison.
If the resulting geometry is non-convex, it is simplified further to its equivalent convex
hull using Quickhull algorithm [175].

5.2.2 Area Partitioning

For large-scale applications, the area of interest normally exceeds the coverage capability of
a single MAV, hence necessitating partitioning of the input area into partitions coverable
by a single MAV or multiple MAVs in one or multiple flights.

To ascertain the need for partitioning, the two conditions in Eq. 5.1 must be satisfied.

TC > TE

DBB

60× vN
> TE

(5.1)

where DBB is the perimeter of an oriented bounding box around the area of interest, vN
is the nominal ground speed of the vehicle, TE is platform endurance in minutes and TC
is coverage time in minutes.
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After ascertaining the necessity for partitioning, all that remains is determining the
number of partitions. The number of partitions nP is given by Eq. 5.2.

nP = ceil
(
AT
AN

)
= ceil

(
16×AT
D2
N

)
, nP ∈ Z (5.2)

where AT is the area of interest, AN is the maximum coverable area by the vehicle in time
TE and DN is its nominal coverage distance, product of nominal speed and endurance.

Since the area is too large to cover from the current take-off point, np new take-off
points (discarding the take-off point used in the initial test) are generated. These are
the sites upon which partitioning is based using Voronoi decomposition, where cells are
generated based on Euclidean distance from the sites. The final partitions are the regions
of intersection between Voronoi cells and AOI, resulting in an exact cellular decomposition
satisfying Eq. 5.3,

AOI =
nP∑
i=1

Ai (5.3)

where Ai is the area of partition i. It should be noted that site placement plays a key role
in partitioning. For better results, the sites should be distributed spatially evenly within
and/or around the AOI. The recommended locations for sites are regions near vertices of
intersection between bounding box and AOI. In Eq. 5.1, If only TC > TE is true, no area
partitioning is necessary, but path splitting.

5.2.3 Coverage Path Planning

This step operates on the output of the area partitioning step, which is a partitioned area
of interest. In so doing, it generates coverage paths for each of the partitions. The problem
at hand is that of aerial mapping with photogrammetry, in which the interest is in moving
the imaging sensor to specific locations regardless of the overall area geometry. This
reduces the path planning problem to visiting a set of waypoints as opposed to planning
at the geometric level. This transformed problem is solvable as a graph traversal problem
or as in this case, with boustrophedon coverage paths. These patterns consist of equally
spaced parallel line segments connected to their neighbours at the front and back ends by
perpendicular line segments.

To achieve optimality with respect to number of turns, number of traversal lines and
coverage distance, an optimal orientation for the traversal lines need to be determined.
This is known as the sweep direction. The number of turns is proportional to number of
traversal lines. Therefore, minimizing number of turns minimizes coverage distance and
completion time.

Approaches for sweep line direction determination include orientation of the longest
edge of input polygon [176, 177], longest edge of an axis aligned minimum area-bounding
box, longest edge of an oriented minimum area bounding box and principle direction
of variation of convex hull vertices. Aligning traversal lines parallel to the longest edge
of an oriented minimum area bounding box is the only method proven to yield optimal
number of turns [178]. This assertion has been empirically ascertained by monitoring
the variations in coverage path length with respect to path orientation for a sample cell
indicated in Figure.5.11. Figure. 5.12 shows the variation in total path length as the
sweep line orientation is varied through a 180° rotation. Such characteristic is typical of a
diameter function with global minima corresponding to the orientation of the longest edge
of an oriented minimum area bounding box, and hence optimal sweep line orientation.

Now that the sweep line direction is known and the fact that the line length is deter-
mined by the cell boundary, the remaining question is “How spaced apart should the sweep



62 CHAPTER 5. PATH PLANNING

Figure 5.11: Sweep lines covering the AOI. The outer rectangle represents a minimum area
oriented bounding box for the associated input area. The vertical pattern is a sample path
with a 90° sweep orientation. Angular measurements are based on a left-hand convention.

Figure 5.12: Changes in total path length as a function of sweep line orientation. Minimum
path length occurs at an angle of 17°, marked by the shaded region, which corresponds to
the orientation of the longest edge of the minimum area bounding box in Fig. 5.11.

lines be?” this information is specified by the application, with common examples includ-
ing spraying and photogrammetry applications, with spray nozzle footprint and ground
sample distance as the determinant properties respectively. These properties determine
AGL and sweep line spacing. Continuing with photogrammetry, this application requires
the following specifications:

• Camera specifications: focal length f , pixel pitch p, pixel count (m× n) pixels and
shutter speed TS .

• MAV specifications: ground nominal speed vN , endurance TE .
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• Task specifications: desired Ground Sample Distance (GSD), forward overlap fOV LP ,
side overlap sOV LP , AOI.

From these specifications, the following dependent parameters are calculated:

• Above Ground Level (AGL)

AGL = GSD × f
p

• Image size on the ground

Dw ×Dh = GSD ·m×GSD · n = GSD · (m× n)

• Side gain
sgain = Dw

100− sOV LP
100

• Forward gain
fgain = Dh

100− fOV LP
100

• Number of flight lines (NFL)

NFL = ceil

(
b

sgain
+ 1

)

where b is the diameter of AOI.

• Number of images (NIM)

NIM = NFL+ ceil

(
NFL∑
i=1

Ii
fgain

)

where Ii is the length of flight line i.

• Camera trigger rate
TT = fgain

vN
, subject to TT ≥ TS

The generated coverage paths for each cell constitute a series of parallel traversal lines
oriented towards the optimal sweep direction. The generated coverage path may exceed
the nominal endurance of the available aerial platforms, in which case a splitter function
automatically divides the path further into manageable path segments cyclically connected
to the take-off point. This approach is directly generalizable to multiple homogeneous
MAVs. Application to heterogeneous MAVs requires special analysis. To accommodate
the variation in platform capabilities, the partitioning decision in Eq. 5.1 is instead based
on minimum endurance MAV. This ensures accessibility to the furthest points in the AOI
by all MAVs. With this modification, the first partitioning condition in Eq. 5.1 becomes,

DBB

60× vN,Emin

> TEmin (5.4)

where vN,Emin and TEmin are the nominal ground speed and endurance of the MAV with
the shortest endurance respectively. Then for each platform i, a coverage path is planned
on each cell j, resulting in coverage time TC,ij and number of flights nF,j . A scheduler then
allocates cells to available quadcopters with priority given to high endurance quadcopters
and longest coverage time cells.
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5.2.4 Simulation Results

The large-scale coverage planner presented in this section was incorporated into a C#
based Ardupilot Mission Planner software package to take advantage of its readily available
open-source functions. This software package also supports Software-In-the-Loop (SIL)
testing for ground and aerial vehicles. Testing the proposed partitioning planner employed
a DJI Matrice 100 quadcopter with endurance TE = 20 minutes and nominal (minimum
camera vibration) speed vN = 5 m/s, and md4-1000 quadcopter with endurance TE = 45
minutes, nominal speed 6 m/s, a gimbal stabilized Sony nex-5 camera with focal length
25 mm, image size of 4595× 3056 pixels, p = 5.07 µm, sensor size of 23.5 mm× 15.6 mm,
flight altitude of 100 m, giving a ground resolution of 2.03 cm. The overlaps were set to
50% and 60% for forward and side overlaps respectively. On analysing the input AOI,
AT = 9838175 m2, DBB = 12.6 km, and nP = 5.

Fig. 5.13a shows the input area and Fig. 5.13b the resultant coverage paths for each
cell. The details for each of the cells are made available in Table 5.3.

(a)

(b)

Figure 5.13: (a) AOI partitioned into five cells corresponding to the five home points
(Voronoi sites). The biggest pins indicate home positions, while the others delimit the
AOI. (b) Complete coverage paths for each of the five cells.
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Table 5.3: Results of AOI partitioning and coverage path planning.

Cells Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
Area (m2) 1372337 2895632 1339350 1996098 2235851
Perimeter (m) 4500 5000 3900 4700 4800
Path length (m) 61660 123220 60160 86900 93520
DJI Matrice 100 TC (min)/nF 256/13 513/26 250/13 362/19 389/20
md4-1000 TC (min)/nF 214/5 421/10 208/5 301/7 324/8

For the homogeneous case, only DJI Matrice 100 quadcopter was considered. Since the
cell coverage paths exceeded the platform endurance, the paths were automatically split
further into segments matching the quadcopter’s nominal coverage, which was 6000 m and
output as waypoint files. SIL simulation tests with the generated path files ascertained
the feasibility and deployability of this conceptualized path planning framework. For
the heterogeneous case, DJI Matrice 100 and md4-1000 were considered. Each platform
planned a coverage path for each cell. The resulting completion times are tabulated in
Table 5.3. The cells were then scheduled on the quadcopters with priority given to high
coverage quadcopters and longest completion time cells. Cells 2, 1 and 3 were assigned
to md4-1000, and cells 4 and 5 to DJI Matrice 100 as per the scheduler in Fig. 5.14. The
total completion time and total number of flights are 843 minutes and 20, 751 minutes
and 39 for md4-1000 and DJI Matrice 100 respectively. The assumptions upon which
the planner is based, which include perfect waypoint tracking, constant endurance and
zero environmental influence do not hold in the real world and may lead to performance
degradation and gaps in generated photogrammetric maps.

Figure 5.14: Partitions scheduler on md4-1000 and DJI Matrice 100 quadcopters.

5.3 Chapter Summary
This chapter introduces two solutions to two existing problems: (1) a solution to the prob-
lem of fast online path planning in higher dimensional and large spaces and (2) a solution
to the offline large-scale aerial coverage path planning problem. The former solution is
an ensemble of three concurrently executed RRT path planners with two output modes
namely winner-take-all and fixed-time-window modes. In the former mode, the three plan-
ners are run concurrently and the first to return a valid solution triggers termination of all
pending path searching processes. In the latter mode, all planners are run concurrently for
a fixed time window. Upon time expiration, all successful planner solutions are checked
for the shortest solution, which is then returned. In Sect. 5.2.3, a description of an of-
fline coverage path planner for large-scale aerial mapping is presented. On ascertaining
the partitioning necessity, the planner performs an exact cellular decomposition of the
area of interest with user specified seeds, then determines the optimal sweep line direction
and transversal lines spacing for each cell. And finally uses this information to generate
Boustrophedon coverage paths for each of the cells and outputs them as waypoint files.
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Chapter 6

Localization

Localization answers the question “Where am I?”, which enables a robotic system to
estimate its position at all time. For MAVs, this is one of the most important capability as
it supports almost all their conceivable applications. A number of localization approaches
have been studied in this work, including inertial, radio and vision techniques. This
chapter describes the implementation and performance of each of these methods and/or
combinations thereof.

6.1 UWB-Aided Inertial Localization

The approach demonstrated here loosely couples inertial measurements with UWB posi-
tion measurements in a state estimator for vehicle state estimation. The selection process
of the state estimator is described in the subsequent paragraphs, but important to note is
that this choice depends mainly on the nature of the system model. In this MAV study
project, the system model in Eq. 3.6 consisting of three force equations, three navigation
equations, three moment equations and three kinematic equations is applied, in which the
non-linearities and coupling are evident. This model assumes symmetry in the frontal and
sagittal planes of the vehicle, as shown in Figure. 3.2.

For such a non-linear system, the common choices of state estimators include EKF
and Unscented Kalman Filter (UKF). For this study, UKF was chosen for its ability to
determine the propagated mean to third-order accuracy for Gaussian inputs, and ease of
implementation [179].

UKF is a sample-based state estimator that estimates the first two moments of a Gaus-
sian state distribution propagated through a non-linear model. UKF algorithm follows a
recursive predict-update cycle. During the predict phase, the estimator deterministically
samples 2n + 1 (n is the state vector dimension, i.e., x ∈ Rn) sigma vectors X i ∈ Rn,
i = 1, ..., 2n + 1 from a state distribution, propagates them through a discrete-time dy-
namic model Y = f(X ) derived from Eq. 3.6 and estimates the first two moments as
weighted sums using the Unscented Transform (UT). For the system at hand, the state
vector x ∈ R12 constitutes of three translational velocities, three angular velocities, ori-
entation angles and 3D position, with mean x and covariance P x ∈ R12×12. The meth-
ods for sigma vectors and weights calculation presented in [179] are adopted, where the
sigma vectors are calculated as indicated in Eq. 6.1, the mean weights are calculated
as indicated in Eq. 6.2, the covariance weights are calculated as indicated in Eq. 6.3,
while the mean and covariance of the prior are estimated by the unscented transformation
y, P y = UT (Y,Wm,W c, Q) expressed in Eq. 6.4.

67
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X 0 = x

X i = x+
(√

(n+ λ)P x
)
i

i = 1, ..., n

X i = x−
(√

(n+ λ)P x
)
i

i = n+ 1, ..., 2n


(6.1)

Wm
0 = λ

n+ λ

Wm
i = 1

2 (n+ λ) i = 1, ..., 2n

 (6.2)

W c
0 = λ

n+ λ
+
(
1− α2 + β

)
W c
i = 1

2 (n+ λ) i = 1, ..., 2n

 (6.3)

y =
2n∑
i=0

Wm
i Y i

P y =
2n∑
i=0

W c
i (Y i − y)(Y i − y)T +Q


(6.4)

where λ = α2 (n+ κ) − n and Q is process noise, which is assumed to be additive white
noise in this study. Details on the implications of the λ expression parameters and their
recommended values can be found in [179].

During the update phase, the transformed sigma vectors are projected into the mea-
surement space using the measurement function Z = h(Y) and applied through the un-
scented transform z, P z = UT (Z,Wm,W c, R) expressed in Eq. 6.5 to yield measurement
mean and covariance.

z =
2n∑
i=0

Wm
i Z i

Pz =
2n∑
i=0

W c
i (Z i − z)(Z i − z)T +R


(6.5)

where R is measurement noise.
Finally, the posterior is estimated by the pair of equations presented in Eq. 6.6.

x = y +K(z − z)
P x = P y −K P zK

T

 (6.6)

where K = P xzP
−1
z with P xz = ∑2n

i=0W
c
i (Y i − y)(Z i − z)T .

This UKF recursively tracks the evolution of a system state through a predict-update
loop, where a prior state is predicted by temporal propagation through the system model
using the classic Runge–Kutta ODE solver. Then the prior is updated with IMU attitude
and UWB position measurements to yield a state posterior containing twelve states of
which six are of localization interest, i.e., three position coordinates and three attitude
angles. Then the process is repeated at every sample time. The UWB radio positioning
system applied in this study is a Pozyx 1 indoor positioning system.

1https://pozyx.io/
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6.1.1 Simulation and Testing

This localization framework has been tested in simulation to assess its performance. The
simulation setup implemented the hardware simulation models presented in Sect. 7.1 in
Unity software framework. To allow for a qualitative performance assessment, a path
tracking task was chosen. The path to track is generated using the ensemble path planner
of Sect. 5.1.1. Fig. 6.4a shows a sample path generated by the ensemble planner for
localization testing.

6.1.2 Hardware Implementation

To operate in an environment with obstacles, mobile robots like MAVs must have the
capability of perceiving and avoiding these obstacles, both static and dynamic . For this
purpose, the deployed vehicle is equipped with four ultrasonic range-finders. With the
platform being of ×-configuration, the range-finders are mounted facing forward, left,
backward and right respectively. An additional downward facing range-finder provides
AGL measurements. The five sensors and their relative locations are indicated in Fig-
ure 6.1. It should be noted that the five stereo-vision modules integrated with the ultra-
sonic range-finders are not used in this study due to the vulnerabilities associated with
stereo-vision. A GNSS-receiver is also available onboard but serves no sensing purpose
since the experiment is conducted indoors.

Figure 6.1: Onboard hardware modules. These include a manifold onboard computer, two
ultra-wideband tags, a WiFi mini access point and five ultrasonic-stereo vision modules.

In addition to the range-finders, the vehicle is equipped with two ultra-wideband tags,
where the second is for redundancy to improve on localization reliability, a DJI-manifold
onboard computer and a mini WiFi access point for communication with the ground
station. Besides the onboard hardware, the system utilizes off-board hardware modules as
well. The off-board modules consist of four ultra-wideband anchors for indoor localization.
The complete system architecture is as indicated in Fig. 6.2, where the dashed boarders
identify off-board modules and thick borders indicate processing units.

The underlying software for the different modules has been implemented as Robot
Operating System (ROS) nodes in C++ and python. The nodes include a Pozyx node
that publishes 3D position of onboard tags, guidance node that publishes ultrasonic range-
finder depth measurements, path planning node that provide path planning and replan-
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Figure 6.2: System architecture for the ultra-wideband-based-aided inertial localization
system.

ning services and position tracking node that takes in the actual vehicle position, sensor
measurements and desired position, and generates position errors that it publishes to the
vehicle’s lower-level controller node for actuation. The position tracking node also manages
obstacle avoidance. The control architecture consists of three main layers, behavioural,
executive and planning layers as indicated in Figure 6.3. To cope with the limited onboard
computational resources, all publishing nodes were limited to a fixed frequency of 20 Hz.

Figure 6.3: ROS control architecture with sensing, behavioural control, executive control
and planning layers, bottom to top respectively.
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6.1.3 Experimental Results

The proposed framework has been tested in a 10.25 m× 7.65 m× 3.40 m enclosed section
of the studied environment to verify the performance of the different navigational com-
ponents. Virtual obstacles have been introduced in the simulator and paths planned to
account for them, then flown by the vehicle. During each test flight, the system lifted-off
in the vicinity of the first way point at a known initial heading. After stabilizing at a
height of 1 m, tracking of the desired waypoints commences.

In this test, a path was planned as if there was a 4.00 m×3.65 m×3.40 m static obstacle
in the enclosure. This kind of hybridization enables low risk testing of the waypoint
tracking behaviour of the vehicle. The test path planning environmental setup was as
indicated in Fig. 6.4a and Fig. 6.4b for simulation and real tests respectively. Fig. 6.5 shows
the fidelity of the actual path to the planned path. The spikes near the take-off point are
attributed to ground effects and environmental interference with the ultra-wideband radio
positioning system. Generally, the positioning system exhibited non-uniform performance
with chattering resulting from onboard tag occlusion and vehicle motion. Overall, despite
the common notion of poor quality paths from sampling-based path planners, their fast
planning speed provided ample time for path simplification that resulted in a piece-wise
linear feasible path executable by a MAV.

(a)

(b)

Figure 6.4: (a) Simulated test environment with a virtual obstacle (red cuboid) and the
planned path indicated as a piece-wise linear trajectory. (b) Actual test environment with
the vehicle placed near the far-right corner.
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Figure 6.5: Actual path compared to the planned path.

6.2 Visual SLAM

Although the localization approach presented in Sect. 6.1 is GNSS-independent and com-
putationally less demanding during runtime, it requires prior installation of positioning
anchors at known locations in the operating environment. This limits its usage to only
known and accessible environments. This section describes a class of localization solu-
tions that require no off-board modules, known as SLAM. SLAM can be supported by
inertial sensors, LiDAR, RDB-Depth, stereo vision and monocular cameras, but for this
work in particular, stereo visual SLAM was implemented to harness its information rich-
ness and passive nature. The implementation fused inertial and vision state information,
following the assertion stated in Sect. 2.3.1 that inertial-visual integration holds the key
to GNSS-independent localization solutions of the future.

Here, visual SLAM is exploited for the purpose of localizing a MAV quadrotor (Matrice
100 in Fig. 6.6) in an office building. In this work stereo visual SLAM is implemented using
a front facing stereo camera. The hardware setup is as indicated in Fig. 6.7, where the
dashed boarders identify off-board modules and thick boarders indicate processing units.
The vehicle has five stereo vision modules, but only the front-facing module is used for
visual SLAM due to bandwidth limitations. The camera has been calibrated and camera
information stored on the guidance core module showed in Appendix A.
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Figure 6.6: Stereo vision module and vehicle coordinate frames. {C} is camera frame
and {B} is body fixed frame. In the upper right is a magnified view of the stereo vision
module.

Figure 6.7: Vehicle hardware setup.

The first step in this localization process is environmental perception through the front-
facing stereo vision sensor actuated by the guidance core module. The guidance core then
applies the stored camera calibration information to correct for image distortions. The
main onboard computer (manifold) then polls these image pairs, compresses them to 20%
of their original size before transferring them to the ground station for visual localization.
The compression process is necessary for bandwidth minimization during wireless transfer
to the ground station. On the ground station, the images are decompressed and applied
for visual odometric calculations. The complete process is as indicated in Fig. 6.8, where
TF is the camera frame to vehicle frame transformation and UFM (Update Feature Map)
is a decision checker for when to update the feature map.

Once a new stereo pair of images is received and decompressed on the ground station,
GFTT (Good-Features-To-Track) features [180] are extracted and stereo correspondences
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Figure 6.8: Visual odometry process flow. This is an adaptation of the stereo odometry
process from [2].

computed from optical flow implemented using the algorithm presented in [181] to estab-
lish disparity for each of the detected features in the right and left image pair. Then
these features are matched to existing features in the feature map to establish correspon-
dences, and hence transformation matrix. In this step, the features are first represented
as Binary Robust Independent Elementary Features (BRIEF) descriptors [182] for com-
parison using the nearest neighbour distance ratio test. To expedite the search for feature
correspondences, a constant velocity model is applied to limit the search space. The
perspective-n-point algorithm and Random Sample Consensus (RANSAC) algorithms are
run to determine the relative motion as represented by the resulting homogeneous trans-
formation. The relative motion estimate is then refined by applying bundle adjustment
on the features in the feature map. Using this refined homogeneous transformation, the
vehicle odometry and camera-vehicle transformation are updated. If the number of in-
lier features obtained during the relative motion estimation step falls below a predefined
threshold (in this case 30%), the feature map is updated. To generate the final vehicle
pose estimate, visual odometry is fused with IMU measurements in an EKF as indicated
in Fig. 6.9.
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Figure 6.9: Pose estimation scheme, where visual odometric estimates are fused with IMU
angular rates in an EKF.

6.2.1 Experimental Results

This localization framework has been implemented in a distributed computing setup, where
data acquisition is performed by the onboard manifold computer and localization algorithm
performed on the ground station. This is due to the fact that the onboard computer is
unable to run the SLAM algorithm for a distance greater than 30 m. The ground station
is a 64-bit, 8 GB RAM laptop computer running Ubuntu 14.04 LTS Linux distribution.
The onboard manifold is a derivative of Nvidia TK1 system on chip with 192 Compute
Unified Device Architecture (CUDA) cores and 2 GB of RAM, running Ubuntu 14.04 LTS
distribution. It is physically mounted on top of the vehicle as shown in Fig. 6.6. All
localization algorithms are implemented in ROS framework on both computing machines
and interconnected via a wireless local area network.

To test the localization capability of the implemented system, an indoor localization
task around the hall-way of the environment in Fig. 6.10a is carried out. For safety and
reliability reasons, the system was run in a passive SLAM mode, where the actuation com-
mands and vehicle position acted as two independent processes, with actuation conducted
by an external operator. Odometric results of a complete flight loop through the hall-way
is presented in Fig. 6.10b. The visible spikes are as a result of lost and recovered odometry
tracks. Visual SLAM calculated a total distance of 87.72 m instead of the actual 91.2 m
representing an absolute error of 3.8%.

(a) (b)

Figure 6.10: (a) Top view of the visual odometry test environment. (b) Visual odometry
test results.

The resulting environmental map is as indicated in Fig. 6.11a, put side-by-side with
the actual environment for qualitative comparison. The generated map is missing the
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inner wall information, which is expected since the inner wall is largely transparent. Nev-
ertheless, semantic features like doorways which are key for robot localization in a map
are well captured making the map useable for localization.

(a) (b)

Figure 6.11: (a) Generated map of the environment. (b) Actual environment.

6.3 Chapter Summary
This chapter describes and demonstrates the key localization methods studied within this
work. The first localization approach utilizes ultra-wideband radio technology to localize
the vehicle. Although this approach is found to be simple in terms of implementation
and light in terms of computation, it assumes a known and accessible environment and
is highly sensitive to metallic materials in and around its measurement volume, and the
UWB signals are easily attenuated by obstacles.

As a better alternative, visual SLAM has also been implemented and tested for indoor
localization. The SLAM approach fuses stereo visual odometry with IMU measurements
for pose estimation. Unlike ultra-wideband localization, visual SLAM assumes no explicit
knowledge of the environment, but is computationally demanding and may require regular
revisiting of some areas to recapture lost tracks and/or perform loop closure update.



Chapter 7

Modelling and Simulation

All models are wrong but some are use-
ful.

George Box

Simulation offers an alternative to hardware-based validation of both software and
hardware performance, but requires a model with reasonable fidelity to work with. This
chapter describes an alternative modelling strategy for Micro Aerial Vehicles (MAVs) and
their environments that requires no explicit development of mathematical models as in
Sect. 3.3, known as geometric modelling. In addition to geometric models, sensor mathe-
matical models and simulation scenes for testing and evaluating the performance of these
models are also demonstrated. These together constitute the MAV simulators.

Simulators are an indispensable tool in the design and development process of modern
robotic systems. These modern systems are normally complex beyond human imagination
requiring the help of tools to conduct systematic analysis and evaluation of the envisioned
systems. Simulators find applications in controller designing, algorithm validation, pa-
rameter identification, training of human operators, software debugging, generating model
training datasets, and systems evaluation and testing to mention but a few.

The simulators presented here are graphical simulators, which substitute the burden
of building high fidelity mathematical models with that of building realistic geometric
representations of the system and its environment. Numerical simulations are susceptible
to approximation errors if not robustly designed, which may lead to numerical instability.
Therefore, geometric model simulation provides a much simpler alternative that abstracts
away the lower-level numerical implementations. It also facilitates the process of model
parameter identification and environmental representation, making it a valuable comple-
ment or alternative to hardware simulation, which may not exist, may be dangerous, may
be highly complex or may be prone to damage among others.

Geometric model simulation requires a dynamics simulation engine to manipulate the
models and extract information necessary for computing the state of the system or for in-
putting into mathematical models. The dynamics simulation engine also known as physics
engine takes care of applying the laws of physics to the simulated bodies and generating
physics correct output behaviour. For this purpose, Unity1 software framework was se-
lected and applied to this study as it is cross-platform, easy to use and supports math-
ematical model and geometric model hybridisation, which is the most common use case,
and one that is exploited in this work. It also supports colliders, ambient lighting control,
ray casting, rigid-body dynamics and kinematics, and simulation of joints, conservative
forces like gravity and non-conservative forces like friction and drag among others.

1https://www.unity.com/
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With geometric simulation, identifying the necessary simulation parameters is simpli-
fied (since there are relatively fewer parameters and their associated values are normally
related to the physical properties of the models) in comparison to parameter identifica-
tion for mathematical model simulation. This simplicity offers a number of benefits like
an easy and rapid modelling process, readily available environmental parameters, auto-
mated handling of the physics, also geometries exhibit spatial extents onto which forces
and moments can be applied and reactions observed.

Graphical simulators are an assembly of interacting replicas of dynamic systems, sen-
sors, actuators and environment models, with interactions governed by the laws of physics
implemented in a software package known as a physics engine. The next section describes
the different models, including sensors, vehicle and environment models.

7.1 Components Modelling

Mathematical and geometric models of the different hardware components have been de-
signed and implemented in such a way as to achieve high fidelity with the actual systems.

Inertial Measurement Unit

The Inertial Measurement Unit (IMU) consists of two triaxial sensors namely, rate-gyroscope
and accelerometer. The specifications used in designing the IMU simulation model were
adopted fromMPU-9255 motion tracking device product specification datasheet [183]. The
rate gyroscope specifications include a dynamic range of ±500 ◦/s and rate noise spectral
density of 0.01 ◦/s/

√
Hz corresponding to an angle random walk of 0.6 ◦/

√
h. The rate

gyroscope was modelled as a 3D object whose angular velocity is contaminated by three
additive noise processes namely, constant bias error δωBE , angle random walk δωARW (ad-
ditive white Gaussian noise) and bias instability δωBI . Therefore, the gyroscope output
is given by Eq. 7.1.

ω = ωideal + δωBE + δωARW + δωBI (7.1)

A sample of the simulated gyroscope stationary output measurements is presented in
Fig. 7.1, where Fig. 7.1a indicates angular rate noise process and Fig. 7.1b indicates the
resulting angle noise process from integration of the noise process in Fig. 7.1a. These
results were achieved with the following settings, a constant bias error δωBE = 0 and an
angle random walk 0.6 ◦/

√
h.

The accelerometer specifications are as follows: a dynamic range of ±8 g and noise
power spectral density of 300 µg/

√
Hz corresponding to a velocity random walk of 0.17658

m/s/
√

h. The accelerometer was modelled as a 3D object whose linear accelerations were
contaminated by three additive noise processes namely, constant bias error δaBE , velocity
random walk δaV RW (white Gaussian noise) and bias instability δaBI . Therefore, the
accelerometer output is given by Eq. 7.2.

a = aideal + δaBE + δaARW + δaBI (7.2)

A sample of the simulated accelerometer output measurements is presented in Fig. 7.2,
where Fig. 7.2a indicates acceleration noise process and Fig. 7.2b indicates the resulting
velocity noise process from integration of the noise process in Fig. 7.2a. These results were
achieved with the following settings: a constant bias error δaBE = 0 and an angle random
walk 0.17658 m/s/

√
h.
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(a)

(b)

Figure 7.1: (a) Gyroscope angular rate noise process. (b) Angle noise process.
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(a)

(b)

Figure 7.2: (a) Acceleration noise process. (b) Velocity noise process.
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Ultrasonic Rangefinder

This sensor serves two purposes on the vehicles namely, obstacle detection and Above
Ground Level (AGL) measurement. These 1-DOF sensor modules were modelled to have
a dynamic range z ∈ [0.03, 6] meters and an open angle of 60 ◦. The measurements are
assumed to be contaminated by zero mean additive white Gaussian noise δz parametrized
by δz ∼ N

(
0, σ2), where σ was set to 0.01 m. The beam angle pattern of this sensor

model is as indicated in Fig. 7.3. These sensor parameters were obtained from SRF08
ultrasonic ranger measurements.

Figure 7.3: Sonar beam angle pattern, modelled after SRF08 ultrasonic ranger.

Ultra-Wideband Sensor Module

An Ultra-Wideband (UWB) sensor module tracks its own position using Two-Way-Ranging
(TWR) protocol, where range is obtained from time-of-flight of a packet. The range mea-
surements are assumed to be contaminated with additive white Gaussian noise δr ∼
N
(
0, σ2). Unlike in practical applications where the position has to be solved for through

trilateration or multilateration, the ideal tag position is readily available in the simula-
tors. All that is needed is to contaminate it with appropriate noise to obtained a simulated
position measurement. The Pozyx UWB system deployed in this study has a horizontal
planar position standard deviation σ = 0.10 m. Its vertical position is extremely noisy
and unreliable due to close vertical positioning of anchors, a problem attributed to the
nature of residential buildings, whose vertical size is limited to a few meters, in this case
less than 4 m. So, this positioning system is not used for AGL measurement in these tests.

Quadcopter Geometric Models

Two vehicle simulation models are provided, namely a complex vehicle model, i.e., actual
airframe representation and a simplified vehicle model, i.e., 3D convex-hull approximation
of the actual model. The former is applied for vehicle dynamics simulation and the latter
for path planning. Using the complex model for path planning would lead to a slow path
search process breaking the desired real-time path planning and replanning capability. The
two vehicles deployed in the studies conducted in this work are DJI Matrice 100 presented
in Fig. 7.4 and F450 presented in Fig. 7.5, where Fig. 7.4a and Fig. 7.5a show their complex
models applied for vehicle dynamics simulation, and Fig. 7.4b and Fig. 7.5b show their
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simplified convex-hull approximation models applied for path planning. The simplified
model for DJI Matrice 100 is a cylindrical convex-hull of size ∅0.996 m×0.345 m and that
of F450 is a cylindrical convex-hull of size ∅0.710 m× 0.165 m. The complex models for
Matrice 100 and F450 are composed of 279302 vertices and 1227879 vertices respectively,
while the simplified models are composed of 238 vertices and 238 vertices respectively.
The differences between the complex and simplified models represent a 99.91% and 99.98%
reduction in vertices for Matrice 100 and F450 respectively.

(a)

(b)

Figure 7.4: DJI Matrice 100 MAV models. (a) Complex model imported in the test
environment in Unity. (b) Simplified cylindrical model.

The resulting complex vehicle dynamic models are designed so as to achieve a high
fidelity, i.e., the geometric models are actuated by thrusts acting at each of the four
propeller-motor joints. These thrusts produce moments about the vehicle centre of mass,
therefore, making the dynamic behaviour sensitive to onboard weight distribution as is the
case with the actual vehicle. Furthermore, the models experience drag and gravitational
effects, phenomena difficult to properly represent in purely mathematical simulators.

Environment

Due to strict European UAV regulations for outdoor flights, an indoor test environment
was chosen. The environment is a two-floor building with two points of access between the
floors, indicated by the two orange staircases in Fig. 7.6a. It is GNSS-denied, with narrow
corridors, but structured. For simulation, the environment is modelled as the collada
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(a)

(b)

Figure 7.5: F450 MAV models. (a) The complex model imported in the test environment
in Unity. (b) Simplified cylindrical model.

dae 3D model in Fig. 7.6a, which inherited properties such as collidability, renderability,
gravitation effect and non-conservative force effects upon importation into a Unity scene,
presented in Fig. 7.6b.

7.2 Chapter Summary

This chapter provides descriptions of model components applied in MAV simulations, in-
cluding sensors, vehicle and environment models. To simulate sensing, a sonar rangefinder
and an IMU have been modelled with an additive white Gaussian noise process, and con-
stant bias, random walk and bias instability noise processes respectively. As an alternative
to pure mathematical models that suffer from numerical instability, geometric models have
been used for vehicle and environment simulations. The geometric models render well with
the physics engines powering graphical simulators like Unity2 and Unreal3. For studies
performed during this research, the Unity software framework was chosen for its ease of
use, but with similar performance as Unreal. Controlling these models requires additional
control logic which has been developed in C# programming language using Unity script-
ing API (Application Development Interface). The developed hardware, environment and

2https://www.unity.com/
3https://www.unrealengine.com/
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(a)

(b)

Figure 7.6: Test environment model. (a) Collada 3D model of the building without a
rooftop. In blue is the ground floor and in yellow is the first flow. (b) Building model
imported into a Unity scene.

algorithms have been integrated into various MAV simulator scenes, one of which is the
path tracking scene presented in Fig. 7.7.

Figure 7.7: Dynamic simulation of DJI Matrice 100 in Unity.
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Conclusion

The question of how to build complete GNSS-independent UAV autonomous navigation
solutions has been tackled from a bottom-up approach, where navigation competences,
namely perception, localization, motion control, cognition and obstacle avoidance are anal-
ysed independently and improved upon whenever deemed necessary. From the preliminary
literature review, it was determined that UAV stability controllers and structural design
reached full technology maturity and hence not covered in this study.

The proposed online path planning ensemble with three concurrently executed ran-
domized sampling-based path planners, namely RRT, RRT-Connect and BiT-RRT demon-
strated a fast, but variable planning time. When tested in a two-floor building environment
for arbitrary random goal queries, it demonstrated a mean path planning time (sum of
path searching and path simplification time) of 1.28 s with a standard deviation of 1.70
s, which is fast enough for online path planning and replanning. Despite small planning
times, the ensemble is generally not complete, a property inherited from the constituent
planners, but the environmental adaptability resulting from concurrent planning increases
the planning success rate as it simulates three simultaneous trials for each query.

For large-scale path plans that exceed the endurance of the vehicle, an offline large-scale
aerial coverage path planning algorithm that uses Voronoi exact cellular decomposition to
partition large areas into manageable partitions, and Boustrophedon coverage patterns to
generate coverage paths for partition has been developed, and its feasibility successfully
tested in a SIL simulator. The planner is applicable to tasks with a single MAV, hetero-
geneous and homogeneous fleets of MAVs. Although, close to perfect waypoint tracking
has been assumed, which is practically difficult to achieve.

Two complete GNSS-independent navigation frameworks have been demonstrated.
The first one is a radio navigation solution based on UWB-aided inertial localization, a
randomised sampling-based global path planning ensemble and ultrasonic range-finders for
obstacle detection. Path tracking was accomplished through a custom higher-level linear
controller in a sequential loop with an off-the-shelf lower-level stability controller. UWB
provides direct 2D-position updates to compensate for inertial drift, but it is affected by
presence of conductive materials and requires environmental installation of anchors, which
may not be feasible under certain circumstances like localization in a partially collapsed
building. These challenges have been partially addressed in the second navigation frame-
work, which implemented a SLAM algorithm. It localizes through fusion of stereo visual
odometry and inertial odometry in an EKF. The resulting localizer gave an error of 3.8%
over a distance of 91.2 m (flight in a looped hallway). Unlike UWB-based localization,
visual SLAM assumes no explicit knowledge of the environment, but is computationally
demanding, may require regular revisiting of some areas to recapture lost track and in this
case it exhibited a prohibitively low update rate of 10 Hz.

By observing that autonomous robots ultimately replace human skilled workers, a
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mapping between human job characteristics and robot task characteristics gave a set of
four robot task characteristics upon which autonomy metric functions have been derived,
for assessing LoA and DoA. These two autonomy measures augment each other, where
LoA provides a global categorical discrete measure and DoA provides a continuous local
measure capable of telling the performance differences among systems at a similar level of
autonomy. The robot task characteristics include capabilities, trust factor, performance
capacity and environmental complexity. Capabilities define LoA, capabilities, trust factor
and performance capacity define DoA, while environmental complexity provides contextual
information. The output of this proposed autonomy framework is a three-part autonomy
designation, i.e., degree of autonomy at a particular level of autonomy in an environment
of a specific complexity. The framework has been tested successfully on a simulated MAV
with hypothetical capabilities. Also to show that the proposed metrics are relevant and
easily obtainable, a demonstration of their extraction from the competition rules of the
DARPA subT challenge is reported. In the process, missing reference information was
identified as well. Besides being easily obtainable, these metric functions output contin-
uous values in range [0,∞). Hence satisfy the three desired characteristics of autonomy
metrics namely easily measurable, broad enough to capture autonomy evolution and with
good output resolution. Despite all the positive aspects of these metrics, the framework
assumes availability of environmental information, which may be unknown is some appli-
cations. Nevertheless, autonomy can still be determined in a non-contextual sense.

A technology readiness assessment of GNSS-independent navigation solutions indicated
that the current solutions are of TRL-6, interpreted as “successful high-fidelity prototype
demonstrations in relevant environments”. Prototype testing in the actual environments,
final product production and deployment in the actual environments, representing levels
7, 8 and 9 respectively are yet to be achieved.

High fidelity MAV graphical simulations in form of Unity software framework scenes
simulating the different test scenarios have been developed. Each scene features a thrust
actuated MAV, sensors and the test environment models and supporting scripts to sim-
ulate the different navigation competences. The physics engine integrated in the Unity
software framework enable seamless integration of appropriate physics behaviour in the
environment, vehicle and sensor models, an insurmountable task in exclusively mathemat-
ical simulators. An interfacing of this simulator in a real flight enabled demonstration of
safe experimentation using augmented reality, in which virtual obstacles are introduced,
accounted for and avoided during actual flights without the risk of collision.

To summarise, this research has contributed in the following subfields:

• A fast global randomized sampling-based path planning ensemble.

• A large-scale coverage path planner with an integrated task scheduler and exact cel-
lular decomposition. This planner is presented in the following article: N. Gyagenda,
A. K. Nasir, H. Roth, and V. Zhmud, “Coverage path planning for large-scale aerial
mapping,” in Annual Conference Towards Autonomous Robotic Systems. Springer,
2019, pp. 251–262.

• A high resolution autonomy evaluation framework, consisting of an eleven autonomy-
level chart and a novel DoA mathematical model. Part of this framework is presented
in the following article: N. Gyagenda, O. Gamal, and R. Hubert, “A non-contextual
method for determining the degree of autonomy to develop in a mobile robot,”
IFAC-PapersOnLine, vol. 50, no. 2, pp. 271–276, 2017.

• Expanded the existing UAV classification schemes to include the nano class.

• Developed high fidelity quadcopter indoor graphical simulators with state estimation,
sensing, obstacle avoidance and path planning functionality.
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• Established the technology readiness level of the existing GNSS-independent navi-
gation solutions to highlight the achievement of over a decade of research effort.

• An overview of the current state of GNSS-independent UAV autonomous navigation.

8.1 Future Works
Looking at the expansion plans of GNSS systems both on a global and local scale, with the
aim of supporting autonomous applications, hybrid navigation solutions combining GNSS
and GNSS-independent navigation techniques provide a reasonable future research direc-
tion. These would require development of adaptive state estimators incorporating integrity
monitoring models and adaptive uncertainty models to enable stable transition between
the different modes of operation. This adaptability would ensure system reliability during
transition phases, which might be triggered as a result of GNSS interference, changing
lighting conditions, magnetic interference, solar interference and ultraviolet radiation to
mention but a few. Therefore, developing navigation systems capable of adapting to de-
teriorating perception with use of other sensing modalities would result in more robust
navigation solutions.

Navigation is a core functionality of autonomous UAVs. Its failure may result in costly
property damage and loss of lives, which emphasize the need for high reliability in these
systems. For this purpose, integrity monitors have been developed and integrated into
navigation systems. But the current integrity monitors are lacking in a number of aspects,
namely monitor a single fault yet the complexity of navigation systems suggests a likelihood
of multiple faults, inexistent requirements of navigation performance, need for advanced
fault elimination techniques not limited to only one or two fragile system aspects, need for
predictive fault detection as opposed to actual fault detection. Addressing these pending
issues in low computational complexity integrity monitoring-UAV navigation software ar-
chitectures would greatly improve on the overall performance of autonomous navigation
systems of the future.

Another avenue worth exploring is augmenting perception with event cameras and
signal-of-opportunity sensors. These sensors offer conditional perception, which may im-
prove localization robustness resulting in better navigation performance. With advanced
sensors also comes the need for advanced algorithms. Active vision, machine learning tech-
niques especially physics-informed neural networks and other adaptive AI techniques are
expected to produce comparatively better solutions for addressing sensor error modelling
and semantic scene understanding. Finally, 5G communication technology standard can be
applied to achieve high bandwidth data exchange enabling distributed onboard-off-board
data-driven navigation techniques.

Last but not least, robotic systems share their environments with other dynamic agents
like humans and robots. Safe operation in such environments necessitates accounting for
the constraints imposed by those other agents, but the autonomy evaluation framework
presented in Sect. 4.1 does not account for these dynamic obstacles. Therefore, there is
need to expand this framework to account for such obstacles in the operating environments.
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Appendix A

Hardware Specifications

The main hardware used in the projects presented in this work include DJI Matrice 100
quadcopter, Manifold minicomputer, Guidance system, Pozyx positioning system and
F450 quadcopter. The important specifications for each are given in the subsequent sec-
tions.

DJI Matrice 100 Quadcopter

This is an x-configuration quadcopter developed by SZ DJI Technology Co., Ltd. Its key
specifications include those listed in Table A.1.

Table A.1: DJI Matrice 100 specifications.

Property Value
Diagonal wheelbase (motor to motor) 650 mm
Maximum diagonal wheelbase 996 mm
Maximum pitch and roll angular velocity 300 °/s
Maximum yaw angular velocity 150 °/s
Maximum pitch and roll angle 30 °
Maximum climb speed 5 m/s
Maximum descend speed 4 m/s
Maximum horizontal speed 22 m/s
Maximum propeller thrust 2.100 kg/rotor
Maximum take-off weight 3.600 kg
ESC signal frequency 30 Hz - 450 Hz
Battery capacity 4500 mAh

This vehicle has a two-level control architecture with a customizable higher level con-
troller, but inaccessible lower-level controller. The lower-level controller runs on a ded-
icated DJI N1 flight controller hardware, which houses a tri-axial IMU as well. The
accessibility to the higher-level controller is what enabled its usage in this work, where
a higher-level controller is implemented on a general purpose embedded-Linux onboard
computer known as Manifold developed by DJI Technology. This computer accesses sen-
sor values, runs the higher-level control algorithms and generates set-point values for the
lower-level controller to track. The specification for the manifold onboard computer are
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listed in Table A.2.

Table A.2: Manifold specifications.

Property Value
RAM 2 GB DDR3L
CPU Quad-core, 4-Plus-1 ARM Cortex-A15 MPcore processor
GPU NVIDIA Kepler “GK20a” GPU with 192 SM3.2 CUDA cores
Storage 16 GB
Network 10/100/1000 BASE-T Ethernet
USB USB 3.0 Type-A x2, USB 2.0 Type-A x2, Micro-B USB

connector
I/O Mini-HDMI connector, UART port (3.3 V) x2, I/O expansion

headers (26 pins), Half mini-PCIe expansion slot
Input voltage 14 V-26 V
Power consumption 5 W-15 W
Weight 197 g
Dimensions 110 mm× 110 mm× 26 mm

The other hardware module used in this work is the Guidance system. The Guidance
system constitutes five ultrasonic-stereo vision modules arranged in the four cardinal direc-
tions and bottom around the Guidance core as indicated in Fig.A.1, which is an embedded
processing unit that manages and controls the five sensor modules, as well as interfacing
with external hardware seeking to utilize these sensor readings. Table A.3 shows the main
specifications for the Guidance system, which is developed by DJI Technology.

Figure A.1: Guidance system with the five sensor modules marked 1 through 5.

For indoor positioning in this works, one of the implemented solutions is that based
on Pozyx1 UWB positioning system. The system constitutes of anchor modules marked
as A, B, C and D in Fig. A.2 and tags marked as P and Q in Fig. A.2. For positioning, at

1https://www.pozyx.io
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Table A.3: Guidance system specifications.

Property Value
Velocity measurement range 0-16 m/s
Velocity measurement accuracy 0.04 m/s
Ranging accuracy 0.05 m
Range 0.20 m-20 m
Weight 0.28 kg

least one tag is rigidly attached to the platform whose position is desired and the anchors
placed at known locations around the operating environment to support localization of
the tag by multilateration. Pozyx system specifications are indicated in Table A.4.

Figure A.2: Pozyx positioning system hardware. A-D are anchors and P-Q are tags.

Table A.4: Pozyx system specifications.

Property Value
Power 5V via Micro USB, 4.5 V - 12 V via DC jack
Weight 0.012 kg
Dimension 0.06 m× 0.053 m× 0.026 m
Interface I2C, micro USB
Frequency range 3.5 GHz-6.5 GHz
Bitrate Up to 6.8 Mbps
Tri-axial gyroscope yes
Tri-axial accelerometer yes
Tri-axial compass yes
Pressure sensor yes
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F450 Quadcopter
This is also an ×-configuration quadcopter, whose chassis and propulsion system are de-
veloped by SZ DJI Technology Co., Ltd. Unlike Matrice 100, the F450 quadcopter is fitted
with a custom made STM32 Nucleo-64-F303RE [184] board-based flight management sys-
tem. This autopilot is supported by five ultrasonic rangefinders for obstacle detection
and AGL measurement, a 10DOF IMU and a Pozyx positioning tag. Fig. A.3 shows
the Pozyx tag mounted onto the STM32 Nucleo-64 board’s Arduino interface to provide
position information. The key specifications of this vehicle are listed in Table A.5.

Figure A.3: Pozyx positioning tag mounted onto STM32 Nucleo-64 board.

Table A.5: F450 quadcopter specifications.

Property Value
Diagonal wheelbase (motor to motor) 450 mm
Maximum diagonal wheelbase 710 mm
Maximum pitch and roll angular velocity 180 °/s
Maximum yaw angular velocity 90 °/s
Maximum pitch and roll angle 15 °
Maximum propeller thrust 0.850 kg/rotor
Maximum take-off weight 1.600 kg
ESC signal frequency 30 Hz - 450 Hz
Battery capacity 2200 mAh



Appendix B

Autonomy Evaluation Case
Studies

To evaluate the applicability of the non-contextual part of the proposed autonomy assess-
ment framework, it has been applied to the six unmanned aircraft system case studies
presented in [6]. For the interest of completeness, the six vehicles are described in Ta-
ble B.1. In Table B.2, are the classification results from ten existing level of autonomy
frameworks as presented in [6]. The table was adapted and augmented with the classifica-
tion results of applying the proposed level of autonomy chart in Table 4.6 to classification
of the six unmanned aircraft systems of Table B.1.

Table B.1: Unmanned aircraft case studies from [6].

Vehicle Description
UAS A Unsupervised mission execution, operator-machine collaborative mission

planning.
UAS B Continuous operator input during execution, operator mission planning.
UAS C Machine execution, continued operator supervision, operator mission plan-

ning and replanning, deterministic behaviour, operator mission planning.
UAS D Machine mission planning and replanning, machine mission execution, oper-

ator supervised behaviour, non-deterministic behaviour.
UAS E Machine mission planning and replanning, machine mission execution, un-

supervised behaviour, immutable operator set goals and constraints.
UAS F Machine mission planning and replanning, machine mission execution, unsu-

pervised behaviour, machine may change goals and constraints during mis-
sion execution.
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Table B.2: Level of autonomy evaluation with existing frameworks and the proposed
framework. With the exception of the last row, the rest of the table is adapted from [6].
In the table, the autonomy levels range from I-XI, which correspond to levels 0-10.

Autonomy Scale UAS A UAS B UAS C UAS D UAS E UAS F
Sheridan I I I VIII IX X
Riley XII I VII,

VIII
IX XI XII

Billings VII I, II III, IV,
V

V, VI VII VII

Endsley III I, II II, III NC IX, X X
Clough II I III NC NC X, XI
Taylor - I NC IV, V,

VI
- -

Huang NC I NC X XI -
Galster VIII I V VI, VII VIII VIII
Kendoul II I NC NC NC XI
USDoD - I III III, IV - -

Proposed one V I IX VI XI XI
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