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Chapter 1

Introduction

The photon is surely one of the most important elementary particles, and conse-
quently its interaction and structure is of extraordinary interest. In the classical
theory of light there is no interaction between light waves, even the photon as a
particle does not exist. But quantum field theory allows that photons fluctuate
into pairs of charged particles over a short period of time due to the Heisenberg
uncertainty principle and in this way can interact with each other. e+e− colliders
like LEP at CERN provide an experimental environment in which high energy
photons are produced with sufficient luminosity so that interesting two-photon
experiments can be performed.

In this thesis the hadronic structure function F γ
2 (x,Q2) of the photon is mea-

sured. Hadron production in two-photon collisions is an active field of research
and provides many opportunities to check theoretical predictions, for example
from QCD. A brief explanation of the theoretical background and a motivation
for this analysis will be given in chapter 2.

The data analyzed were taken in the years 1998, 1999 and 2000 at centre-
of-mass energies between

√
se+e− = 189 GeV and

√
se+e− = 207 GeV with the

ALEPH detector. Overall an integrated luminosity of 548.4 pb−1 has been used.
The important features of the ALEPH detector will be introduced in chapter 3.

Detector acceptance problems and inefficiencies turn out to be the major
difficulties in the measurement of the structure function F γ

2 . These can be solved
with standard techniques which are discussed in chapter 4. An important issue
will be the discussion of uncertainties and error propagation.

The selection of the data sample as well as the discussion and treatment of
background sources can be found in chapter 5. The Monte-Carlo simulations are
then explained in the following chapter where also a comparison between observed
data and the simulations can be found.

The details of the measurement, especially the extraction of the structure
function F γ

2 (x,Q2) from the differential cross section and the final results are
given in chapter 7. The results are compared to different theoretical models and
to measurements from other experiments.
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Chapter 2

Theory

2.1 Photon-Photon Interaction

Reactions of the form

e+e− → e+e−γ∗γ∗ → e+e−X. (2.1)

are understood as two photon collisions at electron-positron storage rings like
LEP. They can be seen as a two step process. The leptons of the particle beam
emit photons, which due to the kinematic situation at the eγ vertex must be
virtual. The process of emission can be calculated in the framework of QED to
high accuracy. Therefore the leptons of the storage ring can be seen as a well
defined source of a photon beam. These photons then collide with each other and
produce a final state system X in the second step of the process (2.1).

In the classical theory of electrodynamics photons do not interact with each
other. In Quantum Electrodynamics (QED) the photon is the gauge boson which
is structureless and has no self coupling since the gauge group of QED is Abelian.
It only interacts with electrical charge. For that it is called the “bare” or “direct”
photon. But due to the Heisenberg uncertainty principle it is possible that the
photon fluctuates into particle and antiparticle. This pair of particles must have
the same quantum numbers as the photon for the duration of such a fluctuation.
A time interval is given by the uncertainty principle1:

∆t ·∆E ≈ 1 (2.2)

∆E represents the energy difference between photon and particle pair. For the
time window allowed for a short violation of energy conservation an estimate can

1Throughout this thesis ~ = c = 1 is used.

2



2.2. Kinematics and Cross Section 3

be determined as

∆t ≈ 1

∆E
=

1

Eff̄ − Eγ

=
1√

m2
ff̄

+ k2 −
√

q2 + k2
(2.3)

≈ 2Eγ

m2
ff̄

+ Q2
, (2.4)

where Eγ is the energy of the photon and Eff̄ and mff̄ are energy and mass of the

particles in the state of fluctuation. ~k is the wave number vector of the photon and
q its four vector. The square of this four vector is negative since the virtual photon
is spacelike. While the photon is fluctuating, the produced particles can interact
with other particles in their surrounding. The photon now is resolved and shows
a structure. If the photon fluctuates into a pair of lepton and antilepton, the final
state X will (in lowest order) be leptonic and the process can be calculated by
QED. Fluctuations into pairs of quarks and antiquarks will lead to hadronic final
states which are an interesting field for quantumchromodynamics (QCD) and will
be the main subject of the studies in this thesis. In contrast to the leptonic final
states the qq̄ production cannot be calculated easily since it is not amenable to a
perturbative approach over a large kinematic region.

The subscript ff̄ indicates that only pairs of charged fermions can be pro-
duced, that means all kinds of known charged leptons and quarks, excluding the
top quark that cannot be produced in pairs at LEPII energies due to its high
mass. In principle also fluctuations into pairs of charged gauge bosons of the
weak interaction W+W− are possible. But the mass of these pairs is so large
that their contribution to our processes is negligible. In future linear colliders
this will be an interesting field of research and unfortunately also a source of high
background rates.

2.2 Kinematics and Cross Section

The basic kinematics of a two-photon process is shown in Fig. 2.1.
The quantities pi and Ei are the four momentum vectors and energies of the

two beam leptons (i = 1, 2), primes are attached to the same quantities after
scattering. The angles Θ′

i are the angles of the scattered leptons with respect to
the beam axis. The two photons have the four momenta q1 and q2, for convenience
they are ordered q2

1 < q2
2. Some important quantities are defined:

Q2 = −q2
1 ≈ 2E1E

′
1(1− cos Θ′

1) , (2.5)

P 2 = −q2
2 ≈ 2E2E

′
2(1− cos Θ′

2) ,

x =
Q2

2q1 · q2

=
Q2

Q2 + W 2 + P 2
, (2.6)
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e±(p1, E1)

e∓(p2, E2)

e±(p′1, E
′
1, Θ

′
1)

e∓(p′2, E
′
2, Θ

′
2)

γ(q2)

γ∗(q1)

X

Θ′
1

Figure 2.1: Basic diagram for the two-photon interaction between a highly virtual photon and
a quasi real one.

W 2 = (q1 + q2)
2 = Q2 1− x

x
− P 2 , (2.7)

r = Eγ/Ebeam .

Eγ is the energy of the highly virtual photon. An expression for the cross section
of the process e+e− → e+e−γ∗γ∗ → e+e−X can be found. It separates the
contributions of different helicities and polarizations [1]:

dσ =
α2

em

16π2q2
1q

2
2

[
(q1q2)

2 − q2
1q

2
2

(p1p2)2 −m2
em

2
e

] 1
2

× (2.8)

×
[
4ρ++

1 ρ++
2 σTT + 2|ρ+−

1 ρ+−
2 |τTT cos 2φ̃ + 2ρ++

1 ρ00
2 σTL+

+ 2ρ00
1 ρ++

2 σLT + ρ00
1 ρ00

2 σLL − 8|ρ+0
1 ρ+0

2 |τTL cos φ̃
] d3p′1d

3p′2
E ′

1E
′
2

In addition to the already defined quantities and the fine structure constant αem

the matrices ραβ
i and cross sections σab, respectively, interference terms τab appear.

The density matrices ραβ
i only depend on q, p, p1 and p2 and on the electron mass

me. They describe the helicity of the photons. The subscript i indicates to which
photon the matrix refers, α, β stand for the three possible helicity states (+,–,0).
For a more detailed discussion and explicit formula see [1].

The cross sections σTT, σTL, σLT and σLL and the interference terms τTT

and τTL are the contributions to the total cross section from the interaction of
transversely (T) and longitudinally (L) polarized photons. φ̃ is the angle between
the scattering planes of the two beam leptons.

Whereas the terms outside the second square brackets are fully described
by quantities of the eγ vertex, the terms inside the brackets only refer to the
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photon-photon interaction itself. The two steps of process (2.1) can therefore be
separated in the cross section formula. The contribution of the eγ vertex and the
produced photon spectrum can be calculated under the assumption of not too
high virtualities. The details of that calculation will not be dealt with here. Only
the results of the so called “Equivalent Photon Approximation” (EPA) [2] will be
given. The photon spectrum emitted from the electron beams is of the form [3,4]

dNγ

dωi

=
αem

2π

1

ωi

[[
1 + (1− ωi)

2
]
ln

(
Q2

max

Q2
min

)
− (1− ωi)

(
1− Q2

min

Q2
max

)]
(2.9)

with the energy of the emitted photons ωi, i = 1, 2 and the limits Q2
min and Q2

max

which are directly given by the angles of the scattered electrons. Eqn. (2.9) is
known as Weizsäcker–Williams approximation. For small angles me/Ebeam ¿
Θmin < Θ < Θmax ¿ 1

Q2
max

Q2
min

=

(
Θmax

Θmin

)2

. (2.10)

The kinematic limit for Θ = 0 is reached at

Q2
min =

m2
eω

1− ω
+O(m4

e).

By integration under the boundary condition ω1ω2 = z2 with z = Wγγ/2E the
luminosity function for the photon beams

dLγγ

dz
=

(
2αem

π

)2
1

z
(ln η)2 f(z) (2.11)

with η = Θmax/Θmin and the Low-function

f(z) = (2 + z2)2 ln

(
1

z

)
− (1− z2)(3 + z2) (2.12)

is obtained. The validity of this approximation has been widely discussed for
different kinematic regions [5–8]. It is used in most of the calculations and es-
timations for two-photon physics and allows the interpretation of Eqn. (2.1) as
photon-photon scattering processes.

2.3 Special Kinematic Situation

Most experiments use detectors measuring the two-photon processes that are not
optimized for that purpose and which in addition suffer from acceptance problems
in the very forward direction. Since the scattering angles of the beam leptons are
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usually small, most of the beam leptons escape through the beam pipe without
being detected. For that reason events are classified by the number of observed
electrons, which are usually detected in the luminosity calorimeters since these are
closest to the beam pipe and cover the smallest angles in the forward direction.
For the detected leptons the four momentum transfer to the photon qi can be
calculated completely from the measured energy and angle with Eqn. (2.5). The
measured electron is called the tag electron. Depending on the number of detected
leptons no-tag, single-tag and double-tag events are distinguished. In double-tag
events all quantities of the γγ system like Wγγ are known from the measured
electrons and also the angle between the scattering planes of the beam leptons
can be measured. Unfortunately the luminosity function for single- and double-
tag events is about one or two orders of magnitude smaller than the luminosity
function for no-tag events. Therefore measurements based on tagged events are
limited by the available statistics.

In this analysis single tag events are used. That leads to somewhat simplified
expressions in the cross section formula. The photon emitted by the undetected
beam lepton can be treated as quasi real,

P 2 = −q2
2 ≈ 0. (2.13)

Because of their P 2 dependence the terms σTL, σLL and τTL vanish [1]. Only the
virtual photons emitted from the tagged lepton give significant contributions to
the longitudinal component.

Since the angle φ̃ cannot be measured, the measurement integrates over φ̃ and
is not sensitive to the term τTT although the term τTT itself does not vanish.

2.4 Structure Functions

For leptonic final states the remaining cross sections are defined within the frame-
work of QED. In the case of hadronic final states it is not possible within pertur-
bative QCD to calculate the full cross sections explicitly. It cannot be avoided to
introduce parametrizations for the cross sections in the form of so called structure
functions. For the reduced expression

d2σ =
α2

em

16π4Q2P 2

[
(pq)2 −Q2P 2

(p1p2)2 −m2
em

2
e

] 1
2

×

× 4ρ++
1 ρ++

2

[
σTT +

ρ00
1

2ρ++
1

σLT +
2|ρ+−

1 ρ+−
2 |

ρ++
1 ρ++

2

τTT cos 2φ̃

]
×

× d3p′1d
3p′2

E ′
1E

′
2
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structure functions F γ(x,Q2) are defined in such a way, that the following equa-
tions are valid for the limit P 2 → 0:

2xF γ
T(x,Q2) =

(
Q2

4π2α

)
σTT(x,Q2) = F γ

1 (x,Q2)

F γ
2 (x,Q2) =

(
Q2

4π2α

) [
σTT(x,Q2) + σLT(x,Q2)

]

F γ
L (x,Q2) =

(
Q2

4π2α

)
σLT(x,Q2)

F γ
x (x,Q2) =

(
Q2

4π2α

)
τTT(x,Q2) = F γ

3 (x,Q2)

The structure function F γ
x (x,Q2) is not accessible in our measurement but is not

necessarily small. The differential cross section can now be written as

dσ

dxdQ2
=

2πα2

xQ4

(
(1− (1 + y2)2)F γ

2 (x,Q2)− y2F γ
L (x,Q2)

]
.

Since in our kinematic region y ¿ 1 holds, even F γ
L (x,Q2) can be neglected

compared to F γ
2 (x,Q2) and

F γ
2 (x,Q2) ∼ dσ

dxdQ2
. (2.14)

The proportionality factor is given by the photon flux that can be calculated
within EPA. Hence not only the dependence in Q2 and x but also the absolute
normalization of the structure function can be measured.

2.5 Physical Interpretation of the Structure

Function

Another view on structure functions is possible in analogy to the interpretation
of structure functions in deep inelastic electron-nucleon scattering. It can be
related to the distribution of partons in a photon. The scattering process of a
highly virtual photon from a tagged electron with a quasi real one is indeed very
similar to the electron-nucleon scattering and is also known as electron-photon
scattering. In Fig. 2.2 the two processes are schematically drawn.

The highly virtual photon whose Q2 can be measured from the tagged electron
has a spatial resolution according to the Heisenberg uncertainty principle of

∆x ≈ 1

pT

≈ 1√
Q2

(2.15)
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a) b)

γ∗ γ∗

nucleon

e±
e±

e±
e±

Hadrons Hadrons

Quasi-real Photon

Figure 2.2: Two photon scattering (a) is very similar to deep inelastic electron-nucleon scatter-
ing (b) and can be treated with similar methods.

which is much smaller than the resolution of the quasi real photon (P 2 ¿ Q2).
That being the case the highly virtual photon is called the “probing photon” and
the quasi real one the “target photon”.

For the structure of the photon three different contributions to the two-photon
interaction are distinguished:

f

f̄

direct

ρ, ω, φ, ..
VMD

︸ ︷︷ ︸
hadron− like

f ∈ u, d, s, c, b : anomal
f ∈ e, µ, τ : leptonic

QPM︸ ︷︷ ︸
point− like

The weight of the different contributions depends on the virtuality Q2 of the
photon. For small Q2 the photon fluctuates into a state with quantum numbers
identical to the state of light vector mesons like ρ, ω, φ, ... The qq̄ pair has a small
transverse momentum pT and thus stays in a bound state where the binding is due
to gluon interactions between the quarks. These states of fluctuations cannot be
calculated by perturbative QCD. A phenomenological approach for a description
is given by the Vector-Meson Dominance model (VMD) [9–12]. The contribution
to the photon structure is called the hadron-like component.

Photons with higher Q2 fluctuate into qq̄ pairs which have a higher transverse
momentum pT and so that the gluon interactions between these quarks are less
important. The produced partons can be seen as essentially free and calculated
within perturbative QCD. The structure is called point-like or QPM part accord-
ing to the Quark-Parton Model that describes it. It is similar to the fluctuation
into lepton pairs which is a pure QED process. In this thesis the lepton coupling
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and the leptonic structure function are not discussed in detail. More on them can
be found in the literature [13].

The photon wave function can now be written as a sum of different contribu-
tions like

|γ〉 = cdir|γdir〉︸ ︷︷ ︸
direct

+
∑

V =ρ,ω,φ,...

cV|V 〉
︸ ︷︷ ︸

VMD

+
∑

q=u,d,s,c,b

cq|qq̄〉
︸ ︷︷ ︸

point−like

+
∑

l=e,µ,τ

cl|ll̄〉
︸ ︷︷ ︸

leptonic

. (2.16)

The interpretation of the structure function F γ
2 had as the parton density is now

obvious. The subscript “had” indicates that only the distributions of quarks and
gluons are taken into account. In the following this subscript is suppressed. Now
the hadronic structure function is

F γ
2 (x,Q2) = x

∑

i=u,d,s,...,g

e2
i f

γ
i (x, Q2) (2.17)

where fγ
i (x,Q2) is the probability for finding a parton of type i with charge ei

and fraction x of the momentum of the photon; in leading order only the sum
over the parton distributions has to be performed.

2.5.1 Hadron-like Structure, VMD

These distributions are not easily calculable. Their dynamics cannot be treated
by a perturbative approach because of the low momentum transfer to the par-
tons and the gluon exchange between them. Consequently phenomenological
parametrizations with some theoretical model input have to be found. Again
the VMD and the point-like part are treated separately. In the VMD part the
structure function is approximated by the structure function of the pion, which
is known from measurements of the Drell–Yan process π±N → µ+µ−X [14–16].
In principle the structures of the lightest vector mesons are needed which are not
known but assumed to be similar to the pion structure. An incoherent sum of
the ρ and ω parts leads to the frequently used form obtained in [17,18]

F γ
2VMD(x) =

8

9

4παem

f 2
ρ

xqρ
i (x) = α [0.2(1− x)] (2.18)

with the ρ decay constant f 2
ρ = 2.2/4π as in [12]. One difficulty in the calcula-

tion of the VMD part is the scale dependence due to the Q2 dependence of the
gluon density that contributes to the x distribution. The differently motivated
theoretical models vary in the reference scale Q2

0 about which the Q2 dependence
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should be expanded [13]. Further models for a parametrization can be found in
the literature, see for example Duke and Owens [19]:

F γ
2, VMD =

4πα

f 2
ρ

[
0.417

√
x(1− x) + 0.133(1− x)5

]
at Q2 = 3 GeV .

Their model has also been fitted to experimental data at low Q2. The Collabo-
ration TPC/2γ used

F γ
2, had = α

[
(0.22± 0.01)x0.31±0.02(1− x)0.95 + (0.06± 0.01)(1− x)2.5±1.1

]

for 0.3 GeV < Q2 < 1.6 GeV [20]. The parametrization of the VMD part of the
photon structure function is still a very active field of theoretical work.

2.5.2 Point-like Structure, QPM

Due to the Q2 dependence of the vector meson propagator the point-like structure
becomes more important with increasing virtuality of the photon. The different
approaches for the treatment of the intermediate region between VMD model
and point-like structure have to be tested by experiments and are one of the
motivations for this work.

While the structure function of hadrons and as a consequence also the hadron-
like motivated VMD part of the photon structure function decreases with increas-
ing x, the point-like part becomes larger for higher values of x. This part which
is similar to the QED structure is described by the Quark-Parton Model (QPM)
and dominates the region of high transverse momenta and virtualities Q2. The
structure function of the QPM model is given by

F γ
2, QPM(x, Q2) = Nc

nf∑

k=1

e4
qk

α

π
x

{[
x2 + (1− x)2

]
ln

W 2

m2
qk

− 1 + 8x(1− x)

}
(2.19)

with the numbers of color charges Nc and quark flavors nf taken into account.
For the detailed calculations see [21–23]. The logarithmic evolution with Q2

incorporates the scale dependence of the structure function. This becomes more
obvious for the substitution

ln

(
W 2

m2
q

)
= ln

(
Q2

m2
q

)
+ ln

(
1− x

x

)
(2.20)

that holds for P 2 ¿ Q2. In Fig. 2.3 both VMD and QPM part of the structure
function are shown as a function of x for a fixed value Q2. The very different
behavior of both parts is clearly visible.

Because of this behavior it is assumed in the present measurement that the
probing photon being highly virtual (Q2 ≥ 10 GeV2) has a completely point-like
structure. This ensures that it is really the hadronic structure of the quasi real
photon which is measured.
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0
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0.1

0.15

0.2

0.25

0.3
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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TPC/2γ
NA3
QPM(u,d,s)

x

F
γ 2
(x

,Q
2
)/

α

Figure 2.3: Different parametrizations of the photon structure function are plotted to show
the different dependence on x for the VMD part and the QPM motivated contributions. The
parametrizations of Peterson, Walsh and Zerwas (PWZ), Duke and Owens (DO) and the fits of
the TPC/2γ and the NA3 collaborations exhibit the typical decrease of the VMD model. The
QPM part is calculated for three quark flavors only at Q2 = 1 GeV2 and shows a characteristic
rise towards larger values of x.

2.5.3 QCD Corrections

The quark parton model does not take into account any gluon coupling in leading
order. This is too simplistic for a detailed analysis of the structure function
although the basic dependence in Q2 and x is described correctly. There are a
lot of calculations of these higher order corrections. As shown in Fig. 2.4 the
radiated gluons lead to a change in the four momentum of the quarks which then
interact with the highly virtual probing photon. Other corrections have to be
applied for the case that one of the radiated gluons produces another qq̄ pair and
one of this so called sea quarks interacts with the probing photon. The evolution
of the parton density functions of the photon with respect to ln(Q2) is described
by the DGLAP equations (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) [24–28]
[29]. Calculations based on these equations do not change the general shape of
the structure function with Q2: For the hadron-like part the function increases
with Q2 only for small x whereas it decreases for large x. The contribution of
the point-like process increases for all x with Q2. This scale dependence of the
parton density functions leads to uncertainties and an arbitrariness in the choice
of the reference scale Q2

0. Widely used choices are of the order 1 GeV2.
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a) b) c)
γ∗ γ∗ γ∗

Figure 2.4: Examples where QCD corrections have to be applied: The virtual photon can
interact directly with a quark from the fluctuation state like in leading order QPM calculations
(a) or with a quark after it radiated a gluon (b). Even an interaction with a sea quark is
possible as drawn in (c). Many more diagrams for QCD corrections are possible and have to
be calculated.

2.6 Parametrizations of the Photon Structure

Function

For the structure function of hadrons only the shape can be calculated. Initi-
ated by the work of Witten [30] who first had the idea to separate point-like
and hadron-like contributions, the calculation of the absolute normalization of
the photon structure function for high Q2 seemed to be possible. There is now
aggreement that hadron-like contributions have to be included for high Q2 point-
like calculations to avoid singularities in higher order. A prediction of an absolute
value for the structure function from QCD is not possible. More details and fur-
ther references can be found in [31]. Some parametrizations will be presented
here as examples of theoretical calculations. All of them start at a reference
scale Q2

0 and develop the Q2 dependence by use of the DGLAP equations. Some
different assumptions are made which are briefly mentioned. A rather complete
overview on presently available work in that field can be found in [13]. The rea-
son to choose these three parametrizations is the fact that they are quite different
from the theoretical input point of view and that the results of this analysis are
compared to these models later in this thesis. Given the limited precision of this
measurement it is, however, hardly possible to discriminate between them. For
that reason no attempt is made to fit parameters or give more quantitative com-
parisons. Most of the authors mentioned have actually published more than one
set of parameters. All available parametrizations and references to the original
publications can be found in the PDFLIB [59] and calculated with the functions
provided there.

LAC [32] Levy, Abramowicz and Charchula used the same approach as was
used in the DG (Drees,Grassie) parametrization that was published ear-
lier [33]. Twelve parameters in the x dependent ansatz are fitted to data
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while evolution equations at a fixed Λ = 0.2 GeV are used to compute
the contributions of four quark flavors and an ansatz for the gluon density
function is made. In different available sets different starting scales Q2

0 are
used (LAC1, LAC2: Q2

0 = 4 GeV2; LAC3: Q2
0 = 1 GeV2) and, correspond-

ingly, different gluon density functions: (LAC1: xg(x) ∼ xb(1− x)c; LAC2:
xg(x) ∼ (1−x)c; b, c are fitted to data). Contributions of the charm quark
are taken into account only for W 2 ≥ (2mc)

2 with an assumed mass for
the c quark of mc = 1.5 GeV. The improvement compared to the older DG
parametrizations is due to the availability of larger data samples at higher
Q2 for the fit of the free parameters and the first attempt to fit the gluon
density functions.

GRV Glück, Reya and Vogt base their calculations on the known structure
function of the pion and those of other vector mesons originating from
that and on the structure function of the proton [34–37] [16, 38, 39]. These
structure function are available in leading (LO) and next-to-leading order
(NLO). A starting scale of Q2

0 = 0.25 GeV is used for the LO calculations
and Q2

0 = 0.3 GeV for NLO. The Q2 evolution is treated by the DGLAP
equation. Since the parton density function of the pion cannot be calculated
in absolute normalization, a free parameter κ is introduced which has to
be fitted to the data. At the starting scale a purely hadron-like state is
assumed. The point-like part is dynamically developed for Q2 > Q2

0. For
small values of W the heavy quarks (mc = 1.5 GeV, mb = 4.5 GeV) are
introduced with the help of the Bethe–Heitler formula [40]. For high W
they are also treated as massless.

SaS [41] Schuler and Sjöstrand distinguish between hadron-like and point-like
contributions in their ansatz. Another fundamental difference to all other
parametrizations is the use of measured photon-proton cross sections for the
input density functions. Various sets are available which all use Λ = 0.2 GeV
as the QCD scale parameter. The starting scale is Q2

0 = 0.36 GeV2 and
Q2

0 = 4 GeV2 in sets SaS1 and SaS2. The light quarks are treated as
massless, charm and bottom contributions are again introduced with the
Bethe–Heitler formula (mc = 1.3 GeV, mb = 4.6 GeV). Special weight is
put on the question how the VMD part of the photon in the parametrization
depends on the start scale Q2

0. SaS2 predicts a larger VMD part and as a
result a stronger rise of the structure function at low x than SaS1 does.
Furthermore both sets are computed in deep inelastic scattering scheme
(DIS) as well as in the modified momentum subtraction scheme (MS).
Small differences appear in these methods. For small x the MS leads to
slightly larger values but for x → 1 it drops faster than the DIS calculations.



Chapter 3

Detector

The data used in this analysis is taken with the ALEPH detector at the e+e−

storage ring LEP at CERN. Both the ALEPH detector as well as the LEP ac-
celerator have been described in detail in various publications and a description
is beyond the scope of this work. References [42–45] give a detailed picture of
the experimental setup. In Fig. 3.1 a sketch of the detector is shown. It is built
as a 4π–detector covering almost the complete solid angle around the interaction
point.

Only detector parts which are used in this measurement are mentioned briefly.
No description of the hardware itself but rather of its performance in terms of
energy and momentum resolution etc. is given.

Figure 3.1: Drawing of the
ALEPH detector, it shows
the typical structure of a
4π–detector. The position
of all important compo-
nents can be seen.

14
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Luminosity Calorimeter

At a distance of about 2.5 m on either side of the main interaction point the
two luminosity calorimeters SiCAL (Silicon Calorimeter) and LCAL (Luminosity
Calorimeter) are located around the beam pipe. Both are used to detect the
scattered beam leptons. To obtain Q2 a measurement of the energy Etag and
the scattering angle Θtag is needed (see Eqn. (2.5)). The angular acceptance of
the luminosity calorimeters overlaps slightly: The inner detector, SiCAL, cov-
ers the range between 24 and 58 mrad but due to a tungsten shielding against
backscattered synchrotron photons which was added in 1996 it is now sensitive
only for angles larger than 34 mrad. LCAL which is located behind SiCAL
extends the angular acceptance from 45 to 160 mrad. The angular resolution
of SiCAL is 0.5 mrad, for LCAL it is about 1 mrad. The energy resolution for
SiCAL is σE/E = 0.34/

√
E and σE/E = 0.15/

√
E⊕0.034 for the LCAL detector

respectively (E in GeV).

Tracking Devices

Particles produced at the main interaction point pass up to three different track-
ing devices. The innermost one is a two-layer silicon strip vertex detector (VDET),
followed by a cylindrical drift chamber (ITC) and the central time projection
chamber (TPC) as the main tracking device with a diameter of 3.6 m and a
length of 4.4 m. Together with an axial magnetic field of 1.5 T provided by a su-
perconducting solenoidal coil the transverse momentum of charged particles can
be measured with a precision of ∆pT/pT = 0.005⊕ 6× 10−4pT with pT in GeV.

Calorimeter

Two different calorimeters are used to measure the energy of the final state par-
ticles. The inner one is the electromagnetic calorimeter (ECAL) that absorbs
all photons and electrons. It has a certain granularity that allows a spatial res-
olution of σΘ/ sin Θ = 0.32 mrad ⊕ 2.7 mrad/

√
E and an energy resolution of

σE/E = 0.009⊕ 0.18/
√

E with E in GeV. The energy and spatial resolution are
a little different for the central barrel and the end caps. In the overlap region and
at the edges of the end caps, the resolution can be worse by up to 30%.

The hadron calorimeter (HCAL) is located outside the magnetic coil and is
also used as the iron return yoke for the magnetic field. The energy resolution
for charged and neutral hadrons is 0.84/

√
E. While hadrons are absorbed in the

HCAL, muons with momentum larger than 2.4 GeV can pass through HCAL and
are identified in the muon chambers that form the outer layer of ALEPH.
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Trigger

The trigger system of ALEPH is designed in three levels to select interesting data
by a fast reduction of background events to keep the amount of data that has
to be stored as small as possible without loosing “good” events. The first-level
trigger is a hardware trigger using ITC and calorimeter information. If the first-
level trigger decision is positive, the TPC is read out and some track requirements
are checked in the next level. A positive level-two decision leads to a read out of
the whole detector. Level three is a pure software trigger using information from
a simplified event reconstruction.

Since ALEPH has no explicit γγ trigger condition, it is hard to give a value for
the trigger efficiency. There are no two different independent triggers available
for this kind of events. From various studies it is understood that the trigger
efficiency for events with hadronic masses and a total transverse momentum as
selected for this analysis is close to 100%, slightly depending on x [46]. In the
low x region it should be safe to assume a 100% efficiency. For higher x it is
estimated to be ≥ 95%. Since no exact number can be found, the analysis is
done under the assumption of a fully efficient detector. In the region, where a
slightly lower efficiency is possible, the statistical and systematic uncertainties
of the analysis are large, so that the trigger uncertainty would not increase the
errors significantly.

Energy-Flow Objects

During the event reconstruction the energy-flow algorithm is applied to form a set
of disjoint particles. Information from energy measurements in the calorimeters
are combined with momentum measurements from the curvature of the tracks
which can be associated with energy depositions in the direction of the tracks.
Since energy measurement and momentum measurement of the same charged
particle is redundant, the energy-flow object is formed from the quantity that
provides the best accuracy which usually is the momentum measurement. For
all tracks some quality requirements have to be passed like a minimum number
of four hits in TPC, distance from main vertex etc.. Energy depositions that
cannot be associated with tracks or exceed the expected energy deposition for
the associated track by a certain amount are treated as stemming from neutral
particles. Electrons are identified by their shower profile in the calorimeters
for momenta larger than 1.5 GeV and muons are identified by hits in the muon
chambers for momenta larger than 2.4 GeV, respectively. For more details of the
energy-flow algorithm see [43].



Chapter 4

Detector Resolution and
Unfolding

4.1 Detector Resolution

As in all particle physics experiments the measured quantity is affected by detec-
tor effects like limited resolution and acceptance. Since only the “true” value as
produced by the investigated physics process is of interest, a correction for these
detector influences is necessary. This is especially important for a comparison
between different experiments and with theories. The process of correcting for
these effects is called “unfolding”.

In this analysis the differential cross section dσ/dx has to be measured. It
is directly obtained from the number of reconstructed events N in each x bin,
dN/dx, and the luminosity. The Bjorken variable x is defined as

x =
Q2

Q2 + W 2
(P 2 ≈ 0)

in chapter 1. Both variables Q2 as well as W 2 are measured with large uncertain-
ties.

The measurement error in Q2 originates in the limited energy resolution of
the luminosity calorimeters. In Fig. 4.1 the observed quantity Q2

vis is plotted
versus the true value Q2

true as given by the Monte Carlo simulation. Although
the mean value of the seen distribution is close to the true value as shown in
Fig. 4.2, the measured values are smeared out significantly around the central
value. Especially for small Q2 this effect is important because the relative error
in Q2 is energy dependent and improves for high Q2.

The measurement of the invariant mass of the hadronic final state W 2 does not
suffer too much from the uncertainty in the measured track quantities. The main

17
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Figure 4.1: Detector resolution for the virtual-
ities of the tagged photons. The reconstructed
quantities Q2

vis are plotted versus the gener-
ated values Q2

true.

25
50
75

100
125
150
175
200
225
250

50 100 150 200 250

Q2
true/GeV2

Q
2 v
is
/G

eV
2

Figure 4.2: Same quantities plotted as in
Fig. 4.1 but as central reconstructed values
plus error bars giving the smearing of the de-
tector.

effect here comes from particles lost due to acceptance problems in the forward
direction of the detector. The two photons colliding differ very much in energy
and momentum, especially in the case of single-tag events. For that reason the
γγ centre-of-mass system is not identical with the laboratory system in which the
detector is at rest. This leads to a strong Lorentz boost of the hadronic system
that increases with the beam energy. Unfortunately the precision and acceptance
of ALEPH is less good around the beam pipe in the forward direction which
is of importance for boosted events. Final state hadrons produced in forward
direction are the main reason for a large uncertainty in the measured quantity
Wγγ. The diagram in Fig. 4.3 shows the ϑ distribution of the particles in the
hadronic system. No tracks are reconstructed below ϑ ≈ 0.03 rad. In Fig. 4.4 the
distribution of the polar angle Θ of the scattered beam lepton as generated in the
Monte Carlo and as seen after full detector simulation is shown. Fig. 4.5 shows
Wvis plotted versus Wtrue. Unlike for the measurement of Q2 the Wvis distribution
is not smeared out symmetrically but tends to show Wvis < Wtrue. The resolution
of the Bjorken variable x is finally shown in Fig. 4.6.

For the measured x spectrum these resolution and acceptance effects have
several consequences in different regions:

� For low Q2 the measurement suffers a lot from the poor energy resolution
for the tagged electron.

� At low x the spectrum is dominated by low Q2 events.



4.2. Detector-Response Matrix 19

10 2

10 3

10 4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Polar angle ϑ/rad

C
h
ar

ge
d

p
ar

ti
cl

es
/1

m
ra

d

Figure 4.3: The diagram shows the ϑ dis-
tribution of the charged particles in the
hadronic system. The solid line represents
the true distribution as produced by the
HERWIG Monte Carlo generator. The
dashed line gives the distribution for the
reconstructed particles.

� The W 2 measurement tends to pull events towards higher x.

� Events generated with a large W 2 of the hadronic system, usually at lower
x, lose some tracks and are then observed at higher x, but the detection
efficiency for these events is quite good. In contrast events with a small W
are frequently lost completely. Therefore the x spectrum suffers more from
inefficiencies at large values of x, where the Q2 measurement is better.

Already from these considerations large uncertainties in the measurement at the
edges of the experimentally accessible x spectrum are expected.

4.2 Detector-Response Matrix

The influence of the detector can be described by a detector-response matrix [47].
Let the true distribution follow a normalized probability density function ftrue(y).
Then the probability of an event being produced in bin j of the x spectrum is
given by

pj =

∫

Bin j

ftrue(y)dy.

After the measurement one is interested in the probability of finding the event in
bin i. If the conditional probability for measuring an event produced with y at a
value x is given by s(x|y) and the probability of seeing the event is given by the
efficiency ε(y), then the probability for the migration of an event from bin j into
bin i is given by

pij =

∫

Bin i

{
∫

Bin j

s(x|y)ε(y)ftrue(y)dy}dx.
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Figure 4.4: The precision of the measurement
of the scattering angle of the tagged beam lep-
ton can be judged from this diagram where
ΘTag, vis is plotted versus ΘTag, true.

The response function
r(x|y) ≡ s(x|y)ε(y)

contains all experimental effects.
The expectation value for the measured number of events in bin i is then

E(xvis,i) =
M∑

j=1

pij · xtrue,j. (4.1)

where xtrue,j is the number of events generated in bin j. The expectation value
E(xvis,i) is identified with the observed number of events in bin i, xvis,i, as the
best available estimate.

Writing the true and visible spectra as vectors1 xtrue and xvis giving the num-
ber of events in bin i as the ith component of the vector, Eqn. (4.1) defines a
matrix equation

xvis = Axtrue (4.2)

with a detector-response matrix A and

Aij = pij

which is surely not independent of the probability density function ftrue(y) of the
true quantity. The matrix becomes independent of this if the bins are chosen in
such a way that the response function r(x|y) is almost constant over the whole

1Vector quantities are set in bold letters, for example x. Their components are written in
italic letters with subscript, xi. Italic letters without a number subscript denote the norm of
the vector, x = ||x||.
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Figure 4.5: Resolution of the invariant hadronic mass Wγγ .

bin. Then the integrals separate and the sum over all bins of the true distribu-
tion always adds up to unity since the probability density function ftrue(y) was
assumed to be normalized.

If additional background processes are present in the experiment, they can be
included in Eqn. (4.2) by an additional vector b:

xvis = Axtrue + b (4.3)

If the background is well understood it can be subtracted as is done in this
analysis. In the following xvis is usually understood as the background subtracted
visible spectrum so that Eqn. (4.2) can be used.

Throughout the explanation of the unfolding method in this chapter and the
calculations in the appendix, a superscript δ, for example vδ or M δ, indicates
that the quantity is not known exactly but has an error. The vector δv and the
matrix δM then consist of the uncertainties of the components of the vector or
the matrix.

vδ = v ± δv =




v1
...

vn


±




σ1
...

σn


 , M δ = M ± δM = (mij)± (σij)

The vector δ always stands for the uncertainties in the measured quantity.
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Figure 4.6: Resolution of the Bjorken variable xhad. Both, the uncertainties in the measurement
of Q2 and Wγγ contribute to the distortion of the x spectrum.

4.3 Ill-Conditioned Systems

Since one is interested in xtrue rather than in the measured histogram xvis Eqn. (4.2)
has to be inverted. Unfortunately Eqn. (4.2) represents what is known as an ill-
conditioned system. To explain the impact on the unfolding process we use a
Monte Carlo sample for which the true distribution is well known. The simplest
ansatz one could think of would be to invert Eqn. (4.2) and obtain

xunf = A−1xvis. (4.4)

If the matrix A is singular one would use the pseudo-inverse matrix A† instead of
the exact inverse matrix A−1. In the present case there is no numerical or other
problem so that the inverse matrix A−1 is always available. The results, however,
are not satisfactory as is shown in Fig. 4.7. Of course, for a sample built from the
full available Monte Carlo statistics that is used to build the matrix A, Eqns. (4.2)
and (4.4) hold and xunf = xtrue. The measured data sample as well as a smaller
Monte Carlo test sample is always influenced by measurement errors which cannot
be avoided simply because of statistical fluctuations in the number of observed
events which is Poisson distributed. This would be different for infinite statistics
which is, of course, never available. For a well-conditioned problem one would now
demand a continuous dependence of the unfolded spectrum on the uncertainties
and small fluctuations in the visible distribution such that small fluctuations in
the measurement only lead to small differences between the unfolded spectrum
and the true spectrum. That the dependence is continuous is ensured by the



4.3. Ill-Conditioned Systems 23

linearity of Eqn. (4.2). The size of the uncertainties in the unfolded spectrum
can be calculated by error propagation. The covariance matrix Cx, vis is given by
a diagonal matrix with elements

Cvis,ii =
√

xvis,i (4.5)

containing the statistical error of the number of events observed in bin i. The
covariance matrix Cx, unf for the unfolded spectrum is calculated in appendix A,
Eqn. (A.2). One has to be aware of the fact that Eqn. (A.2) only holds for
Gaussian-distributed quantities. It can be applied here because the binning is
chosen such that the number of observed events in every bin is large enough
(> 100) and that therefore the Poisson distribution does not differ too much
from the Gaussian. Because of the migration between different bins contained in
the matrix A, the values in xtrue are now highly correlated and the correlation
coefficients can be found in the off-diagonal elements of the matrix Cx, unf .

It can be seen in Fig. 4.7 that the uncertainty in the unfolded spectrum is
not small at all although the relative statistical errors in the visible distribution
are on a 5% level as plotted in Fig. 4.8. A system with such behavior is called
ill-conditioned.

To give a more quantitative approach to the phenomenon the condition num-
ber of a matrix M is defined through:

cond(M) := ||M ||||M−1||
with a norm ||.||. For a detailed and mathematical precise definition one of the
many available textbooks should be used. The introduction given here mainly
bases on the discussion in [48] and the very detailed work in [49]. Although the
subject is developed in a much larger context, it is needed here only for real
square matrices A with the Euclidean norm ||.|| defined as

||x|| =

√√√√
N∑

i=1

x2
i for vectors and

||M || =
√

ρ(MTM) ≤
√√√√

N∑
i,j=1

|mij|2 for matrices

with the spectral radius of a matrix M

ρ(M) := max {|λ| : λ eigenvalues of M} .

For real square matrices A, the matrix H = ATA is a Hermitian matrix and the
eigenvalues of H are real, too. The condition of the matrix H is then

cond(H) =
|λmax|
|λmin| , λmin 6= 0 (4.6)
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Figure 4.8: Visible x spectrum that leads to
Fig. 4.7 by unregularized unfolding. Error
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with λmax and λmin being the eigenvalues with largest and smallest modulus.

The condition number now yields a quantitative measure for the ill-condi-
tionedness or the instability of the linear system in Eqn. (4.2). Let xδ

vis be the
measured distribution with the uncertainties given by a vector δ with δ = ||δ||.
xδ=0

vis = xvis would be the visible histogram for a measurement with infinite statis-
tics. Since even A is not given with arbitrary high precision Aδ is introduced:

Aδ = A + δA

Here the error of the matrix A, δA, is given by the statistical uncertainty of the
matrix elements because of a limited number of available Monte Carlo events.
For the difference between the unfolded result xunf = A−1xδ

vis and xtrue it can be
found that

||xunf − xtrue||
||xtrue|| ≤ cond(A)

1− cond(A) ||A
δ−A||
||A||

{ ||xδ
vis − xδ=0

vis ||
||xδ=0

vis ||
+
||Aδ − A||
||A||

}
.
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The error of the matrix A can be made small by using a larger Monte Carlo
sample. The Monte Carlo sample used in this analysis is sufficient to keep the
influence of the matrix error small compared to the error introduced by the sta-
tistically limited data sample for the regularized result that is introduced later in
this chapter. For the unregularized unfolding described so far, the matrix uncer-
tainty δA actually dominates the error in the unfolded spectrum. The full error
propagation including the effects of δA is given in appendix A. In Fig. 4.9 the
contribution of δA to the total statistical error can be seen. A problem arises
from the fact, that the detector-response matrix is as well affected by systematic
uncertainties, since it is almost singular. The relative error of small elements
cannot be made arbitrarily small by larger Monte Carlo samples and they would
still suffer from uncertainties in the detector simulation. But these small matrix
elements are extremely important for the matrix inversion.

The most stable linear system from this point of view is given by the identity
matrix I with cond(I) = 1. The stability decreases with increasing condition
number. Typical condition numbers for the detector-response matrices A are of
the order

cond(AT A) ≈ 106

which is surely ill-conditioned. Because of the Hermitian nature of ATA the
equivalent equation

ATAxtrue = ATxvis

is used instead of Eqn. (4.2) in the following.
It has to be stressed that the ill-conditionedness of the matrix A is a con-

sequence of the imperfectness of the detector for the measurement of physics
processes as they are investigated here. The problem cannot be solved by a bet-
ter Monte Carlo simulation since that would alone improve the precision of the
matrix but not its condition. There are only two possible solutions to improve
the relative error ||xunf − xtrue||/||xtrue||:

1. δ → 0, that means a more precise measurement of the visible data.

2. Manipulation of A to improve the condition and the effects of matrix un-
certainties artificially.

The first approach is simply not possible since LEP and ALEPH are dismantled.
Even for a completely new experimental setup there are limitations: Necessarily
near the beam there is a space free of detectors. Here particles pass undetected.
The second way seems to be dangerous because a manipulation of the detector-
response matrix is equivalent to changing the detector and it is certainly difficult
to overcome hardware problems by purely mathematical techniques. But it comes
out, that this manipulation can be handled in terms of uncertainties in a well
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defined way. This method is called a regularized unfolding and has proven its
potential in many applications.

4.4 Tikhonov Regularization

For each real m × n, m ≥ n, matrix A the square n × n matrix H = ATA
is Hermitian and positive semidefinite. The square roots of the eigenvalues of
H, which are always real and nonnegative, are called the singular values of H.
In general the rank r of the matrix A can be less then n. In this analysis the
detector-response matrix A is always a real square matrix and the inverse matrix
A−1 exists. Furthermore there are no singular matrices within the range A± δA.
This is particularly important for the calculations of the uncertainties in the
appendix A since otherwise the linear expansion of the Matrix A−1 would not be
appropriate. In cases where the matrix A is not a square matrix but ATA is not
singular, the equation

A′xtrue = x′vis

with
A′ = ATA and x′vis = ATxvis

can be considered instead of the original Eqn.(4.3). It is conceivable that a
treatment in analogy to the calculation described in appendix A can be carried
out for singular matrices by a substitution of A−1 with the pseudo-inverse matrix
A†. But this has not been checked. For the treatment of singular matrices see
also [49].

It is possible to find two unitary matrices U = (u1, ...,un) (n × n) and V =
(v1, ...,vm) (m×m) so that the matrix A can be written as

A = V ΣU∗ (4.7)

where Σ is a m × n diagonal matrix with the singular values µ1, .., µn as its
diagonal elements Σii. u1, ...,un and v1, ...,vm are the column vectors of U and
V . For practical reasons the singular values are ordered such that µ1 ≥ µ2 ≥
... ≥ µr > µr+1 = ... = µn = 0. This is known as a singular values decomposition
of the matrix A. It is easy to see that

Ax =
r∑

j=1

µj(x,uj)vj

with (., .) denoting the Euclidean scalar product. On the other hand for the
equation

Ax = y (4.8)
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the solution is given by

x =
r∑

j=1

1

µj

(y,vj)uj. (4.9)

For r = n this is the exact solution x = A−1y. Otherwise Eqn. (4.9) is the
solution

x = A†y

with A† being the pseudo inverse or Moore–Penrose inverse of the matrix A. The
solution x is the least square solution of Eqn. (4.8) with smallest norm [50].

With the knowledge of the relation between singular values and the condition
of a matrix given in Eqn. (4.6) one can now see the consequence of small singular
values on the solution x. For some δ we disturb the right hand side of Eqn. (4.8) by
replacing y by yδ = y+δvj . The obtained solution for xδ is then xδ = x+δuj/µj.
The ratio ||xδ − x||/||yδ − y|| = 1/µj becomes large if the singular values µj are
small.

This observation motivates in a straight-forward manner the idea of a regu-
larized unfolding as it was introduced by Phillips in 1962 [51] and independently
by Tikhonov 1963 [52,53]. In Eqn. (4.9) the contributions of small singular values
are damped by a weighting factor

µ2
j

α + µ2
j

where α is a positive parameter called regularization parameter. For α = 0 the
system remains unchanged. For α > 0 the influence of small singular values
decreases with increasing α. One can show that

xα =
r∑

j=1

µj

α + µ2
j

(y,vj)uj (4.10)

solves the equation

(αI + ATA)xα = ATy (4.11)

uniquely and that for α → 0 the regularized solution xα converges towards the
exact solution given in Eqn. (4.9). Furthermore one finds that

||Axα − y||2 + α||xα||2 = inf
x∈Rn

{||Ax− y||2 + α||x||2} .

This gives an interpretation of the Tikhonov regularization method: The residual
||Axα − y||2 is kept small to stay close to the original system. The penalty term
α||xα||2 prevents xα from becoming too large.
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4.4.1 Approximation Error

The condition of the matrix (αI − ATA) is

cond(αI − ATA) =
α + µ2

1

α + µ2
n

≤ 2µ2
1

α
, 0 < α ≤ µ2

1.

It is obvious that a large regularization parameter α supports a better stability.
On the other hand clearly a small parameter α keeps the changes to the system
reasonably small.

These changes have to be looked at a little closer. For an erroneous yδ with
||yδ − y|| ≤ δ the vector xα solves the equation

(αI + ATA)xα = ATyδ.

The estimate

||xα − x|| ≤ ||(αI + ATA)−1AT||δ + ||(αI + ATA)−1ATy − A†y||
divides the total error into two terms where one term only depends on the error
level δ and the calculation of the second term requires a knowledge of the exact
right hand side. Going back to the measurement, the erroneous yδ are accessible
data, given by the visible distribution xvis. Accordingly the first term is called
the data error Edata = ||Edata||. It can even be given bin-by-bin by normal error
propagation. This calculation is performed for the statistical error of the final
results. The second part of the error estimation is not accessible from data.
Consequently the approximation error

Eapprox = (αI + ATA)−1ATy − A†y

can only be estimated to a certain extent. Here it is done with some reference
distribution xδ=0

vis from Monte Carlo models (GRV and SaS) which describe the
data well in various event shape variables. Therefore it is expected to be not too
far away from the “true” y. To avoid the relative approximation error fluctuating
artificially between two neighboring bins, the mean of the calculated Eapprox value
for the bin itself and its two neighbors is assigned to each bin. It must be stressed,
that in regions where the approximation error becomes large, no local information
can be taken from the unfolded distribution.

The two components of the total error Edata and Eapprox show completely
different behavior in their dependence on the regularization parameter α. While
for α → 0 the data error becomes large as in the unregularized unfolding, for
α > 0 the estimate

Edata =

√∑
i

C2
x, ii(δ, α)

≈ ||(αI + ATA)−1AT||δ ≥ µr

α + µ2
r

δ
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holds. The statistical error can be made arbitrarily small by a large regularization
parameter α. The approximation uncertainty is the expense for that improve-
ment. While Eapprox goes to zero for α → 0 it increases with increasing α.

A remark has to be made concerning the uncertainty introduced by the matrix
A itself which is not known with arbitrary accuracy. As shown in appendix A the
error EδA depends on the regularization parameter and can be included into the
statistical uncertainty Edata. In Fig. 4.9 all three contributions Edata (excl. EδA),
EδA and Eapprox are plotted separately together with the total error Etot which is
the sum of all three added up in quadrature. It is important, that the uncertainty
EδA is shrinking with increasing α. The diagram in Fig. 4.9 is produced using
real ALEPH data taken between

√
s = 205 GeV and 207 GeV.

Etot

Edata

EδA

Eapprox

α

ln
||E
||

Figure 4.9: Behavior of the three components
Edata, EδA and Eapprox that contribute to the
total uncertainty Etot as functions of the reg-
ularization parameter α. The logarithm of
the norm of the uncertainty vector is plotted.
The dashed line marks the choice of α as dis-
cussed in section 4.4.2 for that special data
sample. Numerical values for α can be found
in Tab. 7.1.

4.4.2 Determination of the Regularization Parameter

The choice of the regularization parameter α is a compromise between accuracy
and stability. An efficient and straightforward strategy is to look for a distribution
which is regularized such that

||Axα − yδ|| = δ (4.12)

is satisfied. That means that the regularized histogram xα is in agreement with
the observed histogram yδ after folding with the detector-response matrix A
within the experimental errors. This solution can be uniquely found and the
discrepancy principle (4.12) is regular in the sense that the exact solution is
obtained as the error level δ tends to zero:

xα → A†y, for δ → 0.
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Algorithms can be found that give α in a direct and not iterative way. In this
analysis the algorithm described in [48] is modified because the measurement in
the side bins is subject to larger experimental uncertainties and the content is not
considered to be measured with the same quality as in the central bins. Hence
only the central bins are used to find the regularization parameter α that solves
the equation

n−1∑
i=2

(Axα − yδ)2
i =

n−1∑
i=2

δ2
i . (4.13)

α is well defined by that equation and can be found easily since Eqn. (4.13) only
depends on α. It has to be stressed that one is essentially free in the choice of
the regularization parameter α since the uncertainties introduced by it are taken
into account properly. Of course, different methods to determine α lead to a
different behavior of the solution xα as a function of the measurement error δ.
The determination of the particular value of α described here is not optimal in
terms of convergence rates for the limit

xα → xtrue = xα=0 for δ → 0.

Interesting discussions about convergence rates can be found in the mathematical
literature [49]. For a single measurement with δ given by the statistics of the
experiment like in this analysis, the question of convergence rates is of no further
importance.

4.5 Discussion of Alternative Methods

Detailed introductions and descriptions of algorithms for alternative regulariza-
tion methods can be found in references. Here only some advantages and dis-
advantages are mentioned briefly to explain the choice of the method described
above.

� Truncated Singular Value Decomposition (TSVD)

This method has no continuous regularization parameter but cuts away
the contributions of the smallest singular values. Although the discrepancy
principle is regular in the same sense as in the Tikhonov regularization, the
results obtained have either quite large statistical errors or large approxi-
mation errors compared to the standard Tikhonov procedure. Especially
for a small number of bins as is the case in this analysis, the method seems
to be less efficient.

� Non-Standard Tikhonov Regularization
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Penalty terms other than α||xα||2 depending on preferences for the unfolded
vector can be used. In general it is possible to have a penalty term α||Lxα||2
where L is a matrix. For a Tikhonov unfolding of the second kind a matrix
L is introduced that estimates the curvature or second derivative of the
spectrum with respect to x. Algorithms used in the standard Tikhonov
unfolding can be widely used since in many cases a general Tikhonov un-
folding can be transformed into a standard one. For this analysis it was
found that a Tikhonov unfolding of the second kind does not improve the
result significantly, so the simpler standard method seemed to be sufficient.

� Tikhonov-like Regularization with Nonlinear Penalty Terms

Unfolding methods using nonlinear penalty terms are widely used. Instead
of the norm α||Lxα||2 a function S(x, α,yδ) gives a measure of the sta-
bility of the unfolded solution. Especially probability functions with some
“physical” motivation like Maximum Entropy or Shannon-Entropy [54] or
similar functions are of interest. It could not be shown, that these entropy-
based methods would improve the results of this analysis although they were
studied in detail. But it was found, that simple algorithms, as for example
suggested in [47], are not sufficient to ensure a proper convergence. There
is no doubt, that these algorithms work well, as long as the condition of the
matrix is not too bad, that means off diagonal elements are small and the
singular values do not vary too much. It is especially useful in cases, where
the measurement is mainly affected by a background noise level, rather than
from resolution effects of the detector device. In our case that is not true
and the algorithm failed frequently. Especially the fact, that an Entropy
function is not defined for the (exact) maximum likelihood solution leads to
some “minimum” regularization. The discrepancy principle is not regular.
Even worse, the regularized solution contains unphysical values for a softer
regularization. It seems not to be clear, whether and how matrix and ap-
proximation uncertainties are propagated. A more sophisticated discussion
about convergence and algorithms of nonlinear regularization terms can be
found in [49]. Studies of multidimensional unfolding using the Shannon-
Entropy introduced in [47, 55] where not successful in our case. Apparent
improvements came out to be a result of reprojecting the unfolded two-
dimensional solution on the first dimension. In that process, the mean value
is taken over all bins in the second dimension, which is less fluctuating than
the values themselves. The same effect could be achieved by unfolding in
more bins in a single dimension and averaging over some bins in a second
step. The idea, that a measure in a second variable could improve the mea-
surement by discriminating between better and less well measured events
in the first variable, seems to be a valid and useful procedure in principle.
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However, in the present case the number of well measured events is much
smaller than the number of poorly measured events, so that there are no
bins in the two dimensional xvis array, where the detector resolution is sig-
nificantly better than in others. Consequently the measurement does not
profit from them. For the cross-entropy it would in principle be possible, to
vary the size of the bins such, that better resolution in some bins is achiev-
able. But then the number of events observed in those bins is so small, that
statistical uncertainties dominate. For the Shannon-entropy the freedom of
choice for a binning is limited, since the convergence of iterative algorithms
depends on the fact, that the unfolded solution contains a similar number
of events in each bin. A second argument against a cross-entropy based
unfolding method was the need of some a-priori probability function for the
unfolded spectrum.

There is no “perfect” unfolding technique for all kind of problems which might
appear. The properties of the detector-response matrix and their consequences
on the dominating uncertainties have to be checked carefully in order to chose a
particular method.
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Data

This analysis is performed with data taken by the ALEPH experiment during the
years 1998, 1999 and 2000 at six different e+e− centre-of-mass energies Ecms. The
total integrated luminosity collected is 548.4 pb−1, where 177.0 pb−1 are taken
at
√

s = 189 GeV, 82.6 pb−1 at
√

s = 196 GeV, 87.8 pb−1 at
√

s = 200 GeV,
71.6 pb−1 at

√
s = 205 GeV, 67.9 pb−1 at

√
s = 206 GeV and 61.5 pb−1 at

√
s =

207 GeV. The data taken in the year 2000 (
√

s = 205 GeV − 207 GeV) are
analyzed together. The other samples are processed separately for each centre-
of-mass energy. All results are combined at a later stage of the analysis.

5.1 Preselection of γγ Events

In a first step of the data selection a clean sample of hadronic γγ events has
to be obtained. Therefore cuts are applied to suppress background from e+e−

annihilation and γγ events with a leptonic final state, i. e. γγ → e+e− and
γγ → µ+µ−.

5.1.1 Tag Definition

Since only single-tag events are taken into account in the analysis, the first cri-
terion is the presence of exactly one tag candidate in the event. A tag candidate
is defined as an energy-flow object detected either in SiCAL or in LCAL with an
energy of at least 40% of the beam energy. The polar angle of the tag lepton with
respect to the beam axis has to be larger than 32 mrad.

5.1.2 Cut on Background Sources

For events identified as single tag events, certain cuts on the properties of the
final state are applied. The invariant mass of the final state excluding the tag

33
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has to be larger than 2.5 GeV. This cut excludes exclusive resonance production
and is also necessary because of uncertainties in the Monte Carlo simulations.
For invariant masses below that, the simulations are considered not to describe
reality well enough.

No events with less than three charged particles in the final state are accepted.
This cut efficiently discriminates against γγ → e+e− and γγ → µ+µ−. To exclude
this leptonic final states there may also no energy-flow object be identified as
electron or muon. In the energy-flow algorithm leptons can only be identified
if their momentum is larger than about 1.4 GeV for electrons and 2.4 GeV for
muons. Leptons generated in the hadronic system as decay products or from γ
conversion are usually softer and not affected by this cut on identified leptons.

It has to be mentioned that the use of energy-flow objects implies some in-
trinsic cuts performed to ensure a certain data quality. For charged particles this
includes a minimum of four hits in the TPC and a shortest distance from the
nominal interaction point of not more than 20 cm in the z direction and 2 cm in
the plane perpendicular to the beam axis. For more details see [43].

The total energy of charged and neutral objects measured excluding the tag
lepton must not exceed 70 GeV to avoid background from annihilation events.

The preselection is done with the same cuts for all centre-of-mass energies
and results in a sample of 20188 events collected at

√
s = 189 GeV, 8748 events

at
√

s = 196 GeV and 8768 events at
√

s = 200 GeV. For energies 205 GeV ≤√
s ≤ 207 GeV 19450 events were selected.

5.2 Final Selection and Data Sample

The final data sample is selected in a second step with slightly different cuts
for different centre-of-mass energies. Since the mean Lorentz boost of the γγ
events varies with the beam energy, the acceptance changes and different detector-
response matrices account for the experimental setup. Cuts are chosen in such a
way, that a variation has minimal effect on the results.

The data sample is divided in two different bins of the virtuality Q2 of the
probing photon. The border between lower and upper bin is given by a minimum
in the Q2 spectrum as shown in Fig. 5.1. It originates from the reduced acceptance
in the overlap region between the two luminosity calorimeters SiCAL and LCAL.

The final binning and the mean value of Q2 can be read off from Tab. 5.1.
There also the numbers of selected events are presented that have survived all
cuts suppressing the background as discussed later in this section.
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Figure 5.1: Q2 spectrum for data
taken at

√
s = 189 GeV. The separa-

tion between the lower and the upper
Q2 bin is done at Q2 = 27GeV2 as
indicated by the dashed line.

5.2.1 Background Processes

Four different kinds of background are discussed. For most of them the same cuts
are applied for all different centre-of-mass energies. Exceptions are mentioned
explicitly.

Off-momentum electrons

The major background after data preselection is due to so called off-momentum
electrons. These are beam electrons which - having lost an appreciable amount of
energy through synchrotron radiation - are no longer focused on the orbit of the
storage ring but are lost from the lepton bunch. They are preferentially emitted
in the LEP plane, mostly around an azimuthal angle of ϕ ≈ π, which is the
direction pointing away from the center of the LEP ring.

If such an off-momentum electron is scattered into the luminosity calorimeter
at the same time together with a no-tag γγ event, it is impossible to distinguish
such an event from a single-tag event as used for this analysis.

The properties of off-momentum background are studied in detail in [56].
The value of Q2 for such a fake tag lepton is typically small (< 15 GeV2) since
the energy of the electron is usually below 80% of the beam energy and the
reconstructed scattering angle is not larger than 45 mrad. With elliptical cuts in
the ϑ-ϕ plane as shown in Fig.5.2 (a) and a requirement for the energy of the tag
lepton of at least 70% × Ebeam (Fig.5.2 (b)) the off-momentum background can
be suppressed significantly. The remaining contribution to the final data sample
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Ecms # of Q2 range 〈Q2〉
/GeV events /GeV2 /GeV2

189 5411 10-27 16.1
189 3537 27-250 61.7
196 2577 10-28 16.7
196 1643 28-250 65.7
200 2694 10-29 17.4
200 1648 29-250 68.3

205-207 6167 10-32 18.4
205-207 3560 32-250 72.9

15849 〈Q2〉 = 17.3 GeV2∑
10388 〈Q2〉 = 67.2 GeV2

Table 5.1: Number of selected events after all cuts listed for all centre-of-mass energies and Q2

ranges. The range of Q2 of the two bins analyzed is given in column three. Background is not
yet subtracted.

can be estimated to be not more than 1% in the low Q2 sample. As a Boolean
expression the off-momentum cut reads as follows:

ETag > 0.7 · Ebeam

.AND.[
If ETag < 0.8 · Ebeam

then

1 <

(
ϕ− π

HAϕ

)2

+

(
π
2
−

∣∣π
2
− ϑ

∣∣− 0.035

HAϑ

)2

.AND.

1 <

(
π − |π − ϕ|

HAϕ

)2

+

(
π
2
− ∣∣π

2
− ϑ

∣∣− 0.035

HAϑ

)2 ]
.

The free parameters HAϕ/ϑ determine the size of the half axes in ϕ and ϑ direction
of the ellipses used for cutting. There is no need to introduce different parameters
for the elliptic cut that excludes off-momentum leptons which were scattered
around ϕ ≈ π and those which were scattered around ϕ ≈ 0. At ALEPH the
direction ϕ = 0 lies in the LEP plane and points towards the center of the LEP
ring. The final cuts are

HAϑ = 8 mrad, and

HAϕ = 5 mrad .
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Figure 5.2: Contamination of the data sample by off-momentum electrons can be seen in the
ϑ−ϕ-plane (a). They are preferably radiated in the LEP plane, ϕ ≈ 0/π/2π. The elliptic cuts
are drawn as performed in the analysis. Histogram (b) shows the dominance of off-momentum
background for small tag energies compared to the continuously falling spectrum of the tag
electrons from γγ events. The hatched part reflects events rejected by the cut on Etag.

The angular distribution of the tag leptons azimuthal angle ϕ is plotted in
Fig.5.3. The histogram shows the angular distribution after the cuts against
off-momentum background have been applied. The hatched histogram plotted
on top of it presents the events which are rejected by the elliptic cut. The data
sample containing the upper Q2 bin is not affected by off-momentum contamina-
tion.

Beam-gas interaction

Interactions of the beam leptons with remaining gas molecules inside the beam
pipe can be excluded to a large extent by an additional cut on the interaction
vertex. The reconstructed vertex of the γγ events has to be located inside a
cylindrical volume around the nominal interaction point with a length of 10 cm
in z direction (± 5 cm from main vertex) and a radius of 1 cm.

Background from γγ and annihilation processes

Several processes at a e+e− collider can show a signature similar to the typical
topology of a hadronic single-tag γγ event. First there are γγ events with leptonic
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Figure 5.3: Distribution of azimuthal angle
ϕ after off-momentum cuts have been ap-
plied. The hatched histogram accounts for
those events which are excluded by the ellip-
tic cut. A cut ETag ≥ 0.7 · Ebeam has been
performed before.

final state:

γγ → e+e−

γγ → µ+µ−

γγ → τ+τ−

The contamination by the first two processes can be kept small by the cut on
the minimal number of charged particles (Nchrg ≥ 3). The τ+τ− final state
events cannot be suppressed that easily because the τ lepton decays inside the
beam pipe and can produce a multi-particle final state like a hadronic interaction.
The tau leptons cannot be fully reconstructed due to the fact that not all decay
products are detected. As for all other background where no special cuts can
be applied for an identification, also the background from τ pair production
has to be simulated with Monte Carlo techniques and subtracted from the data.
Fortunately these background processes are usually much better understood than
the hadron production in γγ events that is investigated here.

Background from annihilation processes originates from

e+e− → µ+µ−

e+e− → τ+τ−

e+e− → qq̄

e+e− → Weν

e+e− → Zee

The most important criterion to exclude these events is to reject all events with
a reconstructed invariant mass of more than 50 GeV.
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In Tab. 5.2 the various physics processes that contribute to background are
listed together with the Monte Carlo generator used for simulation and determi-
nation of the cross section of the process. The contamination of the final data
sample is listed in Tab. 5.3. The cross section is given for a centre-of-mass energy
of 200 GeV although it varies slightly for energies between 189 GeV and 207 GeV.
Of course the exact centre-of-mass energy is used for the correction.

Process MC σ [pb] # simulated events [1000]
Generator (@200 GeV) @189/196/200/205− 207 GeV

γγ → e+e− PHOT02 9617.5 3400/3600/3600/1200
γγ → µ+µ− PHOT02 4480.2 3200/3600/3600/1200
γγ → τ+τ− PHOT02 452.0 500/600/600/600
e+e− → qq̄ PHYTHIA 88.1 960/2000/2000/490
e+e− → µ+µ− KORL08 7.3 150/70/100/50
e+e− → τ+τ− KORL08 7.3 150/140/200/100
e+e− → Weν PHYTHIA 0.8 200/100/100/200
e+e− → Zee PHYTHIA 99.0 1960/800/900/600

Table 5.2: Various background processes from two-photon collisions and annihilation events.
The Monte Carlo generators will be explained in more detail in chapter 6.1.

Q2 resolution effects

The detector response matrix A introduced in chapter 4 is generated from a large
Monte Carlo sample in such a way, that the matrix corrects the x distribution
for events generated in a certain Q2 range which are also reconstructed with a
virtuality inside the same Q2 range. It is clear that events which are reconstructed
at other values of Q2 are simply treated as being lost through inefficiency.

More difficult is the migration of events into the considered Q2 region. In
Fig. 5.4 this effect is illustrated in the Q2

true-Q
2
vis plane. Events generated at

other values of Q2 which are selected by the data sample have to be treated
as background and must be subtracted. Unfortunately there is no way to iden-
tify those events. The background has to be simulated the same way as other
physics background processes. Of course the hadronic structure function has to
be known in the Monte Carlo calculations and consequently a model dependence
is introduced. The contamination of the selected data sample calculated with a
GRV-LO parametrization used for the simulation is less than 5% in the low Q2 re-
gion and approximately 2% for the upper Q2 region. Exact numbers can be found
in Tab. 5.3. It has been checked that the use of different parametrizations has
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Process Contamination [%]

〈Q2〉 = 17.3 GeV2

189 GeV 196 GeV 200 GeV 205− 207 GeV

γγ → e+e− 0.22±0.03 0.26±0.05 0.25±0.05 0.27±0.09
γγ → µ+µ− < 0.1
γγ → τ+τ− 3.4±0.1 3.9±0.1 4.1±0.1 4.3±0.1
e+e− → qq̄ 0.24±0.01 0.23±0.01 0.24±0.01 0.22±0.01
e+e− → µ+µ− < 0.1
e+e− → τ+τ− < 0.1
e+e− → Weν < 0.1
e+e− → Zee 0.15±0.01 0.14±0.01 0.16±0.01 0.15±0.01
Q2 resolution 4.97±0.06 4.17±0.05 3.80±0.05 2.50±0.04

〈Q2〉 = 67.2 GeV2

189 GeV 196 GeV 200 GeV 205− 207 GeV

γγ → e+e− 0.3±0.04 0.22±0.05 0.31±0.07 0.41±0.14
γγ → µ+µ− < 0.1
γγ → τ+τ− 6.1±0.2 6.6±0.2 7.1±0.2 7.0±0.2
e+e− → qq̄ 0.88±0.02 0.91±0.02 0.93±0.02 0.98±0.03
e+e− → µ+µ− < 0.1
e+e− → τ+τ− < 0.1
e+e− → Weν < 0.1
e+e− → Zee 0.61±0.01 0.55±0.02 0.58±0.02 0.62±0.02
Q2 resolution 1.72±0.04 1.63±0.04 1.79±0.04 2.35±0.05

Table 5.3: Contamination of the selected data sample through background processes.

almost no effect on the unfolded results since the main reason for this migration
is the limited energy resolution of the tag lepton in the luminosity calorimeter.

5.2.2 Observed Data

The number of observed events after all selection cuts and background subtraction
can be read off in Tab. 5.4. The binning in the measured quantity x can be taken
from that table as well. For a Monte Carlo sample, that consists of all generated
true events, it has been chosen such that the number of entries in each bin would
be the same.
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Figure 5.4: Q2 resolution as determined
from Monte Carlo studies. The hatched
areas account for events which con-
tribute to inefficiencies or to the Q2 res-
olution background as discussed before.

x Bin 〈Q2〉 = 17.3 GeV2

√
s = 189 GeV 196 GeV 200 GeV 205− 207 GeV

0.0020 - 0.0110 68.8 22.8 28.3 72.6
0.0110 - 0.0338 395.1 227.9 217.9 505.8
0.0338 - 0.0787 671.5 325.9 358.6 775.5
0.0787 - 0.1487 859.9 397.8 424.0 971.2
0.1487 - 0.2429 861.8 412.1 439.0 943.0
0.2429 - 0.3624 895.2 423.0 419.5 954.3
0.3624 - 0.5074 898.3 379.8 400.9 992.8
0.5074 - 0.7000 329.8 182.8 193.5 517.9

x Bin 〈Q2〉 = 67.2 GeV2

√
s = 189 GeV 196 GeV 200 GeV 205− 207 GeV

0.0060 - 0.0362 67.9 34.2 37.0 68.2
0.0362 - 0.0950 302.1 145.5 139.6 297.2
0.0950 - 0.1811 385.5 182.9 208.9 381.5
0.1811 - 0.2907 460.8 227.9 204.4 441.3
0.2907 - 0.4204 475.5 216.0 214.6 482.7
0.4204 - 0.5714 543.3 219.6 257.6 564.5
0.5714 - 0.7356 574.0 259.3 220.8 517.8
0.7356 - 0.9600 396.9 199.1 192.1 415.2

Table 5.4: Background-corrected number of observed events in two bins in Q2 and eight bins
in the Bjorken variable x listed separately for each analyzed centre-of-mass energy.
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Monte Carlo Simulation

6.1 Generators

Monte Carlo simulations are used on the one hand for the construction of the
detector-response matrix and on the other hand for the simulation of background
processes. The latter is done with the generators listed in Tab.5.2. They were
tuned for the ALEPH experimental setup. Since no adaption of these generators
is needed for this analysis, simulated events were taken from the central ALEPH
Monte Carlo production. Details can be found in the KINGAL documentation
[57,58].

For the construction of the detector-response matrix, a set of two-photon
events has to be generated. The HERWIG program is used in version 6.2 with
the general ALEPH tuning parameters also found in the documentation of the
official ALEPH Monte Carlo production mentioned above. A parametrization for
the structure function F γ

2 has to be used by the generator. It is possible to choose
sets of parameters from the library of parton density functions PDFLIB [59].
Two different samples of Monte Carlo events have been produced for each LEP
energy that is analyzed separately. In one of them a parametrization according
to GRV-LO (PDFLIB Nptype=3/Ngroup=5/Nset=3) has been applied and the
second sample is generated with a structure function as given by SaS-1D (PDFLIB
Nptype=3/Ngroup=9/Nset=5) Each sample consists of 1 000 000 events.

For the details of the event simulation in the HERWIG program and the
cluster fragmentation model see the references [60–65].

42
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6.2 Comparison of Data and Monte Carlo

Simulation

For a comparison between observed data and events generated by the Monte
Carlo methods, important event quantities are plotted in histograms below. The
data points show the sample after subtraction of all background sources. The
histograms for the Monte Carlo samples are normalized to the data luminosity to
compare not only the shape of the distributions but also their absolute normaliza-
tion. The GRV-LO sample is drawn with a solid line, the dashed line shows the
spectra from the SaS-1D sample. In addition the spectra for annihilation back-
ground e+e− → qq̄ and from γγ → ττ are plotted as well as the background due
to resolution effects in the Q2 measurement. The histograms of the background
processes are plotted on top of each other so that the degree of contamination
can easily be seen in comparison to observed data.

6.3 Construction of the Detector-Response

Matrix

The detector-response matrix A describes the effects of the experimental setup on
data. For the spectrum of the measured variable that means either an inefficiency
or a migration of events within the histogram due to an imperfect measurement.
It is important to know for a sample of events both the true information about
the quantity of interest and the value that would be measured in the detector.
For that reason the γγ Monte Carlo sample mentioned above is subjected to
a full detector simulation and to the same reconstruction algorithm as used on
real data. The detector simulation is done by the GALEPH program [66], a
GEANT [67] based simulation of the ALEPH detector. JULIA [68] is used for
the reconstruction of the events. The events of the Monte Carlo sample undergo
the same selection cuts on their reconstructed quantity as the real data do.

The spectrum of the measured Bjorken variable x is divided into a certain
number of N bins. For a given Q2 range, in which the structure function is to
be measured, and for a minimum true hadronic mass of 2.5 GeV, the number of
events generated in each x bin j has to be determined:

nj, true = Number of events generated in x bin j, j = 1, ..., N

This is done for all generated events, even if they do not pass the selection cuts
on their reconstructed properties. The cut on the true hadronic mass is done
because of uncertainties in the Monte Carlo generator for production of low mass
final states. The cut has to be well below the cut on the visible hadronic mass.
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The matrix element Aij is then defined as

Aij =
n(i, vis|j, true)

nj, true

with n(i, vis|j, true) being the number of events generated in x bin j but reconstructed
in x bin i. The efficiency for all events generated in bin j is then

εj =
N∑

i=1

Aij ≤ 1.

The detector-response matrix shows a lot of migration between bins which
lead to large off diagonal elements. Consequently strong correlations between the
measured points of the structure function F γ

2 are expected.
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Figure 6.1: The diagrams show the energy spectrum of the tagged beam leptons. Data measured
with the ALEPH detector are compared to Monte Carlo simulations based on either GRV-
LO parametrization or on the SaS-1D set of parameters. The hatched histograms present
the contamination by the three main types of background plotted on top of each other. All
histograms are normalized to the data luminosity. In plot (a) the diagrams of the low Q2 are
drawn, plot (b) contains data from the high Q2 region.
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Figure 6.2: Comparison between ALEPH data and Monte Carlo for the virtuality Q2 of the
photon radiated by the tagged beam lepton.
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Figure 6.3: Diagrams as in Fig. 6.1 but for the visible invariant hadronic mass Wγγ .
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Figure 6.4: Bjorken variable x as seen in the experiment and simulated by Monte Carlo pro-
grams.
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Figure 6.5: Distributions of the scattering angle ϑ of the tag electron with respect to the beam
direction.
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Figure 6.6: The histograms show the azimuthal angle ϕ of the tagged beam lepton. The two
dips in the spectrum of high Q2 tag electrons appear because of inefficiencies at the borders of
the two LCAL modules. Each of them covers an azimuthal angle of π.
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Figure 6.7: Comparison of reconstructed number of energy-flow objects in Monte Carlo and
ALEPH data. The histograms contain both charged and neutral objects. It seems that the
spectrum of the ALEPH data is shifted by about two units towards larger multiplicity compared
to the Monte Carlo simulations.
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Figure 6.8: The diagrams plotted give the number of reconstructed charged particles in an
event. The multiplicity of the data events again seems to be slightly larger than in Monte Carlo
simulations for high Q2. In the upper diagram for low Q2 the agreement seems to be better.
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Figure 6.9: Same comparison as in the figures above but for the total reconstructed energy
excluding the tag electron.
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Figure 6.10: Monte Carlo simulated thrust of the reconstructed hadronic system compared to
measured data. The reason for the disagreement between data and simulations is not clear. A
possible explanation could be that there are more three-jet like events in data than are produced
in Monte Carlo calculations. More higher order corrections in the simulations might be able to
account for the difference.



Chapter 7

Measurement and Results

In this section the measurement is described in detail. Since the structure function
F γ

2 (x,Q2) is proportional to the differential cross section d2σ/dxdQ2, it is neces-
sary to obtain the corrected x spectrum and integrate over a range in Q2. That
is done in the measurement, where the structure function is given at the mean
value of Q2. The spectrum of the Bjorken variable x is divided into eight bins,
the binning can be read off from Tab. 5.4 in Chap. 5. It has been checked that
the results are sufficiently insensitive to reasonable changes in the bin bounderies.

7.1 Observed Data

After applying all selection cuts discussed in Chap. 5 and after subtraction of
background the visible spectra shown in Fig.7.1 and 7.2 are obtained. The his-
tograms are shown with a logarithmic x axis for the low Q2 samples. Error bars
indicate statistical errors only. In addition there are the re-folded histograms
plotted into the same diagrams. They were obtained when the distributions
from the regularized Tikhonov unfolding are again multiplied with the original
detector-response matrix. The histogram drawn with a dashed line shows the re-
folded distribution obtained from a matrix that is based on the GRV-LO Monte
Carlo sample. The SAS-1D detector-response matrix is used for the histogram
drawn with the dotted line. These tests are done to demonstrate that the spectra
achieved with the regularized unfolding method applied here are consistent with
the measured data within statistical errors.

7.2 Unfolding Parameters

A Tikhonov regularization method as described in Chap.4 has been applied to
the visible spectra shown in the previous section. The regularization parameter
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α has been determined according to Eqn. (4.13). In Tab.7.1 and 7.2 the obtained
parameters as well as the condition numbers of the original and the regularized
system are listed. The condition number, beeing the ratio of the modulus of
the largest and the smallest eigenvalue, is significantly lower for the regularized
system. Therefore a better stability in the unfolded spectrum is ensured.

189 GeV 196 GeV 200 GeV 205− 207 GeV

Matrix build from GRV-LO Monte Carlo sample
cond(ATA) 1.7 · 106 1.7 · 106 3.0 · 106 3.2 · 106

α 3.2 · 10−3 6.0 · 10−3 5.9 · 10−3 2.7 · 10−3

cond(αI + ATA) 52.7 25.8 25.1 45.8

Matrix build from SaS-1D Monte Carlo sample
cond(ATA) 1.9 · 106 1.5 · 106 1.1 · 106 2.0 · 106

α 3.3 · 10−3 6.1 · 10−3 5.9 · 10−3 2.8 · 10−3

cond(αI + ATA) 51.5 26.0 25.1 45.8

Table 7.1: Regularization parameter α and condition numbers for the unfolding of low Q2 data
with the LEP energy given in the first line.

189 GeV 196 GeV 200 GeV 205− 207 GeV

Matrix build from GRV-LO Monte Carlo sample
cond(ATA) 3.9 · 104 4.1 · 104 8.7 · 104 8.0 · 104

α 4.2 · 10−3 7.4 · 10−3 3.8 · 10−3 3.9 · 10−3

cond(αI + ATA) 54.4 31.1 61.4 64.6

Matrix build from SaS-1D Monte Carlo sample
cond(ATA) 1.8 · 104 2.3 · 104 2.2 · 104 1.9 · 104

α 4.8 · 10−3 8.0 · 10−3 4.7 · 10−3 4.9 · 10−3

cond(αI + ATA) 49.6 29.3 50.0 52.2

Table 7.2: Same as Tab.7.1 but for high Q2 data.

7.3 Unfolded Distributions

The unfolded spectra dσ/dx are shown in Fig.7.3 and 7.4 for low and high Q2

events, respectively. Both detector-response matrices were used and the results
are plotted into the same diagrams. The mean value of both results has been
performed for later use in the calculation of the structure function. The error bars
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represent the statistical and approximation error added in quadrature. No other
systematic errors are included so far. They will be considered later. Especially
the error introduced by the use of two different matrices has not been taken into
account yet. Beside the unfolded spectra for the ALEPH data, the theoretical
prediction of the differential cross section dσ/dx is shown in the same diagrams
as histograms with no error bars attached. The solid line represents the GRV-LO
parametrization and the dashed lines again the prediction for the SaS-1D model.

7.4 Extraction of F γ
2 (x,Q2)

The structure function F γ
2 can be extracted from the measured differential cross

section with Eqn. (2.14). For a reference parametrization of the structure func-
tion, the differential cross section dσ/dx can be calculated with Monte Carlo
techniques, as is for instance done for the Monte Carlo sample that is used for
constructing the detector-response matrix. With the formula

F γ
2 (x, 〈Q2〉)data =

(
dσ
dx

)
data(

dσ
dx

)
ref

· F γ
2 (x, 〈Q2〉)ref

the hadronic structure function is finally determined. In this analysis the two
models GRV-LO and SaS-1D are used as references, the mean of both distribu-
tions F γ

2 (x, 〈Q2〉)data is taken as the final result. Half of the difference between
them is taken into account as a systematic error. Fig. 7.5 and 7.6 show the re-
sults for both Q2 ranges analyzed and for all centre-of-mass energies separately.
The inner error bars show statistical errors only, the systematic errors taken into
account are the approximation error from regularization and the error introduced
by different reference distribution and unfolding matrices.

7.5 Systematic Uncertainties

The most important systematic uncertainty arises from the regularization in the
unfolding. It has been discussed in chapter 4.

It has to be stressed that although the number of observed events is larger
for higher x, the approximation uncertainty dominates the error in that region
compared to low x because the visible hadronic invariant mass Wγγ is usually less
than the value generated and Wγγ is especially large for low x events. Therefore
low x events might be shifted and thus be observed with higher x values but the
detector simulation accounts for that. For high x events the situation is worse
because these are frequently lost completely.
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Further effects give rize to additional systematic errors: The detector-response
matrix is not independent of the model used to generate it. The unfolding is done
separately with matrices from two different models and the mean of both results
is taken as the final result. Half the difference of the two separate results is taken
as a systematic error. Limited Monte Carlo statistics for the construction of the
matrix is found to give a non negligible effect. It is not treated as a systematic
uncertainty but as a part of the statistical error because it can be calculated in
terms of error propagation as done in Appendix A.

The energy and momentum calibration of the detector was detuned artificially
by ±2% for all particles in the hadronic system. The effect has only minor
influence on the results (< 2%) since the major uncertainty in the measurement
of the hadronic system comes from lost tracks rather than from the resolution of
the tracking devices and calorimeters. The variation was added to the systematic
error.

The virtuality of the target photon is small but not vanishing. In the Monte
Carlo generated by HERWIG it is produced with 〈P 2〉 ≈ 0.45 GeV2. The shape of
the virtuality spectrum of the quasi real target photon can be taken as a ρ pole as
the simplest vector meson or from the generalized vector meson dominance model
(GVMD), and the effect on the result then be computed with the GALUGA [69]
program. The uncertainty is 2-5%, depending slightly on x.

All systematic uncertainties and the statistical error are added in quadrature
to obtain the total error plotted in Fig. 7.5 and 7.6.

7.6 Results

The structure function F γ
2 measured in this way is shown in Fig. 7.7 for both

regions in Q2. The unfolded spectra from all different centre-of-mass energies are
combined. The inner marks on the error bars indicate the statistical errors, the
whole error bars show systematic and statistical errors added in quadrature. The
horizontal bars are the bin widths. A more detailed list of particular values for
different uncertainties can be found in Tab. 7.3. Due to the unfolding and the
properties of the detector-response matrix the measured points of the structure
function are highly correlated. The correlation matrices are given in Tab. 7.4.

The curves plotted show three examples of different models for a parametriza-
tion calculated from PDFLIB functions. For medium values of x the significance
of this measurement is too low to distinguish between different models. The
shape seems to be similar to the GRV-LO and SaS-1D but the absolute value is
slightly higher. For low x, where the structure function is sensitive to the gluon
content, the LAC1 parametrization seems to be clearly too high. Overall a GRV-
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like parametrization seems to fit the data best. The calculations are done for a
mass of the charm quark of mc = 1.4 GeV.

7.7 Comparison to Other Experiments

Since the hadronic structure function of the photon was first measured by the
PLUTO collaboration [70], many experiments have made contributions so that
data are now available for F γ

2 in a wide range of Q2. In Fig. 7.8 the ALEPH results
from this analysis are plotted together with measurements which are comparable
in 〈Q2〉 from OPAL (〈Q2〉 = 17.8 GeV2) [71], TOPAZ (〈Q2〉 = 16 GeV2) [72], L3
(〈Q2〉 = 15.3 GeV2) [73], DELPHI (〈Q2〉 = 13 GeV2) [74] and OPAL (〈Q2〉 =
59 GeV2) [75], AMY (〈Q2〉 = 73 GeV2) [76] and PLUTO (〈Q2〉 = 45 GeV2) [77].

7.8 Q2 Dependence

The Q2 dependence of the structure function cannot be fitted to the measurement,
since only two bins in Q2 are considered. Usually the mean values of F γ

2 are
compared for a medium x range. A value can be calculated for both Q2 regions,
but the uncertainties are large, especially for lower Q2. The results from this
measurement are

F γ
2 (0.1 ≤ x ≤ 0.5, 〈Q2〉 = 17.3 GeV2) = 0.42± 0.01 (stat.) ± 0.10 (sys.),

F γ
2 (0.1 ≤ x ≤ 0.7, 〈Q2〉 = 67.2 GeV2) = 0.53± 0.01 (stat.) ± 0.05 (sys.).

In Fig. 7.9 the results are shown in comparison to other experiments.
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Figure 7.1: The histograms show the observed spectra of the Bjorken variable x for the low
range of Q2 and different centre-of-mass energies: a) Ecms = 189 GeV, b) Ecms = 196 GeV, c)
Ecms = 200 GeV and d) Ecms = 205−207GeV. The mean value 〈Q2〉 is given in the histograms.
The marks drawn with a solid line show the observed number of events in the original data
sample after all cuts and background subtraction. The re-folded histograms are plotted in
colored dashed and in dotted lines. The histogram that is obtained with an unfolding based on
a response matrix built from a GRV-LO Monte Carlo (red) in addition is marked with a circle,
the one obtained from a SaS-1D model (blue) is plotted with a small x.
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Figure 7.2: Same as in Fig.7.1 but for high values of 〈Q2〉
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Figure 7.3: Differential cross section dσ/dx as obtained after unfolding for the low range of
Q2 and different centre-of-mass energies: a) Ecms = 189GeV, b) Ecms = 196 GeV, c) Ecms =
200GeV and d) Ecms = 205 − 207 GeV. The mean value 〈Q2〉 is given in the histograms. No
error bars are attached to the theoretical predictions. The solid error bars are plotted with the
results obtained with a matrix constructed from the GRV-LO Monte Carlo. For the SaS-1D
matrix the error bars are drawn with a dotted line. In addition the SaS-1D unfolded results
are marked with a small x for better visibility.
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Figure 7.5: Final result for the hadronic structure function F γ
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lines plotted are examples for theoretical predictions: GRV-LO parametrization is plotted as a
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parameters and the upper dotted line follow the LAC1 parametrization. The data are plotted
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〈Q2〉 = 17.3 GeV2

x Bin F γ
2 Uncertainties

Total Stat. System. Approx. Model others

1 0.43 0.042 0.016 0.039 0.018 0.009 0.034
2 0.28 0.024 0.014 0.019 0.006 0.004 0.017
3 0.35 0.029 0.015 0.024 0.009 0.003 0.023
4 0.35 0.031 0.015 0.028 0.007 0.004 0.027
5 0.39 0.036 0.015 0.032 0.003 0.007 0.031
6 0.47 0.039 0.018 0.035 0.022 0.003 0.027
7 0.42 0.16 0.02 0.15 0.15 0.01 0.05
8 0.19 0.26 0.02 0.26 0.25 0.01 0.05

〈Q2〉 = 67.2 GeV2

x Bin F γ
2 Uncertainties

Total Stat. System. Approx. Model others

1 0.58 0.042 0.027 0.031 0.018 0.007 0.025
2 0.43 0.045 0.027 0.037 0.009 0.017 0.031
3 0.48 0.046 0.030 0.036 0.011 0.014 0.031
4 0.51 0.041 0.031 0.027 0.009 0.003 0.025
5 0.61 0.051 0.037 0.035 0.014 0.010 0.031
6 0.66 0.058 0.039 0.043 0.006 0.020 0.037
7 0.67 0.10 0.05 0.08 0.03 0.03 0.06
8 0.68 0.11 0.06 0.09 0.08 0.01 0.05

Table 7.3: Measured values of F γ
2 and their uncertainties. The total error in column three is

a quadratic sum of statistical and systematic errors, given in column four and five. The last
three columns show contributions from the approximation error due to regularization, model
dependence from different parametrizations in the Monte-Carlo simulations for the detector-
response matrix and others like cut variations, energy and momentum resolution. These three
errors add up in quadrature to the systematic error.
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〈Q2〉 = 17.3 GeV2

x Bin 1 2 3 4 5 6 7 8

1 1.00 -0.49 0.05 0.13 -0.07 -0.03 0.02 0.01
2 1.00 -0.48 -0.13 0.26 -0.01 -0.08 -0.01
3 1.00 -0.33 -0.49 0.23 0.16 -0.04
4 1.00 0.02 -0.66 -0.01 0.18
5 1.00 0.09 -0.64 -0.12
6 1.00 0.28 -0.47
7 1.00 0.30
8 1.00

〈Q2〉 = 67.2 GeV2

x Bin 1 2 3 4 5 6 7 8

1 1.00 -0.48 0.01 0.20 -0.11 -0.02 0.04 -0.02
2 1.00 -0.45 -0.28 0.32 -0.05 -0.07 0.04
3 1.00 -0.23 -0.52 0.34 0.01 -0.05
4 1.00 -0.12 -0.70 0.39 -0.12
5 1.00 0.02 -0.71 0.43
6 1.00 -0.10 -0.32
7 1.00 -0.51
8 1.00

Table 7.4: Correlation coefficients for the results of the F γ
2 measurement.
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from ALEPH data. Statistical and systematic uncertainties are added up in quadrature for the
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Chapter 8

Conclusions

A measurement of the hadronic structure function F γ
2 (x,Q2) has been performed

with data taken by the ALEPH Collaboration in the years 1998 to 2000. At LEP
centre-of-mass energies between 189 GeV and 207 GeV an integrated luminosity
of 548.4 pb−1 has been analyzed in two bins of the virtuality Q2. 15567 single-tag
γ∗γ events were selected in the low Q2 region with 〈Q2〉 = 17.3 GeV2 and 9334
events at high Q2 with 〈Q2〉 = 67.2 GeV2.

The properties of the selected events are compared to Monte-Carlo calcula-
tions. The simulation has been done with the HERWIG generator in version 6.2.
Sets of Monte-Carlo events have been produced with two different theoretical
models for the structure function F γ

2 , GRV-LO and SaS-1D. The distribution of
important event variables are reasonably well reproduced by these Monte-Carlo
calculations.

A regularized Tikhonov unfolding technique has been applied to correct for
the detector acceptance and efficiency. It has been shown, that this method is
suitable for the purpose of this analysis and delivers stable and reliable results.
Emphasis is put on a complete treatment of statistical and systematic uncer-
tainties including the matrix error and the approximation uncertainty that is
necessarily introduced by the regularization. The detector-response matrix has
been built from the HERWIG Monte-Carlo samples.

The final results show reasonable agreement with the GRV-LO model, al-
though the absolute value of the measured cross section is slightly higher than
predicted. The SaS-1D model predicts an even lower cross section but describes
the overall shape quite well, too. Models for the parton density function that
predict a relatively large gluon content are not consistent with data in the low x
region. For medium and high values of the Bjorken variable x, the precision of
the measurement does not allow to reject a particular model. Many more models
with similar behavior are available which are not mentioned explicitly.
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The Q2 dependence of the structure function F γ
2 at medium values of x could

only be compared to theoretical predictions and measurements from other exper-
iments. The results obtained here agree within their uncertainties with available
fits and measurements.



Appendix A

Full Error Propagation Including
Matrix Uncertainties

For a matrix1 A that is given with a limited accuracy, the uncertainty δA of the
Matrix A has to be taken into account to calculate the statistical uncertainty of
the solution x of the linear equation

Ax = y. (A.1)

Also the vector y is only known with a limited accuracy δy. The matrix has to
be written as A = A0 + δA and the first higher order, that does not vanish, is
calculated for the approximation of the inverse matrix. For the solution of the
Eqn. (A.1) one obtains

x = A−1y

= (A0 + δA)−1 y

=
[
A0

(
1 + A−1

0 δA
)]−1

y

=
(
1 + A−1

0 δA
)−1

A−1
0 y

≈ (
1− A−1

0 δA
)
A−1

0 y

The covariance matrix Cx is then given as an expectation value Ey,δA depending
on the two uncertainties δA and δy. The expectation value of the vector y is
denoted by ȳ.

Cx = Ey,δA

((
A−1y − A−1

0 ȳ
) (

yTA−1T − ȳTA−1T
0

))

≈ Ey,δA

([(
1− A−1

0 δA
)
A−1

0 y − A−1
0 ȳ

]

1The importance of the invertibility of the matrix A is briefly discussed in the first paragraph
of section 4.4. All calculations performed here are correct with the provisions pointed out there.
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[
yTA−1T

0

(
1− δATA−1T

0

)− ȳTA−1T
0

])

= Ey

(
A−1

0 (y − ȳ)(y − ȳ)TA−1T
0

)
+

+Ey,δA

(
A−1

0 (δAA−1
0 yȳA−1T

0 δATA−1T
0

)

= A−1
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(
(y − ȳ)(y − ȳ)T

)
A−1T

0 +

+A−1
0 Ey,δA

(
δAA−1

0 yȳA−1T
0 δAT

)
A−1T

0

= A−1
0 CyA
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0 + A−1

0 EδA

(
δAA−1
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(
yȳT

)
A−1T

0 δAT
)
A−1T

0

= A−1
0 CyA

−1T
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0 EδA

(
δAA−1

0

(
ȳȳT + Cy
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A−1T

0 δAT
)
A−1T

0

EδA

(∑

k,l

δAikBklδA
T
lj

)
=

∑

k,l

Bklδijδklσ
2(Aik)

= δij

∑

k

Bkkσ
2(Aik)

B = A−1
0

(
ȳȳT + Cy

)
A−1T

0

Cx = A−1
0 CyA

−1T
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=: C(1)
x

+

+A−1
0

(
δij

∑

k

[ (
A−1

0

(
ȳȳT + Cy
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0

)
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x̄x̄T + A−1
0 CyA

−1T
0

)
kk

σ2(Aik)
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A−1T
0

= C(1)
x + A−1

0

(
δij

∑

k

[(
x̄2

k +
(
C(1)

x

)
kk
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σ2(Aik)
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0

= C(1)
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0

(
δij
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k
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x̄2
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(
σ

(1)
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)2
)

σ2(Aik)

])
A−1T

0 (A.2)

The assumption has been made that the matrix elements Aij are uncorrelated
and their probability density function is Gaussian. In the case of a standard
Tikhonov unfolding, the solution x solves the equation

(
αI + ATA

)
x = ATy

where α is the regularization parameter. Eqn. (A.1) is replaced by

Rx = y (A.3)

with
R = A−1 T

(
αI + ATA

)
.
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To calculate the influence of the uncertainties in A on the final regularized result,
R−1 has to be expanded into a series in A around the point

R0 = A−1T
0

(
αI + AT

0 A0

)
=

(
αA−1T

0 + A0

)
.

Terms that are of higher order in δA are neglected.

R = αA−1T
0 + A0

≈ α
(
A−1T

0 − A−1T
0 δATA−1T

0

)
+ A0 + δA

= R0 +
(
δA− αA−1T

0 δATA−1T
0

)

= R0 +
(
δA− A−1 T

0 δA (R0 − A0)
)

= R0 + δR

The covariance matrix of the regularized solution Cx, α then writes as

Cx, α = Ey, δA

((
R−1y −R−1

0 ȳ
) (

yTR−1T − ȳTR−1T
0

))
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(
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)
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0 δRT
)
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0

where the part of the expectation value, that depends on the matrix uncertainty
δA can be calculated like
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Finally the complete covariance matrix Cx is given by
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Appendix B

Test of the Unfolding Procedure

The complete unfolding procedure has been performed on Monte Carlo test sam-
ples. For each centre–of–mass energy and Q2 region, samples of the size of the
real data sample have been treated in the same way as data. In particular, they
are also unfolded with the use of detector-response matrices which were not build
from the same model. All tests were successful. The method can be considered as
reliable and stable for our purpose. In Fig. B.1 and B.2 the final results are shown
for low and high Q2 region and both input structure functions. As systematic
uncertainties the approximation error as well as the uncertainty introduced by
the use of different matrices are taken into account. The full statistical error is
calculated and given by the inner error bars. In all cases the results are consistent
with the theoretical model.
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Figure B.1: Reconstruction of the photon structure function from a small GRV-LO Monte
Carlo sample. The same number of events as in data have been randomly chosen for all centre-
of-mass energies and treated like data through the complete process of the analysis. After
the final combination the original structure function is consistent with the results within the
experimental uncertainties. Total and statistical uncertainties are plotted.
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Figure B.2: Same test as in Fig. B.1 but performed with a SaS-1D Monte Carlo sample.
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