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Abstract
The occurrence of large Sudakov logarithms, associated with soft and collinear radia-
tion, in the calculation of cross sections in Quantum Chromodynamics (QCD) spoils
the perturbative expansion in the strong coupling constant. This breakdown of per-
turbative QCD is a bottleneck for achieving precise predictions for a large class of
observables at the Large Hadron Collider (LHC). Therefore, these logarithms must
be resummed to all orders to preserve the predictive power of perturbation theory.
A convenient way to achieve this resummation uses methods from effective field the-
ory. Currently, most observables are calculated analytically case-by-case, but for some
observables a numerical approach is the only feasible way.

This thesis is focused on developing a formalism that automates the calculation of
two-loop jet functions, which are an essential ingredient for the resummation of Sudakov
logarithms to next-to-next-to-leading logarithmic (NNLL) accuracy in Soft-Collinear
Effective Theory (SCET). In particular, we developed a systematic strategy based
on sector decomposition, selector functions, non-linear transformations, and suitable
phase-space parametrisations to evaluate the quark and gluon jet functions to next-
to-next-to-leading order (NNLO) in perturbation theory. The strategy allows one to
completely factorise all the phase-space singularities associated with the jet functions
in terms of master formulae. We furthermore transformed the master formulae into a
computational parametrisation to improve the convergence of the numerical routines
and to obtain reliable uncertainty estimates. The master formulae were finally imple-
mented into the publicly available code pySecDec, which performs the expansion in
the dimensional and rapidity regulators and which provides an interface to the CUBA
library for the numerical integrations.

The novel framework allows us to compute two-loop results for quark and gluon
jet function for a broad class of collider observables. We have verified our framework
against the known results for thrust and obtained new results for several e+e− event-
shape variables both for SCETI and SCETII .

This thesis represents the next step towards a complete automatic resummation
tool for generic collider observables to NNLL accuracy in SCET.
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Zusammenfassung
Bei der Berechnung von Wirkungsquerschnitten in der Quantenchromodynamik (QCD)
treten große Sudakov-Logarithmen auf, welche mit softer und kollinearer Strahlung ver-
bunden sind. Diese Logarithmen führen zu einem Zusammenbruch der Störungsreihe in
der starken Kopplungskonstante. Dieses Scheitern der perturbativen QCD ist ein Eng-
pass für das Erreichen präziser Vorhersagen für eine große Klasse von Observablen am
Large Hadron Collider (LHC). Daher müssen diese Logarithmen auf alle Ordnungen
zusammengefasst werden, um die Vorhersagekraft der Störungstheorie zu erhalten. Ein
geeigneter Weg, diese Resummierung zu erreichen, sind Methoden aus der effektiven
Feldtheorie. Gegenwärtig, werden die meisten Observablen explizit analytisch berech-
net, aber für einige Observablen ist ein numerischer Ansatz der einzig mögliche Weg.

Diese Arbeit konzentriert sich auf die Entwicklung eines Formalismus, der die Be-
rechnung von Jetfunktionen automatisiert, die ein wesentlicher Bestandteil für die Re-
summierung von Sudakov-Logarithmen mit nächst-zu-nächst-zu-führender logarithmi-
schen (NNLL) Genauigkeit in der Soft-Collinear Effective Theory (SCET) sind. Insbe-
sondere haben wir eine systematische Strategie entwickelt, die auf Sektorenzerlegung,
Selektorfunktionen, nichtlinearen Transformationen und geeigneten Phasenraum-Pa-
rametrisierungen basiert, um die Quark- und Gluonen-Jetfunktionen in der Störungs-
theorie bis zur nächst-zu-nächst-zu-führender Ordnung auszuwerten. Diese Strategie
ermöglicht es, alle mit den Jetfunktionen verbundenen Phasenraum-Singularitäten voll-
ständig in Form von Masterformeln zu faktorisieren. Darüber hinaus haben wir die
Masterformeln in eine numerisch günstigere Parametrisierung umgewandelt, um die
Konvergenz der numerischen Routinen zu verbessern und zuverlässige Fehlerabschät-
zungen zu erhalten. Die Masterformeln wurden schließlich in den öffentlich verfügbaren
Code pySecDec implementiert, der die Expansion in Dimensionalitäts- und Rapiditäts-
regulatoren durchführt und eine Schnittstelle zur CUBA Bibliothek für die numerischen
Integrationen bietet.

Das neuartige Rahmenwerk ermöglicht die Berechnung von Zweischleifenergebnis-
sen für Quark- und Gluonen-Jetfunktionen für eine breite Klasse von Observablen an
Teilchenbeschleunigern. Wir haben unser Programm durch die Berechnung mit dem
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bekannten Ergebnis für Thrust verifiziert und neue Ergebnisse für mehrere e+e− Event-
shape Variablen sowohl für SCETI als auch für SCETII erhalten.

Diese Arbeit ist der nächste Schritt auf dem Weg zu einem vollständigen automa-
tischen Resumierungswerkzeug für generische Observablen an Teilchenbeschleunigern
mit NNLL-Genauigkeit in SCET.
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Chapter 1

Introduction

This year we celebrated the 10th anniversary of the discovery of the Higgs boson [1,
2] at the Large Hadron Collider (LHC) at CERN near Geneva. Besides the discovery
of the Higgs boson, the LHC aims at searching for New Physics, from Supersymmetry
to Dark Matter, and new sources of CP-violation. After gathering data during the
successful LHC Runs 1 and Run 2 [3] we are currently right at the start of the next
LHC Run 3 [4]. This will result in more data at a higher luminosity and higher collision
energy until the LHC will shutdown for its High Luminosity upgrade [5] in 2029 for
both precision measurements of Higgs properties and the continued search for New
Physics.

Currently, the Standard Model (SM) is our best attempt to describe the interac-
tions and forces we observe in collider experiments like the LHC. The SM is a gauge
theory of spin-1

2
fermions, a spin-0 Higgs boson, and spin-1 gauge bosons which me-

diate the interactions according to the gauge group SU(3)C × SU(2)L × U(1)Y . The
SU(2)L×U(1)Y subgroup describes the electroweak interactions, and the SU(3)C rep-
resents Quantum Chromodynamics (QCD), the relevant gauge group on how we model
the strong interactions.

While particles that interact solely via the electroweak interaction like the electron
or muon can be directly detected in the experiments, this is not true in QCD. Instead
we observe that particles that are charged under the SU(3)C gauge group are never
found as asymptotic states in nature, but only colour-singlet states like mesons and
baryons. This behaviour of QCD was explained by the introduction of asymptotic
freedom [6, 7]. Asymptotic freedom can be considered as the opposite of screening
in electromagnetism; the strong force gets weaker at higher energies and stronger as
particles are further apart if the energy decreases. However, the coupling strength
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Chapter 1. Introduction

increases until we are left with colour-neutral bound states composed of colour charged
objects.

At a proton-proton (pp) collider like the LHC, it is crucial to understand the pri-
mary force that governs the collisions, the strong interaction, because, without precise
knowledge of the strong dynamics, it is neither possible to make accurate measurements
of the properties of the Higgs boson, nor to find any signs of potential New Physics
signatures.

From the theory side, we want to predict or confirm experimental observations. The
essential tool for these calculations in Quantum Field Theory is perturbation theory,
which handles all interactions as small perturbations around the free-field theory. This
approach breaks down when the interaction strength is too large for the interactions
to be considered as perturbations around the free field. In the case of QCD, the
energy scale at which the perturbative regime breaks down and the non-perturbative
regime overshadows it is at ∼ 1GeV, far below the current LHC center-of-mass energy
of 13.6 TeV. We could expect that perturbative QCD has no predictivity as we can
only describe the interactions of weakly coupled systems of colour-charged quarks and
gluons. Finally, we only measure colour-neutral mesons and baryons, or collimated
collections of particles known as jets, in the detector. The transition between the
partonic regime of colour-charged particles and the hadronic regime of colour-neutral
mesons and baryons is precisely the transition between the perturbative and the non-
perturbative regime, where no model-independent description exists.

However, QCD has a way out of this dilemma because it tends to factorize at high
center-of-mass energies. This means that the cross section for hadronic collisions can
be decomposed into a partonic cross section, which we can calculate within pertur-
bation theory, convoluted with universal parton distribution functions. In the end, it
is equipped with some hadronisation model to arrive at a purely hadronic final state.
Technically, QCD factorisation has only been proven for a few observables [8]; however,
it is assumed to hold for a larger class under specific conditions [9].

Sadly, it is not as simple as it appears at first glance. It is possible to calculate
the partonic cross section at high energies in QCD. However, the coupling is still
comparatively large; for example, the world average for the strong coupling is αs(M2

Z) ∼
0.118 while αEM ∼ 0.008, thus the convergence rate of the perturbative series is much
smaller. Furthermore, in some regions of phase space, the perturbative series breaks
down entirely due to the radiation of soft or collinear particles. This break-down of
perturbation theory manifests itself in form of logarithms of small τ , where τ represents
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a generic measurement scale. It takes the form of Sudakov double logarithms αns ln2n τ

at n-loop order and additional lower logarithmic terms. If τ becomes small enough,
the value of the logarithm diverges, and the product of the logarithm and the small
perturbation parameter αs tend to diverge. This effect ripples through the complete
perturbative series, thus spoiling its convergence.

In the regions of phase space where the perturbative series converges slowly, the
computation of higher loop orders can be used to address this problem. However,
this comes at the cost of an increasing number of complicated Feynman diagrams. In
the regions where the perturbative series breaks down, the large logarithms must be
resummed to all orders in perturbation theory. Finally, the two calculations must be
matched to arrive at a physical cross section. These procedures are highly complex,
and computer-aided tools are indispensable for them.

The increase of loop order of any perturbative computation can be performed by
different tools that automate the calculation of next-to-leading order (NLO) correc-
tions [10–17]. They are often combined with Monte Carlo event generators [18–22]
to include parton showers to model collinear and soft QCD radiation. Additionally,
they are interlaced with some hadronisation model. Finally, the NLO calculation and
parton showers are matched [23, 24] to avoid double counting real emissions.

At first glance, this strategy sounds relatively straightforward; however, there are
still challenges. The matching between fixed-order calculations and parton showers is a
non-trivial procedure. The probabilistic nature of the showers makes it hard to resum
more than the leading logarithm (LL) in the Sudakov region. Though progress is being
made in this direction [25] no shower has yet achieved full next-to-leading logarithmic
(NLL) accuracy for generic collider observables.

The inclusion of higher logarithmic accuracy is usually addressed with analytic
resummation methods, which are generally implemented on a case-by-case basis for
inclusive observables, like e+e− event-shapes. Some computational tools which auto-
mate the resummation of generic observables are CAESAR [26] for NLL resummation and
ARES [27] for resummation to NNLL accuracy. Both tools use the so-called direct QCD
framework [28] to resum the large logarithms. Here the soft and collinear emissions are
described by universal splitting functions, which can be iterated to resum logarithms
to all orders.

Instead of using the direct QCD framework, effective field theories (EFT) provide a
different framework of handling large logarithms. In EFTs, systematic scale separations
ultimately lead to large logarithms; however, they are taken as a justification to further

3



Chapter 1. Introduction

factorise the partonic cross section into different contributions that describe the physics
at the different scales. Therefore we expect EFTs to become better approximations of
the full theory in the region where the Sudakov problem worsens.

One EFT which is able to resum Sudakov logarithms in QCD is Soft-Collinear Ef-
fective Theory (SCET) [29–32], whose different degrees of freedom are soft and collinear
modes, which give rise to large logarithms. We can derive all order factorisation the-
orems within SCET, which factorise the partonic cross section into contributions that
describe only the hard, soft, and collinear dynamics. The connection between full QCD
and SCET is then performed by matching between the two theories.

The resummation of Sudakov logarithm in SCET proceeds in the typical EFT
framework via the renormalisation group flow. In perturbation theory, the different
contributions in the factorisation theorem are evaluated at their natural scale, where
there are no large logarithms. Then they are evolved to some common scale, and the
logarithms are resummed in the renormalisation group evolution kernel. This procedure
has achieved N3LL and N4LL resummation accuracy for some observable [33–40].

Even though SCET has proven to be able to resum these large logarithms to high
accuracy, no complete automated setup exists for calculating all factorisation ingredi-
ents. The hard contributions are calculated via the matching relation to QCD. They
contain the underlying partonic hard-scattering diagrams, prior to the collinear branch-
ing and soft radiation encoded in the jet and soft functions. On the other hand, the soft
and collinear contributions depend on the measured observable. In the case of the soft
contributions there exists an automated approach SoftSERVE [41–43], which provides
the necessary ingredients for NNLL1 resummation. In the case of the collinear con-
tribution, automated tools exist only for the computation of the NLL ingredients [44,
45].

In this thesis, we follow the ideas proposed for the automation of the soft functions
and apply them to the final-state collinear contribution to arrive at a similar setup
that allows the calculation of the necessary resummation ingredients for the collinear
sector. Compared to the soft functions, the jet functions have a more complicated
matrix element and more involved singularity structure at NNLO because of the three-
particle phase space. For the first time we present an automated approach to calculate
the two-loop quark and gluon jet functions. This framework has been validated against
the known results from the literature, and we obtain new results for several e+e− event-
shapes [46]. In parallel a similar setup has been developed for the initial-state collinear

1And NNLL′, which involves the two-loop matching correction.
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radiation, the beam functions [47, 48].
The thesis is structured as follows, in section 2 we first give a short review of the

Standard Model and perturbative QCD, followed by a review of event-shapes as a
brief introduction to the observables we have in mind in our computation in section
3. In section 4 we take a closer look into the SCET approach to resummation. In
section 5 we determine the necessary ingredients for NNLL resummation and outline the
general strategy of our approach, followed by a detailed discussion about the underlying
matrix-element calculations and suitable phase-space parametrisations at both NLO
and NNLO in section 6. In section 7 we outline the setup for the numerical integration
and give insight into the technical difficulties of our approach. Section 8 lists results
calculated with our approach. Finally, in the appendix A, we collect all required
anomalous dimensions. We state the decomposition of the collinear splitting functions
in App.B, list the explicit master formulae in our parametrisation in App.C, and provide
the necessary steps to completely disentangle the overlapping singularities in App.D.
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Chapter 2

Brief introduction to the Standard
Model and perturbative QCD

In this chapter, we briefly introduce the Standard Model of particle physics and intro-
duce QCD, in particular, lay out the basics of perturbative QCD.

2.1 The Standard Model

The Standard Model (SM) of particle physics is the theory that successfully describes
three of the four fundamental interactions known in nature: electromagnetic, strong,
and weak interactions. However, it is apparent that the SM cannot be the final theory
of nature.1 In the following, we introduce the main features of the SM without any
intent to give a complete and self-contained introduction to the subject. For a more
detailed introduction to the SM, we refer to standard textbooks (e.g [50], [51]).

The interactions within the SM are described by gauge symmetries, where quantum
fields transform locally under the gauge group elements. To maintain gauge symmetry,
two field configurations at different space-times must be connected by covariant deriva-
tives, which contain the gauge fields as minimal couplings. The interaction between
field configurations is thus propagated through the gauge fields. The gauge group of
the SM is

GSM = SU(3)C × SU(2)L × U(1)Y , (2.1.1)

In eq. (2.1.1), SU(3)C is the colour symmetry group of the strong interactions with
coupling constant gs; this theory of QCD involves three colour charges and has eight

1As an example, the SM is not able to incorporate gravity, dark matter, dark energy etc [49].
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Chapter 2. The Standard Model and QCD

mediators, the gluons. The SU(2)L is the weak isospin group with coupling constant g
and involves three gauge fields, W a

µ . The U(1)Y , in eq. (2.1.1), is the group of the weak
hypercharge. The gauge group is mediated by one gauge boson Bµ, with coupling g′.

In the unbroken gauge group of the SM, the theory consists of massless fields. The
gauge group of the SM is spontaneously broken by the Higgs potential to

GSSB
SM = SU(3)C × U(1)Q. (2.1.2)

As a result of spontaneous symmetry breaking (SSB), the Higgs field acquires a non-
zero vacuum expectation value and the fermions obtain masses through the Yukawa
couplings to the Higgs field. The weak gauge fields become massive after SSB where
massless Goldstone bosons are absorbed by the gauge fields to give the mass, which
appear as a result of the SSB of the Higgs field. The massive gauge bosons in the
broken phase are the charged W± and the neutral Z0. The massless photon is the
gauge boson of the unbroken U(1)Q of electromagnetism. The massless photon field
is constructed as linear combinations of the W 3

µ and Bµ fields. Thus, the coupling
constant of U(1)Q is given as e = gg′/

√
g2 + g′2.

The particle content of the SM is shown in figure 2.1.1, including their mass, charge
and spin. In the SM there are six types of quarks: up (u), down (d), strange (s),
charm (c), bottom (b), top (t); and six types of leptons: electron (e), muon (µ), tau (τ)
and their respective neutrinos (νe,νµ, ντ ). Quarks and leptons are organised in three
families, where the left-handed fields

Qi
L ≡

((
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

))
,

LiL ≡

((
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

))

are SU(2)L doublets and the right-handed fields

eiR ≡ {eR, µR, τR} ,

uiR ≡ {uR, cR, tR} , diR ≡ {dR, sR, bR} ,

are SU(2)L singlets. Under SU(3)C , leptons are colour singlets while quarks, which
have colour charge, are SU(3)C triplets. Besides the twelve fermions, there exists four
gauge bosons that mediate the different interactions. The final piece of the SM is the

8



2.1. The Standard Model

Figure 2.1.1: Elementary particles of the SM. Image from ref. [52]

Higgs scalar field , which is an SU(2) doublet and has a non-zero vacuum expectation
value

〈H〉 = 1√
2

(
0

v

)
. (2.1.3)

The SM Lagrangian is the most general Lagrangian which contains all terms that fulfill
the conditions of field content, the gauge group GSM and renormalizability.2 Schemat-
ically, it reads

LSM = LQCD + LEW + LYukawa + LHiggs. (2.1.4)

The explicit form of LQCD is

LQCD =
∑
ψ

ψ̄
(
i /D −mψ

)
ψ − 1

2
Tr
{
G̃µνG̃

µν
}
, (2.1.5)

with the covariant derivative and field strength tensor

Dµψ = (∂µ − igsÃµ)ψ,

G̃µν = ∂µÃν − ∂νÃµ + igs

[
Ãµ, Ãν

]
=

i

gs
[Dµ, Dν ] .

2Dropping the renormalizability one obtains a more general Lagrangian, called the Standard Model
Effective Field Theory(SMEFT) Lagrangian [53].
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Chapter 2. The Standard Model and QCD

Here we abbreviate
Ãµ(ν) = Aaµ(ν)

λa
2
,

where λa are the Gell-Mann matrices. In eq. (2.1.5) the sum runs over the different
quark flavours. Additionally, we included the mass term of the quarks in LQCD to
separate it completely from the rest of the SM Lagrangian. Technically, the mass
term is part of the Yukawa Lagrangian. The explicit forms of the electroweak (LEW),
Yukawa (LYukawa) and Higgs-Lagrangian (LHiggs) are not used in this work and thus
we refer to [54] for their explicit forms.

2.2 Perturbative QCD

Our modern understanding of the high-energy behavior of the strong interactions was
conceived with the idea of the parton model in the late 1960s [55–57]. In the early
1970’s it was born with the introduction of asymptotic freedom [6, 7]. From there,
it became clear that hadrons are made up of smaller particles, named partons, which
are nothing but the excitations of quantum fields which occur in the theory of quark
and gluons interacting via strong coupling. Asymptotic freedom allows one to consider
quarks as free quanta at short distances and over short times, thus connecting with
the idea of a parton as a non-interacting constituent of a hadron on these scales. In
high energy processes involving large momentum transfer, one separates (factorises) the
process into one part, which involves the hard interactions and which is computable
using perturbative QCD (pQCD), and a second part which involves non-perturbative
physics [8]. The non-perturbative part mostly involves parton dynamics at low scales
where the perturbative approach fails. These non-perturbative parts are encoded in
parton distribution functions which describe the probability for finding a parton with a
certain energy fraction of the proton within the proton. We refer to [58–60] for further
information on this topic.

Before revisiting LQCD in eq. (2.1.5), we perform an excursion into group theory
and summarise useful relations satisfied by the fundamental and adjoint representation
matrices of SU(N) [61]. The associated algebra of the SU(N) Lie Group is the su(N)

Lie Algebra. The N2−1 generators in the fundamental representation of su(N), labeled
by T a, serve as a basis for the set of traceless Hermitian N × N matrices. The Lie
algebra is defined through its commutation relations:

[
T a, T b

]
= ifabcT

c, a, b, c = 1, 2, . . . , N2 − 1, (2.2.1)

10



2.2. Perturbative QCD

where fabc are known as structure constants. In this work, we employ the following
normalisation convention for the generators in the fundamental representation

Tr
{
T aT b

}
=

1

2
δab. (2.2.2)

In this convention, the structure constants are totally antisymmetric under the ex-
change of any pair of indices. We define the quadratic Casimir C2(R) by

T aRT
a
R = C2(R)I, (2.2.3)

where R is the appropriate representation and I the corresponding identity matrix.
Starting from eq. (2.2.3) we define the following quadratic Casimirs for the fundamental
and adjoint representation

CF ≡ C2(fund.) = N2 − 1

2N
,

CA ≡ C2(adj.) = N.

The main relations we will use in following chapters are

Tr
{
T aT b

}
= TF δab, (2.2.4)

(T aT a)ij = CF δij,

facdf bcd = CAδab,

with TF = 1
2
. In particular, we find for the SU(3) group the following quadratic

Casimirs CF = 4
3

and CA = 3.

Now that we have familiarised ourselves with the SU(N), we will derive the explicit
form of LQCD in eq. (2.1.5). In the previous section, we have stated that the only
particles charged under colour are the quarks and gluons. Quarks are described by a
Dirac spinor field ψi(x) that transforms under the fundamental representation of SU(3)

ψi(x) −→
U

Uijψj(x), U ∈ SU(3). (2.2.5)

In the following we will suppress the indices i, j for the fundamental representation
and write ψ(x) → Uψ(x) to shorten the notation. Thus we are able to transform the
antiquark field as ψ̄(x) → ψ̄(x)U †, with UU † = 1. The gluons are represented by Ãµ(x)

11
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that transform under the adjoint representation of SU(3),

Ãµ(x) −→
U

UÃµ(x)U
†. (2.2.6)

In eqs. (2.2.5) and (2.2.6) we have assumed that U is a global colour rotation, which
implies conservation of the total colour charge. Therefore, we can ask to what degree
this assumption has already determined the QCD Lagrangian’s form. The operators
that can appear in it should be polynomials of the fields and derivatives, with a total
mass dimension of four. In addition, the operators must be Lorentz scalars to preserve
Lorentz invariance. Thus we have the following operators

LQCD ⊃ ψ̄i/∂ψ, ψ̄ /̃Aψ, Tr
[
∂nÃ4−n

]
, (2.2.7)

where the last expression represents any Lorentz scalar contraction of derivatives and
gluon fields. These operators can appear with arbitrary coefficients. We could set
eliminate two operators by choosing a normalisation for the quark and gluon fields.
The resulting Lagrangian is however still undetermined, especially in the gluon sector.

The dynamics of QCD follows instead from elevating eqs. (2.2.5) and (2.2.6) to a
local gauge symmetry under a transformation U(x),

ψ(x) −→
U(x)

U(x)ψ(x), Ãµ(x) −→
U(x)

U(x)Ãµ(x)U
†(x) + U(x)

[
i

gs
∂µU

†(x)

]
, (2.2.8)

where gs in the last term is the gauge coupling parameter associated with QCD. This
transformation behaviour of the gluon field allows us to write down the covariant
derivative in the form defined in eq. (2.1.5).

The covariant derivative then satisfies

Dµ −→
U(x)

U(x)Dµ(x)U
†(x). (2.2.9)

Dµ is the only possible combination in which derivatives and the gauge field could
appear in the Lagrangian to make it gauge invariant. Therefore, this requirement
uniquely fixes all terms in the Lagrangian which act on quark fields such that

LQCD ⊃ ψ̄i /Dψ. (2.2.10)

Additionally, the only other operators built out of Dµ that may appear in the remaining

12



2.2. Perturbative QCD

terms of the Lagrangian are those that satisfy

O(Dµ)f(x) = [O(Dµ)] f(x), (2.2.11)

for any test function f(x), the brackets on the LHS of the equation denote the com-
mutator. To identify these operators in a simple way, we rewrite all derivatives of the
gauge field as commutators acting on test functions,[

∂µÃν

]
f(x) = ∂µ

[
Ãνf(x)

]
− Ãν∂µf(x) =

[
∂µ, Ãν

]
f(x). (2.2.12)

By demanding gauge invariance, it follows that all operators O(Dµ) that satisfy
eq. (2.2.11) depend on Dµ only through the field strength tensor G̃µν defined in
eq. (2.1.5). Thus, at mass dimension four, we find exactly three operators that are
invariant under local gauge transformations

L = ψ̄i /Dψ − 1

2
Tr
{
G̃µνG̃

µν
}
+ θQCD

g2s
32π2

εµνρσG
a,ρσGa,µν . (2.2.13)

To match the QCD Lagrangian in eq. (2.1.5), we note two modifications to the
Lagrangian stated in eq. (2.2.13). The first modification is that quarks carry an ad-
ditional quantum number called flavour, which is conserved in QCD. The different
flavoured quarks are distinguishable by their respected masses mψ; this can be seen in
figure 2.1.1. The masses enter the QCD Lagrangian as the dimensionful coefficients of
the ψ̄ψ operator which is not gauge invarient, and is induced in the SM via the Higgs
mechanism. The second modification concerns the third term in eq. (2.2.13). The coef-
ficient of this term introduces an additional free parameter θQCD into the theory, with
a conventional factor pulled out. However, it is proportional to a total derivative; thus,
it never contributes to perturbative computations because the fields are assumed to
vanish asymptotically at infinity. It could contribute to non-perturbative calculations
where the fields do not vanish on the boundary. The phenomenological significance
in these cases is that this term explicitly breaks the CP symmetry that is otherwise
conserved in QCD. Experimental searches for permanent electric dipole moments of
neutrons and mercury atoms [62, 63] set strong limits on the strong CP angle, with
|θQCD| ≤ 10−11. Theoretically, there has been much speculation as to why θQCD should
be zero [64].
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a

ij

(a) gs (T
a)ij

b

ca

(b) gsf
abc

b

c

d

a

(c) g2sf
abef cde+perm.

Figure 2.2.1: Elementary interaction vertices of QCD, their colour structure, and scaling
with gs. The Lorentz and spin structure of the vertices is suppressed but can be taken, for
example, from [51]. In general gauges, additional ghost interactions need to be added.

After performing the two modifications to eq. (2.2.13) we arrive at

LQCD =
∑
ψ

ψ̄
(
i /D −mψ

)
ψ − 1

2
Tr
{
G̃µνG̃

µν
}

(2.2.14)

which is the same as eq. (2.1.5). Now that we have derived the QCD Lagrangian, we
state the QCD Feynman rules used throughout this work.

The interaction vertices that arise from the Lagrangian are illustrated in figure
2.2.1. To write down the propagator for the gluon, we first note the following: In a
path integral over the gluon field Ãµ, many configurations only differ by pure gauge
transformations, which leave the action unchanged. This overcounting of physical
degrees of freedom cancels between numerator and denominator in the normalized par-
tition function when calculating gauge-invariant quantities. However, this cancellation
is also required for gauge-dependent quantities like the gluon propagator in perturba-
tive computations. This can be achieved by inserting a gauge constraint δ

[
G(Ãµ)

]
,

with a suitable Jacobian, into the functional integral over the gluon field, where G is
some functional of the field strength. In the Faddeev-Popov procedure [65], the Ja-
cobian is represented as a functional integral over the Grassmann-valued fields ca(x),
called ghosts. This allows the gauge constraint to be written as a simple modification
of the action, leading to additional Feynman rules that fix the overcounting of degrees
of freedom in the sum over diagrams at any given order in the perturbation theory.
The precise definition of the ghost action depends on G(Ãµ). Another way to fix the
overcounting issue is to work in an axial gauge [66]. In this class of gauges, where
one picks some reference vector rµ and imposes G(Ãµ) = r · Ã = 0, the ghosts do not
propagate and also decouple from the gluon field. This, however, comes at the cost of
explicitly breaking Lorentz invariance by rµ. However, Lorentz invariance is restored
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2.2. Perturbative QCD

after calculating physical observables because the dependence on the reference vector
drops out. In this thesis, we will work explicitly in the light-cone gauge [67] which is
a special case of the axial gauge with r2 = 0. In light-cone gauge, there are only two
physical polarizations of the gluon: those transverse to the momentum and the gauge
direction. Since only two polarizations are being propagated, we do not need ghosts
to cancel the unphysical polarizations, which explains why they decouple [68]. In this
gauge, the gluon propagator is given by

p
ν,A µ,B =

i

p2 + iε

(
−gµν + rµpν + rνpµ

rp

)
δAB, (2.2.15)

where p is the momentum label, A,B are colour indices, µ, ν are Lorentz indices, and
rµ is the lightlike direction. The propagators for coloured fermions are the same as for
QED but with an additional δij factors, where i, j refer to fundamental colour indices.
In this thesis, we work exclusively in the limit where we can assume the quarks to be
massless. Therefore, the quark propagator is given by

p
j i =

iδij

p2 + iε
/p. (2.2.16)
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Chapter 3

Event-shape Observables

Theoretical predictions generally address differential cross sections that describe parton-
level physics. Once we turn to collider experiments, however, we see that we measure
distributions of individual leptons and hadrons. One possible way of linking the rift be-
tween theoretical predictions and experimental measurements is through event-shape
observables. These observables describe the geometrical information of hadronic fi-
nal states in collider experiments. They can typically be computed in perturbation
theory with minor non-perturbative corrections; and, in particular, they can also be
measured [69–71].

The main applications of event-shape observables can be divided into two different
classes: First, we want to point out that even though QCD correctly describes the
strong interactions, it is necessary to investigate the QCD dynamics precisely. On
top of that, some SM constants, like the coupling constants and masses, cannot be
determined by the underlying formulation of the SM and thus have to be determined
via measurements. As a concrete example we point to the determination of the strong
coupling αs ≡ g2s

4π
. The world average of αs [72] is formed out of many different

measurements, and among them are extractions from event-shape observables [35, 73,
74] because of their clean signatures.

The other application of event-shapes involves the search for beyond the SM (BSM)
physics. Since event-shapes describe final-state geometries and topologies, they can be
used in BSM searches, where cuts on their values can be used to restrict phase-space
region to reduce background noise [75, 76]. Additionally, it is also possible to design
specific event-shapes for the searches of BSM physics [77–79].
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3.1 Thrust

Event-shapes are a class of observables which can be defined both at lepton [80] and
hadron colliders [81]. They were used starting from the early days of QCD [82, 83] until
now [77, 84]. A few of them like thrust [83] have gained popularity over the years due
to their simple structure. This broad field makes it comparatively difficult to pinpoint
an exact set of criteria that specifies what is and is not an event-shape observables.
For this work, we take the definition that an event-shape observable is an infrared and
collinear safe1 continuous measure of the energy and momentum flow of hadrons in the
final state. For the didactic purpose, we will use an example, thrust [83], to construct
an understanding of event-shapes and their intricacies without seeking to arrive at a
more precise definition.

At the beginning of this section, we stated that event-shapes describe the geometry
of the final state in collider experiments; this information must somehow be translated
into a number. Thus, it should not rely on the exact quantum numbers of individ-
ual particles but the global structure of the event. Thrust obeys this principle. Its
definition in terms of momenta is given by

T = max
~n

∑
i |~n · ~pi|∑
i |~pi|

(3.1.1)

= max
~n

∑
i |~n · ~pi|
Q

,

where the sum runs over all particles in the final state. In the second line of (3.1.1)
we have taken into account that

∑
i |~pi| = Q in the centre-of-mass (CoM) frame for

massless particles. The unit vector ~n that maximizes the right-hand side of (3.1.1)
defines the thrust axis, for later convenience we label the thrust axis as ~nT .

Before we turn our attention to the computation of thrust, we would first like to
understand what we are measuring. From eq. (3.1.1) it is evident that if a particle’s
momentum projection onto the thrust axis is close to its total momentum, then the
thrust value is more sizeable. So we can identify large thrust events as those where this
is true for all particles in the final state. The thrust axis is the same for all particles,
thus pencil-like events as seen on the left in figure 3.1.1 take T ≈ 1. On the other
hand, more uniformly distributed events have lower thrust values.

1Later in this chapter we determine what infrared and collinear safe means.
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T = 1 T = 2
3

T ≈ 1
2

Figure 3.1.1: Thrust values for various event geometries.

3.1.1 Fixed-order calculation

Now that we understand what we are measuring, we want to improve our understanding
of thrust from a theoretical point of view. As we have a definition in terms of momenta,
we can start calculating the expected distribution for thrust in perturbation theory.

Starting from the matrix element, the differential cross section is proportional to
the square of the matrix element: dσ ∼ |M|2dΦn, where dΦn is the n-particle Lorentz-
invariant phase space. In order to compute event-shape distributions we include the
measurement as a phase-space constraint of the form δ(τ − τ ({pi})). Hence we write
the differential cross section with respect to our measurement as

dσ

dτ
∼ |M|2δ(τ − τ ({pi}))dΦn. (3.1.2)

In principle, we could now start to calculate the thrust distribution by insert-
ing (3.1.1) into the previous equation. However we limit this calculation to the hadronic
final state which is of interest here. The leading-order contribution to this process is
γ∗ → qq̄, and momentum conservation in the CoM frame fixes the quarks to be in a
back-to-back configuration, so the thrust value is T = 1.2 In general, it is more useful
to define τ ≡ 1− T . Thus, the leading order is

1

σ0

dσ

dτ
= δ(τ) +O (αs) , (3.1.3)

where σ0 is the tree-level contribution to the total cross section. At one-loop order,
three diagrams contribute at O (αs), one virtual correction where a gluon is exchanged
between the quark and antiquark and two real-emission corrections where a gluon is
emitted from either the quark or the antiquark. Thus the complete QCD one-loop

2We are neglecting the leptonic initial-state e+e− → γ∗ as this is irrelevant for the thrust distri-
bution.
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correction for the thrust distribution [33] is

1

σ0

dσ

dτ
=δ(τ) +

αs
2π
CF

{(
π2

3
− 1

)
δ(τ)−

[
4 + 6τ(τ − 1)

1− τ

] [
ln(τ)

τ

]
+

(3.1.4)

+

[
3(1 + τ)(3τ − 1) +

(4 + 6τ(τ − 1)) ln(1− 2τ)

1− τ

] [
1

τ

]
+

}
+O

(
α2
s

)
,

where we used ∫ 1

0

dz [g(z)]+ f(z) =

∫ 1

0

dz (f(z)− f(0)) g(z), (3.1.5)

[g(z)]+ = g(z) for z 6= 0,

as definition for the plus distributions. To get rid of the distributions, we can work
with the integrated version of the thrust distribution:∫ τ ′

0

dτ

(
1

σ0

dσ

dτ

)
sing

= 1+
αs
2π
CF

{
−2 ln2(τ ′)−3 ln(τ ′)+

π2

3
−1

}
+O(τ ′, α2

s), (3.1.6)

where we expanded eq. (3.1.4) around τ ∼ 0 before performing the integration as
indicated by the subscript ”sing”. By integrating over the

[
ln(τ)
τ

]
+

-term we arrive at a
term ln2(τ ′) in eq. (3.1.6). This double or Sudakov [85] logarithm is a common feature in
many event-shape distributions. It signals the incompleteness of perturbation theory in
this region. This can also be seen in figure 3.1.2. In the high τ region, the theoretical
prediction matches the experimental data fairly well; however, in the region τ ∼ 0,
the calculation loses its predictivity due to the appearance of these large Sudakov
logarithms.

3.2 Origin of Sudakov logarithms

We have seen in figure 3.1.2 that for the thrust distribution in the dijet limit, τ ∼
0, large logarithms appear that spoil the perturbative calculation. To address this
problem, we first need to understand the origin of these logarithms.

Let us revisit the structures that appear in the thrust distribution at one-loop order
in QCD. One contribution arises from the virtual correction, where we are left with a
qq̄-pair in the final state. On the other hand, the real corrections have a qq̄g final state,
so overall, we have contributions from two and three-particle final-states. In the case
of the two-particle final-state, momentum conservation requires τ = 0. Thus, we need
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3.2. Origin of Sudakov logarithms

Figure 3.1.2: Convergence of fixed-order distribution. ALEPH(red) data at 91.2 GeV is
included for reference. The figure is from [33] and uses αs(MZ) = 0.1168.

at least a three-particle final-state to achieve non-zero thrust values; however, not all
configurations give rise to contributions in the τ ∼ 0 region, for example, the second
geometry in figure 3.1.1. Instead, the sum of the projected momenta onto the thrust
axis must be close to the total scalar momenta of the final state. So consequently, the
third particle must be approximately parallel to the thrust axis or be so low-energetic
that its contribution is irrelevant to generating contributions in the τ ∼ 0 region. To
rephrase it, the third particle must be either soft in comparison or collinear to the
primary partons.

In a more general way, we can consider the occurrence of the Sudakov logarithms
as the consequence of an incomplete cancellation [86] of infrared divergences between
real and virtual corrections. It is well established that the one-loop virtual corrections
to qq̄ pair production feature soft and collinear divergences which cancel against the
analogous divergences in the qq̄g cross section [87], thus the inclusive cross section
at NLO is altogether finite. The inclusive cross section covers the integration over
the entire three-particle phase space; however, from eq. (3.1.2) it is visible that we
restrict the phase space when calculating event-shape distributions at small values of
the observable. Thus, the result is not fully inclusive over the final state, and so soft
and collinear divergences appear in the form of large Sudakov logarithms.
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3.3 Infrared and collinear safety

Now that we understand where the large logarithms arise from, we want to introduce
the concept of infrared and collinear (IRC) safe observables.

Previously, we mentioned that we measure distributions of individual leptons and
hadrons in collider experiments. However, the calculations are done on a purely par-
tonic level, and no hadronisation model describes this transition from first principles,
only in model-dependent ways [88]. So to produce a model-independent prediction
of QCD, we want to look at observables that are not particularly sensitive to hadro-
nisation effects. However, due to the structure of QCD, partons will undergo many
collinear splittings as part of the fragmentation process, and additionally, there is al-
ways some emission of soft particles. Thus infrared-collinear safety is the property that
if one modifies an event by a collinear splitting or the addition of a soft emission, the
value of the event-shape variable should remain unchanged.

Now we want to convince ourselves that thrust is an IRC safe observable. Thus the
thrust values have to be invariant under the following momentum branching

i) ~pm → 0,

ii) ~pm → λ~pm + (1− λ)~pm,

where λ is the momentum fraction of the m-th particle with respect to its mother
momentum ~pm. The first case corresponds to the soft-emission case. Inserting this into
the thrust definition of eq. (3.1.1), we find the following:

T = max
~nT

∑k
i |~nT · ~pi|∑k

i |~pi|
= max

~nT

|~nT · ~p1|+ . . .+ |~nT · ~pm|+ . . .+ |~nT · ~pk|
|~p1|+ . . .+ |~pm|+ . . .+ |~pk|

→
i)

max
~nT

|~nT · ~p1|+ . . .+ 0 + . . .+ |~nT · ~pk|
|~p1|+ . . .+ 0 + . . .+ |~pk|

= max
~nT

|~nT · ~p1|+ . . .+ |~nT · ~pk|
|~p1|+ . . .+ |~pk|

= max
~nT

∑l=k−1
j |~nT · ~pj|∑l=k−1

j |~pj|
= T,

where

j =

{
i, if j < m

i+ 1, otherwise .
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Similarly inserting the collinear splitting into the definition leads to:

T = max
~nT

∑
i |~nT · ~pi|∑

i |~pi|
= max

~nT

|~nT · ~p1|+ . . .+ |~nT · ~pm|+ . . .+ |~nT · ~pk|
|~p1|+ . . .+ |~pm|+ . . .+ |~pk|

→
ii)

max
~nT

|~nT · ~p1|+ . . .+ λ|~nT · ~pm|+ (1− λ)|~nT · ~pm|+ . . .+ |~nT · ~pk|
|~p1|+ . . .+ λ|~pm|+ (1− λ)|~pm|+ . . .+ |~pk|

= max
~nT

∑
i |~nT · ~pi|∑

i |~pi|
= T,

thus thrust is invariant under both types of splittings and consequently an IRC safe
observable.

In conclusion, IRC safety constrains observables in various nontrivial fashions. How-
ever, we will require precisely that for the observables in our approach.

3.4 Resummation

Now that we understand where the large logarithms in eq. (3.1.6) arise from; we want
to handle them systemically.

In the case of the one-loop cumulant thrust distribution, we note that the leading
term appears as αs ln2 τ . If we now compute higher n-loop order corrections to the
distribution, we would find the leading behaviour to be αns ln2n τ . So in the singular
thrust limit we find a power series in αs ln2 τ . In the case of large values of τ , this would
not be problematic because the series still converges. However, for small values of τ ,
it is unacceptable because higher corrections, in general, scale now similarly to lower-
order corrections, and thus the expansion fails as can be seen in figure 3.1.2. Therefore
the straightforward way out of the problem would be to use a different expansion
parameter, where perturbation theory is valid, or to find a workaround without the
expansion in the first place, i.e., without perturbation theory.

The commonly taken option is to work with the standard fixed-order calculation but
to systematically construct an all-order expression, which resums the critical terms [28].
The accuracy of the resummed expression is usually written as NnLL, compared to the
fixed-order NnLO loop counting. The construction of the logarithmic counting is as
follows:

Let us define a fixed-order expansion of some observable O(τ), where large loga-
rithms in τ must be resummed. Then, in loop counting, it has the subsequent expres-
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sion,

O(τ) = x00 (3.4.1)

+ αs
(
x12L

2 + x11L+ x10
)

+ α2
s

(
x24L

4 + x23L
3 + x22L

2 + x21L+ x20
)

+ . . .

+R(αs, τ),

where L = ln τ stands for the logarithms of the generic observable O(τ). Resummation
is required for small τ values. The xij’s are plain numbers accompanying the logarithms
and R(αs, τ) contains all terms that vanish in the limit τ → 0.

We are now able to rearrange the generic expression in eq. (3.4.1) into an expo-
nentiated version, which reduces the difficulty of the problem to αns lnn+1 τ for leading
terms:

O(τ) := C(αs)e
Ē(αs,L) +R(αs, τ) (3.4.2)

=
(
1 + C1αs + C2α

2
s + . . .

)
× exp

{
αs
[
c12L

2 + c11L
]
+

α2
s

[
c23L

3 + c22L
2 + c21L

]
+

α3
s

[
c34L

4 + c33L
3 + c32L

2 + c31L
]
+ . . .

}
+R(αs, τ),

where R(αs, τ) contains all terms that vanish in the limit τ → 0. We follow the notation
used in [28, 89]. Thus, we can group the terms in different αs powers together and end
up with3

Ē(αs, L) = Lg1(αsL) + g2(αsL) +
1

L
g3(αsL) + . . . , (3.4.3)

where the functions gi resum towers of αsL. Constructing an expression for Ē(αs, L)
up to gn is equivalent to achieving resummation to (next-to)n−1-leading logarithmic
accuracy. This counting in eq. (3.4.3) is natural in a regime where the logarithms are
large enough so that L ∼ 1

αs
. Then LL sums all terms of order 1

αs
, NLL all terms

of order 1, etc. In this counting, the fixed-order terms in C(αs) are counted as C1

being NNLL, C2 being N3LL, etc. Often, the fixed-order coefficients are included to
one higher order in αs, yielding the so-called ’prime’ counting [35]. The NnLL counting
is summarized in table 3.1.

3We will give a precise definition of Ē in terms of anomalous dimensions in a later section.
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Accuracy gn Cn
LL g1 –

NLL g2 –
NNLL g3 C1

Accuracy gn Cn
LL g1 –

NLL′ g2 C1

NNLL′ g3 C2

Table 3.1: Convention for counting NnLL and NnLL′ order. The gn from eq. (3.4.3) and the
Cn from eq. (3.4.2) are the highest terms included to achieve (next-to)n-leading logarithmic
accuracy. In the primed counting, the fixed-order coefficient Cn are computed to one higher
order in αs.

There are two distinct ways of setting up a framework capable of achieving resum-
mation. Their final result is essentially the same [89]; however, their origin is very
different.

The first approach is based on iterative soft and collinear emissions. The idea of this
approach is that because the double logarithms arise only from the emission of a gluon
becoming soft and collinear, higher powers of the Sudakov logarithms are connected
to multiple emissions of soft and collinear gluons. However, the structure of soft and
collinear emissions are universal in QCD and can be described using DGLAP-splitting
kernels. Thus a suitable iteration approach can be used to calculate contributions from
arbitrary high orders of αs for any observable which requires resummation.

The basic approach for this kind of resummation framework is usually denoted as
the CTTW scheme [28] and forms the framework for the resummation techniques in
direct QCD. This approach has found computational realisation in the form of the
state of the art programs of CAESAR [26] (NLL resummation) and ARES [27] (NNLL
resummation).

The second approach is based on the use of effective field theories (EFT). In event-
shape observables we know that only certain momentum modes contribute to the phase-
space region where the Sudakov logarithms appear. In that case, we can use the
EFT approach in which only these modes are dynamical. This can be backed by the
observation that we can reorganize the observable, which requires resummation as a
ratio of scales. As example, for thrust the scales would be max~nT

∑
i |~nT · ~pi| and Q.

The critical region is the region where effective theories use this ratio as its expansion
parameter and thus are expected to shine.

The advantage of the EFT approach over the direct QCD method is that the ef-
fective Lagrangian allows one to derive all-order factorisation theorems and to sys-
tematically resum logarithmically enhanced contributions at all orders. The effective
Lagrangian also provides a systematic way to write down higher power corrections, by
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including subleading terms in the effective Lagrangian.
The effective field theory that will be the underlying framework of this thesis and

which we will construct in the next section is called Soft-Collinear Effective Theory
(SCET). SCET allows one to derive factorisation theorems which divide the theoret-
ical description for processes into different structures describing physics at different
scales. Resummation in SCET is then achieved by the renormalization group (RG)
evolution of these structures to a common scale. Finally, the RG evolution shifts these
large logarithms into the exponent of the evolution kernels, where they can not spoil
perturbation theory anymore.

Now that we have a systematic way of dealing with the large logarithms in the
small τ region, the connection to the fixed-order results is re-established by matching.
The matching is constructed as

O(τ)matched = O(τ)resummed −O(τ)expanded resummed +O(τ)fixed-order, (3.4.4)

where O(τ) is some observables. The idea here is that in the vicinity of the critical
region the fixed-order expansion breaks down, so O(τ)resummed and O(τ)expanded resummed

are different, but the singular parts of O(τ)expanded resummed and O(τ)fixed-order match.
Therefore the remaining terms in O(τ)matched are the resummed term O(τ)resummed and
the non-singular remainder of O(τ)fixed-order. In the rest of the region, where fixed-order
calculations are adequately defined, O(τ)resummed equals O(τ)expanded resummed and thus
cancels, leaving only O(τ)fixed-order to contribute to the final expression.
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Soft-Collinear Effective Theory

In this chapter, we will construct the effective theory briefly described in the last
section. We will apply it in the derivation of factorisation theorems, followed by a
short overview of the technicalities of resummation within a SCET context. In terms of
literature, there exists a lot of different introductions to SCET, ranging from redefining
basic concepts of QFT within SCET to various complications that can arise in its
application. Here we will only focus on the bare minimum necessary to understand the
basics upon which this thesis is built. As a starting point for more information, we
point to different lecture notes [90], books [91] and, the original papers [29–32].

4.1 The method of regions

A critical conceptual aspect of SCET is the method of regions [92]. It is a technique
that allows to construct asymptotic expansions of loop integrals in dimensional regular-
isation (DR) by separating the integration domain into different regions and expanding
the integrands appropriately in each one of them. The different integration regions cor-
respond to different fields in the effective field theory. The expanded integrals obtained
by the method of regions are in a one-to-one correspondence to the Feynman diagrams
of the effective field theories regularized in DR.

In order to illustrate the main idea of the method of regions, we start by considering
a simple toy integral:

I =

∫ ∞
0

dk
k

(k2 +m2)(k2 +M2)
=

ln M
m

M2 −m2
. (4.1.1)

This type of integral appears in the one-loop self-energy of a two-dimensional theory,
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with two different masses. We will assume a hierarchy between the masses of the form
m2 � M2, and we will discuss the expansion of the integral in the limit of small m.
Through asymptotically expanding the r.h.s. of eq. (4.1.1) in the small m limit we find

I =
ln M

m

M2

(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
. (4.1.2)

The method of regions gives a prescription on how to recover this asymptotic result
when expanding the integrand before integration. To begin with, we have to identify
all the momentum modes involved in the problem; here, there are two modes: I) k ∼
m�M and II) k ∼M � m. After identifying the modes, one expands the integrand
in these regions and integrates them over the entire phase space. One subtlety is the
necessity of a regulator because the expansion of the integral was asymptotic when
performed after the integration. Thus the result was not analytic in the limit around
which we expanded. Hence, divergences in the integral must occur upon expanding
before performing the integration. Now we will expand the integral in both regions
and integrate; as a regulator, we introduce k−ε, and we will eventually send ε → 0 at
the end of the computation. In the first region, we find

II) =

∫ ∞
0

dk
k1−ε

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+O

(
k6

M6

))
=

π

2M2
m−ε csc

{πε
2

}(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
=

1

M2

(
1

ε
− lnm

)(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
+O(ε), (4.1.3)

and for the second region

III) =

∫ ∞
0

dk
k1−ε

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+O

(
m6

k6

))
= − π

2M2
M−ε csc

{πε
2

}(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
=

1

M2

(
−1

ε
+ lnM

)(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
+O(ε). (4.1.4)

Finally we add up the contributions, set ε→ 0 and arrive at

II) + III) =
ln M

m

M2

(
1 +

m2

M2
+
m4

M4
+O

(
m6

M6

))
, (4.1.5)
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the same expression as in eq. (4.1.2). The logarithm ln M
m

is the remnant of explicit
divergence cancellation. One subtlety is that even though we are integrating both
contributions over the whole phase-space, there is no double counting. The reason is
that the two pieces scale differently. The low-energy integral can never produce a term
M−ε since they depend analytically on the large scale, and vice-versa. We can show
explicitly that there is no double counting by calculating II) in the limit k ∼ M � m

and III) in the limit k ∼ m � M . In both cases we end up with an integral which
scales as k−1−ε at leading power which is a scaleless integral and vanishes in DR. This
feature of the method of regions is non-trivial and leads to more subtleties in more
involved scenarios.

4.2 Momentum modes in SCET

In the previous toy example, it was straightforward to identify the different momentum
modes as there were only two regions in the problem. In general, however, it is not as
clear. The modes depend on the problem one wants to investigate. In our approach,
we consider two different momentum mode scalings. The options are that the soft
and collinear modes have different virtualities, which we call SCETI, and where their
virtualities are the same, SCETII.

4.2.1 SCETI mode analysis

As an example for a SCETI process, we turn again to thrust. Before we start, however,
let us first fix the notations and conventions:

We denote the CoM energy as Q, and the parent partons in the dijet case to be
emitted along the lightlike vectors n and n̄. They are defined as

nµ = (1, 0, 0, 1), and n̄µ = (1, 0, 0,−1), (4.2.1)

so that

n2 = n̄2 = 0, (4.2.2)

n · n̄ = 2. (4.2.3)
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We can thus decompose any four-vector pµ into light-cone components as

pµ = (p · n̄) n
µ

2
+ (p · n) n̄

µ

2
+ pµ⊥

= p−
nµ

2
+ p+

n̄µ

2
+ pµ⊥, (4.2.4)

where pµ⊥ is a four-vector related to the two-dimensional vector ~pT which is transverse
to nµ and n̄µ. We will often shorten this notation to

pµ = (p−, p+, p⊥) . (4.2.5)

In this notation the scalar products can then be written as p·q = 1
2
p+q−+

1
2
p−q++p⊥ ·q⊥

and in the special case of p = q we find p2 = p−p+ + p2⊥.

Near the dijet limit, thrust simplifies to [28]

τ ∼ p2L + p2R
Q2

, (4.2.6)

where the two hemispheres are defined by the directions nµ and n̄µ. Here, p2L and p2R
are the invariant masses of the coloured particles in each hemisphere.

The highest energy scale, which eventually we integrate out of the theory, should
arise from the virtual effects in the production of the quark-antiquark pair at the CoM
energy Q. This implies that this mode should be independent of the small thrust value
and only depends on Q. Thus we can identify the hard scale as

kµh = (1, 1, 1)Q. (4.2.7)

Next we consider additional emissions, and we choose pL to be in the n direction
and pR in the n̄ direction in the dijet region. We know that the only possible radiation
is collinear or soft, so if we emit collinear radiation into any hemisphere, we find that

p2L/R ∼ τQ2. (4.2.8)

Momentum conservation imposes that the large light-cone component must be of order
Q, which means that p2L/R ∼ τQ2 fixes the scaling of the on-shell collinear modes to
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4.2. Momentum modes in SCET

be

kµc = (1, τ,
√
τ)Q, (4.2.9)

kµc̄ = (τ, 1,
√
τ)Q, (4.2.10)

where kc/c̄ is the momentum scaling in the region collinear to n/n̄. The scaling of
additional soft emissions can be explained similarly. First, note that soft emissions
do not have a preferred direction; thus, the emission in either direction n and n̄ must
scale the same. Secondly, we can not introduce terms in p2L/R which are bigger than
Q2τ , which would change the invariant mass in the hemisphere. Thus we arrive at the
following soft scaling1

kµs = (τ, τ, τ)Q. (4.2.11)

4.2.2 SCETII mode analysis

Now let us look at another observable, namely recoil-free broadening [93]. This ob-
servable is the recoil-free version of broadening, which is the scalar sum of transverse
momentum measured with respect to the thrust axis. In order to avoid recoil effects,
the broadening is measured here with respect to the broadening axis b̂. The broaden-
ing axis b̂ is the direction that minimizes the scalar sum of the transverse momentum
within a hemisphere.

In the limit for small τb values, we find that the measurement function simplifies to

τb ∼
|~p⊥|L

Q
+

|~p⊥|R

Q
, (4.2.12)

where |~p⊥|L,R is the scalar sum of transverse momentum in each hemisphere along the
broadening axis.

For the hard scale, the same arguments as before are still valid. Thus, we can
directly declare eq. (4.2.7) as the hard scale.

Next, we will consider collinear emissions and assume only radiation into the left
hemisphere. Thus τb simplifies further to

τb ∼
|~p⊥|L

Q
. (4.2.13)

Here we can see directly that pL⊥ ∼ τbQ and because of momentum conservation of the
1In the literature often denoted as ultra-soft modes to distinguish them from soft modes in SCETII.
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Modes Thrust Broadening
Hard (1, 1, 1)Q (1, 1, 1)Q

n-collinear (1, λ2, λ)Q (1, λ2, λ)Q
n̄-collinear (λ2, 1, λ)Q (λ2, 1, λ)Q

soft (λ2, λ2, λ2)Q (λ, λ, λ)Q

Table 4.1: Momentum modes for thrust and broadening. Here we relabeled τ = λ2 and
τb = λ for a better comparison.

on-shell collinear modes we find that

kµc = (1, τ 2b , τb)Q. (4.2.14)

Through the same logic we find similar modes in the right hemisphere, namely

kµc̄ = (τ 2b , 1, τb)Q. (4.2.15)

In the end, we turn again to the soft modes. In eq. (4.2.12) we see that the soft
modes scale as p⊥ ∼ τbQ, similar to the collinear modes. Additionally, we once more
state that soft emissions have no preferred direction and thus scale the same in all
directions. Therefore we find the following scaling for the soft modes

kµs = (τb, τb, τb)Q. (4.2.16)

4.2.3 SCETI vs SCETII

Let us now recap what we have learned from the last two sections by comparing them
side by side, which can be seen in table 4.1.

We see that, first of all, the difference in the two cases is only the scaling of the soft
modes. In the thrust case, the soft modes scale as the smaller of the two collinear ±-
components, while for broadening, they scale as the ⊥-component of the collinear scale.
As previously pointed out, we now have two different theories of SCET depending on
the observable. One where the virtuality of the soft and collinear modes is different:
SCETI (or thrust-like) and where the virtuality is equal: SCETII (or broadening-like).
This is also illustrated in figure 4.2.1.

For SCETI we are able to derive factorisation theorems because the soft and
collinear modes scale differently. In the case of SCETII this causes problems since
similar scaling of soft and collinear modes make it challenging to isolate the two sec-
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C

C H

US

(a) SCETI

S

C

C H

(b) SCETII

Figure 4.2.1: Different momentum scalings and their classification, using λ � 1 as the
expansion parameter. H,C, C̄, S, US denote the hard, collinear, anticollinear, soft and ultra-
soft scaling.

tors. So virtuality alone is not adequate to classify an emission as being either soft or
collinear. Thus we have to include a second quantity to disentangle them explicitly. A
straightforward example would be the rapidity, which corresponds to the ratio between
the + and − components of an emission. The rapidity of the soft modes would then be
∼ 1 compared to the collinear modes, which would either be λ2 or ∼ 1/λ2 depending
on the precise definition of the rapidity. The problem of not being able to separate soft
and collinear modes also has a manifestation in the computations as we will see below.

One approach to solve this problem proceeds by introducing an additional regulator,
e.g., an analytic regulator [94], into the collinear and soft regions. The dependence
on this additional regulator cancels when the soft and collinear contributions are, in
the end, put together. However, new large logarithms remain as a residue of this
cancellation. These remaining logarithms are of a similar type as the logarithm in
eq. (4.1.5).

One can resum these new large logarithms by the Collinear Anomaly approach [95],
where the product of collinear and soft functions can be brought into a form that
directly exponentiates the rapidity logarithms.
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4.3 SCET Lagrangian

As we now understand the underlying momentum scalings of SCET; we are now in
the position to construct the SCET Lagrangian to learn about the dynamics and in-
teractions of the theory. We will use this knowledge later to see how we can derive
factorisation theorems.

In the previous chapter, we have seen that we need two variants of SCET in our
project. However, as the Lagrangian is similar in both cases, we will only consider the
SCETI-type here. We will point to the differences between SCETI and SCETII later.

In order to keep the construction of the Lagrangian as simple as possible, we will
only deal with one soft and one collinear sector with the scaling pµs = (λ2, λ2, λ2)Q and
pµc = (1, λ2, λ)Q in a generic expansion parameter λ, respectively. We will include an
additional anticollinear sector later where it is needed. We follow the presentations
in [90, 91].

To start we split the QCD fields for quarks and gluons into soft and collinear
modes:

ψ(x) = ψs(x) + ψc(x), (4.3.1)

Ãµ(x) = Ãµs (x) + Ãµc (x).

From the QCD Lagrangian from eq. (2.1.5) we see that we have to transform two
structures in the massless case: the gluonic piece

(
∼ Tr

{
G̃µνG̃

µν
})

and the quark
piece

(
∼ ψ̄ /Dψ

)
.

4.3.1 LGluon
SCET

The gluonic structure of the SCET Lagrangian is obtained by simply including the
splitting of regions in Tr

{
G̃µνG̃

µν
}

. The structure decomposes into three parts: the
kinetic, the triple, and the quartic interaction. In the kinetic part, we simply have
copies of the full QCD structure for each mode because momentum conservation forbids
mixing between the fields. In the case of the interactions, we can see a similar story.
We have a full soft and collinear part again; however, now, some mixing is allowed. For
example, in the triple interaction, the mixing of collinear-collinear-soft(ccs) is allowed
while collinear-soft-soft(css) is forbidden due to momentum conservation. Therefore
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we find for the gluonic structure the following expression

LGluon
SCET = Ls + Lc + Lc+s, (4.3.2)

where Lc,s are identical to the QCD structure only for pure soft or collinear modes.
The soft-collinear mixing structure Lc+s is not given explicitly as it can be eliminated
at a later step.

4.3.2 LQuark
SCET

Let us now look at the quark structure ψ̄ /Dψ and include the splitting into different
modes. When the quark field is soft, the covariant derivative can not contain any
collinear modes because the soft fields can not interact with the large momentum
component because of momentum conservation. Thus, we find a copy of the QCD
structure with the subscript s for soft for the soft quark field.

On the other hand, the collinear quark sector can contain mixing between the
sectors because the suppressed momentum component of the collinear fields is of the
same order as the corresponding soft gluon fields. In the case of the collinear quark
field, we can further split it into two different components:

ψc(x) = ξ(x) + η(x), (4.3.3)

where

ξ(x) = P+ψc(x) =
/n/̄n

4
ψc(x), (4.3.4)

η(x) = P−ψc(x) =
/̄n/n

4
ψc(x).

As the next step, we want to determine the power of λ with which the different field
components scale such that we can determine the dominant component. This informa-
tion can be obtained by looking at the two-point correlators. We start with the ξ(x)
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component:

〈0|T
{
ξ(x)ξ̄(0)

}
|0〉 = /n/̄n

4
〈0|T

{
ψc(x)ψ̄c(0)

}
|0〉

/̄n/n

4

=

∫
d4k

(2π)4
i

k2 + iε
e−ik·x

/n/̄n

4
/k
/̄n/n

4︸ ︷︷ ︸
∼λ0

∼ λ4
1

λ2
λ0 ∼ λ2, (4.3.5)

where we used the identity
/n/̄n

4
/k
/̄n/n

4
= k−

/n

2
. (4.3.6)

Therefore we see that ξ(x) ∼ λ. The correlator for the η(x) component is very similar;
the only difference is that we have to employ the identity

/̄n/n

4
/k
/n/̄n

4
= k+

/̄n

2
∼ λ2. (4.3.7)

Thus we find that η(x) ∼ λ2. So the η(x) component is suppressed by one power of λ
with respect to the ξ(x) component. Therefore in the collinear quark Lagrangian we
can integrate out the η(x) fields.

In order to integrate out the η(x) fields, we start from the collinear quark La-
grangian:

Lc = ψ̄c(x)i /Dψc

=
(
ξ̄(x)) + η̄(x)

) [
in̄ ·D/n

2
+ in ·D

/̄n

2
+ i /D⊥

]
(ξ(x)) + η(x))

= ξ̄(x)in ·D
/̄n

2
ξ(x) + ξ̄(x)i /D⊥η(x) + η̄(x)i /D⊥ξ(x) + η̄(x)in̄ ·D/n

2
η(x), (4.3.8)

where we used the relations /nξ(x) = /̄nη(x) = 0 and {/n, /D⊥} = {/̄n, /D⊥} = 0. A simple
way to determine the Lagrangian after integrating out the η(x) field is to employ the
equations of motion from the Lagrangian in eq. (4.3.8). We find the following solution
from the equations of motion for η and η̄:

η(x) = −
/̄n

2n̄ ·D
/D⊥ξ(x), (4.3.9)

η̄(x) = −ξ̄(x)
←
/D⊥

/̄n

2n̄ ·
←
D
, (4.3.10)
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where the arrow indicates that the covariant derivative is acting to the left. Finally,
we can plug the solutions for η and η̄ back into the Lagrangian and arrive at:

Lc = ξ̄(x)in ·D
/̄n

2
ξ(x) + ξ̄(x)i /D⊥

1

in̄ ·D
/̄n

2
ξ(x), (4.3.11)

where we used the previously stated relations and on top P+ /D⊥ξ(x) = /D⊥P+ξ(x) =

/D⊥ξ(x). Furthermore, only the n · Ãs component of the soft gluon field2 is not power
suppressed with respect to the corresponding component of the collinear quark field;
thus, only this component enters the leading soft-collinear interactions. We arrive at
the following Lagrangian for the collinear quark field

Lc = ξ̄(x)in ·Dc

/̄n

2
ξ(x) + ξ̄(x)i /D

c
⊥

1

in̄ ·Dc

/̄n

2
ξ(x)︸ ︷︷ ︸

L̂c

−gξ̄(x)n · Ãs(x+)
/̄n

2
ξ(x) (4.3.12)

= L̂c + Lc+s,

where we performed a multipole expansion of the soft fields to achieve a consistent
EFT power counting. The first part of eq. (4.3.12) is the pure collinear quark field
Lagrangian, while the second term is still a soft-collinear interaction term. In the end
we are able to write LQuark

SCET in the following form:

LQuark
SCET = Ls + L̂c + Lc+s, (4.3.13)

where Ls is identical to the QCD structure with only soft fields and L̂c and Lc+s are
the collinear and soft-collinear interaction terms.

4.3.3 Decoupling Transformation

We noted in LGluon
SCET and LQuark

SCET that there are terms that still allow interactions between
the soft and collinear modes even at leading power in the EFT expansion. These
interactions must be eliminated if we want to derive an all-order factorisation theorem.
Before doing so, we have to introduce the concept of Wilson lines.

In order to understand Wilson lines, it is easiest to see where they come from based
on an example; here, we choose the vector current operator Jµ. At the tree level, the

2From the two-point correlator for the gluon we find that the gluon field scales like its momentum,
thus Ãµ

s (x) ∼ pµs and Ãµ
c (x) ∼ pµc .
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QCD diagram can be reproduced by a SCET operator

Jµ = ψ̄γµψ −→ ξ̄c̄γ
µ
⊥ξc, (4.3.14)

where we decomposed γµ into light-cone coordinates and used the projection relations.
However, the above operator is insufficient beyond tree-level or for processes involving
collinear gluons. One problem with the operator is that usually, operator derivatives
are power suppressed. However, in SCET, the derivatives corresponding to the large
momentum component of the collinear fields n̄ · ∂ξc ∼ ξc are not suppressed since the
collinear momentum has a large component p−c ∼ Q. Thus we need to include operators
with an arbitrary number of such derivatives.

The expansion of a collinear field along the direction associated with the large
momentum component can be written in terms of an infinite sum over non-power
suppressed derivatives,

ξc(x+ tn̄) =
∞∑
k=0

tk

k!
(n̄ · ∂)k ξc(x). (4.3.15)

Therefore, including terms with arbitrary high derivatives is equivalent to allowing non-
locality of the collinear fields along the collinear direction. However, when combining
operators at different points in gauge theory, we must be careful to maintain gauge
invariance. In a gauge theory, a product of fields at different space-time points is only
invariant if the fields are connected by Wilson lines, defined as

[x+ tn̄, x] = P exp

(
ig

∫ t

0

dt′n̄ · A(x+ t′n̄)

)
, (4.3.16)

where P is the path ordering operator and A is a generic gauge field. In SCET, it is
useful to work with Wilson lines which run from infinity along n̄µ to the point xµ:

W (x) ≡ [x,−∞n̄] = P exp

(
ig

∫ 0

−∞
dt′n̄ · A(x+ t′n̄)

)
. (4.3.17)

The Wilson line along a finite segment can be written as a product of two Wilson lines
extending to infinity:

[x+ tn̄, x] = W (x+ tn̄)W †(x). (4.3.18)

We notice that since in the SCET Lagrangian, there are two types of gauge fields,
the collinear and the soft ones; it is necessary to consider two types of Wilson lines,
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which will be denoted as follows:

Wc(x) = P exp

(
ig

∫ 0

−∞
ds n̄ · Ãc(x+ sn̄)

)
, (4.3.19)

Sn(x) = P exp

(
ig

∫ 0

−∞
ds n · Ãs(x+ sn)

)
, (4.3.20)

where Wc(x) is the collinear and Sn(x) the soft Wilson line. The collinear Wilson lines
are useful to construct operators, while the soft Wilson lines are useful because of the
structure of the soft interactions.

Now we turn our attention once more to the soft-collinear interactions in LSCET.
One can show that one can eliminate these interactions at leading power in λ � 1 by
making use of field redefinitions called decoupling transformations. To that end, we
redefine the collinear fields as

ξ(x) → Sn(x−)ξ
0(x), (4.3.21)

Ãn(x) → Sn(x−)Ã
0
n(x)S

†
n(x−), (4.3.22)

where Sn is a soft Wilson line along the n-direction. Let us start with the soft-collinear
interactions in the quark Lagrangian LQuark

SCET . With this definition we have

in ·Dξ(x) →
(
in · ∂ + gn · Sn(x−)Ã0

n(x)S
†
n(x−) + gn · As(x−)

)
Sn(x−)ξ

0(x)

=

(in ·D−Sn(x−))︸ ︷︷ ︸
=0

+Sn(x−)in · ∂ + Sn(x−)gn · Ã0
n(x)

 ξ0(x)

= Sn(x−)
(
in · ∂ + gn · Ã0

n(x)
)
ξ0(x)

≡ Sn(x−)in ·D0
cξ

0(x).

Here we used that Sn(x−)S†n(x−) = 1, that the derivative acting on Sn(x−) pulls the
gauge field out of the exponential and that the covariant derivative of a Wilson line
vanishes along its integration contour. Thus for the collinear quark Lagrangian, we
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find,

LQuark
SCET ∼ ξ̄(x)

/̄n

2
in ·Dξ(x)

→ ξ̄0(x)S†n(x−)
/̄n

2
Sn(x−)in ·D0

cξ
0(x)

= ξ̄0(x)
/̄n

2
in ·D0

cξ
0(x). (4.3.23)

So we find that the soft gluon field no longer appears in the collinear quark Lagrangian.
We can use the same decoupling transformation to eliminate the soft-collinear inter-
actions in the gluonic structure. This is because the transformations of the covariant
derivative implies that the field strength tensor transforms as G̃µν → Sn(x−)G̃

0
µνS

†
n(x−).

In the Lagrangian, the field strength tensor appears within a trace, so via its cyclic
property, we can eliminate Ãs from the collinear gluon Lagrangian.

We want to emphasize that even though we have shown that the soft and collinear
interactions decouple, this is only true at leading power in the expansion parameter λ.
At subleading power, soft and collinear interactions are still present in the Lagrangian
even after applying the decoupling transformation.

4.3.4 Gauge-covariant building blocks

In the previous section, we brushed aside the notion that ξ(x) and Ãn(x) are not gauge
invariant. However, now we will come back to this and define gauge-invariant building
blocks. We already stated that by including Wilson lines, we can maintain gauge
invariance.

The Wilson lines extending to infinity transform as follows under gauge transfor-
mations

W (x) → V (x)W (x)V †(−∞n̄), (4.3.24)

where V (x) is either a soft or a collinear gauge transformation. If one considers gauge
functions vanishing at infinity, such that V †(−∞n̄) = 1, the combinations

χ(x) ≡ W †(x)ξ(x), (4.3.25)

χ̄(x) ≡ ξ̄(x)W (x), (4.3.26)

are gauge invariant and can be used as building blocks to construct non-local operators.
Similarly, we can introduce a gauge-invariant operator Aµ

⊥(x) for the collinear gluon
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fields, which we define as follows:

Aµ
⊥(x) ≡ W †(x) (iDµ

cW (x)) . (4.3.27)

The gauge independence of χ(x) and Aµ
⊥(x) follows directly from the behaviour of the

collinear fields, the Wilson lines, and the covariant derivatives under collinear gauge
transformations.

4.4 Factorisation

After decoupling the soft and collinear modes in the Lagrangian, we are in the posi-
tion to derive factorisation theorems. As a helpful example, we will derive now the
factorisation theorem for the thrust distribution in the dijet region.

We will use [51] as a guide to derive the factorisation theorem; we will, however
adapt the notation in order to be consistent with the rest of this work and to highlight
key points.

In the Standard Model, the cross section for e+e− → dijets produces partons in the
final state via an electroweak current, either from a photon or a Z-boson. In order to
keep the discussion as simple as possible, we assume that there is only a photon. The
differential cross section averaged over the incoming e+e− spins is written as

1

σ0
dσ =

−2π

NQ2

∑
X

dΠX(2π)
4δ4 (q − pX) 〈0| J†µ(0) |X〉 〈X| Jµ(0) |0〉 , (4.4.1)

where σ0 is the tree-level cross section, N is the number of colours, qµ is the total
momentum of the photon in the centre-of-mass frame qµ = (Q, 0, 0, 0), and Jµ = ψ̄γµψ

is the electromagnetic current operator for one quark flavour. In dijet production,
any radiation apart from the primary partons must be either collinear or soft. Thus
SCET is the appropriate effective theory. In SCET, the electroweak current operator
is replaced by

Jµ(x) =

∫
ds dt C(s, t, µ)χ̄n̄(x+ sn)S†n̄(x+)γ

µSn(x−)χn(x+ tn̄), (4.4.2)

where C(s, t, µ) is the Wilson coefficient from matching QCD onto SCET. Finally, X
are the QCD states, which will be restricted or weighted by the definition of thrust.
However, in SCET there are no interactions between soft, collinear, and anticollinear
sectors because of the decoupling at leading power. Thus the sum over the states |X〉
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decomposes into a sum over individual soft, collinear, and anticollinear final-states:∑
X

→
∑

Xs,Xc,Xc̄

|X〉 → |Xs〉 ⊗ |Xc〉 ⊗ |Xc̄〉 . (4.4.3)

Hence, we are able to decompose 〈0| J†µ(0) |X〉 〈X| Jµ(0) |0〉 to

〈0| J†µ(0) |X〉 〈X| Jµ(0) |0〉 →
∫

ds′ dt′ ds dt C∗(s′, t′, µ)C(s, t, µ)

× 〈0|
[
S†n(0)Sn̄(0)

]
ab
|Xs〉 〈Xs|

[
S†n̄(0)Sn(0)

]
cd
|0〉

× 〈0|
[
χ̄n,k(t

′n̄)
]
a
|Xc〉 〈Xc|

[
χn,j(tn̄)

]
d
|0〉 γµkl

× 〈0|
[
χn̄,l(s

′n)
]
b
|Xc̄〉 〈Xc̄|

[
χ̄n̄,i(sn)

]
c
|0〉 γµ,ij, (4.4.4)

where we used a, ..., d for colour indices and i, ..., l for spinor indices, allowing us to
rearrange the structures containing collinear and anticollinear fields.

In order to simplify eq. (4.4.4) further, we first notice that the collinear struc-
tures describe the propagation of only one sector because there are no interactions
between sectors; the structures must be colour diagonal. Thus we can average over the
colour. Secondly, Lorentz invariance dictates the proportionality of the collinear and
anticollinear structures to /̄n and /n, respectively. Finally, we write eq. (4.4.4) as,

〈0| J†µ(0) |X〉 〈X| Jµ(0) |0〉 =
∫

ds′ dt′ ds dt C∗(s′, t′, µ)C(s, t, µ) Tr

[
γµ
/n

8
γµ
/̄n

8

]
× tr{〈0|

[
S†nSn̄

]
ab
(0) |Xs〉 〈Xs|

[
S†n̄Sn

]
cd
(0) |0〉}

× δad
N

Tr{〈0| χ̄n(t′n̄) |Xc〉 〈Xc| /̄nχn(tn̄) |0〉}

× δbc
N

Tr{〈0|χn̄(sn) |Xc̄〉 〈Xc̄| /nχ̄n̄(s′n) |0〉}, (4.4.5)

where Tr is a Dirac trace and tr is a colour trace. Additionally we have used a Fierz
rearrangement for the spinor indices.

In order to avoid explicit non-locality, we introduce the Fourier transform
of C(s, t, µ):

C(s, t, µ) =

∫
dk dl eikseiltC̃(k, l, µ). (4.4.6)

By applying the translation operator in either the collinear or anticollinear sector we
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find that

〈Xc| O(tn̄) |0〉 = 〈Xc| eiPtn̄O(0)e−iPtn̄ |0〉 = eitn̄pXc 〈Xc| O(0) |0〉 . (4.4.7)

We can find a similar result for the anticollinear sector. By substituting C(s, t, µ) in
terms of its Fourier transform and using the translation operator, we can perform the
integrations over s, s′, t, t′, which results in δ-distributions, fixing k and l to the large
components of the collinear and anticollinear momenta: n̄ · k = n · l = Q.

Let us now turn to the δ-distribution which enforces momentum conservation in
eq. (4.4.1). Here we note that pX is simply the sum of the radiated momenta from all
relevant sectors, i.e. pX = ps+ pc+ pc̄. As we know the typical scaling of these modes,
we can write the δ-distribution in light-cone components in the following way. For the
n-component we find δ(n̄ · q − n̄ · pX) = δ(Q − n̄ · ps︸ ︷︷ ︸

∼λ2

− n̄ · pc︸ ︷︷ ︸
∼λ0

− n̄ · pc̄︸ ︷︷ ︸
∼λ2

) = δ(Q − n̄ · pc),

which fixes the n̄ · pc component. Similarly, for the n̄-component we find δ(Q− n · pc̄).
In the case of the ⊥-component, we know that ~q⊥ = ~0, and ~ps,⊥ ∼ λ2 ∼ λ~p{c,c̄},⊥, so
the ⊥-component is determined by δ(2)(~pc,⊥ + ~pc̄,⊥). This can be further simplified by
recognising that we integrate over the relative direction between incoming leptons and
outgoing hadrons when calculating the cross section, which means that the final result
cannot depend on our choice of axis. We can thus choose our coordinate system for
a collinear sector in a way that the z-axis points along ~n. This forces the transverse
component to vanish, which we have to compensate by introducing a new constraint
πQ2δ(2)(~pc,⊥). Overall the momentum conservation thus reads

δ(4)(q − pX) → 2πQ2δ(Q− n̄ · pc)δ(Q− n · pc̄)δ(2)(~pc,⊥)δ(2)(~pc̄,⊥), (4.4.8)

where the additional factor 2 emerges due to the transition to light-cone coordinates.
We can see from the previous expression that we have constraints for three out of
the four components for both collinear and anticollinear sectors. Next, we insert the
identity

1 =

∫
dxc dxc̄ δ(xc − n · pc)δ(xc̄ − n · pc̄) (4.4.9)

where we define xc and xc̄ via the following vectors

rµc =
nµ

2
Q+

n̄µ

2
xc, rµc̄ =

n̄µ

2
Q+

nµ

2
xc̄, (4.4.10)

which obey the same constraints from the momentum conservation. The insertion of
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the redundant constraint of the small component yields

δ(4)(q − pX) =
1

2
πQ2

∫
dxc dxc̄ δ

(4)(rµc − pµc )δ
(4)(rµc̄ − pµc̄ ). (4.4.11)

For the final step we use that r2{c,c̄} = Qx{c,c̄}, and hence dr2{c,c̄} = Qdx{c,c̄}, and thus
we are able to write the thrust distribution as

1

σ0

dσ

dτ
= |C̃(Q,Q, µ)|2

∫
dr2c dr

2
c̄ δ(τ − τ(pX))

×
∑
Xs

1

N
tr{〈0|

[
S†nSn̄

]
(0) |Xs〉 〈Xs|

[
S†n̄Sn

]
(0) |0〉}

×
∑
Xc

1

N

(2π)4

4πQ
δ(4)(rµc − pµc ) Tr{〈0| χ̄n(0) |Xc〉 〈Xc| /̄nχn(0) |0〉}

×
∑
Xc̄

1

N

(2π)4

4πQ
δ(4)(rµc̄ − pµc̄ ) Tr{〈0|χn̄(0) |Xc̄〉 〈Xc̄| /nχ̄n̄(0) |0〉}. (4.4.12)

This is the extent to which we can get with the scaling information. Before we continue,
a few words about the different structures are in order. The Wilson coefficient |C̃|2 in
the first line encodes the matching between QCD to SCET and is the square of the
vector form factor. It includes virtual corrections at all loop orders. The natural scale of
this function is the hard scale Q, which is reasonable as it is determined by integrating
out the hard modes. It is typically referred to as the hard function. The second line
gives rise to the soft function, which describes the emission of soft isotropic radiation
from the colour-charged particles in the process. Here the sum over Xs implicitly
contains phase-space integrations for any emissions off the Wilson lines enclosed by the
bras and kets. Finally, the last two structures are the jet functions, which describe the
collinear radiation off the energetic, outgoing primary particles. The sum includes the
phase-space integrations, and a sum over all colours is assumed.

In the following, we leave the general discussion and specialise the calculation to
thrust. So we turn to the definition as it enters into eq. (3.1.2) in detail: In the dijet
limit, thrust reduces to τ =

p2L+p
2
R

Q2 , where pL,R is the total 4-momentum into the left
or right hemisphere defined by the thrust axis ~nT . All particles in Xc go into the left
hemisphere and thus contribute to pL, and those in Xc̄ contribute to pR and thus are in
the right hemisphere. On the other hand, soft emissions can go either way depending
if (n̄ · ps > n · ps) or (n̄ · ps < n · ps). Let us assume that the total soft momentum of
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the left hemisphere is given by kL and thus

p2L = (pc + kL)
2 = p2c︸︷︷︸

∼λ2

+2pckL︸ ︷︷ ︸
∼λ2

+ k2L︸︷︷︸
∼λ4

∼ r2c +Qn · kL, (4.4.13)

where we used the relative scaling of the collinear and soft modes to eliminate the
subleading contributions from k2L and pckL, we also used the form of pc as we have
previously written it down in the thrust distribution for the dijet cross section. For the
emission into the right hemisphere, we find a similar form:

p2R = (pc̄ + kR)
2 ∼ r2c̄ +Qn̄ · kR. (4.4.14)

Combing these two, we find

τ =
∑
L,R

p2L + p2R
Q2

∼ r2c +Qn · kL + r2c̄ +Qn̄ · kR
Q2

= τc + τc̄ + τs, (4.4.15)

where in the last equality, we emphasize that the observable decomposes into a sum of
contributions from the different regions. This decomposition into independent contri-
butions to the observables from the individual functions is required for any observables
to allow factorisation. Substituting this into the factorisation theorem, we find that
the phase-space integrations in Xs and Xc,c̄ are now related. We, therefore, adapt
eq. (4.4.12) by inserting an additional integral and δ-functions into our cross section.
Furthermore, as τ � 1, rc, rc̄, kL and kR must be small, thus we can extend the sum
over just collinear, anticollinear, and soft states to all states. In the end, we arrive at
the factorisation theorem for thrust:

1

σ0

dσ

dτ
= |C̃(Q,Q, µ)|2

∫
dr2c dr

2
c̄ dk δ

(
τ − r2c + r2c̄ +Qk

Q2

)
×
∑
X

1

N
tr{〈0|

[
S†nSn̄

]
(0) |X〉 〈X|

[
S†n̄Sn

]
(0) |0〉}δ(k − n · kL − n̄ · kR)

×
∑
X

1

N

(2π)4

2πQ
δ(4)(rµc − pµc ) Tr{〈0| χ̄n(0) |X〉 〈X| /̄nχn(0) |0〉}

×
∑
X

1

N

(2π)4

2πQ
δ(4)(rµc̄ − pµc̄ ) Tr{〈0|χn̄(0) |X〉 〈X| /nχ̄n̄(0) |0〉}. (4.4.16)

We can again identify |C̃|2 as the hard function, the second line as the soft function
for thrust, and the final two structures as the jet functions.
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Each of these functions can be computed individually in perturbation theory and
subsequently convoluted with the others to arrive at the singular part of the thrust
distribution. Assigning the standard notation to the different contributions, the fac-
torisation theorem takes the simple form

1

σ0

dσ

dτ
= H(Q,µ)

∫
dr2c dr

2
c̄ dk δ

(
τ − r2c + r2c̄ +Qk

Q2

)
J(r2c , µ)J̄(r

2
c̄ , µ)S(k, µ).

(4.4.17)

4.5 Resummation in SCET

Before we turn to the resummation of the factorisation ingredients, let us highlight
some details by inspecting the jet function more thoroughly.

As in any perturbative computation, the jet function, similar to the hard and soft
function, is ill-defined in the absence of a suitable regularisation and renormalisation
procedure. In dimensional regularisation, the bare jet function for thrust can be eval-
uated, and the one-loop result reads [96]

J(r2c , µ) = δ(r2c ) +
αsCF
4π

[(
4

ε2
+

3 + 8 ln µ
Q

ε
+ 8 ln2 µ

Q
+ 6 ln

µ

Q
+ 7− π2

)
δ(r2c )

−
(
4

ε
+ 3 + 6 ln

µ

Q

)[
1

r2c

]
?

+ 4

[
ln r2c
r2c

]
?

]
, (4.5.1)

where the ?-distribution is a generalisation of a +-distribution for dimensional vari-
ables. At O(αs) in the MS scheme, renormalisation proceeds via the introduction of a
counterterm Z, which at this order has the same effect as dropping the ε-poles. The
anticollinear jet function will read the same, the only difference being that r2c → r2c̄ .

The occurrence of δ and ?-distributions in eq. (4.5.1) is a minor nuisance for two
reasons. First, renormalising the jet-, hard-, and soft functions requires the convolution
with an appropriate Z-factor, which in the end leads to non-local renormalisation
group equations (RGE). The non-locality makes the solution of the RGEs cumbersome.
Second, considering we want to calculate the jet function numerically, distribution-
valued results are inconvenient; we prefer regular functions.

One way of dealing with this is switching from momentum space to Laplace-space,
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where each function f has an associated Laplace space version:

L{f}(s) =
∫ ∞
0

f(t)e−stdt. (4.5.2)

In order to shorten the notation we will use f̃(s) = L{f}(s) for the Laplace-transformed
functions. We find that the factorisation theorem becomes in Laplace space∫ ∞

0

dτ e−τQs
1

σ0

dσ

dτ
= H

(
µ

Q

)
J̃

(
µ
√
s

Q

)
˜̄J

(
µ
√
s

Q

)
S̃

(
µs

Q

)
, (4.5.3)

where the objects on the right-hand side are regular functions and do not contain any
distributions.

Multiplicative renormalisation for any function F leads to a RGE of the form

dF (µ)

d lnµ
= γFF (µ), (4.5.4)

where γF is the anomalous dimension of F . The anomalous dimension contains infor-
mation about the deviations from the classical scaling behaviour of F .

In the case of the renormalised and Laplace-transformed jet function in eq. (4.5.1)
we find:

dJ̃R

(
µ
√
s

Q

)
d lnµ

=
d

d lnµ

[
1 +

αsCF
4π

(
8 ln2 µ

√
s

Q
+ 6 ln

µ
√
s

Q
+ 7− 2π2

3

)]
+O

(
α2
s

)
=

[
αsCF
4π

(16) ln
µ
√
s

Q
+
αsCF
4π

(6) +O
(
α2
s

)]
J̃R

(
µ
√
s

Q

)
(4.5.5)

= γjetJ̃R

(
µ
√
s

Q

)
.

So from eq. (4.5.5) we find that the anomalous dimensions for the jet function is

γjet =

(
αsCF
4π

)
16 ln

µ
√
s

Q
+

(
αsCF
4π

)
6 +O

(
α2
s

)
(4.5.6)

which is the first perturbative order of

γjet = 4ΓCusp (αs) ln
µ
√
s

Q
+ γJ (αs) , (4.5.7)

where we defined the Cusp anomalous dimension ΓCusp (αs) and the jet anomalous
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dimension γJ (αs). ΓCusp (αs) is related to the renormalisation of Wilson lines with
a cusp or kink [97], and thus universal for all observables. The circumstance that
ΓCusp (αs) is accompanied by a ln µ

√
s

Q
is the reason why we can resum double logarithm

using RGE techniques. On the other hand, γJ is observable-dependent and in general
different from its soft and hard counterpart γS and γH . However, they can all be
related to each other via a consistency relation, which we will state later. If we define
the perturbative expansion for both anomalous dimensions as

ΓCusp (αs) =
∞∑
n=0

(αs
4π

)
Γn (4.5.8)

γJ (αs) =
∞∑
n=0

(αs
4π

)
γJn , (4.5.9)

we can directly read off Γ0 = 4CF and γJ0 = 6CF .

We are now able to solve the RGE in eq. (4.5.5) and allow the solution to run
between any scales µ and µ0 as:

J̃

(
µ
√
s

Q

)
= U(µ0, µ)J̃

(
µ0

√
s

Q

)
, (4.5.10)

where U(µ0, µ) is an evolution kernel which evolves the jet function from the scale µ0

to µ. It can be written in the form

U(µ0, µ) = exp

[∫ µ

µ0

d lnµ′ γjet

(
µ′
√
s

Q

)]
= exp

[∫ µ

µ0

d lnµ′
{
4ΓCusp ln

µ′

µ0

+ γJ + 4ΓCusp ln
µ0

√
s

Q

}]
= eAJ (µ,µ0)

(
µ0

√
s

Q

)4
∫ µ
µ0

d lnµ′ΓCusp

, (4.5.11)

where AJ(µ, µ0) =
∫ µ
µ0
d lnµ′

(
4ΓCusp ln

µ′

µ0
+ γJ

)
.

We have shown the solution to the RGE of the jet function, there are however
equivalent ones for the soft and hard functions:

H

(
µ

Q

)
= H

(
µ0

Q

)
eAH(µ,µ0)

(
µ0

Q

)−4 ∫ µ
µ0

d lnµ′ΓCusp

, (4.5.12)

S̃

(
µs

Q

)
= S̃

(
µ0s

Q

)
eAS(µ,µ0)

(
µ0s

Q

)−4 ∫ µ
µ0

d lnµ′ΓCusp

. (4.5.13)
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We can now observe why resummation is necessary in Laplace space. By transforming
from momentum space to Laplace space the r2c,c̄- and k-integrals fix the mass dimension
of the different functions. Therefore it also fixes the relative power of s and µ. This is
the reason why we find µ

√
s

Q
as the dimensionless parameter in the evolution kernel of

the jet function, and similarly, µs
Q

in the soft function evolution kernel.
Let us now assume that we did not run the renormalisation scale µ, i.e., if we set

µ = µ0, and choose to remove the large logarithms from the jet function µ0 =
Q√
s
. This

will ensure that the logarithms in the jet function are ∼ O(1), however in the hard
function we will find logarithms ∼ O

(
1√
s

)
and similar for the soft function ∼ O (

√
s).

So as long as we do not run the renormalisation scale µ, we can remove large logarithms
only from one of the functions, while the others still exhibit large logarithms.

If, however, we allow the running of µ, and choose µ0 to be µH ∼ Q for the hard,
µS ∼ Q

s
for the soft and µJ ∼ Q√

s
for the jet function, the functions are evaluated at

their natural scales and thus will be free of any large logarithms. The exponents in
the different evolution kernel, for any choice of µ0 away from their respective natural
scales, will then ensure that we will resum all logarithms.

Previously, we have claimed that the cusp anomalous dimension is the same for all
functions and that the non-cusp anomalous dimension can be related to each other;
let us now verify this claim. We know that the left-hand side of eq. (4.5.3) must be
independent of the renormalisation scale µ. Thus the product of hard, jet, and soft
functions must be independent as well:

d

d lnµ

[
H

(
µ

Q

)
J̃

(
µ
√
s

Q

)
˜̄J

(
µ
√
s

Q

)
S̃

(
µs

Q

)]
= 0. (4.5.14)

By performing the differentiation with respect to the renormalisation scale µ, one finds

0 =
d

d lnµ
ln

[
H

(
µ

Q

)
J̃

(
µ
√
s

Q

)
˜̄J

(
µ
√
s

Q

)
S̃

(
µs

Q

)]
=γhard + γjet + γjet + γsoft. (4.5.15)

Here we can see that the sum of the anomalous dimensions vanishes. If we write the
anomalous dimensions in terms of cusp and non-cusp piece, this equation becomes

0 = −4ΓCusp ln
µ

Q
+ γH +4ΓCusp ln

µ
√
s

Q
+ γJ +4ΓCusp ln

µ
√
s

Q
+ γJ − 4ΓCusp ln

µs

Q
+ γS.

(4.5.16)
In order for this cancellation to work, it is crucial that the scale dependence is logarith-
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mic, with the same coefficient ΓCusp in all of the RGEs which enter eq. (4.5.14). Also,
this relation forces the non-cusp anomalous dimension to obey the following consistency
relation

γH + 2γJ + γS = 0. (4.5.17)

Finally, let us come back to the counting of logarithms. In eq. (3.4.2) we have
established a scheme for the counting of logarithms; we expect that AH , AJ , and AS

follow the scheme and resum the logarithms. Let us, therefore, take a closer look at
AJ .3 Any µ-dependence is either expressed directly as lnµ, or is hidden within αs(µ).
Thus, if we know the QCD β-function, we can express αs(µ) in terms of αs(µ0) at some
other scale µ0.

The QCD β-function is known to 5-loops [98, 99], but for our work fewer orders will
be sufficient. In renormalisation-group improved perturbation theory, the β-function
governing the scale dependence of the renormalised coupling αs can be written as

β(αs(µ)) = −2
∞∑
n=0

βn

(
αs(µ)

4π

)n+2

. (4.5.18)

In order to find the running of αs we solve eq. (4.5.18) to some fixed order and expand
around its value at some reference scale µ0. The solution up to O(α3

s(µ0)) is then given
by

αs(µ) = αs(µ0)−
α2
s(µ0)

2π
β0 ln

µ

µ0

+
α3
s(µ0)

8π2

(
2β2

0 ln
2 µ

µ0

− β1 ln
µ

µ0

)
+O(α4

s(µ0)).

(4.5.19)
We can observe from eq. (4.5.19) that the terms αnsLn−1 appear always in combination
with β0 and the term αnsL

n−2 with β1, this pattern generalises to higher orders. Thus,
generally, we can say that terms of the form αnsL

n−m are always accompanied by a
βm−1 term.

Finally, let us look at the evolution kernel AJ as a whole. To collect the logarithms,

3Similar considerations apply to AH and AS as well.
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we write the first few terms of the expansion of the anomalous dimensions.

AJ ∼
∫ µ

µ0

d lnµ′
{
ΓCusp ln

µ′

µ0
+ γJ

}
=

∫ µ

µ0

d lnµ′

[
αs(µ

′)

4π
Γ0 ln

µ′

µ0
+

αs(µ
′)

4π
γJ0 +

(
αs(µ

′)

4π

)2

Γ1 ln
µ′

µ0
+

(
αs(µ

′)

4π

)2

γJ1

+

(
αs(µ

′)

4π

)3

Γ2 ln
µ′

µ0
+

(
αs(µ

′)

4π

)3

γJ2 + . . .

]

=

∫ µ

µ0

d lnµ′

[(
αs(µ0)

4π

){
Γ0 ln

µ′

µ0
+ γJ0

}
+

(
αs(µ0)

4π

)2
{

− 2β0Γ0 ln
2 µ′

µ0
− 2β0γ

J
0 ln

µ′

µ0

+Γ1 ln
µ′

µ0
+ γJ1

}
+

(
αs(µ0)

4π

)3
{
β2
0Γ0

2
ln3

µ′

µ0
− β1Γ0

4
ln2

µ′

µ0
+

β2
0γ

J
0

2
ln2

µ′

µ0
− β1γ

J
0

4
ln

µ′

µ0

−2β0Γ1 ln
2 µ
′

µ0
− 2β0γ

J
1 ln

µ′

µ0
+ Γ2 ln

µ′

µ0
+ γJ2

}
+ . . .

]
.

(4.5.20)

In order to visualize the counting of logarithms let us perform the integration and
collect the result in the same spirit as in eq. (3.4.3). Thus we arrive at the following
ordering

AJ ∼
(
Γ0 (αsL) + β0Γ0 (αsL)

2 + β2
0Γ0 (αsL)

3 +O((αsL)
4)
)︸ ︷︷ ︸

LL

L

+
(
γJ0 (αsL) +

(
β0γ

J
0 + Γ1

)
(αsL)

2 +
(
β1Γ0 + β2

0γ
J
0 + β0Γ1

)
(αsL)

3 +O((αsL)
4)
)︸ ︷︷ ︸

NLL

+
(
γJ1 (αsL)

2 +
(
β1γ

J
0 + β0γ

J
1 + Γ2

)
(αsL)

3 +O((αsL)
4)
)︸ ︷︷ ︸

NNLL

1

L
+O(N3LL), (4.5.21)

where L = µ
µ0

. In eq. (4.5.21), it is obvious what ingredients we need to achieve a
desired logarithmic accuracy. For example, to achieve leading logarithmic accuracy, we
only need β0 and Γ0. On the other hand, if we want to capture the αnsLn terms, then
we need, in addition to the previous quantities, β1,Γ1, and γJ0 .

To summarize: For LL resummation, we need only the 1-loop αs running and 1-
loop cusp anomalous dimension, NLL requires 2-loop αs running and cusp anomalous
dimension, and 1-loop non-cusp anomalous dimension. This can be generalized such
that for NnLL resummation we need the (n+ 1)-loop αs running and cusp anomalous
dimension and n-loop non-cusp anomalous dimension [100]. One thing to keep in mind
is that for this work, we only looked at AJ . However, there are also contributions from
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the soft and hard function, so any order of γJ has to be matched by the same order of
γS and γH . One upshot is that through eq. (4.5.17) only one of them is needed, besides
γJ .

As a final remark of this section, we consider the boundary conditions J̃
(
µ0
√
s

Q

)
,

S̃
(
µ0s
Q

)
and H

(
µ0
Q

)
. As we count αsL ∼ O(1), we can map the perturbative expan-

sions of J̃ , S̃, and H to the logarithmic counting. The series then starts at tree level,
where no logarithmic enhancement is present, and gains inverse powers of logarithms
as more and more orders of αs are added. So we require for the boundary conditions
αns -terms for Nn+1LL accuracy. From a computational point of view, it is reasonable
to assume that if the anomalous dimension is known to a specific order in αs, then the
corresponding boundary condition is also known to the same order. Thus we can intro-
duce a modified counting scheme: the NnLL′ accuracy, which requires the renormalised
functions to αns -order.
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4.6 SCETII and the collinear-anomaly approach

Prior to laying out the framework of our project, we need to review SCETII because of
the additional complications arising from it.

We start by summarising what we know of SCETII-observables so far. These observ-
ables are those where the soft and collinear modes lie on the same virtuality hyperbola
as shown in figure 4.2.1. This implies that contributions from the overlap regions be-
tween the two modes lead to essentially unconstrained integrations over the respective
rapidities and thus result in divergences unregularised by dimensional regularisation.
Therefore, SCETII observables cannot be reasonably computed with just dimensional
regularisation.

The solution consists in introducing a second regulator based on the rapidities to
disentangle the soft and collinear modes. This allows the computation of soft and
jet functions, which show divergences in the new regulator, in addition to the usual
ε-divergences. This second regulator can be introduced in different ways, either by
modifying the underlying matrix element [101–104], or by restricting the phase-space
via additional factors [94, 105]. We choose the latter, where both jet and soft functions
have explicit poles in the new regulator, usually denoted as α. As this regulator is
artificially implemented, the α dependence cancels as soon as all soft and collinear
contributions are added up. However, in the remainder, large logarithms remain in the
expression.

Since the additional regulator is implemented on the phase-space level, an addi-
tional dimensionful factor must be introduced that breaks the equal scaling of the
soft and collinear modes in the computation. This new ’t Hooft scale associated with
the analytic regulator is similar to the appearance of µ in dimensional regularisation.
Therefore the product of the relevant jet and soft functions must be independent of
the artificially introduced scale ν. Consequently, the quantity

P = J̃ (s,Q, µ, ν) ˜̄J (s,Q, µ, ν) S̃ (s,Q, µ, ν) , (4.6.1)

should satisfy the differential equation

d

d ln ν
lnP =

d

d ln ν

[
ln J̃ (s,Q, µ, ν) + ln ˜̄J (s,Q, µ, ν) + ln S̃ (s,Q, µ, ν)

]
= 0. (4.6.2)

This implies that the terms within the square brackets in the equation above should
be at most linear in ln ν [95, 106]. One can then extract the terms depending on ν by
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defining a remainder expression W as follows:

lnP ≡ lnW (s, µ)− F (s, µ) ln (sQ)

=⇒ P = (sQ)−F (s,µ)W (s, µ), (4.6.3)

where F (s, µ) is the anomaly exponent. After this exponentiation, the remaining ex-
pressions are free from large logarithms associated with the rapidities, and the usual
SCET procedure, described in the previous section, of running hard and remainder
functions to a common scale can be set up.
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General considerations

In the previous section, we learned how the techniques for the resummation of large
logarithms work within the SCET framework. Therefore we can now clearly state the
boundaries, general considerations, and assumptions that define our project. Thus, we
will list in this chapter all the properties we require to be compatible with our setup.
In general the project can be thought of as a natural extension of the existing program
SoftSERVE [41–43].

5.1 Logarithmic accuracy

First, we need to establish which accuracy we want to achieve and, therefore, to which
perturbative order we have to calculate the jet function. We have shown in section
4.5 which ingredients are needed to achieve NNLL′ accuracy and outline what would
be required to achieve NnLL′ accuracy. The current state-of-the-art accuracy is NLL′,
however some full and many partial results exist for NNLL resummation, and even
N3LL and N4LL accuracy has been achieved for a few observables [33–36, 39, 40].
This work, alongside SoftSERVE, is supposed to provide the NNLO input for NNLL′

accuracy for a generic class of collider observables. Thus we first need to determine
which quantities are known and which need to be calculated.

In order to achieve NNLL′ accuracy, we require the cusp anomalous dimension at
O(α3

s). One approach to the calculation is based on evaluating the correlation function
of a rectangular light-like Wilson loop with a Lagrangian insertion, normalised by
the expectation value of the Wilson loop. With this approach the cusp anomalous
dimension was calculated up to O(α4

s) [107–111]. Similarly, we require the same order
of the QCD-β function. In the literature the function is currently known to 5-loop [98,
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99] order. The hard anomalous dimension γH and matching coefficient cH have to
be known up to NNLO. As they are related to the Wilson coefficient, they do not
depend on the measurement, only on the underlying hard-scattering process. The
non-cusp anomalous dimension γH is therefore related to either quark or gluon form
factors [112, 113], depending on the hard-scattering process. The coefficient cH is
either known [112] or can be extracted from tools that automate the calculation of
hard scattering processes [114, 115]. The soft function, and collinear exponent in the
case of SCETII, depend on the observable one is interested in; for some observables,
these quantities are known to the desired order analytically. However, this is not
true for generic observables; therefore, one has to use SoftSERVE to provide numerical
values for γS, cS and F at NNLO. The last ingredient required for NNLL′ accuracy is
the 2-loop jet function1 and the 2-loop remainder function for SCETII. Here we have
a similar picture as in the soft function case; for some observables, the quantities are
known analytically, but not for a generic class of observables.

To summarise: In order to resum observables to NNLL′-accuracy, we require a
program, similar to SoftSERVE, which can calculate the 2-loop jet functions in order
to obtain γJ , cJ and with the combination of the soft function, the remainder function
W in the case of SCETII observables.

5.2 General principle

In this section we address the question how to set up a framework that covers generic
collider observables.

Recall from the previous chapters that the starting point for the computation of
event-shape measures is of the schematic form

dσ

dτ
∼ |M|2δ(τ − τ ({pi}))dΦn, (5.2.1)

which, following a factorisation theorem, gives rise to jet functions of a similar form

J(τ) ∼ |Mcoll|2δ(τ − τc ({pi}))dΦc
n. (5.2.2)

The underlying principle is now the fact that all divergences, either from virtual contri-
butions or associated with real radiation, are contained in the matrix element |Mcoll|2.

1At hadron colliders beam functions, which describe initial-state collinear radiation, are also re-
quired. In this project, however, we will deal exclusively with final-state collinear radiation.
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These divergences are the same for all observables because the jet functions are process
independent. They only depend on the parton that initiate the jet. The observable-
dependence only enters through the measurement function, which changes the weight
of different phase-space points.

Therefore, in our approach, we first have to isolate all divergences in the matrix
element analytically and make them explicit, followed by the expansion in the regulator.
This approach can be used in principle for any observable. So, if all divergences are
adequately treated, the remaining integrals are convergent and thus can be safely
evaluated numerically.

5.3 The jet functions in detail

In eq. (4.4.16) we have shown the definition of the jet function in the specific case of
thrust. However, since we want to calculate other observables, we need a more general
definition of the jet function.

One comment is in order before writing down the definition, which we will use
as the starting point in calculating jet functions. Namely there are two different jet
functions depending on the parton which initiates the jet. If the parent parton is a
quark, then we will use quark fields in the matrix element and calculate the quark jet
function Jq; however, if the jet is initiated by gluon, we replace quark fields with gluon
fields and adjust the prefactor accordingly. Thus we compute the gluon jet function
Jg.

The precise definition of the quark jet function is given in [116] and has the form:

/n

2
πJq(τ, µ,Q) =

∑
X

(2π)dδ
(
Q−

∑
i k
−
i

)
δd−2

(∑
i k
⊥
i

)
M (τ ; {ki}) 〈0|χ(0) |X〉 〈X| χ̄(0) |0〉 , (5.3.1)

where |X〉 denotes all collinear particles in the final state. The δ-functions restrict
part of the phase-space in such a way that the sum of the large components of the
parton momenta are constrained by the total energy of the jet Q, and their transverse
momenta must balance each other out so that the jet is aligned in the n-direction. In
eq. (5.3.1) the observable only enters via M (τ ; {ki}). In momentum space this is in
general in the form of a δ-function. However, in Laplace space, on the other hand,
this transforms into an exponential form. The final piece of Jq is the collinear matrix
element 〈0|χ(0) |X〉 〈X| χ̄(0) |0〉. We discuss its computation in section 6.
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Similarly we define the gluon jet function, given in [117], as

−gµν⊥
π

Q
δabg2sJg(τ, µ,Q) =

∑
X

(2π)dδ
(
Q−

∑
i k
−
i

)
δd−2

(∑
i k
⊥
i

)
M (τ ; {ki}) 〈0| Aµ,a

⊥ (0) |X〉 〈X| Aν,b
⊥ (0) |0〉 , (5.3.2)

where the collinear gluon field is defined as

Aµ
⊥(x) = T aAµ,a

⊥ (x), (5.3.3)

and
gµν⊥ = gµν − nµn̄ν + nνn̄µ

2
. (5.3.4)

The rest of the structure is similar to the ones described for the quark jet function.

Before we turn our attention to the measurement function M (τ ; {ki}) two com-
ments are in order. The first comment concerns the anticollinear jet functions J̄q, J̄g.
In order to compute the anticollinear jet functions, we can simply use the definitions
in eq. (5.3.1) and eq. (5.3.2) and interchange n and n̄ while also keeping in mind the
scaling of the two regions. However, the collinear and anticollinear matrix elements
and phase-space factors are generally symmetric under this exchange after a suitable
phase-space parametrisation. Thus, the only asymmetry can arise in the measurement
function. If the measurement function is symmetric under n ↔ n̄, then the collinear
and anticollinear jet functions will be equivalent. In this case we will only need to
calculate the collinear jet function to extract the required ingredients for resummation.
Suppose the measurement function is asymmetric under this exchange. In that case,
we still only require a setup for the collinear jet function because then the anticollinear
jet function is equivalent to the collinear jet function by exchanging the definition of
the parton momenta, k+i ↔ k−i , in the measurement function. The second comment
is in regards to SCETII observables. We have previously outlined how to regularise
the occurring rapidity divergences. However, we never explicitly stated the form of
the additional regulator. In this work, we will use a variant of the analytic regulator
introduced in [94]. This regulator, as stated earlier, modifies the generic d-dimensional
phase-space measure as∫

ddk δ
(
k2
)
θ
(
k0
)
−→

∫
ddk

(
ν

k− + k+

)α
δ
(
k2
)
θ
(
k0
)
, (5.3.5)

where α is the additional regulator and ν is the new ’t Hooft scale. We can further use
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the scaling behaviour between k− and k+, and therefore, we find that the phase-space
measure in the SCETII case is∫

ddk

(
ν

k− + k+

)α
δ
(
k2
)
θ
(
k0
)

−→
k−�k+

∫
ddk

(
ν

k−

)α
δ
(
k2
)
θ
(
k0
)
, (5.3.6)

for collinear emissions. So in order to calculate SCETII observables we have to adjust
the definitions in eq. (5.3.1) and eq. (5.3.2) by a factor of

(
ν/k−i

)α for each additional
emission to the tree-level process. In the gluon jet function we have to add this factor
for each final-state particle. This is because at NLO we structure with two gluons in the
final state. However, we cannot distinguish the tree-level and the additional emission
from each other. So in order to have a consistent setup we include this factor for each
final-state particle starting from the tree-level process. Therefore we find the following
expansion for the quark(gluon) jet function at NNLO in terms of the additional scale
ν,

Jq = 1 +

(
ν

Q

)α (
JNLO
q + JNNLO,RV

q

)
+

(
ν

Q

)2α

JNNLO,RR
q , (5.3.7)

Jg =

(
ν

Q

)α(
1 +

(
ν

Q

)α (
JNLO
g + JNNLO,RV

g

)
+

(
ν

Q

)2α

JNNLO,RR
g

)
. (5.3.8)

Although we want to be as generic with our approach as possible, we have to
have some constraints on the measurement function M (τ ; {ki}). We assume that the
measurement function can be written in the form

M (τ ; {ki}) = exp [−τω ({ki})] . (5.3.9)

As previously stated, this can be achieved by taking a Laplace transform2 of the mo-
mentum space jet function, with τ being the associated Laplace variable. In order to
ensure that the phase-space integrals converge, we require that ω ({ki}) > 0. More
specifically, the function ω ({ki}) is allowed to vanish only for phase-space domains of
measure zero, and as long as these zeroes do not interfere with any divergences from
the matrix element. The next assumption is about the mass dimensions, we assume
that τ has the mass dimension 1/mass, and the function ω ({ki}), which only depends
on the final-state momenta ki and Q, has the dimension of mass, such that M (τ ; {ki})
does not have a mass dimension. Currently, we assume that the jet function should

2In some cases, a Fourier transform might be required, or no transformation at all.
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only depend on one variable τ apart from the renormalisation and rapidity scales µ and
ν. This can be physically interpreted as that the observable is single-differential in one
kinematic variable. ω ({ki}) should also be ε and α-independent, as with additional
dependencies in the regulators, the expansion changes; however, we assume this to be
fixed. The final assumption is based on the angular dependence in the transverse plane.
We allow the observable to depend on only one angle θi per final-state particle in the
transverse plane. Thus it implies that the measurement is taken with respect to an
external reference vector vν , and the angle θi is then introduced as the angle between
~v⊥ and ~k⊥i in the plane transverse to n and n̄. One subtlety of this assumptions is
that from eq. (5.3.1) and eq. (5.3.2), we can see that the (d−2)-dimensional δ-function
restricts the transverse component of the jet. Therefore we only have i−1 independent
angles while θi is a function depending on the other angles.
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Calculation of jet functions

In this section, we cover the computation of the collinear matrix elements and apply
suitable parametrisations to the jet functions such that we can transform them from
the definitions in eq. (5.3.1) and eq. (5.3.2) to a form that is suitable for subtraction,
regulator expansion, and the subsequent numerical integration.

6.1 The NLO case

We start by computing the collinear matrix element for the quark jet function Jq.
The corresponding diagrams are shown in figure 6.1.1. We can now state one of the
advantages of using light-cone gauge in our calculations. In this gauge, the collinear
Wilson lines which multiply the fields χ and Aµ,a

⊥ become trivial; therefore, only the
diagram in figure 6.1.1(a) contributes to the quark jet function at NLO. Similarly, only
the diagrams in figure 6.1.1(e) and 6.1.1(i) will contribute to the gluon jet function to
this order.

In order to simplify the calculations, we project out the contribution to the quark
jet function via

Tr

[
/n

2

/̄n

4
Jq(τ, µ,Q)

]
= Jq(τ, µ,Q). (6.1.1)
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Figure 6.1.1: Cut 1-loop diagrams. Diagrams (a) to (d) correspond to the NLO quark jet
function and diagrams (e) to (i) contribute to the gluon jet function. In light-cone gauge,
only diagrams (a), (e) and, (i) yield non-vanishing results.

Thus we arrive at the following expression for the collinear matrix element

Ma = Tr

[
/n/̄n

4

i

(k + p)2
(
/k + /p

)
(igsµ̃

εT aγµ)
i

p2
/p (igsµ̃

εT aγν)
i

(k + p)2
(
/k + /p

)
·
/̄n/n

4

/̄n

4

i

k2

(
−gµν + n̄µkν + n̄νkµ

n̄ · k

)]
,

(6.1.2)

where we have included powers of µ̃2 = µ2eγE

4π
to restore the correct mass dimension

and signify that we work in the MS scheme. We assume that all propagators are
accompanied by a +iε prescription. In order to proceed, we want to point out that we
are in the regime where Q� mq and thus, all on-shell particles are massless. Therefore
the invariant mass is s ≡ (k+p)2 = 2k ·p. Finally, we use Cutkosky’s cutting rules [118]
in order to calculate the discontinuity of the diagram. The cutting rules are

1. Cut through the diagram in any way that can put all of the cut propagators
on-shell without violating momentum conservation.
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2. For each cut, replace 1
p2−m2+iε

→ −2iπδ (p2 −m2) θ (p0).

3. Sum over all cuts.

4. The result is the discontinuity of the diagram, where Disc (iM) = −2ImM.

In the end, we can relate the discontinuity of the diagram to the collinear matrix
element via the optical theorem. Thus we arrive at the following expression for the
collinear matrix element at NLO:

σc,q2 =
2g2s µ̃

2εCF
s (n̄ · k)

(
(n̄ · k)2 (1− ε) + 2 (n̄ · p) ((n̄ · k) + (n̄ · p))

)
, (6.1.3)

where we have defined σc,q = 〈0|χ(0) |X〉 〈X| χ̄(0) |0〉. Note that the additional fac-
tors from the cuts are left out of this expression and are shifted to the phase-space
integration for convenience.

We can now compute the formula for the quark jet function at NLO

Jq,1(τ, µ,Q) =
(2π)d

π

∫
ddk

(2π)d−1
δ(k2)θ(k0)

∫
ddp

(2π)d−1
δ(p2)θ(p0)δ (Q− k− − p−)

× δd−2 (k⊥ + p⊥)M (τ ; {ki})
(
2g2s µ̃

2εCF
s k−

(
k2−(1− ε) + 2p−(k− + p−)

))
,

(6.1.4)

where we have used the definition of n̄ · k = k− and n̄ · p = p−. For the phase-space
integrals we use∫

ddkδ(k2)θ(k0) =
1

2

∫
dk− dk+ dd−2k⊥δ(k−k+ + k2⊥)θ(k− + k+)

=
1

2

∫
dd−3ΩT

∫ ∞
0

dk− dk+ dkT δ(k−k+ − k2T )k
d−3
T , (6.1.5)

where we transitioned to light-cone coordinates in the first line, switched from Minkowski
vector k⊥ to Euclidean ~kT and immediately continued to spherical coordinates in the
second line.

Let us discuss, how we parameterise the phase-space to simplify the calculation.
Note that by comparing the number of integrations with the number of δ-functions,
we can see that we only have two kinematic integrals and one angular integration to
perform; all other integrals are accompanied by a δ-function. Note further that by using
the delta distributions δ (Q− k− − p−) and δ(k−k+ − k2T ) we can define the following
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substitutions:
zk =

k−
Q
, kT =

√
k−k+, (6.1.6)

of which zk behaves similarly to an energy fraction. Additionally, we observe that the
quark with momentum p is entirely determined by the phase-space restrictions from
the definition of the jet function. Thus the inverse transformations are given by

k− =zkQ, k+ =
k2T
zkQ

, kT = kT ,

p− =(1− zk)Q, p+ =
k2T

(1− zk)Q
, pT = kT .

Finally, before implementing the parametrisation and completing the calculation of
the quark jet function, we have to return to the measurement function. In eq. (5.3.9)
we have assumed that the measurement function can be written as an exponential,
however we have not given the specific form of ω ({ki}).

The specific form of ω ({ki}) is motivated by the NLO soft function calculation
shown in [42]. The ansatz for the one-emission measurement function is:

Msoft
1 (τ ; k) = exp

[
−τkTyn/2k f(yk, tk)

]
, (6.1.7)

where yk = k+/k−, kT is the same as in eq. (6.1.6) and tk parametrises the azimuthal
dependence around the jet axis. The power n of yk is fixed by the requirement that the
function f(yk, tk) is finite and non-zero in the limit yk → 0. Therefore, the observable
is characterised by the parameter n ∈ R and a function f(yk, tk) that encodes the
angular and rapidity dependence.

In order to construct an ansatz for the jet function, we first note that in contrast
to the soft function, the dependence on kT is not fixed since the jet function depends
on kT and Q. On dimensional grounds, we factor out a linear dependence on kT ; we
also have to factor out a non-trivial dependence on the dimensionless quantity kT/Q.
Notice that one divergence in the jet function arises due to zk → 0, so similar to yk

in the soft function, we have to factor out some power of zk, such that the function
fgq(zk, tk) is finite and non-zero in the critical limit. Therefore we find the following
ansatz for the jet function measurement

Mjet
1,gq(τ ; k) = exp

[
−τkT zm1

k

(
kT
Q

)m2

fgq(zk, tk)

]
. (6.1.8)
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6.1. The NLO case

In order to fix m1 and m2 we consider the collinear limit of the soft function yk → 0 and
the soft limit of the jet function zk → 0. In these limits, the soft and jet measurement
functions must be equal; therefore, we find

Msoft
1 (τ ; k)

yk→0−→ exp
[
−τkTyn/2k fc(0, tk)

]
Mjet

1,gq(τ ; k)
zk→0−→ exp

[
−τkT zm1

k

(
kT
Q

)m2

fgq,s(0, tk)

]
=⇒ y

n/2
k = zm1

k

(
kT
Q

)m2

and fc(0, tk) = fgq,s(0, tk).

If we transform yk in our parametrisation from eq. (6.1.6) then we can compare the
powers with each other and find that m1 = −n and m2 = n. So finally we can fix our
ansatz to be

Mjet
1,gq(τ ; k) = exp

[
−τkT

(
kT
zkQ

)n
fgq(zk, tk)

]
. (6.1.9)

Now that we have defined an ansatz for the measurement function, we can include it
into the jet function and arrive at the following formula:

Jq,1(τ, µ,Q) =
αs
4π
CF
(
µ2eγE

)ε 8
√
πΓ
(
1
2
− ε
) ∫ 1

0

dzk dtk (4tk t̄k)
− 1

2
−ε (1− ε)z2k + 2z̄k

zk∫ ∞
0

dkT k
−1−2ε
T exp

[
−τkT

(
kT
zkQ

)n
fgq(zk, tk)

]
,

(6.1.10)

here we integrated all but one of the angles in the transverse plane via∫
dd−3ΩT =

4π
1
2
−ε

Γ
(
1
2
− ε
) ∫ 1

0

dtk (4tk t̄k)
− 1

2
−ε , (6.1.11)

where cos θk = 1− 2tk, t̄k = 1− tk. In the end, we can analytically integrate over the
transverse momentum kT and subsequently find the final master formula for the NLO
quark jet function:

Jq,1(τ, µ,Q) =
αsCF
4π

(
µτ̄

1
n+1

Q
n

n+1

)2ε(
ν

Q

)α
8

1 + n

Γ( −2ε
1+n

)
√
πΓ(1

2
− ε)

exp

[
γEε

(
1− 2

1 + n

)]
×
∫ 1

0

dzkz
−1−2 n

1+n
ε−α

k [(1− ε)z2k + 2z̄k]

∫ 1

0

dtk(4tk t̄k)
− 1

2
−εfgq(zk, tk)

2ε
1+n ,

(6.1.12)
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where we used τ̄ = τeγE and inserted (ν/zQ)α as additional regulator in the SCETII

case. Note that for non-zero n the zk integral is well defined so we can set α = 0.
If n = 0, then α must stay non-zero, otherwise the zk-integration is unregularised.
Therefore we can associate non-zero n values with SCETI observables and n = 0

with SCETII observables. This scaling behaviour was more closely investigated in [42].
Furthermore, the correct value of n is important, because the zk-divergence is written
as

z
−1− 2n

1+n
ε

k = − δ(zk)(
2n
1+n

ε
) + [ 1

zk

]
+

+ . . . , (6.1.13)

so we would get the pole structure wrong if we did not capture the full leading scaling.
Similarly, note that the exponent of fgq(zk, tk) depends purely on ε. The regulator
expansion therefore only produces terms of the type lnm fgq(zk, tk). Acting with the
plus-distributions on such a term will produce expressions of the kind lnm fgq(0, tk)

over the entire domain, and these should not diverge.
At NLO, we expect the quark jet function to generate two divergences; the collinear

divergence is encoded in Γ( −2ε
1+n

) and the soft divergence is explicit in the zk monomial.
Therefore the divergences are fully accounted for in our master formula. Both the
Γ-function and the zk-structure produce a 1

ε
-pole for SCETI observables, so the leading

contribution is a 1
ε2

-divergence. In the SCETII case, the Γ function still produces a 1
ε

while the zk contributes to an 1
α
-pole at leading order. Therefore the jet function has

an 1
αε

-leading pole behaviour at NLO in the SCETII case. One important remark for
the SCETII case is that to get the correct result, the expansion in α must be performed
before the ε expansion.

In order to conclude the section on the quark jet function, observe that the re-
maining integral is well-behaved and integrable over the domain. There are integrable
singularities1 at tk = {0, 1}. Furthermore, if fgq(zk, tk) vanishes in any non-divergent
limit, this would contribute to a integrable logarithmic divergence and therefore poses
no problem.

After finishing the quark jet function, we turn to the gluon jet function. Here we
note that we have to calculate two different contributions, as seen in figures 6.1.1(e) and
6.1.1(i). In order to perform the computations, we close the open indices by contracting
Jg with g⊥,µν

2−d , so it reads

g⊥,µν
2− d

(−gµν⊥ )
π

Q
δabg2sJg(τ, µ,Q) =

π

Q
δabg2sJg(τ, µ,Q). (6.1.14)

1These will be investigated in section 7.
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We start calculating the gluon jet function by evaluating the quark-antiquark final
state in figure 6.1.1(i). The calculation generally follows the same method as in the
quark function case. The only difference concerns our ansatz for the measurement
function. In the previous ansatz, we had to factor out some power of zk such that
fgq(zk, tk) stays finite in the limit zk → 0, due to this limit being the divergence when
the gluon becomes soft. However, in the current contribution from figure 6.1.1(i), zk
corresponds to the energy fraction of the antiquark and thus it cannot produce a soft
divergence at leading power in SCET [119]. Similarly, this is also true for the quark,
and thus we modify our ansatz for this contribution to be

Mjet
1,qq̄(τ ; k) = exp

[
−τkT

(
kT
Q

)n
fqq̄(zk, tk)

]
. (6.1.15)

So we arrive at the following master formula for this colour structure of the gluon jet
function contribution

Jg→qq̄,1(τ, µ,Q) =
αsTFnf

4π

(
µτ̄

1
n+1

Q
n

n+1

)2ε(
ν

Q

)2α
8

1 + n

Γ( −2ε
1+n

)

(1− ε)
√
πΓ(1

2
− ε)

× exp

[
γEε

(
1− 2

1 + n

)]∫ 1

0

dzk (z̄kzk)
−α [z2k + z̄2k − ε]

×
∫ 1

0

dtk(4tk t̄k)
− 1

2
−εfqq̄(zk, tk)

2ε
1+n ,

(6.1.16)

where we included the additional regulator for both the quark and the antiquark.

In case of the contribution with two gluons in the final state, we can see that we
now have soft divergences in the case of zk → {0, 1}, and therefore we have to change
our ansatz for this contribution again. Here we use

Mjet
1,gg(τ ; k) = exp

[
−τkT

(
kT

zkz̄kQ

)n
fgg(zk, tk)

]
. (6.1.17)

By performing the same steps as before we arrive at the following master formula for
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Jg→gg,1(τ, µ,Q):

Jg→gg,1(τ, µ,Q) =
αsCA
4π

(
µτ̄

1
n+1

Q
n

n+1

)2ε(
ν

Q

)2α
8

1 + n

Γ( −2ε
1+n

)
√
πΓ(1

2
− ε)

exp

[
γEε

(
1− 2

1 + n

)]
×
∫ 1

0

dzk(z̄kzk)
−1−2 n

1+n
ε−α[1− zkz̄k]

2

∫ 1

0

dtk(4tk t̄k)
− 1

2
−εfgg(zk, tk)

2ε
1+n .

(6.1.18)

Here we observe another complication. Namely, divergences arise in the same variable
zk at both endpoints of the integration domain. However, the regular plus distribution
is only defined with one divergence in mind. Thus we have to disentangle the diver-
gences. This could be achieved by including a selector function of the form 1 = zk+ z̄k,
where we allow in each term only a specific divergence. So, in the end, each term
will only have divergences at one endpoint. The downside of this approach would be
that we have two pieces to calculate. This will be one of the methods in calculating
NNLO real-real contributions. In Jg→gg,1(τ, µ,Q) we can use a different technique.
First, observe that the contribution from the collinear matrix element is symmetric
under the zk ↔ z̄k exchange. Additionally, the only other dependence on zk is within
the measurement function fgg(zk, tk); however, as the measurement function cannot
differentiate between particles, it must be symmetric under this exchange. Thus we
can write the zk-integral as ∫ 1

0

dzk(z̄kzk)
−1−yε−αg(zk), (6.1.19)

where g(zk) is a function symmetric under the zk ↔ z̄k exchange and y = 2 n
1+n

. So we
can perform the following substitution∫ 1

0

dzk(z̄kzk)
−1−yε−αg(zk) =

∫ 1
2

0

dzk(z̄kzk)
−1−yε−αg(zk)︸ ︷︷ ︸

zk=
1
2
u

+

∫ 1

1
2

dzk(z̄kzk)
−1−yε−αg(zk)︸ ︷︷ ︸

zk=1− 1
2
u

= 41+yε+α
∫ 1

0

du u−1−yε−α︸ ︷︷ ︸
pole at u=0

(2− u)−1−yε−α︸ ︷︷ ︸
pole at u=2

g(u). (6.1.20)

By employing this method, we can shift one pole outside of the integration domain
(u = 2), so we are left with a divergence only at one endpoint inside the domain
(u = 0); thus, we can use our standard +-distribution expansion. In terms of the
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6.2. The NNLO case

variable u, we find that the master formula takes the form:

Jg→gg,1(τ, µ,Q) =
αsCA
4π

(
µτ̄

1
n+1

Q
n

n+1

)2ε(
ν

Q

)2α
21+2α+4 n

1+n
ε

1 + n

Γ( −2ε
1+n

)
√
πΓ(1

2
− ε)

× exp

[
γEε

(
1− 2

1 + n

)]∫ 1

0

duu−1−2
n

1+n
ε−α(2− u)−1−2

n
1+n

ε−α(4 + u(2− u))2

×
∫ 1

0

dtk(4tk t̄k)
− 1

2
−εfgg(u, tk)

2ε
1+n .

(6.1.21)

In order to complete the section on the NLO calculation, we point out one obser-
vation. The collinear matrix elements of any jet function in our setup can be related
to the standard collinear splitting functions [120]. The splitting functions which we re-
quire for our calculation are already present in the literature and can be found in [121–
126]. This allows us to validate our calculation of the collinear matrix elements. More
importantly, it allows us to write the collinear matrix elements in a much more compact
form to simplify the master formulae for the jet functions.

In the case of the collinear matrix element for the quark jet function we can relate
it to the q → gq splitting function via

σc,q2 = µ̃2ε2g
2
s

s
QP (0)

q→gq(s, zk), (6.1.22)

where P (0)
q→gq(s, zk), is the q → gq splitting function [126]. The prefactor for the gluon

jet function is now slightly different, it reads

σc,g2 = µ̃2ε2g
2
s

s

(
P

(0)
g→qq̄(s, zk) + P (0)

g→gg(s, zk)
)
, (6.1.23)

where P (0)
g→qq̄ is the g → qq̄ splitting function and P

(0)
g→gg is the g → gg splitting func-

tion [126].

6.2 The NNLO case

The NNLO case follows in general the NLO case, although with additional complica-
tions in the form of more integrations and non-trivial divergence structures.

We first note that for the NNLO case, the number of diagrams that can contribute
is larger than at NLO. In general, we can split the NNLO calculation into two different
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(b) CFCA
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k
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(c) CF

(
CF − CA

2

)
Figure 6.2.1: Diagrams contributing to the NNLO real-virtual correction to the quark jet
function and their respective colour factors. All other diagrams give rise to scaleless integrals.
The loop momentum is labeled l and for the on-shell particles the momentum labelling is the
same as in the NLO case.

contributions. The first are the 2-particle cut or real-virtual contributions, and the
second ones are the 3-particle cut or real-real contributions. It is convenient to treat
different colour structures of the real-real contributions separately.

6.2.1 NNLO: Real-virtual contribution

The real-virtual (RV) corrections to the quark jet function are shown in figure 6.2.1.
They are structurally identical to the NLO case; the only difference is the matrix
element. The subtleties that arise in calculating the collinear matrix element for the
RV corrections are present in all diagrams in figure 6.2.1. Therefore we can pick one
diagram as a reference on how we compute them. As a guideline to the calculation of
the RV contributions we consider the diagram in figure 6.2.1(a). We start by writing
down the expression of the matrix element

σ̃c,q2,RV−a = Tr

[
/n/̄n

4

i
(
/p+ /k

)
s

(igsµ̃
εT aγµ) /p (igsµ̃

εT aγν)
i
(
/p+ /k

)
s

(
igsµ̃

εT bγρ
)

×
∫

ddl

(2π)d
i
(
/p+ /k + /l

)
(p+ k + l)2

(
igsµ̃

εT bγσ
) i (/p+ /k

)
s

/̄n/n

4

[
−gµν + n̄µkν + n̄νkµ

k−

]
× i

l2

[
−gρσ + n̄ρlσ + n̄σlρ

n̄ · l

]
/̄n

4

]
, (6.2.1)
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p+ k + l

p+ l

−p′ + l

−p′

l

k

Figure 6.2.2: Full QCD diagram of the quark jet function contribution in figure 6.2.1(a).

where we have already used the cutting rules and shifted the additional factors into the
phase-space integration. The first subtlety arises in the next step. We have, until now,
mostly neglected to write the iε-prescription of the propagators. However, they were
always assumed to be written with an additional +iε. In the case of the real-virtual
corrections, this must not be true anymore because of the linear propagator n̄ · l where
l is the loop momentum. The correct sign must be reconstructed from the full QCD
diagram, shown in figure 6.2.2. The propagator of interest is now (−p′ + l) where
p′ = Q n̄

2
. Thus we find

(−p′ + l)2 + iε = −Qn̄ · l + iε ∼ −n̄ · l + iε. (6.2.2)

So the matrix element σ̃c,q2,RV−a has the following expression

σ̃c,q2,RV−a =
(−i)(4παs)2C2

F µ̃
4ε

s3

∫
ddl

(2π)d
N(k · l, p · l, n̄ · l, n · l, s, zk, Q)

[(p+ k + l)2 + iε] [l2 + iε] [−n̄ · l + iε]
, (6.2.3)

where N(k · l, p · l, n̄ · l, n · l, s, zk, Q) is the numerator of the matrix element. We can
now evaluate the loop integral by employing Feynman parameters. We note that it is
convenient to use the representation

1

ab
=

∫ ∞
0

dy
1

(a+ by)2
, (6.2.4)
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to combine linear and quadratic propagators, in the cases where a is a standard prop-
agator, and b is linear in the loop momentum. Thus we obtain

σ̃c,q2,RV−a =
2(−i)(4παs)2C2

F µ̃
4ε

s3

∫ 1

0

dx

∫ ∞
0

dy

∫
ddl

(2π)d
Ñ(k · l, p · l, n̄ · l, n · l, s, zk, x, y)

[l2 −∆]3
,

(6.2.5)
where ∆ = [xx̄s+ xyQ] e−iπ. Finally, we can integrate over the loop momentum and
the Feynman parameters. In the end, we have to add the complex conjugate in order
to get the collinear matrix element,

σc,q2,RV−a = σ̃c,q2,RV−a + σ̃c,q,†2,RV−a =
αsCF
4π

(µeγE)ε s−ε cos(πε)
4ε
√
π(4− ε)Γ(ε)Γ(2− ε)

εΓ
(
3
2
− ε
) σc,q2 ,

(6.2.6)

where σc,q2 is its one-loop contribution.

The diagrams in figures 6.2.1(b) and 6.2.1(c) can be calculated along the same lines.
In order to write the result as compact as possible, we use the definition of the one-loop
correction to the double splitting function in [126]. There we find that the splitting
function P

(1)
q→gq(s, zk) is

P (1)
q→gq(s, zk) =

(
µ2eγE

s

)ε
2g2s
(4π)2

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)
CF

{[
(1− ε)z2k + 2z̄k

zk

] [
CF

+ (CF − CA)

(
1− ε2

1− 2ε

)
+ (CA − 2CF ) 2F1

(
1,−ε; 1− ε;

zk
zk − 1

)
− CA 2F1

(
1,−ε; 1− ε;

zk − 1

zk

)]
+ (CF − CA)

z̄k(2− zk)

zk

ε2

1− 2ε2

}
.

(6.2.7)

The jet function master formula for the RV contribution at NNLO is then obtained
by performing the phase-space steps shown in the NLO case and therefore we find the
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following master formula:

JRV
q,2 (τ, µ,Q) =

(αs
4π

)2(µτ̄ 1
n+1

Q
n

n+1

)4ε(
ν

Q

)α
16

1 + n

Γ( −4ε
1+n

)
√
πΓ(1

2
− ε)

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)

exp

[
2γEε

(
1− 2

1 + n

)]∫ 1

0

dzk dtk z
−1−4 n

1+n
ε+ε−α

k z̄εk (4tk t̄k)
− 1

2
−ε fgq(zk, tk)

4ε
1+n{

C2
F

[
z̄k(2− zk)ε

2

1− 2ε2
+
[
(1− ε)z2k + 2z̄k

] [2− ε(ε+ 4)

1− 2ε
− 2F1

] ]
+ CFCA

[
z̄k(2− zk)ε

2

2ε2 − 1
+
[
(1− ε)z2k + 2z̄k

] [1− ε(ε+ 2)

2ε− 1
+ F1 − F2

]]}
, (6.2.8)

where F1 and F2 are shorthand notations for the hypergeometric functions,

F1 := 2F1

(
1,−ε; 1− ε;

zk
zk − 1

)
, F2 := 2F1

(
1,−ε; 1− ε;

zk − 1

zk

)
.

In eq. (6.2.8), we again see the two divergences that were already present in the
NLO case. The collinear divergence is again encoded in the Γ-function Γ( −4ε

1+n
), while

the soft divergence is present as an explicit zk monomial. Additionally, we find two
divergences from the (ε tan(πε))−1-term originating from the loop integral. Therefore,
the leading pole structure of the RV-contribution is ε−4 for SCETI and ε−3α−1 for
SCETII observables. Another subtlety we want to highlight concerns SCETII observ-
ables. In eq. (6.2.8) it seems that zk is regularised in the limit n = 0 because of the
additional +ε in the exponent. This is true for most terms in the master formula; only
in the term where zk is multiplied by F2 it becomes unregularised. The easiest way to
see this is by writing the hypergeometric function in its integral representation,2

z
−1−4 n

1+n
ε+ε−α

k F2 = z
−1−4 n

1+n
ε+ε−α

k 2F1

(
1,−ε; 1− ε;

zk − 1

zk

)
= z

−1−4 n
1+n

ε+ε−α
k

(
−εz−εk

∫ 1

0

dxx−1−ε (1− z̄kx)
ε

)
= −ε

∫ 1

0

dx z
−1−4 n

1+n
ε−α

k x−1−ε (1− z̄kx)
ε , (6.2.9)

here we can clearly see that zk is unregularised in the limit n = 0 without the additional
regulator.

The calculation of the RV-contribution to the gluon jet function follows the same
logic as in the quark jet function case, and therefore we simply write down the corre-

2In our computation we always use the integral representations of hypergeometric functions.
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Figure 6.2.3: Diagrams contributing to the NNLO real-virtual correction to gluon jet func-
tion and their respective colour structure. All other diagrams give rise to scaleless integrals.
The diagrams (a) through (d) belong to the P

(1)
g→qq̄ splitting function and the diagrams (e)

through (i) belong to the P
(1)
g→gg splitting function. The loop momentum is labeled l and for

the on-shell particles the momentum labelling is the same as in the NLO case.
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sponding double collinear splitting function and the master formulae. The diagrams
which have to be computed are shown in figure 6.2.3, where figures 6.2.3(a) through
6.2.3(d) belong to the P

(1)
g→qq̄ splitting function and the diagrams 6.2.3(e) through

6.2.3(i) belong to the P
(1)
g→gg splitting function. We use again the compact form of

the splitting functions from [126]. The P (1)
g→qq̄ splitting function reads,

P
(1)
g→qq̄(s, zk) =

(
µ2eγE

s

)ε
2g2s
(4π)2

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)
TFnf

{[
z2k + z̄2k − ε

1− ε

]
[

4(ε− 1)ε

4(ε− 2)ε+ 3
TFnf +

ε(3(1− ε) + 2ε2)− 2

(ε− 1)(2ε− 1)
CF

+

(
2− F1 − F2 +

3 + ε2(2(ε− 2) + (1 + 2(ε− 2)ε))

(ε− 1)(3− 2ε)(2ε− 1)

)
CA

]}
, (6.2.10)

and P
(1)
g→gg is given by

P (1)
g→gg(s, zk) =

(
µ2eγE

s

)ε
2g2s
(4π)2

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)
CA

{[
(1− zkz̄k)

2

zkz̄k
CA

]

[1− F1 − F2] +

(
ε2(1− 2εzkz̄k)(CA(ε− 1) + 2TFnf )

2(1− ε)(ε− 1)(2ε− 3)(2ε− 1)

)}
, (6.2.11)

where we used the shorthand notation F1 and F2 for the hypergeometric functions
again. We are therefore able to write the master formulae for the RV-contribution of
the gluon jet function as

JRV
g→qq̄,2(τ, µ,Q) =

(αs
4π

)2(µτ̄ 1
n+1

Q
n

n+1

)4ε(
ν

Q

)2α
16

1 + n

Γ( −4ε
1+n

)
√
πΓ(1

2
− ε)

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)

exp

[
2γEε

(
1− 2

1 + n

)]∫ 1

0

dzk dtk (zkz̄k)
ε−α (4tk t̄k)

− 1
2
−ε fqq̄(zk, tk)

4ε
1+n{

T 2
Fn

2
f

[
4(ε− 1)ε (z2k + z̄2k − ε)

(1− ε)(4(ε− 2)ε+ 3)

]
+ TFnfCF

[
(ε(3(1− ε) + 2ε2)− 2)(z2k + z̄2k − ε)

(1− ε)(ε− 1)(2ε− 1)

]
+ TFnfCA

[
2− F1 − F2 +

3 + ε2(2(ε− 2) + (1 + 2(ε− 2)ε))

(ε− 1)(3− 2ε)(2ε− 1)

]}
, (6.2.12)
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and

JRV
g→gg,2(τ, µ,Q) =

(αs
4π

)2(µτ̄ 1
n+1

Q
n

n+1

)4ε(
ν

Q

)2α
16

1 + n

Γ( −4ε
1+n

)
√
πΓ(1

2
− ε)

πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)

exp

[
2γEε

(
1− 2

1 + n

)]∫ 1

0

dzk dtk (zkz̄k)
−1−4 n

1+n
ε+ε−α (4tk t̄k)

− 1
2
−ε fgg(zk, tk)

4ε
1+n{

C2
A

[
(1− zkz̄k)

2 (1− F1 − F2) +
ε2(1− 2εzkz̄k)zkz̄k

2(1− ε)(2ε− 3)(2ε− 1)

]
+ CATFnf

[
ε2(1− 2εzkz̄k)zkz̄k

(1− ε)(ε− 1)(2ε− 3)(2ε− 1)

]}
. (6.2.13)

6.2.2 NNLO: Real-real collinear matrix elements

After computing the RV corrections to the jet function, we turn to the real-real (RR)
contributions. We start the computation, as we did in the other sections, by evaluating
the collinear matrix elements.

The computation of the matrix elements follows the same way as in the NLO case;
the only difference is that we have three particles in the final state instead of two.
Therefore we will use the fact that they can be related to the triple collinear splitting
functions given below. In order to be consistent, we use the following notation for the
splitting functions

z1 =
k−
Q
, z2 =

l−
Q
, z3 =

p−
Q
,

s12 = (k + l)2, s13 = (k + p)2, s23 = (l + p)2, s123 = (k + l + p)2,

where the momenta k, l, p are chosen in reference to the splitting, q → p1(k)p2(l)p3(p).
At NNLO we have to consider five splitting functions which contribute to the jet
functions. In the case of the quark jet function the collinear matrix element is given
by3

σc,q3 = µ̃4ε4Qg
4
s

s2123

(
P

(0)
q→q̄′q′q + P

(0)
q→q̄qq + P (0)

q→ggq

)
, (6.2.14)

where the primed quark(antiquark) represents a quark(antiquark) of different flavour

3In the literature the splitting function P
(0)
q→q̄qq is given as

(
P

(0)
q→q̄′q′q + 2 → 3

)
+ P

id,(0)
q→q̄qq, however

the first two terms can be absorbed into P
(0)
q→q̄′q′q. Thus we will use P

(0)
q→q̄qq = P

id,(0)
q→q̄qq.
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(a) CFTFnf (b) CFCA

(c) C2
F (d) CF (CF − CA/2)

(e) CFCA

Figure 6.2.4: Topologies contributing to NNLO real-real quark jet function and their re-
spective colour structure. The topology in figure (a) corresponds to the P

(0)
q→q̄′q′q splitting

function. The blue cut in figure (d) belongs to the P
(0)
q→q̄qq splitting function and the orange

cut in figure (d), as well as the rest of the figures, to P
(0)
q→ggq. The diagrams with two iden-

tical particles in the final state correspond to two diagrams where the momentum labels are
switched.

than the parent quark(antiquark). The matrix element for the gluon jet function is

σc,g3 = µ̃4ε 4g
4
s

s2123

(
P

(0)
g→gq′q̄′ + P (0)

g→ggg

)
. (6.2.15)

The topologies that enter the collinear matrix element calculation of the quark
jet function are depicted in figure 6.2.4. The leading order triple collinear splitting
functions were calculated in [121, 122]. They read

P
(0)
q→q̄′q′q = CFTFnf

s123
2s12

[
− [z1(s12 + 2s23)− z2(s12 + 2s13)]

2

(z1 + z2)2s12s123
+

4z3 + (z1 − z2)
2

z1 + z2

+ (1− 2ε)

(
z1 + z2 −

s12
s123

)]
,

(6.2.16)
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P
(0)
q→q̄qq =CF

(
CF − CA

2

){
(1− ε)

(
2s23
s12

− ε

)
+
s123
s12

[
1 + z21
1− z2

− 2z2
1− z3

− ε

(
(1− z3)

2

1− z2
+ 1 + z1 −

2z2
1− z3

)
− ε2(1− z3)

]
− s2123

2s12s13
z1

[
1 + z21

(1− z2)(1− z3)
− ε

(
1 + 2

1− z2
1− z3

)
− ε2

]}
+ (2 ↔ 3) ,

(6.2.17)

P (0)
q→ggq =C

2
F

{
s2123

2s13s23
z3

[
1 + z23
z1z2

− ε
z21 + z22
z1z2

− ε(1 + ε)

]
+ (1− ε)

[
ε− (1− ε)

s23
s13

]
+
s123
s13

[
z3(1− z1) + (1− z2)

3

z1z2
− ε(z21 + z1z2 + z22)

1− z2
z1z2

+ ε2(1 + z3)

]}
+CFCA

{
(1− ε)

(
1

4
− ε

2
+

[z1(s12 + 2s23)− z2(s12 + 2s13)]
2

4(z1 + z2)2s12s123

)
+

s2123
2s12s13

[
2z3 + (1− ε)(1− z3)

2

z2
+

2(1− z2) + (1− ε)z22
1− z3

]
− s2123

4s13s23
z3

[
ε(1− ε)

+
2z3 + (1− ε)(1− z3)

2

z1z2

]
+
s123
2s12

[
2ε
z3(z1 − 2z2)− z2

z2(1− z3)

+ (1− ε)
z1(2− 2z1 + z21)− z2(6− 6z2 + z22)

z2(1− z3)

]
+
s123
2s13

[
z3(z1 − 1)− (1− z2)

3

z1z2

+ (1− ε)
(1− z2)

3 + z23 − z2
z2(1− z3)

− ε(
2(1− z2)(z2 − z3)

z2(1− z3)
− z1 + z2)

+ ε(1− z2)

(
z21 + z22
z1z2

− ε

)]}
+ (1 ↔ 2) .

(6.2.18)

The P (0)
g→gq′q̄′ splitting function can be decomposed into the colour structures

P
(0)
g→gq′q̄′ = CFTFnFP1 + CATFnFP2, (6.2.19)

where

P1 = −2− (1− ε)s23

(
1

s12
+

1

s13

)
+ 2

s2123
s12s13

(
1 + z21 −

z1 + 2z2z3
1− ε

)
− s123

s12

(
1 + 2z1 + ε− 2

z1 + z2
1− ε

)
− s123

s13

(
1 + 2z1 + ε− 2

z1 + z3
1− ε

)
, (6.2.20)
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(a) TFnfCA (b) TFnfCA

(c) TFnfCF (d) TFnf (CF − CA/2)

(e) C2
A (f) C2

A

(g) C2
A (h) C2

A

Figure 6.2.5: Topologies contributing to NNLO real-real gluon jet function and their re-
spective colour structure. The topology in figures (a) through (d) corresponds to the P

(0)
g→gq′q̄′

splitting function and figures (e) through (h) to P
(0)
g→ggg.The diagrams with two(three) iden-

tical particles in the final state correspond to two(six) diagrams where the momentum labels
are switched.

79



Chapter 6. Calculation of jet functions

and

P2 =

[
−t223,1
4s223

+
s2123

2s13s23
z3

(
(1− z1)

3 − z31
z1(1− z1)

− 2z3(1− z3 − 2z1z2)

(1− ε)z1(1− z1)

)
+
s123
2s13

(1− z2)

(
1 +

1

z1(1− z1)
− 2z2(1− z2)

(1− ε)z1(1− z1)

)
+
s123
2s23

(
1 + z31

z1(1− z1)
+
z1(z2 − z3)

2 − 2z2z3(1 + z1)

(1− ε)z1(1− z1)

)
− s2123

2s12s13

(
1 + z21 −

z1 + 2z2z3
1− ε

)
− 1

4
+
ε

2

]
+ (2 ↔ 3). (6.2.21)

The last splitting function we need for the gluon jet function is P (0)
g→ggg given as,

P (0)
g→ggg = C2

A

[
(1− ε)

4

t212,3
s212

+
3

4
(1− ε) +

s123
s12

(
4
z1z2 − 1

1− z3
+
z1z2 − 2

z3

+
3

2
+

5

2
z3 +

(1− z3(1− z3))
2

z3z1(1− z1)

)
+

s2123
s12s13

(
z1z2(1− z2)(1− 2z3)

z3(1− z3)
+ z2z3 − 2

+
z1(1 + 2z1)

2
+

1 + 2z1(1 + z1)

2(1− z2)(1− z3)
+

1− 2z1(1− z1)

2z2z3

)]
+ 5 Permutations.

(6.2.22)

The diagrams for the splitting functions are shown in figure 6.2.5, and the compact
form is taken from [122]. In eqs. (6.2.19) and (6.2.22) we used

tij,k = 2
zisjk − zjsik
zi + zj

+
zi − zj
zi + zj

sij.

Note that the splitting functions with identical particles in the final state come with
an additional symmetry factor. In our calculation, we will, most of the time, cancel
the symmetry factor against the additional permutations. Therefore, we only have to
use the shown form of the splitting functions in calculating the jet function master
formulae.

As a last note on the splitting functions, observe that the triple collinear splitting
functions have a rich divergence structure. Therefore it is convenient to split these
further into structures with similar divergent behaviour. This decomposition of the
splitting functions is shown in appendix B.

Before we introduce the phase-space parametrisation, we show the colour decom-
position of the quark and gluon jet function, along with some prefactors, so that we
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can simplify the notation. The decomposition reads

JRR
q =

(αs
4π

)2(µτ̄ 1
1+n

Q
n

1+n

)4ε(
ν

Q

)2α [
CFTFnfJ

Ff
q + C2

FJ
FF
q + CFCAJ

FA
q

+ CF

(
CF − CA

2

)
J ID
q

]
, (6.2.23)

JRR
g =

(αs
4π

)2(µτ̄ 1
1+n

Q
n

1+n

)4ε(
ν

Q

)3α [
TFnfCFJ

fF
g + TFnfCAJ

fA
g + C2

AJ
AA
g

]
, (6.2.24)

where the coefficients Ji are integrals of the collinear matrix elements.

6.2.3 NLO quark jet function: CFTFnf

One of the simplest structures for the 3-particle phase-space cut is the CFTFnf colour
structure for the quark jet function. It arises from diagrams that involve cutting a
fermion bubble, depicted in figure 6.2.4(a). The associated splitting function is given
in eq. (6.2.16).

The collinear matrix element can be further separated into two different structures
according to its dependence on the triple invariant mass s123.

σc,q3,CFTFnf
=

(
1

s2123
σA +

1

s123
σB

)
CFTFnf , (6.2.25)

where

σA = −4µ̃4εg4s

[
[z1(s12 + 2s23)− z2(s12 + 2s13)]

2

2(z1 + z2)2s212
+

(1− 2ε)

2

]
, (6.2.26)

and
σB =

2µ̃4εg4s
s12

[
4z3 + (z1 − z2)

2

z1 + z2
+ (1− 2ε) (z1 + z2)

]
. (6.2.27)

Here we can already see that the divergence structure is more complicated than in the
2-particle cut cases discussed above. In particular, the collinear divergence due to

s12 =
k−
l−
k2T +

l−
k−
l2T − 2kT lT cos θkl, (6.2.28)

requires some attention and a direct factorisation of the divergences seems impossible.
Like in the 2-particle-cut case, we transform to light-cone coordinates and use the
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on-shell conditions and the additional phase-space constraints to eliminate the integra-
tions associated with the third particle and the plus-components of the remaining two
particles. The remaining integrations are then the remaining light-cone components
k−, kT and l−, lT , as well as the corresponding angular integrations.

We introduce the physical parametrisation in terms of the sum of light-cone coor-
dinate variables qT and z12, as well as relative variables a12 and b12 as follows:

qT =

√
(k− + l−)

(
k2T
k−

+
l2T
l−

)
, z12 =

k− + l−
Q

, (6.2.29)

a12 =
k−lT
kT l−

, b12 =
kT
lT
. (6.2.30)

As mentioned in the previous sections, this is not the parametrisation we ultimately use
in our numerical approach; though, it is similar. It is far more intuitive than the actual
computational parametrisation, so understanding our setup is more straightforward,
and the expressions are much shorter.

Now that we have fixed our parametrisation for the light-cone coordinates, we turn
to the angular variables. We stated that we allow dependence on one angle per particle
measured with respect to a shared reference vector in the transverse plane per final-
state particle. However, one angle is always fixed by phase-space constraints. Thus, we
technically only allow i−1 independent angles for i final-state particles. So, in the case
of the NNLO real-real calculation, we need two independent angles in the transverse
plane. This is the same case as in the soft function calculation. Thus, we can use the
setup from [42].

We parameterise the transverse plane in (d− 2) dimensions as

~l⊥ =
∣∣∣~l⊥∣∣∣(1, 0, 0, . . . 0),

~k⊥ =
∣∣∣ ~k⊥∣∣∣(cos θkl, sin θkl, 0, . . . , 0),

~v⊥ = |~v⊥|(cos θl, sin θl sin θ5, sin θl cos θ5, 0, . . . , 0),

where θk = ](~k⊥, ~v⊥), θl = ](~l⊥, ~v⊥) and θkl = ](~k⊥,~l⊥). This arrangement can
be seen in figure 6.2.6. This setup ensures that the invariant mass s12 has a simple
dependence on the angle θkl. For the angular integration measure we have
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Figure 6.2.6: The angular parametrisation of the transverse space.

∫
dd−3Ωkd

d−3Ωl =

∫
dd−4Ωdd−5Ω

∫ π

0

dθkldθldθ5 sin
d−4 θkl sin

d−4 θl sin
d−5 θ5

=
32π

1
2
−2ε

Γ(1/2− ε)Γ(−ε)

∫ 1

0

dtkldtldt5(4tklt̄kl)
− 1

2
−ε(4tlt̄l)

− 1
2
−ε(4t5t̄5)

−1−ε,

(6.2.31)

which is almost the final expression. The t5 integration suffers from spurious diver-
gences in limit t5 → {0, 1}. These divergences are unphysical, and they cancel against
the 1

Γ(−ε) in the prefactor. The origin is that we are resolving more angles in the
transverse plane than exist in four space-time dimensions. The divergences in both
endpoints again forbids a naive ε-expansion on the integrand level. Therefore, we will
disentangle them by splitting the integration domain at t5 = 1/2. This leads to two
contributions, which after subsequent rescaling, yield∫

dd−3Ωkd
d−3Ωl =

16π
1
2
−2ε

Γ(1/2− ε)Γ(−ε)

∫ 1

0

dtkldtldt
′
5(4tklt̄kl)

− 1
2
−ε(4tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−ε. (6.2.32)

Notice that we integrate over two copies of the actual integrand, one with the
substitution t5 → t′5/2 and the second one with t5 → 1− t′5/2. However, the integrand
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can only depend implicitly on t5 through

tk = tl + tkl − 2tltkl − 2
√
tlt̄ltklt̄kl(1− 2t5) (6.2.33)

and therefore we only have to sum over two contributions in which the angle θk is
resolved as

t±k = tl + tkl − 2tltkl ± 2
√
tlt̄ltklt̄kl(1− t′5). (6.2.34)

As a last comment on the angular parametrisation, we show how we can express the
angles involving the third particle via the other angles. Let us start by looking at the
angles θkp and θlp, which are required for the invariant masses s13 and s23, respectively.
We note that from the (d− 2)-dimensional delta function, we find

~pT = −~kT −~lT . (6.2.35)

Thus, we can write for cos θkp

~pT · ~kT = −k2T − kT lT cos θkl, (6.2.36)

pTkT cos θkp = −k2T − kT lT cos θkl,

cos θkp =
−k2T − kT lT cos θkl

pTkT
,

and similarly for cos θlp we find

cos θlp =
−l2T − kT lT cos θkl

pT lT
. (6.2.37)

The final angle we require is the angle θp between the third particle and the reference
vector ~v⊥. This can be computed from the scalar product between ~pT and the reference
vector, using the phase-space restriction on the transverse component. Thus we find

cos θp = −kT
pT

cos θk −
lT
pT

cos θl. (6.2.38)

We are now close to writing down the master formula for the CFTFnf -colour struc-
ture of the quark jet function. The last ingredient we have to specify is the measure-
ment function. At the NLO level, we assumed that the measurement function could
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be written in the form

Mjet
1,gq(τ ; k) = exp

[
−τkT

(
kT
zkQ

)n
f(zk, tk)

]
. (6.2.39)

If we extend this to the NNLO RR contribution, we can see that our new variable qT
is taking the place of kT as the dimensionful variable. Thus we replace kT by qT in the
previous equation. Next, we look at the factor z−nk . We have factored out this term
to ensure that f(zk, tk) is finite. Similarly, in the RR structure, we have to factor out
terms such that the remaining function stays finite and non-zero. The question now
arises: What kind of divergences can be present in the RR contribution?

We observe that we can have two different kinds of divergences; one obeys IRC
safety, and the other one does not obey it. Therefore we know that if the divergence
obeys IRC safety, the measurement function reduces to the NLO measurement function
and thus stays finite. If we turn to our parametrisation, we see that the divergences
which obey IRC safety are

b12 → 0 =̂ kµ is soft,

b12 → ∞ =̂ lµ is soft,

a12 → 1 & tkl → 0 =̂ kµ is collinear to lµ.

So we never have to factor out these limits, since we are guaranteed that the mea-
surement function is non-zero in this case automatically. All other limits could lead to
remainder functions that tend to infinity or are zero in the singular limits of the ma-
trix element. Therefore, we first have to check the divergence structure of the matrix
element and then the behaviour of a general measurement function in these singular
limits. Note that we do not have to be as general as possible because the divergences
are related to the double soft limits and are therefore universal. So we can use a generic
event-shape variable, which we will define later. We will denote Ω as a placeholder for
those factors which have to be pulled out of the measurement function. The final piece
we have to adapt for the NNLO RR structure is f(zk, tk). This new function must
depend on every variable in our parametrisation except qT . In particular, it is the only
part of our computation that depends on the angles between the transverse component
and our reference vector. Thus, we need two versions of this function which we denote
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as F :

F (a12, b12, z12, tkl, t
±
k , tl) = F+(a12, b12, z12, tkl, t

+
k , tl) + F−(a12, b12, z12, tkl, t

−
k , tl),

(6.2.40)
where t±k = t±k (tkl, tl, t

′
5) was given in (6.2.34). Therefore, our ansatz for the measure-

ment function for the NNLO RR contribution is

Mjet
2 (τ ; {k, l, p}) = exp

[
−τqT

(
qT
Q

)n
ΩF (a12, b12, z12, tkl, t

±
k , tl)

]
. (6.2.41)

Note that this ansatz will be used for all structures in both quark and gluon jet function,
with the only difference being the dependence on the kinematic variables and angles
in F and the exact form of Ω.

With all the ingredients determined we are now able to write down our master
formulae for this colour structure:

JFf
q,A =

23−6εΓ
( −4ε
1+n

)
(1 + n)π2Γ(−2ε)

e2εγE
n−1
n+1

∫ ∞
0

da12db12

∫ 1

0

dz12dtkldtldt
′
5

(tklt̄kl)
− 1

2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−εa1−2ε−α12 b1−2ε−α12 z−1−2α12 Ω
4ε

1+nF
4ε

1+n

z̄12(a12 + b12)
2ε(1 + a12b12)

−2+2ε+2α

((1− a12)2 + 4a12tkl)2((1 + a12b12)(a12 + b12)z̄12 + z12((1− b12)2 + 4b12t̄kl))2[
− 2(1− a212)

2(1 + a12b12)
2 + 2(1− a212)(1− a212b

2
12)z12((1− a12)

2 + 4a12tkl)

− (1 + a212b
2
12)z

2
12((1− a12)

2 + 4a12tkl)
2 + ε

{
(1 + a12b12)

2z212((1− a12)
2

+ 4a12tkl)
2
}]
, (6.2.42)

and

JFf
q,B =

23−6εΓ
( −4ε
1+n

)
(1 + n)π2Γ(−2ε)

e2εγE
n−1
n+1

∫ ∞
0

da12db12

∫ 1

0

dz12dtkldtldt
′
5

(tklt̄kl)
− 1

2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−εa1−2ε−α12 b−2ε−α12 z−1−2α12 Ω
4ε

1+nF
4ε

1+n

(a12 + b12)
2ε(1 + a12b12)

−2+2ε+2α

2 + 4a12b12z̄12 − (2− z12)z12 + a212b
2
12(2− (2− z12)z12)− ε {z212(1 + a12b12)

2}
((1− a12)2 + 4a12tkl)((1 + a12b12)(a12 + b12)z̄12 + z12((1− b12)2 + 4b12t̄kl))

,

(6.2.43)

where we abbreviated F (a12, b12, z12, tkl, t
±
k , tl) = F . The subscript JFf

q,A(JFf
q,B) corre-

spond to the structure σA(σB) in eq. (6.2.25).
In the formulae for the CFTFnf -contribution, we see that they still require some
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work due to three problems. The first problem is that we want to work on the unit
hypercube; thus, all integration must have a domain of 0 to 1. This is true for all
angular integration and z12, but a12 and b12 have still unbounded upper limits. The
second problem is that we have not yet determined the explicit form of Ω for these
structures, and the last problem is that we still have an overlapping singularity between
a12 and tkl from the collinear limit. Let us solve these problems one by one, starting
with the remapping onto the hypercube.

Let us write our integrand as I(a12, b12) and assume we only want to integrate over
a12 and b12. Therefore, we can remap I(a12, b12) onto the hypercube in the following
way:∫ ∞

0

da12db12 I(a12, b12) =

∫ 1

0

da12db12 I(a12, b12) +

∫ 1

0

da12

∫ ∞
1

db12 I(a12, b12)

+

∫ ∞
1

da12

∫ 1

0

db12 I(a12, b12) +

∫ ∞
1

da12db12 I(a12, b12)

=

∫ 1

0

da12db12 I(a12, b12) +

∫ 1

0

da12db12 b
−2
12 I(a12, 1/b12)

+

∫ 1

0

da12db12 a
−2
12 I(1/a12, b12) +

∫ 1

0

da12db12 a
−2
12 b
−2
12 I(1/a12, 1/b12)

=

∫ 1

0

da12db12 (IA(a12, b12) + IB(a12, b12) + IC(a12, b12) + ID(a12, b12)) .

(6.2.44)

In eq. (6.2.44) we see that, in general, we have to calculate four different sectors in
order to recover the total integration domain. We can reduce the number of sectors for
some structures by exploiting the underlying k ↔ l symmetry. This symmetry states
that the integral cannot differentiate between the exchange of two particles. In terms
of our parametrisation, this implies that

a12 →
1

a12
, b12 →

1

b12
, z12 → z12, tl → tk, tk → tl, tkl → tkl. (6.2.45)

In the case of the CFTFnf -contribution this symmetry holds and thus we can simplify
the remapping to∫ ∞

0

da12db12 I(a12, b12) = 2

∫ 1

0

da12db12 (IA(a12, b12) + IB(a12, b12)) . (6.2.46)

Note that this assures that the integral is symmetric under k ↔ l exchange, but the
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integrand can be different.

On the level of the matrix elements, this symmetry holds only for specific splitting
functions. However, for the measurement function, this symmetry always holds because
it cannot distinguish between the exchange of any particles. The only subtlety arises in
the tk → tl exchange because technically tk is a function of tl; however, we can simply
relabel the angles such that tl becomes a function of tk. Then the symmetry still holds.

Now that all the integrations are mapped onto the unit hypercube, we come to the
overlapping singularity that arises in the collinear limit. The structure which gives rise
to the overlapping singularity is 1/((1−a12)2+4a12tkl). In order to cure the overlapping
singularity, we define a non-linear transformation:

a12 = 1− u(1− v), tkl =
u2v

1− u(1− v)
. (6.2.47)

To see what is happening to the collinear divergence let us consider the structure∫ 1

0

da12dtkl
(tklt̄kl)

− 1
2
−ε

(1− a12)2 + 4a12tkl
(6.2.48)

=

∫ 1

0

dudv
u2(1 + v)

(1− u(1− v))︸ ︷︷ ︸
Jacobian

1

u2(1 + v)2

(
(1− u)u2v(1 + uv)

(1− u(1− v))2

)− 1
2
−ε

=

∫ 1

0

dudv
u−1−2ε

1 + v
(1− u(1− v))2ε (v(1− u)(1 + uv))−

1
2
−ε . (6.2.49)

Here we can clearly see that the divergence is now in a monomial form in u and will
only give rise to divergences in ε. The rest of the expression is either finite or, at most
gives rise to integrable square root or logarithmic divergences.

Finally, we arrive at a master formula where all divergences are of monomial type,
and therefore we can finally identify Ω for the CFTFnf contribution. In eqs. (6.2.42)
and (6.2.43) we can see that the only divergent limits are z12 → 0 and u → 0 after
using our non-linear transformation. However, we know that the collinear divergence u
is protected by IRC and therefore the measurement function stays finite and non-zero
in the limit u → 0. In order to see which power of z12 we have to factor out; let us
create a generic observable which obeys all our previously stated assumptions.
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6.2. The NNLO case

A toy measurement4 which obeys all our assumptions is

ω({ki}) =
∑
i

k
1−n
2
−,i k

1+n
2

+,i . (6.2.50)

If we introduce our parametrisation for the 3-particle phase-space and only keep terms
related to z12 and qT , then we can compare the result to our ansatz in eq. (6.2.41).

k
1−n
2
− k

1+n
2

+ + l
1−n
2
− l

1+n
2

+ + p
1−n
2
− p

1+n
2

+ = qT

(
qT
Q

)n [
G1(a12, b12, n)

zn12
+
G2(a12, b12, tkl, n)

z̄n12

]
,

(6.2.51)

where G1 and G2 are finite functions in the limit z12 → 0. Thus, we can see that we
have to extract a factor of z−n12 from the measurement to make sure that the rest of the
expression is finite and non-zero in any of the divergences of the matrix element. So
in the case of the CFTFnf -structure we find that Ω = z−n12 . Therefore, we solved the
three problems mentioned above.

Now we are at a point where we could show the master formulae in all their glory.
However, as this is not the parametrisation that is passed to the numerical integrator
we only show the complete structure for the region A of JFf

q,B and only the divergence
structure of region B. In the case of region A, we find

JFf
q,B,A =

24−6εΓ
( −4ε
1+n

)
(1 + n)π2Γ(−2ε)

e2εγE
n−1
n+1

∫ 1

0

dz12dudb12dvdtldt
′
5 u
−1−2εz

−1− 4nε
1+n
−2α

12 (t′5)
−1−ε

(tlt̄l)
− 1

2
−ε(2− t′5)

−1−ε(1 + v)−1b−2ε−α12 (1− u(1− v))1−α((1− u)v(1 + uv))−
1
2
−ε

(1− u(1− v) + b12)
2ε(1 + (1− u(1− v))b12)

−2+2ε+2αF
4ε

1+n

(1 + b212(1− uv̄)− uv̄ + b12(2− u((2− uv̄)v̄ + u(1 + v)2z12)))[
2 + 4(1− u(1− v))b12z̄12 − (2− z12)z12 + (1− u(1− v))2b212(2− (2− z12)z12)

− ε
{
z212(1 + (1− u(1− v))b12)

2
} ]
,

(6.2.52)

and in region B we find

JFf
q,B,B(τ, µ,Q) ∼ Γ

(
−4ε

1 + n

)∫ 1

0

dΠu−1−2εz
−1− 4nε

1+n
−2α

12 W , (6.2.53)

where W is a function which does not give rise to any divergences. We can see that both

4This measurement is actually the precise definition of the angularity measurement. We will treat
those more carefully in section 8.2.
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regions give rise to the same kind of divergences, namely via the Γ-function and through
the monomials in u and z12. Moreover, we find the same divergence structure for the
term proportional to 1/s2123. Therefore we see that for SCETI observables, CFTFnf
produces a leading term proportional to ε−3 and in the case of a SCETII observable,
the leading structure is α−1ε−2.

6.2.4 NNLO quark jet function: Identical flavour structure

The next structure we look at is the structure that corresponds to the splitting function
P

(0)
q→q̄qq in eq. (6.2.17). We can again split the collinear matrix element into different

structures according to its dependence on the triple invariant mass s123:

σc,q3,identical =
1

s2123
σC +

1

s123
σD + σE, (6.2.54)

where σC and σD can be calculated in a similar way as the CFTFnf structure. The
interesting structure is σE because it does not depend on s123, but on two different
invariant masses:

σE =
z1N

s12s13(1− z2)(1− z3)
, (6.2.55)

where N is the numerator of the expression, however for understanding the difficulty
of this structure the exact form of it is irrelevant.

The challenge is that even though we have a parametrisation that perfectly captures
the collinear divergence between particles 1 and 2, this is not true for the collinear
divergence between particles 1 and 3. This becomes apparent when we write s13 in our
parametrisation:

s13 =
b(z̄212 + 2a12z̄12(b12 + z12(1− 2tkl)) + a212(b

2
12 + 2b12z12(1− 2tkl) + z212))

(a12 + b12)(1 + a12b12)z̄12z12
q2T ,

(6.2.56)
here we can see that this structure can become zero in many different singular lim-
its. If these limits lie on the endpoints, they would still be manageable. However,
there are also zeros in the middle of the integration domain. Therefore we can see
the first massive drawback of our parametrisation in this case. Namely, it can only
correctly disentangle the collinear divergence of one invariant mass. Specifically, we
used the invariant mass of two particles to define our parametrisation. In the case of
the CFTFnf -structure we used the particles with momentum label k and l to define
our parametrisation. Therefore, we can only correctly describe the collinear divergence
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of s12.
Here we have to separate both invariant masses. We achieve this by implementing

a selector function S. The selector function is supposed to suppress one divergence
without creating new divergences. 5 These selector functions are in the same spirit as
those introduced in [127]. The selector function we use for the structure σ3 has the
form

S = z3s13 + z2s12. (6.2.57)

The additional z-factors are actually not required for this structure, however they
become important for later contributions. Thus the can rewrite structure σ3 as

σ3 =
z1N

s12s13(1− z2)(1− z3)

S
S

=
z1N

s12s13(1− z2)(1− z3)

z3s13
S

+
z1N

s12s13(1− z2)(1− z3)

z2s12
S

=
z1z3N

s12(1− z2)(1− z3)S
+

z1z2N
s13(1− z2)(1− z3)S

. (6.2.58)

Now that we have disentangled the two invariant masses, we can introduce for each
term their own parametrisation. For the first term, we use the same parametrisation
as before because the invariant mass is still s12. In the second term, we now exchange
particles 2 and 3 in the parametrisation. So the light-cone parametrisation becomes

qT =

√
(k− + p−)

(
k2T
k−

+
p2T
p−

)
, z13 =

k− + p−
Q

, (6.2.59)

a13 =
k−pT
kTp−

, b13 =
kT
pT
. (6.2.60)

and the angles are now tkp, tp and tk(tkp, tp, t
′
5).

The procedure of finding the proper physical parametrisation of the jet function
contributions is as follows. We first identify the invariant mass in the structure and
then choose the proper parametrisation accordingly such that the collinear divergence is
simple. Note that from now on, we will drop the indices that determine which particles
are used in the definition and only use the variables {qT , z, a, b, t, tl, t′5} as placeholders.
The relabeling can also be thought of as changing the momentum definition of the
splitting function such that only s12 appears as a collinear divergence.6

5We will see in the next section that we can allow new divergences, but only if they lie on the
endpoints of the integration domain.

6In case no invariant mass appears in the structure we will use the parametrisation defined in
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One benefit of structure σE is that the numerator N turns out to be symmetric
under 2 ↔ 3 exchange. Therefore, we can combine the two structures in eq. (6.2.58),
simply by exchanging the 2 and 3 labels in the second term. Note that we must include
the symmetry factor for two identical particles. So we arrive at the following matrix
element for this structure

σE =
z1z3Ñ

s12(1− z2)(1− z3)S
, (6.2.61)

where Ñ is again symmetric under the 2 ↔ 3 exchange.
We can now apply the same steps as in the CFTFnf structure to get to the final

master formula for σ3. The only difference is that this structure is symmetric under 2 ↔
3 interchange. However, to calculate only two sectors, it should have been symmetric
under 1 ↔ 2 exchange. Therefore we have to calculate all four regions. Explicitly, we
find the following master formula in region A for this structure

J ID
q,E,A =−

22−6εΓ
( −4ε
1+n

)
e2εγE

n−1
n+1

(1 + n)π2Γ(−2ε)

∫ 1

0

dadbdzdtdtldt
′
5 (tt̄)

− 1
2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−ε

a2−2ε−αb−2ε−αz−2α(a+ b)2ε(1 + ab)−1+2ε+2α(1 + ab− z)−1Ω
4ε

1+nF
4ε

1+n

((1− a)2 + 4at)((1 + ab)2 − 2(1 + ab)(1− a(1− 2t))z + 2((1− a2) + 4at)z2)[
1 + ab(2 + ab(1 + z2))− ε{1− z̄z + ab(2 + z2) + a2b2(1 + z(1 + z))}

− ε2{(1 + ab)(1 + ab− z)z}
]
,

(6.2.62)

from this expression, we can see that the only divergence is the collinear divergence. We
use the previously introduced non-linear transformation, such that the only divergence
then lies at u → 0. Therefore, Ω = 1 such that, no term has to be factored out of F .
So this structure only contributes to ε−2 for both SCETI and SCETII observables.

The other three regions have the same divergence structure. We do not list them
here but in the appendix C together with all the other master formulae in the physical
parametrisation.

6.2.5 NNLO quark jet function: C2
F

The next colour structure which introduces new challenges is the C2
F structure of the

P
(0)
q→ggq splitting function. Similar to the previous examples, we split this structure into

eq. (6.2.29).
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different divergence structures depending on the denominator:

σc,q
3,C2

F
=

1

z1z2s13s23
σF +

1

z1z2s13s123
σG +

1

s123s13
σH , (6.2.63)

while the third structure σH is now similar to the cases we have already encountered,
the other two structures are new. We explain in detail the steps to arrive at the master
formulae for the structure σF and outline the steps for σG.

To start the computation, we relabel 2 and 3 and then use a selector function of
the form

S = z1s12 + z3s23. (6.2.64)

Since σF is now symmetric under 1 and 3 interchange, we can add the two terms such
that we arrive at

1

z1z3s12s23
σF

S
S
=⇒ N

s12z1(z1s12 + z3s23)
, (6.2.65)

where N is again the numerator of the expression. We now have one invariant mass,
and can choose the proper physical parametrisation in this case accordingly.

Hence we arrive at the master formula for this structure in region A:

JFF
q,F,A =

81−2εΓ
( −4ε
1+n

)
e2εγE

n−1
n+1

(1 + n)π2Γ(−2ε)

∫ 1

0

dadbdzdtdtldt
′
5 (tt̄)

− 1
2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−ε

a−1−2ε−αb−1−2ε−αz−αz̄−1−α(a+ b)2ε(1 + ab)−1+2ε+2αΩ
4ε

1+nF
4ε

1+n Ñ (a, b, z, ε)

((1− a)2 + 4at)((1 + ab)2 + 2b(1 + ab)(1− a− 2t)z + 2((1− a2) + 4at)z2b2)
,

(6.2.66)

where Ñ (a, b, z, ε) is the numerator and has no influence on the divergence structure
of this expression. We can see in eq. (6.2.66) that we obtain divergences in monomial
form in the limits a → 0, b → 0, and z → 1. On top of that we also see the collinear
divergence for a → 1 and t → 0. So as a first step, we have to disentangle the
divergences in a, such that we obtain expressions with one divergence per variable.
The simplest solution for this problem is to multiply the expression by 1 = a+(1− a),
where the first(second) term is free of divergences for a→ 0(a→ 1).

In the first term, we thus find the divergences at b → 0, z → 1, and the collinear
divergence. So we can again apply our method for disentangling the overlapping sin-
gularity and write the divergence structure in terms of monomials in b, z̄ and u. We
will determine the correct form of Ω after looking at the second term.

The second term seems more straightforward than the first one because all diver-
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Figure 6.2.7: Sector decomposition represented schematically. The integration domain of
each variable is [0, 1].

gences are already in the monomial form. However, a problem arises due to the factors

a−1−2εb−1−2ε(a+ b)2ε, (6.2.67)

where we dropped the additional regulators as the problem already appears in the
SCETI case. Even though it seems that this structure has no overlapping singularity,
it poses a problem because if we expand in the regulator ε, we see that we get terms
of the form

1

2ε
ln (a+ b) δ(a)δ(b) +O(ε0). (6.2.68)

If we now evaluated the integral, we would encounter ln 0-terms that are not well
defined. Thus, we need to separate the limit of a and b going to 0 simultaneously. In
order to separate this limit, we use sector decomposition [128–130].7

Let us introduce the basic concept of sector decomposition via a simple two-
dimensional example. Consider the integral

I =

∫ 1

0

dxdy x−1−εy−ε (x+ (1− x)y)−1 , (6.2.69)

where we have a divergence at x → 0 and on top an overlapping singularity at x → 0

and y → 0. The goal of sector decomposition is to factorise the divergences. To
accomplish that, we separate the integration domain into two sectors where x and y

are ordered, according to figure 6.2.7, leading to

I =

∫ 1

0

dxdy x−1−εy−ε (x+ (1− x)y)−1 [θ(x− y)︸ ︷︷ ︸
sector 1

+ θ(y − x)︸ ︷︷ ︸
sector 2

]. (6.2.70)

In sector 1 we substitute y = xt and in sector 2 we substitute x = yt. Therefore, we

7We could have also used additional non-linear transformations. Their downside is that they
increase the numerical complexity of the integrand.
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find

I =

∫ 1

0

dxdy x−1−εy−ε (x+ (1− x)y)−1 [θ(x− y)︸ ︷︷ ︸
sector 1

+ θ(y − x)︸ ︷︷ ︸
sector 2

]

=

∫ 1

0

dx

∫ x

0

dy x−1−εy−ε (x+ (1− x)y)−1

+

∫ 1

0

dy

∫ y

0

dxx−1−εy−ε (x+ (1− x)y)−1

=

∫ 1

0

dxdt x−1−2εt−ε (1 + (1− x)t)−1

+

∫ 1

0

dydt t−1−εy−1−2ε (1 + (1− y)t)−1 . (6.2.71)

Note that the final expression has no overlapping singularity anymore. Thus, we can
evaluate the integrals in the usual way. More steps of sector decompositions are needed
to disentangle the singularities for more complex overlapping singularities.

By performing a sector decomposition between the variables a and b in our expres-
sion, we find that∫ 1

0

dadb a−1−2εb−1−2ε(a+ b)2ε →
∫ 1

0

dhdb h−1−2εb−1−2ε(1 + h)2ε

+

∫ 1

0

dadh a−1−2εh−1−2ε(1 + h)2ε,

(6.2.72)

where in the first term, we used a = bh and in the second term, b = ah. Thus we cured
the expression of the ln 0-terms in the integrals.

In some cases where we perform sector decomposition and substitute a = bh, there
is still an overlapping singularity present at the point h→ 0 and z → 1. Thus, we have
to perform another sector decomposition step in order to disentangle the overlapping
singularity.

Finally, we arrive at four master formulae for the region A contribution to σF , which
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are given with respect to their divergence structure by

JFF
q,F,A =

81−2εΓ
( −4ε
1+n

)
e2εγE

n−1
n+1

(1 + n)π2Γ(−2ε)

∫ 1

0

dΠ (S1 + S2 + S3 + S4)

S1 =u
−1−2εb−1−2ε(1− z)−1−αΩ

4ε
1+n

1 F
4ε

1+n

1 N1, (6.2.73)

S2 =a
−1−2ε−2αh−1−2ε−α(1− z)−1−αΩ

4ε
1+n

2 F
4ε

1+n

2 N2, (6.2.74)

S3 =h
−1−2ε−2αb−1−2ε−2αg−1−αΩ

4ε
1+n

3 F
4ε

1+n

3 N3, (6.2.75)

S4 =g
−1−2ε−αb−1−2ε−2α(1− z)−1−2ε−2αΩ

4ε
1+n

4 F
4ε

1+n

4 N4, (6.2.76)

where the functions Ni contain no additional divergences.

Before we determine the factors Ωi, let us recap what we have done to get to these
divergence structures.8 In order to get to S1 we multiplied our original expression by the
factor a and then used the non-linear transformation in eq. (6.2.47) to disentangle the
overlapping singularity. For the structures S2 , S3 and S4 we multiplied our original
expression by (1 − a). Afterwards we performed a sector decomposition between a

and b where S2 is obtained from the sector b = ah, and S3 and S4 from the sector
a = bh. Finally in the sector where we used a = bh, we perform an additional sector
decomposition step between h and 1−z, where S3 is obtained from the sector z = 1−hg
and S4 from h = (1− z)g.

As a final step to complete the master formulae, we require the correct factors Ωi.
Thus we again look at our toy example in eq. (6.2.50). For structure S1, the factor is
simply Ω1 = z̄−n because z̄ is the only singularity in this contribution that IRC does
not protect.

In the case of S2, we must first identify how the measurement function behaves
after the sector decomposition step. We have[

G1(a, b, n)

zn
+
G2(a, b, t, n)

z̄n

]
=︸︷︷︸
b=ah

(1 + a1−nh)G̃1 + (1− z)−nG̃2. (6.2.77)

Note that we have dropped the dependence on qT and Q because they are not relevant
for this discussion and G̃1,2 are finite in the singular limits. First, we have to factor out
(1− z)−n; otherwise, the measurement function would tend to infinity in the divergent

8All of these sector decomposition steps and insertions are listed completely in appendix D for all
structures of the jet function.
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z → 1 limit. After factoring out this term, the measurement function becomes

(1 + a1−nh)(1− z)nG̃1 + G̃2. (6.2.78)

If n ≤ 1 then we see that the measurement function is finite in the singular limits of
the matrix element, however if n > 1 then in the limit a→ 0 the measurement function
tends to infinity. Therefore, we also have to factor out a1−n. After factoring out this
term, the measurement function is

(an−1 + h)(1− z)nG̃1 + an−1G̃2 = an−1(G̃2 + (1− z)nG̃1︸ ︷︷ ︸
G̃3

) + h(1− z)nG̃1, (6.2.79)

where the new function G̃3 is again finite in the critical limits. We notice that this
measurement function becomes zero in the limits a → 0 + h → 0 and a → 0 + z → 1.
Therefore, we have to perform another sector decomposition on top between a and h,
followed by a sector decomposition between a and z̄ to ensure that the measurement
stays non-zero. The problem, however, is that all contributions scale differently, but a
one-step sector decomposition requires that the two terms in which the decomposition
is performed scale homogeneously.

In order to cure this, we scale up all variables such that their exponents are identical.
In our example, this requires the rescaling:

h→ hn(n−1), a→ an, z̄ → z̄n−1. (6.2.80)

On the level of the matrix element, the rescaling and additional sector decomposition
only effects the ε and α exponents of the monomials but leaves the power of the
singularity unchanged.

Rescaling and the subsequent sector decompositions lead to different measurement
functions

Sector 1 h=ag−→
{
ΩSector 1 = z̄−n(n−1), FSector 1 = G̃3 + gn(n−1)z̄n(n−1)G̃1

}
, (6.2.81)

Sector 2 a=hg,z̄=gf−→
{
ΩSector 2 = gn(1−n)f−n(n−1), FSector 2 = G̃3 + fn(n−1)G̃1

}
, (6.2.82)

Sector 3 a=hg,g=z̄f−→
{
ΩSector 3 = fn(1−n)z̄−n(n−1), FSector 3 = fn(n−1)G̃3 + G̃1

}
, (6.2.83)

where FSector 1,2,3 are finite in the singular limits of the matrix element.

In the case of S3, we find a similar picture for Ω3, namely that in the case of n ≤ 1,
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it is simply given by
Ω3 = h

1−n
2 g−n. (6.2.84)

However in the case n > 1 we have to upscale the variables b and g and afterwards
perform a sector decomposition between those, similar to S2.

Finally let us turn to S4 where we find that Ω4 is

Ωn≥1
4 = z̄

1−n
2 g

1−n
2 bn−1, (6.2.85)

but only if n ≥ 1. In the case of n = 0 this expression simplifies to

Ωn=0
4 = z̄

1−n
2 g

1−n
2 . (6.2.86)

In the case of 0 < n < 1, we again have to perform a rescaling and an additional
sector decomposition. The exact form of Ω and what kind of rescaling and sector
decomposition must be performed to arrive at the final master formulae can be found
in appendix D.

Let us look at the divergence structure of the different contributions again. We now
include the correct Ω for the two examples n = 1 and n = 0, such that we can see the
leading pole structure for SCETI and SCETII observables. In the case of the SCETI

with n = 1, we find

Div1 = u−1−2εb−1−2ε(1− z)−1−2ε ∼ ε−3, (6.2.87)

Div2 = a−1−2εh−1−2ε(1− z)−1−2ε ∼ ε−3, (6.2.88)

Div3 = h−1−2εb−1−2εg−1−2ε ∼ ε−3, (6.2.89)

Div4 = g−1−2εb−1−2ε(1− z)−1−2ε ∼ ε−3, (6.2.90)

and in the case of n = 0 we find

Div1 = u−1−2εb−1−2ε(1− z)−1−α ∼ ε−2α−1, (6.2.91)

Div2 = a−1−2ε−2αh−1−2ε−α(1− z)−1−α ∼ ε−2α−1, (6.2.92)

Div3 = h−1−αb−1−2ε−2αg−1−2α ∼ ε−1α−2, (6.2.93)

Div4 = g−1−αb−1−2ε−2α(1− z)−1−α ∼ ε−1α−2. (6.2.94)

Notice that all these divergences have to be multiplied by ε−1 for the correct leading
contribution because of the Γ function in the prefactor. Here we want to point to one
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6.2. The NNLO case

interesting observation, namely the two α-divergences in S3 and S4. Let us take S3

as an example. We can see by comparing the divergence structure of the SCETI and
SCETII that the divergence in g is not regularised in the case n = 0. Therefore this
is our typical α-pole, like in the CFTFnf -structure. The other α-pole comes from the
monomial in h. The monomial in h is

h−1−2ε−2αΩ
4

1+n

3 = h−1−2ε−2αh2
1−n
1+n

ε = h−1−
4n
1+n

ε−α, (6.2.95)

and therefore we recover the standard form of the α-divergence via a subtle cancellation
between the phase-space factor and measurement function. In order to understand why
this cancellation occurs, we look at how the α−2-poles arise in the soft function.

In order to keep the discussion as short as possible, we only consider observables
that follow non-Abelian exponentiation (NAE) [131, 132]. In this case, the α poles are
simply given by

Divsoft function ∼ Γ(−4ε− 2α)y
−1+α/2
k y

−1+α/2
l b−1−2ε−α, (6.2.96)

where the variable b implies that one parton becomes soft with respect to the other,
the Γ-function corresponds to the situation in which both emitted partons become soft.
The variables yk and yl reflect that one parton becomes collinear to the nµ direction at
fixed transverse momenta. In our language, this means that the particles with energy
fraction z1 and z3 have to vanish with fixed transverse momentum. In this sector, they
are given by

z1 →︸︷︷︸
S3

=
hb2(1− gh)Q

1 + b2h
,

z3 →︸︷︷︸
S3

= ghQ.

So g → 0 corresponds to the limit where particle z3 is collinear to nµ while h → 0

corresponds to both particles z1 and z3 collinear to nµ.9 Thus the α-poles correspond
to the same physical scenario in both jet and soft functions. This explains the subtle
cancellation seen in the divergence structure.

This finishes the discussion on the calculation of σF in region A. Regions B, C,
and D are very similar to region A. Therefore, we will refer all the required sector
decomposition steps and the exact form of the Ωi factors to appendix D.

9The limit where only particle z1 is collinear to nµ is part of the structure S4.
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The second structure of the C2
F contribution is

1

z1z2s13s123
σG, (6.2.97)

where we have just one invariant mass, so we could directly use our parametrisation
for this case and arrive at a master formula. The problem would be that because of
the piece z1z2s123 we would encounter in the appropriate parametrisation a structure
like

∼ (1− z)−1a−1((1 + ab)(a+ b)(1− z) + az((1− b)2 + 4b(1− t)))−1. (6.2.98)

This has now overlapping singularities at a, z̄ → 0 and in addition an overlapping
singularity between b̄, z̄, t̄ → 0. This singularity is the reason why we do not want to
use the direct way because this singularity is present in all of the four regions, and it
requires a minimum of two-sector decomposition steps with an additional rescaling on
top.10

Before we show how we computed this structure, let us first explain why this struc-
ture leads to additional complications. We first note that

s123 = s12 + s13 + s23. (6.2.99)

and there is an additional factor s13 in the denominator. Thus, we can properly describe
with our parametrisation the soft limits of z1 and z3 as well as the collinear limit
between particles 1 and 3. The problem in this structure now arises that we somehow
need to describe the soft limit of z2. Further, we need the double soft limit for z1 and
z2 visible in eq. (6.2.99). In our parametrisation, these two limits cannot be described
easily in one variable. Similar to the fact that we can only properly define the collinear
limit between the referenced particles, we can only properly describe the single soft or
double soft limit of referenced particles.11

We compute this structure by using again a selector function of the form

S = z2s12 + z3s13. (6.2.100)

10In the gluon jet function, we find a similar structure, however, with fewer divergences. In that
case we use an additional non-linear transformation, see section 6.2.6.

11This is also the reason why we still had overlapping singularities in the previous structure σ1.
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This leads to the following terms

1

z1z2s13s123
σG

S
S
=

(
z3

z1z2s123(z2s12 + z3s13)︸ ︷︷ ︸
SF1

+
s12

z1s13s123(z2s12 + z3s13)︸ ︷︷ ︸
SF2

)
σG. (6.2.101)

In the second term we have to use the parametrisation that properly describes the
collinear limit between particles 1 and 3. Therefore, we still have overlapping singu-
larities. However, the overlapping limit b̄, z̄, t̄ → 0 is now suppressed because of the
numerator. In the first term we are free to use any parametrisation because we only
need to correctly describe the proper soft limits. Thus we choose the parametrisation
to describe the collinear limit between particles 1 and 2.

We want to point out one last observation, which is that even though we can
now better describe the occurring limits in the collinear matrix elements, there are
still overlapping singularities present in the structure because of general overlapping
features in our parametrisation between specific collinear limits and soft limits.12 These
overlapping singularities can be handled in the same fashion as before; therefore, we
refer to appendices C and D for further information on this structure.

6.2.6 NNLO gluon jet function: CATFnf

The final new element in the calculation of the jet functions arises in the colour structure
CATFnf which is part of the gluon jet function. Here we focus on the structure which
is proportional to

1

s123s23z1z̄1
. (6.2.102)

If we use the appropriate parametrisation we find the following master formula for it
in region A

JAf
g,A =

24−6εΓ
( −4ε
1+n

)
e2εγE

n−1
n+1

(1 + n)π2Γ(−2ε)

∫ 1

0

dadbdzdtdtldt
′
5 (tt̄)

− 1
2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−ε

a1−2ε−αb−2ε−αz−1−2αz̄−1−α(a+ b)2ε(1 + ab)−2+2ε+2αΩ
4ε

1+nF
4ε

1+n Ñ (a, b, z, ε)

((1− a)2 + 4at)((1 + ab)(a+ b)(1− z) + az((1− b)2 + 4b(1− t)))
,

(6.2.103)

where Ñ (a, b, z, ε) is the numerator which does not effect the divergence structure.
The divergences of this structure are (z → {0, 1}), (ā, t→ 0), and

(
b̄, z̄, t̄→ 0

)
.

12i.e. a → 0 and b → 0 or a → 0 and z → 1.
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Thus as a first step, we introduce 1 = z + z̄ to disentangle the two divergences of
z at different endpoints. The second divergence is the standard collinear divergence
(ā, t→ 0), while the third is the complicated overlapping singularity mentioned in the
last section. Here we will use a new non-linear transformation to handle the overlapping
singularity rather than introducing a selector function. The reason is that the selector
function would increase the number of regions we have to calculate by a factor of four.
Additionally, this sector has overall only three divergences. Therefore, it is numerically
not that costly to use a non-linear transformation compared to the sectors with four
divergences.

Note that the standard collinear divergence and this new divergence exclude each
other because of the different endpoint values of t. Therefore we can extend the already
included identity by an additional identity of the form 1 = t+ t̄. Thus overall, we have
to multiply the contribution by

1 = zt+ zt̄+ z̄, (6.2.104)

where the first term only allows the divergences z → 1 and z̄, b̄, t̄→ 0, the second term
z → 1 and ā, t → 0 and finally the third term z → 0 and ā, t → 0. The second and
third term can be calculated with the steps outlined in the previous section. Therefore
we will only go into detail for the first term.

The non-linear transformation we use to disentangle the overlapping singularity is

z = 1− ũ2ṽ,

b =
1− ũ(ũṽ + (1− ṽ)(1− p))

1− ũ2ṽ
,

t =
(1− ũ)(1 + ũṽ)(1− ũ(ũṽ − p(1− ṽ)))

(1− ũ2ṽ)(1− ũ(ũṽ + (1− ṽ)(1− p)))
, (6.2.105)

where ũ → 0 is the overlapping singularity and ṽ → 0 encondes the limit z → 1 for
fixed ũ.

In order to see how this non-linear transformation behaves, we consider a toy ex-
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ample∫ 1

0

dadbdzdt
(1− z)−1−ε(1− t)−1/2−ε

((1 + ab)(a+ b)(1− z) + az((1− b)2 + 4b(1− t)))

→
∫ 1

0

dadũdṽdp
(1 + p)ũ4(1− ṽ)2(1 + ṽ)

(1− ũ2ṽ)2(1− ũ(1− p− ṽ + ṽ(p+ ũ)))︸ ︷︷ ︸
Jacobian

ũ−5−4ε(1− ṽ)−1−2εṽ−1−ε(1− ũ2ṽ)3/2−εp−1/2−ε(1− ũ(ũṽ + (1− ṽ)(1− p)))−1/2−ε

Den(a, ũ, ṽ, p)
,

=

∫ 1

0

dadũdṽdp ũ−1−4εṽ−1−εR(a, ũ, ṽ, p), (6.2.106)

where Den(a, ũ, ṽ, p)[R(a, ũ, ṽ, p)] is a function without zeros[divergences]. As a last
step we have to extract the correct factor from the measurement function. By sub-
stituting the non-linear transformation into our toy measurement, we find that for
the case where n ≥ 1 the factor we have to pull out of the measurement function is
Ω = ũ1−nṽ−n and in the case of n = 0 the factor is Ω = 1. In the case of 0 < n < 1 we
have to use rescaling and a sector decomposition step in order to keep the measurement
function finite and non-zero.

As a last observation of this structure, notice that this divergence sits at the point
b̄, z̄, t̄ → 0. Therefore, it is present in both regions of this structure. However, neither
the non-linear transformation nor the Ω factor change from region A to region B.

6.2.7 NNLO: Recap

In the previous section, we have shown in detail all the steps that are required to
factorise all phase-space divergences in the jet function calculation. In this section, we
recap these steps and combine them into a short list for the reader’s convenience.

• The first step is to determine the structure for which we want to build the master
formulae. The structures used in this work are all shown in appendix B.

• Next, choose the suitable parametrisation, determined by the invariant masses
present in the contribution. If two different invariant masses or undesired soft
limits are present in the structure, then use a selector function of the form S =

zisij + zlsik. This selector function should, first of all, cancel or suppress the
undesired structures and should not create new complicated divergences.

• Transform the collinear matrix element with the proper parametrisation and
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perform the additional angular integrals and integration over the dimensionful
variable qT . Afterwards remap the integration region onto the unit hypercube.
Check if the integral has some kind of particle exchange symmetry such that the
number of regions can be reduced. In our decomposition, these structures are
shown in appendix C.

• Check that every divergence is in monomial form. If there are still overlapping
singularities present in the expressions, choose either sector decomposition steps
or non-linear transformations to disentangle them. In the present work we only
used non-linear transformation for the collinear divergences [eq. (6.2.47)] and
triple-overlapping divergence [eq. (6.2.105)]. For all other overlapping singulari-
ties, we used sector decomposition steps.

• Finally, determine the Ω factors in each structure through some sample mea-
surement function. In this work, we have assumed a measurement function of
the form in eq. (6.2.50). Notice that we sometimes had to distinguish between
different n-values: n > 1 , n < 1 and n = {0, 1}. In case that nothing can
be factored out to make the measurement function finite in the critical limits,
we perform rescaling of the variables and afterwards sector decomposition steps
until the measurement function stays finite. The last two steps for our master
formulae are shown schematically in appendix D.

6.3 Renormalisation

In this section we show how to extract the resummation ingredients from the bare jet
function for both SCETI and SCETII observables. It is easier and more straightforward
to consider the renormalisation procedure of SCETI observables before the SCETII

case.
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6.3.1 SCETI observables

In this section, we label the bare quantities with the subscript ‘bare’. Upon expansion
in the dimensional regulator, we assume that the bare jet function takes the form

Jbare(τ,Q) = 1 +
(αs,bare

4π

)(µτ̄ 1
1+n

Q
n

1+n

)2ε [x2
ε2

+
x1
ε
+ x0 + x−1ε+ x−2ε

2 +O(ε3)
]

+
(αs,bare

4π

)2(µτ̄ 1
1+n

Q
n

1+n

)4ε [y4
ε4

+
y4
ε3

+
y2
ε2

+
y1
ε
+ y0 +O(ε)

]
+O(α3

s,bare),

(6.3.1)

where the xi and yi are NLO and NNLO coefficients of the ε−i term, respectivly.

In order to renormalise αs, we use

Zαsαsµ
2ε = e−γE(4π)εαs,bare, with Zαs = 1− αs

4π

β0
ε
+O(α2

s), (6.3.2)

and introduce a ZJ -factor to absorb all remaining ε-poles in the bare jet function, we
find for the renormalised jet function:

J(τ, µ,Q) = ZJJbare(τ,Q)

= 1 +
(αs
4π

) [
2x2L

2 + 2x1L+ x0
]
+
(αs
4π

)2 [32
3
y4L

4 +
32y3 − 4x2β0

3
L3

+ (8(y2 − x0x2)− 2β0x1)L
2 + (4(y1 − x0x1 − x2x−1)− 2β0x0)L

+ y0 − x2x−2 − x−1(x1 + β0)

]
+O(α3

s), (6.3.3)

where L = ln

(
µτ̄

1
1+n

Q
n

1+n

)
. We can find a similar expression for the counterterm ZJ which

reads

ZJ =1−
(αs
4π

)[x2
ε2

+
2x2L+ x1

ε

]
−
(αs
4π

)2 [y4
ε4

+
4y4L+ y3 − x2β0

ε3

+
8y4L

2 + 2(2y3 − β0x2)L+ y2 − x0x2 + β0x1
ε2

+
32y4L

3 + 6(4y3 − β0x2)L
2

3ε

+
2(2y2 − 2x0x2 − β0x1)L+ (y1 − x0(β0 + x1)− x2x−1)

ε

]
+O(α3

s). (6.3.4)

The jet function fulfils an RGE. In terms of anomalous dimensions the RGE is written
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as
dJ(τ, µ,Q)

d lnµ
= 2

[
1 + n

n
ΓCuspL+ γJ

]
J(τ, µ,Q), (6.3.5)

where we take similar definitions for ΓCusp and γJ as eq. (4.5.8)

ΓCusp (αs) =
∞∑
n=0

(αs
4π

)
Γn, (6.3.6)

γJ (αs) =
∞∑
n=0

(αs
4π

)
γn. (6.3.7)

The argument of the logarithm L is the same as in previous equations and n is the
exponent of the scaling behaviour of the soft-collinear limit.

This RGE can now be solved, its NNLO solution is

J(τ, µ,Q) = 1 +
(αs
4π

)[1 + n

n
Γ0L

2 + 2γ0L+ c1

]
+
(αs
4π

)2 [1
2

(
1 + n

n

)2

Γ2
0L

4

+

(
2
1 + n

n
Γ0γ0 +

2

3

1 + n

n
β0Γ0

)
L3 +

(
1 + n

n
(Γ1 + Γ0c1)

+ 2γ0(γ0 + β0)

)
L2 + 2 (γ1 + c1(γ0 + β0))L+ c2

]
+O(α3

s), (6.3.8)

and similarly for the counterterm we find

ZJ = 1−
(αs
4π

)[1 + n

2n
Γ0

1

ε2
+

(
1 + n

n
Γ0L+ γ0

)
1

ε

]
−
(αs
4π

)2 [((1 + n)Γ0√
8n

)2
1

ε4

+

((
(1 + n)Γ0√

2n

)2

L+

(
1 + n

n

)
Γ0

(
3β0
8

+
γ0
2

))
1

ε3
+

((
(1 + n)Γ0√

2n

)2

L2

+

(
1 + n

n

)
Γ0

(
β0
2

+ γ0

)
L− 1 + n

8n
Γ1 +

γ0
2
(γ0 + β0)

)
1

ε2

+

(
−1 + n

2n
Γ1L− γ1

2

)
1

ε

]
+O(α3

s). (6.3.9)

Comparing coefficients between the eqs. (6.3.3) and (6.3.8) allows us to determine the
quantities γ0,1 and c1,2, which need to be determined for NNLL′ resummation. We
also determine the cusp anomalous dimension which provides a strong check of our
computation. If we compare eqs. (6.3.4) and (6.3.9), we can construct relations for the
pole cancellation between the RGE and our result.

106



6.3. Renormalisation

The expression for the anomalous dimensions and matching coefficients are

NLO expressions :

Γ0 =
2n

1 + n
x2,

γ0 = x1,

c1 = x0,

NNLO expressions :

Γ1 =
4n

1 + n
(y2 − 2x0x2 − x1(β0 + x1)) ,

γ1 = 2 (y1 − x0(β0 + x1)− x−1x2) ,

c2 = y0 − x−1(β0 + x1)− x−2x2.

From the pole cancellation we find two additional equations which are not present in
the previous set, they are

y4 =
(1 + n)2

8n2
Γ2
0,

y3 =
1 + n

8n
Γ0 (4γ0 + β0) .

6.3.2 SCETII observables

The occurrence of the collinear anomaly [95] introduces additional challenges for SCETII

observables, namely the second regulator α and the ties between soft and jet functions.

107



Chapter 6. Calculation of jet functions

Let us start by writing the jet function in the following form, similar to eq. (6.3.1):

Jbare(τ,Q) = 1 +
(αs,bare

4π

)
(µτ̄)2ε

(
Q2

ν2

)− 1
2
α [

1

α

(x11
ε

+ x10 + x1−1ε+ x1−2ε
2 + x1−3ε

3
)

+
(x02
ε2

+
x01
ε

+ x00 + x0−1ε+ x0−2ε
2
)
+ α

(x−13
ε3

+
x−12
ε2

+
x−11
ε

+ x−10

+ x−1−1ε
)]

+
(αs,bare

4π

)2
(µτ̄)4ε

{(
Q2

ν2

)− 1
2
α [

1

α

(z13
ε3

+
z12
ε2

+
z11
ε

+ z10

)
+
z04
ε4

+
z03
ε3

+
z02
ε2

+
z01
ε

+ z00

]
+

(
Q2

ν2

)−α [
1

α2

(y22
ε2

+
y21
ε

+ y20

)
+

1

α

(y13
ε3

+
y12
ε2

+
y11
ε

+ y10

)
+
(y04
ε4

+
y03
ε3

+
y02
ε2

+
y01
ε

+ y00

)]}
+O(α3

s,bare) (6.3.10)

= 1 +
(αs,bare

4π

)
(µτ̄)2ε

(
Q2

ν2

)− 1
2
α [

H1
J

α
+H0

J +H−1J α

]
+
(αs,bare

4π

)2
(µτ̄)4ε

{(
Q2

ν2

)− 1
2
α [

G1
J

α
+G0

J

]
+

(
Q2

ν2

)−α [
P 2
J

α2
+
P 1
J

α

+ P 0
J

]}
+O(α3

s,bare), (6.3.11)

where we needed to separate the 2-particle cut contributions zij from those of the 3-
particle cuts yij and the NLO xij coefficients, because the analytic regulator modifies
the contributions differently depending on the number of particles in the final state.
In the second equation the functions H i

J , Gi
J and P i

J represent the ε structure of the
α−i contribution.

Similarly, we can write down the form of the bare soft function as

Sbare(τ) = 1 +
(αs,bare

4π

)
(µτ̄)2ε

(
ν2τ̄ 2

) 1
2
α
[
H1
S

α
+H0

S +H−1S α

]
+
(αs,bare

4π

)2
(µτ̄)4ε

{(
ν2τ̄ 2

)− 1
2
α
[
G1
S

α
+G0

S

]
+
(
ν2τ̄ 2

)−α [P 2
S

α2
+
P 1
S

α
+ P 0

S

]}
+O(α3

s,bare), (6.3.12)

where the exact form of the functions H i
S, G

i
S and P i

S can be taken from [42].

In order to extract the required quantities, we look again at eq. (4.6.3). We see
that in order for the exponentiation to take place, the jet and soft functions must be
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written as

J(τ) =

(
Q2

ν2

)− 1
2
F (τ)

WJ(τ), (6.3.13)

S(τ) =
(
ν2τ̄ 2

)−F (τ)
WS(τ), (6.3.14)

because the dependence on the additional scale ν must cancel in the product of jet
and soft functions. This implies that the anomaly exponent F can be determined
independently from either the jet function or soft function for any observable. However,
the remainder function W (τ) = WJ(τ)WJ(τ)WS(τ) requires that both jet and soft
functions are known.

Now we define P (τ) = JJ̄S and write it in terms of the functions H i, Gi and P i

as:

P (τ) = 1 +
(αs,bare

4π

)
(µτ̄)2ε

[
1

α

(
H1
S + 2H1

J

)
−H1

JLJ +
1

2
H1
SLS + 2H0

J +H0
S

]
+
(αs,bare

4π

)2
(µτ̄)4ε

[
1

α2

(
P 2
S + 2P 2

J + 2H1
JH

1
S +

(
H1
J

)2)
+

1

α

(
−
[(
H1
J

)2
+H1

JH
1
S + 2P 2

J

]
LJ +

[
H1
JH

1
S + P 2

S

]
LS + 2G1

J +G1
S + 2H0

JH
1
J

+ 2H1
JH

0
S + 2H0

JH
1
S + 2P 1

J + P 1
S

)
+

([
H1
J

2
+
H1
JH

1
S

4
+ P 2

J

]
L2
J

+

[
H1
JH

1
S

4
+
P 2
S

2

]
L2
S −

1

2
H1
JH

1
SLSLJ −

[
G1
J + 2H0

JH
1
J +H1

JH
0
S +H0

JH
1
S

+ 2P 1
J

]
LJ +

[
G1
S

2
+H1

JH
0
S +H0

JH
1
S + P 1

S

]
LS + 2G0

J +G0
S +

(
H0
J

)2
+ 2H1

JH
−1
J + 2H0

JH
0
S +H−1J H1

S + 2H1
JH
−1
S + 2P 0

J + P 0
S

]
+O(α3

s,bare),

(6.3.15)

where we expanded in α and used LJ = ln
(
Q2

ν2

)
and LS = ln (ν2τ̄ 2). We know that

the function P (τ) must be independent of the additional regulator α and the scale ν.
Thus the α poles in eq. (6.3.15) must cancel and the logarithms LJ and LS recombine
to LH = ln (τ̄ 2Q2). This leads to relations between the different functions. At NLO we
find that

H1
S = −2H1

J , (6.3.16)

109



Chapter 6. Calculation of jet functions

and at NNLO we find

P 2
S = −2P 2

J + 3
(
H1
J

)2
, (6.3.17)

P 1
S = −2G1

J −G1
S + 2H0

JH
1
J − 2H1

JH
0
S − 2P 1

J , (6.3.18)

P 2
J =

1

2

(
H1
J

)2
, (6.3.19)

G1
S = −2G1

J . (6.3.20)

By employing all of these relations the function P (τ) simplifies to

P (τ) = 1 +
(αs,bare

4π

)
(µτ̄)2ε

[
2H0

J +H0
S −H1

JLH
]

+
(αs,bare

4π

)2
(µτ̄)4ε

[
1

2

(
H1
J

)2
L2
H −

(
G1
J +H1

JH
0
S + 2P 1

J

)
LH

+ 2G0
J +G0

S +
(
H0
J

)2 − 2H1
JH
−1
J + 2H0

JH
0
S + 2H1

JH
−1
S + 2P 0

J + P 0
S

]
+O(α3

s,bare). (6.3.21)

Let us now see how P (τ) is written in terms of the anomaly exponent and remainder
function. We have

P (τ) = JJ̄S =

[(
Q2

ν2

)− 1
2
F (τ)

WJ(τ)

][(
Q2

ν2

)− 1
2
F (τ)

WJ̄(τ)

] [(
ν2τ̄ 2

)−F (τ)
WS(τ)

]
=
(
Q2τ̄ 2

)−F (τ)
W (τ)

=
(
Q2τ̄ 2

)−∑
i=1

(
αs,bare

4π

)i
(µτ̄)2iεFi,bare

(
1 +

∑
i=1

(αs,bare

4π

)i
(µτ̄)2iεWi,bare

)
= 1 +

(αs,bare

4π

)
(µτ̄)2ε [W1,bare − F1,bareLH ]

+
(αs,bare

4π

)2
(µτ̄)4ε

[
1

2
F 2
1,bareL

2
H − (F1,bareW1,bare + F2,bare)LH +W2,bare

]
+O(α3

s,bare) (6.3.22)

where we expanded in αs,bare in the fourth line. In order to extract the anomaly
exponent and the remainder expression we now compare eqs. (6.3.21) and (6.3.22). Up
to NNLO we find the following forms for the bare anomaly exponent and remainder
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expression

Fbare(τ) =
(αs,bare

4π

)
(µτ̄)2εH1

J +
(αs,bare

4π

)2
(µτ̄)4ε

(
G1
J + 2P 1

J − 2H0
JH

1
J

)
+O(α3

s,bare),

(6.3.23)

Wbare(τ) = 1 +
(αs,bare

4π

)
(µτ̄)2ε

(
2H0

J +H0
S

)
+
(αs,bare

4π

)2
(µτ̄)4ε

(
2G0

J +G0
S +

(
H0
J

)2
− 2H1

JH
−1
J + 2H0

JH
0
S + 2H1

JH
−1
S + 2P 0

J + P 0
S

)
+O(α3

s,bare). (6.3.24)

From the bare anomaly exponent, it is visible that only jet function determines the coef-
ficients. Notice that if we choose to eliminate the jet function expressions in eq. (6.3.15)
instead, the anomaly exponent would purely depend on the soft function inputs. On
the other hand, the remainder expression will always depend on both jet and soft
function pieces.

We now have to renormalise both the anomaly exponent and the remainder expres-
sion. We first start with the anomaly exponent. From the form of P (τ), and the RGE
of the hard function, it follows [95] that the anomaly exponent fulfills the RGE

dF (τ, µ)

d lnµ
= 2ΓCusp, (6.3.25)

where F = Fbare−ZF because the anomaly exponent renormalises additively in Laplace
space. The NNLO solution to this RGE is given by

F (τ, µ) =
(αs
4π

)
(2Γ0L+ d1) +

(αs
4π

)2 (
2β0Γ0L

2 + 2 (Γ1 + β0d1)L+ d2
)
+O(α3

s)

(6.3.26)

and the corresponding counterterm, which satisfies a similar RGE, is given by

ZF =
(αs
4π

)(Γ0

ε

)
+
(αs
4π

)2(
−β0Γ0

2ε2
+

Γ1

2ε

)
+O(α3

s), (6.3.27)

with L = ln (µτ̄). We can now extract the coefficients d1 and d2 and find consistency
relations by reintroducing in Fbare the proper definitions of H, G, and P and finally
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expand in ε. At NLO we find the following relations

Γ0 = x11,

d1 = x10.

In the case of NNLO we find the following consistency relations

z13 = 2 (−y13 + x02x11) ,

z12 =
1

2
(−4y12 + 4x02x10 + x11 (β0 + 4x01)) ,

and we can extract the quantities

Γ1 = −2 (−2y11 − z11 + 2x00x11 + 2x02x1−1 + x10 (β0 + 2x01)) ,

d2 = 2y10 + z10 − 2

(
x00x10 + x11x0−1 + x02x1−2 + x1−1

(
x01 +

β0
2

))
,

where the xij, yij and zij refer purely to the jet quantities. In the final step we have to
renormalise the remainder expression. It satisfies the RGE

dW (τ, µ)

d lnµ
= 2 [2ΓCuspL+ γW ]W (τ, µ). (6.3.28)

This RGE can now be solved and its NNLO solution in terms of the anomalous dimen-
sions is

W (τ, µ) = 1 +
(αs
4π

) [
2Γ0L

2 + 2γW0 L+ c1
]
+
(αs
4π

)2 [
2Γ2

0L
4

+

(
4Γ0γ

W
0 +

4

3
β0Γ0

)
L3 +

(
2 (Γ1 + Γ0c1) + 2γW0 (γW0 + β0)

)
L2

+ 2
(
γW1 + c1(γ

W
0 + β0)

)
L+ c2

]
+O(α3

s).

(6.3.29)

112



6.3. Renormalisation

Similarly we find for the counterterm

ZW = 1−
(αs
4π

)[
Γ0

1

ε2
+
(
2Γ0L+ γW0

) 1
ε

]
−
(αs
4π

)2 [Γ2
0

2

1

ε4

+

(
2Γ2

0L+ Γ0

(
3β0
4

+ γW0

))
1

ε3
+

(
2Γ2

0L
2 + Γ0

(
β0 + 2γW0

)
L

− 1

4
Γ1 +

γW0
2

(
γW0 + β0

)) 1

ε2
−
(
Γ1L+

γW1
2

)
1

ε

]
+O(α3

s), (6.3.30)

where L = ln (µτ̄). The expression for the anomalous dimensions and matching correc-
tions can be subsequently derived by inserting the correct values of the functions H,
G, and P in eq. (6.3.24) and expanding in ε. At NLO we find the following expressions

Γ0 = 2xJ02 + xS02,

γW0 = 2xJ01 + xS01,

c1 = 2xJ00 + xS00,

and at NNLO

Γ1 = −2
(
− 2yJ02 − yS02 − 2zJ02 − zS02 + 3(xJ01)

2 + 2xJ01x
S
01 + (xS01)

2 + β0(2x
J
01 + xS01)

+ 2xJ02(3x
J
00 + xS00) + 2xS02(x

J
00 + xS00) + 2xJ11x

J
−11 − 2xJ11x

S
−11 + 2xJ10x

J
−12 − 2xJ10x

S
−12

+ 2xJ1−1x
J
−13 − 2Jx1−1x

S
−13
)
,

γW1 = −2
(
− 2yJ01 − yS01 − 2zJ01 − zS01 + β0(2x

J
00 + xS00) + 2xJ00x

J
01 + xS00x

S
01 + 2xJ02x

J
0−1

+ xS02x
S
0−1 + 2xJ11x

J
−10 − 2xJ11x

S
−10 + 2xJ10x

J
−11 − 2xJ10x

S
−11 + 2xJ1−1x

J
−12 − 2xJ1−1x

S
−12

+ 2xJ1−2x
J
−13 − 2xJ1−2x

S
−13
)
,

c2 = 2yJ00 + yS00 + 2zJ00 + zS00 + (xJ00)
2 + 2xJ00x

S
00 − 2xJ01x

J
0−1 − β0(2x

J
0−1 + xS0−1)

− xS01x
S
0−1 − 2xJ02x

J
0−2 − xS02x

S
0−2 − 2

(
xJ10(x

J
−10 − xS−10) + xJ1−1x

J
−11 − xJ1−1x

S
−11

+ xJ1−2x
J
−12 − xJ1−2x

S
−12 + xJ1−3x

J
−13 − xJ1−3x

S
−13 + xJ11x

J
−1−1 − xJ11x

S
−1−1

)
.

From the consistency relations we obtain two additional equations which are not present
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in the previous set. They are

2yJ04 + yS04 + 2zJ04 + zS04 + (xJ02)
2 + 2xJ02x

S
02 + 2xJ11(x

S
−13 − xJ−13) =

1

2
Γ2
0,

2yJ03 + yS03 + 2zJ03 + zS03 + 2xS01x
J
02 + 2xJ01(x

J
02 + xS02)− 2xJ11x

J
−12 + 2xJ11x

S
−12 − 2xJ10x

J
−13

+ 2xJ10x
S
−13 = Γ0

(
γ0 +

1

4
β0

)
.

Here we denote the ingredients from the jet function with a superscript J while the
soft ingredients are denoted by an S.
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Numerical implementation

In this chapter, we will explore how we implemented the master formulae from chapter
6 into the public program pySecDec [133–135] and why a straightforward numerical
integration of the master formulae fails, and how to change the integrand in a way to
make it work.

7.1 pySecDec

The program pySecDec is the new version of the SecDec [130, 136, 137] program. The
algebraic part is written in python and FORM [138, 139]. The program is completely
open source and it allows maximal flexibility due to its modular structure. The python
code writes FORM files to produce optimized C++ functions which in turn are passed to
the numerical integrator CUBA [140, 141].

The program flow of pySecDec is shown in figure 7.1.1. In this work, we are dealing
with general polynomials Pi and not directly with loop integrals; thus, our starting
point is 1b) in the figure. The next step is the sector decomposition algorithm, which
aims to factorise the polynomials Pi as products of a monomial and a polynomial with
a nonzero constant term:

Pi({xi}) →
∏
j

x
αj

j (pi({xj}) + const). (7.1.1)

The iterative sector decomposition splits the integral and remaps the integration do-
main until all polynomials Pi in all arising integrals have the desired form. In our
approach, we can skip this step as we already performed all the required sector decom-
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sector
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Figure 7.1.1: Flowchart showing the main building blocks of pySecDec. Steps 1 – 6 are
done in python. FORM is used in step 7 to produce optimized C++ code and for step 8 the
code is passed onto the CUBA-library for the numerical integration. This image was taken
from [133]

.

position steps in a Mathematica code. Thus, our integrals are always in the form

I =
∏
i

x−1+yii R, (7.1.2)

which is to say that the divergences are already in monomial form and R is a finite
remainder expression. If we had dealt with a multiscale problem, we would need to
perform an additional contour deformation. However, in our integrals, there is no such
explicit mass scale. Therefore, we can again skip this step. Following the flowchart,
we arrive at step 5 where the pole subtraction takes place. This routine isolates the
divergences in ε and α by repeatedly applying integration by parts. In the case of a
one-dimensional integral, this becomes

∫ 1

0

dxxa−bεI(x, ε) =

|a|−1∑
p=0

1

a+ p+ 1− bε

I(p)(0, ε)

p!
+

∫ 1

0

dxxa−bεR(x, ε), (7.1.3)

where I(p) denotes the p-th derivative of I with respect to x. The remaining integral
over x and the remainder function R are free from divergences. In the subsequent
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steps, the expressions are expanded in a Laurent series in the regulators, then passed
to the numerical integrator through some internal optimization, and finally integrated.

The numerical integration can either be done by the CUBA-libary or, in the newer
version of pySecDec(v.1.5), by a quasi-Monte Carlo integrator. In this work we will
exclusively calculate our master integrals with the routines implemented in CUBA. For
more details on pySecDec we refer to [133–135] and the references therein.

7.2 Error estimation

As mentioned in the previous section, the numerical integration is performed via the
CUBA-library, which uses Monte Carlo integration. If we perform the integration of
our master formulae from section 6, then we find that the convergence rate is low and
the error is underestimated. In order to understand how this arises we first need to
understand Monte Carlo integration in more detail.

7.2.1 Monte Carlo integration

Let us assume that we have a function f(x) that we want to integrate numerically over
some interval G:

I[f ] =

∫
G

dxf(x). (7.2.1)

We can approximate this integral by averaging samples of the function f(x) at uniform
random points within the interval. Given a set of N uniform random variables Xi ∈ G

with a corresponding probability density function Ω, the Monte Carlo estimator for
computing I[f ] is

〈IN [f ]〉 = |Ω|
N

N∑
i=0

f(Xi), (7.2.2)

where 〈IN [f ]〉 is an approximation of the I[f ] using N samples. We expect to improve
the approximation by increasing the number of samples N because as we increase the
number of samples N , the estimator 〈IN [f ]〉 becomes a closer approximation of I[f ].

Due to the strong law of large numbers [142], in the limit N → ∞, we can guarantee
that we have the exact solution:

Pr
(
lim
N→∞

〈IN [f ]〉 = I[f ]
)
= 1, (7.2.3)

where Pr is a shorthand notation for probability. From the central limit theorem [143],
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we know that the statistical error on how 〈IN [f ]〉 converges towards I[f ] is σf√
N

provided
both the expected value I[f ] and the variance σ2

f =
∫
G
dx f 2(x) − I2[f ] stay finite. If

the expected value I[f ] is unknown, then it is very likely that the variance is also
unknown. However, it can be estimated using sample variance σN [f ] :

σ2
N [f ] =

N∑
i=1

|Ω|
N − 1

(
f(Xi)−

〈IN [f ]〉
|Ω|

)2

. (7.2.4)

Therefore we can reduce the expected statistical uncertainty by simply using more
samples and thus, in return, improve the quality of the Monte Carlo integration.

However, the increase of samples in the Monte Carlo integration comes at the cost
of increasing the runtime. Therefore, it is much better to try and reduce the variance.
There exist many different variance-reduction techniques. We will briefly mention one,
importance sampling, as this technique is used in the Vegas routine [144, 145] of the
CUBA library, which we use in this work.

7.2.2 Variance reduction

Importance sampling reduces the variance by noticing that we have the freedom to
choose the probability density functions Ω used in the integration. The variance is
reduced by choosing samples from a distribution that has a similar shape as the function
f(x) being integrated. In simple terms, importance sampling places more samples
where the contribution of the integrand is more dominant, than in the regions where
the contribution is less dominant.

In a mathematical sense, this can be written as

I[f ] =

∫
G

dx f(x) =

∫
G

dx g(x)
f(x)

g(x)
= Ig

[
f

g

]
, (7.2.5)

where Ig is the expectation value as evaluated with respect to the probability density
function g(x).

Let us us assume that g(x) is approximately f(x) such that the ratio of the function
f(x)
g(x)

is close to being constant. Then we only require a few samples for a good estimate
since constant functions are not difficult to estimate. In terms of the variance, this
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means that in order to reduce it, we require

σ2
f
g

< σ2
f (7.2.6)

0 < σ2
f − σ2

f
g

0 <

(∫
G

dx f(x)2 − I[f ]2
)
−

(∫
G

dx g(x)

(
f(x)

g(x)

)2

− Ig
[
f

g

]2)

0 <

(∫
G

dx f(x)2 − I[f ]2
)
−

(∫
G

dx g(x)

(
f(x)

g(x)

)2

− I[f ]2

)

0 <

∫
G

dx f(x)2
(
1− 1

g(x)

)
. (7.2.7)

In order to achieve this the probability density function g(x) should behave similar to
f(x). From a computational point of view it should also be easy to generate values
from g(x).

7.2.3 Integrable divergences

Now that we understand how the numerical integrator tries to reduce the variance of
the integrand, we are able to understand why our master formulae in section 6 give
us trouble in the numerical integration. If we look at our current master formulae,
for example at (6.1.12), we find that the angular parametrisation contributes a factor
(tk t̄k)

− 1
2
−ε, which is divergent at 0 and 1. This divergence is integrable; even at the

higher-order expansion of the regulator. The expansion yields

lnn (tk t̄k)√
tktk

. (7.2.8)

We can immediately see that this contribution is not square-integrable. As a result,
the corresponding variance σ2

f diverges. As a consequence of σ2
f → ∞, the central limit

theorem requirements are violated and therefore do not apply anymore. This leads
to a problem for the Vegas integrator, as on the one hand, the error estimates, which
are based on the critical limit theorem, are no longer valid. On the other hand, the
importance sampling does not really work because anything is a reduction from ∞. So
to regain proper error estimations and variance reduction, we have to transform the
square-root divergences into an expression that is square-integrable. We have achieved
this transformation by going from our physical parametrisation to another so-called
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computational parametrisation.

7.2.4 Computational parametrisation

The source of the square-root divergences are in general the angular integrations
tkl, tl, tk. On top of that the non-linear transformation variables v and p also give
rise to square-root divergences. Let us see how they appear in the master formulae. In
the case of the angular integration variables tkl, tl, tk they, at worst, appear as

(tt̄)−
1
2
−ε, (7.2.9)

where t is a place holder for any of the three variables. In the case of the non-linear
transformation variable v, p they appear at worst as

x−
1
2
−ε, (7.2.10)

where again x is a place holder for either v or p. So, in general, we see that the worst
behaviour in terms of square root divergence is coming from the angular variables.
Therefore if we cure their behaviour, it is a simple task to cure the other variables as
well.

We can use the substitution

t = 1− (1− ξa)b, (7.2.11)

where a, b are determined depending on how t scales at the endpoints. Here we can
see that t ∼ ξa and t̄ ∼ ξ̄b. This leads to the following expression for the angular
integrations

(tt̄)−
1
2
−ε dt ∼ ξ−1+

1
2
aξ̄−1+

1
2
b dξ, (7.2.12)

for ξ near the endpoints 0 and 1, with the inclusion of the proper Jacobian. We can
now choose the proper values for a and b to eliminate the occurrence of the square root
divergences. In the case of the angular integration, we use a = b = 4 such that

t = 1− (1− ξ4)4,

(tt̄)−
1
2
−ε dt ∼ ξξ̄ dξ.

We can use different values for a and b such that we cure all the other square root
divergences.
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By performing these reparamatrisations, we cured the occurrence of all square-root
divergences. Therefore we could stop here and use the Vegas integrator to evaluate the
master formulae. However, we also choose to use similar transformations to cure the
occurrence of any logarithmic divergences to have a better convergence rate.

Finally, we turn to the divergences themselves; they are invariant under these sub-
stitutions. However, they still affect the plus distribution. Let us assume that we have
a structure like:∫ 1

0

dx

[
lnx

x

]
+

f(x) =

∫ 1

0

dx
lnx

x

(
f0 + f1x+

f2
2
x2 . . .− f0

)
=

∫ 1

0

dx

(
f1 +

f2
2
x . . .

)
lnx, (7.2.13)

where we expanded f(x) in a Taylor series. We can see that this expression suffers
again from logarithmic divergences. By substituting x = 1 − (1 − ξ2)2 we can again
suppress this divergence∫ 1

0

dx

(
f1 +

f2
2
x . . .

)
lnx = 4

∫ 1

0

dξ

(
f1 +

f2
2
ξ2 . . .

)
ξξ̄ ln ξ, (7.2.14)

On top of suppressing the logarithmic divergence we also included a suppression term
in the limit ξ → 1.

We want to mention the divergence of z̄−1 as an additional point. Here we have to
change the form of our transformation slightly because we want to remap the divergence
to z → 0. Therefore if we encounter such a divergence, we use z = (1− ξ2)2.

Now we can write a complete list of transformations, which must be applied to the
master formulae in section 6 to cure the undesired behaviour. For the NLO and NNLO
RV contributions, we use

{z, u} → 1− (1− xm)2, tk → 1− (1− c4)4, r → 1− (1− l2)2,

where we use the same variable for u and z as they can not appear simultaneously, and
r is the variable related to the integral representation of the hypergeometric functions.
In the case, where the divergence of u or z lies at 1, we use

{z, u} → (1− xm)2.

For the NNLO RR contributions, we can divide the physical parametrisations into

121



Chapter 7. Numerical implementation

three distinct classes. The first class corresponds to the case where only sector decom-
position or upscaling but no non-linear transformations are performed. The second
class is where we could still perform sector decomposition but use the non-linear trans-
formation in eq. (6.2.47) and in the last class we used the non-linear transformation of
eq. (6.2.105). The three different classes can thus be written as

I: {α, β, γ, t, tl, t5},

II: {α, β, u, v, tj, t5},

III: {a, ũ, ṽ, p, tj, t5},

where α, β, γ denote any variables which are not changed by a non-linear transforma-
tion. The variables u, v are from the transformation in eq. (6.2.47), ũ, ṽ, p are the
variables from the transformation in eq. (6.2.105) and t, tl, t5 are the angular variables.
In the case of a divergence at {α, β, γ} → 0 we use the substitution

{α, β, γ} = 1− (1− xm)2,

and

{α, β, γ} = (1− xm)2,

whenever a divergence lies {α, β, γ} → 1, where x is a simple placeholder. In case a
variable is not contained in the respective Ω of the master formula, we set m = 2. If
the variable does not give rise to a divergence at any endpoint, we simply transform
them like

{α, β, γ} = 1− (1− x2)2.

For the angular variables we use the substitutions

t = 1− (1− s4)4, tl = 1− (1− s4l )
4, t5 = s25.

In the case of parametrisation class II, all the previous substitution rules are still used
for the variables that are not affected by the non-linear transformation. The variables
affected by the non-linear transformation are substituted via

u = 1− (1− c2)4, v = 1− (1− w4)2.
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7.2. Error estimation

Finally in the case of parametrisation class III we use the following parametrisation

a = 1− (1− r2)2, ũ = 1− (1− cm)2, ṽ = 1− (1− xm)2,

p = 1− (1− w4)4, tl = 1− (1− s4l )
4, t5 = s25.

These transformation rules allow us to write the master formulae of section 6 in a way
that there are no square root, reduce the occurrence of logarithmic divergences and
that the integrand vanishes in all non-divergent endpoints.1

As the last point, we note that we kept an open parameter, namely m, in most
transformations. This variable comes about because of the interplay between plus dis-
tributions and integrable divergences. However, this time, because of the measurement
function and not the matrix element. Let us assume the measurement function has
the following expansion M(x) ∼M0+M1x

a+O(xa), where a can be any real number,
after factoring out the proper coefficient. If we now insert the plus distribution, we
find that

[
x−1+nε

]
+
M(x) ∼ M0 +M1x

a +O(xa)−M0

x
+ nε

lnx

x
(M0 +M1x

a +O(xa)−M0)

=M1

(
xa−1 + nε xa−1 lnx

)
+O(xa, ε2). (7.2.15)

We observe that we get integrable divergences when a < 1. If we now perform the
transformation x→ 1− (1− ym)2, then the expression changes to∫ 1

0

dxM1

(
xa−1 + nε xa−1 lnx

)
+O(xa, ε2) →∫ 1

0

dy 2(1− ym)m(2− ym)−1+aM1

(
y−1+ma + nε y−1+ma ln (ym(2− ym))

)
+O(yma, ε2).

(7.2.16)

Here we can see that the expression is automatically suppressed in the y → 1 limit. By
choosing m > 2

a
we always eliminate any integrable divergence at y → 0, which would

spoil the convergence rate and error estimation. Therefore m needs to be specified
according to the observable. In section 8 where we show results for some sample
observables for which we either choose m = 2 or m = 4.

1This is not completely true as the limit t5 → 1 is not suppressed, but this limit is only present in
the measurement function and has no effect on the matrix element.
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Chapter 8

Results

In this section we show that our automated approach can be used to compute a wide
range of jet functions. We choose observables that fall into different categories, which
cover most of the structures we can encounter in the calculation of generic observables.

The first category contains observables for which n = 1 and there is no dependence
on the reference vector ~v⊥ in the transverse plane. The example we choose for this kind
is thrust. The second category involves observables where n is neither one nor zero, with
still no angular dependence. The example we choose is the class of observables called
angularities. The third category of observables has a non-trivial angular dependence,
and the example here is transverse thrust. The final category is the SCETII case with
n = 0, where we looked at the Winner-take-all axis broadening. We present numerical
results for all these observables, some of these results were already presented with this
framework in [46].

The general setup for this section is that we first define the observable in light-cone
coordinates and in the physical parametrisation at NLO and NNLO. Finally, we give
the extracted quantities and the compare them with the literature whenever available.

8.1 Thrust

The first event-shape observable, which we investigate is thrust, which we already in-
troduced in section 3.1. The measurement function in light-cone coordinates is defined
as

ωThrust({ki}) =
∑
i

k+i (8.1.1)
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in terms of light-cone coordinates. In the physical parametrisation thrust is written as

ωNLO
Thrust = kT

(
kT
Q

)(
1

zk
+

1

1− zk

)
, (8.1.2)

at NLO and at NNLO we get the following structure

ωNNLO
Thrust = qT

(
qT
Q

)(
1

z
+
a((1− b)2 + 4b(1− t))

(1− z)(a+ b)(1 + ab)

)
. (8.1.3)

We thus have n = 1, and the thrust measurement function for Region A, B, C and, D
are identical. In order to present the results we choose not to include the colour factors
in the numbers. We find for the quark jet function anomalous dimensions:

ΓCF
0 = 4± 2 · 10−5 [4], γCF

0 = 3± 9 · 10−5 [3],

ΓCFTF
1 = −8.8881(8) [−8.8889], γCFTF

1 = −13.3495(27) [−13.3495],

Γ
C2

F
1 = −0.0066(167) [0], γ

C2
F

1 = 10.6439(483) [10.6102],

ΓCFCA
1 = 16.6202(130) [16.6183], γCFCA

1 = −3.2509(458) [−3.2602], (8.1.4)

and the corresponding matching corrections,

cCF
1 = 0.4202(3) [0.4203],

cCFTF
2 = −10.7853(92) [−10.7871],

c
C2

F
2 = 4.6633(1199) [4.6551],

cCFCA
2 = −2.0920(1352) [−2.1649]. (8.1.5)

Similarly we calculate the anomalous dimensions for the gluon jet function:

ΓCA
0 = 4± 2 · 10−5 [4], γCA

0 = 3.6666± 7 · 10−6 [3.6666],

ΓTF0 = 0 [0], γTF0 = −1.3333± 7 · 10−6 [−1.3333],

Γ
T 2
F

1 = 0± 2 · 10−5 [0], γ
T 2
F

1 = 0± 2 · 10−4 [0],

ΓCFTF
1 = 0± 2 · 10−3 [0], γCFTF

1 = −3.9987(128) [−4],

ΓCATF
1 = −8.8889(5) [−8.8889], γCATF

1 = −9.2422(199) [−9.2431],

Γ
C2

A
1 = 16.6180(513) [16.6183], γ

C2
A

1 = 9.2966(546) [9.2968], (8.1.6)
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and the matching corrections,

cCA
1 = 0.8647(3) [0.8647],

cTF1 = −2.2222± 5 · 10−5 [−2.2222],

c
T 2
F

2 = 2.0139(6) [2.0139],

cCFTF
2 = 0.9044(503) [0.8996],

cCATF
2 = −13.7266(689) [−13.7248],

c
C2

A
2 = 3.1948(1677) [3.1966], (8.1.7)

which are in agreement with the analytic results from [116] for the quark jet function
and [146] for the gluon jet function at NNLO shown in the square brackets. We want
to point out that all individual sectors have sub-percent accuracy. However, due to
the number of sectors and because of large cancellations between different sectors, the
total uncertainty of the matching corrections can be at the percent level.

8.2 Angularities

The next observables we looked at are the event-shape angularities [147, 148]. Techni-
cally angularities represent a whole class of observables, which can be considered as a
generalisation of thrust that depend on a continuous parameter A. According to their
standard definition, the angularities are measured with respect to the thrust axis, and
they are defined as

ωAng({ki}) =
∑
i

(
k+i
)1−A/2 (

k−i
)A/2

, (8.2.1)
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which reduces to thrust at A = 0. In the physical parametrisation they are written as

ωNLO
Ang = kT

(
kT
Q

)1−A(
1

z1−Ak

+
1

(1− zk)1−A

)
, (8.2.2)

ωNNLO
Ang,A = qT

(
qT
Q

)1−A( a
A
2

(
a1−A + b

)
z1−Ak (1 + ab)

A
2 (a+ b)1−

A
2

+
a1−

A
2

(1− zk)1−A

(
(1− b)2 + 4b(1− t)

(a+ b)(1 + ab)

)1−A
2
)
, (8.2.3)

ωNNLO
Ang,B = qT

(
qT
Q

)1−A( a
A
2

(
1 + ba1−A

)
z1−Ak (a+ b)

A
2 (1 + ab)1−

A
2

+
a1−

A
2

(1− zk)1−A

(
(1− b)2 + 4b(1− t)

(a+ b)(1 + ab)

)1−A
2
)
. (8.2.4)

For values of A < 1 considered in this work, the angularities fall into the SCETI class
with n = 1−A. The non-cusp anomalous dimension can be checked via the consistency
relation as both hard and soft anomalous dimensions are known. In [149] even the
matching coefficients for quark jet function were extracted, using an EVENT2 [150, 151]
fixed-order calculation.1

In figures 8.2.1(a) and 8.2.2(a) we can see that the two-loop non-cusp anomalous
dimension from our calculation agrees well with the expected value from the consistency
relation. Similarly, in the case of the quark jet function c1 matching correction, in figure
8.2.1(b), we find that our computation is in agreement with the numerical calculation
in [149]. The two loop matching coefficient for the quark case is known approximately
through an EVENT2 extraction [149]. We compare these against our direct calculation for
A = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5] and find a deviation as large as 3.9σ for CFTF
color structure as shown in figure 8.2.1(c). In the case of the C2

F colour structure, shown
in figure 8.2.1(d), we find that most values lie within 1σ. The values for A = −0.75 and
A = 0.25 have a larger deviation of 1.6σ. While the value for A = 0.5 has a deviation of
4.7σ. Finally, in the case of the CFCA colour structure we observe deviations of as large
as 3σ for A < 0.5 and even 5.5σ for A = 0.5. These results are shown in 8.2.1(e). The
source of the large deviation for A = 0.5 for all colour structures lies in the extraction of
the matching corrections from the EVENT2 fit. The source of this problem is discussed
in [149]. In general, this shows that the fit extraction in [149] is insufficient to obtain
the correct c2 values, and a direct calculation is essential to obtain the correct result

1The values for c
C2

F
2 and cCFCA

2 are updated quad precision numbers of [149]. They were obtained
from private correspondence with the authors.
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Figure 8.2.1: Two-loop non-cusp anomalous dimension and c1 and c2 matching corrections
for the angularity quark jet function. The calculations were performed for the angularity
values A = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5].

as it is done in this work. Finally, we also computed the matching corrections to the
gluon jet function angularities which have not been determined before. Our results,
are shown in figure 8.2.2(c).
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Figure 8.2.2: Two-loop non-cusp anomalous dimension and c1 and c2 matching corrections
for the angularity gluon jet function. The calculations were performed for the angularity
values A = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5].

8.3 Transverse Thrust

The last SCETI observable we investigated is the hadronic event-shape variable trans-
verse thrust [152, 153]. The measurement function in light-cone components is given
by

ωTT({ki}) = 4sθ
∑
i

(∣∣∣~k>i ∣∣∣− ∣∣∣~n> · ~k>i
∣∣∣) , (8.3.1)

where sθ = sin θB describes the angle between the beam and the jet axis. The de-
composition into our light-cone coordinates is more involved, since the components
kµ⊥ transverse to the thrust axis differ from the components kµ> in eq. (8.3.1) that are

130



8.3. Transverse Thrust

transverse to the beam axis.

We find that in our parametrisation the NLO measurement function is

ωNLO
TT ({ki}) = kT

(
kT
Q

)(
16sθtk t̄k
zk(1− zk)

)
, (8.3.2)

such that n = 1, and at NNLO we find

ωNNLO
TT,A ({ki}) = qT

(
qT
Q

)
16sθ

zz̄(1 + ab)(a+ b)

[
t±k t̄
±
k b(1 + ab− z) + tlt̄la(1 + abz̄)

+ (t±k + tl − tkl − 2t±k tl)abz

]
, (8.3.3)

ωNNLO
TT,B ({ki}) = qT

(
qT
Q

)
16sθ

zz̄(1 + ab)(a+ b)

[
t±k t̄
±
k ba(az̄ + b) + tlt̄l(a+ bz̄)

+ (t±k + tl − tkl − 2t±k tl)abz

]
, (8.3.4)

where t±k = tl + tkl − 2tltkl ± 2
√
tlt̄ltklt̄kl(1− t5).

Thus we find for the quark jet function:

ΓCF
0 = 4± 3 · 10−5 [4], γCF

0 = 3± 9 · 10−4 [3],

ΓCFTF
1 = −8.8884(11) [−8.8889], γCFTF

1 = −21.0857(91) [−20+3
−2][−21.0917(25)],

Γ
C2

F
1 = −0.0143(435) [0], γ

C2
F

1 = 10.8048(1690) [10.6102],

ΓCFCA
1 = 16.6380(364) [16.6183], γCFCA

1 = 83.6726(1558) [78+30
−20][83.77(3)],

(8.3.5)

and the corresponding matching corrections,

cCF
1 = −6.1595(3)

cCFTF
2 = −5.9106(340)

c
C2

F
2 = 42.5481(5921)

cCFCA
2 = 116.6630(6068). (8.3.6)
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Similarly we calculate the anomalous dimensions for the gluon jet function:

ΓCA
0 = 4± 3 · 10−5 [4], γCA

0 = 3.6666± 1 · 10−5 [3.6666],

ΓTF0 = 0 [0], γTF0 = −1.3333± 1 · 10−5[−1.3333],

Γ
T 2
F

1 = 0± 1 · 10−4 [0], γ
T 2
F

1 = 0± 6 · 10−4 [0],

ΓCFTF
1 = 0± 4 · 10−3 [0], γCFTF

1 = −3.9966(252) [−4],

ΓCATF
1 = −8.8949(85) [−8.8889],γCATF

1 = −16.9532(429) [−16.3+1.5
−1.0][−16.9853(25)],

Γ
C2

A
1 = 16.6180(513)[16.6183], γ

C2
A

1 = 96.3293(2079) [91+15
−10][96.33(3)], (8.3.7)

and the matching corrections,

cCA
1 = −5.7150(3),

cTF1 = −2.2222± 5 · 10−5,

c
T 2
F

2 = 7.8626(5),

cCFTF
2 = −47.2099(1162)

cCATF
2 = 30.6910(1921),

c
C2

A
2 = 172.9177(8147). (8.3.8)

In the case of the non-cusp anomalous dimension at NNLO, we can compare our results
against two different sources. The first source is [152, 153] where the authors extracted
the non-cusp anomalous dimension via a fixed-order code. The second source is to
check against the consistency relations from the hard and soft non-cusp anomalous
dimension [42].

We find for all cusp and non-cusp anomalous dimensions agreement between our
computation and the expected results from the literature. As the matching corrections
are still unknown in the literature we present these results for the first time in this
work.

8.4 Winner-take-all-axis broadening

The last observable we investigated in this work is the winner-take-all (WTA)-axis
broadening. This observable is of the SCETII type and thus n = 0. In order to study
this observable we first have to understand the WTA axis [93, 154].

The WTA axis ~n is defined by a certain pair-wise recombination scheme, like the kT -
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algorithm. The recombination scheme determines how two pseudo-jets will be merged
to form a combined pseudo-jet. The direction of this combined pseudo-jet is given by
its most energetic constituent. When used with an IRC safe clustering measure, the
WTA scheme is IRC safe [154].

At NLO the most energetic particle will set the axis because we have a two particle
final-state and we cannot cluster any particles together. At NNLO this is not true any-
more and we have to determine a recombination scheme. The clustering algorithm we
choose in our calculation of the WTA axis is the kT -algorithm for e+e− collisions [155]
with the distance measure,

dij =
2min

(
E2
i , E

2
j

) (
1− cos θ̂ij

)
R

, (8.4.1)

where Ei,j are the energies of the two particles, θ̂ij is the physical angle between the
particles and R is the radius parameter. In the WTA scheme the parameter R is not
important because we only want to find the relative distance between all final-state
particles and thus we can set R = 1. In light-cone coordinates this distance measure
dkp for particles k and p is written as

dkp = min
(
|k⊥p|2, |p⊥k|2

)
, (8.4.2)

where

|k⊥p|2 =
k2−p

2
T + p2−k

2
T − 2k−p−kTpT cos θkl

p2−
, (8.4.3)

|p⊥k|2 =
k2−p

2
T + p2−k

2
T − 2k−p−kTpT cos θkl

k2−
. (8.4.4)

At NNLO we also require dkl and dlp, which have similar expressions as eq. (8.4.2).
The WTA-axis at NNLO is then determined in the following way. First, we calculate

the distance measures dkp, dkl and dlp and take the minimum. Let us suppose that dkp is
the minimum. We cluster particles k and p together to create the new pseudo particle
q with energy q− = k− + p−. We then compare the energies between the new pseudo
particle and the remaining particle l. If the energy of l is larger than that of q, it will
set the axis ~nl. On the other hand if the energy of q is larger than l, we have to compare
the energies of the pseudo particle constituents. The more energetic particle of the two
will set the axis. We have shown this setup graphically for NNLO in figure 8.4.1.

The broadening is now determined by the projection of the particles transverse mo-
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Figure 8.4.1: Determination of WTA axis at NNLO.

mentum onto the corresponding axis. At NLO we find that the measurement function
is given by

ωNLO
WTAB({ki}) = kT min

(
1

z
,
1

z̄

)
, (8.4.5)

and at NNLO

ωNNLO
WTAB({ki}) =


Fk = |l⊥k|+ |p⊥k| , ~n = ~nk

Fl = |k⊥l|+ |p⊥l| , ~n = ~nl

FP = |k⊥p|+ |l⊥p| , ~n = ~np

, (8.4.6)

where the expressions are similar to eqs. (8.4.3) and (8.4.4). In the physical parametri-
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sation for regions A and D we find

Fk,A =

√
q2T

a(a+ b)(1 + ab)

(√
ā2 + 4at

+
1

z

√
a2z2(b̄2 + 4bt̄) + z̄2(1 + ab)2 + 2azz̄(1 + ab)(1 + b− 2t)

)
,

Fl,A =

√
aq2T

(a+ b)(1 + ab)

(
b
√
ā2 + 4at

+
1

z

√
z2(b̄2 + 4bt̄) + z̄2(1 + ab)2 + 2zz̄(1 + ab)(1 + b(1− 2t))

)
,

Fp,A =

√
aq2T

(a+ b)(1 + ab)3
b

z̄

(√
a2z2(b̄2 + 4bt̄) + z̄2(1 + ab)2 + 2azz̄(1 + ab)(1 + b− 2t)

+
1

b

√
z2(b̄2 + 4bt̄) + z̄2(1 + ab)2 + 2zz̄(1 + ab)(1 + b(1− 2t))

)
. (8.4.7)

Similarly, the measurement function in regions B and C is

Fk,B =

√
q2T

a(a+ b)(1 + ab)

(
b
√
ā2 + 4at

+
1

z

√
a2z2(b̄2 + 4bt̄) + z̄2(a+ b)2 + 2azz̄(a+ b)(1 + b(1− 2t))

)
,

Fl,B =

√
aq2T

(a+ b)(1 + ab)

(√
ā2 + 4at

+
1

z

√
z2(b̄2 + 4bt̄) + z̄2(a+ b)2 + 2zz̄(1 + ab)(1 + b− 2t)

)
,

Fp,B =

√
aq2T

(a+ b)(1 + ab)3
b

z̄

(√
z2(b̄2 + 4bt̄) + z̄2(a+ b)2 + 2zz̄(a+ b)(1 + b− 2t)

+
1

b

√
a2z2(b̄2 + 4bt̄) + z̄2(a+ b)2 + 2azz̄(a+ b)(1 + b(1− 2t))

)
. (8.4.8)

As the WTA broadening is a SCETII observable, the first quantity we can calculate
is the anomaly exponent. This can be checked by comparing our result against the
corresponding soft function, which we obtain from SoftSERVE. In the case of the quark
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jet function, we find

dCF
1 = 0± 3 · 10−7 [0],

dCFTF
2 = −18.7368(8) [−18.7371(2)],

d
C2

F
2 = −0.1175(2303) [0],

dCFCA
2 = 15.9504(1540) [15.9810(13)], (8.4.9)

and for the gluon jet function we obtain

dCA
1 = 0± 3 · 10−7 [0],

dTF1 = 0 [0],

d
T 2
F

2 = 0 [0],

dCFTF
2 = 0 [0],

dCATF
2 = −18.7365(65) [−18.7371(2)],

d
C2

A
2 = 15.9763(148) [15.9810(18)]. (8.4.10)

At the level of the remainder function W we can extract the same quantities as for
SCETI observables. We obtain for the quark remainder function

ΓCF
0 = 4± 3 · 10−8 [4], γCF

0 = 6± 1 · 10−5 [6],

ΓCFTF
1 = −8.8889(2) [−8.8889], γCFTF

1 = −22.7902(12) [−22.7891],

Γ
C2

F
1 = −0.0384(347) [0], γ

C2
F

1 = 21.3426(1110) [21.2203],

ΓCFCA
1 = 16.5961(368) [16.6183], γCFCA

1 = 9.2890(1090) [9.2742], (8.4.11)

and the matching corrections,

cCF
1 = −27.2164± 5 · 10−5,

cCFTF
2 = 62.9577(33),

c
C2

F
2 = 511.0941(2980),

cCFCA
2 = −240.4355(2738). (8.4.12)

Similarly, we calculated the following anomalous dimensions for the gluon remainder
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function:

ΓCA
0 = 4± 3 · 10−8 [4], γCA

0 = 7.3333± 5 · 10−6 [7.3333],

ΓTF0 = 0 [0], γTF0 = −2.6667± 2 · 10−6 [−2.6667],

Γ
T 2
F

1 = 0± 3 · 10−5 [0], γ
T 2
F

1 = 0± 3 · 10−4 [0],

ΓCFTF
1 = 0.0004(97) [0], γCFTF

1 = −7.9967(401) [−8],

ΓCATF
1 = −8.8891(48) [−8.8889], γCATF

1 = −14.5780(257) [14.5765],

Γ
C2

A
1 = 16.6280(201) [16.6183], γ

C2
A

1 = 34.3346(260) [34.3882], (8.4.13)

and matching corrections,

cCA
1 = −28.5093(1),

cTF1 = −0.0810(1),

c
T 2
F

2 = 17.4352(1),

cCFTF
2 = −85.2223(576)

cCATF
2 = 135.9650(214),

c
C2

A
2 = 293.9550(708). (8.4.14)

8.5 Possible extensions

By implementing our master formulae into pySecDec we are capable of computing jet
functions for a wide range of observables. Nevertheless some areas where we can extend
our framework are :

• A standalone C++ code. pySecDec is tailored to factorise divergences from generic
products of polynomials by sector decomposition. However we perform all sector
decomposition steps in a Mathematica code and only feed factorised divergences
into the program. So we only use pySecDec for its Laurent expansion and subse-
quent numerical integration. Thus a standalone C++ code with already Laurent
expanded master formulae will reduce the evaluation time. Additionally, we can
manipulate the expression in a way that the subsequent numerical integration
can be done faster and with better rate of convergence.

• Other collinear resummation ingredients. In this work, we exclusively dealt with
jet functions that describe final-state collinear radiation. However, there are other
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collinear resummation ingredients like beam functions, which describe initial-
state collinear radiation. The corresponding matrix element is related to the
splitting function via crossing symmetries. The divergence structure of the beam
functions are similar to the ones for the jet functions and we already developed
a similar framework for the computation of beam functions. We have already
presented first results for the beam functions within this framework in [46–48].
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Chapter 9

Conclusion

Precision measurements in collider experiments are very important in the search for
new physics and the validation of the SM. From a theoretical point of view, many
collider observables suffer from large Sudakov logarithms due to the radiation of soft
and collinear particles. The occurrence of these logarithms spoils the convergence of
perturbation theory and must therefore be resummed to all orders.

The computation of jet anomalous dimensions and matching coefficients, which
can be extracted from NNLO jet functions, is an essential step for the resummation of
Sudakov logarithms to NNLL′ accuracy within the SCET framework. So far most of
these calculations were performed analytically on a case-by-case basis.

In this thesis, we have constructed a new formalism for the automated numerical
computation of NNLO quark and gluon jet functions for a broad class of observables.
This formalism is based on the fact that the origin of all occurring divergences is linked
only to the matrix element describing the emission of collinear radiation.

We set up a generic framework for NNLO jet functions starting from their operator
definitions. In the process, we checked that the matrix elements are proportional to
the standard double- and triple-collinear splitting functions. By comparing to the
soft functions, we have identified the restrictions that an observable needs to obey to
be computable in our approach. Due to the complicated divergence structure of the
underlying collinear matrix elements, we encountered many overlapping singularities
in the real-real contribution, which we disentangled with the help of a mixed strategy
based on sector decomposition, non-linear transformations, and selector functions. As
a result, we formulated master formulae in which all poles are exposed in monomial
form.

On the level of the measurement function, we discussed some of the implications of
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infrared-collinear safety. Additionally, we have also shown the challenges induced by
the measurement function when the momentum modes scale non-homogeneously and
provided a solution to this problem.

We have implemented the master formulae in the open-source program pySecDec
for both SCETI and SCETII observables. We have furthermore shown why our ansatz
for the parametrisation fails in a numerical integrator due to integrable divergences and
provided a strategy to cure this problem by introducing more suitable parametrisations.

Finally, we validated our approach by recomputing the thrust jet functions, which
are known analytically for both the quark and the gluon case. We furthermore ap-
plied the novel framework to various classes of observables, which include SCETI and
SCETII jet functions, observables with a non-trivial azimuthal dependence and those
that involve the action of a jet algorithm. While the anomalous dimensions for all of
these observables were known, our predictions for the finite matching corrections are
new. Due to the breadth of our approach, we expect that many further jet functions
will be computed with our framework in the future.

This thesis represents a step towards the complete automation of resummations at
NNLL′ accuracy, as it shows how to compute one of the last important and computa-
tionally challenging ingredients, which may finally result in automated computational
tools to be used for precision phenomenological analyses at the LHC.
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Appendix A

Anomalous Dimensions

The coefficients of the beta function up to two-loop order in MS scheme are given
by [98, 99]

β0 =
11

3
CA − 4

3
TFnf , (A.0.1)

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TFnf . (A.0.2)

The cusp anomalous dimension coefficients are given up to two-loop order [97, 109]

ΓqCusp = ΓnCF , ΓgCusp = ΓnCA, (for n = 0, 1),

Γ0 = 4, (A.0.3)

Γ1 =
4

3

(
(4− π2)CA + 5β0

)
. (A.0.4)

The MS scheme non-cusp anomalous dimensions for the hard functions can be
obtained from the infrared divergences of on-shell form factors, which are given up to
two-loop order [156, 157],

γq,H0 = −6CF , (A.0.5)

γg,H0 = −2β0, (A.0.6)

γq,H1 = −CF
[(

82

9
− 52ζ3

)
CA +

(
3− 4π2 + 48ζ3

)
CF +

(
65

9
+ π2

)
β0

]
, (A.0.7)

γg,H1 = 2CA

[
CA

(
−59

9
+ 2ζ3

)
+ β0

(
−19

9
+
π2

6

)]
− 2β1. (A.0.8)

The non-cusp anomalous dimensions for the thrust jet function are given [116, 146]
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explicitly by

γq,Thrust,J
0 = 3CF , (A.0.9)

γg,Thrust,J
0 = β0, (A.0.10)

γq,Thrust,J
1 = CF

[(
1769

54
+

11

9
π2 − 40ζ3

)
CA +

1

2

(
3− 4π2 + 48ζ3

)
CF

− 2

27

(
121 + 6π2

)
TFnf

]
, (A.0.11)

γg,Thrust,J
1 =

(
1096

27
− 11

9
π2 − 16ζ3

)
C2
A +

(
−368

27
+

4

9
π2

)
CATFnf − 4CFTFnf .

(A.0.12)

The non-cusp soft anomalous dimension is then given by the consistency relation
in (4.5.17).
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Appendix B

Decomposition of splitting
functions

The splitting functions introduced in sections 6 have a rich divergence structure there-
fore it is easier to separate them further into manageable pieces, according to the
divergences and invariant masses present.

Let us start with the P (1)
q→gq(s, zk) in (6.2.7), we can split it in the following decom-

position

P (1)
q→gq(s, zk) = P (1),A

q→gqC
2
F +P

(1),B
q→gqCF

(
CF − CA

2

)
+P (1),C

q→gqCFCA+P
(1),D
q→gqCFCA, (B.0.1)

where the indivual terms are

P (1),i
q→gq =

(
µ2eγE

s

)ε
2

(4π)2
πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)
P̃ (1),i
q→gq,

P̃ (1),A
q→gq =

(
1 + z̄2k − εz2k

zk

)(
2− ε2

1− 2ε

)
+
z̄k(2− zk)ε

2

(1− 2ε)zk
,

P̃ (1),B
q→gq = −2

(
1 + z̄2k − εz2k

zk

)
2F1

(
1,−ε; 1− ε;

zk
zk − 1

)
,

P̃ (1),C
q→gq =

(
1 + z̄2k − εz2k

zk

)(
−1 +

ε2

1− 2ε

)
− z̄k(2− zk)ε

2

(1− 2ε)zk
,

P̃ (1),D
q→gq = −

(
1 + z̄2k − εz2k

zk

)
2F1

(
1,−ε; 1− ε;

zk − 1

zk

)
.

The splitting functions P (1)
g→qq̄(s, zk) and P

(1)
g→gg(s, zk) in (6.2.10) and (6.2.11) can be
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decomposed in a similar fashion;

P
(1)
g→qq̄(s, zk) = P

(1),A
g→qq̄T

2
Fn

2
f + P

(1),B
g→qq̄CFTFnf +

(
P

(1),C
g→qq̄ + P

(1),D
g→qq̄

)
CATFnf , (B.0.2)

P (1)
g→gg(s, zk) =

(
P (1),A
g→gg + P (1),B

g→gg
)
C2
A + P (1),C

g→ggCATFnf , (B.0.3)

where the terms are given by

P
(1),i
g→kl =

(
µ2eγE

s

)ε
2

(4π)2
πΓ(1− ε)

ε tan(πε)Γ(1− 2ε)
P̃

(1),i
g→kl

, P̃
(1),A
g→qq̄ =

z2k + z̄2k − ε

1− ε

(
2

2(ε− 1)ε

4(ε− 2)ε+ 3

)
,

P̃
(1),B
g→qq̄ =

z2k + z̄2k − ε

1− ε

(
ε(3(1− ε) + 2ε2)− 2

(ε− 1)(2ε− 1)

)
,

P̃
(1),C
g→qq̄ = −2

z2k + z̄2k − ε

1− ε
2F1

(
1,−ε; 1− ε;

zk − 1

zk

)
,

P̃
(1),D
g→qq̄ =

z2k + z̄2k − ε

1− ε

(
2 +

3 + ε2(2(ε− 2) + (1 + 2(ε− 2)ε))

(ε− 1)(3− 2ε)(2ε− 1)

)
,

P̃ (1),A
g→gg =

(1− zkz̄k)
2

zkz̄k
+

ε2(1− 2εzkz̄k)((ε− 1))

2(1− ε)(ε− 1)(2ε− 3)(2ε− 1)
,

P̃ (1),B
g→gg = −2

(1− zkz̄k)
2

zkz̄k
2F1

(
1,−ε; 1− ε;

zk − 1

zk

)
,

P̃ (1),C
g→gg =

ε2(1− 2εzkz̄k)

(1− ε)(ε− 1)(2ε− 3)(2ε− 1)
.

After showing the decomposition of the splitting functions, which go into the real-
virtual structure we turn to the triple collinear splitting functions.

We start with the CFTFnf structure of the quark jet function P
(0)
q→q̄′q′q in (6.2.16)

P
(0)
q→q̄′q′q = PA

q→q̄′q′q + PB
q→q̄′q′q, (B.0.4)

where

PA
q→q̄′q′q = −1

2

(
(z1(s12 + 2s23)− z2(s12 + 2s13))

2

(z1 + z2)2s212s
2
123

+
1− 2ε

s2123

)
,

PA
q→q̄′q′q =

4z3 + (z1 − z2)
2

2s12s123(z1 + z2)
+ (1− 2ε)

z1 + z2
2s12s123

.
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For the identical piece in (6.2.17) we can decompose it into

P
(0)
q→q̄qq = PA

q→q̄qq + PB
q→q̄qq, (B.0.5)

with

PA
q→q̄qq =

(1− ε)

s2123

(
2
s23
s12

− ε

)
+

1 + z21 − εz̄23
(1− z2)s123s12

− 2z2(1− ε)

(1− z3)s123s12
− ε(1 + z1)− ε2z̄3

s123s12
,

PB
q→q̄qq =

−z1z3
s12z̄2z̄3(z3s13 + z2s12)

(
1 + z21 − ε

(
3z1 + z22 + z2z3 + z23

)
− ε2 (z1 + z2z3)

)
.

The last splitting function for the quark jet function is Pq→ggq in (6.2.18). The decom-
position is as follows

P (0)
q→ggq =

(
PA
q→ggq + PB

q→ggq + PC
q→ggq

)
CF

(
CF − CA

2

)
+ PD

q→ggqC
2
F

+
(
PE
q→ggq + P F

q→ggq + PG
q→ggq + PH

q→ggq + P I
q→ggq

)
CFCA

−
(
1− ε

2

)
PA
q→q̄′q′qCFCA, (B.0.6)

where we are able to reuse pieces we already calculated before. The individual struc-
tures are given by

PA
q→ggq =

z2
z1s12(z3s23 + z1s12)

(
1 + z22 − ε(z21 + z23)− z1z3ε(1 + ε)

)
,

PB
q→ggq =

z3
z1z2s123(z2s12 + z3s13)

(
z3z̄1 + z̄32 − z̄2(z

2
1 + z1z2 + z22) + z1z2(1 + z3)ε

2
)
,

PC
q→ggq =

s13
z1s12s123(z3s13 + z2s12)

(
z2z̄1 + z̄33 − z̄3(z

2
1 + z1z3 + z23) + z1z3(1 + z2)ε

2
)
,

PD
q→ggq =

1− ε

s2123

(
ε− (1− ε)

s12
s12

)
,

PE
q→ggq =

1

2s12z̄2(z3s13 + z2s12)

(
z̄2(2z2 + (1− ε)z̄22) + z3(2z̄3 + (1− ε)z23)

)
,

P F
q→ggq =

z3
2s12z2z̄3(z3s13 + z2s12)

(
z̄3(2z3 + (1− ε)z̄23) + z2(2z̄2 + (1− ε)z22)

)
,

PG
q→ggq =

((1− ε) (z1(2− 2z1 + z21)− z2(6− 6z2 + z22)) + 2ε (z3(z1 − 2z2)− z2))

2s12z2z̄3s123
,

PH
q→ggq =

z3 ((1− ε)(z̄32 + z23 − z2)− ε(2z̄2(z2 − z3))− ε(1− ε)z̄1)

2s123z2z̄3(z2s12 + z3s13)
,

P I
q→ggq =

s13 ((1− ε)(z̄33 + z22 − z3)− ε(2z̄3(z3 − z2))− ε(1− ε)z̄1)

2s12s123z̄2(z2s12 + z3s13)
.
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The two splitting functions for the gluon jet function are shown in (6.2.19) and (6.2.22),
we decompose them in the following way;

P1 = −2PA
1 + PB

1 + 2PC
1 + PD

1 , (B.0.7)

P2 =

(
−1

4
+
ε

2

)
PA
1 − 1

4
PA
2 + PB

2 + PC
2 + PD

2 + PE
2 − 1

2
PC
1 , (B.0.8)

P (0)
g→ggg =

(1− ε)

4
PA
2 +

3

4
(1− ε)PA

1 + PA
g→ggg + PB

g→ggg + PC
g→ggg + PD

g→ggg. (B.0.9)

where the terms are defined via

PA
1 =

1

s2123
,

PB
1 = −2(1− ε)

s23
s12s2123

,

PC
1 =

z3
s12(z3s13 + z2s12)

(
1 + z21 −

z1 + 2z2z3
1− ε

)
,

PD
1 = −2

1

s12s123

(
1 + 2z1 + ε− 2

z1 + z2
1− ε

)
,

PA
2 =

t221,3
s2123s

2
12

,

PB
2 =

z1
2s12z̄3(z3s13 + z2s12)

(
(1− z1)

3 − z31 −
2z1(1− z1 − 2z3z2)

(1− ε)

)
,

PC
2 =

z2z3
2s12z̄1z1(z1s12 + z3s23)

(
(1− z1)

3 − z31 −
2z2(1− z2 − 2z1z3)

(1− ε)

)
,

PD
2 =

z̄3
2s12s123

(
1 +

1

z1(1− z1)
− 2z3(1− z3)

(1− ε)z1(1− z1)

)
,

PE
2 =

1

s12s123

(
1 + z33

z3(1− z3)
+
z3(z2 − z1)

2 − 2z1z2(1 + z3)

(1− ε)z3(1− z3)

)
,

PA
g→ggg = 2

1

s123s12

(
4
z1z2 − 1

1− z3
+
z1z2 − 2

z3
+

3

2
+

5

2
z3

)
,

PB
g→ggg =

z3
s123(z2s12 + z3s13)

(
(1− z2(1− z2))

2

z2z1(1− z1)

)
,

PC
g→ggg =

s13
s12s123(z2s12 + z3s13)

(
(1− z3(1− z3))

2

z3z1(1− z1)

)
,

PD
g→ggg =

z3
s12(z2s12 + z3s13)

(
z1z2(1− z2)(1− 2z3)

z3(1− z3)
+ z2z3 − 2

+
z1(1 + 2z1)

2
+

1 + 2z1(1 + z1)

2(1− z2)(1− z3)
+

1− 2z1(1− z1)

2z2z3

)
+ (2 ↔ 3),
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where we define tij,k as

tij,k = 2
zisjk − zjsik
zi + zj

+
zi − zj
zi + zj

sij.
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Appendix C

Master formulae in physical
parametrisation

Here we list the master formulae for the real-real contribution in physical parametrisa-
tion. In order to keep the list as compact as possible we will not project the expressions
onto the unit hypercube. Thus we can write all expressions in the following way

JRR
i (τ, µ,Q) =

(αs
4π

)2(µτ̄ 1
1+n

Q
n

1+n

)4ε(
ν

Q

)2αδiq+3αδig 23−6εΓ
( −4ε
1+n

)
(1 + n)π2Γ(−2ε)

e2εγE
n−1
n+1

∫ ∞
0

dadb

∫ 1

0

dzdtdtldt
′
5 (tt̄)

− 1
2
−ε(tlt̄l)

− 1
2
−ε(t′5(2− t′5))

−1−εΩ
4ε

1+nF
4ε

1+n

∑
j

J
Pj

i

(C.0.1)

where i ∈ {q, g} and JPj

i are the decompositions of the splitting functions transformed
in the physical parametrisation.
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So the coefficients for the CFTFnf quark jet functions are

J
PA
q→q̄′q′q

q =
(1− z)z−1−2αa1−α−2ε(a+ b)2εb1−α−2ε(1 + ab)−2+2α+2ε

(4at+ (1− a)2)2 (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2(
2
(
1− a2

)
z
(
1− a2b2

) (
4at+ (1− a)2

)
− 2

(
1− a2

)2
(ab+ 1)2

+ ε
(
z2(ab+ 1)2

(
4at+ (a− 1)2

)2)− z2
(
a2b2 + 1

) (
4at+ (1− a)2

)2)
,

J
PB
q→q̄′q′q

q =
z−1−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−2+2α+2ε

(4at+ (1− a)2) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))(
a2b2(2− (2− z)z)− z2ε(ab+ 1)2 + 4ab(1− z)− (2− z)z + 2

)
.

The coefficients for the identical structure are:

J
PA
q→q̄qq

q =
−z−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−1+2α+2ε(1 + ab− z)−1

(4at+ (1− a)2) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2((
−a2b2

(
z2 + 1

)
− 2z + 1

) (
az
(
4b(1− t) + (1− b)2

)
+(1− z)(a+ b)(ab+ 1))− 2a(ab− z + 1)

(
b2z2

(
4at+ (a− 1)2

)
−2bz(ab+ 1)(a+ 2t− 1) + (ab+ 1)2

)
+ ε
( (
a2b2

(
z2 + z + 1

)
+abz2 + z2 + z − 1

) (
az
(
4b(1− t) + (1− b)2

)
+ (1− z)(a+ b)(ab+ 1)

)
× (ab− z + 1)

(
bz2(ab− 1)

(
4at+ (a− 1)2

)
− bz(ab+ 1)

× (a(3a+ 4t− 2)− 1) + 2a(ab+ 1)2
))

+ ε2
(
z(ab+ 1)(ab− z + 1)

−bz
(
4at+ (a− 1)2

))
+ b(z − 1)z(ab+ 1)

(
4at+ (a− 1)2

)
(ab− z + 1)

))
,

J
PB
q→q̄qq

q =
−z−2αa2−α−2ε(a+ b)2εb−α−2ε(1 + ab)−1+2α+2ε(1 + ab− z)−1

(−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2 (4at+ (a− 1)2))(
− ε
(
a2b2

(
z2 + z + 1

)
+ ab

(
z2 + 2

)
− (1− z)z + 1

)
+ ab

(
ab
(
z2 + 1

)
+ 2
)

−
(
zε2(ab+ 1)(ab− z + 1)

)
+ 1
) (

4at+ (1− a)2
)−1

.
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The coefficients for the splitting q → ggq are:

J
PA
q→ggq

q =
(1− z)−1−αz−αa−1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−1+α+2ε(4at+ (1− a)2)−1

2b2z2 (4at+ (a− 1)2)− 2bz(ab+ 1)(a+ 2t− 1) + (ab+ 1)2(
− ε
(
a2b2(1− (1− z)z) + ab(1− z)(2− z) + (1− z)2

)
− ab(1− z)z

+ ε2(ab+ 1) + (ab+ 1)2 + z2
)
,

J
PB
q→ggq

q =
(1− z)z−1−2αa−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)2α+2ε

az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1)

(−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2
(
4at+ (a− 1)2

)
)−1(

z2(ab(ab+ 1) + 3)(ab+ 1)− 2z(ab+ 2)(ab+ 1)2 + 2(ab+ 1)3 − z3

− ε
(
z2(ab(ab+ 1) + 1)(ab− z + 1)

)
+ ε2

(
ab(2− z)z2(ab+ 1)

))
,

J
PC
q→ggq

q =
(1− z)−1−αz−αa−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−1+α+2ε

(4at+ (1− a)2) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))(
−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + z2 (4at+ (a− 1)2)

−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2 (4at+ (a− 1)2)

)
(
− ε
(
a2b2(1− (1− z)z) + ab(1− z)(2− z) + (1− z)2

)
+ z2(ab+ 1)2 + ab(1− z) + 1 + ab(1− z)ε2(ab+ z + 1)

)
,

J
PD
q→ggq

q =
(1− ε)(1− z)−αz−αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−1+α+2ε

(4at+ (1− a)2) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2(
a
(
−b2z2

(
4at+ (1− a)2

)
+ 2bz(ab+ 1)(a+ 2t− 1)− (ab+ 1)2

)
+ ε
((
1− a2

)
bz(ab+ 1)− bz2

(
4at+ (a− 1)2

)
+ a(ab+ 1)2

) )
,

J
PE
q→ggq

q =
(1− z)−1−αz−αa1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)α+2ε−1(1 + ab− z)−1

2 (−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2 (4at+ (a− 1)2))(
z2(ab(ab+ 2) + 2)(ab+ 1)− z3(ab+ 2)(ab(ab+ 1) + 1)− z(ab+ 2)(ab+ 1)2

+ 2(ab+ 1)3 − ε(ab(2− z) + 2(1− z))
(
a2b2(1− (1− z)z)

+ ab(1− z)(2− z) + (1− z)2
) (

4at+ (1− a)2
)−1
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Appendix C. Master formulae in physical parametrisation

J
PF
q→ggq

q =
z−1−2αa1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−1+2α+2ε (4at+ (1− a)2)

−1

2 (−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2 (4at+ (a− 1)2))(
z2(ab+ 2)(ab(ab+ 1) + 1)− 2z(ab(ab+ 2) + 2)(ab+ 1)

+ 2(ab+ 2)(ab+ 1)2 −
(
z2ε(ab+ 2)(ab(ab+ 1) + 1)

) )
,

J
PG
q→ggq

q =
z−1−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−2+2α+2ε

2 (4at+ (1− a)2) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))(
− z2

(
1− a3b3

)
+ 2z

(
3− a2b2

)
(ab+ 1) + 2(ab− 3)(ab+ 1)2

+ zε
(
a2b2(2− abz) + z − 2

) )
,

J
PH
q→ggq

q =
(1− z)z−1−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−1+2α+2ε

2 (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))(
−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2

(
4at+ (a− 1)2

))−1(
z2(ab(ab+ 2) + 4)(ab+ 1)− 2z(ab+ 3)(ab+ 1)2 + 2(ab+ 1)3 − z3

+ z2ε2(ab+ 1)(ab(1− z) + 1) + z2ε(ab(ab+ 1) + 1)(ab− z + 1)
)
,

J
P I
q→ggq

q =
(1− z)−α−1z−αa−α−2ε+1(a+ b)2εb−α−2ε(ab+ 1)α+2ε−1

2 (4at+ (1− a)2) (ab− z + 1)(
az
(
4b(1− t) + (1− b)2

)
+ (1− z)(a+ b)(ab+ 1)

)−1(
−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + z2 (4at+ (a− 1)2)

−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2 (4at+ (a− 1)2)

)
(
z3(ab+ 1)2 + (z − 1)ε2(ab(z − 1)− 1)(ab− z + 1) + z(ab+ 1)2

− (ab+ 1)2 + z2 + zε
(
a2b2

(
−z2 + z − 1

)
− ab(z − 2)(z − 1)− (z − 1)2

) )
.
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The coefficients for the TFnfCF colour structure are:

JP
A
1

g =
(1− z)1−αz1−2αa1−α−2ε(a+ b)2εb1−α−2ε(1 + ab)2α+2ε

(az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2
,

JP
B
1

g =− 2(1− ε)(1− z)−αz−2αa2−α−2ε(a+ b)2εb−α−2ε(1 + ab)2α+2ε−1

4at+ (1− a)2(
b2z2 (4at+ (1− a)2) + 2bz(ab+ 1)(−a− 2t+ 1) + (ab+ 1)2

(az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2

)
,

JP
C
1

g =
(1− z)−αz−2αa1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−1+2α+2ε

(1− ε) (4at+ (1− a)2)(
−2z(ab+ 1)(1− a(1− 2t)) + (ab+ 1)2 + 2z2

(
4at+ (a− 1)2

))−1(
a2b2((z − 1)z + 1)− ε

(
ab
(
ab
(
z2 + 1

)
+ 2
)
+ 1
)

+ab(z(2z − 3) + 2) + 2(z − 1)z + 1) ,

JP
D
1

g =− 2(1− z)−αz−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−1+2α+2ε

(1− ε) (4at+ (1− a)2)(
−2abzε− (ε2(ab+ 1)) + ab− 2z + 1

az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1)

)
.
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The coefficients for the TFnfCA colour structure are:

JP
A
2

g =
(1− z)1−αz−1−2αa1−α−2ε(a+ b)2εb1−α−2ε(1 + ab)−2+2α+2ε

(4at+ (1− a)2)2(
(2 (1− a2) (ab+ 1)− z(1− ab) (4at+ (1− a)2))

2

(az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))2

)
,

JP
B
2

g =− (1− z)−1−αz−2αa2−α−2ε(a+ b)2εb−α−2ε(1 + ab)−2+2α+2ε

2(1− ε) (4at+ (1− a)2)(
−2z(ab+ 1)(a(2t− 1) + 1) + (ab+ 1)2 + 2z2

(
4at+ (a− 1)2

))−1(
a2b2

(
z
(
−2z2 + z − 1

)
+ 1
)
+ 2ab(z − 1)2 + z((3− 2z)z − 3) + 1

+ (2z − 1)((z − 1)z + 1)ε(ab+ 1)2
)
,

JP
C
2

g =
(1− z)−αz−2αa−1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−1+2α+2ε

2(1− ε) (4at+ (1− a)2) (1 + ab(1− z))(
2b2z2

(
4at+ (a− 1)2

)
− 2bz(ab+ 1)(a+ 2t− 1) + (ab+ 1)2

)−1(
(1 + ab)3 − (1 + ab)2(2 + 3ab)z + (1 + ab)(2 + ab(4 + 3ab))z2

− 2ab(2 + ab(2 + ab))z3 + ε
(
ab
(
ab
(
ab(2z − 1)((z − 1)z + 1)− 3(z − 1)2

)
+3(z − 1))− 1)

)
,

JP
D
2

g =
(1− z)−αz−2αa−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)2α+2ε

2(1− ε) (4at+ (1− a)2) (ab(1− z) + 1)(
az
(
4b(1− t) + (1− b)2

)
+ (1− z)(a+ b)(ab+ 1)

)−1(
a2b2((z − 1)z + 1) + ab(z(4z − 3) + 2) + 2(z − 1)z + 1

− ε
(
ab
(
ab
(
−z2 + z + 1

)
+ z + 2

)
+ 1
) )
,

JP
E
2

g =− (1− z)−1−αz−1−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−2+2α+2ε

(1− ε) (az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1))(
− 2 + z(3 + 2(−2 + z)z)− 2ab(2− 3z + z3) + a2b2(−2 + z(3 + 2(−2 + z)z))

+ (2− z)(1− (1− z)z)ε(ab+ 1)2
) (

4at+ (1− a)2
)−1

.
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The final coefficients belong to the C2
A colour structure. They are

J
PA
g→ggg

g =
(1− z)−1−αz−1−2αa1−α−2ε(a+ b)2εb−α−2ε(1 + ab)−2+2α+2ε

4at+ (1− a)2(
az
(
4b(1− t) + (1− b)2

)
+ (1− z)(a+ b)(ab+ 1)

)−1(
z3(ab(5ab+ 4) + 5)− z2(ab(13ab+ 18) + 13) + 12z(ab+ 1)2

−8(ab+ 1)2
)
,

J
PB
g→ggg

g =
(1− z)1−αz−1−2αa−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)2α+2ε

1 + ab(1− z)(
(−z(ab+ 1) + (ab+ 1)2 + z2)

2

−2z(ab+ 1)(1− a(1− 2t)) + (ab+ 1)2 + 2z2 (4at+ (1− a)2)

)
(
az
(
4b(1− t) + (1− b)2

)
+ (1− z)(a+ b)(ab+ 1)

)−1
,

J
PC
g→ggg

g =
(1− z)−1−αz−1−2αa−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)2+2α+2ε

(4at+ (1− a)2) (1 + ab(1− z))(
(1− (1− z)z)2

az (4b(1− t) + (1− b)2) + (1− z)(a+ b)(ab+ 1)

)
(
(−2z(ab+ 1)(1− a(1− 2t)) + (ab+ 1)2 + z2 (4at+ (1− a)2))

−2z(ab+ 1)(1− a(1− 2t)) + (ab+ 1)2 + 2z2 (4at+ (1− a)2)

)
,

J
PD
g→ggg

g =
(1− z)−1−αz−1−2αa1−α−2ε(a+ b)2εb−1−α−2ε(1 + ab)−2+2α+2ε

(4at+ (1− a)2) (1 + ab− z)(
−2z(ab+ 1)(1− a(1− 2t)) + (ab+ 1)2 + 2z2

(
4at+ (1− a)2

))−1(
z2(ab+ 2)(ab(3ab+ 5) + 5)(ab+ 1)2 − 2z(ab(ab+ 3) + 3)(ab+ 1)3

+ (ab+ 2)(ab+ 1)4 + z3(−ab− 1)(ab(ab(ab(2ab+ 11) + 21) + 20) + 10)

+ z4(ab+ 2)(ab(ab+ 1) + 1)(ab(ab+ 3) + 3)− 2z5(ab(ab+ 1) + 1)2
)
.
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Appendix D

How to arrive at monomial master
formulae?

In the last section we wrote down all real-real master formulae in physical parametrisa-
tion. However in order to arrive at the setup we want, we have to project the expression
on to the unit hypercube. In this final section we will outline the step to arrive at an
expression, where all divergences are in a monomial form. Additionally we will list for
all structures the occurring divergences as well as the correct Ω factor. In order to
separate all contributions, we divide them by the corresponding jet function coefficient
J
Pj

i .

Let us start with the NLO contribution:

Jet function Substitutions Divergences Ω

Jq,1
– z z−n

Jg→qq̄,1
– – –

Jg→gg,1
z → 1

2u u u−n

In the case of the real-virtual corrections at NNLO we find the following structures:
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Jet function Substitutions Divergences Ω

J
P

(1),A
q→gq

q
– z z−n

J
P

(1),B
q→gq

q
– z, l z−n

J
P

(1),C
q→gq

q
– z z−n

J
P

(1),D
q→gq

q
– z, l z−n

J
P

(1),A
g→qq̄

g
– – –

J
P

(1),B
g→qq̄

g
– – –

J
P

(1),C
g→qq̄

g
– l –

J
P

(1),D
g→qq̄

g
– – –

J
P

(1),A
g→gg

g
z → 1

2u u u−n

J
P

(1),B
g→gg

g
z → 1

2u u, l u−n

J
P

(1),A
g→gg

g
– – –

The divergence of l → 0 is technically a spurious divergence from the integral represen-
tation of the hypergeometric functions. We still list here for the sake of completness.

Let us now turn to the rest of the NNLO contributions. We are proceeding a similar
fashion as in previous section and start with the CFTFnf contribution of the quark jet
function.

Jet function Region Substitutions, Sector decomp. Divergences Ω

J
PA
q→q̄′q′q

q

Region A {a, t} → {u, v} u, z z−n

Region B {a, t} → {u, v} u, z z−n

Jet function Region Substitutions, Sector decomp. Divergences Ω

J
PB
q→q̄′q′q

q

Region A {a, t} → {u, v} u, z z−n

Region B {a, t} → {u, v} u, z z−n

In the case of the identical structure we find:

Jet function Region Substitutions, Sector decomp. Divergences Ω

J
PA
q→q̄qq

q

Region A {a, t} → {u, v} u –
Region B {a, t} → {u, v} u –
Region C {a, t} → {u, v} u –
Region D {a, t} → {u, v} u –
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Jet function Region Substitutions, Sector decomp. Divergences Ω

J
PB
q→q̄qq

q

Region A {a, t} → {u, v} u –
Region B {a, t} → {u, v} u –
Region C {a, t} → {u, v} u –
Region D {a, t} → {u, v} u –

Now turn to the contributions to the q → ggq splitting function. Here we have to
separate Ω into three different contributions depending on the value of n. In the case we
require additional sector decomposition due to the measurement function singularities
we denote the sector by Aj,and write this table at the end of the section.

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PA
q→ggq

q

a · RA {a, t} → {u, v} u, b, z̄ z̄−n z̄−n z̄−n

ā · RA a → bh, z → 1− hg h, b, g Aq g−nh
1−n
2 h

1
2

ā · RA a → bh, h → z̄g g, b, z̄ g
1−n
2 z̄

1−n
2 b1−n Ãq g

1
2 z̄

1
2

ā · RA b → ah a, h, z̄ Bq z̄−n z̄−n

a · RB {a, t} → {u, v} u, z̄ z̄−n z̄−n z̄−n

ā · RB a → hz̄ h, z̄ h
1−n
2 z̄

1−n
2 h

1−n
2 z̄

1−n
2 h

1
2 z̄

1
2

ā · RB z → 1− ah a, h h−na
1−n
2 h−na

1−n
2 a

1
2

RC {a, t} → {u, v} u, b, z̄ z̄−n z̄−n z̄−n

RD {a, t} → {u, v} u, z̄ z̄−n z̄−n z̄−n

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PB
q→ggq

q

RA a → bh b, z z−nb1−n z−n –
RA b → ah a, h, z Cq z−n –
RB – z z−n z−n –
RC a → bh, b → zg h, z z−nh

1−n
2 z−nh

1−n
2 h

1
2

RC a → bh, z → bg h, b, g b−ng−nh
1−n
2 b−ng−nh

1−n
2 h

1
2

RC b → ah, a → zg h, z z−n z−n –
RC b → ah, z → ag a, h, g g−na−n g−na−n –
RD a → bh h, b, z z−nh

1−n
2 b1−n B̃q h

1
2

RD b → ah a, z z−na1−n z−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PC
q→ggq

q

a · RA {a, t} → {u, v} u, b, z̄ z̄−n z̄−n –
ā · RA a → bh b, z̄ Dq z̄−n –
ā · RA b → ah a, h, z̄ Bq z̄−n –

RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RC {a, t} → {u, v} u, b, z̄ z̄−n z̄−n –
RD {a, t} → {u, v} u, z̄ z̄−n z̄−n –
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Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PD
q→ggq

q

RA {a, t} → {u, v} u – – –
RB {a, t} → {u, v} u – – –
RC {a, t} → {u, v} u – – –
RD {a, t} → {u, v} u – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PE
q→ggq

q

RA {a, t} → {u, v}, b → z̄h u, h, z̄ z̄−n z̄−n –
RA {a, t} → {u, v}, z → 1− bh u, b, h b−nh−n b−nh−n –
RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RC {a, t} → {u, v}, b → z̄h u, h, z̄ z̄−n z̄−n –
RC {a, t} → {u, v}, z → 1− bh u, b, h b−nh−n b−nh−n –
RD {a, t} → {u, v} u, z̄ z̄−n z̄−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PF
q→ggq

q

RA {a, t} → {u, v} u, b, z z−n z−n –
RB {a, t} → {u, v} u, b, z z−n z−n –

a · RC {a, t} → {u, v} u, b, z z−n z−n –
ā · RC a → bh, b → zg h, z z−nh

1−n
2 z−nh

1−n
2 h

1
2

ā · RC a → bh, z → bg h, b, g b−ng−nh
1−n
2 b−ng−nh

1−n
2 h

1
2

ā · RC b → ah, a → zg h, z z−n z−n –
ā · RC b → ah, z → ag h, a, g a−ng−n a−ng−n –
a · RD {a, t} → {u, v} u, b, z z−n z−n –
ā · RD a → bh h, b, z z−nh

1−n
2 b1−n C̃q h

1
2

ā · RD b → ah a, h, z Cq z−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PG
q→ggq

q

RA {a, t} → {u, v} u, z z−n z−n –
RB {a, t} → {u, v} u, b, z z−n z−n –
RC {a, t} → {u, v} u, z z−n z−n –

a · RD {a, t} → {u, v} u, b, z z−n z−n –
ā · RD a → bh b, z z−nb1−n z−n –
ā · RD b → ah a, h, z Cq z−n –
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Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PH
q→ggq

q

RA – z z−n z−n –
RB – z z−n z−n –
RC a → bh, b → zg h, z z−nh

1−n
2 z−nh

1−n
2 h

1
2

RC a → bh, z → bg h, b, g b−ng−nh
1−n
2 b−ng−nh

1−n
2 h

1
2

RC b → ah, a → zg z z−n z−n –
RC b → ah, z → ag ag a−ng−n a−ng−n –
RD a → bh h, b, z z−nh

1−n
2 b1−n C̃q h

1
2

RD b → ah a, z z−na1−n z−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
P I
q→ggq

q

RA {a, t} → {u, v}, b → z̄h u, h, z̄ z̄−n z̄−n –
RA {a, t} → {u, v}, z → 1− bh u, b, h b−nh−n b−nh−n –
RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RC {a, t} → {u, v}, b → z̄h u, h, z̄ z̄−n z̄−n –
RC {a, t} → {u, v}, z → 1− bh u, b, h b−nh−n b−nh−n –
RD {a, t} → {u, v} u, z̄ z̄−n z̄−n –

We now give similar tables for the gluon jet function.

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PA
1

g

RA – – – – –
RB – – – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PB
1

g

RA {a, t} → {u, v} u – – –
RB {a, t} → {u, v} u – – –
RC {a, t} → {u, v} u – – –
RD {a, t} → {u, v} u – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PC
1

g

RA {a, t} → {u, v} u – – –
RB {a, t} → {u, v} u – – –
RC {a, t} → {u, v} u – – –
RD {a, t} → {u, v} u – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PD
1

g

RA {a, t} → {u, v} u – – –
RB {a, t} → {u, v} u – – –
RC {a, t} → {u, v} u – – –
RD {a, t} → {u, v} u – – –
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Appendix D. How to arrive at monomial master formulae?

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PA
2

g

RA {a, t} → {u, v} u, z z−n z−n –
RB {a, t} → {u, v} u, z z−n z−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PB
2

g

RA {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RC {a, t} → {u, v} u, z̄ z̄−n z̄−n –
RD {a, t} → {u, v} u, z̄ z̄−n z̄−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PC
2

g

a · RA {a, t} → {u, v} u, b – – –
ā · RA a → bh h, b h

1−n
2 b1−n Ãg h

1
2

ā · RA b → ah h, a Ag – –
a · RB {a, t} → {u, v} u – – –
ā · RB – a a

1−n
2 a

1−n
2 a

1
2

RC {a, t} → {u, v} u, b – – –
RD {a, t} → {u, v} u – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PD
2

g

a · RA {a, t} → {u, v} u, b – – –
ā · RA a → bh b b1−n – –
ā · RA b → ah h, a Ag – –

RB {a, t} → {u, v} u – – –
RC {a, t} → {u, v} u, b – – –
RD {a, t} → {u, v} u – – –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PE
2

g

zt · RA {z, b, t} → {ũ, ṽ, p} ũ, ṽ ũ1−nṽ−n B̃g –
zt̄ · RA {a, t} → {u, v} u, z̄ z̄−n z̄−n –
z̄ · RA {a, t} → {u, v} u, z z−n z−n –
zt · RB {z, b, t} → {ũ, ṽ, p} ũ, ṽ ũ1−nṽ−n B̃g –
zt̄ · RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
z̄ · RB {a, t} → {u, v} u, z z−n z−n –
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Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PA
g→ggg

g

zt · RA {z, b, t} → {ũ, ṽ, p} ũ, ṽ ũ1−nṽ−n B̃g –
zt̄ · RA {a, t} → {u, v} u, z̄ z̄−n z̄−n –
z̄ · RA {a, t} → {u, v} u, z z−n z−n –
zt · RB {z, b, t} → {ũ, ṽ, p} ũ, ṽ ũ1−nṽ−n B̃g –
zt̄ · RB {a, t} → {u, v} u, z̄ z̄−n z̄−n –
z̄ · RB {a, t} → {u, v} u, z z−n z−n –

Jet function Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PB
g→ggg

g

RA a → bh b, z z−nb1−n z−n –
RA b → ah a, h, z Bg z−n –
RB – z z−n z−n –

z · RC b → ah h – – –
z · RC a → bh, h → z̄g g, z̄ z̄

1−n
2 g

1−n
2 z̄

1−n
2 g

1−n
2 z̄

1
2 g

1
2

z · RC a → bh, z → 1− hg h h
1−n
2 h

1−n
2 h

1
2

z̄ · RC a → bh, b → zg h, z z−nh
1−n
2 z−nh

1−n
2 h

1
2

z̄ · RC a → bh, z → bg h, b, g b−ng−nh
1−n
2 b−ng−nh

1−n
2 h

1
2

z̄ · RC b → ah, a → zg h, z z−n z−n –
z̄ · RC b → ah, z → ag a, h, g a−ng−n a−ng−n –
z · RD b → ah a a1−n – –
z · RD a → bh, h → z̄g g, b, z̄ z̄

1−n
2 g

1−n
2 b1−n C̃g z̄

1
2 g

1
2

z · RD a → bh, z → 1− hg h, b h
1−n
2 b1−n h

1−n
2 h

1
2

z̄ · RD a → bh h, b, z z−nh
1−n
2 b1−n D̃g h

1
2

z̄ · RD b → ah a, z z−na1−n z−n –
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Jet func. Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PC
g→ggg

g

za · RA {a, t} → {u, v} b, z̄, u z̄−n z̄−n –
z̄a · RA {a, t} → {u, v} b, z, u z−n z−n –
zā · RA b → ah a, h, z̄ Cg z̄−n –
zā · RA a → bh,h → z̄g b, z̄ z̄

1−n
2 b1−n z̄

1−n
2 z̄1/2

zā · RA a → bh,z → 1− hg h, b, g Dg g−nh
1−n
2 h1/2

zā · RA a → bh b, z z−nb1−n z−n –
zā · RA b → ah a, h, z Bg z−n –
z̄ · RB {a, t} → {u, v} z, u z−n z−n –
z · RB {a, t} → {u, v},b → z̄h z̄, u z̄−n z̄−n –
z · RB {a, t} → {u, v},z → 1− bh b, h, u b−nh−n b−nh−n –
za · RC {a, t} → {u, v} b, z̄, u z̄−n z̄−n –
zā · RC a → z̄h,b → z̄g g – – –
zā · RC a → z̄h,z → 1− bg g g

1−n
2 g

1−n
2 g1/2

zā · RC z → 1− ah,a → bg g, h g
1−n
2 h−n g

1−n
2 h−n g1/2

zā · RC z → 1− ah,b → ag g, h h−n h−n –
az̄ · RC {a, t} → {u, v} b, z, u z−n z−n –
z̄ · RD {a, t} → {u, v} z, u z−n z−n –
za · RD {a, t} → {u, v},b → z̄h z̄, u z̄−n z̄−n –
za · RD {a, t} → {u, v},z → 1− bh b, h, u b−nh−n b−nh−n –
zā · RD a → z̄h z̄ z̄

1−n
2 z̄

1−n
2 z̄1/2

zā · RD z → 1− ah,b → hg,a → hf f, h h−2nf
1−n
2 h−2nf

1−n
2 f1/2

zā · RD z → 1− ah,b → hg,h → af a, f a−2nf−n a−2nf−n –
zā · RD z → 1− ah,h → bg,a → bf f, b, g b−2ng−nf

1−n
2 b−2ng−nf

1−n
2 f1/2

zā · RD z → 1− ah,h → bg,b → af a, f, g a−2ng−nf−n a−2ng−nf−n –
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Jet func. Region Sub., Sector decomp. Div. Ωn>1 Ωn<1 Ωn=0

J
PD
g→ggg

g

z · RA {a, t} → {u, v},b → z̄h h, z̄, u z̄−n z̄−n –
z · RA {a, t} → {u, v},z → 1− bh b, h, u b−nh−n b−nh−n –
z̄ · RA {a, t} → {u, v} b, z, u z−n z−n –
z · RB {a, t} → {u, v} b, z̄, u z̄−n z̄−n –
z̄ · RB {a, t} → {u, v} b, z, u z−n z−n –
za · RC {a, t} → {u, v},b → z̄h h, z̄, u z̄−n z̄−n –
za · RC {a, t} → {u, v},z → 1− bh b, h, u b−nh−n b−nh−n –
zā · RC a → bh,h → z̄g g, z̄ z̄

1−n
2 g

1−n
2 z̄

1−n
2 g

1−n
2 z̄1/2g1/2

zā · RC a → bh,z → 1− hg h, g h
1−n
2 g−n h

1−n
2 g−n h1/2

zā · RC b → ah,h → z̄g z̄ z̄−n z̄−n –
zā · RC b → ah,z → 1− hg g, h g−nh−n g−nh−n –
az̄ · RC {a, t} → {u, v} b, z, u z−n z−n –
āz̄ · RC a → bh,b → zg h, z h

1−n
2 z−n h

1−n
2 z−n h1/2

āz̄ · RC a → bh,z → bg h, b, z h
1−n
2 b−ng−n h

1−n
2 b−ng−n h1/2

āz̄ · RC b → ah,a → zg h, z z−n z−n –
āz̄ · RC b → ah,z → ag a, h, z a−ng−n a−ng−n –
az · RD {a, t} → {u, v} b, z̄, u z̄−n z̄−n –
az̄ · RD {a, t} → {u, v} b, z, u z−n z−n –
zā · RD a → bh,h → z̄g b, z̄, g z̄

1−n
2 g

1−n
2 b1−n C̃g z̄1/2g1/2

zā · RD a → bh,z → 1− hg b, g, h Dg h
1−n
2 g−n h1/2

zā · RD b → ah h, z̄, a Cg z̄−n –
āz̄ · RD a → bh h, b, z z−nh

1−n
2 b1−n D̃g h1/2

āz̄ · RD b → ah h, a, z Bg z−n –
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Appendix D. How to arrive at monomial master formulae?

Let us start with additional sectors for the quark jet function in the case where
n > 1:

Region Upscale Sector decomp. Ω

Aq b → bn, g → gn−1
b → gf h

1−n
2 fn(1−n)gn(1−n)

g → bf h
1−n
2 fn(1−n)bn(1−n)

Bq a → an, h → hn−1, z̄ → z̄n−1
z → 1− ag an(1−n)gn(1−n)

a → z̄g, h → gf z̄n(1−n)

a → z̄g, g → hf z̄n(1−n)fn(1−n)

Cq h → hn−1
a → gh z−ng1−n

h → ga z−n

Dq b → bn, z̄ → z̄n−1
z → 1− bg bn(1−n)gn(1−n)

b → z̄g z̄n(1−n)gn(1−n)

Similar we find for n > 1 in the case of gluon jet function,

Region Upscale Sector decomp. Ω

Ag h → hn−1
h → af –
a → hf f1−n

Bg h → hn−1
h → af zn

a → hf znfn(1−n)

Cg a → an, h → hn−1, z̄ → z̄n−1
h → af z̄n(1−n)

a → hf, f → z̄g z̄n(1−n)gn(1−n)

a → hf, z → 1− gf fn(1−n)gn(1−n)

Dg b → bn, g → gn−1
b → gf fn(1−n)gn(1−n)h

1−n
2

g → bf fn(1−n)bn(1−n)h
1−n
2
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Finally, we write the additional sectors for n < 1. First, in the case of the quark
jet function followed by the gluon jet function.

Region Upscale Sector decomp. Ω

Ãq b → bn, g → g1−n
b → gf z̄

1−n
2 g

1−n2

2

g → bf z̄
1−n
2 f

(1−n)2

2 b
1−n2

2

B̃q b → bn, h → h1−n, z → z1−n

h → bg, b → zf f
1−n2

2 g
(1−n)2

2 z
(1−n)2

2

h → bg, z → bf fn(n−1)g
(1−n)2

2 b
(1−n)2

2

b → hg, h → zf f
1−n2

2 z
(1−n)2

2

b → hg, z → hf fn(n−1)h
(1−n)2

2

C̃q b → bn, h → hn−1
h → bg z−ng

(1−n)2

2 b
1−n2

2

b → hg z−nh
1−n2

2

Region Upscale Sector decomp. Ω

Ãg b → bn, h → hn−1
h → bf b

1−n2

2 f
(1−n)2

2

b → hf h
1−n2

2

B̃g ũ → ũn, ṽ → ṽ1−n
ũ → ṽf –
ṽ → ũf f−n(1−n)

C̃g b → bn, g → g1−n
b → gf z̄

1−n
2 g

1−n2

2

g → bf z̄
1−n
2 b

1−n2

2 f
(1−n)2

2

D̃g b → bn, h → h1−n
h → bf z−nf

(1−n)2

2 b
1−n2

2

b → hf z−nh
1−n2

2
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