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The Focus-Induced Photoresponse (FIP) enables 3D sensing capabili-
ties by evaluating the irradiance dependent non-linear detector response
in defect-based materials. Since this advantage is intricately associated
to a slow response, the electrical bandwidth of previous FIP sensors is
limited to a few kHz only. We report the FIP in amorphous silicon pin
photodiodes and propose a sensor read out based on a harmonics anal-
yses. We achieve modulation frequencies of 500 kHz and a non-linear
beat frequency detection up to at least 3.5 MHz, surpassing the band-
width of state-of-the-art architectures by at least a factor of 175. The
FIP sensors further achieve signal-to-noise ratios of ∼50 dB, depth res-
olutions of at least 5.4 mm at 126 cm and a DC FIP detection limit of
1.3 µW/mm2.

Introduction: As applications advance, fast, precise, low-noise and
high-resolution 3D-scene detection is a key technology enabler for a
wide range of applications such as autonomous driving, autonomous
systems, non-invasive diagnosis and surgery, and for future manufac-
turing. Reliable state-of-the-art 3D imagers utilize the ToF principle, re-
lying on laser technology and sophisticated sensors. Imager fill-factors
stagnate at ∼22% for conventional photonic mixer devices (PMD) [1]
or ∼13% for novel gated single-photon avalanche diodes (SPAD) [2],
respectively. However, megapixel SPAD cameras can achieve depth res-
olutions of 7.8 mm and enable 2D/3D scene detection up to 2 m [2].
Conventional PMD based 3D imagers detect distances up to ∼6 m and
achieve a depth resolution of ∼7 cm at 1 m [3]. Although alternative
light detection and ranging (LIDAR) sensors enable distance measure-
ments exceeding 10 m, this concept has significant drawbacks with re-
spect to achievable depth resolutions and most importantly on scalability,
even in miniaturized designs [4]. The focused-induced photoresponse
(FIP) is a novel, ultra-sensitive 3D-imaging technique in defective ma-
terials based on irradiance dependent responsivity changes [5] waiving
subsequent data processing for image reconstruction. Simultaneous sen-
sor read-out at different foci enables:

(I) maximum scalability (depth information can directly be extracted
from the incident light from a single viewpoint) and fill-factors of
100 % [6, 7],

(II) highly precise distance measurements with depth resolutions in the
μm-range [5], and

(III) low-light-level detection (μW/mm2).

Although state-of-the-art FIP sensors combine several highly attrac-
tive advantages, comparatively low cut-off frequencies stagnate at very
low bandwidths, severely restricting their widespread application. This
restriction stems from photodetector technologies based on high defect
densities and low charge carrier mobility materials, preventing a fast
optical distance acquisition above 20 kHz [5, 8, 9]. Here, we present
FIP detector technologies based on amorphous silicon that resolve such
bandwidth limitations and expand photodetector speed by more than two
orders of magnitude utilizing just one single-pixel photodetector.

Devices and methodology:

A. Device fabrication: Amorphous silicon (a-Si:H) pin photodetectors
(A = 2.88 mm2) are grown on glass substrates by plasma-enhanced
chemical vapour deposition (PECVD) in a MVS multi-chamber vac-
uum system at substrate temperatures below 200°C. Electrical contacts

Fig. 1 (a) Bias-, (b) irradiance dependent z-Scan characteristics of the a-
Si:H focused-induced photoresponse (FIP) detector

Fig. 2 Distance measurement setup exploiting the frequency-dependent
focused-induced photoresponse (FIP) in a-Si:H sensors

consist of a transparent conductive oxide and are deposited in a radio-
frequency sputtering tool at room temperature. Subsequently, the devices
are structured by contact UV-lithography, packaged and contacted via
wedge bonding.

B. Device characterization and simulation: Confocal microscopy at
488 nm has been used to determine bias and power-dependent z-Scan
characteristics. Measurements utilize the optical setup shown in Figure 2
including a 477 nm laser module. The optical power on the sensor of
7.6 mW corresponds to an irradiance of ∼2 × 1018 cm–2 s–1 if the de-
tector is placed in focus. Subsequent I–V conversion of the sensor output
is necessary for transient and FFT data acquisition (2.5 GS/s). FFT sig-
nal quotients (Figure 6a) are recorded utilizing a 477 nm laser module
with an optical power on the sensor of 4.1 mW. Focused ion-beam cross-
sectioning, environmental scanning electron microscopy (Figure 6b),
and stylus profilometry have been used to determine layer thicknesses,
deposition homogeneity and reproducibility.

Results and discussion: The z-scan technique is used to precisely deter-
mine and quantify the irradiance dependent non-linear a-Si:H detector
response by moving a focused laser cone vertically along the structure.
Z-scan measurements have been conducted to quantify the FIP in a Si:H
photodiodes enabling high-sensitive optical distance measurements [5].
At 488 nm, a non-linear current breakdown occurs at 380 nW corre-
sponding to irradiances down to at least 1.3 μW/mm2 far out of focus
as seen in Figure 1b. Those irradiances can easily be achieved utilizing
low-cost light sources, for example, flashlights or LEDs renouncing ex-
pensive laser technology. For optical distance measurements, we find the
ideal device-specific bias voltage Vbias to be 0 V (Figure 1a).

Subsequently, distance measurements based on the non-linear FIP
have been performed utilizing the setup shown in Figure 2 with a mod-
ulation frequency fmod of 500 kHz and 0 V bias voltage. In the proposed
model, we re-construct reflected light from a diffuse reflecting object at a
specific distance utilizing a light source, a beam expander and a focusing
lens enabling the FIP as proposed in [5].

The detector transients reveal overshoots at the rising and falling
edges (Figure 3a, yellow marks) due to slow defect filling [10]. We con-
clude and further exploit that the trap filling mechanism itself is chang-
ing significantly with the measured distance.

330 ELECTRONICS LETTERS April 2022 Vol. 58 No. 8 wileyonlinelibrary.com/iet-el

https://orcid.org/0000-0002-7487-1373
http://wileyonlinelibrary.com/iet-el
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fell2.12450&domain=pdf&date_stamp=2022-02-23


Fig. 3 (a) Time-domain and idealized rectangular detector signal, (b) time-
domain sensor signal subtracted by the ideal rectangular sensor response

Fig. 4 (a) FFT of the rectangular and the subtracted signal response as
shown in Figure 3b, (b) norm. FFT spectra of the signals shown in (a) veri-
fying that non-linear beat frequency generation results from the time-domain
diode signal

In the frequency domain, additional beat frequencies arise in the FFT
spectrum originating from the defect-related overshoot that initially has
been separated from the idealized sensor output (Figure 3b; Figure 4).
Absolute FFT spectra for d = 110 cm and d = 142 cm are shown
in Figure 5a. Besides the expected harmonics at frequency positions
(2 · n + 1) · fmod, additional beat frequencies occur at (2 · n) · fmod.
Measuring peak amplitudes at two different frequency positions

n · fmod ∧ m · fmod; n �= m; n,m �= 0 (1)

and normalizing the FFT spectra to the peak amplitude of fmod (Fig-
ure 5b,c) allows for a fast and unambiguous distance determination and
distinction.

In this work, the non-linear current breakdown can clearly be verified
up to an electrical bandwidth of at least 3.5 MHz (Figure 5c) that is 175
times higher than the best reported value in [9]. Since the achievable
bandwidth depends on a variety of parameters, for example, the detector
area, the light-absorbing material composition and thickness, defect den-
sities, contact resistances, the device architecture itself and so forth, we
expect significant improvements in the future with bandwidth optimized
designs. Increasing fmod further boosts the signal-to-noise ratio (SNR)
as the 1/f noise in a-Si:H photodiodes is reduced significantly [11]. The
SNR obtains a high dynamic of ∼50 dB (Figure 5d) so that irradiances
can further be reduced in future experiments. Besides boosting modula-

Fig. 5 Distance measurement results: (a) Absolute FFT spectra, (b) FFT
spectra normalized on the signal amplitude at fmod, (c) normalized FFT
shown for a bandwidth of 2.4–3.6 MHz, (d) signal-to-noise ratio (SNR) ex-
tracted from (b). All results are shown for d = 110 cm and d = 142 cm, 500
kHz modulation and 477 nm illumination

Fig. 6 (left) Distance dependent FFT signal measured at 2 MHz and nor-
malized to the FFT response at fmod = 500 kHz for 444 nm, (right) cross-
sectional ESEM of an a-Si:H FIP photodetector

tion frequencies, optimized device designs can enable significant SNR
improvements in the future, for example, by applying a proper electri-
cal field engineering across the absorber, to further increase FIP detector
responsivities.

We further define an FFT signal quotient Q of two current amplitudes
I1,2 at two different measurement frequencies f1,2 to determine the dis-
tance d, to estimate the depth resolution �d and to eliminate influences
of the total light power as shown in Equation (3)

Q = I2 ( f2) /I1 ( f1) (3)

In Figure 6a, we exemplarily show Q normalized on
f1 = fmod = 500 kHz for the 2nd beat frequency located at f2 =
2 MHz. The maximum relative deviation Q’ of Q represents the

Table 1. a-Si:H FIP sensor performance and benchmarks: illumination wavelength, cut-off frequency, bias tunability, and number of pixels
required for optical distance measurements

Material/device TiO2/DSSC PbS/photo-conductor TiO2/DSSC BDP-OMe:C60/OPD a-Si:H/pin-diode

λ (nm) 530 1.550 730/850 850 477

fmax (kHz) 0.965 0.606 1 20 3.500

fmod, max (kHz) 0.965 0.606 1 20 500

Bias tunable No No No No Yes

Irradiance (μW/mm2) 10 0.3 N/A 2 1.3

Sensor count 2 2 2 2 1

Encapsulation Yes Yes Yes Yes No

Q’ @ a specific distance
Depth resolution �d

±0.1 % @ 52 cm
500 μm

N/A N/A N/A ±0.43 % @ 1.26 m
5.4 mm

Ref. [5] [5] [8] [9] This work
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achievable depth resolution at a specific distance. Fitting Q with linear
regression results in Q’ = ±0.43 % at d = 1.26 m and a corresponding
depth resolution of �d = 5.4 mm.

On-chip, the proposed sensor readout can easily be integrated, for ex-
ample, by integrating two narrow bandpass filters for signal acquisition
at two fixed measurement frequencies in combination with a current or
voltage divider circuit to calculate signal quotients enabling unambigu-
ous distance determination. Achieving ±0.43 % precision is comparable
to values previously reported in [5]. A brief performance comparison of
a-Si:H based FIP detectors with state-of-the-art devices is given in Ta-
ble 1.

Conclusion: We systematically investigated the irradiance dependent
current breakdown in a-Si:H pin photodetectors and experimentally
demonstrate single-pixel distance measurements at read-out frequencies
up to at least 3.5 MHz and 500 kHz modulation, more than two orders
of magnitude higher than previous FIP device demonstrations. Achiev-
ing a SNR of ∼50 dB and depth resolutions of at least 5.4 mm at a
distance of 1.26 m are very promising results for high-dynamic, high-
resolution and high-speed 3D imaging. Low-temperature PECVD fabri-
cation enables back-end integration on top of silicon electronics with fill
factors of 100% and allows tailoring sensor architecture and properties
for application-specific purposes.
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