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Abstract

Optimization problems are ubiquitous in computer vision, machine learning, economics and basically
any field in the domain of natural and engineering sciences. Developments in optimization theory
and algorithms have hence always been tightly interconnected to the problems arising from practical
applications. This work follows the same path studying and developing various optimization techniques
and models depending on the problem at hand. Fruitful optimization theory has been developed around
convex problems and applied in computer vision tasks. In this work we extensively study theoretical
properties of functional lifting techniques which make even nonconvex problems amenable to the
tools from convex optimization by increasing the dimensionality of the original problem formulations.
Furthermore we propose enhancements making existing approaches either more faithful or more efficient.
Following the idea of increasing the dimensionality we study the effects of reparameterizations and
neural network models with adaptive expressivity in the domain of machine learning. For linear inverse
problems we devise an optimization approach combining data driven priors with provable convergence
guarantees. Finally, we propose an optimization based approach for solving high-dimensional problems
arising from attacks on data security in the application of federated machine learning.



Zusammenfassung

Optimierungsprobleme sind allgegenwärtig in den Bereichen Bildverarbeitung, maschinelles Lernen,
Wirtschaftswissenschaften und nahezu allen Feldern der Natur- und Ingenieurswissenschaften. Entwick-
lungen in der Optimierungstheorie und daraus resultierende Algorithmen sind von daher stets eng
mit den Problemen und Fragestellungen aus praktischen Anwendungen verbunden. Diese Arbeit folgt
diesem Pfad, indem sie verschiedene Optimierungstechniken und Modelle im Bezug auf die jeweiligen
Anwendungen untersucht und entwickelt. Insbesondere auf dem Gebiet der konvexen Optimierung
wurden dabei ergiebige Theorien entwickelt und unter anderem in der Bildverarbeitung angewandt. In
dieser Arbeit beschäftigen wir uns ausführlich mit Techniken des functional liftings, welche Konzepte
der konvexen Optimierung auch auf nicht-konvexe Probleme anwendbar machen, indem die Dimen-
sionalität der ursprünglichen Problemstellung erhöht wird. Des Weiteren werden Ansätze entwickelt,
welche bestehende Methoden entweder genauer oder effizienter machen. Basierend auf der Idee, die
Dimensionalität zu erhöhen, untersuchen wir den Effekt von Reparameterisierungen und neuronale
Netze mit adaptiver Ausdrucksstärke im Bereich des maschinellen Lernens. Weiterhin entwickeln
wir einen Optimierungsansatz für lineare inverse Probleme, welcher datengetriebene Methoden mit
beweisbaren Konvergenzgarantien verbindet. Zuletzt entwickeln wir einen Optimierungsansatz für
hochdimensionale Probleme, welche sich aus Attacken auf Datensicherheit in der Anwendung des
verbündeten maschinellen Lernens ergeben.
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Notation

X Compact nonempty set X ⊂ Rm.
C(X ) The space of continuous functions mapping from X to R, see [42,

Ch. 4.2].
∥f∥∞ The infinity norm ∥f∥∞ := maxx∈X |f(x)| of a continuous function

f ∈ C(X ).
M(X ) The space of signed Radon measures on X , see [42, Ch. 7].
M+(X ) The convex cone of Radon measures on X , see [42, Lem. 7.2].
P(X ) The space of probability Radon measures, see [42, Ch. 9].

δx The Dirac measure centered at x ∈ Rm.
∥µ∥TV The total variation norm ∥µ∥TV := sup f∈C(Γ)

∥f∥∞≤1

|⟨µ, f⟩| of a signed

Radon measure µ ∈M(X ).
T♯µ The pushforward of µ w.r.t. T for a signed Radon measure µ ∈

M(X1) and a measurable mapping T : X1 → X2 is defined by
(T♯µ)(A) := µ(T−1(A)) for all A ⊂ X2 in the corresponding σ-
algebra

⟨µ, f⟩ The integral ⟨µ, f⟩ :=
∫
X f(x) dµ(x) for f ∈ C(X ) and µ ∈M(X ),

see [42, Ch. 2].
ιC The indicator function ιC : Rm → R = R ∪ {±∞} with ιC(x) = 0

if x ∈ C and ιC(x) =∞ if x /∈ C for a set C ⊂ Rm

σC The support function σC(x) := supy∈C⟨x, y⟩ of C ⊂ Rm at x ∈ Rm

C∗ The dual cone of C. These notions are defined analogously for the
topologically paired spaces M(X ) and C(X ), see [115, Ch. 4].

conC The convex hull conC of a set C ⊂ Rm is the smallest convex set
that contains C. Equivalently, conC is the set of all finite convex
combinations of points in C, see [111, Ch. 2.F].

con f The largest convex function below f for some function f (with
slight abuse of notation), see [111, Ch. 2.F].

lsc We write lsc for lower semicontinuous, see [111, Ch. 1.B].
epi f The epigraph epi f := { (x, α) ∈ Rm × R | f(x) ≤ α } of some

extended real-valued function f : Rm → R.
cl f The epigraphical closure of some function f , see [111, Ch. 1.D].
J·K The Iverson bracket, where JP K = 1 if P is true and JP K = 0,

otherwise.
f∗ The Fenchel conjugate f∗(y) := supx∈Rm⟨y, x⟩ − f(x) of some

extended real-valued function f : Rm → R at y, see [111, Ch. 11.A].
f∗∗ The Fenchel biconjugate f∗∗ := (f∗)∗ of some extended real-valued

function f : Rm → R, see [111, Ch. 11.A].
proxf (x) The proximal operator proxf (x) := argminx̄ f(x̄) +

1
2∥x̄− x∥

2 of
a proper, lsc, convex function f : Rm → R.

Table 1: Table of notations.

ii



Chapter 1

Introduction

Problems in computer vision arise from formulating models of the real world, the complexity of whose
highly depends on the application at hand, resources and the desired solution quality. Naturally, also the
resulting optimization procedures vary in several aspects and feature manifold different characteristics.
This thesis presents multiple optimization approaches ranging from purely model based approaches to
problems including learnable priors and analyzes them in terms of provable guarantees and efficiency.

The first chapter focuses mainly on model based approaches and investigates approaches for tackling
nonconvex problems with tools from convex optimization. These approaches are subsumed under
the notion of functional lifting. First, the theoretical aspects of functional lifting are investigated in
the context of increasing the dimensionality of the original problem formulation. More specifically,
connections to hierarchies of dual function spaces are developed and studied for a continuous MRF
problem. This approach utilizes methods from optimal transport and semialgebraic geometry in order
to interpret functional lifting as a lifting to the space of probability measures and discretizations thereof.
The second part focuses on a method for improving performance of existing approaches by efficiently
discretizing the spatial domain. Finally, the last part investigates if ideas from functional lifting can be
transferred to machine learning problems by applying learnable reparameterizations.

The second chapter considers machine learning related problems and analyzes optimization ap-
proaches with respect to provable guarantees. At first, ideas from functional lifting are incorporated
into neural network architectures. This can be interpreted as a replacement of common activation
functions like ReLUs with more general linear spline based functions. The second approach studies
linear inverse problems and mixes ideas from spectral regularizations with learnable models. Provable
convergence guarantees are derived for dedicated choices of neural networks. Finally, we also study
a highly nonconvex inverse problem originating from the application of federated learning. There
our goal is to reconstruct images for given parameter updates obtained during the training of neural
networks. In contrast to the previous setting with a linear forward operator, we now lack provable
recovery guarantees. Nevertheless, we empirically show that reasonable reconstructions can be achieved
by a thoroughly chosen optimization strategy thus breaking privacy for federated learning.

The results presented in this thesis are based on the publications [Pub2, Pub5, Pub6, Pub3, Pub1,
Pub4], which also structure the sections within the two chapters below. For each section, I highlight
and focus on my specific contribution within each of the published papers.
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Chapter 2

Convexification Via Lifting

Many problems arising in the fields of computer vision and machine learning can be formulated as the
minimization of dedicated energy functionals. These functionals typically operate on a certain class of
functions u : Ω→ Γ, where the choices of Ω and Γ depend on the application at hand. This chapter will
focus on problems which can be written as a sum of a data dependent fidelity term f : Ω× Γ→ R and
a regularizer R : ΓΩ → R based on some assumed data priors. More specifically, the problem structure
considered is given as functional of the form

E(u) =

∫
Ω

f(x, u(x)) dx+R(u). (2.1)

In most cases, either f or R or both are, however, nonconvex which in general implies also nonconvexity
of E making the optimization problem notoriously difficult to solve. A very fundamental class expressible
by Eq. (2.1) are multilabel problems. There Γ is a finite discrete set of labels and hence not even Γ is
convex. In this case u is mapping from points in Ω to their corresponding labels and Γ is referred to as
label space. For segmentation and minimal partition tasks a convex relaxation of the data term can now
be achieved by interpreting the set of discrete labels as unit vectors in a |Γ|-dimensional vector space
and replacing Γ by the convex envelope of those unit vectors, the |Γ|-dimensional unit simplex [74].
For total variation regulated minimal partition problems tight relaxations in a local sense have been
studied relating the dual problem to paired calibrations [98, 26]. Multilabel problems also arise from
discretizations of continuous data terms resulting from discrete sampling. This includes for instance
stereo estimation [54, 104] and optical flow estimation [52, 19]. Convex relaxation approaches require
reformulations in a higher-dimensional space, which usually has as many dimension as there are discrete
labels [100, 99]. Hence those methods are subsumed under the notion of functional lifting. Various
relaxation strategies have been studied in the context of stereo estimation [100, 99, 149, 104, 105], optical
flow [129, 127], segmentation [156, 158, 74, 26], and optimization on manifolds [75], with algorithmic
improvements such as [125]. Despite of the algorithmic advantages of functional lifting arising from
convex relaxations those methods also suffer from the curse of dimensionality as the computational
cost soars with the increasing the number of dimensions. In order to remediate this inherent drawback
efficient discretization techniques have been proposed allowing for faithful relaxations even in a sublabel
accurate sense and hence reducing the need for a large number of labels [92, 73, 91].

In Section 2.1 we study and extend existing theory of functional lifting in the context of Markov
Random Fields (MRF). More specifically, Eq. (2.1) is analyzed for Ω being a discrete graph and Γ
a continuous state space instead of finite sets which are used for classical multilabel problems. We
interpret functional lifting as a discrete version of lifting the original problem to the infinite-dimensional
space of probability measures. Finite-dimensional relaxations are then derived using subspaces of
dual functions in the dual problem. For numerical implementations we use piecewise polynomial dual
functions as strict generalization of existing sublabel accurate approaches [92, 73, 91]. We numerically
show a reduction of the primal-dual gap for finer discretizations of the dual space in large scale stereo
matching experiments.

Lifting approaches as described in Section 2.1 provide faithful relaxations of the nonconvex energy.
However, those methods also come with the cost of high computational time and memory usage. In
contrast to improvements in the discretizations of the label space in Section 2.1 we will discuss a
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more efficient spatial discretization of the domain Ω in Section 2.2. More specifically, we consider
total variation (TV) regularized problems and motivate the proposed discretization by the piece-wise
constant nature of TV regularized solutions. Using the constructed super-pixel graph we can apply
lifting based approaches with a substantial decrease in computational effort in comparison to applying
the lifting directly on the full Cartesian pixel grid. In stereo matching experiments we show significant
speedups and at the same time obtain a near-globally optimal solution.

In contrast to the previous concepts of attaining more faithful solutions of Eq. (2.1) by increasing the
dimensionality of Γ or improving efficiency by discretizing Ω, we will study a different way of increasing
the dimensionality of our problem in Section 2.3. More precisely, we will introduce a parameterized
model N : Ω×Θ→ Γ and we optimize over the parameters θ ∈ Θ for some high-dimensional parameter
space Θ. We will discuss theoretical implications of this reparameterization and interpret empirical
results obtained from numerical experiments.

3



2.1 Polynomial Lifting

This section is based on [Pub2] and studies problem (2.1) for discrete Ω in the context of MRFs. MRF
problems and functional lifting are closely intertwined and early works on functional lifting [100, 99]
have been inspired by the MRF community [53]. We will turn towards a theoretical analysis of the idea
behind functional lifting and derive a generalized view on existing approaches. More specifically, we
consider Eq. (2.1) for a MRF problem where Ω is a discrete grid and Γ is a continuous state space.
We start our analysis by applying a dual decomposition to the original nonconvex problem resulting
in duality gaps. To eliminate such gaps, we considers a reformulation of the original nonconvex task
in the space of measures where the problems is convex and the duality gap hence vanishes. This
infinite-dimensional reformulation is then approximated by a semi-infinite one, which is obtained via a
piecewise polynomial discretization in the dual. We provide a geometric intuition behind the primal
problem induced by the dual discretization and draw connections to optimization over moment spaces.
This viewpoint allows us to regard existing functional lifting methods as the primal counterpart of
certain discretizations of the space of dual functions in the dual problem. In contrast to existing
discretizations which suffer from a grid bias, we show that a piecewise polynomial discretization better
preserves the continuous nature of our problem. Invoking results from optimal transport theory and
convex algebraic geometry we reduce the semi-infinite program to a finite one and provide a practical
implementation based on semidefinite programming. We show, experimentally and in theory, that the
approach successfully reduces the duality gap. To showcase the scalability of our approach, we apply it
to the stereo matching problem between two disparate images.

2.1.1 Problem Description
This section considers the MAP-inference problem in a continuous Markov Random Field (MRF).
Continuous MRFs are versatile and therefore widely used as a model in image processing, computer
vision and machine learning [132, 153, 157, 30, 36, 146, 9, 147, 35, 10, 94, 117, 143]. Those continuous
MRFs can be regarded as a spatially discrete case of Eq. (2.1) where Ω = V for a finite set of nodes
V in an undirected graph G = (V, E). Furnished with the counting measure, the integral in Eq. (2.1)
becomes a sum and we can write the inference problem as energy minimization of the form

min
u∈ΓV

{
E(u) =

∑
v∈V

fv(uv) +
∑
vw∈E

fvw(uv, uw)

}
, (P)

where we use the simplified notation fv( · ) := f(v, · ). The objective function E is an additive
composition of a separable part,

∑
v∈V fv(uv), which represents the data fidelity term in Eq. (2.1),

and a coupling part
∑

vw∈E fvw(uv, uw) with pairwise functions fvw : Γ× Γ→ R corresponding to the
regularizer in Eq. (2.1). We assume fv and fvw to be lower semicontinuous (lsc) and ∅ ≠ Γ ⊂ Rm

compact. Our goal is to develop a convex optimization framework à la dual decomposition for the
MAP inference problem.

The coupling term
∑

vw∈E fvw(uv, uw) introduces a major challenge for efficient optimization in
particular when V is large and therefore the problem is high-dimensional. For tractability, one therefore
seeks to find a decomposable reformulation of the problem. In continuous optimization a viable approach
is to derive a Lagrangian relaxation of the problem: The key idea is to introduce auxiliary variables
uvw ∈ Rm × Rm for each edge vw ∈ E and linear constraints uvw = (uv, uw). Dualizing the linear
constraints with Lagrange multipliers λvw ∈ Rm × Rm one arrives at the Lagrangian dual problem
which falls within the regime of convex optimization algorithms that can exploit its separable dual
structure. Examples include subgradient ascent or the primal-dual hybrid gradient (PDHG) method
[27].

However, the approach suffers from potentially large duality gaps since problem Eq. (P) is nonconvex
in general. Indeed, it can be shown that a direct Lagrangian relaxation of Eq. (P) leads to the following
“naive” convexification of the original problem:

min
u∈ΓV

∑
v∈V

f∗∗v (uv) +
∑
vw∈E

f∗∗vw(uv, uw), (2.2)

where f∗v ( · ) = supx∈Γ⟨ · , x⟩− fv(x) is the convex conjugate of fv, f∗∗v = (f∗v )
∗ and f∗vw, f∗∗vw are defined

4



likewise. Then f∗∗v and f∗∗vw are the convex biconjugates which correspond to the largest convex lsc
under-approximations of fv and fvw respectively. With some abuse of notation, here, fv and fvw attain
the value +∞ whenever uv ̸∈ Γ or (uv, uw) ̸∈ Γ2. Such component-wise convex envelopes can produce
inaccurate or even trivial convex under-approximations to the global objective E.

2.1.2 Overview
To remedy duality gaps, in Section 2.1.3, we consider a reformulation of the problem in terms of a
linear one over probability measures and perform the Lagrangian relaxation afterwards. To this end,
let P(ΓV) denote the set of probability Radon measures on the set ΓV . Instead of a naive formulation
minµ∈P(ΓV)

∫
E dµ over P(ΓV), which is intractable for large V , we consider a formulation over P(Γ)V

which exploits the partially separable structure of our problem. This is called the local marginal polytope
relaxation (the former being called marginal polytope relaxation). For univariate Γ and submodular
pairwise terms fvw we prove tightness of the relaxation regardless of nonconvexity of fv.

Since the Lagrange multipliers will be continuous functions, in Section 2.1.4, we consider hierarchies
of dual programs Eq. (2.19) obtained by subspace approximations for which we show in Section 2.1.6
that the duality gap vanishes in the limit for a piecewise polynomial discretization.

In Section 2.1.5 we derive and study the primal optimization problem corresponding to the dual
discretization. In particular we draw connections to optimization over moment spaces and aspects from
variational analysis. We show that under a certain extremality condition, satisfied by a polynomial
discretization with degree at least 2, the generalized biconjugate of a potentially discontinuous, nonconvex
function equals (up to closure) the original function. As a consequence, in contrast to a piecewise
linear approximation, our piecewise polynomial approximation conserves the original nonconvex cost
including concavities when restricted to moment vectors of Diracs.

In Section 2.1.6, based on the above developments, we derive a piecewise polynomial discretization
of the infinite-dimensional local marginal polytope relaxation and show that for univariate Γ and
submodular pairwise terms fvw the duality gap vanishes in the limit at rate O(1/(K ·

√
deg)) where K

is the number of pieces and deg the degree of the pieces. After discretization the problem amounts
to a semi-infinite program which can be transformed into a separable finite-dimensional semidefinite
program applying concepts from algebraic geometry, such as nonnegativity certificates of polynomials.
This allows us to derive an efficient first-order primal-dual algorithm which, due to the separable
problem structure, can be parallelized on a GPU to handle large problems.

In Section 2.1.7 we provide numerical evidence for the strict reduction of the duality-gap and
demonstrate the advantages of the nonlinear approximation over existing liftings in the literature.
We implement our algorithm on a GPU and apply it to the nonconvex problem of large-scale stereo
matching. The results show that increasing the dual subspace improves both, the dual energy, and the
quality of a recovered primal solution from a discretized measure.

Our work tightly connected to a multitude of research areas in mathematics and computer science.
In the following we give an overview of related work for the various tools used in this section.

MRFs Fix and Agarwal [41] are the first to propose a dual subspace approximation of the infinite-
dimensional local marginal polytope relaxation. This allows for a generalization and unified treatment
of convex piecewise linear formulations for MRFs with continuous state spaces proposed in [157, 155].
However, for the polynomial case, due to the semi-infinite problem structure, the existence of an
implementable algorithm beyond subgradient ascent is posed as an open question by [41]. As a
consequence, no numerical results are presented. Dual subspace approximations for related models
in a spatially continuous setting have been considered by [87] and further employed for the global
optimization of vector- or manifold-valued optimization problems in imaging and vision [88, 138, 139].
In these papers, piecewise linear dual approximations are used and the techniques developed in the
present work allow one to go beyond the piecewise linear case in a tractable way. Besides applications
in imaging and vision, MRFs with continuous state spaces have for example been used in protein
folding [94].

Lifting to measures Lifting to measures for global constrained polynomial optimization is used in
[69, 70] to reformulate the infinite-dimensional linear program (LP) in terms of a linear objective over
the semidefinite programming (SDP) characterization of the finite-dimensional space of moments. Its

5



SDP-dual is connected to nonnegativity certificates of polynomials based on sum-of-squares (SOS) and
the Positivstellensatz [64, 126, 121]. However, for high-dimensional problems the relaxations used in
[69, 70] turn out intractable. As a remedy, [141, 148] consider sparse SOS-approaches and in particular
sparse versions of the Positivstellensatz [148]. This is closely related to the local marginal polytope
relaxation considered in this work. As a key difference to [69, 70, 141, 148] we consider possibly
nonpolynomial objective functions which results in a generally nonlinear formulation over the space
of moments. In contrast to [148], we apply optimal transport duality theory to further reduce the
formulation using a sum-of-squares characterization of Lipschitz continuity of piecewise polynomials.
Similar techniques have been considered recently in [72, 31] to estimate Lipschitz constants in neural
networks.

Lagrangian relaxation and decoupling by lower relaxations A component-wise lifting in
problems with a partially separable structure results in a generalized dual decomposition approach.
Dual decomposition and Lagrangian relaxation are general principles in optimization and appear as a
useful tool across many disciplines, see [11, Ch. 5–6], [76] and the references therein for an overview.
Traditionally, decomposition methods are applied directly in the nonconvex setting without lifting, unlike
the generalized scheme we present here which is based on a lifted reformulation. Without lifting this
typically results in a component-wise convex lower envelope. More recently, [124] consider a homotopy
method based on component-wise Lasry–Lions envelopes which specializes to a component-wise convex
envelope in a certain limit case.

Generalized conjugacy and duality Our notion of a lifted convex conjugate is closely related to
generalized conjugate functions originally due to [90]. It was utilized by [7] to study nonconvex dualities,
expanding upon the work of [110] on augmented Lagrangians for nonconvex optimization. The specific
case of quadratic conjugate functions was developed by [101] as an analytic tool in a seminal proof that
the proximal subgradient map of a lower semicontinuous extended real-valued function is monotone if
and only if the function is convex. Typically, generalized conjugate functions appear in the context
of eliminating duality gaps [20, 110] in nonconvex and nonsmooth optimization. In that sense our
work shares the goal with the aforementioned works. We offer a somewhat complementary approach
through a primal-type lifting view which allows us to establish a connection to optimization in spaces
of measures.

2.1.3 The Local Marginal Polytope Relaxation
To overcome the duality gap in Eq. (2.2) for nonconvex fv, we propose to reformulate the original
nonlinear problem in terms of an infinite-dimensional linear program over the space of signed Radon
measures and apply the Lagrangian relaxation afterwards.

Optimizing a lsc function f can be related to a corresponding problem involving probability measures.
For a probability measure µ ∈ P(X ) on a compact, non-empty set X we define the scalar product
⟨µ, f⟩ :=

∫
f dµ. Function evaluation of f at some x ∈ X can now equally be written as f(x) = ⟨δx, f⟩

where δx is the Dirac measure at x, i.e. δx(A) = 1 if x ∈ A and δx(A) = 0 if x /∈ A and A ⊂ X
measurable. The following key lemma reveals, that every minimization problem can be equivalently
formulated in terms of an infinite-dimensional linear program.

Lemma 2.1.1. Let f : X → R be lsc with ∅ ̸= X ⊂ Rm compact. Then we have

min
x∈X

f(x) = min
µ∈P(X )

⟨µ, f⟩, (2.3)

and x̂ ∈ argminx∈X f(x) is a solution to minx∈X f(x) if and only if δx̂ is a minimizer of minµ∈P(X )⟨µ, f⟩.

Proof. The result follows immediately via compactness of X and the properties of probability measures:
By compactness of X and since f is lsc relative to X we know x̂ exists. Let fmin = f(x̂). By the
properties of the Lebesgue integral we have:∫

f dµ ≥
∫
fmin dµ = fmin

∫
1 dµ = min

x∈X
f(x),

for all µ ∈ P(X ) and minx∈X f(x) = ⟨δx̂, f⟩ = f(x̂).
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Let πv : ΓV → Γ, πvw : ΓE → Γ2 denote the canonical projections onto the vth, respectively onto
the vth and wth components. Furthermore denote by πv♯µ the pushforward of µ ∈ P(ΓV) w.r.t. πv,
i.e. πv♯µ ∈ P(Γ) and πv♯µ(A) = µ(π−1

v (A)) for A ⊂ Γ measurable. The pushforward πvw♯ is defined
analogously. Then, in our case, applying the reformulation from Lemma 2.1.1 directly to the cost
function E with X = ΓV we obtain by linearity:

min
µ∈P(ΓV)

⟨µ,E⟩ = min
µ∈P(ΓV)

〈
µ,

∑
v∈V

fv ◦ πv +
∑
vw∈E

fvw ◦ πvw

〉
= min

µ∈P(ΓV)

∑
v∈V
⟨πv♯µ, fv⟩+

∑
vw∈E

⟨πvw♯µ, fvw⟩.

This relaxation is known as the full marginal polytope relaxation which is, however, intractable if V is
large as one minimizes over probability measures on the product space P(ΓV). Instead, we consider
the following linear programming relaxation of Eq. (P) which is also referred to as the local marginal
polytope relaxation [94, 41, 142, 116] which is more tractable as the optimization variable lies in the
product space of probability measures P(Γ)V :

inf
µ∈P(Γ)V

{
E(µ) :=

∑
v∈V
⟨µv, fv⟩+

∑
vw∈E

OTfvw(µv, µw)

}
. (R-P)

Here, OTfvw
denotes the optimal transportation [58] with marginals (µv, µw) and cost fvw defined by

OTfvw(µv, µw) = inf
µvw∈Π(µv,µw)

⟨µvw, fvw⟩. (2.4)

The constraint set Π(µv, µw) consists of all Radon probability measures on Γ2 with specified marginals
µv and µw:

Π(µv, µw) =
{
µvw ∈ P(Γ2) | πv♯µvw = µv, πv♯µvw = µw

}
, (2.5)

where with a slight abuse of notation πv : Γ× Γ→ Γ corresponds to the canonical projection onto the
vth component. Note that for finite state-spaces (i.e., |Γ| <∞), the set P(Γ) can be identified with the
standard (|Γ| − 1)-dimensional probability simplex and Π(µv, µw) with the set of nonnegative |Γ| × |Γ|
matrices whose rows and columns sum up to µw and µv. In that case, the linear program given in
(R-P) is equivalent to the well-known finite-dimensional local marginal polytope relaxation for MRFs,
which is for example studied in [150]. We further remark that the case of finite Γ has been extensively
studied in the literature, see, e.g., [59, 140] for recent overviews.

For the more challenging setting of continuous state-spaces, a major difficulty stems from the fact
that the linear programming relaxation (R-P) is an infinite-dimensional optimization problem posed
in the space of Radon probability measures. Perhaps due to this difficulty, discrete MRF approaches
are still routinely applied despite the continuous nature of Γ. This is typically done by considering
a finite sample approximation of Γ, so that the infinite-dimensional linear program reduces to a
finite-dimensional one. This, however, may lead to discretization errors and comes with an exponential
complexity in the dimension of Γ.

Due to the fact that Π(δx, δx′) = {δ(x,x′)} one sees that restricting µv (and therefore µvw) to be
Dirac probability measures, the formulation (R-P) reduces to the original problem (P). As one instead
considers the larger convex set of all probability measures, it is a relaxation which lower bounds (P),
i.e., we have the following important relation:

(R-P) ≤ (P). (2.6)

When considering a relaxation, the immediate question arises whether this lower bound is attained, i.e.,
the relaxation is tight and therefore the above inequality holds with equality. For finite and ordered Γ the
situation is well-understood, see [150]. For continuous Γ ⊂ Rm a total order is possible if m = 1, i.e., Γ
is an interval. Indeed, if in addition E is submodular, tightness of the local marginal polytope relaxation
can be derived from [6, Thm. 2] regardless of nonconvexity of fv. A function E : ΓV → R is said to be
submodular, if for all x′ ∈ ΓV and x′′ ∈ ΓV it holds E(x′) +E(x′′) ≥ E(min{x′, x′′}) +E(max{x′, x′′})
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where the min and max operations are to be understood componentwise on Γ, see [6, Sec. 2.1].

Proposition 2.1.2. Let ∅ ̸= Γ ⊂ R be compact and fv : Γ→ R, fvw : Γ× Γ→ R be continuous with
fv possibly nonconvex. If fvw is submodular for all vw ∈ E , E is submodular as well and the relaxation
is tight, i.e.,

(R-P) = (P). (2.7)

Proof. First, we show that E is submodular. The unaries fv are submodular as functions of a single
variable are submodular and hence as a nonnegative sum of submodular functions, E is submodular
itself.

For µ ∈ P(Γ) define the cumulative distribution function Fµ : Γ→ [0, 1] as

Fµ(x) = µ({ y ∈ Γ | y ≥ x }) (2.8)

and the “inverse” cumulative distribution function F−1
µ : [0, 1]→ Γ as

F−1
µ (t) = sup{x ∈ Γ | Fµ(x) ≥ t }. (2.9)

Submodularity of E now implies by [6, Thm. 2]

(P) = inf
µ∈P(Γ)V

∫ 1

0

∑
v∈V

fv(F−1
µv

(t)) +
∑
vw∈E

fvw(F−1
µv

(t),F−1
µw

(t)) dt (2.10)

= inf
µ∈P(Γ)V

∑
v∈V

∫ 1

0

fv(F−1
µv

(t)) dt+
∑
vw∈E

∫ 1

0

fvw(F−1
µv

(t),F−1
µw

(t)) dt. (2.11)

Using submodularity of fv and fvw, and applying [6, Prop. 2] and [6, Prop. 4] we get∫ 1

0

fv(F−1
µv

(t)) dt = ⟨µv, fv⟩, (2.12)∫ 1

0

fvw(F−1
µv

(t),F−1
µw

(t)) dt = OTfvw
(µv, µw) (2.13)

by the definition of the optimal transportation in Eq. (2.4). Hence it holds (R-P) = (P) and the
relaxation (R-P) is tight.

Remark 2.1.3. A solution to the local marginal polytope relaxation (R-P) even allows for the reconstruc-
tion of a globally optimal solution to the unrelaxed original problem (P): More precisely, µ ∈ P(Γ)V is
a minimizer of (R-P) if and only if v 7→ F−1

µv
(t) is a minimizer of (P) for almost all t ∈ [0, 1], see [6,

Thm. 2].

For fvw(x, y) = g(x − y) and g convex, fvw is submodular, see [6, Sec. 2.2]. Especially the total
variation-like couplings considered in the experimental sections are therefore submodular and thus the
local marginal polytope relaxation is tight in this case.

2.1.4 Dual Discretization for the Continuous MRF

2.1.4.1 A Reduced Dual Formulation

A Lagrangian relaxation to the infinite-dimensional problem (R-P) is obtained by dualizing the
marginalization constraints (2.5) for each e ∈ E with Lagrange multipliers λe ∈ C(Γ)2. This is
equivalent to a substitution of the optimal transportation with its dual formulation. Adopting the
approach of [41] a finite-dimensional problem is obtained by approximating the Lagrange multipliers in
terms of finite linear combinations of certain basis functions. These approximations are chosen in such
a way that the classical Lagrangian relaxation and the discrete approach, described above, are special
cases of the considered framework.

In contrast to previous approaches [41], we restrict ourselves to metric pairwise terms fvw(x, y) =
d(x, y) which eventually leads to a different dual formulation and turns out more tractable: Then,
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the optimal transportation OTfvw(µv, µw) in problem (R-P) is the Wasserstein-1 distance Wd
1 (µv, µw)

induced by the metric d between µv and µw. Furthermore we assume that fv : Γ → R is lsc and
Γ ⊂ Rm is a compact nonempty set. In particular this implies that fv is proper and bounded from
below.

Thanks to optimal transport duality theory [137] we are therefore able to obtain a more compact
dual formulation, which is instrumental to derive a tractable implementation for a piecewise polynomial
discretization later on: More precisely, we substitute OTfvw(µv, µw) = Wd

1 (µv, µw)in problem (R-P)
with its dual formulation

Wd
1 (µv, µw) = sup

λ∈Lipd(Γ)

∫
λ(x) d(µv − µw)(x), (2.14)

where λ is 1-Lipschitz with respect to the metric d, i.e.,

λ ∈ Lipd(Γ) = {λ : Γ→ R | |λ(x)− λ(y)| ≤ d(x, y) }. (2.15)

In contrast to the general dual formulation of optimal transport, which involves two Lagrange multipliers
per edge, interacting via the constraint set, the Wasserstein-1 dual involves only a single dual variable
for each edge, that satisfies a Lipschitz constraint. We show in Section 2.1.6 that even though this
formulation still involves infinitely many constraints, thanks to convex algebraic geometry [12], there
exists a tractable finite representation of this constraint set in terms of SDP.

We denote by C(Γ) the set of continuous functions mapping from Γ to R. For notational convenience,
we assign an arbitrary orientation to the edges in G. After introducing a graph divergence operator
Div : C(Γ)E → C(Γ)V defined by:

−(Div λ)v =
∑

w:(v,w)∈E

λ(v,w) −
∑

w:(w,v)∈E

λ(w,v), (2.16)

an interchange of min and sup yields the following reduced dual problem, which is the starting point
for further discussion and a tractable implementation:

sup
λ∈C(Γ)E

{
D(λ) := −

∑
v∈V

σP(Γ)(−fv + (Div λ)v)−
∑
e∈E

ιK(λe)

}
, (R-D)

where K = Lipd(Γ) and σP(Γ)(−fv + (Div λ)v) = supµ∈P(Γ)⟨µ,−fv + (Div λ)v⟩ is the support function
of P(Γ) at −fv + (Div λ)v, which, thanks to Lemma 2.1.1, can be rewritten:

−σP(Γ)(−fv + (Div λ)v) = min
x∈Γ

(fv − (Div λ)v)(x). (2.17)

Remark 2.1.4 (Topological pairing). In the following sections we will study the duality of (R-P) and
(R-D) and discretizations thereof. Therefore we first want to emphasize the duality of the spaces those
problems live on and their topologies. Consider the vector space of continuous functions C(Γ) on Γ and
the topology τ∥ · ∥∞ induced by the infinity norm ∥f∥∞ = maxx∈Γ|f(x)|. We denote the corresponding
topological vector space as (C(Γ), τ∥ · ∥∞), [115, 1.6]. Due to the Riesz–Markov–Kakutani representation
theorem the dual space (C(Γ), τ∥ · ∥∞)∗ can be identified by the space of signed Radon measures M(Γ)
via the bilinear mapping ⟨µ, f⟩ :=

∫
f dµ for f ∈ C(Γ) and µ ∈ M(Γ), see [42, Thm. 7.17]. The

infinity norm ∥ · ∥∞ on C(Γ) induces the total variation norm for measures ∥ · ∥TV on M(Γ). Albeit
every element of C(Γ) induces a continuous linear functional on M(Γ) via ⟨ · , · ⟩, not every element
in (M(Γ), τ∥ · ∥TV

)∗ necessarily has to correspond to an element in C(Γ). However, we will heavily
rely on a bijective correspondence in terms of continuous dual elements between those two vector
spaces subsequently. Thus we have to furnish M(Γ) with a more suitable topology. As a matter of
fact, the weak* topology τC(Γ), which is defined to be the weakest topology such that all elements of
C(Γ) can be identified with continuous linear functions on M(Γ), does exactly what we need, [115,
3.14]. Therefore we will consider the dual system of the topological vector spaces (C(Γ), τ∥ · ∥∞) and
(M(Γ), τC(Γ)) henceforth.

Having specified the topologies we can now show a result on strong duality of (R-P) and (R-D):
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Proposition 2.1.5. Let ∅ ≠ Γ ⊂ Rm be compact, let fv : Γ→ R be lsc, and fvw = d, where d : Γ2 → R
is lsc and a metric. Then, the following strong duality holds:

(R-P) = (R-D), (2.18)

and a minimizer of (R-P) exists.

Proof. We will show that strong duality holds by applying the Fenchel–Rockafellar duality Theorem [108,
Thm. 3]. We first show that (R-P) and (R-D) are dual in the sense of [108, Thm. 3].

Therefore define F : C(Γ)E → R as

F (λ) :=
∑
e∈E

ιK(λe),

which is proper and convex. For showing F is lsc we have to show the closedness of K: Consider
f ∈ C(Γ) \ K. Then there exist x, y ∈ Γ such that r := |f(x) − f(y)| − d(x, y) > 0. Denote by
Br(f) := { g ∈ C(Γ) | ∥g − f∥∞ < r } the open ball of radius r around f in the infinity norm. Then it
follows for g ∈ Br(f) that

|g(x)− g(y)| ≥ |f(x)− f(y)| − |(g − f)(x)− (g − f)(y)|
≥ |f(x)− f(y)| − ∥g − f∥∞ > d(x, y).

Hence g ∈ C(Γ) \ K and therefore K is closed.
Likewise, define the functional G : C(Γ)V → R as

G(λ) :=
∑
v∈V

σP(Γ)(λv − fv),

which is proper convex lsc, as it is a pointwise supremum over linear functionals. Furthermore G is
continuous. To this end consider ξ, ζ ∈ C(Γ). Then it follows

σP(Γ)(ξ − fv)− σP(Γ)(ζ − fv) = max
x∈Γ

(ξ − fv)(x)−max
x∈Γ

(ζ − fv)(x)

= max
x∈Γ

(
ξ − fv +min

y∈Γ
(fv − ζ)(y)

)
(x)

≤ max
x∈Γ

((ξ − fv) + (fv − ζ))(x)

≤ max
x∈Γ

(ξ − ζ)(x)

= ∥ξ − ζ∥∞.

Interchanging ξ and ζ yields

σP(Γ)(ξ − fv)− σP(Γ)(ζ − fv) = −(σP(Γ)(ζ − fv)− σP(Γ)(ξ − fv))
≥ −∥ξ − ζ∥∞.

and thus |σP(Γ)(ξ − fv)− σP(Γ)(ζ − fv)| ≤ ∥ξ − ζ∥∞. Especially, G is continuous.
Hence (R-D) is equivalent to infλ∈C(Γ)E F (λ)+G(Div λ) where Div is linear and continuous as finite

sums are continuous on topological vector spaces, see [115, 1.6].
Next we compute the convex conjugate F ∗ :M(Γ)E → R of f as

F ∗(µ) =
∑
e∈E

σK(µe).

For calculating the convex conjugate G∗ :M(Γ)V → R of g we first note that P(Γ) is closed in the
weak* topology: Probability measures are defined as the non-negative measures µ ∈M(Γ) such that
⟨µ, 1⟩ = 1. Therefore P(Γ) can be written as intersection of measures µ for which ⟨µ, 1⟩ = 1 and
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⟨µ, f⟩ ≥ 0 for all f ∈ C(Γ) with f ≥ 1, i.e.

P(Γ) = {µ ∈M(Γ) | ⟨µ, 1⟩ = 1 } ∩
⋂

f∈C(Γ)
f≥0

{µ ∈M(Γ) | ⟨µ, f⟩ ≥ 0 }

is closed as an intersection of preimages of closed sets under continuous functions by the definition
of the weak* topology. It follows that P(Γ) is closed. Additionally, the mapping µ → ⟨µ, fv⟩ is lsc
on P(Γ), [119, Lem. 1.6]. Therefore ιP(Γ)(µv) + ⟨µv, fv⟩ is convex proper lsc. By the definition of the
support function it holds

(
ιP(Γ)( · ) + ⟨ · , fv⟩

)∗
= σP(Γ)( · − fv) and thus

G∗(µ) =
∑
v∈V

(
ιP(Γ)(µv) + ⟨µv, fv⟩

)
.

Now (R-P) is exactly supµ∈P(Γ)−G∗(µ)− F ∗(∇µ) where ∇ :M(Γ)V →M(Γ)E is defined as

(∇µ)(v,w) := µv − µw.

and therefore ∇∗ : C(Γ)E → C(Γ)V = −Div. As F is finite for λ ∈ KE and G is continuous, the
Fenchel–Rockafellar duality Theorem yields (R-P) = (R-D) and a minimizer µ̂ ∈ P(Γ) of (R-P)
exists.

Proposition 2.1.6. Let ∅ ≠ Γ ⊂ Rm be compact, let fv : Γ→ R be lsc, and fvw = d, where d : Γ2 → R
is a continuous metric. Then a maximizer of (R-D) exists.

Proof. Consider a sequence λt ∈ KE such that F (λt)+G(Div λt) converges to infλ∈C(Γ)E F (λ)+G(Div λ).
We can replace the sequence by λ

t
:= λt −minx∈Γ λ

t(x) as F (λ
t
) + G(Div λ

t
) = F (λt) + G(Div λt).

Since λ
t

is Lipschitz wrt the continuous metric d, the sequence λ
t

is equicontinuous and uniformly
bounded. By the Arzelà–Ascoli Theorem and the closedness of K there exists a subsequence converging
to a function λ̂ ∈ K, [115, A5]. By the lower-semicontinuity of the objective, λ̂ has to be a maximizer
of (R-D).

2.1.4.2 Discretization of the Reduced Dual Formulation for the Metric MRF

The next step in our strategy to obtain a tractable formulation is to restrict λ(v,w) ∈ C(Γ) in prob-
lem (R-D) to a subspace Λ = ⟨φ0, . . . , φn⟩ spanned by basis functions φk ∈ C(Γ) and instead consider
supλ∈ΛE D(λ). We will regard the basis functions {φ0, . . . , φn} as components of some φ ∈ C(Γ,Rn+1),
i.e. φ(x) := (φ0(x), . . . , φn(x))

T and C(Γ,Rn+1) is the vector space of continuous functions mapping
from Γ to Rn+1. In the situation of Proposition 2.1.2, for any hierarchy of increasingly expressive dual
subspaces Λ1 ⊂ Λ2 ⊂ · · · ⊂ C(Γ) the induced hierarchy of dual problems

(2.2) = max
λ∈(Λ1)E

D(λ) ≤ max
λ∈(Λ2)E

D(λ) ≤ · · · ≤ max
λ∈C(Γ)E

D(λ)
(2.18)
= (R-P)

(2.7)
= (P), (2.19)

leads to a reduction of the duality gap where the first equality holds due to the explanation that will be
given in Section 2.1.5.1. In general, properness of the inclusions in the hierarchy of the dual subspaces
need not imply strict inequalities in Eq. (2.19). However, for a piecewise polynomial hierarchy with
increasing degrees and/or number of pieces we will show in Proposition 2.1.28 that the duality gap
(P)−maxλ∈ΛE D(λ) eventually vanishes with rate O(1/(K ·

√
deg)) as the number of pieces K and/or

the degree deg goes to ∞.
In the context of dual discretization it is crucial to discuss the duality between finite-dimensional

subspaces of C(Γ) and certain equivalence classes of measures and in particular moment spaces. This will
be particularly important in Section 2.1.5 where we derive and study the primal problem corresponding
to the discretized dual problem:

Note that for any λ ∈ Λ we obtain a linear functional on M(Γ) by mapping µ ∈ M(Γ) to
µ 7→ ⟨µ, λ⟩ =

∫
λdµ. Although any µ ∈ M(Γ) maps to a linear functional on Λ, this mapping is not

injective. In particular there exist distinct measures µ ̸= ν such that ⟨µ, λ⟩ = ⟨ν, λ⟩ for every λ ∈ Λ,
i.e., µ and ν induce the same linear functional on Λ. Instead, invoking [115, Thm. 4.9] the dual space

11



Λ∗ can be related to a quotient space of M(Γ) by an isometric isomorphism to a quotient space on
M(Γ) via

MΛ := Λ∗ ∼=M(Γ)/Λ0 := {µ+ Λ0 | µ ∈M(Γ) } ∼= Rn+1, (2.20)

where Λ0 := {µ ∈ M | ⟨µ, λ⟩ = 0 for all λ ∈ Λ } is the annihilator of Λ. Any µ ∈ M(Γ) generates
an equivalence class in M(Γ)/Λ0 and the corresponding element in MΛ is denoted by [µ]Λ. Given
a measure µ ∈ M(Γ), for a particular choice of basis functions {φ0, φ1, . . . , φn}, we refer to µk =
⟨µ, φk⟩ =

∫
φk(x) dµ(x) as the kth moment of µ. Consider the dual basis of {φ0, . . . , φn} inMΛ. Then

we know that ([µ]Λ)k = ⟨[µ]Λ, φk⟩ = µk and hence the kth component of [µ]Λ in the dual basis is exactly
the kth moment of µ. Furthermore we define the space induced by (unsigned) Radon measures as

(MΛ)+ = { [µ]Λ | µ ∈M+(Γ) }. (2.21)

This is discussed in Section 2.1.6 in the context of implementation. Note that we can now define
φ : Γ → MΛ, x 7→ [δx]Λ and it holds (φ(x))k = ⟨[δx]Λ, φk⟩ = φk(x). Hence φ is the analogous
counterpart of φ in MΛ. Note that φ is continuous as M(Γ) is endowed with the weak* topology
and Λ ⊂ C(Γ). We will denote the dual basis of {φ0, . . . , φn} by {m0, . . . ,mn}. We will also write
y = y0m0 + · · ·+ ynmn as y = (y0, . . . , yn)

T and identify MΛ with Rn+1 if it’s clear from the context.
Similarly, for λ ∈ Λ we will identify λ = λ0φ0 + · · ·+ λnφn as λ = (λ0, . . . , λn)

T .
As a subspace, Λ inherits the infinity norm from C(Γ). We will analogously introduce an adapted

variant of the total variation norm to MΛ as the dual norm of ∥ · ∥∞ via

∥y∥TV := sup
∥λ∥∞≤1

λ∈Λ

|⟨y, λ⟩|, (2.22)

for y ∈MΛ. This definition can be related to the total variation norm on measures:

Proposition 2.1.7. For y ∈MΛ the total variation norm can be expressed as

∥y∥TV = min{ ∥µ∥TV | µ ∈M(Γ), [µ]Λ = y }. (2.23)

Proof. First note ∥µ∥TV = sup∥λ∥∞≤1
λ∈C(Γ)

|⟨y, λ⟩| ≥ sup∥λ∥∞≤1
λ∈Λ

|⟨µ, λ⟩| = ∥y∥TV for [µ]Λ = y. Therefore

∥y∥TV ≤ inf{ ∥µ∥TV | µ ∈ M(Γ) }. By definition of MΛ it is clear that y is a linear function
on Λ and |⟨y, λ⟩| ≤ ∥y∥TV · ∥λ∥∞ for λ ∈ Λ. The Hahn-Banach Theorem, [115, Thm. 3.3], now
implies the existence of a linear functional ŷ on C(Γ) such that ŷ |Λ= y and |ŷ(λ)∥ ≤ ∥y∥TV · ∥λ∥∞.
Particularly this implies ŷ is bounded, ŷ ∈ M(Γ) and ∥ŷ∥TV ≤ ∥y∥TV. Also it holds [ŷ]Λ = y.
Therefore ∥y∥TV ≥ inf{ ∥µ∥TV | µ ∈ M(Γ) }. Hence equality holds and ŷ attains the minimum of
{ ∥µ∥TV | µ ∈M(Γ) }.

In view of the Wasserstein-1 dual in Eq. (2.14) constant components in λ(v,w) ∈ Λ cancel out and
therefore, assuming φ0 ≡ 1 is the constant one function, we can choose λ0 = 0. Thanks to Eq. (2.17)
we can formulate the following discretized dual problem as

sup
λ∈ΛE

D(λ) = sup
λ∈ΛE

−
∑
v∈V

sup
x∈Γ

(⟨φ(x), (DivΛ λ)v⟩ − fv(x))−
∑
e∈E

ιK(λe). (dR-D)

2.1.5 Lifted Convex Conjugates: A Primal View

2.1.5.1 The Discretized Primal Problem

A central goal of this section is to study the primal problem induced by the dual discretization. This
allows us to show that discretizations which obey a certain extremality property conserve the original
cost when restricting to discretized Diracs, see Theorem 2.1.18.

In order to derive the discretized primal problem note that for any fv : Γ → R the expression
supx∈Γ⟨φ(x), (DivΛ λ)v⟩− fv(x) in (dR-D) (up to the presence of φ(x)) resembles the form of a convex
conjugate. Indeed, exploiting the notion of an extended real-valued function this is the convex conjugate
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Figure 2.1: Different finite-dimensional approximations PΛ of the infinite-dimensional space of proba-
bility measures P([−1, 1]) with Γ = [−1, 1]. Left and middle: 2-dimensional probability simplex and
right: Monomial moment space con{ (x, x2, x3)T | x ∈ [−1, 1] } of degree 3. The approximations are
obtained as the convex hulls of the black curves x 7→ φ(x) for 3 different choices of φ. From left to right
cf. Example 2.1.10, Example 2.1.11 and Example 2.1.12 where φ0 ≡ 1 is not plotted for better visual
appearance. In all cases, the black curves themselves correspond to Dirac measures and the convex
hulls of the curves correspond to the space of probability measures. In contrast to the simplex that
only has a finite number of extreme points, the monomial moment curve comprises a continuum of
extreme points so that no Dirac measure on the monomial moment curve can be expressed as a convex
combination of other Diracs. Figure taken from [Pub2].

of a lifted version fΛ :MΛ → R of f : Γ→ R which is defined by

fΛ(y) =

{
f(x), if y = φ(x) for some x ∈ Γ,
∞, otherwise,

(2.24)

and gives rise to our notion of a lifted convex conjugate which is studied in depth in the course of this
section.

Since the “lifting” to a higher dimensional space happens through the application of the mapping φ
it is intuitive to refer to φ as the lifting aka feature map in this context. Likewise we refer to the curve
described by x 7→ φ(x) as the moment curve.

With this construction at hand and via an application of Fenchel–Rockafellar duality we are ready
to state the primal problem of the discretized dual problem in terms of the lifted biconjugates (fv)

∗∗
Λ :

min
u∈MV

Λ

{
EΛ(u) :=

∑
v∈V

(fv)
∗∗
Λ (uv) +

∑
e∈E

σK∩Λ

(
(∇Λ u)e

)}
, (dR-P)

where ∇Λ := −Div∗Λ is the negative adjoint of the graph divergence, the graph gradient operator. A
comparison of (dR-P) with the convex relaxation Eq. (2.2) shows the effect of the dual discretization,
where the classical convex biconjugates are replaced with biconjugates of the “lifted” functions (fv)Λ.
Indeed, without lifting, i.e., φ(x) = x, we recover the classical biconjugates and therefore the convex
relaxation Eq. (2.2). In particular this explains the first equality in the hierarchy Eq. (2.19).

2.1.5.2 Lifting and Moments

A fundamental question in the study of the lifted biconjugate (fv)
∗∗
Λ is the characterization of its

domain dom(fv)
∗∗
Λ = con(φ(Γ)), which, assuming fv is bounded from below, equals the convex hull of

the image of φ. For that purpose we define the probability moment space as

PΛ = { [µ]Λ ∈MΛ | µ ∈ P(Γ) }. (2.25)

For φ0 ≡ 1 it follows PΛ = { y ∈ (MΛ)+ | y0 = 1 } as µ ∈ P(Γ) is a probability measure if and only if
µ ∈M+(Γ) and ⟨µ, φ0⟩ = 1. Also see Lemma 2.1.24.
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Proposition 2.1.8. Let ∅ ̸= Γ be compact and Λ = ⟨φ0, . . . , φn⟩ ⊂ C(Γ). Then every moment vector
of a probability measure is a finite convex combination of moment vectors of Dirac measures, i.e.

con(φ(Γ)) = PΛ, (2.26)

and PΛ is nonempty and compact.

Proof. Note that PΛ is convex and bounded. It is also closed: To this end consider a sequence yt → y
with yt ∈ PΛ. This means for any t there exists µt ∈ P(Γ) with ytk =

∫
φk dµ

t for k = 1, . . . , n. Since
Γ is compact, due to Prokhorov’s Theorem, see [119, Sec. 1.1], there exists a weakly∗ convergent
subsequence µtj ∗

⇀ µ for µ ∈ P(Γ) and, hence,
∫
φk dµ

tj = y
tj
k →

∫
φk dµ = yk. Therefore y ∈ PΛ.

Next we show identity of the support functions of the convex sets con(φ(Γ)) and PΛ as this implies the
equality of the sets. To this end let λ ∈ Λ = ⟨φ0, . . . , φn⟩. We write λ(x) = ⟨φ(x), λ⟩. We have the
identities:

σφ(Γ)(−λ) = −min
x∈Γ
⟨φ(x), λ⟩ = − min

µ∈P(Γ)

∫
λ dµ = − min

y∈PΛ

⟨y, λ⟩ = σPΛ(−λ),

where the first equality follows by the definition of the support function, the second equality by
Lemma 2.1.1 and the third equality by the definition of PΛ, the identity

min
µ∈P(Γ)

∫
λ dµ = min

µ∈P(Γ)

n∑
k=1

λk

∫
φk dµ,

and the substitution yk =
∫
φk dµ. Since for each such λ the support functions are equal we have

equality of the support functions of φ(Γ) and PΛ. Since Γ is compact and φ continuous and the convex
hull of a compact set stays compact, cf. [111, Cor. 2.30], we can replace φ(Γ) with its convex hull
conφ(Γ) and the conclusion follows.

In other words PΛ is the set of all “infinite” convex combinations of points φ(x) ∈MΛ with x ∈ Γ,
i.e., of points that belong to the image of φ. Thus the probability moment space can be written
equivalently as the set of all finite convex combinations of moment vectors of Dirac measures, in the
same way the unit simplex is the convex hull of the unit vectors.

The proof of the above proposition also reveals that for f ∈ Λ, the lifted biconjugate is a linear
function over the moment space,

f∗∗Λ (y) = ⟨y, f⟩+ ιPΛ(y), (2.27)

whose minimization is actually equivalent to minimizing the original function.
Specializing φk to the monomial basis and Γ to a set defined via polynomial inequalities, this yields

the formulation proposed by [69, 70] for constrained polynomial optimization.
More generally, a meaningful notion of moments yk is induced by a lifting map φ which is a

homeomorphism between Γ and φ(Γ).

Definition 2.1.9 (lifting map). Let Γ be compact and be nonempty. Then we say the mapping φ : Γ→
MΛ is a lifting map if φ is continuous on Γ and injective with continuous inverse φ−1 : φ(Γ)→ Rm.

It is instructive to discuss possible choices for φ including the ones that correspond to existing
discretizations for the continuous MRF such as the discrete approach and the piecewise linear approach.
In the latter two cases, the moment space is merely the unit simplex. In that sense, the monomial
moment space can be interpreted as a “nonlinear probability simplex”, which, in contrast to the unit
simplex, has infinitely many extreme points, see Fig. 2.1. For the same reason, as we will see in the
course of this section, it better suits the continuous nature of our optimization problem.

The discrete sampling-based approach is recovered by the following choice of φ:

Example 2.1.10. We discretize the interval Γ = [a, b], a < b and re-define Γ := {γ1, . . . , γK} with
γk ∈ [a, b], γk < γk+1. For any γk ∈ Γ let φ(γk) = ek with ek ∈ RK being the kth unit vector. As a
result φ is the canonical basis and spans the space of discrete functions f : {γ1, . . . , γK} → R and the
moment space con(φ(Γ)) = PΛ is given by the unit simplex in MΛ.
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The above example can be extended by assigning any points x ∈ (γk, γk+1) to points on the
connecting line between two corresponding Diracs which results in a more continuous formulation:
Example 2.1.11. Let Γ = [a, b], a < b: Let γk < γk+1 and γ1 = a, γK+1 = b be a sequence of knots
that subdivide the interval Γ into K subintervals [γk, γk+1] =: Γk. Let 1k :=

∑k
i=1 ei. We define

φ(x) = 1α
k := αek + (1 − α)ek−i, α ∈ [0, 1] such that x = γαk := αγk+1 + (1 − α)γk. This yields a

2-sparse lifting map that has been used in the related work of [73]. Its component functions φk are the
finite element hat basis functions that span the space Λ of univariate piecewise linear functions on Γ.

For φk being chosen as the monomials we obtain the classical notion of moments:
Example 2.1.12. For φ0 ≡ 1, the space of univariate polynomials Λ = R[x] with maximum degree n is
spanned by the monomials:

φ(x) = (1, x, x2, . . . , xn)T , (2.28)

and con(φ(Γ)) = PΛ is the monomial moment space.
Example 2.1.13. Identifying Γ = {x ∈ R2 | ∥x∥2 = 1 } with the complex unit circle Γ ∼= { z ∈ C | |z| =
1 } and again assuming φ0 ≡ 1, the mapping

φ(z) = (1,Re(z), Im(z), . . . ,Re(zn), Im(zn))T ∈ R2n+1 (2.29)

spans the space Λ of real trigonometric polynomials of maximum degree n. Parameterizing elements
z ∈ Γ via the bijection between z = eiω and its angle ω ∈ [0, 2π) the components of φ are the Fourier
basis functions, which define the Carathéodory curve [25]. The convex hull con(φ(Γ)) = PΛ is the
trigonometric moment space.

2.1.5.3 Extremal Subspaces

In contrast to the piecewise linear lifting, the (trigonometric) polynomial lifting is extremal in the sense
that no Dirac measure on the moment curve can be expressed as a convex combination of other Diracs,
which sets up a certain one-to-one correspondence between Diracs δx and lifted points φ(x). This is
illustrated in Fig. 2.1 monomial case.

More formally, we call a lifting map φ an extremal curve if each y ∈ φ(Γ) is an extreme point of
con(φ(Γ)) defined according to [109, Sec. 18].

Definition 2.1.14 (extreme points). Let C be a convex set and y ∈ C. Then y is called an extreme
point of C if there is no way to express y as a convex combination y = (1− α)x+ αz of x, z ∈ C and
0 < α < 1, except by taking y = x = z.

Definition 2.1.15 (extremal moment curve). Let Γ be compact and be nonempty. Then we say the
mapping φ : Γ→MΛ is an extremal moment curve if φ is a lifting map and any point y ∈ φ(Γ) ⊂MΛ

is an extreme point of conφ(Γ).

Via a change of basis it becomes clear that the definition of extremality is independent of a specific
choice of a basis for Λ. Therefore extremality is rather a property of the subspace Λ. This also motivates
the following lemma which shows that extremality is inherited along a hierarchy Θ ⊂ Λ ⊂ C(Γ).

Lemma 2.1.16 (extremal subspaces). Let ∅ ≠ Γ ⊂ Rm be compact. Let Θ ⊂ Λ ⊂ C(Γ) be a hierarchy
of finite-dimensional subspaces of the space of continuous functions C(Γ). Let Θ = ⟨θ1, . . . , θn⟩ such
that θ : Γ→ Rn is an extremal curve. Then Λ is spanned by an extremal curve as well.

Proof. {θ1, . . . , θn} is a basis of Θ ⊂ Λ and therefore linearly independent. Since Λ is finite-
dimensional in view of the basis extension theorem {θ1, . . . , θn} can be extended to a basis φ =
(θ1, . . . , θn, ψ1, . . . , ψk)

T of Λ with vectors ψi ∈ G, where spanG = Λ and |G| <∞ such that spanφ = Λ.
Now choose x ∈ Γ and consider φ(x). Let α ∈ (0, 1) and φ(x) = αy+(1−α)z for y, z ∈ conφ(Γ) ⊂

MΛ
∼= Rn+k. Due to Carathéodory [111, Thm. 2.29] there exist coefficients αi, βi > 0 such that

y =
∑n+k+1

i=1 αiφ(y
(i)) and z =

∑n+k+1
i=1 βiφ(z

(i)), y(i), z(i) ∈ Γ with
∑n+k+1

i=1 αi = 1,
∑n+k+1

i=1 βi = 1.
This implies that θ(x) = α

∑n+k+1
i=1 αiθ(y

(i)) + (1− α)
∑n+k+1

i=1 βiθ(z
(i)). Extremality of θ implies

that θ(x) =
∑n+k+1

i=1 αiθ(y
(i)) =

∑n+k+1
i=1 βiθ(z

(i)) and therefore θ(x) = θ(y(i)) = θ(z(i)). Since θ is
an extremal curve θ is injective as well and therefore x = y(i) = z(i). This implies that φ(x) = y = z
and hence φ is an extremal curve.
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Lemma 2.1.17 (extremality of quadratic subspace). Let ∅ ≠ Γ ⊂ Rm be compact. Let φ(x) =
(1, x1, x2, . . . , xm, ∥x∥2)T . Assume that ⟨φ0, φ1, . . . , φm+2⟩ ⊂ Λ for a vector space Λ ⊂ C(Γ). Then Λ is
spanned by an extremal curve.

Proof. Choose x ∈ Γ. Let α ∈ (0, 1) and φ(x) = αy + (1 − α)z for y, z ∈ conφ(Γ) ⊂ MΛ
∼= Rm+2.

Due to Carathéodory [111, Thm. 2.29] there exist coefficients αi, βi > 0 such that y =
∑m+3

i=1 αiφ(y(i))

and z =
∑m+3

i=1 βiφ(z
(i)), y(i), z(i) ∈ Γ with

∑m+3
i=1 αi = 1,

∑m+3
i=1 βi = 1.

Now choose f(x) = ∥x− x∥2 and note f ∈ ⟨φ0, φ1, . . . , φm+2⟩. Then we have:

0 = f(x) = ⟨φ(x), f⟩ =

〈
α

m+3∑
i=1

αiφ(y
(i)) + (1− α)

m+3∑
i=1

βiφ(z
(i)), f

〉

=
m+3∑
i=1

α · αi · ⟨φ(y(i)), f⟩+
m+3∑
i=1

(1− α) · βi · ⟨φ(z(i)), f⟩

=
m+2∑
i=1

α · αi · f(y(i)) +
m+2∑
i=1

(1− α) · βi · f(z(i))

As f(y(i)) > 0 for y(i) ̸= x and α > 0 it holds that y(i) ̸= x implies αi = 0. The same is true for z(i)
and βi. Hence φ(x) = y = z, and therefore φ : Γ → MΛ

∼= Rm+2 is an extremal curve. In view of
Lemma 2.1.16 Λ is spanned by an extremal curve.

This shows that in a piecewise polynomial discretization with degree at least 2 the corresponding
basis inherits the extreme point property from the extremality of the subspace of quadratic functions.
Extremal curves are key to preserve the cost function when restricted to the set of discretized Diracs
φ(x):

Theorem 2.1.18. Let Γ ⊂ Rm be nonempty and compact and let f : Γ→ R be lsc. Furthermore, let
φ : Γ→MΛ be an extremal curve. Then we have

f∗∗Λ ◦φ = f (2.30)

on Γ. In addition, we have that con fΛ = f∗∗Λ .

Proof. Since f is lsc and Γ compact f is bounded from below, i.e., there is C > −∞ so that f(x) ≥ C
for all x ∈ Γ. We have dom fΛ = φ(Γ) ⊂MΛ and in view of [111, Prop. 2.31] it holds for any y ∈MΛ,

(con fΛ)(y) = inf

{
n+1∑
i=1

λifΛ(y
(i)) : λi ≥ 0,

n+1∑
i=1

λi = 1, y =

n+1∑
i=1

λiy
(i), y(i) ∈MΛ

}

= inf

{
n+1∑
i=1

λif(x
(i)) : λi ≥ 0,

n+1∑
i=1

λi = 1, y =
n+1∑
i=1

λiφ(x
(i)), x(i) ∈ Γ

}
≥ C.

Let x ∈ Γ. Since the only possible convex combination of the extreme point φ(x) from points y(i) ∈ φ(Γ)
is φ(x) itself, we have

(con fΛ)(φ(x)) = inf

{
n+1∑
i=1

λifΛ(y
(i)) : λi ≥ 0,

n+1∑
i=1

λi = 1, φ(x) =
n+1∑
i=1

λiy
(i), y(i) ∈ φ(Γ)

}
= fΛ(φ(x)) = f(x).

This shows that con fΛ ◦φ = f . Since con fΛ is bounded from below con fΛ is proper.
Next we show that fΛ inherits its lower semicontinuity from f : Assume that y ∈ φ(Γ). Then there
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Figure 2.2: Lifted version fΛ of the function f for 3 different choices of φ. In the top row the same
nonconvex function f (blue curves) is depicted. The colored surfaces in the bottom row correspond to
the lifted biconjugates f∗∗Λ , where the gray shadow areas correspond to their domains dom f∗∗Λ = PΛ

and the blue curves correspond to the lifted cost fΛ, see Eq. (2.24). The black curves in the bottom
row correspond to the moment curve described by Diracs φ(Γ), i.e., the domain of fΛ. From left to
right, cf. Example 2.1.10, Example 2.1.11 and Example 2.1.12. The nonlinear supporting dual functions
qλ,β(x) = ⟨φ(x), λ⟩ − β (red curves) to f in the top row (middle and right), are transformed into linear
supporting hyperplanes lλ,β(y) = ⟨y, λ⟩ − β (red surfaces) to f∗∗Λ in the bottom row through the feature
map φ. In the language of kernel methods, these functions can be interpreted as the nonlinear decision
boundaries that separate individual points on the graph of f from the epigraph of f . Only in the most
right case such a separation is possible. As a result the polynomial lifting preserves the nonconvex cost
function f∗∗Λ ◦ φ = f on φ(Γ) whereas the 2-sparse lifting (middle) only leads to a piecewise convex
under-approximation f∗∗Λ ◦ φ ≤ f . Figure taken from [Pub2].

exists x ∈ Γ with y = φ(x) and we have due to the continuity of φ and φ−1:

lim inf
y′→φ(x)

fΛ(y
′) := lim

δ→0+
inf {fΛ(y′) : y′ ∈ Bδ(φ(x))}

= lim
δ→0+

inf {fΛ(φ(x′)) : φ(x′) ∈ Bδ(φ(x))}

= lim
ϵ→0+

inf {f(x′) : x′ ∈ Bϵ(x)}

= lim inf
x′→x

f(x′)

≥ f(x) = fΛ(y).

Since Γ is compact and φ continuous the image φ(Γ) = dom fΛ is compact as well. Since fΛ is also
bounded from below it is coercive in the sense of [111, Def. 3.25] (also called super-coercive in other
literature). Then we can invoke [111, Cor. 3.47] and deduce that con fΛ is proper, lsc and convex. In
view of [111, Thm. 11.1] we have con fΛ = cl con fΛ = f∗∗Λ .

For a geometric intuition of this theorem we refer to Fig. 2.2. For a piecewise polynomial discretization
with degree at least 2, due to extremality, the primal discretized energy EΛ restricted to φ(Γ)V agrees
with the original energy E. In particular, this implies that an obtained Dirac solution (φ(u∗v))v∈V of
the discretization corresponds to a solution of the original problem in the same way integer solutions
of linear programming relaxations are certificates of optimality for the corresponding integer linear
program.

Proposition 2.1.19. Let ∅ ≠ Γ ⊂ Rm. Let the metric d be induced by a norm and assume the space
of linear functions on Γ is contained in Λ. Furthermore, assume Λ is spanned by an extremal curve
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φ : Γ→MΛ and fv lsc. Then for any u ∈MV
Λ, with uv = φ(uv), uv ∈ Γ the following identity holds

true:
EΛ(u) = E(u).

In particular, whenever û is a solution of problem (dR-P) such that û ∈ MV
Λ, with ûv = φ(ûv), for

some ûv ∈ Γ, û is a solution of the original problem (P).

Proof. Let d be induced by some norm ∥·∥ and denote its dual norm by ∥·∥∗. As shown in Theorem 2.1.18,
the unaries preserve the original cost functions at φ(Γ). Hence it remains to show that the for the
pairwise costs it holds σK∩Λ((∇Λu)(v,w)) = ∥uv − uw∥. By assumption (∇Λu)(v,w) = φ(uv)−φ(uw).
We rewrite

σK∩Λ(φ(uv)−φ(uw)) = sup
λ∈Lipd(Γ)∩Λ

λ(uv)− λ(uw) ≤ ∥uv − uw∥.

For any uv, uw ∈ Γ we have

∥uv − uw∥ = sup
p∈Rm:∥p∥∗≤1

|⟨uv − uw, p⟩| = ⟨uv − uw, p̂⟩,

where p̂ denotes the maximizer in the supremum, which exists due to the compactness of the unit ball
in a finite-dimensional space. Define the linear function λ̂ := ⟨ · , p̂⟩ and note that by assumption λ̂ ∈ Λ.
In addition we have shown that λ̂ ∈ Lipd(Γ) is 1-Lipschitz. This implies ∥uv − uw∥ = λ̂(uv)− λ̂(uw) ≤
supλ∈Lipd(Γ)∩Λ λ(uv)− λ(uw) ≤ ∥uv − uw∥ and hence equality holds.

2.1.5.4 A Generalized Conjugacy Perspective

The previous results can be obtained from a generalized conjugacy point of view. In particular, the
convex conjugate of the lifted function f∗Λ is comprised by the notion of Φ-conjugacy, see [111, Ch. 11L*]:

Definition 2.1.20 (generalized conjugate functions). Let X and Y be nonempty sets. Let Φ : X×Y → R
be any function. Let f : X → R. Then the Φ-conjugate of f on Y at y ∈ Y is defined by

fΦ(y) := sup
x∈X

Φ(x, y)− f(x), (2.31)

and the Φ-biconjugate of f back on X at x ∈ X is given by

fΦΦ(x) := sup
y∈Y

Φ(x, y)− fΦ(y). (2.32)

We say that f is a Φ-envelope on X if f can be written in terms of a pointwise supremum of a collection
of elementary functions x 7→ Φ(x, y)− α, where (α, y) ∈ R× Y is the parameter element.

For X = Γ, Y = Λ, and Φ(x, y) = ⟨φ(x), y⟩, the convex conjugate f∗Λ is identical to the Φ-conjugate
fΦ of f , while its biconjugate f∗∗Λ is the tightest lsc convex extension of fΛ to conφ(Γ). The Φ-
biconjugate fΦΦ of f at a point x ∈ Γ is equal to the classical biconjugate of fΛ, evaluated at φ(x), i.e.,
fΦΦ = f∗∗Λ ◦ φ on Γ, showing that the Φ-biconjugate is a convexly composite function and, therefore, it
is nonconvex in general.

As a consequence of [111, Ex. 11.63], the considered Φ-conjugacy can be interpreted in terms of
under-approximation by functions in Λ. In analogy to the biconjugate f∗∗, which is the pointwise
supremum of affine-linear functions majorized by f , the Φ-biconjugate fΦΦ is the pointwise supremum
of functions in Λ up to constant translation majorized by f . This point of view also relates (fΦ)∗ and
fΦΦ by each other.

Remark 2.1.21. The function (fΦ)∗ = f∗∗Λ is the pointwise supremum of all affine-linear functions
lλ,β := ⟨ · , λ⟩ − β for which qλ,β := Φ( · , λ) − β is majorized by f . This can be seen as follows: The
Legendre–Fenchel conjugate can be characterized via the identity (fΦ)∗(y) = sup(λ,β)∈epi(fΦ)⟨y, λ⟩ − β.
The observation now follows from the fact that (λ, β) ∈ epi(fΦ) if and only if qλ,β is majorized by f .

The correspondence between f∗∗Λ and (fΦ)∗ and between the minorizers lλ,β and qλ,β is illustrated
in Fig. 2.2. Note that this is closely related to the idea of feature maps φ in linear classifiers.

Theorem 2.1.18 identifies all lsc functions f : X → R as Φ-envelopes whenever φ is extremal:
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Corollary 2.1.22. Let Γ ⊂ Rm be nonempty and compact and let f : Γ→ R be bounded from below.
Furthermore, let φ : Γ→MΛ be an extremal curve. Then we have

fΦΦ = f∗∗Λ ◦φ = cl f, (2.33)

on Γ.

Proof. Since f is finite-valued and bounded from below on Γ we have (cl f)(x) > −∞ for x ∈ Γ and
therefore cl f is finite-valued. By [111, Ex. 11.63] fΦΦ is the largest Φ-envelope below f . Since φ is
continuous, fΦΦ = f∗∗Λ ◦ φ is lsc. Since cl f is the largest lsc function below f we have fΦΦ ≤ cl f .
Since cl f ≤ f we also have (cl f)ΦΦ ≤ fΦΦ. Invoking Theorem 2.1.18 we have

cl f = (cl f)ΦΦ ≤ fΦΦ ≤ cl f,

on Γ. Therefore fΦΦ = cl f on Γ.

Up to the presence of the compact set Γ, this result generalizes the basic quadratic transform [111,
Ex. 11.66] originally due to [101, Prop. 3.4] (for lsc functions only), which is obtained by choosing
φ(x) = (x1, x2, . . . , xm, ∥x∥2)T . In [7, Thm. 1] a similar duality formula is shown for Φ-couplings of a
certain “needle-type”. Our result is instead based on the extremality condition, which, from a primal
point of view, captures an intuitive and sharp (sufficient) condition for the above result for the one-sided
linear couplings we consider. For the component functions of φ being the hat basis, see Example 2.1.11,
the class of Φ-envelopes are the piecewise convex functions, see, Fig. 2.2 middle.

We can formulate an interpretation of f∗∗Λ in terms of probability measures:

Proposition 2.1.23. Let f ∈ C(Γ) and Λ ⊂ C(Γ). Then the biconjugate of fΛ is

f∗∗Λ (y) = min{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y }, (2.34)

with dom f∗∗Λ = PΛ.

Proof. We first define g(y) := inf{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y }. We will show that g is proper convex
lsc.

Proposition 2.1.8 implies dom g = PΛ and g(y) ≥ minx∈Γ f(x) by Lemma 2.1.1. Hence g is proper.
For showing convexity of g we will show that the epigraph epi g := { (y, α) ∈MΛ × R | g(y) ≤ α }

of g is convex. Let (y, α), (z, β) ∈ epi g. Then there exist µ, ν ∈ P(Γ) such that y = [µ]Λ, z = [ν]Λ and
⟨µ, f⟩ ≤ α, ⟨ν, f⟩ ≤ β. By convexity of P(Γ) we get λµ + (1 − λ)ν ∈ P(Γ) and [λµ + (1 − λ)ν]Λ =
λy + (1 − λ)z for λ ∈ [0, 1]. Furthermore ⟨λµ+ (1 − λ)ν⟩ = λ⟨µ, f⟩+ (1 − λ)⟨ν, f⟩ ≤ λα + (1 − λ)β.
Hence (λy + (1− λ)z, λα+ (1− λ)β) ∈ epi g and g is convex.

Now consider (y, α) ∈ MΛ × R and a sequence (yt, αt) ∈ epi g such that (yt, αt) → (y, α). Then
there exists a sequence µt ∈ P(Γ) such that [µt]Λ = yt and ⟨µt, f⟩ ≤ αt. Since Γ is compact,
again by Prokhorov’s Theorem, see [119, Sec. 1.1], there exists a weakly∗ convergent subsequence
µtj ∗

⇀ µ̂ for some µ̂ ∈ P(Γ). Therefore [µ̂]Λ = limj→∞[µtj ]Λ = limj→∞ ytj = y where the first
equality follows from the definition of the weak* topology and the fact that Λ ⊂ C(Γ). In addition
α − ⟨µ̂, f⟩ = limj→∞ αtj − ⟨µtj , f⟩ ≥ 0 as f ∈ C(Γ). Therefore (y, α) ∈ epi g, epi g is closed and
thus g is lsc. Furthermore consider a sequence µt ∈ P(Γ) such that [µt]Λ = y for some y ∈ PΛ

and limt→∞⟨µt, f⟩ = inf{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y }. Again by Prokhorov’s Theorem there exists
µ̂ ∈ P(Γ) and a subsequence µtj ∗

⇀ µ̂. Furthermore [µ̂]Λ = limj→∞[µtj ]Λ = limj→∞ y = y and
⟨µ̂, f⟩ = limj→∞⟨µtj , f⟩ = inf{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y } by construction. Hence µ̂ is a minimizer of
{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y }.
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Now we calculate the conjugate of g as

g∗(λ) = sup
y∈PΛ

⟨y, λ⟩ − inf{ ⟨µ, f⟩ | µ ∈ P(Γ), [µ]Λ = y }

= sup
y∈PΛ

sup
µ∈P(Γ), [µ]Λ=y

⟨y, λ⟩ − ⟨µ, f⟩

= sup
µ∈P(Γ)

⟨µ, λ⟩ − ⟨µ, f⟩

= max
x∈Γ

(λ− f)(x)

= f∗Λ(λ).

The claim now follows from f∗∗Λ = g∗∗ = g as g is proper convex lsc.

2.1.6 A Tractable Conic Program for MRFs

2.1.6.1 Nonnegativity and Moments

After discretization a next step to obtain a practical implementation is to derive finite characterizations
of the lifted biconjugates f∗∗Λ and the constraint set K ∩ Λ. We will show that the formulations can
be rewritten in terms of a semi-infinite conic program which can be implemented using semidefinite
programming in the piecewise polynomial case.

For now let fv ∈ Λ. Equation (2.27) then shows, that the challenging part is to characterize the
moment space PΛ: The following result shows that up to normalization, PΛ can be written in terms of
the dual cone of the cone of functions in Λ that are nonnegative on Γ.

Lemma 2.1.24. Let (MΛ)+ be the cone of moments of nonnegative measures as defined in Eq. (2.21)
and let NΛ be the cone of the coefficients of the functions in Λ = ⟨φ0, . . . , φn⟩ that are nonnegative on
Γ defined as:

NΛ := {λ ∈ Λ | λ(x) ≥ 0, ∀x ∈ Γ }. (2.35)

Then (MΛ)+ is equal to N ∗
Λ, where N ∗

Λ denotes the dual cone of NΛ.
If, in addition, φ0 ≡ 1 we also have PΛ = { y ∈ (MΛ)+ | y0 = 1 }.

Proof. Let y ∈ (MΛ)+. This means there exists µ ∈M+(Γ) such that y = [µ]Λ. Let p ∈ NΛ. By the
definition of nonnegative measures M+(Γ) it holds ⟨y, p⟩ = ⟨[µ]Λ, p⟩ = ⟨µ, p⟩ > 0. Since p ∈ NΛ was an
arbitrary choice from NΛ we have y ∈ N ∗

Λ.
Next we show (MΛ)

∗
+ ⊆ NΛ as this implies N ∗

Λ ⊆ (MΛ)
∗∗
+ = (MΛ)+, where the last equality holds

since (MΛ)+ is convex by definition of convexity and closed by the same argument used in the proof of
Proposition 2.1.8. Take p ∈ (MΛ)

∗
+. For x ∈ Γ it holds p(x) = ⟨δx, p⟩ = ⟨[δx]Λ, p⟩ > 0. Since the choice

x ∈ Γ was arbitrary we have p(x) ≥ 0 for all x ∈ Γ and therefore p ∈ NΛ.
Finally, PΛ = { y ∈ (MΛ)+ | y0 = 1 } follows from the fact that µ ∈M(Γ) is an element of P(Γ) if

and only if µ ∈M+(Γ) and ⟨µ, φ0⟩ = 1.

Before we specialize Λ to the space of polynomials, we derive a cone programming formulation of
the Lipschitz constraints λ(v,w) ∈ Lipd(Γ). Here we restrict Γ = [a, b] to be a compact interval. In
the following, we provide an implementation for two specific metrics. As before, this boils down to
nonnegativity of functions: Firstly, we consider total variation regularization, i.e. d(x, y) = |x − y|:
Assume that Λ is closed under differentiation, i.e., φ is differentiable and φ′

k ∈ Λ. Then, the condition
λ(v,w) ∈ Lipd([a, b]) can be phrased in terms of the constraints −1 ≤ λ′(v,w)(x) ≤ 1 for all x ∈ [a, b],
where λ′(v,w) is the derivative of λ(v,w). Equivalently, this means that the coefficients of the functions
1 + λ′(v,w) and 1− λ′(v,w) are in NΛ. Secondly, we consider Potts regularization, i.e., d(x, y) = Jx = yK.
Since λ(v,w) is a univariate function, and constant terms in the dual variable do not matter, the condition
λ(v,w) ∈ Lipd([a, b]) can be equivalently phrased as 0 ≤ λ(v,w) ≤ 1, see, [136, Ex. 1.17]. Equivalently,
this means that the coefficients of the functions λ(v,w) and 1− λ(v,w) are in NΛ.
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2.1.6.2 Semidefinite Programming and Nonnegative Polynomials

As we have seen in the previous section, an important ingredient for a tractable formulation is the
efficient characterization of nonnegativity of functions in a finite-dimensional subspace Λ ⊂ C(Γ). A
promising choice of Λ in that regards is the space of polynomials. Indeed, the characterization of
nonnegativity of polynomials is a fundamental problem in convex algebraic geometry surveyed in [12]:
Let R[x1, . . . , xm] denote the ring of possibly multivariate polynomials with p ∈ R[x1, . . . , xm]. Then
p =

∑
α∈I pαx

α for monomials xα. Let deg p denote its degree. A key result from real algebraic
geometry is the Positivstellensatz due to [64] and [126] refined in [121] and [103]. It characterizes
polynomials p ∈ R[x1, . . . , xm] that are positive on semi-algebraic sets Γ, i.e. p(x) > 0 for all x ∈ Γ,
where Γ is defined in terms of polynomial inequalities.

Key to such results is a certificate of nonnegativity of the polynomial p that involves sum-of-squares
(SOS) multipliers q, where q is SOS if q(x) =

∑N
i=1 q

2
i (x) for polynomials qi ∈ R[x1, . . . , xm]. For

intervals [a, b], thanks to [12, Thm. 3.72] originally due to [102, Cor. 2.3] we have following result:

Lemma 2.1.25. Let a < b. Then the univariate polynomial p ∈ R[x] is nonnegative on [a, b] if and
only if it can be written as

p(x) =

{
s(x) + (x− a) · (b− x) · t(x) if deg p is even,
(x− a) · s(x) + (b− x) · t(x) if deg p is odd,

(2.36)

where s, t ∈ R[x] are sum of squares. If deg p = 2n, then we have deg s ≤ 2n, deg t ≤ 2n− 2, while if
deg p = 2n+ 1, then deg s ≤ 2n, deg t ≤ 2n.

Remarkably, the above result provides us with explicit upper bounds of the degrees of the SOS
multipliers s and t that are important to derive a practical implementation: Then the SOS constraints
can be formulated in terms of semidefinite and affine inequalities: We adopt [12, Lem. 3.33] and [12,
Lem. 3.34]:

Lemma 2.1.26. A univariate polynomial p ∈ R[x] with deg p = 2n, n ≥ 0 is SOS if and only if there
exists a positive semidefinite matrix Q ∈ R(n+1)×(n+1) such that

z⊤Qz = p(x),

where z⊤ := (1, x, x2, . . . , xn). Furthermore the equality is equivalent to

pk = ⟨An,k, Q⟩ =
∑

1≤i,j≤n+1,
i+j−2=k

Qij , ∀ 0 ≤ k ≤ 2n (2.37)

where An,k ∈ R(n+1)×(n+1), 0 ≤ k ≤ 2n is a Hankel matrix whose (k + 1)th skew-diagonal is 1 and 0
elsewhere.

In analogy to [12, Lem. 3.148] and [12, Lem. 3.149], invoking the results above SDP-duality yields
the following compact representation of (MΛ)+:

Lemma 2.1.27. Let n ≥ 0. For dimMΛ = 2n+ 2, y ∈ (MΛ)+ if and only if

bM0,n(y) ⪰M1,n(y) ⪰ aM0,n(y), (2.38)

for Hankel matrices

Mi,n(y) :=


yi yi+1 . . . yi+n

yi+1 yi+2 . . . yi+n+1

...
...

. . .
...

yi+n yi+n+1 . . . yi+2n

 . (2.39)

For dimMΛ = 2n+ 1, y ∈ (MΛ)+ if and only if

M0,n(y) ⪰ 0, (2.40)
(a+ b)M1,n−1(y)− abM0,n−1(y) ⪰M2,n−1(y). (2.41)
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Proof. By Eq. (2.21) moment vectors of non-negative measures can be directly derived as the dual cone
of non-negative polynomials. Therefore we can use SDP duality for characterizing (MΛ)+:

ι(MΛ)+(y) = ιN◦
Λ
(−y) = sup

x
⟨−y, x⟩ − ιNΛ(x), (2.42)

where x ∈ R2n+2 for the odd case and x ∈ R2n+1 for the even case and N ◦
Λ denotes the polar cone of

NΛ. For notational convenience we will identify matrices emerging from the SOS characterization as
vectors. We denote by An the stacked matrices An,k from Lemma 2.1.26 adapted to vectorized matrices,
i.e. A ∈ R(2n+1)×(n+1)2 . Therefore the SOS constraint of a polynomial p of degree 2n can be stated as

inf
P∈R(n+1)2

p=AnP

ιSn+1
+

(P ) = 0, (2.43)

where Sn+ is the vectorized cone of positive semi-definite matrices in Rn×n. Non-negativity of a
polynomial p on an interval [a, b] can according to Lemma 2.1.25 hence be written as

ιNΛ
(p) = inf

S,T∈Rn2

p=QA(S,T )T

ιS+
(S) + ιS+

(T ), (2.44)

where for the odd case deg p = 2n+ 1 we pick A = (AnAn) and

Q =


−a b
1 −a −1 b

. . . . . . . . . . . .
1 −a −1 b

1 −1

 ∈ R(2n+2)×(2·(2n+1)) (2.45)

and for the even case deg p = 2n we pick A = (AnAn−1) and

Q =



1 −ab
. . . a+ b

. . .
. . . −1

. . . −ab
. . . . . . a+ b

1 −1


∈ R(2n+1)×((2n+1)+(2n−1)). (2.46)

Now we can formulate the moment constraints as

ι(MΛ)+(y) = sup
x
⟨−y, x⟩ − inf

S,T∈Rn2

x=QA(S,T )T

ιS+(S) + ιS+(T ) (2.47)

= sup
x
⟨−y, x⟩ −

((
ιS− × ιS−

)
◦ATQT

)∗
(x) (2.48)

=
(
ιS− × ιS−

) (
−ATQT y

)
(2.49)

=
(
ιS+ × ιS+

) (
ATQT y

)
, (2.50)

where we used the image function rule and S− is the polar cone of S+. We conclude by remarking that
AT exactly yields vectorized Hankel matrices.

2.1.6.3 Convergence of a Piecewise Polynomial Hierarchy

In experiments, we will discretize the dual problem with a piecewise polynomial family of functions.
For intervals, the following proposition shows that either by increasing the number of pieces or the
degree of the polynomial the primal-dual gap can be reduced. In our case we approximate the Lipschitz
dual variable in terms of a Lipschitz spline. As a consequence existing results such as [41, Thm. 2]
do not apply. Instead, we use a construction based on Bernstein-polynomials. Then the result follows
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from [18, Thm. 1].

Proposition 2.1.28. Assume that Γ = [a, b] ⊂ R, a < b, and let the metric d be given by d(x, y) = |x−y|.
Furthermore, let Λ ⊂ C(Γ) be the space spanned by continuous piecewise polynomials on intervals [ti, ti+1]
defined by a regularly spaced grid with nodes given by ti = a + (b − a) · (i − 1)/K, i = 1, . . . ,K + 1.
Then the optimality gap satisfies:

(P)− (dR-D) = O(1/(K ·
√
deg)),

where deg is the degree of the polynomial on each piece.

Proof. We consider the discretized dual problem (dR-D) where KΛ is the set of coefficients corresponding
to 1-Lipschitz piecewise polynomials on [a, b] of degree deg with K pieces. Also recall that we have the
following relations between the dual and primal problems: (dR-D) ≤ (R-D) = (R-P) where the last
equality follows from strong duality Proposition 2.1.6.

Now, let us denote a maximizer of (R-D) as λ̂ ∈ Lipd(Γ)
E . Existence of such a dual maximizer

follows by Proposition 2.1.6. Then, one has for any λ ∈ ΛE :

min
x∈Γ

fv(x)− (Div λ̂)v(x) = min
x∈Γ

fv(x)− (Div λ)v(x)− (Div λ̂)v(x) + (Div λ)v(x)

≤ min
x∈Γ

fv(x)− (Div λ)v(x) + ∥ − (Div(λ̂− λ))v∥∞. (2.51)

This allows us to bound the optimality gap by:

(R-D)− (dR-D) ≤
∑
v∈V
∥ − (Div(λ− λ̂))v∥∞

≤
∑
v∈V
|d(v)| · sup

e∈E
∥λe − λ̂e∥∞

≤ 2|E| · sup
e∈E
∥λe − λ̂e∥∞, (2.52)

where d(v) denotes the degree of the vertex v.
For a L-Lipschitz function f : [0, 1] → R there exists a Bernstein polynomial p : [0, 1] → R with

p(0) = f(0) and p(1) = f(1) such that ∥p− f∥∞ ≤ 5L
4 deg−1/2 [79, Thm. 1.6.1]. By [18, Thm. 1], this

polynomial is L-Lipschitz as well. For each e ∈ E we pick the coefficients of the function λe such that it
approximates the optimal dual variable λ̂e with such a polynomial individually on each interval [ti, ti+1].
Then one obtains an overall 1-Lipschitz polynomial with the following bound:

∥λe − λ̂e∥∞ ≤
5(b− a)
4K
√
deg

. (2.53)

Inserting this into Eq. (2.52) yields via (R-P) = (R-D):

(R-P)− (dR-D) ≤ |E| 5(b− a)
2K
√
deg

, (2.54)

which due to tightness (R-P) = (P) from Proposition 2.1.2 gives the stated O(1/(K ·
√
deg)) rate.

2.1.6.4 A First-Order Primal-Dual Algorithm

We are now ready to describe the algorithm for solving the resulting semidefinite program. We first
consider the case fv ∈ Λ and Λ is the space of univariate polynomials. We propose to use the PDHG [27]
algorithm, as it can exploit the partially separable structure of our SDP. The primal-dual algorithm
optimizes the problem (dR-P) via alternating projected gradient descent/ascent steps applied to the
saddle-point formulation of (dR-P):

min
u∈(PΛ)V

max
λ∈(K∩Λ)E

⟨u, f −DivΛ λ⟩, (2.55)
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Figure 2.3: Primal and dual energies for MAP-inference in a continuous MRF with TV regularization
using a piecewise polynomial hierarchy of dual variables. (a) shows the dual energy for TV. In (b) the
dashed lines correspond to the primal energy at the rounded solution and the solid lines correspond to
the dual energy. (c) shows the gap between the nonconvex primal energy at the rounded solution and
the dual energy for TV regularization. (d) shows the dual energies for Potts regularization. Figure
taken from [Pub2].

which is obtained by expanding the support function in problem (dR-P) and substituting the expres-
sion (2.27) for the lifted biconjugates. Writing F (u) := ⟨u, f⟩+ ι(PΛ)V and G∗(λ) := ι(K∩Λ)E we can
rewrite Eq. (2.55) as

min
u

max
λ

F (u) + ⟨u,DivΛ λ⟩ −G∗(λ). (2.56)

The PDHG algorithm at iteration i+ 1 performs the following steps

λi+1 = proxτpG∗(λi + τp∇Λu
i), (2.57)

ui+1 = proxτdF (u
i − τd DivΛ λ

i+1), (2.58)

ui+1 = ui+1 + (ui+1 − ui), (2.59)

where proxg(x) is the proximal operator proxg(x) := argminx̄ g(x̄) +
1
2∥x̄− x∥

2 of a proper, lsc, convex
function g. In each iteration the algorithm performs a projected gradient ascent step in the dual
λ followed by a projected gradient descent step in the primal variable u. Subsequently it performs
an extrapolation step in the primal. The algorithm converges to a saddle point (û, λ̂) for step sizes
τd, τp ∈ R+ such that τdτp∥∇Λ∥2 < 1. The projections onto the sets (PΛ)

V and (K ∩ Λ)E are separable
and can therefore be carried out in parallel on a GPU using the SDP characterizations derived above.
For practicality, we introduce additional auxiliary variables and linear constraints to decouple the affine
constraints (2.37) and the SDP constraints. The projection operator of the semidefinite cone can then
be solved using an eigenvalue decomposition.

2.1.6.5 Piecewise Polynomial Duals and Nonlinear Lifted Biconjugates

The polynomial discretization can be extended by means of a continuous piecewise polynomial represen-
tation of the dual variables resulting in a possibly more accurate approximation of the dual subspace
Λ. Then, both, nonnegativity and Lipschitz continuity can be enforced on each piece Γk individually.
Continuity of the piecewise polynomial dual variables can be enforced via linear constraints. The
corresponding primal variable y belongs to y ∈ (MΛ1

)+ × · · · × (MΛK
)+. Then the restriction that

y is a moment vector of a probability measure supported on the whole space Γ yields an additional
sum-to-one constraint on the 0th moments 1 =

∑K
k=1 yk,0.

Another issue to address is when fv ̸∈ Λ which results in a nonlinear lifted biconjugate over the
moment-space as in Fig. 2.2.

The formulation which is derived next addresses both: In particular it allows one to choose Λ
independently from fv which can even be discontinuous, as long as fv has a piecewise polynomial
structure. Key to the formulation is to rewrite the inner minimum in the dual formulation (dR-D)
exploiting a duality between nonnegativity and minimization of functions: Let Γ = [a, b], a < b be a
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compact interval. Let a = γ1 < γ2 < γ3 < · · · < γK+1 = b be a sequence of knots, where Γk := [γk, γk+1].
Let Λk be the space of univariate polynomials on Γk with some maximum degree n. Let f : Γ→ R be
a possibly discontinuous lsc piecewise polynomial function defined by f(x) = min1≤k≤K fk(x) + ιΓk

(x)
with fk ∈ Λk. First observe the following duality between nonnegativity and minimization of a lsc
function:

min
x∈Γ

f(x) = max
q∈R

q − ιNΛ
(f − q),

Then we obtain for Aq = (qφ1,0, . . . , qφK,0), where φk,0 ≡ 1 is the constant 1 function on Γk:

min
x∈Γ

f(x) = max
q∈R

q − ιNΛ
(f − q) (2.60)

= max
q∈R

q −
K∑

k=1

ιNΛk
(fk −Akq). (2.61)

Fenchel–Rockafellar duality then yields:

min
x∈Γ

f(x) = min
u∈MΛ1

×···×MΛK

ι{1}(A
∗u) +

K∑
k=1

⟨uk, fk⟩+ ι(MΛk)+
(uk)

= min
u∈(MΛ1)+×···×(MΛK )

+∑K
k=1 uk,0=1

K∑
k=1

⟨uk, fk⟩.

This formulation can be substituted in the dual problem (dR-D) and we obtain

sup
λ∈(Λ1×···×ΛK)E

∑
v∈V

min
u∈(MΛ1)+×···×(MΛK )

+∑K
k=1 uk,0=1

K∑
k=1

⟨uk, fv,k − (DivΛ λ)v,k⟩ −
∑
e∈E

ιK∩Λ(λe). (2.62)

Here the dual variables λ are chosen such that (DivΛ λ)v represents a piecewise polynomial with knots
a = γ1 < γ2 < γ3 < · · · < γK+1 = b such that for each piece we have (DivΛ λ)v,k ∈ Λk.

2.1.7 Numerical Experiments

2.1.7.1 Empirical Convergence Study

In this first experiment we evaluate the local marginal polytope relaxation of the MRF formula-
tion Eq. (P) using a piecewise polynomial hierarchy of dual variables. We choose the graph (V, E)
to be a square grid of size 16 × 16. I.e., the vertices V correspond to the points in the plane with
its x- and y-coordinates being integers in the range 1, 2, . . . , 16, and two vertices are connected by
an edge whenever the corresponding points are at distance 1. We fix a random polynomial data
term fv : [−1, 1] → R of degree 4 at each vertex v by fitting a random sample of data points. To
obtain a high-accuracy solution we solve the primal SDP formulation corresponding to the saddle-point
formulation Eq. (2.62) with MOSEK1. For recovering a primal solution at each vertex v we compute the
mode w.r.t. the 0th moments to select the best interval denoted by k∗ = argmax1≤k≤K(yv)k,0. Then
we compute the mean of the discretized measure corresponding to the (k∗)th interval as uv = (yv)k∗,1.

Figure 2.3 visualizes the primal and dual energies for varying degrees and/or number of pieces of the
dual variable. While the dual energy strictly increases with higher degrees and/or number of pieces the
primal energy is evaluated at the rounded solution and therefore does not strictly decrease in general.
While for TV increasing the degree vs. increasing the number of pieces (for K · deg constant) leads to
similar performance, for Potts, in many situations, increasing the degree leads to larger dual energies,
e.g., consider deg = 4,K = 1 vs. deg = 1,K = 4, red curve vs. blue curve in Fig. 2.3(d). In further
experiments, we observed, that this holds in particular when the structure of the dual variables and the
unaries match, i.e., fv, λe ∈ Λ. Note that for Potts, since the dual variables are uniformly bounded
on Γ and the derivative can be unbounded we drop the continuity constraint which leads to a more

1https://www.mosek.com/products/academic-licenses
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Left image stereo pair Standard k = 30 k = 5, deg = 1 k = 5, deg = 7

rounded 24611.51 rounded 22283.25 rounded 19428.49
dual 16227.80 dual 17472.13

rounded 17510.55 rounded 15027.55 rounded 13380.71
dual 10962.53 dual 12008.45

Figure 2.4: Stereo disparity estimation from a stereo image pair: Left: Standard MRF/OT discretization
implemented using a continuous piecewise linear under-approximation for the unaries and piecewise
linear duals. middle: piecewise linear duals. right: piecewise polynomial duals. The visual appearance
of the solution to the standard MRF/OT discretization shows a strong grid bias. The dual energy gap
increases for increasing the degree and/or the number of pieces. Likewise the energy at the rounded
solution decreases. Figure taken from [Pub2].

compact formulation and larger dual energies.

2.1.7.2 Stereo Matching

In this experiment we consider stereo matching using the anisotropic relaxation Eq. (R-P). We
consider the Motorcycle and the Piano image pairs from the Middlebury stereo benchmark [120]. We
downsample the images by factor 4. The disparity cost term is first calculated using 135 discrete
disparities obtained by shifting the images by the corresponding amount of pixels and comparing the
image gradients. More specifically, given a RGB image I mapping from [1, . . . , ny]× [1, . . . , nx] to a
RGB value in R3, the x and y derivatives are calculated as Ix(i, j) = I(i,min{j + 1, nx})− I(i, j) and
Iy(i, j) = I(min{i+ 1, ny}, j)− I(i, j). For a stereo image pair (I left, Iright) and a disparity l ∈ N the

Dual energies
deg K = 1 K = 3 K = 5

1 14180.08 15733.71 16227.80
2 15052.18 16430.97 16773.75
3 15601.89 16778.87 17055.25
4 15938.92 16998.63 17235.21
5 16191.40 17147.92 17346.49
6 16369.95 17243.47 17422.26
7 16480.22 17308.91 17472.13

Energies rounded
deg K = 1 K = 3 K = 5

1 28982.45 25005.05 22283.26
2 31038.14 22525.12 21049.32
3 28505.41 21500.65 20428.34
4 27255.48 20841.62 20049.04
5 25795.56 20344.17 19764.23
6 24081.51 20032.77 19559.00
7 23142.67 19869.71 19428.50

Table 2.1: Energies for stereo matching Motorcycle. Left: Dual energies. Right: Primal energies at the
rounded solution.
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cost at pixel (i, j) is then calculated as

D(i, j, l) =min{∥I leftx (i,min{j + l, nx})− Irightx (i, j)∥1, 0.1}+ (2.63)

min{∥I lefty (i,min{j + l, nx})− Irighty (i, j)∥1, 0.1}. (2.64)

Then, the cost dataterm is approximated from below in terms of a continuous piecewise cubic polynomial
fv : [1, 135] → R using 30 pieces at each v ∈ V. This dataterm is precomputed once during a
preprocessing and subsequently used as a benchmark for the different methods that we compare. For
the coupling, we use a total variation-like regularization, i.e., fvw(uv, uw) = α|uv − uw| with weight
α = 0.2. In Fig. 2.4 we compare the standard MRF/OT discretization as described in Example 2.1.10
with our framework using piecewise linear and piecewise polynomial dual variables with degree 7 both
with 5 pieces. The standard MRF/OT discretization is equivalent to a piecewise linear approximation
of the data term with piecewise linear duals in our framework. The piecewise linear approximation
is obtained by sampling the piecewise cubic polynomial fv at the interval boundaries of the pieces.
The reported energy for the solution of the standard approach in Fig. 2.4 is also evaluated using the
piecewise linear cost. As the resulting optimization problem is large-scale we solve the saddle-point
formulation Eq. (2.62) with PDHG [27] as described in Section 2.1.6.4 using the GPU-based PDHG
framework prost2. In contrast to the previous experiment which uses a combined mode and mean
rounding procedure we found the plain mean of the discretized measure to produce better results on
real data: More explicitly we recover a solution according to uv =

∑K
k=1 tk(yv)k,0 at each vertex v ∈ V .

In Table 2.1 we compare both, dual and nonconvex primal energies, for a larger hierarchy of dual
subspaces. As predicted by the theory the dual energies are strictly increasing for higher degrees and a
higher number of pieces in the piecewise polynomial dual functions. Furthermore, except for one case,
also the rounded primal energies decrease for higher degrees and numbers of pieces. Overall a significant
drop in the primal-dual gap can be observed vindicating the proposed hierarchy of dual subspaces.

2.1.7.3 Primal Solution Ambiguity

As mentioned before the evaluation of the nonconvex primal energy of primal solutions bears the
inherent difficulty that the found moments on the vertices may not correspond to Dirac measures.
Here we demonstrate this effect on a toy example. Therefor we consider a MRF on two vertices with
quadratic unary data terms f , see Fig. 2.5. Picking a TV regularization scale of 0.1 and recovering the
primal solutions by the first moment of the found solutions yields the solution depicted in Fig. 2.5. This
solution, however, is far from the optimum as the recovered moment vector does not correspond to a
Dirac measure on the left vertex {1}. It is instructive to explain this result in terms of the corresponding
dual variable λ in Fig. 2.6. The dual function tries to penalize the distance between the solutions
on the vertices by an approximating TV regularization by a 0.1-Lipschitz continuous function. This
approximation is exact if we may use affine linear functions with slope 0.1 as dual variables. In view of
(R-D), however, an affine dual variable would cause a new minimum of f{1} + (Div λ){1} at µ{1} = δ1.
Therefore the supremizing λ, as depicted in Fig. 2.7, of (R-D) results in f{1} + (Div λ){1} having
two global minima, as depicted in Fig. 2.7. Hence f{1} + (Div λ){1} has multiple global minimizers
corresponding to convex combinations of Diracs at x{1} = −1 and x{1} = 1 with the depicted solution
being one of them.

2.1.8 Summary
This section has studied functional lifting under the viewpoint of discretizations of a more general
infinite-dimensional formulation involving probability measure related to the original problems. While
focusing on a specific MRF structure, we provided theoretical insights and intuitions which convey to
the more general concept of functional lifting and explain why it can yield more faithful solutions to
the original problem. For the remainder of this work, we will come back to the theoretical concepts
developed in this section and motivate the use of lifting techniques in a broader context.

2https://github.com/tum-vision/prost
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Figure 2.5: Depicted here are the unaries on two vertices of the considered toy problem. The blue dots
are the true solution whereas the red dots correspond to the recovered solution of the relaxed problem.
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Figure 2.6: The dual variable corresponding to the unaries of Fig. 2.5 approximates the TV distance
between the solutions on the vertices (blue dots) quite well as it almost resembles an affine linear
function on the interval between those solutions. Here a dual variable of degree 10 was used.
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Figure 2.7: The resulting inner optimization problem of Eq. (R-D) reveals why the found solution
(red dot) is ambiguous in terms of convex combinations of global solutions: The inner problem
f{1} + (Div λ){1} at vertex {1} has two global minima. Any convex combination of Diracs at x{1} = −1
and x{1} = 1 yields the same dual energy. However only the solution x{1} = −1 corresponds to the true
solution of the nonconvex problem. The existence of the second global minimum of the inner problem
at vertex {1} is best understood in the context of the dual variable in Fig. 2.6: The dual variable tries
to approximate an affine-linear function between the two blue dots in Fig. 2.6 but at the same time
prevents a minimum of the inner problem at vertex {1} having a lower energy than the true global
optimum at x{1} = −1. Therefore the dual variable is “bent” upwards to the right.
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2.2 Fast Convex Relaxations using Graph Discretizations

As discussed in Section 2.1 nonconvex energy minimization problems such as stereo matching can be
solved near-globally optimal by convex lifting approaches. Yet, applying these techniques comes with a
significant computational effort, reducing their feasibility in practical applications. In this section we
discuss the spatial discretization of continuous partitioning problems into a graph structure, generalizing
discretization onto a Cartesian grid. This setup allows us to faithfully work on super-pixel graphs
constructed by SLIC or Cut-Pursuit, massively decreasing the computational effort for lifted partitioning
problems compared to a Cartesian grid, while optimal energy values remain similar. Whereas we
have previously expended effort in increasing the dimensionality of the label space Γ we will now
pursue making the overall problem more efficient by discretizing the spatial domain Ω. We discuss
this methodology in detail and show examples in stereo estimation, where we demonstrate that the
proposed graph discretization can reduce runtime as well as memory consumption of convex relaxations.
This section is based on [Pub5].

2.2.1 Graph Discretizations for Convex Relaxations

2.2.1.1 Problem Description

We consider Eq. (2.1) for a spatial continuous domain Ω ⊂ Rd (e.g. d = 2 for image data) and a
one-dimensional label space, i.e. Γ ⊂ R, and a total variation regularization

E(u) =

∫
Ω

f(x, u(x)) dx+TV(u). (2.65)

Formally, we define the total variation of a function u ∈ L1(Ω,Γ) in this case as

TV(u) = sup

{
−
∫
Ω

u(x) div p(x) dx : p ∈ C1
c (Ω,Rd), ∥p(x)∥2 ≤ 1

}
.

Note that the above definition reduces to TV(u) =
∫
Ω
∥∇u(x)∥dx for smooth u. We define u to be

an element of the space of bounded variation BV(Ω,R) if TV(u) is finite. We can then identify this
value with the mass of the distributional derivative Du, i.e.

∫
Ω
|Du| = TV(u). For Ω ⊂ Rd the bounded

Radon measure Du can be decomposed [5, Thm. 10.4.1] into

Du = ∇u Ld + Cu+ (u+ − u−)⊗ νuHd−1 Ju, (2.66)

where Ld is the Lebesgue measure, Hd−1 denotes the d− 1-dimensional Hausdorff measure, Ju is the
jump set of u, where u+ ̸= u−, i.e. the values at the boundary differ, νu the normal of the boundary
and Cu a remainder Cantor part. In the following we will consider functions u ∈ SBV(Ω,R), which
is the space of functions for which Cu = 0 [3, 91]. We further define the perimeter of a measurable
set P ⊂ Ω, Per(Ω, P ), in turn by the total variation of its characteristic function χP : Ω→ R [26], the
boundary of a set as ∂S = S̄ \ int(S), and the length of the boundary Bk,l = ∂Pk ∩ ∂Pl between two
sets Pk, Pl via

|Bk,l| = Hd−1(Bk,l). (2.67)

These definitions allow us to examine the continuous boundary of shapes, seeFig. 2.8.

2.2.1.2 Graph Discretization

We are interested in solving Eq. (2.65) numerically. To do so we need to translate the problem into the
discrete setting. To take a step from the continuous definitions to a discrete problem, we make use of
the fact that we expect solutions û of total variation regularized problems to be piecewise constant
with a finite number of pieces. Although this might not hold in general for the spatial continuous case,
we end up with a finite number of grid points after discretizations anyways. Therefore we will assume û
from now on to have finitely many constant pieces. A good discretization to a finite setting mimics this
piecewise constant structure exactly. We hence represent the discretization by a graph of candidate
constant sets, the nodes of which represent each separate constant piece and where neighboring pieces
are connected by edges in the graph. After solving the problem on this discrete graph, the final solution
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Figure 2.8: Sketch of the discretization process for a graph-based discretization. Left: The underlying
continuous function u ∈ BVΠ(Ω,R) is pictured in black, with piecewise-constant partitions Π =
{P1, P2, P3, P4} shown in gray as well as the discrete graph structure in blue. Right: A minimal
partitions problem with two potentials is solved on this graph structure. Pictured is the solution û
which now corresponds to a piecewise constant solution (in red and green). Figure adapted from [Pub5].

û can be reassembled by assigning to each constant piece its matched value according to the respective
value of the node that represents it. This setup is sketched in Fig. 2.8.

Note that this is a generalization of a classical discretization to a Cartesian grid. Placing a continuous
function on a pixel grid corresponds to claiming that the function is piecewise-constant on every image
pixel. Hence the boundaries of the solution û to the minimal partitions problem will be a subset of the
boundaries imposed by the image pixels.

To connect the continuous formulation of Eq. (2.65) to a discrete setting we define the discretization
as a finite set Π = {Pv} of candidate sets Pv ⊂ Ω with M = |Π| partitions, such that

⋃
v Pv = Ω,

Pv ∩ Pw = ∅ for all v ̸= w. The continuous function u ∈ SBV(Ω,R) is assumed to be constant on every
partition, so that we can denote its value on partition Pv ∈ Π by a vector cv ∈ R. Thus, u(x) = cv for
every x ∈ Pv ⊂ Ω. The partition Π can be represented by a set of nodes V = {1, . . . ,M} where each
node corresponds to a segment Pv ∈ Π. Furthermore we can describe every boundary between sets Pv

and Pw as Bvw and by that define an edge set E ⊂ V × V as E = {(v, w) ∈ V × V | |Bvw| > 0, v ̸= w}.
Note, that the perimeter of some partition Pv ∈ Π is given by PerPv

=
∑

(v,w)∈E |Bvw|.
Let us assume that our desired solution û, which minimizes Eq. (2.65), is piecewise constant. More

formally, given some partition Π let us write u ∈ SBVΠ(Ω,R) to denote continuous functions in BV
which are piecewise constant on the regions in Π, and assume û ∈ SBVΠ(Ω,R). This implies that the
jump set Ju is a subset of ∪(v,w)∈EBvw and that Ω \ Ju is a subset ∪v∈V Pv, or, in other words, the
discrete partitioning by Π is able to represent the continuous structure of û.

Under the above assumption we can restrict the minimization of E over all functions u ∈ SBV(Ω,R)
to those in SBVΠ(Ω,R) which allows to simplify Eq. (2.65) to a problem in which merely the values cv
inside the piecewise constant regions are the unknowns. Let us discuss the two main components of
Eq. (2.65) separately.
Data Term:
Considering E for any piece-wise constant u ∈ SBVΠ(Ω,R) allows us to rewrite the first term of
Eq. (2.65) as

K(u) =

∫
Ω

f(x, u(x)) dx =

M∑
v=1

∫
Pv

f(x, cv) dx =: KΠ(c) (2.68)

which is the discrete representation KΠ(c) : RM → R of this term that mere depends on the values cv.
Regularization Term:
For the jump regularization, we can write TV(u) for any piecewise constant u ∈ SBVΠ(Ω,R) as (cf.
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[46, 17])

TV(u) =

∫
Ω\Ju

∥∇u∥ dx+

∫
Ju

|u+ − u−| dHd−1 =
∑

(v,w)∈E

∫
Bvw

|cv − cw| dHd−1

=
∑

(v,w)∈E

|cv − cw|
∫
Bvw

dHd−1 =
∑

(v,w)∈E

|Bvw| |cv − cw| =: RΠ(c)

(2.69)

using the fact that
∫
Bvw

dHd−1 = |Bvw|. With this weighting we can define the weighted finite graph
G = (V, E , {|Bvw|}(v,w)∈E) as the discrete graph structure with which any continuous piece-wise constant
function u ∈ SBVΠ(Ω,R) can be represented. We can now define the discretized energy as

EΠ := KΠ +RΠ. (2.70)

Interestingly, the above restriction from the minimization of E over SBV(Ω,R) to its minimization
over SBVΠ(Ω,R) (which translates into the minimization of EΠ over c ∈ CΠ) remains valid as long
as the jump set of the true solution is a subset of the jumps in the partition Π, independent of what
exactly the “super” jump-set of Π is. Let us formalize this result:

Proposition 2.2.1. Assume a discretization Π and its assorted partitions Pv to be given. Let û be a
minimizer to the continuous problem Eq. (2.65) for a given data dependent f . If the jump-set Jû of û
is a subset of the jump set of Π given as the union of boundaries ∪(v,w)∈EBvw, then

min
u∈SBV(Ω,R)

E(u) = min
c∈RM

EΠ(c),

for the discrete energy EΠ = KΠ +RΠ, i.e. the continuous minimum E(û) is equal to the minimum
EΠ(ĉ) of the discrete energy of EΠ.

Proof. We consider the space SBVΠ(Ω,R) of functions in SBV(Ω,R) that are piecewise-constant on
partition Π. From the assumption that Jû is a subset of the jump set of Π, given by

⋃
(v,w)∈E Bvw, we

deduce û ∈ SBVΠ(Ω,RL). For partitions Π′ and Π the relation Π′ ≤ Π, where "≤" refers to the partial
order on partitions meaning Π′ is a finer partition than Π, implies SBVΠ(Ω,R) ⊆ SBVΠ′(Ω,R). The
assumption that the jump set of û is a subset of the jump set of Π hence translates to û ∈ SBVΠ(Ω,R).
For u ∈ SBVΠ(Ω,R) and the according c we already have shown EΠ(c) = E(u).

Hence, û ∈ SBVΠ(Ω,R) allows us to write

min
c∈RM

EΠ (c) = min
ũ∈SBVΠ(Ω,R)

E(ũ)

≤ E (û) = min
u∈SBV(Ω,R)

E(u).

Equality now follows due to SBVΠ(Ω,R) ⊆ SBV(Ω,R) from

min
u∈SBV(Ω,R)

E(u) ≤ min
ũ∈SBVΠ(Ω,R)

E(ũ) = min
c∈RM

EΠ (c) .

Proposition 2.2.1 shows that if the jump set of û is contained in Π, then the exact optimum û
of the continuous problem can actually by found by computing a discrete solution ĉ of the function
FΠ numerically on a finite graph. Practically however, we now need to find some partition Π that
approximates (or ideally overestimates) the true jump set Jû, but consists of a limited number of
segments. On a Cartesian grid, the equivalent operation is to subsample the image, result in the
“superpixel” seen in Fig. 2.9 on the left, which are not well aligned with edges in the images. However
approaches such as SLIC (middle) or Cut-Pursuit (right, in the variant of [131]) are more adept at
finding a superset of candidate partitions.
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2.2.2 Functional Lifting on Graphs
After formulating the problem of minimizing the reduced energy in Eq. (2.70) we can now apply ideas
from functional lifting [89] in order to derive a faithful convex relaxation of Eq. (2.65) combined with
the computational benefits achieved by the super-pixel graph discretization.

We adapt the lifting strategy from [89], see Example 2.1.11, to the discretized grid. For the sake of
clarity we reintroduce the relevant notation in the following. We assume Γ is subdivided by K+1 labels
γ1 < . . . < γK+1 such that Γ = [γ1, γK+1]. For ek the kth unit vector let 1k :=

∑k
i=1 ei. Furthermore

define γαk := αγk+1 + (1− α)γk and 1α
k := α1k + (1− α)1k−1. The lifting strategy now uses the lifting

map φ(γαk ) = 1α
k and Λ according to φ. Analogous to Eq. (2.70), the lifted energy for u ∈ SBV(Ω,MΛ),

where MΛ
∼= RK , in [89] is stated as

Ê = K̂ + R̂ (2.71)

K̂(u) =

∫
Ω

f∗∗Λ (x,u(x)) dx (2.72)

R̂(u) =

∫
Ω\Ju

ψ∗∗(∇u(x)) dx+

∫
Ju

ψ∗∗ ((u+(x)− u−(x))⊗ νu(x)
)
dHd−1(x), (2.73)

where the jump regularizer ψ is defined in a way such that for u ∈ SBV(Ω,R) the total variation of u
is equal to R̂(φ ◦ u) and ψ∗∗ : RM×d → R is given as

ψ∗∗(g) =
K∑
i=1

∥gi∥ · (γi+1 − γi), (2.74)

where gi = mT
i g for M := {m1, . . . ,mK} the dual basis of {φ1, . . . , φK}. Note that the notation of

the lifted energy is different from the notation used in Section 2.1 as we treat the lifted regularizer
slightly differently.

The discretized energy now operates on the lifted space ÊΠ : (MΛ)
M → R. Define fPv

: Γ→ R as
the integral (of functions) fPv

=
∫
Pv
f(x, · ) dx in the sense of fPv

(cv) =
∫
Pv
f(x, cv) dx for c ∈ (MΛ)

M .
The data term is constructed analogously to Eq. (2.68) as

K̂Π(c) =
M∑
v=1

(fPv
)∗∗Λ (cv). (2.75)

Note that it is sensible to apply the lifting to the integrated function fPv
instead of applying it to

f(x, · ) directly as is holds that

(fPv
)∗∗Λ ≥

∫
Pv

f(x, · )∗∗Λ dx (2.76)

and (fPv )
∗∗
Λ hence might be a more faithful convex underapproximation of fPv .

In order to preserve the regularizer in Eq. (2.69) for φ(cv) and φ(cw) we introduce a lifted jump
regularizer ψΠ :MΛ → R such that |cv − cw| = ψΠ(φ(cv)−φ(cw)) in analogy to [89] as

ψΠ(g) =

{
|cv − cw| · |ξ|, if g = (φ(cv)−φ(cw)) · ξ for ξ ∈ R,
∞, else.

(2.77)

Following the lines of [89] the convex biconjugate of ψ is then given as

ψ∗∗
π (g) =

L−1∑
i=1

|gi| · (γi+1 − γi). (2.78)

We can now formulate the lifted energy ÊΠ := K̂Π + R̂Π using the lifted regularization term defined as

R̂Π(c) :=
∑

(v,w)∈E

|Bvw| ψ∗∗
Π (cv − cw). (2.79)
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Figure 2.9: From left to right: Grid Sampling, SLIC Superpixels and L0 Cut-Pursuit. Images from the
Middlebury dataset [120]. The top row shows a fine discretization into the same number of nodes for
every method, whereas the lower row shows a coarse discretization with the same number of nodes for
every method. Figure taken from [Pub5].

The following proposition shows how the lifted energy Ê and the discretized lifted energy ÊΠ relate to
each other for piecewise constant solutions w.r.t. Π:

Proposition 2.2.2. Assume u ∈ SBVΠ(Ω,MΛ) piecewise constant w.r.t. Π and let c ∈ (MΛ)
M

denote the corresponding discrete vector representing the values of u on the elements of Π. Then it
holds ÊΠ(c) ≥ Ê(u).

Proof. Using Eq. (2.76) we immediately can show the desired unequality for the data term

K̂Π(c) =
M∑
v=1

(fPv
)∗∗Λ (cv) ≥

M∑
v=1

∫
Pv

f(x,u(x))∗∗Λ dx = K̂(u). (2.80)

It remains to show the equality of the regularizers R̂ and R̂Π by calculating

R̂(u) =

∫
Ju

ψ∗∗ ((u+(x)− u−(x))⊗ νu(x)
)
dHd−1(x) (2.81)

=
∑

(v,w)∈E

∫
Bvw

ψ∗∗ ((cv − cw)⊗ νu(x)) dHd−1(x) (2.82)

=
∑

(v,w)∈E

∫
Bvw

K∑
i=1

|(cv − cw)i| · ∥νu(x)∥ · (γi+1 − γi) dHd−1(x) (2.83)

=
∑

(v,w)∈E

∫
Bvw

K∑
i=1

|(cv − cw)i| · (γi+1 − γi) dHd−1(x) (2.84)

=
∑

(v,w)∈E

|Bvw| ψ∗∗
Π (cv − cw) (2.85)

= R̂Π(c). (2.86)

2.2.3 Partitioning
The choice of efficient discretization of the input image data is directly related to superpixel approaches,
e.g. [1, 135]. Their general idea is to generically reduce the computational complexity of any (pixel-
based) numerical algorithm, by locally grouping pixels of similar color to larger superpixels. The most
prominent algorithm in current practice is SLIC (Simple Linear Iterative Clustering) [1]. Ideally, the
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superpixel setup should also be chosen by an appropriate minimization procedure that adheres object
edges. However, edge adherence is often costly. An interesting exception is the Cut-Pursuit algorithm
[66, 67], which solves total variation minimization and related problems in a fast sequence of binary
graph cuts, making it competitive as a discretization step and leading to boundaries that better adhere
with minimal partitions. This approach has been successfully applied in practice in such works as
[68, 49].

For implementation reference we replicate some parts of the L0 Cut-Pursuit [66] variant of [131] in
the continuous setting.

To obtain a good trade-off between having as few segments as possible but still constructing a
partition whose jump set is a super set of the jump set of a minimizer û, we exploit a modification of
the Cut-Pursuit (CP) algorithm of [66] discussed in [131]. In [66] Landrieu and Obozinski develop an
approach to solve total variation problems [114, 21] with an alternating method solving graph cuts
and reduced problems on the smaller graphs generated by these cuts. This is an efficient method
with superior performance compared to more classical optimization methods as primal-dual [27] or
Douglas-Rachford [39] algorithms minimizing the total variation problem. The Cut-Pursuit algorithm
can be further extended to a variant minimizing the L0 norm of the graph gradient. This strategy
is able to quickly return approximate solutions to partitioning problems for a relatively high number
of partitions compared. The final number of partitions depends on regularization parameters and is
data-dependent. In [131] Tenbrinck et. al. modify the Cut-Pursuit for L0 by simplifying the algorithm
to alternating between a graph cut and solving the data term separately on each generated partitions.
We will denote this method as L0-Cut-Pursuit (L0-CP). We discuss this algorithm in a continuous
setting with an application specific data fidelity term g, which we will discuss later, resulting in the
following alternating algorithm: For a given function uk ∈ SBV(Ω,R) and some given data g ∈ L1(Ω,R),
one step of the algorithm consists of the two alternating optimization steps. The first one is

Bk+1 =argmin
B⊂Ω

∫
Ω

(uk(x)− g(x))1B(x) dx+ αc

∫
Ω

|D1B |, (2.87)

where 1B denotes a characteristic function on B. This set minimization in Eq. (2.87) is binary and
thus globally solvable. Then compute Πk+1 as the connected components of Bk+1 and, in a second
step, find the mean over every partition,

ck+1
v =

1

|Pv|

∫
Pv

g(x) dx. (2.88)

From the values ck+1
i of the partitions Pi ∈ Πk+1, we can compute the continuous solution via

uk+1 =
∑

Pv∈Πk+1

ck+1
v 1Pv

. (2.89)

A visualization of the L0-CP partitioning is given in Fig. 2.9. In comparison to a naive subsampling on a

Algorithm 1: L0-Pursuit from [131]
Result: Discretization Π
c0 ← mean(g);
Π0 ← {Ω};
while Πk ̸= Πk+1 do

Bk+1 ← Solve Eq. (2.87) for given uk;
Πk+1 ← connected components of Bk+1;
ck+1 ← Solve Eq. (2.88) for given Πk+1;
uk+1 ← Compute as in Eq. (2.89);
k ← k + 1;

end
Π← Πk+1

grid (left) and the SLIC superpixels from [1], the L0-CP generates less uniformly-sized regions, allowing
to combine large constant regions into a single node in a graph and thus being well suited for an efficient
coarsification with accurate edges. Figure 2.10 shows the fidelity of the L0-Cut Pursuit representation
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Figure 2.10: Reduction of the raw image (left) to 6031 nodes in the graph structure (Right). In the
middle we reproject the graph structure onto the original image, visualizing the high fidelity of the
representation, even as the number of nodes reduces to 0.45% of the full grid. Figure taken from [Pub5].

of an RGB image. The reduction 0.45% in comparison to the full grid is hardly noticeable without
zooming in. For further details we refer to [Pub5]. Algorithm 1 shows the steps that this algorithm
follows for further clarification.

2.2.3.1 Implementation

On a discrete image grid generated by sensor data, Eq. (2.87) becomes a binary partitioning on a
discrete graph, which can be solved efficiently by a maxflow algorithm, e.g. Boykov-Kolmogorov [16].
In the end variants, such as L1-Cut-Pursuit [66] or using a real-time Mumford-Shah such as [128] would
also be possible candidates to find a candidate partition, yet we did not find these variants to yield
either sufficient speed or sufficient accuracy around edges to be applicable - for algorithms that do
not explicitly track the partitioning, the partition also has to be computed from the final result in an
additional post-processing step.

We have chosen the search-trees implementation of [15] to solve the discrete version of the binary
partition problem stated in Eq. (2.87). This can be done by reformulating the energy into a flow-graph
structure with two additional terminal nodes sink and source. How to assign the right capacities to
the edges can be taken from [66] or [131]. A significant bottleneck of this straightforward maxflow
implementation is that the computation is difficult to parallelize. Thus, the computational time can
increase drastically for very large images or other input data. For real-time applications with access to
parallelization via GPUs or CPUs with sufficient cores we would recommend porting the entire pipeline
into a single framework and using a primal dual algorithm with diagonal preconditioned stepsizes as in
[97] not only for the minimal partitions problem but also the binary cuts. Especially running both
subroutines on the GPU is potentially highly beneficial for large images. On the other hand, solving the
binary cut with a primal-dual algorithm only approximates the solution in finite time and convergence
criteria have to be chosen carefully to guarantee accurate results. In contrast maxflow termination
criteria are straightforward, which is why we focus on maxflow in this work, aside from its applicability
to weaker hardware with low specifications.

2.2.4 Numerical Evaluation
We consider the experimental setup for stereo matching in Section 2.1.7.2 and apply the piecewise
linear lifting discussed in Section 2.2.2 with L = 8 labels. As the data term used for running the L0-CP
partitioning we use

g(x) = argmin
k

D(x, k) (2.90)

where with a slight abuse of notation D refers to the discrete cost term Eq. (2.63) identifying x
with its pixel coordinates (i, j). This is motivated by the intuition that constant regions of pointwise
minimizing disparities likely induce constant regions of the original data term. Figure 2.11 (top) gives a
visual impression of the approximation behavior of the graph reduction on an exemplary stereo image.
Figure 2.11 (bottom) visualizes the time vs. the achieved energy values of our method compared to the
full stereo matching problem. Note the scale of the x-axis. We can easily reduce the necessary time
and memory costs by using the graph-based discretization. Despite of the significant speedup for stereo
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matching the proposed method still is capable of producing visually pleasing results, as the matching is
still computed with respect to all variables, just with an optimally chosen discretization.

We implement the graph-structured optimization of the stereo matching problem via a primal-dual
algorithm [27] with diagonal preconditioning [97]. The preconditioning allows us to reconcile the step
sizes of the algorithm with the varying sizes of the graph partitions. We use the implementation of
this algorithm from https://github.com/tum-vision/prost, which conducts GPU computations with
a Matlab wrapper. The L0-CP implementation is written in Matlab using just the internal maxflow
implementation.

Figure 2.11: Results on stereo matching baselines. Top: Comparison of full (left) and proposed reduced
(right) matching. Both methods use sublabels [92] between 32 labels. The proposed method uses
Cut-Pursuit (with parameter αc = 0.1, a higher parameter corresponds to fewer vertices in the reduced
graph) to find a reduced graph, amounting to a time reduction by a factor of 4.8, although the matching
quality is near indistinguishable. Bottom: Time reduction and energy levels for different parameters
αc, showing the granular relationship between graph reduction and difference in energy value of the
matching algorithm. Figure taken from [Pub5].
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2.3 High-Dimensional Lifting using Network Priors

In contrast to the ideas of functional lifting elaborated in the previous sections, we will now present a
very different idea based on [Pub6] for higher dimensional reparameterizations of Eq. (2.1). Instead of
increasing the dimensionality by proposing a reformulation of the problem on a higher-dimensional label
space Γ we now reformulate the problem by using a high-dimensional reparameterization . Instead of
optimizing over functions u : Ω→ Γ directly, we parameterize u as u(x) = N (x; θ) for x ∈ Ω and some
parameterizable model N : Ω×Θ→ Γ. We optimize over θ where θ is element of a high-dimensional
space Θ and the overall problem hence becomes

min
θ∈Θ

∫
Ω

f(x,N (x; θ)) dx+R(N ( · ; θ)). (2.91)

On the application side we consider a terahertz imaging reconstruction problem, for further details we
refer to [151, 152]. We measure signals on a two dimensional, discrete grid Ω = {1, . . . , n1}×{1, . . . , n2},
where n1 and n2 are the spatial extents of the pixel gird, and observe a signal for nz many discrete
frequencies ĝ : Ω × Rnz → R. The goal is to find a set of parameters explaining the received signal
for each pixel individually, i.e. we are looking for a function u : Ω → Γ, where Γ is now the space of
parameters explaining ĝ. The quality of the predicted parameters is evaluated by a nonconvex loss
function f : Ω×Γ→ R relating the parameters to the observed signal. We denote the acquired reflected
electric field amplitude and phase f at lateral position x ∈ Ω by ĝ(x, f). This signal is converted into
time domain by a Fourier transform along the z axis, yielding

gt = Fz{ĝ}. (2.92)

In a discrete way gt can be seen as a complex valued tensor gt ∈ Cnx×ny×nz . Equivalently, we may
define g by considering the real and imaginary parts as two separate channels, resulting in a 4D real
data tensor G ∈ Rnx×ny×nz×2.

For each pixel x ∈ Ω we now predict a set of parameters u : x 7→ (ê, µ, σ, ϕ) explaining the
measurements gt(x, · ). Those parameters predict the time dependent signal using the model function

t 7→ ê sinc (σ(t− µ)) exp (−i(ωt− ϕ)) , (2.93)

where ω is some constant. The observed signal and the prediction are then compared using the ℓ2
distance of the discrete measurements resulting in a nonconvex cost f .

2.3.1 Numerical Evaluation
A thorough numerical evaluation of directly optimizing Eq. (2.1) and Eq. (2.91) has been carried out
by my colleague Tak Ming Wong in [Pub6] where we were able to demonstrate numerical advantages
of the proposed reparameterization. Interestingly, it is not obvious why this is possible at all as
reparameterizations can not avoid bad local. A theoretical analysis and discussion of this circumstance
can be found in the next section

2.3.2 Theoretical Aspects of Reparametrizations
In this section we provide a theoretical analysis of the proposed parameterization using neural networks
and show that it implicitly corresponds to a variable metric optimization strategy for problem (2.1).

Neglecting the regularizer, problem (2.1) is in itself not coupled on a pixel level. For the sake of
simplicity consider for now the general uncoupled problem

min
ux∈Γ

∑
x∈Ω

hx(ux), (2.94)

where hx are (non-convex) cost functions at pixel x. Clearly, minimizing (2.94) reduces to minimizing
problem hx for each pixel x as the sum of the cost functions decouples on a pixel level. Therefore
gradient descent on problem (2.94) corresponds to gradient descent on each of the subproblems hx.
Considering a reparameterization of the problem by a continuous function Ñ : Θ → ΓΩ defined as
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Ñ (θ)x := N (x; θ) yields

min
θ∈Θ

(H ◦ Ñ )(θ). (2.95)

for H(u) :=
∑

x∈Ω hx(ux), and thus generalizes (2.91). Although the problems at pixel level can share a
common structure, reformulation (2.95) alone without knowledge of this structure is not advantageous
in general due to the the preservation of local geometries, as stated in the following remark.

Remark 2.3.1. Let û be a local minimizer of H in the range of Ñ . Then each θ̂ ∈ Ñ−1(û) is also a
local minimizer of H ◦ Ñ . Hence the local minima are preserved.

Furthermore assuming differentiability of Ñ , consider a continuous interpretation of gradient descent,
the gradient flow w.r.t H, i.e. a θ(t) s.t. θ′(t) = −∇(H ◦ Ñ )(θ(t)). Then for u(t) := Ñ (θ(t)) it holds

u′(t) = ∇Ñ (θ(t))T θ′(t) (2.96)

= −∇Ñ (θ(t))T∇(H ◦ Ñ )(θ(t)) (2.97)

= −∇Ñ (θ(t))T∇Ñ (θ(t))∇H(u(t)). (2.98)

The matrix M(t) := ∇Ñ (θ(t))T∇Ñ (θ(t)) ∈ R|Ω|×|Ω| is positive semi-definite and hence −M(t)∇H(u(t))
is a descent direction. We hypothesize that for certain problem classes hx as studied in the numerical
experiments the temporally changing implicit gradient preconditioning with M(t) is advantageous
in terms of training dynamics. In particular, networks with a large receptive field such as a U-net
typically yield dense matrices ∇Ñ (θ(t))T∇Ñ (θ(t)) and thus induce changes in predictions ux even
if ∂H

∂ux
= 0. To obtain a deeper understanding of why a neural net reparameterization can indeed be

advantageous it is instructive to consider the findings in [133]. There the studied problems are almost
identically to Eq. (2.95) with the exception that H is even convex in the cases of e.g. denoising and
image inpainting. In those cases, direct optimization of Eq. (2.94) yields undesired trivial solution
whereas the solutions of Eq. (2.95) are of high quality considering that optimization of Eq. (2.95) is not
a learning based approach as no training of the network is involved in the classical sense. The authors
of [133] thus conclude that convolutional neural network architectures themselves induce a strong image
prior on their outputs. The authors dub this phenomenon deep image prior. We hypothesize that
in our terahertz experiments we experience a very similar effect and hence regard our approach as a
generalization of [133] to non-convex functions hx.
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Chapter 3

Beyond Convex Problems: Provable
Guarantees and Expressivity in the
Light of Machine Learning

The optimization strategies discussed in the previous chapter commonly pursue guarantees of some sort
for the obtained solutions. This is rendered possible by the precise mathematical formulations imposing
an assumed structure of the problem. Depending on those assumptions guarantees can be invoked by
tools from optimization theory. However, the less structured the problems are, the more difficult it gets
to derive provable statements. In this section we will examine those aspects in the light of machine
learning related problems. Therefore let us define a basic overview of supervised learning which will be
used in various alterations in the course of this section. Given some data points {x1, . . . , xN} ⊂ X for
some set X and some related target or label information {y1, . . . , yN} ⊂ Y for some set Y supervised
machine learning is concerned with the task of finding a function explaining the data. More formally,
we assume the data {(x1, y1), . . . , (xN , yN )} to be i.i.d. drawn from a joint distribution p(x, y). The
conditional distribution p(y | x) is approximated by a parameterized mapping N : X×Θ→ Y using
some loss function L : Y2 → R. The approximation problem can now be stated as

min
θ∈Θ

E(x,y)∼p [L(N (x; θ), y)] . (3.1)

As the underlying distribution p, however, is unknown in practice only the approximation of the
empirical loss is tractable by taking the mean over the data samples as estimator of the true expectation
by

min
θ∈Θ

1

N

N∑
i=1

L(N (xi; θ), yi). (3.2)

This training procedure, however, does per se not give any guarantees whatsoever that the fitted
function N ( · , θ) is a good approximation w.r.t. p on data that is not contained in the data set. Still
Eq. (3.2) is at the heart of most supervised machine learning approaches which have proven successful in
practice. The reason for the generalization capabilities hence has to be related to the space of functions
{N ( · ; θ) | θ ∈ Θ } considered as candidates. Common models for vision tasks include convolutional
deep neural network and indeed empirical evidence exists that this family of architectures contains
viable approximations to the true unknown image prior p [159, 133].

Despite of the empiric generalization strength provided by those deep architectures they also come
with several disadvantages. For one thing minimizing Eq. (3.1) becomes delicate as the depth and
expressivity of the network architecture increases. Indeed there has been a lot of research on this
field and also effective heuristics like, most prominently, skip connections [51] have been successfully
developed. Still it is evident that complex deep architectures tend to be difficult in terms of optimization
and mostly lack strong theoretical guarantees. This section discusses several aspects related to the
intertwined connection of optimzation and neural network architecture and studies how they effect each
other in terms of a network’s expressivity, theoretical guarantees and privacy concerns in the field of
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federated learning.
Section 3.1 transfers ideas from functional lifting to neural network architecture. Particularly

activation functions are regarded as a certain kind of splines related to the lifting approach in Exam-
ple 2.1.11. Introducing more and more labels to these splines allows an adaptive and seamless increase
of expressivity. Numerical advantages of this strategy are then shown in the domain of continual
learning.

Many applications of machine learning in computer vision tackle inverse problems. In contrast to
machine learning models classical approaches make use of mathematical assumptions and are able to
derive mathematical guarantees of the obtained reconstructions. In Section 3.2 we present an approach
for incorporating learnable models into a framework based on spectral regularization. This method
allows for a learnable data prior and at the same time features provable convergence properties for the
calculated solutions.

In Section 3.3 that, even though hardly any provable properties exist, the optimization of very
high-dimensional problems in the paradigm of machine learning still yields solutions of a certain quality.
This is especially interesting as the studied scenario is relevant for privacy in the context of federated
learning and hence shows that relying on the difficulty of large optimization problems does not protect
against attacks breaching data security.
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3.1 Adaptive Network Architectures Via Linear Splines

The driving force of functional lifting as elaborated in Chapter 2 is the definition of the lifting map φ
increasing the dimensionality of the reformulated problem and hence also yielding lower energy solutions.
This section based on [Pub3] picks up the idea of using a lifting map for increasing dimensionality in a
completely different context showing that the idea of increasing dimensionality and thus also increasing
expressivity of the search space is beneficial as an idea in itself. We will interpret the commonly used
activations functions called ReLU as a certain kind of dimensionality lifting in the hidden layers of
artificial neural networks and extend the idea to spline based activation functions by means of drawing
connections to the sampling based lifting map as used in Example 2.1.10. We evaluate this approach
and show numerical advantages in the context of continual learning.

3.1.1 Problem Description
The power of modern machine learning approaches is based on deeply nested functions that typically
alternate between a linear transfer function and certain non-linearities, often called activation functions.
Rectified linear units (ReLUs), σ(x) = max (x, 0) , are among the most popular non-linearities. However,
they have a significant disadvantage. For all x < 0, the gradient is zero, which means that there is
a loss of information. Therefore, researchers considered variants such as leaky ReLUs, parametrized
ReLUs [50] and maxout units [48]. Interestingly, all aforementioned variants represent instances of
the general class of continuous piecewise linear functions, also known as linear splines. Linear splines
have recently attracted researchers attention, e.g. they form the lifting layers introduced in [93], see
Proposition 1, and have interesting theoretical properties [134]. In this section we investigate the idea
of using linear splines as activation functions and iteratively increase their number of kinks to adapt to
a continuously increasing complexity of incoming training data.

To formalize our approach we follow an approach akin to Example 2.1.11 and define the lifting as a
function mapping from [γ1, γn] to Rn by

φ(x) = αek + (1− α)ek+1 (3.3)

where ek represents the k-th unit vector in Rn and α ∈ [0, 1] such that αγk + (1− α)γk+1 = x. Note
that for x ∈ [γk, γk+1] the k-th and k + 1-th components of φ (x) express the convex combination of
x w.r.t. the labels tk and tk+1. Thus, a spline interpolation between two given function values zk at
tk and zk+1 at tk+1 is given by φ (x)k · zk + φ (x)k+1 · zk+1. More generally, given n function values
z1, . . . , zn we can calculate the linear spline interpolation at some x ∈ [γ1, γn] by

⟨z, φ (x)⟩, (3.4)

where z = (z1, . . . , zn)
T , cf. [93, Proposition 1]. The restriction x ∈ [γ1, γn] can easily be avoided

by linearly extrapolating the linear functions defined on [γ1, γ2] and [γn−1, γn] to the entire real line.
Equation (3.4) is the type of activation function we will consider in this work.

3.1.2 Adaptive Architectures with Lifting Layers
While the work [93] considered the lifting dimension n to be fixed, we consider adapting it by iteratively
adding new labels (kinks). In the particular case of a linear spline, the idea is to refine the spline on an
interval [γk, γk+1] by adding an additional kink γ̃ ∈ [γk, γk+1]. However, this leads to the question of
how to initialize the corresponding function value z̃ of the spline at γ̃?

Assuming the current spline has already been optimized for the given previous number of kinks, a
natural idea is to introduce a new kink without changing the shape of the spline and thereby retaining
the current quality of the predictions: By simply setting z̃ = ⟨z, φ (γ̃)⟩ the lifting function φ̂ on the
new label set γ1 < . . . < γk < γ̃ < γk+1 < . . . < γn and z = (z1, . . . , zk, z̃, zk+1, . . . , zn)

T meets

⟨ẑ, φ̂ (x)⟩ = ⟨z, φ (x)⟩, for x ∈ [γ1, γn] .

The new degree of freedom in form of the parameter z̃ allows the spline to resemble the previous
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one. Therefore, using a descent algorithm, the training performance is provably as good as that of the
previous spline. The effect on the test loss is, of course, highly dependent on the data and the true
function to be approximated as a higher expressivity comes with the danger of overfitting.

Our approach offers the flexibility to easily adapt the architecture in form of resizing the output of
the activation function and the following parameterized layers. Especially the widening of certain layers
has proved successful in [144]. This flexible approach to architecture bears the potential of fitting a
trained network to new data or even a new task.

3.1.3 Experiments

3.1.3.1 1-D Toy Example

To illustrate our idea we consider a simple 1-dimensional regression problem. Suppose we have an
incoming stream of data points x ∈ R together with some targets y = sin(x) + ϵ, where ϵ is additive
Gaussian noise with known standard deviation. To approximate the (unknown) function that computes
y for a given x, we choose a shallow network of the form (3.4) for learnable parameters z, i.e. a linear
spline and adapt the number of labels n, i.e. the number of kinks. For a fixed n and a current fixed set
of training examples the parameters z that minimize

N∑
i=1

(⟨z, φ(xi)⟩ − yi)2,

can be computed via a linear equation. If any of the resulting predictions ⟨z, φ (xj)⟩ differ from their
target yj by more than 3 times the standard deviation of the noise, we introduce a new label (kink), by
first ensuring xi ∈ [γ1, γn] for all training data, and subsequently splitting intervals [γi, γi+1] in half if
necessary. Over the course of this procedure the predicting function learns to adapt to new data and
resembles the true distribution quite well as can be seen in Fig. 3.1.
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Figure 3.1: A stream of incoming data points (increasing number of red x in the above figures) is fitted
by a linear spline (blue) that iteratively increases its number of kinks. Figure taken from [Pub3].

3.1.3.2 Adaptive Lifting in Networks

After the introductory example we apply the adaptive lifting approach in a deeper neural network on
the CIFAR-10 classification problem. As starting point we use the “Deep MNIST for experts model”
by TensorFlow1 and replace all ReLUs by linear splines (represented by lifting layers followed by
1× 1-convolutions resembling (3.4)). In our tests we consider three different networks which share the
same architecture and only differ by the number of labels used for the spline activations. The first two
models have a fixed number of labels where we use 2 for the small model and 10 for large model. The

1https://www.tensorflow.org/tutorials/layers
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Figure 3.2: Comparison of the three described networks during the training procedure. Figure taken
from [Pub3].

adaptive model, in contrast, starts with 2 labels, adds one label after 10 epochs training on 10% of the
data set, two labels after 2 epochs on 30% of the data set, two further labels after 2 epochs on 50%
of the data set and again two further labels after 2 epochs on 70% of the data set. Lastly we train
for 2 epochs on the whole data set. The above training procedure is used for all three networks with
two networks keeping the number of labels/kinks fixed. As depicted in Fig. 3.2 the training loss of the
large network initially drops the fastest while the validation loss remains comparably high, which might
indicate overfitting. In contrast, the adaptive net follows the learning curve of the small architecture
at this first stage. As new data is added to the training set and the number of labels is increased for
the adaptive network it pulls away from the small architecture and uses its newly gained expressivity.
Interestingly, the validation error indicates that the adaptive enhancement of the label set can even
lead to a better generalization compared to network that retained a large number of kinks throughout
the entire training.
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3.2 Learned spectral regularization

A variety of problems in computer vision can be formulated as linear inverse problems, i.e. the task is to
reconstruct image data which explain observations most faithfully under a given linear forward model.
One of the main challenges in linear inverse problems is that many of such problems are ill-posed in the
sense that the solution does not depend on the data continuously. In order to achieve a continuous
dependence on the data a prior information about the space of possible solutions has to be incorporated.
Classically, hand crafted priors are used resulting in convex problems which provable yield continuity
and convergence to the true solutions for vanishing noise levels. Often those solutions can even be
calculated using spectral regularization, i.e. by constructions of pseudoinverse operators using regularized
singular values of the forward operator. Whereas those handcrafted priors yield strong guarantees
needed for robust reconstruction methods, they are often inferior modern learning based priors which,
however, lack those guarantees. In the following we present an approach incorporating a learning based
prior into classical spectral regularization methods thus unifying the benefits of learning based priors
with provable guarantees. This section is based on [Pub1].

3.2.1 Introduction
The classical theory for linear inverse problems considers a linear operator A : X → Y between Hilbert
spaces X and Y and asks the question how to reconstruct an unknown x ∈ X from an observation
yδ ∈ Y given as yδ = Ax+ nδ, where nδ ∈ Y represents noise of magnitude ∥nδ∥ = δ. As soon as A is
a compact linear operator with infinite dimensional range, A admits a singular value decomposition
(SVD)

Ax =
∞∑

n=1

σn⟨x, un⟩vn (3.5)

with singular vectors un ∈ X and vn ∈ Y , and zero being an accumulation point of the corresponding
singular values σn > 0. Thus, the pseudoinverse A† of A becomes

A†y =

∞∑
n=1

1

σn
⟨y, vn⟩un. (3.6)

Since zero is an accumulation point of the σn, the pseudoinverse is unbounded, i.e. discontinuous, see
[115, Thm. 4.18 (e)]. The idea of spectral regularization is to replace the pseudoinverse A† by a family
of operators Rα : Y → X given by

Rαy =

∞∑
n=1

gα(σn)⟨y, vn⟩un (3.7)

in such a way that Rα is a continuous on the entire space Y and that it converges pointwise to A† as
the regularization parameter α goes to zero. A suitable choice of α as a function of δ (a-priori choice)
or of (δ, yδ) (a-posteriori choice) allows to reestablish the continuous dependence of the solution on the
data in the sense that

∥Rαy
δ −A†y∥ → 0 as δ → 0. (3.8)

We investigate learning a function N parameterized by θ such that

gα(σ) = N (σ, δ, yδ; θ) (3.9)

provably satisfies (3.8). We discuss a-priori as well as a-posteriori choices of the regularization,
demonstrate how learning improves the results over classical choices, and illustrate the performance
boost when turning to nonlinear reconstruction operators.
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3.2.2 Related Work
Classically, the spectral regularization approaches have been defined manually, e.g. via functions gα of
the form

gα(σ) =

{
1
σ if σ ≥ α
0 otherwise

, (Truncated SVD)

gα(σ) =
1

σ + α
, (Lavrentiev)

gα(σ) =
σ

σ2 + α
(Tikhonov)

along with suitable parameter choice rules α, see e.g. [40]. The fact that Tikhonov regularization
is equivalent to solving a minimization problem with a quadratic penalty, subsequently gave rise to
nonlinear variational methods for which convergent regularization methods similar to (3.8) can be
guaranteed in different measures of distances, see e.g. [22, 8].

Due to the rise of deep learning techniques many benchmarks are currently dominated by directly
learning a mapping from yδ to a desired solution x via a neural network. Such techniques are, however,
largely lacking a theoretical understanding and rarely even take the noise level δ into account explicitly
(see e.g. [160] for an exception).

Several works have considered hybrid methods between regularization techniques that allow for
detailed analysis and learning based approaches: For instance, [32, 2, 61] use minimization/regularization
algorithms as a template for network architectures, [14, 77, 122, 71] optimize over a learned latent
space that contains mostly realistic solutions, [160] consider regularization by parameterization via
deep neural networks, and algorithmic schemes that replace the proximal operator of a regularizer
with a neural network have been studied in [107, 84]. Such techniques do, however, not correspond to
minimization problems anymore unless the network possesses very specific properties, see [112]. Beyond
this, safeguarding techniques such as [86] or bilevel optimization problems that learn a parameterized
variational regularization (e.g. [118, 33, 23, 45]) are the only way to remain in the regime of energy
minimization methods. The additional difficulty of defining networks in such a way that they act on
continuous functions rather than their fixed discretizations, makes a convergence analysis in the sense
of (3.8) difficult and rare. On a related note, the work [113] considers learning itself as an ill-posed
inverse problem to derive convergence properties similar to (3.8).

3.2.3 Learned Spectral Regularizers
For learning spectral regularizations we consider different types of parameterized functions to represent
gα:

• A-priori parameter choices: We parameterize N (σ, δ, yδ; θ) by two classical approaches, namely a
learned Lavrentiev and a learned Tikhonov regularization given via

NLav(σ, δ; θ) =
1

σ + δpÑ(σ, δ; θ)
, NTik(σ, δ; θ) =

σ

σ2 + δqÑ(σ, δ; θ)
, (3.10)

with p ≤ 1, q ≤ 2, and a network

Ñ(σ, δ; θ) = θscale · sigmoid(FCN(σ, δ; θ)) (3.11)

with a 2-layer fully connected network FCN, and one additional scale parameter θscale. To also
make a comparison to classical (but noise-level optimal) regularization choices, we additionally
drop the dependence of Ñ on σ in (3.11) and refer to these methods as the classical Lavrentiev
and Tikhonov regularizations.

• A-posteriori parameter choice: Many papers have demonstrated great success in directly predicting
a solution x̂ for given data yδ by exploiting spatial regularity of x, e.g. through convolutional
neural networks in imaging applications. While the straight forward application of such networks
lacks any kind of convergence guarantee, such techniques can be converted to a-posteriori spectral
regularizations with convergence guarantees via suitable projectors. Let x̂ = G(yδ; θ) be some
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prediction of a neural network G designed to solve the underlying problem directly. Then the
choice

gα(σn) =
⟨un,G(yδ; θ)⟩
⟨vn, yδ⟩

(3.12)

results in the spectral regularization yielding G(yδ; θ) as a reconstruction result (assuming that
⟨vn, yδ⟩ ̸= 0, and that all σn are different). To ensure convergence, we modify such a prediction
via the following projection

N (σn, δ, y
δ; θ) = proj[

(1−
√
δθl)

σ
σ2+αlδ

,(1+
√
δθu)

σ
σ2+αuδ

] ( ⟨un,G(yδ; θ)⟩
⟨vn, yδ⟩

)
(3.13)

with learnable parameters θl and θu. The projection can be interpreted as remaining in between
a strong and a weak Tikhonov regularization (αu << αl) up to some tolerance with deceases
to zero as δ → 0. For G we choose an architecture loosely motivated by unrolling a proximal
gradient descent algorithm, see Section 3.2.5.

With the above choices, we can state the following convergence result:

Proposition 3.2.1 (Convergent spectral regularization methods). Both learning based approaches, the
a-priori choice (3.10) and the a-posteriori choice (3.13), are convergent regularization methods in the
sense of (3.8) provided that q < 2 and p < 1.

Proof. The techniques used for proving our proposition are well known and follow the arguments in
[40]. For the sake of completeness, we will still give an overview of the proof. The central idea is to
show the following results that ensure a convergent spectral regularization method: For a regularization
of the form (3.7) the following criteria ensure (3.8).

gα(σ) ≤ Cα for all σ > 0, (3.14a)

gα(σ)
α→0→ 1

σ
for all σ > 0, (3.14b)

σgα(σ) ≤ C̃ <∞ for all α, σ > 0, (3.14c)

δCα(δ,yδ)
δ→0→ 0. (3.14d)

The condition (3.14a) ensures that Rα is a continuous linear operator for any fixed δ > 0 because
∥Rα∥ = Cα. For y in the domain of A†, y ∈ D(A†), and yδ with ∥y − yδ∥ ≤ δ we estimate

∥A†y −Rαy
δ∥ = ∥A†y −Rαy +Rαy −Rαy

δ∥ ≤ ∥A†y −Rαy∥+ ∥Rα∥δ. (3.15)

Now using ∥Rα∥ = Cα condition (3.14d) ensures that the second term in the above estimate converges
to zero for δ → 0. As for the first term we find

∥Rαy −A†y∥2 =
∞∑

n=1

(
gα(σn)−

1

σn

)2

|⟨vn, y⟩|2, (3.16)

=
∞∑

n=1

(σgα(σn)− 1)
2 1

σ2
n

|⟨vn, y⟩|2. (3.17)

Due to condition (3.14c) the above sum remains bounded independent of α and therefore is uniformly
convergent, such that summation and a limit of δ → 0 can be exchanged. Finally, condition (3.14b)
ensures that the above term converges to zero.

Left to verify is that our learnable architectures satisfy the conditions (3.14). For both a-priori
choice rules (3.14a) holds due to the sigmoid function being strictly greater than zero for all inputs.
Condition (3.14b) holds for p, q > 0 since the sigmoid function is bounded by 1. Condition (3.14c) holds
with C̃ = 1, and (3.14d) holds if p < 1 and q < 2. Similarly, the projection operator of the a-posteriori
choice (3.13) ensures the conditions (3.14) to be met.
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3.2.4 Numerical Experiments
To compute the solution of inverse problems numerically, we need to discretize any infinite dimensional
problem to a finite one, e.g., by considering a suitable subspace. While this step alone reintroduces
regularity as finite dimensional linear operators can never be discontinuous, the resulting problem still
remains ill-conditioned due to a quick decay of the singular values σn.

To investigate the behavior of our regularization strategy, we consider two inverse problems: The
differentiation as well as deblurring of a function y : [0, 1]→ R, giving rise to the linear operators

Aintx(t) =

∫ t

0

x(s) ds, Ablurx(t) =

∫ 1

0

g(s− t)x(s) ds, (3.18)

for g being a Gaussian kernel. In both cases we discretize x by evaluating it at positions (xn)1≤n≤N

and approximate the integrals of the operators by simple summations. Further details on the training
can be found in Section 3.2.6.
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Figure 3.3: Exemplifying the results of the a-priori parameter choice rules. Left and middle: N (σ, δ; θ)
as a function of σ for two different noise levels δ = 0.2 and δ = 0.1. Right: N (σ, δ; θ) as a function of δ
for a fixed σ = 0.1. Figure taken from [Pub1].

Figure 3.3 (left and middle) shows the learned Tikhonov and Lavrentiev regularizations along with
the classical Tikhonov regularization and a naive approach, in which gα is directly parameterized as a
fully connected network depending on σ and δ, for two different noise levels δ as a function of σ. As we
can see, all learned regularizers choose a Tikhonov-type shape of gα, but allow much larger gα(σ) for σ
on a medium scale. In particular, the learned Tikhonov and direct (naive) learning yield remarkably
similar shapes of gα. Looking at the spectral regularizers for fixed σ = 0.1 (right plot in Fig. 3.3) as a
function of δ, one can see that the Tikhonov, learned Tikhonov and Lavrentiev regularizers yield a
value of gα(σ) = 1/σ for δ = 0. The direct (naive) approach, however, fails to yield such a value, which
directly implies that this method is not a convergent regularization in the sense of (3.8). We conclude
that the choice of the architecture with built-in behavior is crucial for obtaining theoretical guarantees.

Naive Lav. Tik. Learned Lav. Learned Tik. A-Post.

Deblur training 29.58 20.05 27.17 28.59 29.73 31.89
test 29.56 19.98 27.00 28.55 29.67 31.51

Diff. training 28.93 21.35 26.44 28.94 29.27 31.63
test 29.00 21.30 26.45 28.99 29.31 30.74

Table 3.1: PSNR values during training and testing for deblurring and differentiation for various
different regularization strategies.

As for the overall performance of each approach, Section 3.2.4 shows the PSNR values for all
methods over training and testing in both applications for a fixed discretization of N = 50. As we
can see, the learning-based methods clearly outperform the classical approach while still remaining
provably convergent in the sense of Proposition 3.2.1. Moreover, the learned Tikhonov parameterization
is superior to its Lavrentiev counterpart. The naive approach does yield good PSNR values (although
with a high initialization-depending variance), but does not yield a convergent regularization, i.e., does
not yield faithful results for small noise levels. The best results by far are obtained by the learned
a-posteriori approach, which converts a direct prediction of the solution x to a spectral regularization.
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Figure 3.4: Comparison
of noise instances. Figure
taken from [Pub1].

Shown in Fig. 3.4 are two curves of gα = N (·, δ, yδ; θ) for the same y
and δ, such that merely the realizations of the noise differ. As we can see,
the learned a-posteriori choice is non-monotone, does not yield smooth
curves such as in Fig. 3.3, and differs significantly for different realizations
of noisy data. Yet, the PSNR values of this approach is significantly
higher, indicating the importance of non-linear regularizations that vary
for different yδ.

3.2.5 Details on Network Architectures
The fully-connected networks in the learned Lavrentiev and learned
Tikhonov models consist of two fully-connected layers with hidden dimension 10. The naive net-
work consists of 3 fully-connected layers with hidden dimension 2→ 100→ 100→ 1.

For the a-posteriori prediction x̂ = G(yδ; θ) we utilize an iteration inspired by proximal gradient
descent

xi = Gi(xi−1 − τAT (Axi−1 − y); θi) (3.19)

where x0 = 0 and τ = 1. The networks Gi themselves are 3-layer convolutional networks with hidden
layer sizes of 10. For the convolutions we use zero padding and we fix the minimum kernel size such
that the receptive field of the output covers the entire input xi−1.

3.2.6 Training
For each resolution N ∈ {10, 11, . . . , 50} we generate R = 5000 many training examples xi,N by
sampling random superpositions of sine and cosine functions, applying the discretized operator A and
adding zero-mean Gaussian noise of different standard deviations δi,N with δi,N ∈ [0, 0.2] to obtain
simulated data yδi,Ni,N . Then we train our networks in a supervised way via

min
θ

50∑
N=10

1

R

R∑
i=1

∥∥∥∥∥
N∑

n=1

N (σn,N , δi,N , y
δi,N
i,N ; θ)⟨yδi,Ni,N , vn,N ⟩un,N − xi,N

∥∥∥∥∥
2

. (3.20)

The superpositions of sine and cosine functions are realized by

f(x) = cos(ω1x) + γ sin(ω2x) (3.21)

where ω1 and ω2 are drawn from a standard normal distribution and γ is sampled uniformly from the
interval [−1, 1].
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3.3 Inverting Gradients

Many of the previously presented methods provide some sort of guarantees which are often required in
security critical applications. However, many real world problems are notoriously difficult to solve and
are out of the range for algorithms providing robustness guarantees. Some of these problems indeed
seems so difficult that they create the impression that it is practically impossible to find solutions of
sufficient quality. This, however, may create a false sense of security in privacy critical contexts. Based
on [Pub4], in the following we give an example of such false sense of security in an inverse problem
arising from the application of federated learning. More specifically, we aim for the reconstruction of
image data from update steps of neural network parameters and showcase, that even multiple update
steps involving multiple data samples in the context of federated averaging do not prevent from a
possible breach of privacy.

3.3.1 Problem Description
Federated or collaborative learning [34, 123] is a distributed learning paradigm that has recently gained
significant attention as both data requirements and privacy concerns in machine learning continue to
rise [82, 57, 154]. The basic idea is to train a machine learning model, for example a neural network,
by optimizing the parameters θ of the network N using a loss function L and exemplary training data
consisting of input images xi and corresponding labels yi in order to solve

min
θ

1

N

N∑
i=1

L(N (xi; θ), yi). (3.22)

We consider a distributed setting in which a server wants to solve (3.22) with the help of multiple users

Figure 3.5: Reconstruction of an input image x from the gradient ∇θLθ(x, y). Left: Image from the
validation dataset. Middle: Reconstruction from a trained ResNet-18 trained on ImageNet. Right:
Reconstruction from a trained ResNet-152. In both cases, the intended privacy of the image is broken.
Note that previous attacks cannot recover either ImageNet-sized data [163] or attack trained models.
Figure taken from [Pub4].

that own training data (xi, yi). The idea of federated learning is to only share the gradients ∇θLθ(xi, yi)
instead of the original data (xi, yi) with the server, where we define Lθ(xi, yi) := L(N (xi; θ), yi). The
server then subsequently accumulates the gradients in order to update the overall weights. Using
gradient descent the server’s updates could, for instance, constitute

θk+1 = θk − τ
N∑
i=1︸ ︷︷ ︸

server

∇θLθk(xi, yi)︸ ︷︷ ︸
users

. (3.23)

The updated parameters θk+1 are sent back to the individual users. The procedure in Eq. (3.23) is
called federated SGD. In contrast, in federated averaging [63, 82] each user computes several gradient
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descent steps locally, and sends the updated parameters back to the server. Finally, information about
(xi, yi) can be further obscured, by only sharing the mean 1

t

∑t
i=1∇θLθk(xi, yi) of the gradients of

several local examples, which we refer to as the multi-image setting.
Distributed learning of this kind has been used in real-world applications where user privacy is

crucial, e.g. for hospital data [56] or text predictions on mobile devices [13], and it has been stated
that “Privacy is enhanced by the ephemeral and focused nature of the [federated learning] updates”
[13]: model updates are considered to contain less information than the original data, and through
aggregation of updates from multiple data points, original data is considered impossible to recover. In
this work we show analytically as well as empirically, that parameter gradients still carry significant
information about the supposedly private input data as we illustrate in Fig. 3.5. We conclude by
showing that even multi-image federated averaging on realistic architectures does not guarantee the
privacy of all user data, showing that out of a batch of 100 images, several are still recoverable.

As threat model we investigate an honest-but-curious server with the goal of uncovering user data:
The attacker is allowed to separately store and process updates transmitted by individual users, but
may not interfere with the collaborative learning algorithm. The attacker may not modify the model
architecture to better suit their attack, nor send malicious global parameters that do not represent the
actually learned global model. The user is allowed to accumulate data locally in Section 3.3.6.

3.3.2 Overview
In this section we will discuss privacy limitations of federated learning first in an academic setting, where
we prove that the input to any fully connected layer can be reconstructed analytically independent
of the remaining network architecture. The we show that for the case of one image reconstruction of
input data from gradient information is possible for realistic deep and non-smooth architectures with
both, trained and untrained parameters.

Then we consider the implications that the findings have for practical scenarios, finding that
reconstruction of multiple, separate input images from their averaged gradient is possible in practice,
over multiple epochs, using local mini-batches, or even for a local gradient averaging of up to 100
images.

Previous related works that investigate recovery from gradient information have been limited to
shallow networks of less practical relevance. Recovery of image data from gradient information was
first discussed in [96, 95] for neural networks, who prove that recovery is possible for a single neuron or
linear layer. For convolutional architectures, [145] show that recovery of a single image is possible for a
4-layer CNN, albeit with a significantly large fully-connected (FC) layer. Their work first constructs a
“representation" of the input image, that is then improved with a GAN. [163] extends this, showing for a
4-layer CNN (with a large FC layer, smooth sigmoid activations, no strides, uniformly random weights),
that missing label information can also be jointly reconstructed. They further show that reconstruction
of multiple images from their averaged gradients is indeed possible (for a maximum batch size of 8).
[163] also discuss deeper architectures, but provide no tangible results. A follow-up [162] notes that
label information can be computed analytically from the gradients of the last layer. These works make
strong assumptions on the model architecture and model parameters that make reconstructions easier,
but violate the threat model that we consider in this work and lead to less realistic scenarios.

The central recovery mechanism discussed in [145, 163, 162] is the optimization of an Euclidean
matching term. The cost function

argmin
x
||∇θLθ(x, y)−∇θLθ(x, y)||2 (3.24)

is minimized to recover the original input image x from a transmitted gradient ∇θLθ(x, y). This
optimization problem is solved by an L-BFGS solver [78]. Note that differentiating the gradient of L
w.r.t. to x requires a second-order derivative of the considered parameterized function and L-BFGS
needs to construct a third-order derivative approximation, which is challenging for neural networks
with ReLU units for which higher-order derivatives are discontinuous.

A related, but easier problem, compared to the full reconstruction of input images, is the retrieval of
input attributes [85, 44] from local updates, e.g. does a person that is recognized in a face recognition
system wear a hat. Information even about attributes unrelated to the task at-hand can be recovered
from deeper layers of a neural network, which can be recovered from local updates.
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Our problem statement is furthermore related to model inversion [43], where training images are
recovered from network parameters after training. This provides a natural limit case for our setting.
Model inversion generally is challenging for deeper neural network architectures [161] if no additional
information is given [43, 161]. Another closely related task is inversion from visual representations
[38, 37, 81], where, given the output of some intermediate layer of a neural network, a plausible input
image is reconstructed. This procedure can leak some information, e.g. general image composition,
dominating colors. However, depending on the given layer, it only reconstructs similar images if the
neural network is not explicitly chosen to be (mostly) invertible [55]. As we prove later, inversion from
visual representations is strictly more difficult than recovery from gradient information.

3.3.3 Theoretical Analysis: Recovering Images from their Gradients
To understand the overall problem of breaking privacy in federated learning from a theoretical perspective,
let us first analyze the question if data x ∈ Rn can be recovered from its gradient ∇θLθ(x, y) ∈ Rp

analytically.
Due to the different dimensionality of x and ∇θLθ(x, y), reconstruction quality is surely is a question

of the number of parameters p versus input pixels n. If p < n, then reconstruction is at least as difficult
as image recovery from incomplete data [24, 8], but even when p > n, which we would expect in most
computer vision applications, the difficulty of regularized “inversion” of ∇θLθ relates to the non-linearity
of the gradient operator as well as its conditioning.

Interestingly, fully-connected layers take a particular role in our problem: As we prove below, the
input to a fully-connected layer can always be computed from the parameter gradients analytically
independent of the layer’s position in a neural network (provided that a technical condition, which
prevents zero-gradients, is met). In particular, the analytic reconstruction is independent of the specific
types of layers that precede or succeed the fully connected layer, and a single input to a fully-connected
network can always be reconstructed analytically without solving an optimization problem.The following
statement is a generalization of Example 3 in [95] to the setting of arbitrary neural networks with
arbitrary loss functions:

Proposition 3.3.1. Consider a neural network containing a biased fully-connected layer preceded solely
by (possibly unbiased) fully-connected layers. Furthermore assume for any of those fully-connected
layers the derivative of the loss Lθ w.r.t. to the layer’s output contains at least one non-zero entry.
Then the input to the network can be reconstructed uniquely from the network’s gradients.

The proposition is a direct consequence of the following two results:

Proposition 3.3.2. Let a neural network contain a biased fully-connected layer at some point, i.e. for
the layer’s input xl ∈ Rnl its output xl+1 ∈ Rnl+1 is calculated as xl+1 = max{yl, 0} for

yl = Alxl + bl, (3.25)

for Al ∈ Rnl+1×nl and bl ∈ Rn
l+1. Then the input xl can be reconstructed from dLθ

dAl
and dLθ

dbl
, if there

exists an index i s.t. dLθ

d(bl)i
̸= 0.

Proof. It holds that dLθ

d(bl)i
= dLθ

d(yl)i
and dyi

d(Al)i, :
= xT . Therefore

dLθ

d (Al)i, :
=

dLθ

d (yl)i
·

d (yl)i
d (Al)i, :

(3.26)

=
dLθ

d (bl)i
· xTl (3.27)

for (Al)i, : denoting the ith row of Al. Hence xl can can be uniquely determined as soon as dLθ

d(bl)i
̸= 0.

Proposition 3.3.3. Consider a fully-connected layer (not necessarily including a bias) followed by
a ReLU activation function, i.e. for an input xl ∈ Rnl the output xl+1 ∈ Rnl+1 is calculated as
xl+1 = max{yl, 0} for

yl = Alxl, (3.28)
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where the maximum is computed element-wise. Now assume we have the additional knowledge of the
derivative w.r.t. to the output dLθ

dxl+1
. Furthermore assume there exists an index i s.t. dLθ

d(xl+1)i
̸= 0. Then

the input v can be derived from the knowledge of dLθ

dAl
.

Proof. As dLθ

d(xl+1)i
̸= 0 it holds that dLθ

d(yl)i
= dLθ

d(xl+1)i
and it follows that

dLθ

d (Al)i, :
=

dLθ

d (yl)i
·

d (yl)i
d (Al)i, :

(3.29)

=
dLθ

d (xl+1)i
· xTl . (3.30)

Another interesting aspect in view of the above considerations is that many popular network
architectures use fully-connected layers (or cascades thereof) as their last prediction layers. Hence the
input to those prediction modules being the output of the previous layers can be reconstructed. Those
activations usually already contain some information about the input image thus exposing them to
attackers. For example [85] show that these features representations can be mined for image attributes
by training an auxiliary malicious classifier that recognizes attributes that are not part of the main task.
Further interesting in this regard is the possibility to reconstruct the ground truth label information
from the gradients of the last fully-connected layer as discussed in [162]. Finally, Proposition 3.3.1 allows
to conclude that for any classification network that ends with a fully connected layer, reconstructing
the input from a parameter gradient is strictly easier than inverting visual representations, as discussed
in [38, 37, 81], from their last convolutional layer.

3.3.4 A Numerical Reconstruction Method
As image classification networks rarely start with fully connected layers, let us turn to the numerical
reconstruction of inputs: Previous reconstruction algorithms relied on two components; the euclidean
cost function of Eq. (3.24) and optimization via L-BFGS. We argue that these choices are not optimal
for more realistic architectures and especially arbitrary parameter vectors. If we decompose a parameter
gradient into its norm magnitude and its direction, we find that the magnitude only captures information
about the state of training, measuring local optimality of the datapoint with respect to the current
model (for strongly convex functions the gradient magnitude is even an upperbound on distance to
the optimal solution). In contrast, the high-dimensional direction of the gradient can carry significant
information, as the angle between two data points quantifies the change in prediction at one datapoint
when taking a gradient step towards another [29, 62]. As such we propose to use a cost function based
on angles, i.e. cosine similarity, l(x, y) = ⟨x, y⟩/(||x||||y|||). In comparison to Eq. (3.24), the objective is
not to find images with a gradient that best fits the observed gradient, but to find images that lead to a
similar change in model prediction as the (unobserved!) ground truth. This is equivalent to minimizing
the euclidean cost function, if one additionally constrains both gradient vectors to be normalized to a
magnitude of 1.

We further constrain our search space to images within [0, 1] and add only total variation [114] as a
simple image prior to the overall problem, cf. [145]:

arg min
x∈[0,1]n

1− ⟨∇θLθ(x, y),∇θLθ(x, y)⟩
||∇θLθ(x, y)||||∇θLθ(x, y)||

+ αTV(x). (3.31)

Secondly, we note that our goal of finding some inputs x in a given interval by minimizing a quantity
that depends (indirectly, via their gradients) on the outputs of intermediate layers, is related to the task
of finding adversarial perturbations for neural networks [130, 80, 4]. As such, we minimize Eq. (3.31)
only based on the sign of its gradient, which we optimize with Adam [60] with step size decay. Note
though that signed gradients only affect the first and second order momentum for Adam, with the
actual update step still being unsigned based on accumulated momentum, so that an image can still be
accurately recovered.

Applying these techniques leads to the reconstruction observed in Fig. 3.5. We provide a PyTorch
implementation at https://github.com/JonasGeiping/invertinggradients.
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Eucl. Loss +
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Untrained ResNet

Proposed
Untrained ResNet
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Figure 3.6: Baseline comparison for the network architectures shown in [145, 163].We show the first 6
images from the CIFAR-10 validation set. Figure taken from [Pub4].

This attack is, due to the double backpropagation, roughly twice as expensive as a single minibatch
step per gradient step on the objective Eq. (3.31). In this work, we conservatively run the attack
for up to 24000 iterations, with a relatively small step size, as computational costs are not our main
concern at this moment (and we assume that the attacker that is breaking privacy potentially has
order-of-magnitude more computational power than the user), yet we note that smarter step size rules
and larger step sizes can lead to successful attacks with a budget of only several hundred iterations.

Remark 3.3.4 (Optimizing label information). While we could also consider the label y as unknown in
Eq. (3.31) and optimize jointly for (x, y) as in [163], we follow [162] who find that label information can
be reconstructed analytically for classification tasks. Thus, we consider label information to be known.

3.3.5 Single Image Reconstruction from a Single Gradient
Similar to previous works on breaking privacy in a federated learning setting, we first focus in the
reconstruction of a single input image x ∈ Rn from the gradient ∇θLθ(x, y) ∈ Rp. This setting serves
as a proof of concept as well as an upper bound on the reconstruction quality for the multi-image
distributed learning settings we consider in Section 3.3.6. While previous works have already shown
that a break of privacy is possible for single images, their experiments have been limited to rather
shallow, smooth, and untrained networks. In the following, we compare our proposed approach to prior
works, and conduct detailed experiments on the effect that architectural- as well as training-related
choices have on the reconstruction.

Comparison to previous approaches. We first validate our approach by comparison to the
Euclidean loss (3.24) optimized via L-BFGS considered in [145, 163, 162]. This approach can often fail
due to a bad initialization, so we allow a generous setting of 16 restarts of the L-BFGS solver. For a
quantitative comparison we measure the mean PSNR of the reconstruction of 32× 32 CIFAR-10 images
over the first 100 images from the validation set using the same shallow and smooth CNN as in [163],
which we denote as “LeNet (Zhu)” as well as a ResNet architecture, both with trained and untrained
parameters. Table 3.2 compares the reconstruction quality of Euclidean loss (3.24) with L-BFGS
optimization (as in [145, 163, 162]) with the proposed approach. The former works extremely well
for the untrained, smooth, shallow architecture, but completely fails on the trained ResNet. We note
that [145] applied a GAN to enhance image quality from the LBFGS reconstruction, which, however,
fails, when the representative is too distorted to be enhanced. Our approach provides recognizable
images and works particularly well on the realistic setting of a trained ResNet as we can see in Fig. 3.6.
Interestingly, the reconstructions on the trained ResNet have a better visual quality than those of the
untrained ResNet, despite their lower PSNR values according to Table 3.2. Let us study the effect of
trained network parameters in an even more realistic setting, i.e., for reconstructing ImageNet images
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Table 3.2: PSNR mean and standard error for 100 experiments on the first images of the CIFAR-10
validation data set over two different networks with trained and untrained parameters.

Architecture LeNet (Zhu) ResNet20-4
Trained False True False True
Eucl. Loss + L-BFGS 33.11± 2.33 7.84± 0.85 18.61± 0.67 2.44± 0.27
Proposed 23.27± 0.28 21.67± 0.45 19.27± 0.31 14.57± 0.43

(a) Class specific features appearing in reconstructions
of trained networks.

(b) Positional invariance induced by a translational
invariant network architecture.

Figure 3.7: Influences of training and architecture on image reconstruction: Reconstruction in a trained
network (left); Reconstruction in a translational invariant network (right). Figure taken from [Pub4].

from a ResNet-152.
Trained vs. untrained networks. If a network is trained and has sufficient capacity for the

gradient of the loss function Lθ to be zero for different inputs, it is obvious that they can never be
distinguished from their gradient. In practical settings, however, owing to stochastic gradient descent,
data augmentation and a finite number of training epochs, the gradient of images is rarely entirely
zero. While we do observe that image gradients have a much smaller magnitude in a trained network
than in an untrained one, our magnitude-oblivious approach of (3.31) still recovers important visual
information based only on the direction of the trained gradients.

We observe two general effects on trained networks that we illustrate with our ImageNet reconstruc-
tions in Fig. 3.8: First, reconstructions seem to become implicitly biased to typical features of the same
class in the training data, e.g., the more blueish feathers of the capercaillie in the 5th image, or the
large eyes of the owl in Fig. 3.7a. Thus, although the overall privacy of most images is clearly breached,
this effect at least obstructs the recovery of fine scale details or the image’s background. Second, we
find that the data augmentation used during the training of neural networks leads to trained networks
that make the localization of objects more difficult: Notice how few of the objects in Fig. 3.8 retain
their original position and how the snake and gecko duplicate. Thus, although image reconstruction
with networks trained with data augmentation still succeeds, some location information is lost.

Figure 3.8: Single-Image Reconstruction from the parameter gradients of trained ResNet-152. Top
row: Ground Truth. Bottom row: Reconstruction. We check every 1000th image of the ILSVRC2012
validation set. The amount of information leaked per image is highly dependent on image content -
while some examples like the two tenches are highly compromised, the black swan (ironically) leaks
almost no usable information. Noticeable is also the loss of positional information in several images.
Figure taken from [Pub4].
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Translational invariant convolutions. Let us study the ability to obscure the location of objects
in more detail by testing how a conventional convolutional neural network, that uses convolutions
with zero-padding, compares to a provably translationally invariant CNN, that uses convolutions with
circular padding. As shown in Fig. 3.7b, while the conventional CNN allows for recovery of a rather high
quality image (left), the translationally invariant network makes the localization of objects impossible
(right) as the original object is separated. As such we identify the common zero-padding as a source of
privacy risk.

Looking at the reconstruction results we obtain from ResNets with different depths, the proposed
attack degrades very little with an increased depth of the network. In particular, as illustrated in
Fig. 3.8, even faithful ImageNet reconstructions through a ResNet-152 are possible.

3.3.6 Distributed Learning with Federated Averaging and Multiple Images
So far we have only considered recovery of a single image from its gradient and discussed limitations
and possibilities in this setting. We now turn to strictly more difficult generalized setting of federated
averaging [82, 83, 106] and multi-image reconstruction, to show that the proposed improvements
translate to this more practical case as well, discussing possibilities and limits in this application.

Instead of only calculating the gradient of a network’s parameters based on local data, federated
averaging performs multiple update steps on local data before sending the updated parameters back to
the server. Following the notation of [82], we let the local data on the user’s side consist of n images.
For a number E of local epochs the user performs n

B stochastic gradient update steps per epoch, where
B denotes the local mini-batch size, resulting in a total number of E n

B local update steps. Each user i
then sends the locally updated parameters θ̃k+1

i back to the server, which in turn updates the global
parameters θk+1 by averaging over all users.

1 step, τ =1e-4 100 steps, τ =1e-4 5 steps, τ =1e-1 5 steps, τ =1e-2

19.77dB 19.39dB 4.96dB 23.74 dB

Figure 3.9: Illustrating the influence of the number of local update steps and the learning rate on the
reconstruction: The left two images compare the influence of the number of gradient descent steps for a
fixed learning rate of τ =1e-4. The two images on the right result from varying the learning rate for a
fixed number of 5 gradient descent steps. PSNR values are shown below the images. Figure taken from
[Pub4].

We empirically show that even the setting of federated averaging with n ≥ 1 images is potentially
amenable for attacks. To do so we try to reconstruct the local batch of n images by the knowledge of
the local update θ̃k+1

i − θk. In the following we evaluate the quality of the reconstructed images for
different choices of n, E and B. We note that the setting studied in the previous sections corresponds
to n = 1, E = 1, B = 1. For all our experiments we use an untrained ConvNet.

Multiple gradient descent steps, B = n = 1, E > 1:
Figure 3.9 shows the reconstruction of n = 1 image for a varying number of local epochs E and different
choices of learning rate τ . Even for a high number of 100 local gradient descent steps the reconstruction
quality is unimpeded. The only failure case we were able to exemplify was induced by picking a high
learning rate of 1e-1. This setup, however, corresponds to a step size that would lead to a divergent
training update, and as such does not provide useful model updates.

Multi-Image recovery, B = n > 1, E = 1:
So far we have considered the recovery of a single image only, and it seems reasonable to believe that
averaging the gradients of multiple (local) images before sending an update to the server, restores the
privacy of federated learning. While such a multi-image recovery has been considered in [163] for B ≤ 8,
we demonstrate that the proposed approach is capable of restoring some information from a batch of 100
averaged gradients: While most recovered images are unrecognizable (as shown in Fig. 3.22), Fig. 3.10
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Figure 3.10: Information leakage from the aggregated gradient of a batch of 100 images on CIFAR-100
for a ResNet32-10. Shown are the 5 most recognizable images from the whole batch. Although most
images are unrecognizable, privacy is broken even in a large-batch setting. Figure taken from [Pub4].

Table 3.3: PSNR statistics for various federated averaging settings, averaged over experiments on the
first 100 images of the CIFAR-10 validation data set.

1 epoch 5 epochs
4 images 8 images 1 image 8 images

batchsize 2 batchsize 2 batchsize 8 batchsize 1 batchsize 8
16.92± 2.10 14.66± 1.12 16.49± 1.02 25.05± 3.28 16.58± 0.96

shows the 5 most recognizable images and illustrates that even averaging the gradient of 100 images
does not entirely secure the private data. Most surprising is that the distortions arising from batching
are non-uniform. One could have expected all images to be equally distorted and near-irrecoverable,
yet some images are highly distorted and others only to an extend at which the pictured object can
still be recognized easily, which demonstrates that privacy leaks are conceivable even for large batches
of image data.

Note that the attacker in this scenario only has knowledge about the average of gradients, however
we assume the number of participating images to be known to the server. The server might request
this information anyway (for example to balance heterogeneous data), but even if the exact number of
images is unknown, the server (which we assume to have significantly more compute power than the
user) could run reconstructions over a range of candidate numbers, given that the number of images is
only a small integer value and then select the solution with minimal reconstruction loss.

General case
We also consider the general case of multiple local update steps using a subset of the whole local data
in each mini batch gradient step. An overview of all conducted experiments is provided in Table 3.3.
For each setting we perform 100 experiments on the CIFAR-10 validation set. For multiple images in a
mini batch we only use images of different labels avoiding permutation ambiguities of reconstructed
images of the same label. As to be expected, the single image reconstruction turns out to be most
amenable to attacks in terms of PSNRs values. Despite a lower performance in terms of PSNR, we still
observe privacy leakage for all multi-image reconstruction tasks, including those in which gradients in
random mini-batches are taken. Comparing the full-batch, 8 images examples for 1 and 5 epochs, we
see that our previous observation that multiple epochs do not make the reconstruction problem more
difficult, extends to multiple images. We provide a qualitative assessment of reconstructed images of all
experimental settings of Table 3.3 in Section 3.3.10.4
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5.9e-1 29.37dB 4.6e+2 26.62dB 1.8e+2 27.37dB 1.5e+2 18.27dB

Figure 3.11: Label flipping. Images can be easily reconstructed when two rows in the parameters of the
final classification layer are permuted. Below each input image is given the gradient magnitude, below
each output image its PSNR. Compare these results to the additional examples in Fig. 3.13. Figure
taken from [Pub4].

3.3.7 Variations of the Threat Model
In this work we consider a honest-but-curious threat model as discussed in the introduction. Straying
from this scenario could be done primarily in two ways: First by changing the architecture, and second
by keeping the architecture non-malicious, but changing the global parameters sent to the user.

3.3.7.1 Dishonest Architectures

So far we assumed that the server operates under an honest-but-curious model, and as such would
not modify the model maliciously to make reconstruction easier. If we instead allow for this, then
reconstruction becomes nearly trivial: Several mechanisms could be used: Following Proposition 3.3.1,
the server could, for example, place a fully-connected layer in the first layer, or even directly connect the
input to the end of the network by concatenation. Slightly less obvious, the model could be modified
to contain reversible blocks [28, 55]. These blocks allow the recovery of input from their outputs.
From Proposition 3.3.1 we know that we can reconstruct the input to the classification layer, so this
allows for immediate access to the input image. If the server maliciously introduces separate weights or
sub-models for each batch example, then this also allows for a recovery of an arbitrarily large batch of
data. Operating in a setting, where such behavior is possible would require the user (or a provider
trusted by the user) to vet any incoming model either manually or programmatically.

3.3.7.2 Dishonest Parameter Vectors

However, even with a fixed honest architecture, a malicious choice of global parameters can significantly
influence reconstruction quality. For example, considering the network architecture in [163] which does
not contain strides and flattens convolutional features, the dishonest server could set all convolution
layers to represent the identity [47], moving the input through the network unchanged up to the
classification layer, from which the input can be analytically computed as in Proposition 3.3.1. Likewise
for an architecture that contains strides to a recognizable lower resolution [145], the input can be
recovered immediately albeit in a smaller resolution when the right parameter vector is sent to the user.

Such a specific choice of parameters is however likely detectable. A subtler approach, as least
possible in theory, would be to optimize the network parameters themselves that are sent to the user so
that reconstruction quality from these parameters is maximized. While such an attack is likely to be
difficult to detect on the user-side, it would also be very computationally intensive.

Label flipping. There is even a cheaper alternative. According to Section 3.3.5, very small gradient
vectors may contain less information. A simple way for a dishonest server to boost these gradients is
to permute two rows in the weight matrix and bias of the classification layer, effectively flipping the
semantic meaning of a label. This attack is difficult to detect for the user (as long as the gradient
magnitude stays within usual bounds), but effectively tricks him into differentiating his network w.r.t
to the wrong label. Fig. 3.11 shows that this mechanism can allow for a reliable reconstruction with
boosted PSNR scores, as the effect of the trained model is negated.

3.3.8 Experimental Details

3.3.8.1 Federated Averaging

The extension of Eq. (3.31) to the case of federated averaging (in which multiple local update steps are
taken and sent back to the server) is straightforward. Notice first, that given old parameters θk, local
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Figure 3.12: Network architecture ConvNet, consisting of 8 convolution layers, specified with corre-
sponding number of output channels. Each convolution layer is followed by a batch normalization layer
and a ReLU layer. D scales the number of output channels and is set to D = 64 by default. Figure
taken from [Pub4].

Table 3.4: Ablation Study for the proposed approach for a trained ResNet-18 architecture, trained
on CIFAR-10. Reconstruction PSNR scores are averaged over the first 10 images of the CIFAR-10
validation set (Standard Error in parentheses).

Basic Setup 20.12 dB (±1.02)
L2 Loss instead of cosine similarity 15.13 dB (±0.70)

Without total variation 19.96 dB (±0.75)
With L-BFGS instead of Adam 5.13 dB (±0.50)

updates θk+l, learning rate τ , and knowledge about the number of update steps2, the update can be
rewritten as the average of updated gradients.

θk+l = θk − τ
l∑

m=1

∇θk+mLθk+m(x, y) (3.32)

Subtracting θk from θk+l, we simply apply the proposed approach to the resulting average of updates:

arg min
x∈[0,1]n

1−
⟨
∑l

m=1∇θk+mLθk+m(x, y),
∑l

m=1∇θk+mLθk+m(x, y)⟩
||
∑l

m=1∇θk+mLθk+m(x, y)||||
∑l

m=1∇θk+mLθk+m(x, y)||
+ αTV(x). (3.33)

Using automatic differentiation, we backpropagate the gradient w.r.t to x from the average of update
steps.

3.3.8.2 ConvNet

We use a ConvNet architecture as a baseline for our experiments as it is relatively fast to optimize,
reaches above 90% accuracy on CIFAR-10 and includes two max-pooling layers. It is a rough analogue
to AlexNet [65]. The architecture is described in Fig. 3.12.

2We assume that the number of local updates is known to the server, yet this could also be found by brute-force, given
that l is a small integer.
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Architecture LeNet (Zhu) ResNet20-4
Trained False True False True

TV 10−2 10−3 0 10−2

Table 3.5: TV regularization values used for the proposed approach in the baseline experiments of
Section 5.

3.3.8.3 Ablation Study

We provide an ablation for proposed choices in Table 3.4. We note that two things are central, the
Adam optimizer and the similarity loss. Total variation is a small benefit, and using signed gradients is
a minor benefit.

3.3.9 Hyperparameter Settings
In our experiments we reconstruct the network’s input using Adam based on signed gradients as
optimization algorithm and cosine similarity as cost function as described in Section 3.3.4. It is
important to note that the optimal hyperparameters for the attack depend on the specific attack
scenario - that the attack fails with default parameters is no guarantee for security. We always initialize
our reconstructions from a Gaussian distribution with mean 0 and variance 1 (Note that the input data
is normalized as usual for all considered datasets) and set the step size of the optimization algorithm
within [0.01, 1]. We use a smaller step sizes of 0.1, for the wider and deeper networks in Section 3.3.5
and a larger step sizes of 1 for the federated averaging experiments in Section 3.3.6, with 0.1 being the
default choice. The optimization runs for up to 24000 iterations. The step size decay is always fixed,
occurring after 3

8 , 5
8 and 7

8 of iterations and reducing the learning rate by a factor of 0.1 each time.
The number of iterations is a generally conservative estimate, privacy can often be broken much earlier.

We tweak the total variation parameter depending on the specific attack scenario, however note that
its effect on avg. PSNR is mostly minor as seen in Table 3.4. When not otherwise noted we default to
a value of 0.01.

Remark 3.3.5 (Restarts). Generally, multiple restarts of the attack from different random initializations
can improve the attack success moderately. However they also increase the computational requirements
significantly. To allow for quantitative experimental evaluations of multiple images, we do not consider
restarts in this work (aside from Section 3.3.5 where we apply them to improve results of the competing
LBFGS solver) - but stress that an attacker with enough resources could further improve his attack by
running it with multiple restarts.

3.3.9.1 Comparison to Previous Approaches

For comparison with baselines in Section 3.3.5, we re-implement the network from [163], which we dub
LeNet (Zhu) in the following, and additionally run all experiments for the ResNet20-4 architecture.
We base both the network and the approach on code from the authors of [163], 3. For the LBFGS-L2
optimization we use a learning rate of 1e− 4 and 300 iterations. For the ResNet experiments we use
the generous amount of 8 restarts and for the faster to optimize LeNet (Zhu) architecture we use the
even higher number of 16 restarts. All experiment conducted with the proposed approach only use one
restart, 4800 iterations, a learning rate of 0.1 and TV regularization parameters as detailed in Table 3.5.
Note that in the described settings the proposed method took significantly less time to optimize than
the LBFGS optimization.

3.3.9.2 Spatial Information

The experiments on spatial information are performed on the ConvNet architecture with D = 64
channels.

3https://github.com/mit-han-lab/dlg
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Number of epochs E 1 1 1 5 5
Number of local images
n

4 8 8 1 8

Mini-batch size B 2 2 8 1 8
TV 10−6 10−6 10−4 10−4 10−4

Table 3.6: Total variation weights for the reconstruction of network input in the experiments in Sec. 4.2

3.3.9.3 Setting for Experiments in Section 3.3.6

For the five cases consider in Table 2 we consider an untrained ConvNet, a learning rate of 1, 4800
iterations, one restart and the TV regularization parameters as given in Table 3.6. Each of the 100
experiments uses different images, i.e. each experiments uses the images of the CIFAR-10 validation
set following the ones used in the previous experiment. As multiple images of the same label in one
mini-batch cause an ambiguity in the ordering of images w.r.t. that label, we do not consider that case.
If an image with an already encountered label is about to be added to the respective mini-batch we
skip that image and use the next image of the validation set with a different label.

3.3.10 Additional Examples

3.3.10.1 CIFAR-10 Examples

Following the empirical study from Section 3.3.5 showing a slightly less visual quality of reconstructions
obtained from trained networks in comparison to untrained networks, we conjecture that the gradient
magnitude of images influences the reconstruction quality. Figure 3.13 shows additional “extreme”
examples for CIFAR-10, reconstructing the image with lowest and the image with largest gradient
magnitude for the training and validation set of CIFAR-10 for trained and untrained ConvNet and
ResNet20-4 models. Indeed we can see from the examples of the trained ConvNet that extremely small
magnitudes seem to negatively effect the results. However, we also observe that some images, even in
the training data set, boast high gradient magnitudes and tend to be more susceptible to reconstruction
of semantic image features. The presence of high gradient magnitudes in the training data images
might be partly attributed to the stochastic optimization procedure which never evaluates the loss on
the whole data set in the course of the training.

3.3.10.2 ImageNet Examples

Figure 3.14 shows further instructive examples of reconstructions for ImageNet validation images
for a trained ResNet-18 (the same setup as Fig. 3.8) from Section 3.3.5. We show a very good
reconstruction (German shepherd), a good, but translated reconstruction (giant panda) and two failure
cases (ambulance and flower). For the ambulance, for example, the actual writing on the ambulance car
is still hidden. For the flower, the exact number of petals is hidden. Also, note how the reconstruction
of the giant panda is much clearer than that of the tree stump co-occurring in the image, which we
consider an indicator of the self-regularizing effect described in Section 3.3.5.

Figure 3.15 and Fig. 3.16 show more examples. We note that the examples in these figures and in
Fig. 3.8 are not handpicked, but chosen neutrally according to their ID in the ILSVRC2012, ImageNet,
validation set. The ID for each image is obtained by sorting the synset that make up the dataset in
increasing order according to their synset ID and sorting the images within each synset according to
their synset ID in increasing order. This is the default order in torchvision.
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Trained ConvNet
Images from the training set Images from the validation set

4.5e-21 18.04dB 2.5e+02 14.85dB 9.8e-17 14.60dB 5.5e+02 30.26dB

Trained ResNet20-4
Images from the training set Images from the validation set

5.3-06 15.21dB 1.0e+2 19.75dB 1.2e-5 13.84dB 4.6e+2 15.53dB

Untrained ConvNet Untrained ResNet20-4

6.1e-1 31.36dB 6.7e-1 31.16dB 3.8e+1 21.90dB 4.5e+1 20.23dB

Figure 3.13: Reconstruction of images for the trained ConvNet model (Top) and ResNet20-4 (middle).
We show reconstructions of the worst-case image and best case image from CIFAR-10, based on
gradient magnitude for both the training and the validation set. Below each input image is given the
gradient magnitude, below each output image its PSNR. The bottom row shows reconstructions for the
worst-case examples for untrained models. Figure taken from [Pub4].

Figure 3.16: Additional single-image reconstruction from the parameter gradients of trained ResNet-152.
Top row: Ground Truth. Bottom row: Reconstruction. These are images 500, 1500, 2500, 3500, 4500.
Figure taken from [Pub4].

3.3.10.3 Multi-Image Recovery

For multi-image recovery of Section 3.3.6, we show the full set of 100 images in Fig. 3.22, we recommend
to zoom in to a digital version of the figure. While most of the images are hardly or not recognizable
we point out that the resulting visual quality of the reconstructed images also greatly depends on the
initialization of the optimization. We repeated the experiment in several runs and found that in different
runs some images are more recognizable than in the other runs. This, however, again shows that failure
in optimization in one run for certain images does not guarantee that privacy can be preserved in other
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Figure 3.14: Additional qualitative ImageNet examples, failure cases and positive cases for a trained
ResNet-18. Images taken from the ILSVRC2012 validation set. Figure taken from [Pub4].

Figure 3.15: Additional single-image reconstruction from the parameter gradients of trained ResNet-152.
Top row: Ground Truth. Bottom row: Reconstruction. Figure 3.8 showed images 0000, 1000, 2000,
3000, 4000, 5000, 6000, 7000 from the ILSVRC2012 validation set. These are images 8000-12000. Figure
taken from [Pub4].
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configurations. Also as future improvements in attacks of course pose critical source of privacy breech.

3.3.10.4 General Case

In the following we provide the reconstructed images from the experiments on the general case from
Section 3.3.6. In contrast to the reported PSNR values, the reconstructed images themself allow for a
better evaluation of how much visual information is preserved in the different settings of the federated
averaging case.

In Fig. 3.17 we first show the results of reconstructing only one local image with 5 epochs (n = 1,
E = 5) for each of the first 100 images of the CIFAR-10 validation data set. Basically all of the
reconstructed images convey a considerable amount of semantic information about the original setting
rendering this setting especially amenable to our attack.

Figure 3.18 shows the results of the scenario of n = 4 local images for the first 10 batches of 4
images in the CIFAR-10 validation data set. While most of the images are still recognizable the overall
visual quality of the reconstruction suffers from the increased amount of local images. Note that in
some batches images are dropped in order to avoid having images with the same semantic label in the
same batch thus avoiding ambiguity in the reconstruction.

In Fig. 3.19 we again increase the number of local images to n = 8. Shown are the results for the
first 10 batches of 8 images. Images with high contrast as for instance the black plane in front of the
bright sky tend to still be easily discernible. Many images are, however, hard to identify as a result
of the decreased visual quality of the reconstruction due to the increased batch sizes. In Fig. 3.20 we
change the mini-batch size from B = 2 to B = 8. The visual quality of the reconstruction now seems to
be slightly worse, the leaked semantic information, however, remains roughly the same. Increasing the
number of local epochs from E = 1 to E = 5 in Fig. 3.21 interestingly improves the overall quality of
the reconstructions.

Overall the best mechanism for making attacks harder in the federated averaging scenario turns out
to be increasing the number of local images n. Changing the mini-batch size B hardly seems to affect
the results. Increasing the number of local epochs E, interestingly, even seems to be beneficial for the
obtained reconstructions.

Figure 3.18: Results of the first ten experiments for E = 1, n = 4, B = 2. Figure taken from [Pub4].
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Figure 3.17: Results of the first 100 experiments for E = 5, n = 1, B = 1. Figure taken from [Pub4].
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Figure 3.19: Results of the first ten experiments for E = 1, n = 8, B = 2. Figure taken from [Pub4].
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Figure 3.20: Results of the first ten experiments for E = 1, n = 8, B = 8. Figure taken from [Pub4].
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Figure 3.21: Results of the first ten experiments for E = 5, n = 8, B = 8. Figure taken from [Pub4].
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Figure 3.22: Full results for the batch of CIFAR-100 images. Same experiment as in Fig. 3.10. The top
10 rows show the input images and the bottom 10 rows the reconstructed images in the same order.
Figure taken from [Pub4].
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Chapter 4

Conclusion

This thesis encompasses a wide range of strategies for tackling optimization problems of various nature
resulting in optimization strategies with different characteristics depending on the problem. Especially
for model based approaches robust methods can be developed. We have shown how ideas from functional
lifting are especially suitable for a wide range of nonconvex variational problems in computer vision
making the problems amenable for tools from convex optimization. This in turn makes the proposed
methods more stable and less dependent on initialization. Developing more advanced methods of convex
relaxations applicable beyond the scope of MRF inference problems and to more complex regularizes
remains an open question for future approaches.

Analyzing the concepts of functional lifting reveals that the proposed approaches are always a trade
off between runtime efficiency and tighter guarantees. We have furthermore seen that this tradeoff
persists also outside of the functional lifting setting in a wide variety of problems. Especially relevant
in the light of the extensive emergence of machine learning models are guarantees for data driven
applications particularly in security critical domains. We have shown how guarantees can be enforced for
dedicated learnable models in the setting of linear inverse problems. However, such provable results are
an exception and remain a major challenge for upcoming developments in the field of machine learning.
As a negative result we highlighted the potential security issues in the context of federated learning
where even large and hence seemingly safe network architectures fail to obfuscate image information
contained in the network’s gradients. Imposing robustness guarantees upon data driven approaches will
be one of the paramount challenges in future research.
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