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Zusammenfassung

Das Thema Wearable Computing erlebte in den letzten drei Jahrzehnten eine beeindru-
ckende Entwicklung. Bisher werden Wearables meist als Einzelgeräte am Handgelenk
getragen. In letzter Zeit entwickeln sie sich jedoch zunehmend zu einem Konglomerat
gleichzeitig an verschiedenen Körperstellen platzierter Einheiten, die mit spezialisierten
Sensoren komplementäre Perspektiven erfassen können. Die Anwendung moderner Tech-
niken der Sensorfusion und des maschinellen Lernens auf die Messdaten mehrerer Geräte
ermöglicht Rückschlüsse auf das Gesamtbild des Nutzers. Die so erreichte Genauigkeit ist
die der eines einzelnen Sensors überlegen. Sie leiden jedoch erheblich unter den Ungenau-
igkeiten der internen Taktgeber, der manuellen Justierung der Sensorkanäle und somit den
nicht übereinstimmenden Zeitbasen der Aufzeichnungen. Verfügbare funkbasierte Online-
wie auch ereignisbasierte Offline-Synchronisationsmethoden beeinträchtigen entweder er-
heblich die Batterielaufzeit oder erreichen nicht die erforderliche Genauigkeit. Darüber
hinaus erfordern beide Methoden die explizite Interaktion des Nutzers, um die verteilten
Geräte zu vernetzen oder bestimmte Aktionen zur Synchronisierung durchzuführen.

Diese Dissertation stellt die Hypothese auf, dass die Anbringung von Geräten am
menschlichen Körper Technologien und Methoden ermöglicht, die ohne ihn nicht umsetz-
bar wären. Es werden zwei implizite Methoden vorgestellt, die den Bedarf tragbarer Syste-
me an genauer und gleichzeitig effizienter Synchronisation bedienen sollen. Dafür werden
zwei Perspektiven untersucht, die den Körper zum einen als Quelle natürlicher Signale
und zum anderen als Übertragungsmedium künstlicher Signale sehen. Die Übertragung
der medizinischen Sensormodalitäten Elektrokardiographie und Photoplethysmographie
in ein tragbares Format ermöglicht den ständigen Zugang zu den Vitaldaten des Nut-
zers. Die erste Methode PulSync nutzt den unregelmäßigen Rhythmus des Herzschlags,
der auf der gesamten Körperoberfläche gleichzeitig detektierbar ist. Moduliert durch phy-
siologische Prozesse bilden die Intervalle zwischen den Herzschlägen Muster, die in der
abgeleiteten Intervallfunktion der Herzratenvariabilität einzigartig wie ein Fingerabdruck
wiedererkennbar sind und in einem datengesteuerten Offline-Nachbearbeitungsschritt als
wichtige Orientierungspunkte für die Ausrichtung von Aufzeichnungen dienen. Das neuar-
tige Prinzip der körpergebundenen Kommunikation lässt sich zwischen den traditionellen
kabelgebundenen und drahtlosen Techniken ansiedeln, weist jedoch ihnen gegenüber Vor-
teile auf. Die zweite Methode IBSync basiert auf künstlichen Markierungssignalen, die
entweder bewusst oder implizit und zufällig durch Berührung oder Passieren von mit Sen-
debaken ausgestatteten Flächen oder Gegenständen in die Haut des Nutzers induziert wer-
den. Die vom augmentierten menschlichen Körper gewonnenen Markierungen können mit
Daten angereichert werden, um die Zeitreihen offline eindeutig auszurichten oder sogar die
Positionen der Markierungen einer absoluten Zeit zuzuordnen. Beide Methoden erreichten
eine Genauigkeit in der Größenordnung eines Samples und zeigen eine vergleichbare Leis-
tung: PulSync mit −0.714 ± 3.440 Samples und IBSync mit 0.800 ± 1.792 Samples. Mit
einer Genauigkeit von 2.86 ms bei 250 Hz und 6.25 ms bei 128 Hz sind die zwei Methoden
PulSync und IBSync daher den meisten verfügbaren Offline-Synchronisationsmethoden
überlegen und können sogar mit den gängigen Online-Methoden mithalten.

Stichworte: Tragbare Computer, implizite Synchronisierung, Elektrokardiographie, Photoplethysmographie,
drahtlose Körpernetzwerke, körpergebundene Kommunikation, kapazitive Kopplung





Abstract

During the last three decades, wearable computing has experienced an impressive evo-
lution. While single all-round devices, worn at familiar and convenient locations such
as the wrist, have been standard for many years, wearables are recently evolving rather
into a conglomerate of simultaneously deployed, specialized sensing units that can be at-
tached to various sites with complementary perspectives. Applying cutting-edge sensor
fusion and machine learning techniques on the collected multi-device data allows inferring
the user’s bigger picture with an accuracy superior to that from a single site. However,
the applied techniques suffer significantly from the inaccuracies of the devices’ internal
clocks, the manual temporal alignment of their sensor channels, and hence the recordings’
unmatched time bases. The available radio-based online or event-based offline synchro-
nization methods either considerably affect the devices’ battery life or often do not achieve
the required accuracy. Moreover, both methods demand for the user’s explicit interaction
to either network the distributed devices or perform specific synchronization actions.

This dissertation hypothesizes that attaching devices to the human body can enable
technologies and methods that would not be possible without its presence. Two implicit
methods are presented to address the lack of accurate and efficient synchronization prin-
ciples for distributed wearable systems. Therefore, two perspectives are investigated in
which the human body is considered first as a source of natural signals and second as a
transmission medium to provide artificial signals throughout the body surface. The trans-
fer of the medical sensing modalities electrocardiography and photoplethysmography to a
wearable form factor has enabled constant access to the user’s vital signs. The first method
PulSync leverages the irregular rhythm of the heartbeat, ubiquitously and simultaneously
detectable throughout the entire body surface. Modulated by various physiological pro-
cesses, the inter-beat intervals form patterns in the derived heart rate variability interval
function that are unique like a fingerprint and, therefore, can serve as significant land-
marks for the offline alignment of recordings in a data-driven post-processing step. The
novel communication principle of intra-body communication is somewhat located between
traditional wired and wireless techniques while showing advantages over both. The sec-
ond method IBSync is based on artificial landmark signals that are either consciously or
implicitly and incidentally induced into the user’s skin by touching or passing areas or
objects equipped with transmitter beacons. Obtained from the augmented human body,
the detected landmarks are enriched with data, allowing to uniquely align the recordings
offline or even allocate landmark positions in the absolute time. Both methods achieved
an alignment accuracy in the order of a single sample and show a comparable performance:
PulSync with −0.714 ± 3.440 samples and IBSync with 0.800 ± 1.792 samples. Therefore,
with the achieved temporal accuracy of 2.86 ms at 250 Hz and 6.25 ms at 128 Hz respec-
tively, the two methods PulSync and IBSync are superior to most available offline syn-
chronization methods and can even keep up with common online methods.

Keywords: Wearable Computing, Implicit Synchronization, Electrocardiography, Photoplethysmography,
Wireless Body-Area Networks, Intra-Body Communication, Capacitive Coupling
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1 Introduction

Initiated by the release of the first activity tracker in 2009, the market of wearable devices
has seen an “explosive growth” [BDD16]. As a result, a vast number of devices are released
each year, ranging from low-priced no-name to precious lifestyle products. According to
a market survey of PricewaterhouseCoopers (PwC) in 2016 [BL16], at that time already
49 % of the 1000 respondents owned at least one wearable and 36 % even two or more.
Thereby, the wrist is the most common position for commercial wearable devices, which
mostly come in the shape of watches (35.0 %) or jewelry such as bracelets and rings (29.1 %)
[BDD16]. While these positions are familiar, e.g. from traditional wristwatches [Seh+22],
there is a perceptible trend toward more “fashionable” [SH15; Kou18] and even invisible
“none products” [BL22]. Devices are becoming less obtrusive in the shape of finger rings
[Rhe+98; LVH16], in-ear devices [Kaw+18; Röd+22; Fer+22], and skin-friendly adhesive
patches [LPS17; AMK20; Ate+22] to improve the long-term wearability in everyday life.

After the term “ubiquitous computing” was coined by Mark Weiser in 1988 [Wei93],
the pioneers Steve Mann and Thad Starner [Man97; Sta+97] proceeded with portable de-
vices that consider the human body as a habitat, thus shaping the beginnings of modern
wearable computing [AL09]. With gradually smaller devices worn closely or even directly
attached to the body surface, the following generations of wearables began to consider
the body not only as a physical carrier but, beyond that, also as a source of valuable
information about the user. The emergence of accelerometers made simple pedometers
possible, paved the way for human activity recognition (HAR) [VG04], and changed the
devices’ perspective from an external, observing to an internal, egocentric view. The adap-
tion of sensing modalities from medical settings [KCS84] and their transfer to the familiar
wrist of the users eventually enabled the continuous self-monitoring and ambulatory health
assessment, initiating the breakthrough of today’s fitness trackers [KA21; Ome+21].

While “Privacy is the most often-cited criticism of ubiquitous computing” [HL04], espe-
cially when dealing with health-related data, many of these weaknesses are associated with
wireless communication. In 1995, Zimmerman [Zim95] found that the human body itself
can serve as a confined medium which is not only “physically secure” [Nat+21] but can
also considerably improve the energy efficiency of signal transmission [Nar+18; Mai+20a].
Since then, intra-body communication (IBC) promises to improve wireless body area net-
works (WBANs), but applications remain underinvestigated due to the absence of com-
mercially available transceiver modules or integrated circuits (ICs). Nevertheless, IBC is
presumably the first step toward a new generation of wearables that consider the human
body as a crucial part of the system, looking at it from a very technical perspective and
thus enabling new methods and technology.

Foreseen by Feynman in 1959 and promoted by Moore since 1965 [Moo65], the miniatur-
ization of semiconductors is successively allowing for smaller circuits [Lei+20]. This way,
the gradually smaller devices are imaginable to be attached to almost arbitrary body po-
sitions, only constrained by aspects of wearability and social acceptance [Gem+98; Zea17;
Seh+22]. However, present “wearables are just scratching the surface of what is possible”
[ADD21] while not all desired information can be obtained from a single site. Therefore,
they are successively evolving into a conglomerate of simultaneously deployed hardware

1



1 Introduction

units rather than into a single all-round device [AV17; ADD21; Ome+21]. The distributed,
multi-device systems comprise specialized sensor nodes that allow to cover complementary
perspectives [LL22], thus capturing the user’s bigger picture. Applied to the multi-modal
data, cutting-edge sensor fusion and machine learning techniques allow, for instance, to
recognize human activities [Agu+19] or to infer a wearer’s emotional state and stress level
[Sch+18]. Thereby, the inference on data from multiple devices tends to be “significantly
more accurate than [from] a single device worn on either wrist” [Agu+19; Lu+20].

However, these modern techniques substantially suffer from the inaccuracy of the de-
vices’ internal clocks, the manual temporal alignment of sensor channels, and, therefore,
the recordings’ unmatched time bases [Ohm+06; Xu+17; Wan+19; Goo+22]. In or-
der to regularly update and adjust the local clocks, conventional online synchronization
methods usually rely on wireless radio communication to negotiate a common time base
between the networked devices at runtime. However, “The cost of communicating is high”
[Luc+17] and tends to exceed the comparatively small energy budget of wearable devices
[BGJ15a], as it can easily make up to 50 % of a typical device’s consumption [AMH19].
Originated in research on HAR, offline synchronization methods aim to avoid this load by
deferring the alignment of signal channels to a data-driven post-processing step. Exter-
nal, simultaneously detectable events such as significant motion are exploited to correlate
and automatically match predefined templates [BAL09; BGJ15b], distinct signal patterns
[BGJ15b; Wan+19], or derived statistical measures such as entropy [BGJ15a] and stan-
dard deviation [HOV19] in indeterminate, relative time. However, the available methods
typically result in a low accuracy of tens to hundreds of milliseconds and “in realistic
scenarios achieving high synchronization performance is not trivial” [BAL09].

This dissertation hypothesizes that attaching devices to the human body can enable
technologies and methods that would not be possible without its presence. Therefore, the
human body is seen from a very technical perspective, as a central and crucial part of
a system of distributed wearable devices. As illustrated in Figure 1.1, the dissertation
investigates two perspectives considering the human body first as a source of natural signals
(RQ 1) and second as a transmission medium to provide artificial signals throughout the
body surface (RQ 2). Inspired by the vision of “Augmented Interaction” by Rekimoto and
Nagao [RN93], the human body is interpreted as a kind of augmented object that devices
are discretely and unobtrusively attached to and from which they can obtain information
and data. With the proposed application of implicit synchronization (RQ 3), illustrated in
Figure 1.2, the synchronization of wearable devices is turned from an active decision by
the user to an incidental process allowing for better signal quality and classification due to
better timing and a more accurate alignment of coincident events. It implements the idea
of “implicit human-computer interaction” which “aims to reduce computer manipulations
by using environmental information as implicit input” [SGM00] and, therefore, supports
“seamlessly bridging the gulf between physical and virtual worlds” [Wan+99].

2



Wearable Computing

RQ 1

ECG / PPG
RQ 2

IBC

RQ 3

Implicit Synchronization

natural HRV
interval function

arti�cial
data packets

Method

Landmark Type

Application

Research Area

Figure 1.1: Overview of the three research questions answered by this dissertation in the
research area of wearable computing: RQ 1 investigates wearable sensing on the example
of electrocardiography (ECG) and photoplethysmography (PPG) for the detection of the
natural heartbeat and the derivation of the unique heart rate variability (HRV) interval
function, RQ 2 investigates intra-body communication (IBC) to induce artificial signals
and provide data throughout the human body surface, and RQ 3 implements and evaluates
the concept of implicit synchronization as an example of human body-enabled technology.

explicit

implicit

online

sync

o�ine

sync

Figure 1.2: Illustration of the proposed implicit synchronization concept, which follows
the idea of implicit human-computer interaction (HCI) by Schmidt et al. [SGM00]. The
concept allows to apply both online and offline synchronization techniques that unobtru-
sively provide information but do not require the user’s explicit and intentional interaction.

3



1 Introduction

1.1 Problem Formulation
Datasets collected with distributed systems of wearable devices with complementary per-
spectives allow for capturing a bigger picture. However, applied sensor fusion and machine
learning techniques suffer significantly from the devices’ unmatched time. The inaccurately
aligned signal patterns of coincident events result in blurry models and weak classification.
To solve this problem, conventional, radio-based online synchronization techniques negoti-
ate common time during operation, hence loading the resource-constrained hardware units
with an energy-intensive overhead. Alternatively, offline techniques defer the data-driven
alignment to a post-processing step, typically achieving insufficient accuracy.

This dissertation aims to investigate the human body’s potential to enable the implicit
synchronization of multiple body-attached devices. Although viewed from a very tech-
nical perspective, the human body is seen beyond its simple use as a physical carrier of
wearable devices and interpreted as the central element of the system. Two perspectives
are explored, one considering the human body as a source of natural information and the
other as a transmission medium for artificial information provided throughout its surface.

The content of this dissertation answers the following research questions:
RQ1 Which natural signals are available at the human body surface and suit-

able for use in implicit synchronization?
a) Which natural signals can be detected at the body surface?

Section 2.1
b) How can they be captured and how do they need to be processed?

Section 2.2 & 2.4
c) Which available datasets are suitable for evaluating wearable techniques?

Section 2.3

RQ2 How can the human body be used as a transmission medium to provide
artificial signals that enable implicit synchronization?
a) How can artificial signals be provided throughout the body surface?

Section 3.2
b) How can commercially available, off-the-shelf devices detect these signals?

Section 3.3
c) How can custom devices detect these signals?

Section 3.4 & 3.5

RQ3 How can wearable devices implicitly be synchronized using either the
natural signals identified in RQ1 or the artificial signals from RQ2?
a) What is implicit synchronization?

Section 4.2
b) How can this synchronization concept be implemented?

Section 4.3 & 4.4
c) How can the natural signals from RQ1 be used for this purpose?

Section 4.3
d) How can the artificial signals from RQ2 be used for this purpose?

Section 4.4
e) Which signal source is more suitable for this purpose?

Section 4.5

4



1.2 Methodology

1.2 Methodology
This dissertation aims to investigate the human body’s potential beyond its simple use as
a physical carrier to enable the implicit synchronization of multiple wearable devices. A
collection of case studies will present approaches made possible by using the human body
as the central object the devices are connected to by attaching.

The research will be based on a broad, interdisciplinary literature review covering var-
ious disciplines, ranging from computer science, communication technology, and digital
signal processing to adjacent topics in the biomedical field. Relevant research areas will
then be intensified with a focused search in depth. The case studies will be designed to
demonstrate the feasibility of specific aspects of the research problem formulated in the
previous section. Their evaluation is intended to discover benefits, raise remaining re-
search questions for future work, and identify potential drawbacks compared to common
techniques. Public datasets will be used to benchmark the approaches against comparable
or adjacent research whenever available and appropriate. Considering safety and ethical
standards, empirical experiments will be conducted to generate new datasets for further
data analysis or obtain measurements to characterize custom prototypes. The prototypes
will be developed and implemented when there are no commercially available, off-the-shelf
devices that would provide the desired functionality, sensing modality, or signal quality
and, thus, cannot answer the research question. The case studies’ evaluation will pri-
marily rely on quantitative metrics such as a device’s power consumption or a method’s
performance, e.g. in terms of temporal accuracy. The measurements will be collected us-
ing suitable devices with sufficient accuracy or compared against an appropriate reference
that ideally can serve as ground truth. Conducting the studies with several subjects or at
least with several runs is intended to provide reliable statistical evidence.

Two distinct perspectives are identified, allowing the case studies to be grouped the-
matically and their fundamental concepts to be investigated independently. Thereby, the
first perspective considers the human body as a source of information (RQ1) that
is inherently unique. Physiological signals, such as the primary vital signs, have been
found to be influenced by various physiological processes and to show a certain degree
of randomness and chaos. It is assumed that these unique signal patterns can be ex-
ploited to enable implicit synchronization throughout the human body. Furthermore, it is
hypothesized that the wearer’s irregular heartbeat will best meet the signal source require-
ments. After theoretical reasoning, diverse modalities are assessed, and different strategies
for energy-efficient and optimal signal processing are developed, evaluated, and discussed.
The second perspective considers the human body as a transmission medium (RQ2)
for intra-body communication, a novel yet commercially unestablished technique that al-
lows providing information throughout the body surface without relying on fixed cable
joints or energy-intensive radio communication. The technique of capacitive coupling, on
which the different approaches are based, will be chosen attempting to enable the detec-
tion and reception of artificial information. These are intended to be received consciously
or implicitly and incidentally by touching, approaching, or passing certain areas, surfaces,
or objects with embedded transmitters. Based on the findings from the two perspectives
of RQ1 and RQ2, the implicit synchronization of wearable devices (RQ3) will be
implemented as a relevant and meaningful example of human body-enabled methods and
applications. The implemented methods will be evaluated in terms of their performance
and applicability in real life, and compared to each other as well as to existing techniques.
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1 Introduction

1.3 Contributions

This dissertation contributes to public research in the following areas:

1) Wearable Photoplethysmography
a) Investigation and a better understanding of raw signals and their necessity to ensure

the validity of algorithm benchmarks. [W20a; C21c]
b) Review of publicly available datasets that pretend to contain raw reflective mode

signals but often turn out to contain considerably preprocessed signals with limited
information value, validity, and generalizability. [W20a; C21c]

c) Review of different active sampling schemes and strategies applied in both research
prototypes and commercial wearable devices. [A19]

d) Investigation and determination of the minimum sampling rate required to reliably
derive the heart rate from raw, regularly sampled signals. [W18]

e) Review of methods for the analysis, interpretation, and derivation of features from
raw signals in time and frequency domain. [W18; J20b; C21c]

f) Investigation of the optimal preprocessing strategies to preserve fiducial points, i.e.
pulse peak positions, and optimize algorithms’ performance. [C21c]

g) Benchmark of popular algorithms to detect fiducial points, i.e. pulse peak features,
in time series of differently preprocessed signals. [C21c]

h) Provide a dataset with manually annotated pulse peak labels to allow for future
benchmarks on actual raw signals. [C21c]

2) Intra-Body Communication
a) Development and evaluation of a prototype to combine conductive textiles with

capacitive coupling for a simplified transmission channel with local ground reference
potential, achieving significantly better signal-to-noise ratio and symbol rate. [C17]

b) Development and evaluation of a novel pulse-width modulation scheme for a simple
yet effective symbol representation and data transmission. [C17]

c) Development and evaluation of a novel approach repurposing analog electrocar-
diography sensor front-ends of commercial off-the-shelf wearable devices for the
detection and reception of artificially induced signals. [C21b; J22b]

d) Evaluation of a novel technique to provide situational context identifiers through the
electrocardiography sensor of commercial, off-the-shelf wearable devices by touching
surfaces or objects equipped with transmitter beacons. [C21b; J22b]

e) Development of a prototype to measure and characterize the inter-electrode capac-
itance in diverse settings, furthermore enabling to detect hand-washing. [W22a]

f) OpenIBC: Development and evaluation of an open-source platform that uses ana-
log RFID / NFC front-ends to enable faster prototyping, aiming at developing po-
tential applications and concepts, e.g. in human-computer interaction. [C22c]

3) Synchronization of Wearable Devices
a) Introduction of the novel concept of implicit synchronization, which can use both

online and offline methods, is intended to be unobtrusive, and does not require any
intentional interaction by the user. [W21a; C21b; C21c]
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b) PulSync: A novel synchronization method is proposed and evaluated, which ex-
ploits the wearer’s heartbeat and unique patterns in the slightly varying inter-beat
intervals for the data-driven offline alignment of time series. [W21a]

c) IBSync: A novel synchronization method, based on intra-body communication,
is proposed and evaluated that uses artificial landmark signals to transport data
segments, enabling both the unique offline alignment of time series and even their
exact temporal allocation online and in respect to absolute time. [C21b; J22b]

These contributions have already been published in the following original and peer-reviewed
publications, listed in the order of their release and marked with the prefixes J for journal
articles, C for conference papers, W for workshop papers, and A for magazine articles:
[C17] Florian Wolling, Philipp M. Scholl, Leonhard M. Reindl, and Kristof Van

Laerhoven. “Combining Capacitive Coupling with Conductive Clothes: To-
wards Resource-Efficient Wearable Communication”. In: Proceedings of the
2017 ACM International Symposium on Wearable Computers. ISWC ’17.
Maui, Hawaii, USA: ACM, 2017, pp. 146–149. isbn: 978-1-4503-5188-1. doi:
10.1145/3123021.3123059.

[W18] Florian Wolling and Kristof Van Laerhoven. “Fewer Samples for a Longer
Life Span: Towards Long-Term Wearable PPG Analysis”. In: Proceedings
of the 5th International Workshop on Sensor-based Activity Recognition and
Interaction. iWOAR ’18. Berlin, Germany: ACM, 2018, 5:1–5:10. isbn: 978-
1-4503-6487-4. doi: 10.1145/3266157.3266209.

[A19] Florian Wolling, Simon Heimes, and Kristof Van Laerhoven. “Unity in Di-
versity: Sampling Strategies in Wearable Photoplethysmography”. In: IEEE
Pervasive Computing 18.3 (2019). Ed. by Oliver Amft, pp. 63–69. issn: 1536-
1268. doi: 10.1109/MPRV.2019.2926613.

[W20a] Florian Wolling and Kristof Van Laerhoven. “The Quest for Raw Signals: A
Quality Review of Publicly Available Photoplethysmography Datasets”. In:
Proceedings of the 3rd Workshop on Data: Acquisition To Analysis. DATA
’20. Virtual, Japan: ACM, 2020, pp. 14–19. isbn: 9781450381369. doi: 10.
1145/3419016.3431485.

[J20b] Elina Kuosmanen, Florian Wolling, Julio Vega, et al. “Smartphone-Based
Monitoring of Parkinson Disease: Quasi-Experimental Study to Quantify
Hand Tremor Severity and Medication Effectiveness”. In: Journal of Medi-
cal Internet Research (JMIR), mHealth & uHealth 8.11 (2020), e21543. issn:
2291-5222. doi: 10.2196/21543.

[W21a] Florian Wolling, Kristof Van Laerhoven, Pekka Siirtola, and Juha Rön-
ing. “PulSync: The Heart Rate Variability as a Unique Fingerprint for the
Alignment of Sensor Data Across Multiple Wearable Devices”. In: Proceed-
ings of the 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops, PerHealth Workshop. Virtual, Germany: IEEE,
2021, pp. 188–193. isbn: 978-1-6654-0424-2. doi: 10.1109/PerComWorkshop
s51409.2021.9431015.

[C21b] Florian Wolling, Cong Dat Huynh, and Kristof Van Laerhoven. “IBSync:
Intra-body Synchronization of Wearable Devices Using Artificial ECG Land-
marks”. In: Proceedings of the 2021 ACM International Symposium on Wear-
able Computers. ISWC ’21. Virtual, USA: ACM, 2021, pp. 102–107. isbn:
9781450384629. doi: 10.1145/3460421.3478815.
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1 Introduction

[C21c] Florian Wolling, Sudam Maduranga Wasala, and Kristof Van Laerhoven.
“Optimal Preprocessing of Raw Signals from Reflective Mode Photoplethys-
mography in Wearable Devices”. In: Proceedings of the 43rd Annual Interna-
tional Conference of the IEEE Engineering in Medicine & Biology Society.
EMBC ’21. Virtual, Mexico: IEEE, 2021, pp. 1157–1163. isbn: 978-1-7281-
1179-7. doi: 10.1109/EMBC46164.2021.9630955.

[W22a] Florian Wolling, Kristof Van Laerhoven, Jonas Bilal, Philipp M. Scholl,
and Benjamin Völker. “WetTouch: Touching Ground in the Wearable De-
tection of Hand-Washing Using Capacitive Sensing”. In: 2022 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops,
WristSense Workshop. Virtual, Italy: IEEE, 2022, pp. 769–774. isbn: 978-1-
6654-1647-4. doi: 10.1109/PerComWorkshops53856.2022.9767345.

[J22b] Florian Wolling and Kristof Van Laerhoven. “IBSync: Intra-body synchro-
nization and implicit contextualization of wearable devices using artificial
ECG landmarks”. In: Frontiers in Computer Science 4 (2022). doi: 10.3389/
fcomp.2022.915448.

[C22c] Florian Wolling, Florian Hauck, Günter Schröder, and Kristof Van Laer-
hoven. “OpenIBC: Open-Source Wake-Up Receiver for Capacitive Intra-Body
Communication”. In: Proceedings of the 2022 International Conference on
Embedded Wireless Systems and Networks. EWSN ’22. Linz, Austria: ACM,
2022, pp. 186–191.

1.4 Outline
The remainder of this dissertation is structured as follows. This Chapter 1 introduces
to the research topic, describes the applied methodology, and motivates the presented
research contributions. Chapter 2 first considers the human body as a source of natural
signals. After an overview of sensing modalities available at the body surface, the focus is
on heart rate (HR) monitoring with electrocardiography (ECG) and photoplethysmogra-
phy (PPG). Specifically for the latter, sampling strategies are investigated and discussed,
available datasets are reviewed, the minimum required sampling rate is determined in the
frequency domain, optimal preprocessing of raw signals is evaluated, and two algorithms
are benchmarked in the time domain. The natural signals available at the body surface
are compared and discussed in terms of the target application. Chapter 3 then con-
siders the human body as a transmission medium for artificially induced signals. After
an introduction to intra-body communication (IBC) based on capacitive near-field cou-
pling, five case studies examine various aspects of this novel technique. The first approach
simplifies the transmission channel by using conductive textiles, the second repurposes
ECG sensor front-ends, the third characterizes the electrode setup used, and the fourth
uses RFID / NFC front-ends to receive data. The different approaches are compared and
discussed in terms of the target application. Eventually, Chapter 4 applies the findings
of Chapter 2 and 3 to enable the synchronization of wearable devices. The concept of
implicit synchronization is explained, formalized, and then applied to evaluate and demon-
strate its benefits. Chapter 5 finally summarizes the findings and discusses the presented
approaches and case studies to conclude the work.
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2 Wearable Sensing

The last three decades have shown an impressive evolution of wearable devices, from bulky
portable devices to lightweight and convenient companions in everyday life. The ongoing
miniaturization allows for smaller and more fashionable devices which successively become
unobtrusive and, to a certain extent, invisible. Worn close or even attached to the skin,
these have access to multifaceted information. Since such small devices can be placed
on almost arbitrary body positions, they foster the trend from the single all-round wear-
able to multiple distributed, simultaneously deployed, and specialized sensor units with
complementary perspectives to capture the bigger picture. The sensing modalities electro-
cardiography and photoplethysmography are available in virtually every modern wearable.
The transfer of these from medical settings to the user’s wrist requires, however, diverse
adaptions of the original principles. Furthermore, the resource constraints of wearable
devices require for diverse trade-offs and the application of efficient algorithms.

In this Chapter, the human body is considered as a valuable source of information. Pri-
marily focusing on the monitoring of vital signs, Section 2.1 introduces to the fundamen-
tals of electrocardiography (Section 2.1.1) and photoplethysmography (Section 2.1.2),
which give access to versatile secondary information (Section 2.1.3). Wearable pho-
toplethysmography sensors, such as the prototype presented (Section 2.1.4), enable to
detect the heartbeat throughout the body surface. Although photoplethysmography is
standard in modern wearable devices, there are still many questions unanswered, which
is why the remainder of this Chapter specifically focuses on the fundamentals of photo-
plethysmography sensing. First, the sampling mechanisms of passive and active sensors
are described (Section 2.2) and then studied by investigating the sampling strategies of
commercial devices (Section 2.2.1.2). The resource constraints of wearables demand for
a trade-off between the achieved performance and battery life. To minimize the power con-
sumption of active photoplethysmography sensors, an experimental study investigates the
minimum sampling frequency required (Section 2.2.2). The development and benchmark
of efficient algorithms and the training of machine learning models need large and espe-
cially suitable datasets, which are reviewed in Section 2.3. The findings have additionally
led to guidelines for the recording of fruitful datasets (Section 2.3.3). By introducing
methods for the frequency and time domain, Section 2.4 describes the typical processing
of photoplethysmography signals. A particular focus is set on the optimal preprocessing
of raw signals, which significant influence on algorithms’ performance is demonstrated in
a benchmark study in Section 2.4.4. In the end, Section 2.5 summarizes all findings
and discusses these with regard to the research intent of Chapter 4.
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2.1 Heart Rate Monitoring

2.1 Heart Rate Monitoring
As probably the most important primary vital sign of human beings, the pulse was already
of interest in ancient times (200 B.C.) when doctors palpated it to derive the heart rate
(HR) and to draw conclusions about the patient’s state of health [Cou11]. Today, modern
medical instruments take over the task of continuously monitoring and analyzing cardiac
muscle activity for the diagnosis of heart diseases. Over the last two decades, miniatur-
ization has gradually brought these capabilities into everyday life [Zhe+14]. While most
wearable devices allow the ambulatory measurement of HR, the applied sensing modalities
and methods differ significantly from those used in medical settings due to constraints in
the possible budget, energy supply, and computing power [Lei+20; Qai+20].

The heartbeat can be detected by means of different sensing modalities. Each contrac-
tion of the cardiac muscle (myocardium) is initiated through electrical action potentials,
which accumulated electric field can be captured and monitored at the body surface by
means of electrocardiography (ECG: 2.1.1). With its development in the late 19th century,
electrocardiography (ECG) has established itself as today’s ‘gold standard’ in medical care.
Besides the electrical signal, the contraction also generates a mechanical pulse wave that
travels through the blood vessels and is, therefore, ubiquitously accessible at the surface of
all sufficiently perfused tissues [Tur+83; Li+10]. In this way, the heartbeat can manually
be palpated with fingers at the skin surface above an artery that expands according to the
percussion wave [Cou11]. For the continuous monitoring of non-critical, regular ward pa-
tients, medical instruments typically use photoplethysmography (PPG: 2.1.2), an optical
measurement principle to detect the pulsating blood volume by means of changing light
absorption characteristics of perfused tissue [AP81]. In recent years, the technique has
undergone a revival and miniaturization finally made it available as a standard in modern
wearable devices for the continuous self-monitoring, health care, and fitness tracking.

Besides ECG and photoplethysmography (PPG), there are methods for specific medical
examinations, but also ones that are still under development. According to Pinho Ferreira
et al. [PGM21], these can be divided into electric, plethysmographic, and ballistocardio-
grapic methods. Electric methods are mostly associated with ECG and usually resemble a
single standard lead [Cas+08; Klu+19; Li+22]. However, recent research attempts to en-
able the detection of the heartbeat at a single spot or even from a distance. Often termed
as bio-potential sensing [Ha+14], the signal is captured from tiny potential differences
along small tissue intervals, e.g. with three or two electrodes on the upper arm [VME19]
or forearm close to the wrist [RC16], with a single electrode and the environmental ground
as a fragile reference potential [Pra+00; Gar+13; SY16], or remotely in the electric far field
[HCP02]. Plethysmographic methods cover PPG but also impedance cardiography (ICG),
which analyzes the electrical conductivity of the thorax [She+90] or blood vessels [He+16;
Kus+19], magneto-cardiography (MCG), and magnetic resonance imaging (MRI). Lastly,
ballistocardiographic methods sense the mechanical percussion wave [Cou11], use micro-
phones to capture the heart sound in phonocardiography (PCG), or measure the blood
flow velocity in doppler ultrasonography (DUS). Furthermore, research in ballistocardiog-
raphy (BCG) and seismocardiography (SCG) revealed that the heartbeat can be detected
with sensitive acceleration sensors at the chest [Pha+08; Ver+15] due to the expansion
of the thorax, or even at the wrist [Hae+15; McC+18] due to tiny movements of the
subjacent perfused tissues. Accelerometers are interesting for this purpose as they do not
require direct skin contact and are already available in virtually every wearable device
by default. Moreover, they are assumed to be more energy-efficient than active sensing
modalities (Section 2.2) such as PPG [Hae+15]. [PGM21]

13



2 Wearable Sensing

(a) Einthoven’s triangle. c.f. [Ad24] (© alfa md)
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Figure 2.1: (a) Einthoven’s triangle with the three bipolar leads I to III, formed through
electrodes at the three measurement sites aVR (right arm), aVL (left arm), and aVF (left
leg). Figure c.f. [Ad24] (© alfa md, Adobe Stock) (b) The well-known ECG wave pattern
with its unique attributes, labeled with P, Q, R, S, and T, derived from standard leads
such as lead I. The pointed R peak of the prominent QRS complex commonly serves as
unique fiducial point and significant feature. Figure from [Wik22] (CC0 1.0).

2.1.1 Electrocardiography

First experiments and the actual invention of electrocardiography (ECG) can be traced
back into the end of the 19th century [AL12]. In today’s medical care, it is an essential
instrument and the ‘gold standard’ for the analysis of heart activity, to diagnose heart
diseases, and to reliably monitor HR. Every contraction of the heart is initiated through
electrical action potentials which polarize the myocardal muscle. The electric field accu-
mulates, spreads in tissue, and is eventually detectable at the skin. Since electric potentials
cannot be measured without a reference, multiple electrodes are placed at specific locations
on the body surface and combined into pairs. Termed as leads, these enable to measure
the difference of local potentials, e.g. across the limbs or torso [AL12].

Several lead systems exist which allow to analyze the beating of the heart from different
directions and, hence, action potentials of the cardiac muscle’s different areas. In 1888,
the early ECG instruments of Waller [Wal88] applied “five electrodes, one on each of the
four extremities and the mouth” to derive 10 leads. In 1950, Einthoven et al. [EFW50]
were able to reduce the number of electrodes to three bipolar ones by excluding those with
the “lowest yield”. Furthermore, they formulated the important concept known today
as Einthoven’s triangle (Figure 2.1a), illustrating the use of leads I – III to cover the
frontal plane with 60◦ increments [EFW50]. In 1954, the American Heart Association
recommended the standardization of the 12-lead ECG with 10 wired, unipolar wet gel
electrodes, 6 at the chest (V1 – V6) and 4 peripheral ones of which one is the “indifferent”
neutral (aVL and aVR at the arms, aVF at the left and N at the right leg), to cover
the frontal plane with 30◦ increments [Wil+54]. Even more fine-grained, with a grid of
tens to hundreds of electrodes worn as a vest, body surface potential mapping (BSPM)
enables the detailed analysis of the electric field on the torso [Med+02; Ber+21]. In 1961,
Holter [Hol61] presented a lead system with only 5 electrodes, placed over bones to avoid
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2.1 Heart Rate Monitoring

signal artifacts from muscle activity. This reduced number is less obtrusive and disturbing,
yet still sufficient to allow HR monitoring in everyday life and the observation of occasional
arrhythmias over a long term. [AL12]

Standard leads, such as lead I, allow to derive the typical, well-known ECG wave pattern
(Figure 2.1b) with its unique attributes, labeled with P, Q, R, S, and T [Wil+54]. The
high reliability and accuracy of ECG originates from the pointed R peak of the prominent
QRS complex, a unique fiducial point that commonly serves as a significant feature. The
R peaks enable to determine HR by either counting their number per unit time or by
calculating the individual R-R interval’s reciprocal for an instantaneous measure [CBR91].

The progress in miniaturization does not only enable more convenient but also more
energy efficient wearable sensing devices [Zhe+14]. Nevertheless, the conventional ECG
leads remain inapplicable and too uncomfortable for the continuous monitoring in long-
term ambulatory assessments. The first wearable devices for single-lead ECG, by Karvonen
et al. in 1984 [KCS84], had the shape of a chest strap and used dry electrodes to resemble
lead I across the heart. Since 2013, these devices have successively been pushed out of
the market by wrist-worn devices that primarily apply the optical PPG (Section 2.1.2).
However, PPG cannot yet compete with ECG in terms of accuracy [Cas+18]. As a result,
the wrist-worn devices gradually offer the special feature of a supplementary single-lead
ECG sensor to enable the monitoring of heart activity at a medical grade [IM20]. To form
lead I with potentials from “either side of the heart” [Bea+18], the user has to touch an
electrode with a finger from the opposite arm [Tho+16; Bea+18]. Moreover, by placing
the device on the abdomen, the derivation of the leads II and III is also possible [Avi19].

In the recent years, diverse wearable ECG devices in form of skin-compatible adhesive
patches have been presented [Cas+08; Klu+19; Li+22] which are expected to improve
long-term wearability and comfort. However, they have to be placed accurately to span
lead I and cannot be attached to arbitrary body locations due to a phenomenon termed as
line of zero potential [Wal88]. It describes that, due to the polarization of the myocardal
muscle, no signal is available along a diagonal line across the torso.

The use of dry electrodes inevitably results in a considerably weaker signal [CJC10]
that typically ranges from tens to hundreds of µV [Cas14; Ha+14]. The used differential
amplifier hence requires a high input impedance in the order of several MΩ to not load the
fragile signal [HCP02; CMC11]. Introduced by Neuman and Webster [NW78], detailed by
[WW83], a prevalent technique to improve the common-mode rejection ratio (CMRR) is
an actively driven electrode, usually termed as driven-right-leg (DRL) circuit or body bias,
that allows to suppress common-mode interference such as 50 or 60 Hz humming noise from
power line [SY16]. Nevertheless, the single-spot measurement of ECG at the wrist, without
closing the wide lead I, remains a challenge [INJ17]. It requires the reference electrode to
be omitted by parasitic coupling to the environmental ground [Pra+00; Gar+13; SY16].
This approach requires highly sensitive analog front-ends (AFEs) with a very high input
impedance beyond several GΩ and a very high common-mode rejection ratio (CMRR)
beyond 80 dB [HCP02; CMC11]. However, with the off-the-shelf AFEs available today,
the signal-to-noise ratio (SNR) at the wrist quickly drops to less than 0 dB, which makes
the differentiation of the desired signal from the noise floor de facto impossible [Bea+18].
Fortunately, the last two decades have shown promising circuits [Pra+00; HCP02; CMC11;
Gar+13; RC16; SY16] that are said to enable “the very highest quality ECG at any point
on the body surface, even from the fingertips” [HCP02]. In this way, the electric field
would quasi simultaneously be detectable throughout the entire body surface.

15



2 Wearable Sensing

2.1.2 Photoplethysmography

With its fundamentals investigated in the late 19th century, the principle of photoelec-
tric plethysmography was introduced by Hertzman in 1937 [Her37] and is today referred
to as photoplethysmography (PPG). The optical measurement principle enables to non-
invasively monitor the pulsating blood volume flow in the microvascular bed of the tissue
beneath the skin [TMS+14; Par+21]. In clinical settings, PPG is regularly applied as pulse
oximetry, a proven method to monitor not only HR, but also to determine the peripheral
oxygen saturation (SpO2) of regular ward patients [All07; Alh+19]. The transmission
mode is typically applied embracing a fingertip or an earlobe, with light-emitting diodes
(LEDs) on one side illuminating the translucent tissue, while a photodetector on the op-
posite side measures the changes in the detected light intensity, modulated through the
increased absorption of a larger blood volume [Her37; NDM81].

Initiated by the crowdfunded Mio Alpha and the Scosche Rhythm in 2013 [KA21], the
technique has undergone a revival and is nowadays standard in wearable devices [Cho+22].
Those primarily apply the more convenient, easy-to-implement, and cheap reflective mode
at the dorsal wrist, where both illuminating LEDs and detecting photodiodes (PDs) are
placed nearby and in the same orientation on the skin surface [TMS+14]. In this way, the
non-absorbed light is measured, reflected or scattered by the perfused superficial layers of
the skin [AP81; All07; Aba16; MSH18; Bis+19; Par+21].

In both modes, short light flashes are emitted from an intensive light source to actively
sample (Section 2.2) the blood volume of the moment. There is a broad consensus
on the origin of the signal in transmission mode, in which an increasing blood volume
absorbs a larger amount of light [Man07; Aba16; Par+21]. In contrast, the origin of signal
modulation in reflective mode PPG “is still a matter of debate” [KM17] and “PPG-based
techniques and applications have developed more than the opto-physiological knowledge
pertaining to the origin of the signal” [MSH18]. This vagueness causes confusion among
researchers regarding the phase or ‘direction’ of the original signal’s course [Aba16; KM17;
Svi+18; MSH18]. There is a general consensus that signals from the received light intensity
of both modes are in phase to each other by nature, but inversely proportional to the
captured blood volume variations [NDM81; Aba16; Par+21]. However, even the recently
proposed physical models conflict with observations, for example, an amplitude inversion
due to wrist rotation [Cho+17; KM17; LC22] and an increased amplitude when “pressing
the skin against a glass plate” [MSH18]. Moreover, it is common practice to flip the filtered
and normalized signal amplitude during preprocessing (Section 2.4.4) to be consistent
with and comparable to invasive arterial blood pressure (ABP) measurements [Aba16;
Cho+17; KM17]. In commercial devices, this is common practice, but the recordings are,
nevertheless, sold as raw signals [Aba16; Cho+17].

In contrast to the well-known ECG signal, the course of the typical PPG wave is less
abrupt and has a rounder contour (Figure 2.3b). Nevertheless, the systolic and diastolic
phases of the cardiac cycle can be identified through the systolic and diastolic points
which respectively appear as local minimum and maximum in the raw, non-stationary
PPG signal [Cha+22a; Loh+22]. Besides these peaks, the dicrotic notch and peak can
appear for healthy subjects due to inflections, wave reflections from lower extremities and
the aortic valve [DH41; Mil+06; All07; Elg12; Loh+22]. The definition of a fiducial point
P, analog to the R peak of the QRS complex in ECG, then allows to likewise determine the
HR [CBR91]. The most commonly used reference point is the diastolic onset, which tends
to be more abrupt, pointed, and thus more accurate than the round systolic peak [Gil+10].
Also other feature points, e.g. from tangent intersections [Chi+91] or the signal’s second
derivative with the attributes a, b, c, d, and e [Tak+98], have been subject to investigation
and have both pros and cons [Pos+13; Jey+15; HP16; Per+19; Cha+22a].
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2.1.2.1 Light Wavelength

LEDs are used as intensive light source to illuminate the skin as they are small, inexpensive,
and can be turned on and off at high speeds, showing an immediate optical response with
negligible transient time. This enables fast active sampling (Section 2.2) with a low
duty cycle to save power. However, the selection of the LED color has large effects on
what is actually measured. Depending on the applied wavelength, the human skin shows
different absorption, reflection, and scattering characteristics [AP81; Man07]. Coming
from pulse oximetry, wearable PPG sensors initially attempted to apply principles of the
transmission mode to the reflective mode and often used red and infrared (IR). However,
the emitted light penetrates the skin differently and captures information from different
dermal layers [San+10; Vol+17]. Short wavelengths of blue and green light measure
the blood volume changes in the superficial capillaries of the epidermis, the outermost
layer. The medium-wavelength yellow light reaches the arterioles in the dermis, the layer
below. Long wavelengths of red and IR are found to even reach the smaller arteries in
the hypodermis below. While the pulsating blood vessels modulate the reflected light, the
smaller veins and other nearby tissues just add a direct current (DC) component, which
typically constitutes about 98 % of the detected light. [COL90; Jin+16; Vol+17]

Several studies attempted to model and simulate the interaction of light in tissue for
a better understanding and an optimized sensor placement, mostly based on the Beer-
Lambert law for light attenuation [van+89; Man07; Rei+08] and Monte Carlo methods
for its scattering. They demonstrated that incident light scatters and is reflected back
in a curved optical path which flux envelope resembles the shape of a “banana” [RK10;
Aba16; KCW19; CBK20; RBA23]. Longer wavelengths increase its span, penetrate the
skin deeper, and attenuate along the path due to scattering and absorption of the tissues,
vessels, and blood [KCW19]. Therefore, the optimal distance of each LED from the PD
also depends on the applied light wavelength to achieve the maximum signal quality and
amplitude [CBK20]. The ‘banana’ models the cross section, but on the skin’s plane, the
optimal distance between LED and PD forms a circular optimum around the isotropic
light source. To capture a maximum amount of reflected light and to eliminate directivity,
a special ring-shaped PD with a single LED in its center has been proposed and evaluated
[Kan+12]. Notwithstanding, modern wearables usually use multiple LEDs of at least two
different wavelengths, placed around one or few PDs [Cha+19b; Yan+20].

The amplitude of the desired signal also largely depends on the used wavelength while
its pulsatile alternating current (AC) component comprises only about 1 to 10 % of the
total scope [KM17; KCW19]. To be able to represent the signal sufficiently, the analog-
to-digital converter (ADC) of the sensor AFE has to provide a high resolution, typically
ranging from coarse 12 up to granular 24 bit [Sch17].

While the origin of the signal modulation at green light, and shorter wavelengths in gen-
eral, is still subject to research [KM17; MSH18; LC22], its advantages are manifold. Recent
PPG sensors tend to use green or even yellow lights, which exhibit the largest modulation
depth in the detected signal [TMS+14]. The blood constituents oxyhaemoglobin (O2Hb)
and deoxyhaemoglobin (HHb) absorb about seven (7) times more green than red light
[Man07; Vol+17; Alh+19]. However, the signal from green light shows even a factor of
13.1 larger amplitude and a factor of 7.5 better signal-to-noise ratio (SNR) than red light
due to a shallower penetration and less attenuation by the tissue layers passed [COL90].
In addition, the signal correlates better with the measurements from ECG than IR light
and it is less affected by ambient temperature [Mae+08; MST11b]. With physical activ-
ity causing sensor displacement and soft tissue deformation (Section 2.4.1), green light
has also proven to be more motion tolerant than light with wavelengths that penetrate
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the skin deeper and pass through more complex and inhomogeneous textures [COL90;
San+10] with different reflection and scattering behavior [Vol+17] that “produce a much
more complex signal” [MST11b]. Nevertheless, IR and red light are still regularly used to
measure the peripheral oxygen saturation (SpO2) [Bra+20], which is difficult to be repro-
duced with shorter wavelengths. IR is also still used to inconspicuously detect proximity
to the skin to verify that devices are actually being worn by the user.

Under the hashtag “#tattoogate” users in 2015 complained that tattoos interfered with
their devices’ HR and contact sensor [Ros15]. More recently, there has also been a debate
about a racial bias in fitness trackers, criticizing that the HR measurements are wrong
for people with darker skin color [Hai19; Woo22]. The used light wavelengths are natu-
rally absorbed differently by different skin tones with different levels of melanin [Yan+17;
Ben+20; Got+22; ACK22]. However, “Skin pigmentation is seen to attenuate reflectance
rather than altering the character of the modulation spectra” because melanin “occurs
only in epidermis where no blood supply exists”, which “suggests that a weak reflected
light due to dark skin pigmentation can be compensated by using a stronger light source
without compromise to the signal-to-noise (physiological noise) ratio” [COL90]. Never-
theless, it was found that this fact was not sufficiently taken into account in commercial
pulse oximeters which recently still showed a considerable error bias [BFS05; Sjo+20]. As
a consequence, “Black patients had nearly three times the frequency of occult hypoxemia
that was not detected by pulse oximetry as White patients.” [Sjo+20].

One promising way to solve this issue is the simultaneous use of multiple wavelengths.
To achieve the best signal quality for the individual, either the most suitable LEDs are
chosen from a sequentially sampled array of LEDs with single wavelengths each [Yan+17;
Yan+20], or a single LED, covering a broad light spectrum, is used in combination with
a spectrometer chip, e.g. set up from multiple PDs with attached filters [Cha+19b]. This
way, the synchronous use of 15 wavelengths improved the SNR by 50 % and the accuracy
of HR by 15 % [Cha+19b]. Moreover, the use of multiple wavelengths enables to prevent
occlusion in tissue due to contact pressure and to estimate SpO2 and ABP.

2.1.2.2 Measurement Location

Considerably constrained by the used transmission mode PPG, conventional pulse oxime-
ters are only applicable at certain peripheral sites that enable to embrace translucent tissue
such as a fingertip, toe, or earlobe [Man07; Aba16]. For modern wearable devices, the wrist
is the most common measurement location to apply the reflective mode [BDD16]. While
the step from the fingertip to the wrist was just an intuitive consequence that resulted
from the familiar watches, recent trends show, however, that this is not the only location
that is accepted by the customers [Kaw+18]. Today, miniaturization allows for smaller de-
vices that are imaginable at almost arbitrary body positions, only constrained by aspects
of wearability and social acceptance [Gem+98; Zea17; Seh+22]. Therefore, especially for
long-term deployment, also other body locations are considered as they might be more
convenient than the wrist [Cas+18]. In general, there is a perceptible trend toward less
obtrusive, more “fashionable” [SH15; Kou18], and even invisible products [BL22].

A dense net of capillaries spans the body surface, therefore it is likely that the positions
under consideration provide access to the wearer’s pulse. While the PPG signal can be
captured from any site with sufficiently perfused tissue, the location is still an important
design issue and decides on the signal quality, modulation depth of the signal [Tur+83],
and the robustness against motion [TMS+14]. A total of 52 anatomical sites of healthy
subjects have been characterized and examined for their degree of blood perfusion using
IR PPG and laser Doppler velocimetry (LDV), and the regions face, ears, fingers, and
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palms are identified to show the highest average perfusion [Tur+83]. Regions in vicinity
of arteries show a good modulation, except for the brachial artery at the upper arm that
has relatively poor pulse [TMS+14]. Nevertheless, the application of shorter wavelengths
(Section 2.1.2.1) allows to obtain signals from almost any location as only the superficial
blood vessels are captured and no arteries have to be within reach beneath the skin.

Although popular, the lower arm and especially the wrist are not ideal since they have
a comparatively low density of capillaries and low blood flow concentration. Therefore,
the two main arteries in a depth of about 5 – 10 mm remain the primary signal source
[Cou11] with good signal quality when using IR light to directly measure at the radial
or ulnar arteries, only at rest however [TMS+14]. While conventionally placed between
the two forearm bones, the distal radius and the head of the ulna, experiments with
IR, red, and green light have shown better signal quality if the sensor is located around
the distal radius on the left hand [LSH16]. In contrast, the fingertips show a very high
blood perfusion and, therefore, provide optimal signal quality with large signal amplitudes
[TMS+14]. Because they are already familiar, more comfortable, and “probably, the only
thing that the majority of people will accept to wear at all times” [RYA01], smart rings
attracted attention in research and have already been available as commercial products for
a few years [RYA01; Kin+20; Umm+20; Fio+21]. The fingernail represents a mechanically
stable window to well-perfused tissue. A sensor glued to the nail tip, therefore, enables the
continuous monitoring in everyday life for several weeks without causing discomfort due
to sweating or steaming and the need for sanitary cleaning [IH20]. At the foot, embedded
into the sole of a sensing sock and combined with temperature and force-sensitive pressure
sensors, PPG showed the best quality below the thumb (hallux) [Gar+18].

The human skull is covered by a thin skin along with a high density of blood vessels, the
cranium bone structure directs incident light back which leads to a higher sensitivity, even
under conditions of lower perfusion, and motion has minor effect due to little soft tissue
deformation, a more homogeneous texture, and rare muscular activity [Cas+18]. In recent
research, besides finger and ear, sensors have also been attached to the forehead to detect
blood loss (hypovolemia) in trauma patients [Rel+18]. Similarly added to a head-worn
virtual reality mask, green-light PPG is applied to the forehead to derive the respiratory
rate (RR) [Sta+22] (Section 2.1.3.2). Embedded into a surgical eye protection mask, an
array of IR and red light PPG sensors is used to monitor HR and to derive secondary mea-
sures (Section 2.1.3) such as SpO2 and ABP [Rut+20]. Most recently, PPG is embedded
into a face mask to identify and monitor COVID-19 suspects [Yam+22]. Embedded into
the nose bridge of eyeglasses, the signal showed to be more resistant to motion during
exercises [Zhe+12]. As a part of smart glasses, extended with multi-modal sensors to sup-
port context-aware applications, the pulse is incidentally detected at the temple [WFA15].
Aiming at the detection of swallowing, research measured PPG at the throat, showing that
the best quality is available “in the mid-throat region over the thyroid gland” while the
lower throat is an “excellent choice” to monitor respiratory-induced modulations [Yiz+16]
(Section 2.1.3.2). A similar approach used IR and green light in the neck to “extract and
enhance the laryngeal motion component introduced by swallowing activities” [Zha+22].

The ear turned out to be particularly interesting for PPG as it mainly consists of carti-
lage, covered with a highly perfused tissue and arteries close to the surface. Furthermore,
it is relatively steady and, thus, robust against motion artifacts (Section 2.4.1). Pro-
totypes have been developed to measure at locations next to, behind, on, or in the ear.
Apparently, the ear canal is the perfect location to shield the sensor from influences of
ambient light. The optical coupler can be positioned against the tragus to sense the sub-
cutaneous blood vessels in the region or inside the ear canal which leads to more accurate
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signals [BK14; Fio+21]. The earlobe is already familiar from pulse oximetry clips and,
due to no cartilage and a large amount of blood vessels, it provides the largest perfusion
value [Tur+83] but is far less vulnerable to motion artifacts. [TMS+14; Cas+18; Röd+22]

Diverse body positions have been evaluated for IR and red light PPG and especially
the chest showed to be challenging as it tends to be “covered by thick muscle tissue”
that shadows the arteries and induces respiratory-related artifacts [Kra+17; Lin+21]. In
general, this region is more susceptible to motion-induced deformation due to a concen-
tration of soft tissue with a comparatively large seismic mass. Again, shorter wavelengths
have shown to obtain signals even from suboptimal locations such as the chest using skin-
compatible adhesive patch sensors [Alh+19; Lee+21; Li+22].

Although the inner blood vessels of dental pulp in teeth, brain in skull, and tissue in
bones are naturally enclosed in a ragid envelope, impeding blood volume changes of the
inner vessels, these show a weak but detectable PPG signal [NO21; KA21].

In recent years, various approaches have attempted to move “from contact to non-
contact and from point to imaging” [Hu+09], with the goal of developing remote, camera-
based imaging PPG [McD+15; SY16; Wan+17]. Originated in medical applications such
as hemodynamic imaging and the visualization of the blood perfusion in limbs, mostly
external, controllable IR or visible light sources have been used to ensure proper illu-
mination and thus a stable SNR [Zhe+08a; Zhe+08b; Hu+09; MSH16; MSH18]. Later
on, the user’s face attracted interest for applications outside the medical context [Sug+20;
Sel+22] and research attempted to use the available ambient light, with considerably lower
SNR however [VSN08; Lew+11; Tar+14]. The selection of a suitable region of interest
(ROI) [Kwo+15], advanced face tracking techniques [Nag+20; Wei+22], and sophisticated
algorithms to extract the desired PPG signal [PSP10; HJ13; Hv14; WSH16; Wan+17;
Gud+19; Boc+20] successively enable to derive even secondary measures such as SpO2,
RR, or temporal delays (PAT and PTT: 2.1.3.1) [Kam+16].

2.1.3 Secondary Information

Both ECG and PPG are fruitful modalities that allow to derive supplementary informa-
tion, secondary measures beyond the basic HR. The best known one is pulse oximetry
that is based on conventional transmission mode PPG and the standard to continuously
monitor regular ward patients at the hospital. Besides reading the HR, the use of two
different light wavelengths allows to determine the peripheral oxygen saturation (SpO2).
While conventional SpO2 in transmission mode normally uses IR and red light [Man07],
the principle is successively transferred to wearable sensors which apply the reflective mode
instead [LKL16]. Recent approaches also demonstrated the derivation of SpO2 from green
and orange light [Alh+19] and using multi-wavelength PPG [Ray+21].

While the electrical field of the cardiac muscle is almost immediately available across
the body, the mechanical percussion wave travels more slowly through the arteries until
it is detectable at the measurement site. This delay is measured as pulse arrival time or
pulse transit time (PAT & PTT: 2.1.3.1) and allows, for example, to estimate the arterial
blood pressure (ABP). In recent years, especially the slightly varying distance between
consecutive heartbeats has gained attention as it contains a wealth of information. The
analysis of the heart rate variability (HRV: 2.1.3.2) enables to derive the respiratory
rate (RR) but also reflects activity in the autonomic nervous system (ANS).
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2.1.3.1 Pulse Arrival and Pulse Transit Time

The electrical stimuli of the cardiac muscle spread in the dielectric of inhomogeneous
tissues in different ways [GLG96; Kel+10]. Nevertheless, the conduction velocity is often
assumed to be the speed of light (c = 299 792 458 m s−1) [Ges89; MP95]. First experiments
could only demonstrate a lower-bound propagation velocity of at least 250 m s−1 [BG15].
The recent revision with better equipment and improved statistical evidence still showed
a comparatively poor mean propagation velocity of 1500 m s−1 [Buc+22]. This velocity is
in admittedly multiple orders away from the speed of light, but it, nevertheless, makes the
signal virtually simultaneously detectable throughout the body surface.

In contrast, the mechanical percussion wave is traveling through the vascular system
much slower with a pulse wave velocity (PWV) of about 5.2 to 14.6 m s−1 [FAG+10]. It
mainly depends on the blood vessel’s diameter and the subject’s age, which is associated
with parameters such as arterial stiffness and blood pressure [Kim+07; CM+19]. Because
the diameter of blood vessels decreases with increasing distance from the heart, also the
PWV increases. The actual blood flow velocity (BFV) is inversely related to the total
cross-section area of the human’s vessel network and comparatively slow. It ranges from
about 30 cm s−1 in the typically 2.0 – 2.5 cm wide aorta to only about 0.026 cm s−1 in the
2 – 12 µm narrow capillaries [Cle21; MGR21].

The pulse arrival time (PAT) describes the time that a pulse wave travels through the
vessels from the heart to a peripheral measurement site. It is determined by measuring the
location-dependent delay between the detection of the R peak in ECG and the arrival of
the pulse wave, e.g. the diastolic onset detected in PPG as fiducial point P. This way, PAT
is the sum of the cardiac pre-ejection period (PEP), which is the period of the isovolumetric
ventricular contraction of the heart, and the vessel transit time (VTT), the actual time the
wave requires to travel from the aortic opening to the sensor location [Che+00; Joh+06].
However, the distance respectively path length from the heart to the measurement site
is not directly determinable. Instead, usually the lag between the detection of the same
feature P in the PPG signals from two different locations is measured to determine the
pulse transit time (PTT), which is inversely proportional to the local PWV of that interval
[Che+00]. Therefore, the PAT is a special case of PTT that relies on the R wave in ECG
as a reference, virtually located in the heart as the origin of the heartbeat, but includes the
PEP time. Typical PATs between the R wave in ECG and the diastolic / systolic point P
in PPG are respectively 0.133 s / 0.397 s at the ears, 0.199 s / 0.436 s at the thumbs, and
0.301 s / 0.515 s at the toes [AM00]. Consequently, the position of the sensor on the body
surface has a significant impact on the timing of pulse detection.

In medical settings, oscillometric, inflatable blood pressure cuffs (sphygmomanometers)
are applied to non-invasively measure the ABP. However, these allow only for intermittent
samples in 3 – 5 min intervals [Cha+19a; Rut+20]. Since PAT and PTT are proportional
to ABP [Cha+19a], they are examined to enable its continuous estimation, thus serving
as a proper surrogate for the long-term ABP monitoring in everyday life [Wel+20]. Most
approaches are based on the combination of ECG and another modality such as PPG to
determine PAT [Che+00; Wel+20] or the use of multiple PPG sensors separated from each
other to measure PTT [Cha+19a]. The use of multi-wavelength PPG allows to detect the
pulse in different skin layers and, therefore, to determine PTT on a very short interval of
the blood vessels, thus enabling the single-site estimation of ABP [Liu+16; Cha+19b].
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2.1.3.2 Heart Rate Variability

The pointed ECG signal shows a pseudo-periodic run [Bas+87], influenced by diverse phys-
iological processes, illustrated in Figure 2.2. The predominating variations are originated
in the phenomenon respiratory sinus arrhythmia (RSA) [Moo+85]. Accordingly, breath-
ing modulates the signal in three ways, termed as respiratory-induced intensity (RIIV),
amplitude (RIAV), and frequency (RIFV) variations, which allow to derive RR from the
ECG time series [Cha+18; AM00]. These variations are, however, different for women
and men [Li+10] and in particular RIAV and RIIV are also very sensitive to dehydration
and hypovolemia [Deh+18]. The breathing mechanism is controlled by respiratory neu-
rons which regulate the activity of the respiratory muscles of which the diaphragm takes
over the major control in breathing control. During inhalation, it moves downward to
make more room in the thorax and causes the heart volume to increase. Informed of the
increased volume by the sinoatrial node, then the ANS orders to accelerate the HR. The
exhalation reverses this process and results in a relaxing diaphragm, a shrinking thorax,
a decreasing heart volume, and, therefore, a deaccelerating HR. The variations in inten-
sity and amplitude are, however, originated in “mechanical distortion of the atria due to
changes in thoracic pressure” [Bil11]. [Bar+18; Sta+22]

In general, the quasi-random modulation of the R-R inter-beat intervals (IBIs) between
consecutive R peaks is termed as heart rate variability (HRV) and contains a wealth of
health-related information that have already been interpreted for more than three centuries
[Bil11]. In healthy subjects, the interval variations between consecutive heartbeats can be
remarkable and contain periodic as well as aperiodic frequency components with medical
relevance. A low HRV is generally associated with higher cardiovascular mortality while
the resting HRV is an indicator of cardiovascular and autonomic health as well as general
fitness, and at night, HRV reflects the sleep quality and reacts to the sleep phases [Kin+20].
While the span of HRV already provides valuable information, usually the HRV interval
function is analyzed in frequency domain. An overview of the metrics and standards
as well as guidelines for the physiological and clinical interpretation are available [MC96;
SG17]. The ANS of the human consists of two parts which regulate the body’s unconscious
activity and act complementary to each other. While the parasympathetic nervous system
with a slower response controls the body at rest and is responsible for the ‘rest and digest’,
the sympathetic nervous system with a faster response controls the shortening reactions
of ‘fight or flight’ in case of a threat. Commonly termed as Mayer wave, a low frequency
(LF) oscillation has been observed at about 0.1 Hz which spontaneously occurs in conscious
subjects and is assumed to be “tightly coupled with [ . . . ] sympathetic nervous activity”
[Kam+05; Jul06; Láz+19]. Also the HRV reflects the sympathetic and parasympathetic
activity in the ANS, such as the body’s thermoregulation [Bas+87; AM00]. Also the effect
of sauna was examined, indicating improvements in HRV and arterial health [HMR20].

Similar to the HRV in ECG, a signal modulation is observable in the blood flow and
hence in any heartbeat-related modality such as PPG [Kar+13; Cha+18]. Analog to the
HRV analysis for ECG, the pulsatile PPG signal shows P-P IBIs which can be taken for
a pulse rate variability (PRV) analysis [CS17; Pos+13]. To derive the PRV, it is required
to identify robust and reliable features which are preserved throughout the entire body
and result in a signal preferably identical to the HRV. The relationship of HRV and PRV
has been verified with a “high correlation” [Akd+13] in diverse studies, which conclude
that for most applications PRV from PPG can serve as a proper surrogate for HRV from
ECG [Gil+10; Pos+13; Mej+20]. The observable differences in the quality of obtained
information, usually from the frequency spectrum, are hypothesized to be originated in
“technical aspects” [MMK22] and largely depend on the quality of the feature point detec-
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Figure 2.2: Illustration of typical influences on the ECG (left) and PPG (right) signals,
induced by physiological processes: no modulation present (top); low-frequency baseline
wander (BW), e.g. RIIV; amplitude modulation (AM), e.g. RIAV; frequency modula-
tion (FM), e.g. RIFV. Figure from [CVS16] (CC BY-NC 4.0)

tion and the applied preprocessing [Akd+13; Pos+13; Rib+18; MMK21; MMK22]. While
the pointed R peak in ECG is very significant, the pulse morphology tends to be rounder
and, moreover, changes considerably with the measurement site as the branching of the
blood vessels – from arteries to arterioles and finally into capillaries – influence the blood
flow through superimposing reflections and inflections [DH41; Mil+06; All07; CM+19;
Har+19]. Nevertheless, the diastolic onset is shown to be not considerably affected and
to provide reliable, preserved landmarks throughout the entire body surface [CM+19;
MMK22]. It is the most commonly used fiducial point P, but also other features have
been evaluated and showed slightly different applicability and accuracy [Pos+13; Per+19;
MMK22]. Therefore, the IBIs enable a reliable and relatively noise-resistant analysis as
the pulse position identification is less affected by noise and motion artifacts than the
directly measured signal amplitudes or intensity variations [Kar+13; Deh+18].

Interval Function
In medical context, the HRV is often plotted in an interval tachogram [Bas+87], a discrete
visualization of enumerated IBIs tx − tx−1 from a set of heartbeat-related timestamps T :

Tacho(T ) := ⟨ {tx − tx−1} , ... ⟩∥T ∥−1
x=1 (2.1)

However, as signals from wearable devices tend to be affected by motion artifacts, er-
roneously detected, spurious peaks can misalign and distort these simple sequences. In
contrast, the HRV interval function [Bas+87] is a function of time, based on the times-
tamps tx themselves, that is less and, in case of artifacts, only locally disturbed.

HRV (T ) := ⟨ {tx, tx − tx−1} , ... ⟩∥T ∥−1
x=1 (2.2)

Because the HRV interval function is sampled by means of the irregular heartbeat at
a finite but varying rate, the obtained information largely depend on the average HR.
Standard methods to transform the HRV signal from time to frequency domain, such
as the primarily applied fast Fourier transformation (FFT), require, however, regularly
sampled sampled time series [LRZ19]. Therefore, the sequence of detected T are first
interpolated and then resampled at a certain sampling rate fhrv [Bas+87], with 4 – 10 Hz
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(a) Evaluation system of the MAX86140 / 41.

Systolic point

Dicrotic notch

Dicrotic peak

Diastolic point

(b) Raw PPG signal of a single cardiac cycle.

Figure 2.3: (a) The employed wearable PPG sensor module uses the evaluation board
of the MAX86140 / 41 [MAX8]. It combines a low-power microcontroller, a Bluetooth LE
transceiver, and a sensing unit with two PDs, a green, and a yellow LED (bottom right).
Facing to the skin surface, the sensor unit measures the reflected light to infer the blood
volume changes in the microvascular bed of tissue beneath the skin. (b) Excerpt from a
raw PPG signal covering a single cardiac cycle, measured with green light at a sampling
rate fs of 512 Hz and showing an inverse course. Note the characteristic features: diastolic
and systolic point, dicrotic notch and peak of the reflected wave from aorta and lower
extremities, as well as the spikes of interfering noise. [W18]

found to be useful [Gil92; Cha+18; Mor+19]. Different types of interpolation functions
can be applied intp(HRV (TX)), e.g. linear or cubic spline interpolation [Mor+19; MK22].
The discontinuity of linearly interpolated data causes high frequency (HF) noise that is
usually eliminated by applying a low-pass (LP) filter to avoid their aliases to show up in
the frequency bands of interest.

Due to the rich spectrum of information, features derived from HRV or PRV are often
used as the underlying characteristic in novel approaches for the biometric identifica-
tion of individuals [Isr+05; Akh+15]. Especially the location-independence, stability, and
uniqueness of the derived features enable the application in a similar way as the biometric
identification through the fingerprint [Isr+05].

2.1.4 Wearable Prototype

The conduction of the intended experiments and the evaluation of the low-level approaches
requires hardware that delivers raw PPG signals of a high quality, also considering the
recent findings regarding suitable light wavelengths (Section 2.1.2.1). The choice was
made for the MAX86140 / 41 [MAX8] and its evaluation board as an integrated optical
data acquisition system (DAQ) system. It is a state-of-the-art low-power platform that is
suitable as a light-weight and wearable PPG-sensing system, as presented in Figure 2.3a.

Its central microcontroller is a MAX 32620 ARM Cortex-M4 with floating point unit. It
includes 2 MB of flash memory and 256 kB of SRAM to collect the measurements. Read-
ings can also be transmitted via the nRF52832 Bluetooth LE transceiver for intermittent
further processing and long-term offline storage. The MAX86140 itself provides three pro-
grammable 8 bit LED driver digital-to-analog converters (DACs) for pulse modulation and
a low-noise AFE with a single input channel to a 19 bit sigma-delta ADC with integrated
filter for 50 / 60 Hz interference from ambient light. It provides sampling rates fs from
4096 Hz down to 8 Hz. Furthermore, the manual triggering enables individual sequences,
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thus even lower than 8 Hz. The option of using a low fs in combination with diverse en-
ergy saving modes and a proximity function to detect skin contact enables the use of this
hardware design in research for low power applications. The influence of ambient light is
compensated and abrupt changes can, if activated, be rejected by a picket fence detect and
replace algorithm for value estimation. As a result, the modules provide stable signals, but
still allow to obtain unfiltered, raw PPG measurements which is important for the research
intent. They allow for the unconstrained offline analysis of recorded signals, including the
application of possible filters without anticipating the necessity of preprocessing stages
such as a LP filter for the elimination of baseline wander.

The use of a suitable light source (Section 2.1.2.1) is essential. The prototype provides
a green LED (LT PWSG) with λg = 528 nm and a yellow, amber-colored LED (LY P47F)
with λy = 590 nm. To detect the small variations in the detected light, the system uses two
PDs (VEMD5010X01) with a sensitivity suitable for visible and near infrared light. In the
conducted experiments, the following measuring parameters have been applied: During
each sample, the LEDs are successively turned on, driven with a current of 4.9 mA. After
a settling time of 12 µs the reflected light is integrated for 14.8 µs and, finally, measured
by the ADC. Although the measurement time can be extended up to 117.3 µs, resulting
in a higher SNR, the default configuration is used due to a significant lower energy con-
sumption, nevertheless, still providing a sufficient modulation depth for most skin types.

However, the duty time of 14.8 µs already results in a time-averaged current of about
262.6 nA Hz−1. Thus, the activation of each discrete LED incorporates a relevant portion
of the prototype’s energy consumption: about 1.1 mA at 4096 sps, 134.5 µA at 512 sps,
16.8 µA at 64 sps, 2.1 µA at 8 sps. Therefore, not only the LEDs’ demand increases linearly
with the applied fs, also the AFE consumes a rising current, ranging from a few µA up
to about 1.2 mA. Just the PPG module’s sensor AFE with a single LED hence consumes
about 2 mA at the maximum fs of 4096 sps, compared to less than 5 µA at about 10 sps.
In addition, a higher fs has also large impact on the microcontroller’s busyness, resource
and memory usage, again resulting in a larger dissipation.
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2.2 Sampling Strategies

Sampling is the fundamental principle that allows physical quantities to be captured from
the analog real world and the continuous input signals to be represented by a sequence
of discrete data values. Theoretically, the signal is sampled by Dirac unit impulses of
infinite amplitude, infinitesimal width, and discrete time to capture the value of the exact
moment. However, the imperfections of reality affect this mechanism and thus limit the
achievable accuracy. In general, analog-to-digital converter (ADC) circuits serve as an
interface between the analog and the digital domains and digitally quantize the continuous
analog signal, usually provided by the sensor as a voltage. The different ADC types
have different pros and cons regarding power consumption, accuracy, noise-immunity, and
conversion time. The conversion time describes a non-negligible period of time needed for
the conversion while the input signal may still change, e.g. due to noise. Therefore, sample
and hold amplifiers (SHAs) are used to capture the voltage of the moment, store it and
hence to ensure a constant level for a certain period of time and eliminate the unwanted
fluctuations. Storing a sufficient amount of energy to enable the conversion process requires
a storage element such as a hold capacitor. Consequently, the charging characteristics of
capacitors apply to the circuit’s input and, although the flowing current is comparatively
small, it can load the sensor and affect its delivered signal. Limiting the flowing current
by a high input impedance reduces this load but requires a more sophisticated ADC and
usually a longer sampling time to charge the hold capacitor. Therefore, it is essential to
harmonize the ADC and its SHA with the sensor being read to keep leakage current low
and not affect its signal beyond a certain degree. [Lyo11; Zum11]

2.2.1 Passive and Active Sampling

Passive sensors measure the energy emitted by an external source, which can either directly
reach the sensor or take a more complex path. The intensity of sunlight, for example, can
be measured directly with a photodetector, but it can also serve as a means of measuring
the reflectivity of an object that reflects the incident sunlight to the sensor. In contrast,
active sensors themselves emit energy, such as radio waves or light, that is backscattered
and reflected by the objects and environment under investigation. The changes in the
detected signal can then be analyzed, interpreted, and, if necessary, calibrated.

Thus, ECG is a typical example of a passive sensing modality that detects the electric
field generated by the myocardial muscle. In contrast, PPG requires the active emission
of light at specific wavelengths to capture the changes in blood volume beneath the skin.
Recent approaches in remote PPG attempt to use ambient light to detect the pulse in cam-
era images. Unfortunately, the extracted signal tends to be weak and shows a rather low
SNR. Furthermore, sunlight introduces large natural fluctuations in both intensity and
wavelength spectrum, depending on day time, altitude of the sun, and cloud coverage.
Artificial light even exhibits continuous flickering at 50 / 60 Hz, causing significant inter-
ference. A reliable HR measurement might, therefore, be possible in illuminated rooms
with constant and bright light conditions. For wearable devices, worn close to the body
surface and in changing environments, frequently affected by motion, natural light is most
likely not sufficient and a supplementary light source is required.

Therefore, PPG actively illuminates the skin with LEDs of specific wavelengths and
simultaneously measures the intensity of the backscattered and reflected light with one
or multiple PDs. The sampling rate fs is one of the key parameters as it decides about
the the energy dissipation and the device’s battery life on the one hand, but also on the
temporal resolution and the signal’s details on the other hand. A patent application by
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Figure 2.4: Typical sampling schemes applied in wearable PPG sensing devices. From left
to right: a) uniform sampling with constant frequency, b) multi-channel sampling with
multiple subsequent pulses of different wavelengths, c) average sampling with multiple
samples per captured value, d) burst sampling with a burst frequency and duty cycle
which window captures samples with a specific pulse repetition frequency (PRF), and
e) sparse sampling for compressed sensing with a randomized sampling pattern. [A19]

Intel mentions that “the LED pulsing consumes approximately 80 % of system power in
a conventional 32 Hz PPG design” [NDR17]. With regard to the characteristics of the
light source, photodetector, and the AFE, several other parameters have to be considered
when sampling PPG. These are mainly the LEDs’ colors, settling and transient time, and
intensity on the one hand, and the PD’s sensitivity, dimensions, and the applied ADC’s
SHA on the other hand. The dimensions of the PD with its inherent capacitance and the
sample and hold time influence the quality of the captured measurement and the resulting
SNR. A longer sample time extends the integration time, which means that the induced
signal of the incident light is accumulated and HF distortions are neglected by averaging.
However, the peak current for the illumination can be tens of mA and powering the high-
intensity LEDs over extended periods puts a large dent into a wearable’s energy budget.
Therefore, the LEDs are switched on only for a short flash period of several ms down to
tens of µs for each sample, thus significantly limiting the required power.

Although diverse advanced sampling strategies have been proposed, most research in
PPG still relies on conventional uniform, regular sampling. In contrast, commercial devices
are following very different approaches and use different sampling strategies to save energy
and yet obtain good readings. This begs the question: How often, and in which sampling
scheme, should these measurements take place?

2.2.1.1 Present Strategies

In traditional uniform sampling (Figure 2.4a), which is still the most common scheme,
samples are taken continuously at a particular frequency. However, if the device is not
worn, many devices resort to a reduced sampling rate with single intermittent samples.
Such proximity measurements are often performed with IR light as it is not visible for
the human eye and, thus, not distracting. If multiple channels with different wavelengths
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are available (Figure 2.4b), those are triggered subsequently with a little gap to permit
the PD to recover. This gap should not to be too large, otherwise the physiological signal
would change during the measurement and the samples would no longer be comparable and
quasi simultaneously taken. For example, determining SpO2 requires the ratio of measure-
ments from two different wavelengths, ideally taken at the same moment (Section 2.1.3).
Sampling can also be reduced in other situations, such as when the user is moving too
much to deliver a clean PPG signal.

Sampling improvements have been achieved by capturing multiple adjacent samples
that are averaged (Figure 2.4c) either in software or, more efficiently, in hardware. This
method decimates the amount of data throughput, but also reduces the influence of HF
noise due to the implementation of a simple moving-average LP filter. This increases
the number of samples per averaged value, and consequently the cost of illumination
is increased as well, but the derived values stay at a lower rate and do not require more
resources or larger efforts in processing. Another approach reduces the energy consumption
through non-averaged, intermittent burst measurements (Figure 2.4d) at which the duty
cycle determines the power dissipation. Similar to continuous sampling, the samples are
taken at a specific sampling rate, the so-called pulse repetition frequency (PRF), but the
measurement is limited to a certain time interval. The minimization of this duty cycle
reduces the energy demands, but at the same time reduces the gathered information, as
well. Diverse approaches make the devices only record samples if the user is at rest for a
certain time, thus avoiding distortions through motion artifacts.

Yet another strategy uses non-uniform sampling, which is applied for compressed sensing
approaches (Figure 2.4e). Raw PPG signals are pseudo-periodic pulse signals which are
superimposed by non-stationary, chaotic low-frequency baseline wandering and HF noise.
Because the desired signal exhibits low activity and diversity, uniform sampling delivers
redundant data that is largely predictable. To reduce the dissipation through needless
light flashes of the high-intensity LEDs, the samples are partially omitted and a sparse
sampling scheme in a random pattern is applied. Due to the reduced number of samples,
also less data has to be processed. However, the missing information of the fewer samples
has to be reconstructed and estimated through suitable methods, which in turn require
computational efforts and energy again. Whereas such algorithms are usually running
on larger platforms and result in highly accurate estimates, the performance of wearable
devices is limited and such algorithms would need to be highly efficient to outperform con-
ventional uniform sampling. An example for hardware-implemented compressed sensing, a
input-dependent integrate and fire sampler is proposed that avoids “redundant sampling”
by capturing only specific ROIs such as the pulse peaks by predicting their locations and
intensifying the sample density accordingly [NPE15].

2.2.1.2 Strategies of Commercial Wearables

In [A19], the sampling strategies of seven (7) commercial wrist-worn devices are analyzed,
specifically not addressing their accuracy and the success of the approaches, but instead
investigating what types of sampling schemes and strategies are used in current PPG-based
wearables. The set of devices covers the entire price spectrum, from low-cost wristbands
up to expensive lifestyle devices that have appeared over the past years. The oldest device,
commonly used in research studies, is the Empatica E4 [EmE4], released in November 2014.
Next is the consumer product Samsung Gear S3 from November 2016. The fitness tracker
Polar OH1 has been released in September 2017, and the devices Mobvoi TicWatch E and
Xiaomi Amazfit Bip have been released late 2017. The most recent devices are the Fitbit
Versa from March 2018 and the Apple Watch 4 from September 2018.
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Table 2.1: Overview of the pulse repetition frequency (PRF) and group frequency (GF) of
the 7 analyzed commercial PPG sensing devices, sampling either in the continuous or the
sporadic modes. Figure A.3 and A.4 provide excerpts from the measurements. [A19]

Continuous Sporadic
Product Release PRF GF PRF GF
Empatica E4 Nov. 2014 5 kHz 64 Hz
Samsung Gear S3 Nov. 2016 1.3 kHz 20 Hz 20 Hz 0.5 Hz
Polar OH1 Sep. 2017 4.8 kHz 135 Hz
Mobvoi TicWatch E Nov. 2017 3.8 kHz 20 Hz
Xiaomi Amazfit Bip Dec. 2017 25 Hz
Fitbit Versa Mar. 2018 2.7 kHz 256 Hz 25 Hz unknown
Apple Watch 4 Sep. 2018 7.5 kHz 25 Hz 2.5 kHz 8 Hz

The PPG sampling of all wearables is monitored in two conditions. Figure A.1 shows
the continuous sampling that is actively triggered through the user interface, for example
to monitor physical exercises, whereas Figure A.2 shows the incidental measurements
that are applied sporadically during normal operation to save energy. Each device’s LED
activity is captured with a PD and recorded by a digital oscilloscope. The amplitude is
normalized and the pulses are identified using a threshold-based peak detector to enable
the characterization of all sampling parameters. Table 2.1 summarizes the insights.

With one or two PDs placed near multiple LEDs, the physical appearance of the sensing
setup looks similar for most wearables. An elaborate configuration with Fresnel lenses
seems to be used by the Apple Watch 4 while all other devices place the PDs directly
on the skin surface. The Empatica E4 and the Mobvoi TicWatch E provide a shielded
window to the sensor, but the other devices, such as the Xiaomi Amazfit Bip, place the
sensor closer to the skin by making it protrude from the case. All tested wearables apply
green light. However, the Empatica E4 and Fitbit Versa apply green and red light, and
the Apple Watch 4 uses green and IR light to support the derivation of SpO2.

The sampling schemes show a large diversity. Straightforward uniform sampling is used
by the Xiaomi Amazfit Bip which simultaneously samples two green LEDs at 25 Hz. The
Samsung Gear S3 and Polar OH1 also use two green LEDs, but differently. The Samsung
Gear S3 consecutively flashes at 1.3 kHz pulse repetition frequency (PRF) and 20 Hz group
frequency (GF). The Polar OH1 uses 4.8 kHz pulse repetition frequency (PRF) and 135 Hz
group frequency (GF), presumably in an averaging strategy. The most recent devices, the
Fitbit Versa and the Apple Watch 4, are following the approach of multi-channel sampling
and utilize green light in combination with either red or IR light. The two channels are
likely used to determine SpO2. The PRF and GF are 7.5 kHz and 25 Hz respectively for
the Fitbit Versa and 2.7 kHz and 256 Hz for the Apple Watch 4. The Empatica E4 has
two green and then two red LEDs flashing subsequently, with likely two readings of the
same wavelength averaged and then likely used to enable the SpO2 determination. It is
the only device that actively regulates the light intensity according to the present body
surface. The Mobvoi TicWatch E surprisingly applied a fundamentally different scheme
at which three pulses are followed by 25 larger pulses and a terminating larger pulse of
presumably green light. While the PRF is about 3.8 kHz, the GF is only about 20 Hz.

Sporadic sampling modes were only applied by three devices, the Samsung Gear S3,
the Fitbit Versa, and the Apple Watch 4. The latter one uses three consecutive samples
from the green LEDs at about 2.5 kHz PRF and 8 Hz GF while the IR LEDs seem to be
inactive. The Samsung Gear S3 applies a burst measurement with a PRF of about 20 Hz
instead, repeated at a GF of about 0.5 Hz. Finally, the Fitbit Versa applies an interesting
sampling scheme with a PRF of about 25 Hz in which the amplitudes of the green LEDs are

29



2 Wearable Sensing

gradually decreasing. In the first time period, the two treads exhibit four pulses, followed
by 42 pulses with a constant amplitude, then followed by a second time period with 30
adjacent double pulses. The latter ones consist of two flashes, alternatingly emitted either
from the green or the red LED.

To get an idea of what is possible by optimizing the sampling strategy and measurement
duty cycle, one can experience the Oura ring, a small and comparatively unobtrusive
sleep tracker that successively turns into a fully-featured fitness tracker. While the second
generation was sampling with IR light only at night and at comparatively high 250 Hz
[Tur19], the third generation, released in 2022, has two PDs and samples only at 50 Hz
[Our22a]. During the day, it measures every five (5) minutes for a period of one (1)
minute with two green LEDs [Our22b], at night, it also determines the SpO2 with a
red and IR multi-chip LED [Ste22], and during exercises like running, activated by the
user, it measures again with green light. This way, the tiny device achieved an accuracy
comparable to that of medical grade ECG [Kin+20]. Although the battery has only a
capacity of 16 mA h [Ste22], tiny compared to the capacity of a wrist-worn device with
typically about 200 – 350 mA h, it nevertheless lasts for about one week.

2.2.2 Minimum Sampling Rate

As discovered in the previous Section 2.2, commercial devices tend to use a significantly
higher sampling rate fs to obtain more detailed signals with a high temporal resolution.
The trend to inconsiderately increase fs prevailed for a while. On the one hand, it has
been motivated by the filter-based stabilization of the average, statistically representing
the expected value, smooths the slope, and suppresses occurring noise. On the other hand,
the interpretation of the HRV requires a higher fs to precisely locate the pulse peaks and to
measure the IBIs between consecutive peaks. Figure 2.5 illustrates the relation between
fs and the temporal resolution which is required for an accurate HRV derivation [CS17].

Due to the high energy consumption and the desire for small and long-lasting wear-
able devices, research again concentrates on the reduction of fs, to reach its necessary
minimum. Thus, the fundamental Nyquist-Shannon sampling theorem [Sha49] returns to
mind, which defines the possible minimum fs necessary to reliably represent the desired
signal. However, in the raw measurement data, the interfering noise is not filtered and the
signal thus not band-limited. Consequently, a higher fs would be required to not violate
the guideline and unwittingly cause aliasing. However, at a certain point, the benefits of
a higher fs will stagnate while the energy consumption will still increase constantly.

The approach of Giovanni et al. [Gio+16] examines the energy-efficient estimation of
HR based on a single-sided amplitude spectrum, applying the FFT on short windows of
PPG signals. The algorithm removes existing motion artifacts without the reconstruction
of a noise-free signal or adaptive filtering. Additionally, by lowering the fs from 125 Hz
to 31.5 Hz it was able to reduce the required memory to 5.8 kB. At the same time, the
average absolute error increases only from 1.27 ± 0.91 bpm to 2.24 ± 1.01 bpm.

A similar approach is examined by Choi and Shin [CS17] which evaluates the required
minimum fs to reliably analyze the HRV. The original 10 kHz PPG signal is sampled down
by decimation to the range of 5 kHz to 5 Hz. Afterwards, the signal sequences are analyzed
in time and frequency domain, and then compared to the reference ECG measurements
with a fs of 10 kHz. As a result, it is stated that a fs beyond 25 Hz does not show
significant difference to the lower ones and, thus, a higher fs does not contribute to the
reliability of PPG for the HRV derivation.

The following study [W18] argues for using wearable PPG sensors to observe slower
trends, across longer stretches of time, by evaluating data that span minutes rather than
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Figure 2.5: Illustration of the effect of downsampling through decimation on the PPG
signal, with the channels of green light (left) and yellow light (right), from 512 Hz (top)
down to 128, 32, 16, 8, and 4 Hz (bottom). With lower frequency, the temporal resolution
decreases and an accurate localization of the pulse peaks is not possible anymore. [W18]

seconds. Using spectral analysis of minute-long signals, it is intended to extract the differ-
ent oscillations present in the PPG signal that correspond to HR, RR, and a third range
which has been identified to represent sympathetic nervous activity (SNA). Specifically
the effect of the PPG sensor’s sampling frequency fs on such estimates is investigated,
since the LED-driven measurements are a major hurdle for wearable long-term deploy-
ments. Therefore, two experiments are presented: One on a clinical benchmark dataset of
42 individuals and a second one on experimental recordings from 6 individuals taken with
the wearable PPG system presented (Section 2.1.4).

2.2.2.1 Analysis on a Public Dataset

The approach is first validated regarding the effect of fs on the spectral analysis of PPG
data with a publicly available dataset that has been recorded from a highly variable set
of 42 users. As will be discussed in the following section (Section 2.3.2), raw PPG data
is not as easily found. The popular CapnoBase IEEE TBME dataset [Kar+10; Kar+13]
with recordings from a fingertip pulse oximeter is used. It is one of the few publicly
available clinical datasets that contain synchronized ECG, PPG, and CO2 RR recordings
from a large variety of persons. The dataset was originally devised for examining RR
estimation algorithms from presumably raw PPG signals of 42 persons, for a duration of
eight (8) minutes each and sampled at 300 Hz. The PPG readings are complemented with
reference CO2 readings, ECG readings, and artifact labels validated by an expert rater.
Figure 2.6a shows a one-minute segment of raw ECG, CO2 RR, and PPG data from this
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(a) Analysis of the CapnoBase IEEE TBME. (b) Results for the CapnoBase IEEE TBME.

Figure 2.6: (a) Analysis of an excerpt from the popular CapnoBase IEEE TBME dataset
[Kar+10; Kar+13] with fingertip pulse oximeter readings taken from 42 individuals. Orig-
inal time series over 1 minute from wearable ECG, CO2 RR, and PPG sensors, all sampled
at 300 Hz (top). Frequency spectrum of PPG data, annotated with frequencies and dom-
inant frequency in ECG and CO2 RR (bottom). Occurrence of LF processes typical for
SNA. (b) Accuracy for the detection of HR (left) and RR (right) from the PPG readings,
while varying fs from the sensor’s original 300 down to 2 Hz. The different lines repre-
sent the results using different thresholds to establish whether a correct prediction was
made. They are measured in Hz as the maximum absolute distance between prediction
and ground truth. Note that reducing fs to as low as 18 Hz or 9 Hz has a moderate to
minor effect, with a more severe impact for the estimates of RR. [W18]

repository, and our frequency analysis for the said segment.
In a first pass, possible artifacts in the dataset are eliminated by selecting, for each

person, a one-minute subset of data for which no artifacts are present in the ECG, RR, or
PPG signals. These artifacts are annotated in the benchmark, using the incremental-merge
segmentation (IMS) algorithm [Kar+12], which detects short-term artifacts by identifying
abnormally large and clipped pulses. Subsequently, the DC component in raw PPG data
is removed through a high-pass (HP) filter with a cutoff frequency of 0.01 Hz. Spectral
analyses is performed based on Welch’s method of an averaged periodogram [Wel67]: The
PPG time series are divided into 50 % overlapping 60 s segments, computing a modified pe-
riodogram for each segment, and averaging the resulting periodograms. The segments are
Hanning-windowed, to minimize the first sidelobe of the frequency response, and Fourier-
transformed using the FFT. The range of the expected RR and HR frequencies is as in
[Kar+13] defined as 0.067 – 1.08 Hz or 4 – 65 cpm for RR and for the HR a similar search
window that reaches up to 3 Hz or 180 cpm. For the calculation of the average frequencies
for both HR and RR, the frequencies with maximum power within the respective ranges
are then identified. For SNA, the area under the power spectrum is computed for the LF
range from 0.04 to 0.15 Hz [AA06].

To study the effect of the fs on the detection of HR, RR, and SNA, intermittent samples
are systematically removed from the original 300 Hz data, down to 2 Hz. Figure 2.6b
shows the results for the recovery HR and RR, using a range of distance thresholds from
0.005 Hz up to 0.1 Hz. The predicted frequency is marked as correct if it is within this
threshold from the ground truth, and false otherwise. Overall, the detection of the RR
around 80 % is lower than the HR around 90 % for the same thresholds. The detection for
the HR and RR accuracy can also be seen to deteriorate rapidly after reducing fs to 4 Hz.
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2.2.2.2 Analysis on Experimental Data

After the evaluation of the fundamental approach, in a second experiment, experimental
data from the previously presented wearable PPG sensor system (Section 2.1.4) are
analyzed and evaluated. For the experiments, besides the PPG sensors themselves also
other sensors have been utilized to provide ground truth information about the actual RR,
but also to detect mechanical disturbances. The recordings have been analyzed offline on
a computer. To provide a matched data base, the sensors have been synchronized with
specific gestures as will be discussed in the remainder of this dissertation (Chapter 4).

Primary device is the wearable sensor module based on the MAX86140 / 41 [MAX8]
that has been employed to record raw PPG data at the subjects’ right wrist. Further,
the onboard accelerometer BMA280 is used to support the identification of occurring
disturbances. Besides the elimination of motion artifacts, this even enabled to examine
the mechanical influence of breathing, as the arm is slightly displaced with every thorax
movement. To gather ground truth information about RR, a secondary sensor module
has been attached below the chest’s left pectoral muscle, close to the heart. It focuses on
the acceleration that is changing due to the direct thorax expansion and, consequently,
enables to infer RR. The position was chosen to additionally test the PPG principle at
this position in foresight for the use in smart patches. However, the chest strap of the
second device has been perceived as unhandy and uncomfortable, and was not applied in
later experiments. Instead, a time-of-flight (ToF) depth camera has been used to remotely
measure the respiratory movements of the thorax. This measurement principle has been
validated in detailed respiratory experiments and showed high accuracy and reliability
[Kv18] (Figure 2.7). The two wearable modules recorded the measurements of the two
PPG channels, green and yellow light, the ambient light intensity, and the acceleration in
three axes at a fs of 512 Hz. For both PPG channels, the influence of ambient light has
automatically been detracted. Due to the slower frame rate of the depth camera, the RR
reference signal is recorded at about 30 Hz.

The PPG sensors and accelerometers are synchronized onboard. However, the two
wearable devices, attached to wrist and chest, as well as the external depth camera still
had to be synchronized among each other. To link the wearable modules, their casings are
tapped against each other to generate significant peaks in the acceleration. Subsequently,
a fast waving gesture, of the arm with attached sensor module, through the measurement
window, spanning the chest of the detected subject, enabled to link the depth camera
signals with the acceleration channels of the wearables. By executing this procedure at
the beginning and the end of the recordings, also the clock drift of the particular devices
can be rectified which is important for longer time spans.

Diverse filters and algorithms are applied to extract the desired parameters HR, RR,
and SNA from the recorded signals. At first, the parameters are estimated according to the
approach of this research, based on the frequency spectra of the FFT (Section 2.4.2).
Those are then compared to the estimates that have been extracted the conventional
way, using established and widely accepted standard techniques. The most fundamental
value derived from PPG is the HR. To extract this parameter from the measured signals,
a standard peak detection algorithm has been applied. It is common even though not
efficient, but ensures the independency from specific concepts and algorithms. Thus, it
returns not only the count of peaks per window length, but also their position which is basic
requirement for the subsequent parameters. To achieve a reliable locating of the pule peaks,
the algorithm has been configured considering the standard HR frequency range between
0.67 Hz and 3.67 Hz respectively 40 bpm and 220 bpm [Gio+16] (Figure 2.13). Due to
optimal conditions of the selected data windows without motion artifacts, this approach
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is sufficient. Before the peak detection is executed, the signal is filtered with a forward-
backward, linear phase, 2nd order band-pass (BP) filter to reject baseline wandering and
noise below 0.025 Hz and beyond 10.0 Hz.

Due to RIIV (Section 2.1.3.2), it is possible to extract RR directly from the fluctu-
ations in the raw PPG signals. However, because this feature is very sensitive to motion
artifacts, the measurement of the related phenomenon RSA through HRV is currently the
mostly applied way. The slope of HRV is derived from the positions of the pulse peaks
which have been used to generate the envelope function of the raw PPG signal. The
maxima respective the diastolic base points represent an irregularly sampled sequence of
peak-features that is resampled using linear interpolation [Kar+13; Cha+16].

2.2.2.3 Results and Discussion

Figure 2.6a shows a typical time series of the first experiment’s benchmark dataset which
provides the three channels of ECG, RR CO2, and PPG. Although the patients are not
artificially ventilated at a specified frequency, the respiratory signal still shows a uniform,
continuous signal and a pointed, significant peak in the frequency spectrum. The heart
beat is distinctively observable in both, the ECG and the PPG signals. The superimposing
RIIV is simultaneously observable in both channels, however, its amplitude is clearly lower
than the primary pulses. As a result, the frequency and power spectra show significant
peaks at the fundamental frequencies of HR and RR within the mentioned frequency bands.
The peak of the RR CO2 measurement is congruent with the RR-associated peaks in the
ECG and PPG channels, but those are less distinct. In contrast, the dominant frequency
peak of HR is several times larger than the one of RR due to its smaller amplitude of the
superimposing RIIV. The results of the downsampling are presented in Figure 2.6b and
show a relatively stable accuracy down to a fs of about 9 Hz for both HR and RR with
about 90 % and 80 % correctly identified dominant components.

In contrast to the first experiment, the subjects of the second experiment performed
paced breathing at 0.25 Hz. As is observable in Figure 2.7, all three reference measure-
ments, either from the ToF depth camera or of the on-board accelerometers, show a similar
signal, resulting in a significant peak at the desired RR frequency in the spectra. Thus,
the ToF depth camera provides reliable reference measurements and is a valid replacement
for the obtrusive chest strap that has been used in preliminary experiments. Although
still observable at the wrist, the influence of the respiratory motion due to thorax dis-
placement is expected to have negligible influence on the quality of the PPG signal. The
Figures 2.8 and 2.9 show excerpts from the time series of the PPG sensors attached
to wrist and chest. Apparently, the chest sensor’s signal is considerably superimposed by
respiratory-induced intensity variations (RIIV). Because the pulse peaks are clearly visible
and no harsh motion artifacts are observable, direct mechanical influence of the thorax
displacement on the signal can be excluded. In contrast, the PPG signal at the wrist
does not contain similar superimposition. Instead, a LF component is visible, which is not
noticeable at the chest. Analog to the observations in time domain, the frequency spectra
of the sensors show significant peaks for RR at the chest and for LF at the wrist. Both
spectra show scattered peaks around the actual HR, but their distributions are neither
similar nor comparable in width and shape. Due to the phenomenon of the RSA, the
analysis of the feature-based HRV reveals the RR signal at both measurement positions,
at the wrist as well as at the chest. Both curves swing around the average inter-beat dis-
tance, about 1 s in this case, but exhibit a different phase. The resulting peak of the RR
dominant frequency is significantly observable in both HRV spectra. In contrast, the HR
frequency band is not occupied at all. While the spectrum of the wrist’s raw data showed
a distinct increase within the LF range, this frequency band is just unremarkable in the
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Figure 2.7: Validation of paced breathing at 0.25 Hz (15 cpm). Measurement of the
thorax expansion with ToF depth camera (top), accelerometer at the chest (middle), and
accelerometer at the wrist (bottom). Signal segment of 20 s (left) and frequency spectra
of full 120 s (right). Depth camera BP filtered (0.5 – 50 Hz) time series and unfiltered
frequency spectrum. Acceleration signals BP filtered (0.025 – 2.0 Hz) in both cases. [W18]

Figure 2.8: Analysis of PPG signals from the wrist during paced breathing. Time series
of 20 s raw data (top left), frequency spectrum of full 120 s raw data (top right), linearly
interpolated HRV from irregularly sampled maximum peak-features (bottom left), and
respective frequency spectrum (bottom right). Top right: significant SNA (green), observ-
able RR (red), and HR (yellow). Bottom right: significant RR (red). [W18]

Figure 2.9: Analysis of PPG signals from the chest during paced breathing. Time series
of 20 s raw data (top left), frequency spectrum of full 120 s raw data (top right), linear
interpolated HRV from irregularly sampled maximum peak-features (bottom left), and
respective frequency spectrum (bottom right). Top right: observable SNA (green), signif-
icant RR (red), and HR (yellow). Bottom right: significant RR (red). [W18]
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Figure 2.10: Accuracy for the detection of HR (left) and RR (right) from the experi-
mental PPG readings, while varying fs from the sensor’s original 512 down to 2 Hz. The
different lines represent the results using different thresholds to establish whether a cor-
rect prediction was made. They are measured in Hz as the maximum absolute distance
between prediction and ground truth. Note that reducing fs has only minor to no effects
for RR and a more severe impact on HR. [W18]

HRV spectra of both sensor positions. The results of the downsampling are presented in
Figure 2.10 and show a relatively stable accuracy down to about 4 Hz SR for both HR
and RR. The average accuracy spreads around 80 % for HR and 70 % for RR.

The wearer’s HR and RR are essentially calculated by observing dominant frequencies
in their respective frequency bands. Although the presented method does not provide
detailed, peak-specific identification and segmentation, which is what many state-of-the-
art approaches currently aim for, it does lend itself well for energy-efficient PPG monitoring
and solutions that need to be light-weight and wearable over longer stretches of time.
This way, both experiments showed the feasibility of inferring HR and RR from frequency
spectra at reduced fs without losing reliability and accuracy. Of course, the aggregation of
the information in a minute-long measurement window and the calculation of its average
results in a coarsening, but the resulting resolution is usually sufficient for long-term
observations. In general, the RR frequency can be extracted from both spectra, based
on the raw measurements or the HRV information. Instead, the HR itself can only be
derived from the raw signal’s spectrum. Due to the paced and, therefore, constant RR
frequency in the second study, the dominant frequency was extraordinary significant and
easy to extract. Variations in breathing and the change of the fundamental RR frequency
within a measurement window would spread the frequency components and, thus, flatten
the peaks. This behavior is observable for HR at which the slight frequency variations of
RSA generate a wide distribution with sidebands according to the HRV’s swing.
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2.3 Wearable Photoplethysmography Datasets

The development and benchmark of efficient algorithms and the training of machine learn-
ing models requires large datasets from numerous individuals with different constitutions.
However, obtaining recordings from long-term deployment is difficult and hence most pub-
licly available databases, such as MIMIC-II / -III [Sae+11; Joh+16] of the notable platform
PhysioNet [Gol+00], are originated in large medical studies with a clinical background and
stationary devices. Although these datasets often provide PPG readings, the compiled
findings cannot directly be transferred to wearable devices and their typical challenges
emerging when worn in everyday life.

In medical settings, often the standard pulse oximeters are applied while commercial
wearable devices are common for in-the-wild studies. For both kind of devices the raw
signal, directly obtained from the AFE, is usually not accessible. The devices apply filters
to remove the predominant DC component, LF baseline wandering, and HF noise to
obtain a detrended and smooth signal. Due to their limited memory, especially wearable
devices condense the signal down to its required essence, e.g. readings of SpO2, HR,
and features derived from HRV. Only devices intended for the use in research, such as
the popular Empatica E4 [EmE4], provide pretended raw data which, however, are also
preprocessed to ease the interpretation and to save valuable memory. Consequently, the
signals are already filtered, often rescaled or normalized, and flipped to be consistent with
the associated ABP that is already known and easier to analyze by physicians.

In contrast, researchers developing innovative sensing concepts and hardware, primarily
test their proper working, but usually do not focus on the recording of measurements over
long term and under different conditions. Typically, only a few individuals are testing
the prototypes in a lab and rarely in real-life settings. Furthermore, the recordings are
exclusively evaluated and presented as consolidated results, but the gathered data are then
not documented and made publicly available.

Hence, in research focusing on algorithms that are applied close to the hardware level,
either available datasets from a clinical origin or self-recorded datasets with a limited ev-
idence and reproducibility have to be used. As stated by Charlton et al. [Cha+18], there
are only few studies applying their approach to more than two datasets or even com-
paring multiple approaches to each other, tested on the same, larger benchmark dataset,
but their comparison is important as the “performance may differ significantly between
datasets”. Also Reiss et al. [Rei+19] describe the problem that “existing approaches are
highly parametrised and optimised for specific scenarios of small, public datasets”. Pi-
mentel et al. [Pim+17] also emphasize that “Future studies should concentrate on the use
of [ . . . ] raw data sources as a benchmark for comparison”. However, the immense variety
of possible parameters has an essential impact on the recorded signals. The selection of
light color (Section 2.1.2.1) and sampling scheme (Section 2.2), but also the hardware’s
individual characteristics make it even harder to generate a universal dataset which novel
approaches such as compressed sensing and spectral estimation could be tested with.

2.3.1 Raw Signals

In digital signal processing, datasets of original, raw signals are preferred over preprocessed
ones which naturally limit the possible use right from the start. Raw data are considered
to be universal and to still provide all inherent information, the noise spectrum as well as
the desired signals and even hidden secondary information. Although these datasets tend
to become very large quickly, it is still reasonable to record the direct measurements, if
possible, as today’s computers are usually capable of handling them.
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Figure 2.11: Excerpt from the raw reference PPG signal, the green light channel of the
MAX86140 / 41 [MAX8] evaluation system. A short close-up (bottom left), a 30-second
window (top), and the respective frequency spectrum (bottom right). The pulsatile heart-
beat signal is inversely proportional to the blood volume, superimposed by LF baseline
wandering and HF noise. Note also the large DC offset. [W20a]

However, Gitelman [Git13] states that “raw data is an oxymoron” as “data are always
already ‘cooked’ and never entirely ‘raw’ ”. Although rather philosophic, this statement
is also valid for PPG sensing. The definition of the term raw is strongly related to the
perspective and interest of the researcher. It mainly depends on the research domain and
hence the intended level of abstraction, from the highest one of the devices’ consumer via
the medicals’ view on HR or SpO2 measurements down to the engineers’ bits, amperes,
and volts or even the physicists’ luminous flux, absorption, and reflectivity.

In this dissertation, raw signals are defined to contain the maximum possible informa-
tion by applying the minimum necessary preprocessing. In case of PPG this means that
the recordings contain the values directly captured from the ADC which receives the am-
plified analog signal from the photodetector, usually via a transimpedance amplifier. Fig-
ure 2.11 shows an excerpt from such raw signals of the MAX86140 / 41 (Section 2.2.2).

2.3.2 Systematic Review

Table 2.2 provides an overview of the ten (10) datasets reviewed, their related publica-
tions, information about the length, number of subjects, and contained recordings as well
as links to their public repositories. Table 2.3 summarizes additional information about
the used sensing devices, technical details, and applied preprocessing as stated in their
documentation. Figure A.3 and A.4 show characteristic excerpts from the signals.

The recording of a suitable reference dataset with multiple subjects has been prohibited
by the COVID-19 pandemic. Hence, recordings from preliminary experiments with the
evaluation system of the Maxim MAX86140 [W18] (Section 2.2.2) serve as a reference
(REF) for the quality review. However, the set of just a few experimental recordings is
not itself suitable for a full research dataset, as the number of participants is too small.
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2.3.2.1 Decision Metrics

The suitability and applicability of a dataset is difficult to quantify in a universal way. The
following seven (7) decision metrics are developed to support the selection of a suitable,
publicly available dataset, either from the list of the reviewed ten (10) references or from
a different source by applying the developed analytic tool.

Time Base
The sampling frequency fs is often assumed to be constant. Hence, the individual samples’
timestamps are usually omitted to save valuable memory and only the desired rate is
specified. However, due to internal processes, devices tend to show a deviating sampling
period ∆t and consequently a jittering frequency. The rate’s mean f̄s is preferably close to
the desired value and the standard deviation σfs ought to be negligible. Despite that, it is
beneficial to know the exact time of a sample taken, to be able to consider deviations and
omitted samples, to generate a regularly sampled time series by means of interpolation.

f̄s = 1
n

n∑
i=1

1
∆ti

and σfs =

√√√√ 1
n

n∑
i=1

( 1
∆ti

− f̄s

)2

with ∆ti = ti−1 − ti

(2.3)

Signal Mean
The raw signal y naturally contains a very large DC component. Consequently, its mean
ȳ already tells a lot about the applied preprocessing. A mean around 0 exposes that the
signal has potentially been shifted to get a zero-centered signal or even a HP filter was
applied for a detrended signal, causing the signal to drop back to the origin. For practical
reasons an error margin ϵz of 1.5 % is added as the filtered values might not hit exact 0.

ȳ :
{

|ȳ| ≫ 0 , natural DC component
|ȳ| ≤ 0 + ϵz , detrended, zero-centered

(2.4)

Signal Scope
The signal’s scope represents only a minor fraction of the overall signal’s extent and is
often cropped at its minimum to reduce the memory demands. In many cases, the signals
are even scaled and normalized to the range of [0, 1]. In other cases the signal is fit into
the range of [−1, 1], but if the signal has been zero-centered beforehand, then either the
min(y) or the max(y) might not reach the lower −1 or upper 1 boundary.

y :


0 ≪ min(y) < max(y) , normal scope
min(y) ≳ 0 ∧ max(y) > 1 , cropped
min(y) ≳ 0 ∧ max(y) ≤ 1 , [0, 1] normalized
min(y) ≥ −1 ∧ max(y) ≤ 1 , [−1, 1] normalized

(2.5)

Granularity
The granularity ∆ of the signal y is ideally identical to its amplitude resolution if fs is
sufficiently high to quantize and reconstruct the signal slopes. It is determined from the
sorted list of unique values without duplicates by seeking the minimum Euclidean distance.
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(a) Sample distribution and center of mass. (b) Slope steepness distribution.

Figure 2.12: (a) Distribution of the amplitude samples and determined center of mass
and (a) distribution of the determined slope steepnesses for raw, uninverted PPG signals.

The granularity helps to unveil applied preprocessing as the values directly obtained from
the ADC are binary integers by nature.

∆ = min(yi − yi−1) ∀ yi ∈ sort(unique(y)) (2.6)

∆ :


∆ ∈ N ∧ ∆ = 1 , integer of 1 digit
∆ ∈ N ∧ ∆ > 1 , integer, small fs or short t

∆ ∈ R , floating-point
(2.7)

Clipping
If the signal has been normalized to either [0, 1] or [−1, 1], clipping artifacts can occur
at the boundaries, cutting the caps of the lowest and highest peaks. Those flat tops are
detectable by means of multiple successive samples staying constant at the boundary value
for a minimum period tc. These are then counted and averaged over 30 s windows along
the entire time series.

Flipping
Traditional pulse oximetry sensors monitor the PPG signal proportional to the run of ABP
and, therefore, often flip it to enable this analogy. However, the raw signals of both PPG
modes originally show an inversely proportional course (Section 2.1.2). To determine the
pulse direction, two measures are determined, illustrated in Figure 2.12. The first one
determines the pulses’ center of mass which is usually originated at the systolic onset while
the diastolic peak is much lighter. Then, based on the approach of Choi et al. [Cho+17],
the second measure compares the steepness of the down and up slopes which tend to be
steeper for the systolic than for the diastolic phase.

Frequency Spectral Ratio
As all physiological signals, raw PPG signals are non-stationary and dominated by LF base-
line wandering. Therefore, most approaches apply a high-pass (HP) or band-pass (BP)

40



2.3 Wearable Photoplethysmography Datasets

filter to remove the LF components and to limit the pulsatile signal in a constant bound-
ary envelope. This filtering, however, prevents the option of analyzing these frequency
components, associated with activity in the ANS and RSA (Section 2.1.3.2).

The frequency spectrum is split up into four bands. The very low frequency VLF
band (0.0 to 0.167 Hz) predominantly contains random baseline wandering. The low LF
band (0.167 to 0.667 Hz respective 10 to 40 bpm) mainly contains respiratory signals, but
is overlapping with the intermediate IF band (0.5 to 3.0 Hz respective 30 to 180 bpm)
which mainly contains the HR signal [Deh+18; Fle+11]. The high frequency HF band
(>3.0 Hz) is associated with noise, but can also contain higher harmonics of the pulse.
Disturbances through daily motion are mainly located in the 1.0 to 2.5 Hz band [TMS+14]
and, consequently, might affect the metrics. Those are derived from firstly the ratio of
the dominant peak in the VLF versus the dominant peak in the IF band and secondly the
dominant peak in the LF versus the mean of the IF band. They are covering the most
common corner frequencies applied to detrend the raw PPG signal.

max(VLF)
max(IF) :

{
≫ 1 , if very low frequencies present
≤ 1 , if high-pass filtered, fc ≥ 0.167 Hz

(2.8)

max(LF)
IF

:
{

≫ 1 , if low frequencies present
≤ 1 , if high-pass filtered, fc ≥ 0.667 Hz

(2.9)

2.3.2.2 Results and Discussion

Table 2.4 summarizes the output from the multi-varied quality analysis tool applying the
presented seven (7) decision metrics. Most of the reviewed datasets have benn recorded at
a sampling rate fs of more than 100 Hz, except for the two datasets S02 and S03 based
on the wearable Empatica E4 [EmE4] with fixed 64 Hz. The time bases are provided for
S01, S06, and S07. However, as no jitter was detectable for S01, its samples’ timestamps
have probably been added subsequently, based on the desired fs, but the real f̄s according
to the device’s internal clock is not traceable anymore. In contrast, S06 and S07 provide
real timestamps of the samples’ moments which enables the subsequent resampling and
interpolation to a regular rate. S01 and S05 showed a granularity of 1 which allows the
conclusion that those contain actual raw signals directly obtained from the ADC. However,
while the other metrics of S01 indicate that it was not preprocessed at all, the ones of
S05 indicate a flipped signal course. The majority of the flipped time series are originated
in a transmission mode measurement (S05, S06, S08, and S10) while only the wearable
Empatica E4 devices’ signals S02 and S03 are also flipped, presumably to conform with
the measurements from traditional pulse oximeters. For S07 it was not possible to validate
the detected direction. Although most time series were filtered, only S02, S03, S09, and
S10 are actually zero-centered. While S06 is ideally fitted into [0, 1], S04 is rather [−1, 1]-
but probably intended to be also [0, 1]-normalized. The metrics VLF and LF reliably
distinguish the unfiltered (S01, S04) from the little (S07, S10) and the strongly (S08,
S09) HP filtered datasets. However, they are inapplicable for S05 as it contains only
very short signal snippets of 2.1 s, which result in a very coarse and inadequate frequency
spectral resolution. Only S10 showed clipping artifacts which are typical for aged data
from CapnoBase. In general, the results of S02 and S03, originated in the same research
team, show a high similarity and accordance although the datasets contain independent
recordings from different studies with different research questions. Therefore, accompanied
by REF, only the most recent dataset S01 proved itself to contain entirely raw signals,
S01 without providing real timestamps, however.
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The most important criteria are related to filtering as it significantly affects the signal
and limits suitable applications. If the signal mean is close to zero, most likely a HP filter
has been applied which removes the LF components and hence shifts the signal. Although
it is an artifact of aged datasets, also clipping considerably affects the signal quality by
cutting the lowest and highest peak caps and thus impedes their accurate positioning. In
contrast, the granularity as well as the [0, 1] and [−1, 1] normalizations do not affect the
signal itself, but indicate that the raw signals from the ADC have been relabeled according
to a physical value or even rescaled. In case of an interpolation process, e.g. due to
regularization, the granularity is assumed to show rather a floating point than an integer
value. In general, the transition from integer to floating point values is unfavorable as the
calculation with those often results in rounding errors and inaccuracies. The awareness of
flipping allows to repeatedly inverse the signal as most algorithms are less effective with
slopes in an unexpected direction.

Limitations
We assume that the characteristics of a single time series are valid for the entire dataset.
As the two datasets S02 and S03 show, this assumption applies not only within the same
series, but also for the same device type applied. Therefore, recordings were carefully
selected to represented a meaningful cross section of the entire dataset. Of course the tool
can be applied to all kind of data and serve as a basis for a statistical analysis, but a
general validity would have gone beyond the scope and intention.

2.3.3 Guidelines

The following guidelines are provided to supplement the general requirements on quality
datasets, e.g. [BBS14; Sch+18; YFM19], with a specific focus on PPG datasets. Unpro-
cessed, raw measurements are prefereable and do not limit the research in signal processing
and algorithms for wearable PPG sensing right from the start. As the performance of wear-
ables tends to be limited, their long-term deployment in-the-wild is not easy. Hence, the
sensor configuration is always a trade-off between universality and reusability of the data
on the one hand, but required memory and battery life on the other hand.

These guidelines are intended to encourage 1) to utilize PPG sensors that are capable
of recording raw or just slightly filtered signals; 2) to record synchronized reference signals
such as ECG and RR; 3) to use the maximum possible sampling rate as long as it does
not limit and terminate the experiment early; 4) to save the unaggregated samples of all
particular measurement channels, also the ambient light intensity, if available; 5) to enable
the recording of timestamps for each sample taken. These configurations consume higher
amounts of valuable memory and energy, thus a balancing of the parameters according to
the research interests and the mitigation of others for long-term monitoring is required.

Furthermore, 6) access to all technical details of the applied sensing device as well as
its configuration is essential. This includes not only the desired sampling rate and the
number of measurement channels, but also the components’ names, e.g. of LEDs and
PDs, their light wavelength and drive current or peak sensitivity, sampling time, and the
applied sampling scheme. Also 7) the setup, attachment, and measurement location of
the sensor needs to be described. The location ‘wrist’ can for example be described more
precisely by adding ‘volar’ for the palm side or ‘dorsal’ for the back side.

A 8) detailed documentation with a brief description of the author’s research domain and
questions will help fellows to appraise whether the conducted experiments and recorded
data are compatible to their research intent.
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Table 2.2: Overview of the reviewed publicly available datasets. [W20a]
id dataset authors year origin data format #subjects #recordings length link

S01 MAXREFDES100 [Bia+20] Biagetti et al. 2020 recording *.mat 7 105 https://www.sciencedirect.com/science/article/pii/S2352340919314003
S02 PPG-DaLiA [Rei+19] Reiss et al. 2019 recording *.pkl / *.csv 15 https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/index.html.en
S03 WESAD [Sch+18] Schmidt et al. 2018 recording *.pkl / *.csv 15 (12m, 3f) ~36 min https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/index.html.en
S04 BloodLossSvm [Rel+18] Reljin et al. 2018 recording *.csv / *.txt 9 (trauma) / 27 (healthy) 67 / 27 2 min https://figshare.com/articles/NR_bloodlosssvm_zip/5594644
S05 PPG-BP [Lia+18] Liang et al. 2018 recording *.txt 219 657 3 × 2.1 s https://figshare.com/articles/PPG-BP_Database_zip/5459299
S06 BIDMC [Pim+17] Pimentel et al. 2017 MIMIC II [Sae+11] *.mat / *.csv 53 53 8 min https://physionet.org/content/bidmc/1.0.0/
S07 Wrist PPG During Exercise [JC17] Jarchi et al. 2017 recording wfdb data 8 (5f, 3m) https://physionet.org/content/wrist/1.0.0/
S08 Cuff-Less Blood Pressure Estimation [Kac+15] Kachuee et al. 2015 PhysioNet [Gol+00] *.mat https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
S09 IEEE SPC 2015 (TROIKA) [ZPL15] Zhang et al. 2015 recording *.mat 12 (training) / 8 (test) 12 / 8 https://sites.google.com/site/researchbyzhang/ieeespcup2015
S10 IEEE SPC 2013 [Kar+13] Karlen et al. 2013 CapnoBase [Kar+10] *.mat 42 42 8 min http://www.capnobase.org/index.php?id=857

#: number of

Table 2.3: Overview of the applied PPG sensor setups and configurations. [W20a]
id sensing device location mode illumination fS ADC resolution preprocessing

REF MAX86140 (EVSYS#) wrist (dorsal) reflective green (2x 528 nm), yellow (2x 590 nm) 512 Hz 19 bit BS 50 / 60 Hz (hardware)
S01 MAXREFDES100# wrist reflective infrared (880 nm), red (660 nm), green (537 nm) 400 Hz 16 bit
S02 Empatica E4 wrist (non-dominant) reflective red (2x), green (2x) 64 Hz 0.9 nW/dig BW removal, MA removal (combines different light waves)
S03 Empatica E4 wrist (non-dominant) reflective red (2x), green (2x) 64 Hz 0.9 nW/dig BW removal, MA removal (combines different light waves)
S04 finger, forehead, ear reflective infrared, red 80 Hz
S05 SMPLUS SEP9AF-2 earlobe, fingertip (?) transmission infrared (905 nm), red (660 nm) 1000 Hz 12 bit BP 0.5 to 12.0 Hz
S06 wrist (dorsal) (?) transmission (?) 125 Hz
S07 Shimmer 3 GSR+ left hand’s finger (?) reflective green (510 nm) 256 Hz 12 bit Shimmer’s on-board filter / cycling: LP 15 Hz (2nd order Butterworth)
S08 fingertip transmission (?) 125 Hz
S09 wrist (dorsal) reflective green (2x 515 nm, 2 cm distance) 125 Hz BP 0.4 to 4.0 Hz (2nd order Butterworth)
S10 transmission (?) 300 Hz

(?): ambiguous information; BP: band-pass filter; BS: band-stop filter; BW: baseline wondering; MA: motion artifact

Table 2.4: Results of the multi-varied quality analysis. Color highlighted indicators for the output of the 7 decision metrics with green:
positive, red: negative, orange: vague declaration, blue: unverifiable. Additionally, overview of subsidiary measures. [W20a]

sampling rate fs (Hz) signal characteristics time domain frequency domain artifacts
id dataset desired real jitter mean min max span #values gran. ∆ ZC [0, 1] [−1, 1] flip VLF / IF LF / IF clipping

REF Reference Data (MAX86140) 512.0 511.750 0.001 176529.1 174920.0 178594.0 3674.0 3477 1 No No No No 76.9 103.0 No
S01 MAXREFDES100# 400.0 400.000 6054.6 5661.0 7387.0 1726.0 1553 1 No No No No 109.5 55.3 No
S02 PPG-DaLiA 64.0 -0.002 -1647.390 1557.6 3205.0 59323 0.010 Yes No No Yes 0.150 1.783 No
S03 WESAD 64.0 -0.000 -873.670 988.080 1861.8 45440 0.010 Yes No No Yes 0.044 1.947 No
S04 BloodLossSVM 200.0 0.475 -0.013 0.998 1.011 1011 0.001 No Quasi Yes No 246.6 15.7 No
S05 PPG-BP 1000.0 2036.9 1682.0 2587.0 905.000 511 1 No No No Yes 20.009 20.047 No
S06 BIDMC 125.0 125.000 3.559 0.466 0.224 0.698 0.474 407 0.001 No Yes No Yes 0.018 1.884 No
S07 Wrist PPG During Exercise 256.0 255.882 0.575 1378.3 1269.8 1498.1 228.372 23744 0.003 No No No 1No 0.066 31.0 No
S08 Cuff-Less Blood Pressure Estimation 125.0 1.840 0.000 4.002 4.002 2792 0.001 No No No Yes 0.009 0.590 No
S09 IEEE SPC 2015 (TROIKA) 125.0 -0.708 -270.000 208.500 478.500 840 0.500 Yes No No No 0.088 0.781 No
S10 IEEE SPC 2013 300.0 -0.215 -9.840 10.240 20.080 754 0.020 Yes No No Yes 0.059 0.927 Yes

#: number of; ZC: zero-centered; VLF / IF: very low to intermediate frequency ratio; LF / IF: low to intermediate frequency ratio; 1: too noisy signal; 2: too short recordings43
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Figure 2.13: Frequency components present in raw PPG signals. Frequency bands:
fundamental frequencies of HR and RR according to [Deh+18; Fle+11]; DC offset and
1/f fluctuations (DF) [KM82; Bil11; Ern17]; general noise and disturbances through daily
motion (MA) [TMS+14]. Natural limits of HR and RR change with the age from infants
and children to adults (solid lines). Overlapping areas are critical since they are hard to
distinguish and to assign [TMS+14]. Y-axis unspecified. [C21c]

2.4 Digital Signal Processing

For ECG there exist standards for the preprocessing and well-established algorithms to
identify the prominent R peaks of the consecutive QRS complexes. A still commonly used
one is the Pan-Tompkins algorithm from 1985 [PT85], but there are also more recent and
specialized ones as summarized by Köhler et al. [KHO02]. These algorithms are usually
also applicable for readings from wearable ECG sensors, as long as they resemble the
standard lead I. However, depending on the wearing location and orientation of the wear-
able device, the vector of the R peak changes and can even invert its polarity. Therefore,
depending on the resembled lead (e.g. aVR or V1 – V3, introduced in Section 2.1.1), the
algorithm has to detect and consider the direction of the significant R peak.

The raw PPG signal is not affected by the device’s orientation, but instead shows a
large intrinsic diversity of the pulse contour. The pulse waveform depends not only on
the subject’s physiological conditions, HR, and ABP, but also on the measurement site
(Section 2.1.2.2) and applied light wavelength (Section 2.1.2.1). Figure 2.13 illus-
trates the spectrum of raw PPG signals, composed of diverse superimposing frequency
components. Besides the diverse physiological signals of interest, PPG measurements
also contain a certain amount of physiological noise [COL90] and chaos [Svi+18]. More-
over, wearable PPG significantly suffers from motion artifacts (Section 2.4.1). This
superposition of desired signals and interference makes the careful filtering of the desired
components necessary [CPK22]. However, the filtering of raw PPG signals also has an
effect on the pulse contour and thus on the derived features and secondary signals such as
HRV [Liu+21; MMK21]. The typical processing pipeline for PPG signals is illustrated in
Figure 2.14 and consists of five stages: signal sampling, preprocessing, motion artifact
treatment, fiducial point detection, and secondary measure derivation [Fis+17; IAS21].

Although the frequency bands of HR and RR are limited by nature, it is not advisable to
apply filters with fixed passband limits to extract the components [TMS+14]. The plausi-
bility of frequencies’ occurrence highly depends on the individual and there is no consensus
on optimal, generalized ranges [Cha+18]. For adults, the bands typically range from about
0.833 to 3.333 Hz (50 – 200 bpm) for HR and about 0.133 to 0.667 Hz (8 – 40 bpm) for RR.
In the age of infants to young adults, the spectra for HR and RR range from 0.5 to 3.0 Hz
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Figure 2.14: Typical processing pipeline for the extraction of infromation from raw PPG
signals: Active sampling to obtain the raw signal; preprocessing: consecutive filter stages
of LP, BS, and BP to extract the desired; interference treatment: signal quality index esti-
mation (SQI), artifact removal (REM), signal recovery (REC); feature detection: fiducial
point detection (DET) and outlier removal (OUT); secondary signal derivation applying
metrics such as RIIV, RIAV, or RIFV / HRV. c.f. [Fis+17; IAS21]
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Figure 2.15: Review of 14 publications. Distribution of applied filter cutoff frequencies:
lower corner (HP) and upper corner (LP), in respect to RR and HR bands (Figure 2.13).
Publications: [ZPL15; Fis+17; Kam+89; Zon+03; Cha+16; Gio+16; LSH16; Dao+17;
Tem17; CR18; Xie+18; CLL19; HS20; WP20]. [W20a]

(30 – 180 bpm) and 0.667 to 0.9 Hz (40 – 54 bpm) respectively [Deh+18; Fle+11]. Conse-
quently, the universal cardiac and respiratory frequency bands, for both infants and adults,
overlap. The separation of the desired signal components from in-band noise, especially
motion artifacts from daily activities such as walking and jogging (typically 1.0 to 2.5 Hz),
becomes even more challenging [TMS+14; IAS21].

The artifact-free raw PPG signal (Figure 2.11) is dominated by a large DC offset
while the AC signal amplitude comprises only about 1 – 10 % of the total scope [KM17;
KCW19]. Depending on the ADC’s resolution, typically ≥ 16 bit, the digital representation
and storage of measurements requires a lot of memory. The simple elimination of the DC
offset, often taken as unnecessary, easily reduces the extent.

In addition to the DC offset, the raw PPG signal contains also other frequency com-
ponents that are usually not of interest and removed through signal conditioning and
preprocessing techniques. It is general standard to limit the signal’s spectral bandwidth
by any type of BP filter, of which the Butterworth is the most common one. The pass-
band’s lower fc,hp and upper fc,lp cutoff frequencies are defined through successive HP and
LP filter stages, as depicted in Figure 2.20. The LP stage rejects HF noise which hinders
the accurate detection and localization of the small AC pulse peaks. At the same time,
the natural baseline wander of the physiological signal contains LF components [KM82;
Bil11; Bas+87] which blur and smear the pulses along steep and large slopes. Thus, the
HP filter stage is applied to detrend the signal and to remove for example the RR varia-
tions [Pim+17; Deh+18; Cha+16]. Particularly the first ten harmonics of the fundamental
HR shape the pulse waveform and need to be preserved [Kam+89; SN12]. Figure 2.15
illustrates the widespread distribution of utilized cutoff frequencies from 14 publications.
Previous research has reviewed commonly applied conditioning and preprocessing strate-
gies [W20a] (Section 2.3.2) and investigated the influence of the sensor’s sampling rate
fs on the HR determination [W18] (Section 2.2.2).
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(a) Motion artifacts in raw PPG signals. (b) The signal quality index (SQI).

Figure 2.16: (a) Illustration of the diverse appearances of motion artifacts and interfer-
ence occurring in raw PPG signals and (b) the derived SQI to estimate the signal quality
and decide whether to skip an interval. Figures from [Par+21] (CC BY 4.0)

Common preprocessing stages for PPG signals include traditional filters such as high-
pass (HP), band-pass (BP), and band-stop / notch (BS) filters. HP filters are applied to
detrend the raw signal, to remove the predominating DC component and the baseline
wandering, to obtain a zero-centered signal. The use of a BP filter adds a LP filter
stage to smooth the signal contour, to suppress HF noise and therefore prevent aliasing
(Section 2.2.2). A notch band-stop filter is often used to eliminate power line noise
around 50 / 60 Hz and is usually implemented on-board, in the sensor’s AFE hardware.
The aforementioned filters are usually implemented in software as Butterworth FIR or IIR
filter of 2nd order, as higher orders tend to degrade the signal [CR18]. The Savitzky-Golay
[SG64] FIR is a linear-phase smoothing filter which conserves the pulsatile shape of the
desired waveform on top of the non-stationary signal and non-Gaussian noise, but does
not show a constant, predictable transfer function [CR18]. [Elg12]

2.4.1 Motion Artifacts

In any application for the conscious human, especially during physical activity, the loosely
attached wearable PPG sensor captures motion-induced distortions. This way, “The signal
quality [ . . . ] is affected by a multitude of artifacts” [Böt+22] which are mostly originated
in slight sensor displacements, varying contact pressure [Mae+13], a possible air gap be-
tween sensor and skin, hemodynamic effects, and soft tissue deformation [All07; Man07;
PBG07; Wij+12; Böt+22] (Figure 2.16a). Particularly the skin at the wrist envelops
moving muscles, tendons, and bones which make reliable attachment and measurements
difficult as intrinsic effects cause artifacts and can even invert the signal amplitude accord-
ing to a pronation or supination twist [Cho+17; Cha+22a]. However, also a change of pose
and, therefore, a “dynamic redistribution of venous blood in response to external pressure
or gravity” has an influence on the signal [HS01]. In addition, any sensor displacement
and tissue deformation changes the path of the light in the tissue. The light scans the
inhomogeneous textures [COL90; San+10] whose different reflection and scattering be-
havior [Vol+17] thus modulates the reflected light (Section 2.1.2.1). Also the slow step
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response of filters can cause problems, when motion causes abrupt baseline changes and
the filter stage smears the offset along the continuing signal [C21c] (Section 2.4.4.2).

Motion-induced interference tends to occur in a regular rhythm, e.g. induced by contin-
uously performed motion patterns such as walking. To a certain degree, these distortions
are usually separable and removable from the desired signal. In contrast, spontaneous
motion causes artifacts that are typically observable rather as abrupt changes. These
disrupt the desired yet fragile pulsatile signal and thus impede the application of simple
algorithms. The relationship between different measurement locations and the reliability
of the signal [Jar+18] as well as the occurrence of motion artifacts [MST11a; Lon+19;
Cha+22a] has been investigated. Nevertheless, the biggest challenge remains the identi-
fication, exclusion, and removal of motion artifacts and the reconstruction of the desired
signal. The recent advances have been reviewed by Castaneda et al. [Cas+18] and Ismail
et al. [IAS21]. Diverse approaches apply adaptive filtering, signal decomposition, statis-
tics, spectrum subtraction, and diverse heuristics to detect and remove motion-related
signal components [IAS21]. Since the typical pulse waveform is known from previous mea-
surements, its morphology or extrema are assessed and the application of a predefined
threshold common to identify signal steps caused by motion [Kar+12; Fis+17; vGe+19].
Also the peak recovery and spectral reconstruction of the pulse waveform has shown good
progress [Mas+21]. Others approaches analyze signals from auxiliary sensors, mostly ac-
celerometers [Gio+16; WP20], but also from piezoelectric pressure sensor [Lee+19], optical
flow sensors known from computer mouses [FGM20], or even the ambient light [PGM20].
Research has also attempted to automatically evaluate signals and derive a signal quality
index (SQI) (Figure 2.16b) that can be used to estimate the reliability of the signal and
decide whether to consider or skip the assessed interval [SYZ12; Par+21; Böt+22].

2.4.2 Frequency Domain

The pseudo-periodic PPG signal can be analyzed in two different ways of which one is
operated in the frequency domain. As previously presented and applied in Section 2.2.2,
the raw, detrended, or even filtered PPG signal can be transformed into its spectral rep-
resentation. Approaches in this domain [Gio+16; SMZ17; Bis+19; Mas+21] often aim for
the application in very resource-constrained systems. They collect the signal over a longer
period of several seconds to minutes, then aggregate the data and analyze the spectrum
generated through a decomposition method or transformation function. Besides advanced
techniques for spectral estimation [BG09; NPE15; ZPL15; Dao+17; Ahm+19], the most
frequently applied ones are FFT algorithms [CT65; DV90] and Welch’s method [Wel67]
for a smooth periodogram from overlapping, windowed FFTs. [W18]

Essential for the FFT are the window parameters of time span T and number of sam-
ples N , joined in the sampling frequency fs = N

T . According to the sampling theorem of
Nyquist-Shannon [Sha49], the representable frequency band cannot exceed fmax = fs

2 . If
the sampled signal is not band-limited and contains frequencies beyond fmax, the com-
ponents are, therefore, mirrored at this boundary and reflected as aliases. To avoid the
aliasing effect, usually a LP anti-aliasing filter is applied to the signal. In addition, certain
window functions are applied to the signal segments before their transformation to limit
spectral leakage, frequency components occurring due to the window’s finite duration and
the step response of its abrupt boundaries. For a single-sided spectrum, N results in the
respective number of bins N

2 . Those collect frequency components within a certain range,
defined by the frequency resolution ∆f = 1

T . The limit fmax does usually not affect the
desired signal components of HR, RR, and SNA as it gets larger easily by increasing fs

adequately. However, the achieved resolution ∆f is crucial for the accurate estimation
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PV

f

Figure 2.17: Overview of the features derivable from a physiological signal in frequency
domain. PV: maximum value of a PSD; F0: predominant frequency component within a
certain frequency band of interest; AUC: area under the curve, total power of the signal
in the band; F50: central frequency between two equally divided parts of the spectrum;
SF50: frequency dispersion, width around F50 containing σ of 68.2 % of the signal’s power;
|F50−F0|: distance between central frequency (F50) and fundamental frequency (F0).

and discrimination of the desired measures since their frequency components are located
relatively close to each other, have partly overlapping frequency bands (Figure 2.13),
and show only slight variations. Consequently, for a better ∆f , the measurement time T
has to be increased already in time domain, during the recording. [Lyo11]

The FFT responds quickly to changes but also tends to be disturbed. In contrast to
the direct application of the FFT, Welch’s method [Wel67] generates a non-parametric
estimation of the power spectral density (PSD) and reduces the variance with increasing
number of samples by averaging multiple sub-spectra of overlapping window intervals. This
way, the method highlights continuously present frequency components while stochastic,
irregularly occurring ones, such as noise interference, are suppressed. [J20b]

Figure 2.17 illustrates the diverse features that can be derived from the signal’s spectral
representation, enabling e.g. the inference on HR, RR, and SNA. Usually, these features
are derived from certain frequency bands that are associated with the desired measures.
The F0 is the most common feature and related to the predominant frequency component
of maximum power within the band of interest. It is important to note that it does not
represent the average of the desired signal but the frequency component that predominates
during the time period of the analyzed window. Additional features can support the
validation and adjustment of the estimate by means of different heuristics. Such features
are the area under the curve (AUC) that describes the total power of the signal within
its band, the peak value (PV) that represents the maximum value of the entire PSD, the
F50 which is the central frequency between two equally divided parts of the spectrum,
the frequency dispersion (SF50) which describes the standard deviation σ around F50
containing of 68.2 % of the signal’s total power, and the distance between central and
fundamental frequency (|F50−F0|). [J20b]

However, the shortcut of analyzing the signal in the frequency domain prevents ap-
plications from deriving secondary information such as HRV metrics [Bil11; SG17], the
tachogram, or the interval function [Bas+87]. Since modern applications demand for these
values, most HR tracking algorithms are applied in the time domain.
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2.4.3 Time Domain

The analysis of the pulsatile PPG signal in the time domain allows deeper insights and
the interpretation of secondary signals derived from the consecutive pulses. However,
the applied algorithms tend to be more sophisticated and, since they have to identify
each individual pulse, they require significantly more processing power and resources.
As illustrated in Figure 2.14, the preprocessing stage applies diverse filters to remove
undesired signal components such as the DC offset, the LF baseline wander, and HF noise.

Eventually, the individual pulses of the heartbeat are identified by means of significant
fiducial points. As elaborated in Section 2.1.2, most algorithms identify the diastolic
onset, but also other feature points have been subject to investigation with both pros and
cons [Chi+91; Tak+98; Pos+13; Jey+15; HP16; Per+19; Cha+22a]. The HR can then be
determined by counting and averaging the number of pulses per unit time, or by directly
calculating the individual reciprocal of the IBI for an instantaneous measure [CBR91].

In case of absence of motion artifacts, simple, threshold-based approaches can achieve
good results using derivatives, moving averages, or the archaic slope sum function [Zon+03]
and relics from ECG analysis such as the popular Pan-Tompkins algorithm [PT85] to de-
tect the fiducial points [NPE15]. In recent years, diverse pulse detection and segmentation
approaches have been presented in [Kar+12; SBW12; Fis+17; CLL19; vGe+19; HS20;
WP20] and reviewed in [Obi21]. Two very different yet well-known representatives are
the algorithms or Karlen et al. [Kar+12] from 2012 and van Gent et al. [vGe+19] from
2019, therefore benchmarked in the following Section 2.4.4.3. Also machine learning
techniques have been applied to reliably detect the pulses in PPG signals which appear in
very different shapes [Bas+19a; Rei+19; Kwo+22; RCP22]. [C21c]

2.4.4 Optimal Preprocesing

In research, and especially in field studies with numerous devices, the Empatica E4 [EmE4]
has been established as a popular and commercially available tool for the monitoring of
vital signs over long term [McC+16]. Besides the early detection and diagnosis of heart
diseases in medical studies, secondary features from the HRV (Section 2.1.3.2), derived
from the pseudo-periodic heartbeat, have shown to be linked to the wearer’s emotions and
affective state. The evidence of the findings is, however, biased and limited to signals from
specific devices such as the aforementioned E4.

For researchers, it is comfortable to obtain the measurements from such embedded
sensors. The signals are usually straightforward to interpret and analyze, since they come
already conditioned and preprocessed (Figure A.3, S02 and S03). To the inexperienced
observer from disciplines other than signal processing, the sensing devices seem to deliver
proper raw signals because they come directly from them. However, the embedded software
of commercial wearables is usually closed, not adaptable, and hence limits the signal’s
information content as well as possible applications. The use of actual raw sensor data
would demand for more knowledge and effort from the researcher, but also allows for
customization to meet individual, research-specific requirements.

In context of the extraction of the RR from PPG signals, Pimentel et al. [Pim+17]
emphasize that “Future studies should concentrate on the use of [...] raw data sources as
a benchmark for comparison”. The previous review of public datasets (Section 2.3.1)
has, however, revealed that, although advertised as such, most datasets do not actually
contain raw but conspicuously filtered signals. For this reason, most large and promising
datasets are not suitable to benchmark available algorithms or even to determine optimal
preprocessing parameters. Likewise, Reiss et al. [Rei+19] state that “State-of-the-art
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publications rely mostly on the two datasets introduced for the IEEE Signal Processing
Cup” [Kar+13; ZPL15] (Figure A.4, S10), which do not contain actual raw PPG signals,
and found that “existing approaches are highly parametrised and optimised for specific
scenarios of small, public datasets”. [W20a]

The following study [C21c] aims at the deeper understanding of the raw PPG signal’s
characteristics, directly obtained from the sensor, to pave the way for more universal,
reliable, and accurate sensor-integrated algorithms, running on modern wearable devices.
In recent years, there has already been research aiming at the identification of optimal
techniques and filter parameters for the preprocessing of PPG signals. Those studies
did, however, not lead to a clear consensus. They either targeted specific applications or
exhibited weaknesses that this work aims to address.

In 2012, Stuban and Niwayama [SN12] evaluated the optimal filter bandwidth for pulse
oximetry, which traditionally applies transmission mode PPG. The research concentrated
on the estimation of SpO2 from the ratio of measurements at two different wavelengths,
red and IR light, sampled at 40 Hz. The DC and very low frequency (VLF) components
have been removed by a 2nd order infinite impulse response (IIR) HP filter. The lower
cutoff frequency was set to 0.1 Hz and “must be lower than the fundamental frequency of
the pulse”. Noise and harmonics of the pulse have then been removed by a 100th order
finite impulse response (FIR) LP filter with five different upper cutoff frequencies at 0.66,
1.0, 1.5, 3.0, or 15.0 Hz. From their findings they conclude that the “harmonics of the pulse
signal do not contribute to the accuracy of pulse oximetry” and consequently “filtering
out the harmonics [ . . . ] does not degrade the accuracy”.

In 2018, Liang et al. [Lia+18] published an impressively large dataset of 657 PPG
snippets, captured at the left index fingers of 219 subjects. Since the recordings are very
short, just 2.1 s long, the dataset’s applicability is however limited. Based on a selection
of 219 pulses, classified as “excellent”, “acceptable”, and “unfit”, they determined the 4th

order Chebyshev II to be the optimal filter technique – at least for these short signals.
Most recently, in 2020, Cassani et al. [CTF20] analyzed the spectral coherence and the

signal-to-noise ratio between “isolated” and the original, “raw” pulses. They determined
the optimal filter passband to be 0.6 to 3.3 Hz for adults and 1.0 to 2.7 Hz for children. The
spectral analysis revealed an optimal bandwidth from 0.8 to 2.4 Hz for adults and from 0.9
to 2.7 Hz for children. The study analyzed 27 000 pulses from the well-known CapnoBase
IEEE TBME [Kar+10; Kar+13] (Figure A.4, S10) dataset containing signals from a
fingertip pulse oximeter, but not raw, reflective mode PPG signals.

In 2019, Bastos et al. [Bas+19b] investigated the optimal parameters for Butterworth
and maximal overlap discrete wavelet transform (MODWT) filters which are “widely em-
ployed” in resource-constrained wearables. Considering very few cutoff frequencies, again
the dataset from [Kar+10] and the MIMIC-II BIDMC [Pim+17] (Figure A.4, S06) are
applied, both unfortunately not containing actual raw signals from reflective mode PPG.

2.4.4.1 Dataset

Public datasets with actual raw signals from reflective mode PPG sensors are scarce
[W20a] (Section 2.3.1). The adequate benchmark of available algorithms and pre-
processing techniques requires, however, large datasets of such kind. The following two
studies are based on the recent dataset of Biagetti et al. [Bia+20] from 2020. It is origi-
nally intended for the application of machine learning techniques in scope of HAR. With
in total 286 min of raw PPG measurements (Figure A.3, S01), it provides a set of 105
recordings from seven (7) subjects wearing the MAXREFDES100# [MAX1a], a commer-
cially available reference design. Simultaneous PPG and acceleration signals, sampled at
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Figure 2.18: Distribution of the seven (7) subjects’ instantaneous HR, derived from
the IBIs of the manually labeled pulses. Limited cardiac frequency band (red, see Fig-
ure 2.13). HR on the x-axes and counted number of IBIs on the y-axis. [C21c]

a rate fs of 400.0 Hz, are provided for subjects performing three exercises: “rest”, “squat”,
and “step”. Hence, the time series are not entirely clean but also contain motion artifacts
that do affect the applied algorithms.

An ideal dataset would uniformly cover the entire range of the natural HR (30 – 200 bpm
[Deh+18; Fle+11]). This requirement would, however, hardly be possible without a health
risk for the volunteers as they might exceeded their individual limits. As illustrated in
Figure 2.18, the used dataset covers a broad HR spectrum of at least 40 to 160 bpm,
with a strong core area ranging from 50 at rest to 110 bpm at light exercise. The three
exercises exhibit the mean HR of 72.9 ± 11.1 bpm (1.22 ± 0.18 Hz) for rest, 98.6 ± 16.0 bpm
(1.64 ± 0.27 Hz) for squat, and 106.2 ± 21.2 bpm (1.77 ± 0.35 Hz) for step.

Ground Truth
For every recording in daily life, the supply of ground truth tends to be the major issue.
Usually, a second sensing device or even a second sensing modality is used to provide
the information with, at best, a higher degree of reliability and precision. In case of
the HR, wearable long-term ECG devices are mostly employed since the electrodes are
directly attached to the skin and hence enable the reliable and robust measurement, at
cost of comfort, however. Unfortunately, the selected dataset does not provide ECG
as ground truth. The PPG signal is, therefore, manually analyzed and annotated by a
human expert rater with year-long experience. The performance of the applied algorithms
is not compared against a reference device but the labels accurately set by the expert.
Consequently, the theoretical limits are demonstrated by means of the human and their
ability to interpret PPG signals.

Data Annotation
For the purpose of the comfortable and reliable annotation, a graphical tool has been
developed (Figure 2.19), which allows the expert rater to label the fiducial points within
the raw time series. The decision against an automatic labeling or preselection was made
deliberately to avoid the expert being influenced and biased in their decision. Without
a doubt, this decision resulted in more and monotonous manual work – reams of clicks
to select the in total 21 806 peaks. To prevent faults due to fatigue, the expert split the
work up into one subject per day, first the larger but easier-to-label data of rest and, after
a break, the shorter but ambitious recordings of the squat and step exercises. In total
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Figure 2.19: Screenshot of the developed graphical tool for the comfortable and reliable
annotation of fiducial points within raw PPG time series. Overview of the entire recording
(top), excerpt of the unfiltered signal (middle left), the detrended and smoothed respective
excerpt (middle right), and the derived HRV interval function to indicate outliers (bottom).

104 of 105 time series, 278 of 286 min (97.3 %) are annotated with 21 806 peak labels.
Only 7.73 min do not show distinguishable signals or are considerably affected by motion
artifacts and hence excluded. 88 of 105 time series are entirely labeled. The subset squat 3
of subject 5 is rejected since it does not contain any clearly distinguishable pulses.

While the ECG’s characteristic R peak (Section 2.1.1) is pointed and hence relatively
‘easy’ to identify, even in noisy signals, the typical PPG waveform is rather smooth and
round. Recorded at a higher sampling rate [W18] (Section 2.2.2), the raw PPG sig-
nal also shows a large portion of noise and baseline wander which blurs the optimal pulse
peak and makes the identification of its exact position ambiguous (Figure 2.20a). Conse-
quently, the very top of the pulse is not always distinct but often subject to interpretation.
In contrast to deterministic algorithms, the expert has, however, intuition, grounded in
experience, to ‘see’ which tiny wave is an actual pulse onset and which one is just negligible
noise or motion-induced distortion.

To exclude the influence of filtering from the beginning, the labels are set within the
raw signal before applying any filter. A second panel allows the expert, however, to have
a glance at the detrended and smoothed signal for orientation and validation, to avoid the
selection of any invalid pulses. A 4th order (2 × 2nd) filtfilt forward-backward zero-
phase [Liu+21] BP filter with a passband from 0.5 to 30.0 Hz is applied. Unnaturally
short or long IBIs have automatically been labeled as invalid and were subject to revision
by the expert. The remaining uncertain intervals are finally excluded from the studies.

2.4.4.2 Peak Displacement

Filtering considerably changes the trend and morphology of the raw PPG signal [Liu+21].
By narrowing down the passband, the feature positions are conspicuously affected, smeared,
and blurred (Figure 2.20). The first study investigates the influence of filtering on the
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Figure 2.20: (a) Effect of diverse HP filters for detrending on the raw PPG signal.
(b) Illustration of the pulse peak position (blue) displacement due to the application of
diverse LP filters. Conspicuously affected, smeared, and blurred pulse contour, vanishing
with the baseline wander, due to eliminating the HR’s higher harmonics. [C21c]

positions of pulse onsets [Pos+13; HP16; Per+19; Cha+22a], the maximum peaks in raw
signals respectively. A 4th order (2 × 2nd) Butterworth BP filter is applied with 40 × 40
non-equidistant lower fc,hp and upper fc,lp cutoff frequencies: { / , 0.005, ..., 2.5 Hz} ×
{ / , 199.0, ..., 2.5 Hz}. The applied filtfilt forward-backward filter method with zero
phase allows to protect and preserve the signal’s original phase [Liu+21]. To track the
peak displacement εd = |p0 − p̂|, a simple hill climbing algorithm is applied to follow the
original position p0 up to the closest local maximum of the filtered signal at p̂, implemented
as a function p̂( fc,hp , fc,lp ). Any εd > 250 ms is excluded as a slipped outlier.

Figure 2.21 illustrates the mean εd results for the individual exercises (left) which sum
up to the averaged overall results (right). The boundaries of the minimum error plateaus
with εd ≤ 0.5 samples (blue) are shifted (red arrows) due to the increasing HR (vertical
line) from rest (1.22 Hz) via squat (1.64 Hz) to step (1.77 Hz). Accordingly, an extended
fc,lp (y-axis) is required to cover a sufficient number of harmonics, for an adequate contour
and peak reconstruction, but it also allows for a higher fc,hp (x-axis).

2.4.4.3 Benchmark of Algorithms

The results from the previous study on peak displacement serve as the upper boundary
of maximal achievable accuracy from filtered PPG signals. To benchmark available algo-
rithms and to investigate the effect of preprocessing on their performance, two popular
algorithms are taken as examples and are applied on the differently filtered time series:
1) Karlen et al. [Kar+12] from 2012 and 2) van Gent et al. [vGe+19] from 2019. Those
apply two fundamentally different principles to identify the pulse peaks in time domain.

To assess the algorithms’ performance, every position p0 from the manual annotations
is assigned to its closest counterpart p̂a from the detected peaks. If the error distance
|p0 − p̂a| ≤ 250 ms, the pair (p0, p̂a) is classified as true positive (TP). All missed p0 with-
out a counterpart p̂a within reach are classified as false negative (FN) while the surplus
of erroneously detected peaks falls into false positive (FP). This approach allows to apply
the popular performance metrics F1-score (Equation 2.10), the harmonic mean of preci-
sion (PPV) and recall (TPR) (Equation 2.11), to measure peak detection performance:
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F1 := 2 · PPV · TPR
PPV + TPR (2.10)

PPV := TP
TP + FP , TPR := TP

TP + FN (2.11)

For all pairs in true positive (TP), the average error distance εa = |p0 − p̂a| is determined
analog to the displacement error εd of the previous study (Section 2.4.4.2). In case
of an algorithm’s ideal performance, the F1-score would hit 1.0 and εa would match
the theoretical limit εd. Since the local optima of F1-score and εa can be conflicting
(Figure 2.22 and 2.23), a simple parameter optimization is applied to find a trade-off
by multiplying the two normalized metrics.

1) Karlen et al. [Kar+12]
Intended for usage on resource-constrained devices, the algorithm consists of two stages.
First, the IMS algorithm extracts the morphological features by segmenting and com-
pressing the signal into straight lines. It is implemented as a sliding window of size m,
which is the only parameter that requires tuning, but also depends on fs. With a larger
m the algorithm is faster and less susceptible to noise, but the determined peak positions
are also less precise. Subsequently, the extracted lines with positive gradient are classi-
fied as artifact or valid pulse using simple adaptive thresholds. The authors state that
“No other filtering than the standard BP filter applied by pulse oximeter manufacturers
to remove the DC component [ . . . ] is necessary”, but they do not specify proven val-
ues. Before, the algorithm has been evaluated using two datasets of which one is from
CapnoBase [Kar+10], hence from transmission mode pulse oximeters. Since the algorithm
expects the inverted pulse direction, consistent with the ABP, the time series need to be
flipped before its application (Section 2.3.2).

2) van Gent et al. [vGe+19]
The open-source HeartPy toolkit aims for the computational efficient but particularly re-
liable pulse detection independent from the utilized sensor. Besides a comfortable Python
library, an implementation for embedded devices in C is also available. First, a moving
average, with a default window size w of 750 ms (300 samples at fs), is used to identify
local maxima as a first selection of candidate peaks. Since an excessive or missing single
peak significantly increases the standard deviation of successive differences (SDSD), this
measure is combined with the constraint of the natural HR limits (40 – 180 bpm by de-
fault) to successively adjust the threshold and, hence, to find the optimal peak selection
of minimal SDSD. To compare the algorithms’ performance, its validation heuristic is set
to the previously discussed natural HR limits from 30 to 200 bpm [Deh+18; Fle+11].
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Figure 2.21: Evaluation results of the displacement error εd due to filtering at diverse lower fc,hp (x-axis) and upper fc,lp (y-axis). Left to
right: results of subsets rest, squad, step, and their overall mean. Shifting (red arrows) boundaries of minimum error plateau εd ≤ 0.5 samples
(blue) due to increasing HR (vertical). Proposed filter passband (magenta mark): 0.5 to 15.0 Hz. [C21c]
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2.4.4.4 Results and Discussion

The optimal cutoff frequencies largely depend on the subjects’ HR. At rest it is low while
the frequency band tends to be narrow (rest: 1.22 ± 0.18 Hz). With increasing activity, the
HR increases and the frequency band widens (squat: 1.64 ± 0.27 Hz; step: 1.77 ± 0.35 Hz).

Accordingly, the first study demonstrates that the most universal and effectual filter
passband ranges from the theoretical minimum 0.5 Hz of the natural HR to appropriate
15.0 Hz. As illustrated in Figure 2.21, it is applicable for HR at rest as well as during
exercise such as squat and step. While the lower fc,hp can be ‘easily’ estimated and tied
to the minimum HR to be expected, the upper fc,lp is more critical and difficult to specify.
A generous fc,lp allows to cover more harmonics of the fundamental HR, which eventually
refine the pulse contour. However, at a HR of 0.5 Hz (30 bpm), the covered 29th harmonic
is not very gainful. Nevertheless, the upper 15.0 Hz cutoff is required to cover at least
three (3) harmonics of a HR at 3.3 Hz (200 bpm) – ten (10) harmonics would be ideal
[Kam+89; SN12]. A wider passband of up to 25.0 Hz would result in slightly more pointed
and accurate peak contours but also gives unnecessary space for HF noise (Figure 2.20b).

The second study demonstrates the very different character of the applied algorithms:
1) The algorithm of Karlen et al. [Kar+12] performed best with a small window m of
34.236 samples (85.589 ms) and a filter passband from 0.9375 to 25.0 Hz. The configuration
results in an F1-score of 0.958 and an εa of 3.037 samples (7.594 ms). Figure 2.22 shows
that the F1-score is optimal close to the fundamental HR but remains constant along a
varied upper fc,lp. The εa stays relatively steady along the lower fc,hp until it passes the
HR but increases considerably along with a decreasing upper fc,lp. The m is homogeneous
and plane until it passes the HR along the lower fc,hp. 2) The algorithm of van Gent
et al. [vGe+19], in contrast, performed best with a large window w of 270.426 samples
(676.065 ms) and a narrower passband from 1.125 to 10.0 Hz. The configuration results in
an F1-score of 0.970 and an impressively small εa error of 0.051 samples (0.127 µs). Due
to the immense increase of peak candidates in raw and noisy signals, accompanied by
increasing processing efforts, the evaluation in Figure 2.23 is limited to fc,hp ≥ 0.5 Hz.

Limitations
Because the used dataset does not provide ground truth information, the assessment relies
on an experienced expert rater to annotate the PPG data afterwards, which inadvertently
introduces some bias as well. In case of peaks vanishing with the baseline, the identifica-
tion can be rather subject to interpretation than a distinct recognition. Inaccuracies due
to imperfect label placement are, however, statistically compensated through the large
number of labels. The use of an ECG reference channel would, without question, be expe-
dient. Very low as well as very high HR are underrepresented in this dataset. Follow-up
studies should focus on a broader HR diversity that spans the entire range of the natu-
ral HR from 0.5 to 3.3 Hz (30 – 200 bpm [Deh+18; Fle+11]). However, this is not easily
possible, as it entails a possible health risk for the subjects. Also, since PPG at the wrist
shows a location-specific composition (Section 2.1.2.2), the harmonics may contribute
differently to the pulse peak at other measurement locations. Although skin pigmenta-
tion has shown to have an effect on the received signal amplitude (Section 2.1.2.1), the
applied algorithms are unlikely to discriminate against certain skin tones per se. How-
ever, this does not preclude other algorithms, and especially approaches based on machine
learning, from being biased. The aforementioned aspects highlight the need for further
benchmark studies based on measurements from a larger set of subjects with different age,
constitution, and diverse skin tones.
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Figure 2.22: Evaluation chain and results for the algorithm of Karlen et al. [Kar+12]. Left to right: mean optima of F1-score, distance
error εa, fused parameter optimization, and window size m versus lower fc,hp and upper fc,lp. Local optima of F1-score and εa (blue). Optimal
configuration (magenta): fc,hp of 0.9375 Hz, fc,lp of 25.0 Hz, and m of 34.236 samples resulting in an F1-score of 0.958 and εa of 3.037 samples.
Relatively homogeneous plateau of possible parameters of similar quality. [C21c]
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Figure 2.23: Evaluation chain and results for the algorithm of van Gent et al. [vGe+19]. Left to right: mean optima of F1-score, distance
error εa, fused parameter optimization, and window size m versus lower fc,hp and upper fc,lp. Local optima of F1-score and εa (blue). Optimal
configuration (magenta): fc,hp of 1.125 Hz, fc,lp of 10.0 Hz, and m of 270.426 samples resulting in an F1-score of 0.970 and εa of 0.051 samples.
Rather complex texture with abruptly falling peak of optimal parameters. [C21c]
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2.5 Summary and Discussion

During the last three decades, wearables have shown an impressive evolution from bulky
portable to convenient wearable devices used by many people. While the first devices
considered the human body only as a habitat and physical carrier, nowadays, more com-
fortable wearables appear as designed lifestyle products that consider the human body
a source of valuable information. The ongoing miniaturization allows these devices to
be attached to almost arbitrary body positions, fostering the trend from single all-round
wearable devices to the simultaneous deployment of multiple sensor units.

The first MEMS accelerometers enabled the introduction of pedometers that allow to
count the user’s steps and track their physical activity in everyday life. The transfer of
the standard modalities ECG and PPG from medical settings to user’s wrist has finally
led to the breakthrough of modern wearables. The sensors either detect the electric field
generated by the cardiac muscle or the mechanical percussion wave traveling through the
blood vessels. However, the continuous ambulatory monitoring of the wearer’s primary
vital signs at the wrist required the adaption of the modalities’ fundamental working
principle. The approach of wearable ECG is relatively close to that of conventional single-
lead ECG by resembling the standard lead I. In contrast, the revival of PPG in the reflective
mode differs fundamentally from the conventional transmission mode still applied in pulse
oximeters at regular wards of hospitals.

ECG is still considered as the gold standard for measuring cardiac activity. The deriva-
tion of the significant and well-known signal pattern of the QRS complex is, however, still
limited by the attachment of multiple electrodes at different specific body positions. For
the continuous monitoring in a wearable form factor, only the chest provides comfortable
access to the signal. However, the phenomenon of the line of zero potential [Wal88] further
limits the possible locations. To establish the lead I for wrist-worn devices, the user has to
touch an electrode with a finger from the opposite arm [Tho+16; Bea+18], thus impeding
the monitoring during physical activities. Therefore, it is still impractical for wearable de-
vices to detect the electrical signal at a single spot. Even the differential signal captured
at wrist vanishes with an SNR of about 0 dB [Bea+18]. However, recent advances in the
development of sensors with very high input impedances are promising and demonstrated
that the heartbeat can be detected not only at arbitrary body positions but even remotely
at a distance [Pra+00; HCP02; Gar+13; SY16]. Considering the pace of developments in
recent years, the required ECG sensor front-ends will likely become available and standard
in wearables soon, hence enabling the methods presented in the remainder of this work.

During the last decade, PPG has established as the primary sensing modality and
standard in wearable devices to non-invasively and continuously monitor cardiac activity.
In contrast to the transfer of ECG to wearable devices, the adaption of the conventional
transmission mode to the reflective mode PPG on the skin was more difficult and is still
subject to research. Nevertheless, the optical measurement principle enables to detect
the pulse in any sufficiently perfused tissue throughout the body surface. In contrast to
the passive ECG principle, the active sampling of PPG requires an intensive LED which
puts a dent into the devices energy budget. Diverse sampling schemes and strategies,
implemented in commercial devices and proposed by researchers, aim at minimizing the
power consumption and at the same time providing reliable data. Nevertheless, motion
artifacts and interference induced during physical activity remain one of the key challenges
of wearable PPG. Especially green light has proven to be more robust and tolerant against
motion than the conventionally applied IR and red light, which, however, allow to estimate
SpO2. While the origin of the PPG signal from green light is still vague, the preprocessing
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and undocumented flipping of the signal amplitude, to conform with ABP, have caused
even more confusion. The development and benchmark of efficient algorithms and the
training of machine learning models, intended to catch up with clinical ECG, require
large datasets from numerous individuals with different constitutions. The approaches
are, however, usually benchmarked on either available datasets from a clinical origin or
self-recorded datasets with a limited evidence and reproducibility. Although advertised
as such, most datasets do not actually contain raw but conspicuously filtered signals,
often from transmission mode PPG. Despite these issues, PPG is undoubtedly capable of
detecting the heartbeat rhythm at almost arbitrary body positions and, therefore, similarly
to ECG, provides access to the natural information required for the proposed methods.

Several approaches have attempted to apply seismocardiography at the body surface
and detect the heartbeat with sensitive but energy-efficient accelerometers, available in
virtually every wearable device. However, the methods require complex filters and the
achieved reliability, especially when moving, is not satisfying yet. Therefore, the predom-
inating modalities for wearable HR monitoring are still ECG at rest, consciously forming
lead I across the arms with a medical-grade accuracy, and PPG even during physical
activity. However, future developments may allow the use of other sensor technologies.

Naturally yet irregularly sampled by the rhythm of the heart, the derived HRV contains a
large spectrum of superimposing physiological signals, e.g. RSA, related to RR, and SNA.
The secondary signal shows a high degree of intrinsic variation and temporal uniqueness
[Isr+05], superimposed by physiological noise [COL90] and chaos [Svi+18]. While the
raw ECG and PPG signals look very differently along the body surface, the derived HRV
interval functions are very similar yet ideally identical.

The mean propagation velocity of the cardiac muscle’s electrical field in tissue has
been determined to be about 1500 m s−1 [Buc+22]. Therefore, the ECG signal is virtu-
ally simultaneously detectable throughout the body surface. In contrast, the mechanical
pulse wave is traveling through the vascular system much slower with a PWV of about
5.2 to 14.6 m s−1 [FAG+10]. The resulting PATs delays between the R wave in ECG
and the diastolic / systolic point P in PPG are respectively 0.133 s / 0.397 s at the ears,
0.199 s / 0.436 s at the thumbs, and 0.301 s / 0.515 s at the toes [AM00]. Taking these
delays into account, the continuously available signal from the human heart is perfectly
suitable for the synchronization of wearable devices.

Case Studies on Wearable Photoplethysmography
PPG sensing has undergone a revival and became standard in modern devices to un-
obtrusively obtain information about the wearer’s vital signs, enabling continuous self-
monitoring, health care, and fitness tracking. In recent years, the variety of light wave-
lengths used in current wrist-worn PPG devices has settled on primarily using green light
since it is robust against motion artifacts and provides a larger signal amplitude. How-
ever, all other parameters that one might consider in sampling PPG measurements are
less settled. The inspection of commercial wearables showed that some devices apply tra-
ditional uniform sampling at a fixed sampling frequency, but many others follow different
strategies as a trade-off to achieve a good signal while dissipating a minimum of energy.
They seem to follow different variations of multi-channel sampling, average sampling, and
burst sampling strategies at various frequencies, yet the need for different qualities of read-
ings can explain only part of this diversity. Even though PPG has been integrated into
many commercially available wrist-worn devices, their sampling strategies have thus not
yet converged to a single solution and still demand for more research. [A19]
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The insights into commercial products underline the importance of efficient sampling
strategies for the long-term deployment of wearable devices. However, developing and
benchmarking algorithms and training machine learning models requires large datasets
with recordings from suitable sensing modalities. However, most of the publicly available
are originated in extensive medical studies. The sensors of stationary clinical equipment,
therefore, tend to be incomparable to those applied in wearable devices, and the findings
of studies based on such data are lacking evidence. The presented analytical tool for the
quality review of PPG signals is based on seven (7) multi-varied decision metrics. The
conducted review of ten (10) publicly available PPG datasets was rather disappointing.
All datasets were advertised to contain raw data, which are defined by this work as signals
containing the maximum possible information by applying the minimum necessary pre-
processing. Nevertheless, the characteristics of the PPG data look quite diverse. Besides
the reference data (REF), recorded with the evaluation system of the MAX86140 / 41
[MAX8], only one dataset (S01 of Biagetti et al. [Bia+20]) proved itself to contain the
desired quality of raw measurements. The results highlight the need for more quality
datasets that actually contain raw PPG readings and do not limit their further use right
from the start. Hence, guidelines for future datasets are provided with a focus on record-
ings of reflective mode PPG for research in digital signal processing and the development
of algorithms for resource-limited wearable devices. [W20a]

The resource constraints of wearable devices demand for high efficiency. Obtaining the
information through the spectral analysis of PPG data in the frequency domain promises
to be particularly suitable for the long-term monitoring as it allows sampling at consider-
ably lower frequencies. The wearer’s HR and RR are determined by observing dominant
frequency components in their respective frequency bands. Additionally, the activity of
the SNA is inferred by capturing the area under the curve in the characteristic LF band.
Although the presented methods do not provide detailed, peak-specific identification and
signal segmentation, they lend themselves well for energy-efficient PPG monitoring and
solutions that need to be lightweight and wearable over longer stretches of time. Despite
features such as detecting motion artifacts, the high sampling rate fs represents a consid-
erable bottleneck for such systems. The spectral analysis can be implemented on current
systems, as it depends largely on the FFT to transform a window of PPG data into its
frequency components. Even for minutes of data, as required to observe LF components
associated with SNA, this is achievable in off-the-shelf hardware. Two experiments are
conducted to demonstrate that fs can indeed be reduced to 10 Hz, without significant
deterioration of the detection performance of HR and RR as well as the inferring of SNA.
In the first experiment, the approach is applied to the popular CapnoBase IEEE TBME
dataset [Kar+10; Kar+13] with PPG recordings from a fingertip pulse oximeter of 42
highly variable individuals and a wide variety of HR and RR. It turned out that RR was
accurately detected in around 80 % of all cases, even when varying the fs from originally
300 Hz down to 9 Hz. The HR was accurately detected at almost 90 % of all cases under
the same conditions. The second experiment used data from the MAX86140 / 41 [MAX8]
evaluation system, from 6 individuals that performed paced breathing at 0.25 Hz (15 cpm).
Similar accuracy performance was detected for these data as well, with slightly better per-
formance for the lower fs down to 4 Hz. In both experiments, no significant indication of
SNA has been observed, however, this specific topic demands for more detailed research.
While the second experiment particularly confirmed the feasibility of our approach for the
implementation on wearable systems, the first study showed its reliability and accuracy for
similar data recorded from real patients without paced breathing. It is important to note,
however, that the influence of motion has been excluded in both cases. [W18; J20b]
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However, besides the basic HR reading, modern applications also demand for reliable and
accurate pulse detection to derive the secondary HRV signal, which makes the detection
of fiducial points in the time domain necessary. Most available algorithms have been
evaluated and benchmarked on either the few available datasets from a clinical origin
and of conspicuously filtered signals or self-recorded datasets with limited evidence and
reproducibility. The conducted experiments on actual raw PPG signals highlight the
importance of benchmarking. Based on the dataset of Biagetti et al. [Bia+20] and 21806
peak labels, manually annotated by an expert rater, the impact of preprocessing on pulse
peak positions and the performance of peak detection algorithms have been evaluated.
The filter passband of 0.5 Hz to 15.0 Hz showed the best universality by preserving the
HR’s harmonics for distinct and precise pulse peak positions. Applying 40 × 40 filter
configurations, also the two popular algorithms of 1) Karlen et al. [Kar+12] from 2012
and 2) van Gent et al. [vGe+19] from 2019 are benchmarked. Despite their very different
concepts, both algorithms show very good performances with 1) an F1-score of 0.958 and
εa of 3.037 samples and 2) an F1-score of 0.970 and εa of 0.051 samples. In summary,
algorithm 2) is more complex than 1) but, in the absence of LF baseline wonder, its
concept results in significantly better accuracy and precision. [C21c]

Data Availability
The raw reference data, recorded with the MAX86140 / 41 [MAX8] (Section 2.1.4), as
well as the implemented Python tool, based on the presented seven (7) decision metrics,
are available for download to support the reproducibility and the review of new datasets:
https://ubicomp.eti.uni-siegen.de/home/datasets/data20/

Researchers are encouraged to use the publicly available dataset of Biagetti et al. [Bia+20]
in combination with the supplementary annotations from this research to benchmark
their own algorithms and machine learning approaches. The annotation files, provided as
*.pkl and *.csv, of the 21 806 diastolic pulse onset labels are available for download from:
https://ubicomp.eti.uni-siegen.de/home/datasets/embc21/
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3 Intra-Body Communication

Today, most wearable devices regularly upload their collected measurements to the wearer’s
smartphone, which hence serves as a gateway to the internet and the manufacturer’s cloud.
There is, however, a perceptible trend from wearing single all-round devices toward dis-
tributed and continuously networked hardware units to establish an internet of wearable
things. Unfortunately, wireless communication loads the resource-constrained devices with
a considerable power dissipation of the radio modules. These suffer from the omnidirec-
tional radiation of cost-efficient antennas and shadowing effects caused by the water-rich
body in close proximity. In 1995, a novel yet promising communication principle was
introduced that uses the confined human body as the transmission medium. Intra-body
communication is somewhat located between the traditional wired and wireless techniques
while showing advantages over both. Research has presented numerous approaches that
leverage different physical effects and techniques, all aiming at more energy-efficient and
secure communication in wireless body area networks. While a few notable research teams
continue to push the boundaries of what is possible, none of the presented approaches ever
reached the market, the implementations remained closed-source and are not turned into
commercial products to make them available. Due to the absence of commercially avail-
able transceiver modules with low cost and complexity, research into potential applications
is lagging behind. Especially concepts for more intuitive human-computer interaction and
their impact on the user experience, therefore, cannot be explored yet.

In this Chapter, the human body is considered as a physical medium for the transmis-
sion of artificial signals. First, Section 3.1 introduces to WBANs in general and then
focuses more on the novel IBC principle, also giving examples of applications based on it
(Section 3.1.1). Subsequently, the applied capacitive coupling principle (Section 3.1.2)
is introduced in depth, describing the issues of grounding, the diverse frequency ranges,
available channel models, and the design of electrodes. Based on these fundamentals, four
case studies are presented. The first study (Section 3.2) is a hardware-based approach
that simplifies the transmission channel by using conductive textiles to form a reliable lo-
cal reference potential. It also demonstrates the application of a novel modulation scheme
based on pulse-width modulation for an efficient signal transmission. The second study
(Section 3.3) is a software-based approach that repurposes the electrocardiography sen-
sor front-ends of commercially available wearable devices to receive information about the
situational context by touching surfaces or objects equipped with transmitter beacons.
The third study (Section 3.5) is again hardware-based and discovers the effect of en-
vironmental changes on the intrinsic inter-electrode capacitance. This way, not only the
fluctuating electrode capacitance is characterized, but also the detection of hand-washing
due to grounding effects is investigated. The fourth study (Section 3.5) uses the previ-
ously characterized electrodes for an open-source project that repurposes an RFID / NFC
receiver front-end to implement a low-power wake-up receiver. Finally, Section 3.6 sum-
marizes the findings and discusses these with regard to the research intent of Chapter 4.
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3.1 Wireless Body Area Networks

3.1 Wireless Body Area Networks

Today, only a few wearable devices are entirely self-contained. Although these are often
equipped with simple displays that provide basic information to the user, a closer look
at the collected data requires opening either a smartphone application or even the man-
ufacturer’s website. Therefore, most sensing devices upload the preprocessed and often
compressed readings to the wearer’s smartphone, which serves as a gateway to the inter-
net and the manufacturer’s cloud [AV17; Ome+21]. For this type of device, conventional
radio communication, and in particular Bluetooth with its diverse low-power modes, is
the most commonly used wireless technology [AOD20]. In general, the use of wireless
standards such as Bluetooth, ZigBee (based on IEEE 802.15.4, LR-WPAN), and Wi-Fi
(IEEE 802.11) is convenient because of the availability of a plethora of fully developed,
standardized, small, and affordable modules that can be easily embedded into research
prototypes and commercial devices.

Radio communication is also suitable for body-worn systems of distributed hardware
units. However, the energy is often radiated by cost-efficient antennas in an isotropic
manner and thus omnidirectionally into free space, the large, quasi-infinite medium air.
This way, the radio modules, attached to or at least worn close to the skin, suffer sig-
nificantly from the close proximity to the water-rich body, resulting in shadowing effects
due to absorption and varying channel losses due to motion [Don09; AB13]. Therefore,
depending on the application and duty cycle, communication can make up to 50 % of a
typical device’s consumption [AMH19], considerably limit battery life, and impede long-
term deployment. However, recent research aims for even more communication to make
the devices “networked beyond pure connectivity” [Wil+14] and at establishing the inter-
net of wearable things (IoWT) [JVR20]. This objective necessitates and drives research
into a more efficient communication technology.

For decades, wired networks have been the standard in stationary local area networks
(LANs). In wearable applications, however, fixed cable joints, but also thin wires or coated
threads embedded and woven into clothing [Ort+98; Pou+16], are promising but not yet
a serious alternative. Wiring within the clothing would be washable and comfortable to
wear, but the individual and fixed signal and supply lines of the distributed components are
inflexible in positioning. More flexibility could be achieved by two separated conductive
layers within the clothing, which the nodes are connecting to via special pins [VVG03].
Wires do not only have the advantage of the simple distribution of data, but also easily
allow to supply the deployed devices with power. Nevertheless, the attachment and linking
of devices tends to be interference-prone, inflexible, and perceived uncomfortable by the
user. Therefore, tends in research have recently “shown a different emphasis, away from
garment-based forms” [BDD16].

In 1995, the thesis [Zim95] and the ensuing publication [Zim96] of Zimmerman for the
first time described the fundamentals of a novel yet promising communication principle,
today termed as intra-body communication (IBC). It is somewhat located between the
traditional wired and wireless techniques while showing advantages over both. By using
the confined human body as the transmission medium, it likewise enables to provide
information throughout the user’s skin. However, it does not require a wired infrastructure
and, in contrast to the busy air, the body channel is still ‘free’ while the limited distribution
volume considerably improves the energy efficiency of signal propagation [Don09; KTL14].
Moreover, by coupling or inducing the signals to or even into the human body, depending
on the transmission principle applied, they are only detectable at or close to the body
surface, which makes IBC less susceptible to eavesdropping.
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Originally, the principle was termed as personal area network (PAN), relating to the
“evolutionary progression in the development of computer networks [ . . . ] towards very
personal computing [ . . . ] worn on and near the body” [Zim95]. In subsequent research,
PAN was regularly referred to as body-coupled or body channel communication (BCC)
as well as intra-body communication (IBC). Since 2012 it is, designated as human body
communication (HBC), included in the IEEE 802.15.6 standard [IEE12] for WBAN. Nev-
ertheless, IBC is still the term most often used in publications.

In IBC, the signals are intentionally induced to or even into the user’s confined and
therefore limited body volume. Depending on the applied principle, signals either pene-
trate the tissue or travel along the skin surface. Seen from a technical perspective, the
human body enables diverse ways of inducing and transmitting signals. As surveyed by
Naranjo-Hernández et al. [Nar+18], there exist two primary principles for the signal in-
duction: the original capacitive coupling [Zim95; Zim96] and galvanic coupling [Han+97;
Lin+98; Weg+07]. Reviewed by Tomlinson et al. [Tom+19], other approaches using elec-
tromagnetic fields [KYK12; PM15] and transdermal ultrasound, as discussed in [Gal+12],
remain exotic and rather unpopular. Today, most research focuses on capacitive coupling
(Section 3.1.2), the original approach of Zimmerman [Zim95; Zim96], and so here.

Since its invention, IBC evolved into a promising alternative for WBAN and research
aimed at the development of optimal electrode setups, modulation schemes, and models
for the simulation of the channel characteristics. As stated by Donker [Don09], “sim-
ple experimentation [ . . . ] can be done by graduate students with limited budgets”, but
“more advanced implementations currently require integrated circuit manufacturing”. Ac-
cording to this, the developed prototypes range from implementations on an experimental
PCB-level [Gro+14; MAK15] to high-level, chip-casted ASICs [Son07; CCL15; Cho+16;
Mai+20a; Cha+22b], achieving a very high data rate of 80 Mbit/s at 8.9 mW [Cho+16],
2 Mbit/s at 0.2 mW [Son07], or even an outstanding efficiency of 1 – 20 kbit/s at 415 nW
[Mai+20a]. Large teams continuously push the boundaries of what is possible by devel-
oping high-performance transceiver circuits, accompanied with advances in reliability, en-
ergy efficiency, and data throughput. Nevertheless, none of the presented approaches ever
reached the market, the implementations remained closed-source and are not turned into
commercial products to make them available. With the discontinued attempt BodyCom
[Pop11], Microchip provided the specialized AFE MCP2035 which, however, quickly disap-
peared. In general, it seems that companies are very hesitant and cautious with investing.

Diverse commercial devices have been repurposed for IBC and similar concepts. On
the one hand, fingerprint sensors of smartphones and touchpads of laptops have been
utilized as transmitters in [HIG16], achieving a data rate of up to 50 bps by triggering
the active sensors’ operation, and hence the generation of electromagnetic interference
(EMI). On the other hand, touchscreens of tablet computers have been used as receivers
to distinguish users at 4 bps in [Vu+12] and for the continuous user authentication at
12 bps in [HK15] by means of wrist-worn transmitters. This dissertation demonstrates
that also the AFEs of conventional, wearable ECG sensors can be repurposed to detect
artificial signals, achieving about 20 bit/s [C21b; J22b] (Section 3.3).

Due to the absence of commercially available IBC transceiver modules with low cost and
complexity, research into potential applications is lagging behind. Especially concepts for
more intuitive human-computer interaction (HCI) and their impact on the user experience
(UX) have, therefore, no yet been thoroughly explored.
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3.1.1 Applications

The novel communication principle opens up a wide range of possible applications. While
Zimmerman [Zim95; Zim96] mentioned more conservative scenarios in which portable
devices are connected in a PAN through IBC, the ongoing miniaturization encouraged
following work to investigate more creative ways of interacting with environment, objects,
and other people. Shortly thereafter, Post and Orth [PO97] presented BodyNet, a system
worth mentioning not for the 9600 bps data rate, but for its capability to transmit up to
56 mW power, which was still considered safe. One of the first and since then regularly
mentioned applications of IBC is a wearable key, presented as TouchNet [Mat+00], to
identify users and personalize their nearby environment “by simply touching them”. Di-
etz and Leigh [DL01] presented DiamondTouch, a desk-like multi-user touch display for
collaborative work environments, which instrumented chairs with built-in receivers allow
to determine the touch locations independently for each user. “Earthlings Attack!” by
Takahashi et al. [Tak+11] was probably the first presented interactive IBC-based game,
in which body-worn receivers detect the users’ contact to an active ball with built-in
transmitter. Fukumoto and Shinagawa [FS05] presented a smart floor system that uses
the user’s body to connect devices to the Ethernet and enables positioning in large ar-
eas. Große-Puppendahl et al. [Gro+14] investigated different ways of interacting with
ubiquitous smart objects in a short-range spatial context, distances of up to 15 cm. The
well-known team around Sen presented diverse approaches for secure ultra-low power
(ULP) WBAN, secure authentication, and social networking, enabling the exchange of
business cards or Facebook / LinkedIn requests by shaking hands [Sen16; Mai+17]. Varga
et al. [Var+18a] introduced TouchCom that enables interactive infrastructure for ambient
intelligence and presented a portable sphere device, a wristband, and stationary wall or
floor tiles to connect through the body. For the first time, they also “present guidelines
for future wearable BCC systems and their applications”, considering “the whole body as
user interface” [Var+18b]. In earlier work, Suzuki et al. [SHI16] presented EnhancedTouch,
a smart bracelet to “measure human-human touch events and provide visual feedback to
augment touch interaction”. In their recent paper, Hachisu and Suzuki [HS21] demonstrate
that these devices can connect to other “interpersonal hand area network module[s]” by
shaking hands or touching in the style of Michelangelo’s fresco ‘The Creation of Adam’.

3.1.2 Capacitive Coupling

Capacitances are established between any conductive surfaces and their different charging
results in an electric field [Mor16]. This physical phenomenon is leveraged in IBC to
transmit signals throughout the human body by modulating its electric field.

The capacitance C of an ideal parallel plate capacitor is given in Equation 3.1 through
two facing electrodes with an area A and a distance d, separated by a dielectric with the
absolute permittivity ε0 of free space in vacuum (8.854 × 10−12 F m−1) and a relative
permittivity εr. While air has εr ≈ 1, any different material has εr > 1.

C = ε0 εr
A

d
(3.1)

All objects couple to the environment, basically to the mass of earth and its earth ground
potential. Likewise the human body forms natural capacitances in the order of several
hundred pF [Smi+98; Gro+13; Gro+17]. Due to the insulating dielectric between the
electrodes, no DC can flow from one side to the other. The application of a changing
potential difference, and hence a time-varying electric field, induces, however, an AC,

67



3 Intra-Body Communication

denoted as displacement current i⃗d. For such an alternating signal at frequency f , the ideal
capacitance C results in the complex impedance ZC = 1

jωC with the angular frequency
ω = 2πf . For an increasing f the impedance ZC hence decreases and with limf→∞ ZC = 0
it virtually resembles a short circuit.

The original approach of Zimmerman [Zim95] is based on two stacked electrodes that
form a parallel plate capacitor. While one faces the skin and couples to the body, the
other one provides a delicate return path through the environment and earth ground
[Gro+17]. To emit a signal, the transmitter changes the potential difference among the
electrodes and hence modulates the electric field of the user’s body. This variation induces
a tiny current flow, spreading in the tissue, and in turn causes a small potential difference
among the electrodes of the receiver, which can be detected using a sensitive circuit. The
electrical properties of the tissues, conductivity and dielectric permittivity respectively,
exhibit a considerable frequency dependency which results in the human body showing
a transmission behavior similar to the one of a HP filter. The effect of different tissue
compositions on the transmission characteristics have been investigated, modeled, and
simulated in diverse studies, surveyed in [Nar+18].

Recent research in IBC continued to investigate capacitive coupling, where signals are
transmitted and received using a pair of vertically configured electrodes: A signal electrode
close to the skin that couples to the body, and a feedback electrode that provides a
return path through the wearer’s environment. By varying the potential of the signal
electrode, the transmitter modulates the weak electric field of the body and induces a
slight displacement current. Resulting variations of the electric field can then be detected
at the receiver’s side by measuring the tiny current flowing between the electrodes. This
closing of the channel circuit through the environment’s common ground has on several
occasions been identified as an issue: While the transmission behavior of human tissue is
adequate and predictable, the feedback path through the environment provides a stronger
and highly varying attenuation.

Grounding
While the signal’s forward path is formed through the human body [MMS18], the capaci-
tive coupling principle requires the channel circuit to be closed through the environmental
ground potential [NMS20]. Therefore, the channel loss as well as the signal quality are
considerably affected by any environmental changes. In general, the grounding issues
limit the reliability of such approaches outside the laboratory environment, as discussed
in [Gro+17].

In recent years, different approaches neglected even the reference electrodes, necessary
to close the transmission circuit. Therefore, the established capacities, spanned between
local ground potential and environment, get even more tiny. The already delicate return
path, the bottle neck of the whole channel, is more affected and the desired signal tends to
be much weaker. Consequently, a much higher effort of the signal’s modulation, boosting,
filtering, amplification, and demodulation is necessary to, nevertheless, enable the achieved
data rate.

Systems such as the ones implemented in [Pop11; Gro+14; MAK15] solved the issue
of the delicate feedback path by providing a large ground plane in the vicinity. Due to
the improved direct coupling, the prototypes can be kept simple and there is no need of
complex circuits. The signals are directly generated by a microcontroller pin and the signal
detection, amplification, and demodulation is either done by a simple transimpedance
amplifier and the microcontroller in [Gro+14; MAK15] or an off-the-shelf receiver chip
in [Pop11]. However, the large ground planes, needed for these solutions, make them
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challenging to adopt for more generic IBC.
In general, shorting the feedback path and bypassing the environment can hence sig-

nificantly improve the channel loss [C17]. An interesting effect of improved grounding
has already been mentioned by [Zim95]: the “feet are the best location for [IBC] devices”
since the coupling to both the body and the environment is the strongest.

Channel Models
As already mentioned by [Zim95] and elaborated in [Gro+17], capacitive coupling suffers
primarily from the delicate return path through earth ground, the environment which is
susceptible to changes and provides a highly variable loss. If both devices are floating,
the transmitter as well as the receiver, and do not share a common potential, the SNR,
associated with signal amplitude and quality, decreases significantly. However, a stationary
transmitter with a link to earth ground consequently results in a significantly higher SNR
and less complex circuits that, as stated in [Don09], “can be done by graduate students
with limited budgets” as presented in [MAK15].

Particularly at low frequencies, the body can be considered as a conductor to form the
signal’s forward path with a marginal loss of about 0.5 dB [MMS18]. The return path,
however, is established via the environment, and the earth ground respectively, which has
been identified to be the bottleneck of the channel circuit, resulting in a total channel loss
of typically 45 – 55 dB [Gro+17; NMS20].

The characterization and modeling of the body channel turned out to be difficult and
findings vary widely depending on the setup and equipment used [Mai+18]. Primarily
the measurement devices’ (unintended) grounding but also the port termination, typically
to 50 Ω, have a large impact on the determined channel loss. The transmission behavior
resembles a high-pass filter whose corner frequency lowers with increasing input impedance
[Mai+18; Mai+21].

The effect of different tissue compositions on the transmission characteristics have been
investigated, modeled, and simulated in diverse studies, surveyed in [Nar+18].

Frequency Ranges
The electrical properties of the tissues, conductivity and dielectric permittivity respec-
tively, exhibit a considerable frequency dependency which results in the human body
showing a transmission behavior similar to the one of a HP filter. In contrast to the
busy air channel, the body is still free and its limited distribution volume significantly im-
proves the energy efficiency [Don09; KTL14]. At higher frequencies, however, the human
body or parts of it act as a radiating antenna, hence narrowing the suitable frequency
band to 100 kHz – 50 MHz [Maz08; Bae+12; Cho+09; KTL14]. Thus, it demands only for
baseband processing and no HF front-end is needed, which usually requires most power
budget of radio communication [Bal+09; KTL14]. At these relatively low frequencies, the
near field outside the confined body decays abruptly which makes IBC insusceptible to
eavesdropping and physically secure [Mai+20a].

As illustrated in Figure 3.1, Bae et al. [Bae+12] explain the three frequency-dependent
transmission mechanisms: quasi-static near-field coupling (predominating below 40 MHz),
reactive induction-field radiation (maximal at 40 MHz), and surface wave far-field prop-
agation (predominating beyond 40 MHz). A particularly important aspect is stated by
[HKW12]: “Low frequencies in the range of few Hz are susceptible to electromagnetic
interferrence and demand very high input impedance amplifiers”.
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Figure 3.1: The signal transmission mechanism on the surface of the human body and
the ratio of their contribution in terms of frequency. Figure from [Bae+12] (© 2012 IEEE)

Electrode Design
As stated by [Maz08], also the electrode size and distance play an important role while
“using an electrode with a larger area specifically at TX will result in less propagation
loss”. The ‘sandwich’ electrode setup, used in most case studies, has been adapted from
previous research [WMa16] and is made from standard FR4 PCB substrate (1.55 mm)
with laminated copper foil (35 µm). Both electrodes measure an area A of 3 × 3 cm2 and
are stacked with an air gap d of 1 cm. This forms a parallel plate capacitor which ideal
intrinsic capacitance Cec is 0.797 pF.

To achieve the intended poor coupling of the electrodes, neither the circuitry nor any
filling ought to be placed between the electrodes. Any material other than air (εr ≈ 1)
would result in a larger εr > 1, improve coupling, and hence increase Cec. The electrodes’
substrate as well as the four spacers at the corners are, however, required to keep the
plates in place, and inevitably increase the capacitance slightly. A larger d would reduce
coupling, but the dimensions are limited through the device’s obtrusiveness. A solder
mask is applied to prevent direct skin contact.

70



3.2 Case Study 1: Conductive Clothes

Figure 3.2: The first case study proposes a novel IBC approach that also uses the human
body as a transmission medium for the signal path, but additionally a nearby conductive
fabric to provide a robust feedback path. This way, it simplifies the channel, significantly
reduces the channel loss, and resembles a Faraday cage which improves SNR. [C17]

3.2 Case Study 1: Conductive Clothes
Early portable computer systems mostly relied on fixed cable joints to enable the commu-
nication between their distributed units, attached to different parts of the body. Today,
wearable devices primarily apply traditional radio transmission which tends to reach even
beyond the individual’s body surface. For more than two decades, conductive clothes
with wires woven into textile are developed to distribute data between body-worn units,
and even the supply from a central power source is possible. Especially the latter one
is a unique selling point for conductive fabrics enabling the transfer of energy, which is
not as simple with radio frequency (RF). The compromise suffers, however, from inflex-
ible traces and rigid electronic modules that are connected to predetermined positions
via bulky mechanical connectors. The concept of IBC would allow for more flexibility as
modules could be placed anywhere on the wearer’s skin. However, as previously discussed
in Section 3.1.2, capacitive coupling suffers significantly from grounding issues. The de-
vices’ individual ground electrodes require a reliable return path through the environment
and thus have a large impact on the received signal amplitude and quality.

In this case study [C17], the combination of capacitive coupling and conductive textiles
is investigated to simplify the delicate physical layer of IBC. The presence of conductive
clothing are assumed nearby the wearable units to reduce the channel loss and to improve
the SNR. The additional layer is intended to provide a stable reference potential for the
feedback path in proximity to the attached devices on the skin. Therefore, it would cancel
the erratic dependency on the environmental ground [Gro+17] and increase the system’s
reliability. In addition, inspired by the approach of [MAK15], an efficient modulation
scheme is presented which is based on pulse-width modulation (PWM) and represents
symbols by means of different pulse duty cycles.

3.2.1 System Design

The system consists of multiple wearable devices that are attached to the user’s body. A
layer of conductive clothing is added to provide a stable reference potential in proximity
of the transceiver units. The typical capacitive coupling channel setup is thus simplified
by replacing the environment and its delicate earth ground with conductive fabric and
an adjacent ground potential. Therefore, the distance between the electrode and the
reference potential is significantly reduced, the return path is hence strengthened through
close coupling (Section 3.1.2), the total channel loss is significantly reduced, and, as a
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Human Body

Conductive Fabric

Rxi’Tx i

Figure 3.3: The prototypes (close-up: left) communicate through capacitive coupling:
The signal’s forward path goes via the wearer’s body and the feedback return path via
nearby conductive textile layer (right). The induced displacement current i at the trans-
mitter (Tx) and the much weaker counterpart i′ at the receiver (Rx). [C17]

result, the SNR is significantly increased. Consequently, the corresponding analog circuits
can be simplified while the coupler dimensions can be scaled down. Figure 3.3 shows the
experimental setup at the arm, with two modules communicating via the tissue between
wrist and upper arm, utilizing an insulated conductive textile sleeve as the return path.
Since the approach uses capacitive coupling for the signal induction, the modules can be
placed on any part of the body surface that is, as well, covered by the fabric. By providing
a local common ground, the sleeve establishes an independent volume inside, resembling
a Faraday cage that floats in the natural surrounding electric field. It shields the entire
channel, lowers the noise level inside, improves the coupling, and decreases the channel
loss with a return path in significantly lower distance than the environment.

Conductive textiles can be incorporated in regular clothing, conductive fabrics come
with additional properties such as elasticity and they are washable as well as antibacterial
due to the used metal coating of the threads. The stable reference potential is provided by
a single module, for example the hub or gateway module which could forward data, such
as sensor readings, to an external device like a computer or smartphone. The conductive
connection can be realized through a conductive hook-and-loop fastener, a snap fastener,
or just a simple contact area. A small but ohmic connection is sufficient due to the tiny
displacement currents flowing, whose voltage drop at the contact point, according to Ohm’s
law V = R×I, would be negligible. However, the additional wearable units do not require
a conductive connection, as these couple capacitively to both the human tissues and the
conductive reference layer. Due to the use of this principle, the presence of additional
insulators between the electrodes and the corresponding medium is possible. Although an
additional textile layer impedes the direct contact of metal and skin, additional coatings
could also prevent from any allergy and dermatitis. Furthermore, the manufacturing of
clothes with an overall conductive layer might be easier to produce than the stitching of
a particular signal bus or supply lines. The fabric behaves similar to non-conductive ones
and is also easier to repair or recycle since it is available as a single, separate layer.

Transceiver Circuit
The significantly reduced channel loss allows for a reduced complexity of the analog front-
end of the receiver part, but also allows to remove the LC tank circuit that has originally
been used to boost the signal amplitude at the transmitter [Zim95; Zim96]. This way, the
transceiver mainly consists of a microcontroller as the central unit that directly modulates
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and demodulates the signals in software. The prototypes, shown in Figure 3.3, are based
on the low-power microcontroller MSP430G2553 [MSPa] and the operational amplifier
OPA320S [OPA3] for the analog receiver front end. The power is supplied by a compact
3 V lithium CR2032 coin cell. To link conductively or to couple capacitively to the fabric,
a header including either a short pin or an electrode is attached on top of the basic module
that itself is a spatial assembly of PCB pieces [WMa16].

In transmitter mode, the microcontroller modulates the electric field by switching the
signal electrode’s potential directly with a single GPIO. As Figure 3.4 illustrates, the
resulting signal contour is a rectangular wave. The individual periods’ duty cycles are set
according to the modulation scheme introduced below. The internal pin driver enables
abrupt edges that are essential for the proposed transmission principle and result in dis-
tinct peaks of displacement current. Due to the negligible load of the intrinsic electrode
capacitance (Sections 3.1.2 and 3.4), no external driver stage is necessary.

In receiver mode, the transmit pin is configured as input, resulting in a high-Z input
impedance (Zgpio ≥ 60 MΩ, Ileak ≤ 50 nA [MSPa]) that does not noticeably impede with
the delicate signal. The displacement current that arises between the electrodes, induced
through the varying electric field of the body, is then transformed into a voltage signal using
a transimpedance amplifier (TIA) with low input impedance. The applied measurement
principle results in an output signal representing the charging and discharging current
peaks of the electrodes at the rising and falling edges of the rectangular waveform. To
enable the detection of both positive and negative amplitudes, the input is biased and set
to half the supply voltage through a buffered voltage divider, thus shifting the operating
point to half of the amplitude swing. The amplification factor is simply given through
Vout
Iin

= −Rf and corresponds to the value of the resistor Rf in the feedback network. The
frequency response is adjusted with an additional capacitor in the input line to suppress
low frequencies in the order of the mains supply. The circuit therefore resembles an active,
1st-order inverting BP filter (Figure A.5). The transformed and amplified voltage signal
Vout is more robust and hence easier to process than the delicate displacement current at
the input Iin. It is forwarded to a Schmitt trigger circuit (Figure A.6) that recovers the
original rectangular pulse wave by detecting the positive and negative peaks associated
with the rising and falling edges.

The components have been chosen to achieve a high energy efficiency. To transmit sig-
nals, the microcontroller selects a medium clock frequency fc of 8 MHz, whereas the whole
receiver block, including the operational amplifiers, is turned off. In receiver mode, it is
turned on, and during the reception of data the microcontroller activates the maximum fc
of 16 MHz. This performance is required to provide a sufficiently high timer resolution for
the capturing of precise timestamps and to demodulate the incoming signals by executing
the sophisticated state machine, detailed in the following Section. In contrast to most
radio communication modules, the circuit is thus dissipating less energy in transmit than
in receiver mode, due to the higher consumption of the analog circuits, also the quiescent
currents Iq in idle, and the microcontroller’s high-performance mode.

Modulation Scheme
In IBC usually standard modulation schemes from radio communication or RFID / NFC
are applied. However, these are not directly applicable to capacitive coupling and do not
take into account the different channel properties, such as a lower frequency domain and
a broad bandwidth available. While most ambient noise is excluded, shielded through the
conductive textile, resembling a Faraday cage, conventional modulation schemes tend to
use large symbols and extensive techniques to provide a certain level of robustness against
such interference from the surroundings.
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Transmitter
PREAMBLE MSB 0 1data 0 1 10 LSB 10 PAR 1 SYNC MSB 1 1 LSB 00 PAR 0

PWM signal

displ. current i

Receiver
displ. current i’

TIA output

ST input

ST output

PREAMBLE MSB 0 1data 0 1 10 LSB 10 PAR 1 SYNC MSB 1 1 LSB 00 PAR 0

Figure 3.4: Communication with the stepwise transfer of information from the trans-
mitter to the receiver. Top: Signal modulation at the transmitter and the resulting dis-
placement current i in the tissues. Bottom: The weak displacement current i′ among the
receiver electrodes, detection, amplification, and filtering at the transimpedance ampli-
fier (TIA), reconstruction at the Schmitt trigger (ST), with hysteresis of a threshold for
rising and falling edges. [C17]

The proposed modulation scheme is inspired by and based on [MAK15] which introduced
a PWM scheme representing the binary values with the two duty cycles 25 % and 75 %.
Due to the IBC channel’s HP characteristic (Section 3.1.2), the signal’s DC part gets
lost. The desired information is, however, still present in the zero-crossings. The proposed
method LP filters the recovered pulse wave to extract the information by sampling the
analog mean. Due to the analog filter’s slow step response, several pulses of the same duty
cycle are representing each symbol and binary value.

The adopted scheme improves this inefficiency by applying a digital demodulation tech-
nique that directly takes the information from the duty cycles. The microcontroller’s
internal timer captures the time elapsed to calculate the pulse width and stores these
values in a ring buffer. Afterwards, the pulse widths are converted into the corresponding
binary values within the main routine. In addition, a third duty cycle of 50 % is intro-
duced to enable the continuous calibration and byte synchronization. As illustrated in
Figure 3.4, the preamble consists of multiple pulses to define a reference value. Each
data bit is then represented by a singular pulse of either 25 % or 75 % duty cycle, while
every byte, followed by a parity bit, is again separated by a 50 % pulse. This one, as
well as the preamble of several 50 % pulses, is used to synchronize the bit stream and to
recalibrate the bit interpretation threshold of the demodulation. As presented in a later
case study (Section 3.5), the preamble can also be leveraged to wake up a receiver circuit
from a low-power sleep mode.

3.2.2 Evaluation

The advantages and performance of the proposed concept have been evaluated in multiple
experiments. While the transmitter part is not crucial, the receiver block consists of two
critical parts which decide on and limit the maximum performance: a) the analog input
stage with its certain transmission behavior and b) the microcontroller that is hosting the
demodulation routine.

Analog Input Stage
The circuit shows sufficient performance to process fundamental frequencies f0 up to
1 MHz while suppressing noise and DC disturbances. However, the small slew rate of the
low-power operational amplifier (10 V/µs) chamfers the abrupt slopes and narrows the
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Figure 3.5: (a) Direct coupling signal electrodes without air gap, battery-powered trans-
mitter and receiver, notebook-battery-powered oscilloscope for data logging, separated
potentials. Original transmitter signal with f0 of 1 MHz and 3 V (blue), received 60 mV
signal (yellow), transimpedance amplifier (TIA) output (green), Schmitt trigger output
(red). (b) Weak coupling, air gap of about 3 cm, insufficient signal amplitude after TIA
(green). Thresholds reached too late to raise or sink output punctually with available slew
rate of operational amplifier. Only insufficient notches or entirely ignored pulses. [C17]

rectangular pulses considerably (Figure 3.5a), which no longer shape a trapezoid but a
wedge with lowered amplitude. Therefore, the output of the Schmitt trigger is not ideal
but the threshold of the microcontroller input is low enough to cope with that. The widths
of the recovered pulses are discriminable and the actual 50 % reference value is recalibrated
continuously. In case of weak coupling (Figure 3.5b), the current peaks become too flat,
too close to the thresholds, and pulse recovery is not successful.

Digital Demodulation
The maximum fc of 16 MHz determines the resolution of the pulse width capturing. There-
fore, the captured values are relatively small compared to the counter register size. The
ratio of deviation to pulse width is gaining, thus jitter and interference have an increasing
impact. Consequently, the demodulation performance is limited (Figure 3.6). Beyond a
f0 of 250 kHz, the Nyquist-Shannon sampling theorem [Sha49] is violated and the readings
tend to be imprecise, inaccurate, or even incorrect. Moreover, the capture interrupt on the
falling edge of the pulse needs a certain number of cycles to execute the interrupt service
routine (ISR) and to store the difference of the two captured values, of rising and falling
edge, into the ring buffer. The demodulating state machine is tweaked to a maximum
performance but is, nevertheless, limiting the maximum pulse frequency possible. The
incoming readings need to be processed and converted into binary data before the ring
buffer is full or even overwriting earlier, unprocessed positions. Due to the shielding of
ambient noise sources, the unsuccessful capturing of higher pulse frequencies is, therefore,
likely caused by the too slow ISR.
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Figure 3.6: Captured pulse widths and deviation of duty cycles 25 %, 50 %, 75 % (red,
green, blue), and modulation frequency f0 of 1 to 300 kHz. Green area: Successful and
reliable pulse width measurement. Red area: Eratic pulse width measurement. Top:
Timer values of the captured pulse widths (blurred: ideal course). Middle: Absolute
standard deviation, quickly converging to 0.5 of quantization noise. Bottom: Relative
standard deviation of the pulse width error in % (desired vs. actual pulse width). [C17]

Transmission Range
Because the prototype is based on a simple, unsophisticated front-end circuit, it enables
only naive close coupling [WMa16]. Placing two modules close to each other at a distance
of about 0.5 cm, a wireless link can be established via near-field coupling through air. With
a shared potential, e.g. by means of connecting the modules’ local ground potentials, even
a wider range of 10 cm is possible. Attaching the modules’ signal electrodes additionally
to the human body enables to easily detect an output signals with an amplitude of about
1.85 V throughout the entire body. However, without the common potential, and hence
establishing the return path through direct coupling, the range drops to about 3 cm.
Adding the conductive fabric, the signal amplitude of about 190 mV remains significantly
smaller, but sufficient to extend the range and to enable a distance-independent signal
transmission over at least 30 cm, solely limited by the sleeve’s length.

Power Consumption
The power consumption is measured for a reference signal of 250 kHz with 50 % duty
cycle, either being generated or demodulated. In transmitter mode, with the fc of 8 MHz
selected, this resulted in an average power consumption of 7.6 mW (2.5 mA) and in receiver
mode, with a fc of 16 MHz and an enabled analog front-end, in 18.9 mW (6.3 mA).
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3.2 Case Study 1: Conductive Clothes

3.2.3 Results

The presented approach enables to reliably transmit data across the user’s body using
capacitive coupling. An additional layer of conductive clothing is used to extend the range
of near-field coupling by providing a stable reference potential and reliable, nearby feedback
path that results in a significantly lower channel loss and a negligible interference level.
The implementation effort of the transceiver modules is considerably lowered, since neither
LC tank circuits, to boost the transmitter’s amplitude, nor complex filters, to extract
data from a noisy signal, are needed. The prototype demonstrates the successful signal
transmission and allows for the evaluation of communication between wrist and upper arm.
The applied PWM scheme is based on three duty cycles to not only represent and encode
the binary values, but also to continuously recalibrate the symbols, and to synchronize
the bit stream of up to 200 kbps, applying a f0 of 250 kHz. The evaluation proved that
the approach is feasible and especially suited for applications in which sensor nodes are
placed on the body surface. The reception (18.9 mW) demands for more power than the
transmission (7.6 mW) because of the higher clock frequency of the microcontroller and
the Iq of the dissipative AFE. Due to the obligatory conductive fabric layer, the design
suits especially applications which utilize any kind of functional clothing, vest, or all-in-
one suit. The star topology is applicable and would allow sensor nodes to forward their
measurements to a hub or gateway module in the center, which then would also provide
the common reference potential.
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Figure 3.7: Exemplary scenario for the contextualization of wearable devices: micro-
controller (MC) with transmitter electrode (TX) embedded into a desktop; information
implicitly and incidentally provided to two sensing devices (RX) worn at the wrists; artifi-
cial landmark signal (red), capacitively induced into the human body; detection by means
of repurposed analog ECG sensor front-ends; weak return paths (blue) to close the circuit;
MC is grounded via environment, the earth ground. [C21b; J22b]

3.3 Case Study 2: ECG Sensor Front-Ends

One main feature of modern wearables is the monitoring of vital signs. To provide medical-
grade HR readings, commercial devices provide an ECG sensor that is not only very
sensitive but also optimized for ULP applications. This case study [C21b; J22b] follows
the idea of “Your noise is my signal” [Abo12] and repurposes the single-lead ECG sensor,
integrated in recent off-the-shelf wearables, to detect artificial landmark signals. Those are
either consciously or implicitly and incidentally induced into the user’s skin by touching,
approaching, or passing certain areas, surfaces, or objects with embedded beacons. In close
proximity, the signals are capacitively induced into the skin and propagate in the tissue
as harmless displacement currents. This way, landmarks are made available throughout
the entire body surface, which serves as a confined transmission medium that turned
out to be more efficient than air. Considering the limitations of the ECG AFE, a suitable
modulation scheme is presented and a signal processing pipeline for the landmark detection
and demodulation is evaluated. To substantiate the method’s general feasibility, a possible
application is demonstrated that enriches the landmark signal with the situational context
(Section 3.3.2) of the measurements taken, thus providing information about the readings
through the ECG sensor channel. In a similar way, the landmark signals are leveraged to
implement the second implicit synchronization method IBSync in Section 4.4.

It is important to consider that the presented technique is not intended to compete with
cutting-edge research in IBC, especially not in terms of data throughput and efficiency.
Instead, the use of accessible, commercially available devices is intended to pave the way
for applications that, when finally made available, can directly be translated to future
single-chip solutions, specifically designed for IBC.
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3.3 Case Study 2: ECG Sensor Front-Ends

3.3.1 Situational Context

In the late 20th century, research in human-computer interaction (HCI) aimed at “seam-
lessly bridging the gulf between physical and virtual worlds” [Wan+99]. First commercial
approaches used wireless technology such as Bluetooth for the privacy-preserving distri-
bution of electronic coupons [Zha+11]. Running as smartphone applications, commercial
platforms such as LinkedIn and Facebook leverage the “mutual discovery and information
exchange” to suggest people for networking or to make friends on weekends [LS14].

Also the interest of psychologists in experience sampling motivated computer-assisted
methods to replace the traditional pen-and-paper procedures and to get a “window into
[ a user’s ] daily experience and behavior” [BB01]. Such approaches require, however, the
reliable classification of activities of daily living (ADL) and the unobtrusive detection
of interactions with objects [Phi+04]. With the emergence of micro electro-mechanical
systems (MEMS), accelerometers and inertial measurement units (IMUs) became not only
affordable but also very popular instruments. Since then, wearable sensing devices are
commonly applied for the classification of signal patterns in HAR, the recognition of
activities from limited sets, but the obtained information is often not rich enough to
distinguish similar activities that show ambiguous, confusable signal patterns [Ber+10].

The knowledge of the object grasped [Ber+10] can, however, help to classify activi-
ties, to interpret interactions, and to “reason on the intention of the user” [Sch00]. This
knowledge allows the interpretation of the way objects are used, and can, moreover, help
to minimize the labeling efforts [Wan+07]. In course of this development, Schmidt et
al. [SGM00] introduced in 2000 the term implicit HCI which describes “a shift [ . . . ] from
explicit interaction [ . . . ] towards a more implicit interaction based on situational context”.
Accordingly, not only the location but especially the awareness of the situational context
brings advantages in the interpretation of observations and the inference of sensor signals.

Toward this concept, different projects aimed to identify the objects grasped to support
the more reliable and precise classification of activities. First approaches used barcodes
to tag objects [SDH03]. Following research used radio-frequency identification (radio-
frequency identification (RFID)) tags instead, attached to certain objects, tools, or even
the environment, e.g. at a doorknob [Ber+10]. Different wearable setups then combined
inertial sensors for activity recognition and RFID readers to simultaneously detect the
objects’ tags. The yet wired and bulky prototype of [Sch00] allowed to trigger different
applications by handling tagged objects, read through a coil sewn into a work glove. The
lighter iGlove in [Phi+04] used a reader coil in the palm while the iBracelet in [FPR05]
as well as the prototype of [Ber+10] applied a PCB coil worn around the wrist instead.
Most RFID tags are passive and receive the energy, required for data transmission, from
the reader coil through electromagnetic induction, so no battery is needed. The reader
requires, however, a coil with a certain quality for a long range, which normally is not
available in commercial wearables. As presented in the remainder of this Section, the use
of ECG sensors for the detection of unique object identifiers, continuously provided by
long-lasting active beacons, might hence be a promising alternative.

3.3.2 System Design

The exemplary scenario, tested in scope of this case study, is illustrated in Figure 3.7. It
consists of a transmitter beacon, embedded into a desktop, and two off-the-shelf wearable
devices with integrated ECG sensor front-end, repurposed as the receiver for the artificial
landmark signals. In the following Sections, the used hardware, modulation scheme, signal
processing pipeline, and proposed applications are described.
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Figure 3.8: Simulated, synthetic illustration of a single landmark packet at the trans-
mitter: 8 pulses preamble (green), gap and pulse as delimiter (blue), 8 pulses or gaps to
encode the data in OOK scheme (violet) with the MSB first, pulse and gap as delimiter
(blue), and 4 pulses terminator (green). Modulation frequency f0 of 20 Hz. [J22b]
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0 f0 2f0 3f0 4f0 5f0 6f0
frequency in Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
la

tiv
e 

m
ag

ni
tu

de

landmark signal

(b) Real frequency spectrum.

Figure 3.9: (a) Simulated, synthetic frequency spectra of an ideal, continuous square
wave with f0 of 20 Hz and 50 % duty cycle (blue) and (b) a landmark signal with 2.5 s in-
tervals, 1.2 s active period, and an incrementing 8 bit data segment (green). In both cases,
the even harmonics of f0 are zero. For the discontinuous landmark signal, the spectrum
spreads around the odd multiples of f0. The energy contained in the DC component at 0
as well as in f0 and its harmonics decreases considerably (note the y axes). [J22b]

Stationary Transmitter Beacon
In order to easily assemble and deploy beacons at a larger scale, the transmitter circuit
is kept simple. The GPIO pin of a conventional MSP430FR5969 [MSPb] microcontroller
directly drives the signal electrode and hence modulates its surrounding quasi-static elec-
tric field. Unlike for antennas in RF, there are no special requirements on the electrode
since low frequencies are applied [Fin10; Gro+14]. It is made from metal foil and has a
relatively large size of 16 × 32 cm2 to provide a sufficiently wide contact face. The scenario
in Figure 3.7 shows the electrode fixed under the front edge of a conventional desktop.
It is intended to couple to the user’s arms through a 1.5 cm plate of wood and plastic.

A second ground electrode, to close the channel circuit, is not required since the beacon
is supplied by and hence grounded through a USB link to a computer, in turn connected
to mains. This way, the environment serves as a large, virtual ground electrode and
only a single excitation electrode is required at the transmitter. As previously mentioned
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3.3 Case Study 2: ECG Sensor Front-Ends

in Section 3.1.2, cutting the beacon’s link to earth ground would largely affect the
simplified setting, considerably attenuate the signal amplitude, and hence degrade the
SNR at the receiver. In case of both devices floating, the transmitter as well as the
receiver, the received signal amplitude would considerably be attenuated by typically 45 –
55 dB [Gro+17; NMS20]. Keeping the transmitter grounded, therefore, has the advantage
that no additional power amplification stage is required, to boost the transmitter’s output
amplitude to tens of V as done in the original approach [Zim95].

To ensure a precise timing, the computer is also employed to regularly, every 2.5 s, in-
struct the microcontroller to send a landmark signal through the electrode. In future sce-
narios, however, this task could independently be performed by the microcontroller itself.
Precise timing could then be obtained from a high-quality real-time clock (Section 4.1)
or, even absolute time, from the internet.

Signal Modulation
To generate the landmark signal, a pulse train of a certain pattern is generated by toggling
the GPIO pin between 0 and 3.3 V. As reasoned below in Section 3.3.3.1, the applied
modulation frequency f0 is tuned to 20 Hz. Figure 3.8 illustrates the applied scheme for
a single landmark packet. Each packet consists of eight pulses as a preamble, one gap and
one pulse as delimiter, eight pulses or gaps as symbols to represent the 8 bit of data, again
one pulse and one gap as delimiter, and finally four pulses as a terminator. The preamble,
terminator, and two delimiters form a constant packet frame which embraces the variable
data segment. As usual, the data byte is transferred with the MSB first.

Figure 3.13 illustrates that the generation and transmission of rectangular waves is
not ideal in terms of bandwidth and efficiency since the energy spreads in a wide frequency
band and the effective signal magnitude within the desired band decreases considerably.
Nevertheless, the on-off-keying (OOK) modulation scheme is reasonable since it is simple
and easy to implement with a conventional, cheap, and low-power microcontroller.

When coupling to the user’s body, the beacon capacitively modulates the quasi-electro-
static field (Section 3.1.2) and induces a harmless displacement current in the order of pA
[Tom+19]. Due to the body’s transmission characteristics and the applied preprocessing
at the receivers (Section 3.3.2), the rectangular wave is detrended and smoothed. This
way, it shows a rounded, quasi-sinusoidal wave, centered at the baseline (Figure 3.15).

Wearable Receiver
There exist no commercial IBC transceiver modules yet. Therefore, the study is based
on the AFE of the single-lead ECG sensors available in recent wearable devices such as
smartwatches or fitness trackers. These AFEs offer themselves to be repurposed for the
detection of artificial landmark signals since they are carefully designed with regard to
both energy efficiency and the sensitive detection of tiny potential differences.

Two off-the-shelf MAXREFDES101# [MAX1b] devices have been employed to conduct
the experiments. The reference designs have the shape of a wristwatch and, besides IMU,
PPG, and body temperature sensors, they include an AFE for bio-impedance and bio-
potential measurements, thus enabling ECG monitoring as well as the proposed approach.
The devices grant access to the sensor configuration, the source code of their firmware,
and the raw measurements. The on-board MAX30001 [MAX3] AFE draws only 95 µA at
1.8 V while providing both, a very high Zin > 1 GΩ and a CMRR > 100 dB. This way, it
enables the unloaded detection of the tiny voltage drop that is caused by the displacement
current between the electrodes. Sampled at a rate fs of 128 Hz, the raw measurements
can directly be recorded to the 32 MB flash memory.
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Figure 3.10: (A) The ECG sensing device MAXREFDES101# [MAX1b] has three elec-
trodes on its casing: a positive input (ECGP) at the front, a negative input (ECGN)
and a body bias (VCM) at the back; (B) The detection of the artificial landmark signals
according to the capacitive coupling principle for IBC: ECGP and ECGN resemble a par-
allel plate capacitor (green); ECGN directly couples to the human body (red); ECGP is
floating, weakly coupling to the environment to close the circuit (blue). VCM is applied
to establish a DRL circuit and improve the CMRR (orange). [J22b]

As illustrated in Figure 3.10, the devices’ casing shows three electrodes of which two
virtually form the parallel plate capacitor required for capacitive coupling in the proposed
application. The positive input of an ECG sensor AFE (ECGP) at the front is kept floating
and is intended to couple to the environment. The negative input of an ECG sensor AFE
(ECGN) at the back directly couples to the body and enables the measurement of the
potential difference in reference to ECGP at the front. Labeled in the datasheet as body
bias, the third electrode VCM serves as a driven-right-leg (DRL) circuit (Section 2.1.1)
to improve the CMRR. Its activation connects the body through a 499 kΩ resistor 1 to the
device’s internal common-mode voltage VCM of 0.650 V.

Signal Demodulation
To detect the landmarks, to determine their position in the devices’ local time t′, and to
decode the contained data d, the signal processing pipeline illustrated in Figure 3.11
is applied. It starts with three 2nd-order (2 × 1st) IIR filter stages to extract the weak,
desired signal. The use of zero-phase forward-backward filters is expedient to preserve the
signal’s phase, the temporal information of the signal, which is particularly important for
the synchronization method IBSync, proposed in Section 4.4. First, an anti-aliasing LP
filter with a cutoff frequency fc of 63 Hz < fs/2 below the Nyquist frequency is applied.
Then, the power line’s humming noise at 50 / 60 Hz is suppressed using a band-stop / notch
(BS) filter, to provide an interference-reduced signal (IRS). Centered at the carrier’s fun-
damental frequency f0 of 20 Hz, the desired frequency band is finally extracted using a
BP filter. As evaluated in Section 3.3.3.2, the wide bandwidth B = fc, high − fc, low of
20 Hz, i.e. from 10 to 30 Hz, is required to cover the sidebands of the OOK modulation.

After preprocessing, the short-time Fourier transform (STFT) is applied to the IRS,
yet before BP filtering, using a von Hann window with a size of 4 s (512 samples) and
75 % overlap (384 samples respectively). Then, analog to the determination of the SNR,
the RSSI of each window interval S is derived from the STFT. It is computed according
to Equation (3.2) by averaging the bins associated with the signal core Asignal = bs

with bs ∈ ⟨17.5, ..., f0, ..., 22.5 Hz⟩ and the adjacent bins of in-band noise Anoise = bn with

1The datasheet of the MAX30001 [MAX3, p. 31] mentions a 200 kΩ resistor while the schematic files of
the MAXREFDES101# [MAX1b] specify a value for R7 of 499 kΩ.

82



3.3 Case Study 2: ECG Sensor Front-Ends

LP BS BP

preprocessing

fc < fs / 2 50 / 60 Hz 10 - 30 Hz
2nd order (2 x 1st) zero-phase IIR �lters

STFT RSSI PPMC
THRS MAX

frame detection

Hann window, 4s, 75% overlap

frame positioning

1 10 0 0 0 0 0
ATHRS

decoding

data d

position t

r

0 / 1

band-limited (BLS)

interference-reduced (IRS)

raw signal

normalized cross-correlation

packet frame

OOK scheme
signal core vs. in-band noise

Figure 3.11: The processing pipeline consists of four blocks: signal preprocessing, frame
detection, frame positioning, and data decoding. First, the raw, noisy signal is filtered.
While the band-limited signal (BLS) is forwarded to the frame positioning, the less pre-
processed, interference-reduced signal (IRS) is provided to the frame detection block. It
inspects the frequency components using a STFT and assesses the signal quality apply-
ing the received signal strength indicator (RSSI). If the RSSI heuristic exceeds a certain
threshold (THRS), the landmarks’ temporal position t is determined within the relevant
interval using a PPMC. The data d is decoded according to an OOK modulation scheme
applying an adaptive threshold (ATHRS) mechanism. [J22b]

bn ∈ ⟨10, ..., 17.5 Hz⟨ ∩ ⟩22.5, ..., 30 Hz⟩:

RSSIdB = 20 log10

(
Asignal
Anoise

)
(3.2)

The RSSI is a measure of the desired signal’s predominance over the noise floor. It
is applied as a heuristic to identify the characteristic frequency components around f0,
which are associated with the presence of a landmark frame (Figure 3.8 and 3.13B). The
subsequent steps are only continued if the RSSI exceeds a significance threshold (THRS),
i.e. at least the minimum of 0 dB. Next, a universal frame template F with empty data
segment d = 0 is shifted along the relevant window interval S and inspected using the
Pearson product-moment correlation (PPMC) coefficient r(S, F ) [Pea95]:

r(S, F ) :=
∑

i(si − S)(fi − F )√∑
i(si − S)2∑

i(fi − F )2
(3.3)

The significant and maximum correlation (MAX) between the template F and S unveils
the frame’s temporal position t′. The data d are finally extracted by decoding the interval
according to the OOK scheme using an adaptive threshold (ATHRS). Its level orientates on
the amplitude of the frame’s preamble and terminator, to distinguish the pulses from the
gaps and, therefore, to assign the symbols to the binary values 0 and 1. Depending on the
target application, the frame position t′ and the contained data d are then used to either
contextualize the measurements or to synchronize devices as proposed in Section 4.4.

Contextualization
This case study makes use of the human body as a unidirectional communication channel
between stationary transmitters and body-attached devices. This way, the body tissues
enable the wearables to receive artificial signals by simply touching, approaching, or pass-
ing beacons, embedded into certain areas, surfaces, or objects. These landmarks can
be enriched with temporal information to enable the alignment and synchronization of
recordings (Section 4.4) or can be enriched with information about the situational con-
text (Section 3.3.2), such as the type of object touched. The fundamental principle of
capacitive coupling for IBC hence enables either the intentional and continuous, or the
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Figure 3.12: Illustration of the proposed application that enriches the landmark signal
with unique location or object identifier (icons), transported in the data segment (8 bit),
to provide the situational context to wearables. The landmarks are transmitted by bea-
cons (TX), enabling the receiving devices (RX) to contextualize their recordings. [J22b]

implicit and incidental reception of contextual information by means of the detected land-
marks. Motivated through Figure 3.7, the scenario to be evaluated and discussed uses a
transmitter beacon, embedded into a desktop, and two wrist-worn receivers.

To provide context information, the landmarks’ 8 bit of data serve as a context identifier
and can be associated with up to 256 areas, surfaces, or objects, illustrated in Figure 3.12.
The exemplary scenario in Figure 3.7 shows the transmitter beacon embedded into a
desktop. Consequently, the receiving wearable devices would get aware of the user being
close to and probably sitting at the desktop, likely to work on the computer. The motion
and the user’s vital signs, and hence e.g. inferable arousal and stress, could now be
interpreted in the context of work. In contrast, e.g. sitting on the couch would indicate
the user’s leisure and intention to relax.

3.3.3 Evaluation

Three experiments have been conducted to first optimize the filter parameters, and then
evaluate the performance and demonstrate the approach’s applicability. The first exper-
iment (Section 3.3.3.1) aims to determine the characteristic noise floor, caught from
a typical environment, to dimension carrier frequency f0, and to identify the applicable
frequency band. The second experiment (Section 3.3.3.2) concentrates on the technical
aspects of optimal bandwidth B, the heuristic RSSI, the metric PPMC r, and the resulting
packet error rate (PER). Finally, the third experiment (Section 3.3.3.3) demonstrates
the applicability in an everyday life usage scenario. Due to the COVID-19 pandemic, the
evaluation is based only on a single subject (male, 33 yr., 198 cm, 102 kg), however with
215 min recordings from two wearable devices, attached to the left and right wrist, in a
typical scenario with a desk in an ordinary living space.

3.3.3.1 Noise Floor Characterization

The normal use of the wearables’ AFE according to their original purpose, the measure-
ment of the natural ECG signal (Section 2.1.1), requires a finger from the opposite arm
to form the traditional lead I (Figure 3.13A). Without closing this circuit, the floating
sensor predominantly catches noise from the environment and the ECG signal vanishes in
the noise floor (Figure 3.13B).

For the new purpose of detecting the artificial landmark signals, the most suitable
modulation frequency f0 and possible bandwidth B needs to be determined first. To
estimate the present noise floor, measurements in an ordinary living space have been
recorded, performing seven different activities such as sitting, working on a computer,
walking, and doing different gymnastics for 60 s each. Figure 3.14A shows the respective
Welch periodograms [Wel67] for power spectral density (PSD) estimation (Section 2.4.2).
The spectra indicate that the frequency band from about 10 to 45 Hz would be applicable.
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(a) Detected ECG signal through closed lead I.
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Figure 3.13: Excerpts from raw measurements of the MAXREFDES101# [MAX1b] ECG
sensing device: (a) Touching the ECGP electrode at the front closes the traditional lead I
and results in visible, distinct yet possibly inverted R peaks; (b) For a floating electrode,
the pulses vanish into the noise floor and the heart beat can only be guessed. [J22b]

Unfortunately, the possible band is sporadically interfered by oscillations at about 15 Hz,
accompanied by harmonics at 30 and 45 Hz. The origin of this interference is not evident
but might either be induced from the environment or the device itself. Because it is very
specific to the device worn on the right wrist, it could come from resonance due to filter
instability and the absence of the ECG signal sought, or a defect of the circuits.

While the HP characteristic of the body channel favors a higher f0 in the order of a few
MHz, the sensor’s sampling rate fs of 128 Hz, and hence a Nyquist frequency of 64 Hz,
demands for a lower f0 to increase the sample coverage Ns = fs/f0 of a unit pulse period
T0 = 1/f0. Therefore, as shown in Figure 3.14B, a trade-off is made on an f0 of 20 Hz,
resulting in 6.4 samples scanning a 50 ms pulse period. The determination of the optimal
B is detailed below in Section 3.3.3.2.

3.3.3.2 Controlled Setting

To evaluate the approach from a technical perspective, three specific ways of coupling
between the user and the transmitter have been investigated: a) directly touching the
transmitter electrode, b) touching the desktop surface above the electrode with both
hands, and c) sitting at the desktop without touching the electrode and leaning back in
the office chair. The actions have been recorded consecutively, with each interval spanning
at least 15 min. The interval of a) covers 379 landmarks (15.8 min) with 6585 pulses and
2511 gaps, b) covers 377 landmarks (15.7 min) with 6619 pulses and 2429 gaps, and c)
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Figure 3.14: (a) Analysis of the frequency spectra (PSD) of the noise floor: interference
generated by seven activities; 50 Hz power line noise (red); unknown interference source,
oscillation at 15 Hz with its first and second harmonics (orange); (b) Analysis of the
frequency spectra (PSD) of the desired signal extracted from the raw measurements: Noise
floor, overall average of the activities (grey); raw signal (orange); filtered signal (blue);
selected bandwidth B of 20 Hz, pass-band from 10 to 30 Hz (green). [C21b; J22b]

covers 389 landmarks (16.2 min) with 6811 pulses and 2525 gaps. For each interval, the
pulses and gaps have semi-automatically been annotated in the IRS and manually been
revised and validated. The results from this setting are summarized in Table A.1.

Optimal Filter Bandwidth
To be able to adequately reconstruct the discontinuous pulse wave, the filter pass-band
is required to cover the sidebands of the modulation, adjacent to the carrier f0. These
frequency components allow for a fast transient response, the change between the two
symbols pulse and gap representing the binary values 1 and 0. As shown in Figure 3.15,
the filter bandwidth B considerably affects not only the shape of the particular pulses
but also the signal’s envelope contour and the remaining ripple within the gaps. There-
fore, the optimal B has been discovered through 399 filter configurations, by applying
the bandwidths {0.1 Hz, ..., 39.9 Hz} at steps of 0.1 Hz, centered at the previously spec-
ified f0 of 20 Hz. Since the right wrist’s recordings are considerably interfered from an
unknown noise source (Section 3.3.3.1), only the results from the left wrist are further
evaluated here. For each way of coupling and each configuration, the pulse heights p and
the gap ripple |g|, the absolute distance to the baseline, have been determined for the
labeled positions. After calculating their mean and standard deviation, the ratio p / |g| of
mean pulse amplitude p and mean gap ripple magnitude |g| is computed. As illustrated
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Figure 3.15: Matched landmark packets of two receivers worn at the left (blue) and right
wrist (orange). Raw, unfiltered measurements (A). IRS after anti-alias filtering (LP) and
power line noise rejection (BS) with contained data 000011002 (MSB first) visible (B).
Applied filter bandwidths B of 4 Hz (C), 8 Hz (D), 20 Hz (E), 30 Hz (F). Best result
regarding fast transient response, pulse-to-gap ratio p / |g|, as well as minimal interference
and baseline wander for a B of 20 Hz (E). [J22b]
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Figure 3.16: Determination of the optimal filter bandwidth B, centered at f0, for the
scenario’s three ways of coupling. From 0.1 – 39.9 Hz in steps of 0.1 Hz, 399 iterations each,
considering the mean p and standard deviation of the pulse amplitudes p (blue), the mean
|g| and standard deviation of the absolute gap magnitudes |g| (red), the remaining ripple
respectively, and the ratio of the means p / |g| (green) with the maximum marked (red dot).
Best ratio 39.3 dig for 20.6 Hz by directly touching the electrode (A), second best 31.4 dig
for 20.6 Hz by leaning back (C), and lowest 21.0 dig for 19.8 Hz by touching the desktop
(B). The filter bandwidth B of 20 Hz is, therefore, selected as optimal. Note that, due to
considerable interference, the results are based on signals from the left wrist only. [J22b]

in Figure 3.16, along with a minimal standard deviation among the pulses and gaps,
the pulse-to-gap ratio unveils the optimal filter bandwidth B by reaching its maximum
at about 20 Hz, which corresponds to f0 itself, for all three couplings. In the optimal
configuration, a) showed the best coupling with a pulse-to-gap ratio of 39.3, b) showed
the weakest coupling with a ratio of 21.0, and c) is in between with a ratio of 31.4.

Processing Pipeline
The processing pipeline and its discrete metrics are evaluated applying the determined op-
timal bandwidth B of 20 Hz. Figure 3.17 visualizes the output of the consecutive stages.
It shows the generated STFT, the derived RSSI, the PPMC coefficient r, and the decoded
data d along the entire recording of both devices with the relevant intervals a), b), and c).
While the STFT of the device at the left wrist shows a clearly distinguishable signal core,
the right sensor again caught the aforementioned oscillation at 15 Hz. Starting at about
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900 s it unintentionally demonstrates the effect of in-band noise on the metrics. While
the average RSSI at the left wrist is a) 23.504 dB, b) 21.558 dB, and c) 22.945 dB, the
signal strength at the right wrist significantly decreases on occurrence of the interference
to values of a) 21.078 dB (semi-affected), b) −4.581 dB, and c) 10.841 dB. Nevertheless,
r significantly indicates the presence of the landmark signal with an average r of 0.835 at
the left and a marginally lower value of 0.764 at the right wrist. Despite the presence of
noise, the data is successfully decoded for most landmark packets, even though the RSSI
is below 0 dB for a certain period. The detection of erroneous landmarks and the relation
to the proposed RSSI heuristic is evaluated in the following.

Packet Error Rate
The PER is a measure of the number of landmark packets that have not successfully been
detected due to at least one symbol being interfered and hence erroneously detected or
missed. It is the quotient Nerror / Ntotal of erroneous packets Nerror per total packets sent
Ntotal. For the device at the left wrist, the PER of a) is virtually 0 since all packets
have been decoded correctly. Interval b) shows the largest PER of 26.525 × 10−3 with
ten errors occurred: five erroneously detected pulses and one missed pulse in the data
segment, two times a excessive fifth pulse and once a missed pulse in the terminator, and
once an undetected pulse in the preamble. The PER of c) is 2.571×10−3, only one packet
was erroneous due to a glitch in the data segment. The noise present at the right wrist
largely interferes with the landmark signals and hence results not only in considerably
decreased RSSI and r, but also in a significantly higher PER of a) 23.747 × 10−3 and b)
281.167 × 10−3. However, the coupling of interval c) showed with a PER of 0 to be more
robust against the noise. In general, there is a manifest link between the RSSI and the
PER. However, a low RSSI, even below 0 dB, does not inevitably result in a large PER.
The RSSI is, nevertheless, a suitable heuristic, helpful to indicate whether a signal interval
likely contains the desired landmark signal and should be further analyzed, or not.

3.3.3.3 Application In-the-Wild

To finally demonstrate the concept’s feasibility and its applicability in the wild, the two
devices were worn for about 23 min while performing activities of daily living which in-
cludes partly working at the desk, equipped with a transmitter beacon (Figure 3.7). This
way, the recording does neither contain exclusively the desired landmark signal nor the
ambient noise, but both varying in an uncontrolled setting.

As in the previous experiment (Section 3.3.3.2), the landmarks transport a continu-
ously incrementing 8 bit packet counter which overruns every 640 s. This way, discontinu-
ities in the decoded values indicate packet errors. Figure 3.18 visualizes the output of the
processing pipeline. Again, as in the previous experiment, the oscillation at 15 Hz is visible
and starts at about 900 s, immediately decreasing both RSSI and PPMC r. Nevertheless,
the landmarks can successfully be decoded when the subject is at the desk and either the
arms or the thighs are in proximity to the desktop and couple sufficiently to the beacon’s
electrode. There are periods in which the landmark signal is present at both wrists, as
intended. Interestingly, in other periods it is only present at a single wrist. Therefore,
we have to conclude that the IBC signal does not always propagate well throughout the
entire body surface under all conditions. The observations showed that the signal prop-
agates better, and is hence available at both wrists, when induced through the thighs.
When induced at one hand, the signal might, however, not be detectable at the other one.
One reason might be the larger distance between the wrists, compared to the shorter one
from the thighs to both wrists. However, the presumably major reason has already been
mentioned by [Zim95]: the “feet are the best location for [IBC] devices” since the coupling
to both the body and the environment is the strongest.
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3.3.4 Results

In three experiments, the detection of artificial landmarks has successfully been demon-
strated using ECG AFEs available in virtually every modern commercial wearable de-
vice. Furthermore, the general feasibility of the implicit contextualization of measure-
ments taken with wearable devices have been showcased. The evaluation is based on data
from an exemplary scenario in which a transmitter beacon is embedded into a desktop and
two sensing devices record the ECG signal captured at the user’s left and right wrist. In
a controlled setting, the coupling between the user’s body and the transmitter has been
evaluated in three different ways: a) directly touching the electrode, b) touching the desk-
top, and c) leaning back in the office chair and primarily coupling through the thighs. The
results are summarized in Table A.1. Unfortunately, the recordings at the right wrist
are considerably affected by oscillations at about 15 Hz, unintentionally demonstrating the
effect of in-band noise on the proposed metrics. The proposed RSSI heuristic successfully
indicates the presence of a landmark signal with values ranging from 21.6 to 23.5 dB. The
maxima of the PPMC r, ranging from 0.845 to 0.863, then enable to locate the landmark
packets in time and thus the decoding of the data segments. In all three coupling cases,
the reception of landmarks was successful and resulted in a low PER of 0 to 26.5 × 10−3.
Due to the interference, all measurements at the right wrist are weaker and show a lower
RSSI and r as well as higher PER. In general, the coupling a) apparently showed the best
results, but c) was somewhat unexpectedly good and even better than b) which constantly
showed the lowest yet sufficient performance.

The ECG’s low sampling rate fs of 128 Hz inherently limits the realizable carrier fre-
quency f0 to 20 Hz which is multiple orders below the optimal frequency band of capacitive
coupling IBC (Section 3.1.2). In combination with the discovered optimal B of 20 Hz, the
filtered signal shows, however, a good ratio between the pulse amplitude and the remaining
gap ripple, in the range of 21.0 and 39.3. The relatively wide B is required to cover the
modulated sidebands and to adequately reconstruct the discontinuous pulse wave, allow-
ing for a fast transient response between the symbols, representing the binary values 0 and
1. However, the comparably slow f0 results in a slow symbol rate, and a landmark packet
with in total 24 pulse periods takes 1.2 s. Therefore, the achievable data throughput is
apparently not sufficient for the transmission of larger data, but the 8 bit of data can al-
ready transport a unique object identifier for the proposed contextualization. To improve
the noise immunity, future implementations should consider the implementation of error-
checking and -correction techniques since redundancy can significantly improve the PER.
The strength of the coupling to the environment, but also the devices themselves and the
tightness of their attachment have large influence on the signal quality. Also the user’s
tissue composition has an influence on the signal amplitude, however the propagation ve-
locity is probably less affected. Consequently, the distance-related delay can be neglected
and landmarks are assumed to be immediately and without any delay present throughout
the entire body surface. This assumption is particularly valid, considering that the ECG’s
low fs limits the achievable accuracy to a quantization error of ±3.9 ms.
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Figure 3.17: Output of the processing pipeline for the desktop experiment: (A) STFT
with a window length of 4 s (512 samples) and 75 % overlap, presence of the signal core in
17.5 – 22.5 Hz (green lines) and in-band noise in 12.5 – 17.5 Hz and 22.5 – 27.5 Hz (red lines);
(B) RSSI heuristic derived from the signal core and the adjacent in-band noise, resulting
in an average RSSI of the segments; (C) PPMC r maxima of the detected landmarks
resulting in mean r̄ of the segments; (D) decoded data d and damaged information (red)
due to erroneously detected pulses, resulting in PER of the segments. [C21b; J22b]
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Figure 3.18: Output of the processing pipeline for the in-the-wild experiment: (A) STFT
with a window length of 4 s (512 samples) and 75 % overlap, presence of the signal core
in 17.5 – 22.5 Hz (green lines) and in-band noise in 12.5 – 17.5 Hz and 22.5 – 27.5 Hz (red
lines); (B) RSSI derived from the signal core and the adjacent in-band noise; (C) PPMC r
maxima of the detected landmarks; (D) decoded data d, considerable disrupted through
motion, partly damaged information, erroneously detected pulses within the data segment
at position x result in jumps that change the value by ± 2x. Correlation executed if
RSSI > 0 dB, data decoded if r ≥ 0.65 and preamble amplitude ≥ 5. [J22b]
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Figure 3.19: The effect of environmental changes on the inter-electrode capacitance mea-
sured with the wearable WetTouch prototype at the user’s wrist. Illustrative time series
of the measured capacitance: When performing washing gestures, yet solely air-coupled
to the environment (left), and when washing hands, touching running water from the tap,
and hence water-coupled to the virtually infinite area of earth ground (right). [W22a]

3.4 Case Study 3: Electrode Characterization
The third case study [W22a] presents a wearable prototype that allows to characterize
the inter-electrode capacitance in everyday situations and to continuously monitor its
fluctuations due to environmental changes on the go. In addition, it turned out that it
can also enable the detection of hand-washing, as illustrated in Figure 3.19.

Hand-washing detection is not only of interest since the emergence of the COVID-19
pandemic. Obsessive-compulsive disorder (OCD) often manifests itself in terms of hand-
washing compulsions. Detecting these compulsions can potentially improve the effec-
tiveness of treatments. Therapists could offer additional just-in-time mobile interventions,
improved momentary assessment, and interactive exposure and reaction prevention (ERP)
training. This requires, however, the reliable detection of obsessive hand-washing.

The presented approach relies on the effect that touching running tap water yields a
strong change in the capacitance between the wearer and the environment. The prototype
exploits this effect and paves the path towards reliable and unobtrusive hand-washing de-
tection in ambulatory applications with capacitive sensing. This case study contributes,
therefore, substantially to a better understanding of capacitance fluctuations due to envi-
ronmental changes, such as touching the water jet in particular.

Tap Water
Water is regularly expected to conduct electric current perfectly, but pure water (H2O) is
actually an excellent insulator (ρ ≈ 18.2 MΩ cm at 25 ◦C). However, dissolved substances
and salts, such as sodium chloride (NaCl), bring in ionic compounds which free ions
increase electric conductivity. Nevertheless, the specific electrical resistance ρ of tap water
is still high, in the order of 0.2 to 20 kΩ cm. In contrast to air (εr ≈ 1), water shows,
however, a comparatively large relative permittivity εr of about 80. The preferred quality
of water to wash the hands is drinking water. According to the WHO, about 87 % of
the global population have access to drinking water from “improved sources” while 54 %
have a piped supply [WHO]. Early pipelines were made from cast iron or even toxic lead,
and hence conductive (ρ in the order of µΩ cm). They have often been utilized to ensure
the potential equalization throughout a building, since they were leading into the mass
of earth and hence connected to ground. Today, besides the remaining old facilities, new
pipelines are now and then made from costly yet durable copper, but more often made
from cheap insulating plastics. Hence, potential equalization cannot be implemented and
guaranteed through the supply pipes anymore. Nevertheless, all conductive connections
leading into buildings (service entrance), as well as all metallic facilities inside, must be
bonded to ground to avoid electric shocks [Mor16].
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Figure 3.20: (a) Illustration of the proposed sensing principle. It is hypothesized that
by touching the water jet, the coupling to earth ground is improved through its virtually
infinite area, which in turn can be measured with the wrist-worn WetTouch prototype.
(b) Derived from the physical model, the sensing impedance Zx is formed between the
excitation (EXC) and the sensing electrode (CIN) at the AD7151 [AD71]. The equivalent
circuit is a two-port from the perspective of the floating wearable device. Due to d → 0,
the contact impedance Zeb disappears and virtually enlarges the EXC electrode to the
entire body surface (transmit mode, according to [Smi+98; Gro+17]). [W22a]

Physical Model

The physical model, illustrated in Figure 3.20a, has been developed to comprehend
and understand the effect of environmental changes, such as touching tap water, on the
measurable capacitance. The model is based on the fundamentals of capacitive coupling
and grounding provided in Section 3.1.2. It posits that the excitation electrode at
EXC strongly couples to the adjacent skin. In the resulting transmit mode [Smi+98;
Gro+17], it virtually enlarges to the entire body surface and hence modulates the electric
field of the human body. Meanwhile, the floating sensing electrode at CIN couples to
diverse surfaces: Directly to the counterpart electrode at EXC, but also to the body
surface modulated through EXC and the environment, earth ground with its virtually
infinite area. Once the water jet is touched, a new branch bypasses the path through air
with a larger permittivity and hence a stronger electric field. The respective change of
the capacitance Cx is measured by means of the wearable hardware unit. The equivalent
circuit from its two-port perspective is provided in Figure 3.20b. Every facing conductive
surfaces establish a capacitance C, represented by a complex impedance Z. Following the
high potential from EXC via the floating CIN to earth ground GND, those are exemplified
as follows: The impedance Zx, the equivalent circuit of the sensing two-port respectively,
is illustrated in Figure 3.20b and given by Equation 3.4. The water Zbg,wat hence
bypasses the air path Zbg,air and increases the measurable total displacement current i⃗x.

Zx = (Zec ∥ Zbc) ∥ (Zcg + (Zbg,air ∥ Zbg,wat)) (3.4)
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(a) Schematic of the wearable prototype. (b) Photo of the wearable prototype.

Figure 3.21: (a) Block diagram of the prototype’s circuit: The ESP32 fetching mea-
surements from the AD7151 [AD71] capacitance-to-digital converter (CDC) via an I2C
interface. The battery supplying both ESP32 and CDC, while the antenna and CDC are
excluded from the ground plane (GND, dotted line). The floating sensing electrodes have
no relation to ground (GND). The excitation EXC electrode and sensing CIN electrode
measure the inter-electrode sensing capacitance Cx by means of the transferred charges,
the displacement current id respectively. (b) The assembled prototype: The two 3 × 3 cm2

electrodes, stacked with 1 cm air gap, the AD7151 CDC, the ESP32 microcontroller with
wireless Bluetooth LE / Wi-Fi connectivity, and a small rechargeable battery. [W22a]

3.4.1 System Design

To confirm the physical model, the wearable WetTouch prototype has been developed
to perform basic experiments. It enables to sensitively measure the capacitance between
the two electrodes: An excitation electrode (EXC) to couple to the wearer’s body and a
floating sensing electrode (CIN) to couple to the earth.

Wearable Sensing Device
As presented in Figure 3.21, the wearable WetTouch prototype has two electrodes, ar-
ranged one above the other with an air gap. Capacitance changes are measured by an
AD7151 [AD71] CDC and then provided to an ESP32 [ESP] microcontroller that either
forwards the recordings via Bluetooth / Wi-Fi or stores them locally. The battery-powered
device can be attached to limbs through a hook-and-loop tape and is designed to be com-
fortably worn at the lower arm, almost like a traditional wristwatch. The ‘sandwich’
electrode setup has been adapted from previous research, as elaborated in Section 3.1.2,
and forms a parallel plate capacitor which ideal intrinsic capacitance Cec is 0.797 pF.

Capacitance-to-Digital Converter
There exist diverse techniques to measure the tiny capacitance between conductive struc-
tures, reviewed by Ramanathan et al. [Ram+13]. Because the effect of hand-washing on
the inter-electrode capacitance is expected to be rather weak, a sensitive front-end is re-
quired. The AD7151 [AD71] is an ultra-low power (70 µA at 3.3 V) CDC that enables
to directly obtain a digitized value. It is designed for the single-channel measurement of
floating capacities at the ranges 0 to 0.5, 1.0, 2.0, or 4.0 pF with 12 bit resolution, at a
maximum sensitivity of 1 fF respectively. The range of 2 pF has been applied, resulting
in a sensitivity of 1.6 fF. To capture the sensor’s Cx, the integrated circuit measures the
charge transfer between its two pins EXC and CIN. It applies a square wave to EXC, with
limited slew rate and an excitation frequency of 16 kHz, while the opposite CIN meters
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the charge using a Σ-∆ modulator. A subsequent digital filter averages the measurements
while the conversion time is 10 ms. The microcontroller is employed to read and trigger
the measurement every 50 ms, resulting in a sampling rate of 20 Hz.

3.4.2 Evaluation

Two experiments are conducted to characterize the inter-electrode capacitance in every-
day situations and to test whether it is possible to distinguish hand-washing from other
activities with the change of capacitance through touching the jet from the water tap. It is
hypothesized that the capacitance of the wrist-worn electrode pair changes due to the adja-
cent body coupling through the water jet and via the supply pipes to earth ground. If this
effect causes a significantly measurable difference in the capacitive reading, hand-washing
should be distinguishable from other activities.

Experiment 1
To show whether such an effect exists, measurements with different conditions and activ-
ities were taken. A single subject (S1: male, 25 yr., 177 cm, 70 kg) wore the device per-
forming the following: 〈1〉 grounding himself through the mains’ neutral wire, 〈2〉 washing
gestures with dry hands, 〈3〉 hand-washing with water running from a tap, 〈4〉 washing
gestures with wet hands in a wash pan, 〈5〉 arbitrary gestures, 〈6〉 contacting one foot with
running tap water, and 〈7〉 brushing teeth with a traditional toothbrush. The histograms
of the CDC readings are shown together with the respective activity in the Figures 3.22
and 3.23. The overlapping conditions 〈1, 3, 6〉 confirm the aforementioned hypothesis.
The body is coupled to earth ground in those grounded conditions, either through direct
skin contact or the water jet. In contrast, the non-grounded conditions 〈2, 4, 5, 7〉 do not
overlap with the grounded ones, even for 〈5〉. The close proximity of the wearable sensor
to the subject’s head in 〈7〉 might cause the relatively large capacitance while the other
activities are performed with stretched arms and hence the sensor farther away from the
body. Instead of the contacted water, the body then acts as a large, proximate ground
plane. Although the hands get in contact with water, activity 〈4〉 lies in the non-grounded
part of the measurements, confirming that the connection to earth ground is required to
achieve the desired capacitance measure. Therefore, hand-washing activities can only be
detected when the water is running through a ground-bonded tap or a pipeline originated
in the mass of earth. For S1, hand-washing and simultaneously touching the water run-
ning from a tap 〈3〉 yields an average capacitance of 1.205 ± 0.099 pF and forms a distinct
cluster that may allow to distinguish hand-washing from other activities such as arbitrary
motion 〈5〉 with an average capacitance of 0.793 ± 0.325 pF. To enable the detection of
grounding in a first approach, a simple threshold is set to the midpoint between the means
of non-grounded and grounded classes at 1.011 pF. Further distinction of hand-washing
from other activities with a grounded body is probably possible since additional motion
leads to a wider spread of the measurements, as apparent from the clusters 〈1〉 versus 〈3〉.

Experiment 2
In order to proof the reproducibility of the observed effect, the conditions 〈2〉 washing
gestures with dry hands and 〈3〉 hand-washing with water running from a tap have been
repeated with two subjects, five times and for 30 s each. S1 is male, 25 years, 177 cm, 70 kg
and S2 is male, 61 years, 170 cm, 90 kg. The histogram in Figure 3.24 shows a similar
distribution as Figure 3.22 from the first experiment. The clusters of 〈2〉 and 〈3〉 are
clearly separated. However, 〈2〉 is rather scattered while 〈3〉 appears evenly spread.
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In conclusion, hand-washing is indeed detectable and distinguishable from other ac-
tivities, but the system has not yet been applied to a larger variety of users and sinks in
different environments. When considering the results, it is visible that the effect of ground-
ing the body has the largest influence, which means that different body types, composition,
and height will only have a limited influence. Furthermore, the sensing mechanism is based
on the change in capacitance, caused by the water jet which bypasses the air path and
hence improves the coupling between the human body and earth ground. On the one hand,
this feature limits the possible applications of the sensing principle to water taps which
supply pipes are originated in the mass of earth or even directly bonded to earth ground,
commonly found in building installations. On the other hand, the body is required to be
properly insulated from ground. For the application that motivated this work, i.e. detect-
ing obsessive hand-washing, this situation can be safely assumed. Hand-washing is not
the only activity where the body comes into contact with water and some confounding
activities, e.g. dish-washing with a running tap, will probably show quite similar mea-
surements. These could be distinguishable by more sophisticated analyses, for example by
considering the overall water contact time or other time-dependent characteristics. The
swept-frequency capacitive sensing method, presented in Touché [SPH12], might also be an
option to improve the classification by analyzing the frequency-dependent coupling instead
of measuring at a constant excitation frequency of 16 kHz. IMU sensors can also be used
in conjunction with the presented approach to remove possible confounding situations.

3.4.3 Results

Along with the characterization of the inter-electrode capacitance for IBC purposes, a novel
technique for the detection of hand-washing has been presented. It is based on capacitive
sensing and uses the effect of grounding through touching water from a running tap to
distinguish non-grounded and grounded activities. The developed physical model has been
substantiated in two initial experiments with recordings from two subjects. The results are
promising and show that the proposed method allows to distinguish hand-washing from
other activities. The measured capacitance during hand-washing is distributed around
1.152 ± 0.106 pF and hence separates clearly from washing gestures with dry hands around
0.671 ± 0.065 pF. A simple threshold on a running average might, therefore, be sufficient to
detect if the body is grounded through water while an additional analysis of the standard
deviation allows to identify hand-washing. Obsessive hand-washing could then be detected
by the duration and frequency of the hand-washing sessions.

The measurements taken during the performance of other, non-grounded activities, such
as arbitrary gestures, have shown a characteristic capacitance of 0.793 ± 0.325 pF (S1),
which is surprisingly close to the calculated ideal value of 0.797 pF. This confirms the
validity of using this value in the simulations conducted in the following case study of
Section 3.5. However, the observed variations have shown to be comparatively large
and, therefore, can result in a relative impact of about ± 40.7 %, which is not negligible.
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Figure 3.22: Distribution of measurements from a single subject (S1): 〈1〉 intentionally
grounded body (red, 1.133 ± 0.013 pF), 〈2〉 performing washing gestures with dry hands
(orange, 0.718 ± 0.028 pF), and 〈3〉 hand-washing with water running from a tap (blue,
1.205 ± 0.099 pF). Separation line and simple threshold between the classes non-grounded
and grounded at 1.011 pF (dotted line). [W22a]
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Figure 3.23: Distribution of measurements from a single subject (S1): 〈4〉 performing
washing gestures with wet hands in a wash pan (brown, 0.823 ± 0.065 pF), 〈5〉 performing
arbitrary gestures (green, 0.793 ± 0.325 pF), 〈6〉 contacting one foot with running tap
water (violet, 1.225 ± 0.031 pF), 〈7〉 and brushing teeth with a traditional toothbrush
(light green, 1.007 ± 0.047 pF). Separation line at 1.011 pF (dotted line). [W22a]
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Figure 3.24: Accumulated distribution of additional measurements from two subjects:
S1 (male, 25 yr., 177 cm, 70 kg) and S2 (male, 61 yr., 170 cm, 90 kg). Dry hands 〈2〉: S1
(5 × 30 s, red, 0.635 ± 0.026 pF) and S2 (5 × 30 s, orange, 0.707 ± 0.073 pF). Wet hands
〈3〉: S1 (5 × 30 s, blue, 1.099 ± 0.018 pF) and S2 (5 × 30 s, green, 1.205 ± 0.128 pF). Five
30 s measurements per subject and class, 10 min recordings in total. In-class averages for
〈2〉 dry hands of 0.671 ± 0.065 pF and for 〈3〉 wet hands of 1.152 ± 0.106 pF. Separation
line at 1.011 pF (dotted line). [W22a]
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Figure 3.25: The OpenIBC prototype with the proposed open-source IBC receiver, as-
sembled from (left to right): 30 × 30 mm2 electrodes with 1 cm air gap [C17], LF OOK
wake-up receiver AS3930 [SAS], 125 kHz LC BP filter with 7.2 mH inductance, TinyPICO
NANO stamp module with ESP32 microcontroller, 3.7 V / 60 mA h LiPo battery, and USB
connector. Size of the assembled prototype: 40 × 67 × 10 mm3. [W22a]

3.5 Case Study 4: RFID / NFC Front-Ends

Due to the absence of commercially available IBC transceiver modules, research on possible
applications benefiting from the promising communication principle, is lagging behind.
Especially concepts for more intuitive human-computer interaction (HCI) and the impact
on the user experience (UX) cannot be explored yet. In contrast, integrated transceiver
circuits for radio-frequency identification (RFID) and near-field communication (NFC)
are fully developed and ubiquitous. In this case study, off-the-shelf AFEs for RFID / NFC
systems are repurposed to implement open-source IBC interfaces which thus enable the
faster prototyping. The OpenIBC prototype [C22c], presented in Figure 3.25, is not
intended to compete with cutting-edge research, especially not in terms of data rate and
efficiency. Instead, standard components are used to pave the way for applications that
can directly be translated to future fully-integrated solutions, when finally made available.

RFID and NFC
The fundamental principle of radio-frequency identification (RFID) was developed in the
1970 / 80s and targets since then commercial low-cost applications which require the iden-
tification and tracking of tagged objects. It allows a reader device to contactless obtain
simple but unique information from a transponder tag in range, such as an identification
number associated with the object. While active tags have to come along with their own
energy source, which however enables the response over larger distances in the far field,
passive transponders take the required energy from the reader’s induction field and apply
load modulation to provide a response in the near field.

Most passive RFID transponders operate in the low frequency (LF, 125.0 – 134.2 kHz)
and high frequency (HF, 13.56 MHz) bands which tend to be robust against interference.
There are also passive tags that use the ultra-high frequency (UHF, 433 MHz and 858 –
930 MHz) band, but UHF and super-high frequency (SHF, 2.4 or 5.8 GHz) microwaves are
more common for active tags, enabling faster data transmission. [Fin10; PENa]

Wrapped around the popular RFID standards, in 2002 the companies Sony and Philips
initiated the development of near-field communication (NFC) for contactless, wireless com-
munication between devices in close proximity (ISO/IEC 18092). Based on the 13.56 MHz
HF band, it enables a bidirectional, peer-to-peer data transmission at high data rates of

98



3.5 Case Study 4: RFID / NFC Front-Ends

CLOSE
proximity vicinity

LONG RANGE

1 cm 15 cm 1.5 m 10 m km
rangeREMOTE

cl
os

e

capacitive
coupling

inductive
coupling

radiative coupling
(backscattering)

radio frequency
(battery-powered)

cl
os

e 
co

up
lin

g

an
te

nn
a

LF & HF UHF & SHF
ISO/IEC 14443

HF (13.56 MHz):
ISO/IEC 18092 (NFC)

IS
O

/IE
C 

10
53

6-
1 ISO/IEC 11784/5

ISO/IEC 14223
ISO/IEC 18000-2

ISO/IEC 15693
ISO/IEC 18000-3

UHF (868 to 955 MHz):
ISO/IEC 18000-6 A/B/C (EPC)

SHF (2.45 GHz):
ISO/IEC 18000-4

UHF & SHF (433 MHz to 5.8 GHz):
ISO/IEC 18000-7

passive

active

near-�eld coupling far-�eld coupling

Figure 3.26: Summary of the different coupling principles, possible ranges, and numerous
ISO / IEC standards of RFID / NFC that are commonly applied. [C22c] cf. [SD14]

up to 424 kbit/s, but it is still downward compatible to passive targets. The different
coupling principles, their possible ranges, and the numerous, commonly applied standards
are summarized in Figure 3.26. [Fin10; PENb]

Wake-up Receivers
The aforementioned active readers as well as radio receivers in general suffer from front-
ends that often dissipate most of the energy for idle listening. Systems with rare or
only sporadic, event-based communication, therefore, usually minimize their active time
through a low duty cycle, at cost of higher latency, however. They regularly switch
between an energy-saving sleep mode and a dissipative receive mode, to listen to the
channel and preferably not miss a message. Although the typical power consumption
of IBC transceivers is multiple orders lower than of conventional RF modules [Mai+21;
Pet+16], their dissipation is nevertheless predominant. So-called wake-up receiver (WuRx)
are specifically designed for the continuous, always-on channel listening at low power.
Usually, a long but LF carrier burst is used to trigger a wake-up process that releases an
interrupt request (IRQ) to activate the primary receiver circuit, allowing for the reception
of data using a HF carrier and higher data rates [CAM20], and using a microcontroller
with more performance to eventually process the incoming data. For IBC, such WuRx
systems have already been presented in [CBY13; BY15; Pet+16; YH17; Mai+19].

3.5.1 System Design

In recent years, RFID and near-field communication (NFC) turned into ubiquitous al-
ternatives to traditional radio transmission for short- and medium-range communication.
Instead of a dipole antenna for far-field radio propagation, usually a loop antenna is used
for both data transmission and energy transfer via electromagnetic near-field coupling.
Although capacitive coupling is being mentioned in the standard ISO/IEC 10536 for close
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Figure 3.27: Illustration of the evolution from the conventional electromagnetic, inductive
near-field coupling (EMC) via uncommon electric field, capacitive coupling (EFC) toward
intra-body coupling or communication (IBC) which uses the human body to extend the
capacitive close-coupling range. [C22c]

coupling, “it is not used by very many RFID systems on the market today” because it
“is only effective at such a small proximity” [Smi16]. The standard specifies a maximum
range of 1 cm through air, which is not sufficient for typical WBANs. Moreover, the im-
plementation based on available front-ends is not easily done by just replacing the coil
with electrodes. To overcome this hurdle, the proposed approach uses the human body
as an intermediate transmission medium. The desired evolution from conventional elec-
tromagnetic coupling via capacitive, electric field coupling toward capacitive intra-body
coupling is illustrated in Figure 3.27. According to this concept, the transmitter induces
signals via close coupling into the body and modulates its surrounding electric field. The
receiver again couples to the body, detects the induced fluctuations in the electric field,
and demodulates the desired signal. While the forward path is established via the hu-
man tissue, which at the targeted frequencies virtually acts like a conductor [MMS18], the
return path, to close the channel circuit, is formed through the environment, the earth
ground respectively [Gro+17; NMS20]. Therefore, in principle, it should be possible to
repurpose RFID / NFC transceiver circuits for IBC.

Unfortunately, the use of these AFEs comes along with multiple obstacles due to funda-
mental differences of RFID / NFC compared to the IBC principle. Several integrated cir-
cuits are available which enable the implementation of tags or wireless sensors. The major-
ity acts, however, as a passive transponder / target, supplied by an active reader / initiator
via electromagnetic induction, and the requested information are returned by means of
load modulation – the active generation of signals is hence not provided.

The current density of the signal, induced by an IBC transmitter’s excitation electrode
to the skin, has to conform with safety regulations such as the standard of the international
commission on non-ionizing radiation protection (ICNIRP) [Lin+10]. Therefore, the max-
imum amount of energy that can be transferred through the human tissue is limited. The
typical displacement current induced is, however, multiple orders smaller than the allowed
maximum [Mai+20b; Tom+19]. Although demonstrated in [PO97], the remote supply of
devices and the use of backscattering or even load modulation are, therefore, at least dif-
ficult. Instead, the active signal generation and a more advanced peer-to-peer connection
are required, similar to NFC. The popular, fully integrated multi-protocol RFID / NFC
transceiver TRF7970A [TRF] supports all desirable standards. It is, nevertheless, opti-
mized for inductive coupling and hence shows not only a low output impedance Zout of 4
or 8 Ω, but also a relatively low input impedance Zin of typically 10 kΩ. In preliminary
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experiments, impedance matching to this circuit, from a sensor’s high impedance Zout to
a low Zin, turned out to be cumbersome – as discussed in [Bri06].

Continued research revealed the AS3930 [SAS], which shows promising characteristics
such as a high Zin. Based on this low-power wake-up receiver front-end, a receiver circuit
was developed as a first step toward an open-source IBC transceiver. The AFE is originally
designed for reading active RFID tags in applications such as operator identification, access
control, object localization, or wireless sensing. The developed system consists of the wake-
up receiver IC itself, two coupling electrodes, an adjoined LC filter circuit, and an ESP32
[ESP] microcontroller to be woken up on data reception. Embedded into a suitable channel
model (Section 3.1.2), the circuit is simulated to estimate its feasibility and achievable
performance. The considerations made are detailed in the following.

Frequency Band
Essential requirement is the use of a free and unlicensed frequency spectrum. The LF
and HF bands, typically applied in RFID and NFC systems, are located in the ISM band,
internationally reserved for industrial, scientific, and medical purposes. Given by the
selected IC, the 125 kHz LF band is applied. It shows good resistance to interference, but
the low f0 results in a long wavelength that requires for larger components compared to
those typically applied in systems using the 13.56 MHz HF band.

Receiver
The AS3930 [SAS] is a low-power OOK wake-up receiver for LF signals. With a bandwidth
B of 110 – 150 kHz, its input is optimized for a carrier f0 of 125 kHz, at which it shows a
comparatively high input Zin of 2 MΩ. It is designed to continuously run as an always-on
WuRx that allows to activate a connected system on detection of a carrier burst with a
sensitivity of 100 µVRMS. After the successful correlation of a custom signal pattern, the
following data is demodulated and streamed to the microcontroller which puts the front-
end back to listening mode after the reception is complete. The chip can be supplied with
2.4 – 3.6 V and draws, according to the datasheet, 2.7 µA in continuous listening mode and
5.3 µA when correlating wake-up patterns or receiving data.

Microcontroller
The receiver IC does not provide computing power for applications itself. It is only in-
tended to wake up a connected circuit via IRQ and to then forward the demodulated,
received data. The selection of a suitable microcontroller depends on the target appli-
cation. To allow for an easy setup and to provide sufficient performance for evaluation
purposes, the popular ESP32 [ESP] in form of a small TinyPICO NANO [TPN] stamp
module. The powerful SoC provides diverse operation modes, in particular a deep sleep
mode at less than 20 µA, which enables battery-powered applications.

Transmitter
Since this case study concentrates on the receiver front-end, the transmitter is again kept
simple and is based on the same stacked electrode setup as the receiver previously presented
in Section 3.1.2 and characterized in the study of Section 3.4. Instead of using a power
amplifier to boost the amplitude [Zim96], the signal is directly modulated with an ESP32
microcontroller which regularly (e.g. every 10 ms) generates a wake-up signal with a
3.3 Vpp amplitude, 1.17 VRMS respectively. As discussed below, the transmitter is still
grounded through the mains’ neutral wire, which considerably reduces the channel loss.
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Protocol
The AS3930 supports two different wake-up protocols. While the first one consists of a
burst directly followed by the data, the second one adds a preamble for clock recovery
and a programmable 16 bit wake-up pattern for a more reliable detection of the desired
signal through correlation. The data is preferably Manchester encoded, resulting in eight
applicable symbol rates ranging from 512 – 4096 S/s with a period time per symbol and bit
tbit of 1.953 – 0.244 ms. The application of the advanced protocol requires first a compara-
tively long carrier burst of 0.360 ms < tburst < 16× tbit (e.g. 1 ms), followed by a preamble
of tpre > 4× tbit, and a wake-up pattern of tpat, considering that tpre + tpat < 40× tbit,
before the desired data (e.g. 2 byte, 16× tbit respectively) are sent. While lower data rates
are more immune to ambient noise, higher rates require a wider B to also pass sidebands
through for a faster transient response. As demonstrated in Section 3.3.3.2, this results
in a more accentuated envelope but also injects a larger portion of the noise.

Electrode Setup
The previously presented setup (Section 3.2) of two 30 × 30 mm2 electrodes with an air
gap of 1 cm is used again [C17; W22a]. The design reduces the dielectric material between
the electrodes, minimizes the intrinsic capacitance Cint, and hence maximizes the coupling
through the tissue. The use of the LF band, and hence the modulation of the quasi-
electrostatic field, is “eliminating the necessity for high-frequency design and complex
hardware components” [Gro+14]. The ideal Cint of the formed parallel plate capacitor
is calculated as 0.797 pF (Section 3.1.2). However, as demonstrated and characterized
in the previous case study of Section 3.4, the capacitance at the receiver Crx, including
parasitic effects, typically fluctuates around 0.987 ± 0.234 pF [W22a].

LC Band-Pass Filter
The AS3930 requires an external BP filter to extract the desired signal at f0 of about
125 kHz. Implemented as a rejector in parallel to the input circuit, with a high but finite
Zin of 2 MΩ, it drains undesired components outside the intended frequency band, such as
ambient noise. In-band components are, therefore, forwarded and turn the BS quasi into
a BP filter. The filter is implemented as a parallel LC resonant circuit whose resonant
frequency fr with ω = 2πf is given as:

ωr = 1√
LC

(3.5)

The complex impedances of L and C are given as ZL = jωL and ZC = 1
jωC . In case of

ideal and loss-free resonance, their reactances X in Z = R + jX become equal XL = XC ,
resulting in the balanced yet counter-acting condition ZL = −ZC for ω → ωr:

lim
ω → ωr

ZLC(ω) = lim
ω → ωr

1
1

ZL(ω)︸ ︷︷ ︸
−ZC

+ 1
ZC(ω)

= 1
− 1

ZC
+ 1

ZC

= 1
0 = ∞ (3.6)

In RFID / NFC applications, the filter normally consists of the coupling coil with a specific
inductance and a countering capacitor to form the resonant tank circuit. In the intended
IBC receiver, however, only the inductance L is fixed while the capacitance C is given
through the inter-electrode capacitance Crx and hence fluctuating as mentioned before.
It is composed of the intrinsic Cint, which needs to be minimized, and the parasitic Cpar
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Figure 3.28: (a) SPICE model of the LC resonant circuit between port 1 and port 2
of the vector network analyzer (VNA). (b) Simulation and measurement of the insertion
loss lossdB(S21) in dB, derived from the S21 parameter, for f0 of 125 kHz. [C22c]

coupling through body and environment, which is crucial as it finally makes IBC possible:

Crx = Cint + Cpar (3.7)

Consequently, fr deviates from f0 and shifts slightly according to the affected Crx.
Furthermore, the selection of real, discrete components appears to be difficult. The Crx

with around 1 pF is too small and, in combination with the low fr, it would require a huge
L of 1.6 H, meaning many windings and thus large dimensions. With the transponder coil
B82450A7204A [TDK] we found a suitable component that is available at a maximum
of 7.2 mH, and its size of 11.4 × 3.5 × 2.4 mm3 also meets the spatial requirements. To
nevertheless reach the resonant state, according to Equation 3.5, Crx is enhanced with
Cadd of 224 pF to reach the required 225.16 pF. Figure 3.28 shows the circuit’s SPICE
simulation, the characterized S21 parameter and the derived insertion loss lossdB(S21):

lossdB(S21) = −20 log10 |S21| (3.8)

Channel Model
For LF IBC systems (f0 < 1 MHz, Section 3.1.2) in the quasi-electrostatic domain, and
with a capacitive high impedance (high-Z) termination at the receiver, the channel model
of [Mai+21] is valid. The applied lumped SPICE model is illustrated in Figure 3.29.
Accordingly, the channel loss largely depends on the capacitances that form between the
environment and the transmitter Cret, tx, the receiver Cret, rx, the body Cbody, and the load
at the receiver side Cload, approximated by [Mai+21]:

lossdB ≈ −20 log10

(
Cret, tx · Cret, rx
Cbody · Cload

)
(3.9)

While larger Cret, tx and Cret, rx in the return path reduce the channel loss, larger Cbody and
Cload increase its value. Due to the imbalance 1:224 of Crx and Cadd, fluctuations of Crx do
not considerably affect fr. The extended Cload = Crx + Cadd is, however, not ideal as it
considerably limits the receiver’s efficiency and sensitivity. To compensate for this effect,
the transmitter is connected to ground. The simulation, presented in Figure 3.29, allows
to estimate whether the signal would probably reach the required sensitivity threshold of

103



3 Intra-Body Communication

R1

10k

R2
70

L1
7.2m

C1

0.4p

C2

987f

R3
2Meg

R4
27k

AC 1.65

1.65
V1

C3

224p

C4

987f

C5

0.4p

R5
10

C6

150p

.ac lin 1Meg 1 1Meg

S1

S2

\HiDrive\users\flow88\PhD\My Papers\2022\EWSN IBC using RFID-NFC chip\2022-05-16b lc circuit analyze f\l

(a) SPICE model.

75 100 125 150 175
frequency in kHz

−100

−80

−60

−40

−20

ch
an

ne
l l

os
s i

n 
dB

-18.11 dB

-41.48 dB

-65.84 dB

-89.15 dB
100 μVRMS -81.34 dB

gnd
gnd + 27kΩ

float
float + 27kΩ

(b) SPICE simulation.

Figure 3.29: (a) Lumped circuit, SPICE model for the simulation of the LF, high-Z IBC
receiver front-end, according to [Mai+21]. Switch S1: floating (open) or grounded (closed)
transmitter; Switch S2: disabled (open) or enabled (closed) shunt resistor of 27 kΩ for a
wider filter bandwidth B but lower sensitivity. (b) Simulation: the front-end’s bandwidth
B (verticals), sensitivity threshold at 100 µVRMS (horizontal), grounded (gnd) and floating
(float) transmitter, disabled or enabled shunt resistor (27 kΩ). [C22c]

100 µVRMS or −81.339 dB, respectively. In line with the conducted experiments, the use
of a grounded transmitter is still required to enable the successful signal transmission to
a floating receiver device.

3.5.2 Evaluation

The OpenIBC prototype is subsequently evaluated regarding its power consumption, wake-
up latency, achievable data rate, and packet error rate.

Power Consumption
The Power Profiler Kit II [NPP] is used to precisely monitor the consumed power. Excerpts
are provided in Figure 3.30. The ESP32 microcontroller is not considered part of the
receiver and does not count toward the determined values. The used front-end allows for
a very low average power of 7.4 µW (2.24 µA at 3.3 V) in listening mode and of 8.4 µW
(2.56 µA at 3.3 V) during the reception of a wake-up signal and the data.

Wake-Up Latency
The wake-up latency describes the delay between the initiation of the wake-up signal at the
transmitter and its successful detection at the receiver, excluding the data transmission
itself. As an example, it sums up from a burst of 1000 µs, a preamble of 1220 µs (5 × tbit),
and the pattern of 1952 µs (8 × tbit) to a total of 4172 µs. To measure the latency, an
output pin of the transmitter is directly wired to an input pin of the receiver, enabling the
notification of an initiated transmission. The receiver then determines the time passed
between the detection of the flag and the interrupt request from the receiver circuit. For
100 000 packets, the latency showed to be stable with 4215 ± 3.6 µs. The slight error of
about 43 µs between the calculated and the measured latency is probably originated in the
devices’ internal processing.
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Figure 3.30: Excerpts from current measurements with the Power Profiler Kit II [NPP].
Average current consumption of the OpenIBC receiver in listening mode of 2.24 µA (blue)
and during data reception of 2.56 µA (orange), after a successful pattern correlation (*).
Sampled at 100 kHz and carefully denoised using a 2 × 2nd-order zero-phase 2.5 kHz LP
Butterworth IIR filter. [C22c]

Data and Error Rate
The achievable data rate primarily depends on the packet error rate (PER) which is the
ratio of erroneous packets and number of packets sent. High data rates require shorter
symbols and hence a wider filter bandwidth for a faster transient response of the signal
envelope. This way, more ambient noise is injected which results in more symbol errors.
Lower data rates are, therefore, more robust because larger symbols are transmitted which
are less affected by less noise. A single subject (male, 29) wore the prototype at one wrist
while touching the transmitter’s electrode with the palm of the other hand. The arms
were kept wide apart and away from objects which would improve the direct coupling
between the electrodes. On three days with different weather conditions, the transmitter
sent 100 000 wake-up sequences at a rate of 100 Hz, each time taking 16.7 min. At the
maximum data rate of 4096 bit/s, with a wide passband but lower sensitivity (27 kΩ shunt
resistor enabled), the achieved average PER is 320.0 × 10−6.

Limitations
Although the AFE AS3930 is quite sensitive (100 µVRMS), the presented prototype does
not enable fully wearable systems yet. While the receiver can be worn floating, at least the
transmitter is still required to be grounded, to reduce the channel loss by about 40 – 45 dB.
Moreover, the applied 125 kHz LF band is located at the lower bound of the frequency
spectrum applicable in IBC [Bae+12; Cho+09; KTL14] (Section 3.1.2). The use of the
13.56 MHz HF band instead would not only reduce the component sizes, but also increase
the potentially achievable data rate to NFC levels, toward a maximum of 424 kbit/s. It
might also eliminate the need to expand Crx by Cadd for resonance, diminish Cload, and
hence reduce the channel loss lossdB, as described in Equation 3.9.

3.5.3 Results

This last case study has presented the open-source IBC receiver OpenIBC that is based
on the commercially available AS3930 wake-up receiver front-end, originally designed for
reading active RFID tags. Its high input impedance enables the capacitive signal reception
in the 125 kHz LF band with up to 4096 bit/s and a PER of 320.0 × 10−6. The designed,
simulated, and evaluated prototype draws a low power of 7.4 µW when listening to the
channel and 8.4 µW during correlation and data reception. The sensitivity of 100 µVRMS
is not sufficient for the intended use in fully wearable applications yet. Therefore, adding
a pre-amplifying circuit might allow to further improve the front-end’s input impedance
Zin, lower the load capacitance Cload, and in turn improve the sensitivity.
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3.6 Summary and Discussion

Since its invention in 1995, research in IBC continuously pushes the boundaries of what
is possible. The results and prototypes have, however, never reached the market and re-
mained closed-source. Without the required resources, manpower, and the background
in chip design, catching up recent IBC research seems impossible. Therefore, potential
applications as well as concepts for more intuitive human-computer interaction and their
impact on the user experience have not been explored yet. This Chapter presented four
case studies that made certain trade-offs to approach the target of an open-source so-
lution for IBC communication step by step. It is, however, important to consider that
the presented techniques are not intended to compete with cutting-edge research in IBC,
especially not in terms of data throughput and efficiency. Instead, the use of accessible,
commercially available devices and components was intended to pave the way for appli-
cations that, when finally made available, can directly be translated to future single-chip
solutions, specifically designed for IBC.

The first case study addressed this issue by replacing the unsteady environmental ground
through an additional layer of conductive clothing with a local reference potential. It
extends the range of near-field coupling and thus enables data to be sent reliably across
the user’s body using capacitive coupling. This way, the channel’s bottle neck is removed
by significantly improving the devices’ coupling to a nearby potential that results in a
significantly lower channel attenuation. In addition, the conductive fabric forms a Faraday
cage that shields ambient noise sources and considerably improves the SNR. Also the
implementation effort of the tranceiver modules is lowered significantly, since neither LC
resonator circuits to boost the transmitter’s amplitude, nor complex filters to extract data
from a noisy signal are needed. The presented prototype for such data transmissions has
been evaluated for the communication between wrist and upper arm. The utilized PWM
scheme is based on three duty cycles to not only represent the binary values, but also to
continuously recalibrate the symbols, and to synchronize the bit stream of up to 200 kbps
at 250 kHz. The reception consumes with 18.9 mW more energy than the transmission with
7.6 mW, caused by the higher clock frequency of the microcontroller and the dissipative
analog front end. Due to obligatory conductive fabric layer, the design suits especially
applications that utilize any kind of functional clothing, vest, or all-in-one suit.

The second case study tried a different way by using the analog ECG front-ends of com-
mercial wearable devices. Those are carefully designed regarding their energy efficiency
and the sensitive detection of tiny signals on the human skin. The demonstrated scenario
shows a desktop, with an embedded transmitter beacon that capacitively induces artificial
landmark signals into the user’s body. The presented methods allows for the intentional
or incidental and implicit contextualization of wearable devices by touching, approaching,
or passing certain areas, surfaces, or objects equipped with transmitter beacons. The
evaluation is based on three experiments. First, the ambient noise captured by the ECG
AFE has been characterized. Second, the optimal parameters and the system’s perfor-
mance have been evaluated in a controlled setting, investigating the coupling between the
user’s body and the transmitter beacon in three different ways: a) directly touching the
electrode, b) touching the desktop, and c) leaning back in the office chair and primarily
coupling with the thighs. Third, the concept has been tested in an everyday life setting,
demonstrating its feasibility and applicability in-the-wild. The signal quality primarily
depends on the coupling strength between the transmitter’s electrode and the user’s body.
Of course, also the attachment of the devices has a large influence on the captured signal.
The deployment in-the-wild discovered that, moreover, the induced signal does not always
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propagate throughout the entire body surface. When picking up the signal through one
hand, it tends to be available only at the respective wrist. However, leaning back and
coupling through the thighs showed somewhat unexpectedly good signal quality at both
wrists. One reason might be that the distance between the wrists is larger than the ones
from the thighs to the wrists. Another reason might be the extremely low carrier frequency
that is several orders below the optimal frequency range of IBC (Section 3.1.2). More-
over, as already mentioned by Zimmerman [Zim95], the presumably main reason is that
the “feet are the best location for [IBC] devices” since the coupling to both the body and
the environment is the strongest. The proposed method uses the on-board ECG sensor of
wearable devices to enable the implicit contextualization as well as the synchronization,
as detailed in Section 4.4. Moreover, the research of [HIG16] demonstrated the use of
commodity devices and their fingerprint or touch sensors to transmit signals confined to
the human body. With the presented approach, now also the receiver side is provided.
The concepts’ combination would therefore enable wearable devices, such as wristwatches,
to transmit signals via a fingerprint sensor or touchscreen, and to receive these signals
using their embedded analog ECG front-end.

The third case study does not present an IBC device itself but supports the development
by characterizing the typical electrode setup used in prototypes such as the one simulated
and evaluated in the subsequent, fourth case study. Based on capacitive sensing, further-
more a novel technique for the detection of hand-washing is presented that uses the effect
of grounding through touching water from a running tap. A physical model was developed
and substantiated in two initial experiments with recordings from two subjects. The results
show that the proposed method allows to distinguish hand-washing from other activities.
In the experiments, the measured capacitance during hand-washing is distributed around
1.152 ± 0.106 pF and hence separates clearly from washing gestures with dry hands around
0.671 ± 0.065 pF and other activities such as arbitrary gestures around 0.793 ± 0.325 pF.
A simple threshold on a running average is therefore sufficient to detect if the user’s body
is grounded through water while an additional analysis of the standard deviation allows
to identify hand-washing.

Finally, the fourth case study presented a first open-source IBC receiver based on a
commercially available WuRx front-end, originally designed for reading active RFID tags.
Its high input impedance enables the capacitive signal reception in the 125 kHz LF band
with up to 4096 bit/s and a PER of 320.0 × 10−6. The designed, simulated, and evalu-
ated prototype draws a low power of 7.4 µW when listening to the channel and 8.4 µW
during data reception. However, the sensitivity of 100 µVRMS is not sufficient for the
intended use in fully wearable applications yet. Therefore, the next step is to develop a
pre-amplifying circuit which would further improve the front-end’s input impedance, lower
the load capacitance, and in turn improve the sensitivity.

This Chapter has presented multi-varied case studies that target the common goal of
implementing IBC. Case study 1 demonstrated simple way to simplify the channel circuit.
This way, the approach achieves a low SNR and comparatively large signal amplitudes
that do not require for sophisticated amplifier stages. The compromise of an additional
conductive textile layer results, however, in a significantly higher possible data rate of
200 kbps than would be achievable with the prototypes presented in the other case studies.
Case study 2 repurposed commercial ECG sensor front-ends with a high input impedance
of Zin > 1 GΩ and a CMRR > 100 dB to detect artificial landmarks induced through
capacitive coupling. This way, the approach gets close to the electrical properties of
IBC front-ends presented in research, but unfortunately not in terms of data rate as the
sensor’s sampling rate fs of 128 Hz limits the applicable modulation frequency to 20 Hz.
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Nevertheless, the study demonstrates the possibility of using very low frequencies for
IBC and repurposing commercial ECG sensor front-ends for simple applications such as
the contextualization of measurements. Case study 3 then paved the way toward the
goal by characterizing the electrode setup used in the subsequent open-source prototype.
Case study 4 finally presented a first iteration of the desired OpenIBC prototype. It
repurposes RFID / NFC front-ends with a relatively high input impedance of 2 MΩ to
detect capactively induced signals at a comparatively high carrier frequency of 125 kHz.
Originated in the original RFID applications, the OOK or amplitude-shift keying (ASK)
modulation schemes show relatively large symbols that are clearly less efficient as the PWM
modulation of case study 1, but show a better tolerance against typical noise present in
non-shielded system. Unfortunately, the LC filter at the input does not go along well
with the small input capacitance of the electrodes. The added capacitance to achieve
the resonance at the modulation frequency thus lowers the sensitivity of the circuit from
100 µVRMS down to a fraction of probably about 1:224. When this undesirably large
capacitance can be avoided through a higher input impedance with less capacitance, the
WuRx circuit should be sufficiently sensitive and hence enable even the reception of signals
from floating transmitters.

In scope of this dissertation, the goal of developing a fully wearable open-source IBC
transceiver module for research purposes has not yet been achieved. Nevertheless, the case
studies pave the way toward this intent and contribute with diverse findings and insights
into the requirements especially in the LF band and when using high-impedance front-ends.
In addition, the two applications of implict and incidental measurement contextualization
and synchronization, as presented in the remainder of this work, are feasible and already
beneficial for wearable systems.

Data Availability
Researchers are encouraged to replicate and improve on this work, to develop open-source
IBC transceivers and to explore potential applications. The design files and software of the
OpenIBC prototype are made available for download from this public GitHub repository:
https://github.com/fwolling/OpenIBC/
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4 Implicit Synchronization

While single all-round devices, worn at familiar and convenient locations such as the
wrist, have been standard for many years, wearables are recently evolving rather into
a conglomerate of simultaneously deployed hardware units. This way, the specialized
sensor nodes enable to capture complementary perspectives that allow inferring a more
complete bigger picture of the user. The applied cutting-edge sensor fusion and machine
learning techniques allow, for instance, the recognition of human activities or the detection
of the wearer’s emotional state and stress level. Based on multi-modal recordings from
distributed devices, the accuracy of these systems has shown to be superior to that from
a single device. However, the applied techniques substantially suffer from the inaccuracy
of the devices’ internal clocks, the manual temporal alignment of the sensor channels,
and the recordings’ unmatched time bases. Available online synchronization methods
to continuously update and adjust the devices’ local time are usually based on radio
communication. However, the required built-in hardware interfaces are not standard,
and if provided, they considerably affect the devices’ battery life. In addition, these
methods require the explicit interaction of the user to actively set up the network or pair
the devices. Originated in human activity recognition, offline synchronization methods
defer the temporal alignment of recordings to a data-driven post-processing step. They
align the local time bases by matching coincident external events, such as significant
motion patterns, that are simultaneously detected by the different sensor nodes. However,
the achieved accuracy of these approaches is usually relatively low and depends on the
quality of the obtained signals. Therefore, synchronization actions are usually performed
explicitly, typically at the beginning and the end of recordings.

In this Chapter, the potential of the human body to enable the implicit synchronization
of multiple distributed wearable devices is investigated. First, Section 4.1 describes the
origin of asynchronicity and then reviews the available online (Section 4.1.1) and offline
(Section 4.1.2) synchronization methods. Subsequently, Section 4.2 introduces and
explains the concept of implicit synchronization. The following two Sections then present
two methods that implement this concept, leveraging either the fingerprint-like signal
patterns in the naturally available heart rate variability interval function (Section 4.3)
or artificial landmark signals provided through intra-body communication (Section 4.4).
In the end, Section 4.5 summarizes and discusses the findings by comparing these with
the research intent and other available methods.
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4.1 Synchronization Methods

4.1 Synchronization Methods

Modern wearables successively develop from single all-round devices toward a collection of
simultaneously deployed hardware units [Ome+21] that allow to cover multiple, comple-
mentary perspectives [LL22]. The application of cutting-edge signal fusion, data analysis,
and model training on the collected multi-modal and multi-device data, thus, allows to
infer the user’s bigger picture, resulting in more distinct and successful interpretations
and classifications [Wes+09; SS16; Lu+20]. As previously discussed in Section 2.3.2,
datasets obtained from such conglomerates often substantially suffer from the inaccuracy
of the devices’ internal clocks, the manual alignment of the sensor channels, and, therefore,
the recordings’ unmatched time [Ohm+06; Xu+17; Wan+19; Goo+22]. In the order of
seconds, the improper alignment of interpretable observations may result in “wrong con-
clusions about the analyzed situation” [BDB21]. Especially for the application of modern
machine learning techniques on IMU motion data and more definite modalities of phys-
iological signals, such as ECG and PPG, already slight inaccuracies and jitters in the
order of milliseconds can disassociate coincidences [Ohm+06]. In this way, the learned
blurry models inevitably result in a poor classification [Wan+19] and the valuable infor-
mation contained in the data, for example the “correlation and possible causation between
multiple measurements”, can be lost [BGJ17].

The influence of time discrepancy on the accuracy of data analysis and fusion in multi-
wearable systems has been investigated and modeled by Xu et al. [Xu+17]. Accordingly,
time discrepancy is originated in different levels of factors such as clock drift, processing
delay, and network latency, which result in timestamps with scale and frequency inconsis-
tency, drift, or even absence. In addition to the inherent inaccuracy due to production,
oscillators are also affected by aging in the long term and even largely affected by environ-
mental conditions such as temperature, barometric pressure, acceleration, magnetic fields,
and electromagnetic noise in the short term [Vig92]. Because ones with a higher accuracy
come along with increased costs and energy demands [BDE13], developers of commercial
devices are often forced to compromise [TA19] and hence do not use the most accurate
clock technology available, which amplifies the effect of drift and the need for adjust-
ments [BGJ17]. Typical accuracies range from ± 500 ppm of CMOS MEMS oscillators over
± 20 ppm of conventional crystal oscillators (XO) to ± 5 ppm of temperature-compensated
crystal oscillators (TCXO) [TA19]. However, even with highly accurate clock sources, a
drift over time will sooner or later be perceptible [TA19].

Experiments with smartphones have revealed an accumulated clock drift of more than
150 ms per day in the worst case [LKK+17]. While mobile phones nowadays usually have
access to the internet, can hence continuously update their local time and calibrate their
real-time clocks (RTCs), most off-the-shelf wearable sensing devices do not support the
synchronization during operation [BAL09]. They would require specific built-in hardware,
an interface such as a bidirectional radio link, and the protocol overhead [LYK06; vR03;
Wan+19] would presumably exceed the devices’ small energy budget [BGJ15a].

The synchronization of distributed, multi-device systems is a “longstanding challenge
in HCI, neuroscience, [and] psychology” [LL22] as well as in digital health, with different
devices collecting multi-modal physiological signals [XDH22], and in HAR with multiple
body-worn sensing devices [BAL09; Wan+19]. Diverse synchronization approaches have
been proposed “using (1) dedicated hardware; (2) dedicated software; or (3) alignment
algorithms”, but tend to be “vendor-locked, non-generalizable, or difficult to adopt in
practice” [LL22]. In general, the methods are typically divided into the two classes online
and offline synchronization. While online approaches rely on network technology to up-
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date, negotiate, and adjust the time base at runtime, offline approaches detect and exploit
external events but defer synchronization to a data-driven post-processing step.

Since the number and status of wearables devices can change dynamically in these
systems, they require a synchronization technique that achieves the “necessary degree of
precision” [Xu+17]. The obtained time can either be the relative local network time or
an absolute time such as the coordinated universal time (UTC). Attached to Greenwich
mean time (GMT), it is “the basis for the world’s civil time”, intended to be independent
from the location on earth and its 24 time zones, “and it is kept using a precise atomic
clock and the Earth’s rotation”. [Wor]

In contrast to large computer networks, body-attached distributed systems often require
only local synchronization, relative between the nodes. As stated by Elson et al. [EGE02],
referring to the first formalization of Lamport [Lam78], in most applications the “causality
is more important than absolute time”.

In general, online and offline methods have in common that the synchronization is done
consciously. The user has either to network the devices for their coordination or to perform
specific actions to delimit and align the recordings. In contrast, the concept of implicit
synchronization might use both online and offline methods but is intended to take a back
seat and not to require any intentional interaction of the user. The two subsequently
proposed methods are either entirely passive, based on the naturally available heartbeat
(PulSync: 4.3), or semi-passively using artificial landmarks to unidirectionally obtain
information from deployed beacons to align the time series (IBSync: 4.4).

4.1.1 Online Synchronization

A long history of research has lead to a large variety of available methods for the contin-
uous coordination and tuning of devices’ local clocks and the synchronization of time in
distributed systems at runtime. While online methods are generally based on communica-
tion and networks, their requirements on temporal precision and accuracy as well as the
limits in costs and complexity are very different and application-specific. Time obtained
from a network can either be the relative local network time or an absolute time such
as UTC. Thereby, a unidirectional link tends to be less accurate, since network latency
cannot be measured, while the negotiation of a common network time via bidirectional
communication typically achieves a higher accuracy [Fai+20].

The network time protocol (NTP) of Mills [Mil91] has established as the most popular
method to obtain absolute time in LAN as well as wide area networks, e.g. the internet
(WAN) such as the internet. The applied master-slave scheme is, however, the simplest
way to synchronize both wired and wireless networks. The theoretical error of NTP ranges
from several milliseconds to 100 ms [Mil11]. Luo et al. [LKK+17] investigated the temporal
drift of smartphone clocks and developed a rapid clock synchronization method that uses
publicly available NTP servers. The experiments revealed an accumulated clock drift of
more than 150 ms per day in the worst case and also NTP showed to be noisy with errors
up to 1800 ms in one request. The presented synchronization method reduced the error to
27 ms on average and to a maximum error of 411 ms.

More advanced protocols such as the precision time protocol (PTP) of Lee and El-
dson [LE04], the simple network time protocol (SNTP) of Mills [Mil06], the reference
broadcast synchronization (RBS) of [LYK06] [LYK06], and the lightweight time synchro-
nization (LTS) of van Greunen and Rabaey [vR03] have also their rationale for existence
in cases in which the precision of NTP is insufficient or its implementation is too complex.
These protocols as well as their modified, often application-specific derivatives can achieve
sub-millisecond performance under ideal conditions, but they “suffer considerably in the
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case of a lack in stable latency and asymmetric connections” [Fai+20].
Although unidirectionally provided, global navigation satellite systems (GNSS) allow to

obtain time with very high accuracy: the popular global positioning system (GPS) < 25 ns,
GLONASS < 1 µs, BeiDou < 100 ns, and the European Galileo < 50 ns [ESA20]. However,
time from GNSS suffers considerably if a clear line of sight and good signal quality cannot
be guaranteed, e.g. in indoor applications. Although primarily relying on GPS, “system
faults common to environmental sensing systems” can result in “large time offsets” which
were repaired using one of the first offline synchronization approaches [Luk+09]. Moreover,
the receiver circuits tend not only to be too complex, large, and costly for most wearable
applications, but are also inapplicable when energy efficiency and resulting battery life are
the critical parameters as in long-term deployment of wearable devices [PLP20].

In wireless sensor networkss (WSNs), especially energy efficiency is a critical parameter
that decides about battery life and, therefore, about the systems’ required maintenance,
which is desirably low for deployed systems [Cho+19]. The surveys of Sundararaman et
al. [SBK05] and Lasassmeh and Conrad [LC10] provide a detailed overview of common
online synchronization techniques applied in WSNs.

In body area network (BAN), the human body is the habitat for multiple nodes attached
to it and relatively close to each other. Although superior in terms of energy efficiency and
accuracy, wired links for a shared master clock are commonly perceived as less flexible,
obtrusive, and even uncomfortable. Advances in conductive textiles, such as in [Pou+16],
would, of course, easily enable to share a master clock, and even to supply the modules
with power at once. For wired low-power wearable sensor networks with the requirement
of high precision, an average clock skew of about 4.6 ns has been achieved, which is said to
even outperform PTP [DFT16]. Nevertheless, wireless radio communication still remains
the preferred technology in wearable applications. Not only the methods applied in WSN
but in particular those running on wearable devices, as discussed in [Zhe+14], primarily
focus on energy efficiency. As discussed in [Bar+08; MK10; Nag+15; Toc+22], radio
transmission suffers largely not only from the general inefficiency of radio transmission
due to a lossy air channel, but in particular from shadowing effects due to the vicinity to
the water-rich tissue, which causes a variable path loss [Hal+07]. Based on the short-range
wireless standard Bluetooth, approaches for synchronized measurements in body sensor
networks (BSNs) achieved accuracies ranging from 3.5 ms [RR07] over 100 µs using the
sniff mode [Pfl+14] to even 17.4 µs utilizing the spark state mechanism which, however, is
not supported by all devices [Rob05].

4.1.2 Offline Synchronization

Instead of regularly obtaining temporal information from a network and repeatedly nego-
tiating a general time base with the other nodes at runtime, offline synchronization tech-
niques exploit external detectable events to align the recordings from distributed sensing
systems in a post-processing step. Therefore, these techniques are still only relevant if
online synchronization cannot be applied, either due to a lack of built-in hardware sup-
port, such as a missing radio module, or due to resource-constraints and a limited battery.
The synchronization process is data-driven, solely based on the information available in
the measurements. A central hub, usually a computer, collects the irregularly transmitted
measurements and performs the synchronization, as it usually provides more computing
power and is less constrained regarding energy demands than the sensor nodes.

In 1976, Knapp and Carter [KC76] described the fundamental concept of determining
the “time delay between signals” from multiple sensor nodes. Two time series with “un-
correlated noise” are compared using a cross-correlation function and the “time argument
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at which the correlator achieves a maximum is the delay estimate”. Based on this concept,
the data driven time synchronization (DDTS) of Lukac et al. [Luk+09] was one of the
first applications of this offline concept and aimed at repairing the timestamps of mea-
surements from 100 distributed seismic sensors. Primarily synchronized online through
GPS, the system suffered, however, from large time offsets due to “system faults com-
mon to environmental sensing systems”. To correct the received temporal information,
the approach leverages microseisms, regularly occurring yet irrelevant seismic waves in
the ground. By applying a model of the microseisms’ propagation, the error has been
reduced to an offset of 0.05 to 0.2 s. The model requires, however, information on the
sensor deployment, the sensor locations and their distances respectively.

4.1.2.1 Stationary Settings

As recently stated by [XDH22], “it remains challenging to obtain precise time synchroniza-
tion of multimodal physiological signals collected through different devices”. Therefore,
diverse approaches targeted the synchronization of different sensing devices and modalities,
to conduct studies on their performance and comparability, or signal fusion. With the Ob-
server XT, Zimmerman et al. [Zim+09] continued the development of a successful tool for
the collection, integration, and synchronization of multi-modal signals. It enables the au-
tomatic synchronization of diverse sources such as video cameras. Proprietary sensors, e.g.
for physiological signals, are connected through an external DAQ which requires a trigger
pulse from the computer to align the time series with system time. Alternatively, visual
and auditory events can be used to manually synchronize sources that are not connected
to the computer. With OpBox, Kimchi et al. [Kim+20] provide an open-source hardware
and a MATLAB toolbox for the simultaneous multi-subject recording of EEG, EMG, event
triggers, and rotary encoders. The sensor channels as well as supplementary video streams
from standard webcams are synchronized in software. The evaluation with an IR LED
showed an accuracy of 66.1 ± 13.2 ms. The system of Notaro and Diamond [ND18] also al-
lows the ms-accurate simultaneous recording of electroencephalography (EEG), gaze (eye
tracking), event triggers, and a screen-capture. Xue et al. [Xue+17] evaluated different
co-registration methods and the use of a trigger signal to determine the sampling onset
for the alignment of EEG and gaze recordings from two computers. Shah et al. [SCL20]
synchronized an eye tracker and supplementary videos by means of a blinking IR LED
which light is visible in both recordings. In order to investigate the feasibility of emotion
recognition outside the lab, Ragot et al. [Rag+18] developed a software to synchronize
the HR and EDA signals from one laboratory (Biopac MP150) and one wearable (Empat-
ica E4 [EmE4]) sensing device. And recently, Latifzadeh and Leiva [LL22] presented the
tool Gustav that enables to “orchestrate the recording of sensory signals across devices
and computers”. It consists of two components, “an event logger and a file post-processor”.

4.1.2.2 Motion Signals

In HAR the sensor channels from distributed sensing devices are often aligned manually.
Therefore, also research aiming at the automatic offline synchronization can mostly be
found in context of resource-constrained, battery-powered devices of this domain. Bannach
et al. [BAL09] established the concept of aligning time series from multi-modal wearable
and ambient sensors through the correlation of predefined signal patterns. The approach
is not intended to compete with network-based online methods and rather aims at the syn-
chronization of systems of stand-alone devices without the capability of synchronization
via wireless communication. Synchronization actions of the wearer, significant motion
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patterns such as “clapping, jumping, and hitting a surface”, are detected and used as
“characteristic signature” to automatically align signal segments from different sensors
capturing e.g. motion, sound, or force. The content-based approach achieved a synchro-
nization error of about 0.3 s for more than 80 % of the data. It therefore enables to reduce
communication to a unidirectional channel or even an offline alignment of the recorded
data. In this way, not only the design of devices without wireless connection becomes eas-
ier, but also the use of sensors from different manufacturers and with insufficient built-in
synchronization support is hence possible. The authors mention, however, that “in real-
istic scenarios achieving high synchronization performance is not trivial”. Especially the
quality of event spotting is essential for the accuracy, and for different sensing modali-
ties specific spotting algorithms are required. The required synchronization performance,
however, would also largely depend on the target application. An accuracy below 1 s is
said to be sufficient for the recognition of “motion-related activities in daily life” while a
performance better than 0.1 s is considered as “typically not needed”.

Based on this fundamental concept, more sophisticated approaches for the data-driven
offline synchronization have been proposed. Bennett et al. [BGJ15b] developed two meth-
ods for the selection of “alignment points”. The first one is based on signal templates
that are aligned using dynamic time warping (DTW) [BC94] and a technique from image
registration [PMV03]. The second one is based on entropy, the statistical measure of ran-
domness in a signal [CT01]. While the template-based approach results in an average error
of 49 ms, the entropy-based approach achieved a considerably lower average error of 8.6 ms,
less than two samples at a clock frequency of 200 Hz respectively. The subsequent work
[BGJ15a] introduces the detection of so-called “physical and cyber couplings” between
the interacting signals of multiple wearable sensors. Couplings are defined as events that
occur at sensors at the same global time, regardless of the devices’ local time. Dijkstra’s
algorithm [Dij59] is then applied to find the shortest path and, therefore, to determine
those signal couplings that minimize the overall clock drift in the system, resulting in a
decrease in average drift of about 60 %. An additional outlier detection further reduced
the median drift error from 66 to 98 % [BGJ17].

Wang et al. [Wan+19] presented an advanced method which combines the single-time
use of the energy-demanding NTP with the continuous identification and alignment of
“context markers”. Similar to the previous signal couplings, these are physical actions
which are known to have been detected simultaneously by multiple sensors. In contrast to
predefined synchronization actions, context markers are incidentally performed through-
out the entire recording and do not interrupt the experiment. The approach has been
tested with multiple Myo armbands that, before being attached to the user, have been
initialized by hitting the table they are placed on. This seismic event creates a sequence
of simultaneous pulses in the time series that allow to eliminate missing inserted events
as well as temporal jitters. The method reduced the synchronization error to 20 ms in
comparison to the exclusive use of NTP with 250 ms or of context markers with 1312 ms.

Instead of explicit synchronization actions, signal couplings, or context markers, yet sim-
ilar to the entropy approach [BGJ15a], Hölzemann et al. [HOV19] utilize the uniqueness
of variations present in accelerometer signals from IMUs to align independently recorded
time series. For a successful alignment, with an accuracy in the order of few seconds, suffi-
cient periods of resting with low variations as well as sufficient similarities and accordance
in the signals from different locations, such as head and wrist, are required.

In general, the consciously performed synchronization actions have to be performed “at
least once at the start of a data collection” [BAL09]. Since longer recordings are increas-
ingly affected by drift [BGJ15b; Fai+20], at least one alignment point at the beginning
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and one at the end are advisable to adjust the sampling periods and, therefore, to com-
pensate the difference in pace. Irregularly repeating events throughout the recording can
improve the achieved accuracy by reducing ambiguity [BGJ15a; BGJ17] but, in this way,
the performed actions also become less incidental yet more cumbersome and obtrusive.

Also the recent online synchronization approach of Faizullin et al. [Fai+20] exploits
motion to improve the accuracy of SNTP to several microseconds. For applications such
as “multi-camera bundle-adjustment or [ . . . ] geo-localization for mapping”, it assumes
gyroscope sensors to be attached to a rigid body and therefore to be exposed to “equal
angular velocity”. This assumption is, however, not valid for the complex human body
with “hundreds of degrees of freedom” [Ron22] and the sensors being attached to soft
tissue. Placed at diverse locations, the captured signal patterns of performed actions can
show up different in shape and at different time of arrival to the sensors due to delays in
performed motion sequences and the inertia of the body parts [Lop+15]. The signals from
accelerometers can for example show significant offsets: the “squat jump with arm swing”
for instance would show partly independent signal patterns at the arms first, followed
by a delayed pattern at the torso and the legs [Har+08]. Like HAR also motion-based
synchronization methods suffer from inaccuracies due to loose device attachment [Bañ+12;
Zha+18] and soft tissue deformation [TB90; Kim+93; Lop+15; Wu+16; Ron22; UA22].

4.1.2.3 Other Signal Sources

Ahmed et al. [Ahm+20] presented a novel approach that does not rely on motion patterns
but specifically aims at the multi-modal detection and analysis of cough events across
multiple devices. Coughs are high energy events with a concise length of 0.3 to 0.7 s and
simultaneously perceptible in audio and acceleration measurements. The alignment of
these sporadic events, by means of a normalized cross-correlation, resulted in an average
synchronization error of 46 ms.

Spilz and Munz [SM21] developed a technique for the synchronization of wearable mag-
netic, angular rate, and gravity (MARG) sensors, IMUs enhanced by integrated mag-
netometers. Before and after the actual use of the sensors, those are put into a docking
station that is equipped with an array of inductors, one underneath each device. Switching
the coils for eight seconds at a frequency of 6 Hz is sufficient to enable the synchronization
of the devices’ recordings by means of the magnetometer channels. Sampled at 100 Hz,
the accuracy of the method would naturally be limited to 10 ms. By leveraging the coils’
transient response as a characteristic, a ploynomial fitting allows for the alignment even
at a sub-sample accuracy of less than 2.6 ms.

Based on the noise-induced phase synchronization phenomenon [TT04; NAK07], Ha-
rashima et al. [HYH12] exploited the noise present in the measurements from the natural
environment, i.e. temperature and humidity, to synchronize WSNs. It is assumed that
all sensors observe the same environmental conditions and are, therefore, exposed to the
same noise. If aligned, the cross-correlation of the time series from neighboring sensor
nodes reached a coefficient of 0.8 or higher. Similarly, Vaz et al. [Vaz+15] proposed
the correlation and alignment of physiological signal channels by means of the inherently
present white noise. The achieved sub-ms accuracy is, however, bought dearly through
high sampling rates of 2 and 20 kHz.

The entirely different approach of Li and Tan [LT10] presents a time division multiple
access (TDMA) protocol for medium-access control (MAC) which utilizes the rhythm
of the human heartbeat, instead of periodically broadcasted radio beacons, to schedule
the time slots in star-topology wireless BSNs. Based on the assumption that body-worn
devices have access to the wearer’s vital signs, the “naturally synchronized” information
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are used to allocate time slots and, thus, achieve a coarse synchronization without the need
to enable the energy-consuming radio to receive periodic timing information. However, the
changing IBIs and, hence, the changing duration of the time slots according to a varying
HR are not considered.

Published after [W21a], the method proposed by Xiao et al. [XDH22] follows a similar
approach, aiming at the synchronization of cross-device multi-modal data with a common
sensor modality such as ECG. The cross-correlation function is directly applied to signal
amplitudes “without the need for identifying signal landmarks”. Two channels of a 12-
lead ECG are used to simulate inherently synchronous data from locations associated
with smartwatches (lead I) and ECG patches (lead V2). A 30 s sample window, chosen
as a trade-off between performance and efficiency, resulted in a remaining inaccuracy of
0.29 s. The authors state that the method “can be readily applied to other common
physiological signals [ . . . ] such as PPG, electrodermal activity signal, etc.”, which is,
however, questionable as discussed into detail in Section 4.5.

To be able to analyze the level of agreement between HR estimates, Alfonso et al. [Alf+22]
proposed a method to align the time series from commercial wearable PPG sensors with
the instantaneous HR derived from ECG as the gold standard. The approach is based on
an optimization which minimizes the total error between the irregularly sampled ground
truth values and their closest HR estimates, averaged and with a low but regular update
rate. This way, the method avoids the application of linear interpolation. The method
compares to the implicit synchronization approach published in [W21a] and is, therefore,
also discussed in detail in Section 4.5.

4.2 Concept

The concept of implicit synchronization is based on the idea of “implicit human-computer
interaction” of Schmidt et al. [SGM00] that describes “a shift [ . . . ] from explicit interaction
[ . . . ] towards a more implicit interaction based on situational context” (Section 3.3.2).
Therefore, it follows the vision of “Augmented Interaction” by Rekimoto and Nagao [RN93]
which “aims to reduce computer manipulations by using environmental information as im-
plicit input”. This trend is visible, for example, in previous research on offline synchroniza-
tion methods (Section 4.1.2). As an alternative to conventional online synchronization
techniques, these started with explicit synchronization actions such as specific motion
patterns [BAL09] and continued with unspecified, less obtrusive, and more incidental ac-
tions as reference points for the alignment of sensor channels and time series [BGJ15b;
Wan+19]. The process finalized in the most general notion of information possible, the
use of variance [HOV19] or noise naturally being present in signals [HYH12; Vaz+15].

Diverse prototypes [Sch00; Phi+04; FPR05; Wan+07; Ber+10] have been presented
to obtain “knowledge” [Ber+10], or more generally information, by grasping “augmented
objects” [Fel+05]. However, “Mobile and wearable interfaces [ . . . ] usually require more
attention than is appropriate and often fail to do so in a natural and socially accept-
able way”. In this dissertation, the human body is interpreted as a kind of augmented
object which devices could discretely and unobtrusively be attached to and which they
can obtain valuable information from. These information can either naturally and in-
herently be available, i.e. the primary vital signs (Chapter 2), or artificially provided
for this purpose, i.e. induced by means of IBC (Chapter 3). Furthermore, Wellner et
al. [WMG93] describe “Computer-augmented environments [that] merge electronic sys-
tems into the physical world instead of attempting to replace them”. However, these
systems “require a complex, distributed infrastructure, precise alignment between the real
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and electronic worlds”. In context of this research, the “alignment” is interpreted as tem-
poral alignment, and hence as the synchronization of multiple devices among themselves
as well as with a common real time.

In the understanding of this work (Figure 1.2), explicit synchronization requires con-
scious interaction with and manipulation by the user, such as the active pairing of wireless
devices or the performance of specific synchronization actions. Moreover, explicit methods
may use both online and offline techniques, and are not tied to either one. In contrast,
implicit synchronization is considered as the necessary step toward ubiquitous computing
by “seamlessly bridging the gulf between physical and virtual worlds” [Wan+99]. Implicit
methods do not require the user’s conscious interaction and manipulation, and deployed
devices do not demand for attention, which makes such systems more unobtrusive.

With the advances in energy efficiency and ultra-low power computing, concepts for
“intermittent computing” become necessary [HS17; Luc+17; MA17; Win+20]. These al-
low devices equipped with energy harvesters and very limited energy storage to neverthe-
less effectively and reliably process data whenever there is just enough energy available.
Analog, implicit synchronization is intended to enable also the intermittent synchroniza-
tion of devices whenever a synchronization signal is available, simultaneously observable
by all relevant devices. This implies, however, situations in which a device does not have
the necessary energy to receive the synchronization signal. Whenever a stable and reliable
synchronization signal is available, even if only for a fraction of time, the devices can
fetch the required information to either adjust and calibrate the local time in case of the
online method, or align and adjust the time series in case of the offline method. Accord-
ing to Lucia et al. [Luc+17], “Distributed collections of intermittently operating devices
must interact with one another via radio” which is an essential issue because “The cost of
communicating is high”. They conclude that “Synchronizing a collection of intermittently
operating devices is an unsolved problem and a communication between unsynchronized,
intermittent end-points is only successful if both are coincidentally operating for a long
enough time, at the same time”. The proposed concept also addresses this problem, even
though it will not be able to solve it completely, since at least a part of the devices must
continuously be active and listen to the signals provided by or through the human body.
The combination of energy harvesting and energy-saving sensor or receiver front-ends
might, however, one day make it possible to solve the issue entirely.

From the perspective of the user, by using implicit methods, the synchronization of de-
vices turns from an active decision, such as pairing devices or performing certain gestures,
to a more incidental resource. This way, a better signal quality, due to the improved timing
and a more accurate alignment of coincident events, will achieve more accurate inferences.
Furthermore, it can also help to minimize labeling efforts and overhead [Wan+07]. Conse-
quently, systems do not necessarily require radio modules and bidirectional communication
interfaces, which always come at cost of a considerable protocol overhead [LYK06; vR03;
Wan+19]. Therefore, implicit synchronization techniques would help to minimize power
consumption and might eventually support the implementation of devices running from
harvested energy only.
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Figure 4.1: The measurement setup (left) uses an exercise chest strap at the torso,
resembling a V2 – V1 ECG lead (blue), and the traditional Einthoven II ECG lead (orange).
At the right, an excerpt from the “sitting” recordings of subject 23 [HP18] shows non-
stationary physiological signals, superimposed by baseline wander; V2 – V1 lead (blue), II
lead (orange); identified R peaks (red); matched by the PulSync method. [W21a]

4.3 Method 1: PulSync

The first synchronization method, named as PulSync [W21a], enables to align the record-
ings from multiple wearable devices solely based on the readings of the wearer’s HR. The
previous Chapter 2 has introduced different measurement principles that allow to de-
tect the human heartbeat throughout the entire body surface. Accordingly, signal source
can potentially be any modality and kind of sensor that allows to detect significant pulse
features and to derive the IBIs. While the R peak in ECG measurements can serve as a
significant fiducial point, PPG signals are less pointed but available throughout the entire
body surface and even at a single site. The data-driven method enables to reduce the com-
munication to an unidirectional streaming channel or even an offline synchronization as no
bidirectional exchange of beacon signals or the negotiation of a time base is required. The
human heartbeat is a ubiquitous vital sign that is continuously available. The frequent
landmarks of the pulse wave are conserved and the IBI stays the same throughout the
entire body surface. As described in Section 2.1.3, the raw measurements as well as the
IBIs are superimposed by diverse physiological processes, such as respiration and activity
of the ANS, and show a degree of chaos. Consequently, the derived HRV patterns exhibit
a certain uniqueness and thus enable the absolute alignment of datasets, even in absence
of global timestamps, through the matching and assignment of coincident pulse patterns.
Moreover, the comparison of the aligned IBIs enables to determine and compensate the
relative clock drift between devices with autonomous clock sources.

The presented method is set up in two stages. The first one applies a PPMC normalized
cross-correlation once for initialization to match the individual HRV signals. In this way,
it cancels the offset of the devices’ starting times and the difference in PAT to coarsely
align the local time bases. Afterwards, the second stage enables to refine the pulse peak
adjustment and to determine the relative drift using a linear regression through the trend
in the distances between the devices’ assigned peak pairs. It can either be applied on
the entire time series at once, if the external conditions and the drift are assumed to be
constant, or on shorter window intervals to successively update the relative drift, if, for
example, temperature changes affect the devices’ drift rate.

Instead of using the raw sensor measurements, as proposed in [XDH22], the approach
utilizes the IBIs as they contain aggregated information about the pulse peaks’ tempo-
ral positions which are conserved throughout the entire body and independent from the
measurement site. Furthermore, they contain less noise as well as no varying baseline.

121



4 Implicit Synchronization

4.3.1 Implementation

PulSync leverages the natural, irregular rhythm of the heartbeat that is ubiquitously and
simultaneously available throughout the entire body surface of every living human being.
The ECG signal’s prominent R peaks are significant fiducial points and serve as coin-
cident landmarks for the alignment. In contrast to the commonly used motion signals
(Section 4.1.2) the pulsatile vital sign is continuously available. Even at rest, the HR
results in an update rate of about 0.8 Hz (48 bpm), but it can vary within the extreme
boundaries ranging from 0.5 Hz in case of bradycardia up to 3.0 Hz in case of tachycardia or
heavy physical activity (30 – 180 bpm) [Deh+18; Fle+11] (Section 2.4). Because the HR
is modulated by diverse physiological processes (Section 2.1.3.2), the HRV interval func-
tion [Bas+87] is highly varying and unique like a fingerprint, but also location-independent
and hence identical throughout the entire body surface. This singularity enables to un-
ambiguously align the independent recordings with their local time bases by matching the
patterns of these HRV fingerprints.

The processing pipeline is illustrated in Figure 4.2. The heartbeat’s fiducial R points
in real, absolute time t∗ define a unique sequence of timestamps t∗

i ∈ T ∗, allocated by:

T ∗ := ⟨t∗
0, ..., t∗

i , ..., t∗
∞⟩i∈N (4.1)

These heartbeat events t∗
i are then captured by two devices, denoted as A and B, which

sample the individual subsets T ∗
A ⊂ T ∗ and T ∗

B ⊂ T ∗, and hence translate t∗
i into their

local times tA(t∗
i ) and tB(t∗

i ). These images T ∗
A → TA and T ∗

B → TB are specified by:

TA(T ∗
A) := ⟨tA

0 , ..., tA
j , ... | tA

j = tA(t∗
i )⟩j∈N (4.2)

TB(T ∗
B) := ⟨tB

0 , ..., tB
k , ... | tB

k = tB(t∗
i )⟩k∈N (4.3)

Because the devices were supposedly not started at the exact same moment, ∀x ∈ N:
tA
x ̸= tB

x applies. Furthermore, as the individual t∗
i are not retrievable, the relative but

unique IBIs t∗
i −t∗

i−1 are used as a fingerprint pattern. The window T ∗
W = ⟨t∗

x, ..., t∗
x+w−1⟩,

with begin x and length w. Because T ∗
W is contained in both overlapping sequences

T ∗
W ⊂ (T ∗

A ∩ T ∗
B), the sequence T ∗

W ⊂ T ∗
A is translated to tA and used as a search window

TW ⊂ TA in its counterpart TB.
As introduced in Section 2.1.3.2, the sequences are first transformed into HRV interval

functions to enable the matching by means of the PPMC normalized cross-correlation:

HRV (TX) := ⟨ {tx, tx − tx−1} , ...⟩∥TX∥−1
x=1 (4.4)

As these functions are sampled by means of the irregular heartbeat, the sequences have
to be linearly interpolated and resampled at the sampling rate fhrv [Bas+87], resulting in
α = intp(HRV (TA)) and β = intp(HRV (TB)), for the devices A and B respectively.

To finally align α = ⟨ai⟩∥TA∥−1
i=1 and β = ⟨bi⟩∥TB∥−1

i=1 , just like the associated TA and TB,
a windowed segment αp ⊆ α with position p is sliding along βq ⊂ β at position q. In doing
so, a normalized cross-correlation with PPMC coefficient r[Pea95] is applied, as defined
in equation (4.5), to determine the position q̂ of maximum accordance argmaxq(r(αp, βq))
between the segments.
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ethod
1:

PulSync

Figure 4.2: PulSync processing pipeline for the alignment of independent wearables’ time bases, applied on ECG measurements. Example
from dataset 716 [HP18]: subject 23, Einthoven’s II (orange) and resembled V2 – V1 (blue) leads. From left to right: 1) original ECG signals,
labeled with precise fiducial points at the prominent R peaks (red); 2) derived HRV interval functions (bottom) from the original, unaligned
time series (top); 3) identification of the positions with maximum accordance (red) and determination of the time series’ relative alignment
offset ∆ using normalized cross-correlation; exemplary correlation of five 60 s segments αp with their associated reference βq; 4) aligned interval
functions (bottom) and ECG time series (top). [W21a]
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4 Implicit Synchronization

r(αp, βq) := Cov(αp, βq)
σαpσβq

=
∑w

i=1(ai − ā)(bi − b̄)√∑w
i=1(ai − ā)2∑w

i=1(bi − b̄)2

(4.5)

The resulting difference p − q̂, based on fhrv, is then multiplied by the factor fs/fhrv to
translate it back into the original time base of fs. The original time series can finally be
aligned according to the determined relative offset ∆ = fs

fhrv
(p − q̂), by adjusting their

time bases towards each other.

4.3.2 Evaluation

The performance of PulSync is evaluated using a publicly available dataset from 25 sub-
jects, monitored with two independent ECG devices attached to the chest. The evaluation
primarily aims at the demonstration of the general feasibility of the data-driven alignment,
solely utilizing the HRV interval function as a unique fingerprint. Furthermore, the accu-
racy of the time series’ alignment is determined by means of a metric based on the distance
between the IBIs’ proximate peaks.

Dataset
The evaluation of PulSync requires recordings from different measurement sites with the
largest possible diversity. The final decision was made on the research dataset 716 of
Howell and Porr from the University of Glasgow that is accessible through the university’s
research data portal [HP18]. The dataset contains a large collection of two-minute ECG
recordings from 25 subjects. Those performed 5 different tasks of which the “sitting”
subtask has been chosen due to the availability of precise R peak labels. In addition,
the absence of motion artifacts in these recordings supports the evidence of the general
feasibility independently from specific circumstances. As illustrated in Figure 4.1, two
independent devices recorded the ECG signals at a sampling rate fs of 250 Hz, pretended
synchronously, with one device measuring the traditional Einthoven II lead while the
second one, an exercise chest strap ECG, resembled approximately a V2 – V1 lead. The
dataset provides validated R peak annotations with a very high accuracy of ± 1 sample.
As no R peaks have to be identified before the derivation of the HRV interval functions,
the evaluation is independent from the selection of any preprocessing and QRS detection
algorithm which, in turn, ensures reproducibility of the presented results.

To enable the application of the PPMC normalized cross-correlation on the irregular
sample sequences, the derived HRV interval functions are linearly interpolated and reg-
ularly resampled at fhrv of 25 Hz. The evaluation is conducted with a window length
w of 60 s and an overlap of 1 %, resulting in 101 segments of the V2 – V1 lead’s HRV.
Those are shifted along and correlated with the reference HRV interval function from the
Einthoven II lead. Due to boundary effects of datasets with large displacement, the first
or last few segments’ r values are rejected to prevent a falsification of the results.

Ground Truth
There exist no publicly available datasets of two or more independent and at the same
time hardware-synchronized ECG devices. Hence, a metric has been developed according
to the fundamental assumption that ECG signals are immediately and simultaneously
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4.3 Method 1: PulSync

Figure 4.3: Illustration of the remaining alignment error ε for the recordings of all indi-
vidual 25 subjects, which is determined through the differences between proximate peaks
after the alignment and given in samples at 250 Hz. [W21a]

detectable throughout the entire body surface, and delays of the signal can be neglected
(Section 2.1.3.1). In accordance with the previous assumption, Equation 4.6 introduces
the alignment error ε(j, k). Applied to all proximate peaks with a minimum temporal
distance, it serves as a metric of synchronicity.

ε(j, k) := tA
j − tB

k (4.6)

Further, it is assumed that any displacement of the time series results in an asynchronous
interference pattern that generates an ε ̸= 0, with a large standard deviation in presence of
drift. In contrast, ideally aligned time series result in a minimum ε → 0, and a minimum
deviation as the peaks are simultaneously following the same IBI pattern, respectively
heartbeat rhythm.

Limitations
Because no QRS detection has to be applied before deriving the HRV interval functions,
the evaluation is independent from the selection of any algorithm and thus ensures the
ideal reproducibility of the approach.

The previously made assumption, that the fiducial R points are immediately and si-
multaneously detectable at every arbitrary location, is exclusively valid for ECG-related
measurements and the targeted accuracy in the order of a few ms. Since electrical fields
propagate in tissue with a mean velocity of 1500 m s−1 [Buc+22], there are, of course,
measurable delays in the order of 666.67 µs m−1. However, assuming a maximum distance
of 1.5 m between the measurement site on the body surface and the heart, the origin of the
electrical action potentials, would consequently result in a worst-case delay of 1 ms. This
systematic error adds to the determined accuracy, but still results in a considerably better
performance than the dataset’s original, manual alignment by the authors. Furthermore,
it still fulfills the requirements of the targeted applications such as HAR, which need an
accuracy of at least 100 ms [BAL09].

4.3.3 Results

Figure 4.3 details the achieved accuracies for all 25 individual recordings while the overall
results are summarized in Figure 4.4. Since the original recordings have been aligned
manually [HP18], the time bases are not ideally synchronized. This is reflected by the
original dataset’s large initial error ε of −28.921 ± 89.015 samples (−115.684 ± 356.060 ms)
for the proximate peaks with a minimum distance (middle, orange). Accordingly, the
misalignment (left, red), determined by means of the presented method, range from 0.035 s
(subject 5) to even 4.961 s (subject 19) with an overall average ε of 15.328 ± 428.023
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4 Implicit Synchronization

Figure 4.4: Summary of the overall evaluation results with the error ε distribution on
the y-axes, given in samples at 250 Hz. Left (red): ε of assigned peaks shows initial
misalignment of the original data. Middle (orange): ε of interference between proximate
peaks in original, unaligned data. Right (green): ε of proximate peaks after the alignment.
Note the significantly different scaling of the y-axes. [W21a]

Figure 4.5: Illustration of the determined offset ∆ for subject 1 with 100 matched seg-
ments, 1 of 101 rejected. Visible quantization steps demonstrate the approach’s sensitivity
and hence the potential to detect even small drift across individual devices’ times. Signifi-
cant PPMC r of 0.999 428 ± 0.000 159 with low deviation, ∆ in samples at 250 Hz. [W21a]

samples (0.061 ± 1.712 s). In contrast, the proposed alignment approach resulted in a
remaining average error ε of −0.714 ± 3.440 samples (−2.856 ± 11.427 ms). Besides small
drift, another reason for the large standard deviation might be the HRV interval functions’
rather coarse temporal resolution, due to a resampling rate fhrv of 25 Hz, intended to limit
the computational efforts, which is, however, already higher than the typically applied 4 –
10 Hz for HRV analysis [Gil92; Cha+18; Mor+19] (Section 2.1.3.1).

Without exception, for all recordings and valid segments, the PPMC r is virtually 1 and
the deviation negligible as the two devices’ HRV interval functions are almost identical.
For signals interfered by motion artifacts, this ideal value will likely decrease according to
the ratio of the affected heartbeats.

Figure 4.5 shows a typical trace of the determined offsets ∆ for 100 matched segments
αp along the reference βq. Only 1 of 101 determined r values is rejected due to boundary
effects. The clearly visible quantization steps, intersecting the straight horizontal line,
indicate a small drift of about 2 samples over the entire 120 s length.
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Figure 4.6: Proposed synchronization schemes using the data of the landmark packets:
(A) incrementing packet counter as identifier for a limited recurrence interval of 28×2.5 s =
640 s, 10 min 40 s respectively; (B) sequences of random numbers as unique identifier
patterns for a quasi-infinite recurrence interval of ideally 28! landmarks, lasting for 6.8 ×
10499 years; (C) allocation of landmarks with respect to absolute time, preferentially with
larger data segments of four bytes, unsigned long for ms-accurate timestamps. [J22b]

4.4 Method 2: IBSync

The second synchronization method, named as IBSync, is based on the IBC technique
previously presented in Section 3.3. It repurposes the single-lead ECG sensors, integrated
in recent off-the-shelf wearables, to detect artificial landmarks. A landmark signal is
either consciously or implicitly and incidentally induced into the user’s skin by touching,
approaching, or passing certain areas, surfaces, or objects with embedded beacons. In
close proximity, the signal is capacitively induced into the skin and propagates in tissue
as a harmless displacement current. In this way, the landmarks are assumed to be made
available throughout the entire body surface. The demonstrated scenario (Figure 3.7)
shows a desktop, equipped with an embedded transmitter beacon that capacitively induces
artificial landmark signals into the user’s body. IBSync leverages these landmarks to
synchronize wearable devices. Because the regularly transmitted landmark frames would
be ambiguous and confusable, the contained data is used to discriminate them and hence
enables the unique alignment of time series across different devices.

4.4.1 Implementation

The changes in the quasi-electrostatic field are virtually instantaneously detectable through-
out the entire body surface (Section 2.1.3.1), which enables the use of IBC for synchro-
nization purposes. The simultaneous reception of significant landmark signals by multi-
ple devices allows the precise offline alignment of recordings at the devices’ local times.
Moreover, even the exact temporal allocation of landmarks and, therefore, the online syn-
chronization of a single or multiple devices in respect to absolute time is hence possible.
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4 Implicit Synchronization

4.4.1.1 Relative Alignment

A landmark Li is defined as the ith packet frame at position t∗
i in absolute time t∗ and

enriched with the data di:

Li = L(t∗
i , di) (4.7)

Generated by the transmitter at t∗
i , a landmark event L′

i is captured by the receiver at the
local time ti. Its deviation from t∗ is given through the initial offset t0, interpreted as the
start time of the device, and the drift rate δ.

t′(t) = (1 + δ) t + t′
0 (4.8)

If not disturbed by noise and interference, which is not assumed here, the data d′
i = di

naturally remains the same and the detected landmark event is given as:

L′
i = L(t′(ti), di) (4.9)

After the detection of landmarks at different devices, those could be assigned to each other
by aligning their closest temporal occurrence. The devices’ start times t′

0 and drift rate
δ are, however, unknown. Furthermore, due to a continuous repetition every 2.5 s, the
pure packet frames would be interchangeable and thus confusable. For any arbitrary but
constant data x, all landmarks at two devices A and B are therefore prone to temporal
displacement, ambiguous, and cannot uniquely be assigned to each other. Consequently,
the following condition of any arbitrary assignment has to be avoided:

∀a, ∀b : da = db = x −→ L(t′
a, x) = L(t′

b, x) −→ L′
a ∼ L′

b (4.10)

As illustrated in Figure 4.6, to actually match the coincident landmarks, the information
contained in the data segment di between the delimiters is used. The data can transport a
landmark identifier such as an incrementing packet counter (Figure 4.6A). To minimize
the probability of a disrupted data packet, e.g. through motion during a transmission at
the relatively slow symbol rate of 20 Hz, the amount of carried data per packet is limited
to 8 bit. The identifier would, therefore, be unique as long as the measurement time of
28 × 2.5 s = 640 s (10 min 40 s) is not exceeded. If two landmarks, detected at the devices
A and B, then contain the identical data da = db, these must be originated in the same
moment ta = tb, generated by the transmitter at the same absolute time t. In this way,
the data enables the landmarks to be uniquely assigned L′

a ∼ L′
b and aligned despite their

different local times t′
a ̸= t′

b:

∀a, ∃!b : da = db −→ L (ta, da) = L (tb, db) −→ ta = tb −→ L′
a ∼ L′

b (4.11)

To enhance the uniqueness beyond the aforementioned time limit, and to furthermore
improve the Hamming distance between subsequent packets according to [Ham50], the
data can also contain a random number as a unique landmark identifier (Figure 4.6B).
Consequently, the probability of two random numbers following each other in subsequent
landmark packets is very small, and of three or more ones in a row even infinitesimal.
Theoretically, the landmarks and their order would, in this way, remain unique for 28!
repetition-free permutations, resulting in a recurrence interval of 6.8 × 10499 years.
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4.4 Method 2: IBSync

4.4.1.2 Absolute Time

The data could also be related to the absolute time, which, however, is again constrained
to the 8 bit of the proposed packet scheme (Figure 4.6C). A longer data segment of two,
three, or even four bytes for an unsigned long ms-accurate timestamp would significantly
upgrade this concept, however at cost of robustness against disruption through motion.

4.4.2 Evaluation

The evaluation continues the technical evaluation of the case study in Section 3.3 and
relies on the measurements presented in Figure 3.17. To evaluate the synchronization
performance achievable with IBSync, the deviation of the landmark positions from ground
truth has been evaluated for both devices. The ground truth positions are given through
the labels, set in context of the bandwidth determination (Section 3.3.3.2).

Synchronization Error
To evaluate the synchronization accuracy achievable by means of IBSync, the deviation
of the landmark positions from ground truth has been evaluated for both devices. The
ground truth positions are given through the labels that were set in context of the band-
width determination before. Despite of the interference at the right wrist, the mean
synchronization error ϵ of 0.761 ± 1.521 samples at the left and of 0.838 ± 2.027 samples
at the right wrist are close. Consequently, the overall mean ϵ is 0.800 ± 1.792 samples or
6.249 ± 14.004 ms. Most determined landmark positions distribute evenly with an error ϵ
of either 0 or 1 sample, which is originated in the quantization. In a few cases, for 161
landmarks or 7.03 %, the PPMC r did not maximize at the position of the first pulse of
the preamble but matched the position of the second one instead. This effect is caused
by ripple artifacts, remaining from filtering, and the correlation template being non-ideal
and edgy due to its sampling with a low sample coverage Ns = fs/f0 of 6.4. Consequently,
the determined landmark position skips one unit pulse period T0 or its respective sample
count Ns, resulting in a deviation of 7 samples. This alignment error can be detected,
aligned, and thus corrected by validating the number of detected preamble and terminator
pulses with a simple algorithm. This way, the synchronization error further decreases to
even 0.360 ± 0.482 samples or 2.811 ± 3.765 ms, which now is in the order of the inevitable
quantization error of ±3.9 ms.

4.4.3 Results

IBSync enables the synchronization without communication between the sensing devices
and, therefore, causes no overhead at the sensors. Based on the manually revised and val-
idated ground truth labels, the achieved synchronization is promising with a mean error
ϵ of 0.800 ± 1.792 samples (6.249 ± 14.004 ms). In 92.97 % of the landmarks, the position
error was just in the order of a single sample, resulting in an ϵ of 0.360 ± 0.482 samples or
2.811 ± 3.765 ms, which is in the order of the quantization error of ±3.9 ms. The larger de-
viations of 7 samples are caused by erroneous matching, due to filter ripple and a non-ideal,
edgy correlation template, but are easily solvable by validating the number of detected
preamble and terminator pulses. Due to the interference, all measurements at the right
wrist are weaker and show a lower RSSI and rPPMC r as well as higher PER and ϵ
(Table A.1). Considering the scenario of the controlled setting in Section 3.3.3.2, the
coupling a) apparently showed the best results, but c) was somewhat unexpectedly good
and even better than b) which constantly showed the lowest yet sufficient performance.
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4 Implicit Synchronization

Nevertheless, the PPMC r, typically ranging from 0.845 to 0.863, enables to successfully
locate the landmark packets in time and thus to decode the data segments.

The comparably slow f0 results in a slow symbol rate, and a landmark packet with in
total 24 pulse periods takes 1.2 s. Therefore, the achievable data throughput is apparently
not sufficient for extensive data, not even of four bytes for an unsigned long ms-accurate
timestamp. However, the 8 bit of data are, nevertheless, sufficient for the proposed appli-
cation, to serve as a unique landmark for the temporal alignment in relative time.

4.5 Comparison and Discussion
This Chapter combined the findings from the previous ones to implement two methods
for the implicit synchronization of wearable devices. The first method, PulSync, is a
data-driven method for the alignment of independent time bases across multiple wearable
devices and leverages the local HR measurements of the user. The derived HRV interval
functions serve as a unique and location-independent temporal fingerprint that enables the
distinct and accurate matching of sensor data from distributed, body-worn devices. The
results demonstrate not only the approach’s general feasibility, but also show a promising
accuracy of −0.714 ± 3.440 samples and accordingly −2.856 ± 11.427 ms at 250 Hz sam-
pling rate. In addition, the analysis demonstrates that allegedly synchronized research
datasets can still exhibit a considerable inaccuracy, which can lead to difficulties when ap-
plying machine learning techniques on them. The evaluation also revealed the approach’s
potential to sensitively track the relative drift between devices’ local time bases. The
method is particularly promising as an accurate and energy-efficient method for wearables
that provide a built-in ECG sensor, as it can be applied exclusively on recorded data and
then neither requires an extra channel nor imposes an overhead on radio communication.
Especially scenarios in which body-worn devices are deployed over long term, and which
avoid online synchronization methods due to energy requirements, will benefit from it.

However, besides small drift, also the HRV interval functions’ rather coarse temporal
resolution, resampled at a rate fhrv of 25 Hz to limit the computational efforts, might be a
reason for the relatively weak precision, apparent from the large standard deviation. The
use of wearable ECG devices at different sites is possible but requires the accurate place-
ment of the electrodes, preferably resembling conventional leads. If a wearable is placed in
line with the electric field’s summation vector, then no potential difference and hence no
R wave can be detected. Also the use of PPG sensors should be possible when considering
the PAT, which adds to the achievable accuracy as a more or less constant bias. The
key challenge of the evaluation was the missing ground truth as it was impossible to find
any publicly available dataset using two independent but hardware-synchronized ECG
devices. However, recent research of Xiao et al. [XDH22] presents an approach that took
two independent channels from a 12-lead ECG that are already synchronized by nature.
Their cross-device multi-modal synchronization method also uses ECG as the common
sensor modality but directly applies the cross-correlation function to the raw signals. The
achieved accuracy of 0.29 s for a 30 s sample window demonstrates and confirms PulSync
being superior by deriving the more robust and location-independent HRV interval func-
tions first. Moreover, the authors state that their method “can be readily applied to other
common physiological signals [ . . . ] such as PPG, electrodermal activity signal, etc.”. This
statement is, however, questionable as the raw measurements of physiological signals usu-
ally exhibit tremendous differences in their DC components and trends, as is visible in
Figure 4.1. Even the preprocessing and filtering, to remove the baseline wander and de-
trend the signal, cannot entirely remove these components. Beyond that, the application
of the cross-correlation function on raw measurements, especially when recorded at high
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sampling rates, considerably increases the processing efforts. Consequently, the analysis
of the HRV interval function, interpolated at only 25 Hz, is much more efficient and also
more accurate. The method proposed by Vaz et al. [Vaz+15] exploits the noise-induced
phase synchronization phenomenon [TT04; NAK07] and achieves sub-ms by correlating
the white noise present in physiological signals. The accuracy is, however, bought dearly
through a high sampling rate of 2 or 20 kHz. Increasing the ECG sampling rate would
probably also increase the accuracy of PulSync to some degree. However, the achievable
performance largely depends on the quality of the fiducial point detection. The method
presented by [SM21] [SM21] achieves a sub-sample accuracy of 2.6 ms for magnetometer
measurements sampled at 100 Hz. The application of polynomial fitting or similar methods
might also be interesting to improve on PulSync.

The second method, IBSync, uses the artificial signals induced through IBC and enables
the synchronization of wearable devices through their on-board ECG sensor. Evaluated
on a total of 215 min of recordings from two devices, the methods’s general feasibility is
demonstrated and achieved a promising synchronization error of 0.800 ± 1.792 samples, or
6.249 ± 14.004 ms at a device’s sampling rate of 128 Hz respectively. Three different ap-
proaches for the synchronization of wearable devices, both offline and online, have been
proposed. While a simple, incrementing packet counter guarantees only a low uniqueness
for a relatively short time of 10 min 40 s, a random pattern of random numbers in con-
secutive landmarks can extend the recurrence interval, and thus the uniqueness, to quasi
infinity (6.8 × 10499 years). The transmitted data can, however, also contain timestamps
or values that are associated with absolute time. However, the 8 bit of data currently
hamper the real utility of this concept, since four bytes are needed for useful ms-accurate
timestamps. The achievable synchronization accuracy naturally depends on the coupling
strength and the signal quality respectively. The RSSI has proven to be a suitable heuristic
to identify intervals which likely contain a stable landmark signal.

The research of Hessar et al. [HIG16] demonstrated the use of commodity devices and
their fingerprint or touch sensors to induce and transmit signals confined to the human
body. With IBSync, the receiver side is now provided. The concepts’ combination would
enable wearable devices, such as wristwatches, to transmit signals via a fingerprint sensor
or touchscreen, and to receive these signals using their analog ECG front-end. However,
the use of devices intended for the transmission and reception of IBC signals would be
preferable here. Until these are commercially available, the presented OpenIBC proto-
type (Section 3.5) might be an option for continued research. The synchronization of
prototypes based on it would immediately be possible.

The achieved accuracy of both methods is clearly superior to a manual alignment of
recordings and the motion-based offline methods with accuracies in the order of tens to
hundreds of ms or even seconds [BAL09; BGJ15b; BGJ15a; Wan+19; HOV19; Ahm+20;
XDH22]. They can even keep up with conventional online methods such as NTP with a
typical accuracy ranging from several milliseconds to 100 ms [Mil11] and come close to the
performance of wireless synchronization techniques with accuracies in the order of µs to
few ms [RR07; Pfl+14; Rob05]. Therefore, the achieved synchronization performance is
clearly sufficient for the targeted applications such as HAR with a requirement of at least
100 ms accuracy [BAL09]. However, also more demanding and ambitious applications with
higher requirements on accuracy would become possible in this way.

Data Availability
PulSync is implemented as a Python toolbox for the offline alignment of ECG record-
ings and is made available for download from the following public GitHub repository:
https://github.com/fwolling/PulSync
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5 Conclusions

This dissertation hypothesizes that the attachment of devices to the human body can
enable technologies and methods that would not be possible without its presence. In three
research questions, the human body is considered as a source of natural signals (RQ 1), as
a transmission medium to provide artifical signals throughout the body surface (RQ 2),
and as an augmented object from which information and data can be obtained to enable
the implicit synchronization of distributed wearable systems (RQ 3):

RQ 1 In the early 2000s, a new generation of commercial wearable devices entered the
market, which experienced an impressive evolution since then. Boosted by the still ongoing
miniaturization, the mostly wrist-worn devices turned from a niche, applied only by mem-
bers of the quantified-self movement, into lifestyle products, everyday companions for the
entire society, designed to support and motivate the users to be more physically active and
promising a healthier, happier, and more productive life. Research in wearable comput-
ing has recently demonstrated the advantage of using multiple distributed instead of one
single all-round device, contributing with multiple complementary perspectives to infer on
the user’s bigger picture. Today, diverse sensing modalities allow to obtain multifaceted
information from the body surface. The transfer of the medical standard modalities ECG
and PPG from the hospital to the user’s wrist poses, however, diverse challenges that are
still not entirely solved and hence subject to research.

The wearable ECG sensing principle is kept relatively close to the original, clinical
standard and is, due to passive sensing, also very energy efficient. The recording at the
wrist resembles the standard lead I and, in this way, enables to obtain medical-grade mea-
surements. Consequently, proven standard algorithms can be applied to these readings.
However, the measurement is only possible at specific sites, and the line of zero potential
across the chest needs to be considered when placing the electrodes. Because the formed
lead needs to span a larger potential difference, capturing the signal at a single and arbi-
trary body location is not yet possible. At the wrist, for example, the signal is weak, and
its SNR quickly drops to 0 dB, thus immediately impeding the detection of the pulsatile
signal. Also, the standard DRL circuit, to suppress common-mode interference such as
50 or 60 Hz humming noise from the power line, can improve the signal quality only up
to a certain degree. However, the recent development of high-Z front-ends, with input
impedances beyond several GΩ and very high CMRR beyond 80 dB, is attempting to solve
this problem. Therefore, the reliable and continuous ECG measurement at a comfortable
location, such as the wrist, will probably be possible one day.

In the meantime, PPG already enables the continuous HR measurement at any suf-
ficiently perfused body position. In contrast to ECG, the principle required a larger
adaption from the clinical pulse oximetry in transmission mode to the reflective mode
applied in modern fitness trackers at the wrist. The active sensing principle requires to
illuminate the skin with high-intensity LEDs to capture the pulse from the skin layers with
different modulation depth and motion-robustness. Consequently, there is a large interest
in efficient sampling schemes and strategies that allow the reading of reliable and accu-
rate measurements, but do not affect the battery life of resource-constrained wearables.
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Diverse approaches for sparse sampling and compressed sensing have been presented. Nev-
ertheless, as surveyed in this dissertation, most commercial devices still rely on standard
regular sampling and dim down the rate to the minimum possible to save energy.

For the smallest examples of such devices, it can be beneficial to aggregate long record-
ings over minutes rather than seconds to then analyze the data in the frequency domain. In
this dissertation, the application of FFT and PSD on one-minute measurements has been
evaluated, presenting the successful determination of HR and RR from the spectra with
a relatively stable accuracy. Applied to a common benchmark dataset that contains con-
siderably preprocessed signals from transmission mode PPG, it correctly identified 90 %
of the HR and 80 % of the RR dominant components down to a sampling rate of 9 Hz.
Applied on actual raw measurements from a wearable prototype, an accuracy of around
80 % for HR and 70 % for RR is achieved even down to a sampling rate of 4 Hz. However,
it is important to consider that the dominant frequency components F0 do not directly
represent the average rates, but their predominant component present in the analyzed
signal interval. Therefore, especially for longer window intervals, additional features, such
as the central frequency F50 and the frequency dispersion SF50, can serve as supplemen-
tary heuristics to support the estimation of the actual mean from the spectra. Overall,
the evaluation of the required minimum sampling rate showed that 10 Hz is sufficient to
determine the HR and RR with adequate accuracy in the frequency domain.

Most modern wearable devices are interested in more sophisticated secondary informa-
tion such as features derived from the HRV. Therefore, the individual pulses need to be
identified in the time domain, to enable the derivation of the IBIs. The development
and benchmark of efficient algorithms for this purpose require suitable and raw data from
compatible sensors. Most publicly available datasets, however, are originated in clinical
studies that applied conventional transmission mode PPG and, beyond that, are consid-
erably filtered. As a result, performing benchmarks on such data suffers evidence, and
the developed algorithms might not show the expected performance on real data from
wearable devices that usually apply reflective mode PPG.

In this dissertation, 10 datasets have been reviewed by applying 7 multi-varied metrics.
Of these datasets, only one contained the advertised raw measurements, and from the
desired reflective mode PPG on top of that. Although results from research based on
considerably preprocessed data, such as from the popular and convenient Empatica E4,
do probably not need to be questioned in general, at least caution is advisable when
transferring the approaches and findings to data from other devices with different filters
and sensors, e.g. applying green light PPG instead of using IR light. Especially flipping the
pulse amplitude by default, to be consistent with ABP, has caused additional uncertainty
and confusion among researchers for a long time, since also certain measurement setups
can cause a natural inversion of the signal, e.g. by turning the wrist.

Although preprocessing has previously been shown to considerably affect the perfor-
mance of algorithms, and even the quality of the derived features, there exist no stan-
dards yet. In this dissertation, the impact of preprocessing on the pulse peak positions
and the performance of two popular algorithms has been demonstrated and evaluated.
A filter passband from the theoretical minimum HR of 0.5 Hz to appropriate 15.0 Hz, to
cover multiple harmonics of the varying fundamental frequency, has shown to be most
universal and effectual. The two benchmarked algorithms from 2012 and 2019 are based
on two fundamentally different principles to identify the pulse peaks in the time domain.
Nevertheless, both have demonstrated very good performance with an F1-score of 0.958
and a peak position error of 3.037 samples for the first, and an F1-score of 0.970 and an
impressively small peak position error of 0.051 samples for the second one.
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RQ 2 Energy efficiency and privacy are probably the most relevant requirements for wear-
able computing. Today, wearable devices considerably suffer from the high power dissi-
pation of radio modules. In addition, the wireless transmission of health-related data
poses privacy concerns since radio reaches even beyond the body surface and thus facili-
tates eavesdropping. For almost three decades, the novel communication principle of IBC
has received enduring attention as it promises to solve, or at least significantly improve,
both issues at once. It is somewhat located between the traditional wired and wireless
techniques while showing advantages over both. Diverse transmission principles have been
proposed and evaluated, all with their respective pros and cons, but the original capacitive
coupling technique is still considered to be the most relevant. Diverse channel models have
been developed and validated, turning the confined human body into an efficient transmis-
sion medium. While the signal’s forward path is formed through the tissues of the human
body, the return path, to close the channel circuit, is formed through the environmental
ground and, thus, significantly suffers from grounding issues.

Case study 1 of this dissertation addresses this problem and considerably simplifies the
transmission channel by combining capacitive coupling with conductive clothes. The con-
ductive fabric establishes a local ground potential that resembles a Faraday cage, shields
ambient noise, and hence significantly improves the SNR. This way, even the application of
a simple modulation scheme based on PWM, modulating the symbols at 250 kHz, can al-
ready achieve a very good performance of 200 kbps. While the prototype consumes 7.6 mW
in transmission mode, the reception mode demands for 18.9 mW because of a higher clock
frequency for the microcontroller, necessary to process the demodulating state machine,
and the quiescent current of the dissipative AFE in stand-by.

Also, the characterization of the IBC body channel is susceptible to and has largely been
affected by measurement equipment that is either grounded or has at least a large surface,
which in turn unintentionally improves coupling to the environmental ground potential.
Therefore, most of the proposed channel models have recently turned out to be affected
and hence inapplicable, especially for the LF range. The human body channel provides
a comparatively wide, applicable frequency band from 100 kHz – 50 MHz. In all models
the lower frequencies below 1 MHz showed a significantly increasing channel loss. There-
fore, most research concentrated on higher frequencies of multiple MHz up to even GHz.
However, at frequencies beyond 50 Hz, the human body turns into an antenna and the
transmission principle resembles normal radio propagation with all its characteristics and
disadvantages. While most measurement equipment applies 50 Ω termination, standard
in RF circuit and antenna design, the use of high-Z input impedances has recently been
demonstrated to considerably improve the performance of capacitive coupling IBC in the
LF band. The finding that the input impedance of the receiver front-end considerably
affects the channel circuit, and therefore the transfer function of the body channel, has
broken a lance. Since then, well-known research teams have demonstrated the data trans-
mission at high rates and impressively low power, presented fully integrated ASICs, and
thus continue to push the boundaries of what is possible.

In case study 2, the ECG front-ends of commercial wearable devices have been repur-
posed to detect signals in the LF band. The front-ends are carefully designed for ULP
applications, and the very sensitive high-Z input allows to successfully detect also the
induced artificial signals. These signals can be enriched with unique object identifiers and
data for synchronization purposes, and are either consciously or implicitly and incidentally
induced to the user’s skin by touching, approaching, or passing certain areas, surfaces, or
objects with embedded beacons. The evaluation is based on a scenario with a transmitter
beacon embedded into a desktop that provides artificial landmark signals to two sensing
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devices at the user’s wrists. Filters are applied and have been optimized to extract and
demodulate the desired signals, which typically vanish in the ambient noise floor. In this
way, it is possible to provide situational context to devices through their ECG sensor and
to automatically annotate the recordings through the ECG channel. However, the sensors’
low sampling rate of 128 Hz limits the possible modulation frequency to 20 Hz, and a land-
mark packet with in total 24 pulse periods but only 8 bit of data takes 1.2 s. Consequently,
the achievable data throughput is apparently not sufficient for the transmission of more
extensive data, which limits the imaginable applications. While the wearable receivers
are battery-powered and floating, the transmitter beacons still need to be grounded, e.g.
through a power socket, to achieve a sufficient SNR at the receiver.

Due to the possible use of LF signals, the design of coupling electrodes and front-ends
is relatively simple as no RF design rules need to be considered. As a part of the channel
circuit, the inter-electrode capacitance of IBC transceivers has an effect on the achievable
sensitivity and performance. Therefore, the awareness of the characteristic capacitance is
required for the modeling and simulation of the transmission channel. To investigate the
effect of environmental changes on the applied IBC coupling electrodes, in case study 3,
a wearable prototype has been developed to enable the continuous measurement of the
intrinsic capacitance in the wild. The common 3 × 3 cm2 electrodes are stacked with an
air gap of 1 cm, thus forming a parallel plate capacitor with a calculated, ideal capacitance
of 0.797 pF. The performance of non-grounded activities, such as arbitrary gestures, has
shown a characteristic capacitance of 0.793 ± 0.325 pF, which is surprisingly close to the
calculated value and, thus, validates its application in simulation models. However, the
observed variations are comparatively large and can result in a relative impact of about
± 40.7 %, which is far from negligible. In addition to these findings, it was also possible to
detect hand-washing through a distinct effect on the measured capacitance that separated
grounded hand-washing at 1.152 ± 0.106 pF clearly from non-grounded washing gestures
with dry hands at 0.671 ± 0.065 pF. Therefore, a physical model has been developed that
attempts to explain and substantiate the observed effect.

Based on the insights on the coupling electrodes’ typical capacitance, an open-source
IBC wake-up receiver has been developed. The OpenIBC prototype repurposes the AFE
for active RFID / NFC transponders. In contrast to most RFID / NFC modules, the uti-
lized IC provides a high input impedance that allows the use of capacitive coupling instead
of the standard inductive coupling. Based on the recently published findings regarding
the modeling of the human body in the LF band, the channel circuit established by this
prototype has been modeled and simulated to validate the general feasibility of the ap-
proach. The results have then been confirmed by implementing the prototype, with a
carrier frequency of 125 kHz in the LF band, showing a good performance of 4096 bit/s
and a PER of 320.0 × 10−6. The used front-end is relatively sensitive with 100 µVRMS
or −81.339 dB, respectively. However, the added capacitive load, necessary to extend the
intrinsic inter-electrode capacitance and allow for the resonance at the specified carrier
frequency, significantly degrades the circuit’s sensitivity by factor 1:224. Therefore, only
the reception of data from a grounded transmitter is possible, again.

RQ 3 In recent years, the interest of research in wearable devices seems to successively turn
from single all-round devices into a collection of simultaneously deployed units, covering
different, complementary perspectives of the user. This trend makes the synchronization
of the resource-constrained devices increasingly crucial as the cutting-edge signal fusion
and machine learning techniques, applied to the collected data, suffer considerably from
the inaccuracy of the devices’ internal clocks, the manual temporal alignment of the time
series, and the recordings’ unmatched time bases.
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In this dissertation, the human body is not only considered as a physical carrier of
devices and a valuable source of the user’s health-related information. It is, beyond that,
considered as the central element of a wearable system that is augmented with informa-
tion, whether it is naturally available or artificially induced, that can be obtained from
its surface through various sensors. This way, the human body enables technologies and
methods, demonstrated on the example of implicit synchronization. Based on the previ-
ously elaborated wearable sensing and IBC communication techniques, two methods are
presented that enable the implicit synchronization of distributed wearable devices attached
to the same body. Therefore, neither the explicit configuration of a network and pairing
of devices, nor the conscious performance of synchronization actions are required.

The first method, termed as PulSync, leverages the natural, irregular rhythm of the
heartbeat that is ubiquitously and simultaneously available throughout the entire body
surface of every living human being. It can be detected through different sensing modali-
ties, of which ECG and PPG are still the most relevant. In contrast to other physiological
signals, which tend to be too insignificant and are not as simple to detect, the heartbeat’s
nature makes it perfectly suitable for synchronization purposes by providing a contin-
uous master clock. Even at rest, the HR results in an update rate of typically 0.8 Hz
but can vary between 0.5 Hz and 3.0 Hz depending on the user’s health and performed
physical activity. The HR is modulated through diverse physiological processes, making
the HRV interval function highly varying and unique like a fingerprint, but also location-
independent and hence identical throughout the entire body surface. In addition, it is less
and, in case of artifacts, only locally disturbed through erroneous samples. This singular-
ity enables to unambiguously align the independent recordings and their local time bases
by matching these HRV fingerprints. The unique patterns are aligned using the PPMC
normalized cross-correlation. This way, the method is superior to other approaches that
directly correlate the raw physiological signals, which usually exhibits immense differences
in their baseline and appearance. PulSync has been evaluated on a public ECG dataset
with a sliding window of 60 s. It shows a promising performance with a remaining align-
ment error of −0.714 ± 3.440 samples or −2.856 ± 11.427 ms. For all subjects and window
segments, the PPMC r virtually reaches 1 and the achieved deviation is negligible as the
two HRV interval functions are almost identical, although obtained from two different
devices at different sites. Since the HRV interval function is irregularly sampled, the se-
quence is resampled and linearly interpolated at 25 Hz to limit the computational efforts.
Although this rate is already higher than the typically applied 4 – 10 Hz for HRV analysis,
it nevertheless limits the achievable alignment accuracy.

The second method, termed as IBSync, applies the previously implemented IBC tech-
nique and repurposes the single-lead ECG sensors integrated into recent off-the-shelf wear-
ables. Analog to the previous case study 2, artificial landmarks are either consciously or
implicitly and incidentally induced into the user’s skin by touching, approaching, or pass-
ing certain areas, surfaces, or objects equipped with transmitter beacons. Because the
regular pattern of the landmark signal, even if transporting the unique object identifiers,
would be ambiguous and confusable, the landmark packets are enriched with varying data.
This allows either to uniquely align multiple devices’ recordings offline, in a post-processing
step, or to allocate the temporal position of landmarks, detected at a single or multiple de-
vices online, with respect to absolute time. However, the low data throughput, with 8 bit
of data taking 1.2 s, is not sufficient to reliably transmit larger data, required for the on-
line synchronization based on 32 bit ms-accurate timestamps. However, utilizing random
values as data, the offline synchronization theoretically guarantees landmark packets and
their order to remain unique for 28! repetition-free permutations. For the presented system
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with one landmark every 2.5 s, this hence results in a recurrence interval of 6.8 × 10499

years, which can apparently be considered sufficient. IBSync has been evaluated on a
total of 215 min of recordings from two devices, demonstrating the general feasibility and
achieving a promising synchronization error of 0.800 ± 1.792 samples or 6.249 ± 14.004 ms
at a sampling rate of 128 Hz. For 92.97 % of the landmarks, the position error was just in
the order of the quantization error. Larger deviations in the order of 7 samples are caused
by the erroneous matching of the packet frame, which can easily be solved by validating
the number of detected preamble and terminator pulses. The achievable accuracy natu-
rally depends on the coupling strength and the resulting signal quality. For successfully
detected and decoded landmark packets, the applied PPMC r typically ranges from 0.845
to 0.863. The experiment in the wild shows periods in which the landmark signal is present
at both wrists, as intended, while in other periods, it is only detectable at a single wrist.
It seems like the IBC signal does not always propagate well throughout the entire body
surface under all conditions. While it is available at both wrists when induced through the
thighs, the induction at one hand might not be detectable at the other one. It is assumed
that the larger distance between the wrists, compared to the shorter path from the thighs
to both wrists, mainly causes this effect. Moreover, having the legs closer to the floor, and
thus better grounded, further amplifies this effect.

The achieved alignment accuracies of PulSync with −0.714 ± 3.440 samples at 250 Hz
and of IBSync with 0.800 ± 1.792 samples at 128 Hz are of comparable quality. However,
while PulSync enables only the offline synchronization of recordings, IBSync could also
provide absolute time to a single or multiple devices. Using the naturally available HRV
interval function promises to be more convenient as no additional transmitter beacons
are required to induce the artificial landmarks to the skin. Especially in research exper-
iments, IBSync could, however, also provide additional situational context information
and hence enable not only the automatic alignment but also the annotation of the record-
ings. In comparison to other existing synchronization methods, both presented methods
can clearly keep up with the performance of typical online methods such as NTP with
a theoretical accuracy ranging from several milliseconds to 100 ms [Mil11]. In addition,
they are distinctly more accurate than most offline methods, particularly those originated
in HAR, which accuracy is typically in the order of several milliseconds: 8.6 ms [BGJ15b]
(template-based), 20 ms [Wan+19], 49 ms [BGJ15b] (entropy-based), 0.29 s [XDH22], 0.3 s
[BAL09], up to few seconds [HOV19]. In this way, the proposed methods PulSync and
IBSync clearly justify their existence. They can be beneficial in applications that re-
quire the recordings to be aligned more accurately than possible with motion-based offline
synchronization methods, but at the same time cannot apply radio-based online synchro-
nization techniques, e.g. due to energy constraints.

5.1 Future Work

The application of machine learning techniques will lead to a plethora of emerging products
and research projects in the next few years. Their success will, however, depend on the
reliability of the used data, thus demanding for accurate timing. The foundations explored
in this dissertation open up several interesting questions that point in this direction:

RQ 1 In a couple of years, ECG sensors that can detect the heartbeat at a single site
will likely become standard in wearable devices. Whether they are less affected by mo-
tion remains an open question, but at least they have the potential to be significantly
more energy efficient as they do not need to actively sample and illuminate the skin with
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intensive light sources, as in the case of PPG. For PPG, the findings from recent years
need to trickle through, settle in the research community, and require validation to show
evidence until they become common sense. For this purpose, more large datasets from
suitable sensors, compatible with the intended target system, with good signal quality
and detailed documentation are required to benchmark the developed algorithms. There
is a need to raise awareness that preprocessing has a significant impact on the evidence of
research, and, therefore, the applied filters need to be specified in publications. In both
research areas, the number of developed conventional algorithms seems to stagnate while
the majority of recent publications apply machine learning techniques, which require even
larger and more diverse datasets. This further increases the need for well-documented,
thoroughly recorded, and publicly available benchmark datasets.

RQ 2 A few years ago, research into smart clothes and conductive textiles flourished,
but currently, interest seems to focus on other topics. Nevertheless, the combination of
conductive textile layers and capacitive coupling is an effective way to enable the com-
munication between body-worn devices without the need for fixed cable joints. However,
when finally made available, fully integrated IBC transceivers would, of course, be even
more convenient as they would not require the additional and relatively costly layer of
conductive material. Until then, using and repurposing commercially available off-the-
shelf hardware is an interesting aspect as it immediately allows other researchers to adapt
the solution and improve on it. The presented case study using ECG front-ends would
benefit from more sophisticated preamble patterns, which would probably improve the
correlation and, therefore, the detection of the signal even from battery-powered, floating
transmitters. Moreover, the data throughput can easily be improved by setting the ECG’s
sampling rate to the devices’ maximum of 512 Hz, which would presumably allow for a
modulation frequency of 80 Hz. However, the mains’ humming noise, with harmonics at
multiples of 50 / 60 Hz, should be avoided. Nevertheless, this way, even four bytes of data
could be transmitted within the current packet duration of 1.2 s and, therefore, enable the
online synchronization of devices with ms-accurate timestamps. Capacitive sensing is an
interesting yet adjacent research area. The wearable characterization of the inter-electrode
capacitance discovered an interesting approach to detect hand-washing. The preliminary
study shows a surprisingly clear discrimination of grounded and non-grounded activities.
However, a larger study is required to consolidate the first observations with more subjects
and buildings, and, therefore, a larger diversity of water taps and supply pipes. Never-
theless, the determined capacitance can still support the simulation of the open-source
OpenIBC prototype. The first iteration will be followed by gradually improved ones, aim-
ing for a more sensitive front-end that will hopefully allow fully-wearable applications.
A first trial might use a pre-amplifier with high input impedance to reduce the circuit’s
input capacitance. This way, the project presented will hopefully find favor in the research
community, compensate for the lack of commercially available IBC transceiver modules,
and foster the research on concepts for more intuitive HCI and their impact on UX. It
might accelerate the research and development of potential applications which can directly
be implemented when commercial front-ends are finally made available. Actually, just a
few weeks before the submission of this dissertation, a new commercial product 1 has been
released by a spinout of the Purdue University and was presented at the trade fair CES
in 2023, which might finally trigger the breakthrough of IBC.

1IEEE Spectrum: “Ixana’s through-the-body low-power communications technology”,
https://spectrum.ieee.org/future-tech-ces-2023 and “Turning the Body Into a Wire”,
https://spectrum.ieee.org/turning-the-body-into-a-wire, accessed on 2023-01-23.
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RQ 3 The presented concept of implicit synchronization has the potential to cover an
essential niche of scenarios in which distributed wearable devices are attached to the
same body and require the temporal synchronization at a certain accuracy. It comes
into play when a better accuracy is required than is achievable with conventional offline
methods, but, at the same time, the use of hardware interfaces and radio-based online
synchronization is not possible or intended. So far, PulSync is only evaluated for ECG
signals. The adaption to PPG signals is assumed not to be difficult as HRV and PRV
are proven to be very similar, but the PAT of the measurement location needs to be
considered. It will add up as a constant bias to the achievable accuracy and typically is in
the order of 0.133 s at the ears, 0.199 s at the thumbs, and 0.301 s at the toes. For signals
interfered with motion artifacts, this achievable accuracy will likely decrease according to
the amount of affected samples. In addition, other sensing modalities could be used to
detect the electric field or mechanical pulse, if clearly related to the heartbeat. While
the performance of IBSync is primarily limited due to the slow ECG sensor front-end,
the OpenIBC prototype could also be used to obtain both situational context as well as
temporal information for either offline or online synchronization. Its higher throughput
would immediately allow for the transmission of more extensive data and the landmark
packets being less affected and disturbed through motion. In general, a review of the
available offline synchronization methods and their typical accuracy is not available but
it would be helpful to select the technique that fulfills the requirements for the intended
application most. Moreover, the effect of temporal inaccuracies on standard machine
learning tasks has not yet been quantified sufficiently.

Overall, this dissertation contributes versatile methods, evaluated in various case studies,
that support the research on human body-enabled technologies and methods. Accordingly,
from a very technical perspective, the human body is considered as an essential part of a
distributed wearable system. The presented methods aim at the implicit synchronization of
independent devices while keeping an eye on the resource constraints and the requirements
on power consumption typical for wearable devices.
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Figure A.1: Recorded sampling schemes of seven commercial wearable devices as time
series plots with highlighted pulses corresponding to the applied light wavelengths (green,
red, and IR). All devices were put in a mode that enables continuous measurement, for
instance for physical activity monitoring. [A19]
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Figure A.2: Recorded sampling strategies of three commercial wearable devices, with
sampling highlighted according to the applied light wavelengths (green, red, and IR).
The wearables were put in a sporadic sampling mode, which is usually enabled in casual
wearing. [A19]
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Figure A.3: Excerpts from the first five reviewed datasets: Short close-up of few pulses
on the left, a 30-second window in the middle, and its respective frequency spectrum
(FFT) on the right. Note that the PPG-BP dataset (bottom) contains only snippets of
2.1 s length. Frequency bands: very low frequency (VLF, < 0.167 Hz, red), low frequency
(LF, 0.167 to 0.667 Hz, orange), and intermediate frequency (IF, 0.5 to 3.0 Hz , green)
while the high frequency (HF, > 3.0 Hz) noise and harmonics are clipped. [W20a]
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Figure A.4: Excerpts from the last five reviewed datasets: Short close-up of few pulses on
the left, a 30-second window in the middle, and its respective frequency spectrum (FFT)
on the right and cannot be analyzed in the frequency domain. Frequency bands: very
low frequency (VLF, < 0.167 Hz, red), low frequency (LF, 0.167 to 0.667 Hz, orange), and
intermediate frequency (IF, 0.5 to 3.0 Hz , green) while the high frequency (HF, > 3.0 Hz)
noise and harmonics are clipped. [W20a]
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Figure A.5: Schematic of of the transimpedance amplifier (TIA) circuit which resembles
rather a differentiator due to the capacitive impedance of the signal electrode. Figure from
[WMa16]

Rf

–

+
OPA320

Rt

Rt

Uin

Ucc

Uout

Figure A.6: Schematic of the Schmitt trigger circuit for pulse recovery. Figure from
[WMa16]
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Table A.1: IBSync: Overview of the results from the technical evaluation. [J22b]

coupling device p in dig |g| in dig p / |g| B in Hz RSSI in dB PPMC r PER ×10−3 ϵ in dig ϵ in ms

a) electrode
left 73.0 ± 3.6 1.9 ± 1.5 39.3 20.6 23.504 0.847 ± 0.045 0.000 0.802 ± 1.543 6.262 ± 12.056
right 53.8 ± 6.7 4.1 ± 3.3 13.3 21.9 21.078 0.810 ± 0.041 23.747 0.654 ± 1.855 5.112 ± 14.490

b) desktop
left 28.8 ± 2.4 1.4 ± 1.4 21.0 20.6 21.558 0.822 ± 0.040 26.525 0.780 ± 1.514 6.093 ± 11.832
right 32.9 ± 6.9 5.5 ± 4.3 5.9 22.1 −4.581 0.684 ± 0.037 281.167 0.997 ± 2.483 7.792 ± 19.401

c) leaning back
left 44.5 ± 6.7 1.4 ± 1.4 31.4 19.8 22.945 0.835 ± 0.038 2.571 0.704 ± 1.503 5.503 ± 11.744
right 70.1 ± 11.3 6.6 ± 4.8 10.7 22.2 10.841 0.798 ± 0.040 0.000 0.864 ± 1.646 6.748 ± 12.858

right device: results affected by in-band noise at about 15 Hz.
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Symbols

|F50−F0| distance between central frequency F50 and fundamental frequency F0

A

ABP arterial blood pressure
AC alternating current
ADC analog-to-digital converter
ADL activities of daily living
AFE analog front-end
ANS autonomic nervous system
ASIC application-specific integrated circuit
ASK amplitude-shift keying
ATHRS adaptive threshold
AUC area under the curve

B

BAN body area network
BCC body-coupled communication / body channel communication
BCG ballistocardiography
BFV blood flow velocity
BLS band-limited signal
BP band-pass
BS band-stop / notch
BSN body sensor network
BSPM body surface potential mapping

C

CDC capacitance-to-digital converter
CES consumer electronics show, annual trade show in Las Vegas, USA
CIN sensing electrode of the AD7151
CMOS complementary metal–oxide–semiconductor
CMRR common-mode rejection ratio

D

DAC digital-to-analog converter
DAQ data acquisition system
DC direct current
DDTS data driven time synchronization
DRL driven-right-leg
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Abbreviations

DTW dynamic time warping
DUS doppler ultrasonography

E

ECG electrocardiography
ECGN negative input of an ECG sensor AFE
ECGP positive input of an ECG sensor AFE
EDA electrodermal activity
EEG electroencephalography
EMG electromyography
EMI electromagnetic interference
ERP exposure and reaction prevention
EXC excitation electrode of the AD7151

F

F0 fundamental frequency
F50 central frequency
FFT fast Fourier transformation
FIR finite impulse response
FN false negative
FP false positive
FR4 glass-reinforced epoxy laminate material

G

GF group frequency
GMT Greenwich mean time
GND ground potential, either local or provided by the earth
GNSS global navigation satellite systems
GPIO general-purpose input / output
GPS global positioning system

H

H2O water
HAR human activity recognition
HBC human body communication
HCI human-computer interaction
HF high frequency
HHb deoxyhaemoglobin
high-Z high impedance
HP high-pass
HR heart rate
HRV heart rate variability

I

IBC intra-body communication
IBI inter-beat interval
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Abbreviations

IBSync method 2, using the human body as a transmission medium to provide arti-
ficial information

IC integrated circuit
ICG impedance cardiography
ICNIRP international commission on non-ionizing radiation protection
IF intermediate frequency
IIR infinite impulse response
IMS incremental-merge segmentation
IMU inertial measurement unit
IoWT internet of wearable things
IR infrared
IRQ interrupt request
IRS interference-reduced signal
ISM radio frequency spectrum reserved internationally for industrial, scientific,

and medical purposes
ISR interrupt service routine

L

LAN local area network
LDV laser Doppler velocimetry
LED light-emitting diode
LF low frequency
LP low-pass
LR-WPAN low-rate wireless personal area network
LTS lightweight time synchronization

M

MAC medium-access control
MARG magnetic, angular rate, and gravity
MAX maximum correlation
MCG magneto-cardiography
MEMS micro electro-mechanical systems
MODWT maximal overlap discrete wavelet transform
MRI magnetic resonance imaging
MSB most significant bit

N

NaCl sodium chloride
NFC near-field communication
NTP network time protocol

O

O2Hb oxyhaemoglobin
OCD obsessive-compulsive disorder
OOK on-off-keying
OpenIBC open-source intra-body communication receiver

P
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Abbreviations

PAN personal area network
PAT pulse arrival time
PCB printed circuit board
PCG phonocardiography
PD photodiode
PEP pre-ejection period
PER packet error rate
PPG photoplethysmography
PPMC Pearson product-moment correlation
PPV positive predictive value (precision)
PRF pulse repetition frequency
PRV pulse rate variability
PSD power spectral density
PTP precision time protocol
PTT pulse transit time
PulSync method 1, using the human body as a source of natural information
PV peak value
PwC PricewaterhouseCoopers
PWM pulse-width modulation
PWV pulse wave velocity

R

RBS reference broadcast synchronization
RF radio frequency
RFID radio-frequency identification
RIAV respiratory-induced amplitude variations
RIFV respiratory-induced frequency variations
RIIV respiratory-induced intensity variations
ROI region of interest
RR respiratory rate
RSA respiratory sinus arrhythmia
RSSI received signal strength indicator
RTC real-time clock

S

S21 S21 represents the power transmission from port 1 to port 2, it is one of the
four common S-parameters applied to characterize two-port networks

SCG seismocardiography
SDSD standard deviation of successive differences
SF50 frequency dispersion
SHA sample and hold amplifier
SHF super-high frequency
SNA sympathetic nervous activity
SNR signal-to-noise ratio
SNTP simple network time protocol
SoC system on a chip
SPICE acronym of an open-source analog circuit simulator, simulation program with

integrated circuit emphasis
SpO2 peripheral oxygen saturation
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Abbreviations

SQI signal quality index
STFT short-time Fourier transform

T

TCXO temperature-compensated crystal oscillator with ± 5 ppm
TDMA time division multiple access
THRS threshold
TIA transimpedance amplifier
ToF time-of-flight
TP true positive
TPR true positive rate (sensitivity or recall)

U

UHF ultra-high frequency
ULP ultra-low power
UTC coordinated universal time
UX user experience

V

VCM common mode voltage, reference electrode of an ECG sensor AFE, DRL or
body bias circuit

VLF very low frequency
VNA vector network analyzer
VTT vessel transit time

W

WAN wide area networks, e.g. the internet
WBAN wireless body area network
WetTouch wearable prototype to measure the fluctuations of the inter-electrode capac-

itance due to environmental changes, e.g. grounding due to hand-washing
Wi-Fi Wireless Fidelity, IEEE 802.11
WSN wireless sensor networks
WuRx wake-up receiver

X

XO conventional crystal oscillator with ± 20 ppm
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Nomenclature

Symbols

B bandwidth
Cadd added capacitance to achieve resonance
Cbody capacitance formed between the environment and the human body
Cint intrinsic capacitance of the electrode setup
Cload load capacitance at the receiver
Cpar parasitic capacitance
Cret, rx capacitance formed between the environment and the receiver
Cret, tx capacitance formed between the environment and the transmitter
Crx capacitance at the receiver input
Iin input current
Ileak leakage current
Iq quiescent current
Nerror number of erroneous packets
Ntotal total number of packets sent
Rf resistor in the feedback network
VCM common-mode voltage
Vout output voltage
Zgpio impedance of the GPIO
Zin input impedance of a circuit
Zout output impedance of a circuit
lossdB(S21) insertion loss derived from the S21 parameter
f0 fundamental frequency
fc clock frequency
fr resonance frequency
f0 carrier frequency of the modulated signal
fc cutoff / corner frequency of a filter
fhrv frequency at which the HRV interval function is resampled
fs sampling rate / frequency
r Pearson product-moment correlation coefficient r
tbit time period per bit
tburst time period of the burst
tpat time period of the correlation pattern
tpre time period of the preamble
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