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Zusammenfassung
Hochauflösende Radarbilder können in der Regel nur erstellt werden, wenn die
Szene mit einem Breitbandradar erfasst wird. In den letzten Jahren wurden die
Anwendungen der Fernerkundung stetig weiterentwickelt. Das führte dazu, dass
der Bedarf an hochauflösenden Radarbildern wesentlich gestiegen ist. Damit wuchs
auch der Wunsch nach mehr Frequenzbändern mit hoher Bandbreite. Auf der an-
deren Seite ist das Frequenzspektrum eine begrenzte Ressource, in der Bereiche für
eine große Anzahl von Geräten und Anwendungen zur Verfügung gestellt werden
müssen. Dies führte dazu, dass für bildgebendes Radar in vielen Fällen nur un-
zusammenhängende schmale Bänder genutzt werden können. Das dieser Arbeit
zugrundeliegende Ziel besteht nun darin, die gewünschte hohe Auflösung durch
gemeinsame Nutzung dieser verfügbaren Bänder zu erreichen.

Da es sich bei diesem Problem um einen Spezialfall der Bildgebung mit
fehlenden oder begrenzten Messungen handelt, wurde die bisherige Forschung in
diesem Bereich gesichtet. Es zeigte sich, dass verschiedene Methoden entwickelt
worden sind, hochauflösende Bilder mit einer begrenzten Anzahl von Messungen
zu prozessieren. Dabei kommt den auf Compressed Sensing (CS) basierenden
Methoden eine besondere Bedeutung zu. CS-Verfahren machen sich die geringe
Dichte einer Szene zunutze, um ein unterbestimmtes System linearer Gleichungen
effizient zu lösen und damit eine hochauflösende Szenenschatzung zu liefern.
Da Radarszenen wegen des Vorhandenseins dominanter Streuer häufig als dünn
besetzt angenommen werden kann, ist der Einsatz von CS-Verfahren ein logischer
Ansatz. Es hat sich jedoch gezeigt, dass in den meisten bestehenden Arbeiten
die Situation zufällig fehlender Stichproben behandelt wird. Das in dieser Arbeit
behandelte Problem ist es jedoch anders. Die unzusammenhängenden schmalen
Bänder in der aktuellen Situation führen zu kontinuierlichen Blöcken fehlender
Daten oder, mit anderen Worten, zu kontinuierlichen Lücken im Frequenzband.

Die Anwendung von CS auf ein solches "Gapped-Band" Problem ist nach Ken-
ntnis der Autorin in der Literatur noch nicht untersucht worden. Die Arbeit zielt
darauf ab, diese Forschungslücke zu schließen. Konkret werden zwei Themen be-
handelt:

• Kohärenz: Die Kohärenz ist eine Metrik zur Beurteilung der Qualität der
Erfassungmatrix (sensing matrix). Ein niedriger Kohärenzwert entspricht
einem besser konditionierten Ausgangspunkt für die Szenenschatzung. Für
eine Steigerung der Entfernungsauflösung muss die Schätzung der Szene auf
einem engmaschigen Entfernungsraster erfolgen, was zu einem Anstieg der
Kohärenz führt. Das Vorhandensein einer kontinuierlichen Lücke verschärft
dieses Problem noch.

• Hoher Rechenaufwand: Der hohe Rechenaufwand ist eine Herausforderung
beim Einsatz von CS für praktische Radaranwendungen. Insbesondere bei
Verfahren wie Synthetic Aperture Radar (SAR) ist die Menge der pro Szene
erzeugten Rohdaten sehr groß. Die zusätzliche Anforderung einer höheren
Auflösung macht die SAR-Bildrekonstruktion noch rechenintensiver.

In dieser Arbeit werden die oben genannten Probleme durch die folgenden Beiträge
angegangen: Zunächst werden strukturierte Erfassungsmatrizen formuliert, die das
"Gapped-Band" berücksichtigen. Dann werden zwei Algorithmen vorgeschlagen
- der Subdivision Fusion (SF)-Algorithmus und der Approximated Observation
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(AO)-Algorithmus. Der SF-Algorithmus löst beide Probleme durch ein Un-
terteilungsschema, das auf den vorgeschlagenen strukturierten Erfassungsmatrizen
basiert. Der Unterteilungsschritt verbessert den Kohärenzwert, reduziert die Größe
des CS-Problems und ermöglicht eine parallele Ausführung. Der AO-Algorithmus
geht ebenfalls auf beide Probleme ein, indem er die die Multiplikation mit einer
CS-Erfassungsmatrix bzw. deren hermitesch Konjugierten durch Prozessoren
mit angepassten Filtern ersetzt. Die rechenintensiven Multiplikationen mit der
Erfassungsmatrix werden durch FFTs innerhalb einer Schleife des CS-Algorithmus
mit weicher Schwellenbildung (soft thresholding) ersetzt. Bei beiden Algorithmen
werden neue Ideen und Modifikationen eingebracht, um bestehende CS-Methoden
an das Gapped-Band-Problem anzupassen.

Darüberhinaus wird in dieser Arbeit eine Erweiterung des SF-Algorithmus
vorgestellt, die sich mit der Mehrwegeabbildung für ein time-of-flight (ToF)-
System befasst und damit zeigt, dass die vorgeschlagene Idee flexibel ist und für
verschiedene Abbildungssysteme angepasst werden kann.

Die Algorithmen wurden sowohl an simulierten Szenen als auch an realen
Daten getestet. Die erzielten Ergebnisse zeigen eine deutliche Verbesserung
der Entfernungsauflösung trotz der Kohärenzbeschränkungen, die durch das
lückenhafte Band entstehen. Die vorgeschlagenen Umstrukturierungen der CS-
Erfassungsmatrix kann die Konditionierung des zuvor schlecht gestellten CS
Problems verbessern und es ermöglichen, recht gute Szenenschatzungen zu liefern.
Die Arbeit schließt mit einer Diskussion zukünftiger Richtungen für praktische
Anwendung der vorgeschlagenen Ideen.
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Abstract
High range resolution radar imaging is possible only when a scene is detected using
a wide band radar. In the past few years, remote sensing applications have mul-
tiplied and evolved rapidly, which has led to an increased demand for such high
resolution imaging. As a result, the need for wider frequency bands has also in-
creased. However, there has been an exponential rise in spectrum congestion, lead-
ing to a direct conflict with this wide band requirement. A large number of devices
and applications need access to the frequency spectrum, which is a limited resource.
Consequently, in many cases, only disjoint narrow frequency bands are available for
imaging. Therefore, the goal is to now obtain the desired high resolution by making
use of the available narrow bands.

Since this problem appears to be a specialized case of imaging with missing or
limited measurements, it makes sense to examine past research done in this area.
It is found that several efforts have been made to obtain high resolution images
using a limited number of measurements, out of which Compressed Sensing (CS)
based methods are quite popular. CS techniques exploit the underlying sparsity
of a scene to efficiently solve an under-determined system of linear equations and
provide a high-resolution scene estimate. Since radar scenes are inherently sparse,
this is a logical approach. However, it is found that in most existing works, the
limitation in the number of measurement arises due to randomly missing samples.
The problem addressed here is slightly different. The disjoint narrow bands in the
current situation give rise to continuous blocks of missing data, or, in other words,
continuous gaps in the frequency band.

CS applied to such a ’gapped-band’ problem has, to the author’s knowledge,
not been explored in literature and this thesis aims to address this research gap.
Specifically, two issues are addressed :

• Coherence: The coherence is a metric that determines the quality of the CS
sensing matrix and a lower coherence value corresponds to a better scene esti-
mate. For a higher range resolution, the scene estimation must be carried out
on a finely spaced range grid, which leads to an increase in coherence. The
presence of a continuous gap further aggravates this problem.

• Large computational load: High computational load is a popular challenge in
using CS for practical radar applications. Specially for systems like Synthetic
Aperture Radar (SAR), the volume of raw data generated per scene is large.
The additional requirement of a higher resolution makes the SAR image re-
construction even more computationally expensive.

This thesis addresses the aforementioned problems via the following contribu-
tions. First, structured sensing matrices are formulated taking the ’gapped-band’
into consideration. Then, two algorithms are proposed— the Subdivision Fusion
(SF) algorithm, and the Approximated Observation (AO) algorithm. The SF algo-
rithm addresses both the problems via a subdivision scheme based on the proposed
structured sensing matrices. The subdivision step improves the coherence value,
reduces the size of the CS problem and makes a parallel execution possible. The
AO algorithm also addresses both issues by replacing the CS sensing matrix with
matched filter based processors. Computationally heavy multiplications involving
the sensing matrix are replaced by FFTs within a soft-thresholding CS algorithm
loop. Both algorithms introduce new ideas and modifications to adapt existing CS
methods to the gapped-band problem. In addition, the thesis presents an extension
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of the SF algorithm that deals with multi-path imaging for a ToF system, thereby
showing that the proposed idea is flexible and may be adapted for different imaging
systems.

The algorithms are tested on synthetic scenes as well as real world data and the
results achieved show significant improvement in range resolution despite the co-
herence limitations imposed by the gapped band. It is concluded that the proposed
modifications to the CS sensing matrix improve the conditioning of the previously
ill-posed CS problem and allow it to provide better scene estimates. Possible future
directions involving practical applications of the proposed ideas are also discussed.
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Chapter 1

Introduction

1.1 Background and Motivation

The term ’remote sensing’ refers to the collection of data or information from an ob-
ject of interest at a distance. It encapsulates imaging modalities working in different
parts of the wavelength spectrum that are used to collect data unobtrusively, from
a distant object or a scene of interest. Over the years, there has been an increas-
ing demand for high-resolution remote sensing systems across different parts of the
wavelength spectrum. Radars are one such imaging modality that work in the GHz
frequency range and are used in numerous applications such as tracking and surveil-
lance, environmental monitoring, and disaster management [GBC+13], [GCW+15].
Time-of-Flight (ToF) cameras are another example of a macroscopic imaging modal-
ity that work in the MHz frequency range and have applications in the automotive
industry, safe patient monitoring for healthcare, 3D scanning, and human-machine
interactions [NKR+15], [KBC13], [IHJ16].

What does such a high resolution requirement imply in the framework of a gen-
eral signal model? Consider, a signal model represented by the equation 1

y = AAAx,

where y represents the measurement vector, AAA represents the sensing matrix and
x denotes the scene being detected. Consider this signal model to be defined in the
complex domain C. The vector y contains a fixed number of samples as dictated
by the sensing system. If AAA was a full-rank square matrix, or in other words, a
one-to-one mapping between the measurements and the scene, x would have the
same length as y. In such a scenario, the resolution of the scene x is the baseline
resolution provided by the imaging system, without any modifications. Now, the
goal is to improve the resolution of x. Such an improved resolution is possible only
if x lies on a finer grid. For this to happen, AAA has to be a horizontal matrix, giving
rise to an under-determined system of linear equations. Finer the grid, more under-
determined is the system.

Therefore, obtaining a higher resolution is synonymous to finding a good solu-
tion for an under-determined system of linear equations. Once this is established,
one can make use of the vast literature available on solving under-determined sys-
tems. Since this is such a fundamental problem appearing in numerous research
areas, different approaches to tackle this issue have been proposed by different com-
munities, and a detailed discussion is presented in Chapter 4. It is observed that in
many of these approaches, exploiting the sparsity of the scene in a certain domain
is a recurring theme, and this naturally warrants focusing on the well-established
sparsity-driven signal processing technique known as Compressed Sensing (CS).

1The measurement noise in the signal model is ignored here for simplicity.



2 Chapter 1. Introduction

The theory of CS has been extensively studied in the past and it comes with a very
strong mathematical framework. Several classes of CS algorithms exist in literature
and are known to perform quite well in solving the under-determined system to give
a good estimate of x.

But now, the problem becomes more difficult. Consider again the signal model
equation, with a focus on the range resolution of radar systems. Let y represent the
measurement vector with samples in the frequency domain. The baseline range res-
olution provided by a system depends on the bandwidth B of the transmitted signal,
and is given by δr = c

2B . Thus larger the bandwidth, higher is the range resolution.
For a constant sampling rate, a larger bandwidth implies more number of samples
for the vector y, thereby allowing a finer baseline range grid for x. Now, a range
grid having range cells of width ∆r < δr can be defined in an attempt to improve
the range resolution further, leading to an under-determined system. However, a
finer range resolution may not be the only reason behind this under-determined
structure — an under-determined system can also exist if the some samples in y are
missing, even for the baseline range resolution. What if there exists a condition that
forces y to have a low number of samples?

In the recent years, there has been an exponential increase in the number of appli-
cations that use the frequency spectrum, leading to spectrum congestion [LMP+20],
[DCW+13], and as a result, leading to the unavailability of wide frequency bands
needed for a high range resolution. In other words, spectrum congestion is a con-
dition that forces ’compression at sensing’. Therefore, the sensing must take place
using the limited narrow frequency bands, while at the same time catering to the
resolution requirements posed by various applications. Such narrow, disjointed
frequency bands may be viewed as a wide band with several blocks of missing
data. The previously simple under-determined system now becomes an under-
determined system with gaps or a ’gapped-band’ system. The advantage of such
a gapped-band point of view is as follows :

• The under-determined system has become even more under-determined, but
the basic structure remains the same. So, CS methods are still a valid approach.

• Challenges faced by practical sensing schemes (eg: Joint Communication and
Sensing (JCS)) due to spectrum congestion can be recast into the gapped band
problem.

Expanding on the former point, CS based missing data estimation techniques
are explored to solve the gapped band problem. It is found that most of the existing
works assume randomly missing data samples. A continuous block of missing data
in an under-determined system is not addressed, bringing forth an important re-
search gap. In addition, most traditional CS algorithms work under the assumption
that the ’Coherence’ of the CS sensing matrix lies within a certain bound, detailed in
Chapter 3. The continuous gap challenges this assumption, but the performance of
traditional CS algorithms in the presence of such a gap has not been studied.

Existing compressed sensing algorithms pose high computational complexity
and large memory requirements, and have not been adapted to deal with the
gapped-band problem. At the same time, there continues to be an increase in
spectrum congestion, while the need for high resolution images remains constant.
This bottleneck is the motivation behind the work done in this thesis. In order
provide high resolution images inspite of the growing spectrum unavailability, it is
necessary to develop adaptive CS algorithms that can deal with such challenges.
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1.2 Research Objectives

The objectives of this work are outlined as follows:

• Theory development and simulations on the application of adaptive com-
pressed sensing methods to reconstruct high resolution range profiles from
two disjoint band radar signals.

• Testing of the developed methods for various radar domains, including SAR
and ISAR imaging.

1.3 Contributions

The main contributions of this thesis are as follows :

• A gapped CS model is derived for chirped radar systems. A more practical
extension to multiple co-located narrow band FMCW radar systems is also
derived, showing the relation between ’gapped-band’ systems and ’disjoint
narrow-band’ systems.

• A Subdivision-Fusion algorithm is proposed which uses the subdivision of a
structured sensing matrix to obtain multiple smaller CS sensing matrices with
lower coherence values. This allows solving for a number of smaller CS prob-
lems in parallel, thereby reducing the computational time and memory load.
A fusion of the results gives the final estimate of the scene. The algorithm is
tested on real radar data. This concept is also extended to the multi-path res-
olution problem for ToF cameras, demonstrating the flexibility of the overall
idea.

• An Approximated Observation algorithm is discussed, which aims to reduce
the complexity of CS applied to SAR systems. Specifically, it proposes to re-
place the CS sensing matrix by popular matched filter based SAR processors,
thereby removing the large matrix multiplications involved in a normal SAR-
CS implementation. Results obtained by application of the algorithm on real
SAR data are provided.

1.4 Outline

The remainder of the thesis is organized as follows:

• Chapter 2 gives an overview of the Radar fundamentals and the working prin-
ciple of a general radar system. The most commonly used radar waveforms
are discussed. The main ideas SAR and ISAR imaging are also presented.

• Chapter 3 reviews the fundamentals of CS. It gives the details of the key com-
ponents that constitute a CS problem. It presents the metrics that determine the
quality of a CS sensing matrix followed by an overview of the most popular
CS algorithms.

• Chapter 4 discusses CS applied to radar systems. It combines the ideas dis-
cussed in Chapters 2 and 3. The CS framework is explored based on the radar
waveforms introduced previously.
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• Chapter 5 discusses the work done to tackle the problem of missing data es-
timation under 3 broad subtopics and underlines the challenges faced by the
existing approaches.

• Chapter 6 presents the problem statement of the thesis and mathematically de-
fines the gapped band problem based on the CS models described in Chapter
4.

• Chapter 7 presents 2 algorithms to tackle the gapped-band problem for radar
systems. Simulation results and results on real radar data are discussed.

• Chapter 8 uses a modified version of the Subdivision-Fusion algorithm to solve
the multi-path interference problem faced by ToF cameras. The algorithm is
applied to multi-path ToF data and the resulting depth images are provided.
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Chapter 2

Radar Working Principles

2.1 Working Principle of General Radar Systems

The principle function of a radar is to detect a target and determine its location by
emitting a signal and receiving its echo, after it is back-scattered by the target. The
differences between the emitted and the received signal provide information about
the target location, structure, material, etc.

Based on Maxwell’s equations [W14], the emitted and received signals have to
be real-valued radio-frequency (RF) signals. The common form of such an RF signal
typically used for radars is given by

sRF (t) = R{s (t) exp j2π f0t}
= R{s (t)} cos 2π f0t + I{s (t)} sin 2π f0t ,

(2.1)

where s (t) is the complex envelope, i.e., the complex waveform of the transmitted
signal in baseband. R{.} and I{.} represent the real and imaginary component of
the signal respectively. f0 is the carrier frequency of the radar signal, also called
the ’reference frequency’ or the ’local frequency (LO)’ and is usually in the range of
GHz. cos 2π f0t and sin 2π f0t are known as the LO signals.

Direct signal processing in the RF domain is infeasible and impractical since it
presents a large computational load and does not yield any additional information.
Since all the information lies in the modulation, it makes sense to carry out the sig-
nal processing in the baseband. The complex valued baseband signal s (t) can be
generated by an arbitrary waveform generator (AWG) or direct digital synthesizer
(DDS). Then, the so called ’quadrature modulator’ (QM) in the emitter transforms
s (t) to sRF (t). The emitted RF signal is back-scattered from the target, and fed via
the receiver antenna into the radar receiver. Finally, the ’quadrature demodulator’
(QDM) in the receiver re-extracts the complex waveform. Figs. 2.1 and 2.2 show the
basic structure of a QM and QDM respectively.

Consider the relation between sRF (t) and s (t) in the frequency domain. Based
on (2.1), the Fourier-transform of the RF signal will be

sRF ( f ) =
1
2
(s ( f + f0) + s ( f − f0)) . (2.2)

Let, s (t) be bandlimited to the frequency interval [−b
2 , b

2 ]. Substituting these ban-
dlimits in (2.2), sRF ( f ) exists in 2 disjoint frequency intervals, [ f0 − b

2 , f0 +
b
2 ] and

[− f0 − b
2 ,− f0 +

b
2 ].

Mathematically, s (t) can be recovered from sRF ( f ) by first removing the negative
frequencies and creating a single-sided spectrum containing only the positive part of
the frequency band. Then, this positive spectrum is shifted to the left by f0, thereby
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⊗

⊗
⊕

ℜ{s(t)}

ℑ{s(t)}

cos(2 π f0t)

− sin(2 π f0t)

sRF(t)

FIGURE 2.1: Quadrature Modulator (QM).

2 cos(2 π f0t)

−2 sin(2 π f0t)

sRF(t)

⊗

⊗

LP

LP

ℜ{s(t)}

ℑ{s(t)}

FIGURE 2.2: Quadrature Demodulator (QDM).
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centering it around f = 0. Multiplying it by a factor 2 and applying the inverse
Fourier Transform gives back s (t) .

In practice, the recovery of s (t) is done by the QDM. The sRF (t) signal is passed
to 2 mixers and down-mixed with the LO signals, 2 cos 2π f0t and −2 sin 2π f0t,
which are produced by a stable frequency source. To understand how the QDM
outputs are used to recover the transmitted signal, the following trigonometric
equations are required:

• cos2 (2π f0t) = 1
2 (1 + cos (4π f0t)) .

• sin2 (2π f0t) = 1
2 (1 − cos (4π f0t)) .

• sin (2π f0t) cos (2π f0t) = 1
2 sin (4π f0t).

Now, the 2 outputs from the QDM give the real and imaginary components of
s (t) along with some additional terms, i.e.,

s (t) 2 cos (2π f0t) = 2R{s (t)} cos2 (2π f0t)− 2I{s (t)} sin (2π f0t) cos (2π f0t)
= R{s (t)} (1 + cos (4π f0t))− I{s (t)} sin (4π f0t)
= R{s (t)}+R{s (t)} cos (4π f0t)− I{s (t)} sin (4π f0t)

(2.3)

s (t) (−2 sin (2π f0t)) = −2R{s (t)} cos (2π f0t) sin (2π f0t) + 2I{s (t)} sin2 (2π f0t)
= −R{s (t)} sin (4π f0t) + I{s (t)} (1 − cos (4π f0t))
= I{s (t)} − I{s (t)} cos (4π f0t)−R{s (t)} sin (4π f0t) .

(2.4)

The unwanted terms at ±2 f0 are removed using low-pass filters. If the output of
the QM is directly passed to the input of the QDM , the output from the QDM is
identical to the input signal of QM. This structure may now be expanded to describe
a complete radar system.

Fig. 2.3 shows the structure of a radar system. The output from the QM is ampli-
fied and passed through a transmit/receive switch to the antenna and emitted into
free space. It is reflected by a target at a distance r and received by the antenna with
a time delay τ. Considering the round trip of the signal, the delay is given by τ = R

c ,
where R = 2r, and c is the speed of light in free space. This signal is amplified
and sent into the QDM to obtain the baseband received signal, i.e., the time-delayed
version of the emitted signal containing the range information.

2.2 Radar Waveforms

In the previous section, the basic working principal of a radar system was described
using an arbitrary signal s (t). This section focuses on 2 types of radar waveforms: 1)
the pulse waveform and 2) the Linear Frequency Modulated (LFM) waveform, also
commonly known as the chirp.
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QM QDM

f0

∼

∗

r

Antenna

Point Target

s(t) s(t− τ)e−j2π f0τ

FIGURE 2.3: Structure of a radar system combining QM and QDM.

2.2.1 The Pulse Waveform

Waveform Characteristics

The most basic radar waveform is the rectangular pulsed waveform, or the ’pulse
burst’ waveform which consists of a series of rectangular pulses. A single rectangu-
lar pulse defined by an amplitude A and a time period Tp, and is given by

s (t) = A rect
(

t
Tp

)
. (2.5)

A more generalized extension of the rectangular pulse is the coded rectangular
pulse, given by

s (t) = A rect
(

t
Tp

)
eϕ , (2.6)

where ϕ is an arbitrary phase term that depends upon the ’code’ under considera-
tion. In coded pulses, the frequency and/or phase changes across the pulse accord-
ing to the selected frequency coding or phase coding algorithm. When ϕ = 0, s (t)
reverts to the basic rectangular pulse. (2.6) allows a natural extension to the LFM
waveform described in detail in the following section.

Each pulse in the ’pulse train’ or ’pulse burst’ waveform is separated by a fixed
time duration known as the ’Pulse Repetition Interval (PRI)’. The reciprocal of PRI
is the ’Pulse Repetition Frequency (PRF)’. Following the basic radar working princi-
ples, the time delay between the emitted and the received signal is used to determine
the position of the target. In other words, the distance to the target is determined by
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r =
R
2
=

cτ

2
, (2.7)

where R is the total distance travelled by the signal, c is the speed of light, and
τ is the time delay. The accuracy of the detected target distance r depends on the
range resolution, δr, of the radar system, which is defined as the smallest distance
between two targets that produces separable echos in the received signal.

In order to define δr, the spectrum of the rectangular pulse has to be examined. It
is a sinc-function with the main lobe lying between the frequencies −1

Tp
and 1

Tp
. Since

this spectrum is not band-limited, there are different ways to describe the bandwidth
[R14, p.183]. In this work, bandwidth refers to the commonly used Rayleigh band-
width where B = 1

Tp
. Theoretically, B is used to estimate the sampling frequency Fs,

i.e, Fs = B. As a result, the sampling time is Ts =
1
Fs

= 1
B . Following this, the range

resolution is given by

δr =
cTs

2
=

c
2B

. (2.8)

The Matched Filter

In order to describe range detection by any radar system, it is important to take noise
into consideration. A radar system has to provide robust detection when challenged
by noise and clutter. Therefore, in order to accurately determine a target position,
it is important to have a high ’Signal-to-Noise’ ratio (SNR). In this section, the most
popular filtering method used for optimizing the SNR , namely the ’matched filter’,
is discussed.

Before deriving the matched filter, it is important to note that commonly, radar
signal processing takes place in the digital domain. The received signal s (t − τ) is
sampled using an analog-to-digital converter (ADC) and then passed to the matched
filter. Although there exists analog versions of the matched filter, the digital or time-
discrete matched filter is the one used more commonly and is introduced in this sec-
tion. The time-continuous version of the matched filter has theoretical importance
and is introduced later in relation to the chirp waveform.

To derive the matched filter, consider z to be the N-dimensional received signal
obtained after digitization by the ADC, s to be the N-dimensional digital represen-
tation of the transmitted signal s (t), a to be the amplitude and n to be a vector
representing white Gaussian noise having a mean value of zero and a variance of σ2.
Therefore,

z = as + n (2.9)

represents the noisy signal available to the receiver. Now, the goal is to determine
a weighting vector w that maximizes the SNR, which is given by

SNR (w) =
|awHs|2

E{|wHn|}2 =
|a|2|wHs|2

E{wHnnHw} =
|a|2|wHs|2

wHE{nnH}w
. (2.10)

The expectation in the denominator of (2.10) is the covariance matrix of the additive
noise n, which is given by Rn = σ2In . Thus, by substitution in the denominator, the
expression becomes

SNR (w) =
|a|2|wHs|2
wHσ2Inw

=
|a|2|wHs|2

σ2∥w∥2 . (2.11)
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FIGURE 2.4: Matched Filter [E20].

Multiplying ∥s2∥ in the numerator and denominator gives

SNR (w) =
|a|2|wHs|2

σ2∥w∥2
∥s∥2

∥s∥2 =
|a|2∥s∥2

σ2 |ρ (w, s) |2 , (2.12)

where ρ (w, s) is the correlation coefficient of the weight vector and the transmitted
signal and can be expressed as

ρ (w, s) =
wHs

∥w∥∥s∥ . (2.13)

The absolute value of ρ (w, s) ranges from 0 to 1. It is clear from (2.12) that the
maximum SNR is achieved when the correlation coefficient is 1, i.e., when w and
s are collinear. This is achieved when the weight vector is a scaled version of the
transmitted signal given by

wopt = ws, w ̸= 0 . (2.14)

wopt provides the coefficients of the matched filter. The principle of working of
a matched filter is shown in Fig. 2.4. The convolution of the matched filter and
the signal gives a single peak with maximum SNR only when there is a complete
overlap, i.e., the filter response exactly ’matches’ the received signal. Considering
that the received signal was back-scattered by a target at range r, the peak of the
matched filter occurs at the corresponding time delay τ = 2r

c . So, once τ is obtained,
the range of the target can be easily determined.
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FIGURE 2.5: Chirp Frequency v/s Time.

2.2.2 The Chirp Waveform

For a simple rectangular pulse, the range resolution is directly proportional to the
time duration of the pulse, since B = 1

Tp
. A short pulse results in a small δr value,

i.e., a high range resolution, and can be used in near range systems such as ground
penetrating radars.

However, the pulsed radar is unsuitable for long range target detection. The en-
ergy of a pulse is given by A2Tp . A long range detection requires increased pulse
energy or a higher power, thereby an increased value of Tp, which is in direct con-
flict with the condition for better range resolution. To overcome this problem, pulse
compression waveforms are commonly used. These waveforms decouple the en-
ergy and bandwidth by frequency modulation, and make it possible to meet both
the energy and bandwidth requirements simultaneously. A large number of pulse
compression waveforms exist in literature, out of which the chirp and the stepped
frequency waveform are the ones most commonly used in high range resolution
radars. The chirp waveform is re-used in the later chapters of this thesis. Therefore,
in this chapter, the focus will be only on the chirp, which is formally known as the
linear frequency modulated (LFM) waveform.

Waveform Characteristics

The chirp waveform is defined as

s (t) = A rect
(

t
Tp

)
ej2π α

2 t2
, (2.15)

where α = B
Tp

is known as the chirp rate or the frequency modulation rate. Compar-

ing with (2.6), it is evident that ϕ (t) = 2π α
2 t2, and therefore (2.15) is also referred

to as the chirp-coded pulse. The instantaneous frequency of the chirp is the time
derivative of the phase in (2.15) divided by 2π, and is given by

f (t) =
1

2π

∂
(
2π α

2 t2)

∂t
= αt . (2.16)

Due to the rect (.) window applied to the chirp, f (t) spans the time interval
[− Tp

2 , Tp
2 ], as shown in Fig. 2.5.
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The Fourier transform of an LFM signal given by [KPD+60; LM04] is

s( f ) =
1√
Tp

∫ Tp
2

−Tp
2

ejπ(αt2−2 f t)dt . (2.17)

Fresnel Integrals [KPD+60; LM04] are used to compute this term as follows:

s( f ) =

√
1

2BTp
e−jπ f 2

α [Z (u2)− Z (u1)] , (2.18)

where Z denotes the complex Fresnel integral, B the frequency bandwidth, and

Z(u) =
∫ u

0
ejπ α2

2

u1 = −2 f

√
Tp

2B
−
√

TpB
2

u2 = −2 f

√
Tp

2B
+

√
TpB

2
.

The phase term can also be approximated by the principle of stationary phase
(PSP) [R14], which defines a stationary point in time at which the first time derivative
of the intergral phase is zero. The approximation of the integral in (2.17) is then given
by

s( f ) = j
√

π

αTp
e
−jπ

4 e−j (π f )2
α rect

(
f
B

)
. (2.19)

Evaluation of the Fourier Tranform using Fresnel integrals shows ripples in the
passband spectrum. This stems from the rectangular windowing of the signal in the
time domain, which represents convolution with a sinc function in the frequency
domain. The PSP approximation, on the other hand, works only at the points having
stationary phase. Since the phase fluctuations are maximum near the edges, the PSP
does not get a stationary point there. So, this approximation does not contain the
ripple artifacts. With increase in the time-bandwidth product, the ripple artifact
reduces, and the error between the Fresnel and the PSP-based frequency spectrum
also reduces. Thus, a PSP-based Fourier Transform offers a good approximation to
the one based on Fresnel.

The Matched Filter

How does such a frequency modulation based waveform help with the energy-
bandwidth decoupling? Recall from Section 2.2.1 that the matched filter is the op-
timal filter that provides a high SNR for any general waveform. In this section, the
matched filter response in continuous time domain is discussed for the chirp wave-
form.

Similar to 2.9, the continuous time domain received signal is given by

z (t) = as (t − τ) + n (t) . (2.20)

The output from the matched filter is

y (t) = (h ∗ z) (t) , (2.21)
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where h (t) denotes the response function of the filter. It can be derived that a max-
imum SNR is obtained for an optimal filter hopt = ws∗ (−t). Using the optimal
response function in (2.21), the output from the matched filter is

y (t) =
(
hopt ∗ z

)
(t)

=
∫

hopt (τ) z (t − τ) dτ

=
∫

s∗ (−τ) z (t − τ) dτ

=
∫

s∗ (τ) z (t + τ) dτ . (2.22)

Therefore, the matched filter output is basically the correlation of the noisy received
signal with the time-inverted complex conjugate of the transmitted signal. If the
noise is ignored, this is the auto-correlation of the signal, giving the point spread
function of the waveform at the point of maximum overlap. Now, specifically using
the chirp equation from (2.15) in (2.22) gives

p (t) =
∫ ∞

−∞
rect

(
τ − t

Tp

)
rect

(
τ

Tp

)
ej2π α

2 (τ2−(τ−t)2) dτ . (2.23)

Since the autocorrelation is symmetric, (2.23) can be solved for t ≥ 0 and be
mirrored to the negative time. In this case, the rect (.) simply defines the boundaries
of the integral and the equation becomes

p (t) = ej2π α
2 t2
∫ Tp

2

t− Tp
2

ej2πατt dτ . (2.24)

Solving this integral gives [KPD+60]

p (t) =
sin
(
πα
(
Tpt − t2))

παt
. (2.25)

Substituting α = B
Tp

in (2.25) and extending for negative time gives

p (t) = Tp
sin
(
π
(

B|t| − αt2))

πB|t| . (2.26)

Usually the term παt2 can be ignored and the PSF can be approximated as

p (t) = Tp
sin
(
π
(

B|t| − αt2))

πB|t| ≈ Tp
sin (π (B|t|))

πB|t| = Tp sinc (Bt) . (2.27)

In order to understand the decoupling of energy and resolution in the chirp
waveform, it is compared to a simple pulse of the same duration Tp. Considering a
large value of Tp is used , the waveform energy is sufficient and identical for both the
pulse and the chirp. As before, the bandwidth of the simple pulse is 1

Tp
. However,

the (swept) bandwidth for the chirp is αTp, and can be much larger. From (2.27), the
width of the main lobe of the PSF corresponding to the chirp depends on this swept
bandwidth and is given by 1

B = 1
αTp

, which is clearly much narrower than the width
of the PSF of the simple pulse. Consequently, the value of the Rayleigh resolution of
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the chirp waveform, given by c
2B , is much smaller, i.e., the resolution is much higher

than that of the simple pulse. Thus, most of the energy is concentrated in the main
lobe of the chirp PSF. The matched filter compresses the input to a pulse having the
time duration corresponding to the actual bandwidth, and therefore, the matched
filter output is sometimes called the compressed range profile.

Although such a filter provides an optimal SNR, the disadvantage is that the
signal has to be sampled according to the Nyquist rate, implying that a large number
of samples have to be stored, specially for wide band radars.

Deramping

Deramping, also known as stretch processing, is an alternative method to achieve
the high resolution of a chirp waveform with reduced sampling requirements. The
key idea is that the received chirp is demodulated with a complex conjugate time-
delayed replica of the transmitted chirp, which results in a constant frequency signal.
Considering the chirp waveform defined in (2.15) with a carrier frequency f0, this
replica, also known as the ’ramp’, is given by

r (t) = e2π j( f0(t−t0)+
α
2 (t−t0)

2) . (2.28)

where t0 is the time delay. The received signal has a time delay τ corresponding
to the range of the target as before. Down-mixing of the received signal with the
complex conjugate of the ramp results in

r∗ (t) s (t − τ) = rect
(

t − τ

Tp

)
e2π j( f0(t0−τ)+ α

2 (τ2−t2
0))e2π jα(t0−τ)t . (2.29)

The product of (2.29) can be split into three parts, the first term is the rect func-
tion, which represents a windowing in the time domain. The second term is an
exponential term that represents a phase factor. The important component is the
third term which has a constant frequency α(t0 − τ), corresponding to the range of
the target. The advantage of such a direct relation between the frequency and range
is that a bandpass filter can be applied such that the frequencies in the pass band cor-
respond to an adequate range window for the measurement. Thus, the bandwidth
of the output corresponds to the passband and is much smaller than the bandwidth
of the whole chirp. This reduces the sampling requirements, while preserving the
original range resolution. The only drawback is that the ranges outside the range
window are lost.

A brief note on k-space representation

For the upcoming sections on SAR and ISAR imaging, it is useful to consider the
more commonly used wavenumber domain representation of the chirp, also called
the ’k-space’ notation. The wavenumber, k, is defined by 2π f

c , and comes from the
theory of propagation of electromagnetic waves. For a chirp, the wavenumber kr
of the propagating wave can be divided into 2 parts: 1) k0, the contribution of the
carrier frequency f0, 2) kb, the contribution of the baseband, αt. Thus,

kr = k0 + kb =
2π

c
( f0 + αt) . (2.30)

(2.30) corresponds to multiplication of the instantaneous chirp frequency with a con-
stant factor of 2π

c . Based on this notation, the output of de-ramping in (2.29) can be
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FIGURE 2.6: Turntable Imaging [E20].

expressed in the k-space as
s (kr, R) = e−j2kr R. (2.31)

This is known as the ’normal form’ for a point scatterer at a range R, and is later
used for deriving the ISAR signal model.

2.3 Basics of SAR and ISAR imaging

A detailed description of the working of SAR and ISAR systems is out of the scope
of the thesis. However, since the algorithms developed in this work are tested on
measurements obtained using SAR and ISAR systems, a brief description of only
the relevant subtopics are provided in this section. A detailed description of the
working principles of SAR and ISAR systems may be found in [S99a].

2.3.1 ISAR imaging

In ISAR, the target is in motion while the radar is stationary. Since such conditions
can be created by placing a target on a rotating turntable , as shown in Fig. 2.6, it
suffices to use turntable imaging as a reference for ISAR in this work.

Consider the target to be moving with a fixed rotational speed ω. The rotation
is limited to the x − y plane and no z-component is present. It is assumed that the
radar is working in the far-field and the distance of the target to the radar, r0, is much
larger than the size of the target. The center of the x − y coordinate system lies in the
geometric center of the target and the x-axis corresponds to the line of sight (LOS) of
the radar for an azimuth angle ψ = 0.

Assume a point scatterer at (x, y) in this x − y coordinate system. For r0 ≫ x, y,
the distance of the scatterer to the radar can be approximated as

r (ψ, x, y) =
√
(r0 cos ψ + x)2 + (r0 sin ψ + y)2

≈ r0 + x cos ψ + y sin ψ . (2.32)
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This can be substituted in the normal form in (2.31). In order to derive the signal
model in the local coordinates x, y, the distance r0 is subtracted from the scatterer
range by multiplication with e−j2krr0 . Therefore, the normal form of a scatterer in x, y
coordinates is given by

s (kr, ψ, x, y) = e−j2kr(r(ψ,x,y)−r0) ≈ e−j2kr(x cos ψ+y sin ψ) . (2.33)

To calculate the received signal from the model, the target is assumed to be repre-
sented by the reflectivity distribution a(x, y). With this distribution, the received
noise-free signal can be written as

y (kr, ψ) ≈
∫ ∫

e−j2kr(x cos ψ+y sin ψ)a (x, y) dxdy . (2.34)

This is followed by a variable substitution step known as polar reformatting. The
substitutions are given by

kx = 2kr cos ψ ,
ky = 2kr sin ψ .

(2.35)

Based on these definitions kr and ψ can be expressed by

kr =
1
2

√
kx

2 + ky
2 ,

ψ = atan2
(
kx, ky

)
.

(2.36)

Substituting these representations of kr and ψ in (2.34), the received signal is given
by

y
(
kx, ky

)
=
∫ ∫

e−j(kxx+kyy)a (x, y) dxdy. (2.37)

(2.37) corresponds to the spatial Fourier Transform of a (x, y) in the variables kx and
ky. This implies that an estimate of the target reflectivity a (x, y) can be obtained by
an inverse Fourier Transform of the received signal over a range of aspect angles.
The range resolution of the estimate remains as described in (2.8), while the cross-
range resolution depends on the range of aspect angles and is given by

∆CR =
λ0

2ψint
, (2.38)

where, λ0 is the wavelength of the carrier frequency, and ψint is the covered range of
all aspect angles, also called the integration angle.

In practice, a Fast Fourier Transform (FFT) is used to obtain the target estimate.
However, a normal FFT works in rectangular coordinates, while ISAR imaging in-
volves sampling on a circular ring segment. Therefore, a direct FFT leads to blurring
effects, specially for large spans of the aspect angle. To avoid this effect, the standard
procedure is to perform an interpolation from polar coordinates to a rectangular
grid. This is called the Polar Format Processing. Nevertheless, the direct application
of the FFT is also quite popular, since the errors that occur due to the wrong grid
are negligible compared to errors due to imperfect knowledge of the target motion.
The direct application of the FFT without interpolation is known as Range-Doppler
processing. In this thesis, the algorithms are applied to images obtained using Polar
Format Processing .
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FIGURE 2.7: Synthetic Aperture Radar in Stripmap mode [E20].

2.3.2 SAR imaging

SAR Terminology

Based on Fig. 2.7, some terms commonly used in SAR are explained. Ideally, the
platform moves along a straight line. The antenna is mounted to achieve a side
looking geometry , i.e., the beam points orthogonal to the motion direction - or with
a certain squint angle - to the earth surface. The look direction is tilted by the de-
pression angle from the horizontal plane downwards. The area on ground covered
by the antenna main beam is called antenna footprint .

A SAR mission may operate in different modes, and a detailed explanation may
be found in [S99a]. In the ’stripmap’ mode, the goal is to image a strip of a certain
swath width slipped by the antenna footprint. In the ’spotlight’ mode, the aim is to
image a smaller area with finer resolution, and this is done by fixing the beam cen-
ter is to a certain point on the earth surface. A high resolution in range is obtained
by modulated transmit signals and pulse compression. It is important to differen-
tiate between the range in the line-of-sight, which is called the slant range, and the
range projected to the earth surface, known as the ground range. The ground range
resolution is coarser than the slant range resolution.

To obtain sufficient resolution parallel to the flight direction, the beamwidth of
the antenna for real aperture imaging has to be narrow enough, which requires the
antenna length to be some hundreds or thousands of meters. This is not possible in
practice. To overcome this handicap, the principle of a synthetic aperture is used,
i.e, the motion of the platform is used to generate a synthetic aperture. By the plat-
form’s movement, time is transformed into space - a synthetic array is spanned, the
recorded echoes are processed similar as for a real array by summing up the returns
after compensating the phases. In this way a synthetic beam is generated leading to
a fine resolution in azimuth direction.

SAR as Synthetic Antenna

Consider a synthetic array generated by the motion of the platform with velocity
V at a pulse repetition interval ∆T. The positions of this synthetic array are ξn =
−∞, . . . , ∞, with the spacing ∆x = V∆T. Fig. 2.8 shows the principle of a synthetic
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FIGURE 2.8: Focused SAR as synthetic array [E20].

array. Let a point scatterer be placed at the x-coordinate x = 0 at a distance ρ to the
flight path. By compensation of the phases effected by the varying distances from the
scatterer to the elements of the synthetic array, the received signals can be focused to
this point. Since, the length of the synthetic array is not restricted according to the
far field conditions, the phase terms of higher orders need to be accounted for. The
distance of an element of this synthetic array at position ξ to the point scatterer is
given by r0 (ξ; ρ) =

√
ρ2 + ξ2.

To focus a beam to the scatterer, the phase ψ (ξ; ρ) = −2krr0 (ξ; ρ) has to be com-
pensated by a ’phase shifter’. Since the array is synthetic, this phase shift has to be
performed in the processor. If all elements of the synthetic array along a synthetic
aperture of size Lx are taken into account, a beam is generated with a beamwidth in
terms of directional cosine of size δu = λ

2Lx
. The achieved resolution of the scene in

direction of the flight (azimuth resolution) will be δx = ρδu = ρ λ
2Lx

. This requires
that the scatterer is illuminated during the whole time where the platform is moving
along the synthetic aperture of length Lx. If the antenna has a fixed look direction -
as is the case for stripmap mode - and has the real beamwidth δua, only a restricted
azimuth length La of the scene is illuminated,i.e. the azimuth length of the antenna
footprint. This length is given by La = ρδua.

For stripmap SAR, the distance the platform is flying from a scatterer entering
into the mainbeam until its disappearance is La, too. So for this mode, the length of
the synthetic array Lx is bounded by Lx ≤ La. Consequently, the achievable azimuth
resolution for stripmap SAR is

δxmin = ρ
λ

2La
= ρ

λ

2ρδua
=

λ

2δua
. (2.39)

Using δua =
λ
lx

for the beamwidth of an antenna with real aperture lx, in (2.39),

δxmin =
λ

2δua
=

λ

2λlx
=

lx

2
. (2.40)
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FIGURE 2.9: Cylinder coordinates (x, ρ, v) for the description of sig-
nals from point scatterers [E20].

The key takeaway is that the minimum obtainable azimuth resolution of a SAR
in stripmap mode with an antenna of length lx is independent on the range and the
wavelength equal to the half length of the antenna.

2.3.3 SAR Geometry-cylinder coordinates and dimensions

The three dimensional SAR geometry can be reduced to two dimensions if the flight
path is considered to be a straight line. This transition in coordinates serves the basis
of the derivation of the signal model from the scatterer model. The three dimensional
geometry is illustrated in Fig. 2.9. The phase center of the antenna is placed in the
origin of the sensor coordinate system (x′, y, z), which is identically orientated as the
scene coordinate system (x, y, z). The platform moves at an altitude h with the con-
stant velocity V⃗ in direction of the x-axis, so the phase center is at the time T at the
position R⃗ (T) = (VT, 0, 0)t measured in the scene coordinate system. We denote
the x-component with ξ = VT. A scatterer at the position p⃗ in sensor coordinates
is seen by the radar at the vector r⃗ (ξ) whose length depends only on the x-position
and the slant range ρ =

√
y2 + z2. Therefore, it is convenient to introduce a cylindri-

cal coordinate system (x, ρ, v), where the third parameter, the elevation angle does
not influence the range function. It merely modulates the signal amplitude by the
antenna characteristics. So, ignoring the elevation, the geometry can be reduced to
two dimensions, (x, ρ) and (x′, ρ).

Let the position of a fixed scatterer be at (x, ρ). Range and directional cosine to
this scatterer as functions of ξ are given by

r (ξ; x, ρ) =

√
(x − ξ)2 + ρ2 , (2.41)

and
u (ξ; x, ρ) =

x − ξ

r (ξ; x, ρ)
, (2.42)

where, u (ξ; x, ρ) = cos α (ξ; x, ρ) is the x-component of the LOS vector u (ξ; x, ρ)
pointing to the scatterer, where α is the cone angle between x-axis and scatterer.



20 Chapter 2. Radar Working Principles

The range and directional cosine functions of ξ are called the range history and the
directional cosine history. If a scatterer is considered at x = 0, its histories are rep-
resentative for any scatterer with an arbitrary x-coordinate, since they only have to
be shifted in the ξ-variable by x to get the histories of this scatterer. Consequently
the representative histories are given by r0(ξ; ρ) = r(ξ; 0, ρ) and u0(ξ; ρ) = u(ξ; 0, ρ),
so r(ξ; x, ρ) = r0(ξ − x; ρ) and u(ξ; x, ρ) = u0(ξ − x; ρ). From the geometry, the
following expressions are obtained

r0(ξ; ρ) =
√

ξ2 + ρ2 , u0(ξ; ρ) = − ξ

r0(ξ; ρ)
(2.43)

2.3.4 The signal in two dimensions

Consider s (r) to be the transmitted signal, written as a function of the spatial vari-
able r defined in the previous section. The SAR signal in the (ξ, r) plane from a
scatterer at (x, ρ) can be expressed as follows:

sξ,r (ξ, r; x, ρ) = s (r − r0(ξ − x; ρ)) e−j2k0r0(ξ−x;ρ)D(u0(ξ − x; ρ)), (2.44)

where k0 is the wave number corresponding to the carrier frequency f0, and D(.)
refers to the two-way antenna characteristics.

As an aside, if the transmitted signal is a chirp, s (r) is expressed in the spatial
variable r as

s (r) = rect
(

r
rs

)
ejαπ( r

rs )
2

, (2.45)

where, the time duration of the chirp ts is transferred to the spatial extension rs =
tsc
2 .

Based on this, (2.44) becomes

sξ,r (ξ, r; x, ρ) = rect
(

r − r0(ξ − x; ρ)

rs

)
ejαπ

(
r−r0(ξ−x;ρ)

rs

)2

e−j2k0r0(ξ−x;ρ)D(u0(ξ − x; ρ)).

(2.46)
In the two-dimensional representation of the SAR signal in (2.46), it is observed that
the range shifted transmitted chirp is multiplied with the azimuth chirp in the ξ
dimension.

Next, an application of the Fourier Transform along the r dimension transfers the
signal from the (ξ, r) domain to the (ξ, kr) domain. The resultant signal model is as
follows:

sξ,kr (ξ, kr; x, ρ) = e−j2krr0(ξ;ρ)D (u0(ξ; ρ)) . (2.47)

Similarly, a spatial Fourier Transform along ξ gives

skx ,kr (kx, kr; x, ρ) = e−jkxxskx ,kr(kx, kr; 0, ρ)

= e−jkxx
∫

e−jkxξe−j2krr0(ξ;ρ)D(u0(ξ; ρ))dξ .
(2.48)

2.3.5 SAR processing

Principally, the raw 2D data could be processed to an image optimally, if for each
possible position of a point scatterer, the two-dimensional normalized matched fil-
ter for the model signal is applied. However, this leads to a very large computational
load. To avoid this, popular SAR processors exist where the range compression and
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FIGURE 2.10: Range Doppler Processor.

azimuth compression are usually applied one after the other. This section briefly
discusses two of the major processors: Range-Doppler processor and Omega-k pro-
cessor. A more detailed discussion on SAR processors is out of the scope of this work
and can be found in [S99b].

Range-Doppler Processor

The Range-Doppler processor starts with the classical range compression performed
in the range frequency domain. After range compression, the echoes of a point scat-
terer are not aligned in a straight row of the data matrix, but will migrate through
the range lines due to the hyperbolic variation of range along slow time. This is
called the range curvature problem. To solve this, first the data is transformed by an
azimuth FFT into the kx domain which was introduced in Section 2.3.4. The signals
of scatterers with the same ρ but varying x-coordinates are shifted in slow time; but
by the Fourier transform, the paths in the kx-domain are overlayed. Therefore, the
range curvature correction can be performed in the kx-domain simultaneously.

The phase for a certain kx can be transferred to the range by

r (ξ0, ρ) =
ρ
√

4kr
2 − kx

2

2kr
. (2.49)

From this, the variation of range over kx is obtained. All echoes are shifted back to
the value ρ. This can be performed either by interpolation or by an approximate
range curvature relating to the mean distance which can be executed in the range
frequency domain. Only for the reference ρ the correction is perfect. For smaller
or larger slant ranges, errors can be neglected while for others,a procedure called
differential range correction has to be performed. Finally, the azimuth compression
is completed by fast convolution along the rows. Fig. 2.10 gives the block diagram
for a Range-Doppler Processor.
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Omega-k Processor

The signal of a point scatterer at (x, ρ) in the kx, kr-domain was given in (2.48). Using
the principle of stationary phase, a simpler approximation of (2.48) is given by

skx ,kr (kx, kr; x, ρ) ≈ C(kx)e−j(kxx+ρ
√

4kr
2−kx

2)D
(

kx

2kr

)
. (2.50)

Therefore, the data will be the superposition of these signals with the azimuth re-
flectivity:

zkx ,kr (kx, kr) =
∫ ∫

skx ,kr (kx, kr; x, ρ) a (x, ρ) dxdρ

≈ C (kx)
∫ ∫

e−j(kxx+ρ
√

4kr
2−kx

2)D
(

kx

2kr

)
a (x, ρ) dxdρ .

(2.51)

Using kρ =
√

4kr
2 − kx

2, and performing the substitution

zkx ,kρ
(
kx, kρ

)
= zkx ,kr

(
kx, 2

√
kx

2 + kρ
2
)

, (2.52)

the data in the kx, kρ domain is given by,

zkx ,kρ
(
kx, kρ

)
≈ C (kx) D


 kx√

kx
2 + kρ

2



∫ ∫

e−j(kxx+kρρ)a(x, ρ)dxdρ

= C (kx) D


 kx√

kx
2 + kρ

2


 A

(
kx, kρ

)
,

(2.53)

with A
(
kx, kρ

)
being the two dimensional Fourier Transform of the reflectivity.

Therefore, the substitution transfers the data from the (kx, kr) domain into the 2D
Fourier Tranform of the reflectivity distribution, modulation by the antenna char-
acteristics. Stolt interpolation is applied to transfer the grid in (kx, kr) domain to(
kx, kρ

)
domain. Finally, only a two dimensional inverse Fourier Transform is re-

quired to obtain the focused SAR image. Fig. 2.11 gives the block diagram for the
Omega-k processor.
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FIGURE 2.11: Omega-k processor.
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Chapter 3

Basics of Compressed Sensing

In the last few years, the notion of ’sparsity’ or ’sparse representation’ has become
popular across multiple research areas in signal processing, machine learning and
any application involving optimization. Closely tied to this idea of sparsity is the
now well-established theory of Compressed Sensing (CS) [D06]. In this chapter, an
overview of these concepts is presented. A very important metric of evaluation of
CS sensing matrices, namely the coherence parameter, is discussed. Improvement of
this parameter becomes a major focus of a large part of the work done in this thesis.

3.1 The Signal: Sparsity and Compressibility

’Sparsity’ of a signal refers to the maximum number of non-zero elements needed
to represent the signal in a certain basis. Let x be a vector representing a sparse
signal. The support of a vector, supp, refers to the set of indices corresponding to
the non-zero elements in the vector. The l0 norm of vector x is given by

∥x∥0 := lim
p→0

∥x∥p
p = |supp (x)|, (3.1)

which refers to the cardinality of the support of vector x. x is known as an ’s-
sparse vector’ if

∥x∥0 ≤ s. (3.2)

A more relaxed version of the concept of sparsity is ’compressibility’. A vector is
said to be compressible if the error of its best s-term approximation decays quickly
in s. This means that the vector has s significantly large coefficients that can be used
to get the best s-term approximation.

By extension, the concept of sparsity or compressibility holds true when dealing
with a collection of vectors, i.e., a matrix. In the current work, ’sparsity of a scene’
being detected by a radar system comes up in the later chapters. This refers to the
fact that the 2D matrix of scene reflectivities is ’sparse’, i.e., the number of non-zero
reflectivities are small in comparison to the dimension of the grid used to discretize
the scene.

It is found that most signals in nature are sparse in some domain, i.e., they can
be represented by a small (sparse) number of non-zero components without loss of
important information. From this idea, stems the hunt for ’sparse representation’
of a signal. The main idea behind the theory of CS is this hunt for the best sparse
representation of a signal in a given basis, given a reduced set of measurements.
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3.2 The Sampling: why CS is necessary

But why is such a sparse representation necessary in the first place? In order to
understand the importance of sparse representation and CS, it is necessary to briefly
focus on the sampling of a signal.

The famous Shannon sampling theorem, also called Nyquist-Shannon theorem
(Theorem 1 of [S49]), states that, if a function, defined in time domain over a certain
interval, contains no frequencies higher than fmax, it is completely determined by
equally-spaced temporal samples at a rate 2 fmax (considering real-valued signals).
The proof given in [S49] is based on the fact that a sampling in the time domain
at this rate is sufficient to determine the Fourier transform of the signal, provided
that it is only non-zero in the frequency interval [− fmax, fmax]. If the signal in the
frequency domain is determined, it follows that it is also completely determined in
the time domain. Similarly, the sampling rate needed for a complex-valued signal in
the same frequency-interval is found to be fmax.

This sampling rate is known as the Nyquist-rate, and is a widespread standard
for the sampling of any band-limited signal. However, with the recent advent of
high resolution imaging, there is a need to sample large volumes of high frequency
data. Nyquist-rate sampling, in this case, gives rise to an excessive volume of data
that cannot be transmitted, stored or analyzed effectively. This leads to the original
idea of ’compression’ after sampling, i.e., a lot of data samples gathered in the sens-
ing step have to be condensed into few in the compression step, so that the data can
be processed effectively. In other words, the sensor gathers redundant information.

To prevent this wastage of effort at sampling, the concept of compressive sens-
ing was introduced. It entails compression at sensing and not after sensing. In other
words, the sensing gathers only non-redundant information. Differently from the
Shannon sampling theorem, that requires the signal to be band-limited, CS theory
is more general and requires the signal to be sparse in some known basis. Depend-
ing on the signal sparsity, the number of measurements required to achieve lossless
reconstruction might be much lower than that suggested by the Nyquist rate.

Based on this traditional view of ’Compression at Sensing’, the problem can also
be examined from a different perspective. What if this compression at sensing is
forced by environmental conditions or lack of resources? By the same logic, recon-
struction should still be possible, if the signal is sparse in some domain. In recent
years, such a ’forced compression at sensing’ has been caused by an exponential
rise in spectrum congestion [LMP+20]. The frequency spectrum is becoming a scare
resource that needs to be efficiently used. This has given rise to many spectrum-
efficient approaches such as spectrum sharing and joint communication and sensing.
These approaches explicitly place a limitation on the number of samples that can be
obtained in the sensing stage, thereby making the use of smart sensing schemes like
CS more popular.

3.3 The Sensing Matrix: CS Formulation

Any CS problem consists of three main components: the signal to be reconstructed,
the sensing matrix (composed of the measurement matrix and the sparsifying basis)
and the signal reconstruction method. This section provides the general mathemati-
cal formulation of a CS problem.

Let, the vector z ∈ CN represent a complex-valued signal with N samples that
has to be sensed. z is represented using a weighted linear combination of a number
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of elementary signals. These elementary signals constitute the columns of a ma-
trix ψψψ ∈ CN×N , which is commonly known as the ’basis’. The weighting of these
elementary signals are represented by the non-zero coefficients of the true sparse
vector x0 ∈ CN , corresponding to z. Consolidating this in an expression gives

z = ψψψx0. (3.3)

Thus the sparsifying basis ψψψ transforms the dense signal z into its true sparse repre-
sentation x0.

Till now, only the signal has been taken into consideration. The next important
component of the CS formulation is the measurement process, encapsulated in the
measurement matrix ϕϕϕ ∈ Cm×N . Consider, as before, the signal z ∈ CN to be sensed
in the original domain. The measurement vector y ∈ Cm is obtained by collecting m
discrete measurements of z, where typically m ≪ N. The measurements are gath-
ered via the sensing process which is represented by matrix ϕϕϕ. This can be written
as,

y = ϕϕϕz. (3.4)

Combining (3.3) and (3.4) gives

y = ϕϕϕψψψx0

= AAAx0,
(3.5)

where, AAA ∈ Cm×N , m ≪ N. Matrix AAA represents the measurement process as well as
the transformation by the sparsifying basis and is commonly known as the sensing
matrix.

(3.5) gives the general CS formulation. It presents a system of linear equations
that is typically highly under-determined and therefore, cannot be directly solved.
An alternative to a direct inversion that can be used is the pseudo-inversion or the
Moore-Penrose inversion. However, this approach does not take into account that
the vector x0 is sparse, and leads to a dense final estimate x̂ having non-zero weights
for many of its coefficients.

A better but idealistic approach is the minimization of the l0 norm of x, i.e.,

x̂ = arg min ∥x∥0 s.t. y = AAAx . (3.6)

But minimizing the l0 norm is NP-hard [NSI+19] and the main way to tackle this
is by using the convex relaxation of the l0 norm, i.e., the l1 norm minimization, given
by

x̂ = arg min ∥x∥1 s.t. y = AAAx . (3.7)

In practice, the measurement vector y is always affected by noise, and therefore,
the equality condition in (3.7) is too strict and may lead to a non-optimal solution.
The extension of (3.7) to the noisy scenario gives

x̂ = arg min ∥x∥1 s.t. ∥AAAx − y∥2 ≤ η , (3.8)

where η is the l2 norm of the noise vector in the measurement domain.
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3.4 Metrics to determine the quality of the Sensing Matrix

In theory, the sensing matrix AAA is required to fulfill certain conditions to ensure a
successful reconstruction of the desired vector x. This section briefly discusses these
conditions, namely the Null Space Property (NSP), the Restricted Isometric Property
(RIP), and a very important engineering workaround to the RIP, i.e., the coherence.

The null space of a matrix AAA is defined as the set of vectors that are projected to
the zero vector by it, i.e.,

N (AAA) := {x|AAAx = 0}. (3.9)

Let p and q be two distinct s-sparse vectors of length N, and p, q ∈ ∑s, where ∑s
denotes the subset of CN containing all s-sparse vectors. Their difference vector is
(p − q) ∈ ∑2s. The uniqueness of a reconstructed sparse vector can be ensured only
if N (AAA) ∩ ∑2s = 0. This means that the same y cannot be obtained from different x
vectors, since that would make it impossible to uniquely recover the signal.

Extending this idea to ’compressible vectors’, there must exist only one ’most
compressible’ vector for a certain cardinality of the vector support, so that the
uniqueness of the solution holds. Based on this idea, the matrix AAA is said to satisfy
the Null Space Property relative to a set S ⊂ [N] if for any vector v ∈ N (AAA)

∥vS∥1 < ∥vS̄∥1. (3.10)

If (3.10) is satisfied for all S with card(S) ≤ s, it is said to satisfy the null space
property of order s. If the matrix AAA satisfies the null space property of order s, it
means that there exists a unique s-sparse solution of (3.7) having a minimal l1 norm.

The sensing matrix AAA is said to satisfy the Restricted Isometric Property (RIP) of
order s if there exists δs ∈ (0, 1) such that

(1 − δs) ≤
∥AAAx∥2

2

∥x∥2
2

≤ (1 + δs) (3.11)

for all ∥x∥0 ≤ s. The RIP condition ensures that any subset of s columns of AAA consists
of vectors which are nearly orthogonal. If the matrix satisfies the RIP of order 2s, then
it implies that two different s-sparse vectors will not map to the same measurement
vector y and their distance is approximately preserved.

This RIP condition provides the foundation for a number of recovery guarantees
in CS literature. However, it is almost impossible to use the RIP condition in practice
, since it involves checking all the possible combinations of s columns of AAA to verify
if the condition given in (3.11) holds. A metric that provides a practical engineering
work around to the RIP is the ’coherence’ of the sensing matrix.

The coherence µ := µ (AAA) of a matrix AAA is defined as

µ := max
1≤i ̸=j≤N

|⟨ai , aj⟩|
∥ai∥∥aj∥

, (3.12)

where, ai denotes the ith column of AAA. It gives the maximum correlation between
any two columns of the matrix AAA. The coherence value represents the dependence
or similarity between the columns in a sensing matrix. A low value of coherence
implies that the columns are nearly orthogonal and therefore, a low coherence (or
high incoherence) is always desired for a better sparse reconstruction.

Intuitively, this can be explained as follows. The l1-norm minimization attempts
to provide a sparse x by concentrating the non-zero weights only on certain columns
of AAA, such that the resultant linear combination can best describe the signal y. If the
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columns are similar, such a concentration of energy on specific columns to obtain
a unique representation of y is difficult. Similar non-zero weights will be assigned
to the similar columns, causing a failure of the l1-minimization. There are many
theoretical results associated with coherence, and the most relevant ones are briefly
described in this section.

A popular way to visualize the coherence is by using the Gram matrix, GGG, of AAA,
which is defined as

GGG = AAAHAAA. (3.13)

If the columns of AAA are normalized, the coherence can be directly obtained by finding
the maximum of the absolute values of the off-diagonal elements of GGG, i.e.,

µ (AAA) = max
i ̸=j

|gi,j|, (3.14)

where gi,j denotes the element in the ith row and jth column of GGG. The maximum
value of µ is 1 for two identical columns, while the minimum bound is given by

µ (AAA) ≥
√

m − N
N(m − 1)

, (3.15)

which is commonly known as the Welch bound and is 0 for a square matrix (m = N).
From the coherence of AAA, a bound on the spark, which is defined as the smallest
number of columns of AAA that are linearly dependent, can be obtained, as shown in
(3.16). Provided that the condition spark (AAA) > 2s is sufficient to ensure uniqueness
of the solution to (3.7) and |supp (x) | = s, (3.16) leads to the sparsity requirement in
(3.17), given by

spark (AAA) ≥ 1 +
1

µ (AAA)
(3.16)

s <
1
2

(
1 +

1
µ (AAA)

)
. (3.17)

From (3.17), the coherence requirement for a given sparsity s becomes

µ (AAA) <
1

2s − 1
. (3.18)

(3.17) shows that if the coherence value is low, even not-so-sparse vectors, with
higher values of s may be recovered successfully. This is apparent if the extreme
case is considered, where µ = 0 and m = N. In such a case, there exists a one-to-one
mapping between x and y, and thus, x may be recovered irrespective of its sparsity.

For a small coherence value of µ (AAA) < c√
m , the condition from (3.18) is satisfied

if the number of measurements,
m ≥ Cs2, (3.19)

where C > 0 is a constant. The coherence parameter may also be used to ensure that
AAA satisfies the RIP condition. If

δs = (s − 1) µ (AAA) , s <
1

µ (AAA)
, (3.20)

then AAA satisfies the RIP condition with order s and restricted isometry constant δs.
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3.5 Classes of CS Algorithms

There are many approaches to solve (3.5) in order to obtain the sparsest representa-
tion of x. This section provides an overview of the three main classes of algorithms
that are used to solve the CS problem, namely:

1. Greedy approaches

2. Convex-optimization based approaches

3. Iterative Thresholding based approaches

3.5.1 Greedy Approaches

These approaches use locally optimal or ’greedy’ decisions at every iteration to con-
struct an estimate x̂ of the sparse vector x. Most algorithms belonging this category
proceed in two main steps:

• Projection of the residual: The residual r = y−AAAx̂ is projected over the sensing
matrix AAA,

c = AAAHr. (3.21)

For the first iteration, x̂ is an initial estimate which depends on the specific
scenario or algorithm used.

• Updating x̂ : The elements of c having the largest magnitudes are selected and
used to determine the current support, supp, for x̂. The coefficients of x̂ are
updated for the minimization of the data fidelity term ∥y − AAAsuppx̂supp∥2

2.

Since greedy methods are not the focus of this work, only the most popular
greedy algorithm, i.e., the Orthogonal Matching Pursuit (OMP), is discussed in this
section. The main steps of OMP are shown in Algorithm 1.

Algorithm 1: Orthogonal Matching pursuit (OMP)
Input: y, AAA, η, Nit

Initialization: x̂[0] = 0, r[0] = y, supp
(

x̂[0]
)
= {}, it = 1

Result: x̂[it], r[it]

while stopping criteria not met do
c[it] = AAAHr[it−1];

i[it] = arg maxi |c
[it]
i |/∥AAAi∥2;

supp
(

x̂[it]
)
= supp

(
x̂[it−1]

)
∪ i[it];

x̂[it]
supp(x̂[it])

= AAA†
supp(x̂[it])

y , x̂[it]
supp

(
x̂[it]
) = 0;

r[it] = y − AAAx̂[it];
if ∥r[it]∥2

2 ≤ η or it = Nit then
stop pursuit

else
it = it + 1

end
end

Following the general greedy algorithm structure, the residual r is projected onto
all the columns of the sensing matrix AAA to obtain the coefficient vector c. The goal is
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to remove the highest energy elements from the residual at every step. Therefore, in-
dex positions corresponding to the largest elements of c are added to the support and
x̂ is recalculated over the support by AAA†y, where AAA† is the Moore-Penrose pseudoin-
verse AAAH(AAAAAAH)−1. This allows all the non-zero elements of x̂ to be re-determined
at every step. This also ensures that the residual is orthogonal to the currently se-
lected columns of AAA (hence the name orthogonal matching pursuit), so that the same
support index is not re-selected in the next iteration.

3.5.2 Convex-Optimization based Approaches

The relaxation of the l0 norm to l1 norm discussed in [E10a] is known as ’convex
relaxation’. Such a relaxation allows the use of the convex optimization approach
to solve the l1-minimization problem, and is commonly known as ’basis pursuit’ for
(3.7), or ’basis pursuit for denoising’ for (3.8). A reiteration of the noisy form follows
for ease of the reader:

x̂ = arg min ∥x∥1 s.t. ∥AAAx − y∥2
2 ≤ η . (3.22)

This pursuit of the best basis encompasses many algorithms but in this section,
the focus is placed on the algorithms that are very popularly used or the ones that
have been used in later chapters for performance comparison.

An alternate version of the basis pursuit formulation arises from the statistics
and machine learning domain and is popularly known as the Least Angle Selection
and Shrinkage Operator (LASSO). It is given by,

x̂ = arg min
x

∥AAAx − y∥2
2 s.t. ∥x∥1 ≤ τ (3.23)

Both (3.22) and (3.23) have the same objective with slight variations arising from
the domains in which they are used. In signal processing, information about the
noise in the measurement, η is given more importance. On the other hand, in ma-
chine learning, the level of sparsity can be determined and as a result an upper
bound on the l1 norm is more suitable.

Both BP and LASSO are open-form constrained problems. An equivalent uncon-
strained form is given by

x̂ = arg min
x

∥AAAx − y∥2
2 + λ∥x∥1 , (3.24)

where λ is a regularizer that controls the trade-off between the data fidelity term,
∥AAAx − y∥2

2 and the sparsity term, ∥x∥1. (3.24) is an important starting point for the
algorithms used to solve the BP/LASSO problems. It also reappears in the Iterative
Thresholding algorithms discussed in the next section.

Following the widely referenced work from [CDS01], there are four main classes
of algorithms used to solve BP.

• Simplex Methods: The simplex method makes the temporal solution walk
along the edges of the convex polytope (i.e., a simplex). These methods start
by selection of an initial support such that the corresponding x̂0 has no neg-
ative elements. The algorithm works iteratively, by swapping one element in
the current support with another not included the set, till the support corre-
sponding to the best l1 minimization is achieved. Anti-cyclic rules are followed
to ensure that the swapping guarantees convergence to an optimal solution.
The Frank-Wolfe algorithm falls under the category of simplex methods and
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a Frank-Wolfe implementation of Beurling LASSO (BLASSO) has been later
used in the thesis [dG12], [LJS+13]. The basic steps of BLASSO are described
in Algorithm 2.

• Interior Point Methods: These methods, also called barrier methods, make the
solution traverse the interior of the polytope, thus starting from a point that is
well inside the interior. Starting with an estimate x̂0 > 0 which satisfies y = AAAx
(or its noisy variations based on the data), these methods iteratively sparsify
the solution (eg: via thresholding), until the significant non-zero components
stand out.

• Projected Gradient Methods: These methods iteratively move in the direction
of the negative gradient, and then project onto a feasible set. In the BP case,
the feasible set is determined by the sparsity constraint. This thesis uses a
specific implementation of such a method known as the Spectral Projection
Gradient (SPG) [BF08], [BF19]. SPG (or SPGL1) solves the BP problem by solv-
ing a sequence of LASSO problems for different values of τ. From the solution
to the LASSO problem at each step, the gradient of the Pareto curve is deter-
mined, which then allows root-finding as detailed in [BF08]. A big advantage
of SPGL1 is that it can be used on complex datasets, which is important for the
applications discussed in this work.

• Homotopy Methods: A homotopy between two continuous functions, say f
and g, is described as a continuous deformation from f into g. In the context of
l1 minimization given in (3.24), λ is the parameter that defines the homotopy.
If x̂ is the minimizer, it can be proved that x̂ = limλ→0+ xλ. This implies that for
a vanishing sequence of values of λ, the homotopy method gives a sequence
of minimizers that converges to the solution x̂ [H17].

Algorithm 2: Frank-Wolfe Implementation of Beurling LASSO (BLASSO)
Input: y, AAA, Nit,T
aInitialization: x̂[0] = 0, s[0] = 0, r[0] = y, a = 1

λmax(AAAH AAA)
, it = 1

Result: x̂[it]

while stopping criteria not met do
γ = 2

it+2 ;

∇[it−1] = AAAH
(

r[it−1]
)

;

ind = arg max
ind∈N

(
|∇[it−1] (ind) |

)
;

s[it−1](ind) = a (∇[it−1](ind))
|(∇[it−1](ind))|

;

x̂[it] = (1 − γ) x̂[it−1] + γs[it−1];
r[it] = y − AAAx̂[it];
if ∥r[it]∥2

2 ≤ T or it = Nit then
stop

else
it = it + 1

end
end
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3.5.3 Iterative Thresholding Approaches

The Iterative Thresholding approaches belong to the class of greedy methods. How-
ever, they have been extensively used in the thesis, and are therefore described sep-
arately in this section.

The two basic thresholding operators, soft and hard thresholding are first dis-
cussed. The hard thresholding operator, HT (x), assigns the values of all elements
below a certain threshold T to 0, i.e.,

HT (x) =

{
x, for |x| ≥ T
0, for |x| < T .

(3.25)

The soft thresholding operator, ST (x), is defined by

ST (x) =

{
x
|x| (|x| − T) , for |x| > T

0, else ,
(3.26)

and ST (x) represents the vector with the ST applied to each element of x. Since
the hard thresholding is quite straightforward, and Iterative Soft Thresholding Al-
gorithm (ISTA) reappears later in the thesis, this section focuses on discussing the
soft-thresholding operation.

Consider h (x) be a cost function which is differentiable for x ∈ CN . The gradient
of h (x) maybe given by g (x) = ∇xh (x). Then, a gradient algorithm for minimizing
h would follow

xit+1 = xit − µg
(

xit
)

, (3.27)

where µ controls the gradient step size. From (3.24), the cost function h (x) =
arg minx ∥AAAx − y∥2

2 + λ∥x∥1 is examined. This consists of two parts, h1 (x) =
arg minx ∥AAAx − y∥2

2 and h2 (x) = λ∥x∥1. The gradient method can be applied
alternately, i.e., first, the first part is decreased using the gradient g1 of h1, resulting
in an intermediate value x̃. Starting with this, the second part is decreased by
application of a modified gradient g2 of h2 and varying µ over the coefficients.

While the first part is differentiable for all x ∈ CN with the gradient g1 (x) =
∇x∥AAAx − y∥2

2 = AAAH (AAAx − y), the second term ∥x∥1 = ∑N
n=1 |xn| is not differentiable

if one or more coefficients of x are equal to zero. Upon closer inspection of h2, it is
noted that f (z) = |z| with complex z is differentiable everywhere, except for z = 0.
Precisely:

∇z|z| =
{

undefined, if z = 0
z
|z| , else .

(3.28)

Let the sign function extended to the complex numbers be defined by

sgn (z) =

{
0, if z = 0
z
|z| , else .

(3.29)

Obviously, ∇z|z| = sgn (z) for z ̸= 0. For the coefficients xn of xit which are
zero, nothing should be changed since |xn| is already at the minimum value, i.e.,
the function g2 replacing the gradient of λ∥x∥1 should be zero for those indices
with zero coefficient, which is already implemented in the function. Therefore,
(g2 (x))n = sgn (xn) for all n = 1, . . . , N.

A second refinement does not use only one µ for all coefficients, but introduces
values µn which may deviate from µ. It relates to those elements which are not
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zero, but a gradient step would ’overshoot’ zero: xn would be replaced by xn −
µλsgn (xn) = (|xn| − µλ) sgn (xn). In the case |xn| < µλ, such an overshooting
would happen and it would be optimum to replace µ with µn = |xn|

λ resulting in the
lowest possible value zero.

The updated value x̃ → x̂ in the second step results to

x̂n = x̃n − µ (g2 (x̃)) (3.30)

=

{
x̃n − µλsgn (x̃n) = (|x̃n| − µλ) sgn (xn), if |x̃n| ≥ µλ

0 else .
(3.31)

This is equivalent to the application of the soft thresholding operator with threshold
T = µλ.

(3.31) presents the main update step behind the iterative soft thresholding al-
gorithm (ISTA). Many variations of ISTA are available in literature, such as FISTA
[BT09], Turbo-ISTA (TSTA) [P23], etc. The basic form of the ISTA is summarized in
Algorithm 3.

Algorithm 3: Iterative Soft Thresholding Algorithm (ISTA)
Input: y, AAA, T, Nit
Initialization: x̂[0] = 0, r[0] = y, µ = 1

λmax(AAAH AAA)
, it = 1

Result: x̂[it], r[it]

while stopping criteria not met do
x[it] = ST

(
x[it−1] + µAAAHrit−1

)
;

r[it] = y − AAAx[it];
if ∥r[it]∥2

2 ≤ T or it = Nit then
stop thresholding

else
it = it + 1

end
end
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Chapter 4

Compressed Sensing for Radar

Till now, the working principle of a radar system and the theory of Compressed
Sensing (CS) were discussed separately. This chapter serves as the link between the
two areas and discusses compressed sensing applied to radars. An overview of the
various applications of CS to radar can be found in [E10b], [HAJ+15]. Here, the focus
is placed on radar scene reconstruction, under the logical assumption that the scene
is sparse. The CS formulation discussed in Chapter 3 is applied to the radar scene
detection problem mentioned in Chapter 2. Specifically, a radar-waveform depen-
dant, structured CS formulation is presented, which later serves as the foundation
for the main problem addressed in this thesis, i.e., CS for gapped-bands.

4.1 CS formulation for a general radar system

In Section 3.2, the importance of sparse representations in new-age signal processing
was discussed. Now, the focus is placed on signal processing for radar systems in
particular. As discussed in Chapter 2, traditional radar systems involve matched
filtering of the received signal sampled at the Nyquist rate. This, coupled with the
use of wide-band radar systems, leads to an enormous volume of data that requires
massive computational power to be analyzed in real time. In contrast, the scene that
is being detected is ’sparse’, i.e., the number of objects of interest are quite small
compared to the dimensions of the scene. Consequently, it makes sense to employ
CS for the general radar scene reconstruction problem.

In addition to the sampling issue, the requirement of a better range resolution
also favours the use of CS. A generic radar system can be viewed as a linear sys-
tem, where the goal is to establish a map between the measurement samples and
the scene reflectivities. Therefore, the reconstruction of the scene becomes a linear
inverse problem. The additional demand for a high range resolution implies that
the scene reconstruction must take place in a finer range grid, as compared to the
coarser grid defined by the measurement samples. This gives rise to an ill-posed
linear inverse problem or an under-determined system of linear equations. Based
on the discussions in Chapter 3, this further strengthens the argument that the CS
approach is a sensible way to tackle this problem.

In Chapter 2, the discussion focused on the properties of the commonly used
radar waveforms. Now, based on the idea of a ’sparse scene’, the radar signal model
for scene reconstruction is discussed. Some super-script and sub-script notations
are introduced to identify the stage of the signal in the processing workflow. The
baseband representations are identified by the superscript b, while the sub-scripts
Tx and Rx refer to the transmitted and received signals respectively. It is noted that
the arbitrary signal s (t) was considered in the baseband in Chapter 2 and here, it
corresponds to sb

Tx.



36 Chapter 4. Compressed Sensing for Radar

The sparse scene is modelled as a reflectivity distribution given by

hRange(t) =
s

∑
i=1

ρiδ(t − τi) , (4.1)

where ρi ∈ C denotes the complex-valued reflectivities of each target, s denotes the
number of targets (and consequently the sparsity in the CS problem) and the impulse
responses δ(t − τi) correspond to the peaks on the delay grid.

After convolution of the transmitted signal with the reflectivity distribution of
the scene, the received signal sRx is given by

sRx(t) = (sTx ∗ hRange)(t) =
s

∑
i=1

ρiU τi [sTx](t) , (4.2)

where U τi is the time-shift operator, and sTx is the signal transmitted with the car-
rier frequency fTx. Down-mixing of sRx with the reference signal leaves only one
additional phase term in the baseband signal due to fTx, i.e.,

sb
Rx(t) =

s

∑
i=1

ρisb
Tx(t − τi)e−j2π fTxτi , (4.3)

A more exhaustive discussion of this convolution-based interpretation of radar op-
eration can be found in [R14, pp. 90 - 99]. The DFT block now performs a Fourier
transform on the baseband signal and the resulting frequency-domain signal is given
by

F [sb
Rx]( f ) =

s

∑
i=1

ρiF [sb
Tx(t − τi)]( f )e−j2π( f+ fTx)τi . (4.4)

Thus, (4.4) provides the expression for a general received signal in baseband in the
frequency domain. It serves as the building block for the CS formulation and the
expression for any waveform can be plugged into it.

Reviewing the general CS formulation given in (3.5) from a radar perspective, y
is a vector of dimension m containing the available measurements, AAA is a sensing
matrix of dimension m × N, where m ≪ N, weighted by the spectrum of the signal
at hand, and x is an s-sparse reflectivity vector of dimension N, constructed from
the reflectivities ρj of targets in the scene. Considering the effects of white Gaussian
noise on the measurement vector y gives

y = AAAx + n . (4.5)

Expanding (4.5) for frequency domain representations based on (4.4) gives

y = ϕϕϕψψψx + n

=⇒ y =




sb
Tx( f1)

. . .
sb

Tx( fm)




︸ ︷︷ ︸
ϕϕϕ




e−j2π( f1+ fTx)τ1 ··· e−j2π( f1+ fTx)τN

e−j2π( f2+ fTx)τ1 ··· e−j2π( f2+ fTx)τN

...
. . .

...
e−j2π( fm+ fTx)τ1 ··· e−j2π( fm+ fTx)τN




︸ ︷︷ ︸
ψψψ




ρ(τ1)

ρ(τ2)

...
ρ(τN)




︸ ︷︷ ︸
x

+n ,

(4.6)
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where ψψψ represents a Fourier-like orthogonal sparsifying basis and ϕϕϕ represents the
synthesis matrix corresponding to a complete set of measurements as described in
[CT06].

Following the structure of the radar waveforms discussed in Section 2.2, the next
sections use (4.6) to formulate the problem based on different radar waveforms,
namely the pulsed waveform, the chirp or LFM waveform, and a special case of
the chirp, i.e., the FMCW.

4.1.1 CS Model for a Pulsed Radar

Following Section 2.2.1, the received signal vector from a single unit scatterer for a
rectangular pulsed radar, after baseband conversion, in the time domain is

y (t) = sb
Rx (t)

= ρsb
Tx(t − τ)e−j2π fTxτ . (4.7)

Considering the discrete version of y (t)

y =
s

∑
i=1

ρisb
Tx(t − τi)e−j2π fTxτi

=
s

∑
i=1

ρirect
(

t − τi

Tp

)
e−j2π fTxτi . (4.8)

A Fourier transform of (4.8) gives

y ( f ) =
s

∑
i=1

ρiTp sinc
(
π f Tp

)
e−j2π( f+ fTx)τi . (4.9)

From (4.9), sb
Tx( f ) = Tp sinc(π f Tp) can be used in (4.6), thereby giving the CS

model for a pulsed radar. Expanding the more concise CS formulation from (4.5)
gives, 



y( f1)
y( f2)

...
y( fm)


 =




a( f1,τ1) ··· a( f1,τN)
a( f2,τ1) ··· a( f2,τN)

...
. . .

...
a( fm ,τ1) ··· a( fm ,τN)







ρ(τ1)
ρ(τ2)

...
ρ(τN)


 + n , (4.10)

where a( fi, τj) = sb
Tx( fi)e−j2π( fi+ fTx)τj = Tp sinc(π fiTp)e−j2π( fi+ fTx)τj .

4.1.2 CS Model for a Chirp Radar

Similarly, following Section 2.2.2, the received signal vector from a single target with
a delay τ, in baseband, for an LFM radar or Chirp radar in the time domain is

y (t) = sb
Rx (t)

= ρsb
Tx(t − τ)e−j2π fTxτ . (4.11)

Considering the discrete version,

y =
s

∑
i=1

ρisb
Tx(t − τi)e−j2π fTxτi

=
s

∑
i=1

ρirect
(

t − τi

Tp

)
ej2π α

2 (t−τi)
2
e−j2π fTxτi . (4.12)
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A Fourier transform of (4.12) gives

y =
s

∑
i=1

ρis( fi)e−j2π( fi+ fTx)τi , (4.13)

where s( fi) may be obtained used the Fresnel Integrals as in (2.18) or approximated
by PSP as in (2.19). As before, expanding into the matrix-form CS model gives,




y( f1)
y( f2)

...
y( fm)


 =




a( f1,τ1) ··· a( f1,τN)
a( f2,τ1) ··· a( f2,τN)

...
. . .

...
a( fm ,τ1) ··· a( fm ,τN)







ρ(τ1)
ρ(τ2)

...
ρ(τN)


 + n , (4.14)

where a( fi, τj) = s( fi)e−j2π( fi+ fTx)τj .

Modeling a chirp radar with stretch processing : FMCW radar

Deramping or stretch processing is popularly used to exploit the high resolution
capabilities of a chirp radar while at the same time reducing the sampling require-
ments. If a chirp radar with deramping is considered, the design of the sensing
matrix will be different, i.e., it will constitute the beat frequency signals discussed in
(2.29).

Based on (2.29), the received signal after deramping is

y (t) = sRx (t) r∗ (t)
= ρ sRx (t − τ) r∗ (t)

= ρ rect
(

t − τ

Tp

)
e2π j( fTx(t0−τ)+ α

2 (τ2−t2
0))e2π j(αt(t0−τ)) . (4.15)

Now, considering the discretized version,

y =
s

∑
i=1

ρirect
(

t − τi

Tp

)
e2π j( fTx(t0−τi)+

α
2 (τ2

i −t2
0))e2π j(αt(t0−τi)) . (4.16)

As discussed in Section 2.2.2, the last term e2π jαt(t0−τi) has a constant frequency
α(t0 − τi), which corresponds to a specific range value. Therefore, (4.15) can be di-
rectly expanded to the matrix-form CS model giving,




y(t1)
y(t2)

...
y(tm)


 =




a(t1,τ1) ··· a(t1,τN)
a(t2,τ1) ··· a(t2,τN)

...
. . .

...
a(tm ,τ1) ··· a(tm ,τN)







ρ(τ1)
ρ(τ2)

...
ρ(τN)


 + n , (4.17)

where a(ti, τj) = rect
(

t−τi
Tp

)
e2π j( fTx(t0−τi)+

α
2 (τ2

i −t2
0))e2π j(αt(t0−τi)).
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Chapter 5

State of the Art (Methods) of
missing data recovery

In Section 3.2, it was mentioned that a lack of natural resources may lead to ’forced
compression at sensing’. The frequency spectrum has been known as one such ’lim-
ited natural resource’ since the late 80’s [J],[A94]. Concerns about spectrum alloca-
tion and congestion have existed for a very long time. However, a rapid increase in
the number of users of the frequency spectrum in the recent years has once again
brought this problem to light. Specifically, for radars and other remote sensing
modalities, there has been an increasing demand for better range resolution, for var-
ious applications such as tracking and surveillance, environmental monitoring, and
disaster management [GBC+13], [GCW+15]. Traditionally, such high range resolu-
tions are possible only when a scene is detected using a wide-band radar. However,
an exponential increase in spectrum congestion [LMP+20] has massively hindered
the availability of such wide frequency bands. With the exponential increase of wire-
less communication systems and sensing devices each year, this problem continues
to grow.

Due to such limitations on the frequency spectrum, sometimes only narrow-band
radars in disjoint frequency bands are be available for target detection. From a differ-
ent perspective, these narrow disjoint frequency bands can be viewed as a wide band
with continuous gaps or blocks of missing data. Recasting the disjoint frequency
band problem into such a ’gapped-band’ problem naturally opens up a plethora of
possibilities —- the massive body of work done on missing data estimation by var-
ious research communities may now be used to tackle this issue. This chapter aims
to provides an overview of the literature on missing data estimation techniques that
may be applied to the gapped frequency band problem.

5.0.1 Approaches from Spectral Estimation

The earliest work dealing with the estimation of missing data comes under the topic
of ’spectral estimation’. In [SLL00], the popular amplitude and phase estimation ap-
proach (APES) was extended to ’gapped’ amplitude and phase estimation (GAPES)
under the assumption that the spectral content of the unavailable samples was the
same as that of the available samples. The key idea behind the filter-bank approach
from APES was to improve the SNIR significantly enough to counterbalance the re-
duction in the number of samples and obtain a better spectral estimate. GAPES used
this spectral estimate to obtain the missing data samples. [SLL+09] provides another
missing data estimation technique based on the Iterative Adaptive Approach (IAA).
Here also, first an estimate of the spectrum was obtained from the available data,
which was then used to estimate the missing data samples. In [SLL+09], the focus
was placed on arbitrarily missing samples, and not on blocks or clusters of missing
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data. However, both these techniques posed a very high computational complexity
and were impractical for real-world applications. To combat this, [KRX+14] pro-
vided a fast implementation of IAA with applications to notched spectrum SAR,
that could deal with a small cluster of missing data samples (< 50%). [VXX+12]
also considered missing data samples in arbitrary patterns and provided faster im-
plementations of IAA and Sparse-learning via Iterative Minimization (SLIM) algo-
rithms.

It was observed in [SLL+09] that the IAA is very well suited for applications
where the estimate is sparse or atleast compressible. Such a scenario is a good fit
for radar applications since the number of targets in a scene being detected is quite
sparse in comparison to the dimensions of the scene. From this emerges the idea
of leveraging the sparsity of the scene for better estimation, which naturally leads
to the application of sparsity-aware signal processing techniques, a.k.a, CS, to the
gapped-band problem.

Recent research under the umbrella of CS includes a large amount of work on ob-
taining good sparse estimates in the presence of missing data. Most of these methods
work on solving an l1-minimization problem, under the assumption that the sensing
matrix satisfies the necessary coherence bounds. However, due to the unavailabil-
ity of a wide, contiguous frequency band, such coherence bounds are not met, thus
causing a failure of the conventional CS approaches. For instance, [YBZ20] discusses
a CS method for reconstruction of a SAR image in the presence of periodically miss-
ing data along the azimuth. This problem is not as ill-posed as having a continuous
block of missing data, and therefore, the discussed lp minimization may fail when
directly applied to the gapped-band problem. [GCB+18] discusses CS for ISAR im-
age super-resolution in the presence of missing data in the frequency or slow time
domain, and also provides an insightful performance comparison with traditional
super-resolution methods. However, it is assumed that the under-complete Fourier
matrices satisfy the RIP and provide sufficient non-coherence. The specific case of
having blocks of missing data is also not considered. [WX22] presents a gridless
CS approach based on atomic norm minimization to deal with tomographic SAR re-
construction in the presence of noise and limited data acquisitions. It highlights how
moving to finer grids contradicts the traditional CS sensing matrix requirements and
provides a new approach to tackle this issue.

A sub-branch of CS deals with the problem of missing data using ’group sparsity’
[YL06], [HZ10]. However, due to the unique structure of the sensing matrix dictated
by the radar system, the minimization used in such problems cannot be directly
applied to the gapped-band problem. The problem of ’missing information’ has also
been addressed from the aspect of noisy sensor networks in a series of papers based
on the mathematical model of Fusion Frames [ABL18], [CKL08]. The underlying
assumption of distributed sparsity involving sub-division of the scene itself does not
directly align with the band gap problem. Nevertheless, the concept of sub-division
may be used to deal with the gaps in the frequency band, as described later in the
thesis.

5.0.2 Deep Learning Approaches

Deep learning approaches to deal with general missing data estimation is vast. Here,
the focus is placed on super-resolution and missing data estimation techniques for
the specific case of radar signals and radar scene reconstruction. [YMS22] discusses
how to obtain a high resolution SAR image from a medium resolution image us-
ing SRGAN-SSIM. It adapts an existing SRGAN network for SAR and includes a
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SAR specific pre-processing step based on speckle noise suppression. [ZLQ19] pro-
poses a lightweight deep neural network for SAR super-resolution inspired by SR-
CNN [DLH+15] and aims to learn from residual features to reduce the number of
model parameters and improve the speed. [WZD+18] proposes a GAN model for
single image SAR super-resolution and experiments with a perceptual loss function
consisting of content loss and adversarial loss. [ABB+23] motivates that getting a
fine spatial resolution requires transmission of relatively large bandwidths, which
is difficult because of hardware limitations and frequency allocation issues. The
proposed DC2SCN network accounts for both real and imaginary components of
the SAR data, thereby retaining the phase information. As mentioned by other pa-
pers, [ST23] also states the difficulties in operating a high-bandwidth system, and
proposes deep-learning based multi-band signal fusion as an alternative solution.
Specifically, it implements a complex valued CNN called the kR-Net that allows
the model to learn features in both the wavenumber domain, or k-domain, and its
spectral domain, the R-domain. The proposed CV-CNN architecture fuses multi-
band data in the wavenumber domain to form an equivalent wide bandwidth signal
and claims to be the first to leverage the relationship between the k-domain and R-
domain. Apart from the model itself, the concept of multiband fusion relates closely
to the JCS approach, where such multiple bands might occur due to spectral occu-
pancy by communication signals. An interesting point in [ST23] is that it negates
the sparsity-based approaches based on the fact that traditional CS requires random
sampling to meet coherence requirements, which is not possible in practice. How-
ever, it does not delve into the structured CS formulation.

Deep learning has also been used in conjunction with concepts from CS to
achieve better resolution. In some cases deep learning is used for constructing
adaptive priors, while in others it is used for dictionary learning. [HLX+12] pro-
poses a multi-dictionary (sparse-basis) learning based CS for SAR super-resolution
and uses fundamental concepts from CS theory to ensure better reconstruction.
Multi-dictionary training is based on the fact that the high and low resolution
representations of a target patch map to the same (unique) sparse representation.
Additionally, [HLX+12] also discusses the optimization of the observation matrix
to reduce the coherence of the CS problem for lower reconstruction errors. [HZJ18]
also uses a similar idea to train a global joint dictionary model for adaptive
super-resolution of SAR images. [ASE23] proposes to use a generative model as
a prior to the under-determined inverse problem pertaining to super-resolution
of SAR images. MrSARP is trained in conjunction with a critic that scores multi
resolution images jointly to decide if they are realistic images of a target at different
resolutions. This deep generative model can be used to retrieve the high spatial
resolution image from low resolution images of the same target. The generative
model is interpreted as a learned projection function that can directly be used in
CS algorithms such as Projected Gradient Descent optimization and it offers more
flexibility on the commonly used sparsity prior.

A more interpretable deep learning approach based on unrolling or unfolding
tradition CS algorithms into a deep neural network has gained a lot of attention in
the recent years. [GL10] discussed this learned algorithm unrolling approach for
different versions of the Iterative Soft-Thresholding Algorithm. [MLE20] provides a
general overview of algorithm unrolling applied to image and signal processing and
its role in making deep learning networks more interpretable. [LLM+19], [ZG18] dis-
cusses applications of algorithm unrolling in multi-spectral image fusion and super-
resolution of optical images respectively.

One of the main problems with most deep-learning based methods is that they
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rely heavily on existing high-resolution scenes for training, and suffer from the lack
of reproducibility of results. However, explainable deep learning networks based on
algorithm unrolling are paving the way for a combination of model-based and data-
driven approaches, for better adaptive reconstruction. Again, it is observed, that the
notion of sparsity and CS plays a very important role in many of the existing works,
and are used as the foundation for many deep learning approaches.

5.0.3 Joint Communication and Sensing Approaches

The topic of joint communication and sensing (JCS) has become very popular
in recent years and has reappeared in literature under different names, like
Dual-Function Radar Communications (DFRC), Integrated Sensing and Communi-
cations (ISAC), Joint Communication and Radio Sensing (JCAS), Joint Radar (and)
Communications (JRC), Joint Communications (and) Radar (JCR) etc.

[LZC+23] presents a systematic overview of the topic, separately highlighting
the most important developments in radar and communication systems, from a sig-
nal processing point of view. Then, the components from both areas are used to
formulate a signal model for ISAC. [LZC+23] states that in order to combat the in-
tense competition for spectral resources, ’a variety of R&C systems have to cohab-
itate within multiple frequency bands, which, inevitably, incurs significant mutual
interference between the two functionalities’. Focusing on the first level of such an
integration, radar and communication systems need to share the frequency spec-
trum without interfering with one another. Traditionally this is done by allocating
narrow bands to radars, with enough margin to ensure manageable interference lev-
els. Following this approach, it is easy to recast the disjoint narrow bands into the
gapped-band problem.

[TDJ+21] provides an overview of the recent developments in JCS with a focus
on different system and network architectures and mentions how JCS may be con-
sidered a ’green’ resource saving approach. Under the topic of ’radar-centric’ signal
processing approaches, [TDJ+21] discusses how OFDM and TDMA are controlled
by the communication resource allocation, causing a sparse allocation of carriers in
the frequency-time plane. It is mentioned that this has detrimental effects on the
ambiguity function and CS maybe used to tackle such an issue. From the communi-
cations perspective, the need for data fusion in such a distributed sensing system is
also mentioned.

[ZLM+21] gives another detailed overview of JCS from a signal processing point
of view, particularly aiming to cover the gap in literature for receiver signal process-
ing. As before, the discussion is divided into 2 parts: communication-centric design
and radar-centric design. For the former, it is stated that since most communica-
tion systems are complicated in terms of resource usage, ’they may be discontinu-
ous in one and more domains of space, frequency, and time’. This requires sens-
ing algorithms that have the capacity to handle ’discontinuous and varying-interval
samples’. This observation directly enforces the validity of the ’gapped-band’ per-
spective. Furthermore, the advantages and disadvantages of using on-grid/off-grid
CS to solve this issue are also discussed, with the main disadvantages being lack of
sparsity and complexity of CS formulation for real data. For the radar centric design,
the index modulation (IM) approach is given importance. IM in the spatial domain
has been used in [MSH+21], while IM in the frequency domain again points to the
gapped-band problem.

[WSL+21] also provides an interesting overview of JCS in terms of its role and
challenges in the shift from 5G to 6G. The paper states that localization and sensing
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need to be considered as an integral part of the communication network, and as not
an add-on. It highlights the technical enablers as well as the challenges in closing
this gap. Focusing on the discussion on joint waveforms and joint hardware as tech-
nical enablers, the authors mention that one of the most significant challenges for
orthogonal frequency-division multiplexing (OFDM) radar will be inter-carrier in-
terference (ICI), which destroys the orthogonality of sub-carriers and degrades the
performance of conventional FFT-based algorithms. This, again, translates directly
to the gapped band problem addressed in this thesis.

Apart from the overviews on JCS, both the sensing and communication commu-
nities have tried to add the other as an additional service, leading to communication-
centric or radar-centric JCS approaches. For instance, [CME18] is a radar-centric ap-
proach to the problem, where the prototype of a ’Xampling’ (compressive sampling)
based cognitive radar is discussed. The radar works in narrow disjoint bands identi-
fied by a cognitive radio (CRo) comm receiver which senses the spectrum from sub-
Nyquist samples and provides the radar with spectral occupancy information. In
[BT23], a communication-centric design is discussed where a non-contiguous spec-
trum assignment of OFDM signals is used to cover more bandwidth to aid the sens-
ing functionality. More communication-centric discussions are covered under the
topic of ’Perceptive Mobile Networks’ (PMNs), for example in [XSE+23], [ZRH+21].

It is evident that the concept of gaps in the spectrum keep appearing in literature
in different forms, and many existing works try to leverage sparsity-aware methods
such as CS to achieve improved sensing despite these gapped bands.
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Chapter 6

Problem Formulation

6.1 Problem Statement

Based on the state of the art, the key takeaways and challenges can be outlined as
follows:

• Continuous gaps in the frequency band occur as a result of hardware limita-
tions, regulations for spectrum accessibility, spectrum congestion, joint com-
munication and sensing, etc., resulting in a degradation of the radar range
resolution.

• Traditionally, this problem was approached under the topic of spectral estima-
tion but the computational load and fixed hyperparameters pose a practical
challenge.

• Sparsity was used to improve the reconstruction results, recasting the gapped
band problem into a CS problem. However, the incoherence requirements of
existing CS methods are not satisfied in the presence of continuous gaps.

• Deep learning based methods use a data-driven approach to successfully ad-
dress the issues with traditional spectral estimation. However, they pose chal-
lenges with reproducibility and in many cases require large amounts of high
and low resolution image pairs.

• Recently, with the push towards 6G, more practical ways of dealing with these
gaps, such as access schemes, CS based transceivers, etc., are proposed under
the topic of ’Joint communication and Sensing’. However, from a signal pro-
cessing perspective, the application of CS directly to the gapped-band problem
still persists.

Supported by these arguments, the problem statement of this thesis is given as
follows:

In order to overcome the degradation in radar range resolution caused by gaps in the
frequency band, a scientific investigation of popular Compressed Sensing methods applied to
gapped-band radars is necessary. An improved Compressed Sensing method that can provide
better localization in the presence of such gaps in real radar data is needed.
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6.2 The Gapped Band Problem

Mathematically, the aforementioned gap or gaps can be introduced into the CS for-
mulation with the help of a projection matrix PPP, such that

y = AAAx + n
= PPPϕϕϕψψψx + n

=⇒ y =




I 0 0 ··· 0
0 0 I ··· 0

. . .
I




︸ ︷︷ ︸
PPP




sb
Tx( f1)

. . .
sb

Tx( fm)




︸ ︷︷ ︸
ϕϕϕ

×



e−j2π( f1+ fTx)τ1 ··· e−j2π( f1+ fTx)τN

e−j2π( f2+ fTx)τ1 ··· e−j2π( f2+ fTx)τN

...
. . .

...
e−j2π( fm+ fTx)τ1 ··· e−j2π( fm+ fTx)τN




︸ ︷︷ ︸
ψψψ




ρ(τ1)

ρ(τ2)

...
ρ(τN)




︸ ︷︷ ︸
x

+n .

(6.1)

PPP introduces the gap in ϕϕϕψψψ, while the other terms remain as defined in (4.6). Now,
following the structure of the CS models for different radar waveforms in 4.1, the
gapped CS problem is defined for each case.

6.2.1 Gapped CS Model for a Pulsed Radar

Gapped Pulse

Considering the rectangular pulse discussed in (2.5), the corresponding gapped CS
model is given by,




y( f1)
y( f2)

...
y( fm)


 =




I 0 0 ··· 0
0 0 I ··· 0

. . .
I







a( f1,τ1) ··· a( f1,τN)
a( f2,τ1) ··· a( f2,τN)

...
. . .

...
a( fm ,τ1) ··· a( fm ,τN)







ρ(τ1)
ρ(τ2)

...
ρ(τN)


 + n , (6.2)

where a( fi, τj) = sb
Tx( fi)e−j2π( fi+ fTx)τj = Tp sinc(π fiTp)e−j2π( fi+ fTx)τj .

6.2.2 Gapped CS Model for a Chirp Radar

Gapped chirp

In the case of a gapped chirp, the individual chirps are present in separate, non-
adjacent frequency bands and exist in different time intervals. Therefore, the gap
exists both in time and in frequency. The gapped chirp in time domain is given by

yb
Tx(t) = ejπαt2

l

∑
i=1

rect
(

t − τi

Ti

)
, (6.3)

where the rect(·) function represents parts of the available signal, obtained at differ-
ent time windows and l represents the total number of individual chirps.
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The Fourier transform of the gapped chirp is given by

F [yb
Tx]( f ) =

∫ +∞

−∞
ejπαt2

(
l

∑
i=1

1√
Ti

rect
(

t − τi

Ti

))
e−j2π f tdt

=
l

∑
i=1

1√
Ti

∫ Ti
2 +τi

−Ti
2 +τi

ejπ(αt2−2 f t)dt

=
l

∑
i=1

1√
Ti

∫ Ti
2

−Ti
2

ejπ(α(ti+τi)
2−2( f (ti+τi))dti . (6.4)

The second equation of (6.4) involves a change of the integration variable from −Ti
2 +

τi to −Ti
2 in order to align the given integral with the standard Fourier Transform of

a chirp signal as given by (2.17). This represents a re-centering of the sub-chirps
around the zero of the time axis, which in turn yields the coefficient ej2π( α

2 τ2
i − f τi).

The final formulation of the Fourier Transform of the gapped chirp signal of (6.3) is

F [yb
Tx]( f ) =

l

∑
i=1

1√
Ti

(
ej2π( α

2 τ2
i − f τi)

×
∫ Ti

2

−Ti
2

ejπ(αt2−2( f−ατi)t)dt
)

. (6.5)

Comparing with (2.17), the term 2 f t in the integral is replaced by the term 2( f −
ατi)t. This frequency-shift term represents the center frequency of each sub-chirp.
Applying Fresnel integrals defined in (2.18) to (6.5) yields the final description of the
gapped chirp in frequency domain as

F [yb
Tx]( f ) =

l

∑
i=1

1√
Ti

(
ej2π( α

2 τ2
i − f τi)

×
√

1
2α

e−jπ ( f−ατi)
2

α [Z (u2)− Z (u1)]

)
. (6.6)

Similarly, applying the PSP, as given in (2.19), to (6.5) gives (derivation in Appendix.
A.1)

F [yb
Tx]( f ) =

l

∑
i=1

1√
Ti

(
ej2π( α

2 τ2
i − f τi)

×
√

−1
α

e
−jπ

4 e
j2π

(
− f 2
2α + f τi+

−ατ2
i

2

)

× rect
(

f − ατi

αTi

))
. (6.7)

In order to validate the frequency domain representation obtained using Fresnel
integrals, it is compared to a direct FFT of the gapped-signal. Fig. 6.1 shows that both
the methods give identical amplitude and phase spectra in the relevant frequency
band.

Fig. 6.3 shows the spectra of 2 LFM signals. The first spectrum (in blue) is based
on a signal that is gapped in both time and frequency, as described by (6.5). For the
second spectrum (in red), the signal has a gap in frequency but the gap in time is
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FIGURE 6.1: Spectra of gapped chirp signals using FFT and Fresnel
Integrals [GBH+22].
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FIGURE 6.2: Time-Frequency Plot with gap in both time and fre-
quency (green) and gap in frequency, jump in time (red) [GBH+22].

removed. This is done by time shifting each individual chirp from (6.3), such that
they are continuous in time. As a result, the frequency jumps at the end of each sub-
chirp to the initial frequency of the next sub-chirp. This time-continuous spectrum
can be derived by incorporating the time-shifts into the leading coefficients of (6.6)
such that

F [yb
Tx]( f ) = e−j2πtc

l

∑
i=1

(
e−j2π f τd

i ej2π( α
2 τ2

i − f τi)

×
√

Ti

2β
e−jπ ( f−ατi)

2

α [Z (u2)− Z (u1)]

) (6.8)

where τd
1 = 0, τd

2 =
(

τ1 +
T1
2

)
+
(

T2
2 − τ2

)
and the remaining τd

i , i = 3, · · · , l are
given by

τd
i =

(
τ1 +

T1

2

)
+

i−1

∑
p=2

Tp +

(
Ti

2
− τi

)
.

The phase term e−j2πtc represents a shift in time, tc, that re-centers the whole time-
continuous chirp around the zero of the time-axis. Note that the first sub-chirp is
the reference for the time shifting of the other sub-chirps and the τd

i s are all neg-
ative since the shift is always to the left. The time periods (Ti) and the original
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time shifts (τi) of the center of each chirp from zero allow us to determine the ad-
ditional shifts needed to make the entire signal time-continuous. Finally, this time-
continuous signal is re-centered around the zero of the time axis, as shown in Fig.
6.3. The top figure in Fig. 6.3 shows the change in frequency over time for both the
time-continuous and gapped-time chirps. The middle figure shows the amplitude
spectra for both chirps. Since they have the exact same energy at identical frequency
sub-bands, there is a complete overlap of the spectra. The bottom figure shows the
phase spectra from both chirps. The difference between the spectra is due to the
extra phase term introduced by the time shift given in (6.8).

Gapped CS model

Following 4.14, the gapped CS model for a chirp radar is



y( f1)
y( f2)

...
y( fm)


 =




I 0 0 ··· 0
0 0 I ··· 0

. . .
I







a( f1,τ1) ··· a( f1,τN)
a( f2,τ1) ··· a( f2,τN)

...
. . .

...
a( fm ,τ1) ··· a( fm ,τN)







ρ(τ1)
ρ(τ2)

...
ρ(τN)


 + n , (6.9)

where a( fi, τj) = s( fi)e−j2π( fi+ fTx)τj .

Modeling gaps in a chirp radar with stretch processing : FMCW radar

The working principle of an FMCW Radar was described in Chapter 2. In this sec-
tion, the gapped-signal structure for FMCW radars is explored and the correspond-
ing sensing matrix construction is discussed.

The frequency-domain sensing matrix can be used directly in a CS problem, as
seen in (4.14). However, there are certain disadvantages of using this version of the
sensing matrix in practice. The conversion of the received chirp signals from the
time domain to frequency domain causes a significant computational load, specially
when there are a large number of samples. Additionally, the construction of the
frequency-domain sensing matrix is based on a general radar signal and does not
take into account the advantages of certain specific system designs.

FMCW radars are a special implementation of radar systems where the received
LFM signals undergo ’stretch processing’ or ’de-ramp processing’ to give interme-
diate frequency signals or ’beat frequency’ signals, as described in Chapter 2. If
an FMCW radar based system design is considered, the sensing matrix becomes a
dictionary of beat frequency signals, as demonstrated in (4.17). Here, this model is
extended to a gapped model. Instead of using the projection matrix PPP to mathemat-
ically introduce a gap, a more practical approach is discussed.

The FMCW signal model allows an indirect definition of the band gap by at-
tributing the sub-chirps to individual FMCW radar systems, creating a group of
independent but spatially co-located systems in the process. This idea is shown in
Fig. 6.4, and is closer to how a gap would occur in a practical system of radars.
The conventional matched filter is replaced by a CS block, which performs the range
processing using the beat frequency signals from each radar system. This gapped
FMCW signal model is elaborated in the following sections.

FMCW signal model

Consider a reference LFM signal

y(t) = ej(2π fTxt+παt2)rect
(

t
Tp

)
, (6.10)
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FIGURE 6.4: Schematic depiction of the system structure based on
multiple LFM systems with a joint evaluation of the beat frequency

signals.

where fTx is the transmit frequency (or center frequency) of the signal, α is the slope,
and Tp is the pulse duration. Stretch processing of this reference LFM signal gives
the reference beat frequency signal (derivation in A.2)

y
τj
IF(t) = ej(2π fTx(t0−τj)+πα(τ2

j −t2
0)−2παt(τj−t0))rect

(
t − τj

Tp

)
rect

(
t − t0

Tp

)
, (6.11)

where τj is the time delay of the signal backscattered from a target at the jth index
of the delay grid.

In practice, multiple sub-LFM signals are received in the CS block, each corre-
sponding to an FMCW radar. Theoretically, this can be expressed by windowing the
reference LFM signal into multiple sub-LFM signals, similar to (6.3). Each sub-LFM
signal is defined by

y(t) = ej(2π fTxt+παt2)rect
(

t − τi

Ti

)
, (6.12)

where i = 1, . . . , M, and M corresponds to the total number of FMCW radar sys-
tems. Since each individual system operates within its own time basis, the sub-LFM
signals in the global time basis t are to be transferred into the individual times bases,
t̃i, by defining time-shifts τi, i.e., t̃i = t − τi. Using this variable substitution in (6.12),
the sub-LFM signals are described as

ỹi (t̃i) = ej(2π fTx(t̃i+τi)+πα(t̃i+τi)
2
)rect

(
t̃i

Ti

)

= ej(2π( fTx−ατi)t̃i+παt̃2
i −2π fTxτi+πατ2

i )rect
(

t̃i

Ti

)
. (6.13)

The beat frequency signals corresponding to a sub-LFM signal from the ith

FMCW radar for a target with a delay of τj can be expressed as

ỹ
τj
IF,i (t̃i) = ej(2π( fTx−ατi)(t0−τj)+πα(τ2

j −t2
0)−2παt̃i(τj−t0))rect

(
t̃i − τj

Ti

)
rect

(
t̃i − t0

Ti

)
.

(6.14)
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FIGURE 6.5: Phase alignment of the sub-LFM signals with the refer-
ence signal.

A comparison of the sub-LFM signal equations and the reference signal equa-
tions shows that there are additional terms in the sub-LFM signals, that dictate im-
portant time-frequency relationships in the signal model. This is elaborated as fol-
lows.

An examination of (6.10) and (6.13) shows that −2π fTxτi + πατ2
i in (6.13) is an

additional term, which serves the purpose of aligning the sub-LFM signals to the
reference LFM signal in phase. This is demonstrated by the beat frequency (or IF)
signals shown in Fig. 6.5. The beat frequency signal corresponding to the reference
LFM signal (s-IF) is indicated by the blue line. The solid lines (s-IF1-independent,
s-IF2-independent) indicate the beat frequency signals corresponding to 2 sub-LFM
signals, centered at 0. The dotted lines (s-IF1, s-IF2) indicate the same sub-LFM beat
frequency signals, but now with a certain phase shift. It is seen that this phase shift
is different for the 2 signals, and it exactly aligns the sub-LFM beat frequency signals
to the reference LFM beat frequency signal. This phase shift is determined by the
term −2π fTxτi + πατ2

i . This term appears only in the sub-LFM expression. It does
not influence the eventual sub-LFM beat frequency signal ỹ

τj
IF,i.

A comparison of the structure of equations (6.11) and (6.14) shows that a fre-
quency shift term −ατi is added to the transmit frequency of the reference signal in
(6.14). ( fTx − ατi) defines the center frequencies fTx,i of the sub-LFM signals. τi also
happens to be the time shift applied during the windowing of the reference signal
and transfer to the local time basis of each radar system. It is evident that this time
shift directly affects the frequency shift applied to the reference center frequency, giv-
ing the sub-LFM center frequencies. Therefore, the temporal shift or temporal gap
between the subchirps from the different FMCW systems corresponds to the gap in
their frequency bands. It is sufficient to know the respective center frequencies of a
series of LFM signals in order to establish the individual relationships between then
using the temporal gap (for a given slope α).

In this context, the temporal relation between the reference beat signal and sub-
LFM beat signals is directly related to the temporal/frequency relation between the
reference LFM signal and the sub-LFM signals. That is, (6.14) can also be obtained
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by applying the same sequence of rect(.) signals to y
τj
IF(t)

1 and performing the sub-
stitution t̃i = t − τi as before. The term −ατi

(
t0 − τj

)
is the initial phase shift due to

temporal shift of a sub-LFM signal with respect to the reference LFM signal, which
encompasses the center-frequency shift for the sub-LFM signals. This re-establishes
the fact that the gap in the frequency spectrum is reflected as a temporal gap.

Construction of sensing matrix in time domain

For the construction of the sensing matrix, it is necessary to consider the maximal
delay, since this defines the rect window for all beat signals of the individual sys-
tems2. The sub-signals ỹ

τj
IF,i(t̃i) of the multiple individual systems i and individual

beat frequencies j can be arranged to yield



ỹIF,1
ỹIF,2

...
ỹIF,M


 =




ỹτ1
IF,1 ỹτ2

IF,1 · · · ỹτN
IF,1

ỹτ1
IF,2 ỹτ2

IF,2 · · · ỹτN
IF,2

...
...

. . .
...

ỹτ1
IF,M ỹτ2

IF,M · · · ỹτN
IF,M







x(τ1)
x(τ2)

...
x(τN)


 + n , (6.15)

where the τ1..τN are assumed to be equidistantly separated, τN = τj,max, and M is
the number of sub-LFM signals or individual radar systems. (6.15) follows the same
CS problem structure as described in 4.17. However, the matrix of (6.15) now fol-
lows a block (row) form. That is, each block row consists of rows of time-domain
measurements from individual radar systems. The range grid spacing, i.e, the spac-
ing between the τj, can be arbitrarily set so as to meet the required resolution. The
subdivision along the block rows follows from the available frequency bands where
the radars operate.

Synchronization : This section takes into account the effect of time and frequency
synchronization errors [TLZ09] for the beat frequency signal defined in (6.13). For
a system of FMCW radars as discussed in this Section, it is necessary that the indi-
vidual systems are synchronized so that their center frequencies, or rather the band
gaps, agree with the assumptions that the sensing matrix is based upon. Or vice-
versa, the actual individual center frequencies are known and the sensing matrix is
constructed accordingly. Three main synchronization error terms are considered—
error in transmitter frequency ( f Tx

e ), error in receiver frequency ( f Rx
e ), and error in

time, since the receiver does not know exactly when the pulse was sent by the trans-
mitter (t̃R). Based on these errors, the modified time and frequencies are expressed
as

˜fTx = fTx + f Tx
e , ˜fRx = fTx + f Rx

e , t̃R = t̃i − te ,

where ˜fTx and ˜fRx are the modified transmitter and receiver frequencies, and t̃R is the
modified time basis for the individual sub-LFM signals. If the system is co-located,
˜fTx = ˜fRx or f Tx

e = f Rx
e .

1This has to be done while taking into account that the windowing rect
(

t−τj
Tp

)
rect

(
t−t0
Tp

)
needs to

be done for each rect(.) of this sequence individually.
2Or the design of the respective systems, which might differ from this straight-forward mathemat-

ical description
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The sub-LFM signal remains as defined by (6.12). However, the down-mixing is
affected due to the synchronization errors and (6.13) is replaced by

ỹ
τj
IF,i,sync (t̃i) =

(
U te [yRx] ∗ U τj [yTx]

)
(t̃i)

= ỹ
τj
IF,i (t̃i) e2π j(a−b+c) ,

(6.16)

where U τi is the time-shift operator, a = ( f Rx
e − f Tx

e )(t̃i − τi), b = ( ˜fRx and c =
k
2 (t

2
e − 2t̃ite). Therefore, the synchronization errors appear as errors in phase. The

term e2π j(( f Rx
e − f Tx

e )(t̃i−τi)) describes the error arising from the mismatch of the trans-
mitter and receiver frequencies. This term will disappear if a co-located system is
considered. e−2π j( fRx+kτi)te signifies an additional shift in the center frequency of the
individual sub-LFM signals. The term e2π k

2 (t
2
e−2t̃ite)) signifies an error in the delay

from a target, which will lead to an error in the detected range. Since a synchro-
nization in the order of nano-seconds is required for the problem at hand, the syn-
chronization errors can be overcome by using the same oscillator for the individual,
co-located radar systems.
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Chapter 7

Compressed Sensing Methods to
tackle the gapped-band problem

The previous chapter concentrated on the theoretical aspect of the formulation of
a structured sensing matrix for a gapped-band scenario. This chapter introduces 2
algorithms based on CS for target detection in the presence of such a gap. The first
algorithm is a subdivision-based CS approach which uses the previously discussed
structured sensing matrices. The second algorithm is based on the idea of approxi-
mated observation, where the sensing matrix is replaced by a SAR processor block.
For both algorithms, simulation results and results obtained on real radar data are
discussed.

7.1 A CS based Subdivision-Fusion Algorithm

As discussed previously, a signal with a spectral gap can be cast into an under-
determined system of linear equations, making this a problem that may be solved
using CS techniques. However, such a continuous gap limits the feasibility of the
CS estimation. In this chapter, a ’Subdivision-Fusion’ (SF) algorithm is explored to
deal with this problem. The core idea is inspired by the work on fusion frames in
[CKL08; ABL18]. A direct application of [CKL08; ABL18] to the current problem
would result in a non-coherent estimation. Nevertheless, the concept of subdividing
an ill-posed CS problem, followed by fusion of the results, can be utilized. The main
idea of the algorithm is briefly outlined as follows. A finely-spaced range grid in the
scene domain leads to a high coherence of the gapped sensing matrix and as result,
the reconstruction of the sparse scene vector by CS algorithms becomes unstable.
Greater robustness can be achieved if the overall problem is broken down into mul-
tiple sub-problems, each with a coarser range grid, spanning different portions of
the fine range grid (subdivision). As a result, each sub-problem now corresponds to
a sensing matrix with a smaller number of columns that are further apart in range, in
comparison with the columns of the original sensing matrix. This leads to a reduc-
tion in the respective coherences. A now more robust CS reconstruction is applied
to each sub-problem, whereby some of the contributions from positions that do not
lie on the coarse grid are of course lost. But in the following step (fusion), the results
are merged and lead to an improved reconstruction of the overall vector.

The algorithm is described in detail in 7.1.2. In 7.1.3, the differences between the
proposed method and some of the existing research in the same area are pointed out.
This is followed by the simulation results and results on real radar data.
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TABLE 7.1: Band gap vs. coherence of corresponding sensing matrix
(the aspect of multiple gaps will be considered in section 7.1.4)

Band Gap as Fraction of Whole Band
Whole Band (W) 0.1W 0.5W 0.7W 0.9W

1 MHz 0.14 0.65 0.85 0.98
10 MHz 0.16 0.62 0.86 0.98
100 MHz 0.15 0.65 0.85 0.98

1 GHz 0.15 0.67 0.87 0.98

7.1.1 Preliminaries

Effects of band bap on coherence of the CS sensing matrix

Be it in the frequency domain or time domain, a gap essentially subdivides the sens-
ing matrix into blocks. In order to get a good sparse estimate from the CS formu-
lation, the columns of the sensing matrix should be as dissimilar as possible. In
other words, their inner product should be very small. Now, due to the band gap,
there exists a gap along the rows, and a part of the frequency content responsible
for making adjacent columns dissimilar is lost. As a result, the degree of similarity
of adjacent columns—measured by their inner product, or more specifically, their
mutual coherence—increases. The larger the width of the gap, the more is the in-
formation lost and the closer this inner product becomes to one (considering nor-
malized columns). The resulting increased coherence of the sensing matrix leads to
an ill-posed CS problem for which conventional CS reconstruction methods fail to
provide a correct estimate. Table. 7.1 shows that given a frequency band of a certain
width, the coherence of the sensing matrix increases with increase in the width of
the gap. It also demonstrates that the coherence values are not affected by the width
of the whole band. The coherence solely depends on the ratio of width of the gap to
that of the whole band.

In order to tie this argument to the working of specific CS algorithms, consider
the popular greedy l1-minimization method known as Orthogonal Matching Pur-
suit (OMP) and a variation of the basis pursuit (BP) algorithm called Least Absolute
Shrinkage and Selection Operator (LASSO). OMP consists of two main steps: sup-
port update and residual calculation [BZ21]. If the coherence of AAA is large, it implies
that the columns are highly correlated and the neighboring elements of the sparse
vector have very similar contributions to the measurement vector y. Therefore, the
indices added to the support by OMP may not correspond to the true sparse esti-
mate. In case of LASSO or BP, high coherence means that the algorithm randomly
selects one of the similar elements from the sparse estimate and shrinks the oth-
ers. The selected position may be completely different from the true sparse estimate.
Detailed explanation of the effects of coherence on LASSO can be found under the
topic of ‘neighbourhood stability condition’ or the ’irreplacibility condition’ [FFG22],
[MY09].

Coherence and Range Resolution

Although the above outlined problem invalidates a straight-forward application of
CS to this class of problems, there are two aspects from radar and CS which can be
used to an advantage to get around this issue.
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FIGURE 7.1: Illustration of the range grid defined by the columns of
the CS sensing matrix.

Radar Range Cells: Theoretically, ’resolution’ here refers to the Rayleigh resolu-
tion of a chirped waveform defined in Section 2.2.1. Here, the focus is placed on
practical radar operation. In radar operation, the range is divided into discrete range
cells. Each cell is centered around a range grid point, which corresponds to a range
position c

2 τj. τj is defined by the entries of the sensing matrix as seen in previous
chapters. Such a discretization of range is a natural consequence of the digital eval-
uation of the received signal. It is used to provide an approximation of the actual,
possibly continuously-distributed positions of the targets in the scene.

The width of each cell in the range grid defines the desired range resolution ∆r.
Any object which lie in the range interval c

2

(
τj ± ∆τ

2

)
, is attributed to the same range

cell by a CS algorithm, and has an estimated range of c
2 τj. This implies that if the

width of the range cell is increased, i.e., a coarser grid is chosen, the CS algorithm
will detect the multiple, off-grid targets in the range cell as one target at the corre-
sponding range. The targets are of course indistinguishable in this case. If the width
of the range cell is reduced, the CS algorithm provides an estimate on a fine grid.
The multiple targets now lie in different range cells, and if the coherence of the CS
matrix is low, the targets will be distinguishable.

The Coherence parameter from Compressed Sensing: The coherence of the de-
rived sensing matrix, defined in Section 3.4, is given by the normalized maximum
distance between the columns of the sensing matrix AAA, i.e., the inner product of the
normalized columns, where each column corresponds to a delay τj on the delay grid.

Matching both aspects Against this interpretation of coherence, it is clear that co-
herence and range cell width, or range resolution, points to the same concept from
different perspectives. That is, the increase of the range cell width increases the spac-
ing between consecutive grid points. Intuitively, this pushes the adjacent columns to
be more ’dissimilar’. In other words, the mutual coherence between the columns of
the sensing matrix is reduced, resulting in a better-conditioned matrix. Thus, lower
the range resolution, coarser the range grid, lower the coherence value, and better is
the CS estimation. The challenge is to obtain a higher resolution, i.e., an estimate on
a fine range grid, despite this bottleneck.

Considering the worst-case scenario of targets present in adjacent range cells,
the mutual coherence of two adjacent columns of the sensing matrix, as shown in
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Fig. 7.1, is examined. Substituting the expression for the elements of the structured
sensing matrix described in 4.14 into 3.4,

µ (ai, ai+1) = max
1≤i≤N

|⟨ai, ai+1⟩|
∥ai∥∥ai+1∥

= max
1≤i≤N

|∑m
p=1
(
ap,i

∗ap,i+1
)
|

∥ai∥∥ai+1∥

= max
1≤i≤N

|∑m
p=1 s

(
fp
)2 ej2π( fp+ fTx)(τi−τi+1)|

|∑m
p=1 s

(
fp
)2 |

= max
1≤i≤N

|∑m
p=1 s

(
fp
)2 ej2π( fp+ fTx)∆τ|

|∑m
p=1 s

(
fp
)2 |

.

From 3.18, it can be observed that

µ (ai, ai+1) = max
1≤i≤N

|∑m
p=1 s

(
fp
)2 ej2π( fp+ fTx)∆τ|

|∑m
p=1 s

(
fp
)2 |

<
1

2s − 1
. (7.1)

(7.1) consolidates the relationship between the coherence µ, the sparsity s, and the
grid width ∆τ, and is used later for an analytical bound on the subdivision step of
the SF algorithm.

7.1.2 Algorithm Description

Based on the discussion in section 7.1.1, this section presents details of the
’Subdivision-Fusion Algorithm’ [GBH+22]. Algorithm 4 denotes the subdivision
step by S and the fusion step by B.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 · · ·
τN−3

τN−2
τN−1

τN

τ0 τ5 τ10 τ15 τN−3 τN

τ1 τ6 τ11 τ16 τN−2

τ2 τ7 τ12 τ17 τN−1

τ3 τ8 τ13 τN

τ4 τ9 τ14 τN

FIGURE 7.2: Illustration of sub-division of sensing matrix into coarse
grid for pre-estimation: every ksub-th (here: 5) fine-grid range cell be-
comes the center of a ksub times larger coarse range cell or ’supercell’.

Subdivision: In order to reduce the coherence for better performance of CS prob-
lems, the specific structure of the sensing matrix due to the radar framework is used
to an advantage. Every element of the sensing matrix AAA corresponds to a specific
point in the frequency and delay grid, A( fi, τj). Based on the discussion in 7.1.1,
if sub-matrices are constructed by taking columns at a specific distance from each
other in range, the coherence is lowered. Thus, AAA is divided into ksub sub-matrices,

An( fi, τjn) , (7.2)
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where i = 1, . . . , m, jn = n, n + ksub, n + 2ksub, . . . , N
ksub

, s.t, N
ksub

≫ m. The value of
ksub is chosen such that the sub-matrices are horizontal matrices, i.e., 2 ≤ ksub ≤ N

m .
Now, the original measurement vector y is represented as y = AAAnxn, n = 1, ..., ksub.

These ksub sub-problems are then directly solved using greedy methods or basis
pursuit minimization, i.e.,

xn = CS(AAAn, y) . (7.3)

Fusion (Support Estimation) Let each element of these sub-matrices be known as a
‘supercell’. Every supercell has ksub fine-grid positions and is centered at a particular
fine-grid position τjc , as shown in Fig. 7.2. In the original problem, every element of
the measurement vector y was represented by

y(i) =
N

∑
j=1

A( fi, τj)x(j) .

Since the same measurement vector y is represented using coarse-grid sub-matrices,
different estimates

yn(j) = ∑
jn

An( fi, τjn))x(jn) , (7.4)

are obtained, where n = 1, . . . , ksub, i = 1, . . . , m, and jn = n, n + ksub, n +
2ksub, . . . , N

ksub
, s.t., N

ksub
≫ M.

If a target lies exactly on τjc , the energy is maximum at the corresponding x(jn).
On the other hand, if a target lies at the border of two coarse grid-cells, the energy
is distributed almost equally between them, for eg., x(jn) and x(jn+1). The value
of x(jn) is the highest when the target is exactly on-grid and lower if the target is
off-grid. In order to transfer the coarse-grid estimates from each sub-problem to a
common fine-grid, a k-element Correction Factor (CF) array is constructed as fol-
lows.

First, an arbitrary on-grid target is considered on the fine-grid and the subdi-
vision step is performed. This gives ksub coarse-grid estimates for the said on-grid
target. Since we know the on-grid target and corresponding the coarse-grid targets,
the elements of the correction factor array CF can be obtained as the ratios of the
fine and coarse grid estimates. The CF element at the supercell where the target lies
exactly on τjc will have a value of one and will be the central element of the CF array.
CF values from the ± ksub−1

2 neighbouring cells fill the corresponding elements of the
array. Multiplication of the results from each sub-problem with this CF array mimics
an auto-correlation operation.

The individual fine-grid estimates from each sub-problem are then added and
the whole target estimate becomes

x(j) = ∑ CF(1 : ksub) x(jn) , (7.5)

where n = 1, . . . , ksub. CS algorithms, such as BP or LASSO, do not give a binary
estimate of the sparse vector, but a set of values representing the strength of each
element x(j) of the vector. Therefore, once the target estimate in the fine grid is
obtained, a variance-based thresholding algorithm such as Otsu’s method [O79] is
used to filter the estimate before obtaining the final support. After thresholding,
the corresponding support positions are stored in a support set S. For a simpler
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implementation, a CF array of ones of length ksub may also be used. Even in this
case, the value of the summation in (7.1.2) will be highest for the correct position in
the fine grid, and a stricter thresholding may be used.

Fusion (Target Estimation) The final estimate is given by solving a normal CS
problem over the support set S which was obtained in the previous step, such that

xfinal = CS(AAAS, y) . (7.6)

Due to the use of CS again in the final estimation step, the ’subdivision-fusion’
algorithm can be viewed as a nested-CS algorithm.

Algorithm 4: Subdivision-Fusion Algorithm-1
Data: sensing matrix AAA, measurement vector y
Result: xfinal
while n <= ksub do

I = 1;
for J = 1 to N

ksub
do

An(I) := A(:, J);
I := I + 1;
J := J + ksub;

end
xn := S(AAAn, y);

end
xfinal = B(AAA, y, xn);

7.1.3 Discussion

Comparison against Group sparsity: In many cases, CS can be viewed as a re-
gression problem, where the aim is to find important explanatory elements that pre-
dict the response variables in y. As opposed to individual elements, group sparsity
based CS methods focus on selecting groups of input variables xi that best represent
the response variables. The strength of each group then depends on the basis AAAi.
The extension of the popular LASSO problem to group sparsity gives [YL06]:

∥∥∥∥∥y −
N

∑
i=1

AAAixi

∥∥∥∥∥

2

+ λ
N

∑
i=1

∥xi∥Ki
, (7.7)

where ∥xi∥Ki
= (xi

′Kix)
1
2 , Ki denotes the positive definite matrices that define the

penalty term, and N refers to the number of groups. More details about group
LASSO can be found in [MGB08].

The above equation represents y as the direct sum of AAAixi. In the Subdivision-
Fusion algorithm, the individual CS problems may be viewed as different groups.
However, y is not the direct sum of these groups. Due to the radar-based structure of
the sensing matrix, it is important to perform the summation at the correct positions
based on the correction factor described in Section 7.1.2.
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Comparison against Fusion frames: A method to reconstruct a distributed sparse
signal from unavailable or noisy measurements is discussed in [ABL18]. In this pa-
per, a mathematical model of fusion frames is used in combination with modified
CS concepts to divide the problem into smaller sub-problems. The individual CS
results are then fused to obtain the final sparse estimate

x̂ = Sframe
−1

(
N

∑
i=1

x̂i

)
, (7.8)

where N is the number of groups, Sframe denotes the fusion frame operator defined
in [ABL18, Theorem 2.3], and x̂i denotes the individual CS estimates from local re-
covery problems.

[ABL18] assumes that the scene has distributed sparsity. Therefore, each sub-
space of the fusion frame system deals with a different part of the scene and captures
a different portion of the sparse estimate. However in this paper, the same scene is
detected using different parts of the frequency spectrum. The work presented in
this paper involves the subdivision of the sensing matrix corresponding to different
parts of the frequency spectrum—it does not involve subdivision of the scene.

Limitations based on sparsity: The design of a radar system limits the number of
measurements, m. Additionally, the requirement for low coherence of the sensing
matrix AAA limits the super-resolution factor, i.e., the number of fine grid points N
that can be supported. Therefore, given a specific m and N, an upper-bound on the
sparsity s of the scene can be determined from the relation [FR13, p.271],

m ≥ 2s ln(N/s) (7.9)

Since N ≫ s , (7.9) can be approximated to

m ≥ 2s ln(N) , (7.10)

which makes m
2 ln(N)

the upper bound of sparsity, in the case of a given N and limited
number of measurements m.

Another limitation of this approach, which is also given by the above inequal-
ities, relates to the maximal factor for the coarse grid. If it is assumed that for a
sparsity s all objects fall into different coarse cells and all ksub fine grid positions of
these coarse cells are selected as possible support positions, a total of sksub possible
support positions are defined for the calculation of the second stage of the algorithm.
Since this stage performs a CS estimation based on a selection of sksub columns of A,
sksub should not surpass m, i.e, m ≥ sksub, which is however the exact same inequal-
ity as in (7.9), (7.10). That means

m
s
≥ ksub = 2 ln(N/s) ,

if the tighter bound based on (7.9) is used.
Furthermore, ksub may be determined analytically from the relation between the

cell width, the coherence and the sparsity defined in (7.1). Expanding (7.1) for the
coarse-grid case,

µ (ai, ai+1) = max
1≤i≤N

|∑m
p=1 s

(
fp
)2 ej2π( fp+ fTx)(ksub−1)∆τ|

|∑m
p=1 s

(
fp
)2 |

<
1

2s − 1
. (7.11)
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FIGURE 7.3: Top figure shows the reconstruction results from the
Subdivision-Fusion Algorithm (in green) and the direct BLASSO (in
blue). The ground truth is denoted in red. The bottom figure
shows the support estimated by the Subdivision-Fusion Algorithm

(in green) and the support of the ground truth (in red) [GBH+22].
.

Therefore, the coherence acts as a bridge between the sparsity s and the number
of submatrices, ksub, needed for a unique reconstruction.

Relation to chirp sensing matrices A similar concept using a structured sensing
matrix is explored in [AHS+09]. Here, chirps define columns of the sensing matrix,
with each chirp having a different base frequency and chirp rate. The measured
signal is thus a weighted combination of a number of different chirps. However, in
this work, a single gapped-chirp is considered as the measured signal, in accordance
to the radar framework. [AHS+09] does not mention any links to radar application.

Relation to sequential estimation methods [DTD+12] defines the problem of
missing measurements as a case of having a well-determined but noisy system.
This work uses the stOMP algorithm to sequentially generate sparse estimates and
perform stage-wise fusion. Although the problem addressed is similar, the method
is significantly different from the current work, since here the sparse estimates are
independently generated and combined in a single fusion step.

7.1.4 Results

This section presents results demonstrating the performance of the proposed algo-
rithm. First, simulation results from the SF algorithm are compared to a direct CS
method for a particular scene. In all the following simulations, BLASSO is used as
the CS method [dG12].The SF and direct BLASSO algorithms are tested for different
levels of noise and further analysed using phase transition diagrams. The algorithm
is also tested on real measurement data.
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Simulation Results

As demonstrated in section 7.1.1, the mutual coherence problem depends only on
the ratio of the missing data to the available data, and not on the bandwidth itself.
Therefore, in the interest of computational load for the simulations, a frequency band
of 5 kHz has been used for the simulations. The gap is half of the whole bandwidth,
i.e., 2.5 kHz. Based on the sensing matrix derivation discussed in Section 6.2.2, a
matrix AAA is constructed using the frequency domain representation of measurement
vector y. Considering the width of the missing band to be half the total bandwidth
and a pulse duration of 0.5 seconds, y consists of 2500 measurement samples. The
range grid is constructed with 10000 grid points, with the grid-spacing depending
on the range resolution corresponding to the bandwidth.

Fig. 7.3 shows the estimated support and the reconstruction result from the
Subdivision-Fusion algorithm and the BLASSO. The target scene consists of 70 point
targets (in red) with magnitudes of 1, placed at randomly selected range grids, i.e.,
with a random support. The circles represent the peaks of these targets. The num-
ber of targets is within the theoretical bounds on sparsity given by (7.9) and (7.10),.
The frequency domain sensing matrix described in (6.9) is used and fTx is set to zero
for convenience. The mean-squared error from the Subivision-Fusion algorithm is
found to be 8.5449e−6, while that from the BLASSO method is 1.3920e−3. This proves
that the proposed method is much more effective that direct CS in the gapped-band
scenario. It is evident from Fig. 7.3 that BLASSO (in blue) gives a large number of
false positives near the actual target. For particular target (in red), there appears to
be a single sharp estimate from the Subdivision-Fusion algorithm (in green), while
there are a number of smaller peaks from BLASSO (in blue). This means that the
Subdivision-Fusion algorithm provides sharper peaks at the correct locations, while
BLASSO results in multiple lower peaks due to the coherence issues described in
the previous section. This observation is in agreement with the mean-squared error
values. However, it is interesting to note that the performance of the Subdivision-
Fusion algorithm also degrades when 2 targets are very close to each other. This
is seen, for instance, between the range grid points 1.4 and 1.6. In this case, even
the Subdivision-Fusion algorithm does not provide a single sharp peak, and multi-
ple lower peaks are observed around the correct range location. However, the per-
formance is still better compared to direct CS and in general, Subdivision-Fusion
algorithm gives a better reconstruction, with fewer false positives.

Next, both the algorithms are tested for gaps of different widths in the pres-
ence of noise. Gaussian white noise is added to the received signal yb

Rx in the time
domain. Fig. 7.4 demonstrates the performances of both algorithms for gaps of
widths corresponding to 0.2, 0.3, 0.4 and 0.5 of the total bandwidth. In each case,
the Signal-to-Noise ratio (SNR) is varied from 0 to 20 dB. It is observed that the
Subdivision-Fusion algorithm performs better than direct BLASSO for lower values
of SNR, specially in the range of 0-10 dB.

Phase Transition Diagrams In order to analyze the performance of the proposed
algorithm for different levels of sparsity and different dimensions of A, phase tran-
sition diagrams are constructed. These diagrams represent the probability of a suc-
cessful reconstruction over different levels of sparsity and different numbers of mea-
surements. In the following plots, m

N denotes the ratio of the number of available
measurements to the number of range grids, and s

m denotes the ratio of sparsity to
the number of measurements. The simulations are structured as follows. The ra-
tios m

N and s
m are varied from 0.05 to 1 in steps of 0.05 and for every point ( m

N , s
m ), 50
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FIGURE 7.4: SNR vs MSE plots for gaps of different widths [GBH+22].

iterations of the proposed method are executed. The success or failure of each itera-
tion is determined by calculating the mean-squared error between the ground truth
and the reconstruction result. An error of 0.01 or less is considered a success. The
averaged rate of success over 50 iterations is then shown in the corresponding posi-
tion in the phase transition diagram. Since the sensing matrix is always horizontal
(N ≫ m), the number of columns (N) considered for the phase transition diagrams
must correspond to the maximum number of available measurements (m).

Fig. 7.5 shows the phase transition diagrams for the direct CS and Subdivision-
Fusion algorithm applied to the gapped-band problem. When the number of mea-
surements (m) are lower, the Subdivision-Fusion algorithm shows a higher success
probability compared to direct CS. In particular, when the ratio m

N goes above 0.2,
the success probability shows a larger increase for the Fusion method as compared
to the direct CS method. Due to the use of only 50 iterations per point and random
selection of target positions in each iteration, a variance is noticeable and the rise
in success probability is not very smooth. However, a clear distinction in perfor-
mance is obtained, specially when the number of measurements m are lower. Fig.
7.6 gives the phase transition diagrams for the Subdivision-Fusion algorithm using
the traditional Fresnel integrals and the PSP approximation [KPD+60; R14; LM04].
5 iterations have been used per point. The probability of success is similar for same
values of s/m and m/N, thereby demonstrating that PSP provides a good approxi-
mation to the Fresnel Integral method discussed in Section 2.2.2. Fig 7.7 shows the
phase transition diagrams in the case of two gaps having widths of 0.5 and 0.2 of the
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FIGURE 7.5: Phase Transition diagrams for (A) Direct CS and (B)
Subdivision-Fusion Algorithm. Black corresponds to 100% empiri-
cal success probability. White corresponds to 0% success probability

[GBH+22].
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FIGURE 7.6: Phase Transition diagrams for (A) the exact chirp model
(Fresnel) and (B) the approximation (PSP) [GBH+22].

whole frequency band. 5 iterations have been used per point for both algorithms. As
expected, for both methods, the probability of success reduces in comparison to the
single gap scenario. The figure shows better performance of the Subdivision-Fusion
algorithm, specially in the 0.6 to 0.8 range for m/N.

Application to Real Measurement Data : Proof of Concept

In order to present an initial proof of concept using real world data, an FMCW radar
of bandwidth 24 GHz has been used to detect a point on metal plate at a distance of
0.32 m from the radar. The FMCW radar operates using a transceiver unit, i.e., the
same unit is used to transmit and receive the signal. A focusing horn lens antenna
with a 5 degree opening angle has been used for this experiment. Fig. 8.4 shows
the measurement setup. It must be noted that since only a point target is being
detected, this experiment does not aim to prove the resolution capabilities of the
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FIGURE 7.8: Experimental Setup.

proposed algorithm. The goal is to introduce a continuous band gap and verify that
the performance on real measurement data aligns with the simulation results. First,
an FFT is performed on the measurements from the entire frequency band. It is seen
that, apart from the main peak corresponding to the location of the point target, there
exists several smaller peaks due to internal reflections in the experimental setup.
These may be considered to be additional targets. This does not affect the validity of
the results, since the goal is to identify the location of each target as they appear.

To test the performance of the Subdivision-Fusion Algorithm, gaps having a
width of 0.1, 0.3, 0.5, and 0.7 of the total bandwidth are introduced, which corre-
spond to a gap in time as described in Section 6.2.2 and the dedicated FMCW-based
sensing matrix from (6.15) is used. Fig. 7.9 shows the corresponding results. The
ground truth is shown in red, the direct BLASSO results are shown in blue, while
the Subdivision-Fusion results are shown in green. For all cases, a prominent peak
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is observed at the correct range positions. It is observed that the results from the
Subdivision-Fusion algorithm have a lower mean-squared error compared to those
from the direct BLASSO for wider gaps in the frequency band. Since the aim is to
recover the ground truth resolution in the presence of a band gap, the difference in
error is not as large as it would be for super-resolution. Nevertheless, the error val-
ues show that the proposed algorithm performs better when the coherence is high.
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FIGURE 7.9: Reconstruction results from the Subdivision-Fusion Al-
gorithm (in green) and the direct BLASSO (in black) for gaps of (A)
0.1, (B) 0.3, (C) 0.5, and (D) 0.7 of the total bandwidth. The ground

truth is denoted in red [GBH+22].

Application to FMCW

In this section, a slightly different version of the fusion step is first proposed, fol-
lowed by results on real FMCW data [GBE23]. Algorithm 5 denotes the subdivision
step by S and the fusion step by B. The algorithm consists of the following steps:

1. Subdivision: Identical to 4, the sensing matrix is divided into ksub coarse-grid,
low-coherence sub-matrices, by taking every ksub-th column from the original
sensing matrix. This results in ksub CS problems giving coarse-grid estimates
of x,

xi
sub = CS(AAAi

sub, y) ,
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where i = 1, . . . , ksub.

2. Fusion (Support Estimation): The main modification from 4 lies in the coarse
to fine grid transfer of the ksub estimates. In 4, a correction factor array was
first constructed from an assumed on-grid target and then multiplied to the
coarse-grid estimates of x, giving the fine-grid estimates needed for fusion.
Here, first the coarse-grid estimate ycoarse of the original measurement vector
is determined from each x estimate by

yi
coarse = AAAi

subxi
sub .

Based on the sensing matrix construction, each coarse-grid position corre-
sponds to ksub fine grid positions given by

Sfine = Cfine − ((ksub − 1)/2) : Cfine + ((ksub − 1)/2) ,

where Cfine = ksubScoarse + (i − ksub), Scoarse denotes the support on the coarse
grid, Cfine denotes the fine grid position corresponding to the center of the
coarse grid, and Sfine represents the support in the fine grid.

3. Fusion (Target Estimation): Each coarse grid estimate is then projected to get
ksub fine grid estimates given by

xfine(Sfine)
i = AAAT(Sfine, :)yi

coarse .

The final estimate is then obtained by adding the ksub fine grid estimates and
re-using CS to give

xfinal = CS(AAASfine , y, xfine) . (7.12)

xfine can be directly used as the final estimate. However, the final CS step provides a
sparser estimate at a low computational cost, since only the relevant Sfine positions
need to be considered. This final step may be replaced by a thresholding step for
a faster implementation. In addition, this method may be applied using the FFT
by implicitly considering the FFT at indices determined by the subdivision-fusion
algorithm at every step. Such an approach would completely bypass the sensing
matrix formulation and storage, and would further generalize the algorithm.

Algorithm 5: Subdivision-Fusion Algorithm-2
Data: sensing matrix AAA, measurement vector y
Result: xfinal
while n <= ksub do

I = 1;
for J = 1 to N

ksub
do

An(I) := (A(:, J));
I := I + 1;
J := J + k;

end
xn := S(AAAn, y);

end
xfinal = B(AAA, y, xn);

The range resolution performance of the proposed SF algorithm is analyzed
based on 2 popular CS algorithms - the spectral projection gradient method for
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solving the Basis Pursuit De-noising (SPG-BPDN) problem [CDS98] and the Itera-
tive Soft Thresholding Algorithm (ISTA) [DDD04]. The COBRA radar at Fraunhofer
FHR is used to determine the simulation parameters (bandwidth, pulse width,
time samples) for the synthetic test data and also to obtain the final ’ground truth’
measurements, i.e., measurements with no band gap. It is an FMCW radar with a
4 GHz bandwidth operating in X band. A gap is then artificially introduced in the
frequency band and the sensing matrix is designed as detailed in 6.2.2, to mimic 2
narrow-band FMCW radars operating in disjoint bands, separated by the specified
gap.

Simulation Results: In practice, the range resolution depends not only on the
bandwidth, but also on the number of time samples considered during measure-
ment. For 1535 time samples, the COBRA system was found to resolve 2 targets at a
minimum distance of 20 cm apart. Simulations are carried out based on these param-
eters from the real measurement setup. Therefore, 2 targets are initially considered
at a distance of 20 cm, and are then brought increasingly closer by incrementing the
super-resolution (SR) factor, i.e., the number of range cells separating the targets are
kept constant while the width of the range cells are reduced, i.e., the range resolu-
tion is increased. In addition, the band-gap is also increased, making the problem
quite ill-posed. The performance of the algorithm is tested for different values of
band-gap and SR factor. It is observed in Fig. 7.10, 7.11 that although the direct CS
algorithm does not completely fail, the SF algorithm is able to achieve much sharper
peaks with better isolation of the targets and lower side-lobes, specially in case of a
larger band-gap having a width of 0.7 times the total bandwidth. Fig. 7.12 shows
the mean-squared error (MSE) and root-mean-squared (RMS) contrast values for this
two target scene, for different band gaps upto an SR factor of 4. The RMS contrast
refers to the standard deviation of intensities of the targets in the scene. For the same
SR factor, the RMS contrast values are much higher for the SF results as compared
to the direct CS results. The MSE plots show a reverse trend as expected, with the
MSE values of the SF results being much lower compared to that of the direct CS
results. Additionally, it is found that for this particular scene, the direct ISTA fails
above an SR factor of 4 with a gap of 0.7BW, while the SF ISTA fails for an SR factor
of 12 with a gap of 0.7BW. The direct BPDN fails for an SR factor of 4 while the SF
BPDN fails for an SR factor of 10 with a gap of 0.5BW. Therefore, the SF algorithm is
able to support higher SR factors as compared to the direct CS methods.

Results on real measurements—Car on a turntable: To test the algorithm on real
data, a car was placed on a turntable and ISAR measurements were obtained using
the COBRA radar. The standard Polar Format algorithm was used for image forma-
tion. The gap was introduced in the frequency domain before conversion into the
polar coordinates.

Fig. 7.13 shows the gaps in frequency as it appears in the polar coordinates
kx − ky. Fig. 7.14 shows the performances of the matched filter, direct CS and SF
algorithms for band gaps of 0.3 and 0.5 of the total bandwidth. Here, the SF algo-
rithm uses ISTA as the reconstruction method. A super-resolution (SR) factor of 2 is
also tested. The RMS contrast, denoted by ’Cont’, is used as the metric for perfor-
mance comparison. As previously mentioned, it represents the standard deviation
of the intensities of the targets in the scene. It is observed that for gapped cases,
both CS methods have a higher contrast in comparison to the matched filter. The
results from the SF algorithm have a higher contrast than those from the direct CS
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FIGURE 7.10: Performance of ISTA based SF v/s direct ISTA [GBE23].

algorithm. This is expected since the subdivision step promotes sparser results, and
the final thresholding step in the fine grid further promotes the sparsity. Table. 7.2
consolidates the RMS contrast values for MF, ISTA, and ISTA-based SF (SF-ISTA)
methods.

Application to Real Measurement Data: SAR

This section discusses the application of the Subdivision-Fusion Algorithm to SAR
data. Here, the data used is the new Delhi scene from Terrasar-X, shown in Fig. 7.15.
First the Hamming window effect is removed from the data, and then a band gap is
introduced along the range frequencies. Since the scene is very large, smaller parts of
the scene are used to visualize the effects of the applied algorithms. Figs. 7.16, 7.17,
7.18 focus on a part of the scene for a gap of 0.2W. Figs. 7.16, 7.17, 7.18 correspond
to a different part of the scene for a gap of same width. Similarly, Figs. 7.22, 7.23,
7.24, and 7.22, 7.23, 7.24 show different parts of the scene for a gap of 0.5W. Table.
7.3 summarizes the RMS contrast values of the figures for gaps of different widths.
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FIGURE 7.11: Performance of SPG-BPDN based SF v/s direct SPG-
BPDN [GBE23].
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7.2 A CS based Approximated Observation algorithm

Direct compressed sensing methods that use model-based structured sensing matri-
ces pose a large computational load, specially for SAR systems, since they typically
generate a large volume of data. The previous section discussed a subdivision-based
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FIGURE 7.13: Gapped Bands in Polar Coordinates.

TABLE 7.2: RMS Contrast values for MF, ISTA and SF- FMCW.

Gap (W) Method Contrast
0 MF 1.4569
0 ISTA 2.5901

0.3 W MF 1.4069
0.3 W ISTA 2.3656
0.3 W SF 5.2858
0.3 W SF, SR=2 7.4788
0.5 W MF 1.3749
0.5 W ISTA 2.2499
0.5 W SF 5.2858
0.5 W SF, SR=2 7.0878

TABLE 7.3: RMS Contrast values for MF, ISTA and SF- SAR.

Gap (W) Method Contrast
0.2 W MF 2.2969
0.5 W MF 1.9303
0.2 W ISTA 5.7510
0.5 W ISTA 6.2690
0.2 W SF 9.3551
0.5 W SF 7.8838

approach to tackle this problem, where the structed sensing matris was subdivided,
leading to smaller CS problems and lower computational load. In this section, an-
other approach known as the ’Approximated Observation’ is discussed. The prelim-
inaries behind approximated observation are first explained, followed by the algo-
rithm, and simulation results. Results based on SAR data from TerraSAR-X are also
presented.

7.2.1 Preliminaries

As detailed in [FXZ+14], CS methods can be used to achieve an improvement in
resolution of SAR systems. However, the use of an ’exact observation function’,
i.e., a sensing matrix AAA based on the exact signal model poses a large computation
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FIGURE 7.14: Results from Matched filter (MF), direct CS and
Subdivision-Fusion (SF) algorithm for different band-gaps and super-
resolution (SR) factors. The colorbars represent the root-mean-square

(RMS) contrast values [GBE23].
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FIGURE 7.15: New Delhi scene from TerraSAR-X.

complexity and memory cost. The main idea of the Approximated Observation ap-
proach, is to replace this exact observation model by approximated observations
obtained via the inverse of traditional Matched Filter (MF) based procedures.

Mathematically, this may be expressed as follows. Let, MMM denote an MF-based
SAR image formation algorithm such as the Range-Doppler algorithm or Range-
Migration algorithm, discussed in Chapter 2. The relation between the SAR raw
data y and the image x̂ is given by

x̂ = MMMy, (7.13)

where x̂ is an approximation of the scene. If there exists an inverse of the SAR
image formation algorithm, the raw data y may be expressed as

y = MMM−1x̂. (7.14)

Comparing (7.14) with the CS formulation y = AAAx, it is evident that MMM−1 can be
used to approximate the operation represented by the sensing matrix AAA. Therefore,
in a CS algorithm, whenever there is an operation involving the sensing matrix, it
can be replaced by the inverse steps of a conventional SAR image formation algo-
rithm. AAA ≈ MMM−1 converts the SAR image x̂ to SAR measurements y, and is known
as the ’Measurement Simulator’. AAAH ≈ MMM is referred to as the ’SAR Processor’.
Based on this discussion, an ISTA-based Approximated Observation algorithm for
gapped-band SAR is described in the following section.

7.2.2 Algorithm Description

The proposed ISTA based Approximated Observation algorithm is illustrated in Fig.
7.29 and described as follows [GBE22]. Consider y to be the original measurements
in the gapped frequency band. A conventional SAR Processor, AAAH, is used to get the
corresponding (low resolution) image x̂. Normally, this would be the final image.
Here, this serves as the starting point of the ISTA loop. The image x̂ goes through
the soft thresholding-step of the ISTA algorithm and is then sent to the ’Measure-
ment Simulator’, AAA. The Measurement Simulator takes the thresholded x̂ as the
input image and gives back the corresponding measurements ŷ. Thus, ŷ represents
the approximated measurements corresponding to a sharper image obtained after
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FIGURE 7.16: MF result for a gap of 0.2BW.
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FIGURE 7.17: ISTA result for a gap of 0.2BW.
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FIGURE 7.18: SF result for a gap of 0.2BW.
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FIGURE 7.19: MF result for a gap of 0.2BW.
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FIGURE 7.20: ISTA result for a gap of 0.2BW.
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FIGURE 7.21: SF result for a gap of 0.2BW.
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FIGURE 7.22: MF result for a gap of 0.5BW.

FIGURE 7.23: ISTA result for a gap of 0.5BW.
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FIGURE 7.24: SF result for a gap of 0.5BW.

FIGURE 7.25: MF result for a gap of 0.5BW.
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FIGURE 7.26: ISTA result for a gap of 0.5BW.

FIGURE 7.27: SF result for a gap of 0.5BW.
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thresholding. In other words, ŷ approximates the measurements corresponding to
an image having a higher resolution. Then, the difference between the original and
approximated measurements, y − ŷ , goes to the SAR processor, and the loop re-
peats. Following Fig. 7.29, it is evident that the Approximated observation exactly
follows the steps of the ISTA algorithm. The only difference is that AAA now represents
a processor instead of a sensing matrix.

In [FXZ+14], the SAR Processor and the Measurement Simulator were described
based on the Range-Doppler Algorithm. Here, the processors are described based
on Range-Migration (Omega-K) Algorithm, as shown in Fig. 7.28. The key steps are
the Fourier transform blocks and the Stolt Interpolation step. The 2D FFT and 2D
IFFT blocks represent a domain change and are replaced by the 2D IFFT and 2D FFT
respectively. The Stolt interpolation, also known as Stolt Migration, is an important
step that causes a transfer in the frequency grid, and is briefly discussed next.

FIGURE 7.28: Approximated Observation Algorithm

Stolt Interpolation and its Inverse Consider the SAR Processor AAAH. The 2D FFT
of the raw data gives a uniformly sampled grid of data in the kx, kr domain, where kx
represents the azimuth wavenumber, and kr represents the slant range wavenumber.
The Stolt interpolation is used to transfer the data from the slant range to the ground
range wavenumber, kρ using

kρ =

√
4kr

2 − kx
2, (7.15)

as described in Chapter 2. Practically, the interpolation (or grid migration) proceeds
as follows. Let the grid corresponding to kr be known as the original raster, and that
corresponding to kρ be known as the back-projection raster. The goal is to transfer
the values from this original raster to the back-projection raster. For each grid point
in the back projection raster, P, a set of nearest neighboring grid points in the original
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FIGURE 7.29: Approximated Observation with ISTA loop

raster are identified. Sinc coefficients between these points and P are multiplied with
the signal values in the original raster and added to get the signal value at P in the
new raster.

In the Measurement Simulator AAA, the 2D IFFT gives a uniformly sampled grid
of data in the

(
kx, kρ

)
domain. The inverse Stolt interpolation is implemented using

the exact same steps. Only the original raster and the back projection raster are
interchanged, i.e, kρ corresponds to the original raster and kr corresponds to the
back-projection raster.

The advantage of this algorithm is that computationally expensive matrix multi-
plications using the original sensing matrix are avoided. The FFT blocks in the SAR
processor and its inverse implementation speed up the algorithm, thereby combin-
ing the efficiency of MF based algorithms with the resolution improvement capabil-
ities of CS.

7.2.3 Results

Simulation Results

TABLE 7.4: RMS Contrast values different iterations of AO.

AO iteration number
Gaps 0 1 2 3 4

Scene1
0.3 W 1.9612 2.8728 4.0782 5.1716 6.0547
0.5 W 1.7173 2.5889 3.8217 5.0056 5.9719

Scene2
0.3 W 1.0393 2.7903 6.2472 10.741 15.8431
0.5 W 0.9758 2.5896 6.0143 10.5996 15.8307
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FIGURE 7.30: Synthetic Scene to test AO algorithm.

Fig. 7.30 shows the synthetic scene used to test the algorithm. As before, a con-
tinuous gap is introduced along the range frequencies, by removing a fraction of
the total number of samples. This 2D gapped-frequency raw data is then given to
the SAR processor block, following by the ISTA thresholding and the Inverse SAR
processor block. At every iteration, the image xit is stored. Fig. 7.31 shows the im-
ages at successive iterations and their respective RMS contrast values, when a gap
having a width of 0.3 of the bandwidth is introduced along the range frequencies.
Similarly, Fig. 7.32 shows the resulting images when a gap with a width of 0.5 of the
bandwidth is introduced. As expected, the contrast values are better for the smaller
gap. The contrast values keep improving with every iteration of the approximated
observation algorithm.

Results on SAR Data

As before, 2 parts of a scene from the TerraSAR-X are considered. For each scene, 0.3
and 0.5 of the total number of frequency samples are considered missing along the
range frequencies, and results from 4 iterations of the Approximated Observation
algorithm are presented. Table. 7.4 shows the RMS contrast values for different
iterations of AO for both the scenes. It is observed that with each iteration, the
RMS contrast of the result increases, i.e., a sparser SAR image is obtained. The RMS
contrast values of the SAR images corresponding to the larger gap are lower than
that of the images corresponding to the smaller gap. The AO algorithm performs
quite well in both cases, and gives a much sparser SAR image after 4 iterations.
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FIGURE 7.31: Simulation Results from ISTA-AO algorithm for a gap
of 0.3BW.
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FIGURE 7.32: Simulation Results from ISTA-AO algorithm for a gap
of 0.5BW.
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FIGURE 7.33: SAR Images for iterations of AO algorithm for a gap of
0.3BW-Scene1.



7.2. A CS based Approximated Observation algorithm 89

it=0  Contrast 1.7173

-2000 -1000 0 1000 2000
x [m]

5.3

5.35

5.4

5.45

5.5

5.55

5.6
y 

[m
]

10 4

-60

-50

-40

-30

-20

-10

0

dB

(A)

it=1  Contrast 2.5889

-2000 -1000 0 1000 2000
x [m]

5.3

5.35

5.4

5.45

5.5

5.55

5.6

y 
[m

]

10 4

-60

-50

-40

-30

-20

-10

0

dB

(B)

it=2  Contrast 3.8217

-2000 -1000 0 1000 2000
x [m]

5.3

5.35

5.4

5.45

5.5

5.55

5.6

y 
[m

]

10 4

-60

-50

-40

-30

-20

-10

0

dB

(C)

it=3  Contrast 5.0056

-2000 -1000 0 1000 2000
x [m]

5.3

5.35

5.4

5.45

5.5

5.55

5.6

y 
[m

]

10 4

-60

-50

-40

-30

-20

-10

0

dB

(D)

it=4  Contrast 5.9719

-2000 -1000 0 1000 2000
x [m]

5.3

5.35

5.4

5.45

5.5

5.55

5.6

y 
[m

]

10 4

-60

-50

-40

-30

-20

-10

0

dB

(E)

FIGURE 7.34: SAR Images for iterations of AO algorithm for a gap of
0.5BW-Scene1.
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FIGURE 7.35: SAR Images for iterations of AO algorithm for a gap of
0.3BW -Scene2.
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FIGURE 7.36: SAR Images for iterations of AO algorithm for a gap of
0.5BW-Scene2.
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Chapter 8

Extensions to Time of Flight

8.1 Introduction

The increasing demand for high-resolution remote sensing systems across differ-
ent parts of the wavelength spectrum was discussed in 1. This chapter provides
an extension of the SF idea for multi-target imaging using ToF cameras. The ToF
camera [LSH23] is a remote sensing system for 3D scene reconstruction that has
gained popularity in the recent years and is being used in a wide range of applica-
tions such as vehicle monitoring and obstacle detection in the automotive industry,
safe patient monitoring for healthcare, 3D scanning, and human-machine interac-
tions [NKR+15], [KBC13], [IHJ16]. Specifically, the amplitude-modulated continu-
ous wave (AMCW) ToF cameras have had a wide commercial impact due to their
small size and high signal-to-noise (SNR) ratio [PBI20].

In AMCW ToF cameras, the intensity of the emitted sinusoidal signal is modu-
lated at one or several frequencies of the order of 10-100 MHz. In an ideal case, this
signal is reflected by a sparse number of objects in the scene along the observation
direction of each pixel, causing specific time-shifts or phase-shifts in the signal, cor-
responding to the object depths. The pixels of the ToF camera capture measurements
that depend on these shifts in phase, which can then be scaled by the modulation fre-
quency to obtain the object depths.

Typically, ToF systems work on the assumption that each pixel receives a sig-
nal reflected by a single object. However, in practice, the signal received by each
pixel corresponds to the superposition of signals from multiple scatterers, leading
to multipath interference (MPI). As a result, the detected phase shift is distorted,
which ultimately leads to an inaccurate depth estimation. Therefore, in ToF sys-
tems, depth resolution improvement equates to better multipath interference mitiga-
tion. A flurry of research work has appeared on different ways of tackling this MPI
problem. Some of these research directions include sensor modification [SLB+21],
[HKK+20], [ZWZ+22], [NKR+15], spectral estimation [KBC13], [IHJ16] and deep-
learning based approaches [PI21]. Under the umbrella of spectral estimation, re-
search on CS based optimization has shown promising results [BKW+14], [HKB+18],
[PBI20]. However, the main challenges have been the computational load due to the
size of the sensing matrix, and its high coherence, leading to a failure in the l1 norm
minimization.

The goal is to tackle the MPI problem using a modified subdivision-based nested
CS approach. Similar to the radar application discussed earlier in the thesis, the aim
is to use multiple submatrices constructed from a single structured sensing matrix.
This serves to reduce the coherence as well as the computational load of the opti-
mizations. The depth-regions of interest can then be identified based on the variance
of the sub-estimates. Re-applying CS on the combination of these interest areas can
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provide better estimates with a much lower computational cost. The performance of
the algorithm is tested on a simulated multi-target scene, as well as on real ToF data.

This chapter is structured as follows. Section 8.2 discusses the ToF operation and
generation of the measurements at different modulation frequencies. Section 8.3 de-
scribes the CS formulation in detail. Section 8.4 discusses the CS specific challenges
encountered in ToF MPI mitigation and introduces the subdivision-based CS algo-
rithm to overcome these problems. Section 8.5 provides results based on simulations
as well as real data, demonstrating the effectiveness of the proposed method.

8.2 Problem Statement

The focus is placed on a multi-frequency AMCW ToF system and the corresponding
mathematical formulation of the frequency-domain sensing model is described as
follows. The scene response function in the phase domain, corresponding to the
base frequency, is given by

e(ϕ) =
P

∑
k=1

akδ(ϕ − ϕk) , (8.1)

where δ(ϕ − ϕk) is a Dirac delta function centered at ϕk, which is the phase shift that
the transmitted signal undergoes when following the path k ∈ [1, P]. P represents
the number of paths which is assumed to be low or ’sparse’. ak is the attenuation
factor due to non-unit reflectance of target. The received signal at each pixel can
then be expressed as a convolution of the transmitted periodic illumination signal
s(ϕ), and the scene response e(ϕ), i.e.,

r(ϕ) = s(ϕ) ∗ e(ϕ) . (8.2)

As described in [HKB+18], the final measurement at each pixel at the end of the
exposure time can be modeled as a cross-correlation of r(ϕ) with the effective PMD
control signal pA−B, which is obtained by subtracting the accumulated charge in the
pixel channels A and B, yielding

m(ϕ) = pA−B ⊗ r(ϕ)
= pA−B ⊗ (s ∗ e) (ϕ)

=
P

∑
k=1

ak(pA−B ⊗ s)(ϕ − ϕk) .

(8.3)

The per-path amplitude and the phase terms in (8.3) are the only two parameters
of interest and can be determined by 2P + 1 measurements [HKB+18]. Considering
f0 as the base operating frequency, the data acquisition is carried out for different
frequencies given by f j = j f0, j = 1, ..., M, where j represents the index specifying
the frequency in the multi-frequency acquisition mode. If, at every f j, two measure-
ments are acquired at programmable relative phase shift of π/2, they can be used to
construct the Fourier coefficients of the scene response function. Based on the nota-
tion used in the original work [HKB+18], the measurements at phases 0 and π/2 are
represented by mj(0) and mj(π/2) respectively. The frequency domain signal model



8.3. Compressed Sensing Approach 95

can then be given by

y(j) = mj(0) + imj(π/2)

=
P

∑
k=1

ak(cos (−jϕk)− i sin (−jϕk))

=
P

∑
k=1

ake(ijϕk) ,

(8.4)

Expanding the phase term in (8.4) gives

y(j) =
P

∑
k=1

ake(ij(2π f0tk))

=
P

∑
k=1

ake(i2π f jtk)) .

(8.5)

Thus, (8.5) provides a simplified expression of the measurements at every pixel
in terms of discrete time and frequency samples. The aim is to retrieve the terms
ak and tk, ∀k ≤ P, that can correctly explain y. The matrix pencil method, a robust
variant of Prony’s method, provides a way to achieve this goal parametrically, in a
closed-form fashion [HS90]. CS based approaches may improve the depth resolution
by promoting sparse solutions in a finer grid. However, existing CS algorithms pose
certain challenges that are discussed next.

8.3 Compressed Sensing Approach

In practice, the number of objects of interest that reflect the illumination signal is
low in comparison to the ambient dimension in time/depth domain, which yields a
sparse profile of reflectivity when discretizing along this dimension. Therefore, it is
logical to follow a CS-based approach for ToF depth resolution improvement.

A general CS problem is expressed as

y = AAAx + n ,

where y ∈ Cm contains the measurements in the frequency domain, AAA ∈ Cm×N , m ≪
N, is the sensing matrix, and x ∈ CN is an s-sparse reflectivity vector constructed
from the sparse reflectivities of the objects in the scene. n is white Gaussian noise in
the measurement y. (8.5) can be expanded into this general CS formulation, giving




y(1)
y(2)

...
y(m)




︸ ︷︷ ︸
y

=




ej2π( f1,t1) ··· ej2π( f1,tN )

ej2π( f2,t1) ··· ej2π( f2,tN )

...
. . .

...
ej2π( fm ,t1) ··· ej2π( fm ,tN )




︸ ︷︷ ︸
AAA




a(1)
a(2)

...
a(N)




︸ ︷︷ ︸
x

+n . (8.6)

The sensing matrix AAA resembles a horizontal discrete fourier transform (DFT)
matrix, oversampled in time. Such a sensing matrix construction aligns with the
structured CS approach discussed previously, and is different from the random sens-
ing matrices often assumed to derive recoverability and uniqueness guarantees in
CS. The sparse reflectivity vector x consists of the real-valued reflectivities from each
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object in the scene. Based on this framework, the solution for x is given by

min ∥x∥1 s.t. ∥AAAx − y∥2 ≤ η , (8.7)

where η is the upper bound on the norm of the measurement error, i.e., ∥e∥2 ≤ η. For
the ToF application, if the location of the non-zero reflectivities can be determined
accurately, the corresponding columns of AAA can be identified as the active columns,
thereby identifying the correct ’times of flight’, tk. These time instances then directly
provide the depth information for each object, since dk = ctk

2 . In order to get an im-
proved depth resolution using this CS formulation, the ToF camera must acquire a
sufficient number of measurements, m at different modulation frequencies. Theoret-
ically, given a sparsity s and a finely-resolved depth grid of length N, the relation
[FR13]

m ≥ 2s ln(N)

gives the number of multi-frequency measurements required.

8.4 Subdivision-Based Iterative Soft Thresholding Algo-
rithm

The use of popular CS algorithms for the depth resolution improvement in ToF sys-
tems poses certain challenges. In the CS formulation described in (8.6), a depth res-
olution improvement is possible only when CS algorithms support a finely-spaced
time (or depth) grid. However, this is challenging due to the following reasons:

1. Given a depth range to be covered, a finely-spaced time grid increases the size
of the sensing matrix, leading to a large computational load.

2. With a finely-spaced time grid, the degree of similarity between adjacent
columns, which is measured by their normalized inner product, increases,
and, as a result, the coherence of the sensing matrix increases, leading to an
ill-posed CS problem. In such a scenario, conventional CS methods fail to
provide an exact reconstruction of x.

The challenges faced in applying CS algorithms to ToF systems resemble the prob-
lems faced in the case of radar imaging. For instance, given a fixed (limited) number
of measurements, super-resolution in depth poses a challenge due to the increased
coherence of the CS sensing matrix, arising from a finely-spaced depth grid. This is
identical to the range super-resolution issue faced in the case of radars. The problem
of gapped frequency bands which was explored for radar systems in the previous
chapters, might also occur for ToF systems. For example, similar to the FMCW case,
multiple multi-frequency ToF systems may be operating in disjoint frequency bands.
Ideas from the SF algorithm can be used to exploit the full available bandwidth and
fuse the multiple low resolution depth estimates for a better depth resolution.

Both band-gaps and super-resolution may lead to a severely under-determined
system of equations that may be solved by a CS-based approach, similar to SF. Here,
the focus is placed on improving the depth resolution for ToF systems, given a fixed
number of frequency measurements. The band gap problem for ToF has not been
examined in this thesis and leaves scope for future work. Based on the similari-
ties discussed, the SF idea from 7 is extended to the ToF case and a modified sub-
division-based nested CS algorithm for ToF systems is introduced next.
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8.4.1 Subdivision-based Nested CS for ToF Imaging

For obtaining real-valued reflectivities, it suffices to have the frequency domain cen-
tered at zero, with measurements obtained at negative frequencies being the com-
plex conjugate of the ones obtained at positive frequencies. Based on this sensing
matrix structure, the subdivision-based nested CS algorithm [GAC23] is outlined in
Algorithm 6 and is described as follows:

1. Determine the factor ksub ≤ N
m that dictates the ratio between the number of

rows and columns of AAA.

2. Divide AAA into ksub sensing matrices that cover different parts of the time or
depth grid, while maintaining a symmetric structure. Let AAAsub be a cell array
of length ksub, where each cell stores the Ith (sub) sensing matrix. The construc-
tion of the submatrices can be defined by

AAAsub{I} (:, Jsub + J − 1) = AAA (:, (Jmain + I − 1) + (J − 1)ksub)

AAAsub{I} (:, Jsub − J − 1) = AAA (:, (Jmain − I − 1)− (J − 1)ksub) ,
(8.8)

where, I = 1, ...ksub and J = 1, ..., N
2ksub

. Jsub and Jmain represent the column in-
dex for time 0 for the submatrices and the original sensing matrix respectively,
i.e., Jsub = N

2ksub
+ 1, and Jsub = N

2 + 1. Due to this subdivision, each subma-
trix AAAsub{I} has a lower coherence and a ksub-times smaller column dimension
compared to AAA, thereby addressing both the challenges previously described.

3. The measurement vector may now be represented as y = AAAsub{I}xsub{I}, I =
1, ..., ksub, where xsub is a cell array where each cell stores a vector xsub{I},
which is the CS result corresponding to the sub-problem I . These ksub sub-
problems can be directly solved using a greedy CS method or basis-pursuit
minimization. The standard deviation values of each of the ksub CS results are
stored in the vector σ.

4. The columns of each sub-matrix AAAsub{I} capture a different part of the depth
grid. Since the detected scene is sparse, only a few of the vectors in the cell ar-
ray xsub will have sharp peaks representing the on-grid targets for the specific
sub-matrices. ksub

2 of these CS results having the highest standard deviation
values are selected, since high standard deviation (or variance) corresponds
to the CS results with the sharpest peaks. This is represented by the function
maxk

(
σ, ksub

2

)
which returns ksub

2 of the highest value elements of σ in the vec-
tor σ1, along with their indices in the vector idx.

5. The fine-grid locations Imain corresponding to these peaks are used to construct
the final support S. In Algorithm 6, the symbol ⋓ represents the union of the
fine-grid locations Imain that give the support S.

6. The final estimate is given by solving a normal CS problem, as expressed in
(8.7), such that

xfinal = CS(AAAS, y) , (8.9)

where AAAS consists of the columns of AAA identified by the support set S.
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Algorithm 6: Subdivision-based Nested CS-3
Data: sensing matrix AAA, measurement vector y
Result: xfinal
for I = 1 to ksub do

for J = 1 to N
2ksub

do
AAAsub{I} (:, Jsub + J − 1) = AAA (:, (Jmain + I − 1) + (J − 1)ksub);
AAAsub{I} (:, Jsub − J − 1)) = AAA (:, (Jmain − I − 1)− (J − 1)ksub);

end
xsub{I} = CS(AAAsub{I}, y);
σ (I) = std (xsub{I});

end

[σ1, idx] = maxk
(

σ, ksub
2

)
;

for I = 1 to ksub
2 do

Isub = findpeaks(xsub{idx(I)});
Imain = (Jmain + idx(I)− 1) + ksub(Isub − Jsub);
S = ⋓Imain;

end
xfinal = CS(AAAS, y);

8.5 Experiments and Results

This section presents the results obtained using the SF algorithm on multi-target
ToF data. First the simulation results are discussed and the performance of the SF
algorithm is analysed via phase transition diagrams. This is followed by results
obtained from a real ToF measurement setup consisting of three targets.

8.5.1 Simulation Results
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FIGURE 8.1: Synthetic Scene with SNR=∞ and SNR=30 [GAC23].

The performance of the algorithm was tested on synthetic measurements from 3
point targets at depths of 0.92, 1.84 and 2.4 m respectively. Following the parame-
ters of the real measurement setup, 53 frequency samples were considered ranging
from 0 to 179.214 MHz, with steps of 3.514 MHz. Since a centered measurement
vector is considered, as described in Section 8.4.1, the frequency grid ranges from
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FIGURE 8.2: SNR vs MSE plots for the 3 synthetic targets [GAC23].

−179.214 MHz to 179.214 MHz. The measurements corresponding to the negative
frequencies are complex conjugates of the ones at the positive frequencies. There-
fore, the centered measurement vector y consists of 103 measurements. For all sim-
ulations, a depth of 3m was considered with a grid resolution of 8mm.

Fig. 8.1 shows the 3 peaks on the depth grid and the reconstruction results from
subdivision-based nested CS for SNR= ∞ and SNR=30. As expected, the ampli-
tudes of the detected peaks reduce for the noisy case, however, the positions are
detected accurately. Using the Iterative Soft-Thresholding Algorithm (ISTA) as the
CS reconstruction method, every instance of the subdivision algorithm has a compu-
tation time of 0.004 sec, while the standard ISTA requires 0.13 sec. This improvement
greatly affects the computation time, specially when the a large number of ToF pixels
are considered.

8.5.2 Performance Analysis

The matrix-pencil method [HS90] has been used as the basis for performance com-
parison. It was observed that the matrix-pencil method performed better for lower
values of the pencil parameter L, N

2 ≤ L ≤ N. This agrees with the conditions for
a noise-robust pencil method in [HS90]. Fig. 8.2 shows the MSE vs SNR plots for
the depth images of the three targets obtained using the subdivision-based nested
CS method (in red) and the matrix-pencil method (in blue), for an average of 5 noisy
measurements. The error reduces with increase in SNR for both methods and be-
comes constant at around 20 dB. For all 3 cases, the results from the CS method has
a lower error as compared to the matrix-pencil method. This is expected, since the
synthetic scene is quite sparse. The small irregularities in the low SNR region arise
due to a small number of measurements used for the average.

To analyze the performance of the proposed algorithm for different levels of spar-
sity and different numbers of measurements in the presence of noise, phase transi-
tion diagrams are constructed. In Fig 8.3, m

N denotes the ratio of the number of avail-
able measurements to the number of range cells, and s

m denotes the ratio of sparsity
to the number of measurements. For each plot, the ratios m

N and s
m are varied from

0.05 to 1 in steps of 0.05 and for every point
(m

N , s
m

)
, 20 iterations of the proposed

method are executed. The success or failure of each iteration is determined by cal-
culating the averaged mean-squared error between the ground truth and the recon-
struction results. An error of 0.001 or less is considered a success. The averaged
rate of success is then shown in the corresponding position in the phase transition
diagram. Since the sensing matrix is always wide (N ≫ m), the number of columns
(N) considered for the phase transition diagrams is kept fixed and the number of
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TABLE 8.1: Target position estimates from the Subdivision-based CS
method and the matrix pencil method.

Targets
Methods T1 (m) T2 (m) T3 (m)

Ground Truth 0.87 1.87 2.408
Matrix Pencil 0.38 1 3.1-3.18

Subdivision-based CS 0.86 1.937 2.35-2.4

available measurements (m) is increased till m = N or m
N = 1. Fig 8.3 shows the

phase transition plots for the nested CS method for SNR = ∞, 80, 40, and 20 dB.
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FIGURE 8.3: Phase transition diagrams. Black corresponds to 100%
empirical success probability. White corresponds to 0% success prob-

ability [GAC23].

8.5.3 Results on Multi-Target Real ToF Data

This section discusses the results obtained using real ToF data. The measurements
were carried out at the Center for Sensor Systems (ZESS). The muti-frequency ToF
data was acquired using the ToF camera of PMD Module 167-C39. The experimental
setup, shown in Fig. 8.4, consists of 3 targets—a glossy translucent target (T1) at
0.87 m, a diffusive translucent target (T2) at 1.87 m, and an opaque white placard
target (T3) at 2.408 m depth. All these targets are plane sheets placed orthogonal to
the direction of observation of the camera, by means of custom frames on optical
rail conveyors. Identical to the simulation parameters, 53 frequency samples were
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FIGURE 8.4: Experimental Setup

considered ranging from 0 to 179.214 MHz, with steps of 3.514 MHz, and the final
estimation was obtained for a depth resolution of 8mm.

Fig. 8.5(a) shows the depth images obtained using the subdivision-based CS
(top) and the matrix pencil method (bottom) on real measurements. Fig. 8.5(b)
presents the 3D plots of the depth images obtained using subdivision-based CS. Ta-
ble. 8.1 shows the estimated depths of each target from both methods. Since the
position in depth is decided by the location of the amplitude peaks, the sparsity-
inducing methods perform better as they are capable of robustly identifying the lo-
cation of the prominent data peaks in noisy environments. The matrix pencil method
shows much higher sensitivity to noise and fails with real data. Specially in the case
of T3, the same amplitude was detected for a large number of inaccurate points in
the depth grid, leading to an incorrect estimate. Overall, the estimation error of the
CS based method is approximately an order of magnitude lower than that of the
matrix pencil method adopted in prior works to solve the MPI problem.
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FIGURE 8.5: Depth Image results from Subdivision-based CS and Ma-
trix Pencil methods [GAC23].
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Chapter 9

Conclusion and Future Work

9.1 Summary and Conclusions

This thesis explores different techniques for applying CS methods to the gapped-
band problem. It aims to adapt the CS sensing model to the imaging modality (radar
systems, ToF cameras) under consideration, and addresses the most common chal-
lenges faced while applying CS to such modalities. While the thesis mainly focuses
on CS applied to gapped-band radar data, an extension to ToF cameras is also dis-
cussed, proving the adaptability of the proposed ideas.

Chapters 2 and 3 review the fundamentals from radar and CS. In the former,
the working principle of a general radar system is discussed followed by the most
commonly used radar waveforms. The chirp waveform and the concept of stretch
processing are introduced, and they reappear as important components of the signal
models described in later chapters. The basic concepts of SAR and ISAR imaging are
also discussed.

The latter reviews the important aspects of Compressed Sensing Theory. It mo-
tivates the need for CS, and discusses the key aspects that make up a CS problem,
namely, the signal and the sensing matrix. It presents the metrics that determine the
quality of a CS sensing matrix and introduces the idea of coherence, which becomes
a significant component for one of the proposed algorithms in Chapter 7. It also
highlights the main classes of existing CS algorithms.

Chapter 4 acts as an important link between Chapters 2 and 3. The radar wave-
forms introduced in 2 are used in the CS framework discussed in 3, giving the gen-
eral CS models for radar systems based on different waveforms.

Chapter 5 highlights the existing literature in missing data recovery. It identifies
the research done by 3 different communities to solve different versions of the miss-
ing data problem, and discusses the common challenges and pitfalls of the existing
works.

Chapter 6 consolidates the findings of Chapter 5 into a compact problem state-
ment that the thesis addresses. The need for adaptive CS algorithms to tackle the
gapped-band problem is motivated. The second half of this chapter mathematically
defines the gapped band problem based on the CS models described in Chapter 4.

Chapter 7 consists of the main contributions of the thesis. It discusses the two
proposed algorithms, namely the Subdivision-Fusion algorithm, and the Approxi-
mated Observation algorithm. The subdivision method divides the structured CS
sensing matrix into smaller sub-matrices, in order to reduce the coherence value as
well as the computational load. From the results it can be concluded that, while
the traditional CS methods do not completely fail, the subdivision-based CS pro-
vides much sharper peaks, specially for wider band gaps. The results from FMCW
radar and SAR data are found to be consistent with the simulation results. The Ap-
proximated Observation method tackles the same issues by replacing the sensing



104 Chapter 9. Conclusion and Future Work

matrix with matched-filter based processors. The goal is to replace the sensing ma-
trix multiplications that present a high computational load with fast FFTs. It can be
concluded from the results that the resolution improves with each iteration of the
Approximated Observation algorithm and the method works quite well even in the
presence of a continuous gap.

Chapter 8 discusses an extension of the Subdivision-Fusion algorithm for multi-
path detection using ToF cameras. From the results, it can be concluded that CS
based methods provide much better target estimation in noisy environments com-
pared to the Matrix Pencil method, which has been proposed in the literature to
solve the multi-path interference problem parametrically.

9.2 Future work

Different column selection scheme in the SF algorithm :

The Subdivision-Fusion algorithm in Chapter 2 discussed the construction of sub-
matrices by selecting every ksub column from the original structured sensing ma-
trix. This makes sense since the columns correspond to the range cells and such a
selection reduces the coherence. The concept of subdivision maybe extended to a
random CS matrix. In this case, subdivision based on every ksub column no longer
makes sense. For a submatrix, the first column selected can be the first available
column in the original sensing matrix. Then, the next best column may be chosen
from the next group of ksub columns, such that it leads to a submatrix with a lower
coherence value. It is to be noted that such a process involves no optimization, and
thus is free of the computational load posed by an optimization algorithm that scans
all columns of the original sensing matrix. Since all columns of the original sensing
matrix at not being considered for every column selection, the time taken should be
managable. The drawback of such an approach would be that the last submatrix has
to be constructed with the remaining columns and therefore, the coherence might
be arbitrarily bad. Further research in this direction is needed to overcome such a
disadvantage.

Hybrid CS methods:

The concept of Algorithm Unrolling was briefly discussed in Chapter 5, and has be-
come quite popular in recent years. Many papers exist on algorithm unrolling for
optical images. However, the work done for SAR or radar systems is quite limited.
[GDE22] explored a hybrid algorithm combining unrolled ISTA and Approximated
Observation, in an effort to leverage the benefits from both approaches. However,
a detailed comparison of performance needs to be made to conclude any significant
benefits of such a combination. In particular, the progression of the weights learned
in the deep network and its effects on the ISTA regularization parameter may be ex-
plored. The idea of combining domain knowledge with advantages of deep learning
has become increasingly popular in the recent years and it is an interesting direction
to explore in the future.

CS on Hardware:

CS based hardware design for signal acquisition has gained popularity in the past
few years [CME18], [ME11]. [YHK+19] provides an interesting discussion on CS at
the hardware level. Recently, there has been a push towards ultra-wideband (UWB)
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enabled chips that can be embedded in smartphones and smartwatches, to provide
very precise localization. This is another step towards achieving multi-appliance
connectivity and Internet-of-Things. With the exponential increase in appliances and
a crowded spectrum, the electronics behind UWB need to be adapted to work with
limited samples, reaffirming the relevance of CS based hardware design. Focusing
on UWB receiver design, [YLP+09] provides an electronics framework that uses CS.
Implementation of the CS ideas proposed in this thesis within such a framework
might be an important future direction. For instance in [YLP+09], the tap delays cor-
respond to the delays in fast time, and the distributed amplifiers (DA) and analog-
to-digital converters (ADCs) are used to construct the CS problem. This resembles
the proposed subdivision scheme in many ways. The gain coefficients of the DA
may be modelled using the elements of the structured CS matrices proposed in this
thesis. The links between the DAs and ADCs may also be modified, leading to a
number of smaller CS problems instead of a single CS problem. Such hardware im-
plementations of CS bridge the gap between the theoretical algorithms and practical
System(s)-on-Chip (SoCs) technology, and is an important research area to explore.
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Appendix A

A.1 PSP derivation for Gapped Chirp

The integral part from (6.5) is ϕ(t, f ) =
∫ Ti

2
−Ti

2

ejπ(αt2−2( f−ατi)t)dt. Writing only the real

part of the exponential and its first and second derivative, we get

ϕ(t, f ) = π
(
αt2 − 2 ( f − ατi) t

)
,

ϕ′(t, f ) = π(2αt − 2( f − ατi)) ,
ϕ′′(t, f ) = π(2α) .

Equating first derivative to 0, we get

t0 =
f
α
− τi .

Then,

ϕ(t0, f ) = π

(
− f 2

α
+ 2 f τi − ατ2

i

)
.

So, the PSP solution to the integral is,

X( f ) =

√
− 2π

ϕ′′(t, f )
e−jπ/4ejϕ(t0, f )

=

√
−1

α
e−jπ/4e

j2π

(
− f 2

2α + f τi−
ατ2

i
2

)

.

A.2 Derivation of the beat frequency signal for FMCW sig-
nal model

The transmitted LFM signal is given by

y(t) = ej(2π fTxt+παt2)rect
(

t
Tp

)
,

where fTx is the transmit frequency (or center frequency) of the signal, α is the slope,
and Tp is the pulse duration.

The received signal is a time delayed version of the transmitted signal, given by

y(t − τj) = ej(2π fTx(t−τj)+πα(t−τj)
2)rect

(
t − τj

Tp

)
,

where τj is the time delay of the signal backscattered from a target at the jth index of
the delay grid.
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The ramp signal is given by

r (t) = ej(2π fTx(t−t0)+πα(t−t0)
2)rect

(
t − t0

Tp

)
,

where, t0 is the time delay corresponding to the Central Reference Point (CRP) [R14,
p.277].

Stretch processing of the received LFM signal gives the beat frequency signal,

y
τj
IF(t) = r∗ (t) y

(
t − τj

)

= ej
(

2π fTx(t−τj)+πα(t−τj)
2−2π fTx(t−t0)−πα(t−t0)

2
)
rect)

(
t − τj

Tp

)
rect

(
t − t0

Tp

)
.

Simplifying this equation gives the final expression for the beat frequency signal,

y
τj
IF(t) = ej(2π fTx(t0−τj)+πα(τ2

j −t2
0)−2παt(τj−t0))rect

(
t − τj

Tp

)
rect

(
t − t0

Tp

)
.
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