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Abstract

In the Standard Model of particle physics, the strong dynamics of hadronic particles such

as the B meson are governed by Quantum Chromodynamics (QCD). Currently, there

exists no single method capable of accurately predicting all phenomena associated with

QCD. Rather, various specialized methods have emerged to address specific phenomena.

Among these approaches, QCD Factorization and QCD Light-Cone Sum Rules are used for

exclusive, energetic B decays. Therein, the B-meson Light-Cone Distributions Amplitudes

(LCDAs) systematically represent the internal structure of the B meson, and as such,

the LCDAs are (presently) inaccessible from first principles. In this thesis, we develop a

new systematic framework for phenomenological analyses, focusing on the leading-twist

B-meson LCDA which leads to the dominant contribution in predictions. Our framework

allows for the integration of various theoretical and experimental constraints to infer the

LCDA and derive predictions. While models have been used for the same purpose, our

approach makes systematic uncertainties quantifiable and provides greater transparency in

the implementation of constraints.

We derive a new systematic parametrization of the leading-twist B-meson LCDA that

fulfills established mathematical properties and satisfies a parameter bound to address

the issue of truncation in the expansion. We discuss certain practical aspects, such as

renormalization group evolution, the implementation of the known short-distance behavior

as a fit constraint, and more. In addition, we update the known short-distance behavior

with the effect of a non-zero spectator quark mass to improve the effectiveness of our

approach for applications with the Bs meson. For this purpose, we perform a generic

matching calculation, which further yields a new result for the short-distance behavior of

the subleading 2-particle LCDA. To demonstrate the practical utility of our framework,

we perform a detailed analysis of the decay mode B → γℓν, which serves as a benchmark

for probing the leading-twist B-meson LCDA. To that end, we extended the EOS software

with experimental observables of this decay and pseudo-observables to accommodate the

theoretical short-distance constraint. This enabled a proof-of-concept study using mock

data and the Bayesian analysis tools in EOS which underscores the utility of the measurement

of this decay mode and further demonstrates the effectiveness of the parameter bound

in managing truncation errors. This analysis highlights the significant potential of our

approach for future research.
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Zusammenfassung

Im Standardmodell der Teilchenphysik werden die starken Wechselwirkungen hadronis-

cher Teilchen wie des B-Mesons durch die Quantenchromodynamik (QCD) bestimmt.

Derzeit gibt es keine einzelne Methode, die in der Lage ist, alle mit der QCD verbundenen

Phänomene genau vorherzusagen. Vielmehr wurden verschiedene spezialisierte Metho-

den entwickelt, die sich mit bestimmten Phänomenen befassen. Unter diesen Ansätzen

werden die QCD-Faktorisierung und QCD-Lichtkegel-Summenregeln für exklusive energetis-

che B-Zerfälle verwendet. Dabei repräsentieren die Lichtkegel-Distributions-Amplituden

(LCDAs) des B-Mesons systematisch seine innere Struktur, und als solche sind die LCDAs

(derzeit) nicht von grundlegenden Prinzipien ableitbar. In dieser Arbeit entwickeln wir

ein neues systematisches Framework für phänomenologische Analysen, das sich auf die

B-Meson-LCDA zu führender Twist-Ordnung konzentriert, welche in Vorhersagen den

dominanten Beitrag generiert. Unser Framework ermöglicht die Integration verschiedener

theoretischer und experimenteller Informationen, um die LCDA abzuleiten und Vorhersagen

zu treffen. Modelle wurden bereits für denselben Zweck verwendet, jedoch macht unser

Ansatz systematische Unsicherheiten quantifizierbar und bietet größere Transparenz für

die Implementierung bekannter Informationen.

Wir leiten eine neue systematische Parametrisierung der B-Meson-LCDA zu führendem

Twist ab, die etablierte mathematische Eigenschaften erfüllt und eine Parameterschranke

erfüllt, um Trunkierung der Parameterentwicklung handzuhaben. Wir diskutieren bes-

timmte praktische Aspekte wie Skalenentwicklung durch die Renormierungsgruppe, Ein-

schränkung der LCDA durch das bekannte Verhalten bei geringer Separation (Kurzstreck-

enverhalten) und mehr. Darüber hinaus erweitern wir das bekannte Kurzstreckenverhalten

mit dem Effekt einer von Null verschiedenen Spectator-Quark-Masse, um die Effektivität

unseres Frameworks für Anwendungen mit dem Bs-Meson zu verbessern. Zu diesem

Zweck führen wir eine generische Matching-Rechnung durch, die zusätzlich ein neues

Ergebnis für das Kurzstreckenverhalten der 2-Teilchen-LCDA zu nachfolgender Twist-

Ordnung ergibt. Um den praktischen Nutzen unseres Frameworks zu demonstrieren,

führen wir eine detaillierte Analyse des Zerfalls B → γℓν durch, der als Maßstab für die

Untersuchung der führenden B-Meson-LCDA gilt. Dazu haben wir die Software EOS um

experimentelle Observablen dieses Zerfalls und Pseudo-Observablen entsprechend dem

theoretische Kurzstreckenverhalten erweitert. Dies ermöglicht eine Machbarkeitsstudie

unter Verwendung von Pseudo-Daten und den Bayes’schen Analysewerkzeugen in EOS,
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Zusammenfassung

welche den Nutzen der Messung dieses Zerfalls unterstreicht und weiterhin die Wirksamkeit

der Parameterschranke zur Handhabung von Trunkierungsfehlern demonstriert. Diese

Analyse zeigt das signifikante Potenzial unseres Ansatzes für zukünftige Forschung.
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1. Introduction

In this chapter, we briefly introduce essential concepts used in the main text. The overview

covers the elements of the strong interaction, heavy quark effective theory, and the role of

the leading B-meson light cone distribution amplitude in theoretical predictions.

The field of theoretical particle physics aims to establish a unified framework capable of

explaining a wide range of phenomena at the level of the smallest building blocks of the

universe. The Standard Model (SM) of particle physics serves as the cornerstone of this field.

It describes three of the four known fundamental forces: the electromagnetic interaction,

responsible for keeping electrons within atoms; the weak interaction, responsible for nuclear

processes like those powering the sun; and the strong interaction, combining quarks and

gluons into protons and neutrons, the building blocks of atomic nuclei. The particles

involved in these interactions are the quarks, leptons, and various bosons. Contrary to the

short-distance phenomena just mentioned, the SM does not include gravity, a force crucial

on the opposite end of the length scales in physics, such as the movement of the planets in

the solar system.

The SM is tested up to the current technological limit of several 1012 electronvolts of

collision energy. This, roughly speaking, corresponds to exploring structures as tiny as

10−18 meters. One can imagine to zoom in to a level where molecule structures such as

DNA become perfectly visible – except that this zoom is applied twice in succession. The

physical reality, however, is more complicated due to quantum effects, as many intuitive

concepts such as distance, size, and matter lose their conventional meaning. Although the

SM has achieved significant success, it is crucial to continue improving our understanding

of particle physics: on the one hand, there are still unanswered conceptual questions, such

as the nature of dark matter, the hierarchy problem, and the unification of forces. On

the other hand, matching the precision of theory predictions with current experimental

observations presents new technical challenges. These challenges include the development

and refinement of non-perturbative methods, such as those discussed in this thesis.

1.1. Quarks and Gluons

The SM is a quantum field theory containing 17 particles: 6 quarks, 3 charged leptons, 3

neutrinos, the gluon, photon, Z, and W vector bosons and the scalar Higgs boson. In this
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1. Introduction

thesis, however, we focus on the sector of quarks and gluons. The six types (flavors) of

quarks are organized in three generations,

(
u

d

)
,

(
c

s

)
, and

(
t

b

)
, (1.1)

which are referred to as up and down, charm and strange, and top and bottom (also called

truth and beauty). The gluon is the force-mediating particle of the strong interaction

between quarks and also between gluons among themselves.

Quantum Chromodynamics (QCD) is the quantum field theory that describes the properties

and strong interactions of quarks and gluons. One notable characteristic of QCD is that

quarks and gluons are never found in isolation; they always exist in composite states

involving at least two of these particles. This phenomenon arises from the non-Abelian

gauge group, SU(3)c, which permits renormalizable self-interactions among massless spin-1

particles. As a consequence, the interaction between quarks and gluons becomes stronger

as the distance between them increases due to a charge screening effect. Objects with

color charge, such as quarks and gluons, are bound together by an attractive potential that

prevents them from separating. Consequently, only color-neutral (gauge-invariant) objects

exist independently. This standout feature of QCD1 is known as confinement.

Unique, tailored approaches are often a necessity to derive predictions from QCD. In

contrast, calculations in other sectors of the SM typically rely on only one method:

perturbation theory. This method involves expressing physical observables as a power

series of the coupling strength. The efficiency of perturbation theory lies in the ability

to truncate the series when the expansion parameter is sufficiently small to result in a

satisfactory approximation. However, QCD presents a unique challenge in this regard,

because the coupling strength is typically sizable (which is related to confinement). In such

cases, non-perturbative approaches come into play, ranging from effective field theories to

numerical Lattice simulations, sum rules, and factorization theorems. Commonly, these

methods (unlike perturbative ones) must be developed and fined-tuned at hand of the

specific process to take best advantage.

1.2. Heavy Quark Effective Theory

Effective theories in physics are an essential concept used to describe physical phenomena

at a particular scale or energy range, where certain degrees of freedom or interactions

dominate, while the effects at different scales can be sufficiently accounted for using a

simplified description. Whether or not a particular effect becomes insignificant, such

1Although the symmetry group SU(2)L of the weak interaction is also non-Abelian, the Higgs mechanism

prevents weak confinement through the effective mass terms of the bosons.

2



1.2. Heavy Quark Effective Theory

that an effective treatment is warranted, depends on the precision of the experimental

observation the theory calculation aims to explain. In many cases, physical mechanisms

may become irrelevant altogether; for example, the gravitational attraction between the

balls on a Billiard table can be neglected for all practical purposes. In more complicated

cases, when the complete underlying theory is unknown or too complex to derive predictions

efficiently, effective theories can still be successful.

Heavy Quark Effective Theory (HQET) exploits the case where a quark’s mass is much

larger than all other energy scales in a system, including Λhad ≈ 1GeV, the hadronization

scale. It applies to hadrons with a single b (or, not discussed here, c) and a light u, d, or s.

In contrast, the t is too short-lived (due to its mass, mt ≈ 40mb) to form bound states

before it decays. Systems with two heavy quarks instead of a single one do not admit

the limit since the dynamics depend on the (large) mass in an essential way. Notably,

although the Bc with a b and c can be considered a heavy-light quark system to some

extent, the sizable ratio mc/mb ≈ 1/3 requires additional attention. New symmetries

emerge in the infinite quark mass limit of QCD; HQET formalizes the limit and allows to

systematically account for symmetry-breaking effects in terms of a systematic expansion;

contributions to each order n in the expansion are power-suppressed, (k/(2mQ))
n, where k

is the typical momentum scale and mQ denotes the heavy quark mass. The expansion’s

primary advantage is the efficiency in calculating the strong interaction effects between

weak processes with heavy quarks on the one side and heavy hadrons on the other.

The following text introduces the formal basics of HQET very briefly. Excellent in-depth

discussions can be found in many texts, e.g., Refs. [4–6]. The starting point to derive the

effective theory is the QCD Lagrangian,

LQCD = Q̄(i /D −mQ)Q+ . . . , (1.2)

where Q denotes the field of a heavy quark and the ellipsis stands for terms with light

quarks and gluons, which are irrelevant here. It is convenient to formulate the field theory

in terms of a particle field that has its lowest energy level shifted by the mass mQ, such

that it remains constant (i.e., zero) in the infinite mass limit [5]. Formally, this corresponds

to an appropriate shift of the field’s phase. To that end, we consider a decomposition of the

heavy quark momentum p into a “non-relativistic” component characterized by a velocity

v and a residual momentum k,

pµ = mQ vµ + kµ , (1.3)

where the four vector v satisfies v2 = 1. Additionally, the quark field itself can be

decomposed into approximate particle and anti-particle solutions through the projectors

P± = (1± /v) /2 to motivate the following definition:

Q(x) ≡ e−imQ v·x (hv(x) +Hv(x)
)
. (1.4)

The components correspond to the aforementioned projectors, fulfilling /vhv = +hv and

/vHv = −Hv. The infinite mass limit is related to k → 0 such that the Dirac equation

3



1. Introduction

becomes (1 − /v)Q = 0, implying Hv = 0; this leaves only the field component hv as a

dynamic degree of freedom of the effective theory. Using the decomposition in Eq. (1.4) in

the QCD Lagrangian reveals that hv has no mass term, whereas Hv has mass 2mQ. Beyond

the infinite mass limit, one defines HQET by integrating out the heavy field Hv using

the path integral formalism [4]. This way, HQET systematically separates the dynamical

component of the heavy quark field from the one that becomes static in the limit.

Altogether, the HQET Lagrangian follows from the QCD Lagrangian in Eq. (1.2) after

integrating out Hv. The resulting Lagrangian, in terms of hv, and up to power N in the

expansion in m−1
Q , takes the form

L(N)
HQET = h̄v(iv ·D)hv (“leading power”)

+
N∑

n=1

(
1

2mQ

)n

h̄v O
(n) hv . (“power corrections”)

(1.5)

Power-correction terms contain covariant Dirac operators O(n) composed of Dµ and vµ.

To leading power, the Feynman rules in momentum space [6] are given by the effective

heavy quark propagator,

S(k) =
i

v · k + iϵ

1 + /v

2
, (1.6)

and a vertex coupling two quark fields with a gluon, which amounts to

Γµ;a
ij = igsv

µT a
ij

1 + /v

2
. (1.7)

Here, gs is the strong coupling strength, i and j are the color indices of the quark fields,

and µ and a are the Lorentz and color indices of the gluon, respectively. Higher-order terms

introduce new interaction vertices with two quark fields and (between zero and N + 1)

gluon fields.

The heavy quark limit, mQ →∞, yields two additional symmetries initially absent in QCD.

Experiments show their approximate realization in the mass spectrum of hadrons [5]. The

first is heavy flavor symmetry because QCD treats the quark flavors identically apart from

their masses. In the limit, they are interchangeable without affecting the properties of a

hadron emerging as a strong bound state. The second, spin symmetry, becomes apparent

when formalizing the infinite mass limit of QCD, and it predicts the decoupling of the heavy

quark spin from the gluon. Since the heavy quark interacts with the other constituents of

the system by gluon exchange, the properties of the hadron become independent of spin.

The additional symmetries relate (i.e., restrict) the non-perturbative information needed

to understand a variety of heavy-light quark systems.

4



1.3. B-meson Light-cone Distribution Amplitudes

1.3. B-meson Light-cone Distribution Amplitudes

The light-cone distribution amplitudes (LCDA) of the B meson play a crucial role as

hadronic input about the internal structure for theoretical descriptions of exclusive B decays

into energetic hadrons and photons. These descriptions rely on factorization theorems in

QCD, initially formulated for charmless non-leptonic B-decays [7, 8]. Their applications

have since expanded to various decay modes, including semi-leptonic and radiative decays;

Ref. [9] provides an overview and extensive references of recent literature. Furthermore,

light-cone sum rules (LCSR) offer a complementary method, accessing “soft” hadronic

matrix elements when initial and final state factorization is incomplete. Integrating the

B-meson LCDA already known from factorization also into LCSR, as proposed in Refs. [10–

13], facilitates a unified theoretical description, suitable to be confronted with experimental

data. This complementary approach has been employed recently for the benchmark decay

mode B → γℓν [14–16], where data is anticipated from the Belle-II experiment [17].

Among the LCDAs, the leading-twist LCDA is the phenomenologically most important

one, while the subleading-twist LCDAs are relevant for the improvement of accuracy

(cf. Chapter 4). In this work, we aim to establish a new analysis framework, which at this

stage is mostly focused on the leading-twist LCDA. In the following, we often refer to this

LCDA without specifying the twist.

There are several sources of information about the LCDA. The two theoretical approaches

for decay predictions systematically probe different aspects, expressed as weighted integrals

of the LCDA’s momentum-space representation:

1. QCD factorization features “logarithmic moments”, i.e., integrals weighted by powers

of logarithms over the entire domain.

2. The LCSR approach depends on weighted integrals over a finite domain of small

light-cone momenta.

We defer the quantities’ definitions to the main text. On purely theoretical grounds, one

can constrain another aspect of the LCDA:

3. The local operator product expansion (OPE) yields the short-distance behavior for

the position-space representation of the LCDA at small but finite distances.

This short-distance behavior can be calculated in terms of perturbative coefficients and

a set of hadronic parameters. The behavior in position space at short distance is also

manifest in momentum space in the regime of large light-cone momenta, where the term

“radiative tail” (or “radiation tail”) became established jargon.

A detailed discussion of the properties and applications of the LCDA follows in the main

text. The objective of this thesis is the development of a tailored approach for the LCDA

that combines all available information in a consistent and transparent way.
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1.4. Thesis Outline

After the brief introduction presented in this chapter, we will proceed with a detailed

discussion in the following chapters. Each chapter represents a comprehensive research

project, with each subsequent chapter building on the previous one(s). Except for the

final chapter, our considerations include the Bs meson (and to some extent the Bc meson),

distinguished by a considerable spectator quark mass.

In Chapter 2, we propose a systematic parametrization for the leading-twist B-meson

LCDA, starting with a detailed review of the LCDA’s theoretical properties and applications.

On that basis, we construct a suitable parametrization with a parameter bound to handle

truncation. We examine practical aspects such as the parameter expansions of various

quantities and the handling of renormalization group evolution. Testing the parametrization

at the hand of several models for the LCDA demonstrates its flexibility and provides heuristic

benchmarks for convergence. In a “pseudo-phenomenological” study, we aim to understand

the impact of constraints from the short-distance behavior in a global fit.

Chapter 3 is devoted to the short-distance behavior accessed through the operator product

expansion (OPE). In particular, we are interested in the effect of the finite spectator quark

mass for the case of the Bs meson, previously unconsidered in the literature. To that end,

we detail an efficient approach for the matching calculation in position space based on

Feynman integrals in momentum space. We derive results up to dimension 4 in the OPE

for the leading-twist 2-particle LCDA ϕ+ and the subleading 2-particle LCDA ϕ−. Using
the “pseudo-phenomenological” setup once more, we estimate the impact of the spectator

quark mass, comparing our results with independent results obtained using QCD sum rule

estimates. Finally, we look into the potential impact of dimension-5 operators.

Chapter 4 confronts the theoretical considerations with experimental observables from the

benchmark decay mode B → γℓν. We review the theoretical understanding of the decay

amplitude using QCD factorization, complemented with subleading power corrections

accessible via QCD sum rules. We express the decay amplitude through the systematic

parametrization, detailing computational methods to streamline this process. After briefly

describing the implementation work performed as part of this thesis for the publicly available

open-source software EOS, we demonstrate how our parametrization can combine theoretical

and experimental information in a global analysis using a statistically sophisticated Bayesian

framework.

Each chapter is prefaced with a more detailed content overview for the reader’s conve-

nience.
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2. Systematic Parametrization of the

Leading B-meson Light-cone

Distribution Amplitude

The main results in this chapter and Appendix A have been published in

T. Feldmann, P. Lüghausen, and D. van Dyk. “Systematic parametrization of the

leading B-meson light-cone distribution amplitude”. In: JHEP 10 (2022), p. 162.

doi: 10.1007/JHEP10(2022)162. arXiv: 2203.15679 [hep-ph].

Existing analyses involving the B-meson LCDAs have so far relied on models. Model-based

analyses are subject to theory bias and unwarranted correlations between the concrete

quantities entering the physical description, which ultimately results in unquantifiable

uncertainties. A key development of this thesis is a suitable parametrization for the

leading-twist LCDA which makes systematic uncertainties quantifiable and incorporates as

much model-independent theoretical information as possible.

We derive this systematic parametrization for the LCDA within the framework of heavy-

quark effective theory (HQET). In position space, the approach uses a conformal trans-

formation, facilitating a Taylor expansion and an integral bound. This setup effectively

provides control over the truncation error. Furthermore, the parametrization yields

compact analytical expressions for various derived quantities. At a specified reference

scale, the momentum-space representation corresponds to an expansion in associated

Laguerre polynomials, which transform into confluent hypergeometric functions 1F1 under

renormalization-group evolution at 1-loop level. This approach allows to transparently

incorporate a range of phenomenological constraints, regardless of their origin. For instance,

we can impose theoretical constraints on the expansion coefficients from the short-distance

behavior obtained from the local operator product expansion (see also Chapter 3). We

demonstrate the feasibility of a consistent global analysis based on inputs of both phe-

nomenological and theoretical origin (see also Chapter 4 for a more rigorous analysis based

partially on mock data in lieu of upcoming measurements).

This chapter is organized as follows: in Section 2.1, we present a comprehensive overview

of the leading-twist B-meson light-cone distribution amplitude, establishing the notation

for the purposes of this chapter. In particular, we discuss the analytical properties of the

7
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2. Systematic Parametrization of the Leading B-meson LCDA

LCDA, renormalization at the 1-loop level, logarithmic moments, and we define quantities

that characterize the low-momentum behavior.

In Section 2.2, we derive a novel parametrization of the leading-twist B-meson LCDA in

position space, ϕ̃+(τ). After applying a conformal transformation from τ to y, mapping the

real τ axis onto the unit circle in the complex y-plane, we perform a Taylor expansion in y.

The coefficients of this expansion adhere to an integral bound, crucial to manage truncation.

We translate the parametrization to the so-called dual space and momentum space, where it

is expressed through expansions in associated Laguerre polynomials. We further elaborate

on the computation of logarithmic moments, the incorporation of renormalization group

evolution effects, and the adaptation of our framework to higher-twist LCDAs within the

Wandzura-Wilczek approximation.

In Section 2.3, we test the versatility of our expansion by analyzing its convergence in

four different, representative models from existing literature, showcasing the efficacy of our

approach.

In Section 2.4, as a first consistency study, we perform a series of rudimentary pseudo-fits

related to the photo-leptonic B → γℓν decay. The study aims to demonstrate how the

parametrization facilitates the simultaneous integration of both theoretical and experimental

information in global analyses, without discussing the intricacies of a more sophisticated

statistical approach.

In Section 2.5, we summarize our findings and their implications. For ease of reference and

further detail, additional formulas are provided Appendix A.

2.1. Preliminaries

The leading-twist 2-particle LCDA of the B-meson is defined as the matrix element of a

light-ray operator within HQET. We adopt a definition that uses a normalization against

the matrix element of the corresponding local operator, as in Ref. [18]:

ϕ̃+(τ ;µ) =
⟨0|q̄(τn) [τn, 0] /nγ5 hv(0)|B(v)⟩
⟨0|q̄(0) /nγ5 hv(0)|B(v)⟩ . (2.1)

We refer to this function as the “position-space representation” of the LCDA as the

argument τ parametrizes the separation between the coordinate arguments of the quark

fields. Here, the vector nµ is defined as light-like, n2 = 0, and the gauge link denoted as

[τn, 0] represents a straight Wilson line that ensures the gauge invariance of the LCDA.

The B meson is characterized by its velocity vµ, and we simplify our considerations by

working in a frame where v · n = 1. The LCDA further depends on the renormalization

scale µ, which compensates the scale dependence of the perturbative components in the

theoretical descriptions of scale-independent observables. Notably, in the HQET framework,
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2.1. Preliminaries

the limit mb →∞ has been applied as a fundamental step, such that ϕ̃+ is independent

of the heavy-quark mass mb. Physical amplitudes, in contrast, still acquire an explicit

heavy-quark mass dependence due to short-distance functions, which enter as multipliers to

the LCDA. This is the case, for example, in the context of QCD factorization calculations.

We finally point out that the notion of twist of light-ray operators, as previously established

in QCD, has to be modified in HQET (see, for example, Ref. [19]).

2.1.1. Mathematical Properties

We collect the mathematical properties of the position-space LCDA, here denoted as P1,

P2 and P3, which are discussed in the literature (e.g., in Ref. [20]):

P1: ϕ̃+(τ) is analytic in the lower half of the complex plane, Im τ < 0.

P2: ϕ̃+(τ) is analytic on the real axis, τ ∈ R, except for a single point τ = 0 where

it has a logarithmic singularity of measure zero. A branch cut extends from this

singular point along the positive direction of the imaginary axis. Therefore ϕ̃+(τ) is

Lebesgue-integrable with

lim
ϵ→0+

∞−iϵ∫

−∞−iϵ

dτ ϕ̃+(τ, µ) = 0 . (2.2)

P3: ϕ̃+(τ) can be analytically continued from the lower half of the complex plane onto

the real τ axis almost everywhere (i.e., in all points except for a null set).

We further assume that the Fourier transform exists,

ϕ+(ω;µ) =

∞−iϵ∫

−∞−iϵ

dτ

2π
eiωτ ϕ̃+(τ ;µ) , (2.3)

which we call momentum-space representation of the LCDA. The integration contour lies

below the singularities of ϕ̃+ which are located in the upper-half plane. The positions of

singularities in the complex τ imply that ϕ+(ω) vanishes for ω < 0 [18, 21]. It follows from

the properties P1 to P3 and the Paley-Wiener theorem [22, Theorem 7.2.4] that ϕ̃+(τ) is

the holomorphic Fourier transform of ϕ+(ω),

ϕ̃+(τ ;µ) =

∫ ∞

0
dω e−iωτ ϕ+(ω;µ) , (2.4)

and that ϕ+ is square-integrable, ϕ+(ω) ∈ L2, on the support [0,∞). By extension,

according to Plancherel’s theorem, the two-norm of the position-space LCDA exists and
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2. Systematic Parametrization of the Leading B-meson LCDA

is equal to the two-norm in momentum space. Thus, the inner product exists in both

representations: ∫ ∞

−∞

dτ

2π

∣∣ϕ̃+(τ)
∣∣2 =

∫ ∞

0
dω
∣∣ϕ+(ω)

∣∣2 <∞ . (2.5)

We further assume the LCDA tends to zero linearly, ϕ+(ω;µ) ∼ ω, in the limit ω → 0 at

large renormalization scales µ≫ Λhad. An analysis of the renormalization group equation

at the 1-loop level shows that the scaling of the LCDA at the origin becomes linear as it

evolves to a larger scale [21]. This outcome of RG evolution is independent of how the

LCDA behaves at a lower scale. Sum-rule inspired arguments imply the same asymptotic

behavior [18, 19]. Translating this behavior to position space through consideration of the

Fourier transform leads to the following additional property:

P4: The position-space LCDA falls off asymptotically at least as fast as 1/τ2, i.e.

0 ≤ lim
τ→∞

∣∣∣τ2 ϕ̃(τ)
∣∣∣ <∞ . (2.6)

2.1.2. Renormalization and Eigenfunctions

The B-meson LCDA ϕ+(ω) can be represented in terms of a continuous set of eigenfunctions

of the 1-loop renormalization-group equation, specifically through the Bessel functions of

the first kind, J1 [23, 24]. We call this the “dual-space representation”1, in addition to the

position- and momentum-space representations, which is convenient because of the simple

multiplicative solution of its RGE. Here, we adopt the convention used in Ref. [24]:

ϕ+(ω;µ) =

∫ ∞

0
ds
√
ωs J1(2

√
ωs) η+(s;µ)

⇔ s η+(s;µ) =

∫ ∞

0

dω

ω

√
ωs J1(2

√
ωs)ϕ+(ω;µ) .

(2.7)

We note that the corresponding definition of ρ+(ω
′) in Ref. [23], fulfilling the same purpose,

is related to the above definition as follows:

s η+(s;µ) = ρ+(ω
′ = 1/s;µ) . (2.8)

The relation between the LCDA in dual space and position space reads [23]

s η+(s;µ) =

∞−iϵ∫

−∞−iϵ

dτ

2π

(
1− e−is/τ

)
ϕ̃+(τ ;µ)

⇔ ϕ̃+(τ ;µ) = −
1

τ2

∫ ∞

0
ds eis/τ s η+(s;µ) .

(2.9)

1The term “spectral function” is also used in the literature due to the notion of a continuous set of

eigenfunctions.
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2.1. Preliminaries

The multiplicative RG equation of η+(s) at the 1-loop level,

dη+(s;µ)

d lnµ
= −

[
Γc(αs(µ)) ln

(
µ s e2γE

)
+ γ+(αs(µ))

]
η+(s;µ) , (2.10)

has the following explicit solution:

η+(s;µ) = eV (µ;µ0) η+(s;µ0) (µ̂0 s)
−g(µ;µ0) . (2.11)

Here and in the following, we use the convenient short-hand notation

µ̂ ≡ µ e2γE , (2.12)

and similar for other quantities. We use the same definitions of the functions V (µ;µ0)

and g(µ;µ0) as used, e.g., in Ref. [23]. We give their explicit expressions in Eq. (A.1) and

Eq. (A.2), and, for convenience, we quote their RG equations here:

dV (µ, µ0)

d lnµ
= −

[
Γc(αs(µ)) ln

(
µ

µ0

)
+ γ+(αs(µ))

]
,

dg(µ, µ0)

d lnµ
= Γc(αs(µ)) . (2.13)

Notice that the dual-space LCDA no longer renormalizes multiplicatively at 2-loop order,

demonstrated explicitly in Ref. [25].

2.1.3. Logarithmic Moments and Generating Function

In QCD factorization theorems for exclusive B-meson decays [7, 8] the B-meson LCDA

enters in terms of so-called logarithmic moments. It is convenient to define these mo-

ments directly from the dual-space representation [23, 26]. In the following, we use the

convention

Ln(µ, µm) = (−1)n
∫ ∞

0
ds lnn(µ̂ms) η+(s;µ) , (2.14)

where L0 is commonly called the zeroth logarithmic moment, λ−1
B . We emphasize that in

defining the logarithmic moments Ln with n ≥ 1, we consider an arbitrary fixed reference

scale µm. Alternative definitions in the literature use the renormalization scale µ or the

inverse zeroth logarithmic moment λB, which present special cases of our more general

definition. The Mellin transform of η+(s),

F[η+](t;µ, µm) ≡
∫ ∞

0
ds (µ̂ms)−t η+(s;µ) (2.15)

generates the moments Ln as the coefficients of its Taylor expansion at t = 0:

Ln(µ, µm) =

(
d

dt

)n

F[η+](t;µ, µm)
∣∣∣
t=0

. (2.16)
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2. Systematic Parametrization of the Leading B-meson LCDA

We analogously define the generating function of the logarithmic moments of the momentum-

space LCDA as

G[ϕ+](t;µ, µm) =

∫ ∞

0

dω

ω

(µm

ω

)−t
ϕ+(ω;µ) , (2.17)

which is related to its pendant in dual space via the relation

G[ϕ+](t;µ, µm) =
Γ(1 + t)

Γ(1− t)
e2γE t F[η+](t;µ, µm)

= F[η+](t;µ, µm)
(
1 +O(t3)

)
, (t < 1) .

(2.18)

The logarithmic moments of η+ and ϕ+ are equal for n = 0, 1, 2. The function G[ϕ+] already

appeared in the analysis of the RG equation for ϕ+(ω;µ) [21]. It is further helpful to solve

the 2-loop RGE, as shown in Ref. [27], where they refer to it as the Laplace transform of

the LCDA. In the following text, we regularly omit the argument µm in the logarithmic

moments and their generating functionals for brevity. The position-space LCDA yields

the logarithmic moments as weighted integrals over the negative imaginary axis. The

generating function translates to [28]

∫ ∞

0

dω

ω

(µm

ω

)−t
ϕ+(ω, µ) =

eγEt

Γ(1− t)

∫ ∞

0
dτ (τµm eγE)−t ϕ̃+(−iτ, µ) . (2.19)

The logarithmic moments Ln obey simple coupled RG equations at 1-loop order (see also

Ref. [23]),

dLn(µ, µm)

d lnµ
= Γc(µ)Ln+1(µ, µm)− Γc(µ) ln

µ

µm
Ln(µ, µm)− γ+(µ)Ln(µ, µm) . (2.20)

The equation simplifies in the particular case µm = µ0, where the solution reads

Ln(µ, µ0) = eV (µ,µ0)
∞∑

k=0

[g(µ, µ0)]
k

k!
Ln+k(µ0, µ0) . (2.21)

The general result for an arbitrary µm is given by

Ln(µ, µm) =
n∑

i=0

(
n

i

)
Li(µ, µ0)

(
ln

µ0

µm

)n−i

= eV (µ,µ0)

(
µ0

µm

)−g(µ,µ0) ∞∑

k=0

[g(µ, µ0)]
k

k!
Ln+k(µ0, µm) .

(2.22)

The generating function F [η+](t;µ, µm) is especially convenient because of the simple scale

dependence that follows from Eq. (2.11),

F[η+](t;µ, µm) = eV (µ;µ0)

(
µ0

µm

)−g(µ;µ0)

F[η+](t+ g(µ;µ0);µ0, µm) . (2.23)
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The corresponding RG equation reads

∂F[η+](t;µ)

∂ lnµ
= −

(
γ+(µ) + Γc(µ) ln

µ

µm

)
F[η+](t;µ) + Γc(µ)

∂F[η+](t;µ)

∂t
. (2.24)

We note that also the 2-loop RG equation for G[ϕ+] is available in the recent literature [27],

which easily can be translated to F[η+] via Eq. (2.18).

2.1.4. Behavior at Small Momentum

Theoretical calculations based on the light-cone sum rules approach with B-meson LCDAs

[10–13] require information about the low-momentum regime, ω ≤ s0/2E. Here, s0 is

the effective threshold parameter in the hadronic model for the spectral density under

consideration, and E is the large recoil energy of the physical process. In such applications,

we may expand the LCDA around ω = 0, in terms of its nth derivatives, assuming they

exist. This is complementary to the QCD factorization approach, where the theoretical

description depends on the logarithmic moments Ln(µ) instead. The derivatives at the

origin and the generating function of the logarithmic moments F[η+](t) are related as

ϕ
(n)
+ (0;µ) =

(−1)n+1

Γ(n)

∫ ∞

0
ds sn η+(s;µ) = −

(−µ̂m)−n

Γ(n)
F[η+](−n;µ) . (2.25)

While the derivatives can be represented using the generating function, it is essential to

emphasize that the ϕ
(n)
+ (0) values probe the function F[η+] at specific finite (discrete) points,

namely at t = −n where n > 0. On the other hand, the logarithmic moments Ln probe the

expansion coefficients of the function F[η+] at t = 0. This distinction leads to a crucial point:

the techniques of light-cone sum rules and QCD factorization calculations are sensitive

to different aspects of the underlying LCDA ϕ+(ω), which renders the interpolation of

information extracted from those two approaches non-trivial.

To investigate the low-momentum behavior, we propose the “normalized Laplace trans-

form”2 as the benchmark quantity:

L[ϕ+](ζ, µ)

L[ω](ζ) ≡

∞∫
0

dω e−ζω ϕ+(ω, µ)

∞∫
0

dω e−ζω ω

= ζ2 ϕ̃+(−iζ, µ) . (2.26)

The advantage of this quantity is that, in the limit ζ →∞, it results in ϕ
(1)
+ (0;µ)3, but in

case the derivative does not exist, it can also probe the regime of small (but non-vanishing)

values of ω using large (but finite) values of ζ.

2Our use of the term differs to Ref. [27], where it corresponds to our generating function in Eq. (2.17).
3To show this, one has to apply partial integration twice.
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2. Systematic Parametrization of the Leading B-meson LCDA

2.2. Parametrization of the B-meson LCDA

We propose a novel parametrization of the leading-twist B-meson LCDA that satisfies the

general properties listed in Section 2.1. While the expansion in terms of any complete

set of basis functions is valid as long all orders are taken into account, it is crucial for

practical applications to ensure rapid convergence of the series. A bounding condition

for the parameters that controls the truncation error is needed to justify taking only a

finite number of parameters into account. Such a condition in terms of a set of expansion

parameters {ak | k = 0, 1, . . .} takes the form

∞∑

k=0

|ak|2 <∞ . (2.27)

With this goal in mind, we start with a functional χ[r] defined as a weighted integral of

the position-space LCDA,

χ[r](µ) ≡
∞∫

−∞

dτ

2π

∣∣∣ϕ̃+(τ ;µ)
∣∣∣
2
|r(τ ;µ)|2 , (2.28)

where r(τ ;µ) is a complex-valued weight function to ensure that the integral is finite. In

the following, we construct a set of basis functions and choose a weight function such that

the above equation poses a suitable bounding condition.

To express the problem in mathematically well-understood terms, we use a conformal map

to transform the dimensionful integration variable τ ∈ R to a dimensionless variable y on

the complex unit circle:

τ 7→ y(τ) ≡ iω0τ − 1

iω0τ + 1
⇔ iω0τ(y) =

1 + y

1− y
. (2.29)

Here, we introduce an auxiliary parameter ω0 as a reference scale of the dimensionless

variable. This step is not a mere technicality: the introduction of a reference scale is

essential to encode physical information using a set of numbers. The variable transform,

visualized in Fig. 2.1, features the following properties:

• The point τ = 0 is mapped to y(0) = −1.

• The points at |τ | → ∞ are mapped to lim|τ |→∞ y(τ) = +1.

• The real τ axis is mapped to the unit circle, |y(τ)| = 1, in the complex plane.

• The lower half of the complex plane, Im τ < 0, is mapped onto the open unit disk,

|y| < 1.
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Re τ

Im τ

0

(a) Color-marked domain of τ

Re y(τ)

Im y(τ)

1−1

(b) Image in the y(τ)-plane

Figure 2.1.: Visualization of the variable transform τ 7→ y(τ), with τ in units of 1/ω0. The hollow

small circles in the left sketch represent points at Re τ → ±∞. The small circles and colored lines

correspond to each other in both sketches.

Applying the change of variable to the integral in Eq. (2.28) maps the integration domain

onto the boundary of the unit disc, ∂D, which we parametrize using an exponential

function:

χ[r] =

∮

∂D

dy

2π

∣∣∣ϕ̃+(τ(y))
∣∣∣
2
|r(τ(y))|2 J(τ(y))

=

π∫

−π

dθ

2π

∣∣∣ϕ̃+(τ(y))
∣∣∣
2
|r(τ(y))|2 (−iy) J(τ(y))

∣∣∣∣∣
y=eiθ

.
(2.30)

In the above, we denote θ = arg(y), and we suppress the argument µ for legibility. The

Jacobian −iyJ of the chain of variable transforms amounts to

−iy J(τ(y)) = −iy dτ

dy
= − 2y

ω0 (1− y)2
=

1 + ω2
0τ

2

2ω0
. (2.31)

Factorizing the LCDA as

ϕ̃+(τ) ≡
f+(y(τ))

r(τ) (1 + iω0τ)
, ϕ̃∗

+(τ) =
f∗
+(y

∗(τ))
r∗(τ) (1− iω0τ)

(2.32)

simplifies the expression in Eq. (2.28),

χ =
1

2ω0

π∫

−π

dθ

2π
|f+(y)|2

∣∣∣∣
y=eiθ

. (2.33)

Expanding f+ in terms of so-called “orthogonal polynomials on the unit circle” yields

the desired form of a bound given in Eq. (2.27). The form above shows similarity to

the parametrization of hadronic form factors with unitarity bounds (see, e.g., Ref. [29]).

We achieve the bounding condition by expanding in monomials with positive powers,

{yn |n = 0, 1, . . .}. Negative powers of y are excluded from the parametrization of ϕ̃+, as
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2. Systematic Parametrization of the Leading B-meson LCDA

they induce singularities on the open unit disk and thus violate P1. The same holds for

positive powers of the complex conjugate y∗. In formal terms, the Taylor expansion of the

function f+(y) corresponds to the Fourier series

f+(y) ≡
∞∑

k=0

ak y
k , f+(y)

∣∣
y=eiθ

=
∞∑

k=0

ak e
iθk (2.34)

which yields

χ[r] =
1

2ω0

∞∑

k=0

|ak|2 . (2.35)

Since χ is finite, the sequence {ak} is an element of the ℓ2 space of sequences and must

fall off faster than
√
1/k as k →∞. This implies the expansion can be truncated at some

value k = K while the truncation error is controlled by the parameter bound 2ω0χ. In

particular, when the parameters used for truncation result in a higher level of saturation of

the bound, it indicates that the approximation provided by the truncated parameterization

is more accurate, because the maximum allowed magnitude of each omitted parameter

is monotonously becoming smaller with growing truncation level K. In contrast to the

unitarity bounds for hadronic form factors, however, we presently do not know the value

of the parameter bound for the LCDA.

Up to this point, we did not assume a specific weight function. Generally, we find that

χ[r] is finite as long as4

• | limτ→∞ r(τ ;µ)/τ | <∞, by P4; and

• r(τ ;µ) is regular as τ → 0, by P2.

These conditions alone do not uniquely determine the weight function. While the concrete

choice is arbitrary for the entire infinite series, it is critical for the convergence rate of the

truncated parametrization.

We select a weight function which is in line with the analyticity requirements of ϕ̃+(τ) and

that leads to at least a 1/τ2 suppression of ϕ̃+(τ) for |τ | → ∞ (see P4),

r(τ ;µ0) ≡ 1 + iω0τ , (2.36)

at a fixed reference scale µ0 for which we require that µ0/ω0 ∼ O(1). With this, we obtain

the following parametrization of the B-meson LCDA in position space,

ϕ̃+(τ ;µ0) =
(1− y(τ))2

4

K∑

k=0

ak(µ0) (y(τ))
k

=
1

(1 + iω0τ)2

K∑

k=0

ak(µ0)

(
iω0τ − 1

iω0τ + 1

)k

,

(2.37)

4It is sufficient that r(τ ;µ) diverges slower than 1/
√
τ for τ → 0, i.e., limτ→0

√
τ r(τ) = 0.
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2.2. Parametrization of the B-meson LCDA

which corresponds to an expansion in the point τ = −i/ω0. On the one hand, our choice

yields simple analytical expressions not only in position space but also in the other relevant

representations. On the other hand, one can view this expansion as a systematic extension

of the popular phenomenological model proposed in Ref. [18]. For details, see Section 2.3.1.

Assuming this model provides a good approximation, one expects numerically small values of

the higher-order parameters; data analysis can test this assumption and, most importantly,

give quantitative insight into how to improve the simple picture.

The central result of this chapter is the parametrization provided in Eq. (2.37). In

the following sections, we develop various useful applications of it, for example, how to

(efficiently) account for renormalization group evolution.

2.2.1. Dual-space LCDA and Logarithmic Moments

The dual-space representation of our parametrization follows from the transformation in

Eq. (2.9) of the position-space form in Eq. (2.37) as

η+(s;µ0) = e−sω0

K∑

k=0

(−1)k ak(µ0)

1 + k
L
(1)
k (2ω0s) , (2.38)

where L
(1)
k denote the associated Laguerre polynomials. We use the orthogonality relations

of the polynomials to derive the following integral relation to extract the expansion

coefficient ak for a given η+:

ak(µ0) = 4 (−1)k ω0

∞∫

0

ds (ω0s) e
−sω0 L

(1)
k (2ω0s) η+(s;µ0) . (2.39)

The expression for the integral χ in terms of the dual-space LCDA reads

2ω0 χ[r](µ0) =

K∑

k=0

|ak|2 = 2ω0

∫ ∞

0
ds

(
ω2
0 |sη+(s;µ0)|2 +

∣∣∣∣
d

ds
(sη+(s;µ0))

∣∣∣∣
2
)

≡ 2ω0

∫ ∞

0
ds

∫ ∞

0
ds′
(
s′η∗+(s

′;µ0)
)
R[η](s

′, s) (sη+(s;µ0)) , (2.40)

with the following distribution R, which we obtain as the corresponding integral transform

of our weight factor |r(τ ;µ0)|2:

R[η](s
′, s) = ω2

0 δ(s− s′)− δ′′(s− s′) . (2.41)

On this basis, we find the generating function for the logarithmic moments in terms of the

parameters,

F[η+](t;µ0, µm) =
Γ(1− t)

ω0

(
µ̂m

ω0

)−t K∑

k=0

ak 2F1(−k, 1 + t; 2; 2) . (2.42)
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2. Systematic Parametrization of the Leading B-meson LCDA

This expression can be derived using Cauchy’s residue theorem, where higher-order poles

result in derivatives of the integrand, which results in binomial coefficients. The hypergeo-

metric function with negative first argument −k amounts to polynomials of the variable t

to nth order. For instance, the leading three polynomials read

2F1(0, 1 + t; 2; 2) = 1 , 2F1(−1, 1 + t; 2; 2) = −t ,

2F1(−2, 1 + t; 2; 2) =
1

3

(
1 + 2t2

)
.

(2.43)

Generally, they are even functions of t for even k and odd functions of t for odd k.

From this, we obtain the expressions for the first few logarithmic moments within our

parametrization:

L0(µ0) =
1

ω0

K∑

k=0

1− (−1)k+1

2

ak(µ0)

k + 1
=

a0 + 1/3 a2 + . . .

ω0
, (2.44)

L1(µ0) = −
(
ln

µ̂m

ω0
− γE

)
L0(µ0) +

1

ω0

K∑

k=0

ak

[
d

dt
2F1(−k, 1 + t; 2; 2)

]

t=0

= −
(
ln

µ̂m

ω0
− γE

)
L0(µ0) +

−a1 − 2/3 a3 + . . .

ω0
, (2.45)

L2(µ0) =

[
π2

6
−
(
ln

µ̂m

ω0
− γE

)2
]
L0(µ0)− 2

(
ln

µ̂m

ω0
− γE

)
L1(µ0)

+
1

ω0

K∑

k=0

ak

[
d2

dt2
2F1(−k, 1 + t; 2; 2)

]

t=0

,

=

[
π2

6
−
(
ln

µ̂m

ω0
− γE

)2
]
L0(µ0)− 2

(
ln

µ̂m

ω0
− γE

)
L1(µ0)

+
4/3 a2 + 4/3 a4 + 56/45 a6 + . . .

ω0
. (2.46)

The characteristics of the confluent hypergeometric functions in Eq. (2.45) and Eq. (2.46)

have the following effect in the particular case µm = ω0 e
−γE : The logarithmic moments

L0 and L2 solely rely on coefficients ak with even index k, while the logarithmic moment

L1 exclusively involves the coefficients with odd index. In addition, the sequence produced

by the hypergeometric functions and their derivatives forms a null sequence. We highlight

the conclusions for the logarithmic moments expressed through the parametrization:

1. At the reference scale µm = ω0 e
−γE , the logarithmic moments L0 and L1 are

parametrically independent. Thus, the two have no correlation, even for the truncated

expansion.

2. The series representation of the logarithmic moments can converge, even if the series∑
k ak does not converge.
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2.2. Parametrization of the B-meson LCDA

2.2.2. Momentum-space LCDA and Behavior at ω = 0

We obtain the momentum-space representation by applying the Fourier transform in

Eq. (2.3) to the position-space representation in Eq. (2.37),

ϕ+(ω;µ0) =
ω e−ω/ω0

ω2
0

K∑

k=0

ak(µ0)

1 + k
L
(1)
k (2ω/ω0) , (2.47)

where L
(n)
k denotes the associated Laguerre polynomials. The corresponding projection

relation to obtain the expansion coefficients reads

ak(µ0) = 4

∞∫

0

dω e−ω/ω0 L
(1)
k (2ω/ω0)ϕ+(ω;µ0) . (2.48)

For analytical calculations, we find it convenient to generate the coefficients through

derivatives from a single integral expression:

ak(µ0) =
1

k!

∂k

∂tk

∞∫

0

dω
4

(1− t)2
exp

{
(t+ 1)

(t− 1)

ω

ω0

}
ϕ+(ω;µ0)

∣∣∣∣∣
t=0

. (2.49)

The integral χ[r] can be expressed in terms of the momentum-space representation as

2ω0 χ[r](µ0) =
K∑

k=0

|ak|2 = 2ω0

∫ ∞

0
dω

(
|ϕ+(ω;µ0)|2 + ω2

0

∣∣∣∣
dϕ+(ω;µ0)

dω

∣∣∣∣
2
)

≡ 2ω0

∫ ∞

0
dω

∫ ∞

0
dω′ ϕ∗

+(ω
′;µ0)R[ϕ](ω

′, ω)ϕ+(ω;µ0) , (2.50)

with the corresponding Fourier transform of the weight factor |r(τ ;µ0)|2,

R[ϕ](ω
′, ω) = δ(ω − ω′)− ω2

0 δ
′′(ω − ω′) . (2.51)

The parametrization further warrants the notion of η+ being a “dual” representation of

ϕ+, because of the mathematical similarities between the expressions for the dual-space

and momentum-space representations in Eq. (2.41) and Eq. (2.47).

The leading two Taylor-expansion coefficients of ϕ+(ω;µ0) around ω = 0, in terms of the

parameters, read:

ϕ′
+(0;µ0) =

1

ω2
0

∞∑

k=0

ak ,

ϕ′′
+(0;µ0) = −

1

ω3
0

∞∑

k=0

(2k + 2) ak .

(2.52)

For the nth derivative, the weights of the coefficients ak grow power-like as kn−1.
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2. Systematic Parametrization of the Leading B-meson LCDA

The method of QCD sum rules is sensitive to the low-energy regime since it relies on

integrals of ϕ+(ω) over a finite interval of (small) ω values. Typically, the integrals are

computed after Borel transformation, such that the appearing expressions are Laplace

transformations of ϕ+(ω). The normalized Laplace transform, Eq. (2.26), at large values

ζ ≡ n t0, in terms of the parameters, reads

ℓn(µ, t0) ≡ n2t20 ϕ̃+(−int0;µ) (2.53)

ℓn(µ, 1/λB) =
1

λ2
B

n2

(1 + nω0/λB)2

∞∑

k=0

ak(µ)

(
nω0/λB − 1

nω0/λB + 1

)k

(2.54)

The series expansion of the quantities ℓn converges for 0 < n < ∞. This follows as the

sequence {ak} ∈ ℓ2 is bounded and therefore the weighted sum is finite:
∣∣∣∣∣
∞∑

k=0

ak(µ)

(
nω0/λB − 1

nω0/λB + 1

)k
∣∣∣∣∣ < max

k′
|ak′ |

∣∣∣∣∣
∞∑

k=0

(
nω0/λB − 1

nω0/λB + 1

)k
∣∣∣∣∣ <∞ , (2.55)

Above, n > 0, ω0/λB > 0 render the geometric series finite.

2.2.3. RG Evolution

The solution of the 1-loop RG equation of the LCDA is multiplicative in the dual-space repre-

sentation. Explicitly, the relation between η+ evaluated using two different renormalization

scales, µ0 and µ, in our expansion, reads

η+(s;µ) = eV (µ,µ0) (µ̂0s)
−g(µ,µ0) e−sω0

K∑

k=0

(−1)k ak(µ0)

1 + k
L
(1)
k (2ω0s) . (2.56)

We discuss three different ways of implementing the scale evolution:

1. Transform the above form into momentum or position space. The expansion of the

LCDA remains in terms of the coefficients ak(µ0), while the basis functions of the

expansion change with the scale µ.

2. Project Eq. (2.56) onto our parametrization using our default choice of r(τ ;µ0). This

yields a matrix relation between the coefficients evaluated µ0 and at µ:

ak′(µ) ∼
K∑

k=0

Rk′k ak(µ0) , k′ = 0, 1, . . . ,∞ .

The expansion basis of functions remains the same at all scales while the coefficients

change. Starting with a truncated (finite) set of coefficients {ak(µ0) | k = 0, . . . ,K}
at the initial scale, evolution generates an infinite set of coefficients {ak′(µ) | k =

0, . . . ,∞}, as the truncated series cannot exactly accommodate for the shape mod-

ification. For practical purposes, one has to introduce an additional truncation

parameter K ′ so that k′ ≤ K ′.
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2.2. Parametrization of the B-meson LCDA

3. Project Eq. (2.56) onto a modified parametrization with a scale-dependent choice of

r(τ, µ) ≡ r̃. We choose the weight function r̃ such that the additional truncation

parameter K ′ of the previous approach is identical to K. This results in a similar

coefficient RGE, however, without a second truncation:

ãk′(µ) ∼
K∑

k=0

R̃k′k ak(µ0) , k′ = 0, 1, . . . ,K .

Here, ãk(µ0) = ak(µ0), which guarantees that the coefficients remain bounded at any

scale, |ãk(µ)| <
√
2ω0χ̃(µ) with χ̃ ≡ χ[r̃].

From now on we abbreviate g ≡ g(µ, µ0) and V ≡ V (µ, µ0).

For the first option, transforming Eq. (2.56) into momentum space results in

ϕ+(ω;µ) = eV
(
µ̂0

ω0

)−g ω

ω2
0

×

×
K∑

k=0

(−1)k ak(µ0)

1 + k

[
1

k!

dk

dtk

(
1− t

1 + t

)−g Γ(2− g)

(1 + t)2
1F1

(
2− g; 2;

t− 1

t+ 1

ω

ω0

)]

t=0

. (2.57)

The derivatives amount to an expansion in 1F1(k−g; k;−x), where 1F1(k−g; k;−x)→ e−x

for g → 0. The coefficients ak(µ0) fulfill a bound obtained at the initial scale µ0. Numerical

calculations using the LCDA involve hypergeometric functions with non-integer parameters,

which is challenging to implement.

For the second option, we obtain the following relation:

ak′(µ) = eV
(

µ̂0

2ω0

)−g K∑

k=0

Rk′k(µ, µ0) ak(µ0) (2.58)

with the matrix components

Rk′k(µ, µ0) =
(−1)k′+k

1 + k

∞∫

0

dz z1−g e−z L
(1)
k′ (z)L

(1)
k (z)

= Γ(2− g)
(−1)k′+k

(1 + k)!k′!
dk

duk
dk

′

dvk′
1

(1− uv)2

(
1− uv

(u− 1)(v − 1)

)g
∣∣∣∣∣
u,v=0

, (2.59)

where Rk′k(µ0, µ0) = δk′k. Notably, the matrix must be calculated only once for fixed

µ ̸= µ0 while the additional dependence on ω0 is simple and factorizes. The efficiency

improvement is beneficial for evaluating the LCDA a large number of times for different

values of the ak(µ0) and ω0, as is required in sampling-based statistical methods. We further

find that the “secondary truncation”, K ′ < ∞, is justified, as the off-diagonal elements

of R are suppressed by O(g, 1/|k′ − k|). In other words, the matrix is approximately
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2. Systematic Parametrization of the Leading B-meson LCDA

of upper-triangular form, while the other components systematically take small values.

We quantitatively test the convergence in a realistic scenario, at the hand of a model,

in Section 2.3.2. We further employ this solution for the numerical implementation in

Chapter 4.

For the third option, we transform Eq. (2.56) to position space and define a modified

expansion basis such that

ϕ̃+(τ ;µ) = eV Γ(1− g)

(
ω0

µ̂0

)g (1− y

2

)2(1 + y

2

)−g K′=K∑

k′=0

ãk′(µ) y
k′ . (2.60)

We emphasize the truncation at K ′ = K. The complementary set of evolved coefficients

reads

ãk′(µ) =
K∑

k=k′
R̃k′k(µ, µ0) ak(µ0) , (2.61)

with the following (exactly) upper-triangular matrix:

R̃k′k(µ, µ0) =





(−1)1+k Γ(k + g − k′)
(1 + k) Γ(g − 1− k′) Γ(1 + k − k′) Γ(1 + k′)

k′ ≥ k ,

0 otherwise.

(2.62)

To obtain a bounding condition for the evolved LCDA ϕ̃+(τ ;µ), we modify the weight

function to compensate the additional factor in Eq. (2.60),

r̃(τ) ≡ e−V (iµ̂0τ)
g (1 + iω0τ)

1−g

Γ(1− g)
, (2.63)

which results in

χ̃ =

∞∫

−∞

dτ

2π

∣∣∣ϕ̃+(τ ;µ)
∣∣∣
2
|r̃(τ)|2 = 1

2ω0

K′=K∑

k′=0

|ãk′(µ)|2 . (2.64)

This modification comes at the expense that the basis functions, especially in momentum

space, become more complicated as they acquire a non-trivial dependence on g. We

remark that even though this third approach works at the 1-loop level, the extension

to the 2-loop level is not straightforward since the RG equation in dual space becomes

inhomogeneous [25]. Moreover, evolving from µ0 to a smaller scale µ < µ0 results in g < 0,

and therefore the integral bound only exists as long as g(µ, µ0) is larger than −1/2, as
per the requirements for the weight function. In the contrary case, µ > µ0, g remains

positive, and the parametrization with the weight function Eq. (2.63) can be used as long

as g < 1.
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2.2. Parametrization of the B-meson LCDA

2.2.4. Application to Higher Twist

A comprehensive description of exclusive processes involves further higher-twist LCDAs.

One can and should apply our approach also for these, given that sufficient knowledge

about their analytic properties is available. Here, we briefly discuss the implications of our

result to the second 2-particle LCDA at twist 3 denoted as ϕ̃−(τ). It is commonly split into

two terms, ϕ̃−(τ) = ϕ̃
(WW)
− + ϕ̃

(tw3)
− : the first term refers to the so-called Wandzura-Wilczek

limit and is related to the leading 2-particle LCDA ϕ̃+(τ) at twist 2. The second term

ϕ̃
(tw3)
− is “genuinely of twist-3 origin” related to the 3-particle LCDA at twist 3 [30, 31].

We restrict the following discussion to the 2-particle (Wandzura-Wilczek) contribution

while dropping the superscripts in the notation. The corresponding RG equations can be

found in Ref. [32] (see also Ref. [33]).

The equation of motion connecting the Wandzura-Wilczek term with the leading-twist

LCDA in position space (see, e.g., Ref. [34]) reads

ϕ̃+(τ) = τ
d

dτ
ϕ̃−(τ) + ϕ̃−(τ) . (2.65)

It is helpful to reuse the same definitions established during the construction of the

parametrization and the bounding condition in Section 2.2. We formulate the differential

equation in terms of the variable y and find

ϕ̃+(τ(y))

(1− y)2
=

1

2

d

dy

[
1 + y

1− y
ϕ̃−(τ(y))

]
. (2.66)

The solution, substituting ϕ̃+(τ(y)) for f+(y), simplifies to

ϕ̃−(τ(y)) = 2
1− y

1 + y

∫ y

−1
dx

ϕ̃+(τ(x))

(1− x)2
=

1

2

1− y

1 + y

∫ y

−1
dx f+(x)

≡ 1

2

1− y

1 + y
[f−(y)− f−(−1)] .

(2.67)

Here, we define f− as the antiderivative of f+. The local limit of ϕ̃+(τ) corresponds to

the limit y → −1, which presents a condition that fixes the integration constant and lower

boundary. Our parametrisation for ϕ̃+ translates to the following expansion of f−:

f−(y) =
∫ y

0
dx f+(x) =

K∑

k=0

ak
1 + k

y1+k . (2.68)

The asymptotic behavior of ϕ̃−(τ) for |τ | → ∞ is 1/τ . The convergence is improved

compared to ϕ̃+ since the coefficients ak appear with an additional suppression factor

1/(1 + k). It is straightforward to calculate the Fourier transform of each term in the

expansion to obtain the momentum-space representation:

1− y

1 + y
7→ 1

2ω0
,

1− y

1 + y
y 7→ 1

2ω0

[
−1 + 4e−ω/ω0

]
, etc. (2.69)
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2. Systematic Parametrization of the Leading B-meson LCDA

Alternatively, we can directly calculate ϕ− from ϕ+ in momentum space [31] through the

integration of the explicit expressions of the Laguerre polynomials, leading to

ϕ−(ω;µ0) =

∫ ∞

ω

dω′

ω′ ϕ+(ω
′;µ0)

=
1

ω0

K∑

k=0

ak(µ0)

1 + k

k∑

i=0

(−2)i
i!

(
k + 1

k − i

)
Γ(1 + i, ω/ω0)

=
e−ω/ω0

ω0

{
a0 +

a2
3
−
(
a1 +

2a2
3

)
ω

ω0
+

2a2
3

ω2

ω2
0

+ . . .

}
.

(2.70)

2.3. Application to Existing Models

Phenomenological applications often employ simple models of the B-LCDAs at a low

scale µ0, featuring only a few parameters. In this section, we explore the ability of the

parametrization to capture certain behaviors using a diverse selection of models. We

compare each parametrized model using the dimensionless ratio

ξ ≡ ω0

λmodel
B (µ0)

> 0 , (2.71)

where ω0 is the auxiliary scale of the parametrization, and λmodel
B (µ0) is the value for the

inverse moment in the specific model. We extract the expansion coefficients for each model

using the projection relation in Eq. (2.48).

To test the parametrization, we study the ratio, for various quantities, between the

prediction based on its truncated approximation and the prediction based on the model

truth. The ratio saturates (approaches unity) in the limit K →∞. Formally, we therefore

define the saturation of a quantity X as

Sat [X]K ≡
∑K

k=0X
∣∣
k∑∞

k=0X
∣∣
k

, (2.72)

where X
∣∣
k
is the contribution at order k in the expansion.

We use the following quantities as physical benchmarks:

• the result for the integral χ, which provides the bound for the expansion parameters

ak in our parametrization,

χ
∣∣
k
≡ 1

2ω0
|ak|2 , (2.73)

• the derivative of the momentum-space LCDA at the origin,

ϕ′
+(0)

∣∣
k
≡ 1

ω2
0

ak , (2.74)
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• the normalized Laplace transform at ζ = n/λB,

ℓn
∣∣
k
≡ 1

λ2
B

n2

(1 + nξ)2

(
nξ − 1

nξ + 1

)k

ak , (2.75)

• the inverse logarithmic moment,

L0

∣∣
k
= λ−1

B

∣∣
k
≡ 1

2ω0

1 + (−1)k
1 + k

ak , (2.76)

• and the normalized first logarithmic moment,

σB
∣∣
k
≡ −λB L1(µm = e−γE λB)

∣∣
k

=





− ln ξ k = 0 ,

−ak
ξ

[
d

dt
2F1(−k, 1 + t; 2; 2)

]

t=0

k ≥ 1 and odd,

0 k ≥ 1 and even.

(2.77)

We omit the fixed renormalization scale µ = µ0 for all quantities in this section.

In addition to the saturation, we study the “relative growth” of some of the quantities,

which we define as

Gr[X]K ≡
X
∣∣
K∑K

k=0X
∣∣
k

. (2.78)

The relative growth of the bound indicates the rapidity of convergence (whereas the

saturation indicates the level of accuracy). It is independent of the true value (the limit

K →∞), bringing two advantages: First, the relative growth is also helpful if the model

renders a quantity ill-defined (e.g., the derivative at the origin). Second, relative growth

can be a proxy for saturation in model-independent phenomenological studies because

considerable growth indicates an insufficient level of saturation for a given truncation

level.

2.3.1. Exponential Model

A popular single-parameter model, commonly serving as a starting point for phenomeno-

logical analysis, was proposed in Ref. [18]:

ϕ+(ω, µ0) =
ω

λ2
B

e−ω/λB [exp. model] . (2.79)

We obtain the expansion coefficients using Eq. (2.48) for general k in closed form:

ak = (k + 1)

(
2ξ

1 + ξ

)2(ξ − 1

ξ + 1

)k

[exp. model] . (2.80)
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Figure 2.2.: Plots illustrating the parametrization’s truncation effects for the exponential model

in Eq. (2.79). We use the ratio ξ = ω0/λB plotted on a logarithmic scale.

They exhibit exponential suppression for ξ ̸= 1. For ξ = 1, the model trivially matches the

parametrization with a0 = 1 and ak>0 = 0. In Fig. 2.2a, we plot the result for the first

few coefficients as a function of ξ. The plot demonstrates the role of the auxiliary scale

ω0 = ξλB that the coefficients are “measured with”: at a specific scale, ξ ≈ 1, we observe

optimal convergence, such that higher-order coefficients are very small. Far off this point,

the contribution hierarchy breaks down due to large higher-order coefficients or alternating

signs while the magnitudes remain similar. Although the measurement scale is arbitrary

as long as the entire infinite set of coefficients is accounted for, the truncation error of the

series expansion crucially depends on it.

We observe a rapid decrease of the coefficient’s magnitudes |ak| for k > 2 in the entire

interval

1/2 ≲ ξ ≲ 2 [benchmark interval] . (2.81)

We use the above interval to define an estimator for the inherent uncertainty of our

parametrization, in particular, to compare the efficiency in various scenarios with the

exponential model as a reference. The uncertainty estimate based on the benchmark

interval is illustrated in Fig. 2.2b, where we show the resulting variation of the shape of

the momentum-space LCDA for different truncation levels. Within the benchmark interval,

we find that the uncertainty bands form a narrow envelope at K = 2.

The resulting integral bound for the exponential model reads

2ω0χ =
1

2

(
ξ + ξ3

)
[exp. model] . (2.82)

Fig. 2.3a and Fig. 2.3b show the bound’s saturation and relative growth, respectively, for

different truncation levels K. We observe that both quantities give comparable insight
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Figure 2.3.: Plots illustrating the parametrization’s truncation effects for the exponential model

in Eq. (2.79). We use the ratio ξ = ω0/λB plotted on a logarithmic scale.
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about the convergence of the parametrization. Taking K = 2, within the benchmark

interval, the saturation exceeds 98% and the relative growth is below 7%.

The saturation for the inverse moment L0 = λ−1
B is shown in Fig. 2.3c. Its series expansion

also rapidly convergences: for K = 2 the saturation within the benchmark interval is better

than 98%. It is further instructive to study the normalized first logarithmic moment, which

is zero in the model at the scale µm,

σB = 0 [exp. model] . (2.83)

In Fig. 2.3d, we show the result as a function of ξ for different truncations K. The accuracy

of the truncated expansion improves rapidly and the absolute difference falls below 0.11

for K = 2 in the benchmark interval.

Finally, we study the low-momentum behavior using the saturation of the LCDA’s derivative

at the origin ω = 0 and of the normalized Laplace transform at n = ζλB . In the exponential

model, they read:

ϕ′
+(0, µ0) = lim

n→∞
ℓn =

1

λ2
B

, ℓn(µ0, 1/λB) =
1

λ2
B

n2

(1 + n)2
[exp. model] . (2.84)

In Fig. 2.3e and Fig. 2.3f, we show the saturation of ϕ′
+(0) and ℓ5, respectively, for different

truncations K. For K = 2, in the benchmark interval, we find 0.88 < Sat
[
ϕ′
+(0)

]
K

< 1.19

and 0.93 < Sat [ℓ5]K < 1.02. The reasonable convergence behavior of ϕ′
+(0) is due to

the exponential decrease of the coefficients in Eq. (2.80). The plot of ℓ5 shows that

the convergence is improved in comparison to ϕ′
+(0), in line with expectations (see the

discussion in Section 2.2.2).

We conclude that our parametrization captures the exponential model with high precision

even for small K. We remark that the parametrization envelopes the model to any order

by construction; however, this study showed that the dependence on the auxiliary scale

ω0 becomes weaker for growing K at a rate suitable for practical applications. We find

that K = 2 offers sufficient precision for practical applications using the model while

varying ω0 in the benchmark interval. The exponential model presents the ideal test case

as the parametrization exactly contains it already at the elementary order. We take it as a

reference to study the models in the following sections.

2.3.2. Lee-Neubert Model with Radiative Tail

In Ref. [35], Lee and Neubert extend the exponential model by a “radiative tail”, an effect

in the high-momentum region stemming from radiative corrections through virtual gluon

exchange. They use an operator product expansion to motivate the inclusion of terms with

lnω/µ when ω ∼ µ≫ ΛQCD, where µ is the renormalization scale. The tail is attached to
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the exponential low-momentum region using a Heaviside function of the model parameter

ωt:

ϕ+(ω, µ) = N
ω e−ω/ω̄

ω̄2
+

αsCF

π

θ(ω − ωt)

ω
×

×
{
1

2
− ln

ω

µ
+ 4

Λ̄DA

3ω

(
2− ln

ω

µ

)}
[Lee/Neubert] . (2.85)

Here, Λ̄DA corresponds to the B meson’s binding energy using a convenient renormalon-free

scheme (see Ref. [35] for details). The model parameters N , ω̄, and ωt are fixed by matching

the model to a constraint and by requiring continuity between the low- and high-momentum

regions. We stress that this model does not aim to be accurate at asymptotically large

values ω ≫ µ, which would further require to resum the large logarithms lnω/µ (see e.g.

the discussion in Ref. [26]). With this in mind, we study the parametrization’s efficiency

to approximate the model for small and intermediate values of ω.

For the following numerical discussion, we adopt the following values provided in Ref. [35]

for µ0 = 1 GeV,

Λ̄DA = 519 MeV , ω̄ = 438 MeV , N = 0.963 , ωt = 2.33 GeV ,

and we use αs(µ0) = 0.5. The model makes the following predictions:

L0 = λ−1
B = 1/479 MeV−1 , σB = 0.315 [Lee/Neubert] . (2.86)

The expansion coefficients ak can be calculated numerically for different ξ. For example,

for ξ = 1 we find

a0 ≃ 1.050 , a1 ≃ 0.096 , a2 ≃ −0.007 , a3 ≃ 0.035 , a4 ≃ −0.051 , a5 ≃ 0.047 .

The higher-order coefficients remain almost constant in magnitude while their signs alter-

nate.

In Fig. 2.4a and Fig. 2.4b, we show the coefficients a0 to a3 as a function of ξ and

the resulting approximation of the model, respectively. While the plotted results look

qualitatively identical to the exponential model, the tail requires special attention. In

Fig. 2.5a, we focus on the medium-high region, 4 < ω/λB < 12, and consider higher

truncation levels K = 2, 3, 8. We find that the uncertainty band at K = 3, within the

benchmark interval, already contains the model even for large values of ω, whereas the

precision at the high end can be systematically improved by including more terms in the

expansion. Note that – by construction – the parametrization is not designed to reproduce

the radiative tail at values ω ≫ µ (see also Section 2.4).

The integral bound of the Lee-Neubert model numerically yields

2ω0χ = 0.547 ξ + 0.608 ξ3 [Lee/Neubert] , (2.87)
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Figure 2.4.: Plots illustrating the parametrization’s truncation effects for the Lee-Neubert model

in Eq. (2.85). We use the ratio ξ = ω0/λB plotted on a logarithmic scale.

which is close to the exponential model. Notably, the bound is finite despite the derivative in

Eq. (2.50) acting on the Heaviside distribution because of the continuous construction of the

model. In Fig. 2.5b and Fig. 2.5c, we plot the saturation and relative growth of the bound,

respectively. First, the saturation is below one because the truncated parametrization

does not exactly reproduce the model for any value of ξ. Second, the curves are tilted

in comparison to the exponential model: small values of ξ result in slower convergence,

while best convergence is achieved for ξ ≳ 1. The peaking behavior (in contrast to the

symmetrical plateau for the exponential model) reflects that higher-order coefficients are

needed, such that the curve flattens and the dependence on the auxiliary scale becomes

weak. The relative growth of the bound plotted in Fig. 2.5c decreases reasonably within

the benchmark interval.

In Fig. 2.5d and Fig. 2.5e, we show the saturation for the inverse moment L0 = λ−1
B and

the value of σB, respectively, as functions of ξ and for different levels of truncation. In

both cases, we find reasonable convergence, however, with a significantly lower rate than

with the exponential model and a clear preference for larger values of ξ.

We omit the discussion for the quantities ϕ′
+(0) and ℓ5, which are predominantly sensitive

to the low-momentum region where the radiative tail has no effect.

The model additionally presents a test case for RG evolution since Ref. [35] includes the

model parameters for different choices of the renormalization scale alongside a plot of their

exact result after evolution. We compare this against the RG evolution of the parameters

as defined in Eq. (2.58). In Fig. 2.5f, we show the model at µ = 1 GeV and our exact

result of the 1-loop RGE to µ = 2.5 GeV. We further plot the approximation of the model

at the lower scale at truncation level K = 3 and the result of the parameter evolution

30



2.3. Application to Existing Models

4 6 8 10 12

ω/λB

−0.04

−0.02

0.00

0.02

0.04

0.06

(λ
B
φ

+
(ω

))
K

1/2 < ξ < 2 K →∞
K = 2

K = 3

K = 8

(a) Extension of 2.4b: variability of the momentum-

space LCDA in the “tail region” for different trunca-

tions K in the interval 1/2 < ξ < 2

0.25 0.50 1.00 2.00 4.00

ξ

0.00

0.25

0.50

0.75

1.00

S
a
t[
χ

] K

K = 0

K = 1

K = 2

K = 3

K = 50

(b) Saturation of the integral bound χ

0.25 0.50 1.00 2.00 4.00

ξ

0.00

0.25

0.50

0.75

1.00

G
r[
χ

] K

K = 0

K = 1

K = 2

K = 3

(c) Relative growth of the integral bound χ

0.25 0.50 1.00 2.00 4.00

ξ

0.00

0.25

0.50

0.75

1.00

S
a
t[
λ
−

1
B

] K

K = 0

K = 2

K = 4

K = 50

(d) Saturation of the inverse moment L0 = λ−1
B

0.25 0.50 1.00 2.00 4.00

ξ

−1

0

1

σ
B

∣ ∣ ∣ K

K = 0

K = 1

K = 3

K = 9

K →∞

(e) Value of σB for different truncations K

0 1 2 3 4 5

ω [GeV]

0.0

0.2

0.4

0.6

0.8

φ
+

(ω
;µ

)
[G

eV
−

1
]

0.5 < ω0
0.5 GeV

< 2.0

LN (µ = 1.0 GeV)

RG solution

LN (µ = 2.5 GeV)

K = 3

K′ = K + 3

(f) Demonstration of the RG evolution
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Figure 2.6.: Plots illustrating the parametrization’s truncation effects for the parton model

Eq. (2.88). We use the ratio ξ = ω0/λB plotted on a logarithmic scale.

to the higher scale at truncation level K ′ = K + 3. Both approximations take the usual

variation within the benchmark interval into account as a handle for the truncation error.

We also plot the model as provided at µ = 2.5 GeV for reference. As a consistency check,

we note that our plot is visually indistinguishable from the one provided in Ref. [35]. The

uncertainty bands cover the model and its RGE result at both scales. Most importantly,

the variation band is consistent for both scales, verifying the expectation that higher orders

in the expansion remain negligible.

2.3.3. Näıve Parton Model

The näıve parton model [30] suggests the following momentum-space LCDA:

ϕ+(ω) =
ω

2λ2
B

θ(2λB − ω) [parton model] . (2.88)

In this model, the parameter λB is identical with the B meson’s binding energy Λ̄ ≃MB−mb.

Transforming it into position space yields

ϕ̃+(τ) =
(1 + 2iλBτ) e

−2iλBτ − 1

2λ2
Bτ

2
[parton model] , (2.89)

which insufficiently falls off like 1/τ for |τ | → ∞, in violation with P4; therefore, the parton

model is a pathological example. It is nevertheless interesting to examine the behavior of

the parametrization under extreme conditions.

In Fig. 2.6a and Fig. 2.6b, we show the numerical results for the expansion coefficients

and the resulting momentum-space LCDA for different truncation levels, respectively,
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within the benchmark interval. The coefficients ak do not exhibit a contribution hierarchy

across the benchmark interval, indicating poor convergence. The uncertainty bands in

Fig. 2.6b confirm this since they are of comparable size between K = 1 and K = 10,

whereas the exponential model yields a clearly visible improvement with each increment of

K. Although the approximation improves with higher truncation levels, the convergence

rate is qualitatively much slower than for the exponential model.

The integral bound χ in Eq. (2.28) does not exist because of the pathological asymptotic

behavior of ϕ̃(τ). In Fig. 2.7a, we therefore only show the diverging sum

2ω0χ
∣∣
K

=

K∑

k=0

|ak|2 ,

and in Fig. 2.7b its relative growth. The oscillatory behavior in the latter plot further

indicates poor convergence of the expansion.

In Fig. 2.7c, we show the saturation of L0 = λ−1
B . It oscillates around unity, where the

amplitude only slowly decreases as K increases. The normalized first logarithmic moment

for the model yields

σB = 1− ln 2− γE ≃ −0.270 [parton model] . (2.90)

In Fig. 2.7d, we show the result for different truncation levels K, again oscillating around

the model value.

Finally, we examine the LCDA’s convergence at small values of ω. We obtain

ϕ′
+(0, µ0) =

1

2λ2
B

,

ℓn(µ0, 1/λB) =
1

2λ2
B

(
1− (1 + 2n) e−2n

) [parton model] . (2.91)

The derivative at the origin in Fig. 2.7e again oscillates for the whole range of ξ, while

the normalized Laplace transform in Fig. 2.7f approaches unity for sufficiently large values

of K and small values of ξ. The latter is less sensitive to oscillatory behavior since the

momentum-space LCDA is integrated over, resulting in an averaging effect.

2.3.4. A Model with ϕ′
+(0) → ∞

In Ref. [16], Beneke et al. suggest to consider more general models for the B-meson LCDA,

including cases where the derivative at the origin ϕ′
+(0) does not exist. Here, we use their

following model to examine the consequences for the truncated expansion:

ϕ+(ω, µ0) =
1

Γ(1 + a)

(
(1 + a)ω

λB

)1+a e−(1+a)ω/λB

λB
[Beneke et al.] . (2.92)
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Figure 2.7.: Plots illustrating the parametrization’s truncation effects for the parton model

Eq. (2.88). We use the ratio ξ = ω0/λB plotted on a logarithmic scale.

34



2.3. Application to Existing Models

0.25 0.50 1.00 2.00 4.00

ξ

0.0

0.5

1.0

1.5

2.0

2.5

a
k

k = 0

k = 1

k = 2

k = 3

(a) Values for the expansion coefficients ak

0 2 4 6 8

ω/λB

0.0

0.1

0.2

0.3

(λ
B
φ

+
(ω

))
K

1/2 < ξ < 2 K →∞
K = 0

K = 1

K = 2

(b) Variability of the momentum-space LCDA for

different truncations K in the interval 1/2 < ξ < 2
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discussed by Beneke et al. [16]. We use the ratio ξ = ω0/λB plotted on a logarithmic scale.

The domain of the model parameter is given by −0.5 < a < 1, where a→ 0 reduces the

expression to the exponential model. As the model predicts ϕ′
+(ω) ∝ ωa, the derivative’s

limit ω → 0 does not exist for a < 0. This presents another interesting pathological case

for the parametrization because such behavior implicitly violates P4. We consider the

concrete case a = −0.4 in the following.

In Fig. 2.8a and Fig. 2.8b, we show the coefficients ak and the resulting shape of the LCDA,

respectively, for different truncation levels. Although the precision is not as good as for the

exponential model, already K = 2 results in a reasonable approximation, with the bands

enveloping the model function.

The model predicts the following integral bound:

2ω0χ =
1

21+2a

Γ(2 + 2a)

Γ(1 + a)2

(
ξ +

(1 + a)2

1 + 2a
ξ3
)

a→−0.4≃ 0.360 ξ + 0.649 ξ3
[Beneke et al.] . (2.93)

The saturation shown in Fig. 2.9a exhibits the opposite behavior to the Lee-Neubert model,

i.e. the peak of the saturation appears on the lower side and best convergence is achieved

for small values of ξ. The relative growth of the integral bound in Fig. 2.9b remains small

in the benchmark interval around ξ = 1; however, it does not conclusively reflect the

preference for smaller ξ.

In Fig. 2.9c and Fig. 2.9d, we show the saturation of the inverse moment L0 = λ−1
B and

the normalized first logarithmic moment,

σB = −Ψ(1 + a) + ln(1 + a)− γE
a→−0.4≃ +0.453 [Beneke et al.] , (2.94)
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Figure 2.9.: Plots illustrating the parametrization’s truncation effects for the model Eq. (2.92)

discussed by Beneke et al. [16]. We use the ratio ξ = ω0/λB plotted on a logarithmic scale.
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where Ψ(z) is the standard digamma function. Compared to the exponential model, the

saturation of L0 converges slower, and the truncated result for σB remains sensitive to the

value of ξ, even at moderate truncation levels K.

Finally, we examine the quantities that characterize the behavior of the LCDA at small

momenta. In Fig. 2.9e, we show the truncated expansion for the derivative at the origin

ϕ′
+(0)K =

1

ω2
0

K∑

k=0

ak . (2.95)

The plot indeed shows no convergence, as the model predicts. In Fig. 2.9f, we show the

saturation of the normalized Laplace transform,

ℓn(µ0, 1/λB) =
n2

λ2
B

(
1 + a

n+ 1 + a

)2+a

[Beneke et al.] , (2.96)

at n = 5. Here, the saturation behavior is comparable to the exponential model.

2.4. Pseudo-phenomenology

In this section, we examine how the parametrization performs in a global analysis, con-

sidering various sources of information that constrain the LCDA in different ways. These

sources include pseudo-observables (i.e., values derived from the LCDA used in predictions,

although not experimentally observable) and purely theoretical information about the

LCDA’s short-distance behavior. A-priori one has to investigate whether certain inputs

complement each other in a global analysis, leading to a more precise and consistent

picture when combined. Hypothetically, constraints may be redundant, not improving the

precision, or they may require a high truncation level for a consistency, which would render

the parametrization impractical for such applications.

Generally, various methods probe different aspects of the LCDA. This can be visualized at

the hand of the respective quantities expressed through the LCDA in position-space. In

Fig. 2.10, we sketch the location of various quantities in the complex τ plane of ϕ̃+(τ). The

logarithmic moments L0 = λ−1
B , L1, etc., appearing in the QCD factorization approach,

can be expressed as weighted integrals over the negative imaginary axis (see Eq. (2.19)),

indicated by a red bar. The short-distance expansion, accessible through the OPE, provides

information about a restricted band-like region in the lower-half plane close to the origin,

which is drawn as a blue arc (see Chapter 3 for details). The Laplace transform ℓn, relevant

in the QCD sum rules approach, corresponds to the values of ϕ̃+(τ) on the negative

imaginary axis (see Eq. (2.26)), denoted for a single value by a cross.

In the following discussion, we do not conduct a rigorous statistical analysis of variables

and constraints to draw quantitative conclusions. Instead, we address the above question

qualitatively, emphasizing transparency, in a pseudo-phenomenological study.
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Figure 2.10.: The location of different quantities in the complex τ plane of the LCDA’s position-

space representation.

The parametrization allows estimating the impact of the constraints on the LCDA based

on an ad-hoc assumption about the growth: Order by order, we constrain the bound’s

relative growth to remain below a certain threshold; in principle, this yields an arbitrary

number of inequality constraints to yield a bounded region for the joint distributions of the

parameters. Rather than an estimate, one can also view this procedure as a test of whether

the parametrization can account for the physical constraints under “plausible” conditions,

i.e., without large high-order coefficients or specific tuning of the auxiliary scale.

We conduct this study in two stages: in Section 2.4.1, we consider only typical phenomeno-

logical constraints. In Section 2.4.2, we extend the analysis using theory input to examine

the effect when combining both sources.

2.4.1. Using λB and ℓ5 as Phenomenological Constraints

We explore a hypothetical scenario where certain experimental or theoretical information

constrains two specific pseudo-observables,

p1 ≡ L0(µ0, µm) and p2 ≡ λ2
B ℓ5(µ0, 1/λB) , (2.97)

at a low reference scale µ0. These pseudo observables play a significant role in the theoretical

description of the B̄− → γµ−ν̄ form factors (cf. Chapter 4), and it is anticipated that the

Belle II experiment will provide measurements for this decay [9, 17, 36]. Additionally, they

probe complementary aspects of the LCDA; while the inverse moment L0 is sensitive to

the bulk region of the LCDA, the Laplace transform ℓ5 depends predominantly on the

low-momentum behavior. We omit uncertainties in these parameters for simplicity, in

contrast to a more rigorous analysis where uncertainties and correlations require careful

treatment.
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2.4. Pseudo-phenomenology

In the following, we consider K = 2, i.e., the parameters a0, a1, and a2 as well as the

scale ω0. The two phenomenological constraints allow us to express two of the parameters

through the others; we express a0 and a1 in terms of a2, ξ = ω0/λB = ω0 p1, and p2:

a0 = ξ − a2
3

,

a1 =
(5ξ + 1)3

25 (5ξ − 1)
p2 −

ξ (5ξ + 1)

5ξ − 1
− 2 (25ξ2 − 20ξ + 1)

3(5ξ + 1)(5ξ − 1)
a2 .

(2.98)

This leaves the scale ratio ξ and the coefficient a2 as free variables, which must be

constrained by other means. Inspired by the model study in the previous subsection, we

limit the coefficient bound’s relative growth to 20% (for K = 1) and 10% (for K = 2),

|a1|2
|a0|2 + |a1|2

≤ 0.2 ,
|a2|2

|a0|2 + |a1|2 + |a2|2
≤ 0.1 . (2.99)

Combining the inequalities with Eq. (2.98) provides a bounded region in the parameter

space for ξ and a2. This allows us to determine minimal and maximal values for any given

pseudo observable, expressed through the parametrization. For example, the normalized

logarithmic moment at the reference scale µm = 1/p1 e
−γE is given by

σB
∣∣
2
≡ − 1

p1
L1(µ0, 1/p1 e

−γE )
∣∣∣
K=2

= − ln ξ +
a1
ξ
. (2.100)

With this setup, at K = 2, we determine the resulting ranges for the normalized logarithmic

moment σB, for the LCDA ϕ+(ω) at different values of x = ω p1, and the normalized

Laplace transformation ℓn at different (real) values of n. For the input, p1 and p2, we

consider several scenarios based on the predictions of each of the four models discussed in

Section 2.3.

Exponential Model The exponential model, given in Eq. (2.79), predicts

p2 =
25

36
≃ 0.694 , [exp. model] . (2.101)

We determine the maximal range of σB according to the variation of the free parameters ξ

and a2 within the growth criterion. This results in

σB
∣∣min

2
= −0.073 for ξ → 1.332 and a2 → +0.410 ,

σB
∣∣max

2
= +0.172 for ξ → 1.489 and a2 → −0.625 ,

(2.102)

which contains the exponential model’s exact prediction σB = 0. In Fig. 2.11a and

Fig. 2.12a, we show the momentum-space LCDA and its Laplace transform, respectively,

along the curves corresponding to the extreme values of σB. The extreme values for

both functions are determined through numerical optimization for each value of x and n,

resulting in the parameter intervals 0.607 < ξ < 1.499, −0.633 < a2 < 0.477 (for ϕ+) and

0.607 < ξ < 1.636, −0.632 < a2 < 0.539 (for ℓn). We observe the following:

39



2. Systematic Parametrization of the Leading B-meson LCDA

0 2 4 6 8

ω/λB

0.0

0.2

0.4

λ
B
φ

+
(ω
/
λ
B

)

“truth”

σB |2 min.

σB |2 max.

K = 2 estimate

(a) Using the exponential model in Eq. (2.79)

0 2 4 6 8

ω/λB

0.0

0.2

0.4

λ
B
φ

+
(ω
/
λ
B

)

“truth”

σB |2 min.

σB |2 max.

K = 2 estimate

(b) Using the Lee-Neubert model Eq. (2.85)

Figure 2.11.: B-meson LCDA in momentum space using the two pseudo-observables p1,2 as

predicted by two models as a function of x = ω/λB. We show the model (“truth”), the curves

corresponding to extreme values of σB and the total variation of the parametrized LCDA.
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Figure 2.12.: Normalized Laplace transform ℓn(µ0, 1/λB) using the two pseudo-observables p1,2
as predicted by two models as a function of x = ω/λB . We show the model (“truth”), the curves

corresponding to extreme values of σB and the total variation of the parametrized Laplace transform.
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2.4. Pseudo-phenomenology

1. The pseudo-observables p1 and p2 strongly constrain the behavior of ϕ+(ω) at low

momentum, as well as the behavior of its Laplace transform at large values of

ζ = −iτ ≫ 1/λB.

2. The shape of ϕ+(ω) at intermediate values of ω is sensitive to the variation of ξ;

further constraints are needed to gain precision in this region.

3. The Laplace transform remains stable, reflecting a monotonous function (except

around the origin). While the information is, by construction, precise for n = 5, the

band becomes broader for both small and very large values of ζ = n/λB.

Overall, this already indicates that a global fit would benefit from additional input about

the Laplace transform at small values of ζ, corresponding to the position-space LCDA

at small negative imaginary arguments, ϕ̃+(−iτ), t ≪ 1/λB. We discuss a consistent

implementation of short-distance behavior in the following Section 2.4.2.

Lee-Neubert Model with Radiative Tail The Lee-Neubert model, given in Eq. (2.85),

predicts

p2 ≃ 0.777 [Lee/Neubert] , (2.103)

which is slightly larger than the exponential model’s prediction. The corresponding ranges

for the logarithmic moment follow as

σB
∣∣min

2
= 0.045 for ξ → 0.541 and a2 → −0.225 ,

σB
∣∣max

2
= 0.321 for ξ → 1.283 and a2 → −0.543 ,

(2.104)

which includes the value σB ≃ 0.315 predicted by the model. The larger input value for

p2 results in an increase of σB. In Fig. 2.11b and Fig. 2.12b, we plot the momentum-

space LCDA and its Laplace transform. The parameter ranges, extracted from numerical

optimization of the observables at each point, are 0.498 < ξ < 1.342, −0.546 < a2 < 0.439

(for ϕ+), and 0.540 < ξ < 1.381, −0.536 < a2 < 0.458 (for ℓn).

Näıve Parton Model The näıve parton model, given in Eq. (2.88), predicts

p2 = (1− 11 e−10)/2 ≃ 0.5 [parton model] , (2.105)

which is, contrary to the Lee-Neubert model, smaller than the exponential model’s predic-

tion. The range of values for σB follow as

σB
∣∣min

2
= −0.565 for ξ → 1.810 and a2 → +0.543 ,

σB
∣∣max

2
= −0.231 for ξ → 2.228 and a2 → −0.943 ,

(2.106)

which includes the model prediction σB ≃ −0.270. We find that the parameter values

are constrained to the intervals 0.824 < ξ < 2.229, −0.948 < a2 < 0.536 (for ϕ+), and

0.824 < ξ < 2.242, −0.947 < a2 < 0.697 (for ℓn). Again, the pseudo-fit shows a positive

correlation between p2 and σB.
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2. Systematic Parametrization of the Leading B-meson LCDA

Model with ϕ′
+(0) → ∞ The model in Eq. (2.92) results in the value

p2 ≃ 0.701 , [Beneke et al.] (2.107)

very close to the prediction of the exponential model; based on this prediction alone,

the two models cannot be distinguished. We note that the previous result based on the

exponential model excludes this model’s prediction, σB = 0.453. Since the model exhibits

pathological behavior at ω → 0, the low-momentum region cannot be approximated well

at low truncation order.

2.4.2. Including Theory Constraints from the Short-distance OPE

Contrary to the whole τ range of the position-space LCDA, the short-distance behavior

for |τ | ∼ 1/µ ≪ 1/ΛQCD can be constrained by theoretical considerations. Essentially,

the non-local operator of the LCDA can be expanded as a sum of local operators with

coefficient weights. The hadronic matrix elements of the local operators can be reduced to

a small set of parameters, while the coefficients can be extracted from a partonic matching

calculation. Without going into further detail here, we use the following result [37]:

ϕ̃+(τ, µ) = 1− αsCF

4π

(
2L2 + 2L+

5π2

12

)

− iτ
4Λ̄

3

[
1− αsCF

4π

(
2L2 + 4L− 9

4
+

5π2

12

)]
+O(τ2Λ2

QCD) . (2.108)

Here, Λ̄ is a hadronic parameter (related to the HQET mass parameter in the on-shell

scheme), and we abbreviate L = ln(iτµeγE ).

The Lee-Neubert model in Eq. (2.85) aims to incorporate short-distance information by

extending the momentum-space representation with a tail. This extension is motivated

by “cut off moments”, Mn(ΛUV) =
∫ ΛUV

0 dω ωn ϕ+(ω), also obtained through the operator

product expansion. The large-ω tail is deduced based on the dependence of M0 on the

upper integration limit ΛUV. Using the parametrization, on the other hand, offers a more

straightforward way to incorporate short-distance information, as both the position- and

momentum-space representations rely on a universal set of parameters. These parameters

are directly constrained by comparing the LCDA parametrization with the OPE result

in Eq. (2.108). To that end, we match the power counting of the OPE by expanding in

ω0/µ0 ≪ 1 for a fixed value of

x0 ≡ iτ0µ0 e
γE ∼ O(1) . (2.109)

As the theory input derived from the OPE, we consider the value and first derivative of

ϕ̃+(τ) at a fixed value τ0:

t1 ≡ ϕ̃(τ0, µ0) , t2 ≡ i
dϕ̃(τ, µ0)

dτ

∣∣∣∣
τ=τ0

. (2.110)
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2.4. Pseudo-phenomenology

It is instructive to study the minimal case at K = 1 first, where the parameters a0 and a1
are fixed by matching t1 and t2, based on Eq. (2.108), to the parametrization. The result

reads

a0 = 2− 2Λ̄

3ω0
+

αsCF

4π

(
− 1

x0

µ0e
γE

ω0
(1 + 2 lnx0) + . . .

)
,

a1 = 1− 2Λ̄

3ω0
+

αsCF

4π

(
− 1

x0

µ0e
γE

ω0
(1 + 2 lnx0) + . . .

)
,

(2.111)

showing only the αs corrections that are enhanced by µ0/ω0. These terms can be absorbed

by a convenient redefinition of the scheme-dependent parameter Λ̄5:

Λ̄ ≡ Λ̄a(µ, x0)

[
1 +

αsCF

4π

(
10 lnx0 +

15

4

)]
− αsCF

4π

3µeγE

2x0
(1 + 2 lnx0) . (2.112)

The leading-order result for the parameters using this scheme is given by

a0 = Z(x0)

(
2− 2Λ̄a

3ω0
− 8αsCF

3π

Λ̄ax0
µ0eγE

(1 + lnx0)

)
,

a1 = Z(x0)

(
1− 2Λ̄a

3ω0
− 4αsCF

3π

Λ̄ax0
µ0eγE

(1 + lnx0)

)
,

(2.113)

with

Z(x0) = 1 +
αsCF

4π

(
−2 ln2 x0 + 2 lnx0 + 2− 5π2

12

)
. (2.114)

Our definitions of Λ̄a and Z(x0) ensure the position-space LCDA at finite truncation K

satisfies

ϕ̃+(0)
∣∣
K

=

K∑

k=1

(−1)k ak = Z(x0)−
4αsCF

3π

Λ̄ax0
µ0eγE

(1 + lnx0) ,

ϕ̃′
+(0)

∣∣
K

= −2iω0

K∑

k=1

(−1)k (1 + k) ak = −Z(x0)
4iΛ̄a

3
,

(2.115)

extending the Grozin-Neubert relations for M0 and M1 in Ref. [18] from tree-level to 1-loop

accuracy in our formalism. Our expressions can also be related to the corresponding ones

for M0 and M1 in Ref. [35]. The perturbative relation for the mass parameter in their

“distribution amplitude scheme” Λ̄DA and in our “parameter scheme” Λ̄a reads

Λ̄a(µ, x0) = Λ̄DA(µ, µ)

[
1 +

αsCF

4π
(−10 lnx0 − 2)

]

+ µ
αsCF

4π

(
3 eγE

2x0
(1 + 2 lnx0)−

9

2

)
. (2.116)

5The authors of Ref. [35] similarly define a “distribution amplitude (DA) scheme” for Λ̄, based on the

quantities M0 and M1.

43



2. Systematic Parametrization of the Leading B-meson LCDA

For instance, using x0 = 1, µ0 = 1GeV, Λ̄DA(µ0, µ0) = 519 MeV, and αs(µ0) = 0.5 (as in

Ref. [35]), the parameter numerically amounts to

Λ̄a(µ0, x0) = 367MeV .

Using our scheme setup, we combine the theory input t1,2 with the phenomenological

constraints p1,2. For legibility, we further introduce

n0 ≡ iτ0ω0 =
x0ω0

µ0eγE
. (2.117)

To use the theory constraint effectively, we need simultaneous convergence of the operator

product expansion and the parametrization, such that a limited number of operators and

parameters are sufficient. Quantitatively, that translates to the requirement x0 ∼ O(1)
and small but finite n0 > 0. In the following pseudo-fit, we choose

n0 = 1/3 , µ0 = 1 GeV ,

while the value of ω0 (i.e., x0) varies within the fit under suitable constraints on the

relative growth. For instance, a value x0 = 1 corresponds to ω0 ≈ 600 MeV, consistent

with the observations from the model study in Section 2.3, assuming that (very roughly)

λB ≈ 500MeV. The value n0 = 1/3 corresponds to y0 = −1/2 of the conformal mapping

in Eq. (2.29), located exactly halfway between the origin and y = −1 (corresponding to

the local limit τ → 0), which implies reasonable convergence of the parametrization.

As the number of constraints doubles, we increase the truncation level of the pseudo-fit

from K = 2 to K = 4, leaving the free parameters a4(µ0) and ξ = ω0/λB. For reference,

we quote the resulting parameters for ξ = 1 and x0 = 1:

a0 = Z

(
−28

25
+

2Λ̄ap1
15

)
+

112αsCF

75π
Λ̄an0p1 + 3− 972 p2

625
− 4a4

15
,

a1 = Z

(
−2 + Λ̄ap1

3

)
+

8αsCF

3π
Λ̄an0p1 +

3

2
− 4a4

5
,

a2 = Z

(
84

25
− 2Λ̄ap1

5

)
− 112αsCF

25π
Λ̄an0p1 − 6 +

2916 p2
625

+
a4
5

,

a3 = Z

(
81

25
− 3Λ̄ap1

5

)
− 108αsCF

25π
Λ̄an0p1 −

9

2
+

1944 p2
625

+
26a4
15

,

(2.118)

where Z ≡ Z(x0 = 1). The result for general ξ and x0 is given in Appendix A.2. We

constrain the parameter range for a4 and ξ using generalized ad-hoc conditions on the

relative growth, analogous to Eq. (2.99):

Gr[χ]K ≤
20%

K
. (2.119)
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Figure 2.13.: Results from the pseudo-fit using both theoretical inputs t1 and t2 as well as

phenomenological inputs p1 and p2. The dashed regions in Fig. 2.13c correspond to the pseudo-fit

without theoretical OPE constraints t1 and t2.
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Among the models discussed in Section 2.3, only the Lee-Neubert model in Eq. (2.85) takes

the local OPE information into account by means of the radiative tail. Therefore, this

model is the appropriate reference here since it aims to reflect the various information we

use as input and thus we expect consistency between the model and our result. Therefore,

we use the model’s predictions

p1 = 1/λB = 2.085GeV−1 , p2 = 0.777 [Lee/Neubert] , (2.120)

using the same parameter values as outlined below Eq. (2.85), while Λ̄a is calculated from

Eq. (2.116) as a function of x0.

The parametrization of the normalized first logarithmic moment at K = 4 reads

σB
∣∣
4
= − ln ξ +

a1 + 2/3 a3
ξ

. (2.121)

We find the following value ranges, constrained by the growth criterion,

σB
∣∣min

4
= 0.114 for ξ → 0.961 and a2 → −0.232 ,

σB
∣∣max

4
= 0.217 for ξ → 0.905 and a2 → −0.030 .

(2.122)

This interval is compatible with the previous estimate based only on p1 and p2; however, its

size is decreased by more than 60%. The value σB = 0.315, as predicted by the Lee-Neubert

model, is not contained in the range.

In Fig. 2.13a and Fig. 2.13b, we show the resulting momentum-space LCDA and its

Laplace transform. Their respective extreme values numerically lead to the parameter

ranges 0.745 < ξ < 1.577, −0.319 < a4 < 0.201 (for ϕ+), and 0.743 < ξ < 1.522,

−0.312 < a4 < 0.120 (for ℓn). The convergence window for ξ is shifted to higher values

when adding the OPE information, in line with the analogous comparison of the exponential

model with the Lee-Neubert model in Section 2.3. In Fig. 2.13c, we compare the resulting

bounded regions for the coefficients a0 through a2 obtained with either four or the previous

two constraints. Both results are consistent with each other: The respective regions largely

overlap, with significantly reduced area for a0 and a2 and approximately the same area for

a1. Fig. 2.13d contains the regions for the additional coefficients a3 and a4.

Overall, the pseudo-fit setup suggests that incorporating theoretical constraints into a

global fit of our parametrization indeed improves the accuracy. Even at low truncation

levels we do not encounter consistency issues. It is important to note that this study’s

plots and numerical results demonstrate the potential for a global fit, but they should not

be mistaken for predictions.
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position-space LCDA ϕ̃+(τ, µ0) =
1

(1 + iω0τ)2

K∑
k=0

ak(µ0)

(
iω0τ − 1

iω0τ + 1

)k

momentum-space LCDA ϕ+(ω, µ0) =
ω e−ω/ω0

ω2
0

K∑
k=0

ak(µ0)
1

1 + k
L

(1)
k (2ω/ω0)

dual-space LCDA η+(s, µ0) = e−sω0

K∑
k=0

ak(µ0)
(−1)k

1 + k
L

(1)
k (2ω0s)

generating function F[η+](t;µ0, µm) =
Γ(1− t)

ω0

(
µ̂m

ω0

)−t K∑
k=0

ak(µ0) 2F1(−k, 1 + t, 2, 2)

inverse moment λ−1
B (µ0) =

1

ω0

K∑
k=0

ak(µ0)
1 + (−1)k

2 (1 + k)
(only even k)

1st logarithmic moment σB(µ0) =− ln
ω0

λB
− λB

ω0

K∑
k=0

ak(µ0)

[
d

dt
2F1(−k, 1 + t; 2; 2)

]
t=0

(only odd k)

derivative at ω = 0 ϕ′
+(0, µ0) =

1

ω2
0

K∑
k=0

ak(µ0)

Table 2.1.: Summary of representations and pseudo observables related to the leading-twist

B-meson LCDA expressed through our proposed parametrization at the low-energy reference scale

µ0. Here, L
(1)
k denote associated Laguerre polynomials and ξ = ω0/λB .

2.5. Summary and Outlook

We introduced a new systematic parametrization of the leading-twist B-meson light-cone

distribution amplitude (LCDA) in position space and other representations. The approach’s

core is a Taylor expansion of the LCDA using a carefully chosen variable called y, arising

from the conformal transformation in Eq. (2.29). The coefficients of this expansion adhere

to an integral bound, Eq. (2.35), which helps to estimate the error when the expansion is

truncated. The numerical value of this bound is presently unknown. Our parametrization

yields straightforward formulas for various LCDA-related quantities, such as its logarithmic

moments and commonly used pseudo-observables which characterize the low-momentum

behavior. We summarized the essential formulas in Table 2.1. In addition, we explored

three different methods for implementing the renormalization-group evolution of the LCDA

in our framework, including one approach that is particularly suitable for efficient numerical

computations.

We conducted detailed numerical studies to demonstrate the versatility of our para-

metrization in capturing various benchmark models, including complex features such as

the “radiative tail” occurring at large light-cone momenta. We further demonstrated the

power of our approach to combine various phenomenological and theoretical constraints

for the purpose of a global analysis. This was accomplished by matching the universal

expansion parameters of the LCDA with hypothetical values of two pseudo-observables
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2. Systematic Parametrization of the Leading B-meson LCDA

outlined in Eq. (2.97), which are expected to be constrained by future experimental data

on the photo-leptonic decay process B → γℓν. In addition, we illustrated the integration of

theoretical constraints derived from the operator product expansion at small but non-zero

light-cone separations in a direct, transparent way. The successful proof-of-concept study

in this chapter motivates the much more sophisticated analysis that is the subject of

Chapter 4.

Our general framework allows us to readily accommodate future theoretical refinements.

First, it can be applied to the higher-twist LCDAs of the B-meson, as we briefly discussed

in relation to the Wandzura-Wilczek component of the twist-three LCDA ϕ−. Second,

we can incorporate 2-loop RG evolution into the truncated expansion. Third, we can

implement improvements to the short-distance constraint, for example by including higher-

dimensional local operators in the OPE or, for applications of the parametrization to the

Bs LCDA, by including the effect of a finite spectator quark mass (see Chapter 3). Lastly,

for phenomenological applications of the truncated expansion, determining the value of the

integral bound in the future through QCD-based methods, such as lattice QCD or QCD

sum rules, would enable us to quantify truncation errors more reliably (further detailed in

Chapter 4).
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3. Strange-Quark Mass Effects in the Bs

Meson’s Light-cone Distribution

Amplitude

The main results in this chapter and Appendix B have been published in

T. Feldmann, P. Lüghausen, and N. Seitz. “Strange-quark mass effects in the Bs

meson’s light-cone distribution amplitude”. In: JHEP 08 (2023), p. 075. doi:

10.1007/JHEP08(2023)075. arXiv: 2306.14686 [hep-ph].

The short-distance behavior of the leading-twist B-meson LCDA is accessible through the

operator product expansion (OPE) in position space, imposing a genuine theory constraint.

As discussed in Chapter 2, the short-distance behavior constrains the LCDA in a different

region of the complex τ plane than the pseudo-observables that enter theoretical predictions

of decays. Thus, it provides a valuable complementary information in a global analysis

(see also Chapter 4).

We start with a brief overview of previous applications of the OPE for the LCDA’s light-ray

operator. Instead of the behavior at short distance in position space, one can derive the

behavior at large light-cone momentum fraction ω in momentum space by studying the

cut-off dependence of positive moments ⟨ωn⟩ =
∫ ΛUV

0 dω ωn ϕ+(ω;µ) [35]. Here, the term

“radiation tail” was coined for the model-independent prediction of the large-ω behavior

induced by gluon exchange at next-to-leading order in perturbation theory. While this

approach transparently addresses perturbative effects for pseudo-observables expressed as

integrals of the momentum-space LCDA, it lacks control over the systematic uncertainty.

Later, the OPE was evaluated in position space directly, resulting in a systematic short-

distance expansion of ϕ̃+(τ). Currently, this includes perturbative corrections at next-to-

leading order and local operators in the OPE of mass dimension 3, 4, and 5 [37]. At leading

order in perturbation theory, the result corresponds to an expansion in powers of (−iτ).
At next-to-leading order, the expansion coefficients additionally depend on logarithms

ln(−iτµ eγE), with the renormalization scale µ and Euler’s constant γE. Consequently, the

result is valid in a finite, band-like region in the complex τ plane: on the one hand, the

absolute value must be sufficiently small so that higher-dimensional orders in the OPE

are power-suppressed. On the other hand, the value of τ must be compatible with the
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

scale µ to keep the logarithms under control. Thus, the short-distance behavior obtained

using the OPE can be used straightforwardly as a constraint for the LCDA in position

space. However, the implications for the phenomenologically relevant pseudo-observables

need to be clarified. We address this issue with the systematic parametrization proposed

in Chapter 2 by expressing the position-space LCDA and the pseudo-observables by the

same set of parameters.

The short-distance expansion depends on the separation of the scales between 1/τ and the

hadronic scales of the order of Λhad, so that

|τ Λhad| ≪ 1 (3.1)

is a suitable expansion parameter. Taking Λhad ∼ 1GeV, one can roughly estimate the effect

of the spectator-quark mass in such an expansion. For the Bq meson with a light spectator

quark of mass mq, the mass effect is roughly suppressed by mq/Λhad ∼ 1% compared to

other contributions. In the case of the Bs meson, however, the ratio ms/Λhad ∼ 10% is

more considerable and warrants closer attention.

We update the existing result for the LCDA’s short-distance behavior with the effect

of a non-zero spectator quark mass. This update enables the application of the short-

distance constraint in global analyses involving the Bs-meson LCDA using the systematic

parametrization. The range of applications that potentially benefit from this update include

non-leptonic two-body decays [38–41] and rare radiative and semi-leptonic decays [42,

43]. For comprehensive reviews and additional references, see Refs. [9, 44]. As a notable

example, our parametrization was already used (without the short-distance constraint) in

Ref. [45] for QED corrections to Bs → µ+µ− decays, where internal photons resolve the

hadronic structure of the Bs meson.

This chapter is organized as follows: in Section 3.1, we reiterate the definition of the 2-

particle light-cone distribution amplitudes of the B-meson, introducing convenient notation

that we use throughout this chapter. We proceed with a detailed description of the local

OPE, including a brief review of literature results.

In Section 3.2, we focus on deriving the matching coefficient for the dimension-4 operator

induced by the strange-quark mass. For this purpose, we use a convenient setup analogous to

a non-relativistic model for the LCDA that has been considered in the literature previously.

We obtain the matching coefficient in position space from momentum-space Feynman

integrals using dimensional regularization. This involves straightforward subtractions at

the stage of the Fourier transformation, before the expansion in D − 4 dimensions, which

suggests a simplified general procedure for the extraction of the matching coefficients from

momentum-space Feynman integrals.

Building on the previous findings, we perform a comprehensive calculation of all matching

coefficients in Section 3.3, which not only recovers our previous result for the mass-induced
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operator coefficient, but also reproduces the known matching coefficients for the massless

limit. We further obtain the matching coefficients for the OPE applied to the subleading

twist 2-particle LCDA ϕ̃−(τ) up to dimension 4.

Section 3.4 discusses the implications of the short-distance behavior using the systematic

parameterization for the leading-twist LCDA. To this end, we perform pseudo-fits similar

to those in Chapter 2, this time comparing scenarios with massless and massive spectator

quarks. We also compare our results with independent estimates obtained using QCD sum

rules.

In Section 3.5, we briefly discuss the potential numerical impact of dimension-5 operators.

We conclude the chapter with a summary of our findings in Section 3.6. Appendix B

contains additional detailed formulas concerning operator identities.

3.1. Preliminaries

After introducing convenient definitions related to the 2-particle LCDAs and the OPE, we

briefly review the literature. We further introduce the “non-relativistic” setup used for the

matching calculation to determine the effect of the spectator quark mass.

3.1.1. Leading and Subleading Twist 2-particle LCDAs

We define the leading-twist LCDA, appearing at leading power in QCD factorization

theorems for exclusive B-decays, using a 2-particle light-ray operator in HQET [18],

ϕ+(ω;µ) =
(
imBf

HQET
B (µ)

)−1
∫

dτ

2π
eiωτ ⟨0|q̄(τn) [τn, 0] /nγ5 hv(0)|B̄(v)⟩ , (3.2)

introducing fHQET
B , the B-meson decay constant in HQET in the static limit:

⟨0|q̄(0) γµγ5 hv(0)|B̄(v)⟩ ≡ imBv
µfHQET

B (µ) . (3.3)

Above, vµ with v2 = 1 is the four-velocity of the heavy meson, the vector nµ defines a

light-ray direction such that n2 = 0, and we consider the cases B = Bq and Bs. The

variable ω is the Fourier conjugate of the light-cone separation τ of the non-local operator1.

For simplicity, we consider a reference frame where v · n = 1. The analogous definition for

the subleading-twist 2-particle LCDA, with a modification of the operator structure using

n̄µ = 2vµ − nµ, reads

ϕ−(ω;µ) =
(
imBf

HQET
B (µ)

)−1
∫

dτ

2π
eiωτ ⟨0|q̄(τn) [τn, 0] /̄nγ5 hv(0)|B̄(v)⟩ . (3.4)

1At tree level, ω corresponds to the light-cone projection of the light quark’s momentum, ω = n · k.
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

We first concentrate on the leading LCDA ϕ+(ω) to develop the calculation method at

the hand of a concrete operator. This allows us to update the existing results for the

short-distance behavior with the effect of a non-zero spectator-quark mass. We generalize

our calculation in Section 3.3, where we further derive results for the case of the subleading

LCDA ϕ−(ω).

3.1.2. Short-distance Operator Product Expansion

The short-distance OPE of the light-ray operator defining the leading-twist LCDA symbol-

ically reads

O+(τ) ≡ q̄(τn) [τn, 0] /nγ5 hv(0) =
∞∑

n=3

Kn∑

k=1

c
(n)
k (τ)O(n)

k (0) , (3.5)

where the index n corresponds to the mass dimension of the local operator O(n)
k and

Kn counts the number of independent operators for a given dimension n. For practical

applications such as here, the equation has to be understood as a plausible ansatz rather

than a rigorous statement due to lack of mathematical proof [6]. Evaluated using a

hadronic matrix element, the OPE separates hadronization effects related to confinement

from partonic effects due to the interaction of quarks and gluons in the regime of asymptotic

freedom. While the former relate to non-perturbative long-distance dynamics expressed

through hadronic matrix elements of local operators O(n)
k , the latter are associated with

the perturbative short-distance dynamics contained in the expansion coefficients c
(n)
k (τ).

On the right-hand side in Eq. (3.5), the coefficients are complex functions, c
(k)
k : C 7→ C,

while the local operators O(n)
k form a complete set consistent with the transformation

properties of the composite operator on the left-hand side. In particular, the operators

must be gauge and Lorentz invariant. We can justify the truncation of the sum over n

because the operator’s mass dimension implies that

c
(n)
k ∝ τn−3 .

When τ is sufficiently small compared to all other dimensionful scales (depending on the

application), and in the absence of other enhancements, higher orders n of the expansion

are systematically suppressed.

The local operators in Eq. (3.5) must be composed using the four vectors appearing on the

right-hand side, namely nµ and vµ, together with the covariant derivative Dµ (according

to QCD gauge symmetry) and spinor-space matrices such as γµ. For the concrete case at

hand, including all operators up to mass dimension 42, the expansion in local operators

2See also Ref. [37] for the massless case up to dimension 5.
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reads

O+(τ) = c
(3)
1 (τ) q̄ /nγ5 hv (dim-3)

+ c
(4)
1 (τ) q̄ (in · ←−D) /nγ5 hv + c

(4)
2 (τ) q̄ (iv · ←−D) /nγ5 hv (dim-4, massless)

+ c
(4)
3 (τ)m q̄ /v/nγ5 hv (dim-4, massive)

+ . . . (dim-5 etc.)

(3.6)

The Dirac structure of the additional dimension-4 operator for the massive case follows

from general considerations based on the Feynman rules of HQET. Owing to heavy-quark

spin symmetry3, the generic Dirac structure for the OPE can be cast into the form

q̄(τn)[τn, 0]Γhv(0) =
∑

i

q̄(0)Ai(τ, n, v, iD) Γhv(0) .

In the context of the following matching calculation, it becomes clear that only operators

of this form receive non-zero matching coefficients. The matrices Ai contain a product

of an even number of γ matrices in the massless case [35], whereas terms linear in the

spectator mass m must have an odd number of γ matrices. The Dirac structure in Ai can

only be one of four,

Ai ∝ /n , /v , /n/v , /v/n ,

because any product of those matrices can be decomposed again. If a string of matrices

strictly contains either /n or /v, it simplifies using n2 = 0, v2 = 1, and n · v = 1:

/n . . . /n = 0 , any number

/v . . . /v = 1 , even number

/v . . . /v/v = /v . odd number

If a string of matrices contains both /n and /v, it can be rearranged and decomposed using

the anti-commutation relation /n/v = −/v/n+ 21:

/v/n/v = −/n+ 2/v ,

/n/v/n = 2/n .

This determines the single mass term in Eq. (3.6). We rederive the Dirac structures of all

operators systematically in Section 3.3; the structures in Eq. (3.6) are specifically simplified

for O+. Moreover, we explicitly include the mass dependence in the operator’s definition

to maintain a consistent power counting.

3Specifically, the manifestation of the symmetry in the property /vhv(x) = hv(x) and the Feynman rules of

HQET.
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3.1.3. Short-distance Light-cone Distribution Amplitude

The short-distance expansion of the position-space LCDA follows from the OPE by applying

the hadronic matrix element ⟨0| . . . |B̄(v)⟩ on both sides of Eq. (3.6). However, the matrix

elements of the local operators on the right-hand side are not independent degrees of

freedom. On the one hand, this is due to constraints from the quark field’s equations of

motion in QCD and leading-power HQET,

(
i /D −m

)
q(x) = 0 , (3.7)

(iv ·D)hv(x) = 0 . (3.8)

On the other hand, it is due to the hadronic matrix element’s properties related to spin,

potentially imposing relations between operators containing different Dirac structures. A

convenient way to represent the meson’s spinor degrees of freedom in the effective theory is

through the covariant trace formalism [18, 33, 34, 46]. For a generic dimension-3 operator,

this amounts to

⟨0| q̄β (hv)α
∣∣B̄
〉
≡ −F (µ)

2

[
1 + /v

2
γ5

]

αβ

, (3.9)

where the single free parameter F (µ) = imBf
HQET
B (µ) = ⟨0| q̄ /nγ5 hv

∣∣B̄
〉
is fixed by the

definition of the decay constant in Eq. (3.3). For dimension 4, the equations of motion pose

two constraints to fix the parameters a and b of the following generic decomposition:

⟨0| q̄β i
←−
Dµ (hv)α

∣∣B̄
〉
≡ −F (µ)

2

[
1 + /v

2
(a vµ + b γµ) γ5

]

αβ

. (3.10)

First, we use the adjoint equation of motion for the light quark, q̄i
←−
/D = −m q̄,

(γµ/nγ5)βα ⟨0| q̄β i
←−
Dµ (hv)α

∣∣B̄
〉
= ⟨0| q̄ i

←−
/D/nγ5 hv

∣∣B̄
〉
= −m ⟨0| q̄ /nγ5 hv

∣∣B̄
〉

!
= −1

4
⟨0| q̄ /nγ5 hv

∣∣B̄
〉
tr [(1 + /v) (a vµ + b γµ) γ5γµ/nγ5] . (3.11)

Evaluating the trace yields the condition a+4b = m. Second, employing the heavy quark’s

equation of motion requires relating the action of the covariant derivative on the light

quark field to the action on the heavy quark field. To this end, consider the total derivative

acting on the composite operator:

i∂µ q̄Γhv = q̄ i
←−
Dµ Γhv + q̄ Γ iDµ hv . (3.12)

We provide details in Appendix B.1. Taking the hadronic matrix element on the left-hand

side of Eq. (3.12) results in [46]

⟨0| i∂µ(q̄Γhv)
∣∣B̄
〉
= (mB −mb)v

µ ⟨0| q̄Γhv
∣∣B̄
〉
, (3.13)
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because the current carries the total momentum minus mbv due to the field definition of

hv in HQET. The mass difference, conventionally defined as Λ̄ ≡ mB −mb, is a non-trivial

observable of the effective theory. Contracting both sides with vµ and using with the heavy

quark’s equation of motion results in the matrix-element identity

⟨0| q̄(iv · ←−D)Γhv
∣∣B̄
〉
= Λ̄ ⟨0| q̄Γhv

∣∣B̄
〉
. (3.14)

Comparison to the decomposition leads to

vµ (/nγ5)βα ⟨0| q̄β i
←−
Dµ (hv)α

∣∣B̄
〉
= ⟨0| q̄ (iv · ←−D)/nγ5 hv

∣∣B̄
〉
= Λ̄ ⟨0| q̄ /nγ5 hv

∣∣B̄
〉

!
= −1

4
⟨0| q̄ /nγ5 hv

∣∣B̄
〉
tr [(1 + /v) (a+ b /v) γ5/nγ5] , (3.15)

implying a+ b = Λ̄. Altogether, the solution for the generic matrix element reads

⟨0| q̄β i
←−
Dµ (hv)α

∣∣B̄
〉
≡ −F (µ)

2

[
1 + /v

2

(
4Λ̄−m

3
vµ − Λ̄−m

3
γµ
)
γ5

]

αβ

. (3.16)

Evaluating the local operators’ hadronic matrix elements using Eq. (3.9) and Eq. (3.16)

leads to

⟨0|O(4)
1 |B̄(v)⟩

⟨0|O(3)
1 |B̄(v)⟩

=
4Λ̄−m

3
,
⟨0|O(4)

2 |B̄(v)⟩
⟨0|O(3)

1 |B̄(v)⟩
= Λ̄ ,

⟨0|O(4)
3 |B̄(v)⟩

⟨0|O(3)
1 |B̄(v)⟩

= −m, (3.17)

which yields the OPE result for the position-space LCDA:

ϕ̃+(τ) = c
(3)
1 (τ) + Λ̄

(
4

3
c
(4)
1 (τ) + c

(4)
2 (τ)

)
−m

(
c
(4)
3 (τ) +

1

3
c
(4)
1 (τ)

)
+O(τ2) . (3.18)

Note that we renormalize the local operators in the MS scheme, and accordingly, the light

quark mass m ≡ m(µ) is to be understood in the same scheme.

3.1.4. Review of Existing Results and Outline of the Setup

Here we provide, for convenience, the existing result for the massless case and outline the

setup we use to obtain the new result for the massive case.

The 1-loop contributions to the OPE coefficients up to dimension 5 for the massless case

are provided in Ref. [37]. For the study of the leading mass effect, we are only interested

in the OPE up to dimension 4, where the coefficients read

c
(3)
1 (τ) = 1− αsCF

4π

(
2L2 + 2L+

5π2

12

)
+O(α2

s) ,

c
(4)
1 (τ) = −iτ

[
1− αsCF

4π

(
2L2 + L+

5π2

12

)
+O(α2

s)

]
,

c
(4)
2 (τ) = −iτ

[
−αsCF

4π
(4L− 3) +O(α2

s)

]
,

(3.19)
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with L = ln (iτµeγE ) and CF = 4/3. Obviously, our additional operator O(4)
3 receives no

contribution in the massless limit.

Generally, the coefficients follow from a matching calculation based on the universality

of the OPE coefficients. While it is impossible to calculate hadronic matrix elements in

perturbation theory, one can access on-shell matrix elements with asymptotic parton states.

Although such asymptotic states are not realized in nature since they are not singlets

under SU(3)c, QCD can describe them consistently. Therefore, evaluating both sides of

the OPE using suitable partonic matrix elements allows determining the coefficients c
(n)
k

as an expansion in the strong coupling αs.

We perform the matching calculation using the known coefficients in Eq. (3.19) as input,

such that only the single coefficient c
(4)
3 is left undetermined. This enables us to work in

a minimal setup, as opposed to a generic, more complicated setup that would allow us

to obtain the coefficients of each operator individually. We consider partonic amplitudes

between an incoming heavy quark with velocity vµ and a light anti-quark with momentum

kµ = mvµ and the vacuum. We choose the external (on-shell) heavy quark to carry zero

momentum, which is consistent with the definition of the HQET field; the velocity vµ

remains an essential parameter of the effective theory. Introducing no further kinematic

scales other than the essential scale m promotes simple loop integrals.

As another advantage of this setup, the results for the non-trivial perturbative expressions

are already known in a different context: Ref. [33] discusses a model for the B-meson

LCDA through a non-relativistic bound state of a heavy quark and a light anti-quark. In

this picture, the overall momentum of the B-meson is split up into the quarks according to

their respective masses. Essentially, this corresponds to a perturbative calculation of

ϕNR
+ (ω;µ) =

∞∫

−∞

dτ

2π
eiωτ
⟨0| q̄(τn) [τn, 0]/nγ5 hv(0) |q̄(mv)hv(0)⟩
⟨0| q̄(0) /nγ5 hv(0) |q̄(mv)hv(0)⟩

(3.20)

directly in momentum space and up to order next-to-leading order, O(αs). The reference

contains intermediate results for individual diagrams, which also appear in our matching

calculation, however, in position space. Performing the transformation of these results is

not trivial, even when considering the expansion to linear order in the quark mass m.

As a byproduct, our calculation further allows us to infer the perturbative 1-loop relationship

between the HQET mass parameter Λ̄ in the non-relativistic limit and the spectator quark

mass,

Λ̄NR = m (1 +O(αs)) . (3.21)

The limit is defined analogously to Eq. (3.13) with the hadronic external state replaced by

the partonic one.
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3.2. Matching Coefficients for the Massive Case

We derive the matching relation using on-shell matrix elements of both sides of the OPE

in Eq. (3.6). For simplicity, we project onto a particular spin configuration, such that for

light-quark momentum kµ = mvµ the outer product of the quark spinors can be replaced

as

u(v, s) v̄(k, s′) −→ −1 + /v

2
γ5 , (3.22)

up to a normalization constant which is irrelevant in our context because it appears as

a global factor on both sides of the operator expansion in Eq. (3.6). This prescription is

analogous to the covariant trace formalism introduced before. Our use case relies on the

spinor products

v̄(k, s′) /nγ5 u(v, s) −→ −
1

2
tr [/nγ5(1 + /v)γ5] = +2 ,

v̄(k, s′) /v/nγ5 u(v, s) −→ −
1

2
tr [/v/nγ5(1 + /v)γ5] = −2 .

(3.23)

For the partonic matrix element of the left-hand side of Eq. (3.6), the non-local operator,

we define the 1-loop contribution in position space, Ĩ+, via

⟨0| O+(τ) |q̄(mv)hv(0)⟩
⟨0| O+(0) |q̄(mv)hv(0)⟩

≡ 1− imτ +
αsCF

4π
Ĩ+(τ) +O

(
τ2, α2

s

)
. (3.24)

At the leading order, the Wilson line is trivial, i.e., [τn, 0] = 1 +O(αs), and the matrix

element can be calculated using the Fourier decomposition of the fields acting on the

Fock state of the matrix element. The light-quark operator at position τn yields the

exponential e−imτ , which we already expanded to linear order in the above equation. Note

that the coefficient function Ĩ+ contains contributions not only from diagrams involving the

non-local operator in the numerator, but also from the local operator in the denominator.

For the partonic matrix elements of the right-hand side of Eq. (3.6), the 1-loop contributions

to the matrix elements of local operators O(n)
k have to be taken into account, which we

denote by Ĩ
(n)
k . Altogether, the resulting matching relation reads

1− imτ +
αsCF

4π
Ĩ+(τ) +O(τ2, α2

s)

= c
(3)
1 (τ)

(
1 +

αsCF

4π
Ĩ
(3)
1

)
+mc

(4)
1 (τ)

(
1 +

αsCF

4π
Ĩ
(4)
1

)
+mc

(4)
2 (τ)−mc

(4)
3 (τ)

+O(τ2, α2
s) . (3.25)

Here, we already factor in that the coefficients c
(4)
2,3 start at order αs. The contributions from

the local operators on the right-hand side can be expressed as moments of the non-local

contribution’s holomorphic Fourier transform, I+(ω) =
∫∞
0 dω e−iωτ Ĩ+(τ), such that

Ĩ
(3)
1 =

∫ ∞

0
dω I+(ω) and Ĩ

(4)
1 =

1

m

∫ ∞

0
dω ω I+(ω) . (3.26)
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(a) Vertex like (b) Heavy quark with WL (c) Light quark with WL

Figure 3.1.: The three 1-loop Feynman diagrams contributing to the matching calculation. The

dashed line indicates the Wilson line (WL).

Importantly, the MS subtraction (expanding in the dimensional regulator) of I+ must be

performed after the ω integration, in order to account for the renormalization of local

operators. Rearranging the terms makes explicit how the 1-loop effects for the non-local

and local operators combine,

αsCF

4π

(
Ĩ+(τ)− Ĩ

(3)
1 + imτ Ĩ

(4)
1

)
=

αsCF

4π

∞∫

0

dω
(
e−iωτ − 1 + iωτ

)
I+(ω)

=
(
c
(3)
1 (τ)− 1

)
+m

(
iτ + c

(4)
1 (τ) + c

(4)
2 (τ)− c

(4)
3 (τ)

)
+O(τ2, α2

s) . (3.27)

We refer to this systematic mechanism as “local subtractions” in the matching relation.

Comparing the OPE treatment and the non-relativistic toy model – both partonic calcu-

lations based on the same diagrams – the local subtractions are a key difference because

they render the result free of IR divergences in the limit m→ 0. We emphasize that I+(ω)

must be understood as a bare quantity; the matching coefficients are non-trivial because

the Laurent expansion in the dimensional regulator and the short-distance limit τ → 0 do

not commute.

3.2.1. Analysis of the Individual Diagrams in Feynman Gauge

The three diagrams contributing to the matrix element of the non-local operator are shown

in Fig. 3.1. We consider each individually in this section using dimensional regularization

and Feynman gauge. Notice that the 1-loop diagram where two gluon fields from the

Wilson line are contracted with each other vanishes on the light cone. In the following, we

treat each contributing diagram, (a), (b), and (c), separately,

I+(ω) ≡ I+a (ω) + I+b (ω) + I+c (ω) , (3.28)

and analogous for the local contributions.
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The diagrams’ expressions rely on Feynman rules for the insertion of the non-local operator,

where the Wilson line is expanded in the strong coupling gs [47]:

[τn, 0] = 1− igs

∫ τ

0
dλn ·A(λn) +O

(
g2s
)
. (3.29)

In the following, we consider an incoming light quark with momentum p. To leading order,

without gluon emission from the Wilson line, the operator leads to the following vertex

rule in momentum space [47]:

q̄(τn) Γhv(0)→ δ(n · p− ω) Γ . (3.30)

At the next order in the expansion, the operator contains one additional gluon field (with

incoming momentum k, Lorentz-index µ, and color index a), leading to the momentum-

space rule [47]

−igs
τ∫

0

dλ q̄(τn) (n ·A(λn)) Γhv(0)→
δ(n · p+ n · k − ω)− δ(n · p− ω)

n · k gst
anµ Γ . (3.31)

The vertex rules can be derived using the standard method through functional derivatives or,

as demonstrated in Ref. [47], using certain operator representations. Because the operators

are non-local, the resulting vertex rules are distributions rather than mere factors.

We use the following short-hand notation for the integration measure of the loop momentum

in the context of dimensional regularization in D = 4− 2ϵ space-time dimensions and the

MS-subtraction scheme:

[dℓ] =

(
µ2eγE

4π

)ϵ
d4−2ϵℓ

(2π)4−2ϵ
. (3.32)

Because of the two elemental directions n (introduced by the light-ray operator) and

v = (n + n̄)/2 (entering the definition of HQET), it is useful to decompose the loop

momentum into components n · ℓ, n̄ · ℓ and ℓ⊥ = ℓ− (n+ n̄) · ℓ. In D dimensions, including

the Jacobian determinant 1/2, the measure reads

dDℓ

(2π)D
=

1

2

dD−2ℓ⊥
(2π)D−2

dn · ℓ
2π

dn̄ · ℓ
2π

. (3.33)

When substituting the measure, one needs to ensure the integral over each component is

well defined. Otherwise, it is necessary to introduce additional regulators, where the limit

that corresponds to the original expression can be taken after all component integrals are

carried out.
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

Vertex-like contribution First, we consider the vertex-like contribution, where a gluon

connects the light quark with the heavy quark. The expression for the diagram in Fig. 3.1a

reads

I+a (ω) = −i
∫
[dℓ] δ(ω − n · (k − ℓ))

v̄(k) /v(−/k + /ℓ +m) /nγ5 u(v)

[(k − ℓ)2 −m2 + i0][v · ℓ+ i0][ℓ2 + i0]
, (3.34)

where, according to the prescription in Eq. (3.22), the spinor bilinear amounts to

−1

2
tr
[
/v(−/k + /ℓ +m) /nγ5(1 + /v)γ5

]
= 2 (n · l − n · k)− 2m = 2n · l − 4m.

After the trivial integration of dn · ℓ using the delta distribution, one can use the Cauchy’s

residue theorem to integrate dn̄ · ℓ. The pole structure depends on the sign of ω−m, which

yields Heaviside distributions. The integrand only depends quadratically on ℓ⊥ such that

the leftover (Euclidean) integration in d2−2ϵℓ⊥ is straightforward. The regularized result

in momentum space reads [33]

I+a (ω) = 2ω Γ(1 + ϵ)

(
µ2eγE

(m− ω)2

)ϵ{
2

(m− ω)2
− θ(m− ω)

m (m− ω)
− θ(ω −m)

ω (ω −m)

}
. (3.35)

The holomorphic Fourier transform yields

Ĩ+a (τ) =

∞∫

0

dω e−iωτ I+a (ω)

= e−imτ

(
2

ϵ
+ 4L− 6Ei(imτ) + 4imτ Ei(imτ)

)
− 4 +

2− 2 e−imτ

imτ
+O (ϵ)

=
2

ϵ
− 2L+ 3 ln

µ2

m2
− 2− iτm

(
2

ϵ
− 6L+ 5 ln

µ2

m2
+ 7

)
+O(m2, ϵ) ,

(3.36)

where L is defined as before and Ei(z) is the exponential integral function. Similarly, we

obtain the vertex correction to the local operator O(3)
1 (also provided in Ref. [33]) as

Ĩ
(3)
1,a =

∫ ∞

0
dω I+a (ω) =

3

ϵ
+ 3 ln

µ2

m2
− 2 +O(ϵ) . (3.37)

The vertex correction to the local operator O(4)
1 corresponds to the linear moment of

I+a (ω),

Ĩ
(4)
1,a =

1

m

∫ ∞

0
dω ω I+a (ω) =

5

ϵ
+ 5 ln

µ2

m2
+ 3 +O(ϵ) . (3.38)

Altogether, the contribution of the vertex-like diagram to the matching relation is

Ĩ+a (τ)− Ĩ
(3)
1,a + imτ Ĩ

(4)
1,a =

∫ ∞

0
dω
(
e−iωτ − 1 + iωτ

)
I+a (ω)

= −1

ϵ
− 2L− iτm

(
−3

ϵ
− 6L+ 4

)
+O(m2, ϵ) .

(3.39)
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3.2. Matching Coefficients for the Massive Case

Notice that the IR logarithms lnµ2/m2 no longer appear in the sum of the three terms.

Consequently, the matching coefficients solely rely on the UV logarithms L, which aligns

with the concept of the operator product expansion, separating the scales.

Since the subtraction terms lift the non-analytic behavior at m = 0, the total perturbative

result can be expanded for small m already prior to the Fourier transform:

I+a (ω) ≃ Γ(1 + ϵ)

(
µ2eγE

ω2

)ϵ(
2

ω
+ (6 + 4ϵ)

m

ω2
+O(m2/ω3)

)
. (3.40)

Doing so presents a useful simplification when a more generic calculation is necessary,

involving more dimensionful scales than the mass m. The subtractions appear as a general

feature in the matching calculation since they originate from the expansion of the Fourier

factor due to the light quark field’s displacement. The factor generates leading-order

terms on the left-hand side of the matching relation such that 1-loop contributions to the

corresponding local matrix elements on the right-hand side enter at the next-to-leading

order. To mass dimension N in the OPE, this amounts to the following replacement within

the Fourier transform of the non-local contributions:

e−iωτ → e−iωτ −
N∑

n=0

(−iωτ)n
n!

.

We use this strategy to compute the matching contribution of the vertex diagram for a

generic strange-quark momentum k in Section 3.3, where the additional scales n · k and

v · k complicate the procedure.

Wilson line with heavy quark Next, we consider the diagram in Fig. 3.1b, coupling

of a gluon from the Wilson-line to the heavy quark. Omitting intermediate results, the

diagram yields (k = n · ℓ) [33]

I+b (ω) = 2Γ(ϵ)

∫ ∞

0
dk

(
µ2eγE

k2

)ϵ
δ(ω −m− k)− δ(ω −m)

k
. (3.41)

The Fourier transform reads

Ĩ+b (τ) =

∫ ∞

0
dω e−iωτ I+b (ω)

= e−imτ

(
− 1

ϵ2
− 2L

ϵ
− 2L2 − 5π2

12

)
+O(ϵ) ,

(3.42)

while the local subtractions cancel,

∫ ∞

0
dω (1− iωτ) I+b (ω) = 2Γ(ϵ)

∫ ∞

0
dk

(
µ2eγE

k2

)ϵ

(−iτ) = 0 . (3.43)
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

This is another generic feature of the matching calculation because any term from the Taylor

expansion of the exponential results in scaleless integrals in dimensional regularization. As a

consequence, the short-distance expansion for Ĩ+b (τ) in Eq. (3.42) factorizes into the trivial

expansion of e−imτ and a universal 1-loop contribution, including the double-logarithmic

dependence on τ , which affects all tree-level matching coefficients in the same way.

Wilson line with light quark Finally, the diagram in Fig. 3.1c with the Wilson-line

gluon coupling to the light quark yields (k = n · ℓ) [33]

I+c (ω) = 2Γ(ϵ)

∫ m

0
dk

m− k

m

(
µ2eγE

k2

)ϵ
δ(k −m+ ω)− δ(ω −m)

k
, (3.44)

where the Fourier transform is given by

Ĩ+c (τ) =

∫ ∞

0
dω e−iωτ I+c (ω)

= iτm

(
1

ϵ
+ ln

µ2

m2
+ 3

)
+O

(
(iτm)2, ϵ

)
.

(3.45)

The local contributions amount to Ĩ
(3)
1,c = 0 and

Ĩ
(4)
1,c = −2Γ(ϵ)

m

∫ m

0
dk

m− k

m

(
µ2eγE

k2

)ϵ

=

(
µ2eγE

m2

)ϵ
Γ(ϵ− 1)

2ϵ− 1
= −

(
1

ϵ
+ 3 + ln

µ2

m2

)
+O(ϵ) .

(3.46)

As I+c (ω) only involves the low-momentum region, ω < m, the short-distance expansion

of the Fourier exponential and dimensional regularization commute, and thus, the net

contribution to the matching relation is zero,

Ĩ+c (τ)− Ĩ
(3)
1,c + imτ Ĩ

(4)
1,c =

∫ ∞

0
dω
(
e−iωτ − 1 + iωτ

)
I+c (ω) = 0 . (3.47)

3.2.2. 1-loop Result for the Matching Coefficient c
(4)
3 (τ )

Using the massive 1-loop contributions and the known Wilson coefficients from the massless

case in the matching relation Eq. (3.27), we obtain the following result for the remaining

Wilson coefficient c
(4)
3 (τ) after renormalization in the MS scheme:

c
(4)
3 (τ) = −iτ

[
αsCF

4π
(L− 1) +O(α2

s)

]
. (3.48)

This is the primary new theoretical result of this chapter. In the following, we rederive all

matching coefficients using our method with momentum-space Feynman integrals and we

further derive the short-distance expansion for the subleading twist LCDA ϕ̃−.
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3.2.3. 1-loop Result for Λ̄ in the Non-relativistic Limit

As a cross-check and byproduct, we can infer the 1-loop corrections to the parameter Λ̄ of

the non-relativistic model for the LCDA. Inserting the result for the Wilson coefficients

into the OPE result for the LCDA in Section 3.1.3, we find

ϕ̃+(τ) =

[
1− iτ

4Λ̄−m

3

] [
1− αsCF

4π

(
2L2 + 2L+

5π2

12

)]

+ iτ Λ̄
αsCF

4π

(
8

3
L− 3

)
+ iτm

αsCF

4π

(
4

3
L− 1

)
+O(α2

s, τ
2) . (3.49)

On the other hand, the 1-loop contributions to the non-relativistic LCDA model in position

space amount to (see also Ref. [33] for the momentum-space computation)

ϕ̃+(τ)
∣∣∣
NR

= 1− iτm+
αsCF

4π

(
Ĩ+a (τ) + Ĩ+b (τ) + Ĩ+c (τ)− Ĩ

(3)
1,a

)
MS

+ . . . (3.50)

For consistency, both expressions must coincide in the limit Λ̄→ Λ̄
∣∣
NR

= γmm, where the

factor γm = 1 +O(αs) can be inferred to 1-loop accuracy. Comparing the two expressions

yields

Λ̄
∣∣∣
NR

= m

[
1 +

αsCF

4π

(
3 ln

µ2

m2

)
+O(α2

s)

]
, (3.51)

with m = m(µ) in the MS scheme.

As a cross-check, being a non-trivial mass parameter of the effective theory, one expects no

scale dependence when using the on-shell renormalization scheme. The relation between

the quark mass in the MS scheme and the pole mass scheme reads4

m = mpole

[
1− αsCF

4π

(
4 + 3 ln

µ2

m2
pole

)
+O

(
α2
s

)
]
, (3.52)

which confirms that the relation dΛ̄
/
d lnµ = 0 holds to the considered order in αs.

3.3. Generic Calculation and Radiative Tail of ϕ̃−(τ )

In this section, we generalize the calculation of the OPE coefficients based on the insights

from Section 3.2. Taking the local subtractions into account early on allows us to obtain

the radiative corrections using momentum-space expressions, even when several kinematic

scales beyond the spectator-quark mass m are involved. We further consider a generic

4The provided relation for QCD follows analogously to the QED case discussed in Ref. [6, Sec. 18.4],

amounting to the replacement α → αsCF at 1-loop level.
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

2-particle light ray operator, from which results for both the leading and subleading-twist

2-particle LCDAs can be extracted.

Instead of the leading-twist operator, we perform the short-distance expansion of a 2-

particle HQET light-ray operator with arbitrary Dirac structure Γ. The possible Dirac

structures involved with the matching of the local operators, as discussed in detail in

Section 3.1.2, remain explicit in the generic case:

OΓ(τ) = q̄(τn) [τn, 0] Γhv(0)

= c
(3)
1 (τ) q̄(0)

/n/v

2
Γhv(0) + d

(3)
1 (τ) q̄(0)

/v/n

2
Γhv(0)

+ c
(4)
1 (τ) q̄(0) (in · ←−D)

/n/v

2
Γhv(0) + d

(4)
1 (τ) q̄(0) (in · ←−D)

/v/n

2
Γhv(0)

+ c
(4)
2 (τ) q̄(0) (iv · ←−D)

/n/v

2
Γhv(0) + d

(4)
2 (τ) q̄(0) (iv · ←−D)

/v/n

2
Γhv(0)

+ c
(4)
3 (τ)m q̄(0)

2/v − /n

2
Γhv(0) + d

(4)
3 (τ)m q̄(0)

/n

2
Γhv(0) +O(τ2) .

(3.53)

We note that the additional Dirac structures can be expressed in terms of the conventional

light-cone projectors,

P+ =
/n/v

2
=

/n/̄n

4
, P− =

/v/n

2
=

/̄n/n

4
, (3.54)

with the properties P 2
± = P± and P+ + P− = 1. For Γ = /nγ5, the definition above reduces

to the OPE for O+(τ) in 3.6. The case Γ = /̄nγ5, on the other hand, corresponds to the

subleading twist LCDA ϕ̃−(τ) ∝ ⟨0| O−(τ)
∣∣B̄(v)

〉
,

O−(τ) = q̄(τn) [τn, 0] /̄nγ5 hv(0) =
∞∑

n=3

Kn∑

k=1

d
(n)
k (τ)O

′(n)
k (0)

= d
(3)
1 (τ) q̄ /̄nγ5 hv

+ d
(4)
1 (τ) q̄ (in · ←−D) /̄nγ5 hv + d

(4)
2 (τ) q̄ (iv · ←−D) /̄nγ5 hv

+ d
(4)
3 (τ)m q̄ /v/̄nγ5 hv + . . .

(3.55)

The short-distance expansion of the LCDA ϕ̃−(τ) follows by taking the operators’ hadronic

matrix elements

ϕ̃−(τ) = d
(3)
1 (τ) + Λ̄

(
2

3
d
(4)
1 (τ) + d

(4)
2 (τ)

)
−m

(
d
(4)
3 (τ)− 1

3
d
(4)
1 (τ)

)
+O(τ2) , (3.56)

relying on the local operator’s matrix elements according to Eq. (3.9) and Eq. (3.16),

⟨0|O
′(3)
1 |B̄(v)⟩ = imBf

HQET
B , (3.57)

and

⟨0|O
′(4)
1 |B̄(v)⟩

⟨0|O′(3)
1 |B̄(v)⟩

=
2Λ̄ +m

3
,
⟨0|O

′(4)
2 |B̄(v)⟩

⟨0|O′(3)
1 |B̄(v)⟩

= Λ̄ ,
⟨0|O

′(4)
3 |B̄(v)⟩

⟨0|O′(3)
1 |B̄(v)⟩

= −m. (3.58)
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Vertex-like contribution The contribution of the vertex-like diagram to the matching

coefficients results from a Fourier integral with subtractions5,

∫ ∞

0
dω
(
e−iωτ − 1 + iωτ + . . .

)
IΓa (ω,m, k) , (3.59)

where in the integrand, the function IΓa (ω,m, k) is now calculated using momentum-space

Feynman rules for general external on-shell quark states with light-quark momentum kµ:

IΓa (ω,m, k) = −i
∫
[dℓ] δ(ω − n · (k − ℓ))

v̄(k) /v(−/k + /ℓ +m) Γu(v)

[(k − ℓ)2 −m2 + i0][v · ℓ+ i0][ℓ2 + i0]
. (3.60)

We treat the ℓ⊥ integral explicitly using Feynman parameters to decompose integrand into

even and odd terms in ℓµ⊥,

1

(k − ℓ)2 −m2 + i0

1

ℓ2 + i0

=

∫ 1

0
du

1

[u((k − ℓ)2 −m2) + (1− u)ℓ2 + i0]2
=

∫ 1

0
du

1

[ℓ2 − 2u k · ℓ+ i0]2
. (3.61)

Shifting the integral as ℓ 7→ ℓ+ uk eliminates the linear term in the denominator,

IΓa (ω,m, k) = −i
∫ 1

0
du

∫
[dℓ] δ(ω − n · [(1− u)k − ℓ])×

× v̄(k) /v[−(1− u)/k + /ℓ +m] Γu(v)

[v · ℓ+ u v · k + i0][ℓ2 − u2m2 + i0]2
. (3.62)

The equation of motion of the light-quark spinor simplifies the /k term as

v̄(k)/v/k = v̄(k)(−/k/v + 2 v · k 1) = v̄(k)(m/v + v · k [/v/n+ /n/v]) , (3.63)

while term term with the loop momentum /ℓ must be decomposed into light-cone compo-

nents:

/v/ℓ =
1

2
(n · ℓ /n/v + [2v − n] · ℓ /v/n) + /v/ℓ⊥ . (3.64)

Because the last term linear in ℓ⊥ is odd under reflection, it yields no contribution to the

integral. Solving the loop integral is straightforward for n · k < 0 to avoid a non-trivial

distribution in ω induced by the pole structure. After loop integration with the dimensional

regulator, the integrand can be expanded to linear order in n · k, v · k, and m to match the

OPE. To that end, we rescale each of those parameters formally by an auxiliary parameter

5We use the ellipsis to emphasize that additional subtractions arise when calculating the OPE to a mass

dimension larger than 4.
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λ and compute the Taylor series, which yields

IΓa (ω,m, k) =
Γ(1 + ϵ)

ω

(
µ2eγE

ω2

)ϵ

× v̄(k)

{(
2 + (1 + 2ϵ)

n · k
ω

+ (4 + 2ϵ)
v · k
ω

)
/n/v

2

+

(
−2− (1 + 2ϵ)

n · k
ω

+ (2− 2ϵ)
v · k
ω

)
/v/n

2

− m

ω
/v +O(ω−2)

}
Γu(v) .

(3.65)

The subtracted Fourier integral results in

∫ ∞

0
dω
(
e−iωτ − 1 + iωτ

)
IΓa (ω,m, k)

= v̄(k)

{(
−1

ϵ
− 2L+

(
1

2ϵ
+ L

)
iτ(n · k) +

(
2

ϵ
+ 4L− 3

)
iτ(v · k)

)
/n/v

2

+

(
1

ϵ
+ 2L−

(
1

2ϵ
+ L

)
iτ(n · k) +

(
1

ϵ
+ 2L− 3

)
iτ(v · k)

)
/v/n

2

−
(

1

2ϵ
+ L− 1

)
iτm /v +O(τ2)

}
Γu(v) ,

(3.66)

which allows a comparison of coefficients to extract the contribution of the vertex diagram

(a) to the individual Wilson coefficients. One can formally use specific values for the

momentum k and the Dirac structure Γ to isolate the individual matching coefficients.

Wilson line with heavy quark The contribution from the diagram (b), where the

Wilson-line couples to the heavy quark, reads

IΓb (ω, k) = i

∫
[dℓ]

δ(ω − n · k + n · ℓ)− δ(ω − n · k)
n · ℓ

v̄(k) Γu(v)

[v · ℓ+ i0][ℓ2 + i0]
. (3.67)

For the matching calculation, it is sufficient to consider the case n · k < 0, eliminating the

second delta distribution to avoid the treatment of non-trivial cancellations between the

two terms. It is then straightforward to perform the loop integration, to expand in n · k,
and to perform the Fourier transform:

∫ ∞

0
dω
(
eiωτ − 1 + iωτ

)
IΓb (ω, k)

=
(
1− iτ(n · k) +O(τ2)

)(
− 1

ϵ2
− 2L

ϵ
− 2L2 − 5π2

12

)
v̄(k) Γu(v) . (3.68)

Using the light-cone projectors, (/n/v + /v/n)/2 = 1, allows to extract the matching coeffi-

cients.
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Wilson line with light quark The diagram (c) with the Wilson line coupled to the

light quark yields the expression

IΓc (ω,m, k) = i

∫
[dℓ]

δ(ω − n · k)− δ(ω − n · (k − ℓ))

n · ℓ
v̄(k) /n(−/k + /ℓ +m) Γu(v)

[(k − ℓ)2 −m2 + i0][ℓ2 + i0]
.

(3.69)

Notice that diagrams (a) and (c) are similar, only replacing v by n in the nominator and

denominator; the pole structure in the n̄ · ℓ component, however, changes essentially. The

quark spinor’s equation of motion allows writing

v̄(k)/n/k = v̄(k)(m/n+ n · k [/v/n+ /n/v]) ,

while decomposing the linear term in the numerator into light-cone components in this

case amounts to

/n/ℓ = n · ℓ /n/v + /n/ℓ⊥ .

It is convenient to calculate the diagram for n · k > 0 and k⊥ = 0, whereas the procedure

performed for diagram (a) requires an additional regulator to decompose the loop integration

into well-defined separate integrals over light-cone components. Performing the ℓ⊥ and

n̄ · ℓ integrations results in

IΓc (ω,m, k) = Γ(ϵ)

n·k∫

0

d(n · ℓ)
[

n · k µ2eγE

(2 v · k − n · k)(n · ℓ)2
]ϵ
×

× δ(ω − n · k)− δ(n · ℓ− n · k + ω)

(n · k)(n · ℓ) v̄(k) {n · (k − ℓ) /n/v + n · k /v/n}Γu(v) . (3.70)

Evaluating the expression yields no contribution to the matching because, as for the

non-relativistic setup, only the low-momentum region ω < n · k is involved.

We verify the coefficients for the expansion of O+(τ) already provided in Eq. (3.19) for

known coefficients and Eq. (3.48) for the additional coefficient in the massive case. Unlike

the approach using the specific “non-relativistic” setup, the results in this section are

independent of external input. Our approach offers the benefit that one can resort to well-

known techniques to solve the Feynman integrals in momentum space before transforming

the result into position space (referring to the conjugate variables ω and τ) in a simplified

way.

We obtain the following new result for the matching coefficients relevant to the subleading
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LCDA ϕ− after renormalization in the MS scheme:

d
(3)
1 (τ) = 1− αsCF

4π

(
2L2 − 2L+

5π2

12

)
+O(α2

s) ,

d
(4)
1 (τ) = −iτ

[
1− αsCF

4π

(
2L2 − L+

5π2

12

)
+O(α2

s)

]
,

d
(4)
2 (τ) = −iτ

[
−αsCF

4π
(2L− 3) +O(α2

s)

]
,

d
(4)
3 (τ) = −iτ

[
αsCF

4π
(L− 1) +O(α2

s)

]
.

(3.71)

Applying this result to the expression for the LCDA ϕ̃−(τ), we obtain

ϕ̃−(τ) =
[
1− iτ

2Λ̄ +m

3

] [
1− αsCF

4π

(
2L2 − 2L+

5π2

12

)]

+ iτ Λ̄
αsCF

4π

(
8

3
L− 3

)
+ iτm

αsCF

4π

(
4

3
L− 1

)
+O(α2

s, τ
2) .

(3.72)

3.4. Constraints on the LCDA Parametrization

In this section, we explore the impact of our result when used together with the system-

atic parameterization developed in Chapter 2. To that end, we resort to the “pseudo-

phenomenological” procedure outlined in Section 2.4. Consequently, the same limitations

apply as for the study in the previous section: this analysis intends to determine whether

the theoretical information about the short-distance behavior is compatible with comple-

mentary studies of the inverse moments of the LCDAs from QCD sum rules. We stress

that, inherently, the perturbative tail alone cannot provide comprehensive predictions for

the LCDAs; instead, the implication is that the constraints can be used together with

other independent theoretical information from sum rules or lattice in future analyses of

Bs decays in QCD factorization or QCD light-cone sum rules.

3.4.1. Determination of the Expansion Parameters

Following Section 2.4, the short-distance expansion for the LCDA ϕ̃+(τ) in Eq. (3.49)

translates to constraints onto the expansion coefficients ak:

ϕ̃+
B(τ, µ0) =

1

(1 + iω0τ)2

K∑

k=0

ak(µ0)

(
iω0τ − 1

iω0τ + 1

)k

=

K∑

k=0

(−1)k ak(µ0)
[
1− 2 (k + 1) iω0τ − (3 + 4k + 2k2)ω2

0τ
2 +O(iω0τ)

3
]
. (3.73)
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We compare this with the OPE result at an imaginary-valued reference point τ = τ0 such

that

x0 ≡ iµ0e
γE τ0

!
= O(1) ,

for a given reference scale, which we fix as µ0 = 1 GeV. This ensures that the logarithms

L = log x0 in the matching coefficients of the OPE remain under control. In the numerical

analysis below, we fix x0 ≡ 1 for simplicity. For the expansion in Eq. (3.73) to converge,

we further require that the auxiliary reference momentum ω0 in the parameterization of

the Bs or Bq LCDA satisfies

n0 ≡ iτ0 ω0
!≪ 1 .

Finally, as becomes apparent below, we require ω0 ≳ Λ̄a,ma to avoid large enhancement

factors in the resulting expressions for the expansion parameters ak. We use n0 ≡ 1/3 in

the numerical analysis, which satisfies these requirements.

As before, we consider the parameterization of the LCDA truncated at K = 2. The

OPE results for the LCDA and its first derivative at the point τ0 provide two independent

conditions that determine the parameters a0 and a1, while a2 remains as a free parameter:

a0 = 2 + a2 −
4Λ̄−m

6ω0
+

αsCF

4π

(
− 1

x0

µ0e
γE

ω0
(1 + 2 lnx0) + . . .

)
,

a1 = 1 + 2a2 −
4Λ̄−m

6ω0
+

αsCF

4π

(
− 1

x0

µ0e
γE

ω0
(1 + 2 lnx0) + . . .

)
,

(3.74)

Above, only the αs corrections enhanced by µ0/ω0 are shown. Because they are independent

of the light quark mass, we absorb them the same way as before in Section 2.4, defining

Λ̄ ≡ Λ̄a(µ0, x0)

[
1 +

αsCF

4π

(
10 lnx0 +

15

4

)]
− αsCF

4π

3µ0e
γE

2x0
(1 + 2 lnx0) . (3.75)

Thus, the result for the expansion parameters with K = 2 to order O(αs) reads

a0 = Z(x0)

(
2− 4Λ̄a(µ0, x0)−ma(x0)

6ω0
− 2 r(x0)

)
+ a2 ,

a1 = Z(x0)

(
1− 4Λ̄a(µ0, x0)−ma(x0)

6ω0
− r(x0)

)
+ 2 a2 .

(3.76)

Here we introduce the short-hand notation

r(x0) ≡
αsCF

6π

8Λ̄a x0(1 + lnx0) +ma x0(1− 2 lnx0)

µ0 eγE
= O(αsn0) , (3.77)

Z(x0) ≡ 1 +
αsCF

4π

(
−2 ln2 x0 + 2 lnx0 + 2− 5π2

12

)
, (3.78)

and

ma(x0) ≡ m

(
1− αsCF

4π
(3 + 4 lnx0)

)
. (3.79)
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Those definitions of Λ̄a, ma and Z are such that the parameterization for the position-space

LCDA with finite truncation K satisfies the following relation analogous to the massless

case:

ϕ̃+(0)
∣∣
K

=
K∑

k=0

(−1)k ak = Z(x0)− r(x0) +O(α2
s, n

2
0) ,

ϕ̃′
+(0)

∣∣
K

= −2iω0

K∑

k=0

(−1)k (1 + k) ak = −Z(x0)
4iΛ̄a − ima

3
+O(α2

s, Λ̄an0) .

(3.80)

3.4.2. Numerical Results

The following numerical study aims to explore the extent to which theoretical constraints

from the radiative tail can be employed in future phenomenological studies. To achieve

this, we focus on the inverse moments λBq and λBs , which hold significant importance in

QCD factorization to exclusive B decays. The plots presented in the following sections are

intended to provide semi-quantitative results, omitting a rigorous discussion of uncertainty

estimates. Thus, we use only the central values of the input parameters, although we quote

their uncertainties when possible.

As outlined in the previous section, we take x0 ≡ 1 and n0 = 1/3 for the dimensionless

combinations of τ0, µ0 and ω0. The renormalization scale is fixed to µ0 = 1 GeV resulting in

ω0 ≃ 594 MeV. We take the corresponding value of the strong coupling as αs(µ0) = 0.5.

The effective mass parameter for the Bq meson (i.e., without mass effects, see Section 2.4)

reads

Λ̄(q)
a (µ0, x0 = 1) ≃ 367 MeV .

From this, we derive the value for the massive case according to the hadronic mass difference

of the Bq and Bs. Using the values MBs = 5.367 GeV and MBq = 5.279 GeV [48], together

with Eq. (3.75), leads to

Λ̄(s)
a (µ0, 1) ≃ Λ̄(q)

a (µ0, 1) +

(
1− αsCF

4π

15

4

)
(MBs −MBq) ≃ 437 MeV .

We take the value ms(µ0) = 126+15
−7 MeV [48] for the strange-quark mass in the MS scheme,

which translates via Eq. (3.79) to

m(s)
a (µ0) ≃ (106± 10) MeV .
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Bq meson’s inverse moment Evaluating the parameter expressions in Eq. (3.76) for

the Bq meson, we find

a
(q)
0 ≃ 1.78− 0.47

Λ̄
(q)
a

367 MeV
+ a

(q)
2 ≃ 1.31 + a

(q)
2 ,

a
(q)
1 ≃ 0.89− 0.42

Λ̄
(q)
a

367 MeV
+ 2a

(q)
2 ≃ 0.47 + 2a

(q)
2 .

(3.81)

To establish upper and lower limits for a
(q)
2 , we employ the ad-hoc criterion for the bound’s

growth as in Section 2.4,

∣∣a(q)1

∣∣2
∣∣a(q)0

∣∣2 +
∣∣a(q)1

∣∣2 < 0.25 ,

∣∣a(q)2

∣∣2
∣∣a(q)0

∣∣2 +
∣∣a(q)1

∣∣2 +
∣∣a(q)2

∣∣2 < 0.1 , (3.82)

to select only parameter values that fulfill “reasonable” convergence of the bound in

Eq. (2.35). With this setup, we test if such a selection at low truncation level is compatible

with independent results. Numerically, the growth criterion constrains the value of the free

parameter as

−0.33 < a
(q)
2 < 0.20 . (3.83)

The estimate for the inverse moment λB = L−1
0 in Eq. (2.44),

λBq ≃
445 MeV

1.33− 0.35 Λ̄
(q)
a

367 MeV + a
(q)
2

≃ 445 MeV

0.98 + a
(q)
2

, (3.84)

is shown in Fig. 3.2 as a function of a
(q)
2 within the selected interval. We compare this

estimate with the latest sum-rule result λBq = 383 ± 153 MeV [49], shown as a gray

band. Both estimates agree for a large region of the considered a
(q)
2 interval. Anticipating

the comparison with the Bs case, we note a slight preference for positive values of a
(q)
2

6.

Moreover, we note a positive correlation between the inverse moment λBq and the HQET

parameter Λ̄
(q)
a , while the two parameters are not simply proportional to each other.

Bs meson’s inverse moment Similarly, the coefficients for the Bs meson numerically

amount to

a
(s)
0 ≃ 1.78− 0.56

Λ̄
(s)
a

437 MeV
+ 0.023

m
(s)
a

105 MeV
+ a

(s)
2 ≃ 1.24 + a

(s)
2 ,

a
(s)
1 ≃ 0.89− 0.50

Λ̄
(s)
a

437 MeV
+ 0.025

m
(s)
a

106 MeV
+ 2a

(s)
2 ≃ 0.42 + 2a

(s)
2 .

(3.85)

6Although the isolated statement critically depends on the external reference value for the inverse moment,

the values for the Bq and Bs are obtained consistently such that a comparison between the two cases is

sensible.
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Figure 3.2.: Estimates for the inverse moment λB of the Bq (left) and the Bs (right). Blue solid

line: central value as a function of the expansion coefficient a2. Gray band: estimate from the latest

sum-rule analysis [49].

Compared to the Bq meson, the resulting flavor-symmetry-breaking effect for the coefficients

a
(s)
0,1 lies in the range of 10% to 15%. The moderate effect here suggests that the yet

undetermined coefficients a
(s)
2 can be estimated based on a

(q)
2 under the assumption of

flavor symmetry violation of that size. Independent of flavor symmetry, we can use the

growth criterion in Eq. (3.82) as before to constrain the interval for a
(s)
2 , leading to

−0.32 < a
(s)
2 < 0.21 . (3.86)

Considering the inverse moment of the Bs-meson LCDA, we find

λBs ≃
455 MeV

1.33− 0.42 Λ̄
(s)
a

437 MeV + 0.017 m
(s)
a

106 MeV + a
(s)
2

≃ 455 MeV

0.93 + a
(s)
2

. (3.87)

On the right-hand side of Fig. 3.2, we show our result as a function of a
(s)
2 in comparison

with the value λBs = 438± 150 MeV determined through QCD sum rules [49]. We again

find good compatibility between our approach to implement the constraints from the

short-distance behavior and the sum-rule estimates. The positive correlation between the

inverse moment and Λ̄a remains, while the explicit effect of the strange-quark mass turns

out to be marginal compared to the effect through Λ̄a.

Ratio λBs/λBq Considering the ratio of inverse moments, we find

λBs

λBq

≃ 1.33− 0.35 Λ̄
(q)
a

367 MeV + a
(q)
2

1.33− 0.42 Λ̄
(s)
a

437 MeV + 0.017 m
(s)
a

106 MeV + a
(s)
2

≃ 0.98 + a
(q)
2

0.93 + a
(s)
2

. (3.88)
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Figure 3.3.: Estimates for the ratio of inverse moments λBs/λBq of the Bs,q-meson LCDAs Left:

as a function a
(s)
2 − a

(q)
2 ≡ δa2. Right: as a function of a

(q)
2 . Blue (hatched) bands: value ranges

under the given additional constraint. Gray band: estimate from the latest sum-rule analysis [49].

Again, the main flavor-symmetry breaking effect originates from Λ̄
(q,s)
a , while the explicit

effect of the strange-quark mass is numerically small. The ratio depends on two undeter-

mined coefficients a
(q,s)
2 which we vary on a compact parameter space, constrained through

both the bound growth and flavor symmetry. For the latter, given that the maximal

values for a
(q,s)
2 allowed by our convergence criterion are about 0.3, and since we do not

expect flavor-symmetry violation to be larger than 30%, we consider |a(q)2 − a
(s)
2 | < 0.1 as

a conservative bound. In Fig. 3.3, we plot the result for the ratio in Section 3.4.2 in two

different ways: On the left-hand side, we show the ratio as a function of the difference

δa2 = a
(s)
2 − a

(q)
2 , where the band illustrates the range allowed by the growth criterion in

Eq. (3.82). On the right-hand side, we show the ratio as a function of a
(q)
2 , where the bands

correspond to different values of |δa2| equal to 0 or smaller than 0.05 and 0.1. In both

cases, we find good agreement with the sum-rule estimate for the ratio of 1.19± 0.14 [49]

(with smaller uncertainty than the estimates for the individual inverse moments). While

δa2 = 0 is included, the comparison shows a slight preference for a
(s)
2 − a

(q)
2 < 0, consistent

with, on the one hand, the previous results and, on the other hand, the estimate obtained

for a
(q,s)
2 based on dimension-5 contributions in the following Section 3.5.

Summarizing the numerical study, for both the Bq and Bs meson, we find a consistent

picture when confronting information from the short-distance behavior of the LCDAs with

the inverse moments obtained in an independent study. This holds for an analysis based on

a systematic parametrization, even at a low truncation order. We find a clear correlation

between the inverse moments and the HQET mass parameter Λ̄. The explicit effect of the
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3. Strange-Quark Mass Effects in the Bs-meson LCDA

light quark mass in the short-distance expansion turns out to be marginal.

3.4.3. Extrapolation for the Bc Meson

We briefly explore the case of the Bc meson analogously to Section 3.4.2, where we

found that the explicit effect due to the quark mass is quantitatively small. In the

context of the charmed meson, however, we require a larger renormalization scale due to

the larger quark mass (related to convergence of the OPE). The effect of the increased

scale needs to be investigated. We consider µ0 = 2 GeV such that αs(µ0) ≃ 0.3, and

ω0 = 1.18 GeV (for x0 = 1 and n0 = 1/3). We further take MBc = 6274.47 ± 0.32 MeV

and mc(mc) = 1.27± 0.2 GeV [48], from which we obtain mc(µ0) ≃ 1.10 GeV using the

software RunDec [50]. In our scheme, this corresponds to

Λ̄(c)
a (µ0, x0 = 1) ≃ 1244 MeV , m(c)

a (µ0, x0 = 1) ≃ 995 MeV , (3.89)

yielding the coefficients

a
(c)
0 ≃ 1.87− 0.77

Λ̄
(c)
a

1244 MeV
+ 0.12

m
(c)
a

995 MeV
+ a

(c)
2 = 1.22 + a

(c)
2 ,

a
(c)
1 ≃ 0.93− 0.71

Λ̄
(c)
a

1244 MeV
+ 0.13

m
(c)
a

995 MeV
+ 2a

(c)
2 = 0.35 + 2 a

(c)
2 .

(3.90)

The convergence criterion leads to the interval

−0.32 < a
(c)
2 < 0.25 , (3.91)

and the inverse moment reads

λBc ≃
885 MeV

1.40− 0.57 Λ̄
(c)
a

1244 MeV + 0.090 m
(c)
a

995 MeV + a
(c)
2

=
885 MeV

0.91 + a
(c)
2

. (3.92)

The left panel in Fig. 3.4 shows the inverse moment as a function of a
(c)
2 . The expansion

parameters a
(c)
k lie quantitatively close to the light-quark case. Due to the vastly different

renormalization scale µ0 and reference momentum ω0, however, the resulting inverse

moment is considerably larger, close to the non-relativistic limit (where mc ≈ Λ̄Bc ≈ λBc).

The relevant quantities are collected in Table 3.1 for comparison. We further extend the

numerical discussion by illustrating the resulting LCDAs in the right panel of Fig. 3.4 to

show the strong effect of the different scales despite the similar parameter values. The bulk

region of the Bc LCDA is shifted significantly towards higher momenta. The plot does not

include the variation due to a
(q,s,c)
2 , which we set to zero. Notably, the three curves for the

scaled quantity λB ϕ+
B(ω/λB) (not shown) are virtually indistinguishable.

74



3.4. Constraints on the LCDA Parametrization

−0.2 0.0 0.2

a
(c)
2

0.8

1.0

1.2

1.4

λ
B
c

[G
eV

]

0 1 2 3 4 5

ω [GeV]

0.00

0.25

0.50

0.75

φ
+ B

(ω
,µ

0
)

[G
eV

−
1
] Bq, µ0 = 1 GeV

Bs, µ0 = 1 GeV

Bc, µ0 = 2 GeV

Figure 3.4.: Left: estimate for the inverse moment λBc
of the Bc-meson LCDA as a function of

the expansion coefficient a2 (central value). Right: comparison of the estimates of the Bq, Bs, and

Bc LCDAs (central values).

Bq Bs Bc

µ0 1 GeV 1 GeV 2 GeV

ω0 594 MeV 594 MeV 1.18 GeV

Λ̄a 367 MeV 437 MeV 1.24 GeV

ma 0 106 MeV 1.00 GeV

a0 − a2 1.31 1.24 1.22

a1 − 2a2 0.47 0.42 0.35

a2 (−0.33, 0.20) (−0.32, 0.21) (−0.32, 0.25)
λB (380, 690) MeV (390, 730) MeV (0.76, 1.49) GeV

Table 3.1.: Comparison between the quantities of the numerical study for the LCDAs of Bq, Bs,

and Bc mesons.
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3.5. Potential Impact of Dimension-5 Operators

This section deals with the possible impact on the determination of the parameters ak
from operators appearing at mass dimension 5 in the OPE. We partially include radiative

effects, although not to the full extend. As such, the following results can be seen as

a rough estimate and a consistency check of our approach. We investigate the stability

and consistency under variation of the parametrization’s truncation level K, the mass

dimension of the OPE, and the impact of radiative corrections.

The following discussion is a direct extension of Section 3.1.3, where we constrained the

local matrix elements at dimension 3 and 4, introducing the parameter Λ̄. At tree level,

the following local operators with mass dimension 5 have non-vanishing Wilson coefficients

[18],

q̄ iGµν hv ,
1

2
q̄{i←−Dµ, i

←−
Dν}hv ,

with the gluon field strength tensor iGµν = [iDµ, iDν ]. At dimension 5, there appear only

two more independent hadronic matrix elements in addition to the binding energy Λ̄ at

dimension 4 and the decay constant fHQET
B at dimension 3. The B-meson matrix element

of the first operator does not have an explicit mass dependence, which generally originates

from covariant derivatives acting on the light-quark field. Translating the definition from

Ref. [18] in terms of the parameters λ2
E and λ2

H into the covariant trace formalism, we

have

⟨0|q̄β iGµν (hv)α|B̄(v)⟩
⟨0|O(3)

1 |B̄(v)⟩
=

1

4

[
(1 + /v)

(
λ2
H − λ2

E

3
(γµvν − γνvµ)− λ2

H

3
iσµν

)
γ5

]

αβ

.

(3.93)

We obtain the mass dependence for the second operator by accounting for the quark mass

in the spectator quark’s Dirac equation, q̄ i
←−
/D = −q̄m. There are three independent Lorentz

structures (see the result in Eq. (3.95) below) whose coefficients are fully determined by

the above parameter definition and the equations of motion,

⟨0| q̄ i
←−
/D i
←−
/D Γhv

∣∣B̄
〉
= m2 ⟨0| q̄Γhv

∣∣B̄
〉
,

⟨0| q̄ i
←−
/D (iv · ←−D) Γhv

∣∣B̄
〉
= −mΛ̄ ⟨0| q̄Γhv

∣∣B̄
〉
,

⟨0| q̄ (iv · ←−D)(iv · ←−D) Γhv
∣∣B̄
〉
= Λ̄2 ⟨0| q̄Γhv

∣∣B̄
〉
.

(3.94)

Deriving the above conditions, we have to bear in mind the action of the four derivative

acting on the gluon field contained in the covariant derivatives (see Appendix B.1). Overall,

we obtain the following generic result for the local dimension-5 operator including the
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spectator quark mass:

1
2 ⟨0|q̄β {i

←−
Dµ, i

←−
Dν} (hv)α|B̄(v)⟩

⟨0|O(3)
1 |B̄(v)⟩

= −1

4

[
(1 + /v)

(
6Λ̄2 + 2λ2

E + λ2
H − 2mΛ̄−m2

3
vµvν

− Λ̄2 + λ2
E + λ2

H −m2

3
gµν − 2Λ̄2 + λ2

E − 2mΛ̄

6
(γµvν + γνvµ)

)
γ5

]

αβ

.

(3.95)

Therefore, the LCDA’s second Mellin moment at tree level reads

⟨ω2⟩+ ≡
∫ ∞

0
dω ω2 ϕ+

B(ω)
∣∣∣
tree

=
⟨0| q̄ (in · ←−D)2 /nγ5hv

∣∣B̄(v)
〉

⟨0|O(3)
1 |B̄(v)⟩

=
6Λ̄2 + 2λ2

E + λ2
H − 2mΛ̄−m2

3
, (3.96)

⟨ω2⟩− ≡
∫ ∞

0
dω ω2 ϕ−

B(ω)
∣∣∣
tree

=
⟨0| q̄ (in · ←−D)2 /̄nγ5hv

∣∣B̄(v)
〉

⟨0|O′(3)
1 |B̄(v)⟩

=
2Λ̄2 + λ2

H + 2mΛ̄−m2

3
, (3.97)

generalizing the findings in Ref. [18] to the massive case. The limit to the non-relativistic

model corresponds to Λ̄ → m and λ2
E,H → 0, resulting in ⟨ω2⟩± = m2. This is indeed

consistent with the respective model of the LCDA, ϕ±
B(ω)

∣∣
tree

= δ(ω −m) [33].

We now extend our previous result for the short-distance LCDA derived from the massive

OPE up to dimension 4 with OPE contributions of dimension 5. To that end, we neglect

certain suppressed terms such that an explicit calculation of the Wilson coefficients is

not required. On the one hand, we make use of the massless dimension-5 result given in

Eq. (7) of Ref. [37]. On the other hand, we supplement the tree-level result for the massive

dimension-5 contribution with the universal 1-loop correction. Overall, this leads to

ϕ̃+(τ) =

[
1− iτ ⟨ω⟩+ − τ2

⟨ω2⟩+
2

] [
1− αsCF

4π

(
2L2 + 2L+

5π2

12

)]

+ iτ Λ̄
αsCF

4π

(
8

3
L− 3

)
+ iτm

αsCF

4π

(
4

3
L− 1

)

+ τ2Λ̄2αsCF

4π

(
10

3
L− 35

9
+O

(m
Λ̄

)
+O

(
λ2
E,H

Λ̄2

))

+O(α2
s) +O(τ3) ,

(3.98)

where the first Mellin moment is given by ⟨ω⟩+ = (4Λ̄ − m)/3. In the first line, we

include the universal double-logarithmic corrections proportional to ⟨ω2⟩+, while for the

single-logarithmic corrections to the dimension-5 contributions, we only account for terms
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proportional to Λ̄2. The remaining αs corrections at dimension-5, indicated in the third

line, are numerically suppressed due to the small values for light quark masses and λ2
E,H .

Using this result, we perform a similar study as in Section 3.4, constraining the coefficients

of the parametrization based on the OPE input. While in Section 3.4, we determined

two parameters while varying a third one according to a convergence criterion, we now

take the OPE to dimension 5 into account to fix up to three coefficients. This presents a

consistency check for our previous approach as well as the opportunity to test the behavior

under variation of the truncation level (corresponding to the mass dimension) and the

impact of the radiative corrections.

For the HQET parameters, we consider the pole-mass scheme here, with the central value

for the b-quark pole mass taken as mb ≃ 4.78 GeV from Ref. [48], which corresponds to

Λ̄(q) ≃ 500 MeV , Λ̄(s) ≃ 590 MeV ,

together with λ2
E = 0.01 GeV2 and λ2

H = 0.15 GeV2 provided in Ref. [51]. We use

a different scheme than the one previously introduced because its generalization is not

straightforward when including higher mass dimensions. Note that the value for Λ̄a

calculated perturbatively from the value in the pole mass scheme is significantly larger than

the one used in Section 3.4.2, relying on Ref. [35]7. Besides that, the (possible) difference

between the two treatments of the HQET mass parameters may give some handle to

estimate the scheme dependence of our results. In the same spirit, for the light quarks, we

simply use the MS mass values (see Section 3.4.2).

The dimension-5 result allows to match the parameters of the parametrization in Eq. (3.73)

at truncation level K = 2 to the OPE expression to determine the coefficients. At tree

level, this results in

a0 = 1 +

(
1− ⟨ω⟩+

2ω0

)
+

3

4

(
1− ⟨ω+⟩

ω0
+
⟨ω2⟩+
6ω2

0

)
+ . . . ,

a1 =

(
1− ⟨ω⟩+

2ω0

)
+

3

2

(
1− ⟨ω+⟩

ω0
+
⟨ω2⟩+
6ω2

0

)
+ . . . ,

a2 =
3

4

(
1− ⟨ω+⟩

ω0
+
⟨ω2⟩+
6ω2

0

)
+ . . .

(3.99)

We provide the numerical results in the first three columns of Table 3.2, where we also give

the results for lower truncation levels K = 0, 1. The expressions for the lower truncation

levels correspond to dropping the respective columns in the above formula, maintaining

the triangular shape. This serves as a reference to compare against when further taking

radiative corrections into account.

7They obtain a value Λ̄DA (in their “distribution amplitude” scheme) using the perturbative relation to

Λ̄SF (in the “shape function” scheme), which was extracted from moment analyses of experimental data.

The purpose is to avoid the renormalon problem surrounding the pole scheme for quark masses.
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tree-level, pole-scheme 1-loop(∗), pole-scheme 1-loop, a-scheme

n0 = 1/3 dim-3 dim-4 dim-5 dim-3 dim-4 dim-5 dim-4

K = 0 K = 1 K = 2 K = 0 K = 1 K = 2 K = 2

a
(q)
0 1 1.44 1.54 0.78 1.07 1.07 (0.98, 1.51)

a
(q)
1 – 0.44 0.65 – 0.26 0.23 (−0.19, 0.87)

a
(q)
2 – – 0.11 – – −0.03 (−0.33, 0.20)

a
(s)
0 1 1.37 1.43 0.78 0.99 0.96 (0.92, 1.45)

a
(s)
1 – 0.37 0.49 – 0.20 0.10 (−0.22, 0.84)

a
(s)
2 – – 0.06 – – −0.06 (−0.32, 0.21)

Table 3.2.: Comparison of different estimates for the expansion parameters, depending on the

loop order, the highest mass dimension of the OPE, and the parametrization’s truncation level K.

The last column refers to the results of Section 3.4.2. (∗) Not including all 1-loop corrections at

dimension 5 (see the discussion of Eq. (3.98)).

Using the expression in Eq. (3.98), we calculate the 1-loop expansion coefficients for

truncation levels K = 0, 1, 2. The resulting numerical values are compiled in Table 3.2.

Comparing the 1-loop corrections to the tree-level case, we observe an improved convergence

in the sense that the absolute values of the parameters overall become smaller. The

parameter values also exhibit better stability under varying levels of truncation. The

parameter values a1,2 are consistently decreased when accounting for mass effects which is

in line with the results based on the comparison with QCD sum rule results for λBq and

λBs in Section 3.4.2.

At last, in the right column of Table 3.2, we quote again the estimated ranges for the

expansion coefficients obtained in Section 3.4.2, where the parameter a2 is varied within

an interval fixed by an ad-hoc convergence criterion, and the mass parameters are taken in

the a-scheme. Note that, as functions of a2, the parameters a0 and a1 also lie within an

interval. All resulting central values obtained in this section for the expansion coefficients

are compatible with the intervals we found before, indicating that our convergence criterion

is sensible and that our (qualitative) results are insensitive to the renormalization scheme

used for the mass parameters.

Altogether, the findings in this section further support the conclusion that information

from the OPE can be consistently incorporated into a global phenomenological analysis

that relies on quantities within the QCD factorization framework and the parametrization

proposed in Chapter 2.
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3.6. Summary

In this chapter, we studied the short-distance behavior of the 2-particle light-cone dis-

tribution amplitudes (LCDAs) of the Bs meson, which differs from the known behavior

for the B meson because of the considerable mass of the strange quark. We reconsidered

the short-distance expansion of 2-particle light-ray operators in HQET, updating the

1-loop matching coefficients of the leading-twist LCDA ϕ̃+(τ) with a new contribution at

dimension 4 arising for a non-vanishing spectator quark mass, see Eq. (3.48). We also

determined the complete set of 1-loop matching coefficients for the subleading 2-particle

LCDA ϕ̃−(τ) up to dimension 4, see Eq. (3.71). These results were obtained using a

convenient procedure based on the asymptotic behavior of Feynman integrals for on-shell

matrix elements in momentum space, which allows us to perform local subtractions at

the level of the Fourier transform to position space prior to the MS subtraction, greatly

simplifying this critical step.

We studied the numerical effect of our result in the context of a global analysis based on

the systematic parametrization developed in Chapter 2. We evaluated the short-distance

behavior of the LCDA at a suitable small but non-zero light-cone separation τ , together with

an imposed convergence criterion for the LCDA parameters, to constrain finite ranges of

the leading three parameters. These parameter ranges led to limits for the inverse moment

of the leading Bq and Bs LCDAs, which were compatible with independent results based on

light-cone sum rules, supporting the consistency of our approach using the parametrization.

We found that the dominant flavor-symmetry breaking effect is not due to the explicit

mass dependence but rather the HQET mass parameters, Λ̄Bs > Λ̄Bq . This observation

motivated us to extrapolate the results to the case of the Bc meson in the limit mc ≪ mb.

In summary, we found that the systematic parametrization of the leading-twist LCDA

provides a consistent framework even at low truncation levels to combine information from

the short-distance regime with and the inverse moment, which constrains the essentially

non-perturbative regime of the LCDA.
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The results in chapter and Appendix C are unpublished at the time of writing this thesis.

A key development featured here is the extension of the publicly available open-source

software EOS by the author of this thesis. This extension enables the execution of the

numerical studies presented herein. For further context, a comprehensive overview of EOS

has been previously published in

D. van Dyk, P. Lüghausen, et al. “EOS: a software for flavor physics phenomenology”.

In: Eur. Phys. J. C 82.6 (2022), p. 569. doi: 10.1140/epjc/s10052-022-10177-4.

arXiv: 2111.15428 [hep-ph].

In this chapter, we turn to the decay channel B → γℓν1 in light of the systematic

parametrization proposed in Chapter 2. The decay mode is most promising for the

extraction of the leading-twist B LCDA, being both accessible experimentally and well

developed from a theory point of view. Reconstructing the invisible neutrino in the final

state requires precise knowledge of the initial state. Therefore, an electron-positron collider

such as SuperKEKB at KEK running the Belle-II experiment is better suited than a hadron

collider like the LHC at CERN with the LHCb experiment. The Belle-II collaboration

already anticipates the measurement of the decay [17]. Notably, the LHCb collaboration

is keen to contribute data, e.g., on B → 3ℓν [52], which is gaining interest due to recent

advancements on the theoretical side [53–55].

Historically, the radiative decay mode has already been investigated since the late 1990s,

yet primarily not to probe the LCDA but as the most suitable decay channel to access the

decay constant fB and the CKM matrix element |Vub| [56]. Although the decay B → ℓν

is simpler theoretically, because the two-particle final state does not require form factors

but merely a decay constant, its event rate suffers from helicity suppression [56]. The

back-to-back lepton pair in the final state must combine to spin 0 (equal to the initial

state), but the right-handed antineutrino forces the same helicity for the massive charged

lepton; as a result, the decay amplitude receives an overall factor m2
ℓ/m

2
B . The akin process

with an additional photon in the final state, B → γℓν, is not overall suppressed this way,

but its theory prediction is more complicated due to photon emission from the B-meson

system, probing the internal hadronic structure beyond just the decay constant. Apart

1We restrict the discussion to B−, ℓ, and ν̄ whenever the charge and parity properties are relevant. The

conjugate case with B+, ℓ̄ and ν behaves analogously.
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4. Constraints from B → γℓν Decay

from the direct phenomenological relevance, developing the theory of the radiative leptonic

decay mode was also interesting since many ingredients for the more complicated hadronic

decays B → V γ already appear in a simplified setting.

The radiative leptonic decay B → γℓν can be described in the framework of QCD factoriza-

tion [57, 58]. The goal of this framework is to express the amplitude as a convolution of a

process-specific hard scattering kernel, which can be calculated using perturbation theory,

with the leading-twist B LCDA, which contains only process-independent, non-perturbative

information that is universal for the B meson. To that end, factorization requires large

photon energies, 2Eγ ≫ ΛQCD, as the method relies on the separation of these scales.

Shortly after its conception, the factorization theorem was reformulated in terms of soft-

collinear effective theory (SCET) [59, 60], which simplifies and generalizes its proof: a

complicated diagrammatic analysis can be reduced to a study of field transformations

acting on operators in the effective Lagrangian [59, 61–63]. The SCET approach has further

achieved to relax the necessary scale hierarchy mb ≫ 2Eγ ≫ ΛQCD (initial formulation) to

allow higher photon energies, mb, 2Eγ ≫ ΛQCD (SCET formulation). At the present, the

factorization formula for the B → γℓν decay includes renormalization group resummation

of enhanced logarithms of mb/ΛQCD at the next-to-leading logarithm accuracy [14].

To further improve the accuracy, the factorization approach needs to be supplemented

with other non-perturbative QCD methods. While it has been shown that factorization

holds at leading power of the expansion in ΛQCD/mb to all orders in the perturbative

expansion in αs [59], the subleading power corrections already contain non-factorizable

contributions suffering from end-point divergences. Those power-suppressed “soft overlap”

contributions can be estimated using QCD-based methods, combining hadronic dispersion

relations with the operator product expansion and light-cone sum rules [15, 64]. In addition

to the leading-twist LCDA, the power corrections also involve the higher-twist LCDAs,

although the numerical study performed in Ref. [16] suggests that the dominant power

corrections stem from the leading-twist LCDA.

We begin this chapter with a review of the state-of-the-art prediction for the B → γℓν decay

amplitude in terms of the dominant contributions from the leading-twist B LCDA ϕ+(ω) in

Section 4.1. We apply the systematic parametrization proposed in Chapter 2 and provide

analytic formulas to obtain the expansion of the observables in terms of the parameters ak
to all orders in k in Section 4.2. We discuss technical aspects concerning the implementation

of the parametrized expressions into the software EOS in Section 4.3. Using the software

implementation and the Bayesian analysis tools accessible through EOS, we study the efficacy

of experimental constraints and form factor predictions potentially available from lattice

estimates in combination with theory input from the short-distance expansion in Section 4.4.

We summarize the findings in Section 4.5 and provide supplementary formulas and figures

in Appendix C.
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4.1. Review of the B → γℓν Decay

We recapitulate the theory description of the decay amplitude based on Ref. [16]. Recent

publications have revisited their findings, detailing subleading effects or employing different

approaches beyond the scope of our analysis [65–67]. One can define the radiative leptonic

decay amplitude of the B meson for a massless lepton ℓ = e, τ using the QCD matrix

element [14, 16, 64, 68]

A(B− → γℓν̄ℓ) =
GFVub√

2

〈
γ(p)ℓν̄ℓ

∣∣[ℓ̄ γν(1− γ5) νℓ
][
ū γν(1− γ5) b

]∣∣B−(p+ q)
〉
, (4.1)

with the B meson at rest, p+ q = mB v, using its four velocity vµ = (1, 0, 0, 0), and the

momentum of the lepton pair q. We use the following definition of the hadronic tensor in

terms of independent Lorentz structures, introducing vector and axial-vector form factors,

FV and FA:

Tµν(p, q) = −i
∫

d4x eip·x ⟨0|T
{
jemµ (x) ū(0) γν(1− γ5) b(0)

} ∣∣B−(p+ q)
〉

= (ϵµντρ p
τvρ)FV + i (−gµν v · p+ vµpν) FA − i

vµvν
v · p fBmB + (pµ terms) .

(4.2)

Above, jemµ =
∑

q eq q̄γµq is the electromagnetic current. Because of the photon’s Ward

identity, ϵ∗(p) · p = 0, the terms proportional to pµ indicated in braces are irrelevant

for the decay amplitude. The term proportional to vµvν is fixed by the Ward identity

pµTµν = −ifBmBvν [14, 69] in the massless lepton limit (see, e.g., Ref. [54] for a discussion

of the massive case).

Convenient choices for the form factor’s kinematic variable are the squared invariant mass

of the lepton pair, q2, or the photon energy Eγ = v · p in the B-meson rest frame:

q2 = (mB v − p)2 = m2
B + p2 − 2mBEγ . (4.3)

For the case of a real photon, p2 = 0, the kinematic range is bounded by the condition

Eγ =
m2

B − q2

2mB
such that 0 ≤ Eγ ≤

mB

2
or 0 ≤ q2 ≤ m2

B . (4.4)

The doubly differential decay width in the B-meson rest frame reads (see also Ref. [14])

d2Γ

dEγ dEℓ
=

αemG
2
F |Vub|2

16π2
m3

B(1−xγ)
[
(1− xν)

2
∣∣FV + F̂A

∣∣2 + (1− xℓ)
2
∣∣FV − F̂A

∣∣2
]
, (4.5)

using the abbreviation xi = 2Ei/mB for i = γ, ℓ, ν and with F̂A = FA + eℓfB/Eγ . The

second term in F̂A corresponds to final state radiation, where the photon is emitted off

the charged lepton. The two form factors depend on the photon energy Eγ but not on the
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lepton energy Eℓ. The following single differential decay width of the amplitude results

from integrating the lepton energy Eℓ over its entire kinematic range [mB/2−Eγ ,mB/2]:

dΓ

dEγ
=

αemG
2
F |Vub|2
6π2

mBE
3
γ

(
1− 2Eγ

mB

)(∣∣FV

∣∣2 +
∣∣F̂A

∣∣2
)
. (4.6)

The integrated forward-backward asymmetry is an experimental observable that character-

izes the angular distribution of the lepton emission. Adopting the angular coordinate system

provided in Ref. [54], Appendix D, the relation between the lepton energy and the polar an-

gle θ in the center of mass system of the lepton and neutrino reads 2Eℓ = (cos θ−1)Eγ+mB .

Accordingly, we define the normalized differential forward-backward asymmetry as

aFB(Eγ) ≡
(

dΓ

dEγ

)−1 ∫
d cos(θ) sgn[cos(θ)]

d2Γ

dEγ d cos(θ)
=

3

2

ReFV F̂
∗
A∣∣FV

∣∣2 +
∣∣F̂A

∣∣2 . (4.7)

It is useful to organize the contributions to the form factors according to

FV,A(Eγ) ≡
eumB

2Eγ

fB
λB(µ)

R(Eγ , µ) +
[
ξ(Eγ)±∆ξ(Eγ)

]
(4.8)

into a leading-power (LP) contribution proportional to R and next-to-leading power (NLP)

contributions in the expansion in 1/mB, 1/(2Eγ), denoted in square brackets. The latter

are either “symmetry preserving”, collected in ξ, i.e., entering both form factors with

equal signs, or “symmetry breaking”, collected in ∆ξ, i.e., entering them with opposite

signs. Apart from the dominant LP (non-local) contribution, which can be calculated in

QCD factorization to all orders in the perturbative expansion, there are three classes of

subleading power corrections: local corrections; non-local, factorizable corrections; and

non-local, non-factorizable (i.e., “soft”) corrections. In the following, we review each of the

contributions.

4.1.1. Leading-power Contribution (Factorization Formula)

At LP in the heavy quark expansion (i.e., the heavy quark limit mB → ∞), the form

factors can be expressed using QCD factorization and read

FV,A(Eγ)
∣∣
LP

=
eumB

2Eγ

fB
λB(µ)

R(Eγ , µ) (4.9)

with the inverse moment 1/λB(µ) =
∫∞
0

dω
ω ϕ+(ω, µ). The LP contribution, sketched in

Fig. 4.1a at tree level, originates only from photon emission off the light spectator quark,

while the emission off the b quark shown in Fig. 4.1b is power suppressed (see the discussion

of subleading contributions). The function R results from the convolution of a “hard

scattering kernel” T and the leading-twist LCDA ϕ+,

R(Eγ , µ) = λB(µ)

∫ ∞

0

dω

ω
T (Eγ , ω, µ)ϕ+(ω, µ) = 1 +O(αs) , (4.10)
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(a) Leading power (b) Subleading power

Figure 4.1.: Sketches of B → γℓν contributions at the leading perturbative order.

where we indicate the normalization at the tree level. At leading power in 1/mb and leading

order in αs, the inverse moment is the only quantity derived from the LCDA that enters

the amplitude. Therefore, it is the most significant non-perturbative parameter associated

with the substructure of the B meson in the factorization approach.

Currently, the most advanced result for R includes next-to-leading logarithmic summation

of logarithms of mb/ΛQCD, which consists of several contributions [14, 60]:

R(Eγ , µ) = C(Eγ , µh1)K
−1(µh2)U(Eγ , µh1, µh2, µ) J(Eγ , µ) (4.11)

The factors have various origins:

C arises when matching the QCD heavy-to-light current onto the corresponding SCET

current [70]. This function is associated to the hard scale mB.

K−1 converts the physical B-meson decay constant fB as defined using QCD to its

scale-dependent definition using HQET in the static limit by [16]

fHQET
B (µ) = K−1(µ)

√
mB fB . (4.12)

U connects, via the RGE (see, e.g., Ref. [60]), the other pieces dependent of their respective

scales to resum large logarithms to next-to-leading accuracy.

J is the radiative correction factor, i.e., a convolution with ϕ+(ω). At 1-loop order, in

addition to the inverse moment at tree level, the formula [14]

J(Eγ , µ) = 1 +
αsCF

4π

(
ln2

2Eγµ0

µ2
− 2σ1(µ) ln

2Eγµ0

µ2
− 1− π2

6
+ σ2(µ)

)
, (4.13)

includes the LCDA’s first and second logarithmic moments σ1,2,

σn(µ) = λB(µ)

∫ ∞

0

dω

ω
lnn

µ0

ω
ϕ+(ω, µ) , (4.14)
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where µ0 serves as a reference scale for the logarithmic moments. This factor is

associated with the hard-collinear scale
√
mBΛQCD. Derivations of the expression

can be found in Refs. [59] and [60]. Note that J can be related to the inverse moment

of an “effective LCDA” (defined later in the context of soft corrections in Eq. (4.22))

[16],

J(Eγ , µ)

λB(µ)
=

∫ ∞

0

dω

ω
ϕeff
+ (ω, µ) . (4.15)

Explicit expressions for the ingredients of Eq. (4.11) are provided in Ref. [14]. Details on

the resummation procedure can also be found in the recent publication Ref. [67].

4.1.2. Subleading-power Contributions

Power-suppressed contributions to the form factors in Eq. (4.8) are accounted for in ξ

and ∆ξ, for pieces that enter each form factor with equal or opposite sign, respectively.

Again, there are several different sources for the subleading corrections, which we discuss

individually. In the following, we adopt the notation from Ref. [16],

ξ = ξht + ξsoft(NLO) +
[
ξsoft(tw−3,4) + ξsoft(tw−5,6)

]
, (4.16)

∆ξ = ∆ξht +
[
∆ξsoft(tw−3,4) +∆ξsoft(tw−5,6)

]
, (4.17)

which contains factorizable higher-twist (“ht”) contributions and non-factorizable “soft”

ones. The numerical study in Ref. [16] reveals a suppression of the higher-twist pieces

marked in square brackets, which we therefore not include in our numerical analysis. We

note, however, that it is straightforward to adopt the ansatz laid out in Appendix A of

Ref. [16] to estimate the higher-twist contributions based on only a single “profile function”

f(ω). It is defined as ϕ+(ω) = ω f(ω), translating to

f(ω;ω0, µ0) =
e−ω/ω0

ω2
0

K∑

k=0

ak(µ0)

1 + k
L
(1)
k (2ω/ω0)

using the LCDA parametrization. The equations of motion relate the higher-twist LCDAs

to the same profile function; e.g., for the 3-particle LCDAs ϕ3(ω1, ω2) ∝ ω1ω
2
2 f

′(ω1 + ω2)

and ϕ4(ω1, ω2) ∝ ω2
2 f(ω1 + ω2) up to hadronic constants such as Λ̄, λE , and λH . This is

valid only at the tree level and therefore not suitable for extracting quantitative predictions.

Instead, it can provide an estimate of the neglected higher-twist corrections for diagnostic

purposes.

The factorizable higher-twist contributions can be further split as

ξht = ξht1/Eγ
+ ξht1/mb

, (4.18)

∆ξht =
eufBmB

(2Eγ)2
+

ebfBmB

2Eγmb
. (4.19)
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The origins of the above terms are most easily explained at the hand of the two sketches in

Fig. 4.1. Since the spectactor-quark momentum k ∼ ΛQCD is soft, the internal propagator

joining the lepton and photon vertices has hard-collinear virtuality mb ΛQCD when the

photon is emitted off the light anti-quark (Fig. 4.1a) but hard virtuality m2
b when it is

emitted off the heavy quark (Fig. 4.1b) [14]. The last term in Eq. (4.19) proportional

to eb accounts for the subleading contribution from the diagram in Fig. 4.1b. The other

terms in Eq. (4.18) and Eq. (4.19) stem from the diagram Fig. 4.1a but evaluated in

HQET to subleading power. Without providing the exact expressions for ξht1/Eγ
and ξht1/mb

as functionals of the LCDAs, we quote their estimates obtained using the profile function

ansatz. They only depend on hadronic parameters, but not on the shape of the LCDAs:

ξht1/Eγ
(Eγ) = −

eufBmB

2E2
γ

{
2(λ2

E + 2λ2
H)

6Λ̄2 + 2λ2
E + λ2

H

+
1

2

}
,

ξht1/mb
(Eγ) = +

eufBmB

4Eγmb

{
Λ̄

λB
− 2 +

4(λ2
E − λ2

H)

6Λ̄2 + 2λ2
E + λ2

H

}
.

(4.20)

The non-factorizable (soft) contributions complement the light-cone expansion used to

obtain the LP factorization formula. They also take into account distances x between the

currents in Eq. (4.2) that lie outside the light cone, x2 ∼ 1/Λ2
QCD. This case is accessible

using the light-cone sum rules approach [71], based on dispersion relations and quark-

hadron duality. The latter refers to a certain equivalency between two representations of

the correlation function in Eq. (4.2). On the one hand, it can be expressed in terms of

quarks and gluons and, on the other hand, in terms of physical hadrons as the intermediate

states. Omitting the derivation details provided in Ref. [16], we proceed to discuss the

results.

Soft contributions related to only the leading-twist LCDA, including perturbative correc-

tions, can be cast into the form (see also [64])

ξsoft(NLO)(Eγ) =
eufBmB

2Eγ
C(Eγ , µh1)K

−1(µh2)U(Eγ , µh1, µh2, µ)×

×
∫ s0

2Eγ

0
dω′

[
2Eγ

m2
ρ

e−(2Eγω′−m2
ρ)/M

2 − 1

ω′

]
ϕeff
+ (ω′, µ) ,

(4.21)

where M is a free parameter introduced by a Borel transform, and s0 is a duality threshold

parameter used in dispersion relations. The prefactors are equal to the ones in the leading-

power factorization formula discussed in Section 4.1.1. This contribution is identical for

both form factors, i.e., ∆ξsoft(NLO)(Eγ) = 0. The “effective LCDA” ϕeff
+ is defined to account

for the convolution of ϕ+ with a hard-collinear kernel at NLO, including the LO term:

ϕeff
+ (ω′) = ϕ+(ω

′) +
αs(µ)CF

4π
∆ϕ

(1)
+ (ω′) . (4.22)
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Here, we further decompose ∆ϕ
(1)
+ as the sum of the following four pieces in order to break

down the following computations:

∆ϕ
(1a)
+ (ω′) =

(
ln2

µ2

2Eγω′ +
π2

6
− 1
)
ϕ+(ω

′, µ) , (4.23)

∆ϕ
(1b)
+ (ω′) =

(
2 ln

µ2

2Eγω′ + 3
)
ω′
∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ϕ+(ω, µ)

ω
, (4.24)

∆ϕ
(1c)
+ (ω′) = −2 ln µ2

2Eγω′

∫ ω′

0
dω ln

ω′ − ω

ω′
d

dω
ϕ+(ω, µ) , (4.25)

∆ϕ
(1d)
+ (ω′) =

∫ ω′

0
dω ln2

ω′ − ω

ω′
d

dω

[ω′

ω
ϕ+(ω, µ) + ϕ+(ω, µ)

]
. (4.26)

The other soft higher-twist contributions with subscripts (tw−3, 4) and (tw−5, 6) can be

brought into a form similar to Eq. (4.21) at LO, involving the higher-twist LCDAs. In

contrast to the soft LP, NLO piece, soft higher-twist corrections also include symmetry-

breaking contributions. A model-based numerical study suggests, however, that “among

the different contributions to the soft correction the part related to the leading-twist LCDA,

ξsoft(NLO) [. . . ], is dominant in all cases” [16]. Therefore, we do not expect any significant

effect for our qualitative study and assume in the following

ξsoft(tw−3,4) , ∆ξsoft(tw−3,4) , ξsoft(tw−5,6) , ∆ξsoft(tw−5,6) ≈ 0 .

For quantitative results, however, these contributions should be taken into account, at

least by estimation using the profile function approach.

4.2. Convolutions Beyond the Inverse Moment λ−1
B

The leading contribution in Eq. (4.9) with R = 1, i.e., without perturbative or power

corrections, only depends on the LCDA’s inverse moment L0 = λ−1
B . Beyond the leading

piece, further integrals involving the LCDA come into play: the logarithmic moments σ1,2
enter the radiative corrections at leading power through the 1-loop expression for R in

Eq. (4.11), which alternatively can be expressed as the inverse moment of the effective

LCDA at NLO. The “incomplete inverse moment”, Linc
0 , and the “incomplete Laplace

transform”, denoted by Linc, appear in the soft power corrections in Eq. (4.21). Because

the finite upper integration limit stems from soft kinematics, we use the term “incomplete”

(in the sense of “partial”) rather than “cut off” which is usually associated with a large

scale serving as a UV regulator. We find it convenient to denote the functional dependence

explicitly in order to treat the terms for ϕ = ϕeff
+ in Eq. (4.23) individually. In summary,
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the following integrals with ϕ = ϕ+,∆ϕ
(i)
+ appear in the form factors:

L0[ϕ] =

∫ ∞

0

dω

ω
ϕ(ω) , (4.27)

Linc
0 [ϕ; Ω] =

∫ Ω

0

dω

ω
ϕ(ω) , (4.28)

Linc[ϕ; Ω, σ] =
∫ Ω

0
dω e−σω ϕ(ω) , (4.29)

with parameters Ω = s0/(2Eγ) and σ = 2Eγ/M
2.

Computing these integrals in terms of the parametrization for ϕ+ can be done order-by-

order in the coefficient expansion in ak or, more efficiently, using the associated Laguerre

polynomial’s generating function. This function encodes the polynomials as its series

coefficients [72],
∞∑

n=0

tn L(α)
n (x) =

e−tx/(1−t)

(1− t)α+1
. (4.30)

Applied to the parametrization, we define2 the “generator formalism”,

ϕ+(ω) =
ω e−ω/ω0

ω2
0

∑

k

ak
1 + k

L
(1)
k (2ω/ω0) =

∑

k

ak
1 + k

[
1

k!

∂k

∂tk
[ϕ+(ω)](t)

]

t=0

, (4.31)

where the LCDA in square brackets denotes the generator

[ϕ+(ω)](t) =
1

(1− t)2
ω

ω2
0

exp

(
−1 + t

1− t

ω

ω0

)
. (4.32)

Given that integration and differentiation commute, for any quantity X that is derived

from the LCDA, we define the generator of X, denoted as [X](t), by substituting ϕ+(ω)→
[ϕ+(ω)](t) in the formula of X. Doing so implies the replacement of X by its coefficient

expansion as

X →
∑

k

ak
1 + k

[
1

k!

∂k

∂tk
[X](t)

]

t=0

. (4.33)

This formalism highlights one of the parametrization’s key advantages: the choice of basis

functions is convenient for the computation of observables since they are mere products of

polynomials with an exponential. Here, we further reduce the order-by-order computation

of integrations to a single special case, as remarkably simple as the exponential model.

2Retaining the weight factor 1/(1 + k) in the sum instead of absorbing it into the generator results in a

more compact formula, similar to the exponential model. Another advantage is the obvious limit t → 0.

The weighted polynomial’s generating function for the other case (lacking those features) reads

∞∑
n=0

tn
L

(1)
n (x)

1 + n
=

1− e−tx/(1−t)

tx
.
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The differentiations to recover the order-by-order expressions are typically easy to perform

(especially using computer algebra software). Note that the parametrization allows us

to account for renormalization scale dependence through the coefficient values ak(µ), see

Eq. (2.58) and the discussion in Section 2.2.3.

4.2.1. Leading-order Expressions

We illustrate the generator formalism using the LCDA’s inverse moment, where the explicit

order-by-order result is already given in Eq. (2.44). The generator yields the compact

expression

[L0[ϕ+]](t) =

∫ ∞

0

dω

ω
[ϕ+(ω)](t) =

1

ω0

1

1− t2
. (4.34)

We recover the previous result by computing the derivatives at t = 0,

L0 =
1

ω0

∑

k

ak
1 + k

[
1

k!

∂k

∂tk
1

1− t2

]

t=0

=
1

ω0

(
a0 +

a2
3

+
a4
5

+
a6
7

+ . . .
)
. (4.35)

The other quantities for ϕ+ are similarly compact,

[
Linc
0 [ϕ+; Ω]

]
(t) =

1

ω0

1

1− t2

(
1− exp

{
−1 + t

1− t

Ω

ω0

})
, (4.36)

[
Linc[ϕ+; Ω, σ]

]
(t) =

1

(1− t)2
1

g2

[
1−

(
1 + g

Ω

ω0

)
exp

{
−g Ω

ω0

}]
, (4.37)

using the abbreviation g = 1+t
1−t + ω0 σ.

4.2.2. Subleading-order Expressions

The effective LCDA accounts for radiative corrections at NLO, which manifest as a

convolution of the LCDA with a perturbative kernel. Therefore, double integrals of the

parametrized LCDA ϕ+ appear. We proceed to calculate the inverse moment of the effective

LCDA term by term, starting with the single integral

[
L0[∆ϕ

(1a)
+ ]

]
(t) =

∫ ∞

0

dω

ω

(
ln2

µ2

2Eγω
+

π2

6
− 1
)
[ϕ+(ω)] (t)

=
1

ω0

1

1− t2

[
−1 + π2

3
+ ln2

(
µ2eγE

2Eγω0

1 + t

1− t

)]
, (4.38)

while the remaining pieces require integration twice. The second piece reads

[
L0[∆ϕ

(1b)
+ ]

]
(t) =

∫ ∞

0

dω′

ω′

(
2 ln

µ2

2Eγω′ + 3
)
ω′
∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

[ϕ+(ω, µ)] (t)

ω

= −π2

3

1

ω0

1

1− t2
. (4.39)
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The other pieces only differ up to a sign,

[
L0[∆ϕ

(1c)
+ ]

]
(t) =

π2

3

1

ω0

1

1− t2
, (4.40)

[
L0[∆ϕ

(1d)
+ ]

]
(t) = −π2

3

1

ω0

1

1− t2
. (4.41)

Overall, the NLO part of the effective LCDA yields the generator of the inverse moment

[
L0[∆ϕ

(1)
+ ]
]
(t) =

1

ω0

1

1− t2

[
−1 + ln2

(
µ2eγE

2Eγω0

1 + t

1− t

)]
. (4.42)

The expressions for the incomplete inverse moment at NLO,
[
Linc
0 [∆ϕ

(1)
+ ; Ω]

]
(t) (4.43)

are provided as machine-copyable code for Mathematica 13 in Appendix C.1. They involve

the exponential integral function Ei(z), hypergeometric functions pFq(a; b; z), and their

derivatives.

The generator of the incomplete Laplace transform
[
Linc[∆ϕ

(1)
+ ; Ω, σ]

]
(t) (4.44)

contains terms which, as of the writing of this thesis, we cannot express using standard

functions. This concerns the two pieces associated with ∆ϕ
(1c)
+ and ∆ϕ

(1d)
+ . Rearranging

the terms in ϕeff
+ using partial integration and expansion of the logarithms allows us to

obtain all pieces but the last in closed form. To that end, we express ∆ϕ
(1)
+ as the sum of

∆ϕ
(1a⋆)
+ (ω′) =

(π2

6
− 1
)
ϕ+(ω

′, µ) , (4.45)

∆ϕ
(1b⋆)
+ (ω′) = ∆ϕ

(1b)
+ (ω′) =

(
2 ln

µ2

2Eγω′ + 3
)
ω′
∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ϕ+(ω, µ)

ω
, (4.46)

∆ϕ
(1c⋆)
+ (ω′) =

∫ ω′

0
dω ln2

[
ω′ − ω

ω′
2Eγω

′

µ2

]
d

dω
ϕ+(ω, µ) , (4.47)

∆ϕ
(1d⋆)
+ (ω′) =

∫ ω′

0
dω ln2

ω′ − ω

ω′
d

dω

[ω′

ω
ϕ+(ω, µ)

]
. (4.48)

The known partial results for
[
Linc[∆ϕ

(1)
+ ; Ω, σ]

]
(t) using the above decomposition are also

provided as code in Appendix C.1.

If no closed form is available, numerical integration can be used in practical applications.

However, doing so might result in undesirable computation times for applications requiring

many evaluations such as sampling-based statistical methods. As a more efficient option,

one can approximate the exact solution using a truncated series, which is the subject of

Section 4.2.3. The terms of the rapidly converging series are more accessible in closed form

than the sum of the entire series.
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4.2.3. Series Expansion of ∆ϕ
(1d⋆)
+

Even though the functional form of the LCDA’s parametrization is simple, complicated

integrals may arise when several dimensionful scales are present and because of the

convolution with a perturbative kernel. At present, we have no expression in terms of

standard functions for the double integral with external scales Ω and σ

[
Linc[∆ϕ

(1d⋆)
+ ; Ω, σ]

]
(t) =

∫ Ω

0
dω′ e−σω′

[
∆ϕ

(1d⋆)
+ (ω′)

]
(t) (4.49)

with a logarithmic factor in

[
∆ϕ

(1d⋆)
+ (ω′)

]
(t) =

∫ ω′

0
dω ln2

ω′ − ω

ω′
d

dω

[ω′

ω
[ϕ+(ω)](t)

]
. (4.50)

The latter integral, related to the effective LCDA, is dominated by the region where

ω → ω′ because of the logarithm’s behavior. This can be exploited by Taylor expanding

the remaining integrand around that region to obtain a rapidly converging series. We

have
d

dω

[ω′

ω
[ϕ+(ω)](t)

]
=

t+ 1

t− 1

1

ω0

ω′

ω
[ϕ+(ω)](t) (4.51)

and further
ω′

ω
[ϕ+(ω)](t) = exp

{
1 + t

1− t

ω′

ω0

ω′ − ω

ω′

}[
ϕ+(ω

′)
]
(t) . (4.52)

Taken all together, expanding the exponential leads to the sum

[
∆ϕ

(1d⋆)
+ (ω′)

]
(t) =

t+ 1

t− 1

ω′

ω0

[
ϕ+(ω

′)
]
(t)

∞∑

n=0

1∫

0

dx ln2(1− x)
1

n!

[
1 + t

1− t

ω′

ω0
(1− x)

]n
(4.53)

= −2
[
ϕ+(ω

′)
]
(t)

∞∑

n=0

1

(1 + n)3
1

n!

[
1 + t

1− t

ω′

ω0

]n+1

. (4.54)

The sum in Eq. (4.54) corresponds to a hypergeometric function 3F3. More importantly,

the effect of the logarithmic convolution becomes transparent: the generator shows that

even the unsuppressed term at n = 0 modifies the LCDA’s series expansion. Whereas

the contribution ak of ϕ+(ω) comes with a polynomial O
(
ωk+1

)
, the nth term above

generates a polynomial weight of O
(
ωk+2+n

)
3. On the one hand, the expression is helpful

as a compact, intermediate result for further calculation. On the other hand, it suggests

an approximation of the LCDA’s effective term, which can replace inefficient numerical

integration in practical applications.

3Note this contains terms not only with ωk+2+n but also with lower powers down to ωk+2 with the same

suppression factor 1/[(1 + n)3 n!].
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We can account for the convolution’s leading effect with a minimal modification of the basis

functions used for the LCDA’s series expansion. For the moment, we use the notation

ϕ+(ω) =
K∑

k=0

ak fk(ω) , (4.55)

such that the piece the effective LCDA can be brought into the form

∆ϕ
(1d⋆)
+ (ω) = lim

K′→∞
ω

ω0

K∑

k=0

K′∑

k′=0

akM(1d⋆)
kk′ fk′(ω) , (4.56)

where, for practical purposes, K ′ must be truncated. However, the suppression in n and

convergence of the ak ensure that a finite K ′ is sufficient for a given accuracy. As a

minimally viable approximation, we need K ′ = K to capture the leading contribution

n = 0. Note that the additional factor ω is not strictly necessary but significantly improves

the convergence of the expansion. We obtain the matrix via Eq. (2.49) from the generating

function,

M(1d⋆)
kk′ =


 1

(1 + k)!

∂k

∂tk
1

k′!
∂k′

∂sk′
4

(1− s)2

∞∫

0

dω exp

{
(s+ 1)

(s− 1)

ω

ω0

} (
ω

ω0

)−1 [
∆ϕ

(1d⋆)
+ (ω)

]
(t)



t,s=0

.

(4.57)

Integration over ω leads to

M(1d⋆)
kk′ =

[
1

(1 + k)!

∂k

∂tk
1

k′!
∂k′

∂sk′
2

(s t− 1)2
t+ 1

t− 1

∞∑

n=0

1

2n (1 + n)2

(
(s− 1)(t+ 1)

s t− 1

)n
]

t,s=0

.

(4.58)

Note that for any given k, k′, the sum over n can be (at least by numerical approximation)

carried out to infinity. As illustration, the case K = 3, K ′ = 5 amounts to

M(1d⋆)
kk′ ≃




−2.33 0.444 −0.17 0.0875 −0.0527 0.0351

−2.55 −1.72 0.364 −0.147 0.0781 −0.0481
−1.91 −2.94 −1.38 0.312 −0.131 0.0709

−1.49 −2.59 −2.95 −1.17 0.276 −0.118


 . (4.59)

The convergence is evident in the entries: for a coefficient ak, the contribution weight of

the function ω/ω0 fk′(ω) decreases rapidly as soon as k′ > k.

We turn to a brief numerical study to demonstrate that a moderate K ′ ≳ K is suffi-

cient for practical applications. The contribution of the coefficient ak to the quantity

Linc[∆ϕ
(1d⋆)
+ ; Ω, σ] reads

∫ Ω

0
dω′ e−σω′

∫ ω′

0
dω ln2

ω′ − ω

ω′
d

dω

[ω′ e−ω/ω0

ω2
0

L
(1)
k (2ω/ω0)

1 + k

]
(4.60)
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which we approximate using a finite K ′ such that

≈
K′∑

k′=0

M(1d⋆)
kk′

∫ Ω

0
dω′ e−σω′ ω′

ω0

ω′ e−ω′/ω0

ω2
0

L
(1)
k′ (2ω

′/ω0)

1 + k′
. (4.61)

For the parameters Ω = s0/(2Eγ) and σ = 2Eγ/M
2, we use realistic central values

s0 = 1.5GeV2 and M2 = 1.25GeV2, in addition to the (arbitrary) value ω0 = 0.7GeV.

In Fig. C.1, we show the contributions associated to the coefficients a0, a1, . . . , a8 and the

absolute truncation error for K ′ = 8 as a function of Eγ in a large interval [1.0, 3.0]GeV.

The plot confirms the truncation error becomes larger for ak as k approaches K ′, e.g., it
is largest for the a8 contribution. The contributions might have zero crossings; however,

below the interval 1.5GeV < Eγ < mB/2, relevant for practical applications. At the lower

boundary, the factorization approach becomes unreliable [16] while the upper boundary

is kinematic. Therefore, we proceed to examine the relative truncation errors for a more

realistic interval Eγ ∈ [1.5, 2.7]GeV. In Fig. C.2, we show the cases K ′ = 8, 12 and 16

for each coefficient a0, a1, . . . , a8. While the relative error for K ′ = 8 lies already in the

low percent range, it falls off to a few 10−4 for K ′ = 12, which is more than sufficient for

practical purposes. The last case, K ′ = 16, shows diminishing benefits for larger values of

K ′, as the order of magnitude of the maximum relative error is identical for the previous

case, K ′ = 12.

In conclusion, we find that Linc[∆ϕ
(1d⋆)
+ ; Ω, σ] may be implemented for numerical applica-

tions using the parametrization at (primary) truncation level K = 8 using the expansion

Eq. (4.56) with the (secondary) truncation level K ′ = 12. The presented technique, ex-

pressing the effective LCDA as a series, can also be applied to the other pieces, not only for

numerical evaluation but also as compact intermediate results as in Eq. (4.54) for analytical

calculations.

4.3. Implementation in the EOS Software

The observables of B → γℓν listed in Table 4.1 have been implemented in the open-

source software4 EOS [3] using the programming language C++ as part of this thesis. It

provides means for numerical evaluation, particularly tools for Bayesian inference to perform

sophisticated global fits. The software project facilitates a high level of independence

between the various parts of the code to ensure future extendibility. For example, the code

for the branching ratio is agnostic about lower-level quantities, such as the implementation

of the form factors or the renormalization group evolution of the LCDA.

4The source code of release version 1.0.10 is permanently available under https://github.com/eos/eos/

tree/v1.0.10. Note that any implementation details discussed here, including file names, are only

guaranteed to pertain to this version.
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4.3. Implementation in the EOS Software

EOS qualified name observable description

B_u->gammalnu::BR(E_gamma_min) B(B− → γℓ−ν̄) integrated branching ratio

B_u->gammalnu::A_FB(E_gamma_min) AFB(B
− → γℓ−ν̄) forward-backward asymmetry

B->gamma::F_V(E_gamma) FB→γ
V (Eγ) vector form factor

B->gamma::F_A(E_gamma) FB→γ
A (Eγ) axial-vector form factor

Table 4.1.: User-accessible observables provided in EOS.

We use the LCDA’s parametrization at truncation level K = 8, i.e., the observables are

implemented up to the first nine terms. This choice ensures that there is sufficient headroom

to account for RG evolution while keeping the implementation overhead manageable when

fitting a small number of parameters. The code is written such that the number of

coefficients and terms, if necessary, can easily be increased in the future.

4.3.1. Physical Observables

The files eos/b-decays/b-to-gamma-l-nu.{hh,cc} of the EOS source code contain the imple-

mentation of the physical observables. Here, we provide the relevant definitions but omit

auxiliary functions.

The branching ratio

B(B− → γℓ−ν̄) =
τB
ℏ

∫ mB/2

Eγ,min

dEγ
dΓ

dEγ
(4.62)

is implemented using Eq. (4.6) through numerical integration over the photon energy in

the member function integrated_decay_width(E_gamma_min).

We define the integrated forward-backward asymmetry

AFB ≡
[∫ mB/2

Eγ,min

dEγ
dΓ

dEγ

]−1 ∫ mB/2

Eγ,min

dEγ aFB(Eγ)
dΓ

dEγ
, (4.63)

which is implemented using Eq. (4.7) through numerical integration over the photon energy

in the member function forward_backward_asymmetry(E_gamma_min).

4.3.2. Form Factors

The files eos/form-factors/analytic-b-to-gamma-qcdf.{hh,cc} of the EOS source code contain

the implementation of the form factors FV and FA in the member functions F_V(Egamma) and

F_A(Egamma), respectively, according to the definition in Eq. (4.8). We omit the discussion
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of auxiliary functions, which mirror the previous definitions. Instead, we focus on the

technical aspects of the implementation using the LCDA parametrization.

Each ingredient, L0 in Eq. (4.27), Linc
0 in Eq. (4.28), and Linc in Eq. (4.29) is implemented

as a scalar product of a coefficient vector a⃗ = (a0, a1, . . . , ak) with a quantity-specific

weight vector with the same dimension. For example, the code implementation for L0 is

given in Listing 4.1. In line 4, we assign the weight vector, where the numerical values are

calculated beforehand from the generator according to Eq. (4.35). In line 8, we get the

iterators provided by the class member blcdas that give access to the coefficient values. In

line 9, we return the result of the vector product of the coefficients with the weights.

Listing 4.1: Implementation of the parametrized L0 as a vector product.

1 double

2 AnalyticFormFactorBToGammaQCDF::L0()  const
3 {

4         const  Weights  c  =  {
5                 1.0,  0.0,  1.0  /  3.0,  0.0,  1.0  /  5.0,  0.0,  1.0  /  7.0,  0.0,  1.0  /  9.0
6         };
7

8         auto  [a_begin,  a_end]  =  blcdas->coefficient_range(mu);
9         return  1.0  /  omega_0  *  std::inner_product(a_begin,  a_end,  c.begin(),  0.0);

10 }

While the code for the weight vector, which generally depends on parameters such as

Ω and ω0, can be generated automatically using Mathematica’s CForm, the quantities

typically benefit from optimization. For example, the generator of Linc
0 in Eq. (4.36) yields

expressions composed of the exponential function and powers of Ω/ω0. We compute them

just once before composing the entries of the weight vector, aiming to minimize the number

of operations and function calls:

Listing 4.2: We are optimizing the number of operations and function calls. In line 20, we indicate

the omission of some lines containing lengthy expressions for the higher-order weights.

1 double

2 AnalyticFormFactorBToGammaQCDF::L0_incomplete(const  double  &  omega_cut)  const
3 {

4         const  double  xom  =  omega_cut  /  omega_0;
5         const  double  xom2  =  xom    *  xom;
6         const  double  xom3  =  xom2  *  xom;
7         const  double  xom4  =  xom3  *  xom;
8         const  double  xom5  =  xom4  *  xom;
9         const  double  xom6  =  xom5  *  xom;

10         const  double  xom7  =  xom6  *  xom;
11         const  double  xom8  =  xom7  *  xom;
12

13         const  double  exp_xom  =  std::exp(-xom);
14

15         const  Weights  c  =  {
16                 1.  -  exp_xom,
17                 xom  *  exp_xom,
18                 0.3333333333333333  +  (exp_xom  *  (-1  +  2  *  xom  -  2  *  xom2))  /  3.,
19                 (xom  *  exp_xom  *  (3  -  3  *  xom  +  xom2))  /  3.,
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4.3. Implementation in the EOS Software

20                 [...]
21         };
22

23         auto  [a_begin,  a_end]  =  blcdas->coefficient_range(mu);
24         return  1.0  /  omega_0  *  std::inner_product(a_begin,  a_end,  c.begin(),  0.0);
25 }

For the numerical evaluation of polynomials, Horner’s form results in a minimal number

of evaluations and stored intermediate results. It consists of nested expressions using

multiplication and addition, e.g.,

a x3 + b x2 + c x+ d = x(x(a x+ b) + c) + d .

The ingredient’s expressions of the parametrization terms often involve generalized hy-

pergeometric functions and their derivatives. These are implemented using cubic spline

interpolation, approximating the function by piece-wise cubic polynomials (“splines”),

which interpolate values calculated once beforehand. We obtain the sampling points using

dynamic sampling provided by the Python library Adaptive [73] such the sampling frequency

adapts to the rapidity of change of the function. Compared to a constant sampling rate,

fewer points are required to achieve the same global accuracy. To evaluate the functions, we

use the “Wolfram Client library for Python” by Wolfram Research5 as an interface between

the Mathematica kernel and the Python runtime environment. The infinite domain of the

functions needs to be mapped onto a finite interval using a suitable map, for example, the

map g,

g : [0,∞]→ [0, 1]

x 7→ x

1 + x
.

The ingredient Linc[∆ϕ
(1d⋆)
+ ; Ω, σ] is implemented in lapltr_incomplete_effective(Egamma,

omega_cut, sigma, use_approximation) using the approximation of Eq. (4.56) truncated at

K ′ = 12. An alternative implementation is available through an optional argument, which

uses numerical integration instead of the approximation by the truncated series.

4.3.3. B-LCDA ϕ+

The files eos/form-factors/b-lcdas-flvd2022.{hh,cc} of the EOS source code contain the code

related to the leading-twist B LCDA using the parametrization.

The central input parameters used by this class are the LCDA coefficients ak(µ0), their

reference scale ω0, and the renormalization scale µ0. Their qualified names in EOS are

5See wolfr.am/wolframclientdoc.
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B_u::a^phi+_<k>@FLvD2022 (where <k> must be replaced by the index k = 0, . . . , 8), B_u::

omega_0@FLvD2022, and B_u::mu_0@FLvD2022, respectively.

The member function coefficient_range(mu) provides access to the coefficients through

iterators. Using iterators instead of a fixed-size container such as an array ensures that the

users of this method do not assume a specific number of parameters. Minimal coupling

allows us to increase the truncation level K later with the ability to update the code

users (such as the form factors) incrementally. The coefficient values are provided at

the renormalization scale µ, which is implemented using the RG evolution according to

Eq. (2.58).

While the form factors for B → γℓν in our calculation are directly expressed in terms

of the parameters, the LCDA class also includes methods that give access to the LCDA

representations in momentum and position space. The position-space representation ϕ̃+ is

needed to employ the OPE result as a constraint in a global fit. Otherwise, the LCDA as

a function can be used in EOS with numerical integration for existing applications of ϕ+ or

simply for diagnostic purposes.

4.4. Phenomenological Analysis

We use the EOS software to perform a sensitivity study based on Bayesian inference methods.

Without empirical data like experimental measurements or lattice predictions for the form

factors, it’s unfeasible to accurately determine the LCDA parameters. However, one can

study the potential impact of such data, highlighting the importance of further research in

this area.

We use a Bayesian framework for the analysis. Bayes’ theorem states how to infer knowledge

about a set of fit parameters, denoted as ϑ, from a given dataset, symbolized as D. The

analysis result is the posterior probability density function (PDF), given by

P (ϑ |D,M) =
P (D,M |ϑ)P0(ϑ |M)

Z(D,M)
. (4.64)

Here, P (D,M |ϑ) is known as the “likelihood” of observing the data D under the model

M given the parameters ϑ, allowing us to implement fit constraints. The factor P0(ϑ |M)

denotes the prior probability distribution of the parameters, representing the already

available knowledge about the parameters independent of D. For the LCDA parameters,

our lack of prior knowledge is represented by a product of uniform distributions. In the

denominator, the “evidence” Z(D,M) is a normalization factor, ensuring the posterior

PDF is normalized when integrating all possible values of ϑ.

For complicated data and models, calculating the posterior PDF in closed form is often

unfeasible, at which point numerical methods become indispensable. We use the EOS
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software [3], which has been extended to this purpose as part of this thesis. Our analysis

involves the optimization of the posterior in order to determine the best-fit point (or points,

if there are several modes) of the parameters. Even though we do not provide best fit points

in the following, we use them to derive p values to qualify the setup in statistical terms.

We also produce samples for the model parameters, i.e., the fit and nuisance parameters. It

allows to obtain “posterior-predictive distributions” for dependent observables, including

those that appear in the likelihood as constraints, but also predictions of observables

where no data is available. To that end, we interface EOS with the open-source third-party

software dynesty [74, 75] to calculate importance samples using a dynamical nested sampling

algorithm [76].

4.4.1. Constraint Through the Short-distance OPE

We turn again to the short-distance OPE, already used in the pseudo-fits in Section 2.4

and Section 3.4, using the OPE result on the negative imaginary axis as input. In contrast

to the previous sections, we use a more sophisticated statistical framework, allowing us to

account for correlations and uncertainties.

For the reader’s convenience, we quote the full result given in Ref. [37], which includes

local operators up to mass dimension 5:

ϕ̃+(τ ;µ) = 1− αsCF

4π

(
2L2 + 2L+

5π2

12

)

− iτ
4Λ̄

3

[
1− αsCF

4π

(
2L2 + 4L− 9

4
+

5π2

12

)]

− τ2Λ̄2

[
1−αsCF

4π

(
2L2 +

16

3
L− 35

9
+

5π2

12

)]

− τ2
λ2
E(µ)

3

[
1− αsCF

4π

(
2L2 + 2L− 2

3
+

5π2

12

)
+

αsCG

4π

(
3

4
L− 1

2

)]

− τ2
λ2
H(µ)

6

[
1− αsCF

4π

(
2L2 +

2

3
+

5π2

12

)
− αsCG

8π
(L− 1)

]

+ (−iτ Λhad)
3 δ .

(4.65)

Above, Λ̄ is the HQET mass parameter in the on-shell scheme, and we abbreviate L =

ln(iτµeγE ). In the last line, we add an error estimate for the next-higher order in the

short-distance expansion via the parameter δ and a generic hadronic scale Λhad. Aiming

to remove the pole mass in Λ̄ = mB − mpole
b in favor of a renormalon-free low-energy

parameter, we follow Ref. [37] and use

Λ̄ = Λ̄DA

(
1 +

7

16π
αsCF

)
− 9

8π
µαsCF . (4.66)
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µ 1GeV

αs(µ) 0.466

Λhad 0.5GeV

Λ̄DA 0.52GeV [35]

λ2
E 0.01± 0.01GeV2 [51]

λ2
H 0.15± 0.05GeV2 [51]

Table 4.2.: Numerical values of the OPE input parameters.

In order for the OPE to be a valid estimate of the LCDA at some point τ = −it0, it is first
necessary that the power expansion converges rapidly, i.e.,

|t0Λhad| ≪ 1 . (4.67)

Fig. 1 of Ref. [37] shows the individual contributions to the OPE result for µ = 1GeV as a

function of −iτ . The plots suggests that the OPE “works up to moderate LC distances τ

of order 1GeV−1 ∼ 1/µ” [37], after which the contribution hierarchy breaks down. Second,

we require that radiative corrections, obtained at fixed order in perturbation theory, are

not subject to strong logarithmic enhancement,

ln(t0µe
γE) ∼ O(1) . (4.68)

Allowing the logarithm to take values ranging from −1 to 1, suggests the range t0 ∈
[0.207, 1.53]GeV−1. In the following, we consider the interval t0 ∈ [0.25, 1.0]GeV−1, in

compliance with both the short-distance expansion and ensuring that the fixed-order

logarithms do not lead to strong enhancement.

In Fig. 4.2, we plot the OPE result for the LCDA on the negative imaginary axis, ϕ̃+(τ =

−it, µ), using the numerical values in Table 4.2. For Λ̄DA, we assume a relative error of

10%, which is in line with the numerical reference provided in Ref. [35]. We show the

overall result obtained using central values as a dashed line. The dotted line corresponds

to the limit λE,H → 0, illustrating the small impact of these parameters compared to the

mass parameter Λ̄. The colored blue bands illustrate the overall uncertainty using the

central 68% probability interval obtained through random sampling according to Gaussian

distributions of the parameters. To illustrate the impact of the truncation error, we consider

the three cases δ = 0, 0± 1, 0± 2. The truncation error estimate quickly dominates the

hadronic parameter’s uncertainty for larger values of t.

To access as much of the OPE’s information as possible in an analysis, one can either (a)

evaluate the LCDA at multiple points in the complex τ plane, (b) evaluate the functional

behavior through the value and derivatives at a single point, or (c) consider a mixture

of both. We chose the first option, as it is the most straightforward one. To keep the
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Figure 4.2.: The OPE result of the LCDA on the negative imaginary axis ϕ̃+(τ = −it, µ = 1GeV)

as a function of t. The dashed line corresponds to the curve using central values, while the blue

bands indicate the parametric uncertainty. The dotted line corresponds to the limit λE,H → 0,

demonstrating the parameters’ small numerical impact. Shaded in gray is the “blind area” where

the OPE prediction of the LCDA becomes unreliable.

truncation error minimal, small values of t are favorable, however, considering several points

close to each other results in highly correlated constraints. What limits the maximum

useful number of data points is the overall structure of the OPE result in Eq. (4.65) and

the fact that it (numerically) predominantly depends on the single parameter Λ̄, giving

rise to substantial correlations between any pair of pseudo-observables. The number of

independent input parameters suggests that at most three independent constraints may

be used as a multivariate Gaussian constraint. Aiming to balance minimal correlation

with an acceptable truncation error, we consider three equidistant points in the interval

t0 ∈ [0.25, 0.75]GeV−1.

Because the precise form of the dimension-6 order in the OPE is unknown, we treat the

variation due to the parameter δ as uncorrelated for each data point. Taking δ = 0± 1 in

the following results in

ϕ̃+(−i0.25GeV−1) = 0.707± 0.016± 0.002 ,

ϕ̃+(−i0.50GeV−1) = 0.632± 0.025± 0.016 ,

ϕ̃+(−i0.75GeV−1) = 0.547± 0.029± 0.053 ,

(4.69)

where the first uncertainty stems from the hadronic parameters, and the second represents

the truncation error. Formulated more precisely as a multivariate Gaussian distribution

for the three points, we calculate the covariance matrix based on the hadronic parameter’s

variation and, afterward, add the uncertainty due to δ in quadrature to its diagonal

entries. The resulting covariance matrix is provided in Table C.5. Adding the uncorrelated

truncation error relaxes the overall correlations between the data points, which improves
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µ0 1 GeV

µ 1GeV to 2GeV

µh1, µh2 mb/2 to 2mb

M2 (1.25± 0.25) GeV2

s0 (1.5± 0.1) GeV2

mB 5.27925 GeV [48]

mb (4.8± 0.1) GeV [16]

mρ 0.77526 GeV [48]

fB (192.0± 4.3) MeV [77]

τB 1.638× 10−12s [48]

|Vub|excl 3.70× 10−3 [48]

GF 1.166378× 10−5 GeV−2 [48]

Table 4.3.: Numerical values of the B → γℓν decay’s nuisance parameters. We omit uncertainties

when only central values enter the analysis. The first section, related to factorization and sum rules,

is adopted from the original publication [16]. The b-quark mass is understood in the pole scheme.

the stability of numerical evaluations. The corresponding correlation matrix has eigenvalues

2.12, 0.16, and 0.67 and determinant 0.23, indicating the degree of correlation.

Numerical Impact

The numerical input for the decay’s nuisance parameters is provided in Table 4.3. We

treat parameters given as central value and standard deviation as Gaussian priors, while

scales such as µ follow a probability density function that yields a uniform distribution of

logarithms of the scale. It reflects that the scales are arbitrary as long as the value of their

logarithms remains of a certain moderate size. We state and use only the central value of

a parameter if the uncertainty is negligible in our analysis or when they enter (trivially) as

a global factor.

To cover a wide range of applications, we consider the following set of six (pseudo-)

observables:

• B and AFB, the integrated branching ratio and the forward-backward asymmetry for

Eγ,min = 2GeV as the lower integration boundary (in compliance with factorization),

• FV (mB/2) and FA(mB/2), the form factors at maximum recoil energy, Eγ = mB/2,

which might become accessible using lattice calculations in the future,

• and L0 and L1, the first two logarithmic moments of the LCDA, crucial in phe-

nomenological applications.
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In the Bayesian framework, the result is a multivariate posterior distribution, which we

numerically approximate through weighted samples. It is necessary to marginalize the

posterior to infer information about only a subset of variables independent of the remaining

ones. This process involves integrating the other variables across their entire domain,

considering all possible values; for example, in the case of a one-dimensional marginalized

distribution, all other variables are integrated over. The one-dimensional probability

density functions obtained in this manner generally do not exhibit a Gaussian shape.

In the following, we quantify the distribution’s central tendency and variability through

the median value and the central 68% interval of probability, which may be asymmetric.

The lower boundary of the central interval, the median value, and the upper boundary

of the central interval correspond, respectively, to the 16th, 50th, and 84th percentiles of

the probability density. We further provide, when sensible, the p value associated with

the minimum χ2 to characterize a given setup consisting of a statistical model and a

likelihood.

We start off using only the OPE constraint (three degrees of freedom) in an analysis with

K = 1, i.e., LCDA parameters a0 and a1, with a fixed value of ω0, resulting in the total

degree of freedom of one. The resulting setups in this section all exhibit a p value in excess

of 74%.

We compare the effect of the multivariate constraint with and without correlation between

the three data points from the OPE result using ω0 = 0.8GeV. The latter case corresponds

to the covariance matrix given in Table C.5 where the off-diagonal entries are zero. Fig. 4.3

shows the distributions of the fit parameters’ posterior samples in the two-dimensional

a0-a1 plane (in the corner) alongside the one-dimensional marginalized histograms for

each parameter (on the diagonal). Using the constraint with correlation tends to result in

narrower posterior distributions; however, the effect is negligible. The posterior distributions

inherit the input’s Gaussian shape because of the underlying linear relationship between

the LCDA parameters and its value in position space at a certain point in the complex

plane. This is further manifest in the correlation of the posterior samples, illustrated in

the upper right panel, which are shaped like narrow ellipses. In the following, we use the

correlated multivariate Gaussian constraint.

We repeat the Bayesian procedure for several values of ω0 to examine its influence on

the posterior result and the corresponding observable predictions. Table 4.4a contains

the results for a0(µ0) and a1(µ0) for several ω0 ∈ {0.4, 0.6, 0.8, 1.0, 1.2}GeV. The values

correspond to the sample’s median and boundaries of the 68% probability interval. The

boundaries are approximately symmetrical because of the Gaussian-like shape of the

posterior. Fig. 4.4 shows the resulting posterior prediction of the LCDA ϕ̃+(τ = −it, µ0)

as a function of t in comparison to the complete OPE prediction and the extracted

constraints. The blue bands indicate the width of the posterior distribution within the

central 68% probability interval. We find the prediction adheres to the constraints for all
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Figure 4.3.: On the diagonal, we show histograms of the one-dimensional marginalized samples

of the fit parameters obtained using correlated and uncorrelated inputs from the OPE. In the

corner, contours indicate estimates of the 68% and 95% probability intervals of the two-dimensional

marginalized samples.
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Figure 4.4.: Comparing the input constraints with the corresponding posterior prediction for

K = 1 and different values for ω0.
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ω0 [GeV] a0(µ0) a1(µ0) p value

0.4 1.53+0.87
−0.59 0.55+0.07

−0.12 74%

0.6 0.98+0.47
−0.33 0.44+0.10

−0.15 84%

0.8 0.66+0.31
−0.21 0.29+0.14

−0.21 97%

1.0 0.47+0.20
−0.14 0.11+0.19

−0.26 88%

1.2 0.36+0.15
−0.09 −0.09+0.24

−0.29 74%

(a) Posterior results for the ak(µ0) fit.

ω0 [GeV] B [10−7] AFB

0.4 1.53+0.87
−0.59 0.55+0.07

−0.12

0.6 0.98+0.47
−0.33 0.44+0.10

−0.15

0.8 0.66+0.31
−0.21 0.29+0.14

−0.21

1.0 0.47+0.20
−0.14 0.11+0.19

−0.26

1.2 0.36+0.15
−0.09 −0.09+0.24

−0.29

(b) Poster-predictive results for experimental

observables.

ω0 [GeV] FV (mB/2) FA(mB/2) L0 [GeV−1] L1 [GeV−1]

0.4 0.183+0.038
−0.034 0.161+0.038

−0.034 2.84+0.39
−0.39 −0.86+0.44

−0.44

0.6 0.151+0.027
−0.025 0.129+0.027

−0.025 2.37+0.22
−0.22 −1.10+0.27

−0.27

0.8 0.127+0.023
−0.021 0.105+0.023

−0.021 2.05+0.16
−0.16 −1.16+0.21

−0.20

1.0 0.110+0.019
−0.018 0.088+0.019

−0.018 1.82+0.12
−0.12 −1.20+0.17

−0.17

1.2 0.096+0.017
−0.016 0.074+0.017

−0.016 1.66+0.10
−0.10 −1.23+0.15

−0.16

(c) Posterior-predictive results for pseudo observables.

Table 4.4.: Results for varying ω0 using only the OPE input. We provide the median value and

boundaries of the 68% probability interval.
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values of ω0 while the resulting LCDA’s behavior varies, especially for small t ≲ 0.25GeV,

indicating a significant truncation error in that regime. The plot suggests that additional

constraints for larger values of t would not significantly improve the result at this truncation

level, even using an estimate of the OPE’s truncation error that is more conservative than

indicated in Fig. 4.2. Notably, as ω0 increases, the parametrized LCDA follows the OPE’s

pathological behavior more closely in the limit t → 0. This observation aligns with the

study of the Lee-Neubert model discussed in Section 2.3.2, in terms of the parametrization’s

capability to reproduce the radiative tail, which derives from the short-distance behavior.

Again, however, we stress that the fixed-order result of the OPE is unreliable in limit

t→ 0 because of the logarithmic enhancement. In Table 4.4b and Table 4.4c, we provide

posterior-predictive results for the experimental observables (branching ratio and AFB)

and the pseudo observables (form factors and first logarithmic moments), respectively. All

predictions are additionally illustrated in Fig. C.4. Because the form factors and logarithmic

moments depend linearly on the parameters, they inherit their Gaussian-like distribution.

The same is not the case for the experimental observables, which are asymmetrically

distributed (cf. Fig. C.3, which includes the one-dimensional marginalized posteriors for

ω0 = 0.8GeV). All (pseudo) observables are sensitive to the value of ω0 at this low

truncation order, making them suitable to constrain the optimal value at the hand of a

statistical test. Based on the p values provided in Table 4.4a (i.e., relying solely on the OPE

constraint) we select ω0 = 0.8GeV for the following sections. The associated maximum p

value indicates the best compatibility of higher-order coefficients ak with zero.

4.4.2. Adding Experimental Data

We fix ω0 = 0.8GeV and increase the truncation level to K = 2, i.e., fitting the LCDA

parameters a0, a1 and a2. The value of ω0 results in a central value for a2 close to zero,

which imposes consistency with the previous setup at K = 1. Without input beyond the

OPE, this setup has zero total degrees of freedom, resulting in a minimum χ2 → 0. Despite

of the lack of degrees of freedom, Bayesian inference allows us to obtain a well-defined

posterior probability density, albeit with substantial uncertainties of the parameter’s

marginalized distributions:

a0(µ0) = 1.63+0.51
−0.55 , a1(µ0) = 0.90+1.98

−2.09 , a2(µ0) = −0.03+1.82
−1.94 .

More important than the one-dimensional marginalized distributions, however, are the

two-dimensional ones, showing the correlations between the fit parameters and predictions

in order to estimate the impact of supplementing the OPE information with data.

In the following, we discuss the resulting distribution of the posterior samples for the fit

parameters and predictions at the hand of a “corner plot”. It shows the one-dimensional

marginalized samples of each parameter on the diagonal, where the median value and

106



4.4. Phenomenological Analysis

lower and upper bound of the 68% probability interval are indicated with dashed lines

(we omit them in the following if the distribution has several significant modes). The

off-diagonal plots show the two-dimensional marginalized samples between each pair of

parameters as a two-dimensional histogram, complemented by blue contours for the 68%

and 95% probability intervals obtained using Gaussian kernel density estimation (we omit

them if this estimate is not applicable). The purpose of the two-dimensional plots is to

show correlation between two parameters. Note that a third parameter can drive this

correlation.

In Fig. 4.5, we show the corner plot for the LCDA parameters and the predictions of the

experimental observables. While the distributions of the LCDA parameter appear Gaussian,

the posterior-predictive samples of the experimental observables are non-Gaussian with

local maxima at the boundaries. For this reason, we omit the Gaussian kernel density

estimates in the two-dimensional distributions. The structure of the branching ratio’s

posterior results from a local minimum that lies in the broad range of values for the LCDA

parameters. Numerically, we find B = 0.89+2.10
−0.62 × 10−7 while fewer than 0.01% of the

importance samples lie below 0.18 × 10−7. A sharp correlation between the branching

ratio and the forward-backward asymmetry suggests they complement each other as fit

constraints (rather than being redundant). The complete set of observables can be seen in

Fig. C.5. The impact of information about the additional pseudo-observables is clear due

to the linear relationship to the parameters. The complete corner plot further illustrates

how the constraints can introduce correlation between variables that are a priori unrelated

in the statistical model: using the parametrization, L0 only depends on a0 and a2 but not

a1. We still observe a correlation between L0 and a1, driven indirectly by the correlation

between a1 and the other parameters by the OPE constraints. Similarly, L1 only depends

on a1 (hence, the two-dimensional marginalized distribution takes the form of a line);

correlation of L1 with a0 and a2 is driven via the third variable a1.

We now add the following mock data for the experimental observables:

B = (0.66± 0.31)× 10−7 , AFB = 0.29± 0.21 . [mock input]

These values are compatible with the posterior predictions from the previous section to

ensure consistency. We further assume the measurement results are provided as (sym-

metrical) Gaussian distributions. For the analyses in this section, taking one or both of

the mock measurements into account, we determined that the respective p values exceed

82%. Note that experimental results for the branching ratio are already available in

Ref. [9]; however, using Eγ,min = 1GeV, which is incompatible with the QCD factorization

description. We show the posterior distributions associated with the parameters and the

experimental observables in Fig. 4.6. The full set of posteriors is available in Fig. C.6. Due

to the quadratic relationship with the experimental observables, the parameters’ posterior

features a primary and a secondary mode, which are well-separated at the level of the

68% probability interval. The two-dimensional marginalized samples between the inverse
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Figure 4.5.: Corner plot of the posterior for K = 2 and ω0 = 0.8GeV showing the LCDA

parameters and predictions of the experimental observables based on inputs from the OPE. Blue

areas in the two-dimensional histograms indicate estimates of the 68% and 95% probability contours.
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Figure 4.6.: Corner plot of the posterior for K = 2 and ω0 = 0.8GeV showing the LCDA

parameters and the experimental observables based on inputs from the OPE and mock input for

the experimental observables. Blue areas in the two-dimensional histograms indicate estimates of

the 68% and 95% probability contours.

109



4. Constraints from B → γℓν Decay

a
0

(c
ou

n
t)

−4

−2

0

2

4

a
1

OPE and B
OPE and AFB

0.6 1.2 1.8 2.4
a0

−4

−2

0

2

4

a
2

−4 −2 0 2 4
a1

−4 −2 0 2 4
a2

Figure 4.7.: Combined corner plot of the posteriors for K = 2 and ω0 = 0.8GeV comparing the

LCDA parameters when using either the branching ratio or the forward-backward asymmetry as

an experimental constraint together with inputs from the OPE. Shaded areas in the off-diagonal

plots indicate estimates of the 68% and 95% probability contours.

moment L0 = λ−1
B and the parameters reveal that input about L0, e.g., from a sum rule

estimate, can discriminate the two modes in favor of the primary one, since the secondary

mode corresponds to L0 ∼ 0. Alternatively, form factor data can be used to the same effect

when it becomes available. The posterior distributions of the experimental observables do

not strictly follow the Gaussian shape of their priors due to the effect of the likelihood.

Again, we find a striking correlation between the pair of experimental observables, affirming

their complementary potential in a global fit. We explicitly confirm (not shown) that the

qualitative result remains the same when using an input value for the branching ratio

B = (0.18± 0.18)× 10−7 at the lower boundary.

The striking correlation between the two experimental observables warrants closer inspection.

In Fig. 4.7, we show a combined corner plot, overlaying the posteriors for two cases:
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combining inputs from the OPE with either only the branching ratio B or only the forward-

backward asymmetry AFB as constraints in the analysis. We find that both posteriors

feature the primary and secondary mode. The location of the modes agree by construction

of our setup. The overlap region, however, is significantly reduced in comparison to the

individual distributions. While B overall narrows the distributions, AFB drives the clear

separation of the modes. Using both constraints together thus improves the accuracy of

the analysis, i.e., the constraints are complementary.

Extending the analysis with input from the latest sum rule estimate for the inverse moment

[49]6,

L0(µ0) = 2.6± 1.1GeV−1 , [input]

indeed leads to a strong suppression of the posterior’s secondary mode shown in Fig. C.7.

For the LCDA parameters, we now find

a0(µ0) = 1.66+0.13
−0.13 , a1(µ0) = 1.01+0.45

−0.43 , a2(µ0) = 0.08+0.46
−0.45 .

Notably, after eliminating the secondary mode, experimental information and lattice QCD

estimates of the form factors lead to similarly correlated posteriors (comparison not shown).

This observation näıvely implies the less precise set of inputs is somewhat redundant, while

the set of inputs with higher precision drives the posterior’s accuracy. The conclusion,

however, only holds if there is no tension between the two sets of inputs in the given

analysis setup.

4.4.3. Adding the Parameter Bound

As a fundamental advantage of the Bayesian analysis, in contrast to the frequentist approach,

the fit parameters are not required to be over-constrained. The LCDA’s parameter bound

χ(µ0) =
1

2ω0

∞∑

k=0

|ak(µ0)|2 <∞

serves as a regulator in such a scenario, ensuring that the posterior distributions remain

localized while increasing the number of fit parameters to the same level or even beyond

the constraints’ degree of freedom.

In the absence of a value for χ(µ0), we use the following model assumption with σ > 0 to

obtain an estimate:

|ak(µ0)| <
σ

k + 1
. [model ansatz] (4.70)

6As suggested in the Ref. [49], we account for the condensate contribution’s model uncertainty by increasing

the total error by the quadrature of the difference between the two estimates.

111



4. Constraints from B → γℓν Decay

The criterion implies the upper limit of the bound

χ(µ0) <
1

2ω0

π2σ2

6
(4.71)

and similarly for the inverse moment (cf. Eq. (2.44))

L0(µ0) <
1

ω0

∞∑

k=0

1− (−1)k+1

2

σ

(k + 1)2
=

1

ω0

π2σ

8
. (4.72)

Taking the reference value for L0 in Section 4.4.2 at the upper uncertainty limit restricts

the model parameter as σ ≳ 2.40.

Going forward, we use σ = 2.5, which numerically implies χ(µ0) < 6.43GeV−1. Note that

each parameter is thereby limited as

|ak| <
πσ√
6
≈ 3.21 .

We refer to this condition as a “weak bound” as opposed to the more restrictive criterion

for the entire sum. In the analysis, this range also serves as a guide to determine the finite

support range of the parameter’s uniform priors. This model’s weak bounding condition

is consistent with the previous results for the parameters. The software EOS provides

means to employ a parameter bound, including an uncertainty, as a component of the

likelihood. However, the conventional χ2 test statistic does not apply for this type of

likelihood component and thus we cannot assign a p value. In the following, we take the

bound’s upper limit and assume a relative error of 10%,

χ(µ0) = 6.43± 0.64GeV−1 , [mock input]

while increasing the truncation level from K = 2 to K = 5, doubling the number of

parameters. This results in

a0(µ0) = 1.60+0.18
−0.19 , a1(µ0) = 0.83+0.51

−0.52 , a2(µ0) = 0.13+0.97
−0.98 ,

a3(µ0) = 0.39+1.16
−1.18 , a4(µ0) = 0.20+1.18

−1.19 , a5(µ0) = 0.04+1.31
−1.32 .

(4.73)

We show the marginalized posteriors of the LCDA parameters in Fig. C.8. The posterior

distributions of a0 and a1 remain localized with only minor broadening by virtue of the

constraints despite significantly increasing the number of varied parameters. Similarly,

the location of their central intervals remains stable since the parameterization at K = 2

(for the specific ω0) already fulfilled the OPE constraints reasonably well. Hence, we find

that the employed set of constraints is suitable to determine a0 and a1, while for a2, one

might overestimate the result’s significance in the setup without the parameter bound.

Comparing Fig. C.8 to the previous case without the parameter bound in Fig. C.7, we

observe additional suppression of the secondary mode, rendering it virtually invisible.
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Figure 4.8.: Prediction of the form factors at K = 5 and ω0 = 0.8GeV, using inputs from the

OPE, mock data for the experimental observables, and a model for the parameter bound. Bands

indicate the 68% probability interval.

The similar widths of the distributions of the higher-order parameters suggest they are

constrained mainly by the parameter bound rather than by the other inputs. Their widths

correspond to a weak bound for the higher-order parameters. It remains after the lower-

order contributions, which statistically tend to be non-zero, are effectively subtracted

from the total bound χ. In the posterior-predictive results, the broad distributions of the

higher-order parameters become a handle of the truncation error: the error only remains

under control for observables that primarily depend on the sharply determined parameters,

i.e., if interpolating the information from the constraints to the predictions is valid. This

way, our approach allows to qualify the reliability of predictions.

To demonstrate the last point, we predict the form factors over their entire kinematic

range (given by the limits of the factorization approach and maximum recoil) in our setup

at K = 5 using inputs from the OPE, mock experimental data, and the inverse moment

from QCD sum rule analysis together with the parameter bound obtained from a model.

The result is shown in Fig. 4.8a as a plot of the median values within the 68% probability

interval. For comparison, the dashed lines indicate the result of the previous setup at

truncation level K = 2 and without the bound. The lines for the different truncation levels

are similar (but not identical) because the parametrization at K = 2 already fulfills the

constraints, by construction, reasonably well so that the central tendencies are consistent.

More importantly, the widths of the uncertainty bands remain virtually identical when

increasing the number of parameters, i.e., the form factors’ truncation error is well under

control. This behavior can be anticipated at a qualitative level, as it effectively results

from interpolating data that includes the experimental observables directly linked to the
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integrated form factors.

The LCDA itself presents another instructive example. In Fig. 4.8b, we show its posterior

prediction as a function of τ = −it on the negative imaginary axis, complemented, for

reference only, with the central OPE prediction and the concrete data points that constrain

the analysis. The plot further includes the analogous result for K = 2 without the parameter

bound. Comparing the bands for both truncation levels, we find that the uncertainty

remains consistent for larger values of t ≳ 0.25GeV−1, reflecting the suppression of higher-

order coefficients in that region. On the contrary, the increased uncertainty at lower t

values for K = 5 shows the initial underestimation of uncertainties at a low truncation

level without the bound. We further compare the new result with the previous case at

K = 1 shown in Fig. 4.4. There, we varied the scale ω0 which indeed gives a similar

impression of the truncation error of the prediction as a function of t. However, this

method has certain limitations. It only allows for the identification of predictions with

high uncertainty, indicated by significant variation; it does not, conversely, guarantee the

reliability of predictions with minimal variation. Furthermore, the scale variation method

is prone to subjective bias. The selection of the ω0 interval for this method either relies

on heuristic judgment to estimate typical hadronic scales or it takes inspiration from

model-based studies such as in Section 2.3. In contrast, using the parameter bound as

a regulator at high truncation levels in a Bayesian analysis offers a more objective and

quantitative approach to assessing the truncation error, allowing a clearer interpretation of

the results.

4.4.4. Conclusions

The model-independent theory information from the operator product expansion proves

to be valuable input for constraining the LCDA parameters. All observables considered

here, i.e., the experimental observables, the form factors, and the logarithmic moments,

are suitable to constrain the value of the parametrization’s reference scale ω0 that leads to

optimal convergence. Input about the B → γℓν form factors or the logarithmic moments

has a straightforward impact on determining the LCDA parameters due to simple linear

correlation. Experimental data for the branching ratio and forward-backward asymmetry

of B → γℓν also provide effective constraints. Although they induce both a primary

and prominent secondary mode, the latter can be effectively eliminated using additional

input. In particular, we find that the inverse moment, accessible via the QCD Light-Cone

Sum Rule method, is suitable for this purpose at the accuracy already available in the

literature. We emphasize that data for the branching ratio and the forward-backward

asymmetry complement each other to improve the accuracy of a global analysis and thus

both observables should be measured. Lastly, we demonstrated a major feature of the

LCDA parametrization, the ability to control the truncation error of predictions based on

the parameter bound in a Bayesian setup.
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4.5. Summary and Outlook

We detailed the theoretical aspects of the B → γℓν decay, employing QCD Factoriza-

tion, complemented with the QCD Light-Cone Sum Rule approach, to predict the decay

amplitude through the leading-twist B LCDA.

For the first time, we applied the systematic parametrization proposed in Chapter 2 to

a decay prediction, introducing a tailored method, termed the “generator formalism.”

This formalism streamlines the computational process by reducing the need for multiple

integrals to a single integral, which can then be differentiated to obtain the coefficient

expansion order by order. This approach is complemented by a compact series expansion

for incorporating perturbative corrections, which manifest as logarithmic convolutions of

the LCDA, offering a practical solution to efficiently approximate results where closed

forms are unavailable.

Furthermore, the chapter outlined the integration of this decay process into the EOS soft-

ware, a central development of this thesis. It allowed us to perform a comprehensive

phenomenological study using tools for Bayesian analysis provided in EOS, to assess the

effectiveness of using B → γℓν decay constraints alongside theoretical information about

the LCDA’s short-distance behavior. We employed mock data because no experimental

data (compatible with the factorization approach) is available at present, but a suitable

measurement is already anticipated from the Belle-II experiment. This analysis demon-

strated the potential of the decay observables to constrain the LCDA parameters and also

showcased the utility of the parameter bound within a Bayesian framework to manage the

parametrization’s truncation error.

We note that lattice QCD estimates for the B → γ form factors might become available

in the foreseeable future. Methods for the determination of radiative-leptonic decay form

factors using lattice QCD are currently under investigation. See, for recent examples,

Refs. [78–80].

In conclusion, we established the feasibility of a global analysis with experimental data to

determine the B-LCDA parameters, with the expectation that future data will elevate the

analysis to a quantitative level. Our proof-of-concept study also highlights the role of the

parameter bound in accounting for truncation errors, which enhances the robustness of the

analysis.
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Descriptions of hadronic particles such as the B meson need inputs that can presently

not be derived from first principles in QCD. Among these inputs, the leading-twist B-

meson Light-Cone Distribution Amplitude (LCDA) is pivotal for theoretical predictions

of exclusive, energetic B decays, as it encodes the internal structure of the hadron in

accordance with QCD Factorization and QCD Light-Cone Sum Rules. These frameworks

allow for a multifaceted analysis of the LCDA, complemented by the theoretical short-

distance behavior, altogether providing substantial constraints of various aspects. In this

thesis, we developed a new approach to infer information about the LCDA through a global

analysis, aiming to integrate all available data sources. This approach seeks to maximize

the accuracy and completeness of the predictions while minimizing any potential bias,

thereby offering a more reliable framework for the study of B-meson decays. We addressed

the principal ingredients of our approach in three main parts.

First, we developed a systematic parametrization for the leading-twist B-meson LCDA,

which can serve as the vehicle for a comprehensive analysis. The primary goal of the

parametrization approach, in contrast to previous model-based approaches, is to avoid

unquantifiable systematic uncertainties. This parametrization fulfills established math-

ematical properties and satisfies a parameter bound to manage truncation. Using the

flexibility in the choice of the expansion’s functional basis, we selected a form that facili-

tates straightforward and compact closed-form expressions. Notably, at the elementary

truncation level K = 0, the expansion aligns with a widely recognized single-parameter

model. Therefore, our parametrization can be viewed as a systematic extension of this

model, albeit with a different underlying philosophy. The renormalization scale dependence

of the LCDA can be accounted for in several ways, one of which involves variation of the

parameters while keeping the basis functions invariant. This implementation of the RGE

significantly simplifies the development of numerical codes. Analyzing the parameterization

across various models has shown the capability to reproduce diverse behaviors and offered

heuristic benchmarks for convergence. A first rudimentary study of the interplay between

phenomenological inputs and theoretical information from the short-distance behavior led

to consistent and encouraging results.

Second, we derived the short-distance behavior of the leading-twist Bs-meson LCDA, where

the mass of the spectator quark has a considerable effect. Our matching calculation takes

advantage of the techniques for evaluating Feynman integrals in momentum space before
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transforming the result to the desired representation in position space. We simplified this

critical step by using systematic “local subtractions” to perform an asymptotic expansion

of the Feynman integrals for on-shell matrix elements at the level of the Fourier transform.

Based on this technique, we further obtained results for the matching coefficients of the

subleading-twist 2-particle LCDA up to dimension 4 in the OPE. To test the consistency

of our results, we extrapolated the short-distance behavior using the parametrization

for the LCDA. Estimating the inverse moment this way led to results consistent with

independent estimates from QCD rum rules, and a brief study of the potential impact

of local operators of dimension 5 again confirmed the consistency of our approach. The

updated short-distance behavior can directly benefit applications with the Bs-meson LCDA

using our parametrization.

Third, we applied the LCDA parametrization to the B → γℓν decay, which is the bench-

mark decay mode to probe the leading-twist LCDA experimentally. The theory prediction

is based on QCD Factorization, supplemented by QCD Light-Cone Sum Rules for power

corrections. Both methods rely on integrals of the LCDA which we express in terms of

the parametrization. To this end, we introduced the “generator formalism” to streamline

the computation of order-by-order expressions. We briefly discussed the technical imple-

mentation of observables using the parametrization in the EOS software, which enabled a

comprehensive proof-of-concept study based on Bayesian inference. Here, our systematic

approach proved to be feasible and practical for combining inputs from various sources

to constrain the LCDA. We demonstrated the role of the parameter bound as a regulator

using a model-based mock value for the bound. Using examples, we showed how our

approach allows us to straightforwardly quantify truncation errors to test the reliability of

predictions.

We established the feasibility of our approach for systematic analysis of the leading-twist

B-meson LCDA using available theoretical inputs and future experimental inputs from

the benchmark B → γℓν decay channel. The analysis tools described in this thesis are

publicly available in the EOS software. Quantitative analysis will become feasible in the

foreseeable future with the availability of experimental B → γℓν decay data or lattice

estimates for the B → γ form factors. The value of the parameter bound has yet to

be determined using QCD-based methods to fully utilize the parametrization and more

accurately quantify systematic uncertainties. Until the bound is determined, variation of

the auxiliary scale ω0 offers a practical method to provide a heuristic estimate. Thoroughly

testing various aspects of our parameterization has consistently produced promising results.

Therefore, we conclude that our approach has significant potential to improve the reliability

of predictions based on QCD Factorization and QCD Light-Cone Sum Rules which depend

on the B-meson LCDA.
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A. Supplementary Material for the

Parametrization

A.1. Useful Definitions and Formulas

We define the renormalization group functions along Ref. [81] as

V (µ, µ0) = −
∫ αs(µ)

αs(µ0)

dα

β(α)

[
γ+(α) + Γc(α)

∫ α

αs(µ0)

dα

β(α)

]
, (A.1)

g(µ;µ0) =

∫ αs(µ)

αs(µ0)

dα

β(α)
Γc(α) . (A.2)

Bessel function obey the following useful integral identity (cf. Ref. [31]):

∫ ∞

0
dωe−iωz

(ω
s

)j−1/2
J2j−1(2

√
sω) = e−iπj e

is/z

z2j
. (A.3)

They can be expressed using a weighted sum of associated Laguerre polynomials by

Jα(x) =
(x
2

)α e−t

Γ(1 + α)

∞∑

k=0

α!

(k + α)!
L
(α)
k

(
x2

4t

)
tk , (A.4)

with an arbitrary parameter t. For the parametrization, a useful special case with t = ω/ω0

reads

J1(2
√
ωs) =

√
ωs e−ω/ω0

∞∑

k=0

1

(1 + k)!
L
(1)
k (sω0)

(
ω

ω0

)k

. (A.5)

To unambiguously define the Laguerre polynomials, we provide explicit formulas here.

They can be written in closed form as

L(α)
n (x) =

n∑

i=0

(−1)i
(
n+ α

n− i

)
xi

i!
. (A.6)
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For α = 1, the lowest order polynomials read

L
(1)
0 = 1 , L

(1)
1 = −x+ 2 ,

L
(1)
2 =

1

2

(
x2 − 6x+ 6

)
, L

(1)
3 =

1

6

(
−x3 + 12x2 − 36x+ 24

)
.

(A.7)

They obey the orthogonality relation

∫ ∞

0
dxxα e−xL(α)

n (x)L(α)
m (x) =

Γ(n+ α+ 1)

n!
δnm . (A.8)

Their “generating function”, containing the polynomials as its Taylor series coefficients,

reads ∞∑

n=0

tnL(α)
n (x) =

1

(1− t)α+1
e−tx/(1−t) . (A.9)

A.2. Coefficients ak from Pseudo-phenomenology and OPE

We obtain solutions for the expansion coefficients ak for k = 0, . . . , 3 using the constraints

from the pseudo-observables p1 and p2 and two theory inputs t1 and t2 (see Section 2.4) in

dependence of ξ, x0, n0 and a4 as

a0 = Z

(
−(5ξ − 1)(1 + 30ξ + 25ξ2)

100ξ2(5ξ − 3)
+

5ξ − 1

15ξ2(5ξ − 3)
Λ̄a p1

)
(A.10)

+
3ξ(5ξ − 1)

2(5ξ − 3)
− (5ξ + 1)5

2500ξ2(5ξ − 3)
p2 −

(9− 5ξ)(5ξ − 1)

5(5ξ − 3)(5ξ + 1)
a4

+
(5ξ − 1)(1 + 30ξ + 25ξ2)αsCF

75πξ3(5ξ − 3)
Λ̄a n0 p1 (1 + lnx0) ,

a1 = Z

(
−2 + 1

3ξ
Λ̄a p1

)
+

3ξ

2
+

8αsCF

3π

Λ̄an0

ξ
(1 + lnx0) p1 −

4a4
5

, (A.11)

a2 = Z

(
3 (5ξ − 1)(1 + 30ξ + 25ξ2)

100ξ2(5ξ − 3)
− 5ξ − 1

5ξ2(5ξ − 3)
Λ̄a p1

)
(A.12)

− 3ξ(5ξ + 3)

2(5ξ − 3)
+

3(5ξ + 1)5

2500ξ2(5ξ − 3)
p2 +

6(−3 + 30ξ − 25ξ2)

5(5ξ − 3)(5ξ + 1)
a4

− (5ξ − 1)(1 + 30ξ + 25ξ2)αsCF

25πξ3(5ξ − 3)
Λ̄a n0 p1 (1 + lnx0) ,

a3 = Z

(
(5ξ + 1)(−1− 20ξ + 75ξ2)

50ξ2(5ξ − 3)
− (5ξ − 2)(5ξ + 1)

15ξ2(5ξ − 3)
Λ̄a p1

)
(A.13)

− 3ξ(5ξ + 1)

2(5ξ − 3)
+

(5ξ + 1)5

1250ξ2(5ξ − 3)
p2 +

4(−9 + 10ξ + 25ξ2)

5(5ξ − 3)(5ξ + 1)
a4

− 2(5ξ + 1)(−1− 20ξ + 75ξ2)αsCF

75πξ3(5ξ − 3)
Λ̄a n0 p1 (1 + lnx0) .
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Short-distance Expansion

B.1. Derivatives Acting on 2-particle Operators

The equations of motion of the light and heavy quark fields impose conditions on the

hadronic matrix elements of local operators. To employ them effectively, the following

identities are central, which involve the four-derivative acting on the 2-particle operator.

The action of the derivative on the composite operator can be complemented with gluon

fields as follows:

i∂µ q̄Γhv = q̄ i
←−
∂µ Γhv + q̄ Γ i∂µ hv = q̄ i

←−
Dµ Γhv + q̄ Γ iDµ hv . (B.1)

Above, we use the covariant derivative iDµ = i∂µ +Aµ with the gluon field Aµ = gstaA
µ
a ,

we use the notation i
←−
Dµ=i

←−
∂µ −Aµ† to account for the Dirac adjoint [47], and gs denotes

the bare coupling.

A similar identity holds for the second derivative, with additional terms where the derivative

acts only on the gauge field:

i∂νi∂µ q̄Γhv = q̄
(
i
←−
∂µi
←−
∂ν + i∂µi∂ν + i

←−
∂µ i∂ν + i

←−
∂ν i∂µ

)
Γhv

= q̄
(
i
←−
Dµi
←−
Dν + (i∂νAµ)−AµAν

+ iDµiDν − (i∂µAν)−AµAν

+ i
←−
DµiDν +AµAν + i

←−
DνiDµ +AνAµ

)
Γhv

(B.2)

These can be expressed using the field strength tensor iGµν = [iDµ, iDν ] acting on the

light quark field:

q̄ [i
←−
Dµ, i

←−
Dν ] Γhv = q̄

(
(i∂µAµ)− (i∂νAµ) + [Aµ, Aν ]

)
Γhv . (B.3)

Together, this yields the compact identity

i∂νi∂µ q̄Γhv = q̄
(
i
←−
Dµi
←−
Dν + iDµiDν + i

←−
DµiDν + i

←−
DνiDµ − [i

←−
Dµ, i

←−
Dν ]

)
Γhv . (B.4)
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C. Supplementary Material for B → γℓν

Decay

C.1. NLO Integration Results

Here, we provide machine-copyable code for Mathematica 13 for the quantities
[
Linc
0 [∆ϕ

(1a)
+ ; Ω]

]
(t) ,

[
Linc
0 [∆ϕ

(1b)
+ ; Ω]

]
(t) ,

[
Linc
0 [∆ϕ

(1c)
+ ; Ω]

]
(t) ,

[
Linc
0 [∆ϕ

(1d)
+ ; Ω]

]
(t) ,

and
[
Linc[∆ϕ

(1a⋆)
+ ; Ω, σ]

]
(t) ,

[
Linc[∆ϕ

(1b⋆)
+ ; Ω, σ]

]
(t) ,

[
Linc[∆ϕ

(1c⋆)
+ ; Ω, σ]

]
(t) .

A helpful identity to obtain the following formulas is

lnn x =

[
dn

dtn
xt
]

t=0

. (C.1)

The expressions are composed of special functions, namely the exponential integral func-

tion,

Ei(z) := ExpIntegralEi[z] ,

the generalized hypergeometric function,

pFq(a1, . . . ap; b1, . . . bq; z) := HypergeometricPFQ[{a[1],  ...a[p]},  {b[1],  ...b[q]},  z] ,

and the Meijer G-function,

Gm,n
p,q

(
a1, . . . ap
b1, . . . bq

∣∣∣∣∣ z
)

:=

MeijerG[{{a[1],  ...a[n]},  {a[n+1],  ...a[p]}},  {{b[1],  ...b[m]},  {b[m+1],  ...b[q]}},  z] .

The concrete cases of the Meijer G-function appearing in the code can be written as

(less compact) combinations of logarithms and the aforementioned special functions using

Mathematica’s function FunctionExpand. The special constants are the Euler–Mascheroni

constant γE := EulerGamma ≈ 0.577, the base of the natural logarithm e := E, and π := Pi.

In the code, we use the abbreviations

ln
µ2

2EγΩ
:= LNLO ,

Ω

ω0
:= xOmega , σ ω0 := xsigma .
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[
Linc
0 [∆ϕ

(1a)
+ ; Ω]

]
(t) :=

-1/24*(E^(((1  +  t)*xOmega)/(-1  +  t))*(-1  +  t)*(1  -  (1  +  t)/(-1  +  t))^2*(6  -  6*LNLO^2  -  Pi^2  + 
12*LNLO*Log[xOmega]  -  6*Log[xOmega]^2  +  (-6  +  6*LNLO*(2*EulerGamma  +  LNLO)  +  Pi^2  -  (12*(1  +  t)
*xOmega*HypergeometricPFQ[{1,  1,  1},  {2,  2,  2},  ((1  +  t)*xOmega)/(-1  +  t)])/(-1  +  t)  +  12*Log[-
((1  +  t)/(-1  +  t))]*(LNLO  -  Log[xOmega])  -  6*Log[xOmega]*(2*EulerGamma  +  Log[xOmega])  +  12*
ExpIntegralEi[((1  +  t)*xOmega)/(-1  +  t)]*(-LNLO  +  Log[xOmega]))/E^(((1  +  t)*xOmega)/(-1  +  t))))
/(1  +  t)

[
Linc
0 [∆ϕ

(1b)
+ ; Ω]

]
(t) :=

-(((4*(1  +  t)*xOmega*HypergeometricPFQ[{1,  1,  1},  {2,  2,  2},  ((1  +  t)*xOmega)/(-1  +  t)])/(-1  + 
t)  +  E^(((1  +  t)*xOmega)/(-1  +  t))*(EulerGamma  +  Log[-(((1  +  t)*xOmega)/(-1  +  t))])*(-3  +  (2*
EulerGamma)/E^(((1  +  t)*xOmega)/(-1  +  t))  -  2*LNLO  +  2*Log[xOmega]  -  ((2*ExpIntegralEi[((1  +  t)
*xOmega)/(-1  +  t)]  +  Log[-xOmega^(-1)]  -  Log[-xOmega]  +  2*Log[xOmega])*(-2  +  3*xOmega  +  2*LNLO*
xOmega  +  t*(2  +  3*xOmega  +  2*LNLO*xOmega)  -  2*(1  +  t)*xOmega*Log[xOmega]))/(2*E^(((1  +  t)*
xOmega)/(-1  +  t))*(-1  +  t))  +  (2*Log[-(((1  +  t)*xOmega)/(-1  +  t))])/E^(((1  +  t)*xOmega)/(-1  +  t
)))  +  ((3  +  2*LNLO  -  2*Log[xOmega])*(2*ExpIntegralEi[((1  +  t)*xOmega)/(-1  +  t)]  +  Log[-xOmega^(
-1)]  -  Log[-xOmega]  +  2*Log[xOmega])*(-1  +  t  +  EulerGamma*xOmega  +  EulerGamma*t*xOmega  +  (1  +  t
)*xOmega*Log[-(((1  +  t)*xOmega)/(-1  +  t))]))/(2*(-1  +  t)))/(-1  +  t^2))

[
Linc
0 [∆ϕ

(1c)
+ ; Ω]

]
(t) :=

(((-1  +  t)*(-2*EulerGamma  +  2*E^(((1  +  t)*xOmega)/(-1  +  t))*EulerGamma*LNLO  +  2*ExpIntegralEi
[((1  +  t)*xOmega)/(-1  +  t)]  +  Log[(-1  +  t)/((1  +  t)*xOmega)]  -  2*E^(((1  +  t)*xOmega)/(-1  +  t))*
ExpIntegralEi[-(((1  +  t)*xOmega)/(-1  +  t))]*(LNLO  -  Log[xOmega])  -  2*E^(((1  +  t)*xOmega)/(-1  + 
t))*EulerGamma*Log[xOmega]  +  E^(((1  +  t)*xOmega)/(-1  +  t))*LNLO*Log[-(((1  +  t)*xOmega)/(-1  +  t)
)]  -  E^(((1  +  t)*xOmega)/(-1  +  t))*Log[xOmega]*Log[-(((1  +  t)*xOmega)/(-1  +  t))]  -  Log[((1  +  t)
*xOmega)/(-1  +  t)]  -  E^(((1  +  t)*xOmega)/(-1  +  t))*LNLO*Log[(1  -  t)/(xOmega  +  t*xOmega)]  +  E
^(((1  +  t)*xOmega)/(-1  +  t))*Log[xOmega]*Log[(1  -  t)/(xOmega  +  t*xOmega)]))/(1  +  t)  -  2*xOmega*
Derivative[{0,  0},  {0,  1},  0][HypergeometricPFQ][{1,  1},  {2,  2},  ((1  +  t)*xOmega)/(-1  +  t)])/(-
1  +  t)^2

[
Linc
0 [∆ϕ

(1d)
+ ; Ω]

]
(t) :=

(xOmega*(-(((-1  +  t)*(2*EulerGamma  -  2*ExpIntegralEi[((1  +  t)*xOmega)/(-1  +  t)]  -  Log[(-1  +  t)
/((1  +  t)*xOmega)]  +  Log[((1  +  t)*xOmega)/(-1  +  t)]))/((1  +  t)*xOmega))  -  2*Derivative[{0,  0}, 
{0,  1},  0][HypergeometricPFQ][{1,  1},  {2,  2},  ((1  +  t)*xOmega)/(-1  +  t)]  +  2*Derivative[{0,  0},
  {0,  2},  0][HypergeometricPFQ][{1,  1},  {2,  1},  ((1  +  t)*xOmega)/(-1  +  t)]))/(-1  +  t)^2
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[
Linc[∆ϕ

(1a⋆)
+ ; Ω, σ]

]
(t) :=

-1/6*((-6  +  Pi^2)*(1  -  t  +  E^((xOmega*(1  +  t  +  xsigma  -  t*xsigma))/(-1  +  t))*(-1  +  t  +  t*xOmega
*(-1  +  xsigma)  -  xOmega*(1  +  xsigma))))/((-1  +  t)*(1  +  t  +  xsigma  -  t*xsigma)^2)

[
Linc[∆ϕ

(1b⋆)
+ ; Ω, σ]

]
(t) :=

(2  -  Pi^2/3  -  (-1  +  EulerGamma)*(1  +  2*EulerGamma  +  2*LNLO  +  2*Log[(1  +  t  +  xsigma  -  t*xsigma)
/(1  -  t)])  +  2*Log[(xOmega*(-1  +  t*(-1  +  xsigma)  -  xsigma))/(-1  +  t)]*MeijerG[{{},  {1,  1}}, 
{{0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  +  xsigma)  -  xsigma))/(-1  +  t)]  -  (3  +  2*LNLO  -  2*Log[
xOmega])*(Gamma[2,  (xOmega*(-1  +  t*(-1  +  xsigma)  -  xsigma))/(-1  +  t)]*Log[(xOmega*(-1  +  t*(-1  +
  xsigma)  -  xsigma))/(-1  +  t)]  +  MeijerG[{{},  {1,  1}},  {{0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  + 
xsigma)  -  xsigma))/(-1  +  t)])  +  EulerGamma*(1  +  2*EulerGamma  +  2*LNLO  +  Gamma[2,  (xOmega*(-1  + 
t*(-1  +  xsigma)  -  xsigma))/(-1  +  t)]*(-3  -  2*LNLO  +  2*Log[xOmega])  +  2*Log[(1  +  t  +  xsigma  -  t*
xsigma)/(1  -  t)]  +  2*MeijerG[{{},  {1,  1}},  {{0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  +  xsigma)  - 
xsigma))/(-1  +  t)])  +  Log[1  +  t]*(1  +  2*EulerGamma  +  2*LNLO  +  Gamma[2,  (xOmega*(-1  +  t*(-1  + 
xsigma)  -  xsigma))/(-1  +  t)]*(-3  -  2*LNLO  +  2*Log[xOmega])  +  2*Log[(1  +  t  +  xsigma  -  t*xsigma)
/(1  -  t)]  +  2*MeijerG[{{},  {1,  1}},  {{0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  +  xsigma)  -  xsigma))/(
-1  +  t)])  -  Log[1  +  t  +  xsigma  -  t*xsigma]*(1  +  2*EulerGamma  +  2*LNLO  +  Gamma[2,  (xOmega*(-1  + 
t*(-1  +  xsigma)  -  xsigma))/(-1  +  t)]*(-3  -  2*LNLO  +  2*Log[xOmega])  +  2*Log[(1  +  t  +  xsigma  -  t*
xsigma)/(1  -  t)]  +  2*MeijerG[{{},  {1,  1}},  {{0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  +  xsigma)  - 
xsigma))/(-1  +  t)])  +  4*MeijerG[{{},  {1,  1,  1}},  {{0,  0,  0,  2},  {}},  (xOmega*(-1  +  t*(-1  + 
xsigma)  -  xsigma))/(-1  +  t)])/(1  +  t  +  xsigma  -  t*xsigma)^2
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[
Linc[∆ϕ

(1c⋆)
+ ; Ω, σ]

]
(t) :=

-((E^((xOmega*(1  +  t  +  xsigma  -  t*xsigma))/(-1  +  t))*((-2*EulerGamma*(1  +  t))/(-1  +  t)  -  (2*
LNLO*(1  +  t))/(-1  +  t)  +  (2*LNLO*(1  +  t))/(E^(((1  +  t)*xOmega)/(-1  +  t))*(-1  +  t))  +  (2*
EulerGamma*LNLO*(1  +  t))/(-1  +  t)  -  (2*E^(xOmega*((1  +  t)/(1  -  t)  +  xsigma))*EulerGamma*LNLO*(1
  +  t))/(-1  +  t)  +  (LNLO^2*(1  +  t))/(-1  +  t)  -  (E^(xOmega*((1  +  t)/(1  -  t)  +  xsigma))*LNLO^2*(1 
+  t))/(-1  +  t)  -  (2*EulerGamma*LNLO*(1  +  t)^2*xOmega)/(-1  +  t)^2  -  (LNLO^2*(1  +  t)^2*xOmega)/(-
1  +  t)^2  +  2*EulerGamma*xsigma  +  2*LNLO*xsigma  -  (2*LNLO*xsigma)/E^(((1  +  t)*xOmega)/(-1  +  t)) 
+  (2*EulerGamma*LNLO*(1  +  t)*xOmega*xsigma)/(-1  +  t)  +  (LNLO^2*(1  +  t)*xOmega*xsigma)/(-1  +  t) 
+  (2*(1  +  t)*ExpIntegralEi[-(((1  +  t)*xOmega)/(-1  +  t))])/(-1  +  t)  -  (2*LNLO*(1  +  t)*
ExpIntegralEi[-(((1  +  t)*xOmega)/(-1  +  t))])/(-1  +  t)  +  (2*LNLO*(1  +  t)^2*xOmega*ExpIntegralEi[
-(((1  +  t)*xOmega)/(-1  +  t))])/(-1  +  t)^2  -  2*xsigma*ExpIntegralEi[-(((1  +  t)*xOmega)/(-1  +  t))
]  -  (2*LNLO*(1  +  t)*xOmega*xsigma*ExpIntegralEi[-(((1  +  t)*xOmega)/(-1  +  t))])/(-1  +  t)  +  (2*E
^(xOmega*((1  +  t)/(1  -  t)  +  xsigma))*LNLO*(1  +  t)*ExpIntegralEi[-(xOmega*xsigma)])/(-1  +  t)  + 
(2*(1  +  t)^2*xOmega*(-1  +  t  +  t*xOmega*(-1  +  xsigma)  -  xOmega*(1  +  xsigma))*HypergeometricPFQ
[{1,  1,  1},  {2,  2,  2},  -(((1  +  t)*xOmega)/(-1  +  t))])/(-1  +  t)^3  -  (2*E^(xOmega*((1  +  t)/(1  -  t
)  +  xsigma))*(1  +  t)*xOmega*xsigma*HypergeometricPFQ[{1,  1,  1},  {2,  2,  2},  -(xOmega*xsigma)])/(
-1  +  t)  -  (2*(1  +  t)*Log[(1  +  t)/(1  -  t)])/(-1  +  t)  +  (2*LNLO*(1  +  t)*Log[(1  +  t)/(1  -  t)])/(-1
  +  t)  -  (2*LNLO*(1  +  t)^2*xOmega*Log[(1  +  t)/(1  -  t)])/(-1  +  t)^2  +  2*xsigma*Log[(1  +  t)/(1  -  t
)]  +  (2*LNLO*(1  +  t)*xOmega*xsigma*Log[(1  +  t)/(1  -  t)])/(-1  +  t)  -  (2*(1  +  t)*Log[xOmega])/(E
^(((1  +  t)*xOmega)/(-1  +  t))*(-1  +  t))  -  (2*EulerGamma*(1  +  t)*Log[xOmega])/(-1  +  t)  +  (2*E^(
xOmega*((1  +  t)/(1  -  t)  +  xsigma))*EulerGamma*(1  +  t)*Log[xOmega])/(-1  +  t)  +  (2*EulerGamma*(1 
+  t)^2*xOmega*Log[xOmega])/(-1  +  t)^2  +  (2*xsigma*Log[xOmega])/E^(((1  +  t)*xOmega)/(-1  +  t))  - 
(2*EulerGamma*(1  +  t)*xOmega*xsigma*Log[xOmega])/(-1  +  t)  +  (2*(1  +  t)*ExpIntegralEi[-(((1  +  t)
*xOmega)/(-1  +  t))]*Log[xOmega])/(-1  +  t)  -  (2*(1  +  t)^2*xOmega*ExpIntegralEi[-(((1  +  t)*xOmega
)/(-1  +  t))]*Log[xOmega])/(-1  +  t)^2  +  (2*(1  +  t)*xOmega*xsigma*ExpIntegralEi[-(((1  +  t)*xOmega
)/(-1  +  t))]*Log[xOmega])/(-1  +  t)  -  (2*E^(xOmega*((1  +  t)/(1  -  t)  +  xsigma))*(1  +  t)*
ExpIntegralEi[-(xOmega*xsigma)]*Log[xOmega])/(-1  +  t)  -  (2*(1  +  t)*Log[(1  +  t)/(1  -  t)]*Log[
xOmega])/(-1  +  t)  +  (2*(1  +  t)^2*xOmega*Log[(1  +  t)/(1  -  t)]*Log[xOmega])/(-1  +  t)^2  -  (2*(1  + 
t)*xOmega*xsigma*Log[(1  +  t)/(1  -  t)]*Log[xOmega])/(-1  +  t)  -  ((1  +  t)*Log[xOmega]^2)/(-1  +  t) 
+  (E^(xOmega*((1  +  t)/(1  -  t)  +  xsigma))*(1  +  t)*Log[xOmega]^2)/(-1  +  t)  +  ((1  +  t)^2*xOmega*
Log[xOmega]^2)/(-1  +  t)^2  -  ((1  +  t)*xOmega*xsigma*Log[xOmega]^2)/(-1  +  t)  -  (2*E^(xOmega*((1  +
  t)/(1  -  t)  +  xsigma))*LNLO*(1  +  t)*Log[xsigma])/(-1  +  t)  +  (2*E^(xOmega*((1  +  t)/(1  -  t)  + 
xsigma))*(1  +  t)*Log[xOmega]*Log[xsigma])/(-1  +  t)))/((-1  +  t^2)*((1  +  t)/(1  -  t)  +  xsigma)^2))
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C.2. Tables

×10−3 1 2 3

ϕ̃+(−i0.25GeV−1) 1 0.258 0.398 0.458

ϕ̃+(−i0.50GeV−1) 2 0.398 0.871 0.723

ϕ̃+(−i0.75GeV−1) 3 0.458 0.723 3.62

Table C.5.: Covariance matrix for the three data points taken from the OPE.
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C.3. Figures
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Figure C.1.: Individual contributions associated to a0, a1, . . . , a8 in the parametrization of

Linc[∆ϕ
(1d⋆)
+ ; Ω, σ].
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of Linc[∆ϕ
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Figure C.3.: Corner plot of the posterior for K = 1 and ω0 = 0.8GeV showing the LCDA

parameters and predictions based on inputs from the OPE. Blue areas in the two-dimensional

histograms indicate estimates of the 68% and 95% probability contours.
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