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A B S T R A C T

This dissertation is about sensing and utilizing various kinds of human body motion,
ranging from large-scale limb movements down to subtle respiratory motion of the
upper body. One key idea hereby is to simultaneously capture different types of
limb and body movements from two inherently different input modalities and to
combine that data in a complementary way. The used modalities are a depth camera
on the one hand and body-worn inertial measurement units on the other hand. It will
be shown how such a complementary sensing approach can be achieved and how
it can lead to the emergence of completely new applications that cannot easily be
accomplished by the respective modalities on their own. For this, a novel method is
proposed that allows the matching of the motion data as obtained from a wearable
inertial sensing device and from the pose estimation on a depth camera’s video
stream. As a result, this method allows the identification of the person and limb the
wearable device is worn on within the depth footage of an observing depth camera
in the surroundings. Such an identification allows both modalities to establish a
communication channel where person related data can be transmitted to the correct
person and device within multi-person scenarios. An exemplary application would
be indoor localization in places that use surveillance cameras anyway, for instance in
an airport. Here, the position of multiple persons within the field of view of a camera
in the surroundings could be tracked and, if a user decides to use this feature and
enables it on a wearable device, its position can on demand be transmitted to the
correct person and device.

To facilitate such applications, furthermore, a novel compression scheme for
quaternion-based motion data will be elaborated. It has the purpose to reduce the
amount of data to be transmitted in order to reduce energy consumption and to
save precious bandwidth. The compression will be achieved by a novel piecewise
linear approximation algorithm and relies on the fact that, similar to computer ani-
mations, only body postures at key positions, so-called keyframes, need to be stored
or transmitted while the overall motion can be interpolated from these.

Finally, depth data will thoroughly be evaluated towards its usage for the remote
sensing of respiration by measuring the subtle movements of the upper body caused
by the elevation of the chest and abdomen during breathing. For this, a novel depth-
based algorithm to robustly monitor human respiration from a distance is proposed.
This method does not require any physical body contact, works reliably in distances
up to 4 meters and, in contrast to available approaches, even works in the presence of
occlusions and upper body movements as for instance are introduced while standing
and keeping balance. This will be validated by comparing the proposed algorithm to
a commercial respiration belt in a validation study. Furthermore, this method as well
as the most common state-of-the-art depth-based respiration estimation methods
will be compared on a thorough user study where a selection of the most relevant
parameters that influence the respiration estimation are evaluated in depth.
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Z U S A M M E N FA S S U N G

Ziel dieser Dissertation ist die Erfassung und Nutzung verschiedener Arten mensch-
licher Körperbewegungen, welche von ausladenden Bewegungen der Gliedmaßen
bis hin zu subtilen Bewegungen des Oberkörpers während der Atmung reichen kön-
nen. Eine Idee dieser Dissertation hierbei ist es die verschiedenen Körperbewegun-
gen durch zwei inhärent unterschiedliche Eingabemodalitäten gleichzeitig zu erfas-
sen und anschließend in einer sich gegenseitig ergänzenden Weise zu kombinieren.
Die verwendeten Eingabemodalitäten sind zum einen eine Tiefenkamera und zum
anderen am Körper getragene Inertialsensoren. Es wird gezeigt, wie solch eine sich
gegenseitig ergänzende Kombination beider Modalitäten aussieht und wie dies zur
Entstehung völlig neuer Anwendungen führen kann, welche durch die jeweiligen
Modalitäten allein nicht ohne weiteres erreicht werden könnten. Zu diesem Zweck
wird eine neuartige Methode vorgestellt, die es ermöglicht, die Datenströme beider
Modalitäten abzugleichen. Als Resultat können sowohl die Person als auch das Kör-
perteil, an dem der Inertialsensor getragen wird, innerhalb eines Tiefenbildes einer
in der Umgebung angebrachten Tiefenkamera identifiziert werden. Dies ermöglicht
es beiden Modalitäten einen privaten Kommunikationskanal aufzubauen, über den
personenbezogene Daten an die richtige Person bzw. das richtige Endgerät selbst
in Szenarien mit mehreren Personen übertragen werden können. Eine beispielhaf-
te Anwendung wäre die Positionsbestimmung in Innenräumen. In Umgebungen an
denen ohnehin Überwachungskameras zum Einsatz kommen, beispielsweise in ei-
nem Flughafen, könnten die Positionen verschiedener Personen im Sichtfeld einer
Kamera erfasst und an das jeweils richtige Gerät übermittelt werden, vorausgesetzt
der jeweilige Nutzer entscheidet sich dafür und aktiviert diese Funktion auf seinem
tragbaren Endgerät.

Um derartige Anwendungen zu erleichtern wird weiterhin ein neuartiges Kom-
pressionsverfahren vorgestellt, das für die Komprimierung von auf Quaternionen
basierenden Bewegungsdaten konzipiert ist. Dieses dient zur Reduktion der zu über-
tragenden Datenmenge um damit sowohl den Energieverbrauch als auch die Band-
breitennutzung zu senken. Die Kompression wird durch einen neuartigen Piecewise
Linear Approximation-Algorithmus erreicht und beruht auf dem Konzept, dass, ähn-
lich wie bei Computeranimationen, nur bestimmte Körperstellungen, so genannte
Keyframes, gespeichert oder übertragen werden müssen, während die Gesamtbewe-
gung des Körpers aus diesen interpoliert werden kann.

Schließlich wird die Verwendung einer Tiefenkamera eingehend zur Messung der
menschlichen Atmung aus der Distanz untersucht. Das darunterliegende Prinzip
hierbei beruht auf der Erfassung der subtilen Bewegungen des Oberkörpers, die
durch das Anheben von Brust und Bauch während der Atmung verursacht werden.
Zu diesem Zweck wird ein neuartiger Algorithmus vorgestellt, der eine robuste Mes-
sung der menschlichen Atmung unter Verwendung von Tiefendaten erzielen kann.
Diese Methode erfordert keinen physischen Körperkontakt, funktioniert zuverlässig
aus Entfernungen von bis zu 4 Metern und funktioniert im Gegensatz zu verfügbaren
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Ansätzen auch bei Verdeckungen und leichten Bewegungen des Oberkörpers, wie sie
beispielsweise beim Stehen und Halten des Gleichgewichts auftreten können. Dies
wird überprüft indem die vorgestellte Methode in einer Benutzerstudie mit einem
kommerziellen Atemgürtel verglichen wird. Darüber hinaus werden diese Methode
sowie die gängigsten tiefenbasierten Methoden zur Erfassung der Atmung in einer
umfassenden Benutzerstudie verglichen, in der eine Auswahl der wichtigsten Para-
meter, die die Messung der Atmung aus der Distanz beeinflussen können, eingehend
evaluiert werden.
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1
I N T R O D U C T I O N

1.1 motivation

Sensing human body motion plays a central role in a variety of different applications.
Most prominently, it is represented in the modern film and gaming industry, where
the most advanced Motion Capturing (MoCap) systems are used to not only simplify
and accelerate the process of character animation, but also to create vivid, lifelike
animations. In the field of human-computer interaction, the line between detecting
user input and sensing motion increasingly vanishes. One can observe a trend from
simply pressing a button over detecting a touch or a touch gesture, towards remotely
detecting an actual gesture, for instance to take a selfie with a smartphone’s camera
by giving a hand sign, and applications like virtual reality would not be possible
without capturing human body motion.

Apart from such well known applications, sensing human motion plays an even
more important role in many fields of research and science, but also in applications
of daily living. Many user studies acquire and digitize human body movements to
examine, assess, compare, or parameterize the motion of the full body or specific
limbs [35, 48]. Examples range from collaborative robotics [39, 162] as well as the
assessment of the safety or efficiency of motion sequences at work [20, 42, 175], over
applications such as sports and fitness [86], up to health sciences [67, 133], to name
a few. Consequently, monitoring body movements in the medical sector e.g. for gait
analysis [31, 68, 142] or during sleep assessment [37] can provide better insights and
aid in making a diagnosis. In daily applications, step detection or fall detection is de-
ployed in many smart devices, where such wearable motion sensing technology can
for instance also be used to increase the physical activity of older adults [33]. Sensing
the motion of the hands and fingers enables gesture detection [120] and in combina-
tion with the detection of posture, gaze, and facial expression, even simplified sign
language recognition can be achieved [32]. Even in automotive applications, the mo-
tion of pedestrians is assessed to predict their behavior [141]. While some fields can
benefit from sensing limb and body motion but do not necessarily require it, other
fields do heavily depend on capturing motion. One example hereby is the field of
human activity recognition, where all kinds of limb and body motions are being de-
tected and characterized. Examples range from detecting household activities over
different types of locomotion and transportation up to the recognition of sports and
leisure activities.

Depending on the task and the application, be it activity recognition or something
else, either the body as a whole has to be monitored, or only specific movements
or specific limbs need to be observed. Accordingly, there exist numerous techniques
and devices to sense human body motion. These can be divided into two major
groups: On-body sensing on the one hand and remote sensing on the other hand. In
short, on-body sensing typically is achieved by body-worn inertial sensors, so-called
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1.1 motivation

Figure 1.1: Example application where users wear a fitness tracker or a smartwatch with
an integrated IMU and are observed by a depth camera while doing leisure ac-
tivities such as sports or meditation exercises (left). The data streams from both
modalities can be combined in a complementary way when the limb and person
a wearable device is worn on can be identified and matched to the correct person
and limb as observed from the depth camera. After such a matching, it is possi-
ble to asses a variety of different body parameters, which then can be transferred
back to the wearable device of the respective person. Such data can include full
body posture, limb movements, or user position, for instance to enable activity
recognition or indoor localization, but also physiological body signals, such as
respiration, as can be obtained from depth data by measuring the tiny changes of
chest elevation during breathing (right).

Inertial Measurement Units (IMUs), and remote sensing typically is achieved using
some sort of camera or camera system in the surroundings.

In the field of activity recognition and applications thereof, motion data preferably
is being captured from body-worn inertial sensors due to their high mobility and
low cost. The most important reason, however, is that these sensors are built-in into
modern smartphones, smartwatches, or similar wearable devices. These devices have
the advantage of being accepted and used by the broad mass of the population on a
daily basis, so there is no need to deploy specialized hardware to people interested
in using activity recognition because they can just use their wearable smart device
to benefit from it. This, on the other hand, comes with a drawback: People do only
have a limited amount of wearable devices that furthermore are only worn at a few
specific body positions, depending on the device and the personal preferences of the
user. Motion data thus can only be captured from one or a few specific body parts,
for instance the left or right forearm in the case of a smartwatch. This effectively
limits the set of possible fields of applications, e.g. for activity recognition, from the
outset. Attaching multiple sensors to a body is simply not practical for everyday use.

Optical motion capturing, on the other hand, typically allows to track the full body,
even of multiple persons. The use of an expensive MoCap system comprising highly
optimized cameras as well as the use of fiducial markers hereby is not necessarily
required. Advances in machine learning led to systems that can achieve multi-person
pose estimation in real-time using only a single standard RGB-camera. An alternative
to such single RGB-camera systems that has long been proven effective is the use of a
single depth camera. Depth data has the convenience that three-dimensional data can
relatively easy be retrieved from the observed scene, which led to its successful appli-
cation for highly performant and accurate 3D pose estimation early on. A prominent
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example hereby is the Kinect. It is a consumer grade depth camera that is able to ef-
ficiently achieve three dimensional pose estimation in real-time and at low cost. For
this reason, it can be found in many scientific studies as well as in many other appli-
cations that rely on 3D pose estimation. Since the introduction of the Kinect, depth
cameras have become smaller, cheaper, and more precise, and nowadays are not only
deployed as stand-alone devices, but with increasing regularity even are integrated
into many consumer grade devices, such as smartphones. This makes depth cam-
eras not only a viable alternative for traditional optical motion capturing techniques,
but potentially also opens up a range of new applications: Accurate estimation and
tracking of human body motion can theoretically be achieved by any user of such
a device on a daily basis. The question then arises, how this availability of depth
sensing technology could be used and how such applications could look like. This
is where this work jumps in. This dissertation has the aim to provide an in-depth
analysis of the different types of human body motion present in depth data, ranging
from large-scale limb movements down to subtle movements of the upper body dur-
ing respiration. It shows how to exploit this data for complementary motion sensing
or to monitor a person’s respiration from a distance and without the requirement of
any physical body contact.

Complementary motion sensing in this case means the simultaneous observation
of a human’s limb movements from one or a few body-worn inertial sensing devices
and a depth camera, with the aim to fuse both observations in order to achieve
an optimized end result. An obvious use-case would be the optimization of MoCap

systems, where the depth-based pose estimation of the full body for instance could
be used to complement sparse motion data from body-worn sensing devices, or vice-
versa, optical pose data could be complemented by motion data from body-worn
devices, e.g. in case of occlusion or when the observed person is out of frame. This
easily extends to the field of activity recognition, where a wearable device can benefit
from becoming aware of the user’s full body pose and motion. The range of possible
applications thereby is not restricted to such use-cases, but, as will be seen later on,
complementary motion sensing can eventually lead to the emergence of completely
new applications that even extend into the domain of daily living. This, however,
requires that the sensing devices of both modalities are able to communicate with
each other on the fly and without knowing each other beforehand. Thus, a core
requirement would be that both sensing devices or sub-systems are able to identify
each other. To date, it remains widely unclear how such an identification could look
like and how complementary motion sensing could be established in general.

Capturing respiration from a distance and without any body contact, on the other
hand, can be of advantage in many different applications. In the medical sector, a
patient could automatically be observed by such a system, either for non-obtrusive
long-term monitoring both at home or in hospital, or to safe precious time of doctors
and nurses that for some patients and diseases need to manually assess respiratory
rate on several minute-long sessions. Also, not requiring physical body contact can
arguably be beneficial for both, the patient and the doctor or nurse in charge. Since
breathing can either not or only indirectly be retrieved on smartwatches or similar
body-worn devices, i.e. by calculating heart rate variability on the signal obtained
from photoplethysmography, the remotely measured respiration signal could also
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be sent to the respective end device, which then can benefit from being aware of
an additional physiological signal. In combination with the non-obtrusive character
of remote respiration estimation, this makes remote respiration estimation a viable
alternative for a range of other applications as well. In the fields of fitness and sports,
an athlete can assess its respiration for instance as a performance measure, and in
meditation, where breathing exercises are very common, the respiration can be ob-
served in order to provide instant feedback, either by a supervisor or by the system
itself. As a last example, and as will be seen later in this work, it furthermore can
serve as a complementary modality for activity recognition or be used in medical
applications such as e-health and telemedicine.

The principle of depth-based respiration estimation hereby is based on measur-
ing the subtle movements of the upper body caused by inhalation and exhalation
during a respiration cycle. These movements, although being tiny in scale, can be-
come visible on the depth data of a human’s upper body when being observed by
a depth camera. For a reliable measurement, however, the respiration detection has
to be robust against any disturbing influences, including measurement-related in-
fluences such as noise as well as disturbing influences caused by the person under
observation. Person-related influences range from different clothing styles over user-
specific breathing patterns, e.g abdominal or thoracic breathing, up to conscious or
unconscious movements of the upper body, e.g. while standing and keeping balance
or while moving the arms and partially occluding the upper body, but also other
factors can play a role. These influences are neglected by any depth-based respira-
tion estimation methods proposed so far and user studies remain far from realistic:
Participants are required to either lie down or sit still. Furthermore, available litera-
ture lacks a comparison of available depth-based respiration estimation techniques
as well as a systematic study of relevant parameters that influence the measurement
of the respiration signal.

If IMU and depth data already are used as complementary modalities, for instance
to assess limb and body movements, such a remote respiration estimation can easily
be integrated into the complementary sensing approach without the need for any fur-
ther equipment. Figure 1.1 depicts an exemplary use-case of such a complementary
use of both modalities in a sports and meditation scenario.

1.2 contributions

One key idea of this dissertation is to use a depth camera to capture the entire body
and its movements in certain situations, to identify the respective device worn by the
respective person and to augment the externally captured data to this device. The
body-worn device then can complement its knowledge of the limb it is worn on with
externally captured body data, such as posture and limb movements. Moreover, the
external device can as well provide any kind of meta-data, including externally cap-
tured physiological data such as respiration, directly observable data such as a user’s
location, or more general kinds of data such as the context of a situation. Overall, this
opens up completely new possibilities in a variety of different areas, ranging from
indoor localization to activity recognition. The key element for such applications is
an algorithm that can be used to identify which person in a depth video recording
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is wearing which end device on which part of the body. This algorithm is based on
matching the motion detected by the respective inertial sensor with the body move-
ments of all visible persons captured in the video. One goal of this dissertation thus
is the development of such an algorithm and its evaluation in a realistic scenario.
It will be embedded in a more general approach on how to work with multi-modal
sensor data as obtained from an external depth camera and body-worn IMUs in order
to achieve complementary motion sensing.

Since any application that works with complementary motion sensing would re-
quire the transmission of a considerable amount of motion data, quaternion-based
motion data will thoroughly be analyzed towards a viable compression scheme, even-
tually leading to a novel and efficient compression method. It relies on the circum-
stance that human body motion typically does not involve the movement of all body
parts at the same time, nor that they are moved in completely random directions at
completely random paces. To obtain the overall motion of a human body it is suf-
ficient to store or transmit only the body postures at specific key positions. Similar
to the field of computer animation, where so-called keyframes are used, the over-
all motion then can be interpolated from these. The proposed compression scheme
is based on a Piecewise Linear Approximation (PLA) technique that is specifically
tailored to work in environments with limited computational resources such that
quaternion-based motion data can directly be compressed on the sensor system.

Another aspect of this dissertation will be the analysis of the depth data for the
contact-less and distant detection of the breathing of a person in the field of view of
a depth camera. Depth-based respiration estimation methods per se are not novel,
but, as discussed in the previous section, most of them remain far from realistic
and particularly neglect person-related influences. To overcome these limitations, a
novel method for robust depth-based respiration estimation is proposed that does
not require users to lie down or to sit still and that can handle situations where the
observed person is standing freely while regularly occluding its upper body with an
object held in the hand. As already mentioned above, available literature lacks a com-
parison of current state-of-the-art depth-based respiration estimation techniques and
the influence of relevant parameters on the measurement of the respiration signal is
widely unknown. So, in addition to the implementation of such a robust algorithm, a
systematic evaluation of parameters relevant for depth-based respiration estimation
is carried out and their influence on the obtained respiration signal is determined
on the basis of objective performance measures. This will be done for the presented
algorithm as well as for the currently existing methods. Among the parameters to be
investigated are the optimal area for extracting the respiration signal, the distance to
the camera, the breathing rate, and whether the user is sitting, standing, or even oc-
cluding its upper body, but also other user-specific characteristics, such as the gender
or the individual clothing style will be considered.

The most important contributions of this dissertation can be summarized as fol-
lows:

• A study on the tracking performance of the wrist joint in a complementary
motion sensing scenario where optical and inertial MoCap data is used in com-
bination, accompanied with a discussion of requirements and considerations
for the handling of such a multi-modal sensor input.
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• A novel method to identify the person and limb a wearable inertial sensing
device is worn on within such complementary motion data by comparing and
matching limb movements from both modalities.

• An evaluation and discussion of the key requirements for applying PLA algo-
rithms to quaternion-based motion data, resulting in a novel PLA algorithm for
the efficient approximation of quaternion-based orientation sensor signals in
environments with limited memory and computational resources.

• A novel, depth-based method for the remote and contact-less monitoring of hu-
man respiration that is robust against several challenging conditions including
user motion and partial occlusions of the user’s upper body.

• Two publicly available respiration datasets for a validation and a systematic
parameter evaluation of depth-based respiration estimation methods with a
combined length of more than 11 hours of respiration data, comprising 422

unique recordings from 24 different participants that were taken from different
distances, respiratory rates, and activities.

• An in-depth evaluation of to-date unknown influences of important key param-
eters on the most common state-of-the-art depth-based respiration estimation
methods as well as on the proposed approach. Examined parameters are the
observed torso region, whether the user is sitting, standing, or standing with
regular self-occlusions, the distance to the depth camera, the respiratory rate,
the gender, and user-specific influences.

• An experiment-driven exploration of possible applications for depth-based res-
piration estimation.

1.3 outline

This dissertation is structured into four main parts. In Section 2 (Related Work), the
literature related to complementary motion sensing, piecewise linear approximation,
and remote respiration estimation is described and the work shown here is situated
amongst the current state of the art in these fields. Section 3 (Complementary Motion
Sensing) provides a discussion and a case study on how to handle multi-modal sen-
sor input for capturing human body motion using inertial and optical motion data.
After that, a novel technique is introduced that allows to identify the person and
limb a wearable inertial sensing device is worn on within a depth video by matching
inertial to depth-based limb motion estimates. Section 4 (Compressing Motion Data
with Piecewise Linear Approximation) discusses and evaluates the key requirements
for applying PLA algorithms to quaternion-based motion data and shows how an
efficient approximation of such data can be achieved using a novel PLA algorithm
specifically tailored to environments with limited memory and computational re-
sources, as can be found in many sensor devices used for capturing motion. Finally,
Section 5 (Remote Respiration Estimation) introduces a novel method that is able to
remotely monitor human respiration from depth data. The proposed method is ro-
bust against user motion and partial occlusions of the upper body as will be shown
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in a validation study. Furthermore, an in-depth evaluation of to-date unknown in-
fluences of important key parameters on the most common depth-based respiration
estimation methods is conducted using an extensive respiration dataset that specifi-
cally was recorded for both these studies. It is followed by an exploration of possible
applications of remote respiration estimation in the fields of activity recognition and
e-health. A summary and conclusion can be found in Section 6.
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2
R E L AT E D W O R K A N D S TAT E O F T H E A RT

2.1 complementary motion sensing

Motion capturing is successfully used in a variety of applications, with the film and
games industry being a prominent example. Here, optical and IMU-based full body
tracking systems already are deployed industrially [1, 2, 143]. With the advent of
depth cameras, such as the Kinect, and by utilizing the depth information to first es-
timate body parts and afterwards compose the posture of the observed subjects [150],
also consumer-grade optical Motion Capturing (MoCap) systems entered the market.
For the Kinect v2, the accuracy of the joint estimation can be comparable to a stan-
dard optical motion capture system, given a controlled body posture, for instance
standing upright and exercising arms while facing the depth camera [126]. More
recently, advances in machine learning led to methods that allow human pose esti-
mation in real-time from single RGB images [25, 102, 116, 117].

For IMU-based systems on the other hand, recent advances enabled full body hu-
man pose estimation from sparse inertial measurements using only 6 Inertial Mea-
surement Units (IMUs) attached to the wrists, lower legs, back and head [64, 164] or
with even less body-worn IMUs in phones, watches, or earbuds [119], but at the cost
of lower accuracy. In principle, it would also be possible to attach a miniature depth
camera on a limb and to use the depth information to track and locate the moving
sensor by simultaneously mapping the environment [123] and thus to infer the limb’s
motion. For full body pose estimation this approach, however, is not feasible due to
cost, size, weight, and energy consumption, especially when compared to IMUs. Fur-
thermore, there also exist methods that do not directly aim for pose estimation, but
instead focus on extracting virtual on-body sensor data from RGB video footage in
order to simulate body-worn sensors, for instance for human activity recognition
purposes [91].

Optical and inertial motion capture systems are known to have their specific
strengths and weaknesses. Self-occlusion by the person under observation and oc-
clusion by nearby structures, as well as adverse lighting conditions tend to hamper
an accurate body posture recognition for optical MoCap systems [135]. Also, full-
fledged optical systems tend to be less flexible to be moved at different locations,
and their setup effort and costs tends to be higher than wearable inertial measure-
ment solutions. IMU-based systems on the other hand are not as accurate, cannot be
used to track a user’s position, and suffer from noise and sensor drift, but are not
restricted to certain working volumes. Integrating the IMU sensor data into a biome-
chanical model and modelling the sensor to segment offset as demonstrated in [85]
or [172] does increase the overall accuracy [143]. Soft tissue deformation and a loose
or erroneous sensor attachment still poses a problem for IMU-based as well as for
optical, marker-based MoCap systems [36]. Carefully placing the sensors or fiducial
markers and accurately accessing the various calibration parameters therefore is a
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vital requirement to minimize these effects. Also, a well performed camera and IMU

calibration plays an important role to achieve a good measurement accuracy in the
first place, as demonstrated in [139].

Looking at the strengths and weaknesses of both sensor modalities, it can be seen
that both complement each other well and in recent years, some examples have
shown how the weaknesses in one modality can be addressed by another. In [30]
for instance, their introduced fusion approaches led to improvements of 2% to 23%
of the recognition rate in action recognition when using features from depth images
and from the accelerometer signal of a body-worn inertial sensor in combination,
as compared to using each sensor individually. IMU data has also successfully been
fused with non-optical modalities, for instance with an electric potential sensor to im-
prove scratch detection in health applications [73]. In this work, however, the focus
lies on combining inertial and optical motion data and such applications are left out.
Furthermore, there exist particular forms of fusing inertial with optical motion data,
such as placing a RGB camera next to an IMU on the same board and stabilizing the
IMU predictions by estimating the motion from the movement of the surroundings
as seen from the camera [47]. Such methods are also excluded. The complementary
sensing approach envisioned in this work focuses on observing the movements of
an user from an external depth camera and combining that data with motion data
obtained from one or more IMUs worn by the same user.

In the following, a compilation of various methods to combine inertial and optical
MoCap modalities are presented, separated into RGB or depth-based methods. After
that, a short overview is given on how to locate IMUs in video footage based on their
measurement data. For further reading, recent surveys about fusing inertial with
optical data for human pose estimation can be found in [96] and [124], and a survey
about fusing both modalities for human action recognition can be found in [106].

2.1.1 Combining Inertial and Optical Motion Data

2.1.1.1 Single Camera RGB-Based Methods

Some proposed systems combine inertial data with video footage of a single RGB
camera, for instance to stabilize the position ambiguity of inertial pose estimation
by detecting the user’s foot position on the ground [74] or, the other way round, to
use inertial data to succeed in difficult situations, where RGB-based pose trackers
fail due to insufficient data, such as non-frontal poses or occlusions, for instance by
combining a generative and a discriminative tracker to retrieve closest poses from a
database [61]. Some works also use fiducial markers that can be tracked by a single
RGB camera. These are either placed on the inertial sensor modules to compute
the drift-free orientation of the modules through visual-inertial fusion [95], or are
placed on the body and, after determining their exact location on the body segments
during a calibration phase, all measured inertial and optical quantities are fused into
a bio-mechanical model using a constrained extended Kalman filter [108]. Above
methods all require a fixed camera, but it also is possible to estimate 3D human pose
accurately on a person equipped with body-worn IMUs and filmed by a moving RGB
camera in the wild [163].
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2.1.1.2 Multi Camera RGB-Based Methods

Instead of relying on only a single RGB camera, also methods that use multiple RGB
cameras in combination with IMU sensors are proposed. For instance, by matching
the 3D surface mesh of an actor, as recorded prior to the experiment, to 2D image
contours coming from a set of calibrated and synchronized RGB cameras in the
surroundings, it is possible to estimate the pose of the actor, which then can be
improved upon by minimizing the geodesic or the chordal distance between the
estimated limb orientations and the orientation data from body and limb mounted
inertial sensor units [113]. On a multimodal dataset [112] specifically recorded for
that study, it was shown that a hybrid approach that combines information of optical
and inertial modalities can significantly improve the tracking quality by resolving
inherent ambiguities when reconstructing a 3D pose from 2D video data, for instance
errors arising from rotationally symmetric limbs and noisy visual cues [113].

Another method that does not need a surface mesh or full body model to estimate
3D human pose by fusing multi-viewpoint video with IMU sensor data is presented
in [159] and [50]. In both works, a 3D convolutional neural network is trained to
learn a pose embedding from the video data and a LSTM model is incorporated
within the pose stream and the forward kinematic solve of the IMU data before both
are fused in a fully connected layer. Both complementary data sources reportedly
allow for ambiguities to be resolved, leading to an improved accuracy.

A real-time full-body motion capture system based on a sparse set of IMUs and im-
ages from two or more RGB cameras is presented in [110]. It requires no optical mark-
ers, but incorporates constraints from the IMUs, cameras and a prior pose model into
the proposed optimization-based framework and allows the full 6-DOF motion to be
recovered, including axial rotation of limbs and drift-free global position as tested
in indoor and outdoor scenes. Sorting and assigning OpenPose’s [25] 2D keypoint
detections into corresponding subjects furthermore facilitates multi-person tracking
and rejection of any bystanders in the scene [109].

In [177], a so-called Orientation Regularized Network is used to improve 2D pose
estimation accuracy from multi-view images and a few IMUs attached at a person’s
limbs. The multi-view 2D poses then are lifted to the 3D space by minimizing the
projection error from 2D to 3D by using a so-called Orientation Regularized Pictorial
Structure Model.

2.1.1.3 Depth-Based Methods

Some works show that IMU-based systems can be cost-effective and dynamically de-
ployable, yet face calibration and floating artifacts for hip-joint rooted methods [174,
178]. Indoor magnetic disturbances are also known to affect the IMU-based units’
accuracy, leading to a variety of research efforts to characterize and compensate for
this, as for instance summarized in a survey and collection of methods [97]. A RGB-D
sensor, such as the Kinect, on the other hand, not only has to deal with occlusion, but
also with some specific weaknesses such as being unable to correctly track a human
from the side or from the back (see [131] and [128] for surveys on the Kinect abilities
compared to a gold standard Vicon 3D motion capture system).
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Destelle et al. [38] have shown how combining an RGB-D sensor with wearable in-
ertial measurement units improves motion capture by tracking the initial calibration
pose and subsequently the body’s position with the Kinect and the limb movements
with the IMUs. Utilizing RGB-D sensors for estimating the sensor to segment offset
leads to superior motion capture results compared to estimating them by hand, re-
lying on the correct sensor placement, or executing specific calibration movements
[28]. Furthermore, determining each IMU’s sensor drift using standard system iden-
tification methods with the respective Kinect’s joint data output increases the overall
long-time accuracy, even when the captured body no longer is tracked by the Kinect
[24]. By using a Kalman filter to fuse the Kinect’s joint data with IMU orientation
data as calculated via the Madgwick filter [105], it is possible to track the movement
of limb joints precisely and almost drift-free, since using the Kinect’s absolute posi-
tion information can compensate for the drift [75]. In [158], an Unscented Kalman
Filter (UKF) based fusion of IMU and Kinect joint data to compute robust hand posi-
tion information is compared to the double integration of the IMU’s internal sensors
and to IMU internal sensor fusion with geometrical constraints. Experimental results
show that in contrast to the two approaches solely based on the IMU data, the pro-
posed IMU and Kinect fusion method can provide drift-free and smooth results and
that it is able to achieve better results than using the Kinect alone. An UKF based fu-
sion approach also was developed in [11]. It fuses the orientation data of the Kinect
and body-worn inertial sensors for human arm motion tracking, specifically to com-
pensate for the drift of inertial sensors and the occlusion of joints as seen from the
Kinect. Compared to only using either Kinect or inertial sensor data, the errors could
be reduced by almost 50%. Also [69] and [38] show how IMU-based tracking can im-
prove the Kinect data, especially under occlusion. Using a personalized articulated
human mesh model computed from a single depth image and two wrist-worn IMUs

to provide additional clues for the arm tracking of the Kinect v2, e.g. during an occlu-
sion, can reduce upper-limb joint position errors by 20% as compared to the Kinect’s
skeleton tracking alone [70]. With a sensor glove comprising multiple IMUs and pas-
sive visual markers, and a head-mounted stereo camera, also the estimation of hand
and finger motion can be achieved by using a visual-inertial fusion algorithm that
takes into account the hand anatomical constraints [93]. Another work proposes a
hybrid motion tracking algorithm that only uses a single depth camera and sparse
IMUs and that enables non-rigid surface reconstruction even for fast motions and
challenging poses with severe occlusions, including the inner human body shapes of
a clothed subject [179].

2.1.2 Locating IMUs on Human Bodies

Since the introduction of inertial sensors, several studies have been published that
use inertial data to estimate where on the body these are likely attached. Early ap-
proaches to detect sensor placement from acceleration and gyroscope data during
different activities have shown 100% accuracy for a walking activity, and up to 82%
for several real-life activities [87, 89]. In [88], the authors further explored how sensor
placement variations (head, wrist, torso, left breast pocket, and front and back trouser
pockets) can influence human action recognition and how on-body placement of the
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2.2 compressing motion data with piecewise linear approximation

sensors can be detected. With their method, it typically takes some time (up to a
few minutes) to reach the peak accuracy in detecting the correct sensor placement.
A variety of classifier-based approaches have been proposed to see where inertial
sensors are attached to: [7] uses a Support Vector Machine (SVM) to identify the lo-
cation of 10 accelerometers on various parts of the body with an accuracy of up to
89%. Converging times, however, are not given and the method can not distinguish
left from right body locations. A more frequent use of the right arm is assumed.
In [169], a decision tree is trained on 17 inertial sensors placed on different limbs
and achieves an accuracy of 97.5% in estimating the sensor placement. The setup
requires a known sensor configuration and a walking pattern with sufficient arm
movement (one participant with insufficient arm movement was excluded). Without
knowing the sensor configuration, the accuracy drops to 75.9%. In [180], the sen-
sor alignment and assignment on the lower body is estimated using deep learning.
An accuracy of 98.57% is reported on the assignment classification using synthetic
and real acceleration and gyroscope data for training. In [111], walking and non-
walking accelerometer data from 33 participants, each wearing 5 accelerometers at
ankle, thigh, hip, arm, and wrist, was recorded and the placement of each sensor
estimated. Estimation was done through splitting the data in non-overlapping 10s
windows and finding a walking motion with a SVM. If walking was detected, the
location of the sensors is classified in a second step. Overall, a classification accuracy
of up to 96.3% is reported using a majority voting strategy.

2.1.3 Locating IMUs in Video Footage

Only few works exist to date to identify an inertial sensor through its measurement
data within simultaneously recorded video footage. By comparing an acceleration
estimate of feature points in a RGB or RGB-D stream to the acceleration readings of
an accelerometer that is attached to a limb or an object, it was possible to identify
the accelerometer’s location in the image domain [107, 154]. Also a person wearing
an accelerometer could be identified in a video out of 3 walking people, and an
accelerometer held in a moving hand could be identified out of 3 moving hands,
however only on separate videos with only one person per video and only one of
them wearing or holding an accelerometer, respectively [148]. IMUs have also been
used to track multiple persons in a video by using a neural network that correlates
the IMU’s orientation and acceleration data with the movement of all currently visible
persons in the video frame to identify which IMU belongs to which person in order
to track that person even under heavy occlusions and if it is out of frame [62]. Also
other works have used inertial data to improve tracking people in video data [71,
72], but the IMU has to be assigned manually to the person wearing it and the IMU

data is only used when vision based tracking fails instead of using both modalities
simultaneously.

2.2 compressing motion data with piecewise linear approximation

Several Piecewise Linear Approximation (PLA) algorithms (or segmentation algorithms)
have been introduced over the past decades, with the aim to reduce the amount of
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data that has to be stored, transmitted, or further processed while keeping general
trajectory information of the compressed signal. When directly deployed on a sens-
ing device, such a PLA method can lead to an efficient operation of this device by
effectively reducing memory and bandwidth requirements. Indirectly, also energy
consumption of for instance sensor nodes that transmit their data wirelessly can be
reduced this way [45, 55], given that the added workload for computing the PLA

does not outweigh the energy saved on transmission or storage of the compressed
data [53]. Both are desired effects, but for a deployment on a wearable sensor node,
the used PLA method also has to meet certain requirements: Memory and compu-
tational resources usually are limited on such embedded platforms and the used
method should be capable of approximating the signal online, i.e. as soon as a new
sample arrives. Since PLA algorithms have never been used for the approximation of
quaternion-based orientation sensor signals, in the following an analysis and com-
parison of existing PLA algorithms is performed. The focus hereby lies on their appli-
cability on compressing quaternion-based motion data directly on the sensing device,
i.e. in an environment with limited memory and computational resources. For this, a
list of important factors that constrain such a use-case is compiled and used for the
comparison (also see Table 2.1).

Two well-known PLA techniques are the Sliding Window (SW) and the Bottom Up
(BU) algorithms [83]. Both were combined into the Sliding Window and Bottom Up
(SWAB) algorithm by Keogh et al. [83], and with mSWAB [161] and emSWAB [16],
further improvements to SWAB have been introduced. The latter, however, has an
execution time that is magnitudes higher than other PLA algorithms.

PLA methods that can be executed in constant time and with constant memory
consumption per processed sample and thus are able to run on architectures with
limited resources are Swing Filter (SF) [43] and Connected Piecewise Linear Regres-
sion (CPLR) [52]. Both PLA algorithms determine the best fitting slope of PLA seg-
ments in a similar way, but differ in their error metric to decide on the termination
condition of a segment. Furthermore, CPLR and SF extrapolate segment points from a
regression line, which yields segment points that generally do not represent samples
of the original signal, except by chance.

Another fast PLA algorithm was introduced by Lemire et al. in [94]. This algorithm,
however, comes at a significant increase in memory consumption, which makes it un-
suitable for a deployment on embedded systems or platforms with limited resources.
Other PLA algorithms such as PLAMLiS [99] and its optimized variant [132] have at
least a quadratic computational complexity to process a series of m samples and the
complexity of processing a single sample, which is decisive for an online approxima-
tion, is not detailed for both.

SwiftSeg [49] is a segmentation framework based on polynomial least-squares ap-
proximation that can produce PLA segments as well, when first order polynomials are
used, but it produces disconnected segments due to an intercept term in the linear
regression. Another method that produces a mixture of connected and disconnected
segments was introduced by Luo et al. [103]. It has a constant update time, but it is
based on a buffer which limits the segment length and thus the data compression
ability on memory constrained systems.
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2.2 compressing motion data with piecewise linear approximation

A comparison of aforementioned state-of-the-art PLA algorithms, including the
proposed fastSW, is summarized in Table 2.1. The first column specifies the PLA meth-
ods and their respective origin, and the second column (OL) denotes their ability
to process a sample online, i.e. at runtime. This capability is a necessary feature for
motion capturing with wearable sensors, where the data is approximated on the mi-
crocontroller of the sensing device itself. The third column (CS) specifies if the PLA

algorithm produces connected segments, a necessary feature for a seamless interpo-
lation of the approximated signals on the receiver side. The fourth column lists if the
PLA segment points are a subset of the original sensor samples or, in short, the preser-
vation of sensor samples (POS). This is a crucial point for quaternion-based signals
and will in detail be explained in Section 4. The fifth column (BB) denotes if the re-
spective method is based on a buffer. A buffer does in most cases constrain the length
of the segments, which lowers the achievable compression ratio. The sixth column
comprises the error metric (EM) that is used for the error bound of the approxima-
tion as specified by the user. The time complexity (TCn) and memory complexity
(MCn) of processing a single sensor sample with respect to the segment length n are
contained in the seventh and eighth column, respectively. Ideally, both complexities
are constant, i.e. in O(1), because otherwise limited computational resources might
constrain the maximum achievable compression ratio. Finally, the ninth and tenth
column list the time complexity (TCm) and memory complexity (MCm) of process-
ing the entire sequence of samples with respect to its length m. If applicable, the
length of the buffer is assumed to be of length m, as this would yield the maximum
compression ratio.
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Table 2.1: Comparison of state-of-the-art PLA algorithms [54]. OL: Online applicability, CS: Produces connected segments, POS: Preserves original
samples, BB: Requires a buffer, EM: Error metric, TCn and MCn: Time and memory complexity for processing a single sample with respect
to the segment length n, TCm and MCm: Time and memory complexity for processing an entire sequence with respect to its length m, SSR:
Sum of squared residuals error of a segment, SAD: Sum of absolute deviations of a segment, and ε: Absolute residual error per sample.

Algorithm OL CS POS BB EM TCn MCn TCm 1 MCm 1

BU [83] 2 no yes yes yes SSR O(n2) O(n) O(m2) O(m)

SWAB [83] yes yes yes yes SSR O(n2) O(n) O(m2) O(m)

mSWAB [161] yes yes yes yes SSR O(n2) O(n) O(m2) O(m)

emSWAB [16] yes yes yes yes SAD O(n2) O(n) O(m2) O(m)

PLAMLiS [99] n/a yes yes yes ε n/a O(n) O(m2 log m) O(m)

PLAMLiS extension [132] n/a yes yes yes ε n/a O(n) O(m2) O(m)

SW [83] 2 yes yes yes yes SSR O(n) O(n) O(m2) O(m)

By Luo et al. [103] yes mixed no yes ε O(1) O(n) O(m) O(m)

By Lemire [94] (yes)3 n/a no yes SSR O(1)4 O(n) O(m) O(m)

SwiftSeg [49] yes no no (yes)5 SSR, ε, . . . O(1) O(1) O(m) O(1)

CPLR [52] yes yes no no SSR O(1) O(1) O(m) O(1)

SF [43] yes yes no no ε O(1) O(1) O(m) O(1)

fastSW (proposed method, Sec. 4.3) yes yes yes no SSR O(1) O(1) O(m) O(1)

1 To provide worst-case bounds, the buffer lengths or the maximum segment lengths are assumed to be as large as the dataset itself, respectively.

2 The original source does not get obvious from the literature.

3 Although not explicitly stated in [94], the PLA algorithm of Lemire could be used for online processing.

4 Although the calculation of line fit and error happens in an O(1) step, it is based on a precalculated array of range sums for each sample of the sequence.

5 In general, SwiftSeg is based on a buffer, but for the first order variant with segmentation and slope information, a buffer might not be necessary.
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2.3 remote respiration estimation

Systems that are able to monitor a user’s breathing have been presented in the past
for several applications and scenarios, with many health care and fitness-related as-
pects as a main motivation. To date, several approaches exist to measure respiration
from a distance, either optically or with the use of RF-antennas. Optical methods
hereby initially used standard RGB and near-infrared cameras and, more recently,
increasingly take advantage of depth cameras as sensing devices. While RF-based
and RGB- or infrared-based approaches for remote respiration estimation are an in-
teresting research field on their own, in the following the focus mostly is set on
depth-sensing methods. A good primer on RF-based methods for instance is given
by Wang et al. [165] where with the Fresnel model the underlying principle of these
methods is presented. Recent literature reviews with a more detailed overview of
contactless respiration measuring methods in general, and for depth-based methods
in special can be found in [115] and [4], respectively.

2.3.1 RF-Based Methods

More recently, several works have focused on the detection of breathing rate and
non-invasive detection of breathing-related disorders with RF monitoring systems
that extract the breathing signal from the wireless channel by taking advantage
of the Doppler effect, where the movement of the torso during breathing causes
a Doppler frequency shift [40]. The biggest advantages of RF-based methods are
that the respiratory rate can even be detected from persons behind obstacles, any
kind of lighting is not required, and privacy concerns due to image recording cannot
arise. Devices applied here range from Ultra-Wideband Radar, Continuous Wave and
Frequency-Modulated Continous Wave, up to even standard commodity WiFi de-
vices. UbiBreathe [3] for instance presents an approach that works on WiFi-enabled
devices, even when the device is not held to the chest by the user. Evaluations on
three study participants have shown that under certain settings such an approach
works well, but is heavily influenced by user’s motion and on the location of the wire-
less access point and the wireless device. Furthermore, the TensorBeat system [166]
employed CSI phase difference data to obtain the periodic signals from the move-
ments of multiple breathing chests by leveraging tensor decomposition. Their work
shows in a larger-scale experiment in multiple environments that breathing rate esti-
mation becomes particularly challenging when more people are present in the envi-
ronment. Wang et al. [165] derived with the Fresnel model the underlying physical
principle for RF-based respiration monitoring. In their work, it is shown how WLAN
based respiratory rate detection depends on location and orientation towards re-
ceiver and transmitter, and how a two user respiratory rate detection under ideal
conditions is challenging. Both users need to breath at a different pace to be able to
distinguish the signals and it is not possible to assign a signal to the respective person.
The location dependency was leveraged by [176] through conjugate multiplication of
CSI between two antennas. The biggest challenges of RF-based respiration estima-
tion, as pointed out in [40] and [138] are: Problems that arise with the multipath
effect, motion artifacts corrupting the Doppler shift on the torso movement while
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breathing, interference with other medical equipment, and high power demands of
some techniques while devices that can operate with less power, i.e. WiFi, generally
have a lower sensitivity. For these reasons, highly precise systems are very complex
and costly.

2.3.2 Non-Depth-Based Optical Methods

Respiration estimation has been proposed using standard RGB and near-infrared
cameras early on. These optical methods most commonly compute optical flow, e.g.
using Lucas-Kanade [101] or Horn-Schunck [63] methods, to extract the respiration
signal from a video stream, such as techniques presented in [122], [121], and [90], but
also approaches using image subtraction techniques exist, such as [156]. In Bauer et
al. [14], the respiratory rate is measured with both, optical flow computation with
the combined local-global method [23] and a depth sensor with surface registra-
tion as proposed in [13]. In this latter paper, the respiration measurement based on
optical flow delivered a more accurate respiratory rate estimate compared to mere
Time of Flight (ToF) depth measurements. This finding can also be supported by [76],
which shows that human breathing mainly occurs along the superior-inferior direc-
tion. Consequently, other works also make use of the upward and downward move-
ment of the chest induced by respiration [144, 156]. While usually only a standard
RGB camera is required for these methods, they typically have high computational
demands and require the implementation of complex algorithms. Other works are
based on thermal imaging of the face, where a change of facial temperature is in-
duced by respiration [5, 44]. These methods, however, require close distances of max-
imum 1 meter, need a clear view of the face, and have to deal with head movements.

2.3.3 Depth-Based Methods

The measurement principle of depth-based respiration estimation relies on observ-
ing the change in distance of the chest or abdomen towards the depth sensor during
respiratory cycles. Inhalation increases the torso volume and will bring these regions
closer to the depth camera while exhalation will revert this effect. The change of dis-
tance for normal breathing typically is in the range of millimeters to a few centime-
ters, depending on the person and observed body area. Due to the small distance
changes caused by breathing, depth-based methods are susceptible to even slight
body movements, especially towards the camera. In most of the related work, the
observed person therefore needs to keep still by for instance sitting on a chair with
back support or by lying down. In the following, the various depth-based respiration
estimation methods are coarsely grouped by their approach.

2.3.3.1 Distance to a Plane

Early versions of depth-based methods fixed a plane on the chest and the abdomen
of a person lying on a horizontal surface and measured the Euclidean distance of
the these planes to the supporting surface plane [130, 145]. Over time, the distance
changes of these planes reflect the person’s breathing movements. In both papers, it
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is argued that a ToF camera has certain advantages over other depth systems, such
as a higher accuracy, no need for calibration, and it being more suitable for real-time
capabilities.

2.3.3.2 Motion along Front Axis

A later method by Noonan et al. [125] uses a fixed 10 cm x 20 cm rectangular selection
on the center of the person’s thorax, where the mean orientation of this rectangle is
computed over 10 successive image frames. The motion component along the surface
normal then becomes the estimate of the person’s respiratory rate.

2.3.3.3 Volume

In other works, the volume of the user’s chest or torso explicitly is modelled from
depth data. The successive works by Aoki et al. [8–10] use the Kinect’s shoulder
and hip joint position estimates as boundaries for a rectangular selection and con-
vert the included depth values to 3D coordinates. With these coordinates, a so-called
quasi-volume of the user’s chest then is modelled explicitly by using Delaunay tri-
angulation with linear interpolation. The observed quasi-volume is shown to be pro-
portional to the air volume measured by a spirometer. The method was evaluated by
monitoring 6 male study participants on a bicycle ergometer, pedaling at a constant
speed and with the motion artifacts present in the obtained signal. These motion
artifacts, due to the known pedaling frequency of about 1 Hz, could subsequently be
filtered out with a Fast Fourier Transform (FFT) band-pass filter with a bandwidth of
0.1 Hz to 0.7 Hz. Soleimani et al. [152] compute the respiration signal with a volume
based approach as well as by taking the mean of the respective depth values. Both
outcomes are compared and it has been shown that the volume-based approach was
less accurate while being computationally much more expensive.

Since the depth camera does not see the back of the user, the presented volume-
based methods bound the volume at a certain constant distance threshold to the back
and compute the volume by integrating over the distances of the single surface ver-
tices to this back boundary. In other words, the volume basically is computed with
a weighted sum and, apart from subtracting the distance threshold, can be approxi-
mated by the mean of the respective depth pixel values. Due to the lower computa-
tional complexity, the majority of the proposed respiration estimation methods thus
are based on computing the mean, as will be shown in Section 2.3.3.5.

2.3.3.4 PCA-Based Methods

To obtain more reliable estimates, previous work has also suggested to explicitly
model respiration using Principal Component Analysis (PCA). The PCA model is ac-
quired from a certain number of successive depth images of a predefined area of the
user’s torso. Wasza et al. [167] for example compute a PCA model of the user’s torso
and apply the varimax rotation such that the obtained model has more relevance
to respiration than the model from the standard PCA. Its principal axes were found
to feature local deformations that are highly correlated to thoracic and abdominal
breathing, respectively. This work was extended later on by Wasza et al. [168] by
integrating multiple depth cameras to yield a PCA-based shape motion model of the

18



2.3 remote respiration estimation

observed person using prior knowledge of the 4-D shape deformation. In this work,
also some issues with the varimax rotation are addressed. In [114] a zoom lens is
attached to the infrared projector of the Kinect v1 in order to increase the size of its
projected light dots. The trajectories of these dots with a length of 30 seconds are
stored in a matrix and a PCA is applied to it. With the iterative EM algorithm the 16

strongest components are calculated and all bases that fail the Durbin-Watson-test
are thrown away. Furthermore, all bases with less power in the interest region of
0.02 Hz to 1 Hz are discarded and, to reduce noise, an average of the remaining
bases is computed. The approach is used for measuring the respiratory rate of sleep-
ing subjects and, while a special Region of Interest (ROI) is not required, only one
person can be within the field of view of the Kinect. The approach was tested on 9

sleeping study participants which were positioned in an optimal view and at differ-
ent distances. It works best at 200 cm. A common method is to place fiducial markers
on the chest and abdomen to define the regions that are used to extract the depth
measurements from. Wijenayake et al. [171] for instance use white markers visible in
the RGB data of an Asus Xtion PRO RGB-D camera and compute a PCA model from
the first 100 depth frames by only using the depth readings inside the region de-
fined by the markers. The first three principal components of such a patient-specific
model then are used to reconstruct a noise-free surface mesh. The change of volume
of such a mesh has shown strong correlation to spirometer data. For this model, the
frames have to be preprocessed to reduce noise and to fill holes, as the PCA is very
susceptible to it.

2.3.3.5 Mean-Based Methods

A simple proof of concept of measuring the respiratory rate with a Kinect v1 struc-
tured light depth sensor is presented by Xia et al. [173]. Here, a solid plane is attached
on the chest of the examined body. It defines the ROI and acts as a translation sur-
face. The depth values of the plane’s surface points are averaged for each received
depth frame and thus reflect the average distance of the plane to the Kinect sensor at
the different time instants. The key idea is, that the chest elevation during breathing
is expected to cause most depth pixels, and thus the average among all pixels, to
correlate with the breathing motion.

In [27] and [146], a Kinect v2 is used to observe the respiration of sleeping persons
and classify different sleep states (being awake, in REM, or non-REM) by using fea-
tures that contain the frequency and the regularity of the breathing. The respiration
signal is obtained from the average of the depth values within the hand-annotated
chest region. Furthermore, in [146] also the averages of pixel-wise depth differences
over two successive depth frames are computed, and [27] applies linear interpolation
between two successive depth frames to by-pass non-equidistant sampling caused by
the depth camera and uses a wavelet transform to de-noise the results. In [160] an er-
ror of only 0.21 breaths/min is reported on a method based on computing the mean
of the depth values within a target area.

Benetazzo et al. [15] use the shoulder and hip joints as delivered by the Kinect
v2 SDK to determine the region of interest. All depth values within that region are
averaged per frame, followed by a weighted average of four successive mean values
to reflect the respiration data over time. This work is the first to test different param-
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eters for a mean-based approach. It includes sampling rates being varied between
5 Hz, 7 Hz, and 9 Hz, different orientations (0° or 25°), three different light intensi-
ties, and variable clothing worn by the observed person (sweater, jacket, and T-Shirt).
The evaluation however is approach-specific and instead of a detailed parameter
evaluation, results only show that the parameters tested have in the end little effect
on the proposed algorithm’s performance.

With the addition of RGB data that is available in many depth cameras, extra
biophysical information can be extracted. Procházka et al. [137] in addition to the
respiratory rate also estimate the heart rate by using the Kinect’s built-in RGB and in-
frared camera to detect the slight changes in color around the mouth caused by blood
pressure changes for each heart beat. The respiratory rate is, as in previous works,
obtained by averaging all depth pixels within a rectangular selection at the torso.
Both signals are band-pass-filtered with the respective cut-off frequencies (0.2 Hz
and 2.0 Hz) set in such a way that the frequency components that are not part of
breathing or the heart rate are rejected.

2.3.4 Applications of Remote Respiration Estimation

This section has the aim to present some potential applications of remote respiration
estimation. The focus hereby lies on two topics: Human activity recognition and
health care. Since most methods and studies described above were conducted in the
context of a specific application (mostly health care), this section is meant to complete
the list of applications. Previously mentioned works thus will not be repeated here.

In the domain of human activity recognition, there exist some studies that have in-
corporated respiration into their experiments. Interestingly, in many of these studies,
either a depth sensor already is used, e.g. to track a person’s movements, or a depth
camera could easily be deployed, but none of them use it to estimate respiration. In
all these studies, a remote sensing of a person’s breathing using a depth camera thus
could effectively reduce the amount of sensors a person has to wear.

Centinela [92] uses acceleration data in combination with vital signs, including
respiratory rate, to distinguish different activities, namely walking, running, sitting,
ascending, and descending. It is reported that vital signs together with acceleration
data can be useful for recognizing certain human activities more accurately than by
considering acceleration data only, especially in the case when acceleration signals
are similar. The classification of some activities on the other hand did not benefit
from the additional vital sign data. In [26], physiological data, including respiratory
rate, obtained from a wearable sensing device is used as auxiliary modality to dis-
criminate between four activity classes, namely lie, sit, walk, and jog. To recognize
lifestyle activities of diabetic patients [104], WiFi, GPS, sound and acceleration data
from a smartphone, as well as heart rate and respiratory rate from an ECG moni-
tor are used to distinguish ten different classes. The effects of respiratory rate on
classification accuracy for the latter two studies, however, was not evaluated.

An interesting application is Go-with-the-Flow [151], where body and movement
awareness is enhanced through sound feedback to rebuild confidence in physical
activity for patients with chronic pain. The sound feedback is generated based on a
patient’s movement and breathing. The patient’s posture, inter alia, is tracked via a
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Kinect sensor whereas breathing is assessed with two wearable respiration sensors.
Because breathing rate rises with anxiety, and patients often hold their breath if they
are anxious or overly focused on a movement, the system, based on evaluating the
respiration data, produces sound signals as a prompt to breathe calmly.

In terms of medical prevention and rehabilitation, there exists a dataset of func-
tional senior fitness tests [18] that comprises acceleration readings at the hip and
posture data from the Kinect, as well as ECG, respiratory rate, and blood volume
pressure from physiological sensors. This dataset is meant to develop algorithms to
automate the assessment of fitness levels of seniors. Other applications of remote res-
piration estimation that are specific to medical care for instance are studied in sleep
laboratories. Here, depth cameras have been used to identify sleep apnea in patients
that are monitored remotely while lying in a bed [6, 147]. A subject’s respiration sig-
nal can also be used for drowsiness detection, for instance while driving a car [56, 65].
Finally, emotion classification from respiration and other physiological features has
been a focus in some studies [57, 60]. In [57], an accuracy of emotion classification
of 75% to 90% from breathing alone is reported, depending on the chosen feature
within the respiration signal.

2.4 summary

This chapter compiled the most recent methods and state of the art of the three
main topics Complementary Motion Sensing, Piecewise Linear Approximation, and Remote
Respiration Estimation. In the following, a short summary as well as the relation of this
work to the available literature will be given.

To achieve complementary motion sensing, there already exists a broad variety
of algorithms to fuse inertial and optical motion data as discussed in Section 2.1.
Successful applications, however, are not widely seen although promising results
can be expected from fusing both. Exact reasons remain unknown, but it is likely
that the potential limitations inherited from both modalities are discouraging while
the benefits of such an approach are not that obvious. For this reason, during this
work it will be investigated how inertial and optical motion data can be used in a
complementary way, with the aim to show the benefits of such an approach and to
clear the path towards an efficient utilization of both modalities in combination. A
method towards such an efficient utilization would be the automatic identification
of the person and limb each single IMU-equipped sensing device is worn on within
the pose data obtained from the depth sensing. The literature hereby provides only
few works that did something coarsely related to that. Methods that did something
similar still require the IMU to be assigned manually to the person wearing it and
overall are not designed to identify a person or limb in the first place, but try to
track moving objects or people in the image frame [62, 72]. To close this gap in this
research, a novel method is proposed that allows to efficiently identify the person
and limb an IMU is worn on by comparing its motion data to all pose estimates as
obtained over time from a depth camera that inter alia observes the respective person.
This method is not limited to such a use-case, but potentially can open up a wide
range of applications that use complementary motion sensing to achieve more than
just sensing motion, as will be detailed in Section 3.
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To reduce the amount of motion data that needs to be transmitted, PLA has been
found a viable compression scheme that has previously been applied successfully
to compress various types of data while keeping important trajectory information
of the compressed signal. PLA algorithms, however, have so far never been used
for the approximation of quaternion-based orientation sensor signals. To close this
gap in the research, Section 2.2 provided a first analysis and comparison of existing
PLA algorithms with respect to many constraining factors that limit their ability of
approximating quaternion-based sensor signals (see Table 2.1). A focus hereby lies on
their applicability in environments with limited processing and memory resources,
as can typically be found on wearable devices or stand-alone sensor nodes. Following
this comparison, the specific requirements for compressing unit quaternions with
PLA techniques will be discussed in Section 4.2. This ultimately will lead to fastSW,
a novel PLA algorithm that unifies the advantages of state-of-the-art PLA methods
with respect to memory consumption and execution time, but also the choice of
segment points and approximation quality as required for the compression of unit
quaternions.

When it comes to remote respiration estimation, it could be seen in Section 2.3
that all methods based on using depth data to obtain a respiration signal are only
evaluated on a few study participants that furthermore were specifically asked to
either lie down in supine position or to sit still in a chair. In some studies, they
even had to wear tight clothing. In fact, there is no study where participants are
allowed to stand freely or even to occlude their upper body, and in the rare examples
where participants are allowed to move, this movement still is heavily constrained,
for instance to pedal with a constant rate of 1 Hz on a bicycle ergometer such that this
motion component can easily be filtered out later on [9]. Also, there is only a single
study that is evaluated on different parameters, i.e. three sampling rates of 5, 7, and
9 Hz, different user orientations from 0° to 25°, and different clothing (sweater, jacket,
and T-Shirt) [15]. In the end, this study, however, only states that the parameters had
little effect on the results without elaborating on these parameters in more detail.
Furthermore, it is difficult to compare these methods among each other or to assess
their performance in more realistic settings since they are all evaluated under their
own specific conditions and parameters that cannot easily be extrapolated to other
methods. A publicly available benchmark dataset as well as a systematic evaluation
of important parameters that influence the various respiration estimation methods
is missing. To overcome the limitations of previous methods, a novel method will
be proposed that in contrast to most of the above approaches does allow users to
stand upright and even move their arms and hands in front of their torso. Also,
two datasets will be recorded and made publicly available, one for the validation
of novel depth-based respiration estimation methods and one benchmark dataset
that allows to assess the performance of different depth-based respiration estimation
methods under a variety of different parameters. Finally, another issue that will be
addressed in this work is the lack of a systematic evaluation of important parameters
that influence the various respiration estimation methods as well as a comparison of
these methods per se.
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3
C O M P L E M E N TA RY M O T I O N S E N S I N G

This chapter is based on the peer reviewed publications [77] and [82]. Some passages have
been quoted verbatim. I am the first author of both publications.

3.1 introduction

A variety of different techniques to capture human body motion has been proposed
in the past, ranging from different types of sensors worn on the body up to remote
sensors in the environment that all in some way measure limb orientations or joint
positions. The most prominent solutions comprise either body-worn inertial sensors,
typically in the form of a sensor equipped body suit [143], or a number of highly
specialized cameras in the environment that make up an optical Motion Captur-
ing (MoCap) system [1, 2]. Optical MoCap systems hereby typically are the most accu-
rate systems, but also tend to be very expensive. More recently, also solutions were
proposed that, with the help of machine learning, can estimate human pose from
a single depth [150] or RGB camera [25, 102, 116, 117]. These methods come with
little to no extra costs in terms of equipment, but at the expense of reduced accuracy.
When using on-body sensing methods, in many cases only the tracking of certain
limbs, e.g. the arms or legs, is of interest, but more recently, also techniques have
been proposed that only require a sparse setup of body-worn Inertial Measurement
Units (IMUs) to capture the full body [64, 119].

What all MoCap techniques have in common is that they all come with their specific
strengths and limitations that are inherent to the used modality. On-body sensing is
cheap and allows for high mobility and continuous monitoring, but is less accurate,
may be constraining to wear, e.g. when the full body is captured, and often is limited
to particular limbs. Remote sensing from the environment, on the other hand, often
is more accurate (e.g. if a high-end optical system is used) and the observation of the
full body of multiple persons is possible with the same sensor setup. It is however
limited to a certain working volume, in most cases not so easy to set up, and it is
sensitive to occlusions. Interestingly, both modalities seem to complement each other
very well. The limitations of one modality can be compensated by the other and vice
versa. A complementary use of both modalities has already been taken up in prior
works and nowadays, as discussed in the literature review, there exists a variety of
algorithms to fuse inertial and optical motion data (also see Section 2.1). Success-
ful applications, however, are not widely seen, although promising results can be
expected from combining both modalities, with examples ranging from health care
and medical applications over sports up to activity recognition or even ordinary daily
applications. One reason might be that also the limitations of both systems are in-
herited and that the steps towards an efficient utilization of the combined modalities
remain unclear or simply are not straightforward to achieve.
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3.2 handling multi-modal sensor input for motion capturing

For this reason, in the following it will be investigated how optical motion cap-
turing and body-worn, inertial motion capturing can be used in a complementary
way. Accordingly, a method is proposed that aids in combining both modalities by
matching inertial and optical orientation data such that the person and limb the in-
ertial sensing device is worn on can be identified when being observed by a camera.
This method does not only simplify the process to set up an inertial MoCap system by
automatically affiliating each sensor with the respective person and body part it is
worn on, but it also allows a wearable device and an external camera-equipped sys-
tem to identify each other and subsequently to communicate user specific data. Thus,
it can be considered an important algorithmic component for a range of interesting
applications. The wearable can for instance benefit from data like the user’s indoor
location or its full body pose, e.g. in fitness applications, and the camera system can
profit from being able to reidentify persons after leaving and again entering the field
of view, for instance to track a security person carrying valuable goods. Moreover,
such services depend on the wearable device and can at any time be turned on or
off, e.g. due to privacy concerns. These examples nicely demonstrate how the com-
plementary use of different MoCap modalities can lead to applications that achieve
more than just capturing motion.

To reach that goal, first an overview over technical considerations for combining
multi-modal sensor input within a common system is given. This includes a detailed
discussion of the different reference frames of the respective modalities, as well as
calibration considerations to join different modalities into a common frame of refer-
ence, thus enabling a collaborative work between them. In a short preliminary case
study, furthermore, the characteristics of a simple approach of replacing limb obser-
vations from depth based MoCap with those obtained from IMUs are assessed in a
user study. The goal hereby is to investigate the peculiarities of both modalities and
to assess if it is feasible to use optical MoCap data to represent the body while using
IMU data to represent the dominant arm and wrist. Finally, the method for matching
optical and inertial motion data is introduced and evaluated in a user study.

3.2 handling multi-modal sensor input for motion capturing

Working with data from different sensor modalities and integrating them into a sin-
gle system is due to the different nature of the sensors and their data not trivial and
requires some considerations. In the following, a list of the most important consid-
erations is compiled that need to be paid attention to each time a new sensor type
has to be integrated into a common system. There are no sharp edges between the
different considerations and some of them might be less important for a specific
sensor system than others, but in summary they reflect the creation of a common
base on which the sensors can communicate with the system and can agree upon the
measured data. Moreover, for most of these considerations, there is no clear answer
or path on how to achieve good results, since this heavily depends on the used sen-
sors, the overall system design, and the desired results. Thus every system has to be
evaluated on its own.
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3.2 handling multi-modal sensor input for motion capturing

3.2.1 Technical Considerations for Combining Different Modalities

Sensors and Modalities. Among the first steps is the identification and selection
of the required sensors and sensor modalities as well as the assessment of
their properties and working principles. This includes knowledge of the sen-
sors’ limitations, capabilities, and requirements. Some sensors need a specific
sensor setup or do not work well in some environments, such as under bad
lighting conditions in the case of an optical system or the susceptibility of IMUs

to magnetic field distortions in proximity to ferrous objects. Also other sen-
sor peculiarities have to be accounted for, for instance different sampling rates,
different reference frames, or missing data e.g. due to occlusion or lost data
packets on the used network.

Data and Data Acquisition. Different sensors do measure different properties and
provide different data and data types. Examples are joint positions, joint angles,
sensor or limb orientations, magnetic field, acceleration, or angular velocity. Dif-
ferent sensors might capture a single limb, the whole body, or even multiple
persons. Knowledge of each sensor’s data and its meaning thus is imperative.
After receiving, the data might need to be converted to a common scale, com-
mon unit, or common reference system. Data transmission can happen in two
general ways, wireless or with wire, e.g. via Bluetooth, WLAN, or USB. Vari-
ous data transmission protocols have a different range, data rate, timing, and
reliability of connection. For instance, single data packets may get lost, inter-
changed, or may arbitrarily be delayed. When establishing a connection to a
sensor, this should be under consideration.

Synchronization and Timing Considerations. Different sensors have a different no-
tion of time, i.e. a different start time or reference time, and they have different
sampling rates and possibly a varying accuracy of their internal clock. For this
reason, the received data has to be synchronized to the common system time
in order to allow further processing. If no further information is available, the
time of arrival of a data point is the only source of a reliable time stamp. Gener-
ating and transmitting a time stamp directly on the sensor for each individual
data point, however, does aid in synchronization, e.g. in case of delayed or
interchanged data.

Sensor to Segment Mapping. In order to be meaningful, the motion data obtained
from the sensors somehow needs to be affiliated with an avatar or, more pre-
cisely, with the respective bones of an avatar’s rig. This affiliation is called
sensor to segment mapping and usually has to be done manually. Depending
on the underlying sensor system, the sensor data can either be captured from
a single limb, such as in the case of an IMU, or it can comprise motion data
from multiple body parts or even from multiple persons at once, for instance
when using an optical MoCap system. This makes a sensor to segment mapping
hard, since such a mapping is not straightforward to achieve when a sensor
represents more than a single limb. Furthermore, the data of some body parts
might be discarded or be affiliated with a different or even with multiple differ-
ent segments. A single segment also might receive data from multiple sensors
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3.2 handling multi-modal sensor input for motion capturing

after being fused in a previous step, especially in the case when the same limb
is observed by different sensors. An easy to implement and flexible way to
deal with all these challenges is to create a virtual sensor node for each sen-
sor and observed body part. The motion data of each single sensor then only
needs to be split up into the different body parts and be distributed to the
corresponding virtual sensor nodes. These in turn can be affiliated with one or
more segments. Each virtual sensor node thus is linked to a certain real sensor
and the respective body part the data comes from, but at the same time acts as
if it was a stand-alone sensor that only observes a single limb. The advantage
of this approach is that all sensor data ultimately is treated the same, effectively
abstracting away the underlying sensor system.

Sensor Model. Different types of sensors might require a specific sensor model to
compensate for sensor specific characteristics. These include intrinsic as well
as extrinsic parameters that need to be determined via a sensor specific cali-
bration procedure. Optical sensors for instance might need to model intrinsic
camera parameters, e.g. to correct lens distortion using a camera matrix [170],
and IMUs need to maintain calibration parameters to correct for inaccuracies
of the internal accelerometer, gyroscope, and magnetometer. On-body sensors,
furthermore, are placed on a person’s body surface, i.e. on its skin or cloth-
ing. The body surface neither is flat nor is a sensor always placed on the same
location or in the same direction and thus, a certain offset to the true limb orien-
tation needs to be modelled. Furthermore, on-body sensors are subject to soft
tissue deformation [36], might loosely be attached, or experience sensor drift.

Calibration. Calibration is the process of finding a sensor’s intrinsic and extrin-
sic parameters that correct for errors in its measurement procedure and that
map its data to a common scale and reference system. Calibration is typically a
non-trivial process that needs to be performed separately for every sensor and
sensor type in use. Many sensors do already provide factory-based calibration
parameters from the manufacturer or do an automatic calibration during start-
up for intrinsic parameters. Extrinsic parameters, however, need to be assessed,
such as the offset between different reference frames or a sensor’s alignment er-
ror on the body surface, the so called IMU sensor-to-segment misalignment [46].
Calibration should happen from sensor level to system level, i.e. starting with
intrinsic parameters such as assessing magnetic field distortions or camera ma-
trices, followed by sensor specific extrinsic parameters such as the sensor-to-
segment misalignment, up to higher level calibration considerations such as
matching the sensors’ reference frames by determining their individual offsets
to a global reference frame.

Data Processing. Data processing refers to the transformation of raw sensor input
data into meaningful data for the system. Meaningful data in this case is mo-
tion data that describes an avatar’s joint positions and orientations. Data pro-
cessing can happen in multiple stages after receiving raw sensor data and can,
inter alia, include filtering, interpolation, sensor fusion, or any type of trans-
formation. Examples are the removal of noise from a signal, interpolation to
match a target frame rate or to approximate missing data, fusing sensor data
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3.2 handling multi-modal sensor input for motion capturing

from accelerometer, gyroscope, and magnetometer readings into orientation
data, transforming a rotation matrix into an unit quaternion, or utilizing body
constraints and interpolation techniques in case of sparse or missing sensor
data or low body coverage to approximate missing data along the kinematic
chain. Also forward or inverse kinematics can play a role in order to deduce
joint positions from orientations or vice versa.

Resampling Motion Data. At some point, there is ready-to-use motion data com-
ing from different modalities and data streams and it is required to bring it
together, for instance to display it at a certain frame rate or for recording it
into a motion file with a desired target frame rate. The data streams, however,
might potentially comprise different sampling rates, e.g. when sensors with a
low sampling rate are used in combination with fast sensors. Also, some sen-
sors might sample their data irregularly or data points occasionally are missing
due to occlusion events on optical sensors or due to an unreliable data connec-
tion. In such cases the data needs to be resampled in order to approximate
missing data or to achieve a constant target frame rate. To avoid introducing
deviations early in the processing chain, the data moreover should be resam-
pled as late as possible to ensure all (pre-)processing steps are performed on
the original, undistorted data at an appropriate frame rate. To approximate a
value yk at time tk between two successive values yn−1 and yn at time points
tn−1 and tn, respectively, an interpolation function Interpolate(x1, x2, t) can be
used as:

yk = Interpolate(yn−1, yn,
tk − tn−1

tn − tn−1
)

tn−1 ⩽ tk < tn k,n ∈ Z

(3.1)

Resampling the motion data can be achieved by using Spherical Linear Inter-
polation (SLERP) on orientation data and similarly by using linear, polynomial,
or spline-based interpolation techniques on position data. As a result, a reason-
able approximation can be obtained at the respectively specified time points in
between two successive motion data points.

In summary, in order to efficiently work with data from different sensor modalities,
it is required to abstract away their specific peculiarities to be able to treat them
as if they were received from a single sensor type. The abstracted version in this
context is a virtual sensor node. It hides all required preprocessing steps and acts
as a single sensor that can be attached to a certain bone of the avatar’s animation
rig. Furthermore, it only delivers data of a single specific limb of a certain observed
person. A single real sensor such as an optical MoCap system thus can lead to many
different virtual sensor nodes, one for each observed limb or moving body part.
Distributing the motion data across many virtual sensor nodes serves the purposes
(1) that it can be mapped to arbitrary animation rigs with different bone setups, (2)
that the data is treated like every other sensor data and existing motion capture
routines can be reused, and (3) that it can be interchanged, compared or fused with
all other sensor data. This makes fusing optical MoCap data with ordinary IMU sensor
data possible by simply fusing the data of two virtual sensor nodes that are specified
to belong to the same body part.
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3.2 handling multi-modal sensor input for motion capturing

3.2.2 Reference Frames

A reference frame describes a sensor’s local coordinate system, or in other words,
it describes what this sensor assumes to be its front, up, and right directions. A
camera typically uses its view plane as reference frame such that the camera’s sides
become the X-coordinate and the up and down direction becomes the Y-coordinate,
respectively. An IMU on the other hand typically uses the Attitude Heading Reference
System (AHRS) where the geomagnetic north becomes its heading and the gravity
vector becomes its negative Z-axis. Consequently, whenever two different sensors
measure the same rotation around the same axis with respect to their local reference
frame, this does not necessarily mean that they were rotated around the same axis
with respect to the reference system of the observer.

It is possible to transition between the different reference frames with the help
of a transformation that describes how to map one reference frame to another by
translating, rotating, and scaling the reference frame’s coordinates such that they ex-
actly match the coordinates of the target reference frame. Typically, a transformation
matrix is used to achieve this, but since there is only a rotational offset between the
reference frames, unit quaternions can be used here to switch between them.

Camera Global (𝐹𝐶𝐺)

IMU Global (𝐹𝐼𝐺)

Camera Local (𝐹𝐶𝐿)

IMU Local (𝐹𝐼𝐿)

qC(t)

qI(t)

qG qL

FCL

FILFIG

FCG

Figure 3.1: From top left to the bottom right: The camera’s global and local reference frames
FCG and FCL that describe the body segments as seen from the camera, and the
IMU’s global and local reference frames FIG and FIL that describe the orientation
of the IMU. Transitions between these coordinate systems are marked with arrows
and can be computed by multiplying with the respective unit quaternion q.

Figure 3.1 illustrates the four different reference frames to be considered, namely
the global and local reference frames of the camera FCG and FCL, and the global
and local reference frames of an IMU FIG and FIL. The camera frames hereby do not
describe the camera’s orientation, but the orientation of the respective body segment
as seen from the camera. The IMU frames on the other hand do describe the orienta-
tion of the respective IMU. Additionally, there exist four distinct transitions between
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3.2 handling multi-modal sensor input for motion capturing

the reference frames. Transitions FCL
qC(t)−−−−→ FCG and FIL

qI(t)−−−→ FIG define how to
get from the camera or IMU local reference frame to the respective global camera or
IMU frame at time t and are obtained as quaternion measurements qC(t) and qI(t).
In other words, qC(t) and qI(t) describe the orientation of the joint or the IMU as
perceived from the respective global reference frame, i.e. what is measured by the
respective device. The other transitions are defined as FIG

qG−−→ FCG to get from the
IMU global to the camera global reference frame, and as FIL

qL−→ FCL to get from
the IMU local to the camera local frame, respectively. The quaternion qG denotes the
constant orientation offset of the global camera frame to the global IMU frame and
accounts for the fact that the camera can arbitrarily be placed in the environment,
whereas qL, also called the segment offset, denotes the rotational alignment offset
between the segment as observed by the camera and the IMU that is placed on the
same segment. To switch between the different reference frames, the equality of the
following transitions can be used:

FIL
qI(t)−−−→ FIG = FIL

qL−→ FCL
qC(t)−−−−→ FCG

qG−−→ FIG

Expressed as quaternion equation, with ◦ denoting the quaternion or Hamilton prod-
uct, one obtains:

qI(t) = qG ◦ qC(t) ◦ qL (3.2)

Note that orientations are chained from right to left, i.e. (3.2) is read as: First rotate
by qL, then by qC(t), and then by qG (the inverse of qG).

3.2.3 Calibration Considerations

Both, qG and qL, usually are not known and need to be determined through cal-
ibration, also known as the hand-eye calibration problem in robotics as first de-
scribed in [149]. To solve the calibration problem, for both qI(t) and qC(t), a series
of measurements q(t), q(t+ 1), . . . , q(t+n) is needed. The transition from qI(t) to
qI(t+ i), with i ∈ N+, is given as:

FIL
qI(t)−−−→ FIG

qI(t+i)−−−−−→ FIL

Similarly, using the camera measurements qC(t) and qC(t+ i), there is the path:

FIL
qL−→ FCL

qC(t)−−−−→ FCG
qG−−→ FIG

qG−−→ FCG
qC(t+i)−−−−−→ FCL

qL−→ FIL

The camera offset qG cancels out and (3.3) is obtained as:

qI(t+ i) ◦ qI(t) = qL ◦ qC(t+ i) ◦ qC(t) ◦ qL (3.3)

Substituting qA = qI(t+ i) ◦ qI(t), qB = qC(t+ i) ◦ qC(t), and qX = qL yields
after reordering the so-called calibration equation:

qA ◦ qX = qX ◦ qB (3.4)
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Finding the IMU limb offset qX = qL using a series of n different observations now
is subject to:

arg min
qX

∑
n∈N+

||qA,n ◦ qX − qX ◦ qB,n|| (3.5)

Explicitly solving (3.5) yields for each IMU a specific IMU-to-limb offset estimate
qX, given both orientation data streams match, i.e. are measured from the same
limb. An algorithm to solve (3.5) can for instance be found in [12] from which also
above calibration scheme was adapted. Solving this equation, however, is a very
expensive operation that furthermore is susceptible to noise and unstable orientation
estimates. If the matching IMU-limb pairs are not known, it is required to repeat this
expensive operation every frame for every IMU for every observed joint in camera
space until the respective IMU-limb pairs are identified. Instead, a calibration free
matching method should be aimed for, that makes solving (3.5) for all possible IMU-
limb pairs obsolete. After matching, and if required, calibration only needs to be
performed once per IMU. Such a matching procedure is introduced in Section 3.4.1.
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3.3 case study on combining inertial and optical motion data

3.3 case study on combining inertial and optical motion data

Figure 3.2: The case study combines a Kinect v2 depth camera’s posture data with inertial
orientation data from two smartwatches worn on the wrist and the upper arm,
respectively. The Kinect is placed to the side of a whiteboard on which a user
traces a pattern while facing the depth camera.

In the outset of this chapter, it is argued that optical and body-worn sensor modalities
can complement each other when used in combination, so the aim of this experiment
is to study the effect of combining depth-based and inertial motion data. The exper-
iment is conducted by combining two IMUs, each worn on the wrist and the upper
arm, respectively, with the depth-based body posture estimates of the entire person,
as illustrated in Figure 3.2. The idea behind this approach is that tracking a person’s
wrist’s position and orientation is a key feature in many applications such as virtual
reality, medical applications, computer games, activity recognition, or manual task
analysis [181]. For such purposes, the dominant arm arguably needs to be tracked
accurately. Combining both modalities is expected to lead to a more accurate system
that can cope with common problems that the individual sensors suffer from, in par-
ticular occlusions and inertial sensor drift. Furthermore, the IMU can be enhanced
with positional information and the human body posture estimated from depth data
can be enhanced with orientation data. To this end, this study focuses on how accu-
rate depth imaging and inertial sensing can track a person’s hand position. A user
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3.3 case study on combining inertial and optical motion data

study is conducted under challenging, yet realistic conditions where the observed
person is tracing a pattern that is drawn on a whiteboard, potentially causing self
occlusions. The pattern itself will be used as ground truth data.

3.3.1 Study Design

3.3.1.1 Sensor Setup

The Kinect v2 is used as an optical MoCap system. It is a depth camera that primarily
is used as a low-cost, consumer grade MoCap system and directly provides joint
positions and orientations from all observed persons via the Kinect for Windows
SDK 2.0, from which only the joint orientations are kept for the experiment.

The body-worn sensors are represented by two smartwatches, one attached to the
wrist and one to the upper arm of the participant’s dominant arm. They contain
an IMU for sensing their orientation and also have the necessary communication
interfaces for wireless data transmission. In the current setup, a custom App lets the
Android operation system estimate the orientation of the smartwatches on the device
and relay their data via Bluetooth to a nearby smartphone, which in turn forwards
all data via a User Datagram Protocol (UDP) broadcast directly to a connected PC.

To enable the possibility to interchange data of the Kinect joints by data from the
IMU sensors, for each Kinect joint and each smartwatch an own virtual sensor node
is created on the software side, as described in Section 3.2. Each joint’s orientation
data consequently is treated the same, no matter from which sensor it comes.

To simplify calibration, the Kinect’s reference frame is set as the global reference
frame. The rotational offset of each IMU (of the respective smartwatch) to the global
reference frame then is determined manually by arranging them in such a way that
the axes of their local reference system align with the global reference system. The
measured orientation is stored as offset to enable manual calibration. To further
simplify calibration, the IMUs furthermore are placed carefully on the limbs in a
way such that they align with the bone orientation as measured by the Kinect and
such that they experience as little soft tissue deformation as possible, which in the
following then will be neglected.
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3.3.1.2 Dataset and Experiment Setup

Figure 3.3: The pattern to be traced and the visualization of a human tracing this pattern.
The large rectangle and circle have a diameter of 0.5 m and the small ones have
diameter of 0.1 m. The real-time trace and captured body visualization, on top of
the pattern, provide direct feedback during recording.

For the experiments, 10 study participants were recruited within the University of
Siegen. Their body heights were between 1.79 m and 1.98 m tall, and all were right-
handed. On a whiteboard, a pattern was drawn that consists of a large and a small
rectangle and a large and a small circle (see Figure 3.3). The large rectangle and circle
have a diameter of 0.5 m and the small ones a diameter of 0.1 m, respectively. During
the motion capture session, the study participants are asked to trace the described
pattern with their dominant hand. They were instructed to trace each rectangle and
circle at least five times at a pace they could determine. The experiment is conducted
in two different settings:

• Setting A: The Kinect was placed to the side of the whiteboard and the current
test candidate and the Kinect are oriented such that they face each other during
the motion capture (see Figure 3.2). The captured person’s front in this setting
is fully visible to the Kinect sensor.

• Setting B: The participant was asked to draw the pattern with a natural, self-
chosen orientation towards the whiteboard, leaving the Kinect on its previous
position to the side. In this setting self-occlusions are not prevented and it
can be studied in which extent the Kinect faces problems tracking the arm
movements in a more realistic setup.

33



3.3 case study on combining inertial and optical motion data

All participants performed setting A and four out of the ten participants additionally
performed setting B.

During the study, the participants’ whole body is captured with the Kinect and,
as described above, the dominant arm and wrist additionally are captured with two
smartwatches. The overall raw sensor data during each motion capture session is
recorded such that the session can be restored at any time. This is used to replace
parts of the Kinect’s sensor data by the respective smartwatches’ sensor data from
the wrist and upper arm, thereby keeping the rest of the Kinect data in order to
provide an anchor to the wrist’s and arm’s tracking. Overall, three different sensor
constellations are tested:

(K): The whole body is captured using only the Kinect v2.

(K + W): The Kinect’s wrist capture is replaced by the wrist-worn smartwatch.

(K + W + A): The Kinect’s wrist and upper arm captures are replaced by the respec-
tive smartwatches worn on the wrist and the upper arm.

3.3.2 Visual Inspection

Figure 3.4: The performance of setting B for the three different approaches in case of the
user’s self-occlusion: The leftmost plot shows the ground truth. The second plot
from the left shows the wrist tracking results from just the Kinect’s estimates. The
third plot shows the Kinect results, with the lower arm segment replaced with the
wristwatch’s IMU data. The right plot shows the tracking results when both arm
segments are replaced by smartwatches.

Study participants were recorded in different settings such that the effect from
the level of occlusion can be investigated as a parameter. One of the observations
from the first visual inspection of the Kinect’s capture data is the detrimental effects
that occlusions have on the tracking of the wrist. Only in the very careful placement
of the Kinect toward the side of the user (i.e., from the viewpoint of Figure 3.2),
the wrist can be tracked at most times with the Kinect alone. Even in such a best-
case setup, self-occlusions regularly happen and lead to deviations, as can be seen
in Figure 3.5. Also some effects of the smartwatches’ IMU drift can be observed:
Especially in the X-axis toward the whiteboard, accumulated errors build up in the
tracking performance. Overall, from the visual inspection can be concluded that due
to occlusion events a continuous trace or a trace without strong deformations cannot
easily be achieved by the Kinect alone, but already a single wrist-worn IMU can in
many cases improve data quality significantly, despite adding sensor drift.
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Figure 3.5: Two examples from setting A, illustrating how occlusion distorts the depth imag-
ing’s performance as seen on the artifacts in the lower area of the "Kinect only"
plots (respective second plots from the left). For these recordings, the Kinect was
positioned in a best-case scenario, i.e., without occlusion from others and tracked
from the participant’s side to reduce self-occlusion. Tracking performance is im-
proved by replacing the quaternion for the lower arm with the IMU’s data (respec-
tive third plots from the left), although the latter contains IMU drift. The drift IMU

is emphasized when the upper arm is also tracked by an IMU (rightmost plots).

Due to the aforementioned difficulties to track the wrist with the Kinect alone
when major parts of the dominant arm are occluded, as can be seen in Figure 3.4
from setting B, the quantitative analysis is focused on the Kinect’s optimal position
and a more occlusion-prone sample. This will allow a comparison of the Kinect’s
best-case performance to track the wrist position, compared to when the upper and
lower arm is tracked with a smartwatch.

3.3.3 Quantitative Analysis

The quantitative analysis is focused on setting A and thus compares the IMU to the
Kinect in a best-case scenario. To assess the performance of the different setups, three
quantitative performance measures are introduced: The Shape Fit, the Shape Coverage,
and the Trace Continuity. For the first two measures, the euclidean distances between
the quantized ground truth points and the recorded trace points of the shapes are
calculated.

• The Shape Fit is given as the mean and standard deviation of the distances of all
single sample points to their respective nearest ground truth points and tells
how well the trace points are aligned to the ground truth. Missing trace points
or a hole in the trace point pattern (see Figure 3.5), however, cannot be detected
due to the distance-to-nearest-point calculation.
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• The Shape Coverage measure reflects a hole or strong deviation of the sample
pattern that always occurs at nearly the same position. It is obtained by comput-
ing the mean and the standard deviation of the distances of all single ground
truth point to their respective nearest sample point from the recordings. Since
only the nearest sample points to the shape are considered, it only reflects how
well the best individual trace points are aligned to the shape, not how well the
overall trace fits the ground truth pattern.

• The Trace Continuity measures the average distance between successive trace
points. Since all sensors captured their data on the same recordings and data
has a constant sampling rate, i.e. there are no differences in movement speed,
this measure indicates how continuous the trace signal is. If a lot of holes or
jumps are in the data, the average distance and the standard deviation increase.

Table 3.1: Shape Fit and Shape Coverage measured as average distance between great rectangle
or great circle traces and respective ground truth points, and Trace Continuity (TC)
measured as average distance between successive trace points.

Shape Fit [cm] Shape Coverage [cm] TC [mm]

Setup Rectangle Circle Rectangle Circle All Data

µ σ µ σ µ σ µ σ µ σ

K 4.89 3.36 5.05 3.49 4.53 3.23 4.43 3.17 3.06 4.83

K + W 4.93 3.43 5.15 3.76 3.74 2.90 4.65 3.51 2.81 4.26

K + W + A 6.86 3.03 7.40 4.40 5.99 2.77 7.21 4.15 2.21 1.66

The Shape Fit, Shape Coverage and Trace Continuity (TC) of the overall data set are
listed in table 3.1. The Kinect (K) and Kinect + Wrist (K + W) setup perform in
terms of the Shape Fit with mean values of 4.89cm (K) and 4.93cm (K + W) on the
rectangle and 5.05cm (K) and 5.15cm (K + W) on the circle equally well. The wrist
sensing thus can easily be replaced by an IMU sensor. The Shape Coverage measure
furthermore indicates with mean values of 4.53cm (K) and 3.74cm (K + W) on the
rectangle and 4.43cm (K) and 4.65cm (K + W) on the circle that at least for the
rectangle a better Shape Coverage can be achieved by using a wrist-worn IMU. Using
an additional IMU worn on the upper arm as in the Kinect + Wrist + Arm (K + W + A)
sensor setup introduces errors in the kinematic chain that add up and lead to larger
errors on the wrist position. Both, the Shape Fit and the Shape Coverage are with mean
values of 6.86mm and 5.99mm, respectively, much worse than for the other setups.
In setting A, where the whole body is seen by the Kinect, the arm mounted IMU

therefore does not bring benefits with respect to these measures.
The Trace Continuity on the other hand clearly indicates an advantage of using

multiple IMU sensors to track the arm. With increasing amount of IMU sensors, the
mean values and standard deviations of the Trace Continuity successively decrease
from 3.06mm and 4.83mm (K) over 2.81mm and 4.26mm (K + W) down to 2.21mm

and 1.66mm (K + W + A). This confirms the observation from the visual inspection
that due to occlusion events a continuous trace cannot easily be achieved by the
Kinect alone.
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3.3.4 Conclusions

Wrist-worn IMUs are embedded in most smartwatches and can be used to track the
wrist’s orientation and motion. It is shown how IMU data can improve the capturing
of a person’s body in a scenario, where the tracking accuracy of the dominant hand
is especially important. From the experiment focused on an optimal placement and
orientation of the Kinect towards the user (setting A) furthermore follows that a
combination of depth imaging and a wrist-worn smartwatch delivers more robust
data: The Kinect suffered severely from self-occlusions of the arm when facing the
board, and results from where the arm’s segments were replaced with IMU data were
significantly better, despite minor sensor drift. Especially when a smooth trajectory
is required, an additional usage of IMUs to capture the arm can be recommended.

3.4 matching inertial to optical motion data

In this section, a method is presented that allows combining inertial and optical mo-
tion data in real-time and without the need of camera-to-IMU calibration, by linking
wireless data streams from IMU-based wearables to sets of joints recognized in a
camera’s field of view, as depicted in Figure 3.6.

Figure 3.6: The proposed method enables to match wireless streams of IMU data from a wear-
able device (red) to sets of body joints that have been optically tracked from an
environmental camera (green). Once associated, the camera could then send back
the user’s full body poses to the right wearable as a service.

The idea behind this scenario is that the wireless capabilities of a wearable enable
it to stream its orientation, and thus the orientation of the body joint it is attached on,
to a camera system in the environment. The observing cameras in turn are able to
capture multiple body joints in real-time, provided that those joints are not blocked
by surrounding objects, people, or are not out-of-frame. These camera-based sys-
tems in the environment could return the full-body joint estimations as well as other
valuable information about the user and its surroundings, such as the user’s indoor
position, back to the user’s wearable as a service. As a result, the wearable becomes
aware of its user’s full body posture and location over time, without requiring users
to wear a large number of devices. The body-worn devices on the other hand are
not susceptible to occlusion or lighting conditions and can provide valuable data for
a seamless body tracking or to resolve ambiguities. For instance, they can be used
to enable the reidentification of a user after leaving and again entering the field of
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view of a camera. Such complementing modalities can be extremely useful in appli-
cations that require full-body tracking, such as virtual reality, character simulation,
gesture controlled systems, or activity recognition. In the case of an unknown sensor
setup, the proposed method furthermore helps reducing the complexity for setting
up such applications as it is able to automatically associate a body-worn device with
its respective limb, making a manual assignment of a sensor to the limb it is attached
on obsolete. Another promising application is indoor localization, where a person’s
position, as estimated from a camera system, can be forwarded to a wearable that
was identified to be worn by that person.

When it comes to an efficient method to identify the person wearing the inertial
sensing device, or detecting the body part that device is worn on, the literature pro-
vides only few works that did something coarsely related. Proposed methods try to
track moving objects or people by observing and relating their inertial measurement
data and their visible movement in the image frame [62, 72]. These methods, how-
ever, are not designed to identify the persons by their body-worn IMU in the first
place and the IMU still has to be assigned manually to the person wearing it. The
proposed method thus closes a gap in the research.

3.4.1 Method

The method for locating IMUs in depth video footage consists of three steps. In a first
step, the persons and their respective posture needs to be detected. In this case, this is
done by the Kinect v2 framework using the method proposed by Shotton et al. [150].
In a second step, the single limbs’ orientation estimates from the depth-based pose
estimation process need to be compared to the orientation data coming from the
IMU with respect to their similarity. In total, four different comparison measures
are introduced in the following section. As a last step, the limb-IMU pair that is
closest within a certain time frame needs to be identified, taking into account the
aforementioned comparison measures.

3.4.1.1 Quaternion Comparison Measures

In total, four different comparison measures are introduced in this section that can
subsequently be used to match unit quaternions with respect to their similarity.
Given the quaternions’ bases agree upon the axes of rotation and assuming small
camera-IMU and IMU-limb offsets, from (3.2) follows that qI ≈ qC. A first, straight-
forward option thus is to use the (1) Quaternion angle or geodesic angle between
two quaternions. It is computed with the quaternion dot product as in (3.6).

dq(qI,qC) = 2 arccos |⟨qI,qC⟩| (3.6)

As estimates of the limb joints from camera-based systems tend to be unstable
and suffer from randomly swapping around the limb’s direction, especially in the
case of the forearms, a second measure would be the (2) Stable quaternion angle. It
makes use of the quaternion swing-twist-decomposition and only keeps the swing
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part around the limb direction, in this case the X-axis. The swing quaternion then is
forwarded to (3.6) to obtain (3.7):

dq,stable(qI,qC) = dq(swing(qI), swing(qC)) (3.7)

Using the stable quaternion angle also is useful if the IMU’s rotational offset around
the attached limb is not known or when from the camera-based pose estimation only
joint positions are available. The sensor’s axis in the direction of the limb, however,
has to be known.

Since the assumptions for small reference system offsets made in above metrics do
not hold in general, the (3) Independent quaternion angle is proposed. Reorganizing
equation (3.4) to qA = qX ◦ qB ◦ qx and considering that the real parts at both sides
need to be the same, yields:

ℜ(qA) = ℜ(qX ◦ qB ◦ qx)

= w2
xwB −wxv⃗X · v⃗B +wBv⃗X · v⃗B

+wBv⃗X · v⃗X + v⃗X × v⃗B · v⃗X
= wB(w

2
X + v⃗X · v⃗X) = wB = ℜ(qB)

(3.8)

From (3.8) follows that the real parts of qA and qB are equal, meaning that qX can
safely be discarded. Intuitively, (3.8) can be interpreted as: The amount of rotation or
the angle in between two successive measurements at times t and t+ i measured by
both sensors needs to be the same, independent of the direction or axis of rotation
of each. This makes sense since the limb rotation does not depend on the sensor
alignment.

With qA = qI(t + i) ◦ qI(t) and qB = qC(t + i) ◦ qC(t), both representing the
rotation from the respective quaternion q(t) to q(t+ i), and considering that both
comprise the same amount of rotation in between time points t and t+ i, the angle
between both can be computed using (3.6). The independent distance metric then is
defined as:

dind(qI,qC) = |dq(qI(t),qI(t+ i)) − dq(qC(t),qC(t+ i))| (3.9)

Considering stability issues of the camera-based limb orientation estimation, sim-
ilar to the stable quaternion angle, furthermore, the (4) Independent stable quater-
nion angle is introduced. It is based on (3.9), but instead only uses the swing com-
ponent of a quaternion, as stated in (3.10).

dind,stable(qI,qC) = dind(swing(qI), swing(qC)) (3.10)

3.4.1.2 Discrete Joint Matching

To find the body joint that was picked up by the camera and that matches the wear-
able’s IMU orientation sequence best, first a distance matrix D[k][n] for each camera
joint k and sample n is computed using any of the four distance metrics described
above. Given a distance matrix D, (3.11) then computes the most likely camera joint
k the IMU is attached to at time t and within a window comprising w samples.

match(D, t,w) = arg min
k

1

w

t+w∑
n=t

∣∣∣D[k][n]
∣∣∣ (3.11)
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Equation (3.11) allows to identify the limb position of an IMU at any time point t
independently, even if its location on the body or the person wearing it has changed
in the meantime.

3.4.2 Study Design

To validate the proposed method, a dataset is collected in which three participants
are simultaneously captured by a Kinect v2 depth camera while performing near-
synchronized movements. One of the study participants was wearing an IMU device
that delivered quaternions wirelessly to a system attached to the Kinect, in which
also all the participants’ joints are calculated from the depth data in real-time. The
IMU was worn in two different constellations: (1) on the wrist, as one would wear
a smart watch, and (2) in the user’s pocket, as one might carry a smartphone. To
make the task of estimating on which joint (of overall 42 optically detected joints)
the IMU is worn particularly challenging, these three different scenarios with high
synchronicity were chosen to evaluate the performance of the methods:

• (A) The Macarena line dance, in which participants tend to move one limb at a
time, in a synchronous fashion. Participants were at the start of the recording
only sightly familiar with the Macarena movements and started asynchronous,
though they improved after a few repetitions through listening to and watching
the music video as they performed the dance.

• (B) The head, shoulders, knees and toes exercise for children, causing participants
to move their left and right limbs synchronously. Motion sequences are shorter
for this scenario, and participants quickly became familiar with the few move-
ment sequences for this exercise.

• (C) The participants walking along the room parallel to the camera’s line of sight
in a synchronous fashion. In this scenario, the participant with the wearable
set the pace whereas the two others were trying to walk in the same pace and
rhythm.

For scenarios (A) and (B), the IMU was worn on the right wrist with negligible
IMU-limb offset, and for the walking scenario (C), the IMU was worn in the front
left pocket with the IMU not being properly aligned to the limb. The camera-IMU

offset was about 25° and the IMU was worn by the same participant in all scenarios.
Recording times are (A) 95 s, (B) 45 s, and (C) 64 s.

3.4.2.1 Sensors and Data Preprocessing

The wearable IMU that is used in this study is a custom wireless sensor module
that is built around the Bosch BNO055 IMU, delivering the sensor’s orientation as a
quaternion at a sampling speed of 100 Hz. It can be used as a single sensor, or com-
bined in a network of multiple IMUs, using Nordic Semiconductor’s nRF24L01 low-
power transceivers. It runs approximately for 18 hours continuously with a miniature
400 mA battery. For the estimation of the users’ joints from the environment, a Kinect
v2 framework is used as a well-known depth camera system that performs optical
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tracking of users’ body joints through a method presented by Shotton et al. [150]. For
the datasets generated in the experiments, the detected body joints of all users are
stored as unit quaternions at a sampling rate of 30 Hz. The wearable’s stream thus
is downsampled in order to be able to focus on the matching itself.

To enable the use of the simple quaternion distance metrics, i.e. the quaternion
angle and the stable quaternion angle, the quaternions’ bases are remapped to a
common coordinate system such that they agree upon the axes of rotation. This step
is not required for the independent methods, but the mapping usually is known from
the used sensing devices and it allows a comparison of the proposed independent
methods to the more simple approaches as described in Section 3.4.1.1.

3.4.3 Evaluation

Figure 3.7: Joint distances from stable quaternion distance, equation (3.7), of the Macarena
line dance, with evaluated joints in the rows and samples in the columns. Blue
being low and yellow being high distances. Joint classification using a window
size of w = 20 samples is indicated with magenta edges. The IMU was attached to
the Body3/WristRight joint.

For the evaluation results below, equation (3.11) is evaluated for all distance mea-
sures (also see 3.4.1.1). For the independent metrics (3.9) and (3.10), the time offset
parameter is set to i = 7. At lower values, especially at i = 1, the estimation accu-
racy degrades as there is insufficient movement in between successive samples. An
example visualization of the distance matrix from the stable quaternion metric is
shown in Figure 3.7. It nicely visualizes the dynamics of the joint distances caused
by the rhythm of the Macarena line dance. The IMU hereby was attached to the
"Body3/WristRight" joint and the corresponding joint classification is highlighted
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in magenta. Although locally other joints have a smaller distance, within broader
windows it will overall have the closest distance to the IMU.

3.4.3.1 Joint Matching Accuracy

To assess the performance of the different metrics, the window length w step-wise
is increased and for each w all samples are classified by moving the window over
the respective distance sequence. The joint matching accuracy is computed as the
amount of correctly classified window positions divided by the total number of win-
dow positions available for a certain w. Figure 3.8 shows the matching accuracy of
all three scenarios against an increasing window length w of the moving window.

Figure 3.8: Accuracy of the different matching methods, plotted for the different experiment
scenarios with increasing window sizes w. The IMU sensor was worn on the wrist
in the Macarena and Head, shoulders, knees, and toes scenarios. For walking,
it was worn on the hip. The proposed independent stable quaternion angle metric
can accurately match the correct joint in all scenarios. Depending on the scenario,
other metrics nevertheless can show a slightly better performance.

In scenario (A), the stable independent angle distance is the only metric that
achieves 100% accuracy, i.e. the correct match can be found at any time. It converges
beyond window lengths of w = 128 samples (4.27 seconds) and already is close to
100% at w = 96 (3.2s). The stable quaternion metric reaches its maximum of 87%
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at w = 195 (or 6.5s) and the quaternion angle metric stays with small deviations at
about 45% over all window lengths. The independent quaternion angle peaks with
17% at w = 14 and afterwards decreases to 0%. Since the Kinect v2 has difficulties
in correctly estimating the twist orientation of wrist joints, with large angular offsets
on successive samples, the methods that are not stable against such errors can not
correctly assign the wrist-worn IMU to the matching joint. Especially the indepen-
dent quaternion angle requires successive samples of both streams to have similar
changes in rotation.

A similar behaviour can be observed in scenario (B). The large errors in the cam-
era’s wrist orientation estimates cause the independent quaternion angle metric to
match other joints that comprise smaller deviations around any axis, resulting in
close to 0% or 0% accuracy at all window lengths. The stable independent quater-
nion angle is able to remove the twist rotation of the wrist and converges to 100%
accuracy above a window length of w = 155 samples (or 5.2s). The stable quaternion
distance metric in this scenario converges fastest to 100% accuracy above window
lengths of about w = 75 samples (2.5s). The quaternion distance requires at least
w = 246 samples (or 8.2s) to accurately match the correct joint. In contrast to scenario
(A), here both the stable and normal quaternion angle metrics can more efficiently
match the correct joint. One reason for this might be that during the Macarena line
dance only one limb at a time is moved while during the head, shoulders, knees, and
toes exercise many limbs are moved simultaneously and thus any ambiguities can
be resolved within smaller time windows.

For the walking scenario (C), only the independent quaternion angle metric and
its stable variant are able to correctly assign the IMU to the upper left leg. The first
metric hereby converges faster to 100% accuracy at window lengths above w = 83

samples (2.8s), closely followed by the stable version at above w = 108 samples (3.6s).
All other distance metrics can not at all match the IMU to the correct camera joint. The
reason is that in this scenario the IMU is not well aligned to the limb and due to this
offset any other random camera joint appears to be closer to the sensor orientation
at any time.

3.4.3.2 IMU-to-Camera Offset

For the case in which the IMU-to-camera offset is not known in advance, the effect
is modelled on the assignment accuracy by step-wise increasing the offset from -
180° to 180° around the camera’s up-axis, with 0° being the unchanged orientation.
Figure 3.9 plots the accuracy of all activities against varying IMU-to-camera offsets at
a fixed window length of w = 50 samples.
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Figure 3.9: Accuracy of the assignment with different IMU-to-camera offsets along the up-
axis at a window length of 50 samples, for the three scenarios. Top: Macarena (A);
Middle: Head, shoulders, knees, and toes (B); Bottom: Walking (C). For scenarios
(A) and (B), the IMU was worn on the wrist, for scenario (C), the IMU was worn
on the hip.

In scenario (A), the accuracy of the quaternion angle peaks with 47% at -3°. Its
stable variant reaches its maximum of 90% in between 18° and 49°. Both metrics
decrease to 0% to both sides. The stable independent quaternion angle shows at
10° an accuracy of 85% and has a decreased performance to both sides, however
without dropping to 0%. As this metric relies on the swing-twist decomposition of
the measured quaternions, it is not fully independent from the IMU-to-camera offset.
The independent quaternion distance is not affected by any rotation offset, but has
a low accuracy of about 10% due to the unstable wrist orientation estimates of the
Kinect v2.

A similar behaviour can be observed for scenario (B). Here the quaternion angle
metric peaks at -10° with an accuracy of about 50%, and the stable quaternion dis-
tance reaches its maximum of 100% between 3° to 35°. Both metrics drop to 0% to
both sides. The independent quaternion angle again can not deal with the wrist error
while its stable variant has its maximum accuracy of about 93% in the range of 7° to
22° and maintains an accuracy of above 45% at all other offsets.
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In scenario (C), the quaternion angle metric peaks at 65° with an accuracy of 67%
and drops to 0% at both sides. Its stable version remains at 0% for all camera offsets.
It is assumed that the quaternion distance metric is at the 65° offset more likely to
match the correct joint due to comprising additional rotation information around the
X-axis. The independent quaternion angle does not suffer from erroneous camera
joint estimates and stays at an accuracy of 96% over the whole range of camera
offsets, showing the advantage of truly being independent. Its stable version has its
maximum accuracy of 92% between -43° and 25°. Two local minima of about 20%
and 27% are between -127° to -98° and at 66°.

3.4.4 Discussion

The dataset comprises many relevant challenges of IMU to camera joint matching,
namely synchronous movements, erroneous joint orientation estimates, IMU-limb
and IMU-camera misalignments, and asynchronous sampling rates. It, however, does
not contain a scenario with regular occlusion events and it is with only three differ-
ent scenarios, three participants and only one IMU per scenario somewhat limited to
draw final conclusions about its robustness in real world environments. Especially
in case of occlusions, its performance is likely to decrease significantly, but once a
joint was successfully associated, a continuous tracking through both complemen-
tary modalities is facilitated. Both independent quaternion angle methods do not
require calibration, but, in contrast to both other metrics, require user movement
for the matching process in all circumstances. The independent quaternion distance
metric, however, is susceptible against estimation errors. Its stabilized version can
compensate for that, but is, due to the swing-twist decomposition being affected by
calibration parameters, less robust against calibration offsets. All proposed metrics
only require a few processor instructions and can be computed in parallel for all IMU-
camera joint combinations, thus being highly performant even for large numbers of
joints. The most important tasks for the future work are to evaluate the methods on
a broader dataset, including more sensors as well as occlusion events, and to tackle
the dependency of the swing-twist decomposition on calibration parameters.

3.4.5 Conclusions

The proposed method allows the quaternion stream from a wearable IMU sensor to be
matched, on the fly, with quaternion estimates extracted from an optical sensor (e.g.,
a depth camera), thus allowing to track the user’s full body posture over time. The
method accounts for different coordinate systems, as well as inaccuracies that tend
to be present in optical body pose estimation frameworks (such as sudden twists in
the estimates from the wrists).

A series of experiments was conducted, with participants performing synchronous
dance routines, using a 30 Hz depth camera and body-worn IMU sensors. Results
show that the proposed method can find the matching joint of the correct user within
75 to 128 samples (or 2.5 to 4.3 seconds) at the wrist, using the stable or the indepen-
dent stable quaternion metrics respectively. The independent stable metric overall is
the better measure in scenarios (A) and (B) since it delivers optimal results in both.
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For walking, when the IMU is placed at the pocket of the upper leg, best results are
obtained from any of both independent quaternion metrics that find the matching
joint within 83 to 108 samples (or 2.8 to 3.6 seconds). While the standard quaternion
distance metrics may have their benefits in calibrated scenes, the calibration indepen-
dent metrics have their big advantage in environments with unknown setups. Both
the stable and normal distance measures have shown to have their specific area of
application, depending on the stability of the joint orientation estimates.

3.5 summary

In this chapter, it was shown how complementary motion sensing from optical and
inertial MoCap techniques can be achieved and what considerations have to be taken
into account. In a short case study with 10 participants, it was shown how a com-
bined use of both modalities can improve the capturing of a person’s wrist and upper
arm by mitigating detrimental effects of occlusion events on optical motion data with
occlusion-free inertial data. Furthermore, a method was proposed that enables the
identification of the person and the limb an inertial sensing device is worn on within
a stream of motion data obtained from an observing depth camera. Results of the
evaluation show that the correct person and limb can be found within 2.5 to 4.3 sec-
onds, depending on the scenario and the used metric for matching. The proposed
method can be considered an important algorithmic component for combining in-
ertial and optical motion data that enables a variety of applications beyond mere
motion capturing: The identification makes it possible to establish a communication
between the different devices, which then can transmit all kinds of person related
data. This ranges from contextual or environmental data of a person’s surroundings
over a person’s position, for instance to enable indoor localization on a wearable de-
vice, up to externally measured physiological data, for instance a person’s breathing
(also see Section 5). Moreover, the literature so far provides only few works that did
something coarsely related to identifying a person and limb in a video stream, i.e.
few works try to track moving objects or people by correlating inertial data to visual
motion in video streams [62, 72]. The proposed method thus closes a gap in this
research.
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4
C O M P R E S S I N G M O T I O N D ATA W I T H P I E C E W I S E L I N E A R
A P P R O X I M AT I O N

This chapter is based on the peer reviewed publication [54], where I am the second author of
the publication. It has been edited to primarily reflect my contributions to this joint work. The
idea of applying piecewise linear approximation on quaternion-based motion data originates
from me, while the PLA method fastSW was contributed by Florian Grützmacher (F.G.). F.G.
already described fastSW itself in his dissertation [51], but not in the context of compressing
quaternion-based motion data. The different authors’ contributions, as also stated on the
publication, are as follows (with J.K. being me): Conceptualization of fastSW: F.G.; analysis
w.r.t. quaternion-based orientation sensor signals: F.G. and J.K.; dataset preparation: J.K.;
experimental evaluation: F.G. and J.K.; software: F.G.; formal and experimental analysis of
execution time: F.G.; visualization: J.K.; writing: F.G., J.K., K.V.L. and C.H.; supervision:
K.V.L. and C.H.

4.1 introduction

Many applications require motion trajectories with a high resolution, for instance to
avoid visible motion artifacts and to pick up even fine nuances of user motion during
a Motion Capturing (MoCap) session, but also to ensure not to miss important signal
features in applications such as activity recognition or when combining different
modalities to achieve complementary motion sensing. This demand on data requires
a high sampling rate on all connected devices and likewise requires them to transmit
a substantial amount of motion data. Some of these devices or the system itself, how-
ever, may only have limited resources in terms of battery capacity, bandwidth, pro-
cessing power, or memory. This especially is true for inertial MoCap systems, which
often consist of several stand-alone sensor units with wireless communication capac-
ities. For some applications, such as activity recognition, also common commercial
wearable devices with an integrated Inertial Measurement Unit (IMU), for instance
smartwatches, fitness tracker, or earbuds, are used to track a user’s motion and a
farseeing usage of system resources is desired. High sampling and communication
rates of wireless low-power networks, such as Bluetooth Low Energy (BLE), on the
other hand still impose a drastic increase in total device energy consumption [45, 53].
The main drawback in this case is a limited battery capacity. A convenient way to in-
crease the system lifetime at high sampling rates is to reduce the amount of data to be
transmitted. Incidentally, a data reduction will also decrease memory requirements.
For this reason, a feasible compression scheme is required that efficiently works in
environments with limited resources and thus can directly be deployed on the sens-
ing device itself. In this section, such an algorithm will be proposed. It exploits the
circumstance that human motion usually is not performed on all limbs simultane-
ously and that it is rarely performed at high rates of change. Most limbs most of the
time will not move a lot and if, these limbs are expected to move at a relatively steady
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pace, i.e. with no sudden interruptions or direction changes. Consequently, a consid-
erable amount of energy can be saved if the transmission of sensor samples with little
to no additional information is avoided, for instance, if the observed person is stand-
ing still or only moves a single limb. The proposed compression algorithm is based
on Piecewise Linear Approximation (PLA), a technique that approximates time se-
ries signals with linear segments that are guaranteed to be bound by a user-defined
upper segment error. PLA techniques have previously been applied successfully to
one-dimensional or multi-dimensional data, including IMU data such as accelera-
tion or angular velocity, where it for instance was used to extract and represent the
characteristic signal information for the purpose of activity and gesture recognition.
Prominent solutions include recognition techniques by dense motif discovery [17], or
continuous string and sequence matching algorithms [155, 161], respectively. To date,
and to the best of our knowledge, PLA techniques, however, have not been applied
to orientation data or to quaternion-based signals in particular in the literature.

A promising scenario of applying piecewise linear approximation on unit quater-
nions would be the reduction of MoCap data, not only to reduce the amount of data
to be transmitted, as discussed above, but also to reduce the file size of MoCap record-
ings themselves. MoCap files typically comprise an orientation sample for each cap-
tured joint and for every single frame, quickly summing up to a significant amount
of data on high frame rates. In contrast to that, man-made animations typically only
comprise a couple of keyframes that mark a change in limb movement and that
are used to interpolate the missing data in between to achieve a fluid animation,
often with the help of animation curves. Although consuming more memory than
an animation file, a MoCap file thus does not necessarily comprise more informa-
tion or more detailed motion features. In this scenario, PLA can extract reasonable
keyframes from the original MoCap data by rejecting data with little or no informa-
tion, e.g. from static joints or linear limb movements that can easily be interpolated
from key poses. When the data can be compressed directly on the sensing device,
furthermore, the required data traffic can substantially be reduced. This not only
applies to MoCap scenarios, but also to applications like activity recognition or even
telemedicine and rehabilitation, for instance for IMU-based gait analysis such as pre-
sented in [22] or [136].

As will be investigated in Section 4.2, unit quaternions require some special at-
tention when being compressed with PLA, such as producing segment points that
are a subset of the original sensor samples or producing connected linear segments
to enable a successful interpolation of linear segments for the reconstruction of the
original signal. Furthermore, a fast and scalable PLA algorithm is required that can
run efficiently on wireless sensing devices. While such algorithms exist, these do not
adhere to the aforementioned requirements on unit quaternions and, in turn, other
existing PLA algorithms that do adhere to these requirements do not provide for an
efficient processing of the sensor signals.

To fill this gap in the state-of-the-art, in this chapter, a new online PLA algorithm
is proposed that combines efficient and scalable performance with the ability to ap-
proximate quaternion-based orientation sensor signals. The novel method will be
referred to as fastSW.
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4.2 piecewise linear approximation of unit quaternions

When using quaternions to represent 3D orientations, it is of high importance that
these quaternions are unit quaternions, i.e. they have a length of one. Otherwise,
they have to be normalized before any operation to avoid undesired effects, such as a
vector being scaled when rotating it with a non-unit quaternion or yielding incorrect
results from spherical linear interpolation. Also, during quaternion multiplications,
even small errors and deviations from unit length can accumulate rapidly. Due to
floating point precision, a quaternion should also be normalized from time to time
when a lot of quaternion multiplications are performed.

This constraint on quaternions plays an important role when applying a PLA algo-
rithm on quaternion-based IMU sensor signals since some algorithms produce seg-
ment points that deviate from the original data. This is generally the case with PLA

algorithms based on linear regression, such as Connected Piecewise Linear Regres-
sion (CPLR) and Swing Filter (SF). They extrapolate segment points from regression
lines and thus do not preserve original signal values (also see column POS in Ta-
ble 2.1). Furthermore, this extrapolation scales the signal unequally among its axes
and after normalization, the resulting unit quaternion represents a different rotation.
At higher compression ratios, this results in even higher angular deviations as com-
pared to the original data, which understandably is an undesired behaviour. Other
PLA methods produce segment points that are a subset of the original data and thus
do not introduce such deviations to the sensor signal. One example hereby is the
Sliding Window (SW) algorithm. Figure 4.1 depicts the segment points produced by
CPLR, SF, SW, and the proposed method fastSW at a similar compression ratio in order
to illustrate the differences of these methods. While segment points of CPLR and SF

do not necessarily lie on the original data, segment points approximated by SW (or
fastSW) are guaranteed to lie on it, as will be explained in more detail in Section 4.3.

SW is an ideal candidate for the compression of quaternion-based motion data. It
preserves the original sensor samples in the produced segment points and at the
same time is one of the most efficient state-of-the-art PLA algorithms. Another impor-
tant aspect is that SW produces connected segments, a necessary requirement to en-
sure a smooth reconstruction of the motion data without any visible motion artifacts
between the single segments. The major drawback of SW is its linear execution time
and memory complexity per sensor sample with respect to the produced segment
lengths (see Table 2.1). This limits its effective compression ratio. A higher compres-
sion ratio requires higher segment lengths and thus more memory and processing
capacity, which might both be limited, especially on stand-alone sensor devices.

To overcome this limitation, a novel PLA algorithm is introduced in the next section.
It is based on SW and leads to mathematically identical PLA results, but at a O(1)

complexity in terms of execution time and memory requirements when processing
a new sample. Hence, It is referred to as fastSW.
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Figure 4.1: Example of the produced segment points of the different PLA methods at a com-
pression ratio of approximately 5% of the original size. Shown are from top to
bottom: The original data and, with the produced segment points overlaid, CPLR,
SF, SW, and fastSW (the proposed method). The original quaternion data originates
from the left shank of the fast-paced running on spot activity of user MR from the
TNT15 dataset [112]. While SW and fastSW create segment points that are a subset
of the original data, the segment points of CPLR and SF do not necessarily lie on
the original data and moreover deviate on each axis with a different offset [54].

4.3 efficient piecewise linear approximation with fastsw

Attribution: The proposed method fastSW, as described in this section, was conceptualized and
implemented by Florian Grützmacher from the University of Rostock and was published in
our joint publication [54]. It is described here in detail by myself, using the original formulae
and algorithm, for the sake of completeness.

This section introduces a novel PLA method, which is based on the SW algorithm
and in the following will be referred to as fastSW. Analogous to SW, it creates for each
new (n-th) sensor sample within a series of measurements a temporary segment that
approximates the original signal with a linear function β · t. The variable β hereby
represents the slope vector of the D-dimensional segment and t describes the length
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in time of that segment, respectively. Each slope vector entry βd can be computed
from the value of the current sensor sample sn, the value of the segmentation point
s̃i−1 of the last segment i− 1, and the time t = τ(sn) − τ(s̃i−1) between them, as
defined in (4.1):

βd =
υ(sn,d) − υ(s̃i−1,d)

t
, d = 1, . . . ,D (4.1)

The index n of the most recent sample within the currently developing segment is
reset to one each time a new segment point i is created since this sample will be set
as the first sample of the next segment i+ 1.

To know when a new segment with a different slope needs to be created, a measure
for the error between the approximating segment and the original data is required. In
the SW algorithm, this error is based on the Sum of Squared Residuals (SSR) between
the current segment (s̃i−1, sn) and the respective part of the original signal. It is
defined as:

SSRn =

n∑
j=1

D∑
d=1

(
yd,j −βd · tj

)2 (4.2)

The variables yd,j and tj are relative to the current (i-th) segment’s start and rep-
resent the amplitude and the timestamp of the j-th sensor sample within the current
segment. Both are computed as yd,j = υ(sj,d) − υ(s̃i−1,d) and tj = τ(sj) − τ(s̃i−1).

To compute the segment’s SSR, the SW algorithm buffers all original samples and
iterates over these each time a new sample is added, which leads to a linear time
complexity at this point. To achieve a constant time update of the segment’s SSR error,
fastSW follows a different approach. Equation (4.2) can be reordered by applying
binomial expansion and swapping the two commutative sums to yield Equation (4.3):

SSRn =

D∑
d=1

 n∑
j=1

(
y2
d,j

)
− 2βd

n∑
j=1

(
tj · yd,j

)
+β2

d

n∑
j=1

(
t2j
) (4.3)

The outer sum over the signal’s dimension D is independent of the segment length
and the individual inner sums over n now can be updated in constant time. To avoid
numerical issues on large sums that span a wide range of values, the inner sums
of Equation (4.3) furthermore are substituted by corresponding mean values. These
mean values are updated instead and yield the actual value of the respective sum
when multiplied by n. They are defined as:

n∑
j=1

(
y2
d,j

)
= y2

d,n ·n (4.4)

n∑
j=1

(
tj · yd,j

)
= tyd,n ·n (4.5)

n∑
j=1

t2j = t2n ·n (4.6)
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The means y2
d,n, tyd,n, and t2n themselves are updated as:

y2
d,n = y2

dn−1 +
y2

dn−1 − y2
d,n

n
(4.7)

tyd,n = tydn−1 +
tydn−1 − tn · yd,n

n
(4.8)

t2n = t2n−1 +
t2n−1 − t2n

n
(4.9)

By substituting the sums by the means, Equation (4.3) now becomes:

SSRn =

D∑
d=1

(
y2
d,n − 2βdtyd,n +β2

dt
2
n

)
·n (4.10)

Equation (4.10) allows an update of the segment error SSRn that only has a linear
time complexity with respect to the signal’s dimension D. Since Quaternion-based
sensor signals have a constant dimension of D = 4, the update of the segment error
also becomes constant. This difference in the computation of the SSR distinguishes
fastSW from SW. The fastSW algorithm thus can be implemented by substituting the
SSR computation of the SW algorithm with the newly developed approach using
Equations (4.7) to (4.10). The pseudo-code of fastSW can be found in Algorithm 1.
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Algorithm 1 fastSW [54].

1: procedure PROCESS_SAMPLE(sample s, segment array S̃[], index i)
2: n := n+ 1

3: SSRn := 0

4: tn := timestamp(s) − timestamp(S̃[i− 1])

5: for d in (1, . . . ,D) do
6: yn[d] := value(s,d) − value(S̃[i− 1],d)
7: β[d] := yn[d]/tn[d]

8: SSRn := SSRn + (y2
n−1[d] − 2β[d] · tyn−1[d] +β[d]2 · t2n−1) · (n− 1)

9: if SSRn <= TH then
10: t2n−1 := t2n−1 + ((tn · tn) − t2n−1)/n

11: for d in (1, . . . ,D) do
12: tyn−1[d] := tyn−1[d] + ((tn · yn[d]) − tyn−1[d])/n

13: y2
n−1[d] := y2

n−1[d] + ((yn[d] · yn[d]) − y2
n−1[d])/n

14: sn−1 := s

15: return 0

16: S̃[i] := sn−1

17: sn−1 := s

18: n := 1

19: tn := timestamp(s) − timestamp(S̃[i])

20: t2n−1 := tn · tn
21: for d in (1, . . . ,D) do
22: yn[d] := value(s,d) − value(S̃[i],d)
23: tyn−1[d] := tn · yn[d]

24: y2
n−1[d] := yn[d] · yn[d]

25: return 1

The array of segment points S̃[] in Algorithm 1 needs to be initialized with the
very first sensor sample since the first sensor sample will also be the first segment
point in the list. Consequently, the function PROCESS_SAMPLE is not invocated for the
first sample, but each time a new sample sj arrives. The function’s parameters are
the current sensor sample sj to be processed, the segment array S̃[], and the index
i, referencing the end of the segment array where the next segment point will be
stored on success.

The variables n, TH, D, tyn−1[], y2
n−1[], and sn−1 are global, while all other

variables are temporary. The user defined variables TH and D represent the error
threshold at which a new segment will be started and the dimensionality of the
sensor signal, respectively, and need to be set by the user accordingly. A higher
threshold will likely lead to a higher compression. All other global variables need to
be initialized with zero. The function returns zero to indicate that no new segment
point was created. Otherwise it returns one. In the latter case, the index i needs to
be incremented by one before the next invocation of PROCESS_SAMPLE.
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4.4 evaluation

For the evaluation, a selection of the most efficient state-of-the-art methods that
provide PLAs with connected segments are implemented to process 4-dimensional
quaternion data (see Table 2.1). Namely, these are CPLR, SF, SW, and the proposed
method fastSW. Although CPLR, SF, and fastSW do not require a segment length lim-
itation, all methods are implemented to have a maximum segment length of 1000

samples, which is enforced to ensure comparable results to SW. Consequently, the
minimum achievable compressed data size will be 0.1% of the original data size.

The evaluation consists of two parts: In a first experiment, the approximation qual-
ity of all methods is assessed and compared on a public dataset. The same dataset
then is used in a second experiment to investigate the computational complexities of
the different PLA algorithms in a realistic scenario, including a Worst-Case Execution
Time (WCET) analysis on a representative architecture for wearable devices.

4.4.1 Dataset and Experiment Design

The proposed method is experimentally evaluated on the publicly available TNT15

dataset [112]. It comprises 4 actors performing 7 different activities, summing up to
a total of 28 distinct recordings with 4040 to 10,180 samples per file. The activities
include walking, running on the spot, rotating arms, jumping and skiing exercises,
dynamic punching, and two not further specified, random activities. Each recording
was performed with 10 IMUs that are attached to the shanks, thighs, lower arms,
upper arms, neck, and hip. Each sensor provides acceleration and quaternion-based
orientation data at a sampling rate of 50 Hz. For the evaluation, the acceleration data
is discarded.

The different PLA algorithms can only be compared on equal or at least similar
compression ratios, which the different PLA methods are not guaranteed to reach
when processing the same dataset. For this reason, each algorithm has to be exe-
cuted multiple times on the entire dataset, each time with a different threshold value
to ensure an appropriate range of achieved compression ratios at which they can
be compared. This is achieved by approximating each of the 28 recordings in the
TNT15 dataset at 205 different threshold values, starting at a value of 0.000001 and
logarithmically increasing evenly among 9 magnitudes up to a value of 1000.

4.4.2 Visual Inspection

Figure 4.2 illustrates the reconstruction results of the different PLA algorithms at five
different compression ratios on the running on spot activity of user MR from the
TNT15 dataset. For each method and compression ratio, it shows the same six con-
secutive frames. They are obtained by using Spherical Linear Interpolation (SLERP)
to interpolate between the respective segment points with a time step of 100 ms

between the single frames.
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CPLR SF SW / fastSW

100%

50%

25%

10%

5%

Figure 4.2: Visualization of the reconstruction results of the fast-paced running on spot activity
of user MR from the TNT15 dataset using the methods (from left to right): CPLR,
SF, and SW/fastSW. Single frames (from left to right) are taken at six different,
successive time points every 100 ms. Colors indicate the compression ratio and
are arranged from top to bottom, with: The original file (light blue), 50% (light
green), 25% (yellow), 10% (orange), and 5% (dark orange) of the original file
size. Ground truth frames (light blue) are overlaid over all frames to highlight
deviations. At 50% and 25%, a good approximation is obtained from all methods,
while higher compression ratios yield less accurate reconstructions, independent
of the method used.

Figure 4.2 is intended to provide an insight in the visual quality of the recon-
structed motion data at different compression ratios and with different PLA algo-
rithms. The general trend is that the reconstructed frames deviate more from the
ground truth frames as the compression increases. This trend is independent of the
method used and illustrates the trade-off between approximation error and compres-
sion ratio. Although SW and fastSW, in contrast to CPLR and SF, guarantee that their
segment points are a subset of the original data, large differences between CPLR, SF,
and SW or fastSW are not directly visible from the visual inspection alone. The differ-
ences between the methods will further be evaluated by looking at the data itself in
the next section.

4.4.3 Approximation Quality

To estimate the overall approximation quality of the different PLA algorithms, the
Average Angular Deviation (AAD) between the reconstructed signal and the original
signal is used. It is computed by summing up the geodesic angles between the origi-
nal sensor samples and their respective approximations and, to account for different
signal lengths, by dividing the result by the number of samples m in the original sig-
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nal. The geodesic angle between two quaternions q0 and q1 can be computed with
the quaternion dot product ⟨q0,q1⟩ as:

∆(q0,q1) = 2 arccos |⟨q0,q1⟩| (4.11)

The AAD then is defined as:

AAD =
1

m

m−1∑
i=0

∆(S[i], S̃ ′[i]) (4.12)

S̃ ′ hereby is the reconstructed signal obtained by interpolating between the seg-
ment points of the compressed PLA signal S̃ at the corresponding timestamps of the
original signal S using SLERP. SLERP hereby has a few benefits over other interpolation
techniques: It is a standard method for interpolating quaternions, retains their unit
length, gives a reasonable approximation because it interpolates along the geodesic
of the quaternion hypersphere, i.e. the shortest angle between two orientations, and
it conserves the angular velocity of the resulting rotation.

Of interest for the evaluation is the approximation quality that can be achieved at
a certain compression ratio. The Inverse Compression Ratio (ICR) is defined as the
division of the length of the compressed signal m̃ by the length of the original signal
m, as stated in:

ICR =
m̃

m
(4.13)

A lower ICR means that fewer segment points are created and thus a higher com-
pression could be achieved. In general, it can be assumed that a lower ICRs leads to
a higher approximation error, because there is a trade-off between both.

The approximation error can be plotted over the ICR, with the benefit that the dis-
tance of the resulting curve to the origin directly indicates the approximation quality
of the respective algorithm. The closer it is, the better is the respective approximation
quality. The use of a wide range of threshold values for the approximations ensures a
sufficient amount and a good coverage of the ICR ranges, effectively enabling a good
comparison between the algorithms.

For this reason, the TNT15 dataset has been approximated with CPLR, SF, SW, and
fastSW using a wide range of threshold values (see Section 4.4.1). As result, for each
algorithm, a wide range of angular deviations with the respectively achieved ICR is
obtained. From these values, the long term average, standard deviation, and maxi-
mum of the approximation error are computed and plotted over the respective ICR

as depicted in Figure 4.3. It shows how well the different PLA algorithms operate on
a variety of different movements performed by real humans wearing inertial sensing
devices.
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Figure 4.3: Average (solid line), standard deviation (shaded area), and maximum (dashed
line) of angular deviations plotted against the respective ICR as obtained by CPLR,
SF, SW, and fastSW after compressing the entire TNT15 dataset with a high range
of different threshold values to visualize the respective approximation quality of
the different methods. Colors of the shaded regions (standard deviations) mix
up and, due to the logarithmic scale of the y-axis, extend over the whole plot at
smaller ICRs. Left: Approximation quality of the reconstructed signal as compared
to the whole original signal after interpolating the produced segment points us-
ing spherical linear interpolation. Right: Approximation quality as compared to
the original signal, but only at the segment points created by the different algo-
rithms. While differences of the methods on the reconstructed signal (left plot)
are not easy to spot, they are obvious when looking at the segment points them-
selves (right plot). SW and fastSW show over the whole range of ICRs only small,
almost constant approximation errors, with slight angular deviations caused by
numerical precision issues. The approximation errors of the segment points of
CPLR and SF on the other hand are heavily influenced by the compression ratio. A
decreasing ICR causes increasing angular deviations [54].

Figure 4.3 (left) shows the angular deviations of all approximated data points after
interpolation using SLERP, while Figure 4.3 (right) only shows the angular deviations
of the segment points themselves, without interpolating between them. As expected,
SW and fastSW exhibit the same or nearly the same approximation quality on both
plots due to the same underlying concept to generate PLA segments. Small deviations
are caused by floating point precision in combination with a different mathematical
approach to compute the segment points.

In Figure 4.3 (left), the plot of interpolated data points, all methods feature a sim-
ilar approximation quality and differences of the methods are not obvious. This
changes when looking at the segment points only. In Figure 4.3 (right), a signifi-
cant difference is visible. While SW and fastSW only show small angular deviations
that, independent of the compression ratio, on average stay below 0.001°, CPLR and
SF show a dependency where with decreasing ICR the angular deviations of their
segment points increase. On an ICR of 0.01, the average angular deviation of their
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segment points reaches up to more than 40°. The main difference between the meth-
ods is, that SW and fastSW create segment points that, beside numerical precision, do
not deviate from the original data, while CPLR and SF, both linear regression-based
algorithms, create extrapolated segment points that do deviate, especially at lower
ICRs, i.e. when the compression increases. The angular deviations of CPLR and SF are
caused by an unequal scaling of the quaternion’s axes, effectively not only changing
its unit length, but also rotating it.

In summary, the correct segment points of SW or fastSW have less impact on the
approximation quality than anticipated, because they cannot compensate for missing
data and signal features in between them. Also, just the high amount of interpolated
data necessarily created on higher compression ratios causes a higher impact on the
approximation error than incorrect, but favorably placed segment points that are
used to interpolate the missing data. Accurate segment points on the other hand
still are preferable, especially because they do not need to be normalized and do not
introduce additional rotation errors, e.g. when working on the segment points alone.

4.4.4 Execution Time Analysis

Attribution: The execution time analysis, as described in this section, was performed by Flo-
rian Grützmacher from the University of Rostock and was published in our joint publica-
tion [54]. It is described here to illustrate the benefits of the method.

To assess the different PLA methods’ computational performance on real motion
data, the execution time for processing the entire TNT15 dataset is measured. The
measurements are based on taking timestamps before and after the execution of
the respective PLA function to process a single sample by using the clock_gettime

method with the CLOCK_MONOTONIC_RAW as clock source and a 1 ns time resolution.
Since in this case only the average execution time to process a sample with respect
to the average segment length is relevant to assess the computational complexity,
the experiments are performed on a standard x86_64 architecture with a Linux op-
erating system in kernel version 5.12.9 and an Intel Core i7-5600U processor. The
algorithms, furthermore, are compiled using the GNU Compiler Collection (GCC) C
compiler with version 11.1.0 [157].

Figure 4.4 depicts the average execution time over the average segment length
of the different PLA algorithms CPLR, SF, SW, and fastSW after processing the entire
TNT15 dataset on a wide range of different threshold values (see Section 4.4.1). Note
that higher average segment lengths are desired because they yield a higher com-
pression. The average execution time of CPLR, SF, and fastSW clearly is independent
of the segment length and, apart from some outliers at small segment lengths, is
constant over the whole range of segment lengths. The outliers mostly are caused by
cache misses as well as other architectural influences. SW on the other hand shows
with increasing segment lengths a linear growth in execution time (note the loga-
rithmic scale of the time axis). In direct comparison, fastSW furthermore exhibits the
lowest execution time of all methods, apart from segment lengths of around 2 or less
samples, where SW is faster.
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Figure 4.4: Average execution time per sample over the resulting average segment length on
a x86_64 architecture. Values are obtained from approximating the entire TNT15

dataset with the respective PLA algorithm using a wide range of different thresh-
old values. The execution time is plotted on a logarithmic scale. SW shows a linear
dependency of the average execution time with respect to the average segment
length, while CPLR, SF, and fastSW exhibit a constant execution time over the whole
range of segment lengths, with a few outliers caused by cache misses and other
external influences [54].

To validate the computational complexity of CPLR, SF, SW, and fastSW on wearable
devices, a WCET analysis is performed on the ARM Cortex-M4 architecture, which is
representative for wearable devices. Each algorithm therefore has been compiled for
the Cortex-M4 target platform using the Arm Embedded GCC (version 11.1.0) [157],
with floating-point unit specific calling conventions and the highest optimization
level with respect to to execution time. Here, the instruction count is used as a per-
formance measure, because it is independent of the data and, more importantly, of
the clock frequency of the specific microcontroller. To this end, the instruction counts
of the different methods are manually assessed from the compiled code and are sum-
marized in Table 4.1.

Table 4.1: Instruction counts (IC) of CPLR, SF, SW, and fastSW on an ARM Cortex-M4 micro-
controller. Implemented to process 4-dimensional quaternion data. n denotes the
current segment length [54].

Algorithm min. IC max. IC

CPLR 198 209

SF 252 420

SW 53 161+n · 35
fastSW 191 210

In contrast to SW, which has 35 additional instructions for each of the n samples
currently in the buffer, the instruction counts of CPLR, SF, and fastSW are independent
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of the segment length. SF furthermore has in general a higher instruction count than
CPLR or fastSW, with up to twice as much in the worst case scenario.

4.5 discussion

In terms of approximation quality, a clear advantage of fastSW over other state-of-the-
art PLA algorithms cannot be stated. The shear amount of more or less erroneously
approximated data on high compression ratios simply outweighs the few correctly
placed segmentation points. However, there are scenarios where a reduction of ori-
entation sensor data is desired and, at the same time, accurate supporting points are
necessary. This is especially the case when working on the segmentation points alone,
e.g. when using them as feature points that mark a change in user movement such as
in activity recognition applications. Moreover, having accurate segment points that
do not have to be normalized and that do not introduce additional rotation errors
also is beneficial when combining optical and inertial motion capturing.

In direct comparison to SW, fastSW does not necessarily provide the same segmen-
tation points due to small differences in the segment error calculation caused by
a different order of otherwise identical mathematical operations in the presence of
limited floating point precision. The difference, however, is minimal.

The TNT15 dataset comprises many fast paced movements where many limbs are
moved simultaneously and does not necessarily reflect real world scenarios with
calmer periods in between. A higher compression ratio while achieving the a simi-
lar approximation quality thus likely is achievable in other scenarios. The opposite,
however, can also be the case, e.g. when monitoring fast paced sport activities.

4.6 summary

So far, there was no computationally efficient PLA algorithm that is suitable for the
compression of unit quaternions. An analysis revealed that such an algorithm is
required to produce connected segments and that the produced segment points are
a subset of the original data. Methods that violate the latter constraint have been
shown to be less suitable, because (1) the resulting quaternions on the segment points
need to be normalized to restore their unit length, and (2) even slight deviations from
the original data on different axes can cause significant angular deviations. Methods
that do create segment points that are a subset of the original data, such as SW, on
the other hand, are not as efficient in terms of time and memory complexity. This is
where fastSW jumps in. It closes a gap in the state-of-the-art by being suitable for the
compression of unit quaternions while achieving a time and memory complexity of
O(1) with respect to the compression ratio. This efficiency makes fastSW well suited
to be deployed on embedded systems with limited resources, such as stand-alone
inertial sensing devices.

In light of the complementary motion sensing approach as described in Chapter 3,
fastSW thus fits well as a compression scheme that allows an efficient communication
of motion data between the various sensing systems that are involved in the process,
be it from a body-worn inertial sensing device to an external camera system or vice
versa.
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5
R E M O T E R E S P I R AT I O N E S T I M AT I O N

This chapter is based on the peer reviewed publications [79], [80], and [81]. Some passages
have been quoted verbatim. I am the first author of all three publications. Section 5.6.2 is
based on the peer reviewed publication [21]. The idea to use the system in the context of
e-health and telemedicine originates from me and I extracted the core elements of this idea
from the publication. The study experiments were conducted by Steffen Brinkmann and the
full evaluations and details can be found in the original work.

5.1 introduction

Figure 5.1: An example of depth-based respiration estimation, taken from a distance of 2 me-
ters. The different frames of a depth recording are drawn on the top row, starting
at 2.5 seconds with an equal spacing of 5 seconds. The breathing signal as esti-
mated from a model-based approach is drawn on the bottom row. Red markers
indicate the time points at which the respective frame above the marker was cap-
tured. In general, the user can be anywhere in the frame. The proposed approach
allows the user to perform activities that self-occlude the torso. An overview of
the model-based as well as various other types of state-of-the-art depth-based res-
piration estimation methods will be presented in Section 5.5.1.

Respiration is the physiological process of our body to exchange carbon dioxide
with oxygen. Inhalation mainly happens through actively contracting the diaphragm
and increasing the thoracic cavity, while exhalation typically occurs as a passive pro-
cess due to the elasticity of the lungs. In contrast to most other vital body functions,
respiration can be controlled consciously. Unconscious breathing on the other hand
is controlled by the respiratory centers of the brainstem that regulate the respiratory
rate mainly depending on the pH of the blood. According to [100], three modali-
ties can be used to measure human respiratory rate: Measurements can be based on
other physiological signals, on respiratory movements, or on airflow. Monitoring a
subject’s respiration plays an important role in medical diagnosis and treatment [5,
34] as it tends to not only change with physical exercise, but also with a range of con-
ditions like fever and illness [129]. Although the human respiratory rate is an impor-
tant vital parameter, it is still under-measured [41, 153]. Typical medical applications,
to name a few examples, are sleep monitoring or asthma therapy. In asthma therapy,
for instance, patients usually have to go to a special lab or their doctor’s office to have
their respiration monitored. Since in these places only a limited amount of time and
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space is available [19], patients could benefit from long-term observations of their
breathing made at home, given a suitable sensing device is available to them. Res-
piration furthermore is closely linked to behavioural and affective states [118] and
can serve as an indicator of wakefulness or concentration due to the circumstance
that the breathing rate decreases when drifting towards sleep [58]. Beyond medical
applications like sleep assessment or asthma therapy, in sports and fitness applica-
tions as well as in well-being, mindfulness, and meditation exercises the respiratory
rate often is used to assess a subject’s performance or is used to induce or control
a specific state of the body or the mind. Likewise, in these scenarios the user often
is required to maintain a specific breathing pattern and needs to rely on external
feedback that might be improved given a suitable sensing device.

Conventional sensors like mask-like spirometers, nasal tubes, respiration belts
worn around the chest, or skin-based photoplethysmography, but also more recently
proposed methods utilizing body-worn inertial sensors, like [59], require physical
contact to the user’s body and, over longer time periods, tend to become uncom-
fortable or restraining for the person to wear. Especially in fitness applications, but
also in scenarios where users perform breathing exercises for stress reduction, like
for instance meditation, such devices should be easy to set up, comfortable to wear,
non-obtrusive, and not cause distraction as these conditions might lower their ac-
ceptance. Respiration estimation based on photoplethysmography furthermore can
only measure heart rate or oxygen saturation of the blood reliably, while respiration
is derived from heart rate variability. Consequently, these methods lack a reliable
and instant respiratory rate estimation [134].

Several methods have been proposed to estimate a person’s breathing through
ambient sensing, eliminating the need of any body-worn devices. Yet, it is notori-
ously difficult to obtain a respiration signal from a distance. Methods based on a
depth camera picking up the tiny changes in distance of the chest or abdomen dur-
ing respiration hereby have shown promising results [140]. Most such depth-based
methods, however, are designed for certain, well-defined scenarios and the assump-
tions and conditions in which they were evaluated have remained limited and far
from realistic: Cameras had a direct line of sight to the user’s torso, and users cannot
perform activities other than lying down or sitting still. Furthermore, they lack a sys-
tematic evaluation of important parameters and conditions, such as distance to the
camera, the observed body region, or the user introducing subtle body movements
while for instance standing upright. User studies often are conducted with only a
few participants and a quantitative comparison to different methods is not available.
It therefore remains widely unclear how the existing methods perform under various
conditions and how they compete.

To overcome many limitations of current state-of-the-art depth-based respiration
estimation methods, a novel approach to monitor a user’s respiration from a depth
camera is proposed. It does not require the user to lie down or sit still, nor to stay
at a predetermined position or distance to the camera, and it is robust against small
body movements and occasional occlusions of the user’s upper body with its arms.
An example of this method in action is presented in Figure 5.1. It is introduced in
Section 5.2 and will be validated in a user study in Section 5.4.
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Furthermore, in Section 5.5, a detailed and systematic in-depth analysis of the
impact of many important parameters and conditions is performed on the proposed,
as well as on the most common state-of-the-art depth-based respiration estimation
techniques. The parameters under evaluation include the distance between user and
the camera, the observed body region, the pose and activity, the user’s respiratory
rate, its gender, as well as user specific influences. The analysis is followed by a
discussion of the circumstances under which any of these methods has the most
advantages to be used. As already stated above, the influence of all these parameters
on the various state-of-the-art methods to date remains unknown. This study thus
aims at closing this gap in the research.

5.2 proposed method

















    











  

  









  







Figure 5.2: The core steps of the proposed respiration monitoring method. From left to right:
The process starts with the camera’s depth input frame and the estimated torso
position of the user. Since joint position estimates contain jitter, multiple torso win-
dow candidates are selected. Combined with the torso prediction from the previous
frame, each candidate is then assigned an occlusion mask. The best matching can-
didate to the torso prediction is selected as torso window and forwarded to the
occlusion recovery stage, which uses the occlusion mask as well as the torso pre-
diction from the previous frame to yield the current torso model. The torso model
then delivers the prediction for the next frame, where it will be used for occlusion
recovery. The torso model is transformed to a single respiration state value, the
history of these values yields a respiration signal that, after Fourier Analysis and
extraction of the dominant frequency, estimates the respiratory rate.

This section gives an overview of the proposed method to monitor a user’s respi-
ration from subsequent depth camera frames. The method focuses on an indoors
setting where a user is facing a depth camera, which also tracks the user’s body
joints. The data processing chain of the method is divided into different stages that
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each perform an abstraction from the individual input depth frames to the final
respiratory rate estimates. A sketch of the overall process is provided in Figure 5.2.

Starting from the camera’s single raw depth frames, users and their postures are
first identified. For each user, the body’s joint positions are used to mark the user’s
torso (Section 5.2.1), with especially the respiration-related regions of the chest and
abdomen being of high interest. With the help of the model, occluded parts can be
identified and masked out, and the alignment of the torso window in case of a mis-
match of the estimated joint positions can be refined. The selected region and its
occlusion mask (Section 5.2.2) subsequently are forwarded to the occlusion recov-
ery stage. Here, all occluding parts from the depth image are replaced by a model-
generated approximation of the torso surface, also removing any salt and pepper
noise present in the depth image. The individual steps of the occlusion recovery
are presented in Section 5.2.3 and the adaptive model implementation is specified
in Section 5.2.4. The resulting recovered depth image satisfies the criteria of being
well aligned and keeping sufficient detail in occluded areas such that it can be used
to update the model without losing its integrity. The following stage extracts the
respiration signal in a movement-robust fashion by identifying the torso deforma-
tion caused by breathing as described in Section 5.2.5. From the resulting breathing
signal, the respiratory rate can finally be estimated through Fourier analysis.

5.2.1 Locating Users and Torso Windows

The incoming depth frames are first scanned for users present in the scene and, if
any are detected, the users’ torso areas are tracked over time to extract respiration-
relevant motions. Figure 5.3 illustrates the process of detecting the torso region using
body joint estimates. Potential misalignments due to arm movement hereby pose a
challenge. In the following, the overall process of identifying the torso region cor-
rectly and in a stable way is introduced.

Figure 5.3: The first image to the left illustrate the estimated joint positions of the shoulders,
hip, neck, and spine with connections in yellow drawn on top of the input frame.
In the second image, the torso window as obtained from the joint positions is
drawn as yellow rectangle on top of the joints. Here the window is correctly
aligned. The two images to the right illustrate window misalignment due to arm
movement, with magenta being the torso window alignment as required by the
model, and yellow being the torso window as estimated by the joint positions.
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Input Frame. Tracking is done by a skeletal model consisting of 25 joints, reveal-
ing the person’s position and pose, following the approach of [150]. Here, the im-
plementation in the Kinect SDK 2.0 is used, which is capable of tracking up to six
persons simultaneously. Knowing a user’s body posture enables the tracking of the
torso window, which reveals slight breathing motions across the torso surface dur-
ing respiratory cycles. The decisive anchor points to determine the torso position
and scale horizontally are the left and right shoulder joints. In the vertical direction,
the neck, the shoulder mid, the spine mid, and hip joints are used. The estimated
joint positions can be expected to be slightly unstable over time, jumping between
neighbouring pixel positions. In some cases, in the presence of occlusions or arm
movement for instance, the joints may also be misaligned (also see Figure 5.3). Es-
pecially when users are further away, such jumps or misalignment occurrences are
more likely.

Torso Prediction. The depth input frames typically comprise several challenges,
including noise, different scales and extents of the user’s torso region, background
and outlier pixels, occlusions and shadowing, motion artifacts, and surface deforma-
tions such as folds caused by clothing. To overcome these challenges, an adaptive
model is maintained for each user, which estimates the torso window appearance
over time. More details on how this model is constructed and updated will be given
in 5.2.4.

Torso Window Candidates. Some heuristics are used to stabilize the tracking of
the torso window. First, the window’s aspect ratio is fixed to a predefined value at ini-
tialization. The torso window’s change in size caused by small swaying movements
while standing is negligible, so a fixed height and width are assumed across frames.
To cater for users moving strongly towards or away from the depth camera, several
rescale operations would need to be performed to fit the window in the next step.
Second, the position of the torso window, although allowed to move in the frame, is
clamped to a position with similar content of the predicted depth image from the
model. For this, all possible xwin and ywin positions that fall in between the current
and previous window position are permuted to form as many different candidate win-
dows for the torso. All candidates obtained from I(xwin + x,ywin + y) are compared
pixel-wise to the model prediction image Ipredict(x,y) as defined in (5.1):

Ibestfit = argmin
xwin,ywin

w,h∑
x,y∈N

M−1
win(x,y) · (I(xwin + x,ywin + y) − Ipredict(x,y))2 (5.1)

By multiplying the energy term with an inverted occlusion mask M−1
win(x,y) of

the respective candidate window win, all detected occlusion pixels are ignored, as
they unnecessarily increase the difference of both images, pushing the window away
from the occlusion instead of matching the surface. The best matching window is
selected as the torso window and forwarded to the Occlusion Recovery step. The next
section will first detail the procedure of selecting an occlusion mask.

5.2.2 Occlusion Mask

The presence of occlusions poses a particularly hard problem for optical respiration
monitoring, as (1) important regions of the torso may be blocked, and (2) movement
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of the occluding entity may be misinterpreted as evidence for a respiration signal. It
is, therefore, important to detect and mask any entities that occlude the torso with
an occlusion mask M. This mask helps maintaining a breathing-relevant set of depth
pixels and ensures the integrity of the model.

Since occluding entities will be in front of the torso, their corresponding depth val-
ues will always be smaller than those of the torso. So, to identify occluding entities,
knowledge about the user’s torso surface in the current frame is required. Fortu-
nately, the model predicts the surface appearance and distance of the tracked torso,
which, when being subtracted from the corresponding input frame, yields negative
values on potential occlusions in the obtained difference image. To find the occlu-
sion mask, each pixel in the difference image then only needs to be compared to a
certain threshold that defines the minimum distance to the torso surface. Anything
below this threshold is considered an occlusion and anything above is considered
part of the user’s torso surface, including skin deformations or clothing. The occlu-
sion threshold has to take into account that the model has a small delay due to
the model’s low-pass filtering behaviour, where fast movement may lead to incorrect
masking. The same applies to noise in the input frame and small deformations of the
torso surface, e.g. due to clothing. In initial studies, an optimal value of 30 mm was
found for this threshold. Objects that do erroneously find their way into the model
will be excluded from the model as soon as the blocked torso surface becomes visi-
ble again. Equation (5.2) mathematically defines the occlusion mask M(x,y) at pixel
positions x and y with the input image I(x,y) and the torso prediction Ipredict(x,y)
as well as the threshold value zthreshold:

M(x,y) =

1 if I(x,y) − Ipredict(x,y) < zthreshold

0 else
(5.2)

Occluding entities in depth imaging often show a halo on their edges, caused by
interference from the emitted infrared light being reflected from the object upon the
torso surface. To avoid such a halo leading to undesirable effects in the next steps,
the mask is enlarged by a margin of several pixels, depending on the distance to the
camera and the resolution of the torso frame. With this mask, occluding entities can
be removed in the torso window as well as in the torso model.
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Figure 5.4: Detailed example of the occlusion recovery process: The depth Input Frame, Oc-
clusion Mask, and Previous Model State are used. The occluded area is masked out
from the Input Frame and the Previous Model State to yield the Frame Cut, the Model
Cut, and the Model Patch. The non-zero pixels from the Frame Cut are fed into the
model update routine in order to yield a Partly Updated Model State. The holes in
the Partly Updated Model State and the Model Cut then are in-painted using the
same technique. Finally, the difference of the Model Patch and the in-painted parts
of the Model Cut are added to the in-painted area of the Partly Updated Model
State, yielding the recovered Model State. First and second order derivatives of the
model are updated accordingly.

5.2.3 Occlusion Recovery

With the occlusion mask in place, the occluded pixels in the input frame can be iden-
tified and, after fitting the candidate windows for the torso window, the model sup-
plies the depth information for the occluded area. After removing all occlusion pixels
from the input frame, the remaining depth pixels are fed into the model update rou-
tine to yield a partly updated model state with a hole at occluded regions. From the
input frame alone, it is not clear how to recover the torso surface. So, in a first step,
normalized convolution [84] with a Gaussian kernel is used to in-paint the unknown
area. The previous model state, again using the occlusion mask, is separated in two
cuts: The model cut describing the valid torso regions, and the model patch describ-
ing the occluded torso regions. The hole in the model cut gets in-painted with exactly
the same method and parameters as the partly updated model state was filled before.
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Subtracting the model patch from the in-painted model cut yields a difference patch
that describes the torso surface details. This difference patch now in the final step
is added to the partly updated model to recover the surface details of the occluded
parts. The first and second order time derivatives of the model eventually have to be
updated by feeding the state estimate in the corresponding equations in (5.4).

The occlusion recovery plays an important role in the proposed method as it keeps
surface details and helps during the occlusion masking of successive frames to not
accidentally mask out parts of the torso. The overall process again is depicted in
Figure 5.4.

5.2.4 Adaptive Torso Model

It is assumed that users are facing the depth camera and thus users’ torso regions
will be visible to the depth sensor. Under this assumption, the model becomes a
fixed size depth image tracking the torso, along with its first and second order time
derivatives (Figure 5.5). The model parameters are updated at each time step when
a new depth frame arrives. With the help of the model, the next frame at time t can
be predicted by applying (5.3) to each depth pixel xt−1 at time t− 1 independently:

xt = xt−1 + ẋt−1 + 0.5 · ẍt−1 (5.3)

Figure 5.5: This approach builds an adaptive model for the user’s torso appearance. From
depth input frames, torso windows are selected over time that, after occlusion re-
covery, update the model consisting of a torso state estimate, its first order time
derivative, and its second order time derivative. From these, the model can build
a torso prediction for the next input frame.

5.2.4.1 Initialization of the Torso Model

To initialize the model, a bounding box around the user’s torso has to be selected in
the input frame. The detected body landmarks and joint positions of the person are
used to locate the torso (detailed in Section 5.2.1). The pixels in the model’s current
state estimate are set to the depth values of the selected region in the very first depth
frame. This may contain zero valued depth pixels, so-called holes, which are caused
by shadowing, occasional salt and pepper noise due to defect pixels, or reflections
from certain materials. For the initialization, these holes are filled with the use of
a median filter, whereas afterwards, the model will fill the holes during the occlu-
sion recovery stage as described in Section 5.2.3. The model’s first and second order
derivatives are initially set to zero and converge after several frames. The model size,
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defined by the width and height, is chosen sufficiently large to be able to contain the
user’s torso. Since multiple rescaling operations need to be performed if the size of
the model is allowed to change, this is simplified in this approach by assuming that
a person’s movement perpendicular to the camera is relatively small.

5.2.4.2 Model Update with Time Domain Filtering

Each depth pixel comprises normally distributed noise that increases with distance.
Since observed objects or subjects can arbitrarily move in any direction at any ran-
dom velocity, the noise can not simply be averaged out without obtaining traces from
the averaging process on moving objects. For this reason, and since only the depth
measurements of the user’s torso are of interest, a bounding box is tracked over the
X and Y positions of a user’s torso, as stated in Section 5.2.1. Within this bounding
box, the torso’s relative pixel positions along the X- and Y-axis can be assumed to be
constant. Consequently, only the motion along the remaining depth axis (or Z-axis)
remains and, under the assumption that the user does not move towards the camera,
noise can effectively be reduced by a pixel-wise low-pass filter.

In order to achieve a real-time performance, a recursive implementation with a
small overhead is used for this filter. Furthermore, the filter needs to follow the
signal closely, i.e., with a small delay with little overshoot or damping, as the re-
sulting filtered model is used to detect potential occlusions. For this reason, the
double exponential filter is adapted to react faster to an input signal while having
less overshoot. Its mathematical definition is stated in Equation (5.4). This behavior
is achieved by incorporating the first order time derivative ẋt−1 as well as the second
order time derivative ẍt−1 in the prediction of the state update xt from the measure-
ment xt,meas at frame t. The computation of the second order time derivative ẍt
incorporates the difference of the previous and current velocity approximation ∆ẋt
as well as a damping factor d to reduce the typical overshoot of the double exponen-
tial filter. The filtering equations (5.4) are applied to each pixel separately to yield a
smooth state estimate over time. The model then is recursively computed as follows:

xt = α · (xt−1 + ẋt−1 + 0.5 · ẍt−1) + (1−α) · (xi,meas)

ẋt = β · (ẋt−1) + (1−β) · (xt − xt−1)

ẍt = γ · (ẍt−1) + (1− γ) · ((xt − xt−1) − ẋt−1︸ ︷︷ ︸
∆ẋt

− d · ẋt−1︸ ︷︷ ︸
damping

)
(5.4)

5.2.5 Extraction of Respiration Signal

Once the torso window is defined, several approaches to extract a respiration sig-
nal from the resulting depth data have been suggested. Simple, yet very effective
approaches take for each depth frame the mean of a predefined torso region (for
example a window of the chest or a part thereof), and thus track the movement
of the chest plane towards and away from the depth camera. This tends to work
well for all torso regions that show sufficient respiration motions. It does require the
user to keep still, however, as small movements in the range of a few centimeters
or even below will affect the measurement. While lying down or sitting on a chair
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with sufficient back support, this has proven a straightforward easy task. If the user
is standing, though, the torso tends to be subject to a much larger amount of move-
ment. This section proposes a new method that relies on observing both (1) torso
regions within the torso window that correlate with breathing motion and (2) torso
regions that are barely affected by breathing motion but still are affected by similar
torso movements.

Determining the body movement that is not interfered by the breathing motion
is not an easy task. The limbs, although not being affected heavily by respiration,
do not represent the body movement due to their capability of independent move-
ments. The torso, on the other hand, is heavily affected by respiration. This ranges
from the up and down movement of the shoulders, the expansion and contraction
of chest and abdomen, down to motion at the hip e.g. caused by a belt that moves
during abdominal breathing. Furthermore, clothing plays an important role. A loose
dress, for instance, could be hanging from the chest covering the abdomen, leading
to breathing movement across the entire torso. Clothing in general leads to varying
surface deformations during breathing or movement and it is hard to predict the
exact source of the deformation of a garment. These findings render almost all torso
regions unsuitable for detecting the body movement as they either are affected by
respiration or comprise unpredictable or unrelated motion due to surface deforma-
tion.

Figure 5.6: Torso surface (left images) and variance of a 12 s time window (right images) of
two persons. Red: Low variance; Green: High variance. The throat area shows
low variance while the remaining area is highly influenced by clothing in an
unpredictable way.
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Figure 5.7: The estimation of the respiration signal uses defined areas in the torso window.
For the chest region, the result (top right) is a clean respiration signal when sub-
tracting the 90th percentile of the depth values for a small region around the
throat and the mean depth measurement over the chest region. In contrast, the
mean depth measurements over the chest alone are highly influenced by motion
artifacts (bottom right).

Figure 5.6 visualizes the variance of the torso from two persons over the course
of 12 s with negligible body movements. Low variances are depicted in red and
high variances in green. In preliminary experiments, the throat area was found to
be a relatively stable region that barely shows movement caused by chest expansion
during breathing. In indoor environments, it furthermore tends to be left uncovered
from a scarf or a tight jacket. The throat, however, may partly be occluded by a
collar, which causes, due to breathing motion, a significantly higher variance than
the bare throat. By only considering the furthest points from the depth camera at a
certain region around the throat, the effects of the closer points of a moving collar
can be minimized. The 90th percentile of that region has shown good results and
was chosen to become the measure of the body movement.

By combining the above observations, the described approach delivers a motion-
robust respiration signal by taking the difference of the mean of a highly breathing-
affected area, such as the chest, abdomen, or the entire torso, and some sort of a max-
imum value (the 90th percentile) of a minimally affected area, for which the throat is
selected as a good candidate. The affected area is defined with a margin of 20% the
window size to the left and right (see [79] for the benefits of a slightly smaller win-
dow) and the according vertical position and extent as given by the joints as shown
in Figure 5.7. The respiration signal is extracted from the torso model, including re-
gions that currently are subject to occlusion recovery. Simply leaving these regions
out would lead to significant signal distortions due to the torso’s uneven surface
structure: When an occluding entity moves through the frame, step by step, different
torso regions become visible that all show a different elevation. Furthermore, in case
of full occlusion of the window, no signal could be obtained at all.
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5.3 study design

To validate the proposed method under realistic circumstances and to evaluate the
influence of various parameters on depth-based respiration estimation in general,
two different studies are performed. The first study, namely the validation study, is
designed to assess how well the proposed method compares to the actual respira-
tion signal from a chest-worn respiration sensor and the second study, namely the
systematic parameter evaluation, tests the most common state-of-the-art methods and
the proposed method against a range of different input parameters, for instance the
observed torso region or the distance to the camera. Both studies are performed with
a common setup and in the same environment, which is described in Section 5.3.1.1.
Their specific details then are described in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Dataset

5.3.1.1 Setup and Environment

The sensor setup consists of a Kinect v2 RGB-D camera and an auxiliary display
to show a breathing visualization or a video to the study participants. The depth
sensor is fixed to the height of 1.40 m for all recordings and recording was done in
a well-lit indoors environment where two adjacent walls with large windows along
the entire length of the walls cause challenging lighting conditions. The orientation
of the camera was fixed at an angle of 25° towards the floor for sessions where
participants are sitting, and at an angle of 0° when participants are standing. This
ensures that the participants’ entire torso is visible in all depth frames, especially
at small distances. Different distances in steps of 1 m are marked on the floor and
range from 1 m to 4 m. For the recordings, each participant is asked to position him-
or herself comfortably in front of the sensor setup at a specified distance as marked
on the floor and such that he or she faces both, the depth sensor and the display. A
capturing tool records the raw depth frames and the respective body joint estimates
as given from the Kinect SDK and stores the data of each session in a separate file.
Figure 5.8 shows some examples of the depth data from a distance of 2 meters for
all participants while sitting, while standing upright, and while holding a cup in
front of the torso and performing drinking gestures. Overall, more than 11 hours of
respiration data were recorded, with about 1.5 hours for the validation study and
over 9.5 hours for the systematic parameter evaluation.

5.3.1.2 Study Participants

For the experiments and validation of the proposed method, 24 participants were
recruited, 17 of them male and 7 of them female, and aged between 22 and 57 years
old. Participants were recruited locally and were not diagnosed with respiratory ill-
nesses. Each participant was beforehand shown the depth imaging equipment and
was briefed on the study goals and the research questions. All participants were in-
structed to wear their regular indoors clothing during recordings, ranging from tops,
T-shirts, sleeved shirts, collared shirts, sweatshirts to woollen pullovers and hoodies.
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Figure 5.8: Exemplary depth data from the subset of 19 users that participated in the system-
atic parameter study, each taken at a distance of 2 meters, while sitting (top row),
standing (mid row), and while holding a cup and performing drinking gestures
(bottom row). During the systematic parameter study participants were asked
to sit or stand in front of a depth sensor and follow a breathing visualization
while being recorded for 20 sessions, each at 4 different distances from the depth
camera, two different paced breathing rates, and for the three conditions sitting,
standing, and standing with occlusion, leading to regular occlusions of the torso.
In total, 24 study participants were recorded for both studies, with 17 of them
male and 7 of them female, and all participants aged between 22 and 57 years old.
Overall, 422 unique recordings with a length of over 11 hours were recorded.

Out of the 24 participants, 14 (10 male, 4 female) volunteered for the validation study,
and 19 (12 male, 7 female) took part in the systematic parameter evaluation.

5.3.2 Study Protocol for the Validation Study

To validate the proposed method, it is compared to the Vernier GDX-RB respiration
belt. The respiration belt contains a force sensor tied to a strap, which is to be worn
around the person’s chest. The measured force is a proportional measure for the
chest expansion during breathing and thus is well suited for the verification of the
proposed method. It samples at a rate of 20 Hz and transmits the data via Bluetooth
Low Energy (BLE) to the same PC workstation that also receives the depth frames.

The validation study is conducted with a set of parameters that are particularly
challenging for the extraction of the respiratory rate. Recording hereby lasted at
least 120 s, with one at a paced breathing rate, and the two others at natural breath-
ing rates. The 14 study participants were instructed to stand in front of the sensor
setup in an upright position at a distance of 3 m while wearing the respiration belt.
This setting is challenging to the proposed method due to the distance and due to
the standing position that introduces motion artifacts as described in Sections 5.5.4
and 5.5.5, where the influence of the user’s posture and distance to the camera are
studied. The belt was worn directly under the armpits, following the instructions
in the user manual. Furthermore, the belt’s sensing device due to its form factor
is aligned to the side of the body below the left arm and is worn underneath the
clothing to not interfere with the measurements of the depth camera. In total, three
different recordings are captured, each comprising a different activity and breathing
pattern:
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• A paced-breathing Meditating recording, where participants were shown a
paced breathing display of a growing and shrinking circle with instructions
to breathe in and out at a frequency of 0.25 Hz or 15 breaths per minute (bpm).
This is a common target breathing rate for meditation, whereas a higher-paced
breathing experiment would come with its own risks for the study participants.

• A Relaxing recording, while the display is showing a video of landscapes with
relaxing background music, to entice a person-dependent slow breathing rate
during a relaxing activity.

• A Post Exercise Recovering recording, where participants were monitored after
strenuous exercise comprising running down and up 12 flights of stairs, and
the display showing the aforementioned relaxation videos. This exercise was
chosen to heighten the respiratory rate of the study participants. This record-
ing comprises a high variance of the respiratory rate and many random move-
ments from the user breathing heavily, especially in the beginning. Thus, it is
considered even more challenging to the proposed method.

Furthermore, participants were asked to refrain from moving their arms a lot, as
the tightening of the breast muscles is known to introduce motion artifacts in the
respiration belt’s sensor data. The impact of self-occlusions are assessed in the sys-
tematic parameter evaluation. In total, the dataset of the validation study comprises
42 unique recordings with about 1.5 hours of such respiration data.

5.3.3 Study Protocol for the Systematic Parameter Evaluation

The performance of state-of-the-art methods, and how they compare to each other
under a series of variable settings, including different distances to the depth cam-
era, different breathing rates, different user postures, and using a variety of study
participants, to date, remains unknown. The goal of this study therefore is to eval-
uate all methods on a common dataset and with expressive performance measures.
This section presents the details and recording parameters of the dataset that will be
evaluated in Section 5.5.

The 19 participants were told to sit through 20 recording sessions, each lasting for
about 5 minutes and interspersed with short 5 minute breaks, with each recording
comprising at least 90 seconds of respiration data. The recordings are split into three
different conditions:

• In a sitting condition, participants were asked to sit in an adjustable office chair
in front of the depth sensor. The height of the chair was fixed to 0.5 m, but its
back support could be reclined and did not need to be used (i.e., participants
could lean back or not, as they preferred). To fix the distances between chair
and depth camera, markers were taped to the floor to define the exact positions
where the chair had to be placed. Participant were asked to face the depth
camera and to keep the arms away from the chest area (e.g., on the chair’s
armrests) such that the participant’s upper body was fully visible to the depth
sensor.

74



5.3 study design

• In a standing condition, the participants were instructed to stand in an upright
position following the same rule as in the first session, i.e. to keep their arms
away from the torso region. The goal of this session is to observe the torso’s
motion while the observed person is standing relatively still, but does not have
the support of a chair’s seating and back surfaces. Having to stand upright
for several minutes tends to introduce a range of motions that are unrelated to
the breathing movements of the torso region; Some participants did move their
arms in different positions during the recordings (for instance, switching be-
tween hands on the back and hands in the pockets) or repositioned themselves
to a more comfortable posture, making it potentially challenging to extract a
respiration signal from these data.

• In an occlusion condition, frequent occlusions were introduced by instructing
the participants to hold a cup of tea in front of their torso while standing up-
right. At the start of the session, participants were recorded for 20 seconds
while holding their cup away from the torso. For the remainder of the session,
participants were instructed to occlude their stomach and chest regions with
the cup by performing drinking gestures. Such self-occlusions also occur when
gesticulating, but the drinking gestures were found to be particularly challeng-
ing due to their relatively slower speeds of execution and the larger, additional
occlusion of an in-hand object. Participants were not required to hold the cup
in a particular hand and some participants moved the cup with both hands at
the same time to the mouth.

For each participant, these conditions were recorded at distances of 1, 2, 3, and
4 meters between participant and depth camera. For the sitting and standing con-
ditions, the recordings were repeated at two respiratory rates of 10 breaths per
minute (bpm) (0.17 Hz) and 15 bpm (0.25 Hz), each. These are obtained through
paced breathing. The occlusion condition was recorded with a respiratory rate of
10 bpm (0.17 Hz). For the paced breathing, participants were asked to adhere to a
paced breathing visualization shown on the display. The intention is to guide par-
ticipants’ respiration at a stable rate to make the recordings independent of user
specific breathing behaviours, such that it does not interfere with the influence of
the different other parameters and is more comparable to these parameters. As a ref-
erence, the normal respiratory rate of an adult lies between 12 bpm and 20 bpm [29].
Participants did not wear any sensors to exclude effects on the breathing behaviour,
for instance due to distraction. Ground truth is obtained from the respective settings
in the paced breathing tool. The recording was started after about two minutes, to
give the respective participant a chance to adapt his or her respiratory rate to the
given target frequency. Overall, the dataset comprises 380 unique recordings with
over 9.5 hours of such respiration data.

5.3.4 Performance Measures

Overall, four different performance measures are used: The accuracy, the error, the
correlation to the ground truth, and the Signal-to-Noise Ratio (SNR). The accuracy
describes how accurate the respiratory rate can be computed from the breathing
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signal as compared to the ground truth, the error describes, how far the respiratory
rate is off from the ground truth, the correlation describes how similar the signal is
to the ground truth, and the SNR describes the quality of the signal, i.e. how well
the breathing signal stands out of the noise and thus how well it can correctly be
extracted.

5.3.4.1 Accuracy

For the computation of the accuracy, the breathing signal is shifted to frequency
domain with the Fast Fourier Transform (FFT) by using a moving window approach.
The moving window has the length l and is moved over the signal with the step size
s, splitting the signal up into different equally sized segments. These segments will
have a certain overlap that can be defined by both windowing parameters l and s.
If the dominant frequency within the range of 0.1 Hz (6 breaths/minute) to 1.5 Hz
(90 breaths/minute) of such a segment is equal to the ground truth frequency, this
segment is considered a correct estimate. The number of correct estimates divided
by the overall number of segments of a single session’s respiration signal for a given
algorithm is the average accuracy for this session (user, distance, etc.) and algorithm.
Its computation formally is stated in equations (5.5) and (5.6).

acc(x,ωref) =


1 if argmax

0.1< ω
2π<1.5

(F{x}(ω)) = ωref

0 else

(5.5)

Accuracy(x) =
1

N

N∑
i=0

acc([xi·s, xi·s+l],ωref) , x = x0...xn (5.6)

Due to the frequency binning of the FFT, the window length is a crucial parameter
for the accuracy computation. A narrow window length yields a good time resolu-
tion, providing many segments to test the signal against the ground truth, but cannot
provide a fine frequency resolution as a broad spectrum of frequencies will fall into
the same frequency bin. This effectively lowers the precision of the accuracy measure
since this whole spectrum will be considered a correct estimate. As respiration usu-
ally comprises a considerably low frequency, a rather large window size is required
to resolve these low frequencies. To yield a precision of one breath per minute, a
window covering 60 seconds of data is required. A wide window length on the other
hand generates fewer signal segments, effectively reducing the resolution of the ac-
curacy measure. Furthermore, due to their length, signal distortions or short periods
of frequency deviations may be shadowed or cause the entire segment to fail the test
against the ground truth.

For the validation study, a window length of l = 40 seconds and a step size
of s = 10 seconds is chosen. To reduce frequency leakage, furthermore, a Hann-
window is applied to those segments. For the systematic parameter evaluation, a
window length of l = 48 seconds and a step size of s = 6 seconds is chosen. Here, no
windowing function is applied since the chosen window length fits both fixed respi-
ratory rates and no frequency leakage is expected. The rationale behind the choosing
of the parameters are explained in more detail in Sections 5.4.2 and 5.5, respectively.
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5.3.4.2 Error

To make the accuracy measure more expressive, a measure for the frequency esti-
mation error is introduced. It tells how far the estimated respiratory rate is off from
the ground truth frequency. Hereby, the frequency spectrum as obtained during the
accuracy measurement is used. In a first step, the frequency resolution locally is
increased by interpolating the dominant frequencies using Quinn’s second estima-
tor. The difference of the refined, more precise dominant frequency and the ground
truth frequency then becomes the estimation error as again formally defined in Equa-
tion (5.7). The error first is computed separately on each single window as used in
the accuracy computation, and the different windows’ errors afterwards are aver-
aged to yield the mean error of the whole sequence of a single recording. The error
is defined as:

Error(x,ωref) =
1

N

N∑
i=0

| argmax
0.1< ω

2π<1.5
(Quinn2(F{[xi·s, xi·s+l]}(ω))) −ωref| (5.7)

5.3.4.3 Pearson Correlation Coefficient

The similarity of the proposed method’s estimated breathing time series to a given
ground truth signal is assessed by computing their Pearson Correlation Coefficient
(PCC) as given in (5.8):

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5.8)

The respective confidence intervals CI are computed with the Fisher transforma-
tion as stated in (5.9). The standard error SE, given the sample size n, is computed
with (5.10), and the z-score z for a desired confidence interval of (1−α)% is obtained
from the standard normal cumulative distribution function.

CI = tanh(arctanh(rxy ± zα/2 · SE)) (5.9)

SE =
1√
n− 3

(5.10)

Since an expressive quality measure of the overall signal is of interest and to ensure
a high confidence of the PCC, it is computed on the whole, fixed length of the signal.
From Equation (5.9) follows that due to the several thousand samples of any of
the signals, even the 99% confidence intervals are narrow and only a small fraction
apart from the computed PCC. Consequently, all confidence intervals given during
the evaluation refer to the 99% confidence intervals. The ground truth signal either is
obtained from the body-worn respiration belt or it is given as a sine signal obtained
from the frequency settings of the paced respiration setup.
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5.3.4.4 Signal-to-Noise Ratio

The signal quality is measured in terms of the Signal-to-Noise Ratio (SNR) as defined
in Equation (5.11). A higher SNR value means that the respiratory signal more signif-
icantly stands out from the noise and therefore is easier to extract from the data. The
SNR also is computed on the signal as a whole and is given as:

SNRdB = 10 · log10

(
PSignal

PNoise

)
(5.11)

5.4 validation study of the proposed method

The goal of the validation study is to validate the proposed method by comparing
its performance to that of a commercial wearable respiration belt. Three different
activities were taken as different conditions: Following a paced-breathing meditation,
relaxing, and recovering after a sports exercise. Before processing, a Butterworth
5th-order band-pass filter is applied to both signals. The lower and upper cut-off
frequencies are set to the same range that is used to find the dominant frequency (see
Section 5.3.4), namely to 0.1 Hz (6 breaths/min) and 1.5 Hz (90 breaths/min). The
filter is applied both in forward and backward direction to minimize transients at the
start and end of the signal. The band-pass filtering allows a better comparison of the
proposed method to the respiration belt as it removes constant or non-linear offsets
from the data and reduces high frequency noise while preserving the breathing-
relevant range of frequencies. Filtering, however, is not required in general as shown
in Section 5.5, where good evaluation results are obtained from the proposed method
without filtering.

Before stepping into the quantitative evaluation of the proposed method against
a respiration belt, first a visual comparison between both is conducted in the next
section.

5.4.1 Visual Inspection

The visual inspection aims at examining the differences of the signals of the pro-
posed method to the ground truth data of the respiration belt. Two example plots of
the band-pass filtered respiration signals are depicted in Figure 5.9. Both plots are
taken from the post exercise setting and comprise a high dynamic frequency range
with a fast respiratory rate at the beginning of the recording (left part of the plots)
that decreases over time to a more nominal breathing rate (right part of the plots).
Depicted in Figure 5.9’s top plot are the data from a recording where this works
well, with the resulting performance for the PCC of 0.95 and an accuracy of 100%. A
second, more challenging recording is plotted below in Figure 5.9, with a PCC of 0.26

and an accuracy of 22%, due to the user moving more during the recording.
At first sight, the main differences lie in signal amplitude and quality. While the

best case signal comprises a high amplitude and only small deviations from the
ground truth, the worst case signal contains much smaller amplitudes and many
peaks and deviations over the whole spectrum, but especially at higher frequencies.
The varying amplitude is caused by the low-pass behaviour of the model. More
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severe, however, are the peaks. These stem from the user bending forward while
heavily breathing, thus covering his throat with his head. The proposed method in
this case no longer is able to fully reconstruct the relatively small reference region
and motion artifacts enter the signal. The model is able to recover after such an
occlusion event and the signal follows the ground truth well until the next occlusion
occurs. The smaller deviations at lower frequencies (right part of the plot) are caused
by strong movements that could not fully be removed from the signal, but, to a
certain extent, still contain the respiration signal.

In general, in terms of frequency, the proposed method matches the ground truth
well in both cases, but the many occasional peaks in one signal hinder it in estimating
the correct respiratory rate.

Figure 5.9: Comparison plots between the output of the chest-worn respiration belt (in or-
ange) and the output of the proposed method (in blue), for the post exercise
condition (going from a fast respiratory rate in the beginning to a more nominal
one over time). The top segment has a PCC of 0.95 and an accuracy of 100% and
both signals match well in terms of frequency. The bottom segment has a PCC of
0.26 and an accuracy of 22%, with the larger peaks on the left in the output due
to the user occasionally tilting the torso forward and occluding the throat region
with the head.

5.4.2 Quantitative Evaluation

After the visual inspection, the proposed method’s performance is quantitatively
investigated for all study participants and respiration patterns. Figure 5.10 depicts
the PCC, the accuracy, and the error of all study sessions, for each user separately. For
the accuracy and error measurements, a FFT window length of 40 s and a step size
of 10 s is used. To reduce frequency leakage, moreover, a Hann-window is applied
to those segments.
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Figure 5.10: Left: The Pearson Correlation Coefficient between the data from the Vernier res-
piration belt and the proposed system, for all users individually. The bars depict
the means, while the black bars indicate the 99% confidence intervals. Data from
paced breathing (15 breaths per minute) tends to result in high correlation be-
tween the proposed method’s prediction and the belt’s output. Relaxed and post
exercise breathing tends to perform slightly worse. Middle: The accuracy of the
proposed system compared to the respiration belt. Right: The error of the es-
timated respiratory rate compared to the respiratory rate from the respiration
belt. Poor performance for users 9 and 22 stem mostly from larger movements
during the recording.

Figure 5.11: User 9 bending its head
forwards due to heavy
breathing, thereby oc-
cluding the reference
region at the throat
(marked in red).

Paced. The high-paced breathing meditation has
an accuracy of 100% for all participants and close
to zero errors. All signals show high correlation to
the respiration belt with a minimum PCC of about
0.75 for users 14 and 21, up to a value of 0.9 and
above for about half of the users.

Post Exercise Recovering. The post exercise res-
piration shows remarkably high errors for users 9

and 22. All other users either have almost zero
errors or errors in the range of about 0.5 to
1.5 breaths per minute as in the case of users 5, 18,
and 19. User 9 and 22 also have significantly lower
correlation coefficients below 0.4 as compared to
other users, mainly caused by occlusion events
where both, due to heavy breathing, lower their
head and occlude the proposed algorithm’s refer-
ence region at the throat as shown in Figure 5.11.
In the case of user 22, as described above, the oc-
clusion recovery cannot fully restore that region,
leading to peaks in the signal as illustrated in
Figure 5.9 (bottom). For user 9, this region some-
times can be recovered to a certain extent, but the
respiration signal is significantly raised or lowered during that time. These events
have similarities in the time domain with a rectangular shape, so harmonics show
up in the frequency domain that dominate the respiration frequency.
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Relaxed. On relaxed breathing, the proposed method performs worse than on the
other respiration patterns. Notably, some users show a low accuracy with values
of 65% for user 5, about 55% for users 9 and 21, and below 35% for user 6. These
users also show the highest error rates with a median above one breath per minute,
especially for user 6 with a median error of 4.5 breaths per minute. Its PCC however
is with a value of 0.9 very high which indicates that due to small signal deformations
and due to the relatively small window length used for the low breathing rate, other
frequency components become more dominant in frequency domain. Users 5, 9, and
20 have a PCC below 0.4 and can be considered to be only weakly correlated to the
respiration signal from the chest strap. User 20 on the other hand has a high accuracy
of about 90% but still a median error of about 0.7 breaths per minute.

Figure 5.12: Mean and standard de-
viation of the accuracy
as achieved by the pro-
posed method on the activ-
ities Meditating, Post Exer-
cise Recovering, and Relax-
ing across all participants.

Summary. To conclude, for most users and
most regular breathing frequencies, the pro-
posed approach performs close to the com-
mercial body-worn respiration belt and closely
matches the respiratory rate. For the changing
frequencies in the post exercise sessions and
the relaxed sessions, a few users did move a
lot more during the experiment, thus causing
a significant drop in their recordings’ perfor-
mance. The heaviest impact on the respiration
signal was caused by the user lowering its head
and occluding the throat region where the ref-
erence signal for the body movement is sam-
pled from. In such cases, such as the one illus-
trated in Figure 5.9 (bottom), multiple breath-
ing cycles are missed and the proposed method
under-estimates the breathing rate.

Figure 5.12 displays the mean and standard
deviation of the accuracy across all users for the proposed method. The proposed
method shows for all activities a mean accuracy above 80% and can estimate the
respiratory rate of the paced-breathing meditating exercise perfectly with an accu-
racy of 100%. The two remaining activities, however, show relatively large standard
deviations as can be retraced in Figure 5.10 (middle).

As a reference, according to [98], the variability between two successive respiration
measurements performed by two different persons in a clinical context (i.e. from
doctors or nurses) may account for a difference of up to 6 bpm.

5.5 systematic parameter evaluation

In this section, the influence of various parameters on a selection of six different
methods, including the proposed approach, are investigated. The methods to be dis-
cussed are summarized in Section 5.5.1. The parameters under consideration are the
region of interest (chest, abdomen, or the entire torso), the condition (sitting, stand-
ing, or standing with occlusions), the distance of the participant to the depth camera

81



5.5 systematic parameter evaluation

(1 m to 4 m), the user’s breathing rate (10 or 15 bpm), and the gender. Additionally,
some user dependent observations that were made during the evaluation are sum-
marized at the end of this section. For all accuracy and error evaluations, a fixed
FFT window length of 48 seconds is used. It has the advantage that both the 0.17 Hz
and 0.25 Hz frequencies from the paced breathing setup can accurately be resolved
by a simple rectangular windowing function without frequency leakage occurring at
the target frequencies. The window is moved over the signal with a step size of one
breathing cycle, i.e. with 6s at 0.17 Hz (10 bpm) and 4s at 0.25 Hz (15 bpm). Overall,
the windowing yields a frequency resolution of about 0.02 Hz or 1.2 bpm and 7 or
10 distinct windows to test for the accuracy. The signals furthermore are evaluated
on the raw output of the algorithms, i.e. there is no filtering applied to the signals in
the following results. An example of the output signals will be given in Figure 5.14

and is discussed in Section 5.5.2.
The sections following the visual inspection then will each focus on a separate

parameter and provide a detailed discussion of its influence on the respiration esti-
mation of the different methods. Hereby, the performance measures as introduced in
Section 5.3.4 are used to facilitate an objective comparison of the methods.

5.5.1 Methods Overview

From the related work, two approaches for depth-based remote respiration estima-
tion can be found that most commonly are used. So, together with the proposed
method, in total three distinct approaches can be compiled. These are based on (1)
performing a principal component analysis, (2) computing the mean of a certain area
that is affected by breathing, and (3) taking the difference of a barely breathing cor-
related region from the mean of a highly affected region using a torso surface model
(the proposed method). From these three distinct approaches, overall six variants are
derived for the systematic parameter evaluation. Namely, these methods are the PCA,
Mean Raw, Median Raw, Diff Mean, Diff Median, and Diff Model. The named methods
and their particular details are described in the following, but first a short introduc-
tion is given on how the region is selected that will be used to extract the breathing
signal from and that will be common for all methods. The focus hereby lies on an
indoors setting where a user is facing a depth camera that also tracks the user’s body
joints. These body joints, namely the neck, the hip, and both left and right shoulder
joint positions as estimated by the Kinect v2 framework are used to define the breath-
ing relevant regions of interest. The hip and shoulder joint positions hereby define
the anchor points of the torso window. The torso area itself has a margin of 20% to
the left and right side of the window spanned up by the joints and subsequently is
subdivided into the chest and abdomen regions. All three regions, the entire torso,
the chest, and the abdomen will be examined for their suitability of extracting a res-
piration signal and thus are sampled from by all methods independently. The neck
joint on the other hand only serves as the anchor point for a barely respiration af-
fected reference area at the throat and thus will only be used by difference-based
methods that use this region to subtract the motion component from the breathing
signal. The six different methods are detailed in the following and a visual overview
of all methods as well as the different body regions can be found in Figure 5.13.
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PCA. Methods based on performing a Principal Component Analysis (PCA) are a
common approach to compute the respiration signal from depth images. As
mentioned above, the hip and shoulder joint position estimates are used to
find the respective region of interest. Due to the PCA computation requiring
a predefined number of pixels, the window’s size needs to be fixed to certain
extents. The size is given from the shoulder and hip joint positions of the very
first frame. The fixed window, however, is free to move and will be anchored
on the left shoulder joint position from the respective frame. Fitting the PCA

model is done with the first 180 frames, or the first 6 seconds of the capture
sequence. The respiration signal afterwards is given from the first component
of the PCA model and, for the evaluation, will be computed from all frames,
including the first 180 frames. In the following, PCA will refer to the method
that uses a Principal Component Analysis to extract the respiration signal, not
to the Principal Component Analysis itself.

Mean Raw and Median Raw. Mean based methods form the majority of the current
state of the art. The respiration signal is extracted by, for each frame, computing
the mean of all depth values within a given region of interest as defined by the
hip and shoulder joints. This region, for each frame, is free to change in size
and position, which, in addition to the simple computation of the mean, is a big
advantage of this method. The Median Raw method basically is the same as the
Mean Raw, but instead of the mean, computes the median of the given region
of interest. The median likely will be more robust than the mean, especially in
the case of surface deformation or occlusion. All three methods described so
far are likely to be sensitive to motion, occlusion, and window misalignment.

Diff Mean and Diff Median. Motion artifacts caused by even small whole body
movements, like swaying while standing, can have a significant impact on
the respiration signal quality. To overcome such motion artifacts, the proposed
difference-based methods try to subtract the motion from the actual respiration
movements of the body. They rely on subtracting the signal of a reference area
that barely is affected by breathing from a signal of one of the highly breathing
correlated regions at the chest, abdomen, or the entire torso. The region around
the throat was found to be minimally affected by breathing while serving as a
good reference for motion artifacts of the upper body. Both, the Diff Mean and
the Diff Median first compute the mean or the median of a torso region that
is highly affected by breathing and this far are identical to the Mean Raw or
Median Raw, respectively. In a second step, the motion reference signal as given
by the 90th percentile of the region around the throat is subtracted from the
previously computed respiration signal. The region at the throat is determined
with the help of the neck and shoulder joints. Both methods are derived from
the proposed, model-based method as described in Section 5.2. Their advan-
tage is that they do not need a model, are easy and fast to compute, comprise
a mechanism to counteract motion artifacts, and that the window comprising
the observed torso region is free to change in size and position from frame to
frame.
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Diff Model. To compensate for noise, window misalignment, and especially occlu-
sion, the aforementioned method, as proposed in Section 5.2, was introduced.
It is able to counteract these issues by low-pass filtering the data, fitting the
window to the most reasonable body area, and by detecting and recovering
occluded regions with an image in-painting technique. This method computes
an internal model of the torso surface area spanning from the throat to the
hip and that is based on the currently and previously captured depth images
and body joint positions. The model outputs an aligned, occlusion recovered,
and noise reduced depth image of the torso that can be used for extracting
the respiration signal. To compute the respiration signal, the difference-based
approach is used, which subtracts the 90th percentile of the throat region from
the mean of the respective torso region. The regions hereby again are defined
by the joint positions. This method is more stable against noise, window mis-
alignment, motion artifacts, and occlusion, but also has higher computational
complexity and, in the current form, requires a fixed window size for the torso
region that needs to be initialized in the beginning.
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Figure 5.13: Overview of the methods used for the systematic parameter evaluation. The
example is taken from a distance of 3 meters, with the user standing upright and
performing regular self occlusions with a cup in his hands. The process starts
with the camera’s depth Input Frame and the estimated joint positions of the user
(top left). Both are either forwarded to a Model as proposed in Section 5.2 (bottom
left) to reconstruct the torso surface and find the regions of interest (bottom mid)
or the joint positions are used directly to find the regions of interest (top mid).
In the latter case, the torso surface is redrawn for comparison purposes to the
model output (middle images). The model is able to filter out most of the noise
and to recover occluded torso regions. The regions of interest are the throat
(red), the chest (blue), the abdomen (green), and the torso (chest and abdomen
windows combined, including the region in between both, not drawn in the
images). The depth pixel values within the different regions, in this example the
values of the chest and, depending on the method, the throat region, are used to
compute a single respiration state value. The respiration signal then is given by
the history of these values. On the right are the plots of the resulting breathing
signals of the different methods. From top to bottom: The signal of the PCA,
Mean Raw, Diff Mean, Median Raw, Diff Median, and the Diff Model. The PCA uses
the first 180 input frames (6 seconds) to compute the principal components, the
respiration signal then is computed from the first component of the PCA model.
The Mean Raw and Median Raw methods compute the mean or the median of
the depth values within the given torso region, for instance the chest as shown
here. The Diff Mean and Diff Median methods on the other hand use the 90th
percentile of the throat region depth values as reference for the user movement
and subtract it from the respective values obtained by their Mean Raw or Median
Raw counterparts. Their signals contain less distortions stemming from body
movements, like swaying. The Diff Model method does the same, but computes
the difference from the mean of the selected region of the model output. Its
breathing signal is much smoother and barely contains distortions or spikes
stemming from motion artifacts and occlusion events.
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5.5.2 Visual Inspection

Figure 5.14: The respiration signals from the methods PCA, Mean Raw, Median Raw, Mean Diff,
Median Diff, and Diff Model, as well as the Ground Truth, obtained from the chest
at a distance of 1 m (left), 3 m (middle), and 4 m (right) for the conditions sitting
(top), standing (middle), and standing with occlusion (bottom). All signals are
zero centered and normalized with respect to the mean and standard deviation
of their first 240 frames (8 seconds) and, for better visibility, are stacked vertically
in the order as mentioned above. With increasing distance, the noise level of all
methods increases. The Diff Model hereby is the least affected method and can
suppress the noise even at high distances, while the other difference-based meth-
ods are affected the most. Standing introduces significant signal distortions that
can be seen on the output of non-difference-based methods. Occlusion events,
visible as large spikes in the bottom plots, can only be handled by the Diff Model
method.

Figure 5.14 depicts an example of the signals obtained from the various methods,
with the different distances at 1 m, 3 m, and 4 m in the columns, and with the con-
ditions sitting, standing, and standing with occlusion in the rows. For all conditions
and methods, with increasing distance an increase of the overall noise level can be
observed. Especially the difference-based mean and median methods are strongly
affected by noise, since both methods rely on subtracting two noisy signals, which
increases their overall noise level. The Diff Model method has a built-in low-pass filter
to prevent this effect from happening. For this reason, it has the cleanest output sig-
nal among all methods, but still shows some smaller distortions at higher distances.
The PCA method, although only using the strongest component, was not able to
separate out the noise from the signal.

86



5.5 systematic parameter evaluation

While the sitting condition can be managed by all methods, standing introduces
small swaying movements, typically in the range of a few centimeters or less, which
may introduce severe signal distortions for all non-difference-based methods, as
shown in this example. The breathing cycles, to some extent, are still visible in the
distorted signals, but other frequency components clearly dominate. The difference-
based methods are able to reduce the motion components and are barely affected by
them.

The large spikes caused by occlusion events, as seen in the bottom plots, cause
even more severe signal distortions and make it difficult to obtain a good signal.
The Diff Model can internally detect and recover occluded body parts and is the only
method that is not or barely affected by occlusion. The median based methods can
partially deal with occlusion or at least can limit the spikes to a certain extent.

5.5.3 The Influence of the Torso Region

The Influence of the choice of the observed torso region on the detection of the res-
piration signal yet is unknown for depth-based respiration estimation in general. In
the following, thus, the role of the torso region is investigated for all methods as
mentioned above, including a comparison of their performance to each other. Fig-
ure 5.15 depicts the accuracies, errors, Pearson Correlation Coefficients, and Signal-
to-Noise Ratios of the different methods when applied to the chest, abdomen, or
the entire torso. All 380 recordings, comprising different users, distances, respiratory
rates, and conditions (sitting, standing, and standing with occlusion), are combined
in these plots. The observations made here thus show each method’s overall perfor-
mance on the respective region. Furthermore, not a single parameter combination
was found that is more beneficial on a different body region other than suggested by
these plots. The choice of the window position affects the performance of all other
parameter settings in the same or in a similar way. The condition, to some extent, has
an influence on the choice of the window position as for instance in the occlusion
scenario the abdomen was occluded for longer time periods and more often than the
chest. This, however, does not change the observed trend. As a reference, Figure 5.16

in Section. 5.5.4 depicts the influence of all three conditions at the different specific
torso regions and thus the influence of a torso region during one of the different con-
ditions can easily be derived as well. Section. 5.5.4, however, provides more details
on the influence of the condition, while the current section focuses on the overall
performance of the different methods at the different body regions.
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Figure 5.15: From left to right: The respiratory rate accuracy, errors in breath per minute,
Pearson Correlation Coefficient w.r.t. the ground truth signal, and Signal-to-
Noise Ratio of the different methods. Plots are separated by the chest, abdomen,
and torso region with all conditions (sitting, standing upright, and occlusion),
distances (1 to 4 meters), and respiratory rates (10 bpm and 15 bpm) combined.
Accuracy and error metrics use a FFT window with a length of 48 seconds. The
colored bars show the averages, while overlay box plots show median (middle
parts) and whiskers marking data within 1.5 Interquartile Range (IQR). All algo-
rithms perform best on the chest region, while the abdomen especially for the
difference-based methods causes high performance drops.

Chest. At the chest, the PCA and Mean Raw methods show with a mean accuracy of
about 62% (median 90%) and a mean error of above 2.3 bpm (median about 0.4 bpm)
the lowest performance values. The PCA hereby performs a little bit better than the
Mean Raw. The Median Raw achieves with a mean accuracy of 69% (median 100%)
and a mean error of 1.66 bpm (median 0.17 bpm) slightly better performance values
and seems to be more robust than the PCA and Mean Raw methods (also see Sec-
tion 5.5.4). The Diff Mean likewise is with an average accuracy of 80% (median 100%)
and a mean error of 2.0 bpm (median 0.08 bpm) outperformed by its Diff Median
counterpart, which has an average accuracy of 89% (median 100%) and a mean error
of 0.87 bpm (median 0.06 bpm). Both methods clearly benefit from subtracting the
motion component obtained from the throat, since without the subtraction, both are
identical to the Mean Raw or Median Raw respectively. The highest performance is
achieved by the Diff Model method. At the chest, it has a mean accuracy of 94% (me-
dian 100%) and a mean error of 0.3 bpm (median 0.06 bpm). The box-plot overlays of
the accuracy plots furthermore reveal that the Diff Median and the Diff Model are able
to correctly estimate the respiratory rate of the majority of the 380 samples, except
for the outliers marked as circles. There are some differences, however. While the
Diff Model’s accuracy is only about 5% above that of the Diff Median, its mean error
is almost three times lower.

In terms of signal quality, the PCA and the Mean Raw show a median PCC of about
0.22, and a median SNR of about 18 dB. The Median Raw achieves with a median PCC

of 0.32 and a median SNR of 21.5 dB slightly better values. The Diff Mean likewise
is with a median PCC of 0.39 and a median SNR of 23 dB outperformed by the Diff
Median with its median PCC of 0.5 and median SNR of 26 dB. The Diff Model achieves
with a median PCC of 0.75 and a median SNR of 32 dB a notably higher PCC and SNR

than all other methods.

Abdomen. At the abdomen, the PCA, Mean Raw, and Median Raw show with a mean
and median accuracy of about 53% and a mean error of about 2.3 bpm to 2.8 bpm
(median 1.4 bpm to 1.6 bpm) a similar performance. Compared to the chest, the
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Median Raw thus has a higher performance loss than the other two methods. The Diff
Mean and the Diff Median also show a similar performance. Their mean accuracy lies
at about 62% (median 85% to 89%) and their mean error at about 2.4 bpm (median
0.4 bpm to 0.7 bpm). Both methods, but especially the Diff Median, show the highest
loss in performance as compared to the chest. The Diff Model’s performance also
significantly lowers at the abdomen, but with a mean accuracy of 79% (median 100%)
and a mean error of 1.1 bpm (median 0.1 bpm) it still outperforms all other methods.
In terms of signal quality, all methods, except for the Diff Model, show a median PCC

in the range of 0.16 to 0.19 and a median SNR in the range of 15 dB to 17 dB. The Diff
Model on the other hand has a median PCC of 0.49, and a median SNR of 26 dB.

Torso. The torso region includes both, the chest and the abdomen, and likewise
yields intermediate results between both other regions. The difference-based meth-
ods hereby again outperform the other methods and end up more favourably than at
the abdomen. The Diff Model furthermore with a mean accuracy of about 89% only
loses about 5% in accuracy as compared to the chest, while both other difference-
based methods lose about 10% in accuracy. Also the Diff Model’s mean error of about
0.5 breaths per minute is considerably lower and closer to the error at the chest than
that of the other methods.

Summary. Overall, the chest region is the optimal choice. It yields, regardless of the
method used, the highest accuracy, lowest errors, highest PCCs, and highest SNRs. The
abdomen has shown to be the least suitable region for detecting the respiration signal
and, in relation to the other regions, marks the lower bound on all performance
metrics.

All methods arguably benefit from a larger signal amplitude that, during breath-
ing, stems from a greater expansion of the chest than of the abdomen. Another aspect
that needs to be considered is that during the occlusion condition, the abdomen was
the body region that was occluded most of the time which further lowers the de-
tectability of the respiration signal.

Comparing the different methods among themselves shows that the Diff Model
method, regardless of the observed body region, overall is superior to all other meth-
ods, followed by the Diff Median and the Diff Mean. The accuracy box plots fur-
thermore suggest that, except for some outliers, the Diff Model as well as the Diff
Median methods can at the chest optimally estimate the respiratory rate. The weak-
est methods are the PCA and the Mean Raw. The difference-based methods, however,
comprise larger performance drops at the abdomen or torso than the other meth-
ods, which means they are more susceptible to the choice of the body region. The
difference-based methods likely perform comparably worse on the abdomen due to
the spatial distance of the abdomen to the throat, where the reference region for sub-
tracting the motion components is located. A swaying motion has a larger amplitude
at the throat than on the abdomen and additionally the upper body can, to a certain
extent, move independently from the lower body, whereas the chest motion can be
assumed to be similar to the throat motion.

On all body regions, the Diff Model has a notably better signal quality than all other
methods. One reason for the Diff Model’s higher PCC and SNR is, as suggested by its
accuracy and error values, that the true breathing signal can better be estimated
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by this method, but this alone does not explain the relatively big difference to the
Diff Median. The main reason is that the Diff Model method uses a low-pass filtering
technique and thus is able to model the torso surface with a significantly reduced
noise level. From the improved torso surface reconstruction it then can extract a
much cleaner respiration signal, consequently leading to higher PCC and SNR values.

Since the chest has been shown to be the most suited region for extracting the res-
piration signal, the focus will lie on this region in the following sections. Beginning
with the influence of the condition, step by step a deeper insight into the specific in-
fluence of each single parameter on the overall performance of the different methods
will be provided.

5.5.4 The Influence of the Condition (Sit, Stand, Occlusion)

The methods proposed in previous works primarily have been evaluated in scenar-
ios where the study participants were lying down or sitting still. In a more realistic
scenario, however, the observed person should also be allowed to stand in front of
the camera, possibly performing regular self-occlusion gestures. For this reason, this
section assesses the performance of the different methods for the three conditions
sitting, standing, and standing with self-occlusions by performing drinking gestures
with a cup. Figure 5.16 plots the accuracies, errors, PCC values, and Signal-to-Noise
Ratios of the different methods against the three mentioned conditions. As stated
above, the primary focus lies on the chest, but for completeness, in Figure 5.16 also
the evaluation data of the abdomen and the torso is appended. Here, also the in-
fluence of the torso region during the different conditions can be derived. Where
appropriate, specific findings are highlighted that are strongly influenced by the con-
dition as well as by the observed torso region and thus could not be considered in
full detail in the previous section.
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Figure 5.16: From left to right: The respiratory rate accuracy, errors in breath per minute,
Pearson Correlation Coefficient w.r.t. the ground truth signal, and Signal-to-
Noise Ratio of the different methods. Plots are separated from top to bottom
by the chest, abdomen, and torso region and by the sitting, standing, and occlu-
sion condition, with all distances (1 to 4 meters) and respiratory rates (10 bpm
and 15 bpm) combined. Accuracy and error metrics use a FFT window with a
length of 48 seconds. The colored bars show the averages, while overlay box
plots show median (middle parts) and whiskers marking data within 1.5 IQR.
Sitting results for all methods in a much clearer signal than standing upright,
with standing and occlusion (holding a cup and performing drinking gestures,
right measures) performing worse than just standing upright.

Sitting (Chest). Sitting still (or lying down) barely introduces motion artifacts and
all methods in previous work have been evaluated for a static scenario like sitting or
lying down. So, as expected, all methods can deal with the sitting condition without
problems. The mean accuracy stays above 92% for all methods and the box plots
fully remain at 100% with only a few outliers spread across the plot. The Median
Raw performs with a mean accuracy of 96.5% and a mean error of 0.15 bpm better
than all other methods, closely followed by the Diff Model and the Diff Median with
a mean accuracy of 95.5% and 95%, and a mean error of 0.24 bpm and 0.49 bpm,
respectively. In terms of signal quality, the Diff Model outperforms the other methods
with a median PCC of 0.88 and a SNR of 35 dB. The PCA, Mean Raw, and Median
Raw all comprise a median PCC of 0.81 and a SNR of 32 dB, while the remaining
difference-based methods form the lower bound with a median PCC of 0.7 and a
median SNR of about 30 dB, both with wide spread box plots. The Diff Mean and
Diff Median most likely suffer from subtracting two noisy signals, hence increasing
the overall noise level. The Diff Model with its built-in low-pass filter behaviour can
reduce the noise sufficiently well and, moreover, also has a better signal quality than
the non-difference-based methods.
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Standing (Chest). Standing introduces slight motion artifacts that mainly are caused
by small, unconscious swaying movements while keeping balance, but sometimes
they also stem from the user relieving a leg, moving an arm by for instance taking the
hands out of the pockets, or by changing its posture in general. The non-difference-
based methods, i.e. the PCA, Mean Raw, and Median Raw, cannot compensate for
these motion artifacts which leads to a mean accuracy of about 51% (median error
in the same range) and a mean error of about 3.1 bpm to 3.8 bpm (median error
1.8 bpm to 2.1 bpm). The Diff Mean and Diff Median are able to subtract the motion
components and thus are better in dealing with the standing condition. Their mean
accuracy lies at about 93% (median 100%), and their mean error ranges from 0.4 bpm
to 0.46 bpm. The Diff Model outperforms all other methods with a mean accuracy of
96% (median 100%) and a mean error of 0.22 bpm. In terms of signal quality, the non-
difference-based methods show a median PCC of 0.21 and a median SNR of 17 dB. The
Diff Mean and Diff Median have a median PCC of about 0.6 and a median SNR of about
29 dB. The Diff Model finally has a median PCC of 0.78 and a median SNR of 33 dB.

Occlusion (Chest). The drinking gestures cause even more body movements than
standing alone and furthermore introduce regular self-occlusions through the arms
and the cup held in the hands. The PCA and Mean Raw cannot compensate for any
of these events and therefore only have a mean accuracy of about 21% (median 0%)
with relatively large mean errors of 4.4 bpm to 4.7 bpm (median 3.4 bpm to 3.8 bpm).
Their median PCC is at about 0.13 and their median SNR at about 13 to 14 dB. The
Median Raw, to some extent, is more robust against deviating occlusion pixels and
shows a mean accuracy of 45% (median 43%), a mean error of 1.9 bpm (median
1.8 bpm), a median PCC of 0.21, and a median SNR of 17.5 dB. As the median typ-
ically is more robust against outliers, median-based methods have a higher chance
of not seeing an occlusion or of only suffering from it at a fraction of the time. The
difference between using the mean or the median to extract the respiration signal in
the presence of occlusion gets even more apparent when the body movement gets
suppressed as by the Diff Mean and Diff Median methods. The Diff Mean performs
worse than the Median Raw. It has a mean accuracy of 33% (median 14%), a mean
error of 7.5 bpm (median 5.3 bpm), a median PCC of 0.13, and a median SNR of
13 db. The Diff Median on the other hand has a mean accuracy of 69% (median 93%),
a mean error of 2.5 bpm (median 0.26 bpm), a median PCC of 0.28, and a median
SNR of 20 dB. This finding strongly encourages the use of the median instead of the
mean to estimate the breathing signal in the presence of occlusions. The Diff Model is
able to detect and recover occluded body regions and therefore outperforms all other
methods. It has a mean accuracy of 87% (median 100%), a mean error of 0.62 bpm
(median 0.12 bpm), a median PCC of 0.61, and a SNR of 29 dB.

Dependency on Body Region. The overall influence of the body region already was
explained in Section 5.5.3, so in this section the focus will lie on the interdependency
of the condition and the body region. For this reason, the most important information
about this interdependency is provided on a higher level, without going through
all different performance values in detail. For reference, all performance measures
can be found in Figure 5.16. At the abdomen and at the entire torso, but especially
at the abdomen, all performance measures drop when compared to the chest. The
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decrease in performance, however, is less marked during the sitting condition. Here,
the Median Raw and the Diff Model can deal with the different body regions the
best, while the Diff Mean shows the largest performance losses. During standing,
the PCA, Mean Raw, and Median Raw show a weak performance on all regions. The
Diff Mean and the Diff Median, while comprising a high performance at the chest,
are strongly affected at the other body regions, mostly at the abdomen. The Diff
Model can deal with the standing condition well when looking at the chest or the
entire torso, but struggles at the abdomen. The difference-based method’s decrease in
performance during the standing condition is likely caused by the spatial distance of
the reference region at the throat to the respective body region, like the abdomen. For
the occlusion condition, only the Diff Median and the Diff Model are looked at. While
the Diff Median gets severely affected at the torso and even more at the abdomen, the
Diff Model can maintain an acceptable performance at the torso, but also struggles
at the abdomen. During the occlusion condition, the methods do not only have to
deal with the participants standing upright, as before, but also with a mug being
held in one or both hands and being moved in front of the torso. Since the hand
by most participants and most of the time was held in front of the abdomen and
only occasionally was moved over the chest while performing a drinking gesture,
the abdomen, but also the torso are prone to comprise a lot more motion artifacts
than the chest.

Summary. While all methods are able to achieve high performance values during
the sitting condition, a completely different picture is drawn at the other conditions.
Standing introduces small motion artifacts which the PCA, Mean Raw, and Median
Raw methods cannot compensate for. These motion artifacts thus interfere with the
respiration signal and consequently their performance decreases significantly. The
Diff Mean, Diff Median, and Diff Model are able to subtract the motion components
from the signal and can, at least at the chest, maintain a comparably high perfor-
mance as compared to the sitting condition. During the occlusion condition, the PCA
and Mean Raw, as well as the Diff Mean again experience a significant drop in per-
formance as compared to standing alone, while the Median Raw does not show such
a high decrease in performance. As the median typically is more robust against out-
liers, the methods using the median have a higher chance of not seeing an occlusion
or of only suffering from it at a fraction of the time. Consequently, the Diff Median
is able to deal with the occlusions better than all methods mentioned above, but still
it is heavily affected by the hand movements. The Diff Model on the other hand can
handle the occlusions much better, but, to some extent, also experiences a drop in
performance.

5.5.5 The Influence of the Distance to the User

There are two important factors that influence the breathing estimation when chang-
ing the distance of the user to the depth camera. First, with increasing distance the
body region appears smaller on the image frame and fewer depth pixels are available
for extracting the respiration signal. Secondly, the noise level of the depth camera’s
pixel readings increases with distance. Consequently, with increasing distance of the
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user, a lower signal quality can be expected due to the decreasing amount of breath-
ing related depth pixels available for averaging out the increasing noise. Another
aspect is that in close proximity not all body joints may be visible, and on far dis-
tances the body joint estimation may not work due to too few body features being
distinguishable on the smaller body appearance. For the Kinect SDK, the highest
distance is at about 4 to 4.5 meters, and a minimum distance of 1 meter has been
shown to be sufficiently far away during the experiments.

In this section, the influence of an increasing distance on the breathing estimation
is evaluated. Figure 5.17 depicts the accuracies, errors, PCC, and SNR values at the
chest of the different methods at distances ranging from 1 m to 4 m. The plots are
separated into the three conditions sitting, standing, and occlusion. This ensures to
not confuse the influence of the distance with a performance dependency on the
condition and reveals the particular differences among conditions.

Figure 5.17: From left to right: The respiratory rate accuracy, errors in breath per minute,
Pearson Correlation Coefficient w.r.t. the ground truth signal, and Signal-to-
Noise Ratio of the different methods at the chest. Plots are separated from top
to bottom by the sitting, standing, and occlusion condition and by the distance
between 1 to 4 meters, with all respiratory rates (10 bpm and 15 bpm) combined.
Accuracy and error metrics use a FFT window with a length of 48 seconds. The
colored bars show the averages, while overlay box plots show median (middle
parts) and whiskers marking data within 1.5 IQR. The breathing rate is detected
slightly less accurately and the PCC and SNR values decrease when the user is
further away from the camera. The Diff Model method remains robust for differ-
ent distances and conditions.

Sitting. While sitting, all methods can maintain a median accuracy of 100% at all
distances and except for the Diff Mean at 4 m, also all method’s box plots fully
remain at an accuracy of 100% with only a few more outliers at higher distances. The
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mean accuracy of all methods likewise is highest at close distances, but decreases
in varying amounts towards higher distances. At distances of 1 and 2 meters, all
methods show a mean accuracy of about 96% to 97%. Their mean error at 1 m lies
between 0.09 bpm and 0.12 bpm (medians at about 0.04 bpm) and increases at 2 m
to about 0.12 bpm to 0.15 bpm (medians at about 0.05 bpm). From 3 m onwards,
in terms of accuracy and error, a small but noticeable performance drop can be
observed for most methods. The Median Raw hereby is minimally affected by the
distance and is able to maintain a mean accuracy of about 97% and a maximum
mean error of about 0.19 bpm at 4 m. The PCA, Mean Raw, and Diff Mean are affected
the most. At 3 m they show a mean accuracy of about 91% to 92% with a mean error
between 0.86 bpm for the PCA, up to 1.6 bpm for the Mean Raw (their median errors
are at about 0.06 bpm). At 4 m, their performance values lower to a mean accuracy
of about 85% for the Diff Mean and about 88% for the PCA and Mean Raw, with a
mean error of 1.3 bpm for the PCA up to 1.9 bpm for the Diff Mean (all median errors
at about 0.09 bpm). The Diff Median shows a mean accuracy and error of 94% and
0.6 bpm at 3 m, and 91% and 1.1 bpm at 4 m, and the Diff Model achieves 95% in
accuracy and an error of 0.3 bpm at 3 m, and 93% and 0.4 bpm at 4 m, respectively.

In terms of signal quality, the PCC and SNR values also drop with increasing dis-
tance, but on a much larger scale than the accuracy, and with extending box plots
towards higher distances. The median PCC of the PCA, Mean Raw, and Median Raw
drop from a value of about 0.87 at 1 m to about 0.66 at 4 m, and their SNR drops
from 35 db to about 29 db. The Diff Mean performs worst on higher distances with a
median PCC ranging from 0.89 at 1 m to 0.34 at 4 m, and a median SNR from 36 db
to 22 db. It is closely followed by the Diff Median with a median PCC range from 0.89

at 1 m to 0.45 at 4 m and a median SNR range from 36 db to 25 db. The Diff Model is
least affected by the distance and spans from a median PCC of 0.92 at 1 m to 0.78 at
4 m and a median SNR from 38 db to 33 db.

Overall, the influence of the depth camera’s increasing noise level at higher dis-
tances can best be observed in a seated position where the respiration signal is not
disturbed by motion artifacts. When looking at the PCA, Mean Raw, or Median Raw
methods, their PCC and SNR values get worse on higher distances whereas the Diff
Model method with its inherent low-pass filtering remains more stable over all dis-
tances. The Diff Mean and Diff Median methods on the other hand decrease the most
in signal quality due to computing the difference of two noisy signals, hence ampli-
fying the overall noise. Both methods show the importance of low-pass filtering the
depth values when using a difference-based approach for computing the respiration
signal.

Standing. The standing condition introduces random body movements, for instance
swaying while keeping balance, which have a dominating influence on all non-
difference-based methods. Since the influence of the standing condition is not pre-
dictable and may vary in between different distances, the results of these methods
have to be taken with caution. For this reason and because the non-difference-based
PCA, Mean Raw, and Median Raw show similar performances on all measures, only
their general trend is summarized, without listing them separately. Their mean accu-
racy is with about 59% highest at 1 m, drops to about 45% at 3 m, and interestingly
increases again at 4 m to about 49%. This increase likely is caused by some partici-
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pants moving less at 4 m, which also is supported by the difference-based methods
that do not show such an increase. Their mean error increases from about 2.5 bpm
(median 1.1 bpm to 1.7 bpm) at 1 m to about 3.5 bpm (median 2.2 bpm to 3.0 bpm)
at 3 m. At 4 m, the PCA and Median Raw have a mean error of about 3.5 bpm and
3.3 bpm, and the Mean Raw of about 4.4 bpm (all medians at about 2.2 bpm). The Diff
Mean and Diff Median show a similar mean accuracy on all distances that decreases
from 97% at 1 m to 86% at 4 m. Their mean error increases from 0.18 bpm (median
0.06 bpm) at 1 m to 0.78 bpm for the Diff Mean and to 0.95 bpm for the Diff Median
(all medians 0.08 bpm) at 4 m. The Diff Model also starts with a mean accuracy of
97% and a mean error of 0.18 bpm (median 0.06 bpm) at 1 m, but it only lowers to
95% and 0.4 bpm (median 0.07 bpm) at 4 m. The difference-based methods’ accuracy
box plots furthermore fully remain at 100% at all distances.

The median PCC and SNR values of the PCA, Mean Raw, and Median Raw methods
lie between about 0.25 and 20 dB at 1 m and 0.16 and 15 dB at 4 m, all indicating a
poor signal quality. The Diff Mean and Diff Median start with a median PCC and SNR

of 0.81 and 34 dB at 1 m and drop to about 0.38 and 23 dB at 4 m, which is a similar
trend as for the sitting condition. With increasing distance, the Diff Model also loses
in signal quality, but with a median PCC and SNR between 0.86 and 36 dB at 1 m, and
0.72 and 31 dB at 4 m, it performs significantly better than the other methods. Being
able to maintain a better signal quality especially at higher distances also explains
its higher accuracy as compared to the other difference-based methods.

Occlusion. With the introduction of self-occlusion events, it is barely possible to
draw any conclusions about the influence of the distance on methods that are not
able to deal with those. The reason is that random amounts, extents, and times of the
occlusions on top of random movements caused by staying enter the breathing signal
in an unpredictable way. Recordings at higher distances might comprise less motion
artifacts and thus are likely to yield better performance values than recordings from
close distances, or vice versa. These random signal distortions therefore are likely to
shadow any effects of the distance when not counteracted.

The PCA and Mean Raw have a mean accuracy below 25% at all distances and the
Median Raw shows values between 42% and 48% randomly distributed between 1 m
and 4 m. The Diff Mean has a maximum mean accuracy of about 51% at 2 m which to
both sides degrades to below 35% down to about 13% at 4 m. Except for the Median
Raw, all these methods have a mean error above 3.7 bpm, a median PCC below 0.17,
and a median SNR below 16 dB. The Median Raw performs better than above methods
and shows a mean error of between 1.7 bpm (3 m) to 2.1 bpm (2 m), a median PCC of
about 0.21, and a median SNR of about 18 dB across all distances. The Diff Median, as
already described in Section 5.5.4, can deal with the occlusion scenario much better.
Starting with a mean accuracy of 62% (median 71%) at 1 m, it achieves up to 78%
(median 100%) at distances from 2 m to 3 m, and falls down to 60% (median 71%)
at 4 m. Its mean error decreases from 2.4 bpm (median 1.0 bpm) at 1 m to 1.4 bpm
(median 0.15 bpm) at 3 m and increases to 4.1 bpm (median 0.93 bpm) at 4 m. Its
median PCC and SNR likewise increase in between 1 m to 3 m from 0.25 to 0.32 or
from 19 dB to 22 dB and have a reduced value of 0.22 or 18 dB at 4 m. The Diff Model,
in contrast to the other methods, is able to detect and recover occluded areas. It has a
mean accuracy of about 90% at 1 m, 92% at 2 m and drops to about 80% at 4 m, with
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all median accuracies at 100%. Its mean error at 1 m is 0.77 bpm (median 0.1 bpm)
and gradually increases from 0.33 bpm (median 0.1 bpm) at 2 m to 0.88 bpm (median
0.15 bpm) at 4 m. Its median PCC and SNR drop from 0.64 and 29 dB at 1 m to 0.5
and 26 dB at 4 m. All methods show a decreased performance at 1 m as compared
to a distance of 2 m, which to some extent is likely to be caused by the randomness
of the occlusion gestures. Another explanation may be that the occluding hand and
mug block at a closer distance more infrared rays emitted by the depth sensor and
cast a shadow on nearby pixels. An additional reflection of the emitted infrared rays
from the mug towards the body furthermore influences a certain non-occluded area
on the body surface.

Summary. The optimal distance to measure the breathing signal has been shown to
be in the range from 1 m to 2 m, with a tendency towards 2 m in case of occlusion
events. A greater distance hereby mainly affects the signal quality as can best be
observed for all methods when looking at the PCC and SNR values of the sitting con-
dition. While sitting, the respiration signal is not disturbed by motion artifacts and
thus only competes against the increasing noise level of the depth camera at higher
distances. The reduced signal quality due to the increasing noise then in return has
an effect on the accuracy and error rate. The type of the condition, however, has
a much stronger influence than the distance. All methods that are not designed to
deal with motion artifacts or occlusion show on all distances a significantly reduced
performance by means of accuracy, error, and signal quality (also see Section 5.5.4).
Due to the randomness of these signal distortions, for these methods it furthermore
is barely possible to draw any conclusions about the influence of the distance, while
the methods that can deal with the respective condition show a similar trend as
observed for the sitting condition. In the occlusion scenario, a distance of 1 m has
shown to be less optimal as compared to a distance of 2 m, which is assumed to be
due to increased shadowing and reflection effects caused by the occluding hand and
mug from the depth camera’s infrared emitter upon the body surface.

5.5.6 The Influence of the Respiratory Rate

The sitting and standing sessions were recorded at two different respiratory rates of
10 breaths per minute (0.17 Hz) and 15 breaths per minute (0.25 Hz), both obtained
from the paced breathing setup. In this section, the influence of the respiratory rate
on the different methods’ performances is assessed and quantized using the accuracy,
error, PCC, and SNR. The performance values are taken from the chest region, include
all distances, and are separated into the conditions sitting and standing. The results
for the two different respiratory rates are depicted in Figure 5.18.
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Figure 5.18: From left to right: The respiratory rate accuracy, errors in breath per minute,
Pearson Correlation Coefficient w.r.t. the ground truth signal, and Signal-to-
Noise Ratio of the different methods at the chest. Plots are separated from top
to bottom by the sitting and standing condition and by the respiratory rate of
10 bpm or 15 bpm, with all distances (1 to 4 meters) combined. Accuracy and er-
ror metrics use a FFT window with a length of 48 seconds. The colored bars show
the averages, while overlay box plots show median (middle parts) and whiskers
marking data within 1.5 IQR. The higher respiratory rate show a slightly better
accuracy over all methods when sedentary, but a lower signal quality (PCC and
SNR values) on both conditions.

Sitting. While sitting, and at a respiratory rate of 10 bpm, the Median Raw and the
Diff Model achieve the highest performance with a mean accuracy of about 94% and
a mean error of 0.25 bpm. They are followed by the PCA and Diff Median with a
mean accuracy of 92% each, and a mean error of 0.39 bpm and 0.63 bpm respectively.
The Mean Raw and Diff Mean show the lowest performance with a mean accuracy
of about 91% and 90%, and a mean error of about 0.72 bpm and 0.78 bpm, respec-
tively. At 15 bpm, the highest mean accuracy and lowest mean error of about 100%
and 0.06 bpm is achieved by the Median Raw, closely followed by the Diff Median
with 98% and 0.35 bpm, and the Diff Model with 97% and 0.24 bpm. The remaining
methods have a mean accuracy of about 95%, with the mean error of the PCA being
at 0.82 bpm, of the Mean Raw at 0.95 bpm, and of the Diff Mean being at 1.0 bpm.
Furthermore, at both respiratory rates, all methods’ accuracy box plots fully remain
at 100% and all methods show a median error of about 0.05 bpm. At 10 bpm, how-
ever, much more outliers can be observed in the error plot, with most of them falling
in the range of up to an error of about 4.5 bpm, hence decreasing the respective
methods’ mean accuracy at the 10 bpm breathing rate.

In terms of signal quality, the PCA, Mean Raw, and Median Raw have a median PCC

and SNR of about 0.85 and 35 dB at 10 bpm, and 0.8 and 30 dB at 15 bpm. The Diff
Mean and Diff Median show a lower signal quality with values of 0.7 and 31 dB at
10 bpm, and 0.73 and 29 dB at 15 bpm. The Diff Model has on both respiratory rates
the highest median PCC and SNR with values of 0.89 and 37 dB at 10 bpm, and 0.88

and 34 dB at 15 bpm.
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Standing. While standing, the non-difference-based methods, as explained in Sec-
tion 5.5.4, are heavily influenced by that condition and show a low performance, but
a strong influence of the respiratory rate can be observed. The mean accuracy of the
PCA, Mean Raw, and Median Raw at 10 bpm is with about 62% (median 86%) much
higher than at 15 bpm where it only is at about 41% (median 20% for Median Raw,
30% others). The mean error likewise is for these methods with about 1.4 bpm to
1.5 bpm (median 0.7 bpm) lower at 10 bpm than at 15 bpm where it is above 4.7 bpm
(median above 5.0 bpm). Likewise, their median PCC and SNR at 10 bpm indicate with
values of 0.25 and 19 dB a better signal quality than at 15 bpm, which in contrast
shows lower PCC and SNR values of 0.15 and 15 dB.

The difference-based methods are not or only barely affected by the standing con-
dition. The Diff Mean, Diff Median, and Diff Model methods show a mean accuracy of
about 93% and a mean error of 0.25 bpm at a respiratory rate of 10 bpm. At 15 bpm,
the Diff Mean and Diff Median have a slightly lower mean accuracy of about 92% and
a higher mean error of 0.55 bpm and 0.67 bpm, respectively. The Diff Model on the
other hand achieves at 15 bpm a higher mean accuracy of 98% and a lower mean
error of 0.17 bpm. On both respiratory rates, the difference-based methods further-
more show a median error of 0.06 bpm and have their accuracy box plots being fully
at 100%. The median PCC and SNR values of the Diff Mean and Diff Median are at
about 0.64 and 29 dB for the 10 bpm and at about 0.59 and 28 dB for the 15 bpm rate.
The Diff Model has the highest PCC and SNR values of 0.8 and 33 dB at 10 bpm, and
0.75 and 32 dB at 15 bpm.

Summary. All methods appear to have a lower signal quality at 15 bpm as compared
to 10 bpm as indicated by both, the Pearson Correlation Coefficient and the Signal-
to-Noise Ratio. All methods’ mean accuracy values on the other hand are higher
at 15 bpm during the sitting condition and for the Diff Model during the standing
condition. A likely reason for this is that more signal periods fall within the 48s FFT

window at 15 bpm than at 10 bpm, making the 15 bpm signal component stronger
and easier to detect in frequency domain, at least during the sitting condition with
weak frequency components stemming from motion artifacts. Since the differences in
accuracy are not that big, they might, however, also be caused by one or a few users.
For the other cases, it can be argued that the higher respiration frequency interferes
stronger with other body movement and thus can not be detected that easily, but it
also is likely that the relatively relaxed low respiration frequency of 10 bpm (0.17 Hz)
did not introduce as many motion artifacts as the faster one, or that it was easier to
maintain during the recording.

5.5.7 The Influence of the Gender

The sex or gender can be considered an important distinguishing feature between
different users. Male and female persons do not only differ in body shape, but also
otherwise typically show distinct differences in their appearance. Most notably are
different clothing styles and the tendency of female persons to have longer hair than
their male counterparts, but also the overall body posture tends to be different [127].
All these characteristics influence the torso appearance on the depth data and thus
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can be assumed to also have an influence on the respiration estimation. Note that the
term gender here is used over the term sex since clothing styles, length of hair, etc.
are not dependent on the biological sex, but on the social norms and roles associated
with the gender. Since social norms can change over time and from culture to culture,
here it is referred to typical gender norms and roles found in Germany at the time
of writing.

To assess gender-specific differences on all methods’ performance, the participants
are split into a male and a female group, each containing 12 male or 7 female par-
ticipants, respectively. Figure 5.19 depicts the accuracy, error, PCC, and SNR of the
different methods for both groups, again divided into the three conditions sitting,
standing, and occlusion.

Figure 5.19: From left to right: The respiratory rate accuracy, errors in breath per minute,
Pearson Correlation Coefficient w.r.t. the ground truth signal, and Signal-to-
Noise Ratio of the different methods at the chest. Plots are separated from top
to bottom by the sitting, standing, and occlusion condition and by the gender
of the participants, with all distances (1 to 4 meters) and all respiratory rates
(10 bpm and 15 bpm) combined. Accuracy and error metrics use a FFT window
with a length of 48 seconds. The colored bars show the averages, while overlay
box plots show median (middle parts) and whiskers marking data within 1.5 IQR.
Except for the sitting condition, all considered methods perform significantly bet-
ter on the female participants, mostly due to unbalanced group sizes (12 male,
7 female) and highly variable results for the male participants (user 9, male, had
problems in adhering to the breathing visualization, also see Section 5.5.8).

Sitting. While sitting, the male users show a mean accuracy of about 95% (box plots
fully at 100%) and a mean error of 0.19 bpm to 0.34 bpm (median 0.05 bpm) for
all methods. In the female group, the PCA, Mean Raw, and Diff Mean achieve the
lowest mean accuracy of about 90% to 92% and mean errors between 1.29 bpm to
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2.0 bpm (medians at 0.07 bpm), whereas the Median Raw achieves with values of
100% and 0.06 bpm (median 0.05 bpm) the highest performance. The Diff Median
and Diff Model show a mean accuracy of about 96% and a mean error of 0.74 bpm
(median 0.06 bpm) and 0.31 bpm (median 0.05 bpm), respectively. The accuracy box
plots for all methods, like on the male group, nonetheless fully remain at 100%. When
zooming out of the female’s error plot, a few outliers can be seen, probably from a
single person, with values of up to 30 bpm that, in combination with their smaller
group size, cause the mean error of the PCA, Mean Raw, Diff Mean, Diff Median to be
much higher as compared to the male group.

In terms of signal quality, the PCC and SNR of the non-difference-based methods
are with values of 0.84 and 33 dB higher for the male group than compared to the
female group with PCC values of 0.71 to 0.77 and a SNR of about 31 dB to 32 dB. The
difference-based methods on the other hand show a lower signal quality on the male
group. Here, the PCC of the Diff Mean and the Diff Median have a value of 0.68 and a
SNR of 29 dB as compared to a PCC of 0.72 or 0.8 and a SNR of 31 dB or 32 dB. The
Diff Model achieves the highest signal quality, with PCC and SNR values of 0.88 and
35 dB for the male, and 0.9 and 37 dB for the female group.

Standing. The standing condition, as already mentioned in Section 5.5.4, is challeng-
ing for the non-difference-based methods. All of them show a mean accuracy of
about 48% (medians slightly below) and mean errors between 3.2 bpm to 3.7 bpm
(median 2 bpm to 2.5 bpm) for the male, and about 58% (median 63% to 74%) and
2.6 bpm to 2.9 bpm (median 1.5 bpm to 1.7 bpm) for the female users. Their median
PCC and SNR values are slightly higher for the female users, but are all below 0.27

and 20 dB. In contrast to that, all difference-based methods have accuracy box plots
that fully remain at 100% and median errors below 0.07 bpm. The Diff Mean and
Diff Median methods show similar values per group. Their mean accuracy and mean
error values lie at about 90% and at 0.51 bpm to 0.55 bpm (medians 0.07 bpm) for
the male, and at about 98% and at 0.21 bpm to 0.30 bpm (medians 0.05 bpm) for
the female group. The Diff Model has a mean accuracy of 93% and a mean error of
0.31 bpm for the male, and 100% and 0.06 bpm for the female group.

In terms of signal quality, the Diff Mean and the Diff Median show PCC and SNR

values below 0.58 and of about 28 dB for the male, and below 0.7 and about 31 dB
for the female users. The Diff Model has a median PCC and SNR of 0.74 and 32 dB for
the male, and 0.8 and 33 dB for the female group.

Occlusion. As a general trend during the occlusion condition, it can be seen that all
methods show a higher performance on the female users than on the male group.
The PCA, Mean Raw, and Diff Mean methods hereby perform worse than the other
methods and can be considered to be more susceptible to occlusions than the Diff
Model or both median based methods. Due to the randomness of the occlusion ges-
tures and considering the different group sizes (12 male, 7 female), it furthermore
is hard to derive an influence of the gender for all methods that are susceptible to
occlusion events. For this reason, at this point no conclusions are drawn about the
influence of gender on the PCA, Mean Raw, and Diff Mean methods. Also the median
based methods have to be taken with care, but since they show reasonable results
and big differences on both groups, both methods are examined more closely. The
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Median Raw jumps from a mean accuracy of 30% (median 14%) and a mean error of
2.1 bpm (median 2.2 bpm) on the male group to 72% (median 100%) and 1.5 bpm
(median 0.26 bpm) on the female group. Its accuracy and error for the female group
are even better than its performance during the standing condition, but the occlusion
condition also only was recorded at a respiratory rate of 10 bpm, which according to
results from Section 5.5.6 is known to yield higher performance values. The Diff Me-
dian similarly performs better on the female group, where it shows a mean accuracy
of 85% (median 100%) and a mean error of 0.9 bpm (median 0.15 bpm) as compared
to values of 60% (median 71%) and 3.4 bpm (median 1.0 bpm) on the male group. In
terms of accuracy, the Diff Median performs on the female group even better than all
other methods on the male group. The Diff Model achieves for the female participants
with a mean accuracy of 94% (median 100%) and a mean error of 0.41 bpm (median
0.08 bpm) the highest performance among all methods and groups, whereas for the
male participants it yields values of 82% and 0.75 bpm (median 0.15 bpm).

When looking at the signal quality measures, it can be observed that for the female
users also a higher signal quality can be obtained by all methods. On the female
group, the Median Raw’s PCC and SNR median values are at 0.34 and 22 dB, and on
the male group they are at 0.15 and 15 dB. Similarly, the Diff Median has median PCC

and SNR values of 0.35 and 22 dB on the female, and 0.21 and 17 dB on the male
group. Despite the relatively good accuracy and error performance, these PCC and
SNR values suggest a rather low signal quality. In terms of signal quality, the Diff
Model stands out from the rest. It has median PCC and SNR values of 0.68 and 30 dB
for the female, and 0.56 and 28 dB for the male users.

Summary. On first sight, it seems like all methods work better on the female partic-
ipants than on the male ones, especially in the standing and the occlusion scenarios.
The male group, however, is with 12 participants almost twice as big as the female
group. With only 7 female participants in the dataset, it is consequently hard to pin-
point whether the user’s gender could play a role in the performance of breathing
rate estimation. Due to the relatively small and unbalanced group sizes, it is likely
that the performance is biased towards the female group. Also, in the used dataset,
in contrast to some male participants, all females had clothing that did not cover the
throat. So at least in this dataset the gender-specific differences might not be caused
by the gender itself but by gender specific clothing styles (also see Section 5.5.8). Fur-
thermore, a single male user was found that had difficulties in adhering to the paced
breathing setup and, due to the small group size, lowers the overall performance of
the whole male group. The influence of single users and specific properties like their
clothing styles will be elaborated in the next section.

5.5.8 The Influence of the User

In this section, the influence of the single users on the performance of the various
respiration estimation methods is assessed. The results of this section are meant to
give some context to the different evaluation outcomes from previous sections and
should not be seen as definitive results, but rather as an indicator for future research
questions.
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Figure 5.20: Example images from the recordings of (from left to right) user 1, user 5, user 10,
user 15, and user 17. Their clothing is particularly challenging for different types
of methods. Difference-based methods have difficulties when the throat is par-
tially covered by a collar (user 1, user 5, and user 17), resulting in a poor motion
reference signal obtained from the throat region. Clothing with bad infrared re-
flection properties (user 15, left) and garments loosely hanging from the chest
or the shoulders (user 15, right) or similar clothing that causes many surface
deformations over time, like ribbons reaching to the chest area (users 1 and 5),
are likely to interfere with the respiration signal obtained from all methods. Also
hair covering the body surface (user 15, left) or users moving a lot or bending to
either side (user 10) are likely to cause signal distortions.

There is a whole set of user-specific parameters that may directly or indirectly
influence the measurements. These include size and weight, state of health, age, gen-
der, clothing, or even long hair reaching to the chest area, but also the preferred
breathing rhythm and style, e.g. abdominal breathing, or simply the ability to stand
still for a while. Since the dataset focuses on having a high user variance in order
to achieve meaningful results in above parameter evaluations, the participants were
not explicitly categorized by these parameters. Furthermore, a systematic evaluation
by for instance asking the users to wear a specific set of different clothing styles
was not pursued. Consequently, each participant shows a rather unique subset of
user-specific parameters. Due to the big parameter space and the limited number
of participants, it therefore is difficult to draw final conclusions about user-specific
influences, as mentioned at the beginning of this section.

An attempt to nevertheless gain an insight into user specific parameters thus is
as follows: If a user can be identified that, regardless of the method used, performs
worse than other users, this user may exhibit a specific reason for why he or she
influences the respiration estimation. Furthermore, previous evaluations hide the
contributions of single participants to the average values and box plots. By inspecting
the data on a per user basis, more detailed information about the composition of
these plots can be obtained, like if a lower performance is caused by all participants
similarly, or if one or a few participants with exceptionally low performance values
cause a significant decrease on the averages.
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5.5.8.1 Accuracy and Error of Users

Figure 5.21: The mean accuracy (Y-axis) over the mean error (X-axis) for all individual users,
captured from the chest using a FFT window with a length of 48 seconds. Accu-
racy and errors are averaged over all distances (1 to 4 meters) and all respiratory
rates (10 bpm and 15 bpm) for the methods (from left to right): PCA, Mean Raw,
Median Raw, Diff Mean, Diff Median, and Diff Model, each divided into the con-
ditions sitting, standing, and occlusion. Each user is associated with a unique
color where circles mark male and plus signs mark female users. Please note the
different scales on the X-axis (errors). Ideally, all users are located at the top left
corner, indicating a high accuracy and low error. This is for most participants
achieved by all methods during the sitting condition. On other conditions, the
Diff Model method achieves the best performance. The accuracy and errors can
be seen to vary widely for certain participants, with especially user 9 standing
out on all conditions and methods due to poorly adhering to the breathing visu-
alization.

Figure 5.21 depicts for each participant the accuracy against the error, split up into
the three conditions and averaged over all distances and respiratory rates. The single
users are color-coded and marked with a dot for male, and with a plus for female
users. Ideally, all user markings are at the upper left corner of the plots, where they
indicate a high accuracy and low error on average.

Sitting. While sitting, almost all users show for all methods on average a high accu-
racy and a low error close to 100% or 0 bpm, respectively. Most notably, users 9 and
15 stand out on all methods. User 9 hereby shows a constant accuracy of 50% and an
error of about 1.5 to 2 bpm for all methods. After inspecting this user’s depth videos,
user 9 was found to not or to only poorly maintain the respiratory rate given by the
breathing visualization on almost all recordings, as will also be seen on the other
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conditions. User 15 shows varying accuracy values between 50% and about 80% and
high errors of up to 10 bpm on all methods, except for the Median Raw where she
achieves 100% and close to 0 bpm error. The decreased performance is caused by
poor infrared reflection properties of her clothing and her long hair partly covering
her chest at distances from 3 m upwards as depicted in Figure 5.20. The Median Raw
is able to achieve a high performance due to the median being more robust against
this kind of noise where less than half the pixels are affected.

Standing. While standing, the PCA, Mean Raw, and Median Raw have difficulties in
estimating the respiration as discussed in Section 5.5.4. The additional motion arti-
facts cause a wide, diagonally distributed spread of the user’s performances towards
low accuracy and high errors. The focus therefore lies on the difference-based meth-
ods where most participants again show a high accuracy of almost 100% and low
error close to 0 bpm, especially for the Diff Model. On this condition, most notably
users 1, 5, 9, and 15 stand out from the rest. User 9 again did only poorly maintain
the given respiratory rate, and user 15 was recorded on a different day with a dif-
ferent, but nevertheless challenging dress: A cardigan with an open front hanging
loosely from the shoulders as depicted in Figure 5.20 (2nd from the right). The Diff
Model can compensate for the garment’s movement during breathing due to its capa-
bility of detecting and recovering such occlusion events. Users 1 and 5 both have in
common that they are wearing a hooded sweater that partly covers the throat region
(see Figure 5.20) where the motion reference signal is extracted from. Especially at
higher distances, this region resolves to only a few pixels and a moving collar (due
to chest expansion while breathing) is likely to interfere.

Occlusion. During the occlusion condition, except for the Diff Model, all methods
show a wide spread of the users’ accuracy and error averages, with the PCA, Mean
Raw, and Diff Mean only achieving a maximum accuracy of about 60% or 75% on
a few participants. The Diff Median performs significantly better with most users
above 70% and up to 100%. Compared to the Diff Model that is able to shadow
occlusion events, it however can not compete, so the focus will be on the Diff Model
only. Here, users 5, 9, 10, 16, and 17 deviate most significantly from the other users,
which in contrast to those all lie in the range from 90% to 100% and below 1 bpm.
User 5 again is likely to only achieve an average accuracy of about 60% due to
the hooded pullover with the collar covering the throat region, and user 9 again had
difficulties to adhere to the breathing visualization. User 10, in contrast to other users,
occasionally shows strong movements to either of both sides while relieving a leg.
These movements directly affect the respiration signal and lower the performance,
most likely due to window misalignment caused by bending the upper body to the
side or by the quickness of the leaning movement. For user 16, it was found that the
drinking gestures were not fully executed with the cup often remaining for longer
time periods in front or close to the throat region, which decreases the performance
at distances of 3 and 4 meters where this region is only a few pixels wide. User 17 is
wearing a shirt with a collar that also partly covers the throat (see Figure 5.20, right)
and it was found that the decreased performance solely stems from the distance at
4 meters, again likely due to the lower resolution at higher distances with only a few
pixels available to sample the motion signal from the throat region.
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5.5.8.2 Accuracy Distribution of Users

Figure 5.22: Histogram of the accuracy distribution of the single participants, with the breath-
ing signal captured from the chest and using a FFT window with a length of 48

seconds. Histograms are divided into the different methods (from left to right)
PCA, Mean Raw, Median Raw, Diff Mean, Diff Median, and Diff Model, and into the
conditions (top to bottom) sitting, standing, and occlusion. The X-axis indicates
the accuracy value divided into 10 bins and the Y-axis indicates the percent-
age of recordings that achieve this accuracy. The contributions of the individual
participants are color-coded and stacked on top of each other. Ideally, all individ-
ual accuracy contributions are located in the rightmost bin, indicating that the
respiratory rate can correctly be estimated on all recordings. A high bar in the 90-
100% accuracy bin can be achieved by all methods during the sitting condition
and by the difference-based methods during the standing condition. During the
occlusion condition, the 0-10% accuracy bin is dominant for all methods, except
for the Diff Median and the Diff Model, which have 50% or 76% of the recordings
in the 90-100% bin.

Figure 5.22 depicts a histogram of the accuracy distribution of all participants. The
whole accuracy range of the single recordings hereby is divided into 10 bins (or
10% steps) and drawn on the X-axis, while the Y-axis indicates the percentage of
all recordings that achieve an accuracy that falls into the respective bin. Each user’s
contribution to a specific bin or accuracy range is visualized by color-coding the par-
ticipants as before. The contributions of the single participants to a specific accuracy
range are stacked on top of each other such that each participant’s individual contri-
bution as well as the overall amount of recordings with an accuracy that falls inside
that bin is visualized.
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Sitting. During the sitting condition, the majority of the users are within the 90%
to 100% accuracy range, regardless of the method. Only user 9 constantly shows
a significant part in the 0% to 10% range on all methods due to him not properly
adhering to the breathing visualization. The same applies to the standing and occlu-
sion conditions. User 15 notably also shows up with a significant part in the same
accuracy range, but only for the PCA, Mean Raw, and Diff Mean methods.

Standing. During the standing condition, the PCA, Mean Raw, and Median Raw meth-
ods draw a completely different picture: Only about 30% of the recordings reach the
90% to 100% accuracy range and already about 22% of the recordings are in the 0%
to 10% range. Notably, these methods work well for always the same users, even if
to varying degrees. To some extent, thus a clear user dependency can be stated here,
likely due to the respective participants being able to stand still for a while or due to
a different breathing style. The difference-based methods do show a similar accuracy
distribution like during the sitting condition, but with a few more participants partly
showing up in lower accuracy ranges. With the Diff Mean and Diff Median methods,
about 89% of the recordings, and with the Diff Model, about 95% of the recordings
reach the 90% to 100% range. User 9 again constantly appears with a significant part
at the lower end of the accuracy ranges, regardless of the method used.

Occlusion. During the occlusion condition, the 0% to 10% accuracy range becomes
the dominant region for the PCA, the Mean Raw, the Median Raw, and the Diff Mean
methods. Only the Median Raw shows with about 25% of the recordings a signif-
icantly higher peak in the 90% to 100% bin, where users 7 and 13 stand out as
strongest contributors to that range. The Diff Median achieves to put about 50% of
the recordings and most of the users into the 90% to 100% accuracy range. The other
ranges do not show a significant peak and less than 15% of the recordings fall into
any one of the remaining ranges. The Diff Model outperforms all other methods, with
about 76% of the recordings and almost all users being in the 90% to 100% range.
Moreover, the 0% to 10% accuracy bin almost completely is covered by user 9, the
user that did not adhere to the breathing visualization, and the next peak with a
comparably high impact (about 6% to 7% of the recordings) is in the 50% to 60%
accuracy bin.

5.5.8.3 User Summary

In conclusion, it could be seen that in the cases where the method in use is suited for
the condition, like the difference-based methods during standing or the Diff Model in
the occlusion scenario, a decreased performance on any method mostly stems from a
few individual users. The other way round, during the standing condition it could be
seen that methods that are not suited for that condition show good results for a few,
but always the same users, regardless of the method used. These findings indicate a
dependency of depth-based respiration estimation on user-specific parameters.

Most notably, user 9 stands out from the rest on all methods and all conditions.
This user did not or did only poorly maintain the respiratory rate given by the breath-
ing visualization and thus decreases the performance measures of all methods by a
certain amount, especially when comparing the male to the female group. This user
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should be excluded from the dataset since this user’s data does not reflect the cor-
rect respiratory rate as required from the study design, but nevertheless was kept in
order to account for more realistic scenarios where users do not behave as expected.
For other users, mainly the clothing style was found to be the most likely reason for a
decreased performance. Examples are clothing with poor IR reflection properties (see
Figure 5.20, fifth from the left), or loose garment or ribbons hanging from the chest or
shoulders (see Figure 5.20, first, second, and sixth from the left). A collar that partly
covers the throat region is likely to affect the difference-based methods because it
tends to move during breathing and interferes with the motion reference signal ex-
tracted from the throat region (see Figure 5.20, first, second, and seventh from the
left). Apart from these observations, there might also be more clothing-related fac-
tors like strong surface deformations that affect the estimation of the respiratory rate.
For a full understanding of the influence of clothing, however, a separate, systematic
study where the same participants are recorded with a set of different cloths needs
to be conducted. Other user-specific influences that possibly affect the breathing es-
timation are long hair reaching to the chest (see Figure 5.20, fifth from the left) and
movements such as changing the leaning angle to either side (see Figure 5.20, second
and third from the left), or the ability to stand still for a while in general.

A detailed and systematic evaluation of user-dependent influences, for instance
evaluating different clothing styles, is required in the future to fully understand the
particular influences. This will enable the implementation of an adaptive method that
for instance considers multiple body regions and rejects strongly influenced parts.

5.6 applications of depth-based respiration estimation

In this section, an outlook on applications of depth-based respiration estimation
methods will be given with two examples based on two small-scale user studies.
The examples are the utilization of remotely monitored respiration signals in activity
recognition and their usage for medical applications, i.e. e-health and telemedicine.

5.6.1 Remote Respiration Estimation as a Modality for Activity Recognition

As many RGB-D approaches for activity recognition rely on extracting body pose
(and sequences thereof), respiration features could also be seen as an additional
modality to specify certain activities. Examples could be the quality of breathing for
weightlifting exercises, the regularity of breathing for meditation, or the breathing
speed reflecting affect or drowsiness while driving car or watching TV. Using respira-
tion as an additional modality is likely to enhance the field of activity recognition in
certain tasks, as it provides feedback on a user’s condition, such as state of health, ef-
fort, affect, or drowsiness, and enables direct bio-feedback for these. Furthermore, it
does not bring any additional hardware requirements in depth-based activity recog-
nition scenarios while being non-intrusive and computationally efficient. It this sec-
tion, it will be shown how the obtained respiration signal from the proposed method
can be used to generate breathing-related features that characterize and separate sev-
eral breathing-specific activities that would otherwise, for instance by observing the
user’s body pose, be hard to detect.
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Figure 5.23: The different activities: paced-breathing meditating, post exercise recovering, re-
laxing, and speaking (reading aloud), transformed to feature space. Left: The
features Med-PP, ESP, STD-Spec, and Skew-Spec reduced by one dimension by
a principal component analysis. Right: The inverse of the feature Med-PP (to
express it in Hz) plotted against Skew-Spec.

For the experiment, the dataset from the validation study is used, in which 14

participants performed the activities paced-breathing meditating, relaxing, and post
exercise recovering (also see Section 5.3.2). In addition to these, a reading activity
was added, in which 11 participants were asked to read aloud the same text across
all study participants for several minutes. The reading activity was recorded under
the same conditions as the three other activities (see Section 5.3.2). All participants
were in a standing posture during all these activities, making it hard to use body
posture or body joint sequences to be used to distinguish between these activities.

Several features that work particularly well to discriminate between the different
activities were identified as follows:

• Standard deviation Std-Spec, skew Skew-Spec, and kurtosis Kurt-Spec of fre-
quency spectrum amplitudes.

• Signal-to-Noise ratio SNR.

• Median of the time deltas between peaks in the signal Med-PP.

• Spectral entropy of the signal obtained in frequency domain ESP.

• Standard deviation of the first order time derivative of the signal Std-Deriv.

Figure 5.23 depicts two plots of the data expressed in feature space using the
more promising features. Figure 5.23 (right) highlights that already two well-chosen
features are sufficient to effectively split the data into distinct clusters and that with
an ensemble of linear classifiers these four activities could be separated well across
the 14 study participants. The one outlier point from the post exercise activity (in
orange) that appears within the relaxing (green) cluster was due to the algorithm
failing to correctly estimate the respiration signal.
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5.6.2 E-Health and Telemedicine

This section is based on the peer reviewed publication [21]. The idea to use the system in the
context of e-health and telemedicine originates from me and I extracted the core elements of
this idea from the publication. The study experiments were conducted by Steffen Brinkmann
and the full evaluations and details can be found in the original work.

In this section, a respiration monitoring system for e-health and telemedicine appli-
cations is envisioned, with examples ranging from a personal usage for instance in
sports or meditation, up to professional health monitoring, or beyond. The idea is
that non-professionals should be able to operate such a system in an everyday en-
vironment. Thus, it should deliver reliable respiration data and at the same time be
easy to set up and use. Since depth cameras already are deployed in many consumer
grade devices, for instance in many modern smartphones, the usage of remote res-
piration estimation techniques could be viable to achieve this. A user in such a case
simply has to sit or stand in front of the depth camera. When using the method pro-
posed in Section 5.2, not even a clear line of sight to the user’s upper body is required
and motion artifacts caused by standing do not cause a significant challenge.

Figure 5.24: A user’s chest is observed by an unobtrusive depth camera that is used to esti-
mate and monitor this user’s respiration.

To investigate such a scenario, a simple, yet expressive case study is conducted
to demonstrate the feasibility of depth-based respiration estimation for e-health ap-
plications. In this study, an office-like setting is chosen, where a user sits in front
of a display while being monitored by a depth camera that is installed like a small
webcam, i.e. it has a clear line of sight to the user’s upper body as depicted in Fig-
ure 5.24. This setup already resembles many use cases such a respiration sensor
would be used in, be it to do some sort of breathing exercise or to just be monitored
for a certain period of time. Possible applications could be a remote respiration mea-
surement by a doctor in medical applications or a long-term respiration monitoring
during screen work or while watching TV. This way, it can also be used to recognize
problematic respiratory events at an early stage, for instance for asthma patients. The
user furthermore could practice guided respiration exercises in front of a display that
directly provides some sort of feedback or the user could share the respiration sig-
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nal with a supervisor to get a more sophisticated feedback. Moreover, unobtrusively
monitoring the respiration can serve as a fatigue indicator in safety critical functions,
for instance in cockpits or control rooms.

Figure 5.25: Exemplary depth frame
at 1 m, color-coded in
grey. The red rectangle
indicates the region to
sample the respiration
signal from [21].

The envisioned system was evaluated in a
small-scale study on a group of 8 participants,
which consists of 4 male and 4 female partici-
pants, all aged 21 to 57 years old.Each participant
was recorded by a small consumer grade depth
camera, namely the Intel RealSense D435 [66],
that is attached to a standard consumer grade
PC like a webcam. The D435 is smaller than the
Kinect and has less demands on power consump-
tion: It can directly be powered via the USB port.
In contrast to the Kinect, furthermore, the compu-
tation of the depth values is not based on time
of flight but on stereo imaging. Similar to the sys-
tematic parameter evaluation (see Section 5.3.3),
the system was evaluated at different distances of
1, 2, and 3 meters, each at two respiratory rates
of 10 bpm (0.25 Hz) and 15 bpm (0.17 Hz), re-
spectively. The participants hereby are asked to
sit upright in an office chair and follow a paced
breathing visualization. The participants this time
are not standing, nor are they allowed to occlude
their upper body. To assess a ground truth signal, all participants furthermore are
wearing a Vernier GoDirect respiration belt below their shirts or pullovers. Fig-
ure 5.25 depicts an exemplary depth frame taken with the D435 depth camera from a
distance of 1 meter, with the region of interest to sample the respiration signal from
overlaid as a red rectangle. An example of the respiration signals of both the depth
camera and the respiration belt can be found in Figure 5.26, where both signals are
overlaid for comparison reasons.

Figure 5.26: Example of the unfiltered (yellow), filtered (red), and ground truth (black) respi-
ration signals of user 1 at 2 meters distance with a breathing rate of 10 bpm, as
obtained from the depth camera or the respiration belt, respectively [21].
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Results show that the proposed system is feasible to be used for daily life respira-
tion estimation in the context of e-health. Especially at close distances and regardless
of the gender, the respiration estimation worked reliably. Furthermore, participants
were not required to adjust their clothes and performance values did not diverge for
participants with loose-fitting textiles. The full user study can be found in [21].

The experiments performed in this work can only be considered a small-scale fea-
sibility study. For a deployment in a medical context, a more thorough user study is
indispensable. It should not only comprise more participants, but should also con-
sider potential respiratory illnesses as well as a wider range of examined respiratory
rates, including various other parameters.

5.7 discussion

In light of the above results, this section will discuss the limitations, assumptions
and requirements for the data, the methods, and the evaluations.

5.7.1 Limitations of the Dataset and Evaluation Setup

The dataset was recorded with the intention to be as realistic as possible, yet it should
be applicable to existing respiration estimation methods and it should allow a com-
parison of those among each other, independent of user-specific or external influ-
ences. Thus it was recorded under certain assumptions and with certain study design
decisions that limit the applicability of the found results to more general scenarios.
The assumptions and decisions being made are:

• The user generally faces the depth camera and only is rotated by a small
amount to either side. Only a single user is recorded at the same time.

• The user is sitting or standing upright at a fixed position with a distance of 1, 2,
3, or 4 meters to the depth camera during the systematic parameter study and
standing at a distance of 3 meters during the validation study. The user does
not consciously lean excessively to either side, bend the upper body forwards
or backwards, or moves towards the camera or to any other location. During
the validation study, however, some participants did unconsciously bend the
upper body forwards.

• Upper body motion is restricted to a small amount, like swaying while keeping
balance, repositioning movements to either side, for instance, when switching
from one leg to another, or small body rotations. Rotating the body actively
away from the depth camera is not allowed.

• The user may occlude its upper body with one or both hands and with an
in-hand object (a mug) arbitrarily during the occlusion condition.

• For the systematic parameter evaluation, users are adhering their respiratory
rate to a breathing visualisation with fixed frequency. This is not a realistic
setup, but eliminates the influence of user-specific breathing styles and paces.
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Also a fixed respiratory rate makes the benchmarking of the different methods
easier and better comparable, even across different users.

• The users are wearing a big variety of regular indoor clothing. To reflect more
realistic indoor scenarios, users were not asked to wear specific cloths nor were
the recordings repeated on a set of different clothing types. Some users, how-
ever, are wearing different clothing on different recordings. Also, yet there is
no systematic classification of the clothing styles.

The datset, with 7 female and 17 male participants, is not balanced, so a com-
parison of both groups likely contains bias. User 9 had difficulties in adhering to
the paced breathing setup and other users might occasionally also show deviations.
Ground truth was only recorded explicitly for the validation study with a respira-
tion belt and otherwise was obtained from the paced breathing. For the systematic
parameter evaluation, accuracy, error, and signal-to-noise evaluations are obtained
by comparing the measured respiratory rate to the ground truth frequency as given
by the setup of the paced breathing visualization. The Pearson Correlation Coeffi-
cient is obtained by comparing the measured breathing signal to the ground truth
signal from the respiration belt (validation study) or to a sine wave of the respective
frequency (systematic parameter evaluation).

The FFT window has a fixed length of 40s for the validation study and 48s for
the systematic parameter evaluation, and the window moves with a step size of 10s
for the validation study or one breathing cycle (4s or 6s) as given by the respective
breathing rate setup during the systematic parameter evaluation. For the validation
study, furthermore the signals are band-pass filtered and a Hann-window is applied
for the FFT. The performance values are likely to change with different FFT parame-
ters.

5.7.2 Limitations of the Proposed Method

The proposed method relies heavily on tracking the torso and the differences be-
tween a region of the torso that is less affected by respiration at the throat, and a
heavily respiration-affected area within the torso. As the throat’s region is relatively
small, it is susceptible to noise, occlusions, and clothing effects such as a moving col-
lar. This makes the proposed method more susceptible in winter or colder climates,
for instance, when users might wear heavier attire that completely covers the throat
region, too. Another limitation is that the proposed model cannot deal with large ro-
tational offsets and, at the moment, requires the user to keep a steady distance to the
depth camera. The latter can be solved by rescaling the input frames or the model,
large rotations on the other hand are more challenging. In a similar implementation,
they would for instance require a three dimensional model and an iterative clos-
est point algorithm to match the input frames to the body surface, making it hard
to keep real-time performance especially on embedded platforms. Small rotational
or spatial movements, however, are present throughout the whole dataset, especially
during the standing postures. The proposed model can adapt to these and, due to the
difference-based signal extraction, the proposed method performs remarkably well
under these conditions. On a more general application, where users can be walking,
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running (on a treadmill), or performing fast body movements, the proposed method
yet has to be validated and will likely perform poorly.

Another issue is that in some cases low frequency components dominate in the
frequency domain, even when a clear respiration signal is present in the time series.
An alternative would be to use peak detection or a zero crossings method to find the
respiratory rate more timely and without the effect of lower frequencies showing up.
These methods on the other hand have to deal with noise that especially at higher
distances significantly increases and may have decreased precision due to false pos-
itives or signal distortions. Different types of environmental noise can thus impact
the quality of the proposed method’s resulting respiration signal. It is possible that
adaptive digital filtering noise cancellation techniques be integrated to provide more
accurate results in future versions of the proposed method.

Since the depth imaging frames can contain a user anywhere in the frame, the
proposed method is expected to work well with multiple users, as long as these do
not block each other. This likely becomes challenging for detecting users’ positions
and joints in the depth frames accurately as more users are present. This multi-user
scenario was not pursued further, as the focus of the evaluation was on assessing
the influence of different parameters on depth-based respiration estimation methods
on a per user basis and without complicating the evaluation unnecessarily. The pro-
posed method, however, can easily be scaled up to multiple users, but nonetheless
should be validated in a separate experiment then.

Finally, another limitation of the proposed method has to be mentioned: The sur-
face reconstruction does in some cases not deliver good results, for instance if the
model is initialized with occlusions, as illustrated in Figure 5.27 (left). It however
does ensure that over time the recovered parts are elevated accordingly to the sur-
rounding pixels while keeping sufficient surface detail to distinguish between oc-
cluded and non-occluded regions in the following input frames. Moreover the model
is adaptive to small surface deformations and does not require a valid initialization.
Any occlusions erroneously incorporated into the proposed model will fade away as
soon as the occluding object moves away, leaving behind a better surface approxima-
tion as depicted in Figure 5.27 (right), but this does take several frames.

Figure 5.27: Left: Comparison of occlusion vs no occlusion on the prediction. Note the differ-
ence in the highlighted area. Right: Example of the adaptiveness of the model:
An initial occlusion fades away as soon as the occluded area gets visible.
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5.7.3 Limitations of the Systematic Parameter Evaluation

For the systematic parameter evaluation, the majority of current state-of-the-art meth-
ods were evaluated and compared under a variety of different settings (see Sec-
tion 5.5). Current state-of-the-art methods are the PCA, Mean Raw, and Diff Model
(the proposed method). Additionally, using the median instead of the mean was pro-
posed, and the model based approach was leveraged to a more lightweight version
where only the difference-based approach is used instead of computing a whole
torso model. These modifications yield three more methods, namely the Median Raw,
the Diff Mean, and the Diff Median.

One approach left out in the evaluations are volume-based methods. These first
create a mesh model of the torso surface via triangulation and use it to compute
the change of volume. Since the back of the torso is not visible to the depth cam-
era, in related works, a certain, constant depth threshold is used to form a plane
that bounds the mesh to the back. Any torso movement, be it respiration or usual
body motion, thus will change the mesh volume. Bounding the mesh to a constant
threshold at the back consequently is equivalent to computing a weighted sum of
the depth values, similar to the mean-based methods. Using the edges of the torso
or a defined torso area to compute the bounding plane at the back of the torso dy-
namically, on the other hand, is not a reliable process as it is subject to unreliable
bounding window alignments, movements, surface deformations, and additionally
is strongly correlated with breathing movements as was found in the experiments
(also see Figure 5.6). With these restrictions, and from the findings that the volume-
based approach is less accurate while being computationally much more expensive
as conducted by [152], explicitly computing a mesh is omitted. Instead, the studies
rely on computing the mean or the median of the torso depth pixels to approxi-
mate the change in torso elevation, which, when multiplied by the torso width and
height, would yield a torso volume approximation, too. With the difference-based
approaches, furthermore a dynamic threshold to the back is modelled that is able to
leverage most of the motion artifacts entering the mean or median approximations.
Although the state-of-the-art volume based approaches’ performance can be consid-
ered to be in the range of the Mean Raw, explicitly modelling a 3D torso surface
and fitting it to the depth data may have great potential for depth-based respiration
estimation. Such a 3D model can potentially aid in overcoming many current limita-
tions of depth-based remote respiration estimation methods. A systematic evaluation
of the volume-based methods thus would be beneficial for extending these methods
and for further research in this direction.

Some limitations apply to the PCA method. As suggested from the related work,
and to achieve a run-time respiration estimation, the first 180 frames are used to
build the PCA model. Since it is unclear which principal component to select al-
gorithmically, only the one with the highest eigenvalue is used, making the PCA
method susceptible to motion artifacts that happen within the first 180 frames. A
solution could be to perform an offline PCA on the whole signal and to manually
select the most reasonable component, but motion artifacts are likely to enter the
estimated breathing signal anyway. Furthermore, [167] suggest to apply a varimax
rotation to the PCA components to feature local deformations that differentiate be-
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tween thoracic or abdominal breathing. Their study, as well as all other studies on
PCA based methods, however, was performed on participants lying still in supine
position and wearing tight clothing with no folds, thus letting the method only deal
with the two breathing styles and noise. A varimax rotation is not applied in the PCA
implementation for the evaluation since motion artifacts, clothing-related surface de-
formations, and occlusions are heavily present, which can be expected to pose the
major limitation to all PCA based methods in more realistic scenarios, at least when
it is not possible to carefully inspect and select the correct principal components
manually. It also has to be mentioned that this method is computationally expensive
and furthermore requires a certain amount of reliable training data at the beginning
and for each user individually.

5.7.4 Comparison of Depth-Based Respiration Estimation to Non-Depth-Based Approaches
(Wearable or From a Distance)

Wi-Fi-based respiratory rate detection is a promising method as it comes at almost
no cost, given a Wi-Fi enabled infrastructure. According to the related work, the Wi-
Fi antennas however usually require a particular setup and alignment towards the
user [165]. The antennas in most cases are in front of a lying, sitting, or standing still
person within the sensing range of about 1 to 3 m and, according to [176], respira-
tion sensing tends to fail when the observed person performs hand gestures. It can
be assumed that even small body movements while having to stay still for a while, as
observed in the experiments, will cause noticeable signal distortions. If Wi-Fi-based
respiration monitoring works in a realistic environment, i.e., sender and receiver not
in the same room or not within a range of a few meters and the observed person
being randomly aligned, and how well this method performs if not remains an un-
solved research question. Furthermore, if two or more users are within the detection
range, it remains unclear how to assign a respiration signal to the correct person
or how to distinguish different breathing signals that are likely to interfere on the
common carrier, especially when they overlap in frequency domain. A depth-based
method such as the proposed has the benefit that users can be further away, can
be distinguished and assigned the correct respiration signal that only is present on
depth pixels covering a user’s torso, and that changing environmental conditions,
such as other persons walking through in the background of the scene, have less of
an effect. Also, depth images provide a valuable insight in user movements that can
be exploited to reduce motion artifacts. The fact that the depth camera can easily be
located and blocked is both an advantage (transparency to users) and a disadvantage
of the proposed method.

While special devices, ranging from spirometers to respiration belts, in general
yield optimal results, they tend to be expensive and uncomfortable to wear for longer
stretches of time. Furthermore, they have to be made available to the user and may
need a supervisor for the setup. Having to wear a mask or respiration belt that might
need occasional readjusting (due to it being too tight or too loose) from time to time
certainly imposes distraction to the user. Other, less distracting wearable devices
such as PPG equipped smart watches or fitness bands also have to be available to
the user and need to be connected to the monitoring system. In applications where
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users for a particular activity recognition application are not willing or not able to
wear on-body sensors, a depth-based method has been found a viable alternative.

5.8 summary

Estimation of respiratory rate from depth data becomes significantly harder when
the observed person is standing freely. When, as in prior work, persons are lying
down in a supine position or sitting in a chair, body movement is restricted signifi-
cantly. The studies performed here showed that even when persons are standing in
front of a depth camera, traditional optical respiration estimation approaches tend
to fail when (1) the body sways through motion from hips and legs, as well as (2) oc-
clusions, in particular those coming from the persons gesturing themselves. Previous
approaches show here significant drops (to around 20%) in accuracy.

For this reason, a novel approach to remotely monitor the respiration from users
facing a depth camera was presented. The proposed approach focuses on robustly
segmenting the data from the user’s torso in the depth images using the detected
user’s body joints and modeling this torso area over time. The respiration signal is
obtained by a difference based approach, where a motion reference signal from a
barely respiration affected body region is subtracted from the signal obtained from a
body region that is heavily affected by respiration, i.e. from within the torso surface
model. It was shown that it is possible to detect the breathing rate, even when the ob-
served person is standing upright and occasionally occludes its torso. The proposed
method furthermore is fairly light-weight and is able to run in real-time, possibly
even on embedded platforms.

Two sets of experiments were performed collecting and analyzing data from 24

study participants, validating the proposed approach with a commercial wearable
respiration monitor and examining crucial parameters for depth-based respiration
estimation methods in general, such as different conditions (sitting, standing, and
standing while performing drinking gestures) or different distances from 1 to 4 me-
ters. The validation study confirmed that the proposed method does work as in-
tended and for most users and activities, it has an accuracy that is comparable to a
respiration belt. Key findings of the systematic parameter evaluation can be summa-
rized as:

• The observed torso region influences both performance and signal quality for
all methods: Under all circumstances, the results confirm that the chest is the
ideal region for capturing the respiration signal. The abdomen region yields the
lowest performance and signal quality, especially in the standing and occlusion
scenarios.

• User condition (sitting, standing, or occluding their torso) affect performance
and signal quality significantly for all methods. Non-difference-based methods
tend to fail when persons are standing or when they move their arms in front of
their torso. When users are standing, all difference-based methods show good
performance values. In the presence of occlusions, the Diff Model and the meth-
ods that use the median to compute the respiration signal are recommendable.
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• Different users deliver varying qualities of breathing signals, with few users
performing significantly worse than most other users. Some users move a lot,
longer hair can be a problem, and clothing can play a role: Some clothing
poorly reflects infrared light, some garments have ribbons in front of the chest
that interfere with the breathing detection. Difference-based methods have dif-
ficulties when the throat area is covered by a collar that moves while breathing.
For some users, the respiration signal estimation works better than on all other
users, regardless of the method used, for instance due to the ability of these
users to stand still for a while or due to a different breathing style.

Other parameters were found to play a minor role. The distance between user and
depth camera has less influence on performance, but a strong influence on the signal
quality. Optimal distances are in the range of 1 to 2 meters, with higher distances
causing more noise in the respiration signals. During occlusions, 2 meters led to
the better results. The respiratory rate has only little effect: Higher rates are easier to
detect, likely due to more breathing periods falling within a fixed-length FFT window.
The signal quality for the higher respiratory rates was over all methods slightly
reduced, though. Gender-dependent differences in the respiration estimation are due
to unbalanced and the rather small group sizes hard to interpret.

The proposed method (Diff Model) showed best accuracy and signal quality results
across all scenarios. In some use cases, however, other methods do have their benefits:
If users are sitting, the non-difference-based methods perform equally well and only
show a slightly decreased signal quality. The Mean Raw and the Median Raw hereby
benefit from being computationally much less expensive and do not require a fixed
size of the torso window. When the user moves closer or further away from the depth
camera, these methods do not need to reinitialize a model. The same applies to the
Diff Mean and Diff Median when users are standing. Using the median hereby has
been shown to be superior to using the mean for extracting the breathing signal. PCA
does not yield better performance values than the Median Raw and is about in the
range of the Mean Raw, but requires an expensive training phase that is susceptible
to any deformation or movement larger than or in the range of the breathing related
chest or torso expansion. Using PCA thus should only be considered for use cases
with tight clothing and no body movements, and where for instance a detailed torso
surface model needs to be reconstructed. In use cases with negligible body motion
and no occlusion, like in a sitting condition, and especially when computation time
is limited like on an embedded system, the use of the Median Raw is recommended.
The same applies to the Diff Median in the case of a scenario with motion artifacts, for
instance when persons are standing. The breathing signal in this case should be low-
pass filtered, especially on higher distances. Using the Diff Model during standing as
well as in the presence of occlusions, however, yields better results.

In two case studies, it was shown that the respiration signal as obtained from
depth-based respiration estimation can be used in applications such as e-health and
telemedicine and that it is suitable to be used as an additional modality for activity
recognition purposes, where the signal was used to distinguish between activities
with otherwise high similarity. Recalling the complementary sensing approach from
Chapter 3, the remotely captured respiration signal can well be sent to a body-worn
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device where it complements other measured physiological signals for instance to
be used for fitness tracking or to aid in activity recognition.

The anonymized dataset with depth data and respective body joints locations,
as well as the proposed method’s source code and the python experiment scripts
that were used for validating the proposed method are available to support the
reproduction of the method and results, and can be obtained by contacting the
author or visiting https://ubicomp.eti.uni-siegen.de/home/datasets/sar20 and
https://ubicomp.eti.uni-siegen.de/home/datasets/fcs21.

All subjects gave their informed consent for inclusion before they participated
in the studies. The studies were conducted in accordance with the Declaration of
Helsinki, and were approved by the Ethics Committee of the University of Siegen
(ethics vote #ER_12_2019).
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6
C O N C L U S I O N

This dissertation presented an in-depth analysis of the different types of human
body motion present in depth data, ranging from large-scale limb movements down
to subtle movements of the upper body during respiration. It was shown how this
data can be used for different applications and use-cases, for instance to achieve
complementary motion sensing or to monitor a person’s respiration from a distance.

More specifically, in various experiments and user studies, it was shown how op-
tical and inertial motion data can be combined to achieve complementary motion
sensing, how the person and the limb an inertial sensing device is worn on can be
identified within this complementary data, and how such human motion data can
efficiently be compressed using Piecewise Linear Approximation (PLA). Furthermore,
it was shown how respiration can remotely be obtained from depth data in a robust
way and what parameters influence such a respiration measurement.

While these research parts were addressed on their own, they all integrate well into
a coherent picture. All these research fields, although seemingly being disparate, are
linked by the principle of working with human body motion and can seamlessly
be integrated into a wider complementary motion sensing approach where data ac-
quired from a personal wearable device can be augmented with externally measured
respiration data. Such an approach can have benefits in many scenarios. When used
in sports or meditation applications, but also in medical applications and e-health
scenarios, a more holistic image of the state of an observed user can be drawn. At the
same time, the user has immediate access to this data via its wearable device. Also,
from a more general perspective, such a data augmentation can lead to improve-
ments in activity recognition, or it can simply be used to further optimize person
identification by comparing respiration signals obtained from different modalities.

As outlined in this dissertation, such a wider complementary motion sensing ap-
proach can be achieved by pursuing the following steps: First, human body motion,
including respiration, is measured from all observed users by an external depth cam-
era. Simultaneously, the wearable devices of all users measure the movements of the
limb they are attached to and transmit this data to the external system, given this ser-
vice is enabled by the respective user. In order to save bandwidth and reduce energy
consumption on mobile devices, this motion data can be compressed using PLA. On
the external system, the motion data acquired from all wearable devices then can be
matched to the motion data of the depth camera. As a result, each person’s wearable
device can be affiliated with externally measured data specific to this person, i.e. this
person’s respiration, but also other person related data such as posture or position.
This data then is sent back to the respective device where it can be used in a range of
existing applications or even lead to the emergence of applications that would not be
possible without such data. This, however, is something that needs to be investigated
in the future.

120



conclusion

The core contributions and most important results of this dissertation that further
the current state of the art can be listed as follows:

• The necessary steps and considerations that are required to achieve comple-
mentary motion sensing from optical and inertial Motion Capturing (MoCap)
data were investigated. The benefits of such a complementary approach were
demonstrated in a case study with 10 participants, where a combined use of
both modalities improved the tracking performance of the participants’ wrists.

• A novel method was proposed that enables the identification of the person and
the limb an inertial sensing device is worn on within such complementary mo-
tion data. It is based on comparing and matching limb movements from both
modalities, with results of the evaluation showing that the correct person and
limb can be identified within 2.5 to 4.3 seconds. The core contribution hereby
lies on the idea of the method itself. It can be considered an important algo-
rithmic component for combining inertial and optical motion data that enables
a variety of applications beyond mere motion capturing, for instance indoor
localization on a wearable device or person reidentification in video streams.
So far, only few coarsely related approaches can be found in the literature and
none of them are intended to identify a person or limb in the first place. The
proposed method thus closes a gap in this research.

• Piecewise Linear Approximation (PLA) has been found to be a suitable com-
pression scheme for quaternion-based motion data. The idea behind using PLA

is that similar to using keyframes in computer animation, only data points
that mark a change of a motion need to be stored while data in between can
be approximated through interpolation. Consequently, the key requirements
for applying PLA algorithms to quaternion-based motion data were analyzed,
with the outcome that such an algorithm needs to produce connected segments
where the produced segment points have to be a subset of the original data.
One reason is that otherwise all quaternions of the compressed signal would
need to be normalized again. Another reason, however, is of much higher im-
portance: Even slight deviations of the segment points from the original data
can lead to significant angular deviations. This especially is true if different
deviations occur on different axes. So far, no efficient PLA method, i.e. a PLA

method with a constant time and memory complexity with respect to the com-
pression ratio, exists that meets these constraints. Based on the above analysis,
the novel method fastSW was proposed, which closes this gap in the state of the
art. fastSW is specifically tailored for the processing of quaternion data and can
directly be deployed on a sensor node or similar environments with limited
computational resources.

• Depth-based respiration estimation methods in prior work require persons
to lie down in a supine position or to sit still in a chair in order to re-
strict body movement to a minimum. When, in contrast to that, the person
to be observed is standing freely, prior methods tend to fail because an esti-
mation of a person’s respiration becomes significantly harder. This situation
becomes even worse in the presence of occlusions, for instance when the
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observed person performs hand gestures in front of its torso. Experiments
in this work revealed that the accuracy in such a case can drop down to
about 20% for some methods. For this reason, a novel, depth-based method
for the remote and contact-less monitoring of human respiration was pro-
posed. The novel method allows a user to stand freely and is robust against
partial occlusions of the user’s upper body. Thus, the proposed method can
be considered the most stable depth-based respiration estimation method to
be found in the current state of the art. This stability opens up a range of
new use-cases for respiration estimation, especially in home applications or
applications in daily living, with examples ranging from meditation and fit-
ness monitoring over activity recognition up to e-health and telemedicine. The
proposed method thus can be considered an important contribution to the
state of the art. The proposed method’s source code can be found online
by visiting https://ubicomp.eti.uni-siegen.de/home/datasets/sar20 (the
method’s script files are located within the validation dataset).

• So far, there is not a single publicly available dataset on depth-based respiration
estimation. Moreover, prior studies were conducted under specific assumptions
and contain little variability due to a modest number of participants and a lim-
ited, often specific set of parameters and conditions that were evaluated. In al-
most all studies, participants were required to lie down or to remain sedentary,
often even had to wear tight clothing, and in the rare examples where partici-
pants were allowed to move, this movement still is heavily constrained. In fact,
there is no study where participants were allowed to stand freely or even to oc-
clude their upper body. Also, the influence of different parameters is neglected
in prior work and the only study that is evaluated on different parameters (i.e.
on sampling rate, user orientation, and clothing) is missing any kind of inves-
tigation of these parameters. To close this gap in the research, two publicly
available datasets were recorded. One dataset is intended for the validation
of depth-based respiration estimation methods by comparing it to a commer-
cial wearable respiration belt, and the other one aims at a systematic evalua-
tion of crucial parameters of these methods. In total, both datasets comprise
422 unique recordings from 24 different participants, where each participant
was recorded from different distances, respiratory rates, and user activities,
summing up to a combined length of more than 11 hours. The anonymized
datsets as well as the python experiment scripts can be found online by vis-
iting https://ubicomp.eti.uni-siegen.de/home/datasets/sar20 for the val-
idation and https://ubicomp.eti.uni-siegen.de/home/datasets/fcs21 for
the systematic parameter study.

• As already stated above, the influences of a variety of important parameters
that affect the depth-based estimation of human respiration remain unknown.
For this reason, an in-depth evaluation of to-date unknown influences of im-
portant key parameters on the most common state-of-the-art depth-based res-
piration estimation methods were conducted. Examined parameters are the
observed torso region, whether the user is sitting, standing, or standing with
regular self-occlusions, the distance to the depth camera, the respiratory rate,
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the gender, and user-specific influences. The evaluation aims at revealing the
strengths and weaknesses of the most common state-of-the-art methods with
respect to the various parameters, but also allows a comparison of the differ-
ent approaches among each other. Such a comparison, let alone such a deep
insight into the single methods’ performances under various parameters was
not possible before and likely aids in future research and decision making.

• Finally, possible applications for depth-based respiration estimation are ex-
plored. In a first use-case, the applicability of using respiration as an addi-
tional modality in activity recognition was shown, and in a second use-case, its
general suitability for e-health and telemedicine was demonstrated. Both are
intended as feasibility studies with the aim to show up possible applications
and the hope that following research takes up these approaches and that real
applications will emerge in the future.

Although complementary motion sensing and remote respiration estimation are
promising concepts, their use in applications is not widely seen. For complementary
motion sensing, a likely reason might be that it is not straightforward to achieve
or that example usages or simply a link from purely research oriented applications
to real world use cases is missing. Future research should therefore focus more on
the investigation of scenarios where complementary motion sensing is reasonable
and on what could be achieved in such scenarios beyond mere motion capturing.
In general, it has the potential to extend into many other fields and applications
and have a significant influence there. Examples range from indoor navigation and
data augmentation on mobile devices over AR, VR, and future user interfaces up to
enhanced activity recognition or even applications in healthcare.

Remote respiration estimation on the other hand still is underrepresented in re-
search and many parameters and conditions as well as their influence remain un-
known. This makes it hard to be used in a reliable way in unknown situations,
especially when used in a context like healthcare or similar. Open challenges that
so far remain unsolved range from scenarios where users move their upper body a
lot, perhaps even at relatively high velocities like when running on a treadmill, over
situations where users bend their upper body or rotate it away from the camera,
as for instance might happen during fitness or meditation exercises, up to scenar-
ios where users are allowed to walk around or even occasionally leave the field of
view of the observing depth camera. Furthermore, user-specific parameters such as
different clothing or individual breathing styles as well as irregular breathing due
to illness need to be investigated. Apart from these, a variety of other unforeseen
challenges might be waiting for future research since remote respiration estimation
can be considered to be rather at the beginning than on the end.

To conclude, complementary motion sensing and remote respiration estimation
already on their own provide a broad variety of research opportunities that all have
the potential to lead to promising applications in the future and using both in com-
bination even extends this space.
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