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Abstract

The trend towards miniaturised devices has resulted in systems small enough to be governed by
quantum mechanics. The goal of these systems is to perform thermodynamic tasks like refri-
geration or work extraction, which requires a description of how they interact with their envir-
onment. This has spurred the development of quantum thermodynamics. However, achieving
the desired experimental control requires precise knowledge of the system and highly accurate
measurements. This thesis explores these two aspects of open quantum systems from a theor-
etical perspective. First, we explore how Bayesian techniques can be applied to the sensing of
environmental parameters of a quantum system to �nd better estimation protocols, particu-
larly in situations with little data, and where adaptive strategies are allowed. The advantages and
drawbacks of various Bayesian estimation approaches are explored. These methods are speci�c-
ally examined with respect to the role of prior distributions, estimators, and cost functions in
achieving accurate estimates. The primary example involves qubit thermometry, where a two-
level probe interacts with an environment. This example highlights the e�ectiveness of Bayesian
estimation for small data sets and quanti�es the scaling of the accuracy with number of meas-
urements using Bayesian bounds. The sensitivity of probes based on environmental interactions
is also analysed. The estimation of rate parameters is studied with particular emphasis on how
the speci�cation of the prior information can in�uence the entire estimation strategy. Next, an-
other example of thermometry is considered using continuously monitored probes. An adapt-
ive strategy is proposed which showcases the bene�ts of Bayesian estimation. We also study this
scenario in the case when the measurement signal includes noise and �nite detector bandwidth.
Finally, we turn to our second aspect of open quantum systems and study work extraction from
an open quantum system. Here, we investigate how collective e�ects arising from the interac-
tion of permutationally invariant particles with their environment a�ect work extraction. The
analysis includes various models of work extraction, including energy output in steady states,
work done against dissipative loads, and power output when coupled to a driving �eld.
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Zusammenfassung

Der Trend zu miniaturisierten Bauteilen hat zu Systemen geführt, die so klein sind, dass sie von
quantenmechanischen E�ekten dominiert werden. Die Systeme interagieren mit ihrer Umge-
bung, um thermodynamische Aufgaben wie Kühlung oder Arbeitsentnahme durchzuführen.
Dadurch wurde die Entwicklung der Quantenthermodynamik vorangetrieben. Genaue Kennt-
nisse über das System und hochgenaue Messungen sind erforderlich um die gewünschte experi-
mentelle Kontrolle zu erreichen. Diese beiden Aspekte o�ener Quantensysteme werden in dieser
Arbeit aus einer theoretischen Perspektive untersucht. Zunächst wird untersucht, wie insbeson-
dere in Situationen mit wenigen Datenpunkten und wenn adaptive Strategien erlaubt sind, mit
bayessche Techniken bessere Schätzprotokolle für die Bestimmung Umgebungsparameter eines
Quantensystems gefunden werden können. Das wichtigste Beispiel ist die Qubitthermometrie,
bei der eine Zweiebenenprobe mit einer Umgebung interagiert. Dieses Beispiel verdeutlicht die
Wirksamkeit der bayesschen Schätzung für kleine Datensätze und ermittelt unter Verwendung
bayesscher Grenzen wie die Genauigkeit mit der Anzahl der Messungen skaliert. Ebenfalls wird
die auf Wechselwirkungen mit der Umgebung beruhende Sensitivität von Proben analysiert. Die
Schätzung von Ratenparametern wird mit besonderem Augenmerk auf den Ein�uss der Spezi-
�kation der Vorinformationen auf die gesamte Schätzstrategie untersucht. Als nächstes wird ein
weiteres Beispiel der Thermometrie betrachtet, diesmal unter Verwendung von kontinuierlich
überwachten Proben. Eine adaptive Strategie die die Vorteile der bayesschen Schätzung verdeut-
licht wird vorgeschlagen. Das Szenario wird weiterhin für den Fall, dass das Messsignal Rauschen
und eine begrenzte Detektorbandbreite enthält untersucht. Anschließend wenden wir uns dem
zweiten Aspekt zu und untersuchen die Extraktion von Arbeits aus einem o�enen Quantensys-
tem. Hier untersuchen wir, wie kollektive E�ekte, die sich aus der Wechselwirkung von permu-
tationsinvarianten Teilchen mit ihrer Umgebung ergeben, die Arbeitsextraktion beein�ussen.
Die Analyse umfasst verschiedene Modelle der Extraktion von Arbeit, einschließlich der Ener-
gieabgabe an stationären Zustände, der Arbeit die gegen dissipative Kräfte geleistet wird, und
der Leistungsabgabe bei Kopplung an ein Antriebsfeld.
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Chapter 1

Introduction

Recent technological advances have allowed for the preparation and control of increasingly com-
plex devices on the nanoscale. These systems can be used to perform useful thermodynamic tasks
and at the same time, they are small enough that quantum e�ects arise in their dynamics. They
include for example photovoltaic cells [1–4] and ultracold atoms [5,6]. The description of ther-
modynamic tasks was developed from the perspective of classical physics for the operation of
macroscopic physical systems made up of a huge number of degrees of freedom, like a gas ex-
panding and moving a piston. This was done by reducing the description of the dynamics to a
few state variables, like the temperature and pressure of the gas. From the dynamical behaviour
of these observables, the well known fundamental laws of thermodynamics are derived. The
�eld of quantum thermodynamics [7, 8] is concerned with how these thermodynamical laws
apply to microscopic systems which are governed by quantum mechanics but are performing
thermodynamic tasks.

The seminal example of one of these systems is the three level laser. Scovil and Schultz-
DuBois modelled the three level laser as a heat engine that is able to reach Carnot e�ciency [9,
10]. In this example, a three-level atom interacts with a hot and cold bath which generates a
population inversion between two levels of the atom. This results in ampli�ed light to be emit-
ted when the atom is coupled to a periodic driving �eld. Scovil and Schultz Du-Bois showed
that for a laser with zero gain, Carnot e�ciency could be reached. This result has been exten-
ded and discussed theoretically from the perspective of open quantum systems where dynam-
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2 Chapter 1. Introduction

ical operation of the transfer of energy between the environment and system can be taken into
account [11, 12]. Subsequently many works on the operation of quantum engines and refriger-
ators were put forward [13–17] and in particular it was found that the laws of thermodynamics,
initially concieved for macroscopic systems may be consistently applied to quantum systems. In
particular, they are applicable to even a single particle [18–20]. However, this should not be
taken to mean that thermodynamic behaviour is identical on small scales. On the macroscopic
scale, �uctuations in heat and work for each single particle become insigni�cant and the beha-
viour can generally be described purely by average quantities. This is not true for systems on
the scale of a few particles. Here, quantities like work and heat may �uctuate in time [21–25].
Additionally, when considering quantum systems it is not as straightforward to categorise total
energetic changes into the categories of heat and work [26]. In a classical engine the working
medium converts heat to work, for example, by moving a piston. The piston merely transfers
the energy to the load and is unchanged by this process. In a quantum machine, the transfer of
energy to the load is typically performed by a change in an external �eld. This �eld does experi-
ence a change in entropy and this change must be included in the thermodynamical description
of the engine to determine how much useful energy will ultimately be transferred to the load
and how much will go to heating up the quantum “piston”. The study of quantum thermody-
namics is not merely conceptual and there have been a number of works on thermal machines
that demonstrate when quantum e�ects can improve their performance theoretically [27–31]
as well as experimentally [32–39].

Precise control of an experiment requires accurate measurements of the system parameters.
In a classical system, an ideal experiment can estimate any system parameters with arbitrary pre-
cision. In quantum systems, even an ideal experiment can only determine the probability that
the system is in any particular state and in general, measurements a�ect the dynamics and change
the underlying state in a way that classical measurements do not. However, quantum metrology
which harnesses properties unique to quantum systems like entanglement or quantum coher-
ence has also led to the possibility to estimate parameters very precisely. This has led to major
experimental breakthroughs like the detection of gravitational waves [40, 41], as well as the de-
velopment of highly sensitive magnetometers [42, 43] and atomic clocks [44–46].

In many contexts, relevant to thermodynamic devices, accurate knowledge of the temper-
ature of the system is an important prerequisite since the temperature determines much of the
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dynamical and steady state behaviour of the system. Quantum thermometry is therefore one
of the primary examples of metrology in open quantum systems. It has been investigated both
theoretically to determine fundamental bounds on the accuracy [47–52] as well as determin-
ing how non-equilibrium probes [53–57] and many-body systems can improve thermometric
accuracy [58–62]. The extension of quantum metrological protocols to open systems is still
an active �eld of research. In particular, Bayesian methods for metrology in open systems have
received much recent attention [63–65] as well as techniques for improving measurement pre-
cision by adapting the measurement strategy during an experiment [47, 66].

In this thesis, we will explore both open system metrology and aspects of quantum ther-
modynamics. This requires a description in terms of open system dynamics. We will refer to
standard textbook methods for this [67, 68]. A general outline of how the interactions with the
environment are modelled throughout this thesis and a derivation of the standard master equa-
tion is given in App A. In Chapter 2, Bayesian quantum parameter estimation is introduced.
This approach starts with specifying the prior information that the experimenter has. Next, we
introduce how estimates and error bars for these estimates can be found either by using the spe-
ci�cation of the prior information to derive these in a fully systematic way or by more traditional
heuristic means. Optimal measurements and Bayesian bounds on the error are also introduced
here, along with a way to quantify the parameter range to which a particular experiment is sens-
itive. Finally, we discuss the drawbacks and advantages of the di�erent approaches to Bayesian
estimation.

Chapter 3 puts these methods to the test in three examples where the parameter of interest
is encoded into the probe through dissipative interactions with the environment. Here, we ex-
plore the crucial role of the choice of prior distribution, estimators and cost functions for the
accuracy and computability of Bayesian estimates from the data. The main example is qubit
thermometry where a two-level probe is prepared, interacts with an environment and is meas-
ured. We will compare and contrast the commonly chosen estimators and priors. Of particular
interest in this example is how well the Bayesian estimation strategy captures the actual error for
small amounts of data as well as how the scaling of the accuracy can be quanti�ed with Bayesian
bounds. Additionally, we study the sensitivity of the probes depending on their interaction with
the environment using the sensitivity range derived in the previous chapter. The second and
third examples both concern the estimation of a rate parameter. The approach taken for these
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examples is to start from a prior distribution and derive all estimators and cost functions from
this point. This approach is compared for two di�erent prior distributions and measurement
and probe optimisation is explored.

In Chapter 4, the Bayesian techniques are extended to thermometry using a probe that is
monitored continuously in time. Here, we study the scaling of the measurement precision with
measurement time. We also study adaptive estimation in this chapter which is facilitated by
being able to perform a Bayesian update in each step. This along with being able to make state-
ments about the value of a parameter and its associated error in the limit of little data is a major
advantage of Bayesian estimation. We also characterise the impact of noise and a �nite detector
bandwidth on the measurement precision in both adaptive and non-adaptive scenarios. This
step brings this example the closest of all parameter estimation examples in this thesis to being
applicable in an experimental setting.

We turn to work extraction from an open system in Chapter 5. In particular, the seminal
example of a three level Maser as a heat engine is extended to an ensemble of three level systems
collectively coupled to the environment. That is, the environment cannot distinguish between
particles which leads to permutationally symmetric dynamics. Under certain conditions we see
enhanced work output for the collectively coupled ensemble and that work can be extracted
outside of the temperature window that would be expected from individually coupled systems.
We study three models of work extraction. First, we study the maximum energy that could be
extracted from the steady state of the system. Next, we couple the system to a dissipative load.
This is analogous to �nding how much work can be done against the force of friction in a classical
engine. However, similar to the classical case, the energy output may not consist solely of work
but also heat. We therefore study how work-like this energy current is. Finally, in an example
that most resembles a laser, we calculate the power output of the system when it is coupled to a
driving �eld. This study is facilitated by tailoring tools from representation theory to this system
which provides general tools for the further study of these open systems.



Chapter 2

Bayesian parameter estimation in open
quantum systems

This chapter will introduce Bayesian metrology in the setting of open quantum systems. In par-
ticular, we will begin with a short introduction to the well established �eld of quantum para-
meter estimation which leads into a discussion of Bayesian estimation. There is a particular
focus on the ways that Bayesian statistics makes transparent the prior assumptions about the
data inherent to any estimation technique and how a suitable choice of uninformative prior is
the foundation of a fully global approach to Baeysain estimation. This chapter is based on the
introductory sections of publications [A] and [D].

2.1 Quantum parameter estimation

In this and the following chapters, rather than exploring the fundamental aspects of quantum
measurements, we will be concerned with the estimation of parameters using systems with dy-
namics described by quantum mechanics. Speci�cally, we will focus on Bayesian single para-
meter estimation. To this end, we �rst de�ne a general set up of a single parameter metrology
protocol.

Assume that there is a system which interacts with a probe system according to some dy-
namical process which depends on an unknown parameter θ. The task is to determine the value

5



6 Chapter 2. Bayesian parameter estimation in open quantum systems

of θ. We will denote the interaction that encodes the parameter into the probe state by the su-
peroperator Lθ(O), which is a linear operator that acts on the system operators O. It may for
example describe the von Neumann equation of the system under some Hamiltonian evolution.
The encoding and subsequent measurement of the probe may be repeated multiple times before
analysing the data and producing an estimate ϑ of the parameter. In this thesis we will explore
each of these points from the perspective of a global, Bayesian framework.

First we recall some concepts from the usual approach to parameter estimation in quantum
systems, what we will refer to as local estimation1. Here, it is implicitly assumed that the value of
the parameter falls within a small range. This corresponds to the situation where we have already
performed many measurements or the experiment is already very well calibrated. In the limit of
many measurements, one further measurement will only change the estimate by a very small
amount and so we should optimise the probe state and measurements to be sensitive to values
in a small neighbourhood of θ. For a given measurement, the probability to get a particular
outcome given a �xed underlying value of the parameter θ and some data that we observe x,
which could be a collection of data points, is given by the likelihood function P (x|θ). The
Fisher information [69, 70],

I(θ) =

∫
dxP (x|θ)

[
∂ log(P (x|θ))

∂θ

]2

, (2.1)

captures how well the experiment is able to distinguish two values of θ that are very close to-
gether on average over all possible realisations of the experiment. A large value of the Fisher
information at the value of the parameter θmeans that the experiment is very sensitive in a small
neighbourhood of θ.

Now assume that we are able to make an unbiased estimate of the value of the parameter.
This means that if the actual value of the parameter is θ∗ and we estimate the value to be ϑx for
a certain data set, ϑx is unbiased when it satis�es∫

dxP (x|θ∗)ϑx = θ∗. (2.2)

1Note this is not the same as a local measurement. Say the probe is a composite system made up of multiple
subsystems, a local measurement acts on each subsystem independently in contrast to a collective or non-local meas-
urement which will be able to access the entire Hilbert space of the probe.
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One commonly chosen estimator is the maximum likelihood estimator [71]. It is de�ned as the
value of the parameter that maximises the likelihood function, ϑ(ML)

x = arg max
θ

[P (x|θ)].
Generally, this estimator is not unbiased but it becomes unbiased in the limit of many measure-
ments.

If an estimator is unbiased, we can relate the variance ∆θ of the data, to the Fisher informa-
tion through the Cramér-Rao bound (CRB) [72],∫

dxP (x|θ) [ϑ− θ]2 ≥ 1

I(θ)
. (2.3)

We can therefore, minimise the spread of the data by maximising the Fisher information. This
is done by designing the experiment in a way that changes the likelihood function favourably.
In a quantum experiment the likelihood depends on the measurement and the state through
the Born rule p(x|θ) = Tr(ρ(θ)M(x)) where M(x) is a measurement operator, which is an
element of a POVM (positive operator valued measure) 2.

Therefore, when designing an optimal experiment for a particular probe state, the optimal
POVM must be chosen. In the limit of a large number of measurements, the best POVM to
choose will be one that is able to distinguish very small di�erences in the value of the parameter.
Since we are, in principle, able to choose the POVM freely we can then maximise the Fisher
information over all POVMs, which gives the quantum Fisher information. The measurement
that satis�es this is a projective measurement onto the eigenbasis of the symmetric logarithmic
derivative 3 which is de�ned implicitly by the equation,

∂θρ(θ) =
1

2
(Lρ(θ) + ρ(θ)L). (2.4)

The quantum Cramér-Rao bound [73] is then given by,

∆θ ≥ 1√
IQ(θ)

. (2.5)

2In the simple cases that we will consider, the Hilbert space has �nite dimension n and the POVM is a set of
positive operatorsMi(θ) with the property,

∑n
i=1Mi = 1. A measurement of the probe state ρ(θ) with outcome

xi, is described by the Born rule P (xi|θ) = tr{Miρ(θ)}.
3E.g. if |ψ〉 is an eigenvector of L, the symmetric logarithmic derivative (SLD), tr{ρ |ψ〉〈ψ|} would be an op-

timal measurement.
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Here,
IQ(θ) = tr

{
ρ(θ)L2

}
, (2.6)

is the quantum Fisher information (QFI). The methodology of quantum parameter estimation
was largely developed around the problem of phase estimation [74, 75] and so we will brie�y
discuss this as the paradigmatic example before discussing thermometry as the most common
example of parameter estimation in open quantum systems. In quantum phase estimation, the
unknown system parameter θ is a phase encoded into the probe state by the unitary evolution
under HamiltonianH ,

ρ(θ) = e−iθHρeiθH . (2.7)

We can distinguish two di�erent protocols of probe preparation that lead to di�erent scaling of
the error (variance) in estimating θ in the asymptotic limit [74]. In the �rst scenario,N probes,
that are identically prepared, interact with the environment and are then measured. This can also
be achieved with a single probe that is reset to the initial state after each of theN measurements.

The QFI can then be used to determine what the optimal measurement would be. In this
case, the QFI turns out to be independent of θ [50, 73]. Therefore, the SLD, which gives the
optimal POVM is independent of the value of θ and depends only on the initial state and the
operator H . The initial probe state that gives the optimal QFI is the pure state ρ0 = |ψ〉〈ψ|,
with |ψ〉 = 1/

√
2(|h0〉+ |hn〉), where |h0〉 and |hn〉 are the eigenvectors ofH with minimum

and maximum eigenvalues respectively [74]. In this scenario, each measurement is an identical
independent trial on a single photon probe and therefore, the best scaling of the variance that
can be achieved is ∆θ ≥ 1/

√
I(θ)N known as the standard quantum limit.

Alternatively, theN probes might be prepared inm lots ofn probes that are in an entangled
initial state. The probes then interact with the environment and a collective measurement is
performed on the n probes. This is repeated m times. In this case, the best possible scaling of
the variance is ∆θ ≥ 1/n

√
m which is called Heisenberg scaling and this is in fact the best

possible scaling of the CRB for quantum systems [76, 77]. This is achieved by preparing the n
probes in the state |ψ〉 = 1/

√
2(|h0〉1 . . . |h0〉n + |hn〉1 . . . |hn〉n), which, in interferometry, is

the famous N00N state [78].
This state is however, very di�cult to actually use in an experiment since the e�ects of noise

can make the state unable to acquire any phase information [79]. An adaptive approach can
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also be used where the basis of the measurements or other control parameters in the experiment
are changed during the measurements of theN probes [80–86]. Adaptive estimation is usually
facilitated through a Bayesian estimation strategy.

The evolution of the �eld of open system parameter estimation largely mirrors that of quantum
sensing under closed system or Hamiltonian dynamics (of which phase estimation is one ex-
ample but estimation of a magnetic �eld strength (magnetrometry) is another notable one [87,
88]). In open system parameter estimation, thermometry is the primary theoretical example [50,
89], although other quantities like decay rates may also be estimated. The main di�erence from
parameter estimation under closed system dynamics is that the state evolution is not merely a
function of the Hamiltonian. This leads to a density matrix that depends on the parameter in
a non-trivial way. Initially, the main goal of this �eld was to extend the results from phase es-
timation to achieve a scaling of the variance that beats the standard quantum limit and to even
achieve Heisenberg scaling in thermometry examples.

The simplest example we can consider is equilibrium thermometry, which is inspired by tem-
perature estimation in classical systems. Here, the probe system interacts with an environment
which has an unknown temperature and is allowed to come to equilibrium with the environ-
ment. This is similar to taking the temperature of a classical system where a small probe (the
thermometer) is allowed to come to thermal equilibrium with an environment. If we assume
the quantum probe has already reached equilibrium with the environment, its state is a Gibbs
state [50, 89],

ρ =
e−H/(kBθ)

tr[e−H/(kBθ)]
, (2.8)

where H is the Hamiltonian of the probe and kB is the Boltzmann constant. Now, if we fol-
low the same steps as with local phase estimation, we �rst �nd the QFI. Here it is dependent on
the heat capacity C(θ) = (〈H2〉 − 〈H〉2)/kBθ

2 of the probe, IQ(θ) = C(θ)/kBθ2, noting
that in contrast to phase estimation it depends on θ [50]. Thus, any optimisation of the exper-
iment based on the QFI will only be optimal for one speci�c temperature. This clearly shows a
disadvantage of the local approach to parameter estimation that is not apparent in phase estim-
ation. That is, if this approach is used to design an experiment an assumption has to be made
about the expected value of the temperature before any data has been collected and the tem-
perature is essentially totally unknown. Assuming that we are justi�ed in using this approach,
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say for example some data is already collected and the temperature is expected to lie in a small
range, we can determine the optimal POVM and optimal probe according to the QFI. From the
expression for the QFI, we see that the optimal precision is obtained by performing a projective
measurement in the energy basis (eigenbasis of the Hamiltonian) of the state ρ. Additionally, the
optimal probe is one with the largest heat capacity, which for an n dimensional system corres-
ponds an e�ective two-level system where there is a ground state and ann−1 degenerate excited
state [49]. Asymptotically, estimation using thermalised probes will only be able to reach the
standard quantum limit, ∆θ ≥ 1/

√
NI(θ) since thermalisation will destroy any superposi-

tion that may have been initially prepared between probes and therefore all measurements are
independent. Additionally, for any system with a �nite energy gap, as the system temperature
approaches zero, so does the heat capacity. This means that the uncertainty in the temperature
diverges exponentially near zero temperature since the probe is far more likely to be measured
in the ground state in every measurement even if the temperature is slightly above absolute zero
[48, 52, 53, 90].

One way that quantum thermometry can achieve better scaling is through the use of non-
equilibrium probes [54, 91, 92]. Additionally, an ancillary system can be included between the
environment and the probe. This can be used to encode information about temperature into
coherences on the probe state [93] and may also be combined with non-local measurements on
multiple probes, the scaling of the error in temperature can be improved beyond the standard
quantum limit [94, 95]. The experiment can also be designed from a globally optimal point of
view. Here, we do not assume that the temperature of the environment is known to fall within
a small range or try to achieve and asymptotically optimal scaling. Rather, we assume that the
temperature it is totally unknown and could in principle take any value in (0,∞). It was found
in [96], that as the range of possible temperatures is increased, the number of e�ective levels
accessible to the globally optimal probe must increase. The idea of addressing the problem of
thermometry from a global point of view was introduced in [64]. Taking a global approach
to thermometry means that the strategy must be valid even in the limit of very little data. In
this case, Bayesian estimation o�ers a framework for working with very small amounts of data.
There have subsequently been many works (including publications [A] and [D]) that address
quantum thermometry in a Bayesian way [63–65,97]. Particularly because it admits an e�cient
way of performing adaptive thermometry [47, 66, 98].
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2.2 The Bayesian framework

For the rest of this chapter we will be setting up the mathematical preliminaries for a global
approach to open system parameter estimation. In the chapters that follow this will be applied
to some case studies. Here, we do not require any assumptions about the range of values that the
parameter can take other than those that are physically motivated, for example the temperature
can only take on positive values. This approach is facilitated by the Bayesian framework [71,
99] for parameter estimation where, one de�nes the knowledge of the parameter θ after some
measurements via a posterior distribution,

P (θ|x) =
P (x|θ)P (θ)

P (x)
, P (x) =

∫ b

a

dθP (x|θ)P (θ). (2.9)

Here, the measurements have outcomes x and the parameter is known to be in the range (a, b).
Each outcome of the experiment is found with probability P (x|θ) known as the likelihood
which depends on the value of the parameter. Before any measurements are done, the exper-
imenter must de�ne their prior distribution P (θ), which quanti�es all prior knowledge about
the probability for the parameter to take any of the values within the range (a, b). After a meas-
urement is made, the posterior distribution is calculated and this distribution is the new prior
distribution for the next round of measurement. Over the course of more measurements, the
Bernstein von Mises theorem [100] ensures that for an experiment with a likelihood that admits
a non-singular Fisher information matrix, the Posterior distribution will be a sharply peaked
Gaussian distribution about the actual value of the parameter and with variance equal to the
Fisher information.

We contrast this brie�y, to another common approach to parameter estimation known as
frequentist estimation [71, 99, 101]. In this approach, one assumes that the parameter has an
underlying true value and is not a random variable. However, the experimenter only has access
to a sample of the full set of data which would be given if in�nitely many measurements could
be made. Parameters are estimated from the data by �nding the value of the parameter that max-
imises the likelihood function. This will coincide with the actual value of the parameter once
enough measurements have been taken. Frequentist estimation does not require prior informa-
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tion to be speci�ed and this was historically, a major sticking point for the acceptance of Bayesian
methods by proponents of the frequentist method [99, 102]. In the asymptotic limit, the fre-
quentist (local) and Bayesian approaches to parameter estimation converge since they will both
yield an estimate equal to the actual value.

A feature of Bayesian estimation is that adaptive protocols are easily described by the iter-
ative nature of a Bayesian update. In an adaptive protocol, the likelihood is changed during
the measurement protocol. This is included in a Bayesian protocol as follows. Say the cur-
rent posterior distribution after m identical measurements of the system is P (θ|x1, x2, ...xm).
After these measurements it is determined that the experiment should be adapted, either by
changing the initial state of the probe, the way the parameter is encoded on the state or the
measurement that is made. The adapted measurement is then performed which yields out-
come xm+1, the probability of this outcome given the new system is captured by the likeli-
hood P̃ (xm+1|θ). The new posterior of the system is then simply,P (θ|x1, x2, ..., xm, xm+1) ∝
P (θ|x1, x2, ...xm)P̃ (xm+1|θ).

2.3 Uninformative prior distributions

Bayesian parameter estimation requires that any prior knowledge that an experimenter has be-
fore measurements are made is included in the prior distribution. Usually no particular outcome
of the experiment is preferred and thus a so called uninformative prior is sought after. For ex-
ample given an experiment with outcomes x that depend on the parameter θ, one may assume
that they are totally ignorant to the value of the parameter and therefore choose a prior in which
all outcomes are equally likely, that is P (θ) ∼ c, this is known as the the principle of insufficient
reason [71]. However, a naive interpretation of this argument may lead to a prior that does not
describe the behaviour of the parameter with respect to other parameters in the problem. In
this section we will discuss ways to derive uninformative priors from a few di�erent perspect-
ives. First, we will discuss a situation where no assumptions are made about the experimental
set up and therefore the likelihood is not known. Here, we derive a prior based on physical in-
variances of the parameter. Next, we will discuss a situation where the form of the likelihood
function is known and derive a prior based on the ways invariances enter into it. Alternatively,
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in addition to knowing the likelihood, one may insist that all parametrisations of the problem
should be equally valid and construct a prior that respects this. In this approach the prior is fully
speci�ed. Several other approaches to constructing uninformative priors exist [103] that rely on
arguments about de�ning a reference prior or state of maximum ignorance. Most notably are
priors derived from the maximum entropy principle which will also be discussed in this section.

2.3.1 Prior densities based on physical transformation invariance

In the �rst case, we choose a prior by making the most minimal assumptions. There is no
assumption about the form of the likelihood function but only intrinsic symmetries that are
contained in the physics of the problem. Consider for example the estimation of the position
of a classical particle. If we are truly uninformed about where the particle is, all positions in
the range −∞ < θ < ∞ should be equally likely and a constant prior probability distribu-
tion P (θ) ∼ c is valid4. This is an example of a location invariant parameter [71]. These are
parameters where the prior probability is invariant under translations of the parameter, that is
P (θ + c) = P (θ). Not all parameters have this type of invariance. Consider the thermometry
problem from Sec. 2.1 where the system is in a Gibbs state Eq.(2.8). Here, the temperature θ of
the system is scaled by its energy and thus only enters into the problem through the dimension-
less Boltzmann ratioE/kBθ. To see this, note that if the temperature is changed by an order of
magnitude but this ratio is held �xed, the system will behave in the same way. Therefore, it is
not the absolute magnitude of θ that matters but rather its scale. A prior distribution that takes
this invariance into account will have to have the property,

∫
P (θ)dθ =

∫
P (γθ)d(γθ). There-

fore, we get from a transformation of variables [71], that P (θ) = P (γθ)∂θ(γθ) which yields
P (θ) ∝ 1/θ for a prior that respects the scale invariance of the problem [64, 71, 104–107]. The
examples in Chapters 3 and 4 deal with parameters with this type of invariance. Other types of
parameter invariance are of course also possible. Consider the phase estimation problem from
Sec. 2.1. Here, the parameter can only take values 0 ≤ θ ≤ 2π and is therefore circularly
symmetric. If we want a uniform prior over the angles in a circle, we would choose the prior
p(θ) = 1/2π [108], which is still a constant but this time the range is restricted by the problem.

4Note that even though this prior is improper (not normalisable), it is still possible to formulate the problem
correctly as long as the posterior distribution is normalised.
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2.3.2 Prior densities based on transformation invariance of the likeli-
hood

In many parameter estimation problems, the form of the likelihood function is known based
on the way the parameter is measured. For example, if the measurement we perform has two
possible outcomes: one (which we will call outcome a) with probability to occur q and the other
with probability 1 − q and we measure n times, we can assume that the likelihood function
will be a binomial distribution. The probability to observe event X , which is outcome a, m
times is given by, P (X) =

(
n
m

)
qm(1 − q)(n−m). The parameter we want to determine may

simply be the success probability q. However, we may also want to determine an underlying
parameter θ on which the success probability depends non-trivially without specifying this non-
trivial dependence. Importantly, in this section we are making an assumption about the way that
the data will be distributed which we did not make previously.

Assume that a given likelihood P (x|θ), which is a continuous function of both the events
x and hypotheses θ is invariant under a set of group transformations of a group G [109],

P (x|θ)dx = P (gγ(x)|gγ(θ))dgγ(x).

For example, g may perform a scale transformation so that gγ(x) = γx corresponds simply to
multiplication by a constant γ. Additionally, for any pair of hypotheses θ and θ′ assume there
is a unique group element γ such that θ = gγ(θ

′). Now following the derivation in [110], we
will de�ne a prior that respects this invariance. First, de�ne a Bayesian con�dence interval. That
is, the volume over an area A(x) in the space of hypotheses θ given some data x and Posterior
distribution P (θ|x), which yields,

C =

∫
A(x)

dθP (θ|x). (2.10)

This means with probabilityC the hypothesis lies within areaA given the observed data. Then
if, for a given volume, the area is invariant under action of the group, A(gγ(x)) = gγ(A(x)),
there is a prior density that will preserve the invariance property that was identi�ed by the set of
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transformations. It can be written down as

P (θ) ∝
[
∂(gγ(θ))

∂γ

∣∣∣∣
γ=u

]−1

(2.11)

where u is the identity element of the group. This prior is uninformative since the only as-
sumption that was made is that it must correctly re�ect the symmetries of the likelihood func-
tion [111].

In cases where there is no obvious symmetry or the symmetry group is highly complicated a
di�erent approach to deriving an uninformative prior given a known likelihood may be desired.
This is the approach taken in the next section.

2.3.3 Prior densities based on information geometry

The space of probability distributions de�ned by the likelihoodP (x|θ) to observe hypothesis θ
given data x is a Riemannian manifold with metric [72],

D(θ1, θ2) =

∣∣∣∣∫ θ2

θ1

dθg(θ)

∣∣∣∣, (2.12)

which de�nes how di�erent two distributions are from each other. The quantity dθg(θ) is an
integration measure on the probability space. If we choose the metric that gives the geodesic
between two hypotheses in the probability space, we get the Fisher information metric, g(θ)dθ =√
I(θ)dθ, where

I(θ) =

∫
dx p(x|θ)

[
∂

∂θ
log(p(x|θ))

]2

(2.13)

is the Fisher information. Using the change of variables formula for probability distributions, the
Fisher information transforms under smooth reparameterisation asI(θ) = I(η)(∂η/∂θ)2 [112].
Therefore, the measure is invariant under changes in parameterisation, that is,dθg(θ) = dη(θ)g(η(θ)).
If it is possible to de�ne the group G of all transformations that leave the likelihood invariant
as de�ned in the previous section, this integration measure will be invariant under (left) action
by G [109]. With this metric de�ned, the volume element of the manifold is p(θ) =

√
I(θ),

which is parameterisation invariant and invariant under left group action by G therefore it is a
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uniform distribution on the manifold of probability distributions. Thus, p(θ) is a valid choice
as an uninformative prior according to the principle of insu�cient reason. The choice of prior
using the principle p(θ) ∝

√
I(θ) is also known as Je�rey’s rule.

These concepts from classical information geometry can be extended to quantum parameter
estimation [73, 113]In quantum mechanics, the probability space corresponds directly to the
space of general states de�ned by density operators. The likelihood is given byp(x|θ) = Tr(ρ(θ)M(x)),
whereM(x) is a positive operator valued measure (POVM) and ρ(θ) is the state. If we want to
de�ne a metric on the probability space, the metric will explicitly depend on the measurement
that is made. A natural choice would be the POVMs that maximise the Fisher information, since
these will be the measurements most sensitive to the parameter. As we mentioned in Sec. 2.1, the
optimal measurements are projective measurments onto the eigenbasis of the symmetric logar-
ithmic derivative (SLD) L(θ) [114, 115],

L(θ)ρ(θ) + ρ(θ)L(θ) = 2∂θρ(θ) (2.14)

which yields the quantum Fisher information for a single parameter

IQ(θ) = Tr(ρ(θ)L(θ)2) (2.15)

The metric with volume element p(θ)dθ =
√
IQ(θ)dθ is the quantum Fisher information

metric [63, 116] and we can use this as the uninformative prior in a quantum problem.

2.3.4 Prior densities based on maximising the entropy

Finally, the uninformativeness of a prior may be decided not by insisting that the distribution be
uniform in some sense but rather that it assumes the least amount of information about the hy-
pothesis [106,107]. For a distribution that takes discrete values this concept of ignorance is quan-
ti�ed by the Shannon entropy [117] S = −∑N

i=1 P (θi) log(P (θi)) where the distribution
P (θ) with maximum entropy is the most ignorant to the unknown parameter [103, 107, 118].
The entropy is maximised with respect to constraints known as testable prior information. Any
constraint that the prior distribution can be veri�ed to obey is testable information, for example
that a distribution has a particular mean or variance. Commonly, these constraints consist ofm
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constraints on the moments of the prior distribution 〈θ〉 = m1 . . . 〈θn〉 = mn of the distri-
bution. If there is no such prior information then the distribution the maximises the entropy is
uniform.

For continuous parameters, the entropy is de�ned by an integral and therefore, must be spe-
ci�ed with respect to a base probability densityµ on the probability space and prior density p(θ)
to yield, S = −

∫
dµ p(θ) log(p(θ)/µ(θ)) [71]. Maximising the entropy is then equivalent to

minimising the Kullback-Leibler divergence. This then yields the same prior as the previous
section [119]. That is, p(θ)dθ ∝

√
I(θ)dθ.

To see this, �rst de�ne the Kullback-Leibler divergence5 between two densities q(θ) and
p(θ),

D[p(θ), q(θ)] =

∫
dµ p(θ) log

(
p(θ)

q(θ)

)
, (2.16)

with respect to the base measure µ. Then for two densities parameterised by the parameters θ
and θ + dθ the Taylor expansion ofD[p(θ), p(θ + dθ)] taken to second order gives,

D[p(θ), p(θ + dθ)] =
1

2

∫
dµ p(θ)

d2

dθ2
log(p(θ)), (2.17)

which is proportional to I(θ) when we use a uniform measure. On the surface, this approach
to obtaining an uninformative prior may seem the most attractive, since it is the only one that
directly addresses the amount of assumed information. However, it has a number of draw-
backs [102, 103, 119] with the most obvious drawback being the selection of the measure µ.
Thus, the choice of how to select the prior has merely been deferred to choosing the measure.
One could choose a uniform or Lebesgue measure [71, 103] or a measure that depends on the
invariances of the problem [107].

2.3.5 Consequences of the choice of prior density

We have now seen four ways that the prior can be constructed in an uninformed way. However,
in the cases where these approaches lead to di�erent priors it is not clear which prior is prefer-
able. In cases where the symmetries of the problem are not easily identi�ed and the calculation

5D[p(θ1), p(θ2)] 6= D[p(θ2), p(θ1)]
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of the Fisher information is not too complicated the prior derived from the Fisher information
is preferred [71, 103, 120]. One property of this prior is that the maximum probability occurs
where the likelihood is most sensitive to a change in the value of θ. This amounts to assuming
that the most likely outcome of an experiment is the value of the parameter where the appar-
atus is most sensitive. For this to be true, enough data must already have been obtained so that,
the assumption θmax/θmin ∼ 1 is justi�ed. In parameter estimation of open systems, the in-
terpretation of the quantum Fisher information metric as a natural metric on the state space is
potentially problematic when the parameter that must be estimated is an environmental para-
meter. The state space of the environment may be very complex or completely unknown to the
experimenter.

Priors derived from underlying symmetries in the parameter [104] or likelihood [71, 109,
110] are often simpler and avoid the assumption that the true value lies at the most sensitive
point of the apparatus and also do not require knowledge of the state space. This may lead to
simpler calculations of point estimators and cost functions as is detailed in the next sections.
Additionally, the initial state of the system can be optimised without a�ecting the prior. This
facilitates a fully global form of quantum parameter estimation.

The construction of uninformative prior distributions can lead to priors that are not norm-
alisable. For example both the constant prior P (θ) ∝ c for θ ∈ (−∞,∞) as well as the prior
P (θ) ∝ 1/θ for θ ∈ (0,∞) are improper priors. Improper priors should be avoided when
possible because they can lead to unnormalised posterior distributions. This problem can be
avoided in practice by restriciting the domain for which the prior has non-zero values [71]. The
prior can then be normalised over this restricted domain.

2.4 Cost functions and point estimators

The probability to obtain the possible values of the parameter are completely captured by the
posterior distribution once the likelihood and prior are given. However, it is often more useful
to have a point estimate of the parameter along with an error estimate that describes the spread
of the posterior distribution which is de�ned by the average of a cost function over the posterior
distribution. These cost functions can also be used to de�ne error bars which capture the uncer-
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tainty in the estimate. This is an essential aspect of any experiment and it is a particular advantage
of the Bayesian approach that error bars can be de�ned in a consistent way from the posterior
distribution. In this thesis we will discuss two ways that one can arrive at the cost functions un-
derlying the error estimates and point estimators. The �rst (Sec. 2.4.1, Sec.2.4.2 and Sec. 2.4.1
and [A]) is using commonly chosen �gures of merit like the mean, median and mode of the dis-
tribution to arrive at estimators and cost functions. The second approach (sec 2.4.3 and [D]) is
to determine the cost function and estimator from the speci�ed prior distribution. This results
in a streamlined formalism that also includes probe and measurement optimisation based on the
prior.

2.4.1 Commonly chosen cost functions

The optimal Bayesian point estimator is found by minimising a particular cost function on av-
erage over the full range of the prior. This leaves the choice of cost function open. A familiar
example of a cost function is the square distance between two hypotheses, θ1 and θ2 ,

c(2)(θ1, θ2) = (θ1 − θ2)2, (2.18)

which allows us to quantify the spread of the distribution with the variance with respect to an
estimate of the parameter ϑ(2)

x ,

ε(2)(ϑx) =

∫
dθP (θ|x)c(2)(ϑx, θ) = 〈c(2)(ϑx, θ)〉. (2.19)

By minimising this average loss, following the steps shown in App. B, we get the mean of the
posterior as the optimal estimator ϑ(2)

x = 〈θ〉.
The cost function could however be speci�ed in a variety of other ways. Commonly this

function is chosen from a few standard choices which each have their own optimal estimator
associated with them [71]:

• The square distance c(2)(ϑx, θ) with estimator ϑ(2)
x = 〈θ〉.

• The absolute distance c(1)(ϑx, θ) = |ϑx − θ|, which gives an optimal estimator ϑ(1)
x
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equivalent to the median of the posterior distribution which is de�ned by,

∫ ϑ
(1)
x

0

dT P (T |n) =

∫ ∞
ϑ
(1)
x

dT P (T |n)
!

=
1

2
. (2.20)

This estimator is invariant under any re-parametrization of θ.

• Finally, the box-error or 1-0 loss, c(ml)(θx, T ) = −δ(ϑx−θ) which penalises all deviations
by the same amount. The estimator associated with this cost function, ϑ(md) is the mode
of the posterior, ϑ(md)

x = arg maxθ P (θ|x) which for a constant prior gives the max-
imum likelihood estimator. This estimator is also invariant under any re-parametrization
of θ.

Note that one requires the posterior distribution to have �nite �rst and second moments. For
an improper prior, the square and absolute cost functions de�ned above may diverge and thus,
care must be taken to properly normalise the posterior distribution. As we will show in the
qubit thermometry example in the next chapter, when the parameter we want to estimate is not
a location parameter but rather has a di�erent form of symmetry, the standard cost functions
de�ned above may not capture the actual uncertainty correctly. These cost functions depend
on the absolute scale of the parameter compared to the estimate. In cases where we want to
compare di�erent scales one needs a relative error measure. Therefore these cost functions can be
modi�ed to accommodated this. For example, the square and absolute distances can be modi�ed
to relative deviations. In this way, the small absolute deviations in the parameter are penalised
more strongly when the estimated value of the parameter is small rather than large. For example,
we can modify the square and absolute deviations to give,

• c(2r)(ϑx, θ) = (ϑx/θ−1)2, which results in the relative mean estimatorϑ(2r)
x = 〈θ−1〉/〈θ−2〉.

This error captures relative deviations and will also not diverge in the case that the para-
meter range is unrestricted.

• c(1r)(ϑx, θ) = |ϑx/θ − 1|, which gives the estimator ϑ(1r)
n given by the median of the

re-normalized posterior distributions∝ P (θ|n)/θ.

This is the approach that was used to derive a relative cost function in [A]. The calculation of
the estimators by minimising the posterior loss is shown in App B. In general, the cost function
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leads to a error estimate like Eq.(2.19),

ε(f)(ϑ(f)
x ) =

∫
dθP (θ|x)c(f)(ϑ(f)

x , θ) = 〈c(f)(ϑ(f)
x , θ)〉, (2.21)

which quanti�es the spread of the estimator with respect to the posterior distribution.

2.4.2 Credibility regions

Another way to de�ne an error bar associated with a particular estimate de�ned in the range
[a, b] is by de�ning the credibility region around the point estimate [121]. Here we see that in a
Bayesian estimation scenario, no point estimator needs to be speci�ed. The posterior distribu-
tion can be summarised by the credibility region.

This is an error estimate that uses the cumulative posterior probability

∫ θY%
x

a

dθP (θ|x) = Y% (2.22)

such that with, for example 90%, probability the estimate lies between the two points θ5%
x .

ϑx . θ95%
x . This error estimate is independent of any particular point estimate or paramet-

risation. It is also able to capture the skewness of the distribution about any particular point
estimate as the points θ5%

x and θ95%
x don’t have to be equidistant from ϑ.

2.4.3 Cost functions from underlying symmetry of the parameter

Although it is common practice to choose the cost function heuristically, when the parameter
we want to estimate is isomorphic to a location parameter, the prior distribution can be used to
motivate the choice of cost function [104].

First, let Φ be a location parameter. This means that if we have no information about the
parameter the prior will be a �at density,P (Φ) ∝ 1 on the entire range (−∞,∞). Now, say we
are interested in estimating the parameter Θ. If there exists a function f : Θ→ f(Θ) such that
f(Θ) = Φ, Θ is a location isomorphic parameter.

We then obtain the prior with respect to the parameter θ using the change of variables rule
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for a statistical parameter [71] and the condition for an ignorant prior for a location parameter
P (f(θ)) ∝ 1,

P (θ) = P (Φ)
df(θ)

dθ
. (2.23)

This yields,

P (θ) =
df(θ)

dθ
. (2.24)

The prior measures the hypothesis space and so we can de�ne a distance in the hypothesis space
with ∣∣∣∣∫ θ

θ′
dzP (z)

∣∣∣∣ = |f(θ)− f(θ′)|. (2.25)

The cost function c(f)(ϑx, θ) = (f(ϑx)− f(θ))2, respects the location invariance of f(θ) and
we have chosen a square distance to aid in optimisation of the estimator and later the measure-
ment operator. The optimal Bayesian point estimator given this cost function is

ϑ(f)
x = f−1

[ ∫
dθP (θ|x)f(θ)

]
. (2.26)

An estimator and cost function derived from the prior in this way will automatically respect
the symmetries of the problem. However, they are not designed to avoid diverging moments of
the distribution and for them to be calculated one may need to restrict the range of the para-
meter one integrates over. This is something that must be considered in particular if one has an
improper prior distribution.

This approach can also be applied if the prior is determined from the Fisher information
since this prior is parameterisation invariant and respects all symmetries of the problem. Further-
more, the metric structure that this prior gives to the hypothesis space means that

∫
dθ
√
IQ(θ)

is a location parameter. Therefore, we get the cost function,

c(I)(ϑx, θ) =

(∫ θ

θ′
dz
√
IQ(z)

)2

= (f(θ)− f(θ′))2, (2.27)

where the function f is now de�ned implicitly through the integral of the prior. Unfortunately,
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in many cases the cost function c(I)(ϑx, θ) = (f(ϑx)−f(θ))2, and optimal estimator ϑ(I)
x may

be tedious to calculate in practice when the integral in Eq (2.27) has to be computed numerically.

2.4.4 Rate estimation in exponential distributions

We end this section with a short example that demonstrates the technique of determining an
invariance in the problem, �nding a prior and thus a cost function and estimator.

Consider an experiment where we detect events randomly in a particular time frame. In this
example, each event is independent and we are interested in estimating the waiting time between
events. This type of process, known as a Poisson process, is ubiquitous in physics . For example
it is associated with the arrival of a photon at a detector after spontaneous emission [68, 122] an
example that we will explore in more detail in sec. 3.2 or as we will study in Chapter 4, with the
transition rate between the levels of a two-level probe in thermal contact with an environment.

In this �rst simpli�ed example, we will assume that we perform N runs of an experiment
with likelihood to measure an outcome at time t given by P (t|θ) = exp(−t/θ)/θ. We note
here, that the rate parameter θ > 0 is a scale invariant parameter since its absolute magnitude is
not what de�nes its size but rather how it is scaled by the value of the waiting time t. That is, for a
�xed time t, when t/θ > 1, θ is considered to be large and it is considered to be small if t/θ < 1.
We can de�ne the location isomorphic function that respects this invariance f(θ) = log(θ).
Next, we use this function to de�ne the prior, P (θ) ∝ ∂θ log(θ) = 1/θ.

Alternatively, we could use the information geometry approach to determine the priorP (θ) ∝√
I(θ) with the Fisher information of the likelihood, I(θ) = 1/θ2, which yields the prior,

P (θ) ∝ 1/θ. Hence, the prior is the same in both cases. This is an improper prior and so we
will restrict to the range θ ∈ [a, 1/a]. The optimal error and point estimator based on the cost
function c(2l)(θ1, θ2) = log2(θ1/θ2) are then calculated from the prior (see sec. 2.4.3) to give,

ϑ(2l)
x ±∆ϑ(2l)

x = t exp

[
〈log

(
θ

t

)
〉
]
± 2ϑ(2l)

x sinh

[
1

2

√
〈c(2l)(ϑ

(2l)
x , θ)〉

]
, (2.28)

where the expectation values are taken with respect to the posterior distribution.
From this example it might seem that it doesn’t matter whether the prior distribution is

chosen based on physical invariances in the parameter or on the information geometry of the
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problem. However, in slightly more complicated scenarios, the prior derived from the Fisher
information can become signi�cantly more complicated. The next two case studies will show
this and other incompatibilities between the streamlined global Bayesian approach and using a
prior based on the Fisher information.

2.5 Quantifying the actual uncertainty

As we have already noted, when asymptotically many measurements are made, the central limit
theorem ensures that the posterior distribution will be a Gaussian distribution with a vanish-
ingly small variance and a mean value equal to the true value of the parameter. In this case, the
choice of prior and estimator are no longer important as all priors and estimators will converge
to the same point for such a distribution. However, in the limit of �nite data, the posterior
distribution may be very broad. The shape of this distribution will still be very dependent on
the prior. Additionally, di�erent choices of estimator and cost function will give a di�erent sum-
mary of the results. It is therefore, useful to determine if the estimators that are usually relied on,
the mean, median and mode, as well as their associated errors reliably capture the true value and
spread of the data. In fact, when the distribution is so broad, the actual value of the estimator
may not even be meaningful. It may be more relevant that the associated error bars are broad
enough and correctly capture the uncertainty in the measurement. We will show in Chapter 3
that in the example of temperature estimation of a qubit the errors associated with the mean and
median do not always correctly quantify the actual error made. To facilitate this discussion, two
methods for quantifying the actual deviation are now introduced.

2.5.1 Average deviation from the true value

Given an experiment with likelihood P (x|θ) and true value of the parameter θ̃ the root mean
square deviation from the true value given a particular estimate ϑx is,

ε̄(RMS)(θ̃) =

√∫
dxP (x|θ̃)(ϑx − θ̃)2. (2.29)
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This deviation is the “actual” error bar that will be associated with an estimate for a given
value of θ̃. It captures the spread of the estimator given the average realisation of the data at each
θ̃. However, in a real experiment it is not possible to know what this error would be because
we do not have access to the true value of the parameter. Therefore, the error that is estimated
in Eq. (2.21) should capture this spread as well as possible. To quantify this, �rst we de�ne the
average estimate

ϑ̄(f)(θ̃) =

∫
dxP (x|θ̃)ϑ(f)

x , (2.30)

which gives a weighted average of the estimate over all possible outcomes of the experiment based
on how likely they are to occur given a particular true value for θ. Similarly, we de�ne the average
error estimated from the posterior associated with these parameter estimates,

ε̄(f)(θ̃) =

∫
dxP (x|θ̃)

∫
dθP (θ|x)c(f)(ϑ(f)

x , θ) (2.31)

For large amounts of data ε̄(f)(θ) will coincide with ε̄(RMS)(θ) but it will be considered an
advantage when comparing di�erent estimation strategies if the Bayesian errors also capture the
average spread for �nite data.

2.5.2 Con�dence intervals

A standard frequentist way to de�ne an error over many realisations of an experiment is a con-
�dence interval. The y% con�dence interval about the actual value of the parameter θ, is the
interval [θa, θb] of parameter values such that P (θa < θ < θb) ≥ y%. The 90% con�dence
interval, for example, covers the range of values of the parameter the experimenter could expect
in 90% of experiments [123].

The Bernstein von Mises theorem gives the result that in the limit of many measurements,
the credibility region de�ned in Eq.(2.22) should coincide with a con�dence interval de�ned for
a particular true temperature [100]. For limited data, when the estimator and prior are chosen
well, the credibility and con�dence intervals for a given true value of θ should both cover the
actual value of the parameter as well as the average estimated value.
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2.6 Comparing priors and estimators

It is tempting to compare the average performance of di�erent estimation methods by comparing
the average absolute value of the error that is achieved. However, this poses some problems. First:
if the prior distributions are di�erent, the posterior distribution will also di�er resulting in a
di�erent summary of the data captured by the error. Therefore, errors can only be compared if
they are based on the same prior distribution. Secondly, di�erent error estimators may estimate
the error in di�erent units and therefore, the errors should be converted to the same units before
comparison.

Assuming that the general method to derive an estimator given in Sec. 2.4.3 is followed, dif-
ferent choices of prior will lead to di�erent estimators and their associated cost function. How-
ever, even if the data sets are �xed, there is no sense in comparing di�erent magnitudes in the
errors because the information contained in the posterior distributions is di�erent because dif-
ferent priors are assumed. In this setting, di�erent choices of prior and thus estimators can only
be compared to their own bounds (discussed in Sec. 2.7) or alternatively, by how much of a
spread they produce in the estimated values over several experiments and whether the error bars
estimated from the posterior distribution match this spread on average.

On the other hand, if the prior is �xed, the posterior distribution for a particular data set
is also �xed. Therefore, if we choose a cost function and estimator by heuristic means as in
Sec. 2.4.1, it is now possible to compare the performance of the di�erent estimators in an average
realisation of the experiment. This can be done by determining whether the average spread of
the estimates aligns with the average error bars determined by the cost function. In simulations
where the true value of the parameter is known, the estimated value from di�erent estimators
can also be compared to the true value and thus, di�erent estimators can be compared to each
other.

In this scenario, the cost functions must be converted to have the same units so that the com-
parison is valid. Furthermore to facilitate the comparison of the cost functions with con�dence
intervals and credibility regions, we scale the cost functions by a prefactor so that for a Gaussian
posterior each error estimate would match the 90% credibility region.

To do this we assume the posterior distribution is Gaussian with mean ϑ and variance σ2 =
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〈
c(2)(ϑ(2), θ)

〉
. The distribution is symmetric and so we must then determine the value of n in

P [ϑ− nσ ≤ θ ≤ ϑ+ nσ] = 0.9.That is,

0.9 =

∫ ϑ+nσ

ϑ−nσ
dx

1√
2πσ

exp
(x− ϑ)2

2σ2
(2.32)

=

∫ n

−n
dz

1√
2π

exp
−z2

2

where, in the second line we have performed the standard change of variables (x−ϑ)2/σ2 → z

to get the integral in terms of the error function:

0.9 = erf
[
n

2
√

2

]
. (2.33)

We can now solve for n to get that n ≈ 3.29 which is the value we will use to compare square
errors to the credibility regions in Chapter 3. For absolute errors, we use the standard result
known as the asymptotic relative e�ciency of the mean to the median [70] which gives that for
a standard normal distribution

〈
c(2)(ϑ(2), ψ)

〉
=
√
π/2

〈
c(1)(ϑ(2), ψ)

〉
. Therefore absolute

errors must be scaled by n ≈ 4.12 to compare them with the 90% con�dence interval in the
limit of many measurements.

2.7 Optimal measurements and global bounds

One of the problems with de�ning the optimal measurement in terms of the Quantum Fisher
information (see Eq.(2.4)) is that in some situations, like equilibrium thermometry. The optimal
POVM depends on the parameter θ. Therefore measurement optimisation using this method
is only really useful when we are already in the local limit where the value of the parameter is
already approximately known. An alternative approach was developed in [104, 105] for priors
derived from the physical symmetries of the parameter (see Sec. 2.3.1). In [D] we extend this
and apply the same logic to the prior derived from the QFI. The approach is outlined here but a
detailed proof of these results is given in [105]. We will de�ne bounds on the error and obtain
a Bayesian optimal POVM which relies only on knowledge of the prior distribution.
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The global error that we optimise is,

ε̄(f) =

∫
dx

∫
dθP (x|θ)P (θ)c(f)(ϑx, θ), (2.34)

where we restrict to the cost functions derived from the prior that we obtained in Sec. 2.4.3.
Given the state of the probeρ(θ) and POVM elementM(x) we can apply the Born rule,P (x|θ) =

tr(M(x)ρ(θ)) to obtain,

ε̄(f) = tr

{∫
dxM(x)

∫
dθρ(θ)P (θ)(f(ϑx)− f(θ))2

}
(2.35)

=

∫
dθP (θ)f(θ)2

+ tr

{∫
dθP (θ)ρ(θ)

∫
dxM(x)f(ϑx)

2 − 2

∫
dθP (θ)ρ(θ)f(θ)

∫
dxM(x)f(ϑx)

}
The �rst term is �xed by the prior and the last line is simpli�ed using Jensen’s inequality6 which
is saturated for projective measurements and we assume we make these here. Thus, we want to
�nd the measurement that minimises,

tr

{∫
dθP (θ)ρ(θ)

[∫
dxM(x)f(ϑx)

]2

− 2

∫
dθP (θ)ρ(θ)f(θ)

∫
dxM(x)f(ϑx)

}
.

(2.36)

The resulting minimum error is achieved by projective measurements onto the eigenbasis of
the operator S which solves the Lyaponov equation [105, 124],

S
∫
dθP (θ)ρ(θ) +

∫
dθP (θ)ρ(θ)S = 2

∫
dθP (θ)ρ(θ)f(θ). (2.37)

We represent this POVM as S(x). This de�nes the minimum error,

ε̄
(f)
min =

∫
dθP (θ)f(θ)2 − tr

{∫
dθP (θ)ρ(θ)

[∫
dxS(x)f(ϑx)

]2
}
, (2.38)

6∫ dxM(x)f2(ϑx) ≥
(∫
dxM(x)f(ϑx)

)2
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to which other strategies that do not employ the globally optimal POVM (here represented by
S(x)) can be compared.

We can also de�ne the worst case scenario, which is when the estimation strategy yields no
information about the parameter beyond that which is contained in the prior. This allows us
to determine how well sub-optimal strategies perform compared to the best and worst cases. In
this case, the error will be the prior uncertainty [104] which is just the prior variance of f ,

ε̄(f)
p =

∫
dθP (θ)f 2(θ)−

[∫
dθP (θ)f(θ)

]2

. (2.39)

The maximum information is gained by the globally optimal measurement with ε̄(f)
min = ε̄

(f)
p −

G(f) where we de�ned the precision gain by this measurement as,

G(f)
max = tr

([∫
dxS(x)f(ϑx)

]2 ∫
dθP (θ)ρ(θ)

)
−tr

(∫
dxS(x)f(ϑx)

∫
dθP (θ)ρ(θ)

)2

.

(2.40)
In situations where the optimal measurement is di�cult to perform, the gain of other non-
optimal measurements M(x) can then be compared against this gain to determine how close
they are to the optimum.

2.8 Bayesian bounds

The Cramér-Rao bound in Eq. (2.3), is also applicable to Bayesian error measures, Eq. (2.21),
as long as the underlying estimator ϑ(f) is unbiased. Bayesian estimators are generically biased
for small amounts of data and thus this bound may only apply in the asymptotic case of many
measurements where the estimator becomes unbiased. We present the example for the relative
square error which will feature prominently in both Chapter3 and 4. In this example, the relative
square cost function c(2r)(θx, θ) = (θx/θ − 1)2 is used with estimator ϑ(2r)

x = 〈θ−1〉/〈θ−2〉.
To get a Bayesian CRB we �rst de�ne the average cost function over the prior and all possible
experiments,

ε̄(2r)(ϑx) =

∫
dθP (θ)

∫
dxP (x|ϑx)

(
ϑx
θ
− 1

)2

. (2.41)
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Then the Bayesian CRB is [125, 126],

ε̄(2r)(ϑx) ≥
∫

dθ
P (θ)

θ2I(θ)
, (2.42)

or for a non-relative square error,

ε̄(2)(ϑx) ≥
∫

dθ
P (θ)

I(θ)
. (2.43)

These inequalities are usually only valid in the limit of many measurements since it requires that
the estimator is unbiased. When the estimator is unbiased, this bound is tight.

In a similar way to the optimal POVM derived in the previous section, we can de�ne a
Bayesian benchmark for the variance of the estimates. This is known as a van Trees inequality
and it is de�ned [127]

ε̄(RMS) ≥ 1√∫
dθP (θ)I(θ) + I0

, I0 =

∫
dθP (θ) [∂θP (θ)]2 , (2.44)

where I is the Fisher information given in Eq. (2.1).
For parameters that are scale invariant and therefore better captured by a relative error (ε̄(rRMS))2 =

(ε̄(RMS))2/(θ̃)2, this inequality can be modi�ed to give,

ε̄(rRMS) ≥ 1√∫
dθP (θ)θ2I(θ) + I0

, I0 =

∫
dθP (θ)θ2 [∂θP (θ)]2 . (2.45)

This relative bound is derived in App. C.

2.9 Conclusions

In this chapter we have introduced di�erent approaches to Bayesian quantum parameter estima-
tion. Since the usual Cramér-Rao bound is only valid asymptotically, we also present a Bayesian
bound for both absolute and relative errors that can be used when there is very little data. Ad-
ditionally we introduce the Bayesian CRB and a global bound on the posterior error. We also
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discuss ways to compare di�erent estimators and errors as well as give a global sensitivity range
for experiments with discrete outcomes.

Broadly speaking, we can identify two methodologies for applying Bayesian techniques. In
the �rst methodology, the prior distribution is chosen in a way that is as uninformative as possible
by basing it on invariances in the physical parameter or the Fisher information. The information
contained in the posterior distribution is then summarised by a cost function and its associated
optimal estimator. The decisions about which cost function and prior to use may be motiv-
ated by practical considerations like convenience of calculation. The measurement strategy is
optimised separately based on considerations like optimising the quantum Fisher information.

On the other hand we may approach parameter estimation in a fully global and formal way.
In this case, the prior distribution should be chosen with as few assumptions as possible and
this choice determines the cost functions and estimators that are used to summarise the inform-
ation contained in the posterior distribution. Additionally, these are then used to optimise the
experiment for global estimation by choosing a globally optimal POVM which may not be the
same as the locally optimal POVM found from the QFI. The most uninformed approach, which
should be favoured if no prior information about the parameter can be assumed, would be to
base the choice only on physical symmetries present in the estimation problem. Basing the prior
on symmetries present in a family of likelihoods or a particular likelihood, requires that more
assumptions are made.

In the next two chapters these approaches will be put to use in a series of case studies. Here,
we will see how these two approaches compare in terms of ease of calculation as well as how well
they capture the available data.
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Chapter 3

Parameter estimation with discrete
measurements

In this chapter we will explore two case studies that exemplify Bayesian metrology in open sys-
tems. In both case studies we focus on estimation protocols where probes are prepared and then
measured in a two step process. The goal is to provide examples for the Bayesian analysis intro-
duced in the previous chapter in a theoretically simple setting but which can also be applied to
experimental platforms. In the previous chapter two approaches to Bayesian estimation were
identi�ed. On the one hand we identi�ed a formal approach where, the choice of prior determ-
ines the cost functions and estimators that are used to summarise the information contained
in the prior. The case study in Sec. 3.2, which will be published in [D], explores this approach
and the focus is on the consequences of the choice of prior distribution. In Sec. 3.1, we take
the more heuristic approach introduced in the previous chapter. Here, the prior distribution is
�xed and we explore how commonly chosen cost functions and their associated estimators like
the median and mean compare to the ones that would be chosen from the more streamlined
approach. The example in this section is also the most experimentally relevant. We consider the
case of qubit thermometry with both equilibrium and non-equilibrium probes and �nd that
non-equilibrium probes perform better for global estimation.

33
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3.1 Qubit thermometry

The next case study we consider is qubit thermometry. In Sec. 2.1 we discussed how this is the
paradigmatic example of open system metrology. The example we consider here allows for both
equilibrium and non-equilibrium probes while still being simple enough for the full Bayesian
analysis to be applied. It is inspired by the thermometry protocol introduced in [94]. We will
compare the heuristic choices of cost functions and estimators given that the prior distribution
is �xed. We will �rst consider the case where the Fisher information is used to derive the prior
according to Je�reys’ rule Sec. 2.3.3. We then brie�y compare this with the fully global approach
using the prior derived from scale invariance of the parameter. We will also illustrate the use of
the sensitivity range that is presented in Sec. 3.1.5 to analyse the advantages that can be obtained
by non-equilibrium probes for global temperature estimation.

3.1.1 Qubit model

A two-level probe with ground and excited states |0〉 and |1〉 and non-interacting Hamiltonian
Hs = E/2(|1〉〈1|−|0〉〈0|), with~ = 1, is resonantly coupled to a thermal, Bosonic reservoir of
unknown temperatureT for a �xed time τ . This interaction is assumed to be weak and we make
the Born-Markov and secular approximations so that we can model this interaction with the
standard Markovian master equation derived in App. A. In the system-bath interaction picture,
this yields

ρ̇ =
γ

1− e−E/kBT
(
D[|0〉〈1|]ρ+ e−E/kBTD[|1〉〈0|]ρ

)
, (3.1)

withD[Â]ρ = ÂρÂ† − {Â†Â, ρ}/2. The probe is prepared in the ground state as this corres-
ponds to the most temperature sensitivity, which was shown in [94].

After the coupling time τ , the probe is in the state,

ρ(τ) = qτ (T ) |1〉〈1|+ (1− qτ (T )) |0〉〈0| (3.2)
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Figure 3.1: Sketch of the qubit thermometer. N ground-state qubits exchange heat with a bo-
sonic reservoir at temperature T and rate γ, each for a duration τ . This partial thermalization
brings the qubit ensemble to a mixed state with excitation probability qτ . The experimenter in-
fers the temperature from the measured number of excitations by means of a Bayesian estimator
ϑ. Adapted from [A].

where, qτ (T ) is the excitation probability,

qτ (T ) =
1− e−γτ coth(E/2kBT )

1 + eE/kBT
. (3.3)

The probe is then decoupled, measured and replaced by a new probe in the same initial state.
The setup is depicted in Fig 3.1. After N repetitions the number of times the probe was meas-
ured to be in the excited state is used to infer the temperature. For long coupling times, γτ � 1,
the probes will equilibrate to the Gibbs state (2.8), with excitation probability, q∞(T ) = 1/(1+

eE/kBT ). Before discussing any measurements we can determine some limiting cases. In the low
temperature limit, kBT � E, even non-equilibrium probes will su�er from the exponentially
supressed sensitivity that is already well known for thermal probes [48]. In this limit, the excita-
tion probability scales as qτ (T ) ∼ e−E/kBT → 0 and thus, no data can be obtained as the probe
is stuck in the ground state in every trial.

For thermal probes at high temperatures, kBT � E, the excitation probability q∞(T ) ≈
1/2−E/4kBT saturates at 1/2. This will also degrade the sensitivity since it will be di�cult to
tell two very high temperatures apart as they will both have approximately half of the measure-
ments in the excited state. On the other hand, the high temperature limit for a �nite τ yields

qτ (T )
kBT�E−−−−−→

(
1

2
− E

4kBT

)(
1− e−2γτkBT/E

)
. (3.4)
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Therefore, for su�ciently su�ciently small γτ , the excitation probability will no longer saturate
to 1/2.

3.1.2 Priors

In this case study we will mostly be concerned with a comparison of cost functions and estim-
ators given a �xed prior. To this end, we will primariliy use the prior P (θ) ∝

√
IQ(θ) which is

explained in more detail in Sec. 2.3.3. We choose this prior since it decays to zero at T → 0 and
T →∞, which allows us to use the Bayesian bound to analyse the outcomes of the experiment
given in Eq. 2.45 and derived in App. C. The quantum and classical Fisher information are the
same for the qubit probe because there are no coherences. For a probe which has interacted for
time τ the Fisher information is,

IQ(θ) = I(θ) =
E2
(

2e
E
θk

(
eγτ coth( E

2θk) − 1
)

+ γτ
(
e
E
θk + 1

)
csch2

(
E

2θk

))2

4θ4k2
(
e
E
θk + 1

)2 (
eγτ coth( E

2θk) − 1
)(

eγτ coth( E
2θk)+ E

θk + 1
) . (3.5)

For thermal qubits (τ →∞) we get the thermal Fisher information,

I(th)
Q (θ) =

E2sech2
(
E

2θk

)
4θ4k2

. (3.6)

Next, if we decide to only make assumptions on the level of invariances in the parameter,
we notice that temperature is a scale invariant parameter since it is scaled by the energy. Using
the prior introduced in Sec. 2.3.1 with the location isomorphic function of a scale parameter
f(θ) = log(θ) [105] we determine the prior distribution that respects this invariance from
∂θf(θ) = 1/θ. Therefore, the prior based on symmetries of the parameter is P (θ) ∝ 1/θ.
This prior also diverges at T → 0 which makes it unsuitable for deriving the relative van Trees
bound (see Sec.2.8) which we use in later sections unless it is made smooth at some cut-o�. These
di�erent choices of prior are compared in Sec.3.1.8, where results from using the constant prior
are also shown to demonstrate that an unjusti�ed use of a “�at” prior should be avoided. Unless
otherwise state the rest of this section deals with the prior P (θ) ∝

√
IQ(θ).
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Cost function Estimator Error estimate (ε
(i)
n )

c(1)(θn, T ) = |θn − T | median of posterior 4.12 〈c(1)(ϑ
(1)
n , T )〉

c(1r)(θn, T ) = |θn/T − 1| median of P (T |n)/T 4.12ϑ
(1r)
n 〈c(1r)(ϑ

(1r)
n , T )〉

c(2)(θn, T ) = (θn − T )2 ϑ
(2)
n = 〈T 〉 3.29

√
〈c(2)(ϑ

(2)
n , T )〉

c(2r)(θn, T ) = (θn/T − 1)2 ϑ
(2r)
n = 〈T−1〉/〈T−2〉 3.29ϑ

(2r)
n

√
〈c(2r)(ϑ

(2r)
n , T )〉

c(2l)(θn, T ) = ln2(θn/T ) ϑ
(2l)
n = E

kB
exp

[
〈log

(
kBT
E

)
〉
]

2ϑ
(2l)
n sinh

[
3.29

2

√
〈c(2l)(ϑ

(2l)
n , T )〉

]
c(md)(θn, T ) = −δ(θn − T ) ϑ

(md)
n = arg maxθ P (θ|n) not applicable

Table 3.1: A summary of the cost functions and their associated optimal Bayesian estimators
that will be used in the qubit thermometry case study. In the last column the error estimates in
units of temperature that will be used to compare the average error made for N measurements
to 90% con�dence intervals and the 90% credibility regions of the posterior are given in the �nal
column.

3.1.3 Estimators and cost functions

For this case study we will primarily be comparing di�erent error estimates ε(i)
n based on cost

functions and their associated estimators and then converted to units of temperature, as well as
90% con�dence intervals and 90% credible regions as is discussed in sections 2.4.2 and 2.5.2. We
will therefore scale all of the error estimates so that in the asymptotic limit they coincide with
90% con�dence intervals and we will also express all of them in units of temperature. This is
summarised in Table 3.1 The cost functions in the table come from the heuristic approach to
estimation where the choice of cost function is independent of the prior and is based on error
quanti�ers that usually work well (see Sec. 2.4.1). This is the approach that is often taken in
Bayesian estimation and as we will show some choices are not justi�ed for particular parameters.

The reason for this becomes clear if we consider the arguments in sec 2.4.3. For example,
if we have chosen the prior P (θ) ∝ 1/θ based on scale invariance of the temperature, the cost
function is �xed to c(f)(ϑx, θ) = (f(ϑx) − f(θ))2, which in the case of a scale invariant para-
meter with location isomorphic function f(θ) = log(θ), gives the cost function c(2l)(θn, T ) =

log2(θn/T ). We notice here that the logarithmic cost function takes into account that a scale
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parameter must not be penalised on absolute deviations but rather relative deviations. There-
fore, we should expect that for this thermometry example, the relative estimators will perform
better than the mean, median and mode of the posterior.

Additionally, the two relative cost functions have the added bene�t of not having diverging
moments on an unrestricted temperature range if the prior is not improper. If we were to de-
termine the cost function from the prior that depends on the Fisher information using Eq.(2.25)
we have, f(θ) =

∫
dθ
√
IQ(θ). For equilibrium probes this yields,

f(θ) = −
4θ2k2

BLi2
(
−e−

E
kBθ

)
+ E

(
−4θkB log

(
e
− E
θkB + 1

)
+ E tanh

(
E

2θkB

)
− E

)
2θ2kBE

.

(3.7)
Here Li2(x) is the polylogarithm function,

∑∞
k=1 x

k/k2. The location isomorphic function is
even more complicated for non-equilibrium probes.

For this case study we will not include the cost function c(f)(ϑx, θ) = (f(ϑx) − f(θ))2,
rather, an example of a cost function derived from the prior based on the Fisher information is
explored in Sec. 3.2.

3.1.4 Optimal measurements

First, in the local approach to measurement optimisation, as is explained in Sec. 2.1 the optimal
measurement is to perform a projective measurement in the eigenbasis of the symmetric logar-
ithmic derivative. That is, we solve for L in Eq.(2.4) but since the state is diagonal in the energy
basis, so is the SLD. Therefore, optimal measurements would be in the energy basis of the probe.
This is unsurprising since the probe has no coherences and thus measurements that are not in the
diagonal basis cannot extract any information from o�-diagonal elements in the density matrix
(there are none).

Next as is discussed in sec. 2.7, the global approach to measurement optimisation requires us
to specify the prior distribution and the location isomorphic function f(θ). If we assume that
P (θ) = 1/θ, the location isomorphic function is f(θ) = log(θ). Then, to �nd the globally
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optimal POVM, we must solve for S in the Lyaponov equation [128],

S
∫

dθ

θ
ρ(θ) +

∫
dθ

θ
ρ(θ)S = 2

∫
dθ

log(θ)

θ
ρ(θ), (3.8)

and the optimal POVM will be the eigenvectors of S . Although the integral looks much more
complicated, because the state is diagonal, the optimal measurement turns out to be a projective
measurement in the energy basis once more. Since we have arrived at the conclusion that regard-
less of the approach, optimal measurements are made in the diagonal basis, we can immediately
write down the likelihood function for the populations of the density matrix. The likelihood
for n excitations inN independent trials follows a Bernoulli chain,

Pτ (n|T ) =

(
N

n

)
qnτ (T ) [1− qτ (T )]N−n , (3.9)

where, qτ (T ) is the probability to be in the excited state at time τ when the environment has
temperature T .

3.1.5 Sensitivity range

A global approach to estimation excludes no values of the unknown parameter. This is desirable,
however any actual apparatus will only be accurate within a certain parameter range. This lim-
itation of the apparatus is captured by the likelihood. For example if a parameter takes possible
values in the range (Tmin, Tmax), at su�ciently small values of the actual parameter the apparatus
will not be able to distinguish this small value from Tmin.The range to which the apparatus is
able to distinguish the measured value of the parameter from the extreme points will be referred
to as the sensitive range.

We will estimate the sensitive range by comparing the likelihoods at the extreme points in the
support of the temperature. Each measurement represents one bit of data, hence, two values of
the parameter, T1 and T2 are barely distinguishable if the relative base-2 entropy between their
likelihoods,

D(T1‖T2) =
N∑
n=0

P (n|T1) log2

P (n|T1)

P (n|T2)
, (3.10)
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measures no less than 1 bit. This will be zero only when T1 = T2 and will have a maximum
value of N . We can thus de�ne a sensitive range to be between the boundaries Ta and Tb at
whichD(Tmin‖Ta) = 1 andD(Tmax‖Tb) = 1.

For the Bernoulli chain Eq.(3.9), we get

D(T1‖T2) = Nqτ (T1) log2

qτ (T1)

qτ (T2)
+N [1− qτ (T1)] log2

1− qτ (T1)

1− qτ (T2)
.

It is zero only if T1 = T2, and otherwise a positive number of at most N bits. We can thus
restrict our view on temperatures between the boundaries T0 and T∞ at which D(0‖T0) = 1

andD(∞‖T∞) = 1. In terms of the excitation probability this condition gives,

qτ (T0) = 1− 2−1/N , qτ (T∞) =
1−
√

1− 4−1/N

2
. (3.11)

Therefore for a �xed interaction time τ and number of experimentsN we can �nd the temper-
atures T0 and T∞ that we can reasonably estimate.

3.1.6 Numerical comparison of estimators and cost functions

In this section we will now compare the performance of the di�erent estimators and cost func-
tions from table 3.1. We �x the prior distribution which for a given set of outcomes �xes the
posterior distribution. Therefore, the comparison captures how well the cost functions and
estimators summarise the same posterior distribution. In this section we assume the prior dis-
tribution P (θ) ∝

√
I .

To make the comparison as simple as possible we will further assume that each probe comes
to equilibrium with the environment before it is measured, that is, γτ � 1. Additionally,
we will consider a situation where N = 200 probes are measured to obtain a single data set
and determine the value of an estimator ϑ(f)

n and its associated cost function ε(f)
n . This is sim-

ulated at �xed actual temperatures in the range kBT/E ∈ [1/200, 200]. The simulations re-
quire integrals to be evaluated numerically and for this we also restrict the integrals to the range
kBT/E ∈ [1/200, 200]. Note that this is a large range given that only 200 measurements are
performed and this justi�es the use of global estimation.
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Of course, no statements can be made about how a particular estimator or cost function
performs from a single data set. Therefore we must average over data sets which can be done in
two ways. Either, the estimates and their associated error over many random trials at a particular
temperature T are calculated and averaged, or we can consider the probability to obtain each
possible data set for a �xed actual temperature. The latter is more e�cient when only a few
probes are considered as is the case here. The probability to obtain a given data set is obtained
from the likelihood function and can be used to calculate the weighted averages of the estimator
and cost function,

ϑ̄(T ) =
∑
n

P (n|T )ϑn, ε̄(T ) =
∑
n

P (n|T )εn. (3.12)

Now, since we are performing a simulation, we also know the actual value of the temperature
and so we can quantify the true deviation of the estimate from the actual value as discussed in
Sec. 2.5. This gives the Eq. (2.29) which we repeat here in discrete form for clarity,

ε̄(RMS)(θ̃) = 3.29

√∑
n

P (n|θ̃)(ϑn − θ̃)2. (3.13)

We have scaled this quantity by 3.29 so that it can be compared to the 90% con�dence interval as is
explained in Sec. 2.6. Note that in the �gures of this section, temperatures that fall outside of the
sensible range for estimation given the number of measurements (see section 3.1.5) are shaded
over by light grey bars and thus we truncate the �gure at kBT/E = 10 since any temperatures
higher than this fall outside of our sensible range.

We begin by analysing the bias ϑ̄(T )/T of each estimator in Fig 3.2. The bias quanti�es if the
estimator tends to over or under estimate the temperature compared to the actual value of the
temperature. This �gure suggests that the mean estimator introduces a large bias in the estimate
at higher temperatures. The opposite is true of the relative estimators and the mode which tend
to under estimate the temperature at high values of the actual temperature. However, it is not
clear from the bias how these estimators di�er from each other or whether these estimators out
perform the logarithmic estimator.

Next we compare how much the estimators vary between experiments using the average root
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Figure 3.2: Outcome-averaged estimated temperatures ϑ̄(T ) from (3.12) relative to the true
temperature T in units of EkB , for 200 fully thermalised qubits. The Bayesian estimators and
their associated error measures are indicated in the legend and summarised in Table 3.1. The grey
regions indicate temperatures outside the detectable range given by (3.11). Adapted from [A].

Figure 3.3: Average RMS deviations (3.13) relative to the true temperature T in units ofEkB ,
for 200 fully thermalized qubits. The Bayesian estimators and their associated error measures are
indicated in the legend and summarised in Table 3.1. The grey regions indicate temperatures
outside the detectable range given by (3.11). Adapted from [A].
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Figure 3.4: Average error measures ε̄(T ) from (3.12) relative to the RMS deviations for true
temperature T in units ofEkB , for 200 fully thermalized qubits, excluding the mode estimator.
The Bayesian estimators and their associated error measures are indicated in the legend and sum-
marised in Table 3.1. The grey regions indicate temperatures outside the detectable range given
by (3.11). Adapted from [A].

mean square error (see Eq. (3.13)) relative to the true temperature in Fig 3.3. Here we see that
all estimators perform similarly and have their minimum spread for intermediate temperatures
about the point kBT/E . 1 where the experiment has the maximum local sensitivity. This is
because for these temperatures even though only 200 measurements are performed, the posterior
is sharply peaked. However, for high temperatures, the two relative eestimators and the mode
have much less spread than the mean, median and logarithmic estimators. Finally, in Fig. 3.4,
we compare the average spread of the estimates about the true temperature to the average estim-
ate of the cost function. This quanti�es how well the cost function captures the actual spread.
Again, the relative cost functions perform better over the whole range of temperatures. The
mode estimator doesn’t have a meaningful cost function and so it is omitted from this �gure.
Additionally, we see that for the relative and logarithmic estimators, the bias in Fig. 3.2, contrib-
utes relatively little to the total error.

In Fig. 3.5 we compare the estimators in more detail. The bias of each estimator is shown
in the �rst row with the solid curves. The 90% credible region (see Eq(2.22)) is denoted by
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the dashed black lines and the 100%, 90% and 50% con�dence intervals are shown in dark to
light green shades. Here we see that indeed, around the most sensitive range of temperatures,
the credible regions and con�dence intervals match well. Which is expected from the Bernstein
von Mises theorem once the posterior distribution has converged su�ciently towards a sharply
peak Gaussian distribution. The bottom row compares the relative RMS deviations ε̄RMS(T )/T

(solid blue) to the 90% credibility ranges ε̄90% (dashed black), the measured errors ε̄/T (dotted
red), and the 90% con�dence interval (green shade). The hope is that the relative RMS deviation
matches the measured error as well as possible since this would indicate that on average the sum-
mary of the posterior captures the actual spread of the data correctly. First, the 90% credibility
range does not depend on the estimator and so it is the same for each �gure. Unfortunately, due
to the shape of the posterior at high temperatures, it tends to over estimate the actual spread of
the data signi�cantly except for the median estimator. Considering these limitations, the two re-
lative estimators seem to perform best all round. Therefore, when the cost function and hence,
estimator are chosen on heuristic grounds for this experiment one of these would be the better
choice than the standard choice of median or mean.

3.1.7 Asymptotic scaling of the error

In this section we will discuss how di�erent cost functions will scale with the number of meas-
urements made. Again, we will restrict our attention to equilibrium probes. Additionally, since
the moments of the distribution diverge when we integrate over all T ≥ 0, we restrict to a �nite
range T ∈ [T1, T2] and compare the average cost function over all priors,

C�n =
1

M

∫ T2

T1

dθ P (θ)
N∑
n=0

P (n|θ)c(ϑn, θ), (3.14)

where we renormalize the prior P (θ) =
√
I(θ) accordingly by

M =
4

π

[
arcsin

√
qτ (T2)− arcsin

√
qτ (T1)

]
. (3.15)

This scaling is demonstrated for the di�erent cost functions in Fig. 3.6 for the range of integra-
tion set to kBT/E ∈ [0.1, 10]. This �gure seems to suggests that the logarithmic and relative
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Figure 3.5: Temperature estimates and errors for N = 200 thermal qubits. Each two-panel
column shows the results for the respective Bayesian estimator referenced by the label on top: the
mode in (a,g), the median in (b,h), the relative median in (c,i), the mean in (d,j), the relative mean
in (e,k), and the logarithmic mean in (f,l). In the �rst row, the solid curves show the average biases
ϑ̄(T ), the dashed lines delimit the 90% credible regions, and the shaded regions from light to dark
blue mark the 100%, 90%, and 50% con�dence intervals, all relative to the true temperature T .
The second row shows the average RMS deviation from the actual temperature T (solid lines),
the 90% credible region widths ε̄90% (dashed line), the average measured errors ε̄(T ) (red dotted
line), and the 90% con�dence intervals (blue shaded region), all given as a percentage with respect
to T . The grey bars delimit the detectable temperature range. Adapted from [A].
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Figure 3.6: (a)The scaling of the average costs (3.14) over the temperature range kBT/E ∈
[0.1, 10] with probe numberN for probes that are brought to thermal equilibrium. We evaluate
this for the estimators listed in the legend and since the cost functions vary in dimension ofT , we
setE/kB ≡ 1. . The scaling of the outcome-averaged relative errors (3.16) with probe number
N , assuming the �nite temperature range kBT/E ∈ [0.1, 10]. The estimators are compared to
the T -averaged Cramér-Rao bound (3.17) (light shade) and the global error benchmark (3.20)
(dark) at thermal equilibrium. Adapted from [A].
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mean estimators result in drastically lower average cost functions. However, this plot actually
serves as a cautionary tale since all the plotted cost functions depend on di�erent parameterisa-
tions of the error and therefore di�er in dimension.

A proper comparison is made by converting the measured errors into relative temperature
errors εn/ϑn and averaging them over all outcomes and temperatures in the prior range to obtain
the dimensionless �gure of merit,

E�n =
N∑
n=0

P (n)
εn
ϑn
. (3.16)

Note that to maintain consistency, both εn and ϑn must be evaluated over the same restricted
range, kBT/E ∈ [T1, T2] when averages are taken over the posterior distribution. The scaling
of this quantity withN for each of the estimated errors is shown in Fig. 3.6. First we will address
the asymptotic scaling. Asymptotically all the average estimated errors scale like 1/

√
N . This is

expected since the posterior distribution will be sharply peaked. We compare this scaling to the
Cramér-Rao bound for the RMS deviation of unbiased estimators, ε̄CRB(T ) = 3.29/

√
I(T )

(which we scale by 3.29 to match the 90% con�dence interval and our scaled error estimates). In
order to compare this to the error estimates, we convert this to a prior averaged relative deviation,

ECRB =

∫ T2

T1

dT
P (0)(T )ε̄CRB(T )

MT
=

6.58 ln (T2/T1)

π
√
NM

. (3.17)

This bound is depicted by the light grey shade in Fig 3.6. Asymptotically, all of the error estimates
converge to this bound which is expected since the bias that each estimator exhibits vanishes for
large enough N . However, when asymptotic scaling has not yet been reached, for up to about
103 probes, the error estimates each have slightly di�erent scaling. We compare this scaling to
the scaling of the relative van Trees inequality [127] discussed in Sec.2.8,

ErRMS ≥
3.29√∫∞

0
dT P (0)(T )T 2I(T ) + I0

, (3.18)

I0 =

∫ ∞
0

dT P (0)(T )T 2
[
∂T lnP (0)(T )

]2
,
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where we use the prior averaged relative RMS error,

ErRMS(ϑ) = 3.29
√
C(2r)(ϑ) =

√∫ ∞
0

dT P (0)(T )
ε̄2

RMS(T )

T 2
. (3.19)

This bound is unfortunately not tight, which is shown by the dark shaded region in Fig. 3.6. For
small N the relative errors are well captured by this bound but then consistently under estim-
ated for largerN . For the equilibrium case with Je�rey’s prior, the integrals in Eq.(3.18) can be
explicitly solved and the benchmark simpli�es to,

ErRMS ≥
3.29√

(N + 1)π2/8−N + 1
≈ 6.81√

N + 9.56
, (3.20)

which depends only on the number of probes and not the energy gap of the probes,E.

3.1.8 Numerical comparison of priors

In this section we will brie�y demonstrate the importance of selecting an appropriate prior when
only few measurements are performed. To this end the average RMS deviation of the estimators
relative to the true temperature is compared for three priors in Fig.3.7. the priors we compare are
(a): P (θ) ∝

√
I(θ) which is the same as the one we have been using up to now, (b): P (θ) ∝ 1/θ

and (c): P (θ) ∝ 1. Here we see that for the small range of temperatures where the thermometer
is most sensitive, the e�ect of the prior has already been lost and the posterior distributions will
all have converged to the same point and will thus yield the same errors. However, for temper-
atures outside of this range, the spread of the estimates is larger for both prior (b) and (c). On
one hand, this should be expected for the scale invariant prior as it assumes information only
about symmetries of the parameter and nothing about the likelihood. Therefore, in some sense
it is more “uninformed”. However, the constant prior is not physically motivated and leads to
even more scattered results at high temperatures. One can see that in a scenario where it is not
di�cult to calculate, prior (a) may lead to more accurate estimates. However, as is the case in this
study, the fully global approach where the cost function is determined by the prior can lead to
unwieldly integrals when prior (a) is chosen. Thus heuristic choices of cost functions and their
corresponding optimal estimators might be chosen instead.
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Figure 3.7: In�uence of the prior distribution on the estimators’ accuracies for 200 fully
thermalized qubits as a function of actual temperature T in units E/kB . We compare the
RMS deviations from the true temperature T for (a) The prior P (0)(T ) ∝ 1/

√
I(θ), (b)

P (0)(T ) ∝ 1/T and (c) the constant prior over the range kBT/E ∈ [0.01, 200]. The grey
bars delimit the detectable temperatures determined by Eq.(3.11). Adapted from [A].

3.1.9 Non-equilibrium probes

We �nish this case study with an analysis of non-equilibrium probes where, the probes interact
for a short time with the environment such that γτ . 1. First we consider the e�ect that shorter
coupling times have on the sensitive range determined by Eq.(3.10). In Fig. 3.8 (a), the boundary
values T∞ and T0 as well as their ratio is shown as a function of γτ for N = 200 probes. This
�gure shows that size of the sensitivity range given by the di�erence of these two boundary values
increases and shifts toward higher temperatures as τ decreases. Additionally, for equilibrium
probes (large γτ ), the range is constant. However, Fig. 3.8(b) shows that this increased range
comes at the cost of local accuracy. Here we plot the maximum value of the Fisher information
maxT Iτ (T ) for a particular interaction time τ relative to the maximum of the equilibrium
Fisher information, maxT I∞(T ). This quantity increases with γτ which means the highest
local sensitivity is achieved by equilibrium thermometry.

This result is also shown by numerical simulation in Fig. 3.9. Here we �x N = 200 but
compare three interactions times. We compare the performance at di�erent temperatures in
terms of the average RMS deviation of equilibrium probes (γτ → ∞), to probes that interact
for short-times (γτ = 0.1 and γτ = 0.01) and have reached a non-equilibrium state. The
solid part of each curve denotes the temperatures that fall within the sensitive range de�ned in
Sec. 3.1.5. These results agree with the ones shown in Fig. 3.8. A longer interaction time leads to a



50 Chapter 3. Parameter estimation with discrete measurements

Figure 3.8: (a) Lowest and highest detectable temperature, T0 (blue) and T∞ (red) in units
E/kB determined from Eq.(3.11). The ratio T∞/T0 (dashed) as a function of thermalization
time γτ for 200 qubits is also shown. The range of temperatures to which the thermometer
is sensitive increases for a shorter interaction time. This comes at the cost of local accuracy
(b) since the highest attainable temperature resolution relative to the resolution at equilibrium,
maxT Iτ (T )/maxT I∞(T ) is reduced with decreasing γτ . Adapted from [A].

Figure 3.9: The average RMS deviation relative to the actual temperature for the relative mean
estimator ϑ2r (refer to Table 3.1) is shown for for 200 measurements at each temperature T in
unitsE/kB . We compare the case of fully thermalized probes (black line) to �nite thermalization
times, γτ = 0.1 (dark green) and γτ = 0.01 (light green). The solid stretches extend over the
respective detectable temperature ranges given by (3.11). Adapted from [A].
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higher sensitivity near the locally optimal temperature but a shorter interaction time extends the
range of temperatures that the probes is sensitive to and increases the value of the temperature
to which the probe is most sensitive.

This result is useful in two contexts, on the one hand, total experiment time instead of num-
ber of measurements made may be the resource that an experimenter wants to optimise. In this
case, it makes sense to perform more measurements with a very short interaction time. On the
other hand, at the beginning of the experiment, the range of temperatures that the reservoir
could take might not be well localised, in this case, a shorter measurement time increases the
range of temperatures that can be detected. This could be coupled with an adaptive scheme
where the energy gap of the probe and the interaction time are changed once more information
is obtained about the temperature so that advantage can be taken of the local sensitivity once
enough data is collected to justify the local approach. The non-equilibrium results from this
chapter inspire the thermometry strategy in Chapter 4. Here, a two-level probe in contact with
the system of interest is monitored continuously, and therefore is not reset after each measure-
ment which results in measurements that are not independent from each other. An adaptive
strategy is employed to improve the sensitivity of the thermometer.

3.2 Estimation of the rate of decay by spontaneous emis-
sion

The third case study will focus on the systematic approach explained in sec.2.4.3. We will com-
pare two choices of prior distribution on the one hand we use the prior based on physical invari-
ances in the parameter and on the other using Je�rey’s prior based on the Fisher information.
Then we discuss the performance of the associated Bayesian optimal measurements and estim-
ators.

The example that we consider is the estimation of the rate of spontaneous emission into the
vacuum of a photon from a two-level system prepared in a superposition state. This textbook
example [68, 122] was already studied for the prior derived from symmetries of the parameter
in [104, 105] but we revisit it here since it is a simple example that illustrates the di�erences
between the estimation strategies obtained from di�erent prior distributions and is similar to
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the thermometry example studied above. As we will see, even in this simple example, the prior
derived from the Fisher information can yield unwieldly cost functions and estimators and in-
troduces conceptual problems when we attempt probe optimisation.

Once again we consider a qubit with free Hamiltonian E/2(|1〉〈1| − |0〉〈0|) interacting
dissipatively with an environment. We prepare the probe in the superposition state |ψ(η)〉 =
√

1− η |0〉 +
√
η |1〉 and detect if a photon is emitted into the environment by the probe or

not. The emission of a photon by the probe happens at an unknown rate Γ = 1/τ , where τ is
the lifetime of the excited state. The standard Master equation 1 for the probe is,

ρ̇ = −iE
2

[|1〉〈1| − |0〉〈0|, ρ] +
1

τ
D[|0〉〈1|]ρ (3.21)

withD[Â]ρ = ÂρÂ† − {Â†Â, ρ}/2 and the solution for the state of the probe at time t given
the initial state |ψ(η)〉 is,

ρt(τ) =(1− ηe−t/τ ) |g〉〈g|+ (ηe−t/τ ) |e〉〈e| (3.22)

+
√
η(1− η)e−t/τ (|e〉〈g|+ |g〉〈e|).

This problem is similar to the rate estimation example that we opened the chapter with, the
lifetime of the state τ is scaled by the total time t and hence the symmetry function and prior
that are derived from the scale invariance of the parameter are once again, P (θ) ∝ 1/θ and
fs(θ) = log(θ).

However, we have a physical model of the state and thus can calculate the QFI of this state,

IQ(θ) =
t2e−t/θ

θ4
+
t2
(
1− e−t/θ

)
θ4 (et/θ − 1)

2 (3.23)

to get the prior P (θ) ∝
√
IQ(θ). Formally, the symmetry function obtained from the inform-

ation geometry approach is,

fI(z) =

∫
dz
√
I(z) (3.24)

1see App. A for how this is derived
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In this case study this integral must be evaluated numerically. This is a minor drawback of this
approach which was also encountered for non-equilibrium probes in Sec. 3.1.2.

In this section we will follow the systematic approach to obtain error estimates and point
estimates and for ease of reference we repeat these functions here. We compare the approach
based on fs and fI which yield error estimates,

c(s)(ϑx, θ) = log2

(
ϑx
θ

)
, c(I)(ϑx, θ) =

∣∣∣∣∫ ϑx

θ′
dz
√
I(z)

∣∣∣∣2 = (fI(ϑx)−fI(θ′))2, (3.25)

and point estimates,

ϑ(s)
x = θu exp

[∫
dθP (θ|x) log

(
θ

θu

)]
ϑ(I)
x = f−1

I

[ ∫
dθP (θ|x)fI(θ)

]
, (3.26)

where θu is a constant with units of t introduced so that the argument in the logarithm is dimen-
sionless. For the approach based on the Fisher information, the accuracy of the point estimator
and error estimate are dependent on the accuracy of the integrals for each z in the range of times
in the prior. We can now compare the performance of each of these examples on the same data
set to determine if the conceptual di�erences lead to actual di�erences in performance for this
example.

First, in Fig 3.10(a) we compare the dependence of the prior distributions obtained from
each approach. Here we see that for τ/t → 0, the distributions have very di�erent behaviour,
the scale prior diverges at this point while the prior obtained from fI decays to zero. Next, recall
that globally optimal error ε̄(f)

min = ε̄
(f)
p −G(f) (Eq. (2.38)) can be written in terms of the variance

of the prior Eq. (2.39) and the precision gain Eq. (2.40). We can quantify the e�ect of the prior
on an estimation strategy by looking at the relative precision gain, ε̄(f)

min/ε̄
(f)
p = 1 − G/ε̄(f)

p .
In Fig 3.10(b) the relative precision gain of each approach is shown in terms of the integration
interval the integration interval [1/a, a]. We see that for a small interval the precision gain is
similar for both approaches but for a larger interval which is more consistent with a truly global
approach, the approach based on the scale invariant function fs has a higher intrinsic precision
gain. This suggests that this approach assumes less information a priori than the approach based
on information geometry.
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Figure 3.10: Here we compare the prior distributions and study the e�ect of the prior range for
priors derived from f = log(θ) (dotted line) and f =

√
IQ(θ) (solid line) in both sub-�gures.

In (a) The priors are shown as a function of θ. (b) The precision gain from a single measurement
relative to the prior uncertainty is shown as a function of the prior range, 1/a < θ < a. For
a small range both parameterisations of the prior perform similarly as their dependence on θ is
similar for large values of θ. However, as the prior range is expanded, the prior derived from
f = log(θ) has a higher precision gain. To be published in [D].

Figure 3.11: The variability of the estimates of the lifetime τ obtained through the the approach
with a prior derived from f = log(θ) (purple points) and f =

√
(I(θ)) (dark blue points)

with initial state prepared with superposition parameter η = 1 and measurements performed
in the energy basis of the qubit. Ten rounds of (a) N = 200 measurements and (b) N = 20
measurements were simulated for an actual scaled lifetime of (a) τ/t = 1 and (b) τ/t = 0.26,
given a �xed measurement time. The average estimate and error obtained from the posterior
were determined from each approach on the same data. The actual value of the lifetime for �xed
time t is shown by a dotted line in each �gure. To be published in [D].
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Figure 3.12: . The estimated lifetime scaled lifetime τ/t for �xed time t is shown here as a
function of the number of measurements by the blue line. The estimated error ε is given by
the blue shaded regions. Here we compare the two approaches applied to the same simulated
data derived from di�erent priors f = log(θ) (a) and f =

√
I(θ) (b). The actual value of the

lifetime is shown by a dotted line in each �gure. To be published in [D].

Next, we compare the performance of the two approaches without measurment optimisa-
tion. We prepare the probe in the excited state and measure in the energy basis of the probe. In
Fig 3.11 we compare the estimates along with their error bars for ten rounds of (a)N = 200 and
(b)N = 20 measurements at a �xed measurement time τ/t. We also show in Fig 3.12 how the
estimate converges to the actual value of the lifetime over the course of a single run ofN = 200

measurements. These results show that the di�erence in the two approaches almost disappears
for a large number of measurements. For the case where fewer measurements are made, the ap-
proach based on the Fisher information has estimates that are skewed towards higher values of
τ and the spread in estimates is slightly larger for the scale invariant approach. This is due to the
dominance of the prior for small data sets and that small values of θ dominate the scale invariant
prior, which is not the case for the prior derived from the Fisher information. This di�erence
disappears for larger data sets.

Finally we study how probe and measurement optimisation a�ects the estimation by �nding
the globally optimal quantum measurement based on the prior for both priors. For both ap-
proaches this POVM will depend on the value of the superposition parameter η that was chosen
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for the initial state. The optimal measurement is determined by solving the equation

S
∫
dθP (θ)ρ(θ) +

∫
dθP (θ)ρ(θ)S = 2

∫
dθP (θ)ρ(θ)f(θ), (3.27)

and �nding the eigenvectors of the operator S .
Note that the prior based on the Fisher information depends on the state and therefore, so

does the prior. Thus, by optimising the initial state of the probe, we are in turn optimising
the prior and cost function. This introduces a major conceptual problem. The prior should
be speci�ed based on the available prior information and assumptions of the experimenter and
optimising it after it has already been speci�ed is a circular approach. Therefore, we will only
consider probe optimisation based on the prior P (θ) ∝ 1/θ since this prior does not depend
on the state and therefore does not su�er from this same conceptual problem.

First, we determine the optimal initial state of the probe. We do this by determining the value
of η that minimises the average error ε̄. For the prior determined by f(θ) = log(θ), the prior
error does not depend on the initial state. Therefore the prior variance εp is �xed and we need to
maximise the precision gain G. The maximum over the global range 0 < θ <∞ is achieved by
η = 1. In a scenario where the prior range is restricted, for example in the local estimation limit,
the maximum gain will depend on this range and a smaller gain is obtained for a smaller prior
range of θ. This is shown in Fig 3.13(a). Here the prior range is restricted to 1/a < θ < a for
three choices of a and the gain is plotted with respect to the parameter η. This result re�ects the
fact that when the prior is restricted to a small range, the assumption that has been made is that
the value of the parameter is already well known and thus is well captured by the prior error.

We now compare the globally optimal measurement strategy to a variety of strategies that
deviate from the globally optimal one in di�erent ways. First, instead of performing the optimal
measurement by projecting onto the eigenbasis of S , we perform the following physically mo-
tivated measurement with POVM elements MY = (1 − e−2t/τ0) |e〉〈e| (for the detection of
a photon at time t ) and MN = e−2t/τ0 |e〉〈e| + |g〉〈g| (for no detection of a photon) [122].
This measurement depends on the actual value of τ which we denote τ0. A better accuracy is
expected when τ0/t � 1 rather than for τ0/t � 1 as the former corresponds to the situation
where it is likely that a photon has already been emitted since the lifetime is short [105]. This
is compared to the global minimum error (purple dotted line) and prior variance (black dotted
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line) which represent the best and worst case scenarios of any estimation strategy in Fig 3.13(b).
We see that the physically motivated measurement (solid purple curve) is only able to achieve the
minimum error for small τ0.

Additionally, we study the case where the probe is not optimised. This is depicted in Fig 3.13(b)
with a suboptimal superposition parameter η = 1/3. The minimum error, εsub, for suboptimal
η is of course larger (red dotted line in the �gure) and the physically motivated measurement
with suboptimal η (red solid curve) performs in a similar way to the one for an optimal probe
where it is most informative for small τ0 but for larger τ0 the gain in precision is not much better
than is expected from the prior variance.

Another POVM that we could use is the locally optimal measurement, that is a projective
measurement onto the eigenbasis of the symmetric logarithmic derivative in Eq (2.4). This meas-
urement also depends on τ0. We compare this strategy for η = 1/3 to the physically motivated
measurement and suboptimal minimum error in �gure Fig 3.13(b). Here we see that this strategy
is able to reach the bound εphys for some values of θ and does perform better than a physically
motivated POVM but not as well as the fully global approach.

3.3 Conclusions

In this Chapter we have explored two examples of Bayesian estimation of environmental para-
meters. In both cases, the parameters can be identi�ed as scale parameters in the system and thus
we can derive the same prior for all of them based on this symmetry.

In the �rst case study we consider quantum thermometry. Here a two level probe interacts
with a Bosonic bath of unknown temperature and measurements are made on either a fully or
partially thermalised probe. When we determine the cost function and estimator from the prior
distribution, we �nd that the optimal cost function for equilibrium probes is a non-trivial but
still an analytic function. Although this function can in principle be computed numerically, we
focus for the rest of this case study on the heuristic approach where the prior and cost functions
are chosen separately. Thus, we compare di�erent cost functions and their estimators and �x
the prior distribution to be P (θ) ∝

√
I(θ). We �nd that the commonly chosen mean, median

and mode considerably over estimate the error at high temperatures. However, the two novel
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Figure 3.13: The approach using the prior derived from f = log(θ) can be used to get a op-
timal measurement.(a) The improvement in the actual error over the prior variance quanti�ed by
the gain G monotonically increases with the possible values of η with a maximum gain achieved
for η = 1. In this �gure the prior range, 1/a < θ < a is varied with a = {2, 10, 100} going
from the light to dark blue lines. (b) The prior uncertainty (black dotted line) and minimum er-
ror ε̄min(light purple dotted line) de�ne the worst and best case scenario after one measurement.
Here three di�erent estimation strategies are compared to these bounds for varying actual values
of the lifetime τ/t. The solid lines show the behaviour of the average error when the measure-
ment is made with the physical POVM de�ned byMY = (1− e−2t/τ0) |e〉〈e| (for the detection
of a photon at time t ) and MN = e−2t/τ0 |e〉〈e| + |g〉〈g|. The probe is prepared with a state
with either the globally optimal superposition parameter η = 1 (purple curve) or η = 1/3 (red
curve). The dashed blue curve shows the error obtained when the locally optimal POVM pre-
dicted by the QFI is used with η = 1/3. Finally, the best possible error that can be obtained
by the globally optimal POVM with η = 1/3 is shown by the red dotted line. To be published
in [D].



3.3. Conclusions 59

relative errors Eq. (2.4.1) that are presented in Chapter 2 achieve a consistently better accuracy
in quantifying the actual variability of the data, throughout the range of the prior distribution.
We also compare all error estimates for either the scale invariant prior or the constant prior and
�nd that the divergence problem is worse at high temperatures.

The error estimates are also compared to the CRB and relative van-Trees bound. We �nd
that although it is not a tight bound, the van-Trees bound captures the scaling of the error with
number of measurements well in the limit of little data. However, for large amounts of data,
the error scales as expected with the CRB. Finally, using the sensitivity region that was derived
in Sec. 3.1.5, we were able to determine that by using partially thermalised probes, the range
of temperatures that the probe is sensitive to is extended. This comes at the cost of maximum
accuracy. These results motivate the continuous measurement scenario explored in Chapter 4
where an adaptive strategy is also studied.

In the second case study we consider the estimation of the lifetime of the excited state of a
qubit. This is a simple estimation scenario adapted from one of the case studies in [105]. Here we
apply the formal approach to the selection of cost functions from the priors to use it to contrast
the prior derived from the scale invariance of the lifetime with the prior derived from the Fisher
information. In this case study we �nd that the estimated error in both approaches is very sim-
ilar when averaged over many experiments. However, the calculation of the cost function and
estimator has to be done numerically when the prior derived from the Fisher information is used.
We also study measurement and probe optimisation. Here we uncover a conceptual di�culty
in optimising the probes or potentially the POVM for a prior based on the Fisher information.
Optimising the initial state of the probe or the POVM changes the likelihood function which
in turn will change the prior distribution. This should not happen since the prior is supposed
to be �xed at the start of the problem. The prior derived from physical invariances of the probe
does not depend on the likelihood and thus probe optimisation does not pose this same problem
there.

The case studies in this chapter show how each approach to Bayesian estimation can be used
while highlighting potential pitfalls. In general the Bayesian approach where the choice of prior
distribution determines the cost functions and estimators, may be preferred to the approach
where these choices are made independently since it leads to a clear way to optimise the probes
and POVM and also leads to global Bayesian bounds on the error. However, depending on the
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example at hand, there are several pragmatic choices that may need to be made. For example,
if an underlying symmetry of the parameter cannot be found, the prior derived from the Fisher
information may be a suitable default option. However, this can lead to cost functions and estim-
ators that are di�cult to calculate and in this case the standard choices explored in the thermo-
metry case study might be more suitable. On the other hand when symmetries are clear as they
are in these case studies, the prior derived from these symmetries and the associated cost func-
tions are often simpler to calculate. These results could be extended in future to multiparameter
scenarios where the optimal Bayesian POVM and bounds may not be the same. Additionally,
it may be of interest to �nd estimation strategies for environmental parameters with multiple
free parameters that can enter into the strategy for example by including interactions between
probes and adaptive measurements.



Chapter 4

Parameter estimation by continuous
monitoring

In the previous chapter, the main examples of Bayesian estimation were for discrete measure-
ments, where a probe is prepared and subsequently measured. In this chapter the same frame-
work is applied to continuous measurements, based on the work published in [B].

4.1 Motivation

In this chapter, we consider a scenario where the temperature information is obtained from the
probe continuously while the probe remains in contact with the environment. Rather than
quantifying the performance of the protocol in terms of number of measurements, we will be
concerned with the total measurement time. Continuous monitoring of a probe allows for meas-
urements that are less invasive than measuring the probe and completely resetting the state. This
technique has been applied in several other contexts, in particular with measurement feedback,
for state stabilisation [129,130] and for magnetometry both experimentally, [131–133] and the-
oretically [88, 134, 135]. The fundamental limits of Bayesian estimation for continuous meas-
urements in quantum systems have also been explored [136–138]. Furthermore, the temperat-
ure is an environmental parameter and thus its estimation is fundamentally di�erent from the
estimation of a magnetic �eld or other Hamiltonian parameters. We will also make use of the

61
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Figure 4.1: In the continuous thermometry scenario that we consider, a two-level probe in-
teracts with a bath of unknown temperature T . The coupling to the bath induces transitions
between the levels of the probe with rates Γin and Γout. The energy gap between the two levels
can be changed to improve the sensitivity of the probe to a particular temperature. The state of
the probe evolves in a telegraph-like trajectory shown by the white line. However, in an experi-
ment involving weak continuous measurements, the actual signal observed is noisy with a �nite
bandwidth as shown by the green line. Adapted from [B].

Bayesian framework to describe adaptive strategies to improve the temperature sensitivity.

4.2 Model

Our model probe system is the same as the one considered in previous discrete model discussed
in Chapter 3. It consists of a two-level probe prepared in a state with no coherences which
stochastically jumps between the ground and excited states (denoted |0〉 and |1〉) due to its in-
teraction with the bath at unknown temperature T . This is illustrated in Fig. 4.1. Again, the
probe has Hamiltonian HS = ω/2(|1〉〈1| − |0〉〈0|). By continuously monitoring the state
of the probe, we will get information about the temperature of the bath because the rate with
which the probe transitions from the ground to the excited state and vice versa is determined
by this temperature. We assume that we are able to detect these jumps without measurement
back-action, that is, the measurement of the probe does not a�ect its state. This is achieved by
measuring in the energy basis of the probe [139].

First, we de�ne the dynamics of the probe state. The density matrix will be diagonal at all
times since the probe is prepared in an initial state with no coherences. Therefore, we need only
consider the populations of the density matrix. The probability that the probe is in the ground
state at some time t is p0(t) and similarly we denote the excited state probability by p1(t) =
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1− p0(t). The rate of transition from the ground state into the excited state is generically given
by Γin and similarly the rate of transition from the excited state to the ground state is denoted
Γin. We can describe the dynamics with the classical rate equation,

∂t

(
p0(t)

p1(t)

)
=

(
−Γin Γout

Γin −Γout

)(
p0(t)

p1(t)

)
, (4.1)

which can be obtained by simpli�ying the equation derived for a generic qubit A.24 to the
present situation where only diagonal elements are relevant. Given the initial state p1(0) = p1,
we solve this equation to give the probability to be in the excited state in terms of this initial state,
the rates and the elapsed time,

p1(t) = e−(Γin+Γout)t

[
p1 −

Γin

Γin + Γout

]
+

Γin

Γin + Γout

. (4.2)

The rate equation and solution above apply generically for a system that transitions into and
out of a state with two di�erent rates. However, in the physical picture of a two-level system in
contact with a thermal reservoir, this can be made more speci�c. The transitions that happen in
the two-level system are due to the exchange of energy with the thermal bath and therefore the
rates of the transitions must obey the local detailed balance relation,

Γin

Γout

= e−βω. (4.3)

Here, β = 1/kBT is the inverse temperature. We set the Boltzmann constant kB = 1 and
note that ω is the energy di�erence between the two states of the probe. We will consider two
commonly used bath models. The �rst is a Bosonic thermal bath with with an Ohmic spectral
density κ(ω) = κ′ω with ω below the cut o� frequency, the rates of this bath in terms of the
Bose-Eistein distribution nB(ω) = [eβω − 1]−1 are,

Γin = nB(ω)κ(ω), Γout = [nB(ω) + 1]κ(ω). (4.4)

The second bath model is a bath of Fermions with a �at spectral density that is thus, independent
of the frequency.The Fermionic bath rates in terms of the Fermi-Dirac distribution nF (ω) =
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[eβω + 1]−1 are,
Γin = nF (ω)Γ, Γout = [1− nF (ω)]Γ. (4.5)

While we focus on thermometry in this chapter, this technique could be applied to any situ-
ation where the parameter of interest is encoded in the rates Γin and Γout like the bath spec-
tral density κ(ω) [140]. Additionally, this setup could be realised in a variety of experimental
scenarios, for example, the probe could be a quantum dot that is continuously monitored by
coherent re�ection spectroscopy [141].

4.2.1 Probability to measure a particular trajectory

In an ideal experiment over the time interval [0, τ ], the apparatus will continuously record a
trajectory ντ = {n(t)|t ∈ [0, τ ]}, where n(t) ∈ {0, 1} denotes the occupation of the state at
all times t. Generically, a trajectory will resemble a series of step functions with the probe in some
initial state, then jumping to another state after some time, remaining there for some time and
jumping back and so on. We can derive the probability density that we observe this trajectory
given the transition rates as follows,

First, discretise time into steps δt = τN . The discrete trajectory, νN = [nj]
N
j=0, is then a

sequence of snapshots, nj = n(jδt), of whether the system is in state 0 or 1. This process is
Markovian and therefore the likelihood to observe a particular trajectory is,

P (νN |T ) = p0

N−1∏
j=0

p(nj+1|nj) = (p(1|0))k (p(0|1))l (p(0|0))q (p(1|1))r . (4.6)

Here, k, l, q, r denote the number of times a particular transition is observed from one state to
another. For example, a transition from state 0 to state 1 is observed k times and the situation
where the state was intially in state 0 and was observed in state 0 after one time step was observed
q times. Now, we integrate the rate equation, Eq. (4.1) over time δt assuming the initial state is
either 0 or 1, to get the following conditional probabilities,

p(1|0) =
Γin

Γin + Γout

[
1− e−(Γin+Γout)δt

]
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p(0|1) =
Γout

Γin + Γout

[
1− e−(Γin+Γout)δt

]
p(0|0) = 1− p(1|0), p(1|1) = 1− p(0|1). (4.7)

In the limit, δt→ 0, in which we recover, νN → ντ , we can expand the conditional probabilities
given above to linear order in δt,

p(1|0) = δtΓin, p(0|1) = δtΓout, (4.8)

as long as (Γin + Γout)δt� 1, which occurs for small δt and �nite temperatures. Substituting
this back into the discretised likelihood gives us,

p(ντ |T ) = (δtΓin)k (δtΓout)
l (1− δtΓin)q (1− δtΓout)

r . (4.9)

In the limit δt → 0, the probability for the state to jump is in�nitessimally smaller that the
probability to stay in the same state therefore, k, l � q, r. This means we can write the total
time spent in state 1 as rδt = τ1 and similarly the total time in the ground state as qδt = τ − τ1.
Thus, in this limit we get,

(1− δtΓout)
r = (1− τ1Γout/r)

r → e−Γoutτ1 . (4.10)

By appling the same logic to the term involving q we obtain,

P(ντ |T ) :=
1

(δt)l+k
p(ντ |T ) = p0ΓkinΓloute

−Γin(τ−τ1)−Γoutτ1 . (4.11)

Note that because t is a continuous variable, P(ντ |T ) is a probability density with units that
will depend on the number of jumps that are observed in a given interval.

4.3 Bayesian approach

We will analyse the performance of this thermometer using the Bayesian techniques that have
been developed so far in this thesis (see Chapter 2). The main goal is to determine the asymptotic
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scaling of two measurement approaches. One one hand, we will prepare globally optimal probes
and on the other the probes will be adapted during the experiment. As we will have to simulate
many trajectories and the formal aspects of Bayesian estimation are already well explored in the
previous section, we will employ the following pragmatic approach.

First, we select the simpli�ed relative square cost function as out posterior averaged error
measure, that is,

ε(2r)(ϑ, ντ ) :=

∫
dθP (θ|ντ )

(
ϑ(ντ )− θ

θ

)2

. (4.12)

We will consider this error averaged over all possible trajectories to get a �gure of merit that is
independent of the trajectory,

ε̄(2r)(ϑ) :=

∫
dντρ(ντ )ε

(2r)(ϑ, ντ ). (4.13)

The optimal estimator is then (see App B),

ϑR(ντ ) :=

∫
dθP (θ|ντ )/θ∫
dθP (θ|ντ )/θ2

. (4.14)

We assume for the sake of simplicity in our simulations that the temperature is restricted to
the range Tmin 6 T 6 Tmax and that within this range all temperatures are equally likely. This
means that the distribution P (ντ ) is also constant in this range.

4.4 Fisher information

Although we will focus on Bayesian analysis of the data, we will also quantify the asymptotic
accuracy of this measurement scheme. In the limit of a long measurement time the Bernstein
von Mises theorem applies even for this Markov process [142] so that the posterior distribution
will be a sharply peaked Gaussian about the actual value of the temperature and therefore, the
Bayesian Cramér-Rao bound will apply. For convenience, we repeat the Cramér-Rao bound for
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the relative Bayesian error which we de�ne in Sec. 2.8

ε̄(2r)(ϑx) ≥
∫

dθ
P (θ)

θ2I(θ)
. (4.15)

To properly quantify this bound, we must derive the Fisher information of our trajectory. We
introduce the following notation to make this calculation more convenient: denote the initial
state of the probe by, p = (p0, p1)T and letK be the 2×2 matrix elementsKnm = p(n|m). We
also introduce the column vectorF (N) with elementsF (N)

n = 〈δnN ,n[∂Tp(νN |T )]2〉. Note that
we can write the likelihood iteratively as, p(νN |T ) = p(nN |nN−1)p(νN−1|T ) with p(ν0|T ) =

pn0 , we get the following expression from the Fisher information,

I[p(νN |T )] = (1, 1)F (N)

=
∑
nN

∑
νN−1

p(nN |nN−1)p(νN−1|T ) {∂T ln [p(nN |nN−1)p(νN−1|T )]}2

=
∑
nN

∑
νN−1

p(nN |nN−1)p(νN−1|T ) [∂T ln p(nN |nN−1) + ∂T ln p(νN−1|T )]2

(4.16)

= (1, 1)JKN−1p + 2(1, 1)(∂TK)(∂TK
N−1p) + (1, 1)KF (N−1)

where, in the last line we introduce the matrix Jwith elementsJnm = Knm(∂T lnKnm)2. Now
using the fact that K is a stochastic matrix with (1, 1)K = (1, 1) and (1, 1)∂TK = 0, we can
simplify this expression and iterate this process down to the initial probe state,

I[p(νN |T )] = (1, 1)JKN−1p + I[p(νN−1|T )] = . . . = (1, 1)J
N−1∑
j=0

Kjp + I[pn0 ]. (4.17)

Note that depending on probe preparation the initial state may also depend on the temperature.
Next, we use that the matrix K has right eigenvalues, λ1 = 1 and λ2 = e−(Γin+Γout)δt with
corresponding (unnormalized) right-eigenvectors v1 = (Γout,Γin)T and v2 = (1,−1)T to get
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the following expression,

Kjp =
v1

Γin + Γout

+

(
Γin

Γin + Γout

− p1

)
e−(Γin+Γout)jδtv2, (4.18)

which holds also for j = 0.

We substitute this into (4.17) and carrying out the geometric sum in the �rst term to get,

I[p(νN |T )] =
(1, 1)J

Γin + Γout

[
Nv1 +

1− e−(Γin+Γout)Nδt

1− e−(Γin+Γout)δt
(Γinp0 − Γoutp1)v2

]
+ I[pn0 ].

(4.19)
The vector (1, 1)J contains the Fisher information of the transition probabilities,

(1, 1)J = (I[p(n|0)], I[p(n|1)]) =

(
[∂Tp(1|0)]2

p(1|0)[1− p(1|0)]
,

[∂Tp(0|1)]2

p(0|1)[1− p(0|1)]

)
. (4.20)

In the continuum limit δt → 0, the transition probabilities are given by eq.(4.8), which we
substitute in to give,

(I[p(n|0)], I[p(n|1)]) =

([
∂TΓin

Γin

]2

Γinδt,

[
∂TΓout

Γout

]2

Γoutδt

)
. (4.21)

Inserting (4.21) into the Fisher information expression (4.19) and expanding to linear order in
δt at �xed τ = Nδt, we arrive at

I[τ, T ] = I[pn0 ] +

[
p0

(∂TΓin)2

Γin

+ p1
(∂TΓout)

2

Γout

]
1− e−(Γin+Γout)τ

Γin + Γout

+
ΓinΓout

Γin + Γout

[(
∂TΓin

Γin

)2

+

(
∂TΓout

Γout

)2
] [

τ − 1− e−(Γin+Γout)τ

Γin + Γout

]
,

(4.22)

Here, the large data limit corresponds to long times. Hence, we consider the long time Fisher
information. To do this, we drop all the terms in Eq. (4.22) that do not grow with the total time
τ ,

I[τ, T ] =
ΓinΓout

Γin + Γout

τ

[(
∂TΓin

Γin

)2

+

(
∂TΓout

Γout

)2
]
. (4.23)
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Note that these two results can be applied to the estimation of any parameter that is encoded
in a rate. The derivatives of the rates with respect to temperature would just need to be replaced
by derivatives with respect to the other parameter. Using the expressions that we have for the
rates (4.4) and (4.5), we get the long time Fisher information for interaction with either a Bo-
sonic,

I[τ, T ] = κ(ω)τ
ω2

8k2
BT

4

cosh(βω)

sinh3(βω/2) cosh(βω/2)
(4.24)

or Fermionic,

I[τ, T ] = Γτ
ω2

8k2
BT

4

cosh(βω)

cosh4(βω/2)
(4.25)

reservoir.

4.5 Adaptive vs non-adaptive strategies

Our next task is to design the measurement protocol to be as sensitive as possible to the temper-
ature. The �rst thing that might come to mind, based on the approach taken in the previous
chapter, is optimising the initial state of the probe. However, especially given that we do not
consider any coherences in this example, the e�ect of preparing the state in the ground or ex-
cited state is vanishingly small for long measurement times. The size of the energy gap, however
is vitally important in determining the temperature with the maximum accuracy even at long
times. This is apparent since the long time Fisher information Eq. (4.23) still depends on the
energy gap. The strategy that we employ is to optimise the gap for all possible true temperatures
according to the prior distribution so that asymptotically we achieve the smallest possible value
of the average posterior error, ε̄(2r)[ϑ]. We do this by �nding the asymptotically optimal energy
gap, i.e., the one that minimises,

ω∗n.ad. := arg min
ω

∫
dTρ(T )

T 2I[τ, T ]
. (4.26)

Note that although this is an asymtotically optimal strategy because we use the Bayesian Cramér-
Rao bound to derive it, it is optimal on average over the entire prior range and thus is global in
that sense. In Fig. 4.2 the blue solid line shows the average relative error (Eq. (4.13)) for a probe



70 Chapter 4. Parameter estimation by continuous monitoring

10−1 100 101 102

κ′ξτ

10−2

10−1

ε̄(
2
r)

Figure 4.2: The average relative error ε̄(2r) of thermometry performed on a Bosonic bath as a
function of measurement time τ . The error is calculated from 104 trajectories generated from
randomly sampled temperatures in the range [Tmin, Tmax]. The error was calculated for both
non-adaptive (dark blue) and adaptive (light purple) scenarios. The Cramér-Rao bound of the
adaptive strategy is indicated by a dark grey shade and for the non-adaptive by the lighter grey
shade. Both strategies reach their respective asymptotic scaling and the adaptive strategy is able
to out-perform the non-adaptive one even for non-asymptotic times. Temperature and energies
are expressed in units of ξ while τ has units of ξ−1. The coupling κ′ is dimensionless. We have
set Tmin = 0.1ξ, Tmax = 10ξ, ξ = 1, and κ′ = 1. In the adaptive strategy, the energy gap is
changed in every simulated time step dτ = 10−3. Adapted from [B].
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initialised with the globally optimal gap as a function of the measurement time for 104 randomly
sampled trajectories. Here, we observe that asymptotically, the accuracy reaches the Bayesian
Cramér-Rao bound indicated by the light grey shade. This means that this is an asymptotically
optimal strategy.

Next, we assume that the energy gap of the probe can be changed during the course of the
experiment. Again, we do not perform an optimisation for any given τ but one that is optimal
for long times. To do this, we assume that at some time twe have observed the trajectory νt and
the estimate of the temperature isϑ(νt). We then change the gap to be the one that will maximise
the Fisher information for the estimated temperature,

ω∗ad.(νt) := arg max
ω

T̃ 2(νt)I[τ, ϑ(νt)]. (4.27)

We can then use the expressions for long time Fisher information of the reservoirs, see Eq. (4.24)
and Eq. (4.25), to �nd the optimal gap in each case which gives,

ω∗ad.(νt) ≈ 2.4750 T̃ (νt), (4.28)

for a Bosonic bath and,

ω∗ad.(νt) ≈ 2.6672 T̃ (νt), (4.29)

for a Fermionic bath.
This strategy will tune the gap to the �xed optimal gap for the actual underlying temperature

for long enough times and the average error will converge to the Cramér-Rao bound with the
asymptotic Fisher information calculated for the optimal gap at each theta,

ε̄(2r)(ϑx)ad. ≥
∫

dθ
P (θ)

θ2Iad.[θ]
. (4.30)

This strategy is not guaranteed to be optimal for transient times where optimal Bayesian strategies
like the one considered in [66] may give a better performance. Unlike the strategy that we will
consider, these strategies requires the optimisation to be calculated in each time step depend-
ing on the current posterior. It would thus require more computational power than the simple
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Strategy Optimal Gap Optimal value of
T 2I[τ, T ]

∫ Tmax

Tmin
dTρ(T ) [T 2I[τ, T ]]

−1

Non adaptive with
initially optimised gap ≈ 0.4595 ξ — 0.4133 (κ′ξ τ)−1

Adaptive
asymptotically thermal ≈ 2.4750 T 1.5430 κ′τT 0.3015 (κ′ξ τ)−1

Table 4.1: The optimal adaptive and non-adaptive strategies and the scaling of these strategies
for estimation of the temperature of a Bosonic bath. For the non adaptive strategy in the �rst row,
the energy gap of the probe is chosen to be the one that minimises ε̄(2r) in Eq. (4.13) and then is
left unchanged for the entirety of the measurement process. The adaptive strategy summarised
in the second row starts with the same initial gap but after each time step it is tuned to the optimal
value by settingϑ = T in the second column. In the asymptotic limit we can compare the scaling
of the error ε̄(2r) and we see that

[
ε̄(2r)(ad.)− ε̄(2r)(n. ad.)

]
/ε̄(2r)(ad.) ≈ 40%. Temperature

and energies are expressed in units of ξwhile τ has units of ξ−1. The couplingκ′ is dimensionless.
In the examples we have set Tmin = 0.1ξ, Tmax = 10ξ, ξ = 1, and κ′ = 1.

strategy we adopt here where only the current estimate is required. In Fig 4.2, we demonstrate
the results summarised in Table 4.1 for thermometry of a Bosonic bath averaged over 104 tra-
jectories generated for randomly sampled temperatures in the range of the prior, [0.1, 10]ξ. The
expected asymptotic scaling is reached by both strategies and the adaptive strategy can outper-
form the non-adaptive strategy even for short times.

4.6 Noisy measurements

Up to now we have only studied an idealised scenario where the measurements can be performed
projectively. However, many experimental platforms like a quantum dot [143], on which a two
level thermometer could actually be implemented will give noisy trajectories rather than the step-
like trajectory considered up to now. The measurement device may also have a �nite bandwidth
which introduces a delay into the signal. This corresponds to a scenario where, as the interval
between measurements tends to zero, so does the information gained per measurement. For an
in�nite bandwidth, The measured signal will consist of the actual telegraph like signal which,
since we measure in the energy basis is 〈σz〉 plus Gaussian white noise. In a single time step an
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Strategy Optimal Gap Optimal value of
T 2I[τ, T ]

∫ Tmax

Tmin
dTρ(T ) [T 2I[τ, T ]]

−1

Non adaptive with
initially optimised gap ≈ 1.5401 ξ — 132.79 (Γ τ)−1

Adaptive
asymptotically thermal ≈ 2.6672 T 0.3795 Γτ 2.6350 (Γ τ)−1

Table 4.2: The optimal adaptive and non-adaptive strategies and the scaling of these strategies
for estimation of the temperature of a Fermionic bath with �at spectral density (i.e., s = 0).
The strategies are the same as Table. 4.1. Here the adaptive strategy can improve the asymptotic
precision more than an order of magnitude compared to the non-adaptive one. This e�ect is
mainly due to the choice of a �at spectral density, that is more appropriate for fermionic baths.
Again, all the parameters are expressed in terms of ξ, such that temperature T , frequencyω, and
the coupling Γ have dimension ξ, while time τ has the dimension ξ−1. For this table we have set
Tmin = 0.1ξ, Tmax = 10ξ, and Γ = ξ = 1.

increment in the measured signal is de�ned by,

dz(t) = 〈σz〉 dt+
1√
λ
dW. (4.31)

Here, dW is known as a Wiener increment and it is scaled by a factor 1/
√
λ which determ-

ines how noisy the measurement is. That is, for λ → ∞ the measurement is perfect but for
λ→ 0 the measurement will be very noisy. This factor is called the measurement strength. The
Wiener increment is a Gaussian random variable which has a mean value of 0 and a variance
dt. Measurements that generate a signal like this are modelled by the Gaussian measurement
operator [68, 139],

A(z) =

(
2λδt

π

) 1
4

eλδt(z−σz)2 . (4.32)

In the limitλδt→ 0 we have a continuous measurement. The signal we observe at time t is thus
zt consisting of noisy �uctuations around the actual value 0 or 1 of the state of the system.
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4.6.1 Noisy measurements with a �nite bandwidth

Now, we want to include the bandwidth of the detector into this description. We assume noisy
trajectory with a �nitie bandwidth consists of outcomes Dt that are read out of the detector at
time t. We model the �nitie bandwidth as a low pass frequency �lter. Thus, the relation between
the un�ltered signal and the �ltered signalDj is de�ned as [144],

Dj = γδt

j∑
k=0

e−γ(j−k)δtzk, (4.33)

where, 1/γ is the delay introduced in the detector from the �nite bandwidth, where all frequen-
cies larger than γ are dampened. We will denote the trajectory that is observed as, ντ = {Dt|t ∈
[0, τ ]}.

We can model the measurement without �ltering with the measurement superoperator,

M(z)ρ := A(z)ρA†(z) (4.34)

with measurement operatorsA(z) de�ned in Eq. (4.32). Now, we add the frequency �lter to get
the measurement operator for outcome D having observed D′ in the previous time step. Due
to this �lter, the signal in step tj+1 depends on the previous signal D′ and the current signal D
through zj+1 = (D − D′e−γδt)/γδt. Substituting this in to the measurement superoperator
Eq. (4.34) we de�ne the measurement operator, γδtM(D|D′) = M((D − D′e−γδt)/γδt),
with,

M(D|D′) =

√
2λ

πγ2dt

(
e
− 2λ
γ2dt

(D−D′e−γdt)2
0

0 e
− 2λ
γ2dt

[D−(D′e−γdt+γdt)]2

)
.

The system evolution can then be written down stroboscopically where the system interacts
with the environment and is then measured,

Pt(νt) = M(Dt|Dt−dt)e
WdtPt−dt(νt−dt), (4.35)

where Pτ (ντ ) = (p0(ντ ), p1(ντ ))
T is a column vector with pj(ντ ) the joint probability of
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occupying state j ∈ {0, 1} at time τ and observing ντ . W is the rate matrix (Eq. (4.1)) that
describes the probes evolution under interaction with the bath. The likelihood to observe the
noisy trajectory is,

ρ(ντ |T ) = (1, 1) · Pτ (ντ ). (4.36)

In the limit of λ � γ → ∞ we recover the ideal measurements and obtain the probability
to observe a trajectory given in Eq.(4.11). Thus, we can determine the posterior distribution
using Bayes rule as before by updating the prior with this likelihood function in each step and
normalising the distribution.

The simulation of an experiment is then done as follows,

• The trajectory is simulated according to the Poisson process in Eq. 4.1 for some true tem-
perature. Filtered white noise is them added on top of this trajectory. This gives the meas-
urement recordD(t).

• The measurement operator usingD(t) as well as the rate equation in Eq. (4.1) are use to
calculate the likelihood in Eq. (4.36).

• The prior is updated using the likelihood and prior from the previous step using Bayes
rule.

4.6.2 Kushner-Stratonovich equation

The evolution of the prior distribution under continuous measurements with a �nite bandwidth
and Gaussian noise can also be derived using Ito-Stochastic calculus [145, 146]. That is, we use
Itos rule that (dW )2 = dt. This allows us to derive the Kushner Stratonovich equation which
is used in Bayesian �ltering of noisy trajectories [88, 147].

In the non-noisy case, the probability to occupy the ground state is monitored which is equi-
valent to monitoring the di�erence in probability to occupy the ground and excited states, and
we would get the signal, r = 〈z〉 = 2p0(t) − 1 = {−1, 1}. Recall that for the noisy signal we
can de�ne the Wiener increment,

dW = 2
√
λ(r − 〈z〉)dt. (4.37)
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When we introduce the �nite bandwidth γ, the outcomeD(t) read out on the detector at time
t is related to the in�nite bandwidth signal by,

D(t) =

∫ t

−∞
ds γe−γ(t−s)tr(s). (4.38)

This is the continuous version of Eq.(4.33). The observed outcome from the experiment is the
solution to the stochastic di�erential equation,

dD = γ(2p0(t)− 1−D)dt+
γ

2
√
λ
dW. (4.39)

By expanding the likelihood P (dD|T ) (Eq. 4.35) to �rst order in dt and normalising the prob-
ability distribution we obtain the evolution of the ground state population [144],

dp0(t) =(Γoutp1(t)− Γinp0(t) + 8λp0(t)p1(t)(2p0(t)−D − 1))dt (4.40)

+
8λ

γ
p1(t)dD.

We now derive and expression for the evolution of the state of knowledge about T . The
change in this state of knowledge after an in�nitesimal time step of the experiment is

dP (T, t|ντ ) = P (T, t+ dt|ντ , dD)− P (T, t|ντ ). (4.41)

The evolution can then be broken up into an instantaneous part due to measurement (the �rst
term below in square brackets) and the time evolution after measurement

dP (T, t|ντ ) =[P (T, t|ντ , dD)− P (T, t|ντ )] (4.42)

+ [P (T, t+ dt|ντ , dD)− P (T, t|ντ , dD)].

However, the state of knowledge will only evolve independently of measurements if predictions
are made. Excluding prediction gives

dP (T, t|ντ ) = P (T, t|ντ , dD)− P (T, t|ντ ). (4.43)
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The posterior distribution after measurement, P (T, t|ντ , dD), can be computed using Bayes
Rule:

P (T, t|ντ , dD) =
P (dD|T )P (T, t|ντ )∫
dTP (dD|T )P (T, t|ντ )

. (4.44)

Then, to calculate the di�erence in Eq. 4.43, we �rst expand P (T, t|ντ , dD)/P (T, t|ντ )
to �rst order in dt and to second order in dD taking the expectation of the dD2 terms since
〈(dD)2〉 = γ2dt/(4λ). That is,

P (T, t|ντ , dD)

P (T, t|ντ )
=

exp(−2λ
γ2dt

(dD − γ(2p0(t)−D − 1)dt)2)∫
dTP (dD|T )P (T, t|ντ )

(4.45)

=
exp(−2λ

γ2
(−2γ(2p0 −D − 1)dD + γ2(2p0 −D − 1)2dt))∫

dT exp(−2λ
γ2

(−2γ(2p0 −D − 1)dD + γ2(2p0 −D − 1)2dt))P (T, t|D)

=1 +
4λ

γ
((2p0

2 −D − 1− (2p0 −D − 1)(2p0 −D − 1))dt

+
4λ

γ
(2p0 −D − 1− (2p0 −D − 1))dD + o(dt),

where, p0 =
∫
dTp0P (T, t|ντ ). Therefore, the evolution of the posterior is

dP (T, t|D) =
8λ

γ
(p0 − p0)(dD − γ(2p0 −D − 1)dt). (4.46)

which is known as the Kushner-Stratonovich equation [147, 148].
The simulation of an experiment is then done as follows,

• The trajectory is simulated according to the Poisson process in Eq. 4.1 for some true tem-
perature. Filtered white noise is them added on top of this trajectory. This gives the meas-
urement recordD(t).

• The measurement record D(t) is used to solve for the evolution of p0(t, T ) at each tem-
perature in the range of the prior.

• The prior is updated using the measurement record and the prior averaged population ρ̄0

which was averaged over the previous increment of the prior.
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Figure 4.3: The estimated temperature for a single noisy trajectory with �nite bandwith γ =
10ξ is compared for two di�erent time steps in the simulation. We set dt = 10−2 in (a) and
dt = 10−3 in (b). The Kushner-Stratonovich method (light blue line) requires a smaller time
step to converge than the direct calculation method (dark blue line). The actual temperature
of the system is indicated by the dotted black line. The measurement strength is set to λ/γ2 =
0.05ξ.

4.6.3 Comparison of simulations

We can now compare the two simulation methods to determine which is more e�cient. The
Kushner Stratonovich equation leads to an improved computational time because only one ele-
ment of the state vector needs to be modelled to get to the Posterior distribution. However, the
computation of the stochastic di�erential equation requires an approximation method. Here
we simulate it using the second order Milstein method [145, 146]. In Fig. 4.3, we show that this
additional approximation introduces numerical instability when the time step δt is not small
enough. We illustrate this by comparing the estimated value of θ between simulations, for the
same trajectory but setting δt = 10−2 in Fig.4.3 (a) and δt = 10−3 in Fig.4.3 (b). We see that
the trajectory does not change between these two plots for the direct calculation method which
indicates that the simulation of the equation has converged. On the other hand, the Kushner
Stratonovich method only converges for the smaller time step. The decrease in the time step size
by one order of magnitude increases the simulation time far more than having to calculate two
values for the state in each step. Therefore, the direct method derived in Sec. 4.6.1 was used to
simulate the data shown in the next two sections.
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Figure 4.4: The average relative error ε̄(2r) of thermometry performed on a Bosonic bath as
a function of measurement time τ for noisy measurments with a �nite bandwith γ = 10.0ξ.
The error is calculated from 103 trajectories generated from randomly sampled temperatures in
the range [Tmin, Tmax]. The error was calculated for two non-adaptive scenarios with di�erent
measurement strength (λ/γ2 = 0.25ξ light blue and λ/γ2 = 0.50ξ dark blue) and one adapt-
ive (λ/γ2 = 0.25ξ light purple) scenario. The Cramér-Rao bound of the adaptive strategy is
indicated by a dark grey shade and for the non-adaptive by the lighter grey shade. Increasing the
measurement strength leads to a better accuracy however, the noise prevents the Cramér-Rao
bound from being reached. The adaptive strategy performs worse than the non-adaptive one at
short times. Temperature and energies are expressed in units of ξ while τ has units of ξ−1. The
coupling κ′ is dimensionless. We have set Tmin = 0.1ξ, Tmax = 10ξ, ξ = 1, and κ′ = 1. In the
adaptive strategy, the energy gap is changed in every simulated time step dt = 10−3. Adapted
from [B].

4.6.4 Performance of noisy measurements

In Fig. 4.4, contrary to what we saw for ideal measurements, we see that noisy measurements
of the temperature of a Bosonic bath do not saturate the Cramér-Rao bound Eq. (4.15). The
adaptive strategy, which is the same one as was used for the ideal measurement can reach the non-
adaptive Cramér-Rao bound for long times. We cannot simulate for arbitraily long times and
thus we could not rule out the possibility that the adaptive noisy measurement may outperform
the ideal non-adaptive measurement. In contrast to ideal measurements, the adaptive strategy
actually performs worse than non-adaptive measurements for short times. The adaptive strategy
is not designed to be optimal for the noisy scenario. It was designed to be optimal in the limit of
long times for ideal measurements.
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Figure 4.5: Comparison of the bias (a) relative error (b) and accuracy of the relative error relative
to the true spread of the data ε̄RMS in Eq. (2.29). Here ad.(CRB)/n.ad.(CRB) is denoted by
the red dashed line. In (c) for noisy measurements with bandwidth γ = 10.0ξ measurement
strengths λ/γ2 = 0.25ξ. The thermometry protocol was simulated for 35 true temperatures T
in the range [0.1, 10.0]ξ and with initial gap ω∗n. ad. At each of the temperatures the results are
averaged over a set of 200 trajectories and the points are joined with lines to guide the eye. The
results are plotted at time κ′ξτ = 100.0. The shaded regions depict the standard deviation of
the estimated temperature, true relative error and estimated error relative to the true error for
each of the sets of trajectories. The blue points correspond to the non-adaptive strategy. The
purple points, correspond to the adaptive strategy where new trajectories are generated because
the gap of the two level system changes in each step. The strength of the measurement has the
greatest e�ect in reducing the bias and the bias is also the main contribution to the relative error.
Adapted from [B].
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In Fig 4.5 (a) we see that for noisy measurements a signi�cant estimation bias persists at low
and high temperatures. The temperature is estimated for 35 di�erent true temperatures in the
range [0.1, 10.0]ξ. For each true temperature, the average estimate of 200 trajectories is calcu-
lated at the �nal time of each trajectory κ′ξτ = 100. At high temperatures, the temperature
is over estimated and at low temperatures opposite behaviour is observed. If the measurement
strength is increased, the bias is reduced for high temperatures but this is not observed at low tem-
peratures. This is the reason behind the noisy measurements failing to saturate the Cramér-Rao
bound. At low temperatures this bias arises from there not being su�cient time for transitions
to be observed which results in the estimated temperature being below the actual temperature.
We see that one of the ways that the adaptive strategy improves the estimation is by slightly re-
ducing the bias. In particular, at low temperatures, being able to adjust the gap of the system
allows more transitions to occur in the trajectory leading to a better estimate.

The average error ε̄(2r) of both the adaptive and non-adaptive strategy is plotted relative
to the non-adaptive Cramér-Rao bound in Fig. 4.5 (b) with the ratio of the adaptive to non-
adaptive Cramér-Rao bound shown for reference. Agreement with this line would be the best
error an adaptive strategy could achieve. We see that for a small window of temperatures, the
non-adaptive bound is achieved by even the non-adaptive strategy. This window is extended by
the adaptive strategy and there is signi�cant improvement for small temperatures where there is
a large bias.

Finally, Fig. 4.5 (c) shows that the bias leads to the estimated error ε̄(2r) under estimating the
true error (ε̄(RMS))2 when the total measurement time is not long enough. For asymptotically
long times these errors must coincide due to the Bernstein von Mises theorem. From an experi-
mental point of view, this suggests that in the range of temperatures where the bias is the main
contribution to the error, the actual variability of the data is higher than what would be expected
from the error estimate ε̄(2r).

4.7 Conclusions

In this chapter we have explored thermometry of a Bosonic and Fermionic reservoir using a two
level probe under continuous measurement. The trajectory was derived exactly and we found
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that it depends only on the observed number of jumps and the total time spent in the ground
state. This result is important because it allowed the derivation of an analytical expression for the
Fisher information. For long times, this gives a result for the Bayesian Cramér-Rao bound. This
result was used to design an asymptoically optimal adaptive strategy. For ideal measurements
where the state of the probe is monitored perfectly, the adaptive and non-adaptive strategies
were found to reach these bounds in simulations and the adaptive strategy improved on the
non-adaptive strategy even for short times.

In addition, we studied the more realistic situation where the measurements are weak which
results in a noisy signal with a �nite bandwidth. Analytical solutions cannot be found here,
however, the results were simulated using both the Kushner stratonovich method and a direct
calculation using the measurement operator to update the posterior distribution. We found that
while the Kushner stratonovich method allows fewer matrix elements to be calculated, the calcu-
lation requires a smaller time step to converge. In simulations we found that when the adaptive
strategy is applied to noisy measurements, the accuracy improves at long times but for shorter
times the performance of the adaptive strategy is actually worse because the noisy measurements
induce a bias in the estimates on which the adaptive strategy is based.

There are several future directions, �rst, this chapter only considered classical dynamics. If
the probe were to be prepared in a state with coherences and coupled to a driving �eld that main-
tained these coherences throughout the measurement, the results of this chapter would need to
be revisited to determine the optimal measurement strategy in this case. In particular, it is not
clear from these results if quantum correlations will improve the measurement precision. Many
body probes may also be considered. In this case one could study how correlations between these
probes may be used to improve the accuracy of the measurements. The optimisation performed
in the adaptive strategy is based on the Bayesian Cramér-Rao bound. This means that although
it is optimal for the entire range of the prior, it is only optimal for many ideal measurements.
Adaptive Bayesian strategies that optimise the Bayesian error like that studied in [66] may lead
to a better strategy for few measurements and in noisy scenarios. However, this strategy would
come at a large computational cost because of needing to simulate very many noisy trajector-
ies. It would thus be an advantage to �nd a simpler, possibly heuristically motivated, adaptive
strategy that performs well for few measurements but is perhaps sub-optimal.



Chapter 5

The thermodynamics of collectively
coupled multi-level systems

In this chapter we will explore how collective coupling can enhance or degrade the performance
of open systems compared to individually coupled counterparts. As a particular application, we
will look at how much work can be extracted from such a system. A mathematical toolbox from
representation theory is presented, which allows for the study of various properties of collectively
coupled d-level systems. This work is based on publication [C].

5.1 Motivation

The examples considered in the �rst part of this dissertation are concerned with individual sys-
tems in contact with their environment. While this serves to illustrate the use of Bayesian tech-
niques in open system metrology without additional complication, it is often the case that many-
body systems can display interesting emergent phenomena that would not necessarily be expec-
ted from the simple addition of single-particle systems. For example, multiple spins may be used
as a probe system with enhancements in temperature sensitivity near critical points [149, 150].
Alternatively, metrological enhancements can also be achieved through collective coupling. Col-
lectively coupled probes reach a non-thermal steady state with the environment [56, 151]. This
is useful for very low or high temperature thermometry where precision diverges with the num-

83
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ber of probes when the probes are prepared in a Gibbs state. As is the case for a Gibbs state, the
quantum Fisher information for temperature estimation is proportional to the heat capacity For
collectively coupled spins as well [89, 151]. However, the heat capacity of the non-equilibrium
state of the collectively coupled ensemble does not decrease as fast at high temperatures as it
does for a Gibbs state. Similarly, for collectively coupled oscillator probes, the non-equilibrium
steady state of the probes achieves a higher Fisher information than independent probes at low
temperatures [56]. These systems are the focus of this chapter. The thermodynamic results from
this were extended in [152] for n-level systems operating in an Otto cycle. This work suggests
that the enhancements in the heat capacity are also present under certain conditions of initial
state preparation for generic collectively coupled n-level systems. Additionally, these collective
enhancements in the quantum Fisher information were also shown with a probe consisting of
n oscillators for the low temperature regime in [56] and for collective spins strongly coupled to
a bath in [149].

Generically, a collective system consists of many subsystems that are identical from the point
of view of the environment but are not necessarily fundamentally indistinguishable. This allows
for the system to display more exotic types of exchange symmetry than purely bosonic or fermi-
onic exchange symmetry [152–154].

A description of the system that allows for e�cient calculations while including interac-
tions between particles, dynamical behaviour beyond steady state dynamics and independently
operating baths, is still lacking. Such a description would allow for the detection of multiple
temperatures or temperature di�erences as well as interesting non-equilibrium e�ects or the in-
vestigation of probe states that are only reachable when the particles are allowed to interact. The
theoretical description of the collective dynamics for multiple levels beyond the usual collective
spin description is the �rst obstacle and the one that we tackle here. Describing such a framework
is the focus of the �rst parts of this chapter. The results from this chapter could be extended to
systems with interactions in later works.

We �rst extend the description in [152] to describe a collectively coupled system simultan-
eously coupled to multiple heat baths prepared in any initial state. This description is then ap-
plied to a collectively coupled three level system which is inspired by the single-particle heat en-
gine proposed by Scovil and Schultz-DuBois [9]. This single-particle engine is the paradigmatic
example of a continuously operating quantum heat engine. As is the case in the metrological
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setting, the advantages that may be obtained from many-body heat engines over their single-
particle counterparts are not restricted to systems with collective coupling. Many-body systems
like Bose-Eistein condensates or spin chains are a common extension of the basic single-particle
quantum engine [155–157]. In these systems the strong non-linear interactions can be stud-
ied and utilised to a�ect the performance of the engine [5, 158, 159] particularly near critical
points [23, 30, 159–161]. Unique properties of many-body quantum systems like many-body
localisation can be used to enhance engine performance [162].

The enhancements seen for many-particle engines do not even require interactions between
the individual particles making up the working medium. In our approach, the many-body ef-
fects come from the collective interaction of the particles in the working medium with the en-
vironment. The study of these types of e�ects is motivated in part because quantum thermal
machines with this type of coupling are known to display enhanced performance similar to su-
perradiance1 [31, 164–168]. In these models each emission or absorption process is a superpos-
ition of single-particle events, which interfere constructively. This has also been experimentally
demonstrated in a system of cold atoms [169]. Most recent studies of collective heat engines have
focused only on Bosonic exchange symmetry [151, 170–175] as this gives a simpler dynamical
description in terms of the well known collective spin operators. In this chapter, we will invest-
igate how di�erent types of exchange symmetry, or anti-symmetry a�ect the performance of an
engine.

I will �rst brie�y introduce quantum thermal machines in Sec 5.2 and introduce the math-
ematical tools necessary to describe permutationally symmetric systems in Sec. 5.3. The dy-
namics and steady states of collectively coupled three level systems are described in Sec. 5.4. Fi-
nally, these systems are put to use as a collective working medium and compared to individually
coupled three level heat engines in Sec. 5.5.

While these results highlight interesting e�ects of collective coupling in their own right, the
methods in this chapter also pave the way toward a description of metrology using collectively
coupled systems that are not in the fully symmetric state. The methods presented here would
be extendable to a description that includes interactions and the description of the system in-

1Superradiance is a phenomenon where the power of the light emitted by n dipoles that interact with a �eld
collectively scales quadratically rather than linearly and is probably the most well known e�ect due to collective
coupling in quantum systems [163].
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cluding multiple baths could be useful in metrology settings where multiple parameters must be
simultaneously estimated.

5.2 Introduction to quantum thermal machines

The familiar picture of a classical heat engine consists of macroscopic state parameters like the
position of a piston and pressure change in a gas. In a quantum thermal machine, the working
medium is usually on the scale of at most a few atoms. The quantum state parameters that can
be changed in a thermodynamic process are quantities like the spacing of energy levels or the
occupation of the energy levels of the system.

This allows for the de�nition of thermodynamic cycles in analogy to classical engines [176].
The most minimal model in these cases is a two level system. Consider for example the quantum
Otto cycle [32,177]. Here the thermodynamic process is broken up into four strokes. In the �rst
stroke, the analogue to the isochoric (constant volume) stroke in a classical engine, the energy
level spacing is held �xed and the system is allowed to thermalise with a hot bath. This induces
a larger population in the excited state. The next stroke is the working stroke in analogy to an
adiabatic, isentropic “compression” stroke. Here, the excited state population is �xed and the
di�erence in energy between the levels is decreased. This is followed by a stroke where the sys-
tem, now with a smaller energy gap, is thermalised with a cold bath which lowers the population
of the excited state. Finally, the cycle is completed by applying work to the system to bring the en-
ergy gap back to the original value. Engines based on an Otto cycle are convenient because they
allow for the clear calculation of how much work is extracted from the engine compared to how
much work is applied and how much heat is absorbed or emitted. As we will see in the model
considered in this chapter, these quantities are not always easily de�ned in quantum systems.
This problem shows up for example in a quantum Carnot cycle [10]. This cycle is de�ned by
replacing the “isochoric” strokes with isothermal strokes so the system is held in thermal equilib-
rium with either the hot or cold reservoir during each stroke. In this case, the isothermal strokes
now consist of exchanges of both work and heat with the environment and de�ning what part
of the energy exchanged is heat and what is work requires a more thoughtful analysis.

While the breakdown of the operation of an engine into cycles may be convenient, pro-
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cesses that appear in nature like photosynthesis [2] or technological applications like the opera-
tion of nanoscale thermoelectrics like photovoltaic cells may more strongly resemble continuous
quantum engines [25, 178] where the operation is not broken down into strokes but rather the
system is simultaneously coupled to all baths. In fact, the �rst theoretical proposal of a quantum
thermal machine [9] was based on the three level maser. Here, a single three level system with
two transitions coupled to a hot and a cold reservoir with the third allowing for work to be per-
formed emits light when there is a population inversion in the working transition. A three level
system is the simplest quantum system that can act as a continuous heat engine or refrigerator
and it is the model we will build the collective engine upon. The continuous operation of a three
level system as either a refrigerator or an engine are illustrated in Fig 5.1. Both models require a

Figure 5.1: Diagram of the operation of a three level system as (a) a heat engine and (b) a re-
fridgerator. In both cases, the system is coupled to a hot and cold reservoir with frequencies ωc
and ω through di�erent transitions. The hot and cold reservoirs have inverse temperatures βh
and βc respectively. Population inversion is achieved between |g〉 and |e〉 when ωhβh < ωcβc.
In this case, an energy current can be emitted through the transition of frequencyωl by coupling
the system to a dissipative load or driving the transition with driving strength α (a). Alternat-
ively, if the transitionωl is coupled to a reservoir with inverse temperature βl < βh, or driven by
an external �eld with driving strength α, the system may operate as a refrigerator, where heat is
absorbed from the cold reservoir and dumped into the hot reservoir. Adapted from [C].

hot and cold bath and whether the system behaves as a refrigerator or engine depends on how
the system exchanges energy with the environment. In both cases, the system couples to a hot
bath at inverse temperature βh with transition frequency ωh and a cold bath at inverse temper-
ature βc with transition frequency ωc. The remaining transition with frequency ωl = ωh − ωc
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is either driven by a coherent driving �eld or allowed to couple dissipatively to another reservoir.
In this chapter, we set ~ = 1 and express all frequencies in units of the lasing frequency ωl and
inverse temperatures in units ω−1

l .

The di�erence between a refrigerator or engine is determined by how this third level is coupled.
In a refrigerator, heat is absorbed from the cold bath and dumped into the hot bath. This is fa-
cilitated by driving in the ωl transition or coupling the ωl transition to an environment with an
inverse temperature βl < βh [10,28,175,179]. For operation as an engine, which is the scenario
we consider in this chapter, heat is absorbed from the hot bath and dumped into the cold bath.
In the absence of any coupling to the ωl transition, this leads to a population inversion. In this
case, unitary operations can then be applied to extract work from the state [9, 180]. Another
option is that the system could be allowed to output energy into a dissipative load [26, 164]. Al-
ternatively, the transition may also be driven by an external �eld which gives rise to a quantum
ampli�er [181–185]. All three of these options will be explored in this chapter, however, we
consider not only a single-particle working medium but rather an ensemble of non-interacting
three level systems that couple collectively to the environment. In the absence of driving, the
de�nition of what constitutes work or heat depends on the given context [26, 186]. This is ex-
plored Sec. 5.5.2 where we let the system emit power into a dissipative load modelled by a zero
temperature bath in analogy to doing work against the force of friction. In this case it is not guar-
anteed that all energy emitted into this bath is work. We will qualitatively de�ne a “work"-like
energy current as one that is di�erentiated from heat in that it more strongly resembles laser-like
light. Alternatively, when a classical driving �eld is included so that the system Hamiltonian is
time dependent, the emitted energy can be associated with work unambiguously [11,187,188].
This is studied in Sec. 5.5.3.

5.3 Mathematical preliminaries

In this section only the mathematical details which are immediately necessary for understanding
the thermodynamics of collectively coupled ensembles are discussed. Further background to
representation theory is covered in more detail by textbooks like [189, 190].

The dynamics of a generic d-level system, which will also be called a particle in this chapter,
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are described by unitary transformations, which are the d × d unitary matrices with determin-
ant 1. These matrices make up the elements of the special unitary group SU(d). When there are
n particles the permutations of these particles are described by a second group, the symmetric
group Sn. The elements of this group are ordered lists of objects and operations in this group
can be generated by the transposition operator Pi,j which exchanges object i and j. The per-
mutation matrices form a representation of this group. If the dynamics remain the same under
all relabellings of particles, they are called permutation invariant dynamics. The Hilbert space is
given byHn = (Cd)⊗n. This physically corresponds to the situation described in the introduc-
tion to this chapter where an external control �eld or environment is not able to distinguish the
particles.

5.3.1 Schur basis

When dealing with groups, it is often helpful to map the group elements onto linear operat-
ors. The group multiplication operation is then represented by matrix multiplication. In other
words, there is a linear map D which acts on the elements of the group G such that for every
g, g′ ∈ G, D(g ∗ g′) = D(g)D(g′) which is called a representation of a group. If there is a
non-trivial subspace of the representation such that the action of D(g) on any element of the
subspace stays within the subspace, then, the representation is reducible. If there is no such
subspace, the representation is called irreducible. The irreducible representations of a group are
called irreps for short. For the special unitary group, the Unitary matrices U(u) form a repres-
entation of SU(d) with u ∈ SU(d). Using this, the product representation of the Hilbert space
of n, d-level systems is, U(u) = u⊗n. This describes non-interacting unitary rotations of the
n particles. The product representation is in general a reducible representation but there is a
block-diagonal basis of the Hilbert space where each element of the representation,

U(u) =
⊕
λ

⊕
mλ

Uλ(u), (5.1)

is a direct sum of irreps that are labelled by an index λ and may occur multiple times within the
block diagonal structure, this is known as the multiplicitymλ of the irrep [189–191].

Now, since permutations of the particles are described by the symmetric group,this basis
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could also be written as a direct sum of the irreps of Sn. For general groups, this would not add
any further structure to the Hilbert space but for the permutation group and special unitary
group, further structure is given by Schur-Weyl duality [192]. The two group representations
commute, [U(u), P (σ)] = 0 ∀u, σ which means that the irreps of the symmetric group act on
the multiplicity labels of the special unitary group and vice versa. There is a basis that simultan-
eously decomposes the space into the irreps of both groups such that the representations can be
expressed as,

U(u) =
⊕
λ

1Kλ ⊗ Uλ(u)

P (σ) =
⊕
λ

P λ(σ)⊗ 1Hλ . (5.2)

and applying this to the Hilbert space we get,

Hn =
⊕
λ

Kλ ⊗Hλ, (5.3)

where, the label of the irreps λ = [λ1, λ2, . . . , λd], with λ1 ≥ λ2 ≥ · · · ≥ λd, is associated
with a partition of n into d non-negative integers such that n = λ1 + λ2 + · · · + λd. Hλ and
Kλ are the unitary and permutation subspaces which carry irreps of the special unitary group
and symmetric group respectively. This basis, known as the Schur basis, is labelled |λ, sλ, oλ〉.
The consequence of representing states of the Hilbert space in this basis is that operators acting
on irreps of Sn change only sλ and operators acting on the irreps of SU(d) change only oλ.

We will only consider permutation invariant systems which means that any relevant observ-
able of the systemA will remain unchanged under any relabelling of the particles. In the Schur
basis this observable isA =

⊕
λ 1Kλ ⊗ Aλ. As long as only permutation invariant observables

are considered, the permutation factorKλ does not add anything to the dynamical description of
the system and we can trace out the degrees of freedom sλ from the Schur basis when calculating
dynamics. We thus obtain a reduced basis |λ, oλ〉 over the accessible Hilbert space,

Hλ
acc =

⊕
λ

Hλ. (5.4)



5.3. Mathematical preliminaries 91

The construction of the reduced Schur basis and what it tells us about the permutation sym-
metry of each SU(d) irrep of the system is best illustrated by an example.

Example: Schur basis of four three level systems

Here, we will construct an operator that will allow us to transform an operator expressed in the
standard product basis |x1, x2, ...xn〉 of the un-factorised Hilbert spaceHn = (Cd)⊗n, into the
block diagonal basis |λ, sλ, oλ〉. First, as we noted above, Schur-Weyl duality [192] allows us to
associate each irrep label λ with a partition of n into d non-negative, non-increasing, integers.
This can be conveniently represented by means of a Young diagram. This is a diagram consisting
n boxes arranged into d rows according to the partition. These diagrams are a useful tool for
characterising the irreps of a particular system and constructing the Schur basis.

Consider a collection of four, three level systems. There are four partitions of four particles
into 3 levels, λa = (4, 0, 0), λb = (3, 1, 0), λc = (2, 2, 0), λd = (2, 1, 1). These correspond
to the four allowed permutation symmetry classes for n = 4. The Young diagrams for each of
these partitions are:

λa = λb = (5.5)

λc = λd = .

The number of ways each of these diagrams can be �lled with the integers {1, ..., n}without
repetition and with numbers strictly increasing along both rows and columns gives the mul-
tiplicity mλ of each SU(3) irrep, or equivalently, the dimension of the corresponding S4 ir-
rep [189,191,193]. The diagram �lled in this way is called a standard Young tableau. For example
λb can be �lled in three ways ,

1 2 3

4

1 2 4

3

1 3 4

2
. (5.6)
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and the block describing this irrep will appear three times in the block diagonal Hilbert space of
four three level systems each corresponding to a di�erent �lling of the Young diagram. We will
get the following multiplicities for the other four irreps, {mλa = 1,mλc = 2,mλd = 3}.

The dimension dλ of each SU(d) irrep can be determined by a di�erent �lling prescription.
The boxes are now �lled with the numbers {0, ..., d− 1}. In this case the integers must increase
along columns but repetitions are allowed along rows as long as the numbers do not decrease
from left to right. This �lling prescription is consistent with the fact that there are no more than
d rows in any given diagram.

The diagrams can also be used to construct the Schur basis:

• First, since we are interested in the reduced basis we �x the standard Young tableau to be in
numerical order and construct permutation operators that permute numbers along rows

and columns, e.g., set T = 1 2 3

4
. This is used to construct the permutation oper-

ators,P (r) andP (c) that permute the numbers along rows and columns. In this example,
P (c) = {P(1234) = 1, P(2134)} andP (r) = {1, P(3214), P(2134), P(2314), P(3124), P(1324)}.
We use the permutation notation so that for example,P(2134) means the �rst two elements
in the set are switched and the last two are held �xed.

• These operators are used to construct the Young symmetriser [192] which is the projector
which acts on elements of the computational basis |x1, x2, x3, x4〉 to bring them into the
block diagonal structure, |λ, sλ, oλ〉. This projector2 is

Pλ,T ∝
( ∑
c∈Col(T )

sgn(c)P (c)

)( ∑
r∈Row(T )

P (r)

)
, (5.7)

where Col(T ) are the permutations of the integers within each column of the diagram and
Row(T ) are the permutations of the integers in each row. If a diagram consists only of
a single row, this will lead to a projection onto a fully symmetric subspace. Alternatively,
if there is only a single column in the diagram the projection will be only a fully anti-
symmetric subspace. In the λb example we will end up with mixed symmetry and the

2The sign of a permutation is determined by whether the minimum number of transpositions it takes to per-
form a permutation is even or odd.
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projector,Pλ,T ∝ (1− P(2134))(1 + P(3214) + P(2134) + P(2314) + P(3124) + P(1324)).

• Next, the restrictions of the permutation operators onto the relevant parts of the compu-
tational basis are constructed. To do this �rst compute the semi-standard tableaux. In-
formally each box labels a particle but each particle can be in a choice of three levels. The
tableau is �lled so that numbers do not decrease along rows but strictly increase along
columns. In the example of λb, there are 15 tableaux,

0 0 0

1

0 0 1

1

0 0 2

1
(5.8)

0 0 0

2

0 0 1

2

0 0 2

2

0 1 1

1

0 1 2

1

0 1 1

2

0 1 2

2

0 2 2

1

0 2 2

2

1 1 1

2

1 1 2

2

1 2 2

2
.

The type vector t(x), which counts the number of particles in the ground state and �rst

and second excited states, is then constructed. For example the tableau 0 0 0

1
has

type vector t = (3, 1, 0) which has the span {|0001〉 , |0010〉 , |0100〉 , |1000〉} in the
computational basis. The permutation operatorsP (r) andP (c) are then computed from
the span of the type vector. e.g. P(2134) = |0001〉〈0001|+|0010〉〈0010|+|0100〉〈1000|+
|1000〉〈0100| and then the Young symmetriser can �nally be calculated. The type vector
depends only on how many times each number appears in the semi-standard tableaux.
Therefore, semi-standard tableaux with the same numbers will lead to the same type vec-
tors and so are spanned by the same vectors from the computational basis. However, they
lead to di�erent Young symmetrisers since these act on the speci�c rows and columns.



94 Chapter 5. The thermodynamics of collectively coupled multi-level systems

• Perform singular value decomposition on the Young symmetriser. The �rst k columns of
the left singular vector with non-zero singular values form the basis elements |λ, oλ〉.

• Operators that were originally expressed in the Hilbert space Hn can now be projected
onto this reduced basis by,Oλ

o,o′ = 〈λ, oλ|On |λ, o′λ〉.

The construction of the Schur basis shows how each irrep corresponds to a di�erent type
of exchange symmetry of the particles. For example, λa, which consists only of a row will lead
to a Young symmetriser that projects onto the subspace of the Hilbert space that describes all
fully symmetric states. Additionally, the subspace given by λd is equivalent to the subspace of a
single-particle showing that all columns with d boxes can be dropped from the description. The
irreps of SU(d) can thus be labelled using d− 1 labels.

5.3.2 Dynamical operators with a focus on SU(3)

Thus far, the discussion has been applicable to any permutationally invariant d-level system but
now we shall focus on a description of three level systems. To do this I will �rst brie�y intro-
duce some theory of Lie groups. This will allow us to de�ne the dynamical operators of the
system. These operators are already well known for two level systems as they are just the collect-
ive spin operators [189]. Their use in particle physics for three level systems is also well estab-
lished [189, 194–196]. However, for a broader audience of physicists they may be unfamiliar.
The dynamical operators of any d-level system are given by the generators of SU(d). These are
the set of d2 − 1 elements from which all other elements of SU(d) can be obtained by group
multiplication. Using these operators along with their commutation relations, which de�ne the
SU(3) algebra, the entire group structure is de�ned. One way to simplify the description of the
dynamics is to represent the dynamical operators in a basis where the maximum number of them
can be simultaneously diagonalised. In terms of the generators, this corresponds to the largest
set of commuting, Hermitian generators and gives the Cartan sub-algebra [152, 190]. These
generators are represented by d − 1 diagonal matrices. The remaining d2 − d generators are
represented by non-diagonal matrices and come in pairs.

For SU(3) there are 8 generators in total. Using the Cartan basis, the diagonal generators,
similar to the Jz operator in SU(2), are labelled Wz and Y [189] and for a single-particle they
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are,

W (1)
z =

1

2

1 0 0

0 −1 0

0 0 0

 , Y (1) =
1

3

1 0 0

0 1 0

0 0 −2

 . (5.9)

The ordering in the single-particle, computational basis is {|0〉 , |1〉 , |2〉} so that they coin-
cide with the Gell-Mann matrices from particle physics. The remaining six non-diagonal gen-
erators act as the SU(3) equivalent of the more familiar SU(2) raising and lowering operators.
They come in pairs and are denoted W+ = W †

−, U+ = U †−, and V+ = V †−. The single-particle
versions are

W
(1)
+ =

0 1 0

0 0 0

0 0 0

 , U
(1)
+ =

0 0 0

0 0 1

0 0 0

 , V
(1)

+ =

0 0 1

0 0 0

0 0 0

 . (5.10)

For then-particle product representation, that is the reducible representation where the Hil-
bert space is not decomposed into the Schur basis, the collective generators are sums of single-
particle terms: A =

∑n
i=1 A

(1)
i , whereA(1)

i is any one of the above generators acting on particle
i. Within a generic irrep of SU(3), the generators are de�ned by their commutators which are lis-
ted in App. D. Note also that a sub-irrep of SU(2) arises for the operatorsWz, W±. A similar sub
irrep can also be de�ned forUz, U± andVz, V± withUz = 3/2Y +Wz andVz = 3/2Y −Wz .

Convenient labelling of the reduced Schur basis for three level systems

The block diagonal structure obtained by decomposing the space into the Schur basis is useful
for speeding up the calculation of the dynamics of larger systems. However the decomposition
into this basis alone does not allow the calculation of quantities analytically. Notice that with
the de�nitions of the operators given we cannot write down the action of the operators on a
particular reduced Schur basis element. We merely know how the operators move between basis
states but not what the coe�cients are. Therefore, from the description of the system by the
Schur basis alone we would be restricted to numerical calculation.

Fortunately it is possible to give a labelling of the reduced Schur basis which transforms con-
vieniently under the action of the generators [194]. This basis labelling is in analogy to the |J,m〉
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labelling that is familiar for collective two level systems. This basis |(p, q),W,w, y〉 is character-
ised by

(i) The irrep labelλ = (p, q). These numbers can be determined from the Young diagram of
a particular irrep with p giving the number of single box columns and q giving the number
of two box columns.

(ii) The numberW which labels the eigenstates of the operatorW 2 = 1
2
(W+W−+W−W+)+

W 2
z . This is the total spin-length quantum number de�ning the sub-irreps of SU(2) gen-

erated byWz, W±.

(iii) The numbersw and y label the eigenstates ofWz and Y respectively. generically, they are
called the weights which are the eigenvalues of the Cartan generators of the group.

The coe�cients that are obtained from the action of the generators on the states labelled
in this way [194, 196] and the coe�cients are summarised in App. D. Finally, note that the
numbers p, q allow us to explicitly write down the dimension and multiplicity of the irrep for n
particles [152, 189],

dλ =
1

2
(p+ 1)(q + p+ 2)(q + 1) (5.11)

mλ =
2dλn!(

n+q−p+3
3

)
!

(
n+q+2p+6

3

)
!

(
n−2q−p

3

)
!

.

Weight diagrams

The diagonal elements of the basis, which are known as the weights of the irrep are illustrated
graphically in a weight diagram. In Fig. 5.2 the weight diagram of the irrep corresponding to
(p, q) = (2, 1) is plotted with the values of w on the x-axis and the value of y on the y-axis.
Note that the number of points in a diagram is equivalent to the dimension dλ of the irrep. The
weight diagrams of SU(3) are either hexagonal or triangular with a 2π/3 rotational symmetry
(up to an axis rescaling). There are (p + 1) points on the top edge and (q + 1) points on the
bottom edge of a given diagram. The right-most point (with largestw) is known as the highest-
weight vector, and has coordinates ([p+q]/2, [p−q]/3). The right-most points with maximum
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Figure 5.2: A weight diagram of one of the irreducible representations found for four three level
systems, labelledλ = (p, q) = (2, 1). The points in the diagram correspond to the reduced basis
states |(p, q),Wi, wi, yi〉. The values of wi are on the x-axis and yi on the y-axis. The central
states are degenerate, which is shown with concentric circles. The degenerate states have di�erent
values of Wi. The action of the U±, V± and W± operators on a state is indicated by arrows in
the diagram in the upper right hand corner. Adapted from [C].

and minimum y are then (p/2, [p+ 2q]/3) and (q/2,−[2p+ q]/3). Note that although under
the action ofWz,W± the numbersW,w change in the same way as J andm do for a spin, there
is no single operator that raises and lowers the value of y. A single action ofU± orV±will change
the value of w as well as y and therefore y does not change in the same way one might expect
from the intuition obtained from SU(2). The central points in any hexagonal diagram have
the same single particle expectation values with a non-interacting Hamiltonian and therefore,
they have the same w and y values but di�er in their W quantum numbers. The degeneracy is
illustrated by concentric circles in Fig 5.2. The amount of degeneracy of a given point can be
determined immediately from the shape of the diagram. The points on the perimeter of any
diagram are always non-degenerate, as are all the points of a triangular diagram. The level of
degeneracy increases by one going from the perimeter to the centre for each hexagonal layer in
the weight diagram. Once a triangular layer is reached no additional degeneracy is added to the
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points as the centre is approached [189].

5.4 Open system dynamics and the steady state

With the tools from representation theory outlined in the previous section, we are now equipped
to describe the interaction of an ensemble of three level systems collectively coupled with an
environment. In particular, the focus will be the thermodynamic properties of these systems
when they are con�gured to perform as a heat engine. First the general form of the open-system
model is introduced and the structure of the steady state is discussed.

5.4.1 General open system dynamics for work extraction from three
level systems

The minimal model of a single-particle three level engine, on which the collective engine we
study later is based, has transitions with frequencies ωh and ωc which are resonantly coupled
to two single mode bosonic reservoirs at a high and a low temperature. The third transition
ωl = ωh − ωc is the transition from which work is extracted.

The non-interacting Hamiltonian for a single-particle engine is

h = ωl |e〉 〈e|+ ωh |f〉 〈f | , (5.12)

where we set ~ = 1 and the energy eigenstates {|g〉 , |e〉 , |f〉} map onto the computational
basis states {|1〉 , |0〉 , |2〉} described in sec 5.3.2. This Hamiltonian is generalized to collective
systems by using the diagonal SU(3) generators introduced in sec 5.3.2 This can be seen in a
straightforward way since in the product representation the generators are just a sum of single-
particle terms. The Hamiltonian expressed as

HS = ωlWz −
(
ωc + ωh

2

)
Y. (5.13)

is equivalent to the one given for single-particles, up to a constant shift which we can drop
without changing the dynamics. Since the Hamiltonian is made up of only the diagonal gen-
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erators, it is diagonal in the Schur basis with eigenvaluesEλ
wy = ωlw − (ωc + ωh)y/2.

The interaction of this ensemble with the thermal Bosonic reservoirs is modelled using a
standard Lindblad master equation derived in App. A. For a single-particle this is

ρ̇sing =gv(n̄cD[|e〉〈f |]ρ+ (n̄c + 1)D[|f〉〈e|]ρ)

+ gu(n̄hD[|g〉〈f |]ρ+ (n̄h + 1)D[|f〉〈g|]ρ)

+ gw(n̄lD[|g〉〈e|]ρ+ (n̄l + 1)D[|e〉〈g|]ρ), (5.14)

where n̄i = 1/(exp(ωiβi)−1), is the bosonic average occupation of the mode with frequencyωi
of the reservoir with inverse temperatureβi = 1/kBTi. Now, the jump operators are generalised
to the collective counterparts. For example in the single-particle picture, the cold bath exchanges
energy with the transition of frequencyωc which is between the states |e〉 and |f〉. The collective
counterpart to this is the collective operator V± which describes all the superpositions of the
single-particle transitions between |e〉 and |f〉 in the ensemble. Transitions corresponding to
energy exchange with the hot bath are described by U±, leading to the master equation,

ρ̇ = guLU(n̄h)ρ+ gvLV (n̄c)ρ+ gwLW (n̄l)ρ. (5.15)

where,
LO(n̄i)ρ = n̄iD[O−]ρ+ (n̄i + 1)D[O+]ρ. (5.16)

Here,D[O]ρ = OρO† − 1
2
{O†O, ρ}.

The dynamics are permutation-invariant since all of the operators are permutation invariant.
Eq. (5.4) tells us that the accessible Hilbert space is, therefore, a direct sum of the irreps of SU(3)

and all the dynamical operators can be expressed in this way as well.

The accessible state space will be ρacc =
⊕

λ p
λρλ, where each ρλ is normalised in the restric-

ted Hilbert spaceHλ and pλ is a probability distribution over the index λ that is determined by
the state preparation. Now, consider the situation where the system is prepared in some generic
state and then expressed in the Schur basis. This state may have coherences between di�erent
blocks in the block diagonal structure but these coherences cannot be detected by any observ-
able that also obeys permutation invariance [152] and therefore we can use the reduced Schur
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basis that we have already constructed.
Since the irreps of the state cannot be mixed by the dynamics, we can calculate the dynamics

for each block of the Hilbert space individually. The master equation is expressed for each block
as

ρ̇λ = guLλU(n̄h)ρ
λ + gvLλV (n̄c)ρ

λ + gwLλW (n̄l)ρ, (5.17)

whereLλO is the Lindblad term with the jump operatorO replaced byOλ its projection onto the
λ component of the reduced Schur basis.

5.4.2 Structure of the steady state

The results that are explored in later sections, all come from the steady state behaviour of a system
described by a master equation of the form Eq.(5.15). Therefore, in this section it is proven that
the steady state, ρλ∞, is block diagonal in the Schur basis and has no coherences in w or y. That
is,

〈λ,W,w, y|ρλ∞|λ′,W ′, w′, y′〉 = 0 ifw 6= w′, λ 6= λ′ or y 6= y′. (5.18)

This result is proved in two parts. Part 1 is the statement that the steady state is block diag-
onal in the Schur basis. This was proved for generic d-level permutationally invariant collections
of particles in theorem 1 of [152]. In Part 2, I will show that for the speci�c systems we con-
sider here, where each bath couples to a di�erent level, there are no coherences between di�erent
weight spaces of the diagonal generators. This is the proof shown in [C].

Part 1: The steady state is block diagonal in the Schur basis

The state is block diagonal with no coherences in λ,

〈λ,W,w, y|ρλ∞|λ′,W ′, w′, y′〉 = 0 if λ 6= λ′ (5.19)

The steady state is also unique in each irrep if the Lindbladian has contributions from at least
two of {U±, V±,W±}.
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Part 2: The steady state has no coherences in w or y

Under the same assumptions on the Lindbladian as part 1, de�ne the unitary super-operator

Uθ,φ(·) = U †θ,φ(·)Uθ,φ
= e−i(θWz+φY )(·)ei(θWz+φY ). (5.20)

Then 3, [L,Uθ,φ] = 0. Addtionally, let the state ρ be a steady state of the master equation and
de�ne the twirled state [197, 198]

σ =

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π
Uθ,φ(ρ) (5.21)

which is an average of the state ρ over the subgroup with elements Uθ,φ. Then,

L(σ) =

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π
L(Uθ,φ(ρ))

=

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π
Uθ,φ(L(ρ))

= 0 (5.22)

where the second last line comes from [L,Uθ,φ] = 0. Thereforeσ is also a steady state of the mas-
ter equation and from part 1, there are no coherences in λ. This state, is also invariant under the
action of the diagonal subgroup since [σ,Uθ,φ] = 0 and therefore, there are also no coherences
inw and y:

〈λ,W,w, y|σ|λ′,W ′, w′, y′〉 = 0 ifw 6= w′, λ 6= λ′ or y 6= y′. (5.23)

Note that depending on the irrep there may be degenerate weight spaces that have the same w
and y but di�erent W values. This is true for any free Hamiltonian, and thus there can still be
coherences inW . Since part 1 also tells us that within the Hilbert space of each irrep, the steady

3e.g. e−iθWzU−U+e
−iθWz = U−U+e

iθWz/2−U−U+e
iθWz/2 +U−U+e

−iθWze−iθWz . Similar relations
can be derived for the other non-diagonal generators and also for Y so operators of the form Uθ,φ commute with
any term containing a pair of raising and lowering operators as would appear in the master equation.
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state is unique, therefore the steady state σ is the only steady state and has the block diagonal
structure given in Eq. (5.18).

5.4.3 Favouring speci�c irreps in the steady state

The structure of the steady state leads to the condition that the probabilities to occupy each
block in the Hilbert space are �xed in time under evolution by an equation like (5.15). These
probabilities can then in principle be chosen by the preparation of the initial state. The steady
state can then be calculated for each block independently and the steady state of the entire Hil-
bert space can then be reconstructed by performing the direct sum over the blocks noting that
the probability to occupy a particular block pλ is �xed by the state preparation and that the mul-
tiplicitymλ of the block must be taken into account.

One way that the system could be prepared with some speci�cally desired distribution over
the irreps is where each particle is initially thermalised separately with an environment of some
inverse temperature β0 and then the particles are brought together into an ensemble. The initial
state is then ρβ0 = exp(−β0HS)/Zβ0 , whereZβ0 = tr[exp(−β0HS)] = tr[exp(−β0h)]n.

In the reduced Schur basis, this state becomes

ρβ0,acc =
⊕
λ

pλ
e−β0H

λ
S

Zλ
β0

, pλ =
mλZ

λ
β0

Zβ0
. (5.24)

Now consider two limiting cases. First, if the initial temperature is β0 → ∞, the system
will approach the ground state and the fully symmetric subspace, (p, q) = (n, 0),that is, λ =

[n, 0, 0] will have pλ → 1. On the other hand when β0 → 0,Zλ
β0
→ dλ, so pλ → mλdλ/3

n.
Additionally, this allows us to make an approximation for the limit of a large number of

particlesn by focusing on a single ‘typical’ irrep [152,199,200]. If we prepare the system in some
product state ρ⊗n0 where ρ0 has eigenvalues in decreasing order {e1, e2, e3}, the distribution
pλ is peaked at the irrep with a Young diagram where the row lengths are in proportion to the
eigenvalues ei [201, 202]. That is the i-th row has length nei. In the (p, q) notation this is irrep
(p, q) = (n[e1 − e2], n[e2 − e3]). The variance of the distribution over the irreps is of order n,
therefore by making this approximation, �uctuations of order

√
n are ignored in p and q. Thus

the calculation of the steady state in this limit is greatly sped up since we can calculate quantities
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for a single typical irrep and the Hilbert space dimension of this irrep will be of the order n3

according to Eq. (5.11).

5.5 Three models of work extraction

We will now consider three models where work can be extracted from an ensemble in its steady
state. First, in Sec. 5.5.1 we explore the amount of work that can be extracted by unitary opera-
tions from a system which has been brought into the collective analogue of a population inver-
sion. In Sec. 5.5.2, we discuss how the system can be set up so that it does work on a dissipative
load. Finally, in Sec. 5.5.3, we couple the system to an external driving �eld as well as the hot and
cold reservoirs and discuss its operation as an ampli�er.

As we have established in the previous section, we can calculate the steady state quantities
we are interested in within a �xed irrep and then reconstruct the entire Hilbert space from the
direct sum of the irreps. Therefore, to simplify notation, the label λwill often be dropped from
operators when we are implicitly working within a �xed irrep.

5.5.1 Unitary work extraction from the steady state

For a single three level particle, the thermodynamic interpretation if the condition for maser
action due to population inversion between |g〉 and |e〉, is given by the single-particle SSDB
master equation [9],

ρ̇sing =gv(n̄cD[|e〉〈f |]ρ+ (n̄c + 1)D[|f〉〈e|]ρ)

+ gu(n̄hD[|g〉〈f |]ρ+ (n̄h + 1)D[|f〉〈g|]ρ). (5.25)

The steady state with ωhβh < ωcβc will accumulate a population inversion and can be coupled
to an external system which can then extract work by unitary evolution [180]. A state with a
higher population inversion would allow for more work extraction.

This motivates the �rst model for work extraction from the collective ensemble. Here we
assume no coupling on theωl transition and couple the system to a hot bath and cold bath. This
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system reaches a steady state under the dynamics,

ρ̇ = guLU(n̄h)ρ+ gvLV (n̄c)ρ. (5.26)

The amount of population inversion between the levels of any particular irrep can now be char-
acterised by the maximum energy that can be extracted by unitary operations,

E(ρ) := max
U

(
tr[HSρ]− tr

[
HSUρU

†]) . (5.27)

This quantity is called the ergotropy [180]. The maximum energy is extracted by the unitary op-
eration that maps the stateρ =

∑
k rk |ψk〉〈ψk|onto the transformed state ρ̃ =

∑
k r
↓
k |Ek〉〈Ek|

which is fully depleted of work. This state is called the passive state, it is diagonal in the energy
eigenbasis and the populations r↓k are ordered in decreasing order. If ρ is diagonal in the energy
eigenbasis, then the ergotropy is a measure of population inversion since U rearranges the pop-
ulations in decreasing order with respect to increasingEk. The operatorU does not have to stay
within the SU(3) product representation, it must merely maintain permutation invariance. It
is given in general by

U =
∑
k

|Ek〉〈ψk| . (5.28)

In practice, it may only be possible to apply operations that are constrained to theSU(3) product
representation. For example the work extraction may be limited to work that is extracted from
the lasing transition. This could be achieved by performing rotations only within this subspace
with the operator Wx = W+ + W−. We call the energy extracted by these rotations the lasing
ergotropy and it is de�ned by,

El(ρ) := max
θ

(
tr[HSρ]− tr

[
HSe

−iθWxρeiθWx
])
. (5.29)

Clearly, the full ergotropy will sometimes di�er from the lasing ergotropy. How this happens
is illustrated in Fig. 5.3. The populations of a typical steady state of the (4,0) irrep is illustrated
here with the shaded circles, with the size of the circle proportional to the value of the steady state
population. After rotation by the lasing ergotropy unitary, the populations would be mirrored
along the y-axis, this is indicated on the diagram with dashed black circles. The values of the
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Hamiltonian eigenvalues are indicated by the shading of the circles with values decreasing from
red to blue. From this one can see that constructing the passive state generally requires transitions
that go diagonally in the diagram and suggests that one may extract more energy from the state
than just the energy that is available in the lasing transition.

Figure 5.3: The size of each shaded circle at point (wi, yi) is proportional to the size of the
steady state population of the state |(4, 0),Wi, wi, yi〉 for Eq. (5.26) with the system prepared so
that the hot and cold reservoirs have frequencies and inverse temperaturesωc = 2/3,ωh = 5/3,
βc = 1.5 and βh = 0.8 with all frequencies in units of the lasing frequency ωl and inverse tem-
peratures in unitsω−1

l . The magnitude of the Hamiltonian eigenvalue at each point is indicated
by the colour of the shading with the values decreasing from dark red to dark blue. The state
rotated byWx is shown by the dashed black circles. Adapted from [C].

In the steady state, it is possible to get a simpli�ed expression for the lasing ergotropy. Notice
�rst that, since Y commutes with the operatorsW±, it is unchanged by rotation byWx. There-
fore, there is no contribution to the ergotropy from terms containingY in the Hamiltonian and
we are left only with theωlWz term. Then using, eiθWxWze

−iθWx = − cos θWz− sin θWy we
obtain,

El(ρλ∞) = ωl max
θ

tr {[(1− cos θ)Wz − sin θWy] ρ} . (5.30)
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This is simpli�ed further in the steady state since ρ∞ is diagonal in w and therefore it is
invariant under rotations generated by Wz so tr{Wyρ} = 〈Wy〉 = 0. Then either 〈Wz〉 ≤ 0

and no work is extractable through the lasing transition or 〈Wz〉 > 0. In this case, the maximum
work is extracted when cos θ = −1 and the optimal rotation angle is thus θ = π.

Numerical observations

In contrast to the description for a single-particle or for systems restricted only to the fully sym-
metric subspace, it is di�cult to characterise the steady state for hot and cold baths with generic
temperatures. We can make some observations numerically4. Numerical results for a collection
of 4 particles are shown in Fig. 5.4. Here we assume that the state can be prepared with a partic-
ular symmetry type and then the dynamics are constrained to the subspace with that symmetry
type. This �gure shows how much energy could be extracted from each subspace. The �rst ob-
servation is that the single-particle population inversion condition ωcβc > ωhβh is the same as
the condition for the lasing ergotropy to be non-zero. Additionally, we observe that the fully
symmetric subspace, (n, 0), will always allow the maximum energy to be extracted. We also
compare each subspace to four individually coupled particles. In Fig. 5.4(a) we see that when
ωcβc � ωhβh, the energy extracted from independent particles (top of shaded of shaded re-
gion) is identical to the energy extracted from symmetric particles (red lines) and the lasing and
full ergotropy are equal. In Fig. 5.4(b), a less extreme temperature di�erence is considered. Here,
we see that it is possible to extract more energy from the state than just the work extracted from
the lasing transition and that this additional work resource can extend beyond the temperature
window of lasing. Additionally, individually coupled particles do not produce as much energy
as collectively coupled particles in the fully symmetric state. In both �gures, we see that The
maximum energy will be extracted from the subspace with the highest value of p, and this will
always be the fully symmetric subspace, i.e., p = n, q = 0.

4This was done for the most part using standard algebraic packages from the Julia programming language [203]
to solve the Lindbladian in each irrep. Special functions for Young tableaux that allow extensions to higher dimen-
sions eg. the four level system presented in [C] come from the JuLie package [204].
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Figure 5.4: The ergotropy (solid lines) and lasing ergotropy (dashed lines) are compared here
for the di�erent irreps of four three level systems. The cold reservoir is �xed in (a) to ωc = 2/3,
βc = 10.0 and the hot reservoir temperature is changed while the frequency is �xed to ωh =
5/3. The coupling to both reservoirs is �xed to gu, gv = 0.1. The irreps are indicated in the key
at the top of the �gure using (p, q) notation. The lasing ergotropy of four independent particles
is shown by the upper border of the grey shaded region. When the cold bath is set to this very
low temperature, the full and lasing ergotropy are maximised for high hot bath temperatures.For
intermediate temperatures, depicted in (b) where, ωc = 2/3, βc = 1.5, neither collective nor
independent particles reach this limit even for high hot bath temperatures. All frequencies and
couplings are given in units of the lasing frequency ωl and inverse temperatures in units ω−1

l .
Adapted from [C].

Cold temperature limit

In the limit ofωcβc � 1 (for example the far left of Fig 5.4(a)), it is possible to derive an analytical
result for the lasing ergotropy. In this limit the average occupation number of the cold bath is
e�ectively zero. The master equation is then,

ρ̇
!

= guLU(nh)ρ+ gv(V+ρV− −
1

2
{V−V+, ρ}). (5.31)

Since the steady state is unique and takes the form Eq. (5.23), we can compute the dynamics
using the weight diagram as a guide. De�ne a family of lines in the space of basis vectors of
the irrep that can be traversed by the U± operators. These lines are indexed by the numbers
L = y/2 + w, where y and w are the values of the weights at a particular point in the space.
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Figure 5.5: A diagram of the reduced basis states |(p, q),Wi, wi, yi〉 of one of the irreducible
representations found for four three level systems, labelled λ = (p, q) = (2, 1). Dotted lines
form the family of lines with equationL = y/2+w. The arrows labelled by τi depict the action
of each of the terms in Eq (5.33). The points inside the lilac ellipse form the line L∗ on which
the steady state lives for a low-temperature cold bath. The re�ected steady state ρr is made up of
the populations inside the purple dashed ellipse. Adapted from [C].

These are the dotted lines in Fig 5.5, which illustrates the weight space of the (2, 1) irrep. This
irrep is used as an illustration but the argument to get to the steady state will work for any irrep.
We will show that in the steady state all the populations are concentrated in the states found on
the right-most line.

To do this, �rst de�ne the sum of the time derivatives of the populations along each of these
lines, ∑

i∈L

ρ̇iL :=
∑

wi+yi/2=L

〈(p, q),Wi, wi, yi| ρ̇ |(p, q),Wi, wi, yi〉 !
= 0. (5.32)

Here, the Schur basis states that lie on the line L for a given irrep (p, q) are indexed by i. To
determine the expression for the steady state we break up this sum into three parts.∑

i∈L

ρ̇iL = τ
(L)
1 + τ

(L)
2 + τ

(L)
3 (5.33)
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= gv
∑
i∈L

〈(p, q),Wi, wi, yi|V+ρV− |(p, q),Wi, wi, yi〉

− gv
2

∑
i∈L

〈(p, q),Wi, wi, yi| {V−V+, ρ} |(p, q),Wi, wi, yi〉

+ gu
∑
i∈L

〈(p, q),Wi, wi, yi| LUρ |(p, q),Wi, wi, yi〉 .

We will use the result [170] that the populations are constant along each line in the steady state
with both τ (L)

1 +τ
(L)
2 = 0 and τ (L)

3 = 0 on every line. This is illustrated in Fig 5.5. The direction
of transitions between basis elements generated by the three parts of the equation are shown on
the right using the blue arrows for the two parts describing the interaction with the cold bath.
The double headed red arrow describes the Lindblad term generated byLU .

Now we look at the other two terms for each line starting from the line, L0 = (p− 2q)/3,
that is furtherest to the left in Fig 5.5. On this line τ (L0)

1 = 0 since there are no states on the
lineL(−1) = L0 − 1. since we consider only the steady state, this leaves τ (L0)

2 = 0. Then by
using the the operator coe�cients given in App D, we see that

V−V+ |(p, q),W,w, y〉 =(Bp,q
W+1,w,yA

p,q
W,w,y + Ap,qW−1,w,yB

p,q
W,w,y) |(p, q),W,w, y〉 (5.34)

+ (Ap,qW,w,y)
2 |(p, q),W + 1, w, y〉

+ (Bp,q
W,w,y)

2 |(p, q),W − 1, w, y〉 .

The coe�cients are all non-negative and so the expectation value of each term in τ2 is always
positive. But since τ (L0)

2 = 0 the total population of each point on this line must be zero.

We then proceed through the remaining lines in the irrep. First, each term in τ (L+1)
1 vanishes

since they all depends on the populations from the preceding line which are all zero. Then we
are left with τ (L+1)

2 = 0 and τ (L+1)
3 = 0. By the same logic as before, the populations on the

line must all be individually zero for the sum in τ (L+1)
2 to be zero. This logic is repeated until

the last line in the state space L∗ = (2p + q)/3. On this line the term τ
(L∗)
2 = 0 automatically,

since no states are reached by transitions with V+. Similarly, each term in τ (L∗)
1 vanishes because

there are no non-zero populations on the previous line. Finally, τ (L∗)
3 = 0, and the populations
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on this line are determined only by the hot bath,

ρ̇(2p+q)/3 = guLUρ(2p+q)/3. (5.35)

The populations on this line are guaranteed to be non-degenerate since they are on the border of
the weight diagram. The steady state has a Boltzmann distribution over the q + 1 states on this
line. The magnitude of the populations will decrease with decreasing y giving thekth population

ρk∞ =
e−kβhωh

Z
, (5.36)

withZ =
∑q

k=0 e
−kβhωh .

The lasing ergotropy can then be calculated for this steady state.

El = 2ωl tr
[
Wzρ

λ
∞
]

(5.37)

Thew coordinates of this line arewk = (p− k)/2 with k = 0, 1, ..., q, which gives

El = ωl

q∑
k=0

e−kβhωh

Z
(p+ k) = ωl

[
p+

q∑
k=0

ke−kβhωh

Z

]
. (5.38)

By performing the sum, we obtain

El(ρλ∞) = ωl

[
p+ q +

1

1− e−βhωh −
q + 1

1− e−(q+1)βhωh

]
(for ωcβc � 1). (5.39)

We know that for a particular irrep, El ≤ E , but in this very low temperature cold bath
limit we can also �nd the condition for El = E . Equality happens when the state which is a
re�ection of the steady state along the y-axis, ρr = e−iπWxρλ∞e

iπWx is a passive state. This state
lies on the line Lr which is the re�ection of L∗. The populations of the states decrease by the
Boltzmann ratio e−βhωh with decreasing y-coordinate and the energies of the states on the line
Lr also decrease with decreasing y. This means that ρr is passive whenever the states on Lr are
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the q + 1 lowest energy eigenstates.
Therefore, whetherEl = E is true in the low temperature limit, depends only on the Hamilto-

nian. First, the ground state is always the upper left-most point in the diagram. The point on
the lineLr with the next lowest energy is obtained by applying V− which increases the energy of
the state by ωc. This continues down the line until the highest energy state of the line is reached
with energy qωc relative to the ground state. However, from the ground state depending on
the shape of the diagram, both U− and W+ may also be possible transitions which increase the
energy by ωh and ωl respectively with ωh > ωl by de�nition. The only way to get all q + 1

lowest energy states on the line Lr is when qωc ≤ ωl and this is the condition for El = E . The
ergotropies in the limit of a very low temperature cold bath are illustrated in Fig. 5.4(b). In the
example illustrated, the lasing and full ergotropies do not coincide for all of the irreps. However,
one can see that the lasing ergotropy reaches the maximum given in Eq. (5.39) for very large hot
bath temperatures.

Scaling of the ergotropy with n

Finally, we can look at the scaling behaviour of the ergotropy and how the choice to favour dif-
ferent irreps a�ects this behaviour. In Fig 5.6 we compare the performance of a collective system
made up of n particles with the equivalent number of independent particles with their dynam-
ics each individually governed by the single particle master equation (5.14). The ergotropy of
all the individually coupled particles together is then the sum of single particle ergotropies. In
both cases we individually prepare each of the n particles in a thermal state at some �xed tem-
perature β0. Then for the collectively coupled engine, we bring them together into the collective
state that interacts with the hot and cold baths. The collective system then has a �xed probability
distribution over the irreps as described in sec 5.4.3

pλ =
mλZ

λ
β0

Zβ0
, (5.40)

which is determined by this initial product state. This preparation will not a�ect the perform-
ance for individual particles, since each independent particle equilibrates individually and they
do not have a block diagonal Hilbert space with di�erent irreps λ. The optimal ergotropy is
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Figure 5.6: The scaling of the full ergotropy (crosses) and lasing ergotropy (points) with the
number of particlesn is compared here for states prepared in an initially thermal state. The initial
temperature of the state β0 = {0.09, 0.45, 1.5, 5.0} is indicated by the colour of the markers
from dark red to blue. The ergotropy obtained from n individual particles is indicated by the
black line. Two scenarios are explored. First (a) the limit when βc →∞where it is only possible
to extract as much work from collectively coupled systems as individually coupled systems when
the initial state is prepared at a low enough temperature. Next, (b) an intermediate temperature
is chosen for the cold bathβc = 1.5. Here, collectively coupled systems are able to perform better
than independent systems even when they are prepared at moderate βc = 0.45 temperatures.
This e�ect is enhanced for large n. In all scenarios, ωc = 2/3, ωh = 5/3, βh = 0.8 and the
coupling to reservoirs is gu, gv = 0.1. All frequencies and couplings are given in units of the
lasing frequency ωl and inverse temperatures in units ω−1

l . Adapted from [C].

reached when the cold bath temperature is very small. In this case, independent particles or col-
lective particles prepared in a very low temperature thermal state produce the optimal ergotropy.
Therefore, there is no advantage to using a collectively coupled system, especially since any con-
tributions from irreps other than the fully symmetric irrep only worsen the performance. On
the other hand when the cold bath is set to an intermediate temperature with respect to the
hot bath, preparing the state at a small initial temperature leads to collective performance that
is better than individual particles. This is true even for moderate β0 where irreps other than the
fully symmetric subspace contribute to the total performance. However, it remains true that a
distribution very sharply peaked about the fully symmetric subspace is optimal.

Although the block diagonal structure allows calculations for multiple particles without ap-
proximations beyond the Born, Markov and Secular approximations used to derive the Master
equation, at some point even with high computational power, further approximations will have
to be made in the large n limit. One way that this could be done is as follows. Suppose that
initially each particle has the single-particle state ρ1, with eigenvalues {r1, r2, r3} in decreasing
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order. For the very large particle limit, we can assume that there is a typical irrep that contributes
the most to the steady state with (p, q) = (n[r1 − r2], n[r2 − r3]) (see Sec. 5.4.3). This allows
us to calculate the result only for this irrep and ignore the rest of the state space. Additionally,
we can use the result (Eq. (5.39)) for the lasing ergotropy when βc → ∞, which depends only
on ωl, p and q. The ergotropy in this limit is then El ≈ ωlp = ωln(r2 − r3).

We could also prepare the particles in a single-particle steady state withωcβc = ωhβh before
bringing them together into the collective ensemble which subsequently interacts with the baths.
Again, this initial state preparation will determine the distribution over the di�erent irreps of the
collective system which persists even after the collective system reaches its steady state. For this
single particle initial state, the levels |g〉 and |e〉 have equal populations and thus, even though
it is not a thermal state, the single-particle state has zero ergotropy and is passive. For large n,
the many copy state ρ⊗n is not passive [205]. It has a typical irrep with parameters p = 0 and
q ≈ n(1−e−βcωc)/(2+e−βcωc). This corresponds to a triangular weight diagram that is �ipped
vertically with respect to the fully symmetric weight diagram. The system is thus able to extract
work from a system with symmetry that is far from bosonic exchange symmetry.

5.5.2 Power emitted into a dissipative load

The ergotropy can be used to determine if the steady state has population inversion. However,
it would also be bene�cial to be able to determine the e�ciency of the engine under continuous
operation in analogy to the SSDB engine. A simple model that admits a description of the rate
of energy that is absorbed and emitted is studied in this section. Work can be extracted from the
system by coupling it to a work reservoir that functions like a battery or �ywheel [33, 36, 206–
208]. The energy that would be captured can also be quanti�ed by coupling the system to an
external load [26, 209]. This is a simplistic analogy for doing work against friction [186]. We
model this by coupling the lasing (W±) transition to a zero temperature bath in addition to the
coupling to the cold and hot baths with �nite inverse temperatures βc and βh. This bath then
functions as a dissipative load. The master equation describing this model is,

ρ̇ = guLU(n̄h)ρ+ gvLV (n̄c)ρ+ gwD[W−]ρ. (5.41)
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The total internal energy of the system is tr{ρHS}. From the �rst law of thermodynamics, since
the Hamiltonian is time independent, we have that the change in internal energy must equal the
sum of the energy currents supplied by each of the baths [11,13]. The energy currents from the
hot and cold baths are then

Ih = tr[guLU(n̄h)ρHS], Ic = tr[gcLV (n̄c)ρHS]. (5.42)

These expressions can be simpli�ed using the commutators of the operatorsV± andU±with the
Hamiltonian to obtain

Ih = ωhgu tr{[(n̄h + 1)U−U+ − n̄hU+U−]ρ} (5.43)

Ic = ωcgc tr{[(n̄c + 1)V−V+ − n̄cV+V−]ρ}. (5.44)

The energy current �owing out of the system into the dissipative load is

P = − tr{HSgwD[W−](ρ)} = ωlgw tr{W+W−ρ}. (5.45)

This expression can be identi�ed with the power [210]. The e�ciency of the engine, η = P/Ih,
is the ratio of these two quantities. For a single-particle it is already known [13, 179] that the
e�ciency depends only on the frequencies and not the temperatures of the hot and cold baths
and that we get the expression, η = 1 − ωc/ωh. To determine the e�ciency for the collective
system, �rst de�ne the operator that counts the number of particles in the ground state. For
a single-particle this is the operator Ng = |g〉〈g| which, using the dynamical operators of our
system isNg = n/3 + Y/2−Wz . Consider the time derivative of the expectation value of this
operator calculated in the standard way with the adjoint master equation5,

∂t 〈Ng〉 = 〈gu[(n̄h + 1)U−U+ − n̄hU+U−] + gwW+W−〉

5The adjoint superoperatorL∗ acting on the Hamiltonian is

L∗U (HS(t)) =n̄hD∗[U−](HS(t)) (5.46)
+ (n̄h + 1)D∗[U+](HS(t)).

Here,D∗[O](HS(t)) = O†HS(t)O − 1
2{O†O,HS(t)}, with an equivalent expression for the cold reservoir.
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=
Ih
ωh
− P
ωl
, (5.47)

which vanishes in the steady state. Therefore, P/Ih = ωl/ωh = 1 − ωc/ωh and we see that a
collective engine has the same e�ciency as a single-particle engine.

Therefore, to determine how they di�er, we compare the performance of these engines on
other grounds. We consider �rst the total energy current emitted into the zero temperature reser-
voir. Since the steady state may have a complicated form for arbitrary irreps and �nite hot and
cold bath temperatures, we �rst make some numerical observations. The energy emitted by a
collection of four particles is compared in Fig. 5.7. Here we can see that the fully symmetric ir-
rep performs better than both the (2, 1) irrep as well as the (0, 2) irrep. However, independent
particles sometimes emit more energy than even the fully symmetric irrep. From Eq. (5.45), we
see that the emitted energy is proportional to the coupling to the zero temperature bath. This
relationship is apparent in Fig 5.7, however, the aim of the engine is to perform work on the load
and so it is necessary to analyse not just the magnitude of the emitted energy but also whether
this energy resembles work more than it resembles heat.

Determining if the energy transmitted resembles work

The classi�cation of the energy as work or heat can be approached in di�erent ways and is a �eld
of ongoing research. Much of the debate arises from how to partition the change in internal
energy of the system into a work-like and heat-like part. In particular, some approaches may
allow for the environments that the working medium couples to, to exchange both work and
heat simultaneously [211]. In this section, we couple the system to a dissipative load. In this
case, whether the energy exchanged with this reservoir resembles work, depends on if it behaves
di�erently from thermal energy in the particular application. In terms of the dissipative load of
our example, if the energy transferred to an optical medium is associated with additional �uctu-
ations, it resembles heat more than work. Thus, work-like energy transfer should be associated
with emission of coherent light that has very few intensity or phase �uctuations. That is, the
emitted light would resemble the light from an ideal laser. Therefore, if we consider this a de-
�ning property of work-like energy in our system we must be able to quantify the coherence of
the light. To do this, we couple the output mode of the system, which is the transition with
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Figure 5.7: The energy currentP emitted into the dissipative load is larger when the coupling
to the load is stronger at a �xed cold bath temperature (βc = 1.1) as shown in (a) and (b). Here,
we compare the energy emitted by the di�erent irreps of an ensemble of four particles the solid
orange contours show the behaviour of the fully symmetric (4, 0) irrep in all �gures and the
blue shaded regions show the (2, 1) and (0, 2) irreps in (a,c) and (b,d) respectively. The dotted
contours show the energy emitted by four independently coupled particles. When the coupling
is �xed to gw = 0.9. In all cases, the frequencies of the hot and cold baths are set toωc = 2/3 and
ωh = 5/3 respectively and both baths couple to the system with a coupling strength of 0.1. All
frequencies and couplings are given in units of the lasing frequency ωl and inverse temperatures
in units ω−1

l . Adapted from [C].
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frequency ωl, to a 1-D waveguide [212]. This waveguide is a bosonic reservoir with modes that
are indexed by ω. The description of the waveguide is done using the input-output formalism
in quantum optics. The derivation of this given below for completeness and it closely follows
the presentation found in Chapter 5 of [213].

The Hamiltonian of the system coupled to the waveguide within the rotating wave approx-
imation is

H = HS +

∫ ∞
−∞

dω ωb†(ω)b(ω) + i

∫ ∞
−∞

dωκ(ω)[b†(ω)W− −W+b
†(ω)], (5.48)

where, the rotating wave approximation allows us to drop rapidly oscillating terms likeW−b(ω)

from the interaction term. This allows the integrals which should formally only be over the
range [0,∞) to be extended to the range (−∞,∞) since only terms that are close to resonant
contribute signi�cantly to the result. The Heisenberg equation of motion of the Bosonic mode
is,

ḃ(ω) = −iωb(ω) + κ(ω)W− (5.49)

We can then get a solution for the bosonic mode for t0 < t (at the input) and t < t1(at the
output),

b(ω) = e−iω(t−t0)b0(ω) + κ(ω)

∫ t

t0

e−iω(t−t′)W−(t′)dt′ (5.50)

b(ω) = e−iω(t−t1)b1(ω) + κ(ω)

∫ t1

t

e−iω(t−t′)W−(t′)dt′ (5.51)

where, b0(ω) and b1(ω) are the values of b(ω) at t = t0 and t = t1 respectively. The Heisenberg
equations of motion for the system operators are,

Ẇ− = −i[W−, HS] + 2

∫
dωκ(ω)Wzb(ω) (5.52)

Ẇ+ = −i[W+, HS] + 2

∫
dωκ(ω)b(ω)†Wz (5.53)

Ẇz = −
∫
dωκ(ω)[b(ω)†W− +W+b(ω)] (5.54)
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Now, we apply the �rst Markov approximation [214], that assumes the coupling is constant
κ(ω) =

√
γ/2 and thus the operator evolution is Markovian. We use this to de�ne the input

and output �elds,

bin(t) =
1√
2π

∫
dωe−iω(t−t0)b0(ω) (5.55)

bout(t) =
1√
2π

∫
dωe−iω(t−t1)b1(ω) (5.56)

The system operators can then be expressed in terms of these expressions for the input �eld and
output �eld. This yields the quantum Langevin equations of the system which are formulated
separately for the input and output �elds. For the input �elds they are,

Ẇ− = −i[W−, HS]− 2Wz

[
γ

2
W− +

√
γbin(t)

]
(5.57)

Ẇ+ = −i[W+, HS] + 2

[
γ

2
W+ +

√
γb†in(t)

]
Wz (5.58)

Ẇz = −W+

[
γ

2
W− +

√
γbin(t)

]
−
[
γ

2
W+ +

√
γb†in(t)

]
W− (5.59)

with equivalent expressions for the output �eld.Then integrating Eq. (5.50) and Eq. (5.51), we
obtain the expressions,

1√
2π

∫
dωb(ω) = bin(t) +

√
γ

2
W−(t) (5.60)

1√
2π

∫
dωb(ω) = bout(t)−

√
γ

2
W−(t) (5.61)

and get the following relationship between the input and output �eld,

bout(t) = bin(t) +
√
γW−(t). (5.62)

We use this expression to analyse the coherence properties of the emitted �eld using quant-
ities based on the Glauber coherence functions [215]. In particular, we will use the �rst and
second order coherence functions in what follows. The �rst order correlator, G(1)(t, t′) =
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〈
bout(t)

†bout(t)
〉

can be calculated by noting that since the input �eld is a vacuum, bin(t)ρ = 0

and so G(1)(t, t′) ∝ 〈W+(t)W−(t′)〉. We will now use the quantum regression theorem [213,
216] to determine the value of the correlator. This is derived here for convenience.

Let σ be the system and reservoir density matrix so that, trE(σ) = ρ. Then, since W±(0)

only act on the system part of the Hilbert space, the �rst order correlator is

〈W+(t)W−(t′)〉 = trS{W−(0) trE[e−iH(t′−t)σ(0)W+(0)eiH(t′−t)]}. (5.63)

Then set σT (t′ − t) = e−iH(t′−t)σ(0)W+(0)eiH(t′−t) and note that for system dynamics gen-
erically given by ρ̇ = Lρ,

trE[σT (t′ − t)] = eL(t′−t)(W−(0)ρ(t)W+(0)). (5.64)

Therefore for the current system we can calculate the correlator for the steady state ρ∞,

G(1)(t, t′) ∝ tr{W−(0)e(guLU+gvLV )(t′−t)[ρ∞W+(0)]}. (5.65)

Intuitively speaking, if the energy transferred by the medium is free of additional �uctuations
it resembles work. This would be associated with the emission of coherent light, as would be the
case for an ideal laser, which has the minimal possible simultaneous �uctuations in intensity and
phase. We will therefore, identify the work-like energy that is emitted with the coherent part of
the emitted �eld. To determine the coherence properties of the emitted �eld, �rst de�ne the
normalised intensity spectrum [217],

S(ω) =
1

2π

[ ∫ ∞
0

dτ G(1)(τ, τ)

]−1 ∫ ∞
0

dτ

∫ ∞
0

dτ ′ e−iω(τ−τ ′)G(1)(τ, τ ′). (5.66)

In the steady state, this expression for the intensity spectrum can be simpli�ed by de�ning,
G(1)(τ) = G(1)(t+ τ, t) for any t,

S(ω) =
1

2π

∫∞
−∞ dτ e

−iωτG(1)(τ)

G(1)(0)
=:

P (ω)

Ptot
. (5.67)
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Figure 5.8: The peak value S(ωl) of the intensity spectrum for the (4,0) and (2,1) irreps of
a four particle collective ensemble are shown here with the solid orange contours and shaded
blue areas respectively. We see that for a smaller coupling strength the quality of the energy that
is emitted is more work like since the intensity spectrum is more sharply peaked. This is com-
pared to individual particles (dotted orange contour) which show similar behaviour. Here, the
frequencies of the hot and cold reservoirs are set to ωc = 2/3 and ωh = 5/3 and both baths
have a coupling strength of gu, gv = 0.1. Finally, the temperature of the cold bath is �xed to
βc = 1.1. All frequencies and couplings are given in units of the lasing frequencyωl and inverse
temperatures in units ω−1

l . Adapted from [C].

The numerator of this expression is the photon �ux per unit frequency into mode ω of the
waveguide. Ptot is the total photon �ux [218]. In driven systems,S(ω) will have a delta peak and
the weight of the delta peak of at the lasing frequency has been shown to be proportional to the
power output [212,219]. In our example, since there is no driving, the intensity spectrum has no
delta peak. Instead it is a continuous distribution over all frequencies ω with a peak at ωl. If the
integral over frequencies ofS(ω) is taken over a very small frequency window aboutωl, this will
give the proportion of the energy that is emitted into the mode with frequency ωl. This works
since the linewidth is much smaller than ωl and so all the modes in the narrow window have
approximately the same energy. A value ofS(ωl) closer to 1 is then characteristic of a more work-
like quality of the output as this means the spectrum is very sharply peaked. The value of S(ωl)

is illustrated for a collection of four particles for di�erent system parameters in Fig. 5.8. Here,
we see that for collective as well as independent particles, the output is more work-like, when
the coupling to the dissipative load is not too strong. Intuitively, a strong coupling to the zero
temperature bath will lead to the dynamics being dominated by this bath which prevents a build
up of population inversion by the other two baths. Therefore, even though (from Eq. (5.45)
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and Fig. 5.7) more energy is emitted into the load for higher gw, the emitted �eld will just be a
diverted heat �ow from the other baths with a broader intensity spectrum.

We also quantify the intensity �uctuations of the light since as we mentioned, work-like en-
ergy will have smaller intensity �uctuations than thermal light. This is done using the normalised
second order correlator,

g(2)(t) =
G(2)(t, 0)

〈W+W−〉2
, (5.68)

where, G(2)(t, t′) ∝ 〈W+(t)W+(t′)W−(t′)W−(t)〉 and g(2)(τ) → 1 for τ → ∞. We con-
sider g(2)(0) in particular as a standard quanti�er of coherence [216, 220, 221]. Perfect coher-
ent emission will have photons emitted randomly in a Poisson distribution which results in
g(2)(0) = 1. Light that is characteristic of thermal emission will have g(2)(0) > 1 as there
is a tendency for photons to be bunched in the emission. Individually coupled systems can only
have a g(2)(0) = 0 since two photons can never be emitted simultaneously. In Fig 5.9 this is
shown for weak coupling to the load, since we already established from the intensity spectrum
that this is required for work-like output. Here we see that the range of coupling strengths with
small intensity �uctuations is narrow. We also observe that the range of coupling strengths for a
given hot and cold bath temperature where g(2)(0) is close to one is very di�erent for di�erent
irreps. We see generally that a higher temperature of the hot bath leads to the emitted light being
more characteristic of coherent light. Finally, taking both Fig. 5.8 and Fig. 5.9 into considera-
tion, we see that for a �xed weak coupling to the dissipative load there is an optimal hot bath
temperature that gives a large value for S(ωl) and a value of g(2)(0) close to one. This optimal
temperature may be very di�erent for di�erent irreps and it may be di�cult to maximise both
�gures of merit simultaneously.

5.5.3 Work from stimulated emission

Finally, we consider an engine where the lasing transition is coupled to a driving �eld. This
corresponds to a laser that ampli�es the driving �eld to produce coherent light which is the work
output. The Hamiltonian of the system with an interaction term that comes from resonant 6

6the driving frequency is the same as the lasing frequency
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Figure 5.9: In this �gure, we see that the coherence of the emitted �eld, quanti�ed by g2(0) is
quite di�erent for the di�erent irreps of a four particle ensemble. The (4,0) and (2,1) irreps of a
four particle collective ensemble are shown here with the solid orange contours and shaded blue
areas respectively. Work-like emission (closer to Poissonian emission statstics, g2(0) =1) occurs
only when the coupling to the dissipative load is very small. Here, the cold bath parameters are
set to ωc = 2/3 and βc = 1.1. The hot bath has frequency ωh = 5/3 and both baths have a
coupling strength of gu, gv = 0.1. All frequencies and couplings are given in units of the lasing
frequency ωl and inverse temperatures in units ω−1

l . Adapted from [C].

driving is [216, 222]
HS(t) = H0 + α(e−iωltW+ + eiωltW−). (5.69)

All that is necessary to describe the system using the master equation from the previous sec-
tions (5.41), is to add the extra Hamiltonian term to the description. In the rotating frame7, the
Hamiltonian becomesHR = α(W+ +W−) and the master equation is

ρ̇R = −i[HR, ρR] + guLU(n̄h)ρR + gvLV (n̄c)ρR. (5.70)

Now, this master equation only gives a valid description under certain circumstances. First, the
term obtained from the interaction Hamiltonian changes the Bohr frequencies of the system.
This is not taken into account by the local master equation and this can lead to heat currents
that give a total e�ciency that exceeds the Carnot e�ciency [187]. This is mitigated if only
weak driving is allowed since the Bohr frequencies do not change by as much. Alternatively, the

7See (A.3), the rotating frame is a special case of the interaction picture which allows us to remove the time-
dependence from the operator.
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Figure 5.10: Here, the power emitted by four collectively coupled particles is compared to the
the power emitted by four distinguishable particles (dotted orange contours). The solid orange
contours show the behaviour of the fully symmetric (4, 0) irrep in all �gures and the blue shaded
regions show the (2, 1) and (0, 2) irreps in (a,c) and (b,d) respectively. The systems are resonantly
driven in the W± transition with driving strength α and emitted power increases with driving
strength. In (a) and (b) this is shown for a cold reservoir set to βc = 1.1. In (c) and (d), the
reservoir frequencies are the same as in (a) and (b) but the driving strength is �xed to α = 0.07
and in this case we see that the maximum power is not found for the minimum cold reservoir
temperature. The coupling to the hot and cold reservoirs is �xed to 0.1 and the frequencies of
the cold and hot baths are ωc = 2/3 and ωh = 5/3. All frequencies and couplings are given in
units of the lasing frequency ωl and inverse temperatures in units ω−1

l . Adapted from [C].

changed Bohr frequencies can be taken into account by using the Floquet picture [175, 223].8

However, we will consider only weak resonant driving.

Since the Hamiltonian is now time dependent, it is possible to break down the change in
internal energy into two terms identi�ed with the heat and power [11]. In the lab frame this is,

8The Floquet theorem states that the time evolution operator of a system with a periodic driving Hamiltonian
can be decomposed into a periodic part and time independent part, U(t, t0) = e−iK(t)e−i(HF (t−t0))eiK(t).
Then, one can express all operators in the Floquet reference frame eg. ρF = eiK(t)ρe−iK(t). The master equation
can then be derived in this reference frame and contributions from the shifted Bohr frequencies will be taken into
account.
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Ė = tr{ρ̇S(t)HS(t)}+ tr{ρS(t)ḢS(t)}. (5.71)

The total heat current into the system is given by the �rst term and the second term gives the
power output of the system [212, 219]. In the rotating frame we obtain a steady state and this
term can be simpli�ed. The time dependence cancels due to the cyclic property of the trace and
thus the power output is,

P = −αωl tr{(W− −W+)ρR} (5.72)

The �rst term can be broken up into the heat currents from the cold and hot baths using the
adjoint superoperators ((5.46)) acting on the Hamiltonian [13],

I(t) = tr{ρS(t)guL∗U(HS(t))}+ tr{ρS(t)gvL∗V (HS(t))} (5.73)

= Ih(t) + Ic(t).

The steady state e�ciency is once again, independent of the reservoir temperatures and is η =

1 − ωc/ωh. We can obtain this in the same way as we did in Sec. 5.5.2. Firstly in the rotating
frame, the time derivative of the operator that counts the number of particles in the steady state
(which again takes the formNg = n/3 + Y/2−Wz) must be zero.

∂t 〈Ng〉 =〈gu[(n̄h + 1)U−U+ − n̄hU+U−] + α(W− −W+)〉 (5.74)

=
Ih
ωh
− P
ωl

Thus, P/Ih = 1 − ωc/ωh. Therefore, in a similar fashion to the previous section in order to
quantify the di�erences between independent particles and the collective engine, the perform-
ance of the engine can be quanti�ed by the absolute power output rather than the e�ciency.
Since P is proportional to the driving strength, the performance of the engine is expected to
improve with increased driving strength. However, for large α, the driving is expected to dom-
inate the dynamics and the performance should drop o�. This does not occur for the weak
driving case that we consider here. The numerical investigation of weak driving is illustrated in
Fig. 5.10. Here, we see that stronger driving does lead to better engine performance and that
the fully symmetric state performs better than the other irreps as we would expect from the res-
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ults of the previous sections. We also show that independent systems perform worse than the
fully symmetric subspace for a system of four particles. We see that for ωhβh � 1 weak driv-
ing does not contribute signi�cantly to the dynamics and therefore, the power output is small.
We see a similar phenomenon with the cold bath temperatures, where a very large βc leads to
reduced performance. The results suggest there is an optimal driving strength for �xed hot and
cold bath temperatures since we �nd that for the weak driving case we consider power output
only increases with driving strength but for very strong driving the power output should drop
o�. Exploring this will require going beyond the current weak driving description. This would
require the use of Floquet [175] or for large numbers of particles, Floquet-Red�eld [223] master
equations.

5.6 Conclusions

In this chapter, we went beyond the two-level models studied in the previous chapters and con-
sidered how multi-level systems interacting with an environment might present novel quantum
e�ects. Although, these systems could be used for thermometry applications in analogy to the
two level systems we discussed before, without a speci�c platform and measurement in mind,
much of the advantages that could be gained from coupling collectively were studied previously
in [151], since the quantum Fisher information is proportional to the heat capacity. However,
the thermodynamics of these systems were not fully understood, especially for systems where
di�erent baths couple to di�erent transitions in the system. We addressed this by studying the
paradigmatic three-level continuous engine extended to a many-body working medium where
the particles interact collectively with the baths. The formulation using tools from representa-
tion theory allowed us to study non-trivial symmetry types in the state going beyond the standard
Bosonic or Fermionic exchange symmetries studied before [170, 174].

First, we derived the structure of the steady state. We used that the Hamiltonian is made
up of only a linear combination of the diagonal generators of SU(3), and found that there is
a convenient representation of the operators in the Schur basis simplifying the block diagonal
structure found in [152]. This result was then used to study three ways that the work output of
the collective system could be measured. The �rst was work that is extracted by unitary opera-
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tions. This quanti�es how much of a population inversion the system is able to produce, which
corresponds to the maximum amount of work that the system could in theory transfer to a load.
Here we found that a system that is prepared as close as possible to the fully symmetric state, will
yield the highest amount of population inversion and therefore the most energy can be extrac-
ted. This was shown both numerically as well as analytically in the limit that ωcβc � ωhβh. We
also saw that collectively coupled systems can have steady states with ergotropy outside of the
range of parameters that would be expected from single-particles.

Next, the system was coupled to a dissipative load consisting of a zero temperature reservoir.
This model is a simple theorist’s analogy to “putting the wheels on the ground” [186] or in
other words doing work against a dissipative force. In this example, we expected that some of
the energy emitted into this bath will be in the form of heat and therefore the performance of
the engine may di�er from what would be found from population inversion alone. We found
that although more energy was emitted when the coupling to the load was strong, the energy
resembled heat because of its wide bandwidth and intensity �uctuations that were larger than
was observed for weak coupling. Finally, we analysed the output power of a driven system. This
model is the closest to an experimentally realisable lasing model. In this case all energy output
can be considered to be work since the system is driven with a coherent �eld. In this case, the
output energy was unambiguously be associated with power. Here we found that similarly to
the other two cases, fully symmetric states generate the most power. For this model, we only
considered weak coupling to ensure that the results are thermodynamically consistent.

There are a number of extensions to this work that would be immediate future directions.
The mathematical framework presented here could be used to study higher dimensional systems.
It would also be a natural next step to introduce interactions between particles of the working
medium. This may allow the degeneracies in the weight spaces to be lifted which could lead
to di�erent thermodynamics than what was found here. Finally, one could extend these results
to metrology platforms. For example, one could use the system to detect multiple unknown
temperatures or coupling rates simultaneously.



Chapter 6

Summary and Outlook

This thesis theoretically explored two aspects of open quantum systems. Firstly, how Bayesian
quantum parameter estimation can be used for the accurate estimation of environmental para-
meters and secondly, how an equilibrating quantum system can be used to perform thermody-
namic tasks.

We began with an introduction to Bayesian methods. Here, we presented a general frame-
work for performing Bayesian estimation in quantum systems starting from how to specify prior
information in the case where the experimenter wants to make minimal prior assumptions. The
methods that we discussed were based on specifying invariances in the problem either on the level
of the physical parameter or on the likelihood. From this point, we discussed how optimal estim-
ators and cost functions can be derived in particular, while taking into account the invariances of
the problem. We also discussed various bounds on the error of an experiment from a Bayesian
point of view as well as how the experiment can be optimised with respect to the probes and
measurements made in a Bayesian framework. These techniques were then applied to various
case studies. Here we found that when invariances in the problem are not properly taken into
account it can lead to misleading estimates of the parameter. We also demonstrated that when
the prior distribution is based only on invariances in the parameter, the strategy is the most un-
informed and often leads to simpler expressions for the prior and for optimal global estimators
derived from the prior. We showed that probe and measurement optimisation is also possible
from a totally global and Bayesian perspective when this speci�cation of the prior is used. These
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results can be extended in future to multiparameter estimation as well as applied more extens-
ively to adaptive estimation. The streamlined approach of Bayesian estimation where all �gures
of merit are determined by the prior distribution also provides a simpli�ed approach so that the
ambiguity of how to summarise the posterior distribution in situations with little data is avoided.

We primarily considered qubit thermometry as the test case for these techniques in both
discrete and continuous measurement scenarios. This is because thermometry is the paradig-
matic example of open quantum system parameter estimation. However, many of the results can
be easily generalised to any parameter that depends on the interaction rate between the system
and environment. For the discrete thermometry case study we used a global sensitivity measure,
for both equilibrium and non-equilibrium probes, to �nd that partially thermalised probes are
sensitive to a wider range of temperatures but this comes at the cost of their maximum achiev-
able precision. This result inspired the study of thermometry using continuous measurements.
Here, we derived an expression for the Fisher information of the probes which for long times,
which allowed us to de�ne the Bayesian Cramér-Rao bound as a benchmark for our estimation
strategy. Here we also studied an asymptotically optimal adaptive strategy and a scenario with
and without measurement noise, and a �nite detector bandwidth. The thermometry case stud-
ies can be extended in several ways. We consider only probes with no quantum coherence. For
discrete measurements this is known to be optimal. However, in the continuous case, it would
be interesting to determine if including coherences in the description improves the performance
of the thermometer. Additionally, the Bayesian techniques and continuous monitoring could
be applied to multiple interacting probes which may allow quantum coherences to improve the
measurement accuracy. Finally, di�erent adaptive strategies could be explored that go beyond
the asymptotically optimal one we consider here but that are not as computationally expensive
as optimising the Bayesian error at every step.

Finally, we studied an example of how collective e�ects in an open quantum system can be
harnessed to perform a thermodynamic task. Using representation theoretic tools we were able
to go beyond a description of states that have purely Bosonic exchange symmetry and character-
ised the steady state thermodynamics of a collective system coupled to multiple thermal baths.
Using the representation theoretic tools we were able to �nd analytical results in a limiting case
but also more generally study the system numerically. This allowed us to determine that the
maximum energy that is extractable by unitary operations occurs when the system is prepared
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as close as possible to a fully symmetric state. We also found that work can be extracted from
a collective system outside of the lasing regime of a single particle but that system parameters
should be chosen carefully to ensure that a collective system outperforms individual systems. In
addition we studied the power output when the system is coupled to a dissipative load as well
as when it is coupled to a periodic driving �eld. The latter case corresponds to the paradigmatic
case of a lasing engine. Here we compared the performance between symmetry types and also
between individually coupled and collectively coupled working systems. A number of future
directions can be explored. The method developed here could be adapted to explore a working
medium with interactions between particles. This may allow degeneracies in the state space to
be lifted which could lead to markedly di�erent dynamics. The method is also easily extended
to higher dimensional particles. Finally, applications could also be found in open system met-
rology. Here, the Bayesian methods developed in earlier chapters could be extended to multi
parameter estimation and used to estimate multiple environmental parameters simultaneously
since the collective system we consider here is coupled to two baths.
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Appendix A

Modelling the interaction with the
environment

In this thesis we are concerned with systems that interact with an environment. This means
that in contrast to a closed system, the dynamics cannot be fully described by the Hamiltonian
evolution of the system but rather the Hamiltonian includes the interaction with an environ-
ment. The following chapters we will be concerned with n-level systems with HamiltonianHS

interacting with an environment that consists of a continuum of bosonic or fermionic modes
described by HB and a possibly time dependent interaction Hamiltonian HSB(t). The total
Hamiltonian is then given by,

H(t) = HS +HB +HSB(t). (A.1)

We will assume that the environment is a thermal reservoir with Canonical distribution,

ρB =
e−βHB

tr{e−βHB} , (A.2)

where, β is the inverse temperature of the environment. The state of the total system at time t
is described by the density operator ρ(t) =

∑
i pi |ψi〉〈ψi|, where pi is the probability that the

total system is in the state|ψi〉. Practically speaking, the bath degrees of freedom are inaccessible
and the observables of the system are what we will be interested in. Therefore, we need the
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dynamics of the system density matrix. What follows is a sketch of the microscopic derivation of
the standard Lindblad master equation that de�nes the evolution of the reduced density matrix
ρS(t) = trB[ρ(t)]. This is a standard textbook result, see for example, [67, 68].

First, we write down the state and Hamiltonian in the interaction picture,

ρI(t) = ei(HS+HB)tρ(t)e−i(HS+HB)t HI(t) = ei(HS+HB)tH(t)e−i(HS+HB)t. (A.3)

In this picture, the evolution of the system and environment is given by the von Neumann equa-
tion

ρ̇I(t) = −i[HI(t), ρI(t)]. (A.4)

This is integrated to give,

ρ(t) = ρ(0)− i
∫ t

0

ds[HI(t), ρ(s)]. (A.5)

This result is substituted back into Eq A.4 and we perform the partial trace over the environment
degrees of freedom to get,

ρ̇S(t) = −i trB[HI(t), ρ(0)]−
∫ t

0

ds trB[HI(t), [HI(t), ρ(s)]]. (A.6)

In cases where the environment is a standard thermal reservoir and there is no external driving
we can assume that trB[HI(t), ρ(0)] = 0.

Now we make the �rst approximation called the Born approximation which assumes that the
coupling between the system and environment is weak and that the environment is much larger
than the system so that the e�ect ofHI(t) on the state of the bath is negligible. This means that
if the system begins in an initial state uncorrelated product state, ρ(0) = ρS(0) ⊗ ρB(0) the
total state at time t can be approximated to, ρ(t) = ρS(t)⊗ ρB(0) +O(HI). Substituting this
into Eq. A.6 yields,

ρ̇S(t) = −
∫ t

0

ds trB[HI(t), [HI(t), ρS(s)⊗ ρB(0)]] +O(H3
I ). (A.7)
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The next assumption we make is that the system has a Markovian evolution, that is, knowledge
of the state ρ(t) allows us to determine the state ρ(t1) for any time t1 > t. We do this by setting
ρ(s) → ρ(t) and letting the upper limit of the integral go to in�nity in Eq. A.7. This is justi-
�ed if the change in the system state happens on time scales τS which are much larger than the
correlation time of the bath τB , in other words, on the time scales we consider the bath has no
memory of its interaction with the system. This gives the Markovian Red�eld equation,

ρ̇(t) = −i trB[HI(t), ρ(0)]−
∫ ∞

0

ds trB[HI(t), [HI(t), ρS(s)⊗ ρB(0)]]. (A.8)

To further simplify this equation and to guarantee that the density matrix will be positive un-
der the evolution by the master equation, we make an additional approximation known as the
Secular approximation. This requires a few additional de�nitions. First de�ne the operators,

Aα(ω) =
∑

ε′−ε=ω

Π(ε)AαΠ(ε′) (A.9)

where ε are the eigenvalues of the system Hamiltonian and Π(ε) is the projector onto the eigen-
vector of HS with eigenvalue ε. The operators Aα act as raising and lowering operators of the
system Hamiltonian,

[Hs, Aα(ω)] = ωAα(ω) (A.10)

And we can write downHI in the interaction picture as,

HI(t) =
∑
α,ω

Aα(ω)⊗ Bα (A.11)

Here we note that the condition trB[HI(t), ρ(0)]
!

= 0 becomes tr(Bα(t)ρB) = 0 so we see
that it implies that the bath average of the interaction Hamiltonian vanishes. Next, de�ne the
Fourier transform of the bath correlation functions,

Γ(ω) =

∫ ∞
0

dseiωs trB{B†(t)B(t− s)ρB} (A.12)
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which, if we assume that the bath is in a stationary state, simplify to the time independent ex-
pression

Γ(ω) =

∫ ∞
0

dseiωs trB{B†(s)B(0)ρB}. (A.13)

These de�nitions allow us to write Eq. (A.8) in the following form,

ρ̇(t) =
∑
ω,ω′

∑
α

ei(ω
′−ω)tΓα(ω)(Aα(ω)ρS(t)A†α(ω′)− A†α(ω′)Aα(ω)ρS(t)) + h.c. (A.14)

We now make the secular approximation, which assumes that the terms where ω 6= ω′ oscillate
much faster than the typical time scale of the system evolution and so they may be neglected in
the summation.

ρ̇(t) =
∑
α,ω

Γα(ω)(Aα(ω)ρS(t)A†α(ω)− A†α(ω)Aα(ω)ρS(t)) + h.c. (A.15)

We can simplify this further by writing Γα(ω) = 1/2γ(ω)+ iS(ω) . The imaginary part of this
expression is typically ignored as it contributes only to a small shift in the Hamiltonian called
the Lamb shift. The real part can be written as,

γ(ω) =

∫ ∞
−∞

dseiωs trB{B†(s)B(0)ρB} (A.16)

which for a thermal reservoir are related by,

γ(−ω) = e−βωγ(ω). (A.17)

This results in the standard Lindblad master equation.

ρ̇(t) =
∑
α,ω

γα(ω)

(
Aα(ω)ρS(t)A†α(ω)− 1

2
{A†α(ω)Aα(ω), ρS(t)}

)
. (A.18)
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A.1 Lindblad master equation for a two-level system

Several examples in this thesis consider the interaction of a thermal environment with a two level
system with ground and excited states |0〉 and |1〉 and non-interacting Hamiltonian,

HS =
E

2
(|1〉〈1| − |0〉〈0|). (A.19)

In this case, the jump operatorsAα(ω) are simply, |0〉〈1| and |1〉〈0|. Then we will consider two
commonly used expressions for the coupling rates. First, a bath of resonantly coupled Bosonic
modes with rate,

γ(ω) = n̄B(ω)J(ω) (A.20)

where J(ω) is the bath spectral density (we consider both Ohmic and �at spectral densities) and
n̄B(ω), the average occupation of mode with frequency ω,

n̄B(ω) =
1

eβω − 1
. (A.21)

Second, a Fermionic bath with �at (constant) spectral density,

γ(ω) = n̄F (ω) (A.22)

where n̄F (ω) is the average occupation of mode with frequency ω,

n̄F (ω) =
1

eβω + 1
. (A.23)

This yields the Master equation for a Bosonic reservoir,

ρ̇ = J(ω)n̄B(E)
(
D[|0〉〈1|]ρ+ e−E/kBTD[|1〉〈0|]ρ

)
, (A.24)

withD[Â]ρ = ÂρÂ†−{Â†Â, ρ}/2. A similar expression is obtained for a Fermionic bath with
the Bosonic rates replaced by Fermionic rates.
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Appendix B

Optimal Bayesian estimator for a relative
cost function

In this appendix, the optimal Bayesian estimator is derived for the cost function c(2r)(ϑx, θ) =

(ϑx/θ− 1) introduced in Sec. 2.4.1. Other Bayesian estimators can be obtained in a similar way
from other cost functions. See for example [64, 71, 101].

The optimal estimator will minimise the average loss,

ε̄(2r)(ϑx) =

∫
dxP (x)

∫
dθP (θ|x)

(
ϑx
θ
− 1

)
, (B.1)

This is done variationally, by �nding the estimator such that

d

dy
ε̄(2r)(ϑx + yηx)

∣∣∣∣
ηx=0

!
= 0 (B.2)

If we evaluate the derivative on the LHS we obtain,

2

∫
dxP (x)

∫
dθP (θ|x)ηx

(
ϑx
θ2
− 1

θ

)
, (B.3)

which is zero whenever,
∫
dθP (θ|x)

(
ϑx
θ2
− 1

θ

) !
= 0.
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This is equivalent to,

ϑx

∫
dθP (θ|x)

(
1

θ2

)
−
∫
dθP (θ|x)

(
1

θ

)
= 0. (B.4)

Therefore, we solve for ϑx to recover the optimal relative estimator

ϑx =

∫
dθP (θ|x)

(
1
θ

)∫
dθP (θ|x)

(
1
θ2

) . (B.5)



Appendix C

Van Trees inequality for an average
relative error

In this appendix we will derive the van Trees bound for a relative root mean squared error which
is applicable to estimation of a scale invariant parameter de�ned in the range θ ∈ (0,∞). This
derivation closely follows the derivation for the usual RMS error derived in [127].

Here we assume that we have a data set of measurement outcomes x and a likelihood func-
tionP (x|θ) which is normalised,

∫
dxP (x|θ) = 1 for all values of θ. Furthermore, we assume

that the Fisher information is continuous on the range of θ and that the prior distribution is nor-
malised and decays on the end points of the range of θ, that is,P (θ)

θ→0−−→ 0 and θP (θ)
θ→∞−−−→ 0.

Now de�ne the scalar product: 〈f, g〉 =
∫∞

0
dT
∫

dx f(x, T )g(x, T ) for real-valued func-
tions over the combined (x, θ) space.

Then de�ne the functions,

f(x, θ) =
√
P (x|θ)P (θ)

ϑx − θ
θ

, (C.1)

g(x, θ) = θ
√
P (x|θ)P (0)(T )

d

dT
ln
[
P (x|T )P (0)(T )

]
.

and assuming that both functions have �nite norm, we can write the norms 〈f, g〉,〈f, f〉 and
〈g, g〉,

〈f, g〉 =

∫ ∞
0

dθ

∫
dx [ϑx − θ]

d

dθ
[P (x|θ)P (θ)] , (C.2)

139



140 Appendix C. Van Trees inequality for an average relative error

〈f, f〉 =

∫ ∞
0

dθ

∫
dx

[
ϑx − θ
θ

]2

P (x|θ)P (θ) (C.3)

= C(2r)(ϑ),

and,

〈g, g〉 =

∫ ∞
0

dθ

∫
dxP (x|θ)P (θ)θ2

[
d

dθ
lnP (x|θ) +

d

dθ
lnP (θ)

]2

=

∫ ∞
0

dθ P (θ)θ2

∫
dxP (x|θ)

[
d lnP (x|θ)

dθ

]2

+

∫ ∞
0

dθ P (θ)θ2

[
d lnP (θ)

dθ

]2

+ 2

∫ ∞
0

dθ P (θ)θ2 d lnP (θ)

dθ

∫
dx

d

dθ
P (x|θ)

=

∫ ∞
0

dθ P (θ)θ2I(θ) + I0 + 0. (C.4)

In the last line we de�ne I0 =
∫∞

0
dθ P (θ)θ2 [∂θ lnP (θ)]2 and by exchanging the θ derivative

and the integral over x in the last term of the second last line we see that this term vanishes. We
can relate these three norms with the Cauchy-Schwarz inequality, to get

〈f, f〉 = C(2r)(ϑ) ≤ 〈f, g〉∫∞
0

dθ P (θ)θ2I(θ) + I0

. (C.5)

Finally, we simplify the expression (C.2) for 〈f, g〉 by means of partial integration,

〈f, g〉 =

∫
dx

{[
P (θ)P (x|θ)(ϑx − θ)

]∞
0

+

∫ ∞
0

dθ P (x|θ)P (θ)

}
= 1, (C.6)

where we have used the assumptions made about the behaviour of the prior at the boundary so
that the �rst term vanishes. thus we achieve the desired bound,√

C(2r)(ϑ) ≥ 1√∫
dθP (θ)θ2I(θ) + I0

. (C.7)



Appendix D

SU(3) commutators

We give all commutation relations of the SU(3) generators for reference [189]:

3[Wz,W±] = ±W± [W+,W−] = 2Wz (D.1)

[Wz, U±] = ∓1/2U± [U+, U−] =
3

2
Y −Wz (D.2)

[Wz, V±] = ±1/2V± [V+, V−] =
3

2
Y +Wz (D.3)

[Y, U±] = ±U± [Y, V±] = ±V± (D.4)

[W+, V−] = −U− [W+, U+] = V+ (D.5)

[U+, V−] = W−, (D.6)

with the remaining independent ones all vanishing.

The generators act on the basis in a λ = (p, q) irrep in the following way [194]:

Wz |λ,W,w, y〉 =t |λ,W,w, y〉 (D.7)

W+ |λ,W,w, y〉 =
√

(W − w)(W + w + 1) |λ,W,w + 1, y〉
W− |λ,W,w, y〉 =

√
(W + w)(W − w + 1) |λ,W,w − 1, y〉

Y |λ,W,w, y〉 =y |λ,W,w, y〉
V+ |λ,W,w, y〉 =Ap,qW,w,y |λ,W + 1/2, w + 1/2, y + 1〉
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+Bp,q
W,w,y |λ,W − 1/2, w + 1/2, y + 1〉

V− |λ,W,w, y〉 =Ap,qW−1/2,w−1/2,y−1 |λ,W + 1/2, w − 1/2, y − 1〉
+Bp,q

W+1/2,w−1/2,y−1 |λ,W − 1/2, w − 1/2, y − 1〉

U+ |λ,W,w, y〉 =
√

(W − w + 1)

(
Ap,qW,w,y

√
(W + w + 1)− Ap,qW,w−1,y

√
(W + w)

)
|λ,W + 1/2, w − 1/2, y + 1〉

+
√

(W + w)

(
Bp,q
W,w,y

√
(W − w)− Bp,q

W,w−1,y

√
(W − w + 1)

)
|λ,W − 1/2, w − 1/2, y + 1〉

U− |λ,W,w, y〉 =

(
Ap,qW−1/2,w−1/2,y−1

√
(W + w) + Ap,qW−1/2,w+1/2,y−1

√
(W + w + 1)

)
√

(W − w) |λ,W + 1/2, w + 1/2, y − 1〉

+

(
Bp,q
W+1/2,w+1/2,y−1

√
(W − w)− Bp,q

W+1/2,w−1/2,y−1

√
(W − w + 1)

)
√

(W + w + 1) |λ,W − 1/2, w + 1/2, y − 1〉

Where the coe�cientsAp,qW,w,y andBp,q
W,w,y are positive and given by,

Ap,qW,w,y =

[
(W + w + 1)

2(W + 1)(2W + 1)

(
W (p− q)

3
+
Y

2
+1

)(
p+ 2q

3
+W+

Y

2
+2

)(
2p+ q

3
−W−Y

2

)]1/2

(D.8)

Bp,q
W,w,y =

[
(W − w)

2W (2W + 1)

(
W (q − p)

3
+W−Y

2

)(
p+ 2q

3
−W+

Y

2
+1

)(
2p+ q

3
+W−Y

2
+1

)]1/2

.

(D.9)
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