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Abstract

A recursion scheme for functions on intervals to approximate real-valued functions is de-
scribed and compared with recursion schemes on finite and infinite words.

Zusammenfassung

Es wird ein Rekursionschema für Funktionen auf Intervallen, die reellwertige Funktionen
approximieren, beschrieben und mit Rekursionsschemata auf endlichen und unendlichen
Wörtern verglichen.
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Chapter 1

Introduction

Computability is one of the most important topics in theoretical computer science and math-
ematical logic. In the beginning computabality over discrete sets — like the set of natural
numbers or sets of finite words — was considered. While this classical theory is deemed as
complete and balanced, the question of computability over uncountable sets, e.g. the real
numbers, has still a lot of open aspects and is subject to current research.

There are several approaches to computability over the real numbers, which may lead to
different sets of computable functions depending on the definition of real numbers they are
based on and on which classical computational models are used.

At first we like to draw attention to a machine model. Based on the work of Turing
([Tur37a, Tur37b]) and Grzegorczyk ([Grz57]) from the thirties and fifties of the twenti-
eth century, respectively, Weihrauch and his followers developed the model of the Type Two
Turing Machine([Wei97a, Wei00]). Type Two Turing machines are Turing Machines which
compute a infinite output from an infinite input.

This model takes account of the fact that machines cannot compute on the real numbers itself
but on representations of them. To be able to represent uncountable sets, infinite information,
written as infinite words, is needed. As a main result it turns out that computability of a
real valued function depends on the chosen representation. Some of them appear to be more
useful than others. For instance, sequences of intervals converging to a real number can be
used as a reasonable representation. We obtain an equivalent representation using digits,
when we add a digit −1, written as 1, to the binary digits 0 and 1.

This representation allows to define the length of (finite prefixes of) of input and output
and thus leads to a notion of complexity of real valued functions. One can ask, how many
steps a machine must compute to gain an output of certain length. This defines the time
complexity. On the other hand, one can ask how many input digits are needed to compute
a certain number of output digits. This defines the lookahead of a function.

Another model is based on the theory of domains, i.e. complete partial orders (cpo-s). These
are structures which allow to order their elements by their amount of information. We write
x " y, iff y carries at least as much information as x. Complete partials orders — developed
by Scott ([Sco70]) — are mainly used to describe semantics of programming languages.
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10 CHAPTER 1. INTRODUCTION

Using intervals to approximate real numbers, the accuracy of the approximation can be
understood as the information carried by an interval. A smaller interval approximates a real
number in a more accurate way than a larger one. We can order the interval by inverse
set inclusion, i.e. x " y ⇐⇒ x ⊇ y for intervals x and y, and obtain a cpo. Escardo
([Esc96b, Esc96a]) calls this cpo the partial real line — or rather the partial unit interval I
in the case of interval boundaries between 0 and 1 — and uses them to describe the semantics
Real PCF . Real PCF is (the theoretical model of) a functional programming languages with
a type of real numbers interpreted by intervals. Real PCF defines a computability notion for
real numbers and real valued functions equivalent to that based on the Type Two machines
([Sch97, SS00]).

Real PCF is based on the lambda calculus and uses recursion as a programming concept. It
turns out that a lot of functions can be described by means of recursion schemes on intervals,
called the dyadic recursion.

Since recursion is at the heart of of the classical recursion theory, it is well studied for discrete
objects. Recursion depth as a measure for complexity of functions has been considered for
natural valued computable functions ([Grz53, Sch69, Hei61]) and adopted to computable
functions over other countable sets like words ([Wei74]) or terms ([Spr95]).

We want to transfer this approach to dyadic recursion. In particular, we ask how dyadic
recursion can be simulated by primitive recursion over words with letters 1, 0 and 1. The
base functions for dyadic recursion are left concatenation of the intervals L = [0, 1/2], C =
[1/4, 3/4] and R = [1/2, 1]. These operations correspond to the use of the letters 1, 0 and 1
in the signed digit representation

We develop uniform and ε-uniform recursion, to define functions on finite words that ap-
proximate functions on infinite words. The definition of these schemes will mimic dyadic
recursion as close as possible. In uniform recursion all parameters are recursion parameters,
there are no side parameters. ε-recursion can be seen as recursion without a start value.
There are no start values in the dyadic recursion.

We show that ε-recursive functions are monotonic. This fits very well into our concepts,
because monotonicity is needed to approximate infinite computations by finite ones.

In dyadic recursion one has to test whether a given interval lies in the left or the right half of
the unit interval ([ES97]). The crucial point in the simulation of interval functions by word
functions is a situation in which this test cannot give a clear answer. Think of an interval,
e.g. [1/4, 3/4], which overlaps the center of the unit interval. One cannot say this interval is
located either in the left or in the right half of the unit intervals, but it can be considered as
having two parts, one in the left half and one in the right half of the unit interval.

In this case two parallel computations will start, one for the part of the considered interval
lying in the left half of the unit interval, and one for the right part. Both results are combined
by subsuming their common information, which is domain-theoretically represented by the
infimum. In case of interval-cpo-s the infimum is defined by

[ξ, ξ′] & [η, η′] := [min(ξ, η),max(ξ′, η′)]
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Assume these intervals are results of two branches in a parallel computation of the interval
function F : I → I in the following context:

Let [ζ, ζ ′] be an interval, that contains the center of the unit interval, i.e. ζ ≤ 1
2 ≤ ζ ′ and

F ([ζ, 1/2]) = [ξ, ξ′] and F ([1/2, ζ ′] = [η, η′]. Then [ξ, ξ′] ∩ [η, η′] *= ∅ if F is continuous. The
infimum is the union of sets.

Further, if two sequences ([ξi, ξ′i])i∈N and ([ηi, η′i])i∈N are converging to the same real number,
say α ∈ [0, 1], then α ∈ [ξi, ξ′i] ∩ [ηi, η′i] and the sequence

(
[ξi, ξ

′
i] ∪ [ηi, η

′
i]
)
i∈N =

(
[ξi, ξ

′
i] & [ηi, η

′
i]
)
i∈N

will converge to α, as well.

We have to simulate parallel computations like this on words. We need a word function
simulating the infimum. We use the properties described above. Whenever a computation
is split into two parallel branches, two situations might occur, both have to be handled.

• Both branches might be valid, i.e. both of them deliver an approximation of the re-
sult. The result can be approximated by the common information of the result of the
branches.

• One of the branches may turn out to be invalid, i.e. the other branch will approximate
the result. The invalid branch has to be dismissed.

Our simulation of parallelism must be able to handle both situations. In every step of the
computation a branch might turn out as invalid. But the case that both branches stay valid
is possible, too. We have to be prepared for both possibilities. In particular, we cannot wait
until the validity question is solved.

To understand how parallel computations appear in word functions, one has to know how
words can be interpreted as intervals or real numbers. A finite word v1 . . . vl ∈ Σ∗ over the
alphabet Σ = {1, 0, 1} denotes the interval

[
1
2

+

(
l∑

i=1

vi · 2−(i+1)

)
− 2−(l+1),

1
2

+

(
l∑

i=1

vi · 2−(i+1)

)
+ 2−(l+1)

]

E.g. consider the sequence (wi) of words wi = 0i denoting the interval [ξi, ξ′i] =
[

2i−1
2i+1 , 2i+1

2i+1

]
.

We split these intervals into two halves
[

2i−1
2i+1 , 1

2

]
and

[
1
2 , 2i+1

2i+1

]
, denoted by the words 11i

and 11i, respectively.

Both interval parts converge to 1/2, or rather [1/2, 1/2], and thus the function values will
both converge to F ([1/2, 1/2]) when applying a function, say F : I → I.
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The simulating word function f inherits the cases for digits 1 and 1 directly from the dyadic
recursion scheme of F . So the function values f(11i) and f(11i) can easily be computed. Our
infimum operator inf allows us the computation of f(wi) by f(wi) = inf (f(11i), f(11i)).

On the other hand consider the case that a prefix of the input value appears to denote an
interval containing 1/2, but actually a further digit may disclose that one of the branches
is invalid. Consider the word w′i = 0i1. On reading the first i input digits both branches
appear valid. Reading the next input digit proofs the left branch invalid. It is cut off, we
continue with the right branch only.

An infimum operator on words solves this task. It can be defined with recursion depth
one. We use the this operator to show that every dyadic recursive function with a certain
recursion depth can be simulated by ε-recursive function with the same recursion depth.

This is a further tile in the puzzle of connections between classical computability theory and
the theory of computable real valued functions.

Chapter 2 presents some preliminaries on primitive recursion, cpo-s and computability of
real valued functions.

Chapter 3 will present recursion on word functions. The scheme of uniform recursion is
developed and monotonic functions are considered.

Chapter 4 introduces interval-cpo-s and dyadic recursion. The simulation of dyadic recursion
is developed. Several cases that might occur are considered. This results in a definition of
an infimum on words which is used for the construction of ε-uniformly recursive functions
to simulate dyadic recursive functions.



Chapter 2

Preliminaries

2.1 Conventions

Symbols will be used in certain contexts in this work as described in the following.

l, r, n k and similar stand for natural numbers.

We use n for the hierarchy levels, k for the arity of a function (the number of arguments)
and r for the number of letters in the respective alphabet. l usually denotes the word length
and similar stuff.

x, y and z and similar denote natural arguments and results of functions, where x is usually
the recursion parameter. y = (y1, . . . , yk) denotes a tupel of natural numbers.

u, v and w will denote words. Σ will denote an alphabet, Σ∗ the set of finite words, Σω the
set of infinite words, and Σ∞ = Σ∗ ∪ Σω the set of finite and infinite words over Σ.

f , g, h and similar denote functions on natural numbers or words.

Greek letters like ξ, ζ, η and similar denote real numbers, and ϕ, γ denote real-valued
functions.

Bold faced letters like x and y are used for the elements of the partial unit interval or rather
the partial real line, and we use capital letters like F and G for interval functions. Longer
names of interval functions will start with a capital letter like Mir or Id .

Aberrantly the basic functions on intervals like consL and tailL etc. are written in roman
letters.

You might also want to consult the Index of Symbols (page 107).

13



14 CHAPTER 2. PRELIMINARIES

2.2 Primitive Recursion and the Classical Grzegorczyk Hier-
archy

The increase of a natural valued function may be bounded by another function. The Grze-
gorczyk hierarchy classifies functions by these bounds and allows to compare bounds and
recursion depths.

We start with some definitions.

2.2.1 Definition
1. A function f : Nk → N is defined by simultaneous substitution from the functions

g : Nl → N and h1, . . . , hl : Nk → N, if for all x1, . . . , xk ∈ N holds

f(x1, . . . , xk) = g(h1(x1, . . . , xk), . . . , hl(x1, . . . , xk))

We write f = Sub(g;h1, . . . , hl)

2. A function f : Nk+1 → N is defined by primitive recursion from the functions g : Nk →
N and h : Nn+2 → N if

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

We write f = Prim(g;h)

3. The functions f1, . . . , fm : Nk+1 → N are defined by simultaneous primitive recursion
from the functions g1, . . . , gm : Nk → N and h1, . . . , hm : Nn+k+1 → N if

fi(0, y) = gi(y)
fi(x + 1, y) = hi(x, f1(x, y), . . . , fm(x, y), y)

We write f = SimPr(g;h).

We use y as a short hand for (y1, . . . , yk). In the recursion scheme we call x the recursion
parameter and y the side parameters.

2.2.2 Definition
1. The basic functions are

• the projections proj k
i : Nk → N, y .→ yi for 1 ≤ i ≤ k

• the constant functions constk
j : Nk → N, y .→ j for j, k ∈ N

• the successor function succ : N → N : x .→ x + 1

2. Let PR0 be the smallest set, that contains all basic functions and is closed under si-
multaneous substitution.



2.2. PRIMITIVE RECURSION 15

3. Let PRn+1 be the smallest set, that contains

PRn ∪ {f | f = Prim(g;h), g, h ∈ PRn}

and is closed under simultaneous substitution.

4. The number n is called the recursion depth of the functions in PRn.

5. PR =
⋃

n∈N PRn

6. The classes SPR and SPRn of simultaneous primitive recursive functions are defined
analogously.

7. A function f is called primitive recursive if f ∈ PR.

2.2.3 Lemma
For n ≥ 1 the class PRn is closed under case distinction: Let h0, h1 : Nk → N ∈ PRn and

h : Nk+1 → N,

{
(0, y) .→ h0(y)
(x + 1, y) .→ h1(y)

Then h ∈ PRn

In this case we write h = If (h0, h1)

Proof. Let

h′ : N3 → N,

{
(0, y, z) .→ y
(x + 1, y, z) .→ z

Thus h′ = Prim(proj 2
1; proj 4

4) ∈ PR1 and with h(x, y) = h′(x, h0(y), h1(y)) follows h =
Sub(h′; proj k+1

1 ,Sub(h0; proj k+1
2 , . . . , proj k+1

k+1),Sub(h1; proj k+1
2 , . . . , proj k+1

k+1)) ∈ PRn. !

2.2.4 Corollary
h0, h1 ∈ PR0 ⇒ If (h0, h1) ∈ PR1.

2.2.5 Remark
With aid of the substitution we can construct more general case distinctions like

h(y) : Nk → N, y .→
{

h0(y) if g(y) = 0
h1(y) if g(y) > 0

with h0, h1, g : Nk → N.

Obviously f = Sub(If (h0, h1); g, proj k
1, . . . proj k

k))

2.2.6 Example
1. add : N2 → N, (x, y) .→ x + y ∈ PR1
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2. mult : N2 → N, (x, y) .→ x · y ∈ PR2

3. exp : N → N, x .→ 2x ∈ PR2

2.2.7 Definition
A function f : Nk+1 → N is defined by bounded primitive recursion from the functions
g : Nk → N and h : Nk+2 → N and j : Nk+1 → N if f = Prim(g;h) and for all (x, y) ∈ Nn+1

f(x, y) ≤ j(x, y)

We write f = BoundPr(g, h; j).

2.2.8 Definition
We define the n-th Ackermann function Bn by

1. B0 : N → N with

B0 :






0 .→ 1
1 .→ 2

x + 2 .→ x + 4

2. Bn+1 : N → N, x .→ Bx
n(1)

3. B : N2 → N, (x, y) .→ Bx(y)

2.2.9 Lemma
1. Bn ∈ PR for all n ∈ N

2. B /∈ PR

2.2.10 Definition
The n-th Grzegorczyk class En is the smallest set which contains the basic functions, the n-th
Ackermann function Bn and is closed under substitution and bounded primitive recursion.

2.2.11 Theorem (Hierarchy)
1. PR1 ! SPR1 ! E1

2. En ! PRn = SPRn = En+1 for all n ≥ 2

3. En ! En+1 for all n ≥ 0

2.2.12 Definition
f : Nk+1 → N is built by application of the bounded µ-operator from g : Nk+1 → N and
h : Nk+1 → N (or: from h with bound g) if

f(x, y) = µz ≤ g(x, y). [h(z, y) = 0]

=
{

minM if M *= ∅
g(x, y) + 1 else
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with

M = {z | z ≤ g(x, y) ∧ h(z, y) = 0}

We write f = µ≤(g, h), in case g = proj n+1
1 we write f = µ≤(h).

The bounded µ-operator can easily be simulated by bounded primitive recursion.

Let f(x, y) = µz ≤ g(x, y). [h(z, y) = 0]. Then

f(x, y) = f ′(g(x, y), y)

with

f ′(0, y) =
{

0 if h(0, y) = 0
1 otherwise

f ′(z + 1, y) =






f ′(z, y) if f ′(z, y) ≤ z
z + 1 if f ′(z, y) = z + 1 ∧ h(z, y) = 0
z + 2 otherwise

and obviously

f(x, y) ≤ succ(g(x, y))

This shows that En is closed under application of the bounded µ-operator for n ≥ 1.

2.2.13 Example
The bounded µ-operator can be used to compute inverse functions of monotonically increas-
ing functions. The scheme used for that purpose can be seen in the following examples.

1. 1
√

x3 = µz ≤ x. (z + 1)2 > x

2. xdiv y = µz ≤ x.(z + 1) · y > x

Omitting the bounds of the µ-operator leads to a larger set of functions.

2.2.14 Definition
f : Nk → N is built by use of the µ-operator from h : Nk+1 → N if

f(x, y) = µz. [h(z, y) = 0]

=
{

minM if M *= ∅
↑ else
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with
M = {z | h(z, y) = 0 ∧ ∀j < z. h(j, y)↓}

f(x)↓ means that f is defined for input value x, and f(x)↑ means that f is not defined for
input value x. This notion is necessary as functions defined via the µ-operator may not be
total.

The set of µ-recursive functions is the smallest set which contains the basic functions and
is closed under substitution, primitive recursion and application of the µ-operator. These
functions are also called recursive or computable.

The last notion is based on the fact that recursive functions coincide with functions defined
by other computability models, like Turing machines and others.

The set of primitive recursive functions is a proper subset of the set of µ-recursive functions.
Primitive recursive functions are always total, µ-recursive functions may be partial.

Consider the Ackerman function B. It is µ-recursive and total but not primitive recursive.

2.3 Type Two Turing Machines and Infinite Computations

The Type-Two-Theory of computability considers how the notion of a computable function
with infinite input and output can be defined in terms of classical recursion theory. Details
can be found in [Wei97a, Wei97b, Wei00]

We could say, a real number ξ is computable iff a total recursive function fξ : N → N exists
with fξ(0) = 〈s, p〉 where s ∈ {0, 1}, p ∈ N and fξ(i) ∈ {0, . . . , 9} for i > 0, so that

ξ = (2(fξ(0))0 − 1)

(
(fξ(0))1 +

∞∑

i=1

fξ(i) · 10−i

)

Remember that 〈·〉 : N∗ → N, (x0, . . . , xn−1) .→ 〈x0, . . . , xn−1〉 is a primitive recursive coding
function, which has primitive recursive projections (·)k : N → N, 〈x0, . . . , xn−1〉 .→ xk, k =
0, . . . , n− 1 and a length function lth : N → N : 〈x0, . . . , xl−1〉 .→ l. We can concatenate two
codes via ∗ : N× N → N(〈x0, . . . , xl−1〉, 〈xl, . . . , xl+m〉 .→ 〈x0, . . . , xl+m〉.

s represents the sign of ξ, p the integer part. All other values of fξ represent single digits.

A first observation is that we have to compute all values of fξ to know ξ. This can be
understood as an infinite computation.

Of course a real number can be described in other ways than listing its digits. As known
from classical calculus real numbers can be approximated by rational numbers. We will need
a numbering of the rational numbers, i.e. a surjective function from the naturals onto the
rationals, which might be given by
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x1 x2 x3 . . .

y1 y2 y3 . . .























input tapes

M
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working tapes

z1 z2 z3 . . .
}

output tape

2

Figure 2.1: Principle of a TTM

νQ : N ⇀ Q : 〈i, j, k〉 .→
{ i−j

k if k *= 0
undefined otherwise.

We can extend it to Q = Q ∪ {−∞,+∞} by

νQ : N → Q : 〈i, j, k〉 .→






i−j
k if k *= 0
−∞ if k = 0 ∧ j < i
+∞ if k = 0 ∧ i ≤ j

Now we might define a real number ξ to be computable if a total computable function gξ

exists with

ξ = sup
n∈N

νQ(gξ(2n)) = inf
n∈N

νQ(gξ(2n + 1))

Are those definitions equivalent? It is easy to see that you can compute nested intervals
from decimal digits. But it is not possible to compute decimal digits from nested intervals
(see Lemma 2.3.6).

Moreover we must ask how a computable function can be defined based on those definitions.
We could think of functions that compute on Kleene indices of functions that represent real
numbers. It is not our aim to transform programs but to compute with real numbers as
directly as possible. So we have to compute on the representations.

Computing w.r.t. to representations is easier to handle, when we use Turing machines instead
of recursive functions. Infinite computations can be represented more intuitively by reading
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from an infinite input tape and writing on an infinite output tape.

A Type Two Turing Machine is a Turing Machine allowing infinite input and output. The
only restriction is that the input and output tapes are used in one direction only. This is
indicated in Figure 2.3. That restriction directly delivers the finiteness property.

2.3.1 Theorem (Finiteness property)
Every finite prefix of the output depends on a finite prefix of the input only.

2.3.2 Definition
Let Σ be an arbitrary (finite) alphabet and M a set with cardinality of the continuum. A
surjective function Σω ⇀ M is called a representation.

In the similar way, we can define a notation of a countable set M to be a surjective function
Σ∗ ⇀ M [Wei97a, Wei97b]. We could use numberings as well. It can be shown that
numberings and notations are equivalent[Sch97].

As announced we will use representations to define computability on the reals.

2.3.3 Definition
1. A real number ξ is called ρ-computable for a representation ρ : Σω ⇀ R if there is a

TTM exist produces an infinite output σ0σ1 . . . so that

ρ(σ0σ1 . . .) = ξ

2. Let ρ0, . . . , ρn : Σω ⇀ R be representations of the reals and f : Rn ⇀ R a function, f
is called (ρ1, . . . , ρn; ρ0)-computable if a machine M exists which computes a function
fM : (Σω)n ⇀ Σω with

f(ρ1(w1), . . . , ρn(wn)) = ρ0(fM (w1, . . . , wn)), whenever f(ρ1(w1), . . . , ρn(wn))↓

2.3.4 Lemma
1. Let ξ be ρ-computable and f : R ⇀ R (ρ; ρ′)-computable, then f(ξ) is ρ′-computable.

2. Let f, g : R ⇀ R be (ρ′; ρ′′) and (ρ; ρ′)-computable, then f ◦ g is (ρ; ρ′′)-computable.

Proof. With the aid of the finiteness property the computation of two machines can be
simulated by a single machine, which computes what is expected. !

Defining computability of real functions with respect to the used representations is neces-
sary because of a lack of equivalence, i.e. if we use different representations the classes of
computable functions may also differ.

We call a representation ρ reducible to ρ′ (ρ ≤ ρ′) if a machine M exists which computes
a function fM : Σω ⇀ Σω with ρ′(fM (w)) = ρ(w) for all w ∈ dom(ρ), i.e. idR : ξ .→ ξ is
(ρ; ρ′)-computable. Two representations are equivalent (ρ ≡ ρ′) if each of them is reducible
to the other.

We have given some ideas how to represent real numbers. We will show how they fit in the
defined notions.



2.3. TYPE TWO TURING MACHINES AND INFINITE COMPUTATIONS 21

2.3.5 Definition
• One of the most important representations of the reals is the interval representation:

ρI : Σω ⇀ R, u0,v0,u1,v1 . . . .→ ξ

for ξ = inf v̇i = sup u̇i, where u .→ u̇ is a numbering of the rationals and Σ is a suitable
alphabet.

• Of course we may give a definition based on the decimal digits.

δdec : Σω ⇀ R, σan . . . a0.a−1a−2 . . . .→ σ
n∑

i=−∞
ai10i

with σ ∈ {−,+} and ai ∈ {0, . . . , 9}.

2.3.6 Lemma
δdec ≤ ρI but ρI *≤ δdec

Proof.

• To a given decimal representation w = σan . . . a0.a−1a−2 . . . an interval representation
w′ = u0,v0,u1,v1 . . . with

[u̇i, v̇i] =




n∑

j=−i

aj10j − 10−i,
n∑

j=−i

aj10j + 10−i





can be computed by a TTM. In particular using the above numbering of Q the output
consists of

ui =

{
〈
∑n+i

j=0 aj10j , 1, 10i〉 if σ = −
〈0,

∑n+i
j=0 aj10j + 1, 10i〉 if σ = +

and similar for vi.

• Now we assume, that the interval representation is reducible to the decimal represen-
tation, i.e. we have a machine that computes decimal representations from intervals.
Assume that the machine has to deal with an input w = u0,v0,u1,v1 . . . with

[ui, vi] =




−i∑

j=−1

9 · 10j ,
−i∑

j=0

10j





Because of the finiteness property the machine cannot decide whether the first digit of
the output has to be a “0” or a “1”. Assume after reading n intervals of the above kind
the machine decides “1” to be the first digit of the output. It has to produce the same
output for another input w′ = u′0,v

′
0,u

′
1,v

′
1, . . . like

[u′i, v
′
i] =

{
=

[ui, vi] if 0 ≤ i ≤ n[∑−n
j=−1 9 · 10j ,

∑−n
j=−1 9 · 10j

]
if i > n
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Thus

ρI(w′) = 0. 9 . . . 9︸ ︷︷ ︸
n digits

< 1

So the output cannot begin with the digit “1”.

The same contradiction occurs in the other case.

!

But a non-uniform version of the equivalence holds, in the sense that a real number is ρI -
computable iff it is δdec-computable (see [Wei00, Sch97]).

We can improve digit representations if we allow negative digits to be used. We give the
negative digit binary representation

ρ2 : Σω ⇀ R, an . . . a0.a−1a−2 . . . .→
n∑

i=−∞
ai2i

with ai ∈ {1, 0, 1}.

2.3.7 Lemma

ρ2 ≡ ρI

Proof. [Wei00, Sch97] !

Additionally it may be mentioned that all digit representations allowing negative digits are
equivalent, i.e we are free to choose one of the representations. The negative digit binary
representation will serve as an example for all others.

2.4 Domain Theoretic Preliminaries

The following preliminaries are not used until Chapter 4.

2.4.1 Definition
1. A partial order is a pair (D,") where D is a non-empty set and " ⊆ D × D is a

reflexive, transitive and symmetric relation on D.

2. A non-empty subset X ⊆ D of a partial ordered set is called directed if ∀x, y ∈ X.∃z ∈
X : x " z ∧ y " z, i.e. for each two elements of X a common upper bound exists.

3. z ∈ D is called least upper bound (lub, supremum) of a subset X ⊆ D if

• ∀x ∈ X.x " z

• ∀y ∈ D. (∀x ∈ X. x " y) ⇒ z " y
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4. (D,",⊥) is called a complete partial order (cpo) if

• (D,") is a partial order,
• ⊥ is a the least element of D, i.e. ∀d ∈ D : ⊥ " d,
• every directed subset of D has a lub.

We write D instead of (D,",⊥) if no confusions are expected. The lub of a directed set X
is written as

⊔
X. We write x A y instead of

⊔
{x, y}.

2.4.2 Definition
Two elements x, y of a cpo are called compatible if they have a common upper bound,
i.e. ∃z ∈ D : x " z ∧ y " z. We write x ↑ y.

For any set M we can define a flat cpo (M⊥,",⊥), with M⊥ := M ∪̇ {⊥} and

x " y ⇐⇒ (x = ⊥ ∨ x = y)

In this way we obtain the flat cpo-s of naturals N⊥ and of Boolean values {tt,ff}⊥.

2.4.3 Definition
For cpo-s D and E a function f : D → E is called continuous if for every directed set
X ⊆ D

• the set f(X) ⊆ E is directed and

• f(
⊔

X) =
⊔

f(X).

2.4.4 Lemma
Every continuous function is monotonic.

Proof.[AJ94, DW80] !

2.4.5 Lemma
The set of continuous functions [D → E] with the pointwise ordering

f "[D→E] g ⇐⇒ (∀d ∈ D f(d) "D g(d))

and least element

⊥[D→E] = λd ∈ D.⊥E

is a cpo.

Proof.[AJ94, DW80] !
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2.4.6 Definition
A pair of continuous functions s : D → E and r : D → E is called

• a section-retraction pair if r ◦ s = idE,

• a projection-embedding pair if additionally s ◦ r " idE.

2.4.7 Definition
Let D be a cpo.

1. The way-below order C ⊆ D ×D is defined by

d C e : ⇐⇒ ∀ directed M ⊆ D : e "
⊔

M ⇒ ∃m ∈ M : d " m

2. d ∈ D is called compact (isolated) if d C d.

The set of compact elements of D is denoted by b(D).

2.4.8 Definition
B ⊆ D is called a basis of D if for all d ∈ D the set {b ∈ B | b C d} is directed and
d =

⊔
{b ∈ B | b C d}.

A cpo is called

Ê

• continuous if it has a basis and

• ω-continuous if it has a a countable basis.

2.4.9 Lemma
For a continuos cpo D with basis B holds: b(D) ⊆ B.

In some cases two elements d, e ∈ D of a cpo D might share common information f , i.e. f " d
and f " e. We are interested in maximal common information, called the infimum or greatest
lower bound of two elements.

2.4.10 Definition
2.4.1 Let (D,",⊥) be a cpo and d, e ∈ D. f ∈ D is called the infimum of d and e if

• f " d and f " e,

• if f ′ " d and f ′ " e then f ′ " f .

A very important property of continuous functions is the existence of a least fixed point.
This is described in the Fixed Point Theorem of Kleene and Tarski (see [AJ94]).
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2.4.11 Theorem
1. Let (D,",⊥) be a cpo and f : D → D be a continuous function, then a least fixed

point fix(f) exists with

fix(f) =
⊔

i∈N

(
f i(⊥)

)

2. The fixed point operator

fix : [D → D] → D, f .→
⊔

i∈N

(
f i(⊥)

)

is continuous.
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Chapter 3

Word functions

Words over a given alphabet are a common model for data to be processed by computers.
Any finite data can be encoded into finite words. There are also extensions like considering
infinite words as representations of infinite data, like real numbers.

Natural numbers can be understood as words over a singleton alphabet, say {|}. We want
to extend the notions presented in Section 2.2.

3.1 Basics

From now on we consider a finite alphabet Σ = {a1, . . . , ar} with r ≥ 2. Let Σ∗ denote the
set of finite words over that alphabet. The empty word is denoted ε.

3.1.1 Definition
The prefix relation ≤p and the length comparison ≤l are defined as follows:

Let x, y ∈ Σ∗, then

1. x≤p y ⇐⇒ ∃z ∈ Σ∗. x · z = y

2. x≤l y ⇐⇒ |x| ≤ |y|

The prefix relation is reasonable for infinite words as well. Let Σω be the set of infinite words
over the alphabet Σ. Then let Σ∞ = Σ∗ ∪ Σω the set of finite and infinite words.

The concatenation of words is usually defined as a function on finite words, i.e.

· : (Σ∗)2 → Σ∗, (v1 . . . vl, w1 . . . wm) .→ v1 . . . vlw1 . . . wm

The second word may also be infinite. In this case we get

27
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· : Σ∗ × Σω → Σ∗, (v1 . . . vl, w1 . . .) .→ v1 . . . vlw1 . . .

Obviously the concatenation of two infinite words is not reasonable.

3.1.2 Definition
The prefix relation ≤p ⊆ (Σ∞)2 is defined by

x≤p y ⇐⇒ (x ∈ Σω ∧ x = y) ∨ (x ∈ Σ∗ ∧ ∃z ∈ Σ∞. y = x · z)

3.1.3 Remark
(Σ∞,≤p, ε) is a cpo.

3.2 Primitive Recursion on Word Functions

We are going to transfer the notion of primitive recursion to word functions. We have to say
which the basic functions are and how the primitive recursion scheme is supposed to look
like. Substitution is adopted directly. The following definitions are based on [Wei74].

3.2.1 Definition
The base functions on words are

1. the successor functions coni : Σ∗ → Σ∗, w .→ ai · w, 1 ≤ i ≤ r,

2. projections proj k
i : (Σ∗)k → Σ∗, (w1, . . . , wk) .→ wi, 1 ≤ i ≤ k,

3. constant functions constk
i : (Σ∗)k → Σ∗, (w1, . . . , wk) .→ ai, k ∈ N, 1 ≤ i,≤ r.

3.2.2 Definition
1. A function f : (Σ∗)k → Σ∗ is defined by simultaneous substitution from functions

g : (Σ∗)l → Σ∗ and h1, . . . , hl : (Σ∗)k → Σ∗, if f.a. x ∈ (Σ∗)k

f(x) = g(h1(x), . . . , hl(x))

We write f = Sub(g;h1, . . . , hl) or f = Sub(g;h).

2. A function f : (Σ∗)k+1 → Σ∗ is defined by primitive recursion from functions g :
(Σ∗)k → Σ∗ and h1, . . . , hr : (Σ∗)k+2 → Σ∗ if

f(ε, y) = g(y)
f(aix, y) = hi(x, f(x, y), y)

We write f = Prim(g;h1, . . . , hr) or f = Prim(g;h)
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3. Functions f1, . . . , fl : (Σ∗)k+1 → Σ∗ are defined by simultaneous primitive recursion
from functions g1, . . . , gj : (Σ∗)k → Σ∗ and h1,1, . . . hl,k : (Σ∗)n+k+1 → Σ∗ if

fj(ε, w) = gj(w)
fj(aiv, w) = hj,i(v, f1(x,w), . . . , fl(v, w), w)

We write (f1, . . . , fl) = SimPr(g, h;).

3.2.3 Definition (Recursion classes)
1. PR(Σ) is the set of primitive recursive functions over Σ∗. It is defined as the smallest

set which contains the basic functions and is closed under substitution and primitive
recursion.

2. PRn(Σ) is the set of primitive recursive functions with recursion depth n, i.e. the set
of functions which are defined with at most n nested primitive recursions.
Formally PRn(Σ) is defined inductively:

• PR0(Σ) is the smallest set that contains the basic functions and is closed under
substitution.

• Let n ∈ N. Then PRn+1(Σ) is the smallest set that contains

PRn(Σ) ∪ {Prim(g;h1, . . . , hr) | g, h1, . . . , hr ∈ PRn(Σ)}

and is closed under substitution.

3. The classes SPR(Σ) and SPRn(Σ) of simultaneously primitive recursive functions are
defined analogously.

Obviously

PR(Σ) =
⋃

n∈N
PRn(Σ)

3.2.4 Definition
A function f : (Σ∗)k+1 → Σ∗ is defined by bounded primitive recursion from g : (Σ∗)k → Σ∗,
h1, . . . , hr : (Σ∗)k+2 and j : (Σ∗)k+1 → Σ∗ if

f = Prim(g;h1, . . . , hr)

and

for all v1, . . . , vk+1

f(v1, . . . , vk+1)≤l j(v1, . . . , vk+1)

We write f = BoundPr(j, g;h1, . . . , hr)
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Case distinction can be simulated by primitive recursion, this might be useful in the definition
of functions (compare Lemma 2.2.3).

3.2.5 Lemma
For n ≥ 1 PRn(Σ) is closed under case distinction, i.e. g, h ∈ PRn(Σ) then f ∈ PRn(Σ) if

f(v, w) =

{
g(w) if v = ε

h(w) else

Proof. Consider the recursion scheme

c(ε, v, w) = v

c(aiu, v, w) = w

Then f(v, w) = c(v, g(w), h(w)). !

3.2.6 Definition
The Ackermann functions on words are defined by

1. BΣ
0 (v, w) = con1 (v)

2. BΣ
n+1(ε, w) = w

and BΣ
n+1(aiv, w) = BΣ

n (BΣ
n+1(v, w), w)

Bn is called the n-th Ackermann function over Σ.

3.2.7 Definition
The class En(Σ), the n-th Grzegorczyk class over Σ, is the smallest set of functions which
contains the basic functions, the n-th Ackermann function over Σ and is closed under simul-
taneous substitution and bounded primitive recursion.

3.2.8 Example
We consider some examples of primitive recursive functions. Some of them might be useful.

To ensure the position in the hierarchy we give recursion schemes and bounding functions if
not obvious.

1. first : Σ∗ → Σ∗,
{

ε .→ ε
aiv .→ ai

∈ PR1(Σ) ∩ E0(Σ)

2. rest : Σ∗ → Σ∗,
{

ε .→ ε
aiv .→ v

∈ PR1(Σ) ∩ E0(Σ)

3. cut : (Σ∗)2 → Σ∗, (v1 . . . vl, w1 . . . wr) .→
{

ε if l ≥ r
wl+1 . . . wr if l < r

∈ PR2(Σ) ∩ E0(Σ)
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cut(ε, w) = w

cut(av,w) = rest(cut(v, w))

and cut(v, w)≤l w≤l BΣ
0 (w, w)

4. rev : Σ∗ → Σ∗, v1 . . . vr .→ vr . . . v1 ∈ PR2(Σ) ∩ E0(Σ)

Consider

ri(ε) = ai

ri(ajv) = ajri(v)

and

rev(ε) = ε

rev(aiv) = ri(rev(v))

5. rcut : (Σ∗)2 → Σ∗, (v1, . . . , vl, w1, . . . , wr) .→
{

ε if l ≥ r
w1 . . . wr−l if l < r

∈ PR2(Σ) ∩ E0(Σ)

rcut(v, w) = rev(cut(v, rev))

6. conc : (Σ∗)2 → Σ∗, (v1 . . . vl, w1 . . . wr) .→ v1 . . . vlw1 . . . wr ∈ PR1(Σ) ∩ E1(Σ)

conc(ε, w) = w

conc(av, w) = a · conc(v, w)

and |conc(v, w)| = |v| + |w| ≤ |BΣ
1 (w)|

7. shuffleε : (Σ∗)2 → Σ∗, (v1 . . . vl, w1 . . . wr) .→ v1w1 . . . vkwk with k = min(l, r)

Consider the following simultaneously recursive functions s, t : (Σ∗)2 → Σ∗

t(ε, w) = w

s(ε, w) = ε

t(av, w) = rest(t(v, w))
s(av, w) = a · first(t(v, w)) · s(v, w)

= a · (conc(first(t(v, w)), s(v, w)))

Then s, t ∈ SPR2(Σ).

shuffleε(v, w) = s(rcut(cut(w, v), v), rev(rcut(cut(v, w), w)))

Then shuffleε ∈ PR2(Σ) ∩ E1(Σ)
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8. shuffle : (Σ∗)2 → Σ∗, (v1 . . . vl, w1 . . . wr) .→






v1w1 . . . vlwlwl+1 . . . wr if l < r
v1w1 . . . vlwl if l = r
v1w1 . . . vrwrvr+1 . . . vl if l > r

shuffle(v, w) = shuffleε(v, w) · cut(v, w) · cut(w, v) ∈ SPR2(Σ) ∩ E1(Σ)

Note, that the recursion scheme for s and t in this example might not be recognized as
a simultaneous recursion scheme on first sight, since s relies on former values of t but
not vice versa. We could define s and t by an ordinary recursion scheme, as well. But
that would make as climb higher within the hierarchy and we had s ∈ PR3(Σ).

9. half : Σ∗ → Σ∗, v1v2 . . . vl .→ v2v4 . . . vl DIV 2 ∈ SPR1(Σ)

half (ε) = ε

half (av) = half ′(v)
half ′(ε) = ε

half ′(av) = a · half (v)

Obviously half ′ : Σ∗ → Σ∗, v1v2 . . . vl .→ v1v3 . . . v(l+1) DIV 2 ∈ SPR1(Σ)

We cite important results from [Wei74]:

3.2.9 Lemma
Let f be primitive recursive. Then

f ∈ En(Σ) ⇐⇒ ∃fl : N → N ∈ En.
[
∀v ∈ (Σ∗)k. |f(v1, . . . , vk)| ≤ fl(|v1|, . . . , |vk|)

]

3.2.10 Theorem (Hierarchy Theorem)
1. PR1(Σ) ! SPR1(Σ) ! E1(Σ)

2. En(Σ) ! PRn(Σ) = SPRn(Σ) = En+1(Σ) for all n ≥ 2.

Sometimes we need auxiliary functions which use additional letters. Those can be simulated.

3.2.11 Lemma
Let Σ = {a1, . . . , ar} be an alphabet and let Σ′ = {a1, . . . , ar, ar+1} be an alphabet with an
additional symbol ar+1 /∈ Σ.

Let f ′ : (Σ′)∗ → (Σ′)∗ ∈ PRn(Σ′) be a primitive recursive word function over Σ′.

Let f ′|Σ∗ denote the restriction of f ′ to Σ∗, i.e. f ′|Σ∗ : Σ∗ → (Σ′)∗ with f ′|Σ∗(v) = f ′(v) for
all v ∈ Σ∗.

If f ′(Σ∗) = {f(v) | v ∈ Σ∗} ⊆ Σ∗, then f ′|Σ∗ ∈ SPRn(Σ).

Proof.

Primitive recursion over Σ′ can be simulated by simultaneous primitive recursion over Σ.
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We encode words from Σ′ in Σ by

in1 : Σ′ → Σ, ai .→
{

a1ai if 1 ≤ i ≤ r

a2a1 if i = r + 1

and

in : (Σ′)∗ → Σ∗, v1 . . . vl .→ in1(v1) . . . in1(vl)

Note, that in|Σ∗ ∈ PR1(Σ)

The inverse function out is defined straightforwardly.

We construct a function f ∈ SPRn(Σ) for every function f ′ ∈ PRn(Σ′) with

f ′ = out ◦ f ◦ in

Then the claim follows from f ′(Σ∗) ⊆ Σ∗. We can choose out = half in this case.

We use structural induction:

• The basic functions can be simulated easily. There is nothing to do for the projection.
For every constant function f ′ : v .→ w choose f : v .→ in(w) and for the successor
functions f ′ = coni choose f : v .→ in1(ai) · v.

• f ′ = Sub(g′; h′). Choose f = Sub(g;h)

• f ′ = Prim(g′;h′), i.e.

f ′(ε, w) = g′(w)
f ′(aiv, w) = h′i(v, f ′(v), w)

Choose

f(ε, w) = g(w)
f(a1v, w) = f1(v, w)
f(a2v, w) = f2(v, w)

f1(aiv, w) = hi(v, f(v), w)
f2(a1v, w) = hr+1(v, f(v), w)

This scheme shows only the occurring cases. The gaps might be filled arbitrarily to
obtain a complete scheme.

!
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3.3 Monotonic functions

Computing on real numbers requires to represent them as infinite objects (usually words).
We want functions on those infinite words to have the finiteness property , i.e. each finite
prefix of the output depends on only a finite prefix of the input. As a direct consequence an
output cannot be revoked by reading more input, but the output can only be extended.

To approximate these infinite computations by finite functions they have to respect this
property. This is done by monotonic functions.

If we additionally want the infinite functions to be total, i.e. every infinite input produces
an infinite output, we need their finite approximations to extend every output by extending
the input. These functions are called fully monotonic.

3.3.1 Definition
A word function f : (Σ∗)k → Σ∗ is called

• monotonic if for all w1, . . . , wk, w′1, . . . , w
′
k ∈ Σ∗ holds

f(w1, . . . , wk)≤p f(w1w
′
1, . . . , wkw

′
k)

• fully monotonic if f is monotonic and for any natural number l and all words v1, . . . , vk ∈
Σ∗ words v′1, . . . , v

′
k ∈ Σ∗ exist with

|f(v1v
′
1, . . . , vkvk′)| ≥ l

As we will see, monotonic function are an import class of functions. An easy way to construct
monotonic functions is to restrict the scheme of primitive recursion. This leads to an new
principle, called ε-primitive recursion.

3.3.2 Definition
1. A function f : (Σ∗)k+1 → Σ∗ is defined by ε-primitive recursion from h1, . . . , hr :

(Σ∗)k+2 → Σ∗ if

f(ε, w) = ε

f(aiv, w) = hi(v, f(v, w), w) i ∈ {1, . . . , r}

We write f = Primε(h1, . . . , hl) = Primε(h).

2. The classes ε-PRn(Σ) are defined analogously to PRn(Σ). ε-PR(Σ) =
⋃

n∈N ε-PRn(Σ)
is the class of ε-primitive recursive functions.

3. Simultaneous ε-primitive recursion and the respective classes ε-SPRn(Σ) and ε-SPR(Σ)
are defined analogously
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There is a notion of ε0-recursion, which is something completely different. We will use the
notion of ε-recursion assuming that no confusion arrises.

Note that being ε-primitive recursive does not mean, that a function maps ε to ε. We did
only change the recursion scheme but not the scheme of simultaneous substitution.

3.3.3 Lemma
Every ε-recursive function is monotonic.

Proof. By induction over the construction of ε-primitive recursive functions:

• All basic function are monotonic.

• f = Sub(g;h1, . . . , hl).

W.l.o.g. let l = 1, i.e. f = g ◦ h. By induction hypothesis g and h are monotonic. We
have

h(v)≤p h(vw)

and

g(h(v))≤p g(h(vw))

• f (k) = Primε(h
(k+1)
1 , . . . , h(k+1)

r )

By induction hypothesis h1, . . . , hr are monotonic.

W.o.l.g. let k = 2.

We will show f(v, v2)≤p f(vw, v2w2)

Induction over the length |v| of the recursion parameter

– v = ε.

f(ε, v2) = ε≤p f(w, v2w2)

– v = aiv′.

f(aiv
′, v2) = hi(v′, f(v′, v2), v2)

(+)
≤p hi(v′w, f(v′w, v2w2), v2w2) = f(vw, v2w2)

(+) uses the monotonicity of hi and the induction hypothesis.

!

3.3.4 Corollary
Every simultaneously ε-recursive function is monotonic.

The proof is obviously the same as in the case before.
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3.3.5 Example
Some monotonic functions and their (ε)-recursion schemes:

1. The function shuffleε (Example 3.2.8) is monotonic, but the function shuffle is not.
The functions half and half ′ are monotonic, as well.

2. cont(w1 . . . wl) = w1w1w2w1w2w3 . . . w1 . . . wl

We define an auxiliary function

cont ′(w1 . . . wl) = a1w1a1w1a2w2a1w1a2w2a2w3 . . . a1w1a2w2 . . . a2wl

via the recursion scheme

cont ′(ε) = ε

cont ′(aiw) = a1ai · ins i(cont ′(w))

with

ins i(ε) = ε

ins i(a1w) = a1aia2ins ′i(w)

ins ′i(ε) = ε

ins ′i(ajw) = aj · ins ′i(w) j *= 1
ins ′i(aw) = a · ins i(w)

We get

cont = half ◦ cont ′

and

cont ∈ ε-SPR2(Σ) ∩ E2(Σ)

3. The next example is similar:

rcont : Σ∗ → Σ∗ : w1 . . . wl .→ w1w2w1w3w2w1 . . . wl . . . w1 ∈ PR2(Σ)

rcont is monotonic.
Look at the recursion scheme:

rcont(ε) = ε

rcont(av) = rcont(v) · rev(av)
= conc(rcont(v), rev(av))
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This scheme shows rcont ∈ PR3(Σ) since rev ∈ PR2(Σ) and conc ∈ PR1(Σ)

This scheme uses the functions rev and conc which are not monotonic and thus not
ε-recursive.

But we can construct an ε-recursive version of rcont analogously to the previous ex-
ample cont .

We define

rins i(ε) = ε

rins i(ajv) = aj · rins ′i(v)

rins ′i(ε) = ε

rins ′i(a1v) = a2aja1 · rins i(v)
rins ′i(ajv) = aj · rins i(v) j *= 1

and

rcont ′(ε) = ε

rcont ′(aiv) = aia1 · rins i(rcont ′(v))

and

rcont = half ′ ◦ rcont ′

This shows rins i ∈ ε-SPR1(Σ) and

rcont ∈ ε-SPR2(Σ) ⊆ SPR2(Σ) = PR2(Σ)

3.3.6 Definition
A function π : (Σ∗)k → Σ∗ is called a tuple coding, if functions π1, . . . ,πk : Σ∗ → Σ∗ exist
such that for all 1 ≤ i ≤ k and all v1, . . . , vk ∈ Σ∗

πi(π(v1, . . . , vk)) = vi

The functions π1, . . . ,πk are called the projections of π.

3.3.7 Lemma (Non-monotonicity of codings)
For k ≥ 2 let π : (Σ∗)k → k be a tuple coding and π1, . . . ,πk : Σ∗ → Σ∗ the respective
projections, i.e. πi(π(w1, . . . , wk)) = wi for all i ∈ {1, . . . , k}.

Then at least one of the functions π, π1, . . . ,πk is not monotonic.
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Proof. W.l.o.g. let k = 2. Assume π, π1 and π2 are monotonic. Then

π(ε, a) ≤p π(b, a)
π(b, ε) ≤p π(b, a)

where a, b ∈ Σ are symbols.

Then either π(ε, a)≤p π(b, ε) or π(b, ε)≤p π(ε, a). In case π(ε, a)≤p π(b, ε) we have

a = π2(π(ε, a))≤p π2(π(b, ε)) = ε

which is an contradiction to a ∈ Σ. !

3.3.8 Definition
A function π : (Σ∗)k → Σ∗ is called a (tuple) pre-coding, if functions π1, . . . ,πk : Σ∗ → Σ∗

exist such that for all 1 ≤ i ≤ k and all v1, . . . , vk ∈ Σ∗

πi(π(v1, . . . , vk))≤p vi

and

|πi(π(v1, . . . , vk))| ≥ min{|v1|, . . . , |vk|}

The functions π1, . . . ,πk are called the projections of π.

3.3.9 Example
1. Every coding is a pre-coding.

2. shuffleε is a monotonic pre-coding with projections half and half ′.

3.3.10 Definition
Let f : (Σ∗)k → Σ∗ be a fully monotonic word function. A monotonic function fslow :
(Σ∗)k → Σ∗ is called a slow version of f if

• fslow (v)≤p f(v) for all v ∈ (Σ∗)k and

• for all u ∈ (Σ∗)k exists v ∈ (Σ∗)k with ui≤p vi and f(u)≤p fslow (v)

3.3.11 Lemma
The slow versions of fully monotonic word functions are fully monotonic.

Proof. Follows directly from the definitions. !

3.3.12 Example
Let π : (Σ∗)k → Σ∗ be a pre-coding with projections π1, . . . ,πk. Then πi ◦π is a slow version
of the projection proj k

i for all 1 ≤ i ≤ k.
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To show SPRn ⊆ PRn in [Wei74] a coding function is necessary. Since we do not have a
coding function in ε-SPRn(Σ) we cannot adopt that proof.

3.4 Uniform and truly uniform recursion

In primitive recursion we distinguish between the recursion parameter and (a couple of) side
parameters. Side parameters are useful in finite computations only.

We consider the following example of a primitive recursive and monotonic function which
has a side parameter.

Let f ∈ ε-PR1(Σ) with f = Primε(h). The ε-recursion enforces f(ε, v) = ε for all v ∈ Σ∗,
that does not contradict the monotonicity.

Further consider the value f(ai, w), we obtain:

f(ai, w) = hi(ε, ε, w)

The purpose of the functions hi ∈ ε-PR0(Σ) is to append a word, say ui, to one of its
parameters. Appending it to the recursion parameter or the preceding value would ignore
the side parameters. Appending it to one of the side parameters can be understood as
changing the role of this side parameter and the recursion parameter, the remainder of the
former recursion parameter is ignored.

If we want to use all parameters in an infinite computation, they must have equal rights in
the recursion scheme.

To be able to consider infinite computation we introduce uniform recursion in which we have
only recursion parameters but no side parameters.

We will see, that the difference remains in recursion depth one, but will vanish in higher
levels.

We give a definition for two parameters. The definition would hardly be readable with more
parameters.

3.4.1 Definition
A function f : (Σ∗)2 → Σ∗ is defined by uniform recursion from w0 ∈ Σ∗, g′1, . . . g

′
r, g

′′
1 , . . . , g′′r :

(Σ∗)2 → Σ∗ and h1,1, . . . , h1,r, . . . hr,1, . . . , hr,r : (Σ∗)3 → Σ∗ if

f(ε, ε) = w0 (3.1)
f(aiu, ε) = g′i(u, f(u, ε)) (3.2)
f(ε, ajv) = g′′j (v, f(ε, v)) (3.3)

f(aiu, ajv) = hi,j(u, v, f(u, v)) i, j ∈ {0, . . . , r} (3.4)

We write
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f = Unif (w0; g′1, . . . , g
′
r, g

′′
1 , . . . , g′′r ;h11, . . . , h1r, . . . , hr1, . . . , hrr)

or

f = Unif (w0; g′, g′′;h)

Let UR(Σ) denote the set of uniformly recursive functions, i.e. the smallest set which contains
the basic functions and is closed under composition and uniform recursion, and URn(Σ) the
subset of functions which use at most n nested uniform recursions.

Simultaneously uniform recursion and its classes SURn(Σ) and SUR(Σ ) are defined analo-
gously.

We will use functions with only two parameters whenever possible. Proofs and definitions
are essentially the same with higher arities, but with a more confusing notation.

In case of one parameter the definition of primitive and uniform recursion coincide.

Analogously to 2.2.3 and 3.2.5 we can define case distinctions.

3.4.2 Lemma
URn(Σ) is closed under case distinction.

3.4.3 Example
Some examples of uniformly recursive functions:

1. shuffle ∈ UR1(Σ)

shuffle(ε, ε) = ε

shuffle(aiu, ε) = ai · shuffle(u, ε)
shuffle(ε, ajv) = aj · shuffle(ε, v)

shuffle(aiu, ajv) = aiaj · shuffle(u, v)

2. Let 1 ≤ i ≤ r and insert i : (Σ∗)2 → Σ∗

insert i(ε, v) = aiv (3.5)
insert i(au, ε) = ai

insert i(au, bv) = b · insert i(u, v)

Line 3.5 combine the lines insert i(ε, bv) = aibv and insert i(ε, ε) = ai in the recursion
scheme.

Then
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insert i(u1 . . . ul, v1 . . . vm) =
{

v1 . . . vlaivl+1 . . . vm if l ≤ m
v1 . . . vmai if m < l

and inserti ∈ UR1(Σ)

3. cut : (Σ∗)2 → Σ∗, (u1 . . . ul, v1 . . . vm) .→ vm−̇l . . . vm ∈ UR1(Σ)

cut(ε, v) = v

cut(au, ε) = ε

cut(au, bv) = cut(u, v)

4. conc : (Σ∗)2 → Σ∗, (v, w) .→ v · w ∈ UR2(Σ)

conc(u, ε) = u

conc(ε, bv) = bv

conc(aiu, ajv) = ai · insert j(u, conc(u, v))

5. cont : Σ∗ → Σ∗ ∈ UR3(Σ)

We compare uniform and primitive recursion.

3.4.4 Lemma
1. UR1(Σ) ⊆ E1

2. For n ≥ 2 holds URn(Σ) ⊆ En+1

Proof. W.l.o.g. we consider functions of arity k = 2. The proof is essentially the same for
higher arities. For arity 1 it is obvious. Notice that we need higher arities in the induction
hypothesis.

To simulate the equal rights of the parameters of a uniformly recursive function we have to
merge them into a single parameter. This can be done by shuffling. The recently defined
function shuffle is not sufficient, it will cause problems on sorting out the parameters again.
We define:

Shuffle(2) : (Σ∗)2 → Σ∗, (u1 . . . ul, v1 . . . vm) .→

.→






a1u1a1v1a1u2a1v2 . . . a1ula1vl if l = m
a1u1a1v1a1u2a1v2 . . . a1ula1vla2a2vl+1 . . . vm if l < m
a1u1a1v1a1u2a1v2 . . . a1uma1vma2a1um+1 . . . ul if l > m

(3.6)

Since

Shuffle(2) = inj 1(shuffleε(u, v) · ifcon(a2a2, cut(u, v)) · ifcon(a2a1, cut(v, u)))
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with

inj i : Σ∗ → Σ∗, v1 . . . vl → aiv1 . . . aivl

and

ifcon : (Σ∗)2 → Σ∗,
{

(u, ε) .→ ε
(u, av) .→ u · a · v

we obtain

Shuffle(2) ∈ E1(Σ) ∩ SPR2(Σ) (3.7)

We can define Shuffle(k) : (Σ∗)k → Σ∗ for all n ≥ 1 by

Shuffle(1)(v) = v

Shuffle(k+1)(v1, . . . , vk, vk+1) = Shuffle(2)(Shuffle(n)(v1, . . . , vk), vk+1)

The inverse functions

Deshufflek ,i : (Σ∗)2 → Σ∗ : Deshuffle2 ,i(Shuffle(k)(v1, . . . , vk)) = vi for 1 ≤ i ≤ k, k ≥ 1

are defined straightforwardly by simultaneous recursion and thus

Deshufflek ,i ∈ SPR1(Σ) (3.8)

Let f ∈ URn(Σ), we construct a function fs with

f(v) = fs(Shuffle(k)(v)

by structural induction

• f = Unif (y0; g;h).

1. n = 1
We show, that function fs ∈ SPR1(Σ) ⊆ E1(Σ) exists, with f = fs ◦ Shuffle(2)

We consider the recursion scheme of f :
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f(ε, ε) = y0

f(aiu, ε) = g′i(u, f(u, ε))
f(ε, ajv) = g′′j (v, f(ε, v))

f(aiu, ajv) = hi,j(u, v, f(u, v))

With g, h ∈ UR0(Σ) = PR0(Σ)
The definition of the simultaneous recursion scheme of fs is straightforward:

fs(ε) = q0 (3.9)
fs(a1aia2ajv) = hs

ij(v, f ′s, f
′′
s , fs(v)) (3.10)

fs(a2a2a1aiv) = (g′i)
s(v, fs(v)) (3.11)

fs(a2a1aiv) = (g′i)
s(v, fs(v)) (3.12)

where e.g. line 3.10 is shorthand for the simultaneous recursion

fs(a1v) = f ′(v) (3.13)
f ′(aiv) = f ′i(v) (3.14)
f ′i(a1v) = f ′′i (v) (3.15)
f ′′i (ajv) = hi,j(v, fs(v)) (3.16)

and hij,s ∈ PR0(Σ) is defined by

hij,s(u, v, w, x) =






wij · x if hij(v, w, x) = wij · x
wij · v if hij(v, w, x) = wij · v
wij · w if hij(v, w, x) = wij · w

f ′s and f ′′s are simultaneously defined such that f ′s(v) = Deshuffle2,1(v) and
f ′′s (v) = Deshuffle2,2(v).
g′i,s and g′′i,s are defined analogously from g′i and g′′i respectively.

2. n ≥ 2
We define a function fs analogously to the previous case with

f(v1, . . . , vk) = fs

(
Shuffle(k)(v1, . . . , vl)

)

In case k = 2 this would look like

fs(ε) = y0

fs(a1aia1ajv) = hij,s(Shuffle(2)(v, fs(v)))
fs(a2a1aiv) = g′i,s(Deshuffle2,1v)
fs(a2a2aiv) = g′′i,s(v)

Then we have
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– n = 2, then g, h ∈ UR1(Σ) and gs, hs ∈ E1(Σ). Thus fs ∈ E3(Σ)
– n > 2, then g, h ∈ URn−1(Σ) and gs, hs ∈ En(Σ). Thus fs ∈ En+1(Σ)

• f = Sub(g;h1, . . . , hk) with g, h1, . . . , hk ∈ UR1(Σ) ⊆ E1(Σ), then:

fs(v) = gs

(
Shuffle(k)(h1,s(v), . . . , hk,s(v))

)

En(Σ) is closed under substitution.

This construction shows

1. f ∈ UR1(Σ) ⇒ fs ∈ E1(Σ) and

2. f ∈ URn(Σ) ⇒ fs ∈ En+1(Σ)

And with f = fs ◦ Shuffle(k) the claim of the lemma follows.

!

3.4.5 Corollary
1. For all n ≥ 2 holds URn(Σ) ⊆ PRn(Σ)

2. UR(Σ) ⊆ PR(Σ)

The result in the other direction is a bit weaker.

3.4.6 Lemma
PRn(Σ) ⊆ URn+1(Σ)

Proof. By structural induction, let f ∈ PRn(Σ).

• There is nothing to show for the basic functions.

• f = Sub(g; h). Obviously, URn+1(Σ) is closed under substitution for all n ∈ N.

• f = Prim(g;h1, . . . , hr), i.e. f ∈ PRn(Σ) for n > 0 and

g, h1, . . . , hr ∈ PRn−1(Σ)
I.H
⊆ URn(Σ)

W.l.o.g let f : (Σ∗)2 → Σ∗. Remember: conc ∈ UR2(Σ) and cut ∈ UR1(Σ), see
Example 3.4.3 (page 40).
We construct a function fc ∈ URn+1(Σ) with

f(v, w) = fc(v, vw) = fc(v, conc(v, w))

Then f ∈ URn+1(Σ), since n + 1 = max(2, n + 1) for all n ≥ 1.
Let
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f(ε, w) = g(w)
f(aiv, w) = hi(v, w, f(v, w))

Then

fc(ε, w) = g(w)
fc(aiv, ajw) = hi(v, cut(v, w), fc(v, w))

With g, h1, . . . , hr ∈ URn(Σ) we obtain fc ∈ URn+1(Σ).

With this construction f(v, w) = fc(v, vw) follows easily by induction over |v|

– |v| = 0.
Then

f(ε, w) = g(w) = fc(ε, ε · w)

– |v| > 0, i.e. v = aiv′.
Then

f(aiv
′, w) = hi(v′, w, f(v′, w)) $= hi(v′, cut(v′, v′w), fc(v′, v′w)) = fc(aiv

′, aiv
′w)

1 uses the induction hypothesis.

!

3.4.7 Corollary
PR(Σ) ⊆ UR(Σ)

Together with Corollary 3.4.5-2 we obtain:

3.4.8 Corollary
UR(Σ) = PR(Σ)

3.4.9 Example
• UR1(Σ) *⊆ PR1 since shuffle ∈ UR1(Σ) but obviously shuffle ∈ PR2 \ PR1.

• PR1 *⊆ UR1(Σ) since conc ∈ PR1 but conc ∈ UR2(Σ) \UR1(Σ)

Analogously to the ε-primitive recursion the ε-uniform recursion can be defined to obtain
monotonic functions.
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3.4.10 Definition
1. A function f : Σ∗2 → Σ∗ is defined by ε-uniform recursion from g(0)

0 , g(1)
1 , g(1)

2 , h1,1, . . . , hk,k

if

f(ε, ε) = ε (3.17)
f(ε, v) = ε (3.18)
f(u, ε) = ε (3.19)

f(aiu, ajv) = hi,j(u, v, f(u, v)) i, j ∈ {1, . . . , r} (3.20)

We write f = Unif ε(h1,1, . . . , hr,r) = Unif ε(h)

2. Let ε-UR(Σ) denote the set of ε-uniformly-recursive functions, i.e. the smallest set
which contains the basic functions and is closed under composition and ε-uniform recur-
sion, and ε-URn(Σ) the subset of these functions which use at most n nested ε-uniform
recursions.

Consider lines 3.18 and 3.19. If at least one of the input parameters is the empty word the
output will be the empty word. In other words: all input values must be non-empty to
produce a non-empty output. Assume the input is read from left to right. Uniform recursion
makes the input values to be read simultaneously. Whenever one of the input values ends
while being read, the whole computation ends.

In the case of functions with a single input value ε-uniform recursion coincides with ε-
primitive recursion. This is shown in case of the function double in the following example.

3.4.11 Example
Some ε-uniformly recursive functions:

1. shuffleε ∈ ε-UR1(Σ)

shuffleε(ε, v) = ε

shuffleε(u, ε) = ε

shuffleε(aiu, ajv) = coni(conj (shuffleε(u, v)))

2. double : Σ∗ → Σ∗, v1 . . . vl .→ v1v1 . . . vlvl ∈ ε-UR1(Σ)

has the following ε-uniform recursion scheme

double(ε) = ε

double(aiv) = aiai · double(v)

3. The uniform projections

prok
i : (Σ∗)k → Σ∗(v1,1 . . . v1,l1 , . . . , vk,1 . . . v1,lk) .→ vi,1 . . . vi,min{l1,...,lk}

with 1 ≤ i ≤ k.
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prok
i (ε, v2, . . . , vk) = ε

prok
i (v1, ε, v3, . . . , vk) = ε

...
prok

i (v1, . . . , vk−1, ε) = ε

prok
i (aj1v1, . . . , ajkvk) = aji · prok

i (v1, . . . , vk)

prok
i ∈ ε-UR1(Σ).

The uniform projection prok
i is a slow version of the projection proj k

i .

3.4.12 Lemma
Every ε-uniformly recursive function is monotonic.

Proof. Analogous to the case of ε-primitive recursive functions by structural induction.

• All basic functions are monotonic.

• The class of monotonic functions is closed under composition.

• Let f = Unif ε(h), with h ∈ ε-UR(Σ), i.e.

f(ε, w) = ε

f(v, ε) = ε

f(aiv, ajw) = hij(v, w, f(v, w))

We show the monotonicity, i.e. f(v, w)≤p f(vv′, ww′) by simultaneous induction over
the length of v and w

– v = ε or w = ε, then we have

f(ε, w) = ε≤p f(v′, ww′′)

and

f(v, ε) = ε≤p f(vv′, w′′)

respectively
– v = aiv′′ and w = ajw′′, then

f(aiv
′′, ajw

′′) = hij(v′′, w′′, f(v′′, w′′))
$
≤p

$
≤p hij(v′′v′, w′′w′, f(v′′v′, w′′w′)) =

= f(aiv
′′v′, ajw

′′w′) = f(vv′, ww′)

1 holds because of the monotonicity of hij and the induction hypothesis.
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!

Now we can define how to simulate an infinite word function by a finite one.

3.4.13 Definition
A fully monotonic function f : (Σ∗)k → Σ∗ approximates a continuous function fω :
(Σω)k → Σω if for all y ∈ (Σ∗)k and z ∈ (Σω)k

y1≤p z1, . . . , yk≤p zk ⇒ f(y)≤p fω(z)

Obviously, every continuous function fω : (Σω)k → Σω can be approximated by a fully
monotonic function f : (Σ∗)k → Σ∗, and every fully monotonic function f : (Σ∗)k → Σ∗

approximates a continuous function fω : (Σω)k → Σω.

The latter is described a bit more detailed.

Let v0, v1, . . . ∈ Σ∗ and v0≤p v1≤p v2≤p . . . and for all l ∈ N exists il ∈ N with |vil | ≥ l.

Then we can define limi∈N vi = v ∈ Σω with vi≤p v. The sequence (vi)i∈N is monotonic and
boundless, therefore v exists and is unique.

Obviously, for a fully monotonic function f and an infinite word w = w1w2 . . . the sequence
(f(w1 . . . wi))i∈N is monotonic and boundless. Then f approximates the function

fω : Σω → Σω, w1w2 . . . .→ lim
i∈N

f(w1 . . . wi)

3.4.14 Definition
The set ε-URt(Σ) of truly uniformly recursive functions is defined like ε-URn(Σ) but with
the uniform projections

prok
i : (Σ∗)k → Σ∗, v1,1 . . . v1,l1 , . . . , vk,1 . . . vk,lk .→ vi,1 . . . vi,min1≤j≤k(lj)

instead of the projections proj k
i within the set of basic function, i.e. ε-URt(Σ) is the smallest

set of functions which contains the concatenations, the constant functions and the uniform
projections and is closed under substitution and uniform recursion.

As usual the sets ε-SURt(Σ), ε-URt
n(Σ) and ε-SURt

n(Σ) can be defined analogously.

3.4.15 Remark
For all k ≥ 1, 1 ≤ i ≤ k and v ∈ (Σ∗)k

prok
i (v)≤p proj k

i (v)

3.4.16 Lemma
For every function f ∈ ε-URt(Σ) exists a natural number m such that for all v1, . . . , vk ∈ Σ∗



3.4. UNIFORM AND TRULY UNIFORM RECURSION 49

|f(v1, . . . , vk)| ≤ min
1≤j≤k

(|vj |) + m

Proof. Structural induction.

• Choose m = 1 for the successor functions and and m = 0 for the uniform projections.

• f = Sub(g;h).
By induction hypothesis respective natural numbers m0 for g and mi for hi exist.
Choose m = m0 + min(m1, ..,ml), then

|f(v1, . . . , vk)| = |g(h1(v1, . . . , vk), . . . , hl(v1, . . . , vk)|
≤ min

1≤i≤l
(|hi(v1, . . . , vk)|) + m0

= min
1≤i≤l

( min
1≤j≤k

|vj |) + mi) + m0

= min
1≤j≤k

(|vj |) + min
1≤i≤l

(mi) + m0

= min
1≤j≤k

(|vj |) + m

• f2 = Unif ε(h).
Choose m = max1≤i≤r,1≤j≤r(mij), where mij is the respective constant for hij existing
by induction hypothesis.

– |f(ε, v)| = |f(u, ε)| = |ε| = 0 ≤ 0 + m

–

|f(aiu, ajv)| = |hij(u, v, f(u, v))| + mij

≤ min(|u|, |v|, |f(u, v)|) + mij

≤ min(|u|, |v|) + mij

≤ min(|u|, |v|) + m

!

3.4.17 Lemma
1. ε-URt(Σ) ⊆ ε-UR(Σ).

2. ε-URt
n(Σ) ⊆ ε-URn(Σ) for all n ≥ 1.

Proof.

1. Follows directly from prok
i ∈ ε-UR(Σ).

2. Inductively replace f by Sub(f ; prok
1, . . . , prok

k). The claim follows from prok
i ∈ ε-UR1(Σ).
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!

3.4.18 Corollary
ε-URt(Σ) ! ε-UR(Σ)

3.4.19 Lemma
For every fully monotonic function f ∈ ε-URn(Σ) there exists a slow version ft of f with
ft ∈ ε-URt

n(Σ)

Proof. The idea is to replace all projections by uniform projections. A problem might
occur when a function uses only a finite part of a certain argument. We add some dummy
arguments in this case.

This is done inductively.

We consider only the interesting case. All other cases are treated straightforwardly.

In this case we have f(aiv) = hi(v, f(v)) with hi = h′i ◦proj 2
1 and f(v)≤l v. The replacement

of proj 2
1 by pro2

1 might shorten the value of hi too much. We define

ft(aiv) = h′i(pro
2
1(pro

2
1(v, ft(v)), coni(pro2

2(v, ft(v)))))

The second argument ft(v) is artificially extended by replacing it with coni(pro2
2(v, ft(v))).

This construction ensures, that ft will still increase and be fully monotonic.

This construction is illustrated in Example 3.4.21-2.

In all other cases the projections might be replaced by the uniform projections directly. !

3.4.20 Corollary
For every fully monotonic function f : (Σ∗)k → Σ∗ ∈ ε-URn(Σ) there exists a fully monotonic
function ft : (Σ∗)k → Σ∗ ∈ ε-URt(Σ) such that f and ft approximate the same function
fω : (Σω)k → Σω

Proof. Obviously, a function and all of its slow versions approximate the same function.
Choose the truly uniformly recursive slow version from the lemma above. !

3.4.21 Example
1. The function double : Σ∗ → Σ∗, v1 . . . vl .→ v1v1 . . . vlvl recursively defined by

double(ε) = ε

double(aiv) = aiai · double(v)

(compare Example 3.4.9-2, page 45) can be easily expressed by terms of truly uniform
recursion.

We explicate the projections



3.4. UNIFORM AND TRULY UNIFORM RECURSION 51

double(ε) = ε

double(aiv) = coni ◦ coniproj 2
2(v, double(v))

and replace them by uniform projections

doublet(ε) = ε

doublet(aiv) = coni ◦ conipro2
2(v, doublet(v))

We get

|double(v)| = 2 · |v|

and

|doublet(v)| =
{

0 if v = ε
|v| + 1 else

= sg(|v|) · (|v| + 1)
≤ |v| + 1

2. The function rest : Σ∗ → Σ∗ is defined by

rest(ε) = ε

rest(aiv) = v

With explicit projections we get

rest(ε) = ε

rest(aiv) = proj 2
1(v, rest(v))

Replacing the projections by the uniform variants would give

rest ′t(ε) = ε

rest ′t(aiv) = pro2
1(v, rest ′t(v))

But this function is not fully monotonic. We can rather show by induction that for all
v ∈ Σ∗ holds rest ′t(v) = ε.

To prevent that the (unused) projection parameter rest ′t(v) shortens the used parameter
v too much, we have to extend it artificially.
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rest t(ε) = ε

rest t(aiv) = pro2
1(pro

2
1(v, rest t(v)), coni(pro2

2(v, rest t(v))))

Then we get

rest t(v1 . . . vl) = v2 . . . vl−1

and

|rest(v)| = |v|−̇1

and

|rest t(v)| = |v|−̇2

3.5 Lookahead of fully monotonic functions

Lemma 3.4.16 prevents us from distinguishing truly uniformly recursive functions by their
increase. On the other hand, we have functions f : Σ∗ → Σ∗ for which

|f(v)| ≤ |v|

3.5.1 Definition (Lookahead)
1. A computable function f : (Σ∗)k → Σ∗ can be computed with lookahead lhf : N → N if

for all x ∈ N and v1, .., vk ∈ Σ∗

[∀1 ≤ i ≤ k. |vi| ≥ lhf (x)] ⇒ |f(v1, . . . , vk)| ≥ x

2. A computable function f : (Σ∗)k → Σ∗ can be computed with minimal lookahead lhf ,
if f can be computed with lookahead lhf and for all functions l : N → N with l ≤ lhf

such that f can be computed with lookahead l holds l = lhf .

We say, for short, f has lookahead lhf , instead of f can be computed with minimal lookahead
lhf .

Obviously all fully monotonic functions can be computed with a certain lookahead.

We prove a simple but useful property. It is easy to estimate the lookahead a of function
defined by substitution.

3.5.2 Lemma
Let g : (Σ∗)l → Σ∗ be computable with lookahead lhg and h1, . . . , hl : (Σ∗)k → Σ∗ be com-
putable with lookaheads lh1, . . . , lh l, respectively.



3.5. LOOKAHEAD OF FULLY MONOTONIC FUNCTIONS 53

Then Sub(g;h1, . . . , hl) can be computed with lookahead

lh : N → N, x .→ lhg

(
max
1≤j≤l

(lhj(x))
)

Proof. Let x ∈ N and v1, . . . , vl ∈ Σ∗ with |vi| ≥ lh(x) for all i ∈ N, i.e.

x ≥ lhg (max{lhi(x)) ∈ 1 ≤ j ≤ l}) ≥ lhg(lhj(x))

for all 1 ≤ j ≤ l.

By definition of the lookaheads

|hj(v1, . . . , vk)| ≥ lhj(x)

for all 1 ≤ j ≤ l and

|g(h1(v1, . . . , vk), . . . , hl(v1, . . . , vk))| ≥ x

This proves that Sub(g;h1, . . . , hl) can be computed with lookahead lh. !

3.5.3 Example
Consider the function f : Σ∗ → Σ∗ with

f(ε) = ε

f(a1v) = a1 · f(v)
f(aiv) = f(v) 2 ≤ i ≤ r

This function is obviously monotonic but not fully monotonic. It cannot be computed with
a certain lookahead. Since inputs of form al

2 do not deliver an output for any l ∈ N. For any
l ∈ N there exists an input word w with length |w| = l which produces an empty output. In
other words, there is no input length which ensures a non-empty output.

In other words, considering lookaheads is reasonable only for fully monotonic word functions.
This is done from now on.

The easiest case is recursion depth one. In this case a simultaneous recursion can be under-
stood as a finite transducer with the simultaneously defined functions serving as states. This
results in a boundary for the lookahead, which is proven similarly to the Pumping-Lemma
for regular languages (see [HU79, Lew81]).

The transducer must run in a loop when the input length exceeds the number of states. Each
cycle must produce at least one letter of output, otherwise an arbitrarily large input without
output can be constructed by repeating that cycle. This contradicts the full monotonicity.
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The use of finite transducers for the computation of real valued functions was examined in
[Kon98, Kon00]. We will use this notion to support our imagination, but we will not give a
formal definition. Of course, we can consider final transducers as special cases of TTMs.

3.5.4 Lemma
Let f ∈ ε-SUR1(Σ) be a fully monotonic function. Then a natural number t exists, such that
f can be computed with lookahead λk. tk.

Proof. By structural induction.

• f = Unif ε(g)

We will construct the loops mentioned before and estimate their lengths. The maximal
lengths of each cycle will give the maximal number of input letters to produce at least
one output letter. This is an upper bound for the lookahead.
Let k = 2, therefore f1, . . . , fm : (Σ∗)2 → Σ∗ and f = f1

Let fh(aiu, ajv) = gh
ij(u, v, f1(u, v), . . . , fm(u, v)) for 1 ≤ h ≤ m be the simultaneous

recursion scheme of f1 . . . fl, where the functions gh
ij are compositions of successor

functions and projections, i.e. there exist wh
ij ∈ Σ∗ and sh

ij ∈ {1, . . . ,m + 2} for
1 ≤ i ≤ r, 1 ≤ j ≤ r and 1 ≤ h ≤ m with

gh
ij(w) = wh

ij · projm+2
sh,ij

(w) (3.21)

We want the simultaneously defined functions f1, . . . , fl to be understood as states.
The equation 3.5 then tells us, when in state fh the letters ai and aj are read, the word
wh

ij is concatenated to the output and the computation is continued at the consecutive
state fsh,ij−2. In case sh,ij = 1 or sh,ij = 2 the output is continued by concatenating
the unread remainder of one of the input parameters. This can be understood as an
additional state which will not be left.
Choose t = max(m, 2).
We consider input words ai1 . . . ail and aj1 . . . ajl and estimate the length of
f(ai1 . . . ail , aj1 . . . ajl).
We have to distinguish cases since the lookahead behaves differently if a projection
onto an input value occurs.

– Assume that for all h ∈ {1, . . . m} and i, j ∈ {1, . . . , r} holds sh,ij > 2.
Let h1 ∈ {1, . . . ,m} and hq+1 = shq ,ij−2 for q ≥ 1. The sequence h0, h1, h2, . . . , hl

denotes the states which are visited.
Then from equation 3.5

fh1(ai1 . . . ail , aj1 . . . ajl) = wh1
i1j1

· · · · · whl
iljl

can be derived.
Consider l0, l1 ∈ N with 1 ≤ l0 < l1 ≤ l and l1 − l0 ≥ m. Then l ≥ m and further
l′ ∈ N and l′′ ∈ N exist with l1 ≤ l′ < l′′ ≤ l1 and hl′ = hl′′ .
Now assume
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fh1(ail0
. . . ail1

, ajl0
. . . ajl1

) = ε (3.22)

Then

fhl′ (ail′ . . . ail′′ , ajl′ . . . ajl′′ ) = w
hl′
il′jl′

· · · · · whl′
il′jl′

= ε

Since hl′ = hl′′ we can repeat this part of the computation. We obtain for all
p ∈ N

fhl′ ((ail′ . . . ail′′ )
p, (ajl′ . . . ajl′′ )

p) =
(
w

hl′
il′jl′

. . . w
hl′
il′jl′

)p
= ε

Then neither fhl′ nor fh1 would be fully monotonic. With h1 = 1 this is a
contradiction to the f being fully monotonic. For each input sequence of length
m at least one letter of output must be produced:

|u|, |v| ≥ mk ⇒ |f(u, v)| ≥ k

f can be computed with lookahead λk.mk ≤ λk. tk.
– Assume a number l′ ∈ N exists with shl′ ,il′jl′ ≤ 2, more precise choose l′ =

min
{
l | shl′ ,il′jl′ ∈ {1, 2}

}
. Then l′ < m, otherwise a loop would occur and lead

us to the previous case again.
W.l.o.g. we assume shl′ ,il′jl′ = 1.
Then

fh1(ai1 . . . ail′ail′+1
. . . al, ai1 . . . ail′ail′+1

. . . al) = wh1
i1j1

w
hl′
il′jl′

al′+1 . . . al

and

|fh1(ai1 . . . ail′ail′+1
. . . al, ai1 . . . ail′ail′+1

. . . al)| ≥ |ail′+1
. . . al| ≥ l −m

or rather

|u|, |v| ≥ m + k ⇒ fh1 ≥ k

fh1 can be computed with lookahead λk. k + m ≤ λk. k + t.
Since k + t ≤ t · k for k ≥ 1, t ≥ 2 fh1 can be computed with lookahead λk. tk.

Both cases show that f can be computed with lookahead λk. tk.

• f = Sub(g;h)

If g and h are fully monotonic, this case follows directly from Lemma 3.5.2.
Otherwise, consider the case that hi is not fully monotonic. Then f is not fully mono-
tonic or it is “ignored” by a projection. We can also ignore it in the consideration of
the lookahead.
Consider the case that g is not fully monotonic. Since f is fully monotonic, g has to
be fully monotonic on the subset Im(h1) × · · · × Im(hl). We can apply the presented
proof technique to g with respect to that subset of input values. This results in an
analogous estimation of the lookahead of g on this subset of inputs. Lemma 3.5.2 can
be applied analogously.
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!

3.5.5 Corollary
A word function f ∈ ε-UR1(Σ) can be computed with lookahead lhf ∈ E1.

It seems that higher lookaheads can be achieved via simultaneous recursion. Before displaying
further results we consider some examples.

3.5.6 Example
Some fully monotonic functions and their lookaheads:

1. The projections and uniform projections can be computed with lookahead idN : N →
N, x .→ x

2. The function rest : v1 . . . vl .→ v2 . . . vl has lookahead λk.k + 1.

3. The functions

half : Σ∗ → Σ∗, v1v2 . . . vl÷2

half ′ : Σ∗ → Σ∗, v1v2 . . . v(l+1)÷2

}
∈ SPR1(Σ)

(Example 3.2.8-9, page 32) have lookahead λx. 2x and λx. 2x−̇1, respectively. This is
an example for Lemma 3.5.4.

4. The function half ′ can be defined in another way, we need some auxiliary functions:

• An alternating function alt : Σ∗ → Σ∗

with

alt : v1 . . . vl .→ ai1ai2 . . . ail

with

ij =

{
1 if j is odd
2 if j is even

is defined by the the following simultaneous recursion scheme:

alt(aiv) = a1 · alt ′(v)
alt ′(aiv) = a2 · alt(v)

ap : (Σ∗)2 → Σ∗ defined by

ap(aiu, ajv) = aj · api(u, v)
api(aiu, ajv) = api(u, v)
api(ai′u, ajv) = aj · api′(u, v)



3.5. LOOKAHEAD OF FULLY MONOTONIC FUNCTIONS 57

Then

half ′ = ap(double(alt(v), v))

5. We can use this principle to create other lookaheads:

(a) rest : v1 . . . vl .→ v2 . . . vl

rest(v) = ap(con1 (alt(v), v))

(b) log : Σ∗ → Σ∗ with

log(v) = ap(mdt(alt(v), v))

Then

log(v1 . . . v2l) = v1v2v4v8 . . . v2l−1v2l

and log has lookahead λx. 2x.

It seems that the functions double ◦ alt or md t ◦ alt produce a kind of pattern that can be
applied to an input to get an output with a certain lookahead.

3.5.7 Definition
Let f : Σ∗ → Σ∗ be a fully monotonic word function and for all v ∈ Σ∗ with f(v) *= ε exists
a word v′ ∈ Σ∗ such that

• f(v) = wai with w ∈ Σ∗

• f(vv′) = waiw′ajw′′ with w′, w′′ ∈ Σ∗

• i *= j

Then f is called a pattern.

We call

paf : x .→ min{|f(v)| | ch(f(v)) ≥ x}

with

ch : Σ∗ → N, ai1 . . . ail .→ |{j | ij *= ij+1}|

the pattern length of f .
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Reconsidering our latest example shows that we can use certain patterns to construct func-
tions with certain lookaheads. We will generalize the idea of these examples. We observe a
connection between lookaheads and patterns.

We can apply a pattern to a word.

3.5.8 Lemma
Let f ∈ ε-URt

n(Σ) (n ≥ 1) be a pattern with pattern length paf . Then a function f ′ ∈
ε-URt

n(Σ) exists which has lookahead paf .

Proof. Let the function ap : (Σ∗)2 → Σ∗ be defined by the following simultaneous recursion
scheme:

ap(aiu, ajv) = aj · api(u, v)
api(aiu, ajv) = api(u, v)
api(ai′u, ajv) = aj · api′(u, v)

Then ap ∈ ε-URt
1(Σ).

Let f ′ = ap ◦ (f, pro1
1), i.e. f ′(v) = ap(f(v), v). Then f ′ obviously has lookahead paf . !

The function ap is monotonic but not fully monotonic, but ap ◦ f is fully monotonic if f is
a pattern.

The next step is to construct patterns with arbitrary increasing pattern lengths. We use the
increase of ε-recursive functions. We will use a set of functions similar to the Ackermann
functions to serve as patterns.

3.5.9 Definition
We define some functions:

1. We define m′
n for n ≥ 1 inductively:

m′
1 = double

m′
n+1 = Unif ε((coni ◦m′

n ◦ proj 2
2)1≤i≤r)

In other words, m′
n+1 has the following recursion scheme:

m′
n+1(ε) = ε

m′
n+1(aiv) = ai · m′

n(m′
n+1(v))

2. mn = m′
n ◦ alt for all n ≥ 1
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3. ln : v .→ ap(mn(v), v) for all n ≥ 1

These functions are built to obtain patterns with increasing pattern lengths. We will describe
these patterns and their lengths a bit more detailed.

3.5.10 Remark
1. Obviously mn, m′

n, m′′
n ∈ ε-SURn(Σ).

2. mn is a pattern for all n ≥ 1.

3.5.11 Lemma
1. m′

1 ∈ E1(Σ) \ E0(Σ)

2. m′
n ∈ En+1(Σ) \ En(Σ) for all n ≥ 2

Proof.

1. From |double(v)| = 2 · |v| it follows that double ∈ E1(Σ) \ E0(Σ)

2. By induction

• n = 2
By induction over l ≥ 1 it can be shown

– l = 0. m′
2(ε) = ε

– l > 0:

m′
2(v1 . . . vl) = v1 · double(m′

2(v2 . . . vl)
I.H.= v1 · double(v1

2 . . . v2l−2

l )
= v1v

2
2 . . . vl−1

l

Hence

|m2(v)| = 2|v|−̇1 = B3(|v|)

and
m′

2 ∈ E3(Σ) \ E2(Σ)

• n > 2
By induction hypothesis we know that mn−1 ∈ En(Σ) \ En−1(Σ).
By induction over l we can show

m′
n(v1 . . . vl) = m′

n−1
0(v1) · . . . · m′

n−1
l−1(vl)

– l = 0: m′
n(ε) = ε
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– l > 0:

m′
n(v1 . . . vl) = v1 · m′

n−1(mn(v2 . . . vl))

= v1 · m′
n−1(m

′
n−1

0(v2) · . . . · m′
n−1

l−2)m′
n−1

0(v1) · . . . · m′
n−1

l−1(vl)

The consideration of the output lengths and the induction hypothesis shows

m′
n ∈ En+1(Σ) \ En(Σ)

!

From the form of the function values shown in the last proof we can derive the following
statements.

3.5.12 Corollary
1. m1 is a pattern with pattern length λk. 2(k + 1)

2. mn is a pattern with pattern length pan ∈ En+1(Σ) \ En(Σ)

3. l1 is a function which has lookahead λk. 2k

4. ln is a function which has lookahead lhn ∈ En+1(Σ) \ En(Σ)

3.5.13 Corollary
ε-SURn(Σ) ! ε-SURn+1(Σ) for all n ∈ N.

This shows that we can construct truly uniformly recursive word functions with arbitrary
large lookaheads.

We can obtain a pattern from a lookahead. We redefine the recursion scheme of a function
by marking the positions which do not produce an additional output.

3.5.14 Lemma
Let f ∈ ε-URn(Σ) (n ≥ 1) be a fully monotonic function with lookahead lhf . Then a pattern
f ′ ∈ SURn(Σ) exists with pattern length lhf .

Proof.

We consider cases, depending on the definition of f using substitution after the recursion or
not.

• (f, f) = Unif ε(h)

We consider the recursion scheme of f

f(aiv, ajw) = hij(v, w, f(v, w))

We define f and f simultaneously by
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f(ε) = ε

f(aiv, ajw) =

{
a2 · f if cut(f(v, w), hij(v, w, f(v, w))) = ε

a1 · f else

We compare the current value of f with the previous one. If no output is added, this
is stored in the symbol a2. The symbol a1 stores an additional output.

This function is not yet a pattern, but its output has a structure that can easily be
turned into a pattern:

Let

a(a1v) = a2a
′(v)

a(a2v) = a1a(v)
a′(a1v) = a1a(v)
a′(a2v) = a2a

′(v)

v .→ a
(
f(a|v|1 )

)

• f = Sub(g;h). W.l.o.g we can assume that g is defined by recursion. Let g′ be
constructed from g as in the previous case. Then choose f ′ = Sub(g′;h).

!

3.5.15 Lemma
Let f ∈ PRn(Σ) be a pattern. Then for pattern length paf

1. n = 1 ⇒ paf ∈ En

2. n > 1 ⇒ paf ∈ En+1

Proof. For each pattern |v| = |w| implies f(v) = f(w). We can assume that f is built from
a function f ′ and an alternating function a, like alt , with a ∈ PR1(Σ) and f ′ ∈ PRn(Σ).

Applying f ′ to the initial pattern a means expanding the alternating parts according to the
increase of f ′.

Therefore the pattern length cannot increase faster than the length of values of f ′. !

The latest two lemmas prove the bounds of lookaheads

3.5.16 Lemma
For n ≥ 2 every fully monotonic word function f : Σ∗ → Σ∗ ∈ ε-SURn(Σ) can be computed
with a lookahead lhf ∈ En+1.
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Starting with a truly uniformly recursive function and replacing it by its fast version (by
replacing all uniform projections by projections) shows that these functions are arranged in
a hierarchy, as well.

3.5.17 Corollary
ε-URt

n(Σ) ! ε-URt
n+1(Σ) for all n ∈ N.

Functions with large lookaheads will occur when computing real valued functions. This is
shown in the next section.

3.6 Real Valued Functions

To compute real valued functions with our model, we have to write real numbers as infinite
words.

Computability and complexity of th real valued functions depend on the representation of real
numbers. [Wei97a] shows that the signed digit representations are adequate for considering
complexity issues on reals (see Section 2.3 for some details).

We repeat the definition

3.6.1 Definition

ρ2 : {., 1, 0, 1}ω ⇀ R, ak . . . a0.a−1a−2 . . . .→
k∑

i=−∞
ai2i

where 1 should be read as −1.

If no confusion is possible we use the same name for finite digit representations:

ρ2 : {., 1, 0, 1}∗ ⇀ R, ak . . . a0.a−1a−2 . . . a−l .→
k∑

i=−l

ai2i

and

ρ∗2 : {., 1, 0, 1}∗ ⇀ P(R), ak . . . a0.a−1a−2 . . . a−l .→

.→
[
ρ(ak . . . a0.a−1a−2 . . . a−l)− 2−l, ρ(ak . . . a0.a−1a−2 . . . a−l) + 2−l

]

We want to restrict the following considerations to the interval [0,1].
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3.6.2 Definition

ρ : {1, 0, 1}ω → [0, 1], a1a2 . . . .→ 1
2

+
∑

i≥1

ai2−(i+1)

We want to use word functions over the alphabet Σ = {1, 0, 1} to compute functions on the
interval [0, 1].

3.6.3 Definition
Let Σ = {1, 0, 1}.

A fully monotonic function f : (Σ∗)k → Σ∗ approximates a function ϕ : [0, 1]k → [0, 1], if f
approximates a function fω : (Σω)k → Σω with

ρ(fω(w1, . . . , wk)) = ϕ(ρ(w1, . . . , wk))

for all (w1, . . . , wk) ∈ (Σω)k.

We say f computes ϕ, if f in computable in some sense in the above configuration.

Obviously f computes ϕ if for all w1, . . . , wk ∈ Σ∗ and ξ1, . . . , ξk ∈ [0, 1]

(∀1 ≤ i ≤ k. ξi ∈ ρ∗(wi)) ⇒ ϕ(ξ1, . . . , ξk) ∈ ρ∗(f(w1, . . . , wn))

3.6.4 Definition
A function g : N → N is called sublinear if k, l ∈ N with 0 < l < k and x0 ∈ N exist such
that k · g(x) ≤ l · x for all x > x0.

A function is sublinear if from a certain point it grows less than the identity.

3.6.5 Example
Examples of sublinear functions

1. Every constant function is sublinear.

2. The function N → N : x .→ 1x
k 3is sublinear for all k ≥ 2.

3. The “inverse functions” of the Ackerman functions Bn with n ≥ 2 defined by

bn(x) = µz ≤ x.Bn(z) ≥ x

are sublinear.

We will now consider real valued functions approximated with sublinear lookahead.

3.6.6 Lemma
Let ϕ : [0, 1] → [0, 1] be a a real valued function, computed by a fully monotonic function
f : Σ∗ → Σ∗ such that f has a sublinear lookahead. Then ϕ is constant.
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Proof. Let f be computable with lookahead g : N → N. The definition of sublinearity
shows that from an input of length m + kt an output of length l · t with k > 1 can be
computed.

Let w = a0 . . . am and v = b1 . . . br = f(w). Let ξ = ρ(w) and ζ = ρ(v) the center of the
intervals I = ρ∗(w) and J = ρ∗(v) respectively.

We have f(I) ⊆ J obviously. We want to determine the range of the values of f over I.

Setting l(M) = |max(M)−min(M)| for an interval M , we obtain l(f(I)) ≤ l(J).

Obviously l(J) ≤ l(ρ∗(f(w1)))+l(ρ∗(f(w1))). This is shown in Figure 3.1. The crosshatched
area shows, where the graph of ϕ is expected. Adding k more input digits delivers at least l
more output digits

l(J) ≤ 2k · 2−(r+l)

Repeating this intersection i times we get

l(J) ≤ 2ik · 2−(r+il)

= 2−(r+i(

>0︷︸︸︷
l−k ))

This equation holds for all i ∈ N, i.e. the J becomes arbitrary small. ϕ is constant on all
intervals I with l(I) ≤ 2−m. Since ϕ is continuous, it is constant. !

In other words, a sublinear lookahead is useless, since it can be used for constant functions
only, which are computable without any lookahead.

Non constant, total, real valued functions need at least linear lookahead. The most simple
non constant total function is the identity. It is not very surprising, that more complex
functions cannot be computed with smaller lookahead.

3.6.7 Example
We consider the function f : Σ∗ → Σ∗ with the following recursion scheme

f(ε) = ε

f(aw) = 0af(w)

which results in

f(a1 . . . ak) = 0a10a2 . . . 0ak
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I

J

ξ

ζ

I

J

ξ

ζ

I ′ I ′′

J
′

J
′′

Figure 3.1: Possible range of a real valued function. Actually this picture shows the case
k = 1.

To determine if this function approximates a real valued function on the interval [−1, 1],
we assume there is such a function which we call ϕ. We notice that f is computed with
lookahead k .→ 1k

23, which is sublinear, hence ϕ must be constant.

We consider f(11) = 0101 and ρ∗(0101) = [14 , 3
8 ], therefore ϕ(1) ≥ 3

8 > 0. Analogously we
obtain ϕ−1 < 0. Since this means that ϕ is not constant this is a contradiction, i.e. f does
not compute a real valued function.

We consider this example from another point of we. We consider two different representations
of 0. From ρ∗(f(11))ρ∗(0101) = [13 , 1

4 ] it follows that ϕ(0) > 0, from ρ∗(f(11)) = [−1
3 ,−1

4 ] it
follows that ϕ(0) < 0. This is obviously an contradiction, as well.

We already have a set of functions guaranteeing certain lookaheads.

3.6.8 Lemma
A truly uniformly recursive function cannot be computed with a sublinear lookahead.

Proof. As shown in Lemma 3.4.16 (page 48) an increase of the output of a truly uniformly
recursive function is bounded rather strictly, namely

|f(v1, . . . , vk)| ≤ min
1≤j≤l

(|vl|) + m

for words v1, . . . , vk ∈ Σ∗ with a constant m ∈ N. In other words, at least r−m input digits
are needed to produce at least r output digits. The lookahead is at least linear. !

The proof of Lemma 3.6.6 does not use the totality of the considered function, we do only
need it to be total on a certain interval.

3.6.9 Corollary
Let ϕ : R ⇀ R be a function and I ⊆ Def (ϕ) be an interval. If ϕ can be computed with
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sublinear lookahead on I then ϕ is constant on I.



Chapter 4

Dyadic Recursion on Intervals

PCF is theoretical equivalent for functional programming languages. It uses abstraction and
application from the λ-calculus. The constants — zero, successor function, a conditional and
a fixed point operator — are chosen to compute µ-recursive functions [Plo77].

Real PCF was introduced in [Esc96b, Esc96a]. It is an extension of PCF . A type of intervals
and corresponding constants are added. Computation on intervals is used to approximate
computations on real numbers, again.

For our purpose we will not need to introduce Real PCF. We need some of the underlying
techniques. Particularly we need interval-cpo-s.

4.1 Interval-cpo-s

Some preliminaries on cpo-s can be found in Section 2.4 (p. 22). The omitted proofs can be
found in [Esc96b] or [Sch97].

We consider some facts on interval-cpo-s.

4.1.1 Lemma
(R,",⊥) defined by

• R = {[ξ, ξ′] | ξ, ξ′ ∈ R,−∞ < ξ ≤ ξ′ < +∞} ∪ [−∞,+∞]

• x " y ⇐⇒ x ⊇ y

• ⊥ = [−∞,+∞]

is an ω-continuous cpo. Its basis is

Q := {[ξ, ξ′] | ξ, ξ′ ∈ Q,−∞ < ξ < ξ′ < +∞} ∪ {[−∞,+∞]}

Obviously x ↑ y ⇐⇒ x ∩ y *= ∅. In this case we have x A y = x ∩ y

67
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4.1.2 Definition
We call R the partial real line.

The singleton intervals are the maximal elements of (R,",⊥).

4.1.3 Lemma
The set {[ξ, ξ] | ξ ∈ R} of maximal elements with the subspace topology of the Scott topology
of R is homeomorphic to the real line with standard topology.

That is why we can identify a real number ξ with the interval ξ̃ := [ξ, ξ]

4.1.4 Definition
The partial unit interval (I,",⊥) is defined by

• I = {[ξ, ξ′] | ξ, ξ′ ∈ R, 0 ≤ ξ ≤ ξ ≤ 1}.

• The order " is the same as in the case of R, i.e. [ξ, ξ′] " [η, η′] ⇐⇒ ξ ≤ η ∧ η′ ≤ ξ′

• The least element is ⊥I = [0, 1].

4.1.5 Lemma
The partial unit interval (I,",⊥) is a cpo.

Obviously x ↑ y ⇐⇒ x ∩ y *= ∅ for all x,y ∈ I.

4.1.6 Lemma
1. For two intervals [ξ, ξ′], [η, η′] ∈ I an infimum exists with

[ξ, ξ′] & [η, η′] = [min(ξ, η),max(ξ′η′)]

2. The function I × I → I, (x,y) ⇀ x & y is continuous.

We want to compute on intervals, we define our basic functions.

4.1.7 Definition
The concatenation of intervals is defined by:

· : I × I → I, ([ξ, ξ′], [η, η′]) .→ [(ξ′ − ξ)η + ξ, (ξ′ − ξ)η′ + ξ]

The function · is continuous in the second argument, but not in the first.

4.1.8 Lemma
The function

consx : I → I,y .→ x · y

is continuous for every x ∈ I.
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If x is non-maximal consx will be injective, hence a left inverse of consx exists. We define
x\z := cons−1

x (z) = y with xy = z.

We need a left inverse of consx for the general case.

4.1.9 Definition
We define

idem[ξ,ξ′] : I → I, [ζ, ζ ′] .→






[ξ, ξ] if ζ ′ < ξ
[ζ, ζ ′] A [ξ, ξ′], if [ζ, ζ ′] ↑ [ξ, ξ′]
[ξ′, ξ′] if ξ′ < ζ

and

tailx(z) = x\idemx(z)

4.1.10 Lemma
The functions consx and tailx are continuous for every x ∈ I. They form a section-retraction
pair, i.e. tailx(consx(y)) = y, for every non-maximal x ∈ I.

Since consx(tailx(y)) *" y the functions consx and tailx do not form a projection-embedding-
pair .

We present some examples to become familiar with these functions.

4.1.11 Example
Let L :=

[
0, 1

2

]
, C :=

[
1
4 , 3

4

]
and R :=

[
1
2 , 1

]
.

• consR(L) = consC(R) = [1/2, 3/4]

•
⊔

i∈N Ci = [1/2, 1/2]

• consR(L) = consC(R) =
[

1
2 , 3

4

]

• cons[ξ,ξ](y) = [ξ, ξ] for all ξ ∈ [0, 1], y ∈ I

• idemC([1/2, 3/4]) = [1/2, 3/4] and tailC([1/2, 3/4]) = R

• idemx(⊥) = x and tailx(⊥) = ⊥

• idemL(C) = [1/4, 1/2] and tailL(C) = R

• idemR(C) = [1/2, 3/4] and tailL(C) = L

• idemL(R) = [1/2, 1/2] and tailL(R) = [1, 1]

• idemR(L) = [1/2, 1/2] and tailR(L) = [0, 0]

• idemC([0, 1/10]) = [1/4, 1/4] and tailC([0, 1/10]) = [0, 0]

• idemC([0, 0]) = [1/4, 1/4] and tailC([0, 0]) = [0, 0]
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x " consx(y) for all x,y ∈ I, i.e. consx refines the information contained in x by y. This
is similar to refining the information of a word by adding a letter or a digit. There is a
connection between intervals and digits.

4.1.12 Lemma
1. Let Qe ⊆e ({[p, q] | 0 ≤ p < q ≤ 1]} \ {[0, 1]}) =: {x1, . . . ,xr} be a finite set of intervals

with
⋃

x∈Qe
x = [0, 1]. Then

εQe : {1, . . . , r}ω → [0, 1], (ji)i∈N .→ consxj0
(consxj1

(. . .) . . .)
= lim

i∈N
(consxj0

(consxj1
(. . . (consxji

([0, 1]))))

= lim
i∈N

xj0 · . . . · xji

is a representation of [0, 1] and

εQe ≤ ρ

2. Let 0 < b < a < 1 and l = [0, a] and r = [b, 1] then ε{l,r} ≡ ρ

Proof.[Sch97] !

Considering intervals as (generalized) digits, Case 2. delivers a representation based on two
digits that is equivalent to our standard representation which needs three digits.

We consider a certain set of intervals, which we met already in Example 4.1.11.

4.1.13 Definition
Let

• L :=
[
0, 1

2

]
,

• C :=
[

1
4 , 3

4

]
and

• R :=
[

1
2 , 1

]
.

These intervals are of special interest because they correspond to the digits 1,0 and 1 respec-
tively.

4.1.14 Lemma
Let ε{L,C,R} : {1, 2, 3}ω → R be defined as in Lemma 4.1.12. Then

ε{L,C,R} ≡ ρ

Proof.[Sch97] !
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4.1.15 Definition
We define some functions on intervals

pif : {tt,ff}⊥ × I × I → I, (b,x,y) .→






x if b = tt
y if b = ff

x & y if b = ⊥

We write pif b thenx elsey instead of pif(b,x,y).

<⊥ : I × I → {tt,ff}⊥, ([ξ, ξ′], [η, η′]) .→






tt if ξ′ < η
ff if η′ < ξ
⊥ if [ξ, ξ′] ∩ [η, η′] *= ∅

and

left : I → {tt,ff}⊥, x .→ x<⊥
1
2

4.1.16 Lemma
The functions pif, <I

⊥ and left are continuous.

Functions on intervals are useful to compute functions on real numbers.

4.1.17 Definition
A continuous interval function F : Ik → I approximates a real valued function ϕ : [0, 1]k →
[0, 1], if for all ξ1, . . . , ξk ∈ [0, 1] holds

F ([ξ1, ξ1], . . . , [ξk, ξk]) = [ϕ(ξ1, . . . , ξk), ϕ(ξ1, . . . , ξk)]

We say F computes ϕ if in addition F is computable in some sense.

A function F : I → I approximates ϕ : [0, 1] → [0, 1], iff

∀x ∈ I, ξ ∈ [0, 1]. (ξ ∈ x ⇒ ϕ(ξ) ∈ F (x))

This follows directly from the monotonicity of a continuous interval function.

4.2 Dyadic Recursion

[Esc96b] does not give an explicit definition of dyadic recursion, but it is easy to assemble.
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4.2.1 Definition
1. A function F : Ik → I is defined from H1, . . . ,Hk2 : Ik+1 → I by dyadic recursion if

F (x1, . . . ,xk) = pif left(x1) then pif left(x2) . . .

. . . pif left(xk) thenH1(tailL(x1), . . . , tailL(xk), F (tailL(x1), . . . , tailL(xk)))
elseH2(tailL(x1), . . . , tailR(xk), F (tailL(x1), . . . , tailR(xk)))
...

pif left(xk) thenH2k−1(tailR(x1), . . . , tailL(xk), F (tailR(x1), . . . , tailL(xk)))
elseH2k(tailR(x1), . . . , tailR(xk), F (tailR(x1), . . . , tailR(xk)))

We write F = Dyad(H1, . . . ,Hk2).

2. Simultaneous dyadic recursion is defined analogously to the former cases.

This scheme might be hard to read in the general case. In cases of one or two parameters
things become clearer:

F (x) = pif left(x) thenHL(tailL(x), F (tailL(x))
elseHR(tailR(x), F (tailR(x))

F (x,y) = pif left(x) then pif left(y) thenHLL(tailL(x), tailL(y), F (tailL(x), tailL(y)))
elseHLR(tailL(x), tailR(y), F (tailL(x), tailR(y)))

else pif left(y) thenHRL(tailR(x), tailL(y), F (tailR(x), tailL(y)))
elseHRR(tailR(x), tailR(y), F (tailR(x), tailR(y)))

The definition of dyadic recursive functions should be obvious, we will present it in brief.

4.2.2 Definition
The basic functions are

1. the concatenations consL, consC , consR : I → I,

2. the projections proj k
i : Ik → I, (x1, . . . ,xk) .→ xi and

3. the constant function I → I,x → [0, 1]

4.2.3 Definition
The class DR is the smallest set of functions that contains the basic functions and is closed
under substitution and dyadic recursion.

As usual DRn is the subset of those functions which need at most n nested dyadic recursions.
The sets for simultaneous dyadic recursion SDR and SDRn are defined analogously.
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4.2.4 Lemma
Every dyadic recursive function is continuous.

Proof. Follows from the continuity of the basic functions and the fixed point operator. !

As usual we consider some examples for this kind of recursion.

4.2.5 Example
Some simple recursion schemes with one parameter and recursion depth one.

1. The identity

Id : I → I,x .→ x

has a very easy recursion scheme:

Id(x) = pif left(x) then consL(Id(tailL(x)))
else consR(Id(tailR(x)))

2. The function

Mir : I → I, [ξ, ξ′] .→ [1− ξ′, 1− ξ]

has a similar recursion scheme:

Mir(x) = pif left(x) then consR(Mir(tailL(x)))
else consL(Mir(tailR(x)))

4.2.6 Example
The (binary) mediation or average operator

⊕ : I2 → I, ([ξ, ξ′], [η, η′]) .→
[
ξ + η

2
,
ξ′ + η′

2

]

can be defined by the following dyadic recursion scheme

x⊕ y = pif left(x) then pif left(y) then consL(tailL(x)⊕ tailL(y))
else consC(tailL(x)⊕ tailR(y))

else pif left(y) then consC(tailR(x)⊕ tailL(y))
else consR(tailR(x)⊕ tailR(y))

See [Esc96b].
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4.2.7 Example
The ternary mediation operator ⊕3 : I3 → I, ([x, x′], [y, y′], [z, z′]) .→

[
x+y+z

3 , x′+y′+z′

3

]

could be defined with a recursion scheme like

⊕3 (x,y, z) =

= pif left(x) then pif left(y) then pif left(z) then consL(⊕3(tailL(x), tailL(y), tailL(z)))

else cons[ 1
6 , 23 ](⊕

3(tailL(x), tailL(y), tailR(z)))

...
else pif left(z) then cons[ 1

3 , 56 ](⊕
3(tailL(x), tailR(y), tailR(z)))

else consR(⊕3(tailR(x), tailR(y), tailR(z)))

Since this function is symmetric in the arguments, there is no need to write down all cases,
actually there are four different cases, these are considered here.

This scheme uses the functions cons[ 1
6 , 23 ] and cons[ 1

6 , 23 ] which are not among our basic func-
tions.

We use the following equations to define a simultaneous dyadic recursion scheme:

[
1
6
,
2
3

]
· L =

[
1
6
,

5
12

]
=L ·

[
1
3
,
5
6

]

[
1
6
,
2
3

]
·
[
1
6
,
2
3

]
=

[
1
4
,
1
2

]
=L · R

[
1
6
,
2
3

]
·
[
1
6
,
2
3

]
=

[
1
3
,

7
12

]
=C ·

[
1
6
,
2
3

]

⊕3 (x,y, z) =

= pif left(x) then pif left(y) then pif left(z) then consL(⊕3(tailL(x), tailL(y), tailL(z)))

else ⊕3
LLR (tailL(x), tailL(y), tailR(z))

...
else pif left(z) then ⊕3

LRR (tailL(x), tailR(y), tailR(z))

else consR(⊕3(tailR(x), tailR(y), tailR(z)))
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⊕3
LLR (x,y, z) =

= pif left(x) then pif left(y) then pif left(z) then consL(⊕3
LRR(tailL(x), tailL(y), tailL(z)))

else consLR(⊕3(tailL(x), tailL(y), tailR(z)))
...

else pif left(z) then consC(⊕3
LLR(tailL(x), tailR(y), tailR(z)))

else consC(⊕3
LRR(tailR(x), tailR(y), tailR(z)))

⊕3
LRR (x,y, z) =

= pif left(x) then pif left(y) then pif left(z) then consC(⊕3
LRR(tailL(x), tailL(y), tailL(z)))

else consC(⊕3
LRR(tailL(x), tailL(y), tailR(z)))

...
else pif left(z) then consRL(⊕3(tailL(x), tailR(y), tailR(z)))

else consR(⊕3
LLR(tailR(x), tailR(y), tailR(z)))

This recursion scheme can understood as a finite transducer (see Figure 4.1). In this picture
the intervals are interpreted as letters. The nodes or states represent the currently called
function, which has to do the next step in the computation. The labels at the arrows denote
the input/output behavior.

4.2.8 Example
We can define a function

T : I →, [ξ, ξ′] .→
[
1
3
· ξ, 1

3
· ξ′

]

as

T (x) = ⊕3(x, [0, 0], [0, 0])

On the other hand we can derive a recursion scheme from the recursion scheme of ⊕3 by
picking the relevant cases. We obtain

T (x) = pif left(x) then consL(T (tailL(x)))
elseTR(tailL(x))

TR(x) = pif left(x) then consL(TRR(tailL(x)))
else consLR(T (tailR(x)))
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⊕3
LLR

⊕3

⊕
3
LRR

(L, L, L) "→ L

(R, R, R) "→ R

(L, L, R) "→ ε

(L, R, L) "→ ε

(R, L, L) "→ ε

(L, R, R) "→ ε

(R, L, R) "→ ε

(R, R, L) "→ ε

(L, L, L) "→ L

(R, R, R) "→ C

(L, L, L) "→ C

(R, R, R) "→ R

(L, R, R) "→ C

(R, L, R) "→ C

(R, R, L) "→ C

(L, L, R) "→ C

(L, R, L) "→ C

(R, L, L) "→ C

(L, L, R) "→ LR

(L, R, L) "→ LR

(R, L, L) "→ LR

(L, R, R) "→ RL

(R, L, R) "→ RL

(R, R, L) "→ RL

Figure 4.1: The ternary mediation operator as a finite transducer

TRR(x) = pif left(x) then consC(TR(tailL(x)))
else consR(TRR(tailR(x)))

This simultaneous recursion scheme can be written as a finite transducer again (Figure 4.2),
which is obviously derived from the transducer representing the ternary mediation operator
(Figure 4.1) by removing the irrelevant parts and keeping all relevant stuff.

Strange enough, there are recursion schemes for constant functions.

4.2.9 Example
1. The constant function

One : I → I,x .→ [1, 1]

has the following dyadic recursion scheme:

One(x) = pif left(x) then consR(One(tailL(x)))
else consR(One(tailR(x)))

2. The constant functions
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TR

T

TRR

L !→ L

R !→ ε

L !→ LL !→ C

R !→ C

R !→ LR

Figure 4.2: The function T as a finite transducer

Zero : I → I,x .→ [0, 0]

and

Ahalf : I → I,x .→
[
1
2
,
1
2

]

have similar recursion schemes.

3. The constant function

Athird : I → I,x .→
[
1
3
,
1
3

]

can be composed using the function T from Example 4.2.8

Athird(x) = T (1̃, 0̃, 0̃)

We might also give a simultaneous recursion scheme.

Athird(x) = pif left(x) then consL(Athird ′(tailL(x)))
else consL(Athird ′(tailR(x)))
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and

Athird ′(x) = pif left(x) then consR(Athird(tailL(x)))
else consR(Athird(tailR(x)))

But we can also get rid of the simultaneity since this function is constant.

Athird(x) = pif left(x) then consLR(Athird(tailL(x)))
else consLR(Athird(tailR(x)))

Our next example will be the multiplication which has recursion depth 2. Note that the
recursion scheme given in [Esc96b] contains a small mistake. When multiplying two real
numbers from the interval

[
1
2 , 1

]
the result will reside in the interval

[
1
4 , 1

]
, which is too

large to be represented by a digit. In this case, the next pair of digits has to be considered
— smells like simultaneous recursion.

4.2.10 Example
1. Multiplication on intervals

× : I2 → I, ([ξ, ξ′], [η, η′]) .→ [ξ · η, ξ′ · η′]

can be computed using the following simultaneous dyadic recursion scheme

x× y = pif left(x) then pif left(y) then consLL(tailL(x)× tailL(y))

else consL

(
tailL(x) + (tailL(x)× tailR(y))

2

)

else pif left(y) then consL

(
(tailR(x)× tailL(y)) + tailL(y)

2

)

else tailR(x)×RR tailR(y)

and

x×RR y = pif left(x) then pif left(y) then consC

(
2 · tailL(x) + 2 · tailL(y) + (tailL(x)× tailR(y))

8

)

else consC

(
2̃ + 3 · tailL(x) + 2 · tailR(y) + (tailR(x)× tailR(y))

8

)

else pif left(y) then consC

(
2̃ + 2 · tailR(x) + 3 · tailL(y) + (tailR(x)× tailR(y))

8

)

else consR

(
1̃ + 3 · tailR(x) + 3 · tailR(y) + (tailR(x)× tailR(y))

8

)

Terms like
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1̃ + 3 · tailR(x) + 3 · tailR(y) + (tailR(x)× tailR(y))
8

can be understood as a short hand for terms like

⊕8 ([1, 1], tailR(x), tailR(x), tailR(x), tailR(y), tailR(y), tailR(y), tailR(x)× tailR(y))

We explain this scheme. We have to consider equations like

consL(x)× consL(x) = (L · [ξ, ξ′])× (L · [η, η′])

=
[
ξ

2
,
ξ′

2

]
×

[
η

2
,
η′

2

]

=
[
ξη

4
,
ξ′η′

4

]

=
[
0,

1
4

]
· [ξη, ξ′η′]

= consLL(x× y)

or

consR(consR(x))× consR(consR(y)) =
([

3
4
, 1

]
· [ξ, ξ′]

)
×

([
3
4
, 1

]
· [η, η′]

)

=
[
3 + ξ

4
,
3 + ξ′

4

]
×

[
3 + η

4
,
3 + η′

4

]

=
[
9 + 3ξ + 3η + ξη

16
,
9 + 3ξ′ + 3η + ξη′

16

]

=
[
1
2
, 1

]
·
[
1 + 3ξ + 3η + ξη

8
,
1 + 3ξ′ + 3η′ + ξ′η′

8

]

= consR(⊕8(1̃,x,x,x,y,y,y,x× y))

We can derive a recursion scheme for the function

Sqr : I → I, [ξ, ξ′] .→ [ξ2, ξ′2] (4.1)

namely

Sqr(x) = pif left(x) then consLL(Sqr(tailL(x))
elseSqrR(tailR(x))
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and

SqrR(x) = pif left(x) then consC

(
4 · tailL(x) + Sqr(tailL(x))

8

)

else consR

(
1̃ + 6 · tailR(x) + Sqr(x)

8

)

4.3 Simulation by uniformly recursive word functions

The intervals L = [0, 1
2 ] and R = [12 , 1] can be interpreted as digits 1 and 1, respectively.

Thus the behavior of a TTM simulating a dyadic recursive function is easily determined on
inputs w ∈ {1, 1}ω

The problem to consider is the digit 0, which has the interval C = [14 , 3
4 ] as an equivalent,

but that does not have a separate case in the dyadic recursion scheme. Whenever an interval
I with 1

2 ∈ I appears, the branches are computed in parallel.

First of all we note, that results of parallel computations behave properly, they are connected.

4.3.1 Lemma (Connection)
Let ϕ be a total real valued function computed by a dyadic recursive function F . Then for
every interval x ∈ I with 1

2 ∈ x

F (tailL(x)) ∩ F (tailR(x)) *= ∅

Proof. Assume there is an interval x

F (tailL(x)) ∩ F (tailR(x)) = ∅

tailL and tailR are continuous and thus monotonic. Furthermore F is continuous and thus
monotonic. We consider an interval y with x " y and 1

2 ∈ y. Then we obtain

F (tailL(y)) ∩ F (tailR(y)) ⊆ F (tailL(x)) ∩ F (tailR(x)) = ∅

The definition of & gives us that

width(F (y)) = width(F (tailL(y)) & F (tailR(y))) > 0

with width([ξ, ξ′]) = ξ′ − ξ.

I.e. F (y) cannot be a singleton interval. Considering the case y = [12 , 1
2 ] shows that F ([12 , 1

2 ])
is not a singleton interval, which would lead to ϕ(1

2)↑. This is a contradiction, ϕ was assumed
to be total. !
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4.3.2 Example
Consider the function F with the following dyadic recursion scheme

F (x) = pif left(x) then consLL(F (tailL(x)))
else consRR(F (tailR(x)))

Each interval x = [ξ, ξ′] with 1
2 ∈ x can be written as x =

[
ξ, 1

2

]
&

[
1
2 , ξ′

]
. In this case we

obtain

F (x) = pif

⊥︷ ︸︸ ︷
left(x) then consLL(F (tailL(x)))

else consRR(F (tailR(x)))
consLL(F (tailL(x))) & consRR(F (tailR(x)))

= consLL(F (tailL
([

ξ,
1
2

])
)) & consRR(F (tailR

([
1
2
, ξ′

])
))

In case x =
[

1
2 , 1

2

]
we obtain

F

([
1
2
,
1
2

])
= pif left

([
1
2
,
1
2

])
then consLL(F (tailL

([
1
2
,
1
2

])
))

else consRR(F (tailR
([

1
2
,
1
2

])
))

= consLL(F (tailL
([

1
2
,
1
2

])
)) & consRR(F (tailR

([
1
2
,
1
2

])
))

= consLL(F (1̃) & consRR(F (0̃))
= consLL(1̃) & consRR(0̃)

=
1̃
4
& 3̃

4

=
[
1
4
,
3
4

]

In case of a dyadic rational, i.e x = [ i
2j , i

2j ] with an odd number i and i < 2j , we can write
x = I1 . . . Ij · [12 , 1

2 ] with I1, . . . Ij ∈ {L,R}. Then

F (x) = I2
1 · . . . · I2

j · C

I.e. the computed function ϕ : [0, 1] ⇀ [0, 1] does not terminate on dyadic rationals.

We found that results of parallel computations are connected, i.e. they have a non-empty
intersection. We use this property to merge the parallel outputs. We have to think about
simulation of the infimum on intervals by a function on words.
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4.3.1 The Infimum

Dyadic recursion depends on a certain parallelism, the parallel conditional pif. It is necessary
in all cases, in which an interval cannot be determined to reside either in the right or in the
left half of the unit interval. In these cases, the parallel conditional computes two branches
and takes the infimum of both results as its result.

A similar situation occurs when we simulate dyadic recursion on intervals by primitive or
uniform recursion on words. The letter or digit “0” corresponds to the interval C which
needs parallelism. We have to simulate the computation of the infimum of the two respective
branches.

In this section we explain the principle of a word function that computes the infimum (or
rather the join) of the intervals denoted by two words. We provide the basic knowledge of
dealing with overlapping intervals.

Since both branches of a parallel are connected, there are pairs of values which might not
occur as results of a parallel computation. The feasible cases lead us directly to a definition
of an infimum operator on infinite words.

Our first construction assumes that we have two infinite words converging to the same real
number.

We consider how the intervals are connected in several cases and what we already know
about the approximated real number. We will consider up to three consequent digits. We
use these to make the intervals become smaller by adding more digits. Then the infimum
becomes smaller as well, and we can determine a digit representation for it.

The cases where the two input intervals turn out to have no intersection occur when one of
the branches is no more valid. We call them non-fitting situations. We will consider these
cases in the next Section 4.3.2. The infimum operator will experience several refinements to
handle those situations.

In Figure 4.3 the positions of intervals are shown. In case both intervals are the same,
everything is clear. In the other cases, we have to consider the subsequent digit. This is
done in Figure 4.5 and Figure 4.4. In some cases even a third digit has to be considered,
this is shown in Figures 4.6 and 4.7. All other cases are symmetric variants of these.

That gives us the following simultaneous recursion scheme for the infimum.

4.3.3 Definition
We define the functions inf , inf LR, inf LC , inf CR, inf LC/CC , inf CR/CC : (Σ∗)2 → Σ∗ by the
following simultaneous recursion scheme:

inf (ε, w) = ε

inf (v, ε) = ε

inf (av, aw) = a · inf (v, w)
inf (1v, 1w) = inf LR(v, w)
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L C R

L
0

1

4

1

2

3

4 1 0
1

4

1

2

3

4 1 0
1

4

1

2

3

4 1

C
0

1

4

1

2

3

4
1 0

1

4

1

2

3

4
1 0

1

4

1

2

3

4
1

R
0

1

4

1

2

3

4
1 0

1

4

1

2

3

4
1 0

1

4

1

2

3

4
1

Figure 4.3: Positions of pairs of intervals

L ! C L C R

L
0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1

LL ! CL = L · (L ! R) LL ∩ CC = ∅ LL ∩ CR = ∅

C
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LC ! CL = L · (C ! R) LC ! CC =
[

1

8
, 5

8

]

LC ∩ CR = ∅

R
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LR = CL LR ! CC = C · (L ! C) LR ! CR = C · (L ! R)

Figure 4.4: Positions of intervals. Assume the first pair of intervals was (L,C).
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L ! R L C R

L
0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1

LL ∩ RL = ∅ LL ∩ RC = ∅ LL ∩ RR = ∅

C
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LC ∩ RL = ∅ LC ∩ RC = ∅ LC ∩ RR = ∅

R
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LR ! RL = C · (L ! R) LC ∩ RC = ∅ LL ∩ RR = ∅

Figure 4.5: Positions of intervals. Assume the first pair of intervals was (L,R).

LC ! CC L C R

L
0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1

LCL ∩ CCL = ∅ LCL ∩ CCC = ∅ LCL ∩ CCR = ∅

C
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LCC ∩ CCL = ∅ LCC ∩ CCC = ∅ LCC ∩ CCR = ∅

R
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

LCR ! CCL = LR · (L ! R) LCR ∩ CCC = ∅ LCR ∩ CCR = ∅

Figure 4.6: Positions of intervals. Assume the first pair of intervals was (LC, CC).
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CC ! RC L C R

L
0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1 0 1

4

1

2

3

4 1

CCL ∩ RCL = ∅ CCL ∩ RCC = ∅ CCL ∩ RCR = ∅

C
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

CCC ∩ RCL = ∅ CCC ∩ RCC = ∅ CCC ∩ RCR = ∅

R
0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1 0 1

4

1

2

3

4
1

CCR ! RCL = CR · (L ! R) CCR ∩ RCC = ∅ CCR ∩ RCR = ∅

Figure 4.7: Positions of intervals. Assume the first pair of intervals was (CC, RC).

inf (1v, 0w) = inf LC(v, w)
inf (0v, 1w) = inf LC(w, v)
inf (0v, 1w) = inf CR(v, w)
inf (1v, 1w) = inf LR(w, v)
inf (1v, 0w) = inf CR(w, v)

inf LC(ε, v) = ε

inf LC(v, ε) = ε

inf LC(1v, 1w) = 1 · inf LR(v, w)
inf LC(1v, 0w) = ε

inf LC(1v, 1w) = ε

inf LC(0v, 1w) = 1 · inf CR(v, w)
inf LC(0v, 0w) = inf LC/CC(v, w)
inf LC(0v, 1w) = ε

inf LC(1v, 1w) = 11 · inf (v, w)
inf LC(1v, 0w) = 0 · inf LC(v, w)
inf LC(1v, 1w) = 0 · inf LR(v, w)

inf LR(ε, w) = ε

inf LR(v, ε) = ε

inf LR(1v, aw) = ε

inf LR(0v, aw) = ε

inf LR(1v, 1w) = 0 · inf LR(v, w)
inf LR(1v, 0w) = ε

inf LR(1v, 1w) = ε
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inf CR(ε, w) = ε

inf CR(v, ε) = ε

inf CR(1v, 1w) = 0 · inf LR(v, w)
inf CR(1v, 0w) = ε

inf CR(1v, 1w) = ε

inf CR(0v, 1w) = 0 · inf CR(v, w)
inf CR(0v, 0w) = inf CR/CC(v, w)
inf CR(0v, 1w) = ε

inf CR(1v, 1w) = 01 · inf (v, w)
inf CR(1v, 0w) = 1 · inf LC(v, w)
inf CR(1v, 1w) = 1 · inf LR(v, w)

Two cases need a third step

inf LC/CC(v, ε) = ε

inf LC/CC(ε, w) = ε

inf LC/CC(1v, aw) = ε

inf LC/CC(0v, aw) = ε

inf LC/CC(1v, 1w) = 10 · inf LR(v, w)

inf LC/CC(1v, 0w) = ε

inf LC/CC(1v, 1w) = ε

inf CR/CC(v, ε) = ε

inf CR/CC(ε, w) = ε

inf CR/CC(1v, aw) = ε

inf CR/CC(0v, aw) = ε

inf CR/CC(1v, 1w) = 10 · inf LR(v, w)

inf CR/CC(1v, 0w) = ε

inf CR/CC(1v, 1w) = ε

It is obvious, that in the diverging cases — in the non-fitting situations — the output will
not be continued, i.e. this function is not fully monotonic. The case, that one of the branches
of the parallel computation is invalid, is left unconsidered yet.

We will deal with these cases in the following section.

4.3.2 Examples

The simulation of the dyadic recursion by uniform recursion follows a rather straight idea of
simulating two parallel computations and merging their respective results with the infimum
operator.

The technical implementation of this idea has to handle a bunch of cases that might occur.
We decided to show representative examples for those cases, each displaying a problem and
the principle of its solution. All these cases will be reconsidered in the next section, where
a general construction is derived from the principles. We hope that will help to understand
the construction.

Two cases will occur. When both computations are valid, both will converge to represen-
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tations of the same result, and the infimum operator will deliver a representation of that
result.

If, within the computation, one of the branches occurs to be invalid, this branch is stopped
and only the other one is continued. The infimum operator must dismiss the invalid branch.

We will explain that in the following examples. The construction in the general case, which
will be presented in the next Section (4.3.3), is based on these examples.

(11)ω is the representation of 1
3 generated by the dyadic scheme of the identity:

[
1
3
,
1
3

]
=

⊔

n∈N
(consn

LR([0, 1])

We have left(
[

1
3 , 1

3

]
) = tt and tailL(

[
1
3 , 1

3

]
) =

[
2
3 , 2

3

]
. And analogously left(

[
2
3 , 2

3

]
) = ff and

tailR(
[

2
3 , 2

3

]
) =

[
1
3 , 1

3

]

The advantage of this representation becomes clear, on computing a dyadic recursive func-
tion, e.g. Mir : x .→ 1− x (Example 4.2.5-2, p. 73).

That recursion scheme can easily be translated to ε-primitive recursion

mir(ε) = ε

mir(1w) = 1 ·mir(w)
mir(1w) = 1 ·mir(w)

We obtain mir((11)l) = (11)l and mirω((11)ω) = (11)ω.

A less canonical representation of 1
3 is 01(11)ω. To compute 1 − 1

3 with this representation
the above recursion scheme is insufficient. We do not have a case mir(0w) = . . .. We remind

C = LR &RL (4.2)

or rather

CiL = LRi

CiR = RLi

and

⊔

i∈N
Ci =

⊔

i∈N
LRi =

⊔

i∈N
RLi (4.3)
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We define

left(ε) = ε

left(1v) = 1v

left(0v) = 1 · left(v)
left(1v) = ♦

right(ε) = ε

right(1v) = ♦
right(0v) = 1 · right(v)
right(1v) = 1v

In this scheme we use an additional digit ♦. This represents the detection of an invalid
branch. E.g. the line left(1v) = ♦ denotes that a digit 1 may not occur in a left branch.

A ♦-digit within an input words makes a function know that it deals with an invalid branch.

Since we do have that additional digit ♦ in our alphabet Σ = {1, 0, 1}, we have to simulate
it by a simultaneous recursion. This can be done analogously to Lemma 3.2.11 (p. 32).

Now we have to complete the recursion schemes of the infimum operator in the obvious way

inf (av,♦w) = av

inf (♦v, aw) = aw

inf LC(av,♦w) = 1 · av

inf LC(♦v, aw) = 0 · aw

inf LR(av,♦w) = 1 · av

inf LR(♦v, aw) = 1 · aw

inf CR(av,♦w) = 0 · av

inf LR(♦v, aw) = 1 · aw

inf LC/CC(av,♦w) = 10 · av

inf LC/CC(♦v, aw) = 00 · aw

inf CR/CC(av,♦w) = 00 · av

inf CR/CC(♦v, aw) = 10 · aw

A line like inf (av,♦w) = av shows how invalid branches are handled. The right branch is
invalid, it is ignored. Only the left branch delivers the result.

We complete the recursion scheme by

mir(0w) = inf (1 ·mir(left(v)), 1 ·mir(right(v)))
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The principle of uniform or primitive recursion does only allow the use of preceding values,
like mir(v) to compute mir(av). The use of mir(left(v))is not allowed.

We overcome this with further simultaneous recursion.

mir(0w) = inf (1 ·mirL(w), 1 ·mirR(w))

mirL(1v) = 1 ·mir(v)
mirL(0v) = 1 ·mirL(v)
mirL(1v) = ♦

mirR(1v) = ♦
mirR(0v) = 1 ·mirR(v)
mirR(1v) = 1 ·mir(v)

Since mir now uses inf ∈ ε-UR1(Σ) in its recursion scheme, we have mir ∈ ε-UR2(Σ). That
is insufficient, we need mir ∈ ε-UR1(Σ). We cannot use the infimum operator within the
recursion scheme. We have to use an external infimum operator inf e.

Our aim is to compute mir in the following way:

mir(x) = inf e(mir ′(lefte(x)),mir ′(r(x)))

where lefte and righte are the external versions of left and right . They are defined analo-
gously, but computation will be continued after a ♦-digit. ♦ works like a reset, which cuts
of the invalid branch and uses it for a new one if necessary.

4.3.4 Definition
The functions lefte, righte : {1, 0, 1} → {1, 0, 1,♦} are defined by the following recursion
schemes

lefte(ε) = ε

lefte(1v) = 1 · lefte(v)
lefte(0v) = 1 · left ′e(v)
lefte(1v) = ♦ · lefte(v)

left ′e(ε) = ε

left ′e(1v) = 1 · lefte(v)
left ′e(0v) = 1 · left ′e(v)
left ′e(1v) = ♦ · lefte(v)

righte(ε) = ε

righte(1v) = ♦ · righte(v)
righte(0v) = 1 · right ′e(v)
righte(1v) = 1 · righte(v)

right ′e(ε) = ε

right ′e(1v) = ♦ · righte(v)
right ′e(0v) = 1 · right ′e(v)
right ′e(1v) = 1 · righte(v)

4.3.5 Definition
inf e is defined like inf with the following changes in the scheme:
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inf e(♦v, aw) = a · inf e(v, w)
inf e(av,♦w) = a · inf e(v, w)

inf e
LR(♦v, aw) = 1a · inf e(v, w)

inf e
LR(av,♦w) = 1a · inf e(v, w)

Further parts of the recursion schemes are modified analogously.

We reconsider our example.

4.3.6 Example

mir(v) = inf e(mir ′(lefte(v)),mir ′(righte(v)))

where mir ′ is defined in the obvious way

mir ′(ε) = ε

mir ′(1v) = 1 ·mir ′(v)
mir ′(1v) = 1mir ′(v)
mir ′(♦v) = ♦ ·mir ′(v)

Note that we have no rule for the case mir ′(0v). We do not need it. mir ′ will not be called
with these input values. Any definition in this case is sufficient.

mir(1000101) = inf e(mir ′(l(1000101),mir ′(righte(1000101))))
= inf e(mir ′(♦111♦11), (mir ′(111111♦))
= inf e(♦111♦11, 111111♦)
= 1 · inf e(1111♦11, 1111111♦)
= 1 · inf e

RL(11♦11, 1111♦)
= 10 · inf e

RL(1♦11, 111♦)
= 100 · inf e

RL(♦11, 11♦)
= 10011 · inf e(11, 1♦)
= 10011 · inf e

RL(1,♦)
= 1001111

The previous example is mostly harmless, things become more complicated with more input
parameters.
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4.3.7 Example
We repeat the dyadic recursion scheme of the mediation operator

x⊕ y = pif left(x) then pif left(y) then consL(tailL(x)⊕ tailL(y)) (4.4)
else consC(tailL(x)⊕ tailR(y)) (4.5)

else pif left(y) then consC(tailR(x)⊕ tailL(y)) (4.6)
else consC(tailR(x)⊕ tailR(y)) (4.7)

That gives us

med(ε, w) = ε

med(v, ε) = ε

med(1v, 1w) = 1 ·med(v, w)
med(1v, 1w) = 0 ·med(v, w)
med(1v, 1w) = 0 ·med(v, w)
med(1v, 1w) = 1 ·med(v, w)

med(1v, 0w) = inf (1 ·med(1med(v, left(w)), 0med(v, right(w)))
med(0v, 1w) = inf (1 ·med(left(v), w), 0 ·med(right(v), w))

med(0v, 0w) = inf (inf (1 ·med(left(v), left(w)), 0med(left(v), right(w))),
inf (0 ·med(right(v), left(w)), 1 ·med(right(v), right(w))))

med(0v, 1w) = inf (0 ·med(left(v), w), 1 ·med(right(v), w))
med(1v, 0w) = inf (0 ·med(v, left(w)), 1 ·med(v, right(w)))

med(v,♦w) = ♦
med(♦v, w) = ♦

With the external infimum operator inf e we obtain

med = inf e(inf e(med ′(lefte(v), lefte(w)),med ′(lefte(v), righte(w))),
inf e(med ′(righte(v), lefte(w)),med ′(righte(v), righte(w))))

where the definition of med ′ is derived from the definition of ⊕ in the obvious way.

4.3.8 Example
A further example is the function T (Example 4.2.8) which uses simultaneous recursion.
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We have two problems to handle when using the external infimum inf e. The first is that the
output is not synchronized, i.e. we do not have the same number of output digits in every
branch. In particular, reading a single input digit may produce none, one or two output
digits.

t(x) = inf e(t′(l(x), righte(x)), t′(righte(x), l(x)))

Note that the function t′ has two parameters. We need the second parameter, to check which
state the other branch of a parallel computation has. We need to know that, in case a branch
is discontinued. Then we know the snap back position.

The lower index records the state of the current branch, the upper index the state of the
other one.

We have to record snap backs in the upper index, i.e setting the upper index to the next
lower index, when a ♦ occurs in the second argument.

t′(1v,♦w) = 1 · t′(v, w)
t′(1v, 1w) = 1 · tR(v, w)
t′(1v, 1w) = t′R(v, w)
t′(1v,♦w) = t′R(v, w)
t′(♦v, 1w) = ♦ · t′(v, w)
t′(♦v, 1w) = ♦ · tRR

tR(1v,♦w) = 1 · t′(v, w)
tR(1v, 1w) = 1 · t′(v, w)
tR(1v, 1w) = tRR

R (v, w)
tR(1v,♦w) = tRR(v, w)
tR(♦v, 1w) = ♦ · tRR

RR(v, w)
tR(♦v, 1w) = ♦ · t′(v, w)

tRR(1v,♦w) = 1 · t′(v, w)
tRR(1v, 1w) = 1 · tRR(v, w)
tRR(1v, 1w) = tRR(v, w)
tRR(1v,♦w) = tRR(v, w)
tRR(♦v, 1w) = ♦ · tRR(v, w)
tRR(♦v, 1w) = ♦ · tRR

RR(v, w)

t′R(1v, 1w) = 1 · tRRR(v, w)
t′R(1v,♦w) = 1 · tRR

RR(v, w)
t′R(1v, 1w) = 11 · t′(v, w)
t′R(1v,♦w) = 11 · t′(v, w)
t′R(♦v, 1w) = ♦♦ · t′(v, w)
t′R(♦v, 1w) = ♦ · tRR(v, w)

tRR(1v, 1w) = 1 · t′RR(v, w)
tRR(1v,♦w) = 1 · tRR

RR(v, w)
tRR(1v, 1w) = 11 · tRR(v, w)
tRR(1v,♦w) = 11 · t′(v, w)
tRR(♦v, 1w) = ♦♦ · t′(v, w)
tRR(♦v, 1w) = ♦ · tRR

tRR
R (1v, 1w) = 1 · t′RR(v, w)

tRR
R (1v,♦w) = 1 · tRR

RR(v, w)
tRR
R (1v, 1w) = 11 · t′(v, w)

tRR
R (1v,♦w) = 11 · t′(v, w)

tRR
R (♦v, 1w) = ♦ · tRR(v, w)

tRR
R (♦v, 1w) = ♦ · tRR

RR(v, w)
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t′RR(1v, 1w) = 0 · tRR(v, w)
t′RR(1v,♦w) = 0 · tRR(v, w)
t′RR(1v, 1w) = 0 · t′RR(v, w)
t′RR(1v,♦w) = 0 · tRR

RR(v, w)
t′RR(♦v, 1w) = ♦♦ · t′(v, w)
t′RR(♦v, 1w) = ♦ · tRR(v, w)

tRRR(1v, 1w) = 0 · t′R(v, w)
tRRR(1v,♦w) = 0 · tRR(v, w)
tRRR(1v, 1w) = 0 · tRR

RR(v, w)
tRRR(1v,♦w) = 0 · tRR

RR(v, w)
tRRR(♦v, 1w) = ♦♦ · t′(v, w)
tRRR(♦v, 1w) = ♦ · tRR

tRR
RR(1v, 1w) = 0 · tRR

R (v, w)
tRR
RR(1v,♦w) = 0 · tRR(v, w)
tRR
RR(1v, 1w) = 0 · tRRR(v, w)

tRR
RR(1v,♦w) = 0 · tRR

RR(v, w)
tRR
RR(♦v, 1w) = ♦ · tRR(v, w)

tRR
RR(♦v, 1w) = ♦ · tRR

RR(v, w)

Consider the line t′(♦v, 1w) = ♦tR, which tells to remember that the right branch switches
to state TR.

Note that we have two ♦-digits for t′R and t′RR. This is necessary to synchronize the output
streams. While switching from state T to TR, no output is produced, i.e. that stream is one
digit behind. This becomes a problem, when a stream stops and we snap back to the current
state of the continued stream.

Simultaneous recursion with use of the external infimum needs to consider the two branches
in their interdependency. In both branches we mix up valid and invalid computations.
Whenever a computation is detected to be invalid we have to continue that branch from the
current state of the other branch. This state is stored in the upper index of the respective
function.

Note that we have to remember the offset between the two branches to resynchronize the
values. This might be difficult in some case. We recommend something else. The following
construction will work in general. We ensure the synchronization of the output by adding
additional ♦-digits. Note that the functions t′, t′R and t′RR produce no, one or two output
digits for every input digit.

E.g. we could have lines like the following in our recursion scheme:
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t′(1v,♦w) = 1♦ · t′(v, w)
. . .

tRR(♦v, 1w) = ♦♦ · tRR
RR(v, w)

. . .

I.e. all output is synchronized. We need a synchronized infimum to get rid of additional
♦-symbols.

4.3.9 Definition
The synchronized infimum inf s is defined analogously to the external infimum, except the
following case

inf s(♦v,♦w) = ε · inf s(v, w)

and analogously for inf s
LC and all other states of the scheme.

That will not work with recursion depth two. We consider the function

Sqr : I → I, [ξ, ξ′] .→ [ξ2, (ξ′)2]

from Example 4.2.10-4.1 (p. 79). We repeat the dyadic recursion scheme:

Sqr(x) = pif left(x) then consLL(Sqr(tailL(x)
elseSqrR(tailR(x))

and

SqrR(x) = pif left(x) then consC

(
4 · tailL(x) + Sqr(tailL(x))

8

)

else consR

(
1̃ + 6 · tailR(x) + Sqr(x)

8

)

It seems, the respective word function sqr could be computed in the following manner

sqr(1v) = 11 · sqr(v)
sqr(1v) = sqrR(v)
sqr(0v) = inf (11 · sqr(left(v)), sqrR(right(v))
sqr(♦v) = ♦
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But this will not work. Consider the following computation.

4.3.10 Example

sqr(017) = inf (11 · sqr(left(17)), sqrR(right(17)))
= inf (11 · sqr(♦), sqrR(115))
= inf (11♦, 001)
= inf LC(1♦, 01)

The last function call cannot be answered successfully, the infimum operator will try to
compute the infimum of LL =

[
0, 1

4

]
and CC =

[
3
8 , 5

8

]
. But LL ∩ CC = ∅. We call this a

non-fitting situation.

This is caused by the ♦-digit in the invalid branch coming too late. The left branch of a
computation of this function produces two digits of output for every input digit, while the
right branch produces a half output digit for every input digit. The right branch is slower,
the branches are not synchronized.

We can overcome this problem by a more clever infimum operator. We add an additional
state, which means we need a further function simultaneously defined with the infimum
operator. This function is used whenever a situation occurs, in which the actual intervals
will not fit.

This function fit will not be fully monotonic. But this fact does not cause problems. The
function is used under secure conditions and the resulting infimum operator will be fully
monotonic.

Actually we will call fit only if necessary. But we let it run in as a first pass, then let the
infimum operator run as a second pass. It can use the results of fit if necessary.

If no situation occurs, in which fitting is not possible, the infimum operator does not use
the information of fit . Note, in these situations fit delivers a value that allows the infimum
operator to continue.

We give a recursion scheme for fit, at least in principle.
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fit(aiv, aiw) = a3 · fit(v, w) (4.8)
fit(1v, 0w) = a3 · fitLC(v, w) (4.9)
fit(1v, 1w) = a3 · fitLR(v, w) (4.10)

...
fitLC(1v, 1w) = a3 · fitLR(v, w) (4.11)
fitLC(1v, 0w) = fit ′(v, w) (4.12)

...
fit ′(av, bw) = fit ′(v, w) (4.13)
fit ′(av,♦w) = a1 (4.14)
fit ′(♦v, bw) = a2 (4.15)

The function works as follows:

It starts with producing a dummy output, as long as no non-fitting situation occurs (lines
4.8 to 4.11). The same state transitions as in case of the function inf are applied, knowing
the state is necessary to detect an non-fitting situation. During this only dummy output is
produced, it has the same length as the input.

Whenever a non-fitting situation occurs (line 4.12), it is ensured, that one of the branches
in invalid, no further output is produced (line 4.13) until the ♦-sign in the invalid branch is
found (lines 4.14 and 4.15).

We give a more general recursion scheme. Remember ρ(1) = L, ρ(0) = C and ρ(1) = R.

4.3.11 Definition

fit(av, aw) = a3 · fit(v, w) (4.16)
fit(av, bw) = a3 · fitρ(a),ρ(b)(v, w) (4.17)

fitIJ(av, bw) = a3 · fitI′J ′(v, w) if inf IJ(av, bw) = u · inf I′J ′(v, w) (4.18)
fitIJ(av, bw) = fit ′(v, w) if consI(ρ(a)) ∩ consJ(ρ(b)) = ∅ (4.19)
fit ′(av, bw) = fit ′(v, w) if {a, b} ⊆ {1, 0, 1} (4.20)
fit ′(av,♦w) = a1 (4.21)
fit ′(♦v, bw) = a2 (4.22)

It is easy to see, that lines 4.17 and 4.18 accord with lines 4.8 to 4.11 from above, and further
on.

And further we define a new infimum operator inf (3) : (Σ∗)3 → Σ∗. Read inf [0,1][0,1] as inf
and analogously for inf (3). Further let ρ−1(L) = 1, ρ−1(LC) = 10 and so on.

4.3.12 Definition
We define the infimum inf : (Σ∗)2 → Σ∗:
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1. Let inf (3) : (Σ∗)3 → Σ∗ defined by

inf (3)
IJ (av, bw, cu) = d · inf (3)

I′J ′ if inf IJ = d · inf I′J ′

inf (3)
IJ (av, bw, a1u) = ρ−1(I) · av

inf (3)
IJ (av, bw, a2u) = ρ−1(J) · bw

with inf , inf LC etc. defined by as in Definition 4.3.3

2. Let inf : (Σ∗)2 → Σ∗ defined by

inf (v, w) = inf (3)(v, w,fit(v, w))

We use the same name inf for the new infimum, since it behaves like the old one defined
in Definition 4.3.3. Since they behave equivalent in fitting cases, the new infimum can be
understood as an extension of the old one to non-fitting cases.

We reconsider our Example 4.3.10 (page 95).

4.3.13 Example

sqr(017) = inf (11 · sqr(left(17)), sqrR(right(17)))
= inf (11 · sqr(♦), sqrR(116))
= inf (11♦, 001)
= inf (3)(11♦, 001,fit(11♦, 001))
= inf (3)(11♦, 001, a3 · fitLC(1♦, 01))
= inf (3)(11♦, 001, a3 · fit ′(♦, 1))
= inf (3)(11♦, 001, a3a2)
= inf (3)(11♦, 001, a3a2)

= inf (3)
LC(1♦, 01, a2)

= 001

4.3.3 General case

In our examples we found that in case of recursion depth one dyadic recursion is very strict,
if we want to compute a total function. The intervals to be concatenated in both branches
of the dyadic recursion have to be synchronized to ensure that overlapping intervals map to
overlapping intervals.

4.3.14 Lemma (Synchronization)
Let F : I × I → I ∈ DR1 be defined by the following dyadic recursion scheme:
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F (x,y) = pif left(x) then pif left(y) then conspLL
1 ...pLL

kLL

(tailL(x), tailL(y), F (tailL(x), tailL(y)))

else conspLR
1 ...pLR

kLR

(tailL(x), tailR(y), F (tailL(x), tailR(y)))

else pif left(y) then conspRL
1 ...pRL

kRL

(tailR(x), tailL(y), F (tailR(x), tailL(y)))

else conspRR
1 ...pRR

kRR

(tailR(x), tailR(y), F (tailR(x), tailR(y)))

with {pLL
1 , . . . , pLL

kLL
, pLR

1 , . . . , pLR
kLR

, pRL
1 , . . . , pRL

kRL
, pRR

1 , . . . , pRR
kRR

} ⊆ {L,C,R}

Further let F compute the total function ϕ : [0, 1]× [0, 1] → [0, 1]. If ϕ is not constant, then
kLL = kLR = kRL = kRR = 1.

Proof.

• “≥ 1”

Assume kLL = 0 then F ([0, 0], [0, 0]) = [0, 1], i.e. ϕ is not total. Contradiction.

Analogously for kLR, kRL kRR.

• “≤ 1”

This proof is similar to that of lemma 3.6.6 (page 63).

Assume kLL ≥ 1.

Then width(F (L,L)) = 2−kLL < 1
2 . Since ϕ is total, f(L,L) ∩ F (L,R) *= ∅. Further

width(F (L,L) & F (L,R)) = τ < 1.

By induction we get f(Lk, Lk)&f(Lk, Rk) = τk. This forces ϕ to be a constant function,
which is a contradiction.

!

4.3.15 Remark
The synchronisation problem does not occur for constant functions. A dyadic recursive con-
stant function can be assumed to defined with use of a recursion scheme in which the left and
the right branch are the same. These are obviously synchronous.

This fact lets dyadic recursion schemes for constant functions easily be converted into ε-
uniform recursion schemes. We need not care about constant functions any more.

4.3.16 Example
We consider the constant function

Athird : I → I,x .→
[
1
3
,
1
3

]

with dyadic recursion scheme
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Athird(x) = pif left(x) then consLR(Athird(tailL(x)))
else consLR(Athird(tailR(x)))

Obviously this function can be simulated by a word function

athird : {1, 0, 1}∗ → {1, 0, 1}∗

with recursion scheme

athird(ε) = ε

athird(av) = 11 · athird(v)

Note that in case of simultaneous dyadic recursion the synchronization is not that clear.
In order to be able to use the external infimum, we have to synchronize the output digits
manually. Details can be found in the following proofs.

4.3.17 Theorem
Let F : Ik → I ∈ DRn be a function that computes the total function ϕ : [0, 1]k → [0, 1],
then a word function f : ({1, 0, 1}∗)k → {1, 0, 1}∗ ∈ ε-SURn(Σ) exists, which computes ϕ as
well.

Proof.

We use the technique developed in the examples in Section 4.3.2.

Let n ∈ N and F : Ik → I ∈ DRn We define f by structural induction. W.l.o.g. let k = 2.

• F is a basic function. Obvious.

• F = Dyad(HLL, HLR, HRL, HRR), HLL, HLR, HRL, HRR ∈ DRn−1, n = 1

Due to Lemma 4.3.14 F has the following dyadic recursion scheme:

F : I × I → I : (x,y) .→ pif left(x) then pif left(y) then conspLL(F (tailL(x), tailL(y)))

else conspLR(F (tailL(x), tailR(y)))

else pif left(y) then conspRL(F (tailR(x), tailL(y)))

else conspRR(F (tailR(x), tailR(y)))

with {pLL, pLR, pRL, pRR} ⊆ {L,C,R}
We define the functions
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f(v, w) = inf e(inf e(f ′(lefte(v), lefte(w)), f ′(lefte(v), righte(w))),
inf e(f ′(righte(v), lefte(w)), f ′(righte(v), righte(w))))

with inf e, lefte and righte defined as in Definitions 4.3.4 and 4.3.5.
and

f ′(ε, w) = ε

f ′(v, ε) = ε

f ′(1v, 1w) = dig(pLL) · f ′(v, w)
f ′(1v, 1w) = dig(pLR) · f ′(v, w)
f ′(1v, 1w) = dig(pRL) · f ′(v, w)
f ′(1v, 1w) = dig(pRR) · f ′(v, w)

with

dig : {L,C,R}→ {1, 0, 1},






L .→ 1
C .→ 0
R .→ 1

• F = Dyad(HLL, HLR, HRL, HRR) with HLL, HLR, HRL, HRR ∈ DRn−1, n > 1

F : I × I → I : (x,y) .→
.→ pif left(x) then pif left(y) thenHLL(tailL(x), tailL(y), F (tailL(x), tailL(y)))

else HLR(tailL(x), tailR(y), F (tailL(x), tailR(y)))
else pif left(y) thenHRL(tailR(x), tailL(y), F (tailR(x), tailL(y)))

else HRR(tailR(x), tailR(y), F (tailR(x), tailR(y)))

with HLL, HLR, HRL, HRR ∈ DRn−1.
If all functions HLL, HLR, HRL and HRR compute total real valued functions then, by
induction hypothesis, there are word functions hLL, hLR, hRL and hRR computing the
same functions.
If one of the functions is not fully monotonic, we can use the same construction with
the following consideration:
Since F computes a total real valued function for all sequences of intervals ([ξ, ξ′])i∈N
converging to a real number the sequence (F ([ξ, ξ′]))i∈N will converge to a real number
as well.
Assume the function, say HLL, does not converge on some sequences. Then at least
HLL delivers a value that when used by one of the other functions will not prevent
them from converging, since F must converge.
All used functions are continuous and therefore monotonic. I.e. replacing the problem-
atic interval by a subinterval will result in the same function value of F , since the real
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numbers are the maximal elements of I. We can extend the output of HLL arbitrarily
by extending the respective recursion scheme.

In other words, we can assume that all functions HLL, HLR, HRL and HRR compute
total real valued functions, or rather, we can assume the word functions hLL, hLR, hRL

and hRR to be fully monotonic.

f(ε, w) = ε

f(v, ε) = ε

f(1v, 1w) = hLL(v, w, hLL(v, w))
f(1v, 0w) = inf (hLL(v, left(w), f ,left(v, w)), hLR(v, right(w), f ,right(v, w)))
f(1v, 1w) = hLR(f(v, w))
f(0v, 1w) = inf (hLL(left(v), w, fleft , (v, w)), hRL(right(v), w, fright , (v, w))
f(0v, 0w) = inf (inf (hLL(left(v), left(w), fleft ,left(v, w)), hLR(left(v), right(w), fleft ,right(v, w))),

inf (hRL(right(v), left(w), fright ,left(v, w)), hRR(right(v), right(w), fright ,right(v, w))))
f(0v, 1w) = inf (hLL(left(v), w, fleft , (v, w)), hRL(right(v), w, fleft , (v, w)))
f(1v, 1w) = hRL(f(v, w))

with

f ,left(ε, w) = ε

f ,left(v, ε) = ε

f ,left(1v, 1w) = hLR(v, w, f(v, w))
f ,left(1v, 0) = hLR(v, left(w), f ,left(v, w))

f ,left(1v, 1w) = ♦
f ,left(0v, 1w) = inf (hLR(v, w, f(v, w)), hLR(v, w, f(v, w)))
f ,left(0v, 0w) = inf (hLR(left(v), left(w), fleft ,left(v, w)), hRR(right(v), left(w), fright ,left(v, w)))
f ,left(0v, 1w) = ♦
f ,left(0v, 1w) = ♦
f ,left(1v, 1w) = hRR(v, w, f(v, w))

f ,left(1v, 0) = hRR(v, left(w), f ,left(v, w))
f ,left(1v, 1w) = ♦

The functions f ,right , fleft , and fright , are defined analogously.

As a further detail of that recursion scheme we give:
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fleft ,left(ε, w) = ε

fleft ,left(v, ε) = ε

fleft ,left(1v, 1w) = hRR(v, w, f(v, w))
fleft ,left(1v, 0w) = hRR(v, left(w), f ,left(v, w))
fleft ,left(0v, 1w) = hRR(left(v), w, f ,left(v, w))
fleft ,left(0v, 0w) = hRR(v, left(w), fleft ,left(v, w))
fleft ,left(av, 1w) = ♦
fleft ,left(1v, aw) = ♦
fleft ,left(av,♦w) = ♦
fleft ,left(♦v, aw) = ♦

The functions fleft ,right , fleft ,right and fright ,right are defined analogously.
Let inf be defined as in Definition 4.3.12

• F = Sub(G;H). By induction hypothesis there are functions g, h ∈ ε-SURn(Σ), let
f = Sub(g;h)

W.l.o.g. we may assume all functions g, h1, . . . , hk to be fully monotonic. The consid-
eration is similar to the previous case.

!

4.3.18 Corollary
Let F : Ik → I ∈ SDRn (n ≥ 0) be a function that computes the total function ϕ :
[0, 1]k → [0, 1]. Then a word function f : ({1, 0, 1}∗)k → {1, 0, 1}∗ ∈ ε-SURn(Σ) exists,
which computes ϕ as well.

Proof. We have to reconsider the case F ∈ SDR1. In this case we have to deal with the
loss of the synchronization.

All other cases can be derived straightforwardly from the previous proof.

Let F1, . . . , Fm : I → I simultaneously dyadic recursive with recursion depth one. Then we
have

Fi(x) = pif left(x) then pi,1 · . . . · pi,li · Fhi(tailL(x))
else qi,1 · . . . · qi,ki · Fji(tailR(x))

We synchronize the outputs. Let d = max{li, ki | 1 ≤ i ≤ m}

ui,L = dig(pi,1) · . . . · dig(pi,li) · ♦(d−li)
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According to Example 4.3.8 (page 91) we define

f ′(ε, ε) = ε

f ′i,i′(1v, 1w) = ui,L · f ′hi,ji′

f ′i,i′(1v,♦w) = ui,L · f ′hi,hi

f ′i,i′(1v, 1w) = ui,R · f ′ji,hi′

f ′i,i′(1v,♦w) = ui,R · f ′ji,ji

f ′i,i′(♦v, 1w) = ♦d · f ′hi′ ,h
′
i

f ′i,i′(♦v, 1w) = ♦d · f ′ji′ ,j
′
i

Gaps in the scheme may be filled arbitrarily. Only the cases above will occur.

Further we define

fi(v) = inf s(fi,i(lefte(v), righte(v)), fi,i(righte(v), lefte(v)))

Then fi simulates the computation of Fi.

In case of more than one parameter, say Fi : Ik → I we need functions

f ′
i,i′,...,i(2k) : (Σ∗)(2

k) → Σ∗

since we have to prepare for an invalid computation in each branch of each parameter.
We have to remember all states of the corresponding branches. The construction of these
functions is obvious.

Further we keep the outputs synchronized as long as possible, i.e. inf s is applied in the last
step, we will use inf e before.

In case k = 2 we get

fi(v, w) =inf s(inf e(fi,i,i,i(lefte(v), lefte(w), righte(v), righte(w)),
fi,i,i,i(lefte(v), righte(w), righte(v), lefte(w))),

inf e (fi,i,i,i(righte(v), lefte(w), lefte(v), righte(w)),
fi,i,i,i(righte(v), righte(w), lefte(v), lefte(w))))

Then fi simulates Fi.

!
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Chapter 5

Conclusion

We have considered several recursion principles to check their use for real number computa-
tion. Computations on infinite objects can be approximated by fully monotonic computations
on finite words.

We found ε-recursions an appropriate method to obtain monotonic functions. And further
we developed connections between primitive recursion, which distinguishes between recursion
and side parameters, and uniform recursion, which only knows recursion parameters. In
particular we found that primitive and uniform recursion do not coincide in case of recursion
depth one.

Then we found that ε-uniform recursion is able to simulate dyadic recursion, which defines
functions, that do not compute on words but on intervals.

We showed how the parallel conditional can be simulated by sequential functions on words.
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Appendix A

Index of Symbols

Sets

Σ (finite) alphabet, Σ = {a1, . . . ar} p. 27
Σ∗ set of finite words over Σ p. 27
Σω set of infinite words over Σ p. 27
Σ∞ Σ∞ = Σ∗ ∪ Σω p 27
N set of natural numbers
R set of real numbers
I partial unit interval L. 4.1.1 p. 67
R partial real line Def. 4.1.4 p. 68

Functions

coni i-th successor function on words, coni : Σ∗ → Σ∗, w .→ ai · w Def. 3.2.1 p. 28
prok

i uniform projections, prok
i : (Σ∗)k → Σ∗, (x1, . . . , xk .→ xi) Def. 3.2.1 p. 28

proj k
i projections, proj k

i : Mk → M, (x1, . . . , xk .→ xi) Def. 3.2.1 p. 28
succ successor function on natural numbers,

succ : N → N, i .→ i + 1
Def. 2.2.2 p. 14

inf infimum on words Def. 4.3.3
Def. 4.3.12

p. 82
p. 96

inf e external infimum Def. 4.3.5 p. 89
inf s synchronized infimum Def. 4.3.9 p. 94
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Relations

≤p prefix relation on words
v≤p w ⇐⇒ ∃u. w = uv

Def. 3.1.1
Def. 3.1.2

p. 27
p. 28

≤l length comparison on words
v≤l w ⇐⇒ |v| ≤ |w|

Def. 3.1.1 p. 27

" order on an cpo Def. 2.4.1 p. 22

Operators

BoundPr bounded primitive recursion
Prim primitive recursion Def. 2.2.1

Def. 3.2.2
p. 14
p. 28

Primε ε-primitive recursion Def. 3.3.2 p. 34
SimPr simultaneously primitive recursion
SimUnif simultaneously uniform recursion
Sub (simultaneous) substitution Def. 3.2.2

Def. 2.2.1
p. 28
p. 14

Unif uniform recursion Def. 3.4.1 p. 39
Unif ε ε-uniform recursion Def. 3.4.10 p. 46

Classes

PR primitive recursive functions on natural numbers Def. 2.2.2 p. 14
PRn . . . with recursion depth n Def. 2.2.2 p. 14
PR(Σ) primitive recursive functions on words over Σ Def. 3.2.3 p. 29
PRn(Σ) . . . with recursion depth n Def. 3.2.3 p. 29
SPR(Σ) simultaneously primitive recursive functions on words over Σ Def. 3.2.3 p. 29
SPRn(Σ) . . . with recursion depth n Def. 3.2.3 p. 29
ε-PR(Σ) ε-primitive recursive functions on words over Σ Def. 3.3.2 p. 34
ε-PRn(Σ) . . . with recursion depth n Def. 3.3.2 p. 34
ε-SPR(Σ) simultaneously ε-primitive recursive functions on words over Σ Def. 3.3.2 p. 34
ε-SPRn(Σ) . . . with recursion depth n Def. 3.3.2 p. 34
UR(Σ) uniformly recursive functions on words over Σ Def. 3.4.1 p. 39
URn(Σ) . . . with recursion depth n Def. 3.4.1 p. 39
SUR(Σ ) simultaneously uniformly recursive functions on words over Σ
SURn(Σ) . . . with recursion depth n Def. 3.4.1 p. 39
ε-UR(Σ) ε-uniformly recursive functions on words over Σ Def. 3.4.10 p. 46
ε-URn(Σ) . . . with recursion depth n Def. 3.4.10 p. 46
ε-SUR(Σ) simultaneously ε-uniformly recursive functions on words over Σ Def. 3.4.10 p. 46
ε-SURn(Σ) . . . with recursion depth n Def. 3.4.10 p. 46



Appendix B

Some Implementations

This appendix presents some implementations of examples developed within this work. Im-
plementations are done in Objective Caml (O’Caml), syntax highlighting uses the Tuareg
mode in Emacs.

More information on O’Caml can be found on the respective Web site [Tea05].

The source codes will be available for download at http://kuerzer.de/disshs.

B.1 Examples of primitive and uniformly recursive functions

This sections presents some basic examples on word functions. Words are represented as lists.
Those are a basic data type in functional programming languages and deliver an easy syntax
to denote the first letter and the rest of a word, which is needed to write down recursion
schemes.

We use the currified versions of the respective functions.
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(* example_aux.ml *)

(*Auxiliary fuctions for displaying values *)

(* nats *)
(* Delivers first n+1 natural numbers as a list, i.e. [0;...;n] *)

(* We will use lists of naturals instead of words in some examples *)

let nats = fun n !> 
  let  rec do_it = fun i j !> if j = 0 then [i] 
  else  i :: (do_it (i+1) (j!1))
  in do_it 0 n;;

(* Same for non!positive numbers *)

let nats’ = fun n !> List.map (fun x !> ~!x) (nats n);;

(* Positive and negative numbers, i.e. get rid of the zeros if neccessary *)

let pos = fun n !> List.tl (nats n);;
let negs = fun n !> List.tl (nats’ n);;
 
(* Displays list of values *)

let  values = fun f n !> 
  let rec do_it = fun (i,k) !> if i = 0 then [f (pos k)]
  else (f (pos k)) :: (do_it (i!1,k+1))
  in do_it (n,0);;

(* Displays length of output value depending on the length of input values
 * to observe increase and lookahead *)

let lengthes = fun f n !> 
  let rec index : int !> ’a list !> (int * ’a) list = fun i !>
     (function [] !> []

| a :: l !> (i,a) :: (index (i+1) l)
     )
  in index 0 (List.map  List.length (values f n));;

(* Composition of functions *)

let comp : (’b !> ’c) !> (’a !> ’b) !> (’a !> ’c) = 
  fun f g !> (fun x !> f (g x));;

(* iteration, always useful *)

let rec iterate : int !> (’a !> ’a) !> (’a !> ’a) = function
    0 !> ( function _ !>  ( fun x!> x)) 
  | n !> ( function f !> comp f (iterate (n!1) f));;

let repeatlist = fun n l !> iterate n (List.append l) [];;
   
let multitail : int !> ’a list !> ’a list = fun n l !> (iterate n List.tl) l;;

(* Base functions *)

(* The successor functions  *)

(* Note that we use a parameter to define the letter to be appended, 
   in theory we have a fixed function con_i for each letter a_i.
   That would force us to use a fixed finite alphabet and we would loose 
   flexibility in the implemenation of our examples  *)

(* ’con’ is obviously nothing more than syntactical sugar *) 

let con i = function v !> i :: v;;
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(* Some projections *)

let proj’2_2= fun x y !> y;;

let proj’2_1= fun x y !> x;;
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#use "example_aux.ml";;
   
(* Some primitive recursive functions on finite lists *)
(* Some of these function might already be  defined in O’Caml,
 * we want to implement their recursion schemes as exactly as possible *)

(* Note that we use curried forms *)

let con i = function v !> i :: v;;

(* Example 3.2.8 *)

let first = function [] !> []
  | a :: l !> [a];;

let rest = function [] !> []
  | a :: l !> l;;

let rec cut = function [] !> (function w !> w)
  | a :: v !>   (function w !>  rest (cut v w));;

(* 3.2.8!4 *)
(* In that example the right concatenation r_i is a unary function for each i, 
 * but this implementation does not use a fixed alphabet,
 * which would be neccessary.

 * We use an additional parameter i instead.

 * The same holds for the function con defined above *)

let rec r = fun i !> (function [] !> [i]
| a :: v !> a :: (r i v));;

let rec rev = function [] !> []
  | a :: v !> r a (rev v);;

(* 3.2.8!5+6 *)
let rcut = fun v w !> rev (cut v (rev w));;

let rec conc = function [] !> (fun w !> w)
  | a :: v !> (fun w !> con a  (conc v w));;

(* 3.2.8!7 *)
let rec t : ’a list !> ’a list !> ’a list = function [] !> (fun w !> w)
  | a :: v !> (fun w !> rest (t v w)

)
and s : ’a list !> ’a list !> ’a list = function [] !> (fun _ !> [])
  | a :: v !> (fun w !> a :: ((first (t v w)) @ (s v w))

) ;;

let shuffle_eps = fun v w !>
  s (rcut (cut w v) v) (rev (rcut (cut v w) w));;

(* 3.2.8!8 *)
let shuffle = fun v w !> conc (shuffle_eps v w) (conc (cut v w) (cut w v));;

let rec half = function [] !> []
  | a :: v !> half’ v

and half’ = function [] !> []
  | a :: v !> con a (half v);;

(* Example 3.3.5!2 *)

let rec ins = fun i !> (function [] !> []
| 1 :: w !> conc [1;i;2] (ins’ i w)
| j :: w !> con j (ins’ i w)

)
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and ins’ = fun i !> (function [] !> []
| a :: w !> con a (ins i w)

);; 

let rec cont’ = function [] !> []
  | i :: w  !> con 1 (con i (ins i (cont’ w)));; 

let cont = fun v !> half (cont’ v);;

(* Example 3.3.5!3 *)

let rec rins’ = fun i !> (function [] !> []
| 1 :: w !> [2;i;1] @ (rins i w)
| j :: w !> con j (rins i w)

)

and rins = fun i !> (function [] !> []
| a :: w !> con a (rins’ i w)

);; 

let rec rcont’ = function [] !> []
  | i :: w  !> con i (con 1 (rins i (rcont’ w)));; 

let rcont = fun v !> half’ (rcont’ v);;
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#use "example_aux.ml";;

let proj’2_1 = fun u v !> u;;

(* Example 3.2.8!9 *)
let rec half = function [] !> []
  | a :: l !> half’ l

and half’ = function [] !> []
  | a :: l !> a :: (half l);;

(* Example 3.4.3!1 *)
let rec shuffle = fun l l’ !>
match (l,l’) with ([],[])  !> []
  | ([], k) | (k, []) !> k
  | a :: k, a’ :: k’ !> a :: ( a’ :: (shuffle k k’));;

(* Example 3.4.3!5 *)
let rec ms = function [] !> []
  | a :: l !> shuffle  l (ms l);;

let rec ms’ = function [] !> []
  | a:: l !> a :: shuffle l (ms’ l);; 

(* Example 3.4.3!2 *)
let rec insert = fun i !>
 (function [] !> (function v !> i :: v)
        | a :: u !> (function [] !> [i]

| b :: v !> b :: (insert i u v)));;

(* Example 3.4.3!3 *) 

let rec cut = function [] !> (fun v !> v)
  | a :: u !> (function [] !> []

| b :: v !> cut u v);;

(* Example 3.4.3!4 *)
let rec conc = fun u’ v’ !>
match (u’,v’) with 
    (u,[]) !> u
  | ([], b :: v) !> b :: v
  | (a :: u, j :: v) !> a :: (insert j u (conc u v));;

let rec ins = fun i !> (function [] !> []
| 1 :: w !> conc [1;i;2] (ins’ i w)
| j :: w !> con j (ins’ i w)

)

and ins’ = fun i !> (function [] !> []
| a :: w !> con a (ins i w)

);; 

let rec cont’ = function [] !> []
  | i :: w  !> con 1 (con i (ins i (cont’ w)));; 

let cont = fun v !> half (cont’ v);;

(*Some epsilon!uniformly recursive functions *)

(* Example 3.4.10!2 *)
let rec double = function [] !> []
  | a :: l !> [a;a] @ (double l);;
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(* Example 3.4.10!1 *)

let rec shuffle_eps = fun u v !> match (u,v) with
    (_,[]) | ([],_) !> []
  | (a :: u’, b :: v’) !> con a (con b (shuffle_eps u’ v’));;

let rec ms_eps = function
    [] !> []
  | a :: v !> con a  (shuffle_eps v (ms_eps v));;  

(* Example 5.1.1!1 *)
let ds = fun l !> shuffle_eps l (double l);;

(* meta double, a "fast" increasing fully monotous function *)

let rec md = function [] !> [] 
  | a :: v !> a :: double (md v);;

let rec md2 = function [] !> []
  |a :: v !> [a;a] @ double (md v);;

(* uniform  projections *)
(* Example 3.4.10!3 *)

let rec pro’3_3 = fun u v w !> match (u,v,w) with
    ([],_,_) | (_,[],_) | (_,_,[]) !> []
  | (a :: u’,b:: v’, c:: w’) !> c :: (pro’3_3 u’ v’ w’);;

let rec pro’3_2 = fun u v w !> match (u,v,w) with
    ([],_,_) | (_,[],_) | (_,_,[]) !> []
  | (a :: u’,b:: v’, c:: w’) !> b :: (pro’3_2 u’ v’ w’);;

let rec pro’2_2 = fun u v  !> match (u,v) with
    ([],_) | (_,[]) !> []
  | (a :: u’,b:: v’) !> b :: (pro’2_2 u’ v’ );;

let rec pro’2_1 = fun u v  !> match (u,v) with
    ([],_) | (_,[]) !> []
  | (a :: u’,b:: v’) !> a :: (pro’2_1 u’ v’ );;

(* some truly uniformly recursive functions *)

(*Example 3.4.21!1 *)

let rec double_t = function [] !> []
  | a :: l !> [a;a] @ (pro’2_2 l (double_t l));;

let rec triple_t = function [] !> []
  | a :: l !> [a;a;a] @ (pro’2_2 l (triple_t l));;

let rec md_t = function [] !> []
  |a :: v !> a :: (double_t (pro’2_2 v (md_t v)));;

let rec shuffle_eps_t = fun u v !> match (u,v) with
    ([],_) | (_,[]) !> []
  | (a :: u’,b:: v’) !> a :: (b :: (pro’3_3 u’ v’ (shuffle_eps_t u’ v’)));;  

(* Example *)

(* An alternating function *) 

let rec alt = function [] !> []
  | a :: v !> 1 :: (alt’ v)

and alt’ = function [] !> []
  | a :: v !> 2 :: (alt v);;
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(* Applying patterns *)
(* Example 3.5.6, Lemma 3.5.8 *)

let rec ap : ’a list !> ’a list !> ’a list = fun u v !> match (u,v) with
     (_,[]) | ([],_) !> []
  | (a :: u’, i :: v’) !> con a (pro’3_3 u’ v’ (ap_i i u’ v’))
  
and ap_i : ’a !> ’a list !> ’a list !> ’a list = fun j u v !> match (j,u,v) with
    (_,[],_) | (_,_,[]) !> []
  | (i, i’ :: u, a :: v) !>
      if i = i’ then ap_i i u v else a :: (ap_i i’ u v);;

(* Pattern length *)

let rec pa : ’a list  !> int = function
     [] !> 0
  |  i :: v !> (pa_i i v)
  
and pa_i : ’a !>  ’a list !> int = fun j v !> match (j,v) with
    (_,[]) !> 0
  | (i, i’ ::  v) !>
      if i = i’ then pa_i i v else 1 + (pa_i i’ v);;

(* Some truly uniformly recursive functions with interesting lookaheads *)
 
let rest = fun v !> ap (con 1 (alt v)) v;;

let log = function v !> ap (md_t (alt v)) v;;

let half = fun v !> ap  (double (alt v)) v;;

(* let half_t = fun v !> ap (t 1 (double_t (s v))) v;; *)

(* truly uniformly recursive  versions of some uniformly recursive functions *)
(* Example 3.3.17!2 *)

let rec rest  = function 
    [] !> []
  | a :: v !> proj’2_1 v (rest v);;

let rec rest_t’ = function 
    [] !> []
  | a ::v !> pro’2_1 v (rest_t’ v);;

let rec rest_t’’ = function 
    [] !> []
  | a :: v !> pro’2_1 v (a :: (rest_t’’ v));; 

let rec rest_t = function
    [] !> []
  | a :: v !> let w = rest v in
      pro’2_1 (pro’2_1 v w) (con a (pro’2_2 v w));; 

let rec half’ = function [] !> []
  | a :: v !> (pro’3_3 v (a :: (half’ v)) (half1’ v))

and half1’ = function [] !> []
  | a :: v !> (a :: (pro’3_2 v (half’ v) (half1’ v)));;

let rec mmd = function
    [] !> []
  | a :: v !> a :: md (mmd v);;

let rec mmd_t = function
    [] !> []
  | a :: v !> a :: (md_t (pro’2_2 v (mmd_t v)));;
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B.2 Uniformly recursive simulation of dyadic recursive func-
tions

This section implements some examples of word functions simulating dyadic recursive func-
tions.

We present the mediation operator and the multiplication.

In case of recursion depth 1, we did not use the external infimum.
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(* simulation of dyadic recursive function by word functions *)

type digit = int;;

exception IllegalDigit of int * int;;
exception WontFit of string * int * int;;

let rec makelist = fun n a !> if n = 0 then [] else (a :: (makelist (n!1) a));;

(* The infimum operator is defined by simultanous, uniform epsilon!recursion *)
(* We use "illegal digits", e.g. !2, to denote an discontinued stream/list *)

(* We use the symmetry like inf (0v,!1w) = inf (!1w,0v) *)

let legal : int !> bool = function !1 | 0 | 1 !> true | _ !> false;;
let illegal : int !> bool = fun x !> not (legal x);;

let rec inf = fun l l’ !> 
match (l,l’) with [],_ | _ ,[] !> []
  | !1 :: l1, !1 :: l2 !> !1 :: inf l1 l2
  | !0 :: l1, 0 :: l2 !> 0 :: inf l1 l2
  | 1 :: l1, 1 :: l2 !> 1 :: inf l1 l2
  | !1 :: l1, 1 :: l2 | 1 :: l2 , !1 :: l1 !> infLR l1 l2
  | !1 :: l1, 0 :: l2 | 0 :: l2, !1 :: l1 !> infLC l1 l2
  | 0 :: l1, 1 :: l2 | 1 :: l2, 0 :: l1 !> infCR l1 l2
  | x :: l1, y :: l2 !> if illegal x then (if legal y then l’ else [!2])
    else (if legal y then raise (Failure "That should ... ") else l)

(* L \sqcap C, consider second pair of digits *)  
and infLC = fun l l’ !> 
match (l,l’) with [],_ | _,[] !> []
  | !1 :: l1, !1 :: l2 !> !1 :: (infLR l1 l2)
  | !1 :: _, 0 :: _ !> raise (WontFit ("infLC",!1,0))
  | !1 :: _, 1 :: _ !> raise (WontFit ("infLC",!1,1))

  | 0 :: l1, !1 :: l2 !> !1 :: (infCR l1 l2)
  | 0 :: l1, 0 :: l2 !> infLC_CC l1 l2
  | 0 :: _ , 1 :: _ !> raise (WontFit ("infLC",0,1))

  | 1 :: l1, !1 :: l2 !> 0 :: (! 1 :: (inf l1 l2))
  | 1 :: l1, 0 :: l2 !> 0 :: (infLC l1 l2)
  | 1 :: l1 , 1 :: l2 !> 0 :: (infLR l1 l2) 
  
  | x :: l1, y :: l2 !> (match (legal x, legal y) with

(true,true) !> raise (Failure "That should ...")
      | (true,false) !> !1 :: l
      | (false,true) !> 0 :: l’
      | (false,false) !>[!2]

)

(* LC \sqcap CC, consider third pair of digits *)
and infLC_CC = fun  l l’ !>
match (l,l’) with [],_ | _,[] !> []
  | 1 :: l1, !1 :: l2 !> !1 :: (1 :: (infLR l1 l2))

  | 1 :: l1, x :: _ !> if (x = 0) || (x=1) then raise 
   (WontFit ("infLC_CL",1,x)) 
    else [!1;0;1] @ l1

  | !1 :: l1, x :: _ !> if legal x then raise (WontFit ("infLC_CC", !1, x))
    else [!1;0;!1] @ l1

  | 0 :: l1, x :: _ !> if legal x  then raise (WontFit ("infLC_CC", !1, x))
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    else [!1;0;0] @ l1

  | x :: _, y :: l2 !>  if  legal x then raise 
(Failure "That should never happen")

  else if legal y then [0;0;y] @ l2 else [!2]

and infLR = fun l l’ !> 
match (l,l’) with [],_ | _ ,[] !> []
  | 1 :: l1, !1 :: l2 !> 0 :: infLR l1 l2
  | x :: l1, y :: l2 !> (match (legal x, legal y) with

(true,true) !> raise (WontFit ("infLR",x,y))
| (true,false) !> !1 :: l
| (false,true) !> 1 :: l’
| (false,false) !> [!2]

)

and infCR = fun l l’ !>
match (l,l’) with [],_ | _ ,[] !> []
  | !1 :: l1, 1 :: l2 !> 0 :: infLR l1 l2 
  | !1 :: _ , y :: _ !> if illegal y then 0 :: l else raise (WontFit ("infCR",!1,y))

  | 0 :: l1, !1 :: l2 !> 0 :: (infCR l1 l2)
  | 0 :: l1, 0 :: l2 !> infCR_CC l1 l2
  | 0 :: _, 1 :: _ !> raise (WontFit ("infCR",0,1))
  | 0 :: _, _ :: _ !> 0 :: l

  | 1 :: l1, !1 :: l2 !> 0 :: ( 1:: (inf l1 l2))
  | 1 :: l1, 0 :: l2 !> 1 :: (infLC l1 l2)
  | 1 :: l1, 1 :: l2 !> 1 :: (infLR l1 l2)
  | 1 :: l1, _ :: _ !> 0 :: ( 1 :: l1)

  | x :: _, y :: l2 !> if legal y then 1 :: l’ else  [!2]

and infCR_CC = fun l l’ !>
match (l,l’) with [],_ | _ ,[] !> []
  | 1 :: l1, !1 :: l2 !> 0 :: (1 :: (infLR l1 l2))
  | x :: l1, y :: l2 !> (match (legal x, legal y) with

(true,true) !> raise (WontFit ("infCR_CC",x,y))
| (true,false) !> [0;0;x] @ l1
| (false,true) !> [1;0;y] @ l2
| (false,false) !>  [!2]

);;

let rec left = function
    [] !> []
  | !1 :: l !> 1 :: l
  | 0 :: l !> 1 :: (left l)
  | 1 :: _ !> [!2]
  | _ !> raise (Failure "Unexpected match");;

let rec right = function
    [] !> []
  | !1 :: _ !> [!2]
  | 0 :: l !> ~!1 :: (right l)
  | 1 :: l !> ~!1 :: l
  | _ !> raise (Failure "Unexpected match");;

(* We do not use the external infimum, 
   the internal is easier to implement *)

let rec med2 = fun l l’ !>
match (l,l’) with 
    [],_ | _ ,[] !> [] (*epsilon rule *)

      (* the four rules from the dyadic recursion scheme *)
  | !1 :: l1, !1 :: l2 !> !1 :: (med2 l1 l2)
  | !1 :: l1, 1 ::l2 !> 0 :: (med2 l1 l2)
  | 1 :: l1, !1 :: l2 !> 0 :: (med2 l1 l2)
  | 1 :: l1, 1 :: l2 !> 1 :: (med2 l1 l2)
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      (*derivated rules containing the middle interval *)
  | !1 :: l1, 0 :: l2 !> inf (!1 :: (med2 l1 (left l2))) 
                             (0 :: (med2 l1 (right l2)))
  | 0 :: l1, !1 :: l2 !> inf (!1 :: (med2 (left l1) l2)) 
                             (0 :: (med2 (right l1) l2))

  | 0 :: l1, 0 :: l2 !> 
      let (left_l1,right_l1,left_l2,right_l2) = 
            (left l1, right l1, left l2, right l2) 
    in inf (inf (~!1 :: (med2 left_l1 left_l2)) (0 :: (med2 left_l1 right_l2)))

(inf (0 :: (med2 right_l1 left_l2)) (1 :: (med2 right_l1 right_l2)))

  | 0 :: l1, 1 :: l2 !> inf (0 :: (med2 (left l1) l2)) 
                            (1 :: (med2 (right l1) l2))
  | 1 :: l1, 0 :: l2 !> inf (0 :: (med2 l1 (left l2))) 
                            (1 :: (med2 l1 (right l2)))

      (* a illegal digit in at least one branch makes
         the whole computation illegal *)
 
| _ :: _ , _ :: _ !> [!2];;

let x = 0;;

let rec mir = function 
    [] !> []
  | !1 :: l !> 1 :: (mir l)
  | 0 :: l !> inf (1 :: (mir (left l))) (!1 :: (mir (right l)))
  | 1 :: l !> ~!1 :: (mir l)
  | _ :: _ !> [!2];;

let empty = function [] !> true | _ !> false;;

let sorttriple = fun  (l,l’,l’’) !>
if (empty l) || ((empty l’) || (empty l’’)) then (l,l’,l’’) else
match List.sort (fun l1 l2 !> (List.hd l1) ! (List.hd l2)) [l;l’;l’’]  
with

z :: (z’ :: ( z’’ :: _)) !> (z,z’,z’’)
| _ !>  (l,l’,l’’);;

let rec med3 = fun l l’ l’’ !> match sorttriple (l,l’,l’’) with
[],_,_ | _,[],_ | _,_,[] !> [] (* epsilon rule *)

  | (x:: l1,y :: l2, z :: l3) !> (match (x,y,z) with

  (!1,!1,!1) !> !1 :: (med3 l1 l2 l3)
| (!1,!1,1) !> med3LLR l1 l2 l3
| (!1,1,1) !> med3LRR l1 l2 l3
| (1,1,1) !> 1 :: (med3 l1 l2 l3)

| (!1,!1,0) !> inf (!1 :: (med3 l1 l2 (left l3))) (med3LLR l1 l2 (right l3))
| (!1,0,0) !> let (left_l2,right_l2,left_l3,right_l3) = 
    (left l2, right l2,left l3, right l3) 

  in inf (inf (!1 :: (med3 l1 left_l2 left_l3)) (med3LLR l1 left_l2 right_l3))
         (inf (med3LLR l1 right_l2 left_l3) (med3LRR l1 right_l2 right_l3))

| (!1,0,1) !> inf (med3LLR l1 (left l2) l3) (med3LRR l1 (right l2) l3)

| (0,0,0) !> let (left_l1,right_l1,left_l2,right_l2,left_l3,right_l3) =
    (left l1, right l1, left l2, right l2, left l3, right l3) in
inf (inf (inf (!1 :: (med3 left_l1 left_l2 left_l3)) 
                 (med3LLR left_l1 left_l2 right_l3))
         (inf (med3LLR left_l1 right_l2 left_l3) 
              (med3LRR left_l1 right_l2 right_l3)))
    (inf (inf (med3LLR right_l1 left_l2 left_l3) 
              (med3LRR right_l1 left_l2 right_l3))
         (inf (med3LRR right_l1 right_l2 left_l3) 
              (1 :: (med3 right_l1 right_l2 right_l3))))
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| (0,0,1) !> let (left_l1,right_l1,left_l2,right_l2) = 
              (left l1, right l1,left l2, right l2) 
  in inf (inf (med3LLR left_l1 left_l1 l3) (med3LRR left_l1 right_l2 l3))
         (inf (med3LRR right_l1 left_l2 l3) (1 :: (med3 right_l1 right_l2 l3)))

| (0,1,1) !> inf (med3LRR (left l1) l2 l3) (1 :: (med3 (right l1) l2 l3))
| _ !> [!2]

) (*match (x,y,z) *)

and  med3LLR = fun l l’ l’’ !> match sorttriple (l,l’,l’’) with
[],_,_ | _,[],_ | _,_,[] !> [] (* epsilon rule *)

  | (x:: l1,y :: l2, z :: l3) !> (match (x,y,z) with

  (!1,!1,!1) !> !1 :: (med3LRR l1 l2 l3)
| (!1,!1,1) !> [!1;1] @ (med3 l1 l2 l3)
| (!1,1,1) !> 0 :: (med3LLR l1 l2 l3)
| (1,1,1) !> 0 :: (med3LRR l1 l2 l3)

(* derived rules *)

(* example med3LLR(!1u,!1v,0w = (med3LLR (!1u,!1v,!1left(w))) 
                   inf (med3LLR (!1u,!1v,1 right(w)))) *)

| (!1,!1,0) !> inf (!1 :: (med3LRR l1 l2 (left l3))) 
                   ([!1;1] @ (med3 l1 l2 (right l3)))

| (!1,0,0) !> let (left_l2,right_l2,left_l3,right_l3) = 
                   (left l2, right l2,left l3, right l3) 
  in inf (inf (!1 :: (med3LRR l1 left_l2 left_l3)) 
              ([!1;1] @ med3 l1 left_l2 right_l3))
         (inf ([!1;1] @ (med3 l1 right_l2 left_l3)) 
              (0 :: (med3LLR l1 right_l2 right_l3)))

| (!1,0,1) !> inf ([!1;1] @ (med3 l1 (left l2) l3)) 
                  (0 :: (med3LLR l1 (right l2) l3))

| (0,0,0) !> let (left_l1,right_l1,left_l2,right_l2,left_l3,right_l3) =
    (left l1, right l1, left l2, right l2, left l3, right l3) in
inf (inf (inf (!1 :: (med3LRR left_l1 left_l2 left_l3)) 
([!1;1] @ (med3LLR left_l1 left_l2 right_l3)))
         (inf ([!1;1] @ (med3LLR left_l1 right_l2 left_l3)) 
(0 :: (med3LLR left_l1 right_l2 right_l3))))
    (inf (inf ([!1;1] @ (med3 right_l1 left_l2 left_l3)) 
( 0 :: (med3LLR  right_l1 left_l2 right_l3)))
         (inf (0 ::  (med3LLR right_l1 right_l2 left_l3)) 
(0 :: (med3LRR right_l1 right_l2 right_l3))))

| (0,0,1) !> let (left_l1,right_l1,left_l2,right_l2) = 
  (left l1, right l1,left l2, right l2) 
  in inf (inf ([!1;1] @ (med3 left_l1 left_l1 l3)) 
               (0 :: (med3LLR left_l1 right_l2 l3)))
         (inf (0 :: (med3LLR right_l1 left_l2 l3)) 
              (0 :: (med3LRR right_l1 right_l2 l3)))

| (0,1,1) !> inf (0 :: (med3LLR (left l1) l2 l3)) 
                 (0 :: (med3LRR (right l1) l2 l3))
| _ !> [!2]

) (* match (x,y,z) , med3LLR *)

and med3LRR = fun l l’ l’’ !> match sorttriple (l,l’,l’’) with
[],_,_ | _,[],_ | _,_,[] !> [] (* epsilon rule *)

(* rules from the dyadic recursion scheme *)
  |(x:: l1,y :: l2, z :: l3) !> (match (x,y,z) with
  
  (!1,!1,!1) !> 0 :: (med3LLR l1 l2 l3)
| (!1,!1,1) !> 0 :: (med3LRR l1 l2 l3)
| (!1,1,1) !> [1;!1] @ (med3 l1 l2 l3)
| (1,1,1) !> 1 :: (med3LLR l1 l2 l3)

(* derived rules including the middle interval*)
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| (!1,!1,0) !> inf (0 :: (med3LLR l1 l2 (left l3))) 
                   (0 :: (med3LRR l1 l2 (right l3)))

| (!1,0,0) !> let (left_l2,right_l2,left_l3,right_l3) = 
                   (left l2, right l2,left l3, right l3) 
  in inf (inf (0 :: (med3LLR l1 left_l2 left_l3)) 
              (0 ::( med3LRR l1 left_l2 right_l3)))
         (inf (0 ::  (med3LRR l1 right_l2 left_l3)) 
              ([1;!1] @ (med3 l1 right_l2 right_l3)))

| (!1,0,1) !> inf (0 ::  (med3LRR l1 (left l2) l3)) 
                  ([1;!1] @ (med3 l1 (right l2) l3))

| (0,0,0) !> let (left_l1,right_l1,left_l2,right_l2,left_l3,right_l3) =
    (left l1, right l1, left l2, right l2, left l3, right l3) in

inf (inf (inf (0 :: (med3LLR left_l1 left_l2 left_l3)) 
(0 :: (med3LRR left_l1 left_l2 right_l3)))
         (inf (0 :: (med3LRR left_l1 right_l2 left_l3)) 
              ([1;!1] @ (med3 left_l1 right_l2 right_l3))))
    (inf (inf (0 ::  (med3LRR right_l1 left_l2 left_l3)) 
     ( [1;!1] @ (med3  right_l1 left_l2 right_l3)))
         (inf ([1;!1] @  (med3 right_l1 right_l2 left_l3)) 
(1 :: (med3LLR right_l1 right_l2 right_l3))))

| (0,0,1) !> let (left_l1,right_l1,left_l2,right_l2) = 
                  (left l1, right l1,left l2, right l2) 
  in inf (inf (0 :: (med3LRR left_l1 left_l1 l3)) 
              ([1;!1] @ (med3 left_l1 right_l2 l3)))
         (inf ([1;!1] @ (med3 right_l1 left_l2 l3)) 
              (1 :: (med3LLR right_l1 right_l2 l3)))

| (0,1,1) !> inf ([1;!1] @  (med3 (left l1) l2 l3)) 
                 (1 :: (med3LLR (right l1) l2 l3))
| _ !> [!2]

);; (* match (x,y,z) , med3LRR *)

(*New infimum operator for functions with recursion depths 2
 * or higher,
 * allows consideration of non!fitting situations *)

(* We simulate the simultanous recursion by an additional paramter 
 * !!! s !!!, this should be read as the function index. 
 *
 * In particular we remember the currently read digits in a list
 * instead of the state *)

let x = ref [];;
  let y = ref [];;

let (a1,a2,a3)  = (!1,0,1);;

let rec fit’ = fun x y !> match (x,y) with
    ([],_) | (_,[]) !> []
  | (!2 :: v, b :: w) !> [a2] 
  | (a :: v, !2 ::  w) !>[ a1]
  | (a :: v, b :: w) !> if ((abs a) <= 1) && ((abs b) <= 1) 
    then fit’ v w else raise (Failure "Somethings wrong!");;

let rec fit =  function 

(*fit*)
([],[]) !> (fun x y !> match (x,y) with
     ([],_) | (_,[]) !> []
  | (!2 :: _, _ :: _) | (_ :: _,!2 :: _) !> [!2]
  | (a :: v,b ::  w) !> if a=b then a3 :: (fit ([],[]) v w)
    else (if a <= b then a3 :: (fit ([a],[b]) v w) 
                    else a3 :: ( fit ([b],[a]) w v)))

(*fitLC*)
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  | ([!1],[0]) !> (fun x y !> match (x,y) with
([],_) | (_,[]) !> []

| a :: v, b :: w !> (match (a,b) with
(!1,!1) !> a3 :: (fit ([!1],[1]) v w)

| (0,!1) !> a3 :: (fit ([0],[1]) v w)
| (0,0) !> a3 :: (fit ([!1;0],[0;0]) v w)
| (1,!1) !> a3 :: (fit ([],[]) v w)
| (1,0) !> a3 :: (fit ([!1],[0]) v w)
| (1,1) !> a3 :: (fit ([!1],[1]) v w)
| (!2,_) | (2,!2) !> !2 :: (fit’ v w)
| (_,_) !> fit’ v w))

(* fitLR *)
  | ([!1],[1]) !> (fun x y !> match (x,y) with 

([],_) | (_,[]) !> []
| (1 :: v,!1 :: w) !> a3 :: (fit ( [!1],[1]) v w)
| (!2 :: _, _ ) | (_, !2 :: _ ) !> [!2]
| (_ :: v,_ :: w) !> fit’ v w)

(* fitCR *)
  | ([0],[1]) !> (fun x y !> match (x,y) with 

([],_) | (_,[]) !> []
| (a :: v, b :: w) !> (match (a,b) with

(!1,1) !> a3 :: (fit ([!1],[1]) v w)
| (0,!1) !> a3 :: (fit ([0],[1]) v w)
| (0,0) !> a3 :: (fit ([0;0],[1;0]) v w)
| (1,!1) !> a3 :: (fit ([],[]) v w)
| (1,0) !> a3 :: (fit ([!1],[0]) v w)
| (1,1) !> a3 :: (fit ([1],[1]) v w)
| (!2,_) | (_,!2) !> [!2]
| (_,_) !> fit’ v w ))

  | ([!1;0],[0;0])
  | ([0;0],[1;0]) !> (fun x y !> match (x,y) with

([],_) | (_,[]) !> []
| (1 :: v, !1 :: w) !> a3 :: (fit ([!1],[1]) v w)
| ( !2 :: _, _) | (_, !2 :: _) !> [!2]
| ( _ :: v , _ :: w) !> fit’ v w)

  | a,b !>  raise (Failure "Unexpected call of fit");;

let rec inf3 = fun x y z !> 
match (x,y,z) with
( [],_,_) | (_ ,[],_) !> []
  | (!1 :: v, !1 :: w, _ :: u) !> !1 :: (inf3 v w u)
  | (0 :: v, 0 :: w,_ :: u)   !> 0 :: (inf3 v w u)
  | (1 :: v, 1 :: w,_ :: u)     !> 1 :: (inf3 v w u)
  | (!1 :: v, 1 :: w,_:: u) 
  | (1 :: w , !1 :: v,_:: u)   !> inf3LR v w u
  | (!1 :: v, 0 :: w,_ :: u)
  | (0 :: w, !1 :: v,_:: u)    !> inf3LC v w u
  | (0 :: v, 1 :: w,_ :: u)
  | (1 :: w, 0 :: v,_ :: u)     !> inf3CR v w u
  | (!2 :: _, !2 :: _,_)   !> [!2]
  | (!2 :: _, v,_)    
  | (v, !2 :: _,_)         !> v

(* L \sqcap C, consider second pair of digits *)  
and inf3LC = fun x y z !> 
match (x,y,z) with ([],_,_) |( _,[],_) | (_,_,[]) !> []
  | (!1 :: v, !1 :: w, _ :: u) !> !1 :: (inf3LR v w u)
  | (!1 :: v, 0 :: _, !1(*a1*) :: _) !> !1 :: (!1 :: v)
  | (!1 :: _, 0 :: w, 0(*a2*) :: _) !> 0 :: (0 :: w)
  | (!1 :: v, 1 :: _, !1 :: _) !> !1 :: (!1 :: v)
  | (!1 :: _, 1 :: w, 0 :: _) !> 0 :: (1 :: w)
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  | (0 :: v, !1 :: w, _ :: u) !> !1 :: (inf3CR v w u)
  | (0 :: v, 0 :: w, _ :: u)  !> inf3LC_CC v w u

  | (0 :: v , 1 :: _, !1 :: _) !> !1 :: (0 :: v)
  | (0 :: _, 1 :: w, 0 :: _)  !> 0 :: (1 :: w)

  | (1 :: v, !1 :: w, _ :: u)  !> 0 :: (! 1 :: (inf3 v w u))
  | (1 :: v, 0 :: w, _ :: u)   !> 0 :: (inf3LC v w u)
  | (1 :: v , 1 :: w, _ :: u)  !> 0 :: (inf3LR v w u) 
  
  | (!2 :: _, !2 :: _,_) !> [!2]
  | (!2 :: _ , w, _)     !> 0 :: w
  | ( v, !2 :: _, _)     !> !1 :: v
  

(* LC \sqcap CC, consider third pair of digits *)
and inf3LC_CC = fun  x y z !>
match (x, y, z) with ([],_,_) | (_,[],_) | (_,_,[]) !> []
  | (1 :: v, !1 :: w, _ :: u) !> !1 :: (1 :: (inf3LR v w u))

  | (1 :: v, 1 :: _, !1 :: _) 
  | (1 :: v, 0 :: _, !1 :: _) 
  | (1 :: v, !1 :: _ , _ )  
  | (1 :: v, !2 :: _,_)       !> [!1;0;1] @ v
  
  | (!2 :: _, !2 :: _,_)      !> [!2]

  | (a :: v, !2 :: _,_) 
  | (a :: v, _, !1 :: _)     !> [!1;0;a] @ v
  
  | (!2 :: _, b :: w, _) 
  | (_ , b :: w, 0 :: _)    !> [0;0;b] @ w
 
 
and inf3LR = fun x y z !> 
match (x,y,z) with ([],_,_) | (_ ,[],_) | (_,_,[]) !> []
  | (1 :: v, !1 :: w, _ :: u) !> 0 :: (inf3LR v w u)
  
  | (!2 :: _,!2 :: _, _) !> [!2]
  | (!2 :: _ , w ,_) !> 1 :: w
  | (v, !2 :: _, _)  !> !1 :: v
  
  
  | (v, _, !1:: _) !> !1 :: v
  | (_,w, 0 :: _)  !> 1 :: w

and inf3CR = fun x y z!>
match (x,y,z) with ([],_,_) | (_ ,[],_) | (_,_,[])  !> []
  | (!2 :: _, !2 :: _, _) !> [!2] 

  | (!1 :: v, 1 :: w, _ :: u)  !> 0 :: (inf3LR v w u)
  | (!1 :: v, !2 :: _, _)   
  | (!1 :: v, _, !1 :: _)      !> [0;!1] @ v

  | (0 :: v, !1 :: w, _ :: u)  !> 0 :: (inf3CR v w u)
  | (0 :: v, 0 :: w, _ :: u)   !> inf3CR_CC v w u
  
  | (0 :: v, 1 :: _, !1 :: _) 
  | (0 :: v, !2 :: _ ,_ )      !> [0;0] @ v
  | (0 :: _, 1 :: w, 0 :: _) 
  | (!2 :: _, 1 :: w, _)       !> [1;1] @ w

  | (1 :: v, !1 :: w, _ :: u)  !> 0 :: ( 1:: (inf3 v w u))
  | (1 :: v, 0 :: w, _ :: u)   !> 1 :: (inf3LC v w u)
  | (1 :: v, 1 :: w, _ :: u)   !> 1 :: (inf3LR v w u)
  | (1 :: v, !2 :: _, _)       !> [0;1] @ v
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and inf3CR_CC = fun x y z !>
match (x,y,z) with ([],_,_) | (_ ,[],_) | (_,_,[])!> []
  | (1 :: v, !1 :: w, _ :: u) !> 0 :: (1 :: (inf3LR v w u))

  | (!2 :: _, !2 :: _, _) !> [!2]
  | (!2 :: _, b :: w, _) 
  | (_ , b :: w, 0 :: _) !> [1;0;b] @ w
  | (a :: v, !2 :: _, _)
  | (a :: v, _, !1 :: _)  !> [0;0;a] @ v;;

(* prewash *)
(* The function "prewash" ensures, that all illegal digits are 
 * represented by !2, case distinctions are a bit easier then *)

let rec prewash = function [] !> []
                           | a ::  v !> 

if (abs a) <= 1 then a :: (prewash v) 
else !2 :: (prewash v);; 

let newinf = fun v w !> let (v’,w’) =(prewash v,prewash w) 
in inf3 v’ w’ (fit ([],[]) v’ w’);;

(*Further mediations can be derived from the known *)

let med4 w x y z = med2 (med2 w x) (med2 y z);;
let med8 x1 x2 x3 x4 x5 x6 x7 x8 = med2 (med4 x1 x2 x3 x4) (med4 x5 x6 x7 x8);;

(* recursion schemes for the constants *)
let rec one = function [] !> []
  | a :: l !> 1 :: (one l);;

let rec zero = function [] !> []
  | a :: l !> ~!1 :: (zero l);;

let rec mult : int list !> int list !> int list = function [] !> 
(function _ !> [])
  | i :: l !> (function [] !> [] (* epsilon case *)

| j :: l’ !> let (x,y,l1,l2) = 
                     if i < j then (i,j,l,l’) else (j,i,l’,l) in

(match (x,y) with
!1,!1 !> [!1;!1] @ (mult l1 l2)

| !1, 1 !> !1 :: (med2 l1 (mult l1 l2))
| 1,1 !> multRR l1 l2

| !1,0 !> newinf ([!1;!1] @ (mult l1 (left l2))) 
(!1 :: (med2 l1 (mult l1 (right l2))))

| 0,0 !> let (left_l1,right_l1,left_l2,right_l2) = 
(left l1, right l1, left l2, right l2)

in newinf (newinf ([!1;!1] @ (mult left_l1 left_l2))
                          (!1 :: (med2 left_l1 (mult left_l1 right_l2))))
                   (newinf (!1 :: (med2 (mult right_l1 left_l2) left_l2))

(multRR right_l1 right_l2))

| 0,1 !> let (left_l1,right_l1) = (left l1,right l1)  
in newinf (!1 :: (med2 left_l1 (mult left_l1 l2)))  

(multRR  right_l1 l2)
| _ !> [!2]

)
)

and multRR : int list !> int list !> int list = 
function [] !> (function _ !> [])
  | i :: l !> (function [] !> [] (* epsilon case *)

| j :: l’ !> let (x,y,l1,l2) = 
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                       if i < j then (i,j,l,l’) else (j,i,l’,l) in

(match (x,y) with

(*cases from the dyadic recursion scheme *)
!1,!1 !> (let zl = zero l1 in 0 :: 

med8 zl zl zl l1 l1 l2 l2 (mult l1 l2))
        | !1,1 !> (let ol = one l in 0 :: 

med8 ol ol l1 l1 l2 l2 l2 (mult l1 l2))
|1,1 !> 1 :: (med8 (one l1) l1 l1 l1 l2 l2 l2 (mult l1 l2))

(* derived cases *)
| !1,0 !> let left_l2,right_l2 = (left l2, right l2) in

        let (zl,ol) =( zero l1, one l1) in
0 :: newinf (med8 zl zl zl l1 l1 left_l2 left_l2 (mult l1 left_l2))
         (med8 ol ol l1 l1 right_l2 right_l2 right_l2 (mult l1 right_l2))

| 0,1  !> let left_l1,right_l1 = (left l1, right l1) in
        let (zl,ol) =( zero l1, one l1) in

newinf (0 :: (med8 ol ol left_l1 left_l1 l2 l2 l2 (mult left_l1 l2)))
(1 :: (med8 ol left_l1 left_l1 left_l1 l2 l2 l2 (mult left_l1 l2)))

| 0,0 !> let (left_l1,right_l1,left_l2,right_l2) = 
       (left l1,right l1,left l2, right l2)

in let (zl,ol) =( zero l1, one l1) in
newinf (0 :: newinf (med8 zl zl zl left_l1 left_l1 left_l2 left_l2 

                                       (mult left_l1 left_l2))
         (med8 ol ol left_l1 left_l1 right_l2 right_l2 right_l2 
         (mult left_l1 right_l2)))
(newinf (0 :: med8 ol ol right_l1 right_l1 right_l1 left_l2 left_l2 
(mult right_l1 left_l2))
     (1 :: (med8 (one l1) right_l1 right_l1 right_l1 right_l2 right_l2 right_l2 
                  (mult right_l1 right_l2))))

| _ !> [!2]
));;
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