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Abstract

Both visualization and simulation tasks make high demands on accuracy and in-
teractivity. The former is an evident requisite of any tool focusing on quality,

the latter stands for a responsive system in which the user has real-time control. A
permanent trade-off between both demands can be observed, since high accuracy is
usually time-consuming. The graphics processing unit (GPU), which evolved to a
powerful general purpose coprocessor during the last decade, is undoubtedly becom-
ing an ideal instrument for performing visualization and simulation tasks accurately
and in real-time. One of the main challenges in the context of geometric flow visu-
alization and fluid dynamics is the representation of motion. In both fields, particle
systems and grid-based structures constitute basic models describing the objects to
which the motion is applied.

This work is dedicated to the development of GPU-based particle techniques and
their combination with grids in order to improve the efficiency of fluid simulation and
geometric flow visualization techniques. All resulting algorithms are characterized
by their parallel nature and by being entirely executable on graphics hardware.

The first aim is to provide an efficient solution to particle coupling in the context
of fluids based on smoothed particle hydrodynamics. A parallel processing using
graphics hardware is achieved by providing a grid-based mechanism for the efficient
processing of particle neighborhoods.

The second aim is to provide a set of algorithms for various geometric flow visual-
ization techniques including flow particles, flow lines and flow surfaces/volumes. The
accuracy is explicitly addressed in all cases. Accordingly, a method for generating
time-adaptive stream and path lines and a special refinement scheme for streak lines
is presented. The flow volumes, including time surfaces, path and streak volumes,
are based on a parallel reinterpretation of the particle level set (PLS) method. This
reinterpretation is based on a method for grid-particle interchange which is similar to
the one proposed for particle coupling. Combining a grid and a particle set takes the
advantages from both models: the grid representation is robust w.r.t. deformations
and topological changes, and the particles are used to reduce numerical diffusion.
For the reinitialization of the level set function, which is the most time-consuming
step of the PLS algorithm, a hierarchical method for computing distance transforms
is proposed. It turns out that the use of a distance transform is advantageous for
realizing a GPU-based PLS framework.

All presented flow visualization techniques are applied to a real-world example in
the context of climate research. The evaluation shows that the interactive system
facilitates the efficient exploration of complex flow data sets.

Categories and Subject Descriptors (according to ACM CCS):
I.3.1 [Computer Graphics]: Parallel processing
I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations
I.3.3 [Computer Graphics]: Line and curve generation
I.3.7 [Computer Graphics]: Virtual reality
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Zusammenfassung

Sowohl Visualisierungen als auch Simulationen setzen hohe Ansprüche an Genauig-
keit und Interaktivität. Erstere ist eine offensichtliche Voraussetzung für Werk-

zeuge, bei denen die Qualität im Vordergrund steht, letztere steht für ein System,
das in Echtzeit auf Benutzereingaben reagiert. Beide Aspekte liegen in permanenter
Konkurrenz zueinander, denn eine hohe Genauigkeit ist i.A. zeitaufwändig. Mod-
erne Graphikprozessoren (engl. Graphics Processing Units bzw. kurz GPU’s) haben
sich im Laufe des letzten Jahrzehnts zu universal einsatzfähigen Recheneinheiten
weiterentwickelt. Die GPU als Coprozessor ist unzweifelhaft ein ideales Werkzeug
geworden, um Visualisierungs- und Simulationsaufgaben in hoher Genauigkeit und
in Echtzeit zu lösen. Eine der größten Herausforderungen im Kontext geometrischer
Strömungsvisualisierung und der Simulation von Fluiden ist die Repräsentation von
Bewegungen und Verformungen. In beiden Disziplinen bilden Partikelsysteme und
gitterbasierte Strukturen grundlegende Modelle zur Beschreibung der veränderlichen
Objekte.

Diese Arbeit widmet sich der Weiterentwicklung GPU-basierter Partikelsysteme
und deren Kombination mit Gitterstrukturen, um die Effizienz von Techniken in
den beiden zuvor genannten Disziplinen zu verbessern. Alle resultierenden Algo-
rithmen sind gekennzeichnet durch Ihren parallelen Aufbau, und dadurch, dass sie
vollständig auf Graphik-Hardware ausführbar sind. Die erste Zielsetzung besteht
darin, eine effiziente Partikelkopplung im Kontext von Fluiden zu ermöglichen, die
auf den SPH-Ansatz (Smoothed Particle Hydrodynamics) basieren. Eine parallele
Verarbeitung mittels der Graphik-Hardware wird erreicht durch einen Mechanis-
mus zur effizienten gitterbasierten Verarbeitung von Partikelnachbarschaften. Die
zweite Zielsetzung besteht darin, einen Satz von Algorithmen für unterschiedliche
geometrische Strömungsvisualisierungstechniken bereitzustellen, welche die folgen-
den Primitive nutzen: Partikel, Linien, Oberflächen und Volumina. Die Genauig-
keit wird in allen Fällen explizit thematisiert. Dementsprechend wird eine Methode
zur Generierung zeitadaptiver Stream- und Path-Lines und ein Schema zur adap-
tiven Verfeinerung von Streak-Lines präsentiert. Die dritte Kategorie von Primi-
tiven besteht aus Time-Surfaces, Path- und Streak-Volumes. Diese werden aufgrund
einer Neuinterpretation der PLS-Methode (Particle Level Set) beschrieben. Diese
Neuinterpretation basiert auf einem Schema zum Gitter-Partikel-Austausch, das
dem zuvor für die Partikelkopplung vorgeschlagenen ähnelt. Die Kombination beider
Strukturen, der Partikelmenge und des Gitters, vereinigt die Vorteile beider Mod-
elle: Die Gitterrepräsentation ist robust gegenüber Deformationen und topologischen
Veränderungen, und die Partikel können verwendet werden, um die numerische Dif-
fusion zu verringern. Für die Reinitialisierung der Level-Set-Funktion, welche den
aufwändigsten Schritt im PLS-Algorithmus bildet, wird eine hierarchische Meth-
ode zur Berechnung eines Distance-Transforms vorgeschlagen. Es stellt sich heraus,
dass die Nutzung eines Distance-Transforms vorteilhaft bei der Realisierung eines
GPU-basierten PLS-Frameworks.

Alle präsentierten Strömungsvisualisierungstechniken werden auf ein reales Bei-
spiel im Kontext der Klimaforschung angewandt. Die Evaluation zeigt, dass das
interaktive System die effiziente Exploration von komplexen Strömungsdatensätzen
erleichtert.

IX
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Prologue

Computer graphics defines a particle system as a set of points in space, each
moving along a path which is determined by an appropriate routine, usually

involving the particle’s position and velocity. Typically, the particles emerge (birth)
and disappear (death) after specific periods of time. The history of particle systems
goes back to the early eighties of the 20th century, when William T. Reeves presented
a particle-based effect forming a wall of fire moving over a planet’s surface in the
movie Star Trek II [Ree83]. Since then, particle systems have become a popular tool
for graphical effects in countless video games and motion pictures.

Besides these applications concentrating on the animation and an appealing ren-
dering, particle systems have a far larger impact on graphics when thinking of them
as an abstract concept: The key idea of tracing discrete particle trajectories reflects
the very basic principles of motion, as they originated from classical mechanics. And,
from a different point of view, a particle system can be seen as a discrete, punctual
representation of any cloudy object, which is moved particle-wise.

Spatial discretizations are omnipresent in computational sciences, especially in
graphics. Besides particle systems, grids constitute another way of representing spa-
tial entities. In contrast to particles, grids rely on a well-defined arrangement of
the discrete locations in space. Grids and particles are commonly used for simula-
tions (e.g. fluid dynamics), visualizations (voxel grids) and for many other important
tasks.

In fluid dynamics, the distinction between grids and particle systems is reflected
in two different paradigms: Lagrangian and Eulerian solvers for the Navier-Stokes
equations. The first type, named after the Italian mathematician Joseph-Louis La-
grange, corresponds to the idea of following individual fluid particles. The second

Figure 1: One million particles in a vortex flow. The initial particle configuration
was chosen to form a spherical shape.
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2 PROLOGUE

type, named after the Swiss mathematician Leonhard Euler, solves the fluid equa-
tions within an inertial reference frame, i.e. a grid covering the volume in which the
fluid acts.

In flow visualization, both grids and particles are fundamental in the sense that
the majority of systems rely on these two concepts: When thinking of textures as
grids, dense representations, e.g. systems using line integral convolution, make heavy
use of grids. Particles on the other side form an intuitive way of visualizing a flow,
because throwing particles into airflow is very natural. Rendering those particles
provides a simple yet powerful visualization of the flow. As we will see later, the
spectrum in which grids and particles can be utilized in flow visualization is much
wider than that.

An interesting aspect when thinking about grids and particles lies in their strengths
and weaknesses when representing volumetric objects in motion: Grid-based ap-
proaches, e.g. based on level sets, are largely insusceptible to topological changes
like a disruption of two parts of an object. More specifically, no holes can arise in
the representation. Thus, a grid cell’s neighborhood can easily be accessed by look-
ing for the surrounding cells. A particle set, on the other side, is unstructured per se
and may suffer from unspecified regions when particles split into different directions.
However, moving particles is very accurate due to high-order integration schemes,
while grid advection typically involves a larger numerical error. This comparison is
interesting because it is possible to combine both paradigms in order to unify the
advantages.

Considering the importance of grids and particles, it is clear that fast algorithms
supporting these structures are essential. Due to the separable nature of per grid
cell or per particle processing, both structures are well-suited for the use on parallel
architectures. Today, powerful parallel processors can be found on any modern con-
sumer graphics hardware: Modern graphics processing units (GPUs) are designed to
provide both a highly optimized traditional graphics pipeline and a flexible general
purpose toolkit. The high degree of parallelism and flexibility makes the GPU a
suitable instrument for solving visualization and simulation tasks.

My Contribution

The scope of this dissertation covers two major topics: the simulation of particle
fluids and geometric flow visualization. I have worked on the following thesis:

The concept of GPU-based particle systems and their combination with
grid structures can be developed to improve the efficiency of fluid simu-
lation and geometric flow visualization techniques.

I will support this thesis by presenting GPU-based techniques designed for 1. the
fast simulation of fluids according to the smoothed particle hydrodynamics method,
2. a real-time deformable surface tracing method reformulating the particle level set
method for parallel processing, and an accurate and interactive flow visualization
using 3. flow particles, 4. their extension to stream, path and streak lines, and 5.
time surfaces, path and streak volumes.
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The Objectives

This work is aiming for general objectives which are specified in the following. To-
gether, these thoughts form the motivation for the contributed techniques.

The first objective is to provide interactive techniques in the context of fluids and
flow visualization while ensuring high quality results. Consequently, fast algorithms
and their adaption to the parallel architecture of modern graphics hardware is one
of the main motifs which will lead to a set of accurate real-time simulation and
visualization techniques.

The second objective is to improve volumetric representations by combining GPU-
based particles and grid structures. This idea appears in two different flavours, one
concerning fluids, the other concerning freely deformable objects. The former is
characterized by a particle representation supported by a grid, the latter by a grid
representation supported by a particle set which is used to improve the accuracy.
The ambition is to show that a hybrid processing and the information interchange
between both structures can be efficiently realized using graphics hardware.

The third objective is the investigation of GPU-based particle systems as a basic
concept for flow visualization. This includes a purely particle-based framework and
its extension to more complex flow primitives. One subset of these primitives consists
of different types of flow lines which are constructed on a per-particle base. Another
subset is the accurate tracing of flow volumes.

The last objective is to bring the presented flow visualization techniques into
the context of climate visualization, which is done by applying them to a practical
example. The intention is to provide a very basic yet powerful set of techniques for
interactively exploring such data.

The Techniques

In the following, the techniques which together form the contribution of this disser-
tation are introduced briefly. In the schematic overview given in Fig. 0.2, the most
important keywords are brought together and classified into the fields graphics, sim-
ulation and visualization. This overview also illustrates the connections between the
keywords.

Real-time particle fluids – The proposed fluid simulator is based on smoothed
particle hydrodynamics (SPH). One of the major challenges when designing a parallel
solution to SPH is the search for neighbor particles. This can, in general, be seen as
the so-called n-nearest neighbors problem. A solution using a hybrid grid-particle
interchange is proposed to solve this problem on the GPU. In order to execute all
steps of the SPH algorithm without CPU intervention, the steps must be reorganized
in an appropriate way. The presented approach was the first technique introducing
GPU-based SPH fluids.

Real-time particle level sets – A GPU-based framework involving a grid-particle
interchange is proposed for tracing closed surfaces according to the particle level set
(PLS) method. The capability to trace closed surfaces is equivalent to the repre-
sentation of arbitrarily deformable objects in motion. The challenge posed by the
desired accuracy of the tracing is addressed by the PLS approach by minimizing
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Figure 2: A diagram showing the context of the thesis. Relations between keywords
are visualized by line connectors. The sections corresponding to the key topics are
annotated in red.

the volume loss of the represented object and preserving as many surface details as
possible during motion. For the GPU-based framework, the PLS approach is refor-
mulated to take maximal advantage of parallel graphics hardware: All steps, i.e. level
set advection, correction, particle reseeding and level set reinitialization are designed
to work on the GPU without the need for retrieving any data to the CPU. The level
set reinitialization requires special attention as it constitutes a major bottleneck. For
this task, a new algorithm for the fast hierarchical computation of grid-based dis-
tance transforms is developed. In addition, the use of a distance transform provides
an easy and powerful concept for particle reseeding.

Real-time flow visualization – The contribution in the context of flow visualization
is divided into three approaches, each related to a specific type of geometric flow
primitive. All of these approaches are motivated and evaluated on the basis of an
unsteady flow data set coming from the climate research context. The first type of
flow primitives forms a purely particle-based flow visualization which is specialized to
the requirements of climate flow visualization. Consequently, the proposed method
includes shadowing in conjunction with a terrain representation, a very basic non-
uniform input data support and an intuitive user interface for interactive exploration.
The second type handles the parallel generation of accurate stream, path and streak
lines. The corresponding algorithms are designed to generate the line geometries
on-the-fly and in real-time, while achieving high accuracy by following an adaptive
time-stepping strategy. For streak lines, a refinement scheme ensuring a smooth
curve progression is proposed. The major challenge when visualizing real-time flow
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lines is the synchronization of the geometry construction to unsteady flow data sets.
The third visualization approach consists of a specialized PLS method suited for the
representation of time surfaces, path volumes and streak volumes. Especially streak
volumes require special attention: A model for dye injection must be adapted to
the hybrid grid-particle model. The usability of the flow visualization techniques is
improved by supporting a virtual reality environment including user tracking devices.

Note that all techniques are designed to run in real-time on graphics hardware.
Additionally, all the presented geometric flow visualization techniques explicitly ad-
dress the necessity of being accurate: The flow particles benefit from high order
integration schemes, the flow lines are generated adaptively, and the flow volumes
achieve higher accuracy by using corrective particles.

Publications

The following list of publications covers most of the topics I worked on before starting
to write my thesis. This material includes most of the techniques contributed in later
chapters.

[KC05] Dynamic Particle Coupling for GPU-based Fluid Simulation: A fast cou-
pling of particles in the context of fluid solvers based on SPH is achieved by
accumulating smoothed quantities in a grid structure using the GPU.

[CKL∗07] GPU-based Dynamic Flow Visualization for Climate Research Applica-
tions: An accurate and fast particle flow framework designed for the visualiza-
tion of climate phenomena helps climate researchers to interactively explore
their flow data sets.

[CPK09] Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow
Data Sets: A fast and accurate visualization using time-adaptive stream, path
and streak lines, which are generated with new fully parallel algorithms, is
proposed.

[CK07] Fast Hierarchical 3D Distance Transforms on the GPU: A fast hierarchical
GPU-based algorithm for computing signed distance transforms improves the
scalability between approximation and efficiency.

[CKSW08] Particle Level Set Advection for the Interactive Visualization of Un-
steady 3D Flow: A fast visualization approach featuring time surfaces, path
volumes and streak volumes extends the particle level set method in order to
achieve an accurate representation of the volumetric primitive.

Overview

The structure of this document consists of five chapters: The introduction, Chap. 1,
discusses the prior work, i.e. the foundation necessary to understand the later parts.
The content of this chapter reproduces well-known methods found in the computer
graphics literature, thus including a lot of references to related articles, papers and
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books. The next three chapters contain the actual contribution. Exceptions to this
rule, i.e. parts which are based on other author’s work within Chap. 2–4, are explic-
itly referenced and marked appropriately.

The residual structure has been chosen to follow a logical flow from fluid parti-
cles over deformable surfaces/objects to geometric flow visualization featuring vari-
ous geometric approaches including particles, lines, surfaces and volumes. Chap. 2,
which discusses a particle fluid approach, provides the technical know-how for hybrid
grid-particle approaches. This concept is expanded in Chap. 3 in order to represent
deformable surfaces/objects. Chap. 4 then introduces the context of climate flow
visualization. Geometric flow visualization techniques based on particles and lines
are discussed, then the GPU-based PLS framework from the previous chapter is
extended to the task of visualizing flow volumes. Finally, Chap. 5 provides a sum-
marizing overview, and possible improvements and future directions are discussed.



Chapter 1

Introduction

The technology at the leading edge changes so
rapidly that you have to keep current after you get
out of school. I think probably the most important
thing is having good fundamentals.

Gordon Moore

This chapter establishes the foundation necessary to understand the subse-
quent chapters. It discusses the previous work related to the thesis’ main
topics, i.e. graphics hardware, particle systems, grids, flow visualization and
particle fluids. Readers who are familiar with some or all of these topics
might want to skip this chapter and continue in the second chapter.

The introduction starts with an explanation of graphics parallelism, as this as-
pect will be central throughout all chapters. This part furnishes the technical

terms necessary for the formulation of algorithms conforming to the parallel concept
of graphics hardware. Later parts will, however, contain formal notations as well.
Tab. 1.1 provides an overview of the nomenclature and the symbols used later.

1.1 Graphics Hardware

During the last ten years, the development in computer graphics has made major
advances, not only on the theoretical side, but also w.r.t. graphics hardware and
programming interfaces. Both are influencing each other, as theoretical feasibility
motivates the design of new hardware architectures, and, on the other hand, hard-
ware improvements open the door for practically solving more complex problems.
Besides, hardware conditions dictate or at least influence the way of thinking about
algorithms. More specifically, the specific parallel nature of today’s graphics chips
implies a careful design of according algorithms and data structures: Researchers in
this context must be aware of all concepts and all functionality available in detail.

In the beginning, graphics hardware was very specialized. This was the case for
expensive graphics workstations as well as for consumer hardware. The deployed
chips supported a highly integrated set of functionality according to a fixed pipeline
reflecting the necessity of these days’ graphics applications. Consumer boards have
evolved to supply the demand for visual effects in computer games, in particular the
rendering of 3-dimensional scenes. Since then, the industry has put a lot of effort
in improving rendering quality, thus creating one generation of graphics cards after
the other.

7
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Table 1.1: Mathematical symbols and their interpretation. The chosen notation
largely conforms with the one used in graphics literature.

x, ~x, x̂, x scalar, vector, normalized vector, 2D or 3D point

(x, y, z)T transposed vector

~xx, ~xy, ~xz vector component access (similarly for points)

~x · ~y the scalar product of the vectors ~x and ~y

‖~x‖ =
√

x2
1 + · · ·+ x2

n Euclidean norm of ~x = (x1, . . . , xn)T

∇a = (∂a
∂x , ∂a

∂y , ∂a
∂z ) the gradient of a scalar field a(x, y, z)

∇ · ~v = ∂~v
∂x + ∂~v

∂y + ∂~v
∂z the divergence of a vector field ~v(x, y, z)

∇2a = ∂2a
∂x + ∂2a

∂y + ∂2a
∂z the Laplace of a scalar field a(x, y, z)

f(n) ∈ O(g(n)) the function f(n) is asymptotically bounded by g(n)

Mk,Nk
filter kernels: M4 N4 N8 M8 N6 N26

kernels with central cell:M5,N5,N9,M9,N7,N27

When contemplating the performance of modern GPUs, in terms of the number
of operations per second, one can observe an even faster growth compared to CPUs
(see [Moo65] for Moore’s famous prediction of the future of integrated electronics).
This considerable growth is due to the highly parallel design of the GPU with a high
number of computing cores and support for massive threading. This parallelism pro-
vides programmers a much higher processing power than the one of CPUs. However,
it also constitutes a restriction as not every problem can be formulated to exploit
the parallel capabilities of the GPU. Simultaneously to performance advances, each
generation of GPUs brought about new features, each widening the previous set of
capabilities. During this development, the scope has moved from the ever-growing
specialized functionality to a general architecture allowing a wider range of appli-
cations. Next to the evolving hardware, powerful programming interfaces, including
high-level languages for the use of GPU parallelism, e.g. Cg (C for graphics – see
[MGAK03] for a presentation of Cg’s set of features) and GLSL (the OpenGL shader
language), emerged. While these languages still are strongly related to the rendering
of 3-dimensional objects, new interfaces like CUDA (Compute Unified Device Archi-
tecture) become more and more popular for solving problems which are not directly
related to graphics. In future, this trend could make the GPU a coprocessor for arbi-
trary parallel computations which would be an indispensable part of every personal
computer.

The algorithms presented in this dissertation are formulated in “shader language”,
i.e. using the stages of the graphics pipeline. This is convenient, for example in the
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geometry
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program

blend
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vertex
program

frame bufferprimitivesvertices

local
memory

Figure 1.1: The graphics pipeline. The data flow is symbolized by arrows passing
through the three pipeline stages. TF: transform feedback.

case of the flow line generator, which makes heavy use of the geometry shader:
Element insertion and deletion in a geometry program is a feature that has no
direct equivalent in CUDA. Despite this case where shader APIs seem more powerful,
one should keep in mind that in other cases, it surely is reasonable to port the
approaches to a general purpose API.

1.1.1 The Modern Graphics Pipeline

Starting from now, the graphics pipeline is presented according to the functionality
provided by the Open Graphics Library (OpenGL), in version 3.0 (plus extensions),
which is currently available at the time of writing. The The terminology might
slightly differ when switching to another graphics API like directx, however, due
to the common hardware support, the concepts are equal.

The graphics pipeline is composed of three different stages, realized by the vertex,
the geometry and the fragment shader. The arrangement of these stages within the
pipeline is sketched in Fig. 1.1. When using the term shader, the programmable unit
is meant, while the code executed by a shader is called program in the following.

Render Passes and Data Access

One render pass is triggered by pushing a set of geometric primitives (i.e. points,
lines, triangles, quads or polygons) into the pipeline. These data are processed vertex-
wise within the vertex program, allowing the programmer to transform the geome-
try, which is then propagated to the geometry program. This second stage is able to
reassemble and retransform primitives, while introducing new vertices and remov-
ing existing ones. The next stage involves the rasterization of the primitives and a
fragment-wise processing within the fragment program. Output fragments are writ-
ten to the frame buffer or to multiple render targets (MRT). As an alternative to
fragment processing, the stream of outgoing vertices can be redirected to a so-called
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transform feedback (TF) buffer. This can be useful when mapping the input vertices
to an output set of vertices rather than output fragments. A nice characteristic of
the transform feedback is that the output stream remains in the same order as the
input.

Besides the vertex input, the API offers several ways of accessing local and shared
data. The first is transferred from the CPU application to OpenGL through so-called
uniforms, which are accessible in one or more pipeline stages. These values are
constant for the duration of one render pass. Built-in attributes and varying variables
are values which can be propagated element-wise from one stage to the next one.
Finally, texture samplers are used to access array data within one or more stages.
Textures are characterized by their dimension (1D, 2D or 3D) and the fact that
access is highly cache-optimized when reading neighboring texture elements (texels).
Additionally, they have the peculiarity of holding a tuple of up to four scalar values
in each element, which maps well to RGB images with optional alpha channel.

1.1.2 General Purpose Computation on GPUs

The idea of exploiting commodity graphics hardware in favor of non-graphics com-
putations was boosted by a community of researchers working on complex problems
for which a reasonable CPU runtime is hard to achieve. This new field is defined
by the challenge of designing parallel algorithms suited to the characteristics of the
GPU. In his dissertation, Mark Harris, one of the first promoters, proposed the name
GPGPU (General-Purpose Computation on GPUs) [Har03].

Surveys of GPGPU Techniques

According to the popularity of GPGPU, there exist now several extensive overviews
of related techniques. The state-of-the-art report by Owens et al. [OLG∗05, OLG∗07]
classifies computing schemes into the following categories, which are explained below:
gather, scatter, map, and reduce. The GPU Gems book series contains nearly all
facets of GPU programming, including GPGPU specific chapters [Har05, Buc05].
The work by Trendal and Stewart [TS00] discusses general GPU paradigms and a
new method for the real-time generation of refractive caustics. More details about
scientific computation on the GPU can be found in [SDK05]. Finally, the GPGPU
community maintains a website collecting various related publications1.

Computing Schemes

The very basic principle of the GPU’s SIMD architecture is the stream operation.
Basically, it implies the use of a kernel processing each stream element independently.
Due to this condition, it is possible to perform the processing in parallel. As the GPU
supports vector arithmetic, it can be thought of as a 4× SIMD processor reading,
processing and writing 4-component vectors. Stream processing comes in different
flavours, which are explained in the following paragraph. These schemes are defined
and supported by the concepts of the hardware architecture. Following literature, a

1http://www.gpgpu.org/
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pipeline specific terminology is used when discussing how to realize them (i.e. vertex
and fragment processing, texturing, blending, etc.); however it is clear that they can
be reformulated for general APIs like CUDA.

Gathering describes the grouping of multiple input elements to one single output
element. This is a very typical scheme for example when using a filter kernel on
a texture. It can be simply realized by texture-fetching the input and writing
the result of a specific calculation within a fragment program. In [OLG∗05,
OLG∗07], gathering one-to-one element is called map.

Scattering corresponds to the contrary operation, i.e. one single input element is
distributed to multiple output elements. When thinking in graphics, this is
some kind of output selection. It can be achieved by pushing primitives (e.g.
point sprites) through a vertex program, covering an appropriate region of the
output buffer. A fragment program can be used to calculate the correct output
values, and if necessary to combine the output with the previous state by
using blending. OpenGL provides additive blending using alpha coefficients and
a min-max blending mode for computing the minimum or maximum between
the fragment output and the buffer value.

Reduce performs a compaction of an input stream, possibly to one single output
element. This can be done very efficiently by step-wise halving the resolution
while gathering two input elements into one at unchanged stream location. This
approach has a logarithmically bounded runtime, and it can be realized in an
efficient way also in 2D or 3D thanks to texture caching of the neighborhood
necessary to gather the input. Alternatively, the combination of a geometry
program and transform feedback can be used to remove and introduce new
elements to a stream in a very simple and intuitive way.

Floating Point Textures

Scientific computations, e.g. in computational physics, often require floating point
arithmetic, and that in best possible accuracy. Therefore, the GPU provides textures
storing one of the following types: 16-bit (half) and 32-bit floating point, and a
corresponding instruction set. Today’s newest graphics cards even support 64-bit
double precision arithmetic.

GPGPU Libraries and Debugging Tools

There exist several libraries easing the use of GPU functionality. This paragraph
discusses libraries and debugging tools that build on top of traditional shader pro-
gramming. Most of the information presented in this paragraph was taken from
Owens et al.’s GPGPU survey [OLG∗05, OLG∗07].

The Sh library [MDTP∗04] allows to embed GPU programs in a C++ environment.
It eliminates the need for (uniform) parameter binding code by sharing variables
with the encapsulating application, and it also provides mechanisms for texture
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handling. Brook [BFH∗04] can be seen as an extension to C adding a stream pro-
gramming language. It is able to use different API back-ends, i.e. OpenGL or directx,
but it also provides an emulation layer which is useful for debugging purposes. The
GPU-accelerated system Scout provides a data parallel language for expressing sci-
entific visualization tasks as mathematical expressions. This empowers a scientist
to efficiently explore and visualize data sets [MIA∗04]. The Glift template library
[LKS∗06] concentrates on advanced data structure, e.g. stacks, quadtrees and oc-
trees. Components are kept reusable, so that new structures can be generated by
combining them. Glift integrates with C++, a Cg or an OpenGL environment.

Debugging GPU code is difficult because the code is uploaded to GPU memory
and then runs directly on hardware. Additionally, the parallel processing requires a
different handling compared to traditional CPU debugging. Available debuggers are
far from being as powerful as CPU solutions, however they still provide helpful util-
ities: gDEBugger watches the current OpenGL state and reports changes to the user.
GLIntercept offers the possibility to edit program code. There also exist tools by
the leading operating systems providers Microsoft and Apple, with runtime variable
watches and breakpoints. The Image Debugger is capable of returning a printf-
style output, which in many cases is the easiest and most powerful way to check
results. The Shadesmith Fragment Program Debugger decomposes programs into
multiple instances, thus allowing to check the results of single instructions. Unfor-
tunately, Shadesmith supports assembly fragment programs only, which is a strong
limitation because most complex programs are written in high-level languages and
involve all stages of the pipeline. A promising system is given by the Chromium li-
brary [HHN∗02] including an abstract debugging layer supporting cluster graphics
as well as OpenGL. An extension proposed by Duca et al. [DNB∗05] uses relational
queries to describe state debugging.

The General Purpose Language CUDA

While the libraries and debugging tools mentioned above form a powerful program-
ming framework for GPGPU applications, they all are based on the idea of mapping
general computation tasks to the rendering Pipeline of the traditional GPU. The
CUDA language, on the other side, defines a language for general parallel processing
without relying on graphics APIs like OpenGL or directx. In principle, the function-
ality exhibited by CUDA is directly supported by the graphics hardware. Naturally,
this requires the hardware or at least the graphics card driver to support CUDA. Cur-
rently, this is the case for NVidia hardware only. However, a similar language called
OpenCL is about to become a widely supported alternative to CUDA in near future.

Due to the independence of the rendering pipeline, CUDA makes more sense when
designing applications without any relation to graphics. Other applications, in con-
trast, might benefit from the capability implemented within the pipeline. This is
not only the case for pure rendering tasks, e.g. geometry processing fits well into
the pipeline concept as well. For example, the geometry shader, which is able to
insert and delete elements in a vertex stream, has no direct equivalent in CUDA. A
similar technique available in CUDA is the more general concept of stream compaction
[HSO07], however on-the-fly alteration of the stream is difficult to achieve. Thus, the
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use of a geometry program might be a criterion for using the shader-based approach
instead of CUDA.

It should be noted that, besides this reasoning, CUDA has several advantages: CUDA
provides synchronization mechanisms and a more powerful memory management.
Parallel threads can (in specific constellations called blocks) access a common shared
memory which is not available in shader programming. Besides, scattering is explic-
itly supported in CUDA as a generic write operation: The accumulation of scattered
data, i.e. blending, can be achieved by atomic operations (e.g. read-add-write aka
atomicAdd), which is possible since compute capability 1.1 [NVi07].

In summary, a clear advance towards CUDA and similar languages is taking place
at the time of writing this document. Future hardware support might concentrate
on general languages like CUDA, while rendering APIs including the OpenGL pipeline
might be provided as a software library written in that language.

GPGPU Applications

Within a few years, a lot of interesting scientific work emerged in the context of
GPGPU, ranging from advanced rendering over physical simulation (e.g. as pro-
vided by the Havok Physics engine) up to purely hardware specific aspects. Ac-
cordingly, Purcell et al. and Carr et al. [PBMH02, CHH02] present methods for
mapping ray tracing to graphics hardware. Another example for advanced rendering
is volume rendering, which was highly stimulated by the growing GPU function-
ality. See [RS02] for an extensive discussion of volume rendering techniques with
application to medical imaging. Kolb et al. have shown that large particle systems
can be simulated on the GPU in real-time including collision detection [KLRS04].
Rumpf and Strzodka present a level set segmentation of the human brain, accelerated
using early graphics hardware [RS01]. Physical simulation examples include a 3D
coupled map lattice simulation [HCSL02], solving partial differential equations for
cloud dynamics [HBISL03], and many more. Research has also been done concern-
ing the abstract layer of GPU programming, e.g. expanding multiple texture chan-
nels to higher-bit float representations [Str02], and mapping multiple-instruction
multiple-data (MIMD) code to the single-instruction capability (SIMD) of the GPU
[Die92, DK93]. All these results show that there is a high need for the computational
power of the GPU, and that graphics hardware is much more than just a rendering
accelerator.

1.2 Particle Systems

A particle system is one of the most common 3D object representations, next to
polygonal models (meshes), non-polygonal models (constructive solid geometries,
implicit and parametric surfaces), and voxel grids. Its definition is very easy: A par-
ticle system is composed of a set of points, the particles. These move according to
a specific rule, and they are alive, in the sense that they are born and they die
after a certain period of time. Due to their cloudy appearance, particle systems are
particularly suited for fuzzy objects which do not possess smooth and well-defined
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surfaces. This property makes them an ideal tool for representing volumetric effects
like fire, explosions, smoke, etc. Those effects can be realized according to simplis-
tic and/or stochastic models, resulting in appealing, but hardly realistic animations
(e.g. [Ree83, Sim90]). More sophisticated approaches include collision detection with
polygonal objects [KLRS04] or particle-particle collision [KSW04]. Other methods
make use of complex physical models for accurately simulating real-life phenomena
like fluids [MCG03], crowds or bird-oid objects (boids) [Rey87, Ker90]. Particle sys-
tems are also well-suited for visualizing flow data sets: Krüger et al. present such
a system suited for very large and dense particle sets [KKKW05]. Both fluids and
flow visualization are essential subjects to my thesis and will be addressed in detail
later.

1.2.1 Particle System Characteristics

Particle systems can be classified into two categories: stateless and state-preserving
systems. Stateless systems do not store particle specific information for update dur-
ing simulation. In particular, motion is calculated according to global parameters,
e.g. time and starting positions. This type of particle systems is suited for visual
effects, however particles cannot react on their environment independently, and
particle-particle interaction is impossible to achieve. State-preserving particle sys-
tems are much more powerful in the sense that inter-particle processing is made
possible by separate per-particle storage of the position and/or the velocity. Some-
times, it may be useful to store additional attributes like color, size, opacity etc.

Besides this distinction, particle birth and death are major aspects to be config-
ured. Particle birth can be seen as a particle-wise (re)initialization to specific seed
positions. Typical implementations arrange the seeds within a geometric shape, the
particle emitter. Fig. 1.2 shows a couple of examples. Interactive systems allow the
user to move, rotate or scale the emitter shape. Particle death might occur when
a particle’s lifetime has elapsed. An alternative definition is to reinitialize the old-
est particles whenever newly emitted ones exceed the largest possible number of
particles in the system.

point line planar volume spherical

Figure 1.2: Different particle emitter shapes. The emitted geometry is defined to fit
into the bounding box.
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1.2.2 Particle Tracing

Consider the initial value problem given by x(0) = x0 and the following differential
equation:

x′(t) = ~v(t), (1.1)

where x0 ∈ R3 and x, ~v : R→ R3. Interpreting x(t) as a particle’s position and ~v(t)
as its velocity at time t, Eq. 1.1 just describes the motion of a particle. The solution
for x is defined by the following integral:

x(t) = x0 +

t∫
0

~v(τ) dτ (1.2)

This is an intuitive analogy to a particle’s trajectory.
Note that when referring to the term unsteady flow in later parts, a velocity ~v

depending on time and space is meant, i.e. the more general form ~v : R3 ×R→ R3.
This adds a recursive element to the integral form of the particle trajectory:

x(t) = x0 +

t∫
0

~v(x(τ), τ) dτ (1.3)

Simulators solve Eq. 1.2 by numerical integration (also called quadrature), e.g.
Euler or a higher order scheme like Runge-Kutta. The following paragraphs discuss
the main integration schemes and especially those that are used in later parts of
the dissertation. For extensive overviews of numerical integration, please refer to the
mainstream literature about numerical mathematics [SB00, Stö95, HH89]. Fig. 1.3
visualizes the accuracy of different schemes by means of two velocity fields. The first
consists of a simple oscillator defined by ~v1(t) = (−sin(t), cos(t))T. The second is
defined by a repetitive B-Spline basic function of order 3 (see [PBP02] for a detailed
discussion of B-Splines), whose normalized derivative forms the velocity:

~v2(u) =

(
k, N3

0
′(u)

)T∥∥∥∥(
k, N3

0
′(u)

)T
∥∥∥∥ , (1.4)

where u ∈ R is chosen to feature the repetitiveness of the curve, i.e. u = t mod 3, and
k is a scaling factor for making the curve narrower. The normalization assures that
the overall curve is equally sampled, including the challenging peaks, thus visibly
revealing the accuracy of the integration methods.

The Euler Integration Scheme

Probably the easiest solution to Eq. 1.2 is given by the Euler integration, which
discretizes the integral into steps according to a time interval ∆ ∈ R:

x(τ + ∆) = x(τ) + ∆ · ~v
(
x(τ), τ

)
(1.5)
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b)

Runge−Kutta 2

Runge−Kutta 4

midpoint

VerletEuler

ground truth

a)

Figure 1.3: Different numerical integration schemes. One can easily see the corre-
lation of the order (Euler: 1, midpoint, Verlet, RK2: 2, RK4: 4) and the accuracy
of the outcome.

Midpoint and Higher-order Integration

A simple improvement to the Euler integration can be achieved by evaluating ~v
using the midpoint at ∆/2:

x(τ +
∆
2

) = x(τ) +
∆
2
· ~v

(
x(τ), τ

)
x(τ + ∆) = x(τ) + ∆ · ~v

(
x(τ +

∆
2

), τ +
∆
2

)
(1.6)

This approach is especially interesting when ~v depends on time only, because then
one can spare the first equation, leading to the following simplification:

x(τ + ∆) = x(τ) + ∆ · ~v(τ +
∆
2

)

Still, the necessity to forward-evaluate ~v remains, which may be difficult if ~v is calcu-
lated by numerical integration itself. For this case, the Leapfrog algorithm integrates
the velocity and the acceleration ~a : R3 × R→ R3 in an alternating way:

x(τ + ∆) = x(τ) + ∆ · ~v(τ +
∆
2

)

~v(τ +
3∆
2

) = ~v(τ +
∆
2

) + ∆ · ~a(τ + ∆)

The second equation can be split to provide the velocity at time τ +∆. Approximat-
ing the initial velocity ~v(∆

2 ) by ~v0 + ∆
2 ~a0 leads to the (velocity) Verlet algorithm,

named after the French physicist Loup Verlet. This algorithm is well-suited for ap-
plications working on forces, i.e. based on acceleration, like fluids.
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A generalization of the midpoint method is given by the Runge-Kutta (RK) in-
tegration. The RK2 scheme combines two forward steps into an accurate target
position:

~k1 = ~v
(
x(τ), τ

)
~k2 = ~v

(
x(τ) + ∆ · ~k1, τ + ∆

)
x(τ + ∆) = x(τ) + ∆ · (

~k1 + ~k2)
2

The RK4 scheme performs four forward steps, and it is a very commonly used
integration method because of its high accuracy:

~k1 = ~v
(
x(τ), τ

)
~k2 = ~v

(
x(τ) +

∆
2
· ~k1, τ +

∆
2

)
~k3 = ~v

(
x(τ) +

∆
2
· ~k2, τ +

∆
2

)
~k4 = ~v

(
x(τ) + ∆ · ~k3, τ + ∆

)
x(τ + ∆) = x(τ) + ∆ · (

~k1 + 2~k2 + 2~k3 + ~k4)
6

(1.7)

In the following chapters, I will refer to RK4 as an operator RK4
(
x, t, ∆

)
which

calculates a new location according to a given starting point x, an instant of time t
and a time step ∆.

Error Analysis

Numerical integration suffers from two kinds of errors: the truncation error and the
round-off error. The first occurs when discretizing time using a fixed step size, the
latter is due to finite floating-point arithmetic and increases proportionally to the
number of integration steps. This paragraph concentrates on the truncation error,
as in general, round-off errors are caused by insufficient floating point resolution,
which is an implementation specific issue.

The Euler integration produces a large truncation error. It is said to be first order
because the accumulating error is linearly bounded by ∆. Proof: The expansion of
x(τ + ∆) to its Taylor series (in neighborhood τ)

x(τ + ∆) = x(τ) + ∆ · x′(τ) +
∆2

2
· x′′(τ) +

∆3

6
· x′′′(τ) +O(∆4) (1.8)

reveals that, for a single step ∆ ∈ (0, 1), the dominating error given by the difference
between Eq. 1.8 and Eq. 1.5 is (∆2/2) ·x′′(τ) ∈ O(∆2). Assuming a total number of
t/∆ steps, the error of x(t) sums up to O(∆). 2
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Similarly, the midpoint method can be proven to be of second order. Proof: Ex-
panding the velocity term in Eq.1.6 yields:

x(τ + ∆) = x(τ) + ∆ · x′(τ +
∆
2

)

= x(τ) + ∆ ·
(
x′(τ) +

∆
2

x′′(τ) +
∆2

4
x′′′(τ) +O(∆3)

)
= x(τ) + ∆ · x′(τ) +

∆2

2
x′′(τ) +

∆3

4
x′′′(τ) +O(∆3)

Here, the error, i.e. the difference to Eq. 1.8, is bounded by O(∆3). This implies a
quadratic error accumulation, thus order 2. 2

As the Leapfrog and thus the Verlet algorithm are both based on midpoint evalua-
tion, those are schemes of second order, too. For an error analysis of the Runge-Kutta
integration schemes, see [CP92].

Adaptive Time-stepping

Adaptive adjustment of the time step during the numerical integration aims for
reducing both the truncation error and the round-off error. Thus, a good adaptive
time step is small enough to avoid truncation and large enough to avoid round-
off. For the Runge-Kutta 4 method, an easy and common method is step-doubling.
Step-doubling determines a numerically sound time step ∆′ as follows:

x1 = RK4
(
x, t, ∆

)
x2 = RK4

(
RK4

(
x, t,

∆
2

)
, t +

∆
2

,
∆
2

)
∆′ = ∆ ·

(
d

‖x2 − x1‖

) 1
5

(1.9)

The distance ‖x2 − x1‖ is an error estimation which is asymptotically bounded by
∆5. The target distance d must be chosen to produce smooth results (i.e. no sharp
peaks). It is advisable to avoid a denominator near zero. Also, it might be reasonable
to clamp ∆′ to be within a reasonable interval.

Note that high order integration schemes, in particular Runge-Kutta and adaptive
time-stepping according to the step-doubling approach will be essential ingredients
for the realization of accurate particle traces in later chapters. Also note that the
generation of accurate flow lines (see Sec. 4.2) supports any suitable adaptive time-
stepping scheme, including step-doubling.

1.2.3 Hardware-accelerated Particle Systems

Stateless particle systems are straight-forward to realize on programmable graphics
hardware: Even early platforms support the storage of a vertex buffer in graphics
memory, and on-the-fly transform using a vertex program. Each vertex represents
a particle, which is animated by evaluating a formula depending on some input pa-
rameters, e.g. time and initial values. Vertices coming out from the vertex shader are
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Figure 1.4: Data storage concept for particle systems. Source: [KLRS04]

rasterized and rendered as points or screen-aligned sprites (so-called point sprites).
This overall method fits well into one single render pass through the pipeline.

The first state-preserving particle system engines exploiting consumer graph-
ics hardware were simultaneously presented in 2004 by Kolb et al. [KLRS04] and
Kipfer et al. [KSW04]. Both methods are capable of simulating and rendering about
one million particles at interactive frame rate. The work by Kolb et al. focuses on
particle-object collision using depth maps and a novel parametrization for texture-
based normal indexing. Particles are partially sorted on the GPU for blended back-
to-front rendering. The engine presented by Kipfer et al. supports particle-scene col-
lision using a precomputed signed 3D distance field or a heightfield, and inter-particle
collision by twice sorting particles according to a staggered grid enumeration.

Today’s shader APIs provide two mechanisms that can be used for a state-
preserving transformation. The first is the render-to-texture capability, which is used
in [KLRS04, KSW04]. The second is the newer transform feedback (see Sec. 1.1.1).
Both are discussed shortly in the following two paragraphs.

Texture-based Particle Processing

In general, the input and output buffers are better kept distinct when processing
the data in parallel on the GPU. This avoids side-effects when reading and writing
at the same buffer location, and it guarantees a well-defined read operation (see
Sec. 4.4.3 in the OpenGL specification [SA08]). Kolb et al. use a double-buffered
texture storage in their approach, which is shown in Fig. 1.4. One update pass
corresponds to one fragment processing pass. The process is triggered by rendering a
quadrilateral covering the complete output texture. After rasterization, the fragment
processor then performs the actual particle simulation. The previous state, i.e. the
input texture is read by texture-fetching. Thus, particles are identified and accessed
through texture coordinates.

Kolb et al. accomplish particle initialization, i.e. birth and death, on the CPU.
This is the only step of the simulation process which is not performed on graphics
hardware. Storing idle particle indices in a heap structure, which is optimized to
always return the smallest element, ensures that the particle data is stored in a
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compact region of the particle texture. This idea is crucial in the general case where
particles are assigned different lifetimes, or if reinitialization is inherently sequential
and thus requires a CPU-based routine.

Stream-based Particle Processing

The combination of a geometry program and transform feedback is a powerful alter-
native on newer hardware. The reinterpretation of texture data as a vertex buffer for
rendering becomes obsolete, because the programs work directly on the vertex data.
The input stream is processed and modified on-the-fly in the geometry program.
Provided that reinitialization is non-sequential in nature (e.g. random reinitializa-
tion), element insertion and deletion can be used for an easy implementation of birth
and death without any detour involving the CPU.

1.3 Grids and Level Sets

In this section, grids are introduced as a counter-technique to particle systems,
aiming for the representation of deformable objects. This includes the notion of
advection, which is a direct analog to particle tracing when thinking of the whole
particle system as one object. This also includes level sets, which are presented as a
method for tracing closed surfaces, then its extension called particle level set (PLS),
and the problem of constructing a grid-based distance transform (DT). The latter
is strongly motivated by the practical usefulness of DTs in the context of PLS (see
Sec. 3.3).

It should be stated that this section is not an overview of all occurrences of grids
in literature, not even in graphics, as this would go far beyond the scope of my work.
Consequently, I will concentrate on the grid-based techniques that are useful in the
following chapters.

Different Grid Types

Grids appear in nearly as many flavours as they have different applications in liter-
ature. In our context, a grid is a discretization of space in cells that are arranged at
well-defined locations. In principle, the concept of a mesh (i.e. a polygonal model)
is situated in-between of grids and particles, because it can be seen as a system of
connected particles living in a lower dimension, whereas grids are subject to an even
stricter arrangement. The following distinction for grids is proposed:

Structured grids are characterized by the fact that cells are arranged in n-dimen-
sional space in the same way as they are indexed according to a n-ary Cartesian
product. This class is subdivided into rectilinear and regular grids. The regular,
also called Cartesian grid, is more restrictive than the rectilinear one due to
its equidistant (also: uniform) cell arrangement in each dimension. Often, the
definition of Cartesian grids differs from the one for regular grids in the sense
that Cartesian grids consist of cubic cells, while the regular grid only requires
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congruence of the cells. Curvilinear grids apply an invertible transformation
of the cell arrangement to curved (e.g. spherical) coordinates.

Unstructured grids, e.g. tetrahedral grids, may be appropriate when the appli-
cation domain does not fit into the aforementioned restrictions.

Note that when writing about grids without any predicate in the following chapters,
regular/Cartesian grids are meant. The term non-uniform grid is used for rectilinear
grids for which a non-equidistant arrangement is explicitly assumed.

1.3.1 Field Advection

Advection can be seen as the process of applying motion to a field containing a
scalar (or non-scalar) property. This property, which can also be interpreted as a
substance, is transported by the flow, i.e. a velocity vector field, defining the applied
motion.

Let us assume a 3-dimensional space, in which a scalar field a and a velocity field
~v are defined, both time-varying, i.e. a : R3 × R → R and ~v : R3 × R → R3. The
following equation, at position x ∈ R3 and time t ∈ R, expresses the advection of a:

∂a(x, t)
∂t

+∇ ·
(
a(x, t) · ~v(x, t)

)
= 0

We now consider a divergence-free velocity field ~v, which is given when modeling
incompressible fluid flows. Consequently, we have ∇ · ~v = ~0, and with the product
rule ∇ · (a~v) = (∇a) · ~v + a · (∇ · ~v) we obtain:

∂a(x, t)
∂t

+ ~v(x, t) · ∇a(x, t) = 0 (1.10)

Finding a solution to this equation is a typical requirement for incompressible Navier-
Stokes-based fluid solvers. One of the fluid pioneers in the graphics community is Jos
Stam, who strongly influenced this research field by presenting a method called stable
fluids [Sta99]. The main advantage of his approach compared to previous ones is that
simulation is unconditionally stable, independently of the time interval between two
simulation steps. His stable fluid method is based on a grid-based – yet particle-
related, thus “Lagrange” – interpretation of the advection equation, which is known
as semi-Lagrange advection. This kind of advection schemes primarily evolved in the
context of meteorological science (see [SC91] for an overview).

Semi-Lagrange Advection

So-called “Eulerian” advection schemes (i.e. schemes defined in Eulerian coordi-
nates), based on Eq. 1.10, describe the evolution w.r.t. to fixed points in space,
whereas “Lagrangian” schemes consider the explicit motion of single particles. Eu-
lerian methods embed the advected field in a regular grid, which has the advantage
that the computational space is regularly and constantly covered. However, Eule-
rian methods suffer from problems related to computational stability. In other words,
these schemes require a strict bound on the maximum possible time step, which is
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traditionally expressed using the CFL (Courant-Friedrichs-Lewy) condition [CFL28].
The semi-Lagrange advection surpasses this restriction by interpreting Eulerian ad-
vection as a per-point backward particle tracing.

The key idea of the semi-Lagrange advection is very intuitive when thinking of a
field location ~x to be a particle holding a portion of the field to be advected. The
key is now to back-trace this particle through the velocity field ~v. Assuming a time
step ∆, this yields the following scheme:

a(x, t + ∆) = a
(
p(x,−∆), t

)
, (1.11)

where p : R3 × R → R3 is the back-trace path of the particle. Approximating this
path by a (backward) Euler integration step, we get the following formulation of the
semi-Lagrange advection:

a(x, t + ∆) = a
(
x−∆~v(x, t), t

)
The derivation of Eq. 1.11 solving Eq. 1.10 is based on the method of character-

istics. Please refer to the appendix in [Sta99] for the demonstration. Note that the
semi-Lagrange advection is not restricted to scalar fields. Stam makes use of it for
velocity advection in his stable fluids approach.

Grid Advection

Obviously, grid advection can be interpreted as an operation on texture data. Texture
advection maps well to the GPU: Advection can be performed efficiently in parallel,
and the GPU also provides functions to directly render the texture, by use of texture
mapping in the case of 2D textures, or by means of volume rendering techniques
in the 3D case. One of the first approaches for texture advection using graphics
hardware was provided by Max [MB95]. Here, the advection is delegated to texture
mapping by altering texture coordinates.

It is clear that semi-Lagrange advection can be applied to a texture representa-
tion. Generally, this requires an interpolation of the back-traced location, which will
typically lie in-between of neighbor texels. A reasonable approach is to compute a
trilinear interpolation of the eight surrounding texels. However, one must take care
of numerical diffusion due to the approximate nature of interpolation. This effect
leads to blurriness, and a loss of previously sharp interfaces. Level set methods are
motivated by the task of accurately advecting such interfaces (see [Wei04] for a
discussion).

1.3.2 Level Sets

The level set method was introduced by Osher and Sethian [OS88]. It aims for
overcoming the problem of numerical diffusion in previous grid-based surface tracing
approaches. The key idea is to identify the surface as the zero-set interface within a
scalar field: the level set. A detailed discussion of the technique and its applications
can be found in [OF02].

Level sets enjoy a noticeable popularity in a wide range of disciplines. A typical
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application is the field of incompressible fluid dynamics, including the simulation of
water [ELF05] and smoke [FSJ01]. Another example is image segmentation [CV00].

The level set method represents a surface, i.e. a lower dimensional interface I in
a metric space D (which could be for example I ⊂ D = R3), by the iso-contour of a
level set function φ : D → R:

I(φ) := {x ∈ D | φ(x) = 0}

The interface is moved by advecting φ within the velocity field according to Eq.1.10.
Typically, φ is initialized to be a signed Euclidean distance field. However, after

advection, this property is generally lost. Thus, φ needs to be reinitialized in order
to keep a valid distance field. Note that reinitialization is not done for its own sake.
In practice, a frequent reinitialization is numerically useful for two reasons (see also
[OF02]): First, areas far from the interface are discarded, which is convenient as this
avoids errors from outside to be propagated into the iso-contour and thus into the
area of interest. Second, the accumulation of diffusive errors provoking a smearing of
the interface is prevented by its relocation and by restoring a sharp representation.

As distance field construction will be one component of the later level set based
approach, a short excursus to distance fields and distance transforms is provided in
the next section. The latter is also motivated by later use, as the distance transform
will turn out to be preferable in the GPU-based particle level set method.

1.3.3 Distance Fields and Distance Transforms

Computing a signed or unsigned distance field is a well studied problem [Cui99].
Besides, distance fields have many applications in computer graphics, scientific visu-
alization and related areas. Examples are implicit surface representation and colli-
sion detection [KLRS04], skeletonization [ST04] and accelerated volume ray tracing
[HSS∗05]. Depending on the application, it may be useful to compute distances and
closest-point references as well. This structure is called a distance transform (DT).

Consider a closed object Ω defined in 2- or 3-dimensional space. Let ∂Ω be the
object’s boundary. The Euclidean distance transform dt for a location x is defined
as dt(x) =

(
dtd(x), dtδ(x)

)
, with

dtd(x) = sx · min
y∈∂Ω

{‖x− y‖},

dtδ(x) = arg min
y∈∂Ω

{‖x− y‖},

where sx denotes the sign w.r.t. the boundary ∂Ω (i.e. 1: exterior, -1: interior), and
arg miny is an operator returning a point y constituting the minimum. Thus, dt(x)
stores the signed distance and the point y ∈ ∂Ω closest to x. In the following, this
closest point to the interface will be called a reference.

Computing a 3-dimensional Euclidean DT is a frequent problem [CM99]. Depend-
ing on the initial object representation, given as grid or as geometric representation,
different approaches have been proposed. Consider a grid, where the object’s bound-
ary is identified by a narrow band of interior and exterior cells. This representation
is sound, provided that the boundary is closed. Algorithms computing a grid-based
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DT can be classified into two major categories: methods based on Voronoi diagrams
and methods based on distance propagation.

The Voronoi Diagram Approach

A Voronoi diagram is a space partitioning into cells w.r.t. to a fixed set of seeds
(also sites). Each cell contains all points closest to one seed. It is clear that the DT
can be obtained by setting Voronoi sites onto the object’s boundary.

Two-dimensional Voronoi diagrams can easily be constructed using rasterization
techniques. For this, cones with a common opening angle are placed over each seed
and the resulting scene is rendered from top-view using depth test. In a general
Voronoi diagram, the seeds can consist of more geometric objects than just points,
e.g. line segments, triangles or curves. Hoff et al. [HKL∗99] have shown that the cone
approach can be extended to reflect general Voronoi diagrams, and they support 3D
diagrams by slice-by-slice construction. Because this approach is based on polygonal
rasterization, it can be implemented using graphics hardware.

The Distance Propagation Approach

Propagation methods continuously propagate the distance information to neighbor-
ing grid cells, either by spatial sweeping or by contour propagation. As described
earlier, a specific initialization dt0 of the grid is considered where cells close to the
boundary ∂Ω are assigned an initial configuration. All other cells are set to a large
positive or negative distance M distinguishing the inner region Ω− and outer region
Ω+ of the object:

dt0(x) =

{
(0,x) if x ∈ ∂Ω
(±M, ∗) if x ∈ Ω± (1.12)

Alternatively, the first case can be defined to describe precise initial subvoxel refer-
ences if available. Note that the reference part dtδ in the second case is undefined.
This missing information is computed during the iterative propagation. One prop-
agation step can be seen as a filter pass using a kernel N27 including all direct
neighbors around grid cell x:

dti+1
δ (x) = arg min

y∈N27(x)
{
∥∥dti

δ(y)− x
∥∥} (1.13)

The distance component dti+1
d (x) can be set to have the same sign as before:

dti+1
d (x) = sign

(
dti

d(x)
)
·
∥∥dti+1

δ (x)− x
∥∥

See Fig. 1.5 for a visualization of two sequential propagation steps. It should be
noted that distance propagation as defined in Eq. 1.13 can produce wrong results
in cases where a reference dtδ(x) initially stored in the boundary configuration
never reaches the grid cell x. Such a situation can occur when the reference is
overwritten by a local minimum during stepwise propagation somewhere on the
path from the initial location to x (see [CM99] for an illustration of such a case).
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Figure 1.5: Constructing a distance transform. Two propagation steps (white/yel-
low: ±M , blue/green: +exterior/−interior). Note that the grid is initialized with
precise subpixel references near the boundary in this example.

Thus, distance propagation methods generally produce approximate solutions to the
DT construction problem.

Rong and Tan [RT06] present a variant of the propagation approach, the jump
flooding algorithm (JFA), which is parallelizable on the GPU, and which can be used
for the computation of Voronoi Diagrams as well as DTs. The key idea of JFA is
to propagate the distance information to more distant cells instead of neighbor cells
only. This leads to a faster algorithm, as the grid can be filled within a smaller num-
ber of propagation steps. A more detailed description of JFA and a faster alternative
is given in Sec. 3.2.1 in the context of level set reinitialization.

1.3.4 Particle Level Sets

The level set approach constitutes a powerful model for describing the tracing of
closed surfaces in an arbitrary flow. However, in practice, a grid-based representa-
tion of a level set is difficult to handle, because grid advection schemes suffer from
numerical diffusion (see Sec. 3.1). A frequent reinitialization of the level set func-
tion is advantageous, yet a volume loss and feature smearing still can be observed.
The particle level set (PLS) method, first introduced in the work by Enright et al.
[EFFM02, EMF02, ELF05], improves the accuracy by interchanging the represen-
tation of the surface between the grid and a corrective set of particles. For a more
detailed motivation of PLS-based methods, the reader is referred to the introduction
in Chap. 3.

The PLS Algorithm

Enright et al. use a fast first order accurate semi-Lagrangian method to advect the
level set function φ in a grid [ELF05]. The volume loss due to numerical diffusion is
prevented by placing corrective particles nearby the interface I. Positive particles are
located in the outer region, i.e. φ > 0, and negative particles in the inner region, i.e.
φ < 0. Each particle p is defined as a sphere around xp with a radius rp ∈ [rmin, rmax]
touching the interface: thus, rp = sp ·φ(xp), where sp is the sign of the particle. The
correction step involves the definition of a temporary level set function φp around
each particle:

φp(x) = sp · (rp − ‖x− xp‖)
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After level set and particle advection, escaped particles, i.e. those that are further
away than their radius on the wrong side of the interface, are used for the level
set correction. Each escaped particle contributes to the eight surrounding grid cells
using intermediate level set functions φ+ and φ− that are initialized to φ and updated
according to the following formulas:

φ+(x) ←− max(φp(x), φ+(x)), (1.14)
φ−(x) ←− min(φp(x), φ−(x))

After processing all escaped particles, a new (corrected) φ is constructed according
to the following operation and then reinitialized in order to restore a signed distance
function.

φ(x) =
{

φ+(x) if ‖φ+(x)‖ ≤ ‖φ−(x)‖
φ−(x) else

(1.15)

The PLS method is known to produce good results even when performing a first
order semi-Lagrangian level set advection. The algorithm according to Enright et al.
[ELF05] is summarized below. Note that the level set correction is performed twice.

Algorithm 1.1 (particle level set algorithm)

1 Definition of the interface location and velocity field
2 Initialization of the level set φ based on the interface
3 First order semi−Lagrangian level set advection
4 Second order Runge−Kutta particle advection
5 Correction of the level set using the particles according to Eq. 1.14 and 1.15
6 Level set reinitialization
7 Correction of the level set using the particles (same as step 5)
8 Particle reseeding
9 Go to 3

Mokberi and Faloutsos provide an open source library implementing the PLS method,
as well as a technical report explaining their own interpretation of the original ap-
proach [MF06]. Note that level set correction (step 5) is repeated in step 7 of the
original PLS algorithm (Alg. 1.1). Mokberi and Faloutsos argue that a second cor-
rection step is useful in order to avoid errors introduced by the fast marching method
used for level set reinitialization [MF06].

1.4 Flow Visualization

The remainder of this chapter is devoted to flow techniques, more specifically flow vi-
sualization and fluid simulation. Flow visualization handles the mapping of possibly
3-dimensional fluent phenomena to a possibly 2-dimensional visual output device. Its
ambition is to visually expose interesting characteristics of the flow, and to provide
explorative tools with which the user controls the scope of the visualization.
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stream line streak linepath line

Figure 1.6: Motion-blurred visualization of stream, path and streak lines at differ-
ent instants in time. The following velocity field is used in this example: ~v(x, t) =(
cos (sin t), sin (sin t), 0

)
.

Flow visualization is a well-studied topic (see [LHD∗04] for one of several exten-
sive overviews). State-of-the-art flow visualization can be classified in three main
categories: Direct, texture-based and geometric visualization [Lar04]:

Direct visualization typically uses glyphs, e.g. arrows, which cover an overall pic-
ture of the flow. Flow information can be coded as a color or shape attribute.

Texture-based visualization offers a dense representation of the flow by advect-
ing planar or volumetric grids. A widely used example is line integral convo-
lution (LIC) [CL93], which applies convolution kernels to noise textures.

Geometric visualization evolves geometric objects like particles, lines, surfaces
and volumes by integrating along the flow field. Stream lines consist of the
paths formed by particles traced when halting the flow, thus reflecting the
flow at one fixed instant of time. A path line shows how the flow is changing in
time by tracing particles within an unsteady velocity field. Streak lines differ
from the other line types in the fact that the whole line is moved instead of
tracing one particle. They are natural in the sense that they frequently occur
in the real world. For example, injecting a medium within a fluid (smoke in the
wind) yields a streak line. These three flow line types are shown in Fig. 1.6.
In principle, volumes can be used instead of lines in order to produce stream,
path and streak volumes.

Various GPU-based flow visualization approaches were presented in the past. Most
of the literature is related to dense representations, particularly LIC and similar
texture-based techniques. Typically, the visual output is designed to reveal as much
properties of the flow as possible, e.g. using multi-dimensional transfer functions
(MDTF) [PBL∗04]. The feature-based visualization by [PVH∗02] extracts and vi-
sualizes flow features directly. The Lagrangian-Eulerian advection scheme by Jo-
bard et al. [JEH01] produces a dense visualization of time-dependent vector fields
which resembles dense particle representations. Weiskopf et al. propose a hybrid
particle and texture based technique for unsteady 2D flow data on uniform grids
[WSEE05]. Here particle tracing generates a visualization using a LIC together with
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radial basis functions, thus particles indirectly contribute to the final image. The
system, which is interactive, has been applied to 2D climate flow data.

Geometric methods, on the other side, are usually based on explicit particle traces.
In the last years, a lot of effort has been made to exploit graphics hardware for
real-time visualization. Building on GPU-based particle systems (see Sec. 1.2.3),
Krüger et al. present an approach for 3D flow visualization, including the generation
of stream lines and ribbons [KKKW05]. The work by Park et al. [PBL∗05] discusses
dense seeding of stream and path lines in steady and unsteady flows. Their technique
supports MDTFs, and it is suited to graphics hardware.

1.5 Particle Fluids

The simulation of fluids (i.e. the field of computational fluid dynamics) is, on the one
hand, important for a large set of physical applications like meteorology, oceanogra-
phy, aerodynamics, and pneumatics – just to state a few ones, and on the other hand
a very challenging task which has been intensively investigated for several decades.
The interest for fluids within computer graphics community mainly comes from the
effects and game industry. However, the general purpose use of graphics hardware
opens the door to a strictly physically based simulation of fluids.

Most applications perform their simulation by solving the Navier-Stokes equations
for incompressible fluids. In practice, a vast majority of systems solve the Navier-
Stokes equations using a grid discretization. While the grid structure itself is benefi-
cial because of its computational simplicity, incompressibility has to be enforced by
relaxation techniques, which ensure mass conservation throughout grid cells [FM96].
Other approaches are based on particles. Considering each particle as an entity car-
rying one portion of the fluid mass, it is clear that mass conservation is given by
the fact that the number of particles never changes. The SPH method (Smoothed
Particle Hydrodynamics), which is summarized in Sec. 1.5.2, is one example of these
particle-based approaches.

Thanks to the growing interest in fluids within the computer graphics community,
several approaches focusing on interactivity and supporting graphics hardware have
been presented. Krüger and Westermann have shown that effects like explosions,
fireballs, smoke and fire can be simulated and rendered in real-time using graphics
hardware [KW05]. The basic idea here is the extrusion of 2-dimensional simulation
results to 3 dimensions, which significantly reduces complexity. Harris has worked
on the general task of solving partial differential equations using the GPU, and
he presented a specific method for simulating cloud dynamics in [HBISL03]. An
interpretation of SPH for real-time, yet non-GPU-based fluids has been presented
by Müller et al. [MCG03].

1.5.1 The Navier-Stokes Equations

The famous Navier-Stokes equations were formulated by Claude Navier and George
Stokes in the 19th century. Since then, these equations have become a standard in the
field of computational fluid dynamics, as they have shown to be a powerful model.
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The fluid representation is based on a velocity field ~v, the fluid’s density ρ and
a pressure p. The Navier-Stokes equations for incompressible fluids consists of one
equation assuring conservation of mass by imposing a divergence-free velocity field,
and one equation formulating conservation of momentum. To simplify matters, a
compact notation omitting the field location x is used for ~v, ρ and p.

∇ · ~v = 0 (1.16)

∂~v
∂t

+ (~v · ∇~v)︸ ︷︷ ︸
convective

term

=
−∇p

ρ︸ ︷︷ ︸
pressure

term

+

viscosity
term︷ ︸︸ ︷

ν∇2~v +

external
acceleration︷︸︸︷

~g (1.17)

where t is time, ~g an external acceleration, e.g. gravitation, and ν = µ/ρ is the
kinematic viscosity of the fluid, defined by the viscosity constant µ. Note that,
assuming Cartesian coordinates, the convective term ~v · ∇~v is often (e.g. [Sta99])
written as (~v·∇)~v using the shorthand operator (u, v, w)T ·∇ = u(∂/∂x)+v(∂/∂y)+
w(∂/∂z).

In literature, Eq. 1.16 is occasionally eased to describe general mass conservation
rather than requiring divergence-freeness of ~v (also compare with Eq. 1.10):

∂ρ

∂t
+∇ · (ρ~v) = 0

Müller et al. argue, that in Lagrangian approaches, a constant number of particles
guarantees this formulation of mass conservation [MCG03]. Furthermore, particles
move with the fluid, thus the convective term in Eq. 1.17 can be omitted, resulting
in the following simplified version of Navier-Stokes defining a force field ~f :

~f = −∇p + ρ~g + µ∇2~v

1.5.2 Smoothed Particle Hydrodynamics

A Lagrangian reformulation of Navier-Stokes called smoothed particle hydrodynam-
ics (SPH) was introduced by Gingold and Monaghan [GM77]. The SPH method
models the dynamics of fluids based on particle motions, applying forces according
to the Navier-Stokes equations. One of the main advantages, compared to grid-based
approaches, is that only the region of interest, i.e. the fluid itself, is represented
by particles, and that the volume in which the simulation is defined is principally
unbounded. Müller et al. [MCG03] present an optimized software implementation
allowing an interactive simulation for a few thousand particles.

Let P be the set of particles representing the fluid medium. The main concept of
SPH is the usage of a smoothing kernel W : R× R → R distributing a quantity Aj

into the neighborhood of a particle j ∈ P located at pj ∈ R3. The kernel can be
seen as a weight W (r, h) depending on a distance r and the radius of influence h of
a particle. The quantity at an arbitrary location x ∈ R3 is determined by the sum
of all particle’s contributions:

A(x) =
∑
j∈P

mj
Aj

ρj
·W (‖x− pj‖ , h), (1.18)
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where mj is the mass of particle j. Smoothing the density ρj according to this
equation reduces the right side to a weighted sum over each particle’s mass:

ρ(x) =
∑
j∈P

mj ·W (‖x− pj‖ , h) (1.19)

This smoothed density ρ can be used to define the density ρj = ρ(pj) at particle
location pj when smoothing additional quantities according to Eq. 1.18. Using a
normalized smoothing kernel, i.e. choosing a kernel W with integral equal to 1,
asserts that ρ sums up to the total fluid mass:∫

W (‖x‖ , h) dx = 1 ⇒
∫

ρ(x) dx =
∑
j∈P

mj

It is interesting to note that derivatives of field quantities affect the smoothing kernel
only. This easiness in handling Laplace and gradient operators makes SPH such a
powerful model for solving Navier-Stokes:

∇A(x) =
∑
j∈P

mj
Aj

ρj
· ∇W (‖x− pj‖ , h),

∇2A(x) =
∑
j∈P

mj
Aj

ρj
· ∇2W (‖x− pj‖ , h)

The resulting pressure force ~fp and the viscosity force ~fv for particles i are deduced
from the Navier-Stokes equations (more details in Müller et al. [MCG03]) in order
to satisfy symmetry requirements:

~fp(pi) = −
∑
j∈P

mj
pi + pj

2ρj
· ∇W (‖pi − pj‖ , h), (1.20)

~fv(pi) = µ
∑
j∈P

mj
~vj − ~vi

ρj
· ∇2W (‖pi − pj‖ , h),

where ~vi is the velocity of particle i and pj = k(ρj − ρ0) is the pressure with gas
constant k and rest density ρ0. In a case where only two particles interact, the
symmetrization ensures that both particles exert exactly the same force to each
other.

In order to model the surface tension, Müller et al. [MCG03] use a so-called color
field c, which is 1 at particle locations and 0 everywhere else. The gradient of the
color field describes the inward normal field of the fluid, whereas the divergence of
the normal field is a measure for the curvature κ of the fluid surface:

c(x) =
∑
j∈P

mj

ρj
·W (‖x− pj‖ , h), (1.21)

~n(pi) = ∇c(pi), κ = −∇
2c

‖~n‖
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Based on the color field c, the surface traction force ~fs is defined using the normal
and the curvature:

~fs(x) =

{
−σ · ∇2c(x) · ~n(x)

‖~n(x)‖ ‖~n(x)‖ > ε

0 otherwise
(1.22)

where σ specifies the tension coefficient. A threshold ε > 0 is used in order to avoid
numerical problems in the case where ‖~n(x)‖ ≈ 0, which appears for points not at
the boundary.

Müller et al. propose to use different polynomial smoothing kernels for the com-
putation of the different forces. In most cases, they use the kernel Wpoly6:

Wpoly6(r, h) =
315

64πh9

{
(h2 − r2)3 0 ≤ r ≤ h

0 otherwise

For pressure, the kernel Wspiky which was introduced by Desbrun and Cani in their
work about deformable bodies [DC96]:

Wspiky(r, h) =
15
πh6

{
(h− r)3 0 ≤ r ≤ h

0 otherwise

For viscosity, Müller et al. designed the kernel Wviscosity, whose Laplacian is artifi-
cially changed in order to increase numerical stability:

Wviscosity(r, h) =
15

2πh3

{
− r3

2h3 + r2

h2 + h
2r − 1 0 ≤ r < h

0 otherwise
(1.23)

∇2Wviscosity(r, h) =
45
πh6

(h− r)

In their main example, Müller et al. are able to simulate a fluid consisting of more
than 2,000 particles at 20 frames per second using a 1.8 GHz Pentium CPU. The
next chapter aims for reformulating the approach to be suited for the GPU, with
the intention to accelerate the simulation by processing the particles in parallel.





Chapter 2

Real-time Particle Fluids

Everything flows, nothing stands still.
Heraclitus of Ephesus, Greek philosopher

This chapter describes an approach for simulating SPH-based fluids in real-
time. It is designed to exploit the capabilities of modern graphics hardware:
all steps of the proposed algorithm are completely covered by the GPU.
One of these steps – solving the so-called n-nearest neighbors problem –
is a crucial challenge for any particle engine involving inter-particle effects.
It requires each particle to have access to the information of surrounding
particles within a specific radius. In Sec. 2.1, an implicit solution to this
problem is proposed, which means that the overall neighborhood influence
is accessible rather than determining explicit particle identifiers of all neigh-
bors. This solution is introduced as the more general idea of grid-particle
interchange by scattering 3-dimensional point markers into a texture. This
way of processing particle neighborhoods was, to my knowledge, presented
in our work [KC05] for the first time. Since then, the idea has been devel-
oped by numerous authors, amongst others Harada et al. [HKK07b]. At the
end of the chapter (Sec. 2.2), Harada’s explicit solution to the n-nearest
neighbors problem is discussed, as it constitutes a significant improvement
w.r.t. numerical stability of the simulation.

The approach presented in Sec. 2.1 has been published in [KC05].

Two aspects make fluid simulation difficult: For a reasonable degree of realism,
a profound physical background is essential. On the other hand, simulators ne-

cessitate efficient algorithmic concepts in order to cope with the high computational
complexity. As motivated in earlier chapters, particle-based algorithms can be for-
mulated to work on a parallel machine. However, any application involving particle
coupling, e.g. SPH-based fluids, the simulation of granular media or simple particle-
particle collisions, requires a solution of the n-nearest neighbors problem. This is
difficult, as particles are uncoupled by nature, i.e. a spatial arrangement is not im-
plicitly given. Some approaches use a sorting of the particles in order to reflect
the spatial relation in the particle stream [KSW04]. However, because of the one-
dimensionality of sorting, neighborhoods cannot be reconstructed completely in all
cases. The approach by Hegeman et al. accelerate the computation of inter-particle
forces by computing a quadtree structure partitioning the volume [HCM06]. The
method has to cope with the problem that the tree quickly degrades when particles
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move during simulation. Thus, a costly optimization of the tree must be done before
each simulation step.

The key idea presented in the following section is to transfer the particle neigh-
borhood information into a grid, which is then sampled in a second pass during the
simulation. For an efficient realization of this idea on the GPU, a special technique
for grid-particle interchange is necessary, which is the major contribution of this
chapter. Our work, published in [KC05], constitutes the first brick of one category
of GPU-based SPH solvers by introducing texture-based accumulation of particle
neighborhoods. This is reflected in the popularity this kind of simulators has gained
in the recent past [HKK07b, ZSP08, Har07, Gre08]. However, it should be stated
clearly that this first version suffers from numerical problems due to grid discretiza-
tion, and it is the merit of Harada et al. to have significantly improved the approach
in order to get accurate results while increasing efficiency [HKK07b].

2.1 Smoothed Quantity Accumulation

This section presents the original GPU-based grid-particle SPH solver which has
been published in [KC05]. First, the general idea behind the method is discussed,
then technical aspects of the accumulation of particles into a 3D texture are dis-
cussed. Afterwards, an algorithmic overview of the SPH solver is given.

Accumulating Particle Contributions

The smoothing equation, Eq. 1.18, maps a quantity from the particle representation
into a field location. The sum can be seen as collecting all particles, which may
suggest the gathering scheme when thinking about porting it to the GPU. A naive
implementation would just iterate through all particles and compute the sum exactly
as described in Eq. 1.18. However, this would lead to a quadratic runtime, as each
pair of particles would be involved in the computation of one simulation step. The
proposed method goes the inverse way: each particle scatters its contribution (i.e.
one summand in Eq. 1.18) to all locations within its influence radius. The scattered
information is stored into a 3D texture discretizing the volume of interest. This
texture can then be accessed using trilinear interpolation during simulation. An
example how this texture looks like is shown in Fig. 2.1. It is clear that this scheme
is no more quadratic – it is linear in the number of particles and mostly depends on
the influence radius (the smoothing kernel size) and the resolution of the texture.

The accumulation step requires an efficient technique for scattering particle contri-
butions, as described in the next section. Besides, the scattering is carefully designed
to carry the proper computation of pressure, viscosity and tension forces. Special
attention is necessary for the viscosity force (see Eq. 1.20), as it is particle-centric,
i.e. involving ~vi, rather then relying only on smoothed quantities.

2.1.1 Scattering Particle Contributions

Scattering into a 3D texture is difficult to achieve, because a render pass, i.e. the
traditional way to start a GPU computation, always writes the output into a frame
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density field color field force field

Figure 2.1: Fields holding specific smoothed quantities. The picture shows one slice
of the 3D volume. The contribution of each particle to its local neighborhood is ac-
cumulated by scattering blended particle markers. The color (rendered with a bias of
0.5) is the result of the mapping of the physical quantity to the RGB color channels
(density field: ρ to R, color field: ~n to RGB, (partly) force field: ~fp +~f sep

v to RGB).

buffer, or a transform feedback stream. Writing to a 3D buffer is something highly
non-traditional.

3D Scattering

There exist two efficient ways to realize 3D scattering: Flat 3D textures and a ge-
ometry shader controlled layered output.

Flat 3D textures constitute a way to represent 3D data as a tiled 2D texture
[HBISL03]. According to the desired output slice, a vertex program selects the
appropriate region in the 2D texture storing the slice. This is a simple map-
ping that can be implemented directly on GPU. The rasterizer then produces
fragments at the right location. Sampling of this structure involves backward
mapping and 2D texture fetching.

Layered output using the OpenGL extension GL NV geometry program4 supports
direct selection of a specific 3D texture slice by setting a layer parameter in a
geometry program.

Flat 3D textures can also be modeled using a stack of 2D textures (see Fig. 2.2),
allowing larger texture sizes and MRT processing. The special arrangement of slices
makes it possible to update sequences of four slices within only one MRT fragment
program instance. Another convenient aspect is their backward compatibility to
older hardware (≥ GeForce 6). Additionally, due to their 2-dimensional represen-
tation, depth buffer based techniques, e.g. early-z culling, can be applied without
any difficulty: A prepended render pass selects the desired restriction to a set of
output fragments by masking the depth buffer. A second pass now processes only
the fragments passing through the early-z test, thus avoiding a potentially expen-
sive computation of irrelevant fragments. This early-z test is supported by NVidia
hardware, if the fragment program does not alter the depth value.
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Figure 2.2: A stack of 2D textures (left) interpreted as a single 3D output texture.
This is a powerful and highly backward-compatible structure supporting 3D scatter-
ing. Note the spatial relation of slices within the four textures. This makes it easy
to update four subsequent slices within a single program instance when using MRT
processing.

Compared to flat 3D textures, the layered output approach has the advantage
that a “true” 3D texture is available, i.e. it supports trilinear interpolated fetching
by nature.

Particle Markers

Independently of the scattering method chosen, it is obligatory to cut each 3D marker
particle into a set of slices. Thus, one marker is constituted of several 2D points with
a radius set to match the smoothing kernel size. An efficient way to render these
points is to generate so called OpenGL point sprites, each moved to the appropriate
location in the texture representation. Depending on the graphics hardware used,
decomposing the point sprite into several single one-texel points can be faster. (The
combination of point sprites and 32-bit floating point textures lead to problems on
older GeForce cards.) After rasterization, the fragment shader computes one part of
the sum in Eq. 1.18 and adds the result to the current location by using additive
blending.

2.1.2 Algorithmic Concept

The GPU-based solver involves several computational steps which are listed in the
following algorithm. The same specifiers as in Sec. 1.5.2 are used here. A particle i
is assigned a position pi and a velocity ~vi.

Algorithm 2.1 (GPU-based SPH solver)

1 for each particle i do
2 scatter into density field ρ // see Eq. 1.19
3 for each particle i do
4 scatter into color field ∇c and ∇2c using ρ // see Eq. 1.21
5 for each particle i do
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6 scatter into force field ~fp +~f sep
v using ~vi, ρ // Eq. 1.20 and Sec. 2.1.3

7 for each particle i at position pi do {
8 compute residual forces:
9 tension force ~fs(pi) using ∇c(pi) and ∇2c(pi) // see Eq. 1.22

10 viscosity force ~fpart
v (pi) using ~vi // see Sec. 2.1.3

11 combine all forces and compute a new velocity ~vi

12 perform collision detection/reaction with a heightfield object
13 }
14 for each particle i do {
15 move particle using a numerical integration scheme
16 // e.g. Euler or Verlet, see Sec. 1.2.2
17 }
18 go to 1

The fields, i.e. their texture representations, are chosen to supply the necessary
number of scalar components to hold a quantity smoothed by the kernel itself, its
gradient or Laplacian: The density texture contains ρ, the color texture contains
∇c and ∇2c, and the force texture contains ~fp +~f sep

v and the color ∇2cv using the
viscosity kernel Wviscosity.

Note that the viscosity force must be split up into two parts, ~f sep
v and ~fpart

v , which
are computed in different steps. This is discussed in the next section.

2.1.3 Separating the Viscosity Force

From an abstract point of view, smoothing a quantity A according to Eq. 1.18 using
the scattering method requires the sum to have separable summands. The color field
c and the pressure force ~fp are separable, since all necessary quantities are known or
can be sampled in the density field. The viscosity force ~fv, however, is only defined
at a particle position, since its velocities ~vi is involved.

In order to solve this problem, the viscosity force is partitioned up into a separable
part ~f sep

v which is computed by scattering, and a residual ~fpart
v (pi) computed during

velocity update:

~f sep
v = µ

∑
j

mj
~vj

ρj

∇2W (‖pi − pj‖ , h),

~fpart
v = −µ~vi · ∇2cv(pi),

where ∇2cv is a color field Laplacian constructed using the kernel Wviscosity (see
Eq. 1.23) and stored into the fourth component during force field scattering in
Alg. 2.1, line 6. This is necessary because the color field Laplacian used for the
computation of tension forces is built using the kernel Wpoly6, while the viscosity
should be computed using the kernel Wviscosity.

2.1.4 Surface Rendering

An interesting and convenient advantage of the accumulation into fields is the direct
support for volume rendering approaches: The inner region Ωfluid of the fluid can be
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Figure 2.3: A water ball modeled using strong tension forces and low gravity. This
example shows how the color field can be used for rendering a transparent iso-surface
with Phong lighting.

defined as the set of locations with high color value, i.e. larger than a threshold θ
defining the fluid’s iso-surface:

Ωfluid =
{
x ∈ R3 | c(x) ≥ θ

}
Moreover, a volume renderer can interpret the color field c as normal information.

The only problem here is that gradients vanish near particle centers. Thus, the iso-
surface threshold θ must be chosen so that no zero-normals are sampled. An example
how the output looks like is given in Fig. 2.3.

2.1.5 Boundary Treatment

In the presented system, the bounding object (e.g. a cup or a glass) is modeled
using a heightfield given as a height+normal representation, i.e. H : R2 → R and
n̂ : R2 → R3. The collision between a fluid particle and the boundary is detected by
comparing the height and the current particle position pi. When a particle breaks
through the heightfield, a collision reaction is performed by projecting the particle’s
velocity ~vi to a new velocity ~v′i touching the object:

~v′i =

{
~vi −

(
n̂(pxy

i ) · ~vi

)
· n̂(pxy

i ) if pz
i ≤ H(pxy

i ) + ε

~vi otherwise

The offset ε must be chosen to avoid situations where particles traverse the object’s
boundary. The texture can be stored as a 2-dimensional texture with four compo-
nents. Sampling should be done using linear interpolated texture fetch.

2.1.6 Evaluation

The simulator has been tested on a PC system comprising an NVidia GeForce 9600
GT graphics card with 512 MB of memory. In our implementation, 32-bit floating
point textures are used for the particle information and for the fields. The latter
depend on blending and linear interpolation when writing and reading the field
information.

The runtime of the SPH solver has been evaluated with the example shown in
Fig. 2.4. The results are plotted in Fig. 2.5. In the example, the emitter configu-
ration is chosen to produce realistic results: a starting volume of size r3, which is
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a b c d

Figure 2.4: Water falling into a cup. Part a to c: A fluid volume consisting of 1000
particles. Part d: The initial fluid volume has been emitted four times, resulting in
4000 particles.
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Figure 2.5: Smoothed quantity accumulation: the performance for a fluid of varying
granularity. The starting volume is emitted within the same bounding box (compare
with Fig. 2.4). Thus, the kernel radius is chosen to match the initial rest state in
this box.

instantiated four times during the test, falls into a cup. The cup walls are defined by
a heightfield used for collision detection and reaction, as described in Sec. 2.1.5. The
number of particles n has been increased without altering the emitter configuration.
This implies a higher particle density and thus a smaller smoothing kernel radius
h = r/ 3

√
n. In the following, the term granularity is used to describe how dense

the particles represent the medium (high granularity means a small kernel radius).
An interesting aspect that can be observed in the diagram is that higher granularity
does not necessarily imply a lower performance. On the contrary: The red line, which
shows the frame rate scaled to a constant number of 16,000 particles, reveals that
the per-particle performance is increasing. This is due to the fact that the size of
point markers rendered into the fields is the main bottleneck of the approach. Thus,
smaller particle radii may result in better performance despite the higher number
of particles. On the other hand, note that the resolution of the grid must be high
enough to capture smoothed quantities during the simulation. The example shown
in Fig. 2.4, i.e. using a particle radius of 1/18 of one field dimension, works well with
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a 643 grid. Changing the granularity to 1/28 causes instabilities at this resolution,
thus an increase to 963 is necessary. Accordingly, higher granularities require even
higher resolutions. This high demand on grid resolution together with the numerical
problems resulting from the grid discretization is the main problem of the approach.

2.2 Particle Index Accumulation

The approach proposed in Sec. 2.1 suffers from numerical problems due to the dis-
cretization of smoothed quantities. In order to avoid this problem, Harada et al.
have ameliorated the approach by accumulating particle indices instead of physical
attributes in the grid [HKK07b]. This provides a significant improvement in both
efficiency and accuracy while being based on a similar idea, i.e. the idea of coupling
particles by use of a grid structure. Consequently, Harada et al.’s approach (which we
call particle index accumulation) is presented in the following. Our implementation
of the approach is evaluated as well.

2.2.1 An Explicit Solution to the n-nearest Neighbors Problem

Provided that the fluid to be simulated is incompressible, the number of particles
within a fixed region never exceeds a constant limit. Accordingly, Harada et al. ar-
gue that in a grid cell of size h3, where h is the SPH kernel radius, at most four
particles can be arranged. Consequently, a grid covering the volume of interest with
an equidistant cell-spacing of h is sufficient for storing the complete particle infor-
mation, supposed that one cell can hold four particles. The complete neighborhood
of one particle can then be sampled by checking all surrounding grid cells, which
corresponds to a 3× 3× 3 sampling kernel. This furnishes all other particles within
the influence radius, thus all particles contributing to the sum in Eq. 1.18. This
concept is illustrated in Fig. 2.6.
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initial state index texture neighborhood

Figure 2.6: The index accumulation approach (in 2D). a) Particles are enclosed
in grid cells. b) The particle indices are stored into an index texture. The red box
corresponds to the sample kernel around particle 3. c) neighbors have been found
around particle 3 within the sampling kernel.

The remaining challenge now consists in designing a GPU routine that scat-
ters particle indices into a texture with four components. The original method by
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a b c d

Figure 2.7: Water falling into a cup. A similar scenario like in Fig. 2.4, this time
using the index accumulation approach. Part a to c: A fluid volume consisting of
1000 particles. Part d: 4000 particles. After having poured four fluid instances, the
fluid medium rapidly stabilizes towards a rest state.
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Figure 2.8: Index accumulation: the performance for a fluid of varying granularity
(compare with Fig. 2.7).

Harada et al. use depth test in combination with a stencil test in order to write
each particle index into the appropriate texel component. In summary, scattering
is apportioned to four render passes accumulating indices in increasing index order.
Each render pass steps from one component to the other by restricting rendering
using an OpenGL color mask.

2.2.2 Evaluation

Our implementation of the index accumulation approach has been evaluated using
the same example as for the smoothed quantity accumulation presented in Sec. 2.1.
The result can be seen in Fig. 2.7. It is obvious that being independent of a grid
discretization of the physical attributes yields a significantly better numerical sta-
bility. In particular, one has an exact minimum bound for the required grid size,
as one grid cell dimension is set to be equal to the particle radius. This grid size is
much smaller than the grid size necessary to capture forces in Sec. 2.1. Visually, two
effects prove the superiority of index accumulation compared to smoothed quantity
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accumulation: The particles are calmer and reach a more compact rest state (com-
pare Fig. 2.7 and Fig. 2.4), and the fluid’s surface is smoother. Especially when
choosing a high granularity, the index accumulation is clearly in advantage, because
small particle radii are difficult to capture when accumulating smoothed quantities.

The runtime behaviour has been evaluated using the example shown in Fig. 2.7,
which is identical to the one evaluated in the previous section. Accordingly, the
frame rate has been determined for different granularities (see Fig. 2.8). Analyzing
the diagram reveals that the performance is more or less linear w.r.t. the number
of particles: The red line shows the performance, scaled to a constant number of
particles. Its nearly constant behaviour shows that the grid size is not an essential
bottle neck. The initial rise can be explained by the effect that for frame rates
larger than 200 FPS, other factors like the framework application may influence the
performance.

This chapter has proposed a GPU-based fluid approach combining a particle set and
a grid structure. This kind of hybrid grid-particle processing has been used to solve
the problem of accumulating particle neighborhoods. We will see in the next chapter,
that a similar idea can be used to realize a GPU-based surface tracing based on the
particle level set method.
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Figure 2.9: A cup-of-water simulation using the hybrid grid-particle technique for
coupling particles. The improvement proposed by Harada et al. [HKK07b], storing
indices instead of forces in the grid, is used here.

Figure 2.10: A fluid in a branching canal using the same implementation as in
Fig. 2.9.





Chapter 3

Real-time Particle Level Sets

(. . .) most of the world is of infinitely great
roughness and complexity.

Benôıt Mandelbrot about shapes in nature

The focus of this chapter lies on a parallel surface tracing method suited for
the GPU, and thus capable of real-time. This includes a modification of the
PLS algorithm in order to make best benefit of the capabilities of graph-
ics hardware. In order to accomplish this, the idea presented in Chap. 2 is
evolved to an innovative way of exchanging information between the correc-
tive particles and the level set grid representation. As the PLS method is a
central aspect, it is first motivated in Sec. 3.1 by a discussion of the general
problem of representing a free surface using a grid structure or a particle
set. The level set reinitialization pass, which is one of the computationally
most expensive tasks within the PLS algorithm, is then discussed in Sec. 3.2.
Afterwards, the real-time PLS reformulation is presented and evaluated in
Sec. 3.3. In the end of the chapter, Sec. 3.4 provides some supplementary
examples.

The surface tracing method has been published in [CKSW08], the reinitialization
strategy, i.e. the hierarchical DT algorithm, has been published in [CK07].

In practice, the level set approach suffers from a numerical diffusion due to the
advection on a grid of finite resolution. Despite frequent reinitialization of the level

set function, inaccuracies typically result in a volume loss after a certain number
of advections. Fig. 3.1 demonstrates how this effect becomes noticeable even for a
very basic example where an object representing a notched sphere is moved in a
rotational flow. The first row shows the result of a semi-Lagrange advection (see
Sec. 1.3.1) of an initially sound level set representation. While the interface is still
recognizable after the last advection step, one can yet observe a smearing and a
considerable volume loss during advection. The second row also uses semi-Lagrange
advection, however involving a reinitialization pass after each step. This reduces
the volume loss a bit, and it ensures that a proper level set representation is kept.
However, the problem is still evident. The third row shows the results of the PLS
method, which aims for annihilating the volume loss by embedding particles into the
grid-based interface representation. One can observe that the initial shape is well
preserved throughout the advection.

45
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a)

c)

b)

initial π/2 π 3π/2 5π/2 3π 7π/2 4π2π

Figure 3.1: Comparison of a) level set advection without reinitialization, b) with
initialization and c) using the particle level set method. One slice of a 643 grid is
shown. The PLS advection uses 262,144 particles. Negative values are green, positive
values are blue. In order to compare the volume loss, the contour of the next row is
overlaid in red in the last sub-image.

3.1 Grid Advection vs. Particle Motion

The PLS method (see Sec. 1.3.4), which was introduced by Enright et al. [EFFM02,
EMF02, ELF05], is highly motivated by the advantages of both purely grid-based
and purely particle-based approaches: Grid-based semi-Lagrange advection is un-
conditionally stable, i.e. no artifacts occur, even when the flow causes topological
changes, and independently of the time interval between two steps. Particle-based
methods on the other side benefit from easy and high order integration schemes (see
Sec. 1.2.2) allowing a very accurate tracing. Particles are ideal for capturing detailed
features and transporting them within arbitrary flows. The idea of PLS is to use a
dual grid- and particle-based representation of the interface while interchanging in-
formation from one representation to the other. This leads to a combination of both
advantages.

As a matter of fact, PLS can also be motivated the other way around, by analyzing
the problems related to purely grid-based and purely particle-based approaches: The
first suffers from numerical diffusion, as we have seen earlier. The second, particle-
based representations, suffer from the fact that the particle set tends to produce
sparse or overpopulated areas in some cases. This problem manifests itself when the
interface forms thin structures for which the particle density is too low, or when
bunches of particles are accumulated in specific regions. In summary, PLS aims to
prevent diffusion while preserving an even particle representation of the surface.

It is clear that PLS can highly benefit from being translated to a graphics hardware
accelerated algorithm. The PLS algorithm is full of computationally expensive steps:
Advection of the grid, numerical integration of particle velocities, level set correction,
particle reseeding and particularly the level set reinitialization are all tasks that
cannot be executed in real-time in a sequential CPU-based way for reasonably large
data structures. However, each of these tasks require a careful design in order to be
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efficiently ported to the GPU. One of the most challenging of these tasks, the level
set reinitialization, is discussed in the next section.

3.2 Fast Hierarchical Distance Transforms

The PLS method proposed in this chapter is driven by the challenge of performing
all algorithm steps using the GPU. One of the most difficult steps is the reinitializa-
tion of the level set function, which can be interpreted as the task of constructing
a grid-based distance field w.r.t. to the interface. Distance field construction is a
well-studied problem (see Sec. 1.3.3). However, known algorithms, even though they
may be suited for the GPU, are not fast enough to reinitialize larger grids (> 1283)
in real-time. In this section, an hierarchical propagation-based algorithm called FHA
(fast hierarchical algorithm) is presented. It gives an alternative to the jump flooding
algorithm (JFA) by Rong and Tan [RT06], being asymptotically faster while pro-
ducing satisfactory approximate results. The algorithm is largely independent of the
PLS context it will be later used for, thus it is presented as a separate component
in this section. The FHA has been published in [CK07].

The fast hierarchical algorithm computes a distance transform on 3D grid input
models, and it uses a propagation technique, both on a single hierarchy level and
between the levels. Using the hierarchical approach, the effort to compute the DT
is significantly reduced. It is well suited for applications that mainly rely on exact
distance values close to the boundary. The technique is purely GPU-based, i.e. all
hierarchical operations are performed on the GPU. A direct comparison with the
JFA shows that the fast hierarchical algorithm is faster and provides better scaling
in speed and precision, while JFA should be preferred in applications that require a
more precise DT.

3.2.1 Prior Work

There exist previous methods for constructing DTs using the GPU. As discussed
in Sec. 1.3.3, a DT can be derived from a Voronoi diagram directly. Consequently,
GPU-based algorithm capable of computing a Voronoi diagram, e.g. the polygon
rasterization approach by Hoff et al. [HKL∗99], can be used for DTs. Improvements
of this approach have been presented: Sigg et al. [SPG03] propose the construction
of a signed 3-dimensional DT by scan-converting polyhedra. Sud et al. [SGGM06]
present another GPU-based slice-wise construction of a 3D distance field including
a specialized culling technique. However, these techniques are typically designed for
mesh-defined objects, while we are interested to construct a DT starting from a
grid-based initialization.

Strzodka and Telea [ST04] present a GPU-based DT framework for 2D grids using
an arc length parametrization for the boundary. However, it generally does not carry
over to the 3D case. In the special context of PLS, reinitialization (which can be
seen as a distance field construction) is typically performed using the fast marching
approach [Set96]. Unfortunately, no feasible way of translating this algorithm to the
GPU is known. The jump flooding algorithm, which is described below, constitutes
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a suitable and efficient general algorithm for the construction of DTs. With the fast
hierarchical algorithm presented later in this section, the intention is to provide an
even faster, yet approximate alternative to JFA.

The Jump Flooding Algorithm

The JFA, introduced by Rong and Tan in 2006 [RT06], updates the whole grid using
distance propagation steps (see Sec. 1.3.3) while varying the kernel N in order to
propagate references across longer distances. In the k-th step, N maps a location
x = (x, y, z) to a 3× 3× 3 subgrid defined as:

N (x) =
{

(x + i1, y + i2, z + i3) | i1, i2, i3 ∈ {−k, 0, k}
}

(3.1)

For a grid with resolution n3, the JFA can be summarized as follows:

Algorithm 3.1 (jump flooding algorithm)

1 initialize the grid according to Eq. 1.12
2 for k ∈ {n/2, n/4, . . . , 1} do
3 reference/distance propagation for all cells using Eq. 3.1

The JFA makes log(n) loops over the whole grid. Rong and Tan prove various
properties of the JFA [RT06], and they present extensions to the algorithm in order
to improve the accuracy. The two JFA variants are JFA+j, meaning that j additional
propagation steps with step size 2j−1, . . . , 1 are performed, and JFA2, where JFA is
applied twice.

3.2.2 Algorithmic Overview

FHA uses a hierarchy of levels, each having half the previous resolution (compare
with Fig. 3.2). Let us assume level 0 to be the grid of desired resolution, and being
initialized with the starting configuration of dt according to Eq. 1.12. The algorithm
now performs two iterations: a loop consisting of down-sampling steps called push-
downs, and one consisting of up-sampling steps called pull-ups. During the push-
down iteration, the grid resolution is reduced by factor 2 until level N is reached.
A pull-up propagates the information back to a higher level of twice the resolution.
Due to the staggered arrangement of the levels, a grid cell resulting from a push-
down from level k to k + 1 lies in-between eight neighbors of finer resolution (four
in the 2D case shown in Fig. 3.2). Similarly, a pull-up combines eight surrounding
neighbors of a coarser grid cell. Consequently, both push-down and pull-up can be
realized using a 2 × 2 × 2 filter kernel. A formal description of the push-down and
pull-up filters is provided in the next two paragraphs.

During the push-down iteration, the DT gets coarser and more imprecise. A full
reduction to a single cell is not meaningful, thus the number of levels is limited to
N < log(n), where n3 is the resolution of level 0. On the coarsest level N , a complete
DT is computed by using a propagation kernel until all cells are reached, or by using
JFA. Due to the low resolution, this is cheap compared to the rest of the algorithm.
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Figure 3.2: The fast hierarchical algorithm uses temporary, staggered levels of lower
resolution in order to reduce computational costs. The push-down and pull-up oper-
ations are illustrated in a 2D grid case.

During the pull-up iteration, the DT regains detail, as the information of both the
own level and a coarser level are combined. The fast hierarchical algorithm can be
summarized as follows:

Algorithm 3.2 (fast hierarchical DT algorithm)

1 initialize the grid according to Eq. 1.12
2 for level k = 0, . . . , N − 1 (push−down) do
3 for all cells on the coarse level k + 1 do
4 propagate DT from level k to level k + 1 using a 2× 2× 2 kernel
5 compute DT on coarsest level by repeating propagation steps or by using JFA
6 for level k = N − 1, . . . , 0 (pull−up) do
7 for all cells on the fine level k do
8 combine DT of level k + 1 with level k using a 2× 2× 2 kernel

FHA usually incorporates j additional steps on each level during pull-up, yielding
FHA+j, either using standard 3 × 3 × 3 propagation steps (see Eq. 1.13) or JFA
steps for k = 2j−1, . . . , 2, 1. Clearly, FHA is an approximate algorithm. The left side
of Fig. 3.3 shows a situation where an error occurs.

Push-down

The push-down step propagates the DT information from a level k to the coarser level
k+1, i.e. from k dt to k+1 dt. However, the starting level contains only the boundary
of the object for which a distance transform is constructed. Thus, figuratively, the
push-down step transports the narrow band of information to a lower resolution.
More formally, this is done by supersampling a neighborhood M8 of 2 × 2 × 2
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∆
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Figure 3.3: Left: A situation where an error is produced, because dtδ(y) is closer
to y than p, while p is closer to x than dtδ(y). Right: Push-down of neighbors to
a sample in the coarse grid k+1 dt. The closest reference point w.r.t. level k triggers
the push-down to level k + 1.

surrounding cells in the higher resolution. The operation is very similar to traditional
distance propagation. It is based on a comparison of reference points sampled within
M8. For x in level k + 1, we set

k+1 dtd(x) = sign
(

k dtd(x)
)
· min
y∈M8(x)

{∥∥∥k dtδ(y)− x
∥∥∥}

(3.2)

where the sign is sampled by choosing the nearest neighbor, and the reference com-
ponent k+1 dtδ(x) is updated using the selected y. Fig. 3.3, right side, shows an
example of one single push-down operation. Note that cells initialized with ±∞
are properly handled in the next level, i.e. the reference is set for x if at least one
y ∈M8(x) has a valid reference.

Pull-up

For now, we assume that the correct distance transform N dt for the coarse level is
given. This is clearly the case for the coarsest level, because for this level, we calculate
N dt explicitly (see Alg. 3.2). The pull-up pass propagates the DT information from
a level k + 1 to the finer level k. Formally, the pull-up equation is the same as
the one for push-down (Eq. 3.2) when substituting k for k + 1 and vice versa. The
reference point for a cell x in level k is determined by sampling and comparing eight
surrounding samples in level k + 1. Note that the distance information near to the
object boundary coming from push-down is maintained during this step, i.e. only
cells which contain ±∞ as distance are updated. This can be done because each
level is stored separately.

As mentioned before, the result after a pull-up pass is only a rough approximation
of k dt. To correct the error, two strategies are followed: First, FHA+j performs j
additional propagation steps on each level. Second, the cells surrounding the refer-
ence point p = k dtδ(x) resulting from the pull-up step in the same level are used
for a refinement, yielding k dt′:

k dt′d(x) = sign
(

k dtd(x)
)
· min
y∈M8(p)

{
∥∥∥k dtδ(y)− x

∥∥∥},
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Figure 3.4: Two examples visualized by rendering a single slice and by volume-
rendering the iso-surface {x | dtd(x) = 0}. Left: a simple geometric object repre-
senting a notched sphere (transparent surface). Right: the Stanford bunny. The DTs
were computed using FHA+2 on a 1283 grid, performing push-down until 83 reso-
lution. Colors: negative distances are green, positive distances blue. Runtime: ca. 28
FPS for both.

where the reference component k dt′δ(x) is updated using the selected y.
Ideally, one would like a pull-up that generates k dt from k+1 dt without any

error, using a minimal number of propagation steps j on each level. Unfortunately,
the optimal j is hard to determine, even though a constant error bound for k dt can
be given for the general situation.

3.2.3 Implementation

All steps of FHA can be implemented using fragment programs writing values to
a floating point 3D texture. As in principle, no scattering is necessary, there is
no disadvantage in fetching the DT information from a 4-component 3D texture.
However, the intention is to use the DT in the context of PLS, where grid-particle
interchange is involved. Consequently, we have chosen to represent the 3D grids as
flat 3D textures (see Sec. 2.1.1). These support arbitrary 3D scattering even on older
hardware.

3.2.4 Evaluation

FHA has been tested using implicit and predefined geometries stored as texture
data. The graphics hardware used for the tests is a GeForce 8800 GTS. Fig. 3.4
shows the computed distance field for two examples.

Since FHA is proposed as a direct alternative to JFA, both algorithms have been
evaluated and compared directly w.r.t. to runtime and accuracy. As intended, FHA
is significantly faster than JFA, due to the reduction of the resolution within the
level hierarchy. This performance advantage can be seen in Fig. 3.5. Note that jump
flooding can never be faster than JFA+0, because JFA+0 performs the minimum
of additional steps possible. Thus, the higher runtime is a true advantage of FHA –
however, it is also clear that FHA produces more errors than JFA. This is discussed
below. A runtime analysis of the fragment programs involved shows that the push-
down and the pull-up are texture-fetch-bounded, while the distance propagation is
computation-bounded.
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Figure 3.5: The runtime in frames per second for JFA and FHA w.r.t. the number
of additional propagation steps (object: notched sphere).

In order to get an impression of the accuracy, the following quality measures are
used: the relative number of wrong cells ecell, the average distance error eavg w.r.t
the number of wrong cells, and the maximal distance error emax:

ecell =
# of wrong cells

# cells
, eavg =

∑
‖dtd(x)− dt∗d(x)‖
# wrong cells

,

emax = max{‖dtd(x)− dt∗d(x)‖},

where dt∗ is the correct DT, and the sum and the max symbol take all grid cells
x into account. A brute force algorithm checking all pairs of cells, i.e. a quadratic
approach, has been implemented in order to compute the exact DT. The quality
tests have been performed on a 323, a 643 and a 1283 grid using the notched sphere
example shown in Fig. 3.4. The results are listed in Tab. 3.1.

When taking a large number of seeds (i.e. initialized cells) as starting situation,
the number of wrong pixels (ecell) as well as the maximum error is significantly larger
for FHA compared to JFA. The quality of the error, however, is ambiguous. Taking
the average error eavg into account, it appears that it is, except for FHA+0, in the
range of 2− 4% of a cell’s size. When taking a sparse geometry as input featuring a
few hundreds of seeds, then the faster FHA+2 provides better results than JFA(+0).
For this test, a simple tetrahedron mesh which is subdivided repeatedly was used.

Finally, replacing the j additional propagations for FHA using a 3 × 3 × 3 local
neighborhood with the last j JFA steps yields a slight improvement in accuracy, i.e.
ecell is reduced up to 1% for the 643 grid.

In summary, FHA is faster (123 FPS for FHA vs. 11 FPS for JFA on a 1283 grid)
but less accurate than JFA for a large number of seeds. For a small number of seeds,
the accuracy of FHA+2 is comparable to JFA. Depending on the application, the
resulting errors can be acceptable and the performance advantage of FHA is possibly
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Table 3.1: Error evaluation comparing FHA and JFA. The relative number ecell is
given as a percentage. Note that for FHA+j, the number of additional steps j must
be in {0, . . . , log(n)− 1} for a grid of resolution n.

sphere, 643, 32457 seeds
FHA +0 +1 +2 +3 +4 +8 +16

eavg 0.083 0.047 0.04 0.035 0.028 0.021 0.022
emax 1.41 0.375 0.266 0.211 0.156 0.125 0.109

ecell % 35.312 7.607 5.019 3.686 2.618 1.314 0.529

JFA +0 +1 +2 +3 +4 − −
eavg 0.032 0.022 0.022 0.022 0.023 − −
emax 0.181 0.059 0.059 0.059 0.059 − −

ecell % 0.309 0.102 0.097 0.097 0.119 − −

sphere, 323, 32457 seeds
FHA +0 +1 +2 +3 +4 +8 +16

eavg 0.094 0.048 0.028 0.027 0.026 0.033 0.047
emax 0.807 0.381 0.168 0.137 0.137 0.115 0.115

ecell % 29.569 4.852 2.637 1.910 1.511 0.369 0.201

JFA +0 +1 +2 +3 − − −
eavg 0.039 0.033 0.037 0.037 − − −
emax 0.125 0.041 0.045 0.045 − − −

ecell % 0.128 0.012 0.024 0.024 − − −

subdivided tetrahedron, 643

number of seeds
FHA+2 4 10 34 130

eavg − − − −
emax 0 0 0 0

ecell % 0 0 0 0
number of seeds

JFA(+0) 4 10 34 130
eavg − − 0.262 0.107
emax 0 0 0.375 0.191

ecell % 0 0 0 0.01

more important in order to achieve an overall system with interactive frame rates.
An example is given by the level set method. In particular, the hybrid particle level
set technique can benefit from the reference part of the DT for particle reseeding
without requiring full accuracy.
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3.3 GPU-based Particle Level Sets

In the previous section, a solution for computing distance transform has been pro-
posed, which is suited for a fast level set reinitialization in the PLS algorithm
(Alg. 1.1). This section focuses on translating the remaining steps to the GPU.
This includes important aspects like the level set correction and particle reseeding.
In addition, it should be stated that all steps are designed to work together as effi-
ciently as possible. Consequently, the contribution of this section is a geared system
containing all ingredients to implement an efficient GPU-based PLS framework. The
new method achieves both, higher performance and superior quality in terms of vol-
ume preservation, compared to the public CPU-based reference implementation by
Mokberi and Faloutsos [MF06]. The method has been published in the context of
flow volumes [CKSW08].

3.3.1 Prior Work

While, to my knowledge, no GPU-based PLS method has been presented before
the one presented here, particle systems and grid-based numerical schemes on their
own have been efficiently mapped to GPUs. For GPU-based particle systems, see
Sec. 1.2.3. A first GPU-based implementation of the level set equation was presented
by Rumpf and Strzodka [RS01]. It uses intensity and gradient based forces to drive
a segmentation of 2D images. Lefohn et al. additionally incorporated a curvature
term and an adaptive memory model for the narrow band technique and thus could
run efficient segmentation in 3D [LKHW04]. In these applications, the numerical
diffusion of the level set advection is not a problem. On the contrary, a smooth
boundary of the segmented 3D region is desirable and the curvature term is used
exactly for this purpose. An iterative solution to the level set equation was presented
by Griesser et al. [GRNG05].

3.3.2 Data Structures

The fast hierarchical algorithm (see Sec. 3.2), which is used for level set reinitial-
ization, produces a DT. On the one hand, the use of a DT is motivated by the
propagation-based reinitialization itself, on the other hand, the references stored in
the DT can be used for a simple yet efficient particle reseeding (which will be dis-
cussed in Sec. 3.3.4 and Sec. 3.3.5) with subvoxel accurate radii. This advantage
compensates the higher memory consumption for storing the reference data.

The DT dt(x) = (dtd(x),dtδ(x)) is stored in a grid. For each cell x, the signed
distance dtd(x) = φ(x) is equal to its level set value, and dtδ(x) is a reference to
the nearest interface location. Note that in some stages of the algorithm, e.g. after
the level set advection, the grid may not represent a precise or complete distance
transform. Internally, dt is represented as a 4-component flat 3D floating point
texture. Frame buffer objects are used for render-to-texture functionality. Double-
buffering separates the input from the output. The velocity field defining the flow for
level set advection can be given in any form that allows arbitrary sampling, e.g. in
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Figure 3.6: The data flow in the GPU-based PLS framework. The use of double
buffering is marked by cyclic, blue arrows. The numbers indicate the according steps
in Alg. 1.1. (Step 7 is omitted.)

a 3D texture. The particle system is held in a 2D floating point texture (preferably
in 32-bit format), storing the position xp and the radius rp of each particle p.

The overall structure of the original PLS algorithm (Alg. 1.1) is maintained in the
GPU-based framework. A diagram of the data flow using the GPU-based structures
and containing the steps of the PLS algorithm is given in Fig. 3.6. In- and outgoing
edges represent data input and output, respectively. The error correction (step 5)
involves two passes and is split into two separate entities 5a and 5b. The repeated
particle correction (step 7) is omitted in order to improve performance with negligible
loss of overall accuracy.

3.3.3 Level Set Reinitialization

This section briefly discusses how FHA is used to reinitialize the level set (Alg. 1.1,
steps 2 and 6). Before reinitialization, dt contains only the interface, which is given
by means of the grid-based classification (interior/exterior) or by a gray-level func-
tion (e.g. the advected dtd, defining the interface on a subvoxel level). In particular,
the reference component dtδ contains no valuable information.

Now, the interface needs to be identified, i.e. references are assigned to grid cells in
direct proximity of the interface. Without this information, it would be impossible
to propagate the interface. Those cells are identified by searching adjacent cells
x and y with a different sign in the distance: sign(dtd(x)) 6= sign(dtd(y)). This
check is performed for each cell x in a fragment program, where y is a cell in a
6-neighborhood of x containing all adjacent non-diagonal neighbors. If one cell y is
found, a new reference dtδ(x) is computed by moving along the local gradient n̂ at
position x:

dtδ(x) ←− x− dtd(x) · n̂
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The gradient is computed by central differences in the 6-neighborhood of x within
the old field dtd. The new level set value dtd(x) is set to the distance between x
and dtδ(x), multiplied by the sign previously stored at position x. The subvoxel
references in dtδ(x) can now be used for the reinitialization of dt(x) using FHA.

3.3.4 Particle Reseeding

For an effective PLS correction, all particles should be located near the interface.
This, however, is difficult to achieve in parallel on the GPU, since one cannot easily
iterate over the interface proximity and place particles accordingly. Moving the par-
ticles to the interface is not only necessary during the initialization in the beginning,
but also occasionally during the execution of the algorithm, because more and more
particles will drift away from the interface with time evolving. Frequent particle
reseeding has the negative side effect that inaccuracies in the grid are constantly
transferred into the new set of particles, thus annihilating the advantage gained by
the particle correction. According to Enright et al. [EMF02], a reasonable trade-off
is to reseed the particles every 20 time steps on average, e.g. to reposition 5 percent
of all particles in each iteration.

Due to the level set representation as a DT, the nearest interface location is known
at any volume position. First, the initial location xp for each particle p is chosen
randomly within the volume of interest, i.e. [0, 1]3. Afterward, the particle is pushed
towards the interface by following the reference and adding a random offset:

xp ←− dtδ(xp) + ε · v̂rand,

where v̂rand is a normalized random vector pointing in an arbitrary direction and
ε is a predefined small constant scalar value. This way, inner and outer particles
surrounding the interface are produced. In our implementation, conforming with
[ELF05], ε is chosen such as to place particles around the interface within a band
that is a few grid cells wide (e.g. three cells). The random vector can be fetched
from a texture with precomputed random values.

Pushing the particles towards the interface according to the above scheme can
lead to sparsely populated regions, especially in areas with high curvature. In the
experiments, this effect could always be sufficiently reduced by using a higher number
of particles, as the surface represented by the level set is bounded by the number of
discrete grid cells.

3.3.5 Setting a Particle’s Radius

During reseeding, the radius rp of each particle p must be determined. Two methods
for radius sampling have been tested. The first one samples the distance stored
in dtd(xp) using trilinear interpolation. The other approach looks for the nearest
reference in a neighborhoodM8 consisting of 8 grid cells around xp:

rp ←− sp · min
x′∈M8(xp)

{
∥∥dtδ(x′)− xp

∥∥}, (3.3)
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Figure 3.7: Comparing particle radii using trilinear distance interpolation and
neighborhood-sampling the nearest reference point. Left: A notched sphere (1a) is
rotated 8 times, with reseeding 5 percent of the particles in each step using interpo-
lated radii (1b) and nearest reference (1c). Middle and right: Two (2D) cases where
interpolation (2a and 2b) leads to a larger error than nearest reference (3a and 3b).

The sign sp of the particle is determined by the sign of dtd for the nearest grid cell.
Note that there is no obvious way to obtain the sign on a subvoxel level as it is the
case for the radius.

Fig. 3.7 (left) shows different results for both methods after eight rotations, each
involving 100 advection and reseeding steps. One can observe a much higher volume
loss when interpolating the distance, while the nearest reference (Eq. 3.3) leads to a
slightly more fluctuating surface. Note that during the test, the complete particle set
is reseeded 40 times. This configuration has been chosen purposely in order to show
an extreme situation revealing the difference between the reseeding strategies. It
should also be noted that with no particles at all, the volume completely disappears
after six rotations due to numerical diffusion.

In Fig. 3.7 (middle and right), the grid cells (red points) contain the length of the
normals (red lines) to the interface (blue). In Fig. 3.7 (2a, 2b), the distance at the
particle position (black point) is computed with a bilinear interpolation of the cell
distances. In case of a convex interface the resulting distance (green circle) is too
small, because distances corresponding to very different normals are averaged. In
Fig. 3.7 (3a, 3b), the nearest of the reference points is taken (yellow points). Here,
another error is committed, as the selected reference point is not exactly the closest
point on the interface to the particle (black point), but for highly convex interface
parts, this is more accurate than the interpolation. For (almost) flat interface parts
the interpolation is better because all normals point in (almost) the same direction.

In [ELF05], the radii of the particles are reset after level set reinitialization, while
Mokberi and Faloutsos [MF06] omit this step. The reason for this is similar to the
explanation why particle reseeding after each frame should be avoided: as particle
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a b c

Figure 3.8: Visualization of a level set correction step. a) The level set is clearly
affected by numerical diffusion after advection. b) Inner region: green and orange
(corrective) particles, outer region: blue and (corrective) magenta particles. c) The
corrected level set.

radii have to be reset with information stored in the level set, inaccuracies of the
level set are propagated into the particle model. Thus, it is reasonable to wait until
the next particle reseeding before the radii are updated. This approach is followed
in the GPU-based framework, too.

3.3.6 Level Set Advection and Particle Tracing

Level set advection (Alg. 1.1, step 3) is easily ported to the GPU due to its par-
allel nature. New advected level set values dtd are computed according to a semi-
Lagrangian scheme (see Sec. 1.3.1). For particle tracing (Alg. 1.1, step 4), the same
time step is used in a second order accurate Runge-Kutta integration (see Sec. 1.2.2).

As particle tracing is an operation on all particles, this is a good opportunity
for choosing the subset of particles that will correct the level set. Those particles
are marked by changing the sign of the first component of the position xp. As the
volume of interest is bounded by [0, 1]3, it is then easy to distinguish the position
and the marker bit. In contrast to the original PLS approach (Sec. 1.3.4), the level
set correction involves more particles: a particle contributes if its radius is greater
than its distance to the interface. Following this rule, fewer particles are necessary
in order to produce satisfactory results in the tested examples.

3.3.7 Level Set Correction

The level set correction (Alg. 1.1, step 5) combines the particle representation of the
interface with the grid-based level set (see Fig. 3.8 for an illustration). More precisely,
the particle information is transferred into the grid by locally updating the grid. In
the following, we use a technique which is very similar to the scattering approach
proposed in Chap. 2. Basically, the particles are rendering as point markers and
blended into the grid. First, we need a way to select particles marked as escaped, and,
based on this selection, to construct the intermediate level set functions φ+, φ−. In
order to reduce bandwidth requirements, this is done differently than in the original
formulation, postponing the combination with φ until the final update.

The key idea when constructing φ+ and φ− is to render a marker geometry at
each particle position in order to trigger a computation for the 8 grid cells around
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the particle. In order to process all particles, the particle texture containing xp and
rp is reinterpreted as a vertex buffer object. Then, all particles are sent through the
graphics pipeline and a vertex program detects whether a particle p has escaped by
checking the marker bit (see Sec. 3.3.6). If the particle has not escaped, it does not
contribute to the level set correction and it is discarded by moving it outside of the
volume.

After having evaluated different types of marker geometries, i.e. point sprites,
quads, and individual points, the conclusion was drawn that rendering four individ-
ual points into the two subsequent slices of the grid is the most effective variant in
this situation. The intermediate level sets φ+ and φ− given in Eq. 1.14 are stored in a
two-component grid φ± = (φ+,−φ−). The accumulation of particle contributions in
φ± uses min-max blending. Initially, φ± is set to (−∞,−∞) for all grid cells. Storing
−φ− instead of φ− allows a single pass update of φ± using maximum blending only.
A second pass rasterizes the complete level set, computing the corrected level set φ±

according to Eq. 1.15, including the postponed combination with the previous state
of φ. The new level set value is stored into the distance component of dt.

3.3.8 Evaluation

In the following, the GPU-based PLS framework is evaluated by presenting some
examples as well as performance and volume preservation results. The hardware used
for testing is a PC with an NVidia GeForce 8800 GTS graphics chip. For evaluation,
an object called Zalesak’s sphere was taken (Fig. 3.13, page 63), which is a 3D version
of the disk used in [ELF05]. The evaluation involves grids up to 1283 and max. 4
million particles due to limited GPU memory.

The GPU method was compared with the PLS library [MF06] using exactly the
same object, i.e. Zalesak’s sphere (see Fig. 3.13, page 63), and equal parameters
for both implementations. The test consists of 100 advection steps in a vortex flow
field to a total of 360◦. Fig. 3.9 shows the resulting frame rate and relative vol-
ume loss as function of the number of particles. Following prior work (e.g. En-
right et al. [ELF05]), the resulting volume loss is measured by counting the number
of interior grid cells of the object.

Tab. 3.2 lists the time consumption for all steps of the GPU-based algorithm
separately for Zalesak’s sphere. One can see that, depending on the resolution, the
level set reinitialization and correction are the most time-consuming steps of the
application. Due to the large size of the kernel used in the propagation method, the
level set reinitialization is texture-fetch-bound.

3.4 Examples

With the GPU-based PLS framework proposed in the previous section, it is possible
to accurately trace the surface of a freely deformable object in real-time. Some
academic examples on page 63 demonstrate this usage by applying a predefined flow
to different initial objects. Obviously, the approach is not restricted to analytical
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Figure 3.9: Comparison of traditional PLS (trad.) and the GPU-based method
(enh.) for Zalesak’s sphere (same logarithmic scale for both). 643 grid, no particle
reseeding.

Table 3.2: Runtime of the steps involved in the PLS algorithm. Object: Zalesak’s
sphere (see Fig. 3.13, page 63), 262,144 particles. In each frame, 5 percent of the
particles are reinitialized.

step grid / time (ms) grid / time (ms)
framework 643 / 1.3 1283 / 1.3

LS advection 643 / 0.15 1283 / 1.15
particle tracing 643 / 0.05 1283 / 0.25

LS reinitialization 643 / 5.83 1283 / 40.65
LS correction 643 / 10.8 1283 / 12.88

particle reseeding 643 / 0.65 1283 / 0.475

flow functions, in fact, the next chapter introduces PLS volumes as a geometric
visualization technique for visualizing complex flow data sets.

The following two applications of the GPU-based PLS framework show that user
interaction with the PLS object is possible, and that the DT representation of the
level set can be used to realize an easy collision detection and reaction.

3.4.1 Object Modeling

Interactive advection of a PLS-based object can be used as a 3D modeling tool
(see Fig. 3.10). The idea is to apply a locally bounded flow in the region illustrated
by the semi-transparent sphere. The user can move and resize the sphere in order
to change the region of interest. When pushing a button, the volume is advected
according to the so-called deformation painting approach by Funck et al. [vFTS06].
This defines a local velocity field, which is volume-preserving and which allows one
to smoothly shift a part of the volume without any discontinuities. The accuracy of
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Figure 3.10: The Stanford bunny is subject to a local deformation controlled by the
user. This deformation painting resembles clay modeling.

the PLS representation ensures that no volume is lost during modeling. Thanks to
this property, the modeling tool is comparable to the use of real clay.

3.4.2 Collision with Deformable Objects

The use of a DT as level set structure in the PLS framework is already justified by
its use in the PLS algorithm. However, the DT can be convenient beyond that: With
the aid of the shortest distance information, a simple yet powerful collision detection
can be realized by checking whether a collider is situated in the inner part of the
PLS object, i.e. dtd < 0. When a collision is detected, the reference point stored in
the second component dtδ of the DT can be used to realize a collision response, e.g.
by pushing the collider onto the reference point.

This idea has been applied to two test cases: the first comprises a combination of
a PLS object (the Stanford bunny) and a set of particles moving in the direction of
a user controlled gravitational point (see Fig. 3.11). The movable gravitation point,
which is not visible in the image, can be moved and altered in a similar way to the
one in Fig. 3.10.

Figure 3.11: The Stanford bunny in a deforming vortex while being sprinkled with
“snowflakes”. This is an example showing the combination of the PLS framework
and flow particles. 262,144 flow particles, PLS: 963 grid, 524,288 corrective particles.
Frame rate: 15.74 FPS (GeForce 9600 GT).
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Figure 3.12: The Stanford bunny, warped by a deforming vortex, stirs up water.
This example shows how the PLS can be combined with the fluid solver. 12,288
fluid particles, PLS: 963 grid, 524,288 corrective particles. Frame rate: 15.83 FPS
(GeForce 9600 GT). Green particles are those to which an acceleration is applied.

The second test case lets the PLS object collide with a fluid modeled with the ap-
proach of Chap. 2. A deforming vortex rotates the bunny, and during the advection,
the bunny’s body brushes the fluid particles aside (see Fig. 3.12). Using the DT as
collision criterion, the fluid can be easily pushed out of the body by using a similar
rule to the one proposed for heightfields in Sec. 2.1.5.

In this chapter, a modified and enhanced GPU-based PLS method for deformable
surfaces/objects has been presented. The method shows that deformable surface
tracing can be performed efficiently and accurately on the GPU. In the next chapter,
geometric flow visualization techniques will be presented, including a model for flow
volumes, which is based on the GPU-based PLS framework.
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Figure 3.13: 360◦ rotation of Zalesak’s sphere (100 advections): initial, LS, and
PLS. 524,288 particles, 1283 grid, 14.74 FPS.

Figure 3.14: The “Stanford bunny” in a deforming vortex flow: initial, after 40
advections, after backward advection. 131,072 particles, 963 grid, 40.47 FPS.

Figure 3.15: Some examples of PLS surfaces. From left to right: A sphere with
4 crossing tubular holes (semi-transparent rendering), a more complex constructed
geometry, the bunny in a locally contracting flow.





Chapter 4

Real-time Flow Visualization

Once again, his fingers attack the keyboard of the
smart-stupid, and in half a trice, there appear on
the screen an enormous number of lines, swinging
about on the screen

Douglas R. Hofstadter: Gödel, Escher, Bach

This chapter discusses the challenges of flow visualization in the context of
climate research. This motivates a set of techniques related to the GPU-
based particle techniques presented in the previous chapters. The overall
goal in this chapter is to provide the user of the visualization with interactive
and accurate methods for exploring and visually analyzing the structure of
complex flow data sets. The techniques involve a wide range of geometric
flow visualization primitives, specifically a purely point-based representation
(Sec. 4.1), flow lines (Sec. 4.2) and flow surfaces/volumes (Sec. 4.3). The
flow line generator is designed to support different line types and the use of
an adaptive time step. The flow volume approach is connected to the PLS
framework presented in Chap. 3 in the sense that it extends the applicability
to specific volumetric flow primitives. Finally, in Sec. 4.4, the use of virtual
reality is proposed as an improvement of the user interface.

The climate visualization system has been introduced in [CKL∗07], the time-adaptive
flow line generator has been published in [CPK09], and the flow volumes PLS method is
part of [CKSW08].

The problem of designing a practical flow visualization system reveals, besides
data processing or feature extraction tasks, two major challenges: interactivity

and accuracy. Interactivity stands for explorative capabilities and real-time control.
Accuracy is a prerequisite for every professional visualization in order to provide a
reliable base for analysis of a data set. Next to these fundamental requirements, a
flow visualization must cope with very different target applications. Typical appli-
cation areas include climate research, where general circulation models are used to
describe atmospheric and oceanic phenomena, as well as the aerospace, automotive,
and chemical industries. Depending on the application, the visualization must be
designed to reveal specific characteristics of the flow. For example, some cases might
be best visualized by a dense representation, others may benefit from a specific type
of geometric primitive. Another example could provide the user with precise values
or glyphs representing relevant attributes. This wide range of variations makes flow
visualization a research topic with lots of facets.

65



66 CHAPTER 4. REAL-TIME FLOW VISUALIZATION

In the following, we will concentrate on one specific domain: the visualization of cli-
mate phenomena. More precisely, three building blocks of geometric techniques will
be discussed: a purely point-based representation, flow lines and flow surfaces/vol-
umes. The concrete goal is to maximize efficiency and accuracy by providing algo-
rithms designed to run on parallel graphics hardware. All of the mentioned geometric
flow primitives can be processed in parallel. High accuracy is explicitly addressed by
the use of high order integration schemes, adaptive time-stepping and PLS surface
representations.

The GPU with its fast rendering and general purpose capabilities turns out to be
an ideal tool for visualization systems which are computationally very expensive. In
general, the algorithms presented in this chapter scale well to larger data sets. All
three geometric techniques support 4-dimensional, unsteady flow data sets which
are not necessarily restricted to the size of the GPU memory. While the evaluation
has been performed on different data sets and analytically defined flows, the main
example represents a tropical storm, i.e. a typhoon which is introduced in the next
section and will be referred as the typhoon data set in later sections.

4.1 Particle-based Climate Flow Visualization

The content of this section has been published in cooperation with the German
Computing Centre Hamburg [CKL∗07]. The task of visualizing complex climate
flow data sets is solved by proposing a fully GPU-based, interactive visualization
system employing points as geometric primitives.

It is the purpose of climate models to simulate the most important processes
of the Earth system, including the circulation of the atmosphere and the ocean.
The results, which typically are large unsteady – i.e. time dependent – data sets,
have to be analyzed if a person wants to interpret them or to deduce any prop-
erties or qualities. One powerful and important possibility is to visualize the flow.
Most commercial and free software packages available for climate data visualization
have limited support for the interactive exploration of large flow data sets. In fact,
some of them are designed to generate precalculated animations only. On the other
hand, recent developments in visualization techniques exploiting programmable fea-
tures of current GPUs have proven to be very powerful. This is especially true for
particle-based techniques, as we have seen in the preceding chapters (see for example
Sec. 1.2). However, there is still a functional gap between these particle-based flow
visualization techniques utilizing the GPU’s processing power and the requirements
in the context of geophysical flow, which is the focus in the following.

A complete system for the interactive visualization of unsteady climate flow data
is presented. The system comprises a proper data workflow from the simulation
back-end to the visual output. Beyond that, the system offers a sound support
for the interactive exploration customized to climate research. The applicability is
demonstrated on a typhoon data set which is introduced in the next part.
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Figure 4.1: A particle-based flow visualization of the typhoon (data set: courtesy
of MPI for Meteorology). The quadrilateral box surrounding the red point can be
moved, scaled and rotated in order to control particle emission. This helps the user
to explore specific regions of the flow volume. Frame rate: 80 FPS.

4.1.1 The Typhoon Data Set

For the simulation of long term changes of the Earth’s climate, coupled 3-dimensional
models of the most important compartments of the earth system are used: atmo-
sphere and ocean, including models for sea ice and land cover. These so-called general
circulation models simulate the dynamics of fluids. The partial differential equations
which describe these processes can be solved only approximately for discrete com-
putational grids. The resulting multivariate and unsteady data consist of numerous
scalar and vector quantities, which are stored for all grid cells in regular time inter-
vals. Due to limitations in storage capacity, it is only feasible to use storage intervals
(e.g. 6 hours) which are much larger than the computational time step (e.g. 20
minutes) used for the simulation.

The chosen data is a subset of the results of a complex simulation based on
the global atmospheric general circulation model ECHAM5 [RBB∗03] in so-called
T213 resolution, which corresponds to a horizontal grid spacing of 0.5625 degrees
or approximately 60 km near the equator. For the visualization, the originally 31
vertical hybrid model levels have been interpolated onto 39 rectilinear height levels.
A time period and region is selected where a strong tropical storm, a typhoon, occurs
in the simulation. The resulting subset of the original data is 106×53×39 grid cells
and 32 time records large.

Internally, the data set is stored as a stack of 3D textures containing the 32 time
records. As a result of the simulation process, the slices have a non-uniform spacing
in the vertical direction. This means that the distance between two slices varies along
the upper direction. A solution for this specific problem is given in Sec. 4.1.5.
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4.1.2 Requirements and Motivation

The visualization of flow data in the context of climate makes high demands on the
techniques and system specifics. The overview given by Hibbard et al. [HBSB02]
argues that visualization has a high potential to facilitate data exploration, and a
set of desired functions is formulated. Many of these requirements are related to
interfaces and usability. The following list of aspects concerning the data structures
and the algorithms used for the visualization has been deduced. These aspects also
form the motivation for the GPU-based system. The respective solutions proposed
are thus stated for each of the requirements.

Data Sets: In general, the output of the simulation consists of large unsteady flow
data. The proposed technique is designed to asynchronously transfer the data,
so that data sets exceeding the size of GPU memory are supported. An eval-
uation of this functionality will be given later in Sec. 4.2 for the flow lines
approach.

Grids: Ideally, the visualization system should read the data in the format given
by the simulator without any conversion. For example, the input grid could be
curvilinear in one direction and non-uniformly rectilinear in another one. How-
ever, for real-time applications, fast data access is decisive. In the proposed
system, a special case of non-uniformity is explicitly addressed. Curvilinear
grids are supported by the approach in principle, i.e. in cases where the curvi-
linearity can be described by a mapping which can be evaluated analytically.

Data Formats: Clearly, a different data storage might be wise for the visualiza-
tion. This affects the grid type, the units, the resolution and the file format.
The GPU-based system does not introduce any further constraint on the data
management. Thus, the integration of existing tools for data handling suffices
to guarantee a proper data handling.

Flow Primitives: Many systems use stationary arrows for the visualization of vec-
tor quantities, i.e. wind or ocean currents. This is convenient and reasonable,
because the arrows can be replaced with glyphs coding additional information
like temperature, humidity etc. However, this kind of glyphs fails to visual-
ize the transport within unsteady flow fields, which is the focus application
of this chapter. Particle trajectories close this gap by visualizing the trans-
port explicitly. First, a purely particle-based approach is introduced, later in
this chapter the method is extended to more complex primitives, i.e. lines and
surfaces/volumes.

Geographical Mapping and Visual Effects: A proper geographical mapping,
in combination with visual effects like shadows and lighting effects signifi-
cantly improves the perception of the flow primitives and thus of the overall
visualization. In this framework, a heightfield represents the geographical area,
and the renderer is capable of lighting and shadowing.

Interactivity: Interactive visualization is especially important when a highly dy-
namic scenario, for example a storm event, is investigated. This presumes
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real-time rendering, but it also makes demands to the usability: for example,
the viewer may want to isolate specific regions of interest during visualization.
This task is solved by placing a particle emitter into the volume, for which the
viewer can vary the size, location and proportions.

Accuracy: In order to assess the quality of a climate model, simulations of the
past and the current climate are made and compared with observations. This
is only possible if some level of accuracy is guaranteed. In the case of particle
tracing, this implies the use of high order integration schemes like RK4.

Computational Resources: Many systems, especially real-time tools, require high-
end hardware in order to cope with the large amount of data. Performing
interactive flow analysis on standard PCs highly decreases the costs for the
hardware and helps to reduce the time for development and evaluation of cli-
mate models.

4.1.3 Prior Work

The development of programmable graphics hardware induced a large number of
very powerful techniques in the visualization context. Examples are real-time volume
graphics [EHK∗06] and illustrative visualization [VKG05].

Flow visualization is a well-studied topic (see Sec. 1.4, and [LHD∗04] for one of
several extensive overviews). Most of the literature is related to dense representa-
tions, particularly line integral convolution [CL93, SK98] and similar texture-based
techniques. Often, the visual output is designed to reveal as many characteristics
of the flow as possible, e.g. using multi-dimensional transfer functions (MDTFs)
[PBL∗04]. Accordingly, feature-based visualization [PVH∗03] extracts and visualizes
flow features. Geometric methods, on the other side, are typically based on particle
traces that involve a numerical integration of the flow field. GPU-based particle sys-
tems are known to be very efficient (see Sec. 1.2.3). Krüger et al. extend the idea to
a powerful 3D flow visualization [KKKW05], without explicitly focusing on climate
phenomena.

Although the interactive visualization of the climate data is more and more be-
coming essential for the analysis and communication of the results, only few suitable
visualization systems are available, and in most cases they offer only a limited sub-
set of the desired functionality listed in Sec. 4.1.2. The vis5d(+) project offers a
free OpenGL-based volumetric visualization program for scientific data sets in three or
more dimensions, i.e. supporting unsteady flow data [HS90]. Geometric visualization
using e.g. arrows is possible in vis5d, however, after the initial particle placement
the tracing is done on the CPU, and the positions are stored for all time steps before
the results can be visualized. It is not possible to move the emitter around in order
to explore the flow field interactively. Other visualization systems like AVS/Express
lack the desired real-time performance, especially for a larger number of particles.
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Figure 4.2: Mapping physical space to computational space. Left: a particle is traced
from time t1 to t2. Right: the ascending altitudes with increasing spacing in the case
of atmospheric simulations.

4.1.4 The Data Flow Until Visualization

The data coming from the simulation stages are transmitted in NetCDF (network
Common Data Form), which is a suitable format for the storage, exchange and
further analysis of scientific data. At this stage, the data include the velocity in
horizontal direction in [m/s] and in vertical direction in [Pa/s] (pressure variation
per second), as well as additional quantities like temperature, relative humidity and
surface pressure. In a preprocessing step, the vertical component of the 3D velocity
vectors are converted to [m/s], resulting in a consistent flow vector representation.
These data are then exported to a binary float format using the climate data oper-
ators1. The data are now ready to be used in the GPU-based particle visualization.

4.1.5 Non-uniform Grids

In computational science, one distinguishes between the physical space P and the
computational space C (sometimes also called p-space and c-space). In our case, the
physical space is a specific region on Earth, and the computational space corresponds
to the array in which all vector and scalar quantities are stored. Note that the
quantities are valid in P only. A location xC in C can be mapped to a location
xP in P via a bijective mapping Φ : C → P (see Fig. 4.2, left side). For local
phenomena, the grids are defined in longitude-latitude coordinates and altitude. The
longitude-latitude coordinates are subject to a curvilinear transformation, which
can be approximated by an analytical function Φxy. The altitude mapping Φz is
defined using a list of fixed and ascending height values zP1 , . . . , zPmax. This way, a
higher sampling in lower altitude (i.e. lower atmosphere in the physical space) can
be achieved (see Fig. 4.2, right side).

The particles traced during visualization live in the physical space. Thus, it is
necessary to transform a particle position into computational space when sampling
any particle attribute, especially the particle velocity. Here, we make the assumption
that the attribute can be obtained using trilinear interpolation on the computational
grid. This is convenient as trilinear interpolation is hardware-supported when using

1http://www.mpimet.mpg.de/˜cdo (MPI for Meteorology, Hamburg)
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a 3D texture. In the typhoon example, Φxy is linear in both directions. However,
this is not obligatory: Provided that Φ−1

xy is known analytically, one could describe
curvilinearity by interconnecting the calculation directly in the code where the com-
putational grid is sampled. The non-uniformity in z-direction is handled by searching
two appropriate slices zPi , zPi+1 before linear interpolation. For a particle’s altitude
zP , the index i must be chosen so that zP ∈ [zPi , zPi+1). It will turn out that this can
be done efficiently by performing a binary search.

4.1.6 Asynchronous Data Transfer

The transfer from main memory to GPU memory is limited by the bandwidth of
the graphics port, e.g. AGP (Accelerated Graphics Port) or PCIe (PCI Express). A
naive call of OpenGL’s upload function causes the application to wait until all data has
been written before the control flow continues. This can be a considerable problem
in the case of flow visualization if the flow data are too large to fit in the graphics
memory completely. Copying larger chunks of memory results in undesirable delays
or, even worse, an interruption of the animation. Using OpenGL’s pixel buffer object
extension, it is possible to transfer data asynchronously, i.e. a buffer located in CPU
memory is copied in parallel while control flow continues. As we will see later in
the context of flow lines (Sec. 4.2.8), this yields a clear improvement if high transfer
rates are involved.

4.1.7 Height Field Rendering

A heightfield is used to represent the Earth’s surface. This is a well-known technique
for rendering terrain geometries. The heightfield is represented by a gray value tex-
ture covering the area of interest and storing the height of the terrain in each element.
A regular triangle mesh with as many vertices and same arrangement as the gray
value texture, forms the heightfield geometry. Each vertex is moved along the z-
displacement defined by the texture. An additional texture, with potentially higher
resolution, is used to visualize detailed color information.

4.1.8 Particle Tracing

The particle tracing works according to the texture-based technique for state-pre-
serving particle systems introduced in Sec. 1.2.3. The particle positions are stored in
a floating point texture. The fragment program used for particle motion is capable
of computing an RK2 or RK4 velocity integration (see Sec. 1.2.2). The transforma-
tion from physical to computational space is performed according to the strategy
proposed in Sec. 4.1.5. Accordingly, each time a velocity is sampled, a binary search
is performed in order to handle the non-uniformity in z-direction. For this purpose,
a loop accesses a 1-dimensional texture where the height values zP1 , . . . , zPmax are
stored.
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Figure 4.3: Comparison of two different particle rendering techniques with the ty-
phoon example (data set: courtesy of MPI for Meteorology). Left: Solid spheres color-
coding the velocity magnitude (142 FPS). Right: Pseudo streak lines generated by
frequently emitting semi-transparent particles at the same locations (132 FPS).

4.1.9 Rendering Particles and Shadows

The particles are rendered either as solid spheres or as semi-transparent sprites (com-
pare with Fig. 4.3). The spheres are rendered using a binary alpha component in
the point sprite stenciling the sphere in conjunction with an alpha test. The actual
sphere shape is generated in a fragment program using a Phong model. The semi-
transparent sprites are rendered using alpha blending. Currently, this is restricted to
commutative blending operators, in order to prevent a particle depth sorting. How-
ever, there is no conceptual challenge to extend this to non-commutative blending
operators (see [KLRS04, KSW04]). Note that when frequently emitting particles at
the same location, this rendering mode tends to produce smooth streak lines. We
call them pseudo streak lines, as the line segments are not interconnected. A method
for generating true streak lines is presented in Sec. 4.2. When using the sphere mode,
it is possible to color-code additional scalar quantities stored in the 3D flow texture.
However, this can be applied only in case of the spheres, since blending would alter
the color values.

Along with the particle rendering, shadows facilitate the perception of the spatial
location and orientation of displayed 3D objects (see Fig. 4.1). In our case, particles
moving in the flow can be associated more easily with locations on the underground.
This is especially the case where the flow is not restricted to stay in a plane, thus
forcing the user to choose different points of view. Shadows are rendered orthogonally
onto the textured heightfield. This is done by mapping the z component of the
particle positions in a vertex program while re-rendering all particles. The advantage
of orthogonal mapping in combination with heightfields is that even for elevated
regions, the shadows remain correct.

4.1.10 Evaluation

The evaluation of the described visualization framework was performed using an
implementation running on a GeForce 9600 GT graphics card (512 MB memory).
Tab. 4.1 provides a set of runtime measurements for different configurations. It is
apparent that the visualization is capable of real-time processing even for a large
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Table 4.1: Runtime for the example shown in Fig. 4.1.

particles height shadows binary FPS (RK2/RK4)
field search spheres pseudo streaks

262,144 � � � 80.58/57.92 80.44/58.41
262,144 � – � 113.88/74.36 113.82/73.79
262,144 – – � 131.04/80.27 129.96/79.82
524,288 � � � 43.03/30.35 42.97/29.87

1,048,576 � � � 22.76/15.53 23.34/15.44
1,048,576 � � – 23.26/17.13 23.57/16.63

number of particles (more than one million). The rendering mode (spheres or pseudo
streak lines) exerts no noticeable influence on the frame rate. Even when zooming
into the scene, the higher fill rate is no significant challenge for the hardware. Ren-
dering the particle set twice in favor of particle shadows, however, makes a difference.
Still, the computational costs for the velocity integration outweigh rendering, which
can be seen when comparing the RK2 and the RK4 integration: The frame rate for
the fourth order integration is about 0.7 times the second-order integration. Note
that visually, it is very hard to perceive any difference between the RK2 and RK4
integration. For example, Fig. 4.1 has been compiled in RK2 mode, still yielding very
plausible results. The binary search, which is used for the piecewise linear approxi-
mation of the non-uniform slice arrangement, turns out to be very efficient. Only a
marginal increase of the frame rate can be achieved by deactivating this routine.

The positive feedback given by a domain expert after having tested the system
shows that the presented application is a valuable improvement compared to pre-
vious solutions for climate research. The user highly appreciates the possibility to
interactively navigate through the data and to explore the inherent information by
selectively probing the vector field using the particle emitter.

4.2 Time-Adaptive Flow Lines

This section expands the set of flow primitives in the visualization framework to time-
adaptive stream, path and streak lines. The following concepts have been published
in [CPK09].

Geometric flow visualization has a long tradition and comes in very different
flavors. Among these, stream, path and streak lines are known to be very useful for
both 2D and 3D flows. Despite their importance in practice, appropriate algorithms
suited for contemporary hardware are rare. In particular, the adaptive construction
of the different line types is not sufficiently studied.

The following work provides a profound representation and discussion of stream,
path and streak lines. Two algorithms are proposed for efficiently and accurately
generating these lines using modern graphics hardware. Each includes a scheme for
adaptive time-stepping. The adaptivity for stream and path lines is achieved through
a new processing idea we call selective transform feedback. The adaptivity for streak
lines combines adaptive time-stepping and a geometric refinement of the curve itself.
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The method is applied to the typhoon example introduced in Sec. 4.1.1. The storage
as a set of 3D textures requires special attention. Both algorithms explicitly support
this storage, as well as the use of precomputed adaptivity information.

4.2.1 Flow Lines and their Challenges

In the following, we concentrate on stream, path and streak lines. A brief introduc-
tion to these flow line types is given in Sec. 1.4, a more formal one will be provided
in Sec. 4.2.3.

Typically, the flow line equations are solved by applying a high order integra-
tion like Runge-Kutta 2 or 4. This kind of numerical computation is based on dis-
crete time steps. Simple strategies use a constant time step (see Fig. 4.5a & b),
more sophisticated ones choose a time step that adapts to local flow characteristics
(Fig. 4.5c). The objective of adaptive time-stepping is a reduction and adjustment
of the truncation error of the integration. Ideally, this results in a finer sampling
of intricate regions (Fig. 4.5: 1©) and a coarser sampling in problem-free regions
(Fig. 4.5: 2©). Flow lines visualized by connecting linear segments eminently benefit
from time-adaptivity, as sharp bends can be avoided.

Adaptive time-stepping can be applied directly to stream and path lines. Unfor-
tunately, streak lines suffer from another problem: Discrete sampling is emphasized
during evolution. This means that injected points will diverge according to flow
divergence, resulting in sharp bends and overpopulated regions like in Fig. 4.6a.

This work discusses the visualization of adaptive flow lines using up-to-date graph-
ics hardware. The presented approach includes the following contributions: A clear
discussion of stream, path and streak lines is provided. Then, two algorithms are
proposed for efficiently generating lines using geometry programs. In this context, a
new processing idea called selective transform feedback is presented. The approach
includes direct support for time-adaptive stream and path lines. Streak lines require
a different treatment in order to avoid the divergence problems shown in Fig. 4.6a.
Accordingly, an appropriate refinement scheme for adding and removing points dur-

Figure 4.4: Time-adaptive stream, path and streak lines (from left to right) in the
unsteady typhoon flow (data set: courtesy of MPI for Meteorology). All images are
taken at the same time. The velocity magnitude is mapped to “rainbow” colors (red:
high velocity).
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Figure 4.5: Five path lines without adaptive time-stepping: time step ∆ = 0.2, 66.22
FPS, 385 segments (a), ∆ ≈ 0.143, 63.96 FPS, 540 segments (b), and with adaptive
time-stepping: 66.23 FPS, 355 segments (c). The gray ground-truth curve has been
generated using time step ∆ = 0.02.

a) b)

Figure 4.6: Stop-motion of a streak line without (a) and with refinement (b). Fre-
quency of the injection: ∆ = 0.2, both > 400 FPS. The gray ground-truth curve has
been generated using time step ∆ = 0.02.

ing streak line evolution is proposed, which helps to maintain a balanced curve
progression (Fig. 4.6b). This scheme can be regarded as geometric adaptivity. The
asynchronous flow data access required by the parallel time-adaptive particle trac-
ing is explicitly addressed in the algorithms. Consequently, the approach supports
texture-based unsteady flow data sets. After all, a qualitative evaluation of both a
complex data set and analytical examples is provided. The approach is also applied
to very large flow data sets which do not fit entirely into GPU memory. The eval-
uation shows that asynchronous texture transfer results in interactive frame rates
even for those large data sets.

4.2.2 Prior Work

The work by Park et al. [PBL∗05] discusses dense seeding of stream and path lines
in steady and unsteady flows. Their technique supports MDTFs, and it is suited
to graphics hardware. However, no streak lines are generated, and the algorithm
requires one render pass per segment. Finally, adaptive time-stepping is not handled
in this work. Liu et al. present a strategy for 2D stream line placement [LMG06]
featuring loop detection and adaptive distance control. The results show clear images
where flow patterns can be easily recognized by the viewer. The GPU-based flow
visualization method by Krüger et al. [KKKW05] includes the generation of stream
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lines and ribbons. No adaptive time-stepping is provided, however a visual feedback
of the truncation error marks difficult areas.

The rendering of flow lines using graphics hardware can be done very efficiently.
Zöckler et al. present a technique for real-time illumination that uses texture map-
ping capabilities of the GPU [ZSH96]. Stoll et al. propose a hybrid CPU-GPU al-
gorithm for a stylized line rendering, that combines piecewise-quadrilateral approx-
imations with exact tube geometries [SGS05].

The Runge-Kutta method is a widely used high order integration scheme that
is known to produce numerically stable traces. For further details about particle
tracing, i.e. integration schemes and adaptive time-stepping according to the step-
doubling approach, see Sec. 1.2.2. An extensive survey on Runge-Kutta methods
is given by Cartwright et al. [CP92], also including a discussion of adaptive time-
stepping. Advanced state-of-the-art techniques using the theory of automatic control
for the design of adaptive numerical time-stepping are surveyed by Söderlind [Söd02].
An analysis of the truncation error (due to discrete time-stepping) and the inter-
polation error (due to discrete flow data) for particle tracing methods in general is
provided by Teitzel et al. [TGE97]. Note that a different interpretation of adaptivity
in the context of flow lines is used by Sanna et al. [SMA00]. They create a dense
texture-based representation by adaptively seeding streak lines into the problem
domain.

The graphics pipeline, as introduced in Sec. 1.1.1, includes the geometry shader
and a processing paradigm called transform feedback, which will be of special in-
terest in the following. Remember that the geometry shader transforms each input
primitive (i.e. a point, line or triangle) by adding or removing vertices. The output
can be a variable number of reassembled primitives. This number, however, is lim-
ited by the hardware implementation. Geometry programs apply well to algorithms
which dynamically alter or create geometrical entities, like subdivision surfaces or
marching cubes. The output primitives are then propagated to the rasterization
stage, or they can be redirected to a specific stream using OpenGL’s transform feed-
back extension. Note that in principle, a geometry program corresponds to a general
case of stream compaction, which is a well-studied problem in the context of parallel
algorithms. It should also be noted that geometry programs constitute an advantage
in comparison to the functionality provided by general APIs like CUDA. At present,
CUDA-based stream compaction exists (see e.g. [HSO07]), however there exist no di-
rect support for on-the-fly insertion of stream elements in CUDA. In the following, we
will make heavy use of both the geometry shader and transform feedback.

4.2.3 Stream, Path and Streak Lines

Assume an unsteady flow given by a 3-dimensional velocity field ~v : R3 × R → R3

which maps a spatial location x and an instant in time t to a velocity vector ~v(x, t).
The following formal definition of stream, path and streak lines is proposed.

The stream line, starting at x0, is defined as the trace of a particle moved in the
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Figure 4.7: Schematic comparison of stream, path and streak lines. Note that a
streak line consists of the ending points of path lines. Left: ~v(x, t) = (cos t,−sin t, 0).
Right: ~v(x, t) = (cos (sin t),−sin (sin t), 0).

flow at a fixed time t:

xsm
t (s) = x0 +

s∫
0

~v
(
xsm

t (σ), t
)

dσ (4.1)

The path line, starting at x0 and t, is defined as the trace of a particle moved in
the flow which is changing in time:

xp
t (s) = x0 +

s∫
0

~v
(
xp

t (σ), t + σ
)

dσ (4.2)

The streak line in x0 and t is defined as the line built by individual traces of
particles which were injected at successive points in time. These individual traces
can be described by using the path line representation:

xsk
t (s) = xp

t−s(s)

= x0 +

s∫
0

~v
(
xp

t−s(σ), t− s + σ
)

dσ (4.3)

Fig. 4.7 shows this relation between a streak and a path line in two different velocity
fields. According to [WTS∗07], the term generalized streak line applies to a streak
line that is built using a starting point x0 that changes in time.

Both stream and path lines (Eq. 4.1 and 4.2) can be generated in one pass. Con-
sider the Runge-Kutta operator RK4

(
x, t, ∆

)
which calculates a new location ac-

cording to a given starting point x, an instant in time t and a time step ∆ (see
Eq. 1.7). Then the following recursion provides an approximation of xsm

t :

xsm
t (0) = x0

xsm
t (s + ∆) = xsm

t (s) +

s+∆∫
s

~v
(
xsm

t (σ), t
)

dσ

≈ xsm
t (s) + RK4

(
xsm

t (s), t, ∆
)

(4.4)
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(For xp
t , modify the time parameter according to Eq. 4.2.) Unfortunately, streak

lines cannot be constructed this way due to the dependence of the integrand on the
integral bound s in Eq. 4.3. However, it is possible to deduce a location xsk

t+∆(s+∆)
from the previous line location xsk

t (s):

xsk
t (0) = x0

xsk
t+∆(s + ∆) = xp

(t+∆)−(s+∆)(s + ∆) = xp
t−s(s + ∆)

= xp
t−s(s) +

s+∆∫
s

~v
(
xp

t−s(σ), t− s + σ
)

dσ

= xsk
t (s) +

s+∆∫
s

~v
(
xp

t−s(σ), t− s + σ
)

dσ

≈ xsk
t (s) + RK4

(
xsk

t (s), t, ∆
)

(4.5)

Using this scheme, however, adaptivity is hard to achieve as all line points, including
those added in earlier steps, are moved during integration.

4.2.4 Line Construction

This section discusses the construction of stream, path and streak lines. The ac-
cording algorithms are presented in GPU specific terms, because the applicability to
parallel graphics hardware is one major aspect of the approach. The line generator
relies on the geometry shader (see Sec. 1.1.1). This programmable unit is able to
process a stream by adding and removing elements. The stream is variable in size,
thus it is ideal for representing adaptive line data.

Stream and Path Lines

From a theoretical point of view, Eq. 4.4 can be used to generate stream and path
lines in one pass. The input to this pass consists of a set of line seeds which are
processed in parallel.

Unfortunately, the number of elements that can be generated in a geometry pro-
gram is limited to a constant number. Thus, in order to get a line of arbitrary length,
we have to break the creation into several passes. This idea is sketched in Fig. 4.8.
The selective transform feedback used in the diagram is explained below.

Selective transform feedback (briefly selective TF) selects a subset of the geometry
program’s output elements to be written into a second independent stream. In the
following, selective TF is explained in respect of line creation. Breaking the geometry
pass implies a splitting of, first, the line data used for rendering and, second, the seed
information (i.e. the last point generated for each line) used as input for consecutive
subpasses. Note that the seed information is not located at the end of the overall
line data, because parts of different lines are generated and stored in an interlocked
way. The geometry shader does not directly support the output into two differently
structured streams. However, it is possible to generate a transform feedback stream
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Figure 4.8: Generating a stream (or path) line. GP: geometry program, TF: trans-
form feedback, VBO/FBO: vertex/fragment buffer object.

while simultaneously rendering primitives into the current frame buffer. The ID
of the current input seed (given by gl PrimitveID) determines the line that is
generated in the current geometry program instance. Using this ID, it is possible to
write the last point on a per-line basis into the frame buffer. The frame buffer content
is then interpreted as new seed input for the next subpass. Time stamps are stored
together with the seed location in order to ensure the processing to be correctly
continued in the next step. Superfluous points rendered when pushing elements into
the TF are discarded by moving them outside the clipping area.

Alg. 4.1 lists the complete algorithm in pseudo code. In each frame, the whole
line is generated (in contrast to the generation of streak lines). The iteration stops
when no more elements are generated in the geometry program, i.e. if the desired
line length has been reached in the previous pass. Querying the number of generated
elements is a subfeature of OpenGL’s transform feedback.

Algorithm 4.1 (stream/path line algorithm)

1 for each frame {
2 emit seeds p1, . . . ,pn // chosen by user interaction
3 while query 6= 0 do {
4 query = 0
5 process each seed p ∈ {p1, . . . ,pn}:
6 geometry program + TF:
7 s = p.s // using time stamp p.s
8 while s < line length {
9 emit line point p.x = RK4

(
p.x, t, ∆

)
// with adaptive ∆

10 s += ∆
11 query++
12 }
13 emit new seeds p1, . . . ,pn // using selective TF
14 }
15 }
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Figure 4.9: Generating a streak line. GP: geometry program, VBO: vertex buffer
object.

For path lines, replace the time parameter of the RK4 operator by t+s. Note that the
number of iterations of the inner while loop is bounded by a constant limit specific
to the hardware. The adaptive time step ∆ is determined using the step-doubling
approach (see Sec. 1.2.2) or it is read from the flow data set. See Sec. 4.2.5 for a
discussion of data set specific aspects, including texture synchronization.

Streak Lines

Streak lines are generated according to Eq. 4.5. The line data of the previous frame
form the input of the next frame. As the line data are used for processing, a time
stamp is added to all points so that the length of the line can be controlled. The
streak line approach is sketched in Fig. 4.9.

The main idea of the algorithm is to add new points (fetched from a seed texture)
at the beginning of each line and to remove points at the end according to the desired
line length. Thus, the geometry processor must distinguish between starting, inner
and end points of the line. Our implementation uses special markers in the line
data, which are also motivated by the rendering process. The exact structure of the
line data is discussed in Sec. 4.2.7. The streak line algorithm scans the stream for
markers and writes the new line data directly through transform feedback:

Algorithm 4.2 (streak line algorithm)

1 initialize line data
2 for each frame do {
3 process each line data segment (p1,p2):
4 geometry program + TF:
5 if p2 is a starting point (p1 is marker):
6 emit new seed by texture fetching
7 if p1 is an end point (p2 is marker) {
8 if t− p1.s > line length: remove p1

9 emit p1 = RK4
(
p1, t, ∆

)
// possibly adaptive

10 }
11 if p1 and p2 are inner points {
12 emit p1 = RK4

(
p1, t, ∆

)
// possibly adaptive

13 perform refinement
14 }
15 }



4.2. TIME-ADAPTIVE FLOW LINES 81

Alg. 4.2 has to synchronize at a fixed time step ∆ in order to ensure the correct
line output (see Eq. 4.5). In other words, when computing a point xsk

t+∆(s + ∆),
the time step ∆ is not only a time step for numerical integration but also the time
step controlling the injection of new seeds. Consequently, adaptive time-stepping
cannot be applied directly to the streak line approach. The proposed interpretation
of adaptive streak lines involves two strategies:

1. Time-adaptivity: The time step ∆ can be divided into several adaptive sub-
steps in order to achieve a more accurate result in tracing individual points.

2. Geometric adaptivity: In order to avoid sharp bends and oversampling (see
Fig. 4.6a), a refinement scheme is applied during the algorithm in line 13.

The geometric refinement step compares the distance between two adjacent points
p1,p2 as processed in Alg. 4.2. If the distance is larger than a user specified threshold,
then a new point is added in-between by linear interpolation of p1 and p2. If the
distance is smaller than half the threshold, the point p1 is removed. This simple
scheme has shown to be very efficient and essential for generating reasonably smooth
streak lines.

4.2.5 Flow Data Set Storage and Synchronization

The flow data set is partitioned into several time records. Each of them is stored in
a 3D texture holding the velocity data. In addition, an adaptive time step is stored
at each location of each time record. This time step is computed according to the
step-doubling approach (see Sec. 1.2.2) for every texture location within a separate
preprocessing.

Binding several textures in a shader program can have a large impact on the
performance: Conditional texture selection (using if) is significantly more expensive
than fetching one single texture. This has been verified on a GeForce 8 graphics
card: In an experiment, a single conditional fetch among 4 textures is about 3 times
faster than among 16. OpenGL’s texture array extension supports a presumably faster
solution, however it does not support arrays of 3D textures. Thus, it is essential to
bind only a few 3D textures in each render pass. This restriction particularly affects
the generation of path lines, as a path line may cover several time records.

The restriction to a small set of flow textures yields a synchronization problem:
Only a limited time interval can be accessed by a path line generated in one render
pass. It turns out that this restriction can be fulfilled by just adding an additional
stop criterion in line 8 of Alg. 4.1 which ensures the right time interval. When query
signals that no more vertices have been output, it is safe to increment the data
set time interval to different textures. This adds a surrounding loop incrementing
the interval until query remains 0 in two subsequent render passes. Note that this
approach is efficient because a render pass with query = 0 is inexpensive.

4.2.6 Flow Data Sets Exceeding GPU Memory

The handling of data sets which are too large to be entirely stored in GPU memory is
a task that requires special attention. Only those parts of the flow data which are mo-
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mentarily necessary should be present in graphics memory. While a spatial division
into bricks is rather hard to achieve for arbitrary lines, the idea of lazily transferring
time records maps well to the line generator: The synchronization method proposed
in Sec. 4.2.5 ensures that the generator breaks whenever a necessary time record
is missing. Before the next iteration, the framework can upload appropriate time
records so that the line generation is continued in the next pass.

In order to speed-up this scheme, OpenGL’s pixel buffer object extension is used
for asynchronously transferring the texture data using intermediate system memory
(compare with Sec. 4.1.6). Additionally, multiple textures can be used to cache time
records which are likely to be used in subsequent iterations. For path line generation
involving several time records during the generation of one line, this can be of great
benefit as one can see in the results (Sec. 4.2.8).

4.2.7 Line Storage and Rendering

The line renderer requires a specific storage of the line data stream. More precisely,
each rendered segment (p1,p2) is provided with its adjacent points, such that nor-
mals can be computed for both p1 and p2. These normals can be used for lighting
and for a sophisticated rendering of tube-like geometries. Additionally, the stor-
age layout is designed to support the splitting of lines into distinct parts, which is
necessary in Alg. 4.1, and it supports end point markers for Alg. 4.2.

Line Data Storage

A special BREAK symbol identifies line parts generated by Alg. 4.1. This break element
also contains an adjacent point used for rendering. The SEP symbol marks the end
points of each line, notifying the renderer to terminate the geometry appropriately.
The following list is an example of how a stream or path line can be represented.
The + operator specifies a combination of vertex and marker information.

SEP, x1, . . . , x5 + BREAK, (part 1)
SEP, y1, . . . , y7 + BREAK,
x3 + BREAK, x4, . . . , x6, SEP, (part 2)
y5 + BREAK, y6, . . . , y9, SEP

Fig. 4.10 shows how the line parts 1 and 2 are combined to one geometry during
rendering.

B
R
E
A
K

SEP

x5

SE
P

x5

SEP

x1 x1

x6

x4

BREAK SE
P

x5

x3

x4

x6

x3x2 x2

x4

x3
a) b)

Figure 4.10: How the renderer combines two line parts (a) to one single line (b).
Due to adjacent points stored in the BREAK elements, the renderer can compute proper
normals.
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Figure 4.11: The stylized rendering combines quadrilateral segments with explicit
tube geometries (approx. 20 FPS).

Separator elements (BREAK and SEP) are marked by setting the fourth component
of the according vertex to a predefined large constant number. Streak lines require
an additional identifier for distinguishing lines (see Alg. 4.2, line 6). This ID is stored
in the starting and ending separator of each line. Streak line data also includes time
stamps for all points, which are stored in a separate (texture coordinate) stream.

It should be noted that the exact generation of the line data requires minor mod-
ifications to Alg. 4.1 and Alg. 4.2 in order to produce a correct sequence of points,
BREAKs and SEPs. This aspect has been omitted due to its implementation specific
nature and in favor of a clear explanation.

In total, the memory consumption for the line data is asymptotically bounded by
the number of segments necessary for visualizing all lines. In the implementation, a
fixed limit must be given to transform feedback, which was chosen to be 262,144.
An overflow can be detected by using an OpenGL query. Thus, the algorithm could
be adapted to dynamically reinstantiate the buffer if more segments are produced.

Rendering

The renderer directly visualizes the line data as described in the previous part. A
geometry shader functionality called line adjacency is used to compute normal in-
formation. This can be used for lighting and for a non-trivial rendering of the lines.
The stylized line approach by Stoll et al. producing quadrilateral tube [SGS05] ap-
proximations has been chosen. These quads are directly generated in the geometry
program. The code is even able to generate explicit tube geometries in intricate situ-
ations when the view vector coincides with the tangent of a segment (see Fig. 4.11).

4.2.8 Evaluation

In the following, the line-based flow visualization is evaluated by presenting perfor-
mance and accuracy results for different examples. The hardware used for testing is
a PC with a GeForce 8800 GTX graphics card, except for the tests featuring large
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Figure 4.12: The typhoon flow visualized using adaptive stream, path and streak
lines and stylized rendering, number of lines: 64, frame rates (in FPS): 74.89, 37.38,
96.22, segments (approx.): 3,780, 5,900, 9,500.

flow data set tests. The latter have been performed on a PC with 2 GB RAM and
a GeForce 9600 graphics card. This computer has been chosen because of its very
stable multi-disk setup which was crucial for memory swapping purposes.

The main example consists of the unsteady typhoon data set which was introduced
in Sec. 4.1.1. Since two different adaptive time steps, namely one for stream and one
for path and streak lines, must be stored, the total size of the data set adds up to
106× 53× 39× 5× 4 bytes = 134 MB (5 components and 4 byte floats). Slices are
arranged in a non-uniform way (see Sec. 4.1.5). This problem is solved by performing
a binary search in the program in order to find the correct slice when sampling the
data. Fig. 4.12 shows the entire visualization including the terrain heightfield and
line shadows.

A performance evaluation (see figure captions) reveals that the streak line gener-
ator is faster than the stream/path line generator when comparing the number of
segments produced. This happens because the streak line approach processes several
segments in parallel while the stream/path approach processes several lines in par-
allel. Obviously, the number of segments is much higher than the number of lines.



4.2. TIME-ADAPTIVE FLOW LINES 85

a) non-adaptive b) real-time adaptive c) tex-based adaptive

Figure 4.13: The local step-doubling error for the typhoon example. The error is
marked in red, dark regions are accurate and strongly colored regions show a larger
error. Frame rates (in FPS, without error computation): 37.28, 11.94, 37.83, number
of segments: 11,776, 13,886, 10,505.

In order to get an impression of the quality of the results, the typhoon example is
evaluated both visually and statistically in the next paragraph.

Evaluation of the Typhoon Example

Fig. 4.13 visualizes the local error provided by the step-doubling approach (compare
with Sec. 1.2.2), i.e. a measure for the truncation error during a single integration
step. It shows an interesting relation between speed and accuracy: the non-adaptive
path lines are slower than the adaptive counterpart (with texture-fetched time step),
yet exhibiting a much larger error in the difficult twirl region. This advantage of the
time-adaptive version in both speed and accuracy is due to the number of segments,
which is balanced by the time-adaptivity.

Fig. 4.13 also shows that in comparison to on-the-fly step-doubling, texture-
fetching the time step produces a small but visible error due to trilinear interpolation
of the time step. The preprocessing storing the adaptive time-step into the textures
takes 30 minutes on the CPU and approx. 10 seconds in a GPU implementation.
By using our long double-based CPU preprocessor, a slight improvement in accuracy
can be obtained.

In Fig. 4.14, the local step-doubling error is plotted for different frame rates and
line types. For the non-adaptive lines, different values have been measured by varying
the integration time step. For the adaptive lines, the step-doubling accuracy has been
varied using the GPU-based preprocessor before each measurement. Both diagrams
show in a very clear way that adaptive stream and path lines produce both a smaller
average error as well as a smaller standard deviation of the error compared to the
non-adaptive counterparts at same frame rate. This result coincides with the visual
analysis in Fig. 4.13. For streak lines, a similar analysis is hard to provide because
of the different nature of adaptivity. Pure time-adaptivity (i.e. without geometric
refinement) is insufficient for increasing both speed and accuracy. This is due to
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Figure 4.14: Frame rate versus local error for the example shown in Fig. 4.5, with
256 stream/path lines instead of five path lines. “adp”: adaptive, “avg”: average,
“dev”: standard deviation. The error has been multiplied by 106.

the fact that the performance of the streak line generator is less sensitive to a high
number of line segments than the one for stream or path lines.

Evaluation of Analytical Flows

In order to provide further results, two analytical flows have been evaluated. Sam-
pling an analytical function avoids the bottleneck of texture fetching, resulting in
much higher frame rates. We first consider a flow defined by the function ~v(x, t) =
(1, sin(t) · cos(xx), 0). While the adaptive line generator produces approx. 10,000
texture-fetched segments in real-time (stream: 10,076 @ 22.64 FPS, path: 10,023 @
18.66 FPS, streak: 10,079 @ 91.15 FPS), it can produce more than 10 times more
segments when evaluating the analytical function (stream: 115,840 @ 30.99 FPS,
path: 103,637 @ 29 FPS, streak: 100,057 @ 126.81 FPS).

In order to get a better idea of the benefit of time-adaptivity, another analytical
flow ~v2 produced by a repetitive cubic B-spline (see Fig. 4.15) has been evaluated.
This flow has the useful property that it can be integrated analytically in order to get
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a) b)

Figure 4.15: The global error for a cubic B-spline function (marked in red). a)
non-adaptive, 47.38 FPS, 776 segments, b) time-adaptive 62.16 FPS, 445 segments.

an exact path line representation. Velocities are normalized in order to emphasize the
difficulty near the curved extrema. See Eq. 1.4 in Sec. 1.2.2 for the formal definition
of ~v2. A global error has been evaluated by taking the distance to exact line locations
according to the time parameter of the computed line. The left (non-adaptive) line
shows a large error despite the fact that more segments are rendered than in the
right line, which adapts well to the characteristics of the flow. Note that the periodic
nature of the function causes interferences in the error, thus canceling the error in
certain regions.

Evaluation of Large Flow Data Sets

In practice, one might be interested in visualizing large flow data sets. In order
to test the applicability of the approach to this task, various data sets of different
size have been generated, all representing the same flow defined by the function
~v(x, t) = (1, sin(t) · cos(xx), 0).

Tab. 4.2 shows the timings for all tested data sets. During visualization, one time
record covers ten frames. All three types of lines have been tested in different memory
configurations: Besides three textures representing the current time records needed
for one single Runge-Kutta integration step, texture transfer has been accelerated by
dedicating a PBO for asynchronous transfer (second column of the FPS results). A
third configuration has been tested using a stack of 8 cached textures. This number
has been chosen because eight 1503 textures plus PBO and the line data (approx.
32 MB in this configuration) amounts to nearly 512 MB of memory, which is the
limit of the graphics card used for the tests.

The results show two interesting aspects: First, texture transfer is fairly fast for
stream and streak lines. Path lines require multiple switches of the textures during
one frame, as lines are covering several time records. Thus, path lines highly benefit
from asynchronous transfer and caching of subsequent records. This yields interactive
frame rates even for data sets which do not fit entirely in GPU memory. However,
one can see that system memory is a bottleneck as soon as disk swapping is involved.
While the very large data sets (> 3 GB) can still be visualized with few frames per
second in average, fetching necessary time records from the hard disk results in
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Table 4.2: Runtime for stream/path/streak lines in a flow data set of varying reso-
lution. In all tests, 512 lines cover nearly the whole flow volume and at least 4 time
records.

res. steps size FPS (stream/path/streak)
normal async async &

cached
503 100 238M 40/26/44 39/38/44 39/93/44
503 250 596M 40/26/44 40/39/45 39/83/45
503 500 1.2G 40/27/44 39/37/45 39/92/44

1003 50 954M 55/5/44 59/8/48 53/79/48
1003 100 1.9G 58/3/44 74/8/47 69/42/47
1003 200 3.7G 6/5/13 18/5/15 10/11/11
1503 10 644M 37/1/34 48/3/40 23/55/31
1503 50 3.1G 5/1/7 4/3/8 6/5/11

Notation: res.: resolution of one time record, steps: number of time records, size:
file size of the data set (containing 2 different adaptive time-steps for stream and
path/streak lines), normal: no use of PBOs, async: asynchronous texture transfer
using PBOs, async & cached: 1 PBO and 8 instead of 3 textures in GPU memory.

unpleasant delays disturbing the animation. For handling such large data sets, a
more elaborate memory management or a special hardware for fast memory access
would be necessary so that a smooth visualization is ensured.

4.3 Flow Volumes Based on Particle Level Sets

In this section, the GPU-based PLS framework of Chap. 3 is expanded to support
volumetric flow primitives. The set of new primitives includes time surfaces, path
volumes and streak volumes. The technique has been published in [CKSW08].

Flow volumes are the volumetric equivalent to flow lines. A flow volume is a
subset of space, the inner region, with a sharp closed boundary. Level sets are suited
for the description of flow volumes, because they ensure a proper representation of
closed objects independently of the applied flow. As motivated in Chap. 3, the PLS
method significantly improves grid-based level sets w.r.t. to accuracy and volume
preservation. This work demonstrates that the PLS technique can be adapted to the
visualization by time surfaces and path volumes, and to volumetric dye advection via
streak volumes. To achieve this, the PLS framework needs to be extended, including
a model for dye injection.

4.3.1 Flow Volumes and the Problem of Dye Advection

Three different types of flow volumes are presented in this section. The most basic
one, the time surface, just corresponds to the advection of a closed surface. This
type is directly supported by the PLS approach. The second type, the path volume,
draws the trace of the initial volume as it is transported through the unsteady flow.
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More specifically, a path volume is formed by the union of all states the initial shape
is taking during advection. Very similarly, a stream volume can be described as a
path volume constructed without advancing the flow in time. The third type, the
streak volume, is built by continuously injecting the initial volume while advecting
the complete volume at each time step. A visualization of a time surface, a path
volume and a streak volume in a simple sinusoidal flow is given in Fig. 4.16.

time surface path volume streak volume

Figure 4.16: Comparison of a time surface, a path volume and a streak volume
(also called dye advection). Note the similarity to path and streak lines (Sec. 4.2).

The concept behind streak volumes is also called dye advection, as an initial kernel,
the dye, is constantly inserted. Fig. 4.17 compares previous dye advection techniques
with the technique proposed in this section. Most previous work on interactive dye
advection [JEH02, vW02] is based on semi-Lagrangian grid advection, which is af-
fected by numerical diffusion due to repeated resampling via trilinear reconstruction
(Fig. 4.17a). The extension to level set based dye advection (Fig. 4.17b) eliminates
the diffusion problem, as the level set function is constantly reinitialized. However,
the problem of volume loss remains, despite dye injection. The PLS method can be
used to reduce volume loss (Fig. 4.17c).

a b c

Figure 4.17: Dye advection of a spherical volume in a time-dependent sine wave.
The injection volume is marked in red. The flow spreads the dye over time and the
resulting trace depends on the computation of this process. Diffusive advection (a),
level set advection (b), PLS advection (c) – (643 grid, 262,144 particles, 78.2, 55.9,
36.6 FPS).

This section contains the following contribution: the PLS method is adapted for
the visualization of 3D unsteady flow by extending it to the representation of time
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surfaces, path volumes and streak volumes. Consequently, a fast dye injection mech-
anism for the hybrid grid-particle model of PLS is introduced. Using PLS, the nu-
merical diffusion, and thus the volume loss, can be minimized in order to achieve
high quality flow volumes.

4.3.2 Prior Work

An early example of stream volumes is described by Max et al. [MBC93]. They use
an explicit volume representation based on tetrahedra. Unfortunately, such explicit
representations are difficult in the case of intricate flow, because adaptive removal
and addition of vertices and changes of the topology need to be considered. Even the
simpler problem of stream surfaces already requires advanced algorithms to handle
these issues [Hul92, GTS∗04]. Point-based representations of stream surfaces and
path surfaces avoid issues of mesh connectivity but still require a complicated point
generation and removal [STWE07].

In contrast, implicit representations easily allow topological changes and do not
require control of vertex arrangement and density. Examples include implicit stream
surfaces by Van Wijk [vW93], the particle travel time method by Westermann et al.
[WJE00], and the application of direct volume rendering to visualize implicit rep-
resentations according to Xue et al. [XZC04]. Texture advection (see Sec. 1.3.1)
can be modified in the form of 2D image-based flow visualization [vW02] and 2D
Lagrangian-Eulerian advection [JEH02], which both support texture-based dye ad-
vection in order to generate streak lines. Texture advection can be extended to
GPU-based 3D flow visualization as well [TvW03, WSE07]. For example, 3D dye vi-
sualization can be employed to highlight features [SJM96]. One issue of most texture
advection methods is numerical diffusion due to resampling. Lagrangian-Eulerian ad-
vection [JEH02] addresses this problem by frequently restoring the contrast of the
transported dye. An alternative approach is the use of distance field level sets in com-
bination with level set reinitialization, which leads to a non-diffused dye background
interface but is affected by volume loss [Wei04]. For an overview of texture-based
flow visualization in general, the reader is referred to Laramee et al. [LHD∗04].

4.3.3 Flow Volume Construction

The task of applying PLS to interactive flow visualization poses several challenges:
First, fast parallel algorithms are necessary for level set reinitialization, particle
reseeding, and the interchange of data between grids and particles. Second, there is
a trade-off between speed and accuracy. Accuracy in the context of PLS means no
volume loss and the preservation of surface features. Third, time surfaces, path, and
streak volumes require different handling of the grid and the particle structure and
thus have to be considered separately. Finally, streak volumes (i.e. dye advection)
require special attention in order to synchronize the grid and the particle structure.

The first aspect is solved by the framework presented in Chap. 3. The remaining
tasks are addressed in the following paragraphs. As all modifications remain in the
spirit of the original PLS, we will refer to the steps in Alg. 1.1.
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dt

streak volume

. . .

dtinj
. . .

dt

time surface

path volume

dtacc

adv. adv.

adv. adv.

Figure 4.18: Schematic illustration of a path volume advection (left) and a streak
volume advection (right). Colors: green is the initial/injection volume, black is the
path/streak volume. The relation between time surfaces and path volumes is made
clear in the left image.

Time Surfaces

The PLS framework proposed in Chap. 3 includes all steps required for the visual-
ization of time surfaces, i.e. a bounded volume moving in a flow while changing its
shape.

Path Volumes

A path volume can be interpreted as the accumulation of the volume left behind by a
time surface (compare with Fig. 4.18, left). This idea fits well into the PLS algorithm.
The path volume is accumulated into a separate grid dtacc in an additional step after
step 6 in Alg. 1.1. The accumulated grid is the result of a minimum operation on the
distance component of the previous dtacc and of the current dt, taking the according
reference dtδ. The result of this operation is a union of the negative distances, thus
of the inner regions of both level sets. An example is given in Fig. 4.19, left.

It should be noted that only one accumulation step is done in each frame. Thus,
the path volume is steadily growing during visualization, in contrast to the path
lines (Sec. 4.2) being constructed en bloc after each time step.

Streak Volumes

Streak volumes are produced by repeatedly injecting a volume dtinj = (dtinj
d ,dtinj

δ )
to the current level set (compare with Fig. 4.18, right). The injection dtinj is usually
generated analytically using implicit geometries. The volume injection involves an
update of both the grid and the particle representation of the level set.

The grid update is similar to path volume accumulation. A minimum of dtinj

and dt computes the union of both volumes after step 5 of Alg. 1.1. After step
6, the particle set is extended in order to cover the new interface added by the
injection. Two methods have been tested: 1. explicitly adding new particles at the
injection’s interface or 2. relying on the standard particle reseeding. In both cases, the
reseeding scheme presented in Sec. 3.3.4 can be adapted by binding the appropriate
DT texture. The second approach yields nearly as good results as the first one in all
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PLS

LS

Figure 4.19: Left: A path volume is pushed into a tight band around a flow source.
Due to numerical diffusion, the LS volume disappears. In contrast, PLS maintains
the volume. Right: A difficult case where the streak volume reaches the injection
volume. Both: The injection is marked in red.

examples, despite the fact that the particle density near the injection is lower. The
reason is that the injected volume is less susceptible to numerical diffusion because
it is reemitted in each frame.

Both injected particles and old particles can disturb the PLS correction. In Fig. 4.20,
those wrong particles are marked in red. The green circle stands for the injection
volume, which partly overlaps the advected volume (blue circle) created in the last
level set advection step.

Fig. 4.20a shows the situation when injecting new particles. Wrong particles are
those with dtd(xp) < rp. They can be efficiently reseeded during the injection step
by using the unified DT. Fig. 4.20b shows wrong particles coming from the last PLS
step. They can be identified by checking dtinj

d (xp) < rp in a separate pass over all
particles. The identified particles are either removed or reseeded. Removing them is
cheaper and can be achieved by moving them out of the volume. However in some
examples, too many particles might be lost in this approach.

injection

advected

particles

wrong particles

a b

Figure 4.20: Two cases (in 2D) where particles must be removed or reseeded when
generating streak volumes (a: injected particles, b: old particles).

Fig. 4.17 and Fig. 4.21 show examples of streak volumes. The right side of Fig. 4.19
shows that the reseeding scheme even handles the difficult case where the streak
volume reaches the injection area.

4.3.4 Rendering

The volume renderer is based on a back-to-front slicing technique using view-aligned
polygons. Only fragments within a small iso-value range [−ε, ε] around the interface
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1a 1b 1c 1d

2d2c2b2a

Figure 4.21: Top row: Time surface after 190 advection steps. Starting geometry
(1a), ground-truth using 1283 LS (1b), 643 LS (1c), the enhanced 643 PLS (1d),
262,144 particles (FPS for 1b–1d: 10.6, 19.1, 16.5, time without rendering (in ms):
51.6, 11.1, 22.1). Second row: Streak volume after 275 advections, same parameters
(FPS for 2b–2d: 12.5, 28.2, 22.1, time without rendering (in ms): 52.1, 10.1, 19.7).
Both: The starting/injection shape is marked in red.

are colored using Phong lighting, for which normal vectors are determined by com-
puting gradients using a central difference scheme. Applying alpha blending makes
internal structures visible, which is important e.g. for complex flow volumes. This
approach is similar to semi-transparent interval volume rendering [FMST96]. When
using appropriate semi-transparent transfer functions, the visual results of rendering
PLS resemble those of illustrative techniques that highlight 3D flow structures, such
as [SJEG05], which supports the spatial perception of flow volume boundaries.

4.3.5 Evaluation

The flow volumes engine has been tested on a GeForce 8800 GTS graphics card.
For an evaluation of the GPU-based PLS framework, refer to Sec. 3.3.8. Fig. 4.21
shows the results of a time surface and a streak volume in the unsteady typhoon flow
from Sec. 4.1.1. Both rows compare the pure LS and the GPU-based PLS method,
showing the advantage of PLS when using the same grid resolution.

The typhoon data set exhibits prominent swirling features, which can be depicted
by both time surfaces and streak volumes. The latter are particularly useful because
they resemble the well known dye advection metaphor from experimental flow visu-
alization and they show the temporal evolution of the flow. Fig. 4.21 demonstrates
that the high quality and volume preservation of the PLS approach is critical for
showing all details of the swirling features, whereas LS fails to depict those details.

The performance of streak volume injection depends on the applied reseeding
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Figure 4.22: Flow visualization of a typhoon in the VR laboratory of the University
of Siegen, including user interaction using tracking devices. The glasses are tracked
in order to render the correct point of view. The so-called flystick controls the place-
ment, orientation and size of the emitter box from which streak lines originate.

scheme. In general, the time consumed for reseeding is in the same range as general
PLS reseeding. Dye injection takes about 5 percent, dye reseeding about 2 percent
of the time for the overall algorithm in the example shown in Fig. 4.17c.

4.4 Virtual Reality Support

The usability of the flow visualization system presented in the previous sections has
been enhanced by adding the support for virtual reality (VR) environments.

The VR laboratory in which the application has been tested is located at the
University of Siegen. It is characterized by its elegant curved projection area and
a design allowing single user interaction or group presentations. The 3-dimensional
immersion is increased by a stereoscopic projection. In single-user mode, the glasses
are tracked in order to provide the correct viewing transformation at the user’s
position.

The application has been ported to the VR environment using the equalizer
toolkit [EMP09]. The main challenge when distributing processing to multiple nodes
(in this case seven PCs) is to synchronize any input for simulation and rendering.
This implies that a stream of information must be transferred to all client nodes. This
stream contains all user inputs like parameter adjustment or navigational commands.
In the application, a very generic information flow has been realized which can be
directed to the network or to a file storing the current configuration. This allows
synchronization in the VR cluster as well as a load-and-save functionality. Together
with temporal markers, this stream can also be used to replay a specific sequence
of commands for demonstration purposes. All computations, e.g. particle tracing,
line generation or PLS advection, are duplicated on each node. Clearly, the use of
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multiple nodes would have the potential to significantly improve the performance.
However, this would require synchronization routines depending on the computation.

Stereo viewing, user tracking and the so-called flystick can be used to improve the
usability of the flow visualization. Clearly, the ability to examine the scene from any
point of view in 3D helps to distinguish the spatial location of flow primitives and
thus flow features. The flystick is a tracking device which can be moved in space
freely, and it possesses special controls, i.e. a navigational apparatus and a set of
buttons. In the example shown in Fig. 4.22, the user can pick up and move the
particle emitter by holding the flystick into the scene, pushing a button and then
adjusting the location, orientation and size. This way, the user can precisely choose
the region of interest and visualize specific local sections in the flow field.

Various geometric flow visualization techniques have been presented in this chapter.
It has been shown that high quality and real-time control is achievable by using the
parallel concepts of modern graphics hardware.
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Figure 4.23: An example of advanced geometric flow visualization: Path lines are
moved in real-time within the unsteady typhoon flow (data set: courtesy of MPI for
Meteorology).

Figure 4.24: Layered rendering of a pure particle-based time surface and a corre-
sponding particle level set representation (data set: courtesy of MPI for Meteorology).



Chapter 5

Epilogue

Simplicity is the final achievement. After one has
played a vast quantity of notes and more notes, it
is simplicity that emerges as the crowning reward
of art.

Frédéric Chopin

In this chapter, an overview of all techniques is provided, with the intention
to bring the major aspects together and to reflect both their strengths and
weaknesses. As an implication to this discussion, a set of ideas is listed, which
reveal the directions in which the research specific to the thesis’ context
could advance in future. Finally, a conclusion is provided.

Graphics technology is in full growth. Today’s graphics hardware can compete
with the world’s fastest super-computers available ten years ago, and the com-

putational power is steadily increasing. Properly designed algorithms directly benefit
from this growth: For example, the size of a particle system that could be processed
in real-time three years ago using older hardware has increased to a factor of more
than ten since that time. Similarly, the increase of GPU memory makes the use of
larger structures and a higher precision possible.

In the same time, conceptual improvements of the hardware, i.e. extensions to the
set of features or new programming interfaces, widen the range of possible applica-
tions by relaxing the difficulty of designing algorithms which take advantage of the
parallel processing paradigm. For example, using general purpose APIs like CUDA
allows one to manage memory on a much more fine-granulated level than using
shader programs. Another example is the support for double floating point arith-
metic, integers and pointers – features which are already available or in discussion.
Generally, one can say that GPUs head for general capabilities like those of CPUs,
while being based on the concept of multi-core processing and massive threading.
Actually, this concept is also present in the development of current CPUs, which
are built of up to 8-12 cores, a number which is steadily increasing. The future will
show whether the GPU will remain a coprocessor, or whether CPU and GPU will
fuse together in favor of a powerful all-purpose chip.

Making heavy use of the outstanding capabilities of the GPU is one of the main
topics of this work. Accordingly, everything can be summarized to one purpose,
namely the investigation of new GPU-based techniques in the context of fluids and
flow visualization. The results show that it is possible to design these technique in
such a way as to benefit from the parallel architecture of graphics hardware. However,

97
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there is room for improvements, as we will see in the next two sections. And, the
active development of graphics hardware will further unclose new possibilities, in
particular towards high-quality real-time interactive solutions.

5.1 Summary

In this work, new techniques in the field of GPU-based fluid simulation and flow
visualization have been presented.

The first one consists of a concept for dynamically coupling particles (Chap. 2).
The concept allows one to solve the problem of processing particle neighborhoods
within an SPH-based fluid simulation by interchanging information between a grid
and the particle set. In order to compute proper fluid forces, the approach must
separate computational steps in a very specific way. The results show that the ap-
proach is fast, however, it suffers from numerical problems due to the discretization
of fluid forces. Another weakness is the restriction to fixed bounds defined by the
grid covering the volume of interest.

The idea of simultaneously using a grid and a particle set on the GPU is also
one of the main aspects of the PLS-based surface tracing framework presented in
Chap. 3. Like in the original PLS method, the grid-based level set representation
of the advected object is improved by reducing diffusive errors and thus improving
volume preservation. The key idea is to rely on the information contained in particles
located at the object’s surface, i.e. the interface, because particle tracing is very
accurate. The reformulation of PLS for the GPU significantly improves the efficiency,
as it allows fast parallel processing of much larger resolutions and larger particle
sets than previous CPU-based approaches. One of the main challenges of realizing
a real-time PLS framework is the reinitialization of the level set function. In the
presented framework, this task is solved by a new fast algorithm which is based on
hierarchical distance propagation. While this algorithm can be seen as a fast, yet
approximate, generic solution for computing grid-based distance transform, its fast
nature and the closest-point information stored in the DT’s references is adequate
for efficiently solving another step of the PLS algorithm, namely particle reseeding.
The results show that using the DT references for reseeding works well, and that
sampling references can improve the accuracy when computing particle radii. The
level set correction is realized by scattering the particles into the level set grid in
a way resembling the fluid particle coupling approach. In summary, the presented
GPU-based PLS framework is fast due to its parallel nature, and it thus can handle
large resolutions and particle sets. The main disadvantage of the approach is the
high memory consumption of the grid-based distance transform. Another problem,
which can be observed when using a rather small number of corrective particles, is
that the surface tends to fluctuate due to the local influence of single particles.

The next part, handling flow visualization, is arranged in three blocks, each cover-
ing a specific type of flow primitives. In the first block, GPU-based flow particles are
amplified to suit the field of climate visualization. This includes a discussion of the
requirements and a system providing basic features like different rendering modes,
shadowing in combination with a terrain, and the support for a basic non-uniformity
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of the input grid. The flow data set introduced in this block constitutes the main
example used in the remainder of the chapter. The second block is dedicated to
the construction of time-adaptive, real-time controlled flow lines. Two GPU-based
algorithms are provided for the fast generation of stream, path and streak lines. The
main difficulty related to the time-adaptivity is to deal with the asynchronism of
flow data access during parallel processing. A new processing scheme called selective
transform feedback helps to solve this problem. As stream and path lines are gener-
ated in each frame, they can directly benefit from classical time-adaptivity schemes
like step-doubling. For streak lines, true time-adaptivity is difficult to achieve. In-
stead, a concept is proposed which includes inter-segment adaptivity and a refine-
ment step ensuring a balanced curve progression without undesirable peaks. The
results show that high-quality flow lines can be visualized efficiently within large
flow data sets, even in the case where the size of the data exceeds the available GPU
memory. Even larger data sets which do not fit in main memory can be visualized in
principle. However, a more elaborate memory management including efficient disk
caching would be necessary in this case to ensure a smooth visualization without any
delay. The third block extends the GPU-based PLS framework presented before in
order to support three new types of volumetric flow primitives: time surfaces, path
volumes and streak volumes. The latter, which is also known as dye advection, re-
quires a special scheme for injecting a new volume which is constantly added during
visualization. The model for dye injection must take care of maintaining a correct
level set representation in both the grid and the particle set. It turned out that the
proposed model constitutes a suitable extension to PLS towards the visualization
of flow volumes. A weakness of the approach is, again, a high memory consumption
for the grid-based distance transform and the problem that smoothed surfaces are
difficult to achieve due to the local per-particle correction.

In order to test the usability of the presented techniques, various examples have
been given. The typhoon example discussed in the flow chapter is the main case
study, showing the applicability in the context of climate flow visualization. An
alternative interface with stronger user immersion is provided by the support for
virtual reality environments. It has also been shown that PLS surfaces can be com-
bined with flow or fluid particles by using the DT-based level set representation
for an efficient collision detection and reaction. This combination handles scenarios
where an object is interactively deformed while a particle system, e.g. modelling
snowflakes, is moving around. Similarly, a deformable object can be placed within
a particle-based fluid. There are, certainly, many more possible applications, which
have not been investigated yet.

5.2 Future Directions

This section contains some proposals for possible extensions and improvements,
including technical aspects as well as general future directions, investigations and
applications.

Clearly, the GPU-based particle fluid solver presented in Chap. 2 exhibits many
possibilities for improvements, and fluid simulation is a general subject which is
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relevant in many physical systems. Many improvements already exist at the time
of writing this document, e.g. the more accurate index method by Harada et al.
[HKK07b], which is also discussed at the end of Chap. 2. Zhang et al. present an
adaptive SPH sampling using the GPU [ZSP08], i.e. supporting different particle
radii. Additionally, the CUDA-based implementation of granular media included in
the NVidia SDK [Gre08] shows that investigations are active in this field. One of
the main problems still remaining is the restriction of the volume of interest to the
coverage of the index texture. Fluids represented by a dense particle set, i.e. using a
small smoothing kernel, are especially difficult to handle, as a high resolution must
be chosen for the grid. One solution to this problem is to cut the grid into slices
containing only non-empty regions [HKK07a]. However, redundancies in the storage
are still inevitable when the fluid is highly scattered. Consequently, future research
could go into the direction of a grid-free neighboring, possibly relying on a pointer
structure or on a special kind of particle sorting. Rendering of the fluid is an aspect
which is especially important in graphics related applications. For example, an iso-
surface instead of a particle-wise rendering would lead to a much more realistic
appearance of the simulated medium. Yasuda et al. recently presented a ray casting
approach working on the index texture used for particle neighborhoods [YHK09].
The integration of such a rendering approach into a composite scene consisting
of fluid elements and other objects like polygonal meshes would be an interesting
and practical extension. Real-time caustics would also improve the realism of fluid
rendering.

The GPU-based PLS framework presented in Chap. 3 using a texture represen-
tation of the level set suffers from a high memory consumption. A narrow band
approach based on a page table, like in [LKHW04], or using a hierarchical pointer
structure could reduce the memory problem and might even accelerate the algo-
rithm by avoiding processing of unspecified regions. However, such schemes require
a careful design in order to keep the overhead at a minimum. Pointer structures are
still difficult to handle on the GPU, i.e. without transferring any information to the
CPU, but future work will surely provide new solutions in this direction. The origi-
nal PLS method was designed to trace the exact surface of a fluid. Until now, highly
accurate surface tracing based on PLS was a time-consuming task which could be
solved only for preanimated sequences, e.g. in the case of computer animated motion
pictures. Applying Navier Stokes to the GPU-based PLS framework could move the
scope towards a real-time simulation of a fine-granulated fluid surface. This would
provide a system for high quality fluids in computer games or similar interactive
applications. The bumpy surface problem of PLS surfaces could be addressed by a
feature-preserving smoothing technique like the anisotropic diffusion proposed by
Preußer and Rumpf [PR02]. This kind of smoothing pass might be able to reduce
the effect, however it is clear that avoiding bumps during level set correction would
be much more powerful. This could go into the direction of the marker level set
method by Mihalef et al. [VMS07], which might provide a smoother object surface.

The flow visualization presented in Chap. 4 is a first step towards a fully func-
tional real-time application for climate visualization. However, future investigations
should include even more intuitive user interfaces and advanced means to interac-
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tively probe the data. The support of virtual reality environments is one example,
and it is clear that such an application could provide a far larger set of tools for
flow exploration: For example, an intuitive virtual toolkit could be used to chose
specific flow primitives or specific flow attributes to be color-coded. Besides virtual
reality, there are many further possibilities which would improve the usability. The
use of transfer functions could potentially be of help for the isolation of interesting
structures in the flow. Additionally, particle visualization can be enhanced by en-
coding additional information by the use of vector or tensor glyphs. Such moving
glyphs could be efficiently generated using the geometry shader stage of the current
graphics pipeline. In order to make the data flow, from climate simulation to vi-
sualization, easier and more efficient, a more elaborate support of curvilinear grids
should be addressed in future work. The access of very large data directly in the
visualization would require advanced caching techniques. This could also involve a
bricking technique for transferring smaller portions of the data set. A multi-node
approach with several computers or graphics cards, each holding only a part of the
flow data, might lead to further improvements in data access.

Next to the particle-based approach, a method for efficiently generating and visu-
alizing adaptive stream, path and streak lines using modern graphics hardware has
been presented in Chap. 4. Due to the generic nature of the line generators, it should
be possible to incorporate more sophisticated adaptive time-stepping methods that
replace step-doubling. Similarly, streak line refinement could be improved without
changing the algorithmic idea. This could expand the applicability of the method to
areas where an even higher accuracy is necessary.

The last part in Chap. 4 proposes a modified and enhanced GPU-based PLS
method for the representation of flow volumes. The marker level set method by
Mihalef et al. [VMS07] promises to be superior and might be adapted to dye injection
for the visualization of flow volumes. The possibility of coding texture information in
surface particles could be used to color-code specific flow attributes. A GPU-based
concept for marker level sets has been presented recently [MDHZ08].

5.3 Conclusion

Computer graphics is a research field which is very active and subject to fast devel-
opments on both the theoretical and the hardware side. The latter is an important
factor, as improvements are not only related to the raw computational power, but
also to the conceptual design. The parallel architecture of the GPU requires a new
way of thinking. The new paradigm has already reached many applications, still,
others might benefit from a GPU-friendly realization, but never have been brought
into the GPU world seriously.

The design of GPU-based methods requires new algorithms and data structures.
One of the difficulties is to provide processing schemes which smoothly cooperate
with the data structures. Accordingly, this work has investigated particle systems
and their combination with grids. An important statement is that such grid-particle
methods have the potential to accelerate the processing of accurate volumetric rep-
resentations.
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As a result from these investigations, it has been shown that such efficient pro-
cessing schemes can be provided in order to realize fast fluids, fast surface tracing,
and a set of various geometric flow visualization techniques.

The other statement which has been made in this work is that GPU-based flow
visualization techniques can highly improve flow exploration in the context of cli-
mate research. Obviously, climate research is, like fluid dynamics, a very active and
important field which might become crucial w.r.t. to current changes in climate. In
this context, one typically has to cope with hard requirements to both the simulation
and the visualization stage, i.e. high resolutions and the desire for real-time support.
Graphics hardware is especially well-suited to realize an interactive visual analysis,
and it could be enhanced to cope with the demanding requirements by providing
support for even larger data sets and a complete set of tools for flow exploration.
One of the next challenges in this context will be to convince potential users of such
systems of the suitability and power of the graphics hardware.
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[Stö95] Stöcker H.: Taschenbuch mathematischer Formeln und moderner
Verfahren. Verlag Harri Deutsch, 1995, ch. 18.12 Numerische Integra-
tion von Differentialgleichungen, pp. 635–ff.

[Str02] Strzodka R.: Virtual 16 bit precise operations on RGBA8 textures.
In Proc. Vision, Modeling and Visualization (2002), pp. 171–178.

[STWE07] Schafhitzel T., Tejada E., Weiskopf D., Ertl T.: Point-based
stream surfaces and path surfaces. In Proc. Graphics Interface (2007),
pp. 289–296.



BIBLIOGRAPHY 111

[TGE97] Teitzel C., Grosso R., Ertl T.: Efficient and reliable integration
methods for particle tracing in unsteady flows on discrete meshes. In
Proc. Eurographics Workshop on Visualization in Scientific Computing
(1997), Lefer W., Grave M., (Eds.), pp. 49–56.

[TS00] Trendall C., Stewart A. J.: General calculations using graphics
hardware, with application to interactive caustics. In Proc. Eurograph-
ics Workshop on Rendering (2000), pp. 287–298.

[TvW03] Telea A., van Wijk J. J.: 3D IBFV: Hardware-accelerated 3D flow
visualization. In Proc. IEEE Conf. on Visualization (2003), pp. 233–
240.

[vFTS06] von Funck W., Theisel H., Seidel H.-P.: Vector field based shape
deformations. ACM Trans. on Graphics 25, 3 (2006), 1118–1125.

[VKG05] Viola I., Kanitsar A., Gröller E.: Importance-driven feature
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