
Extremal Discriminant Analysis

DISSERTATION

zur Erlangung des Grades eines Doktors
der Naturwissenschaften

vorgelegt von

M.Sc. Manjunath, B G
geb. am 24.07.1981 in Bangalore, India

eingereicht beim Fachbereich Mathematik
der Universität Siegen

Siegen 2010



Acknowledgment

This work was created in the course of my Doctoral degree in Statis-
tics at the Department of Mathematics, University of Siegen, Siegen. At
the onset, I am heartily thankful to my supervisor Prof. Dr. R.–D. Reiss,
whose encouragement, supervision and support from the preliminary to
the concluding level enabled me to develop this subject. Above all and
the most needed, he provided me unflinching encouragement and sup-
port in various ways. The lively and productive discussions with him
will always remain a very good memory.

In addition, I am very grateful to Prof. Dr. H.J. Vaman, Prof. Dr. S. Man-
junath and other faculty members at the Department of Statistics, Banga-
lore University, Bangalore, whose support, encouragement and appreci-
ations are memorable.

Further more, I would like to thank Prof. Dr. E. Kaufmann and other fac-
ulty members at the Department of Mathematics, University of Siegen,
Siegen, for providing pleasant work group, which makes the last three
years unforgettable.

I would like to express the deepest appreciation to my colleagues, Dr.
Melanie Frick, Dr. Ulf Cormann and others, whose persistent help and
useful discussions would help me to complete the dissertation.

Indeed, I would like to thank all our previous and present department
secretaries for helping me in all non-technical issues, which made me
have a pleasant stay at the department.

Finally, I would like to thank my parents, friends and also everybody
who was important to the successful realization of the thesis.

Manjunath, B G, University of Siegen.

ii



Kurzzusammenfassung

Das Hauptziel der vorliegenden Dissertation ist die Einführung von Ex-
tremwertmodellen in der Diskriminanzanalyse. Die klassische Diskrimi-
nanzanalyse konzentriert sich auf Normalverteilungs und nichtparametr-
ische Modelle, bei denen im zweiten Fall die unbekannten Dichten durch
Kerndichten ersetzt werden, die auf der Lernstichprobe basieren. Im Fol-
genden nimmt man an, dass es genügt die Klassifizierung auf Basis von
Überschreitungen über einer Schranke vorzunehmen. Diese Überschre-
itungen können als Beobachtungen im bedingten Rahmen interpretiert
werden. Daher ist lediglich die statistische Modellierung von abgeschnit-
ten Verteilungen erforderlich. In diesem Zusammenhang ist eine nicht-
parametrische Modellierung nicht adäquat, da die Methode bezüglich
der Kerndichte im Bereich der oberen Flanke nicht exakt ist. Dennoch
kann eine abgeschnittene Verteilung wie die Normalverteilung verwen-
det werden. Es ist das primäre Ziel, abgeschnittene Normalverteilungen
durch geeignete verallgemeinerte Pareto-Verteilungen zu ersetzen und
Eigenschaften und die Beziehung der Diskriminanzfunktionen in bei-
den Modellen zu untersuchen. Anders als beim klassischen Vorgehen
in der Diskriminanzanalyse wird auch die Konvergenz der klassischen
Diskriminanzfunktionen untersucht.
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Abstract

The main goal of this dissertation is to introduce an extreme value model
to discriminant analysis. A classical discriminant analysis focuses on Gau-
ssian and nonparametric models where in the second case, the unknown
densities are replaced by kernel densities based on the training sample.
In the present text we assume that it suffices to base the classification on
exceedances above higher thresholds, which can be interpreted as obser-
vations in a conditional framework. Therefore, the statistical modeling of
truncated distributions is merely required. In this context, a nonparamet-
ric modeling is not adequate because the kernel method is inaccurate in
the upper tail region. Yet one may deal with truncated parametric distri-
butions like the Gaussian ones. The primary aim is to replace truncated
Gaussian distributions by appropriate generalized Pareto distributions
and to explore properties and the relationship of discriminant functions
in both models. Different to the classical work on discriminant analysis,
we are also interested in the convergence of the classical discriminant
function.
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Chapter 0
Introduction

The specification of extreme value models and exploring properties of
their applications is an active research area. The theory was pioneered by
Leonard Tippett with the help of R. A. Fisher [12]. The field of extreme
value theory has been a very large in expanse in recent years. This is due
to the fact that it is of relevance in many practical problems such as in
analysis of sea levels, rainfall, financial and insurance data, risk analysis,
etc. For the naturally broad variety of literature concerning extreme value
theory we refer to Reiss and Thomas [32] and Beirlant et al. [5] for general
introductions. The probabilistic background is discussed in detail, in Falk
et al. [9], Resnick [33], Galambos [13] and Reiss [31].

The goal of the present manuscript is to introduce multivariate extreme
value models to discriminant analysis. As we know, the theory of clas-
sical discriminant analysis merely focuses on Gaussian model in such
case we have an explicit expression to classify. In the second place, the
nonparametric decision rule is such that the unknown densities are re-
placed by kernel densities based on the training sample. We assume that
it suffices to base the classification on exceedances above higher thresh-
olds. In such cases a nonparametric modeling is not adequate due to the
small number of exceedances and also the kernel density is inaccurate
in the upper tail region. Nevertheless, one can use truncated parametric
distributions like the Gaussian ones. Our primary aim is to replace trun-
cated distributions by appropriate generalized Pareto distributions and
to explore properties and the relationship of discriminant functions in
both models. Subsequently, we also unfold the problem to elliptical fam-
ily by using the results in Harshorva [14],[16]. In relevance we are also
interested in the convergence of discriminant procedure. We remark that
discriminant analysis within univariate extreme value models was inves-

1



2

tigated by Abdalla [1] and Nguimbi [29].

It is well known that the asymptotic distribution of exceedances over
high thresholds is that of a generalized Pareto (GP) random vector if and
only if the corresponding maxima are asymptotically distributed accord-
ing to an extreme value distribution (EVD). In the univariate case, where
GPDs have turned out to be crucial models for the peaks-over-threshold
(POT), which is presented in Section 1.3 of Reiss et al. [9], page 21. In the
framework of the construction of multivariate GPDs there are different
approaches by different authors and all these definitions are closely re-
lated to each other. For broad variety of literature on GPD construction
we refer to Kaufmann and Reiss [21], Tajvidi [35], Reiss et al. [9], Beirlant
et al. [5] and Rootzén and Tajvidi [34]. Multivariate GPDs in the frame-
work of extreme value theory are still under scrutiny. So, due to the limits
in definition, in the present manuscript we confine to the procedure given
by Tajvidi [35] and Rootzén and Tajvidi [34].

Though the content of the present manuscript is small but it is compre-
hensive. The mentioned problems are just a small sample of those which
have to be worked on for a better understanding of extremal discriminant
procedure. In a nutshell, the investigation of the discriminant analysis in
the framework of extreme value models, i.e., extremal discriminant anal-
ysis, is still in the beginning and will surely be an active research area in
the coming years.

In Chapter 1 we begin with some basic definitions and construction of
classical discriminant rule. We will also discuss the truncated Gaussian
model and present the pertaining discriminant function.

Chapter 2 will be dedicated to the derivation of multivariate Hüsler–
Reiss GP density from the Hüsler–Reiss EVD. Subsequently, simulation
algorithm and parameter estimation of the Hüsler–Reiss GP density have
been presented. Finally, we deduce the discriminant function for the mul-
tivariate Hüsler–Reiss GP density and explore some properties of it.

Having established the densities and discriminant functions in previ-
ous Chapter 2 for the rectangularly truncated Gaussian density and the
Hüsler–Reiss GP density. In Chapter 3 we present the convergence theo-
rem that relates both models to each other.

In Chapter 4 we will generalize our main motivation to the family of el-
liptical distributions. Consequently, we construct rectangularly truncated
elliptical density and present the convergence theorem that relates to the
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Hüsler–Reiss GP density.

An additional to the present research, author also affiliated in an algo-
rithm evolution and implementation for tmvtnorm: Truncated Multivari-
ate Normal and Student-t Distribution, R on–line package, cf. Wilhelm
and Manjunath [42], [41]. Some of the contributed algorithms are pre-
sented in Appendix B.



Chapter 1
Classical discriminant analysis

1.0 Introduction

This chapter begins with some basic definitions and construction of dis-
criminant procedure. The definition used here is originated from Falk et
al. [10] and Lachenbruch [25]. In the present text we confine ourselves to
the case of two classes; the modifications required for dealing with more
than two classes are straightforward.

Section 1.3 and 1.4 will begin with deducing discriminant function for
Gaussian and truncated Gaussian distribution, which are of benchmark
to our current text. An analogous results for discriminant functions when
the covariance matrices are not identical, is also been presented. An ad-
dition, in Section 1.4 we are introducing discriminant function for the
elliptically truncated Gaussian model, see Tallis [36]. At the end of each
section simulated results are presented.

1.1 Theory of discriminant analysis

The discriminant procedure, which was originally introduced by Fisher
[11] has suggested using a linear combination of the observations, and
the coefficients are chosen in such way that the ratio of the difference of
the means of the linear combination in the two population to its variance
is maximized. As a contradictory Fisher’s convention doesn’t depend on
the population density. Later, in the framework of the construction of dis-
criminant rule there are different approaches by different authors. Some
of them are noted here: Welch [40] suggested the idea of minimizing the
total probability of misclassification; Von Mises [28] suggested minimiz-

4



1.2 Discriminant analysis 5

ing the maximum probability of misclassification; Anderson [3] proposed
minimizing the total cost of misclassification.

A contemporary procedure in discriminant analysis which is based on
Bayes rule is, classify an observation to the group with the largest pos-
terior probability. This is equivalent to the rule that minimizes the total
probability of misclassification.

In the following section we will construct Bayes discriminant procedure
and throughout our manuscript we adapt the same structure to construct
classification rule.

1.2 Discriminant analysis

The basic idea of discriminant analysis is to classify an object of unknown
origin to one of several given classes based on the measurement vector
(also called discriminator) within a d–dimensional space. The available
data sets to do this are samples of objects of which both their class mem-
berships and their measurements are known.

Now, we will formulate mathematical definition of discriminant analy-
sis, a population Ω of objects which is divided into K ≥ 2 disjoint subsets
Ω1, ..., ΩK (called classes). Let ω ∈ Ω =

⋃K
k=1 Ωk, be an object, whose

actual class is unknown. We know that the object ω carries d observ-
able characteristics, which is a d-dimensional measurement vector x =
x (ω) ∈ S ⊂ Rd, a function from X : Ω → S (also called as discrimina-
tor). The set S is determined by all possible measurement vectors and the
number K is known.

For the classification of an object we divide the sample space S into K
disjoint and nonempty subsets G1, ..., GK and estimate the class index of
ω by the decision rule, ω is classified to Ωk ⇔ x ∈ Gk. The subsets will
be chosen in some optimal way through probabilistic reasoning. The true
class index k = k(ω) is interpreted to be realizations of random variables
κ : Ω → {1, ..., K}, where κ(ω) := k for ω ∈ Ωk, k = 1, ..., K. The random
variables X and κ will generally be dependent variables, as the vector
X(ω) contains the observable information about the class index κ(ω).

1.2.1 The model for discriminant analysis

The sampling of an object from the population Ω is modeled by a proba-
bility distribution P, is called prior distribution. Denote by p(k) := P(Ωk)
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is prior probability of the event Ωk = {κ = k}, i.e., of the event that κ at-
tains the value k. We assume that there is a positive probability of an
object be in a sample from any of the subclass. As a class specific dis-
tribution on Ω, let X be a d-dimensional random variable with density
w(x), then the conditional distribution of X, given that κ = k, is

P(X ∈ ·|κ = k) = P {X ∈ ·, κ = k} /p(k) (1.1)

has a d-dimensional density w(x|k), k = 1, ..., K.

The unconditional distribution of X on S ⊂ Rd has the density

w(x) :=
K

∑
k=1

p(k)w(x|k), x ∈ S,

and the conditional distribution of κ, given that X = x is given by

P(κ ∈ ·|X = x).

1.2.2 Expected loss under misclassification

Let {G1, ..., GK} be an arbitrary partition of S. Consider an event
{

X ∈ Gj ,
κ = i}with j 6= i which leads to an event of misclassification and the loss
of this event is C(j|i) > 0,
where C(·|·) :{1, ..., K} × {1, ..., K} → [0, ∞), with C(k|k) = 0, k = 1, ..., K,
is a loss function.

The expected loss or Bayesian risk R is given by

R := R(G1, ..., GK) := E

(
C

(
K

∑
j=1

j1Gj(X)|κ
))

=
K

∑
j=1

K

∑
i=1

p(i)C(j|i)
∫

Gj

w(x|i)dx.

A partition {G1, ..., GK} which minimizes the risk is an optimal space for
classification rule.

1.2.3 Optimal partition

Let x ∈ S and k = 1, ..., K, define a function

dk(x) :=
K

∑
i=1

p(i)C(k|i)w(x|i). (1.2)
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The risk R is minimized by the partition

G∗1 =
{

z ∈ S : d1(z) = min
1≤k≤K

dk(z)
}

,

G∗j =
{

z ∈ S : dj(z) = min
1≤k≤K

dk(z)
}
\

j−1⋃
i=1

G∗i , j = 2, ..., K.

The funtions dk : S→ [0, ∞) are called discriminant functions.

Remark 1.1 For a symmetric loss function C(j|i) = C > 0 for all i, j and
p(k) = 1/K, then Bayes’ rule in (1.2.3) becomes the maximum-likelihood rule,
i.e., the smallest class index k̂ which maximizes the group-specific density.

1.2.4 Optimal partition when K = 2

Discriminant function for classifying an unknown observation between
two classes is given by, d1(x) = p(2)C(1|2)w(x|2) and
d2(x) = p(1)C(2|1)w(x|1). The optimal discriminant partition is,

G1 = {z ∈ S : d1(z) ≤ d2(z)}
G2 = {z ∈ S : d2(z) < d1(z)} .

The above rule also give rise to,

w(x|1)
w(x|2)

≥ p(2)C(1|2)
p(1)C(2|1)

. (1.3)

For notational convince we denote, let p1, p2 and c1, c2 be the correspond-
ing prior probabilities and costs of misclassification to the first and the
second population, respectively. The optimal discriminant decision is de-
termined by the following rule: an observation vector x is classified to
class 1 if the inequality

w(x|1)
w(x|2)

≥ c2p2

c1p1
(1.4)

is fulfilled. The optimal common border or discriminant function is ob-
tained by formulating (1.4) as an equation and solving it as a function in
the discriminator x. Throughout our manuscript we use above formula-
tion to construct the discriminant function and also we confine ourselves
to the case of two classes; the modifications required for dealing with
more than two classes are straightforward.
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1.3 Discriminant function for Gaussian model

Classical discriminant analysis focuses on the Gaussian model. In that
case one gets an explicit representation of the discriminant function. De-
note by

ϕµ,Σ(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

(2π)d/2 |Σ|1/2 , x ∈ Rd (1.5)

the d-dimensional Gaussian density with location parameter vector µ ∈
Rd and non-singular covariance matrix Σ. The pertaining distribution
function is denoted by Φµ,Σ(x).

The corresponding discriminant function for classifying an observation
(using equation (1.4)) x between ϕ

µ(1),Σ(1)(x|1) and ϕ
µ(2),Σ(2)(x|2) is

DQ(x) = −1
2
(x− µ(1))TΣ(1)−1

(x− µ(1)) +
1
2
(x− µ(2))T

Σ(2)−1
(x− µ(2))− log

c2p2

∣∣∣Σ(1)
∣∣∣1/2

c1p1
∣∣Σ(2)

∣∣1/2 .

Therefore, the decision rule entails that an observation vector x is classi-
fied to ϕµ(1),Σ(1)(x|1) if DQ(x) ≥ 0, cf. Lachenbruch [25], page 11, or Falk
et al. [10], page 231. This function is quadratic in x. In addition, in the
case of identical covariance matrices Σ(1) = Σ(2) = Σ the discriminant
function

DL(x) =
[

x− 1
2
(µ(1) + µ(2))

]T
Σ−1(µ(1) − µ(2))− log

c2p2

c1p1
(1.6)

is linear, and the common border constitutes a hyperplane. This result
can be regarded as a benchmark in discriminant analysis.

1.4 Discriminant function for truncated
Gaussian density

In this section we discuss the truncated Gaussian density and present the
pertaining discriminant function. We use both rectangular (see Horrace
[17]) and elliptical truncations (see Tallis [36]). Truncation of distributions
outside of the upper tail region is a crucial idea in extreme value theory.



1.4 Discriminant function for truncated
Gaussian density 9

1.4.1 Rectangular truncation

Now, let X = (X1, ..., Xd)T be a d-dimensional random vector from the
rectangularly truncated Gaussian model. Then X has the density

fRT(x) =

{
ϕµ,Σ(x)
P{X>c} , for x > c

0, otherwise ,

where c = (c1, ..., cd)T ∈ Rd, Σ is a non-singular covariance matrix and
µ ∈ Rd is a location parameter.

The discriminant function for classifying an observation between two
classes with the densities fRT(x|1) and fRT(x|2) which have different lo-
cation parameters µ(1) and µ(2) and truncation vectors c1 and c2, respec-
tively, can be determined by using equation (1.4). We have

DRT(x) =
[

x− 1
2
(µ(1) + µ(2))

]T
Σ−1(µ(1) − µ(2))− log

c2p2

c1p1
+ Tr(c1, c2),

where Tr(c1, c2) is given by

Tr(c1, c2) = log P{X > c2} − log P{X > c1}.

Note that DRT(x) is linear in x. We refer to Kocherlakota et al. [22] for
discriminant analysis concerning to the truncated univariate Gaussian
distributions.

Remark 1.2 When the support of the two truncated densities are different and
they are known, then the rule DRT(x) ≥ 0 is admissible within the intersected
support region. If an observation x falls outside of the intersected support region
then the optimal rule is predetermined by using the probability of existence of an
observation x between first and second density.

Example 1.1 We display simulated samples from the rectangularly truncated
bivariate Gaussian density with truncation vector c = 0, cf. Figure 1.1.

1.4.2 Elliptical truncation

Now, let X = (X1, ..., Xd)T be a d-dimensional random vector from the
elliptically truncated Gaussian model. Then X has the density
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Figure 1.1: Rectangular truncation of the bivariate Gaussian density

fET(x) =

{
ϕµ,Σ(x)
P{X∈E} , for x ∈ E

0, otherwise ,

where E =
{

x : (x− µ)TΣ−1(x− µ) ≥ u
}

, u is non-negative real value,
and Σ is a non-singular covariance matrix and µ ∈ Rd is a location pa-
rameter.

The discriminant function for classifying an observation between two
classes which the densities fET(x|1) and fET(x|2) which have different
location parameters µ(1) and µ(2) and truncation regions E1 and E2, re-
spectively, can again be determined by using equation (1.4). We have

DET(x) =
[

x− 1
2
(µ(1) + µ(2))

]T
Σ−1(µ(1) − µ(2))− log

c2p2

c1p1
+ Te(E1, E2)

where Te(E1, E2) is given by

Te(E1, E2) = log P{X ∈ E2} − log P{X ∈ E1}.

Obviously, the two truncation borders have the same shape but differ in
the shift which depends on the type of truncation.
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Example 1.2 For an illustration simulated samples from the elliptically trun-
cated bivariate Gaussian density has been plotted with the threshold u = 1.5, cf.
Figure 1.2.
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Figure 1.2: Elliptical truncation of the bivariate Gaussian density

Remark 1.3 Note that an estimated discriminant function can be obtained by
plugging in corresponding parameter estimates. In general, maximum likelihood
estimator (MLE) of discriminant function is obtained by replacing all parameters
with their corresponding MLE estimates.

1.5 Non-parametric discriminant analysis

In the above sections we assumed that the group-specific distributions
w(x|i) within the classes were known. The particular case of Gaussian
and truncated Gaussian was investigated in section 1.3 and 1.4. How-
ever, if the densities w(x|i) are unknown then the natural idea is to re-
place them by kernel densities based on the training sample, see page
246 of Falk et al. [10] .

The kernel density estimator approach: let X1, X2, ..., Xn be a d–dimensional
random vector with density w(x). Then the kernel density approximation
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of w(x) is

ŵ(x) =
1

nhd

n

∑
i=1

g
(

x− xi

h

)
, x ∈ Rd, (1.7)

with kernel g : Rd → R and bandwidth h > 0. With the property that

g(x) ≥ 0 and
∫

g(x)dx = 1.

In addition, if the prior probabilities p(k) are unknown. Then we can es-
timate them by the empirical frequencies, i.e., p̂(k) = nk/n of associated
classes, where n = n1 + ... + nK and nk is sample size of kth class. By sub-
stituting w(x|i) and p(k) by ŵ(x|i) and p̂(k) in equation (1.4) we obtain
non-parametric discriminant function.

In the above sections we assumed that the prior informations (or prior
probabilities) and sample sizes are fixed. In general, this scenario do not
leads to practical situation. Because as we know from the theory of ex-
ceedances, the number of exceedances is a Poisson distributed random
variable. In that context, one might use random sample size for classifi-
cation.



Chapter 2
Hüsler-Reiss GPD

2.0 Introduction

In this chapter we are primarily interested in modeling the upper tail
of Gaussian density, which can be done by replacing appropriate gener-
alized Pareto distribution. According to Theorem 1 of Hüsler and Reiss
[19] the asymptotic distribution of the maxima of a triangular scheme of
Gaussian random vectors is the Hüsler–Reiss extreme value distribution.
Along with the approach of Rootzén and Tajvidi [34] we will deduce the
pertaining GPD. The derived density will be the tail approximation of
corresponding Gaussian one.

Subsequently, in the chapter we present the discriminant function and
some properties of the Hüsler–Reiss GP density. Finally, we finish the
chapter with some simulation results.

In the following section our results are primarily presented for the bivari-
ate random vector and subsequently it has been extended to arbitrary
dimension d.

2.1 Extreme value and generalized Pareto
models

Now, let (X1, X2) be a bivariate random vector with associated distribu-
tion function Fρ1,2 , where X1 and X2 are standard Gaussian random vari-
ables and ρ1,2 is the correlation coefficient. Subsequently, let the correla-
tion coefficient depend on the sample size n. Then, according to Theorem

13
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1 by Hüsler and Reiss [19], the following result holds. If

(1− ρ1,2(n)) log n→ λ2
1,2 ∈ [0, ∞] , n→ ∞, (2.1)

then
lim

n→∞
Fn

ρ1,2(n)(bn + x1/bn, bn + x2/bn) = Hλ1,2(x1, x2)

for every x1, x2 ∈ R, where bn = nϕ(bn), ϕ is the standard Gaussian
density, and the limiting function is given by

Hλ1,2(x1, x2) = exp
[
−Φ

(
λ1,2 +

x1 − x2

2λ1,2

)
e−x2

−Φ
(

λ1,2 +
x2 − x1

2λ1,2

)
e−x1

]
, (2.2)

Φ being the standard Gaussian distribution function. For an explicit, ap-
proximate solution to the equation bn = nϕ(bn) we refer to Reiss [30],
page 161. Moreover, independence and complete dependence are achieved
at λ1,2 = ∞ and λ1,2 = 0, respectively, i.e.,

H∞(x1, x2) = exp(−e−x1) exp(−e−x2) and

H0(x1, x2) = exp
(
−e−min(x1,x2)

)
.

Now, following Section 3 by Hüsler and Reiss [19] and Section 12.1 by
Reiss and Thomas [32], page 297, let X = (X1, ..., Xd)T be a d-dimensional
standard Gaussian random vector with df FΣ, where Σ = (ρi,j)i,j≤d is the
correlation matrix. Apparently, by imposing a certain rate of convergence
on ρi,j(n), i.e., for 1 ≤ i, j ≤ d,

(1− ρi,j(n)) log n→ λ2
i,j ∈ [0, ∞] , n→ ∞,

the limit of the standardized distribution function Fn
Σ(n), as n→ ∞, is the

d-dimensional Hüsler-Reiss extreme value distribution

HΛ(x) = exp

(
−

d

∑
k=1

∫ ∞

xk

ΦΣ(k)

((
λi,k +

xi − z
2λi,k

)k−1

i=1

)
e−zdz

)
(2.3)

(in the representation given by Joe [20]) where Λ is a symmetric d × d-
matrix Λ = (λi,j) with λi,j > 0 if i 6= j and λi,i = 0, and ΦΣ(k) is a (k− 1)–
variate Gaussian distribution function (with the convention ΦΣ(1) = 1).
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The mean vector of ΦΣ(k) is zero and Σ(k) = (σi,j(k)) is the correlation
matrix given by

σi,j(k) =

{
1

2λi,kλj,k

(
λ2

i,k + λ2
j,k − λ2

i,j

)
, 1 ≤ i < j ≤ k− 1,

1, i = j.
(2.4)

Now we discuss the construction of a GPD belonging to an EVD. The
derivation of univariate GPDs, which is presented in Section 1.3 of Reiss
et al. [9], page 21, has to be modified in the multivariate case. In the
framework of the construction of multivariate GPDs there are different
approaches by different authors. The first one can be found in the dis-
sertation of Tajvidi [35], another one in Kaufmann and Reiss [21] and in
Section 5.1 by Reiss et al. [9], and still another one in Section 8.3 by Beir-
lant et al. [5]. In the present work we use the definition given by Tajvidi
[35], which is investigated in detail in Rootzén and Tajvidi [34].

Definition 2.1 Let H(x) be a d–variate EVD. Then the corresponding GPD has
the representation

W(x) :=

{
0, otherwise

1− log H(x)
log H(0) , if x ≥ 0. (2.5)

The above definition has independently also been noted in Section 8.3.1
of Beirlant et al. [5], page 278. Similar definition with close to the origin
on the entire negative quadrant is in Lemma 5.1.3 of Reiss et al. [9].

Remark 2.1 Note that the Hüsler–Reiss EVD is the limiting distribution of
triangular scheme of Gaussian random vectors. i.e., for each positive n we are
sampling from the Gaussian distribution with increasing in parameter value
(depend on n). Nevertheless, the above GPD definition is still valid for triangular
scheme of random arrays because of independence at each positive n, see Hüsler
et. al. [2].

Hence, the multivariate Hüsler–Reiss GPD has the form

WΛ(x) = 1− (log HΛ(x)/ log HΛ(0))

= 1− 1
C(λ)

(
d

∑
k=1

∫ ∞

xk

ΦΣ(k)

((
λi,k +

xi − z
2λi,k

)k−1

i=1

)
e−zdz

)
(2.6)

where

C(λ) =
d

∑
k=1

∫ ∞

0
ΦΣ(k)

((
λi,k −

z
2λi,k

)k−1

i=1

)
e−zdz.
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Remark 2.2 For d = 2 the constant C(λ) reduces to

C(λ) =
∫ ∞

0
e−zdz +

∫ ∞

0
ΦΣ(2)

(
λ1,2 −

z
2λ1,2

)
e−zdz

= 2ΦΣ(2)(λ1,2).

Multivariate GPDs in the framework of extreme value theory are still un-
der scrutiny. So, due to the limits in defining a multivariate GPD we use
the above definition. One shortfall of it, as discussed by Tajvidi [35], is
that there is some probability mass on the each axis. i.e., the threshold
line which consists of null sets with respect to the Lebesgue measure has
a positive probability. This leads to one d-dimensional measure on Rd

+
and d univariate measures on each axis. This point is also been noted in
Section 2 by Michel [27].

In the following theorem we present the density of the multivariate Hüsler–
Reiss GPD.

Theorem 2.1 Let WΛ(x) be the Hüsler–Reiss GPD as defined in equation (2.6).
Then for each 0 < λi,j < ∞, i < j ≤ d− 1, the multivariate Hüsler-Reiss GP
density is of the form

w(x) =
e−xd

2d−1
(

∏d−1
i=1 λi,d

)
C∗(λ)

ϕΣ(d)

((
λi,d +

xi − xd
2λi,d

)d−1

i=1

)
(2.7)

for x > 0, where ϕΣ(d) is the (d− 1)–variate Gaussian density and C∗(λ) =
C(λ)(1 − K(λ)), K(λ) denote total mass on the d axes and C(λ) defined in
(2.7) . The mean vector of ϕΣ(d) is zero and Σ(d) = (σi,j(d)) is the correlation
matrix in (2.4) for k = d.

Proof. We first prove the assertion for the bivariate case. Plugging equa-
tion (2.2) into (2.5) we obtain

Wλ1,2(x1, x2) = 1−
Φ(λ1,2 + x1−x2

2λ1,2
)e−x2 + Φ(λ1,2 + x2−x1

2λ1,2
)e−x1

2Φ(λ1,2)
.

If the continuous partial derivate of Wλ1,2 exist on the open support then
according to Theorem A.2.2 in Bhattacharya and Rao [7], page 264, the
density is given by
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w∗λ1,2
(x1, x2) =

∂2Wλ1,2(x1, x2)
∂x2∂x1

=
1

2Φ(λ1,2)

[
e−x2

4λ2
1,2

ϕ
′
(

λ1,2 +
x1 − x2

2λ1,2

)
+

e−x1

4λ2
1,2

ϕ
′
(

λ1,2 +
x2 − x1

2λ1,2

)
+

e−x2

2λ1,2
ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
+

e−x1

2λ1,2
ϕ

(
λ1,2 +

x2 − x1

2λ1,2

)]
where ϕ

′
(a) = (−a)ϕ(a). Note that

e−x2 ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
= e−x1 ϕ

(
λ1,2 +

x2 − x1

2λ1,2

)
according to Reiss and Thomas [32], page 296. With this identity the func-
tion reduces to

w∗λ1,2
(x1, x2) =

e−x2 ϕ(λ1,2 + x1−x2
2λ1,2

)

4λ1,2Φ(λ1,2)
, x1, x2 ≥ 0. (2.8)

As discussed, if we integrate w∗λ1,2
(x1, x2) on the entire support, the to-

tal mass is less then one, namely, (1− Φ(λ1,2))/Φ(λ1,2). Of course, the
total mass sums up to one if we additionally consider the mass on the
axes. Now, the mass on the x2–axis is equal to W(0, ∞) = (2Φ(λ1,2) −
1)/2Φ(λ1,2). Since the bivariate Hüsler–Reiss distribution function is sym-
metric in x1 and x2, the same mass is obtained on the x1–axis. One can
easily see that the mass on the axes increases as λ1,2 increases, i.e., the
degree of independence between the two variables increases. In case of
independence the entire mass lies on the axes. If λ1,2 tends to zero, i.e.,
we move towards complete dependence, the mass on the axes converges
to zero. Therefore it has been investigated that the mass on the axes is
directly related to the strength of the tail dependence. The conditional bi-
variate density on R2

+ is obtained by truncating the mass on each axis.
This implies that we are truncating the observations on each axis. Fur-
ther, it means that we are modeling in an open rectangle of R2

+. So, by
dividing the function in (2.8) by (1− Φ(λ1,2))/Φ(λ1,2) (which is calcu-
lated within the truncated model), we obtain the bivariate Hüsler–Reiss
GP conditional density.
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X1	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  X2	  

0	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
x2	  

	  	  

	  	  	  	  	  0	  

	  	  	  	  	  	  	  	  x1	  

Figure 2.1: Bivariate GPD with positive support. The arrows illustrate
that the mass in the each region is moved to the axes.

wλ1,2(x1, x2) =
e−x2 ϕ(λ1,2 + x1−x2

2λ1,2
)

4λ1,2(1−Φ(λ1,2))
, x1, x2 > 0. (2.9)

Now we generalize our proof to arbitrary dimensions. According to The-
orem A.2.2 in Bhattacharya and Rao [7], page 264, the partial derivate of
WΛ with respect to (x1, ..., xd) exists on an open interval and the density
is given by

w∗(x) =
e−xd

2d−1
(

∏d−1
i=1 λi,d

)
C(λ)

ϕΣ(d)

((
λi,d +

xi − xd
2λi,d

)d−1

i=1

)
. (2.10)

Similarly as in the bivariate case the above function leads to positive mass
on each axis. The mass on the ith axis can easily be determined by calcu-
lating WΛ(0, ..., 0, ∞, 0, ..., 0). The total mass on the d axes is denote by
K(λ). We know that the sum of the mass on the axes and the mass on Rd

+
will add up to one. Now, similar to the bivariate case we are interested
in the density upon the open rectangle of Rd

+. Therefore, the new scaling
factor is given by

C∗(λ) = C(λ)(1− K(λ)).

Replacing C(λ) by C∗(λ) in (2.10) completes the proof. �
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Remark 2.3 For d = 2 the constant C∗(λ) is given by C∗(λ) = 1− Φ(λ).
Generally, if all λi,j are close to 0, C∗(λ) is approximately equal to C(λ).

Example 2.1 For an illustration of the bivariate Hüsler–Reiss GP density. The
contour and density plots are demonstrated for λ1,2 = 0.2 (close to complete
dependence) and λ1,2 = 2.0 (close to complete independence), see Figure 2.2 and
2.3,respectively.

x1

x2

p

Density plot

x2

 0.1 

 0.
1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

 1 

contour plot

Figure 2.2: Density and contour plot of the bivariate Hüsler–Reiss GP
density for λ1,2 = 0.2, i.e., close to complete dependence.

Example 2.2 As we noted from the above section that there exist a positive mass
on the threshold line. In the following we will illustrate another example of the
similar type.

Let (X1, X2) be a bivariate random vector with the following distribution func-
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x1

x2

p

Density plot

x2

 0.06 

 0.08 

 0.1 

 0.12 
 0.14 

 0.16 

 0.18 

 0.2 

 0.22 

 0.24 

contour plot

Figure 2.3: Density and contour plot of the bivariate Hüsler–Reiss GP
density for λ1,2 = 2.0, i.e., close to complete independence

tion

W(x1, x2) = 1−
(
(−x1)

λ + (−x2)
λ
) 1

λ ,
(
(−x1)

λ + (−x2)
λ
) 1

λ ≤ 1,

(2.11)

where λ ≥ 1. Which is the derived GPD from the Gumbel EVD with negative
uniform margins. And, a GPD definition follows from the Lemma given in Sec-
tion 5.1.3 of Reiss et al. [9]. For the above model complete independence and
dependence are achieved at λ = 1 and λ = ∞, respectively, see Figure 2.4.
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Figure 2.4: Threshold line for the Gumbel GPD by using the definition in
Section 5.1.3 of Reiss et al. [9].

Now, conditional distribution function of X1 given X2 = x2 is given by

P(X1 ≤ x1|X2 = x2) = lim
ε↓0

P {X1 ≤ x1, X2 ∈ [x2, x2 + ε]}
P {X2 ∈ [x2, x2 + ε]}

= lim
ε↓0

W(x1, x2 + ε)−W(x1, x2)
x2 + ε− x2

=
d

dx2
W(x1, x2). (2.12)

So, the conditional distribution function of (2.11) reduces to,

P(X1 ≤ x1|X2 = x2) =
−(x2)λ−1(

(−x1)
λ + (−x2)

λ
)1− 1

λ

.

On similar line we can show that,

P(X1 ≤ −(1− (−x2)λ)
1
λ |X2 = x2) = (−x2)

λ−1 .

The above probability can be rewritten as,

P(X1 ≤ −(1− (−x2)λ)
1
λ |X2 = x2) = P((−X1)

λ + (−X2)
λ = 1

|X2 = x2).
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The total probability on the threshold line can be calculated from,

P((−X1)
λ + (−X2)

λ = 1) =
∫ 0

−1
P((−X1)

λ + (−X2)
λ = 1

|X2 = x2)dx2 =
1
λ

. (2.13)

It as been shown that the total mass on the threshold line of the distribution (2.11)
is 1/λ. This mass converges to zero if we move towards complete dependence,
i.e, when λ→ ∞. Consequently, at λ = 1 the complete probability mass lies on
the threshold line, so at λ = 1 we do not have density in an open space.

2.2 Properties of the Hüsler–Reiss GPD

In the following section we will establish some properties of multivariate
Hüsler–Reiss GP density.

2.2.1 Peaks-over-threshold

It is well known that the univariate GPDs are characterized by their peaks-
over-threshold (POT) stability. By POT stability we mean that the excess
distributions are invariant to the choice of threshold. In the frame work
of multivariate POT stability, it is not uniquely determined as stated in
Section 5.3. of Reiss et. al. [9] and Falk and Guillou [8]. In an article by
Rootzén and Tajvidi [34] establishes the characterization of a GPD that is
defined in terms of a POT stability.

According to Theorem 2.2 of Rootzén and Tajvidi [34] a GPD definition
given in (2.1) persist POT stability. Which implies that the Hüsler-Reiss
GPD induces POT stability.

2.2.2 Conditional density

In the following section primarily, we present the property to the bi-
variate case. However, it can be generalized to arbitrary dimension in a
straightforward manner. We also note here that the above derived Hüsler-
Reiss GP density has similar structure to Gauss-exponential density. Ex-
pect that in the Gauss-exponential density the variable in exponential
model and the variables in Gaussian model are independent but the Hüsler-
Reiss GP density has dependent structure. The application of the Gauss-
exponential density to high risk data and properties of them are pre-
sented in Balkema and Embrechts [4].
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From the above model in equation (2.9) the marginal density of X2 is
given by,

w2(x2) =
e−x2

(
1−Φ

(
λ1,2 − x2

2λ1,2

))
2(1−Φ(λ1,2))

, x2 > 0 (2.14)

Now, conditional density of X1 given X2 = x2 is,

w1(x1|x2) =
ϕ
(

λ1,2 + x1−x2
2λ1,2

)
2λ1,2

(
1−Φ

(
λ1,2 − x2

2λ1,2

)) , x1 > 0 (2.15)

In general, the conditional distribution of X1, ..., Xd−1 given Xd = xd is
given by,

w3(x1, x2, ..., xd−1|xd) =
ϕΣ(d)

((
λi,d+

xi−xd
2λi,d

)d−1

i=1

)
∫ ∞

0 ...
∫ ∞

0 ϕΣ(d)

((
λi,d+

xi−xd
2λi,d

)d−1

i=1

)
dx1....dxd−1

.

(2.16)

Note that the above conditional model is independent of normalizing
constant. From the above model it implies that while conditioning on
the last component of random vector we have truncated Gaussian model
and truncated at 0. So, by conditioning, the derived density has the tail
property as such as to the original density.

In the following section we present an algorithm to simulate from the
Hüsler–Reiss GP density.

2.3 Simulating from the Hüsler-Reiss GP
density

The conditional distributions are useful for generating random variables
in two steps: firstly, generate X2 from marginal distribution function and
secondly, generate X1 under that condition X2 = x2. An algorithm for
simulating from the bivariate Hüsler-Reiss GP density is given below,

1. distribution function of X2 is given by,

W2(x2) =
1

2(1−Φ(λ1,2))

{
1− e−x2 + e−x2Φ

(
λ1,2 −

x2

2λ1,2

)
+Φ

(
λ1,2 +

x2

2λ1,2

)
− 2Φ(λ1,2)

}
. (2.17)



2.4 Estimation of parameters 24

Now, find X2 such that W2(x2) = U is satisfied, where U is a ran-
dom observation from U(0, 1).

2. Draw X1 from the truncated Gaussian with mean µ = x2 − 2λ2
1,2

and σ = 2λ1,2, truncated at 0.
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Figure 2.5: Simulation from the bivariate Hüsler–Reiss GP density for
λ1,2 = 4.0

On the similar line, a random sample from the multivariate Hüsler–
Reiss GP density can be drawn in two steps: firstly, draw Xd from the
marginal distribution and secondly draw (d − 1)–dimensional random
variable from the truncated Gaussian. For an illustration 2–dimension
and 3–dimension simulated observations are plotted, cf. Figure 2.5, 2.6,
2.7 and 2.8. Simulating from the multivariate truncated Gaussian using
Gibbs sample approach has been presented in Appendix B.

2.4 Estimation of parameters

In the following section we present maximum-likelihood estimator for
the location vector and dependence parameter of the bivariate Hüsler–
Reiss GP density. We also discuss the complication in obtaining MLE
estimator if we allow scale parameter in the model. The results can be
generalized to arbitrary dimension in a similar way.
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Figure 2.6: Simulation from the bivariate Hüsler-Reiss GP density for
λ1,2 = 0.2
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Figure 2.7: Simulation from the 3–dimensional Hüsler–Reiss GP density
for λ1,2 = λ1,3 = λ2,3 = λ = 4.0

To the model in (2.9) we introduce location vector µ = (µ1, µ2), then the
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Random Sample (λ = 0.2)

Figure 2.8: Simulation from the 3–dimensional Hüsler–Reiss GP density
at λ1,2 = λ1,3 = λ2,3 = λ = 0.2

density is given by,

wλ1,2,µ(x1, x2) =
e−(x2−µ2)ϕ

(
λ1,2+

(x1−µ1)−(x2−µ2)
2λ1,2

)
4λ1,2(1−Φ(λ1,2))

, x1 > µ1, x2 > µ2.

(2.18)

Let (X̃1, X̃2) be a n random sample vector from the above density. Then,
the likelihood function is given by,

L(λ1,2, µ; X̃1, X̃2) =
e−∑n

i=1(x2i−µ2) ∏n
i=1 ϕ

(
λ1,2+

(x1i−µ1)−(x2i−µ2)
2λ1,2

)
(4λ1,2(1−Φ(λ1,2)))

n

(2.19)

As we know that the support depends on the location parameter µ. So,
with usual modifications in likelihood function, we define a function,

H(a, b) :=
{

1, if a < b
0, otherwise .
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Using the above function in (2.21) we have,

L(λ1,2, µ; X̃1, X̃2) =

e−∑n
i=1(x2i−µ2) ∏n

i=1

{
ϕ
(

λ1,2 + (x1i−µ1)−(x2i−µ2)
2λ1,2

)
H(µ1, x1i)H(µ2, x2i)

}
(4λ1,2(1−Φ(λ1,2)))

n .

(2.20)

The above likelihood function is maximized at replacing µ1 by min(x11, ...,
x1n) and µ2 by min(x21, ..., x2n). Which implies that MLE estimator of µ is

µ̂1 = min(X11, .., X1n)
µ̂2 = min(X21, .., X2n).

For estimating λ1,2 we take log to (2.21),

log L(λ1,2, µ) = −
n

∑
i=1

(x2i − µ2)−
1
2

n

∑
i=1

(
λ1,2 +

(x1i − µ1)− (x2i − µ2)
2λ1,2

)2

−n log
(

4
√

2πλ1,2(1−Φ(λ1,2))
)

(2.21)

Now, by taking partial derivative with respect to λ1,2 and equating them
to 0, we obtain

− n
λ1,2

+ nϕ(λ1,2)
1−Φ(λ1,2)

− nλ1,2 + 1
4λ3

1,2
∑n

i=1 ((x1i − µ1)− (x2i − µ2))
2 = 0.

(2.22)

From the above equality find a value of λ1,2 such that the condition is
satisfied and which will be a MLE estimate of λ1,2.

When λ1,2 is very large then using Mills ratio,

(1−Φ(λ1,2)) ≈
ϕ(λ1,2)

λ1,2
, λ1,2 → ∞.

MLE estimator of λ1,2 is given by

λ̂1,2 =
1
2

√
1
n

n

∑
i=1

((x1i − µ1)− (x2i − µ2))
2. (2.23)

A complete MLE estimator of (2.22) and (2.23) are obtained by plugging
in MLE estimator of µ. Note that for numerical solution in (2.22) we can
use (2.23) as our initial guess.
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Figure 2.9: Estimate values of location parameter µ and theoretical value
is set at µ1 = µ2 = 5.0
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Figure 2.10: Estimate values of dependence parameter and theoretical
value is set at λ1,2 = 0.2

Example 2.3 For an illustration we simulated a random samples from the bi-
variate Hüsler-Reiss GP density with location parameter µ1 = µ2 = 5.0 and
dependence parameter λ1,2 = 0.2. A convergence of MLE estimator to the true
value for each increasing n up to n = 500 are presented in a graphs, see Figure
2.9 and 2.10.
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Now, introducing scale parameter σ = (σ1, σ2) as well to the model (2.18)
and the corresponding likelihood function is given by,

L(λ1,2, µ, σ; X̃1, X̃2) =
e
−∑n

i=1(
x2i−µ2

σ2
)

∏n
i=1 ϕ

λ1,2+
(x1i−µ1)

σ1
− (x2i−µ2)

σ2
2λ1,2


(4σ1σ2λ1,2(1−Φ(λ1,2)))

n .

(2.24)

From the above equation finding an exact MLE estimator of σ1 and σ2
is not possible. So, we can use numerical solution or other estimation
technique to obtain an estimate values. One could use nlm() function in R

software for numerical solution. As we note here, in general for arbitrary
dimension, marginal parameters, like location and scale, can be estimated
from the marginal density and the dependence parameter from the joint
density.

2.5 Discriminant analysis for the Hüsler-Reiss
GP model

In this section we construct the discriminant function within the multi-
variate Hüsler-Reiss GP model based on rectangular truncation. There-
fore, we extend the multivariate Hüsler–Reiss GPD in (2.6) by a location
parameter µ ∈ Rd and scale parameter σ > 0, i.e. WΛ becomes

WΛ,µ,σ(x) = 1−
(

log HΛ

(
x− µ

σ

)
/ log HΛ

(
0− µ

σ

))
= 1− 1

C(Λ, µ, σ)

×

 d

∑
k=1

∫ ∞(
xk−µk

σk

) ΦΣ(k)


λi,k +

(
xi−µi

σk

)
− z

2λi,k

k−1

i=1

 e−zdz

 (2.25)

where

C(Λ, µ, σ) =
d

∑
k=1

∫ ∞(
− µk

σk

) ΦΣ(k)

((
λi,k −

z
2λi,k

)k−1

i=1

)
e−zdz.

Theorem 2.2 Let wΛ,µ(1),σ(x|1) and wΛ,µ(2),σ(x|2) be two multivariate Hüsler-

Reiss GP densities which differ in the location parameter µ(1) and µ(2). Then,
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using equation (1.4) we obtain the optimal common border

DHR(x) = (∆−1x)TΣ(d)−1(∆−1(Γ(2) − Γ(1)))

+
1
2
(2L + ∆−1(Γ(2) + Γ(1)))TΣ(d)−1(∆−1(Γ(2) − Γ(1)))− C,

where L = (λ1,d, ..., λd−1,d)T, x = ((σdx1 − σ1xd), ..., (σdxd−1 − σd−1xd))T

and Γ(i) = ((σ1µ
(i)
d − σdµ

(i)
1 ), ..., (σd−1µ

(i)
d − σdµ

(i)
d−1))

T, i = 1, 2, are (d− 1)–
dimensional vectors, and ∆ = diag(2σ1σdλ1,d, ..., 2σd−1σdλd−1,d) is a (d −
1)× (d− 1) diagonal matrix. Obviously, DHR is linear in x.

Proof. We rewrite the density wΛ,µ,σ(x) in (2.7) using d–dimensional vec-
tors with location parameter vector, i.e.

wΛ,µ,σ(x) =
e
−
(

xd−µd
σd

)
exp

(
− 1

2 zTΣ(d)−1z
)

2d−1(∏d
i=1 σi)(∏d−1

i=1 λi,d)C∗(Λ,µ,σ)(2π)(d−1)/2|Σ(d)|1/2 ,

(2.26)

where z = L + ∆−1 (x + Γ) and L, Γ and ∆ are defined as above.

The scaling factor C∗(Λ, µ, σ) is now given by

C∗(Λ, µ, σ) = C(Λ, µ, σ)(1− K(Λ, µ, σ)),

where K(Λ, µ, σ) is the total mass on the d axes in the extended model.

Now, using (1.4), we obtain

− 1
2

(
z(1)

)T
Σ(d)−1z(1) +

1
2

(
z(2)

)T
Σ(d)−1z(2) = C, (2.27)

where

C = log((c2p2)/(c1p1)) +
1
σd

(
µd

(2) − µd
(1)
)

+ log
(

C∗
(

Λ, µ(1), σ
)

/C∗
(

Λ, µ(2), σ
))

is a constant and z(1) = L + ∆−1
(

x + Γ(1)
)

and z(2) = L + ∆−1
(

x + Γ(2)
)

.

By substituting z(1) and z(2) in equation (2.27) we obtain

−1
2

(
L + ∆−1

(
x + Γ(1)

))T
Σ(d)−1

(
L + ∆−1

(
x + Γ(1)

))
+

1
2

(
L + ∆−1

(
x + Γ(2)

))T
Σ(d)−1

(
L + ∆−1

(
x + Γ(2)

))
= C,
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which is equivalent to(
∆−1x

)T
Σ(d)−1

(
C(2) − C(1)

)
+

1
2

(
C(2) + C(1)

)T
Σ(d)−1

(
C(2) − C(1)

)
= C

where C(1) = L + ∆−1Γ(1) and C(2) = L + ∆−1Γ(2). Further simplification
leads to the discriminant function

DHR(x) = (∆−1x)TΣ(d)−1(∆−1(Γ(2) − Γ(1)))

+
1
2
(2L + ∆−1(Γ(2) + Γ(1)))TΣ(d)−1(∆−1(Γ(2) − Γ(1)))− C,

which is a linear function in x. Hence the proof is complete. In the follow-
ing we proved that the discriminant function property is still retained in
the upper tail of the Gaussian density. �

Example 2.4 For an illustration for linear discriminant function. Discriminant
function for classifying between the Hüsler-Reiss GP density with different lo-
cation parameter µ

(1)
1 = 1, µ

(1)
2 = 1 and µ

(2)
1 = 3, µ

(2)
2 = 1 and common

scale parameter σ1 = 4 , σ2 = 5 and dependence parameter λ1,2 = 0.2 has been
plotted in Figure 2.11

2 4 6 8 10 12 14

0
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x1

x2
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 0.01 

 0.015 
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 0.025 

 0.03 

 0.035 

 0.04 

 0.05 

Figure 2.11: Linear discriminant function of the Hüsler-Reiss GP density.
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2.6 Quadratic discriminant function

When the correlation matrices Σ(d) and scale parameter σ are not identi-
cal, then the common border will be a quadratic function in x which can
be solved numerically. Quadratic discriminant function is given by,

−1
2

(
L(1) + (∆−1)(1)

(
x(1) + Γ(1)

))T
Σ(1)(d)

−1 (
L(1) + (∆−1)(1)(

x(1) + Γ(1)
))

+
1
2

(
L(2) + (∆−1)(2)

(
x(2) + Γ(2)

))T
Σ(2)(d)

−1(
L(2) + (∆−1)(2)

(
x(2) + Γ(2)

))
= C, (2.28)

where

C = log((c2p2)/(c1p1)) +
1
σd

(
µd

(2) − µd
(1)
)

+ log
(

C∗
(

Λ(1), µ(1), σ(1)
)

/C∗
(

Λ(2), µ(2), σ(2)
))

+ log

(
∏d

i=1 σ
(1)
i

) (
∏d−1

i=1 λ
(1)
i,d

) ∣∣∣Σ(1)(d)
∣∣∣1/2(

∏d
i=1 σ

(2)
i

) (
∏d−1

i=1 λ
(2)
i,d

) ∣∣Σ(2)(d)
∣∣1/2

is a constant.

Example 2.5 Discriminant procedure for classifying between the Hüsler-Reiss
GP density with parameter µ

(1)
1 = 1, µ

(1)
2 = 1, λ

(1)
1,2 = 0.2 and same density

with µ
(2)
1 = 3, µ

(2)
2 = 1, λ

(2)
1,2 = 0.4 with common scale parameter σ1 = 4 , σ2 =

5. In the Figure 2.12, the shaded region gives the optimal space for classifying an
observation to 1st density.
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Figure 2.12: Quadratic discriminant function of the Hüsler-Reiss GP den-
sity.



Chapter 3
Convergence of discriminant
procedure for the truncated
Gaussian density

3.0 Introduction

Having established the densities and discriminant functions within the
truncated model and the Hüsler–Reiss GP model, in the following chap-
ter we will present a convergence theorem that relates both models to
each other.

According to Theorem 1 by Hüsler and Reiss [19], we have

lim
n→∞

Fn
ρ1,2(n)(bn + x1/bn, bn + x2/bn) = Hλ1,2(x1, x2).

If
(1− ρ1,2(n)) log n→ λ2

1,2 ∈ [0, ∞] , n→ ∞, (3.1)

where X1 and X2 are standard Gaussian random variables, ρ1,2 is the cor-
relation coefficient and bn = nϕ(bn), ϕ is the standard Gaussian density.
The limiting distribution function Hλ1,2(x1, x2) will be the Hüsler-Reiss
EVD, cf. Section 2.1.

Subsequently, with suitable normalizing constants, we can show that

lim
n→∞

Fn
ρ1,2(n)(d1,n + x1/a1,n, d2,n + x2/a2,n) = Hλ1,2

(
x1 − µ1

σ1
,

x2 − µ2

σ2

)
,

(3.2)
here again the condition (3.1) is satisfied, where ai,n = bnσi, di,n = bn −
µi/(bnσi) for i = 1, 2; µ = (µ1, µ2) and σ = (σ1, σ2) are location and scale

34
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parameters, respectively.

Now, by using the definition (1.7) for the distribution Fρ1,2(n)(d1,n + x1/a1,n,
d2,n + x2/a2,n), we have

f ∗RT,ρ1,2(n)(x1, x2) =

{
ϕµ∗ ,Σ∗ (x1,x2)
Nµ∗ ,Σ∗ (c,∞) , for x1 > c1, x2 > c2,

0, otherwise ,
(3.3)

where c = (c1, c2)T ∈ R2, µ∗ = (−d1,na1,n,−d2,na2,n) is a location param-
eter and non-singular covariance matrix

Σ∗ =
(

a2
1,n a1,na2,nρ1,2(n)

a1,na2,nρ1,2(n) a2
2,n

)
,

and Nµ∗,Σ∗(c, ∞) is survival function of ϕµ∗,Σ∗(x1, x2).

Note that the above density in (3.3) can also be represented as

fRT,ρ1,2(n)(x1, x2) =


ϕµ∗ ,Σ∗ (x1,x2)
N0,Σ

(c∗,∞) , for x1 > c1, x2 > c2,

0, otherwise ,
(3.4)

where c∗ = (d1,n + c1/a1,n, d2,n + c2/a2,n)T and

Σ =
(

1 ρ1,2(n)
ρ1,2(n) 1

)
.

However,

N0,Σ(c∗, ∞) = P {X1 > d1,n + c1/a1,n, X2 > d2,n + c2/a2,n} ,

here (X1, X2) be a standard bivariate Gaussian vector with correlation
coefficient ρ1,2(n).

3.1 Convergence of truncated Gaussian to
the Hüsler–Reiss GP model

In the following theorem we restrict ourselves to the bivariate case. Nev-
ertheless the proof be generalized to arbitrary dimensions in a straight-
forward manner. Concerning density convergences in the univariate case
we refer to Hüsler and Li [18].



3.1 Convergence of truncated Gaussian to
the Hüsler–Reiss GP model 36

Theorem 3.1 Let fRT,ρ1,2(n) be the density of the bivariate rectangularly trun-
cated Gaussian model, given by

fRT,ρ1,2(n)(x1, x2) =


ϕµ∗ ,Σ∗ (x1,x2)

N0,ρ1,2(n)
(c∗,∞) , for x1 > c1, x2 > c2,

0, otherwise ,
(3.5)

where N0,ρ1,2(n)(c∗, ∞) is survival function of the standard bivariate Gaus-
sian vector with correlation coefficient ρ1,2(n), c∗ = (d1,n + c1/a1,n, d2,n +
c2/a2,n)T, µ∗ = (−d1,na1,n,−d2,na2,n) and

Σ∗ =
(

a2
1,n a1,na2,nρ1,2(n)

a1,na2,nρ1,2(n) a2
2,n

)
.

Put ai,n = bnσi, di,n = bn − µi/(bnσi) for i = 1, 2; with bn = nϕ(bn), ϕ is
the standard Gaussian density, where the correlation coefficient ρ1,2(n) satisfies
again

(1− ρ1,2(n)) log n→ λ2
1,2 ∈ [0, ∞], n→ ∞,

cf. (2.1). Then we have

lim
n→∞

fRT,ρ1,2(n)(x1, x2) = wλ1,2,µ,σ(x1, x2),

for every x > c, and the limiting function is given by

wλ1,2(x1, x2)

= e−(x2−µ2)/σ2 ϕ

(
λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2

)
/{

2λ1,2σ1σ2

[(
1−Φ

(
λ1,2 +

(c2 − µ2)/σ2 − (c1 − µ1)/σ1

2λ1,2

))
e−(c1−µ1)/σ1

+
(

1−Φ
(

λ1,2 +
(c1 − µ1)/σ1 − (c2 − µ2)/σ2

2λ1,2

))
e−(c2−µ2)/σ2

]}
,

where x1 > c1, x2 > c2 .

Proof. Using definition (3.4) for x > c we obtain

fRT,ρ1,2(n)(x1, x2)

=

exp

(
−1

2

(
x1−µ1
σ1bn

+bn

)2
−2ρ1,2(n)

(
x1−µ1
σ1bn

+bn

)(
x2−µ2
σ2bn

+bn

)
+
(

x2−µ2
σ2bn

+bn

)2

(1−ρ1,2(n)2)

)
2πσ1σ2b2

n
√

1− ρ1,2(n)2 P
{

X1 > c1−µ1
σ1bn

+ bn, X2 > c2−µ2
σ2bn

+ bn

} . (3.6)



3.1 Convergence of truncated Gaussian to
the Hüsler–Reiss GP model 37

Corresponding to the proof of Theorem 1 in Hüsler and Reiss [19] one
gets

nP
{

X1 >
c1 − µ1

σ1bn
+ bn, X2 >

c2 − µ2

σ2bn
+ bn

}
→
(

1−Φ
(

λ1,2 +
(c2 − µ2)/σ2 − (c1 − µ1)/σ1

2λ1,2

))
e−(c1−µ1)/σ1

+
(

1−Φ
(

λ1,2 +
(c1 − µ1)/σ1 − (c2 − µ2)/σ2

2λ1,2

))
e−(c2−µ2)/σ2 ,

(3.7)

as n→ ∞, and
bn

√
1− ρ1,2(n)2 → 2λ1,2, (3.8)

as n→ ∞, which proves the convergence of the denominator.

From the proof in Hüsler and Reiss [19] we also deduce that

x1−µ1
σ1bn

+ bn − ρ1,2(n)
(

x2−µ2
σ2bn

+ bn

)
√

1− ρ1,2(n)2
→ λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2
,

(3.9)

as n → ∞, which we use to show the convergence of the numerator. We
can write

n exp

(
−1

2

(
x1−µ1
σ1bn

+bn

)2
−2ρ1,2(n)

(
x1−µ1
σ1bn

+bn

)(
x2−µ2
σ2bn

+bn

)
+
(

x2−µ2
σ2bn

+bn

)2

(1−ρ1,2(n)2)

)
2πbn

=
1√
2π

exp

−1
2

 x1−µ1
σ1bn

+ bn − ρ1,2(n)
(

x2−µ2
σ2bn

+ bn

)
√

1− ρ1,2(n)2

2
× n

bn

1√
2π

exp

(
−1

2

(
x2 − µ2

σ2bn
+ bn

)2
)

, (3.10)

where the first factor converges to

ϕ

(
λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2

)
,
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as n→ ∞, because of (3.10) and the second factor satisfies

n
bn

1√
2π

exp

(
−1

2

(
x2 − µ2

σ2bn
+ bn

)2
)

=
n
bn

ϕ(bn) exp

(
−1

2

(
x2 − µ2

σ2bn

)2
)

e−(x2−µ2)/σ2

= exp

(
−1

2

(
x2 − µ2

σ2bn

)2
)

e−(x2−µ2)/σ2

→ e−(x2−µ2)/σ2 , n→ ∞. (3.11)

Combining the above convergences completes the proof. �

Because the discriminant functions are obtained by using the inequality
(1.4) which contains a ratio of densities, Theorem 4.1 directly implies the
convergence of the discriminant functions. More precisely, the discrimi-
nant function DRT (appropriately normalized) of the rectangularly trun-
cated Gaussian model converges to the discriminant function DHR of the
Hüsler-Reiss GP model.

An analogous result still holds if different covariance matrices Σ(1) and
Σ(2) are chosen. In this case the quadratic discriminant function of the
truncated Gaussian model converges to the quadratic one in the Hüsler–
Reiss GP model, cf. Section 2.6.



Chapter 4
Elliptical family

4.0 Introduction

In the following chapter we will generalize our main goal to the family of
elliptical distributions. The most important subclass of elliptically sym-
metric (or elliptical) distributions is Gaussian one. In some recent papers
by Hashorva [14], [16] shows that the multivariate Hüsler–Reiss distribu-
tion is as well the limiting distribution of multivariate maxima of ellipti-
cal triangular arrays if the random radius of the elliptical random vectors
belongs to the max–domain of attraction of a Gumbel distribution. In the
present text we assume that the results in Hashorva [14], [16] are suffices
to extend our main motivation to elliptical family.

We refer to Koutras [24] and Wakaki [39] for discriminant analysis con-
cerning spherical and elliptical distributions. For general discussion on
extreme value theory for elliptical and spherical distributions, see Kotz
and Nadarajah[23] and Hashorva [15].

4.1 Rectangularly truncated elliptical density

A d–dimensional random vector X is said to have an elliptically con-
toured distribution if its joint density takes the form (see Kotz and Nadara-
jah [23]),

fµ,Σ(x) = |Σ|−
1
2 g
(
(x− µ)T |Σ|−1 (x− µ)

)
(4.1)

where g(.) is a scale function (also called as density generator), Σ is d× d
constant matrix and µ is a d× 1 vector.

39
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Example 4.1 For

g(x) =
exp(−x/2)

(2π)d/2

then f (x) will be the d–dimensional Gaussian density.

Now, let X = (X1, ..., Xd)T be a d-dimensional random vector from the
rectangularly truncated elliptical model (4.1). Then X has the density

fERT(x) =

{ fµ,Σ(x)
P{X>c} , for x > c

0, otherwise ,

where c = (c1, ..., cd)T ∈ Rd.

4.2 Extreme value and generalized Pareto for
elliptical distributions

Let (X1, X2) be a triangular array of the bivariate elliptically distributed
random vector. Then, (X1, X2) satisfy below equality in distribution

(X1, X2) =d (X∗1 ρ1,2 +
√

1− ρ2
1,2X∗2) (4.2)

where ρ1,2 is the correlation coefficient and X∗1 , X∗2 are spherically dis-
tributed random variables.

Now, according to Theorem 2.1 of Hashorva [14] if the random radius

R :=
√

X∗1
2 + X∗2

2 has the distribution function F which is in the max-
domain of attraction of the standard Gumbel distribution function with
auxiliary function w, is defined as

w(t) =
(1 + o(1))[1− F(t)]∫ w

t [1− F(s)]ds
, t→ w (4.3)

and additionally, if

(1− ρ1,2(n))b(n)w(b(n))→ 2λ2
1,2 ∈ [0, ∞] , n→ ∞, (4.4)

then

lim
n→∞

sup
(x1,x2)∈R

∣∣∣∣P{max
1≤i≤n

X1i ≤ x1a(x) + b(n), max
1≤i≤n

X2i ≤ x2a(x) + b(n)
}

−Hλ1,2(x1, x2)
∣∣∣ = 0,
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with b(n) = G−1(1− 1/n), a(n) = 1/w(b(n)), n ∈N and G is the distri-
bution function of X∗1 .

An analogous result for the multivariate elliptical distribution, see Theo-
rem 2.1 of Hashorva [16].

Remark 4.1 For the Gaussian case we have b(n)w(b(n)) = b(n)/a(n) =
(1 + o(1))2 log n.

Remark 4.2 From Berman [6], if X∗1 , X∗2 are identically distributed with dis-
tribution function G and additionally G is symmetric at 0, then we have below
equality in distribution

(X∗1 , X∗2) =d (R cos θ, R sin θ),

where θ is uniformly distributed in (−π, π). Consequently, if X∗1 , X∗2 are inde-
pendent standard Gaussian random variables. Then, the distribution function of
R2 (Chi-Square distribution) is in the max-domain of attraction of the Gumbel
distribution.

4.3 Convergence of truncated elliptical density
to the Hüsler–Reiss GP density

In the following theorem we restrict ourselves to the bivariate case. Nev-
ertheless the proof be generalized to arbitrary dimensions in a straight-
forward manner.

Theorem 4.1 Let fERT,ρ1,2 be the density of the bivariate rectangularly trun-
cated standard elliptical model, given by

fERT,ρ1,2(n)(x1, x2) =

{
f (tn(x1),tn(x2))

(a2(n))−1P{X1>tn(x1),X2>tn(x2)}
, for x1 > c1, x2 > c2

0, otherwise ,

where c = (c1, c2)T ∈ R2 and tn(s) := a(n)s + b(n). Put b(n) = G−1(1−
1/n), a(n) = 1/w(b(n)), n ∈N with G is the distribution function of X∗1 and
w is defined as

w(t) =
(1 + o(1))[1− F(t)]∫ w

t [1− F(s)]ds
, t→ w

with F be the distribution function of random radius R :=
√

X∗1
2 + X∗2

2 where
random vector (X∗1 , X∗2 ) is spherically distributed and additionally, if

(1− ρ1,2(n))b(n)w(b(n))→ 2λ2
1,2 ∈ [0, ∞], n→ ∞.
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Then we have
lim

n→∞
fERT,ρ1,2(n)(x1, x2) = wλ1,2(x1, x2),

for every x > c, and the limiting function is given by

wλ1,2(x1, x2) = e−x2 ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
/{

2λ1,2

[(
1−Φ

(
λ1,2 +

c2 − c1

2λ1,2

))
e−c1

+
(

1−Φ
(

λ1,2 +
c1 − c2

2λ1,2

))
e−c2

]}
,

where x1 > c1, x2 > c2.

Proof. Using the definition of the truncated elliptical model for x1 > c1,
x2 > c2 we have

fERT,ρ1,2(n)(x1, x2) =

g(t2
n(x1) + t2

n(x2)− 2ρ1,2(n)t2
n(x1)t2

n(x1))
(a2(n))−1

√
1− ρ1,2(n)2 P {X1 > (a(n)c1 + b(n)), X2 > (a(n)c2 + b(n))}

where g(.) is density generator, cf. (4.1).

According to Lemma 3.3 of Hashorva [14] we have following equality in
distribution,

(X1, X2) =d (R cos(θ), R cos(θ − ψ)), (4.5)

cf. Remark 3.2, where θ is uniformly distributed in (−π, π) and ψ(n) :=
arccos(ρ1,2(n)) ∈ [0, π/2]. Now, setting β(n) := −arctan((ρ1,2(n)− y/x)/
sin(ψ(n))) and υ(n) :=

√
(b(n)w(b(n))) then corresponding to the Proof

of Lemma 3.3 of Hashorva [14] one gets

nP {X1 > (a(n)c1 + b(n)), X2 > (a(n)c2 + b(n))}

→
(

1−Φ
(

λ1,2 +
c2 − c1

2λ1,2

))
e−c1

+
(

1−Φ
(

λ1,2 +
c1 − c2

2λ1,2

))
e−c2 , (4.6)

as n→ ∞, and √
2(1− ρ1,2(n)2)υ(n)→ 2λ1,2, (4.7)

as n→ ∞, which proves the convergence of the denominator.
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Similarly using Lemma 3.3 of Hashorva [14] and Theorem 12.3.1 of Berman
[6] with the identity according to Reiss and Thomas [32], page 296,

e−x2 ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
= e−x1 ϕ

(
λ1,2 +

x2 − x1

2λ1,2

)
,

the convergence of numerator follows. �

An analogous result still holds if we introduce location and scale parame-
ter in the above proof. As we discussed in Section 3.1 the above Theorem
directly implies the convergence of the discriminant functions.

Remark 4.3 In general when the population densities are non-normal, several
difficulties arises, the main one being that the usual statistical optimality crite-
ria do not lead to simple decision rules. As we already mentioned that the model
for the upper tail of the elliptically distributed random variable can be approx-
imated by the Hüsler – Reiss GP distribution provided that the random radius
belongs to the Gumbel max-domain of attraction. Apparently, though the initial
discriminant functions concerning elliptical family need not lead to an explicit
expression or simple decision rule to classify but in the limiting discriminant
function we have an explicit expression. Which is consider as remarkable result
in limiting discriminant function.



Appendix A
Extremal discriminant function
against to the classical function
in R

In the following chapter we demonstrate simulation experiment which
entitles the significance of extremal discriminant function against to the
classical function in R software.

In the following section we illustrates how classification can be performed
in the R software.

A.0.1 Linear discriminant analysis – R function lda

The multivariate normal based linear and quadratic classification rules
are implemented in the R functions lda and qda, respectively. These func-
tions are part of the MASS package, cf. Venables and Ripley [37] [38], which
needs to be activated to make the functions available. This can be done
by simply entering,

library(MASS)

To perform a linear discriminant analysis, call the function lda, for in-
stance

Z = lda(X,factor,prior=c(1,1)/2)

The first argument is a matrix or data frame or matrix containing the ex-
planatory variables. The second argument is the factor and the function
is used to create a factor. Factors in R are stored as a vector of integer val-
ues with a corresponding set of character values to use when the factor

44



45

is displayed. The only required argument to factor is a vector of values
which will be returned as a vector of factor values. Both numeric and
character variables can be made into factors. The argument prior allows
to specify the prior probabilities. If this command is omitted, the function
uses the proportions of π1 and π2 objects in the sample. Check the con-
tent by entering result in the command line. Predictions/classifications
can be made by the function predict, for instance

p = predict(Z,test)$class

The first argument to be supplied to the function predict is an R object
resulting from an lda call; the second argument is a data frame that needs
to be classified.

Now, consider the following simulation experiment, firstly, we will sim-
ulate n1 = 1000 observations from the bivariate Hüsler-Reiss GP density
with location and scale parameters µ

(1)
1 = 1, µ

(1)
2 = 1 and σ1 = 1 , σ2 = 1

and dependence parameter λ1,2 = 0.2. In the second step, we will simu-
late n2 = 1000 observations from the bivariate Hüsler-Reiss GP density
with location and scale parameters µ

(2)
1 = 3, µ

(2)
2 = 2 and σ1 = 1 , σ2 = 1

and dependence parameter λ1,2 = 0.2. For an algorithm to simulate from
the bivariate Hüsler-Reiss GP density cf. Section 2.3.

Note that we have equality in scale and dependence parameter so ob-
tained discriminant function will have linearity property. In the next step
we use a function lda() in R software and the training data set to it will
be simulated samples from the above models.

Again, simulate n = 500 observations from the second population and
use it has test data. Now, we input this data sets to both lda() and the
Hüsler-Reiss discriminant function to classify between two densities. In
Figure A.1, first graph represent number of observations classified to den-
sity one and two by using lda() function. As we know our test data is
simulated data set from the second population. The number of obser-
vations in first density represents the total number of misclassification.
Now, according to the Hüsler-Reiss discriminant rule we have 19 misclas-
sification. We can conclude that both the discriminant rule almost agree
each other.

In the second experiment, we repeat above procedure with increasing
scale parameter σ1 = 4 , σ2 = 5. In Figure A.2 we can clearly observe
that the number of misclassification is almost 200 by using lda() func-
tion. And, according to the Hüsler-Reiss discriminant rule we have 116
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Figure A.1: Number of observations classified to class 1 & 2 using R func-
tion.
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Figure A.2: Number of observations classified to class 1 & 2 using R func-
tion.

misclassification. As we know from the theory of discriminant analysis
that the misclassification rate increases with increasing in variance of the
population. With the following experiment we can conclude that still the



47

Hüsler-Reiss discriminant rule leads to a minimum number of misclassi-
fication.

In the following we can observe that even though the classical discrim-
inant function and the Hüsler-Reiss discriminant function share simi-
lar property, i.e, linearity, but they differ in their coefficients. Like, the
Hüsler-Reiss discriminant function coefficients are function of tail depen-
dence parameter λ1,2, which is a crucial parameter for heavy tail models.
Here we can conclude that classical discriminant function do not leads to
a minimum misclassification in all the scenarios. So, we insist extremal
discriminant function when the data sets are from heavy tail models.



Appendix B
R Contribution

B.0 Introduction

In the following we present some of the contributed algorithm to tmvtnorm:

Truncated Multivariate Normal and Student-t Distribution, R on–line pack-
age.

B.1 Gibbs sampling from truncated
multivariate Gaussian model

Gibbs algorithm is an approach which uses univariate conditional den-
sity for simulating from multivariate model. In the following we present
an algorithm for simulating from the double truncated multivariate Gaus-
sian model. The enhancing nature of the multivariate truncated Gaussian
model is, marginal densities are not necessarily truncated Gaussian but
conditional densities are truncated Gaussian model. This property sim-
plifies our simulation algorithm.

The probability density function of the multivariate double truncated
Gaussian random variable can be expressed as:

f (x, µ, Σg, a, b) =
exp

{
−1

2(x− µ)TΣ−1
g (x− µ)

}
∫ b

a exp
{
−1

2(x− µ)TΣ−1
g (x− µ)

}
dx

for a ≤ x ≤ b and 0 otherwise.

The conditional density of Xi given X−i = (x1, ..., xi−1, xi+1, ..., xd) follows

48



B.1 Gibbs sampling from truncated
multivariate Gaussian model 49

NT(µ∗i , σ∗i ) (univariate truncated normal) and has the support ai ≤ xi ≤
bi. The µ∗i and σ∗i are give by,

Σg =
[

σii Σi
ΣT

i Σ

]
µ∗i = µii + ΣT

i Σ−1(x−i − µ−i)

σ∗i = σii − ΣT
i Σ−1Σi.

The matrix Σ is a sub matrix of Σg for order (d− 1)× (d− 1) , which is
obtained by deleting ith row and ith column from Σg. And, the vector Σi, is
(d− 1)-dimensional vector, which is ith row vector expect by deleting ith

element. Since we have univariate conditional density so the procedure
for drawing a random observation from univariate conditional density
of the above model is same as that of procedure for drawing a random
observation from univariate truncated normal density.

xi = µ∗i +
√

σ∗i Φ−1

[
Φ

(
ai − µ∗i√

σ∗i

)
+ u

(
Φ

(
bi − µ∗i√

σ∗i

)
−Φ

(
ai − µ∗i√

σ∗i

))]

where u is a random observation from U(0, 1).

Algorithm:

1. choose an observation vector x0 from a ≤ x ≤ b, may be x0 = a or
x0 = b

2. generate an observation x1 from the conditional density of X1 given
X−1 = (x0

2, ..., x0
d)

3. generate an observation x2 from the conditional density of X2 given
X−2 = (x1, x0

3, ..., x0
d)

4. xi from the conditional density of Xi given X−i = (x1, ..., xi−1, x0
i+1,

..., x0
d)

5. xd from the conditional density of Xd given X−d = (x1, ..., xd−1).

The above procedure will give an one set of d-dimensional random sam-
ple x(1) and for later draw use x(1) as initial choice. Repeat the above
procedure n times to have n sample observation.
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Like all MCMC methods, the first iterates of the chain will not have the
exact target distribution and are strongly dependent on the start value.
To reduce this kind of problem, the first iterations are considered as a
burn-in period which a user might want to discard.

As a major drawback, random samples produced by Gibbs sampling
are not independent, but correlated. The degree of correlation depends
on the covariance matrix Σg as well on the dimensionality. Taking only
a nonsuccessive subsequence of the Markov chain, say every kth sam-
ple, can greatly reduce the auto–correlation among random points and is
called as "thinning". For detailed discussion, cf. Wilhelm and Manjunath
[41].

Example B.1 mu = c(0.5, 0.5)

sigma = matrix(c(1, 0.8, 0.8, 2), 2, 2)

a = c(-1, -Inf)

b = c(0.5, 4)

X = rtmvnorm(n=10000, mean=mu, sigma=sigma, lower=a, upper=b,

algorithm="gibbs", burn.in.samples=100,thinning = 5).
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Figure B.1: Gibbs sample from multivariate the truncated Gaussian

Remark B.1 Note that when the truncation region is too small then the re-
jection sampling approach will completely fails or utilizes more system time to
generate samples. However, in this context Gibbs sampling approach performs
well than rejection sampling approach.
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B.2 Gibbs sampling from truncated
Student-t density

Let X be an d-dimensional random variable has density T(µ, Σ; m) (mul-
tivariate truncated Student-t distribution), where a ≤ x ≤ b.

We know that the multivariate Student-t as the ratio of a multidimen-
sional Gaussian to an independent [χ2(m)/m](1/2) (χ2(m) is Chi-Square
distribution with m degrees of freedom) leads to a Gibbs sampling algo-
rithm for (w, z1, ..., zn) followed by the construction x = µ + zw−1.

Algorithm:

1. At stage i we have w(i−1) and z(i−1) from the previous pass. Now,
draw w(i) from [χ2(m)/m]

1
2 such that aiw(i) ≤ Z(i−1)

i ≤ biw(i) is
satisfied for all i = 1, ..., d. Note that at i = 1, z(0) will be a random
observation from truncated multivariate Gaussian distribution.

2. Draw z from the multivariate Gaussian conditional on w(i) with
support aiw(i) ≤ Z(i)

i ≤ biw(i). Use above Section 7.1 procedure
to generate an observation.

3. take a transformation x(i) = µ + z(w(i))−1.

Example B.2 df = 2

mu = c(1,1,1)

sigma = matrix(c( 1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5,

1), 3, 3)

lower = c(-2,-2,-2)

upper = c(2, 2, 2)

X = rtmvt(n=10000, mu, sigma, df, lower, upper,

algorithm="gibbs").

B.3 Moments calculation for multivariate
truncated Gaussian model

The computation of the first and second moments (mean vector µ∗ =
E[x] and covariance matrix Σ∗ respectively) is not trivial for the trun-
cated case, since they are obviously not the same as µ and Σ from the
parametrization of TN(µ, Σ, a, b). We presented the computation of mo-
ments for the general double-truncated case and implemented the algo-
rithm in the method mtmvnorm(), see Manjunath and Stefan [26].



B.3 Moments calculation for multivariate
truncated Gaussian model 52

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll
l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

ll
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l l

l

l

l

l

ll

l

l

l l
l

l

l

l

l

l

l
l

l

l

ll l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l
l

l

l
l

l

l

ll

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l
l

l

l

l

l

l

l l

l

ll

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

ll

l
l

l

l

l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

ll

l

l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l
l

l

l

l l

l

l l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

ll

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l
l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

ll
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l
l

l

l

l ll
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

l

l

l l

l l
l

l

l

l

ll

l

l

l

l

l

l
l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l
l

l

l

l
l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l l

l

l

l

l

l

l l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l
l

l

l

l

l

ll

l

l

l

l
l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

l l

l

l
l

l

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l l

l

l

l

l l
l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l
l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l
l

l l

l

l

l

l

l l

l

l

l
l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

ll

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l

l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l

l l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l

ll

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

ll

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

−2 −1 0 1 2

−2
−1

0
1

2

X[,1]

X
[,2

]

Figure B.2: Gibbs sample from the multivariate truncated Student-t dis-
tribution.

Example B.3 mu = c(0.5, 0.5, 0.5)

sigma = matrix(c( 1, 0.6, 0.3, 0.6, 1, 0.2, 0.3,

0.2, 2), 3, 3)

a <- c(-Inf, -Inf, -Inf)

b <- c(1, 1, 1)

mtmvnorm(mu, sigma, lower=a, upper=b).

Output:

$tmean

[1] -0.1524505 -0.1260711 -0.4050841

$tvar

[,1] [,2] [,3]

[1,] 0.52235239 0.22046649 0.07733722

[2,] 0.22048774 0.51593373 0.03943862

[3,] 0.07734545 0.03941757 0.94595143.



Appendix C
Univariate extremal discriminant
analysis

In the following we present some of the work on univariate extremal dis-
criminant analysis, cf. Abdalla [1] and Nguimbi [29].

In Section 5.3 of Abdalla [1] introduces the univariate extremal discrimi-
nant analysis by considering exponential mixtures for classification. The
deduced discriminant point has an explicit expression given by

xdisc :=
µ(2)σ(1) − µ(1)σ(2)

σ(1) − σ(2)
+ log

(
p2c1σ(1)

p1c2σ(2)

)( σ(1)σ(2)

σ(1)−σ(2)

)
, (C.1)

where µ(i) and σ(i) are location and scale parameters of corresponding
exponential model.

Example C.1 For classification between µ(1) = 10, σ(1) = 2.5 and µ(2) = 8,
σ(2) = 4 with prior information p1 = 0.35, p2 = 0.65 and c1 = c2 = 1. Then
the two exponential densities are discriminated at a point xdisc = 12.34.

According to the derivation in Section 5.3.2 of Abdalla [1] with assump-
tion of equality of location parameter, the optimal discriminant point for
classifying mixtures of Beta and Pareto distributions can be given as

xdisc :=


µ +

(
α(1)(σ(1))α(1)

p1c1

α(2)(σ(2))α(2) p2c2

) 1
α(1)−α(2)

, α(1) < 0, α(2) < 0

µ−
(
|α(1)|(σ(1))α(1)

p1c1

|α(2)|(σ(2))α(2) p2c2

) 1
α(1)−α(2)

, α(1) > 0, α(2) > 0,

(C.2)
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where α(i) and σ(i) are shape and scale parameters of respective densities.

Later, in the frame work of the constructing univariate extremal discrimi-
nant analysis Nguimbi [29] introduces discriminant analysis to Gompertz
density.

In Section 5.2 of Nguimbi [29] the discriminant function for classifying
between the two Gompertz density is given by,

xdisc =

(
x− µ(2)

σ(2)

)
−
(

x− µ(1)

σ(1)

)
− exp

(
x− µ(2)

σ(2)

)

+ exp

(
x− µ(1)

σ(1)

)
+ log

σ(1)

σ(2)
(C.3)

where p1 = p2 = 0.5 and c1 = c2 = 1. Note that the above discrimi-
nant function do not leads to an explicit expression. So, one has to use
numerical method for obtaining optimal discriminant point, cf. page 24
Nguimbi [29].

Now, if we assume equality of scale parameter, i.e., σ(1) = σ(2) = σ = 1,
then the optimal discriminant point is given by,

xdisc = log

{
µ(1) − µ(2)

exp
(
−µ(2)

)
− exp

(
−µ(1)

)} (C.4)

is an explicit expression for classification.

We now construct discriminant analysis for the truncated Gompertz den-
sity. The standard truncated Gompertz density, truncated at X = u is
given by,

f (x) = exp(x) exp (eu − ex) , x > u. (C.5)

Now, optimal discriminant point for classify between the two truncated
Gompertz densities and they truncated at u(1) and u(2), respectively is
given by

xdisc =

(
x− µ(2)

σ(2)

)
−
(

x− µ(1)

σ(1)

)
− exp

(
x− µ(2)

σ(2)

)

+ exp

(
x− µ(1)

σ(1)

)
+ log

σ(1)

σ(2)
+ eu(2) − eu(1)

. (C.6)
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If we have u(1) = u(2) = u then above equation reduces to (C.3) and in
addition if we assume equality of scale parameter σ(1) = σ(2) = σ = 1 it
further reduces to (C.4).

In Chapter 6 of Nguimbi [29] discusses Ultimate and Penultimate con-
vergence of the truncated Gompertz density to the exponential and Beta
density, respectively. Further which implies that the convergence of (C.6)
discriminant point to exponential and Beta discriminant point.

C.1 Predicting life span

In this section we present an analysis on predicting life span between
males and females.

The given data are the life spans over 90 years old of person born in the
Netherlands in the year 1877–1881. The data is found in the Xtremes soft-
ware under the file name um-lspdu.dat. Beta sub-models with its finite
upper tail limit is fitted to male and female age at death data. A calcu-
lated discriminant point between male and female age at death is 94, i.e.,
the life span mixture is discriminated at the age 94. In general, if do we
have an observation or recorded life span value less than 94 we classify an
observation to female population. Similarly an observation greater than
94 classified to male population. This is an example where one can find
optimal class, i.e, male or female using recorded age at death value. For
detailed discussion on this experiment cf. Section 5.3.5 Abdalla [1].

Classifying between the two subpopulation; given by the different genes,
should be of more importance.
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