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Summary 

Since the Industrial Revolution mankind has needed to deal with increasing 

air pollution problems as a result of manufacturing, mining, transportation, and power 

production. Air pollution concerns the interaction of gases and particles emitted into 

the atmosphere with the surrounding environment. This interaction can redirect 

pollutants toward sensitive areas, concentrate different species above acceptable 

levels, or even mitigate concentration levels by enhancing diffusion and dispersion. 

The present EU environmental legislation has been implemented to control these high 

pollutant concentrations and improve the air quality conditions in urban areas. The 

numerical simulation of dispersion has shown to be a useful tool for both the 

scientific description of pollution phenomena and for planning and decision making. 

The numerical simulation of pollution dispersion in urban environments by 

means of solution of the statistically steady Reynolds Averaged Navier Stokes 

(RANS) equations is known to be strongly dependent on turbulence models. If 

pollution dispersion is modelled, the turbulence models do not only have to be used 

for the Reynolds stresses, but also for the turbulent scalar fluxes. While the influence 

of several turbulence models for Reynolds stresses on pollution dispersion in urban 

environments has already been examined several times, the turbulent scalar fluxes are 

usually modelled by the simple gradient diffusion assumption. In the present work, 

the influence of more advanced models for the turbulent scalar fluxes on the 

dispersion of pollutants is examined. Two different wind tunnel experiments, a two-

dimensional (2D) street canyon and a three-dimensional (3D) urban area model, were 

selected for the validation of the models’ performance. In total, five anisotropic 

algebraic flux models and two second moment models were implemented in the 

commercial software FLUENT 6.3. All these models together with the simple 

gradient diffusion model (with different turbulent Schmidt numbers) are used and the 

results are compared with measurements using statistical performance measures to 

assess their predictive capability.  

All evaluated models showed good general agreement in comparison to the 

experiments. The anisotropic models provided better concentration predictions than 

the isotropic models in 2D simulations. However, these improvements were very 

small in 3D simulations and usually disappeared. In the end, modelling improvements 

based on the sensitivity analysis of model coefficients, numerical and experimental 

model limitations and other parameters and assumptions relevant for the simulation of 

passive scalar pollution dispersion are presented and discussed.  

Key words: Turbulent scalar fluxes, anisotropic modelling, RANS, CFD, 

MUST, atmospheric dispersion, model improvement.  
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1  Introduction 

1.1 Pollution in the Environment 

Historical records show that the impact of air pollutants in the environment 

has been observed by human beings for a very long time. In the Old Testament of the 

Bible, Abraham says “…behold, the smoke of the land ascended like the smoke of a 

furnace” (Gen 19:28). During 79 AD, the eruption of Mount Vesuvius is recorded to 

have asphyxiated people with volcanic fumes. In England during the reign of Edward 

I (1272-1307) and Edward II (1307-1327), legal penalties were sentenced after the 

nobility protested against the use of highly “pestilential odorous sulphurous coal” 

[Mero99]. In 1661 John Evelyn published Fumifugium one of the earliest known 

books on air pollution, which describes the effects of pollution in the city of London. 

In Europe the earliest legislation to control pollution emissions was established 

during the 19th century as simple local rules in big cities such as Paris, London and 

Berlin [Feng98]. Since then, air pollution has become widely recognized as a national 

and international public health risk, in part due to some large killer urban smog 

events. Smog emissions caused 268 deaths in London, UK in 1873, more than 1000 

deaths in Glasgow, UK in 1909, and 60 deaths in Meuse Valley, Belgium in 1930. A 

similar recent example was in 1986 when the release of radioactivity during the 

Chernobyl reactor accident exposed millions of people to radio active pollution. 

Pollution is defined [Camb08] as any damage caused to water, air, etc. by 

harmful substances or waste. Thus, air pollution deals with particulates, chemicals, or 

biological materials introduced into the atmosphere that cause harm or discomfort to 

humans or other living organisms, or damage the natural environment. In general, 

almost all human activities make some direct or indirect impact on the natural 

environment and almost all industrial processes which transform natural resources 

into products for man’s use give rise to some pollution [Wood89]. However, air 

pollution sources can be either natural or man-made [US-EPA]. Air pollutants may 

take the form of solid particles, liquid droplets or gases and can be classified as either 



1. Introduction 

2 

primary (substances directly emitted from a process) or secondary (when primary 

pollutants react or interact, e.g. ozone). The main factors which determine the severity 

of a pollutant are its chemical nature, its concentration and its persistence [Mill95]. 

Some pollutants are biodegradable and therefore will not persist in the environment in 

the long term. Air pollution emissions can also be classified for modelling purposes 

as buoyant plumes (plumes which are lighter than air, e.g. methane), dense gas 

plumes (plumes which are heavier than air, e.g. carbon dioxide) and passive or neutral 

plumes (plumes which are neither lighter nor heavier than air). 

Pollutant emissions are produced not only during big events but also during 

small everyday releases as a consequence of production, transportation, handling or 

storage of gases, particles and chemical substances. The impacts of these pollutant 

emissions on the environment are usually measured by their effects on the human 

standard of living and the number of people affected [Feng98]. Since 1960, the world 

population has been doubled and due to improvements in standard of living and the 

world economy, the global number of pollutant sources like car emissions1 have risen 

by a factor of 10. The resulting increases in air pollution have led to important 

impacts on human health and well-being, which may be immediate (respiratory 

diseases) or delayed (cancer). They also have caused material damages on 

economical/technical structures of cultural heritage and large scale environmental 

phenomena such as acidification, depletion of the ozone layer and an imminent global 

warming.  

The most direct impacts of air pollution are felt for those who live in cities. 

The United Nations’ 2006 report stated that already 48.7% of the world’s population 

were living in urban areas in 2005. This development was expected to continue in the 

subsequent years, and some statistical estimates said that more than half of the world 

population would be living in urban areas by 2008. Thus, this period marks the first 

time in history when the world has more urban residents than rural residents. 

In urban areas, the wind flow around individual and/or groups of buildings 

governs the local dispersion of pollution and pedestrians’ comfort. Present EU 

environmental legislation intends to control the high pollutant concentrations and air 

quality conditions in urban environments. Mathematical modelling of dispersion has 

shown to be a useful tool for both scientific description of pollution phenomena and 

planning and decision making. Dispersion models can provide useful information to 

assist in the delineation of hazard zones (toxic corridors) resulting from contaminant 

releases in accidents or everyday activities. 

                                                
1 A European Environment Agency report from September 2008 shows that road transport 

remains Europe’s single largest air polluter [EEA08]. 
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Accordingly, in the next two subsections several engineering applications of 

pollutant dispersion modelling are summarized, emphasizing some specific 

geometries relevant for this work and taking into account previous experiences from 

these and similar applications. 

 

1.2 The Engineering Problem 

If air pollutant is a “problem”, mathematical modelling cannot claim to be the 

solution to this problem. However, mathematical modelling is an indispensable 

instrument for important air quality analysis and beside wind tunnel experiments, it is 

the most practical tool to predict pollution dispersion and answer many of the 

subsequent “what if” questions. 

Historically, pollution dispersion has been studied as a part of meteorology or 

specifically micrometeorology. The micrometeorology, also well known as micro-

scale meteorology, deals with the atmospheric flow phenomena but it is limited to the 

processes at the lower end of the spectrum of the atmospheric scales. It means the 

study of small-scale, short-lived atmospheric conditions and processes in the layer of 

frictional influence adjoining the earth’s surface, commonly known as the 

Atmospheric Boundary Layer (ABL). Important topics in micrometeorology include 

heat transfer and gas exchange between soils, vegetation and/or surface water with 

the atmosphere. 

Discussion of the layers in the Earth's atmosphere is needed to understand 

where air pollution dispersion takes place. The main layers of the Earth's atmosphere 

from the surface of the ground upwards are  the troposphere (0 to 15 Km), the 

stratosphere (15 to 50Km), the mesosphere (50 to 85Km), the thermosphere and 

others (more than 85Km) [Nasa-url]. The lowest part of the troposphere is the 

Atmospheric Boundary Layer or Planetary Boundary Layer (PBL) which extends 

from the Earth's surface to about 1.5 to 2.0 km in height [Stul88]. The ABL is made 

up of the mixing layer capped by the inversion layer and they are separated by a 

change in temperature behaviour in the vertical direction. Almost all of the pollutants 

emitted into the ambient atmosphere are transported and dispersed within the mixing 

layer. Some of the emissions penetrate the inversion layer and enter the free 

troposphere above the ABL. Many atmospheric dispersion models are referred to as 

boundary layer models because they mainly model air pollutant dispersion within the 

ABL [Wik-ADM]. The study of pollutant transport in the very low part of the ABL, 

i.e. inside and over urban areas, has attracted great concern during the past few 
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decades, mainly due to increasing concentrations of pollutants and their adverse 

impacts on human health.  

The study of pollution dispersion is normally accomplished in three main 

ways: field (full scale) measurements, laboratory-scale or reduced-scale experimental 

measurements (e.g. wind-tunnel or water-tunnel analysis) and computational 

modelling. Within computational modelling there are several different approaches. 

The most common are the Gaussian models, Lagrangian models and Eulerian models 

[Feng98].  

• The Gaussian models are probably the oldest and most common way to 

estimate buoyant pollution dispersions. These models calculate a three-

dimensional steady-state concentration field from a single source point by 

approximating the dispersion of contaminants with a Gaussian shaped 

curve, meaning that the pollutant distribution has a normal probability 

distribution. Some representative examples of this kind of models are 

[Sutt32], [Pasq61], [Pasq74], and [Turn94].  

• The Lagrangian models calculate the air pollution dispersion by tracking the 

statistical trajectory of a large number of particles as they are transported 

within the atmospheric flow, which is typically generated by a 

meteorological model. The Lagrangian models use a moving frame of 

reference as the particles move from their initial location. Some versions 

of this kind of model are the Lagrangian Puff Models (e.g. [Scir96]), 

Lagrangian Particle Dispersion Models (e.g. [Mora96]), Lagrangian 

Transport-Chemistry Models (e.g. [Hov94]) and the hybrid dispersion 

models which are a combination of Lagrangian and Eulerian dispersion 

models (e.g. [Trem93]). 

• The Eulerian dispersion models are similar to the Lagrangian models 

because they also track the movement of a large number of pollution 

plume particles as they move from their initial location. The most 

important difference between the two models is that the Eulerian model 

uses a fixed three-dimensional frame of reference rather than a moving 

frame of reference. The Eulerian models are the typical approach used in 

Computational Fluid Dynamics (CFD) codes and it is employed to 

compute transport involving fluid flow, heat transfer, mass transport and 

associated convective-diffusive phenomena by the use of computer based 

numerical methods. 

The Computational Fluid Dynamics technique is a useful tool to study wind 

flow and pollutant dispersion. In fact, with the ever-increasing computational power, 
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high resolution CFD models have become a common practical tool to explain the 

detailed processes occurring in urban environments. It is now feasible, using state-of-

the-art computers, to simulate building-scale flow and dispersion in real urban 

settings. [Xian06].  

This work is based on the idea of applying CFD codes to simulate pollution 

dispersion on the micrometeorology scale with the intention of overcoming some of 

the well known limitations of the commonly used atmospheric dispersion models. It 

is expected that the CFD simulations will provide additional information from their 

higher capability to manage more geometrical details of the flow domain in 

comparison to simpler non-CFD dispersion models. 

1.3 State of the Art 

The study of pollution dispersion in urban environments is, at present, a very 

active area within the scientific community. Other than the above mentioned health 

and political/economical reasons, one motive are continuing computer speed 

improvements that have made it possible to use the CFD technique in a relatively new 

engineering application like the simulation of contaminant dispersions in detailed 

urban areas. The CFD application in wind engineering, better known as 

Computational Wind Engineering (CWE), is a relatively new area with a short history 

of just over 20 years, meaning that like in the early stages of any other application 

area, a lot of research for models’ validation and improvement is still missing. Ten to 

fifteen years ago, the most commonly studied geometries in this area were street 

canyons or flow around single blocks/buildings. However, more complicated 

geometries can now be easily found like the regular arrays of buildings (e.g. 

[Leit02],[Chua05]), street intersections (e.g.[Fran05]), the section of a real street (e.g. 

[Louk01],[Kast99]) and also less common, but possible to find are simulations of 

bigger real city areas, e.g. Oklahoma City [Urba08], New York City [Came06], 

[Coir06], [Coir06b], Kawasaki City [Huan06], etc.  

In spite of these and many other experiences, the accurate prediction of urban 

flow and dispersion is currently an unresolved issue due to its inherent complexity of 

formulating physically sound turbulence models added to the complex wind flows 

from intricate arrays of structures or urban canopies with arbitrary configuration of 

groups of buildings and street canyons. The two most common approaches used to 

simulate turbulent flow in CFD are Reynolds-Averaged-Navier-Stokes (RANS) and 

Large Eddy Simulation (LES) [Xi06] [Hsie07]. Turbulence modelling improvement 

in urban areas is as well as in many other engineering application a very important 

and tricky part in most CFD simulations.  
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Street canyons are a typical pollutant dispersion case of interest in urban 

environments because they are regions of the largest street-level pollutant 

concentrations and are hence a place with high pollution exposure of people. 

Furthermore, the simplest building blocks of cities are street canyons and it has been 

the geometry of main interest in several recent pollution dispersion studies of 

atmospheric boundary layer wind tunnel experiments [Mero96], [Pava99], [Kast99], 

[Grom07]. These studies usually present street canyons with several geometrical 

aspects affecting the flow behaviour, like different building roof shapes, isolated or 

urban street canyons, the influence of obstacles/trees and others2.  

One of the first and probably most complete works on RANS numerical 

simulations for two-dimensional street canyons was presented by Sini et al. using the 

code CHENSI with the standard k-ε turbulence model [Sini96]. This work was an 

important contribution by presenting a parameterization of the flow field within an 

isolated street canyon as a function of its aspect ratio (W/H, where W is the canyon's 

width and H is the building's height). However, their experimental validation of 

results was poor. Leitl et al. performed two-dimensional (2D) and three-dimensional 

(3D) simulations using the Standard and RNG k-ε turbulence models, but 

emphasising the improvement of the wind tunnel set up and failing in providing many 

geometrical and computational details [Leit97]. Hassan et al. reports a series of 

simulations for velocities and the concentration of pollutants in a 2D isolated street 

canyon using the Standard k-ε turbulence model but they recognized that they did not 

have enough experimental measurements to compare results [Hass98]. Chang and 

Meroney present a 3D numerical simulation of an urban street canyon with 

perpendicular streets with a small domain [Chan01]. Additionally, they compare 

turbulence models and point out considerable changes between RNG and Standard k-

ε results. Chan et al. use the commercial software FLUENT to compare the numerical 

simulation of an urban area street canyon with the aspect ratio of one and 

measurements from [Mero96], but with some geometry simplifications in source line 

design [Chan02]. They also compare the Standard, RNG and Realizable k-ε models 

for pollutant concentrations on the walls and show better agreement for the RNG 

model. Liu et al. report an LES study of passive scalar dispersion in a street canyon 

with ratio one using a 3D cubic cavity [Liu02] and compare their results with 

[Pava99]. They describe the formation of a primary vortex and three smaller vortices 

in the bottom corners of the canyon and in the top-leeward corner. They also test 

different locations for the pollutant inlet and declare that turbulent diffusion is the 

                                                
2 The works of [Mero96] and [Pava99] are the wind tunnel experimental measurements 

selected in this work for the comparison and evaluation of the numerical simulations. 
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predominant mechanism for pollutant removal from the canyon. Walton et al. present 

LES for an idealised urban street canyon (W/H= 1.2) [Walt02]. They report that the 

vortex formed within the canyon region is unsteady and that it meanders along the 

length of the canyon. Comparisons with the Standard k-ε model reveal that this model 

predicts a slightly weaker recirculation within the canyon. However, [Walt02] use a 

very close symmetry boundary condition at the top (=2H), which definitely influences 

the results. Additionally, in this work the grid resolution used was not fine enough to 

resolve all the turbulence features accurately. Sahm et al. present five different CFD 

software results to compare with a street canyon experiment [Sahm02]. They study a 

street canyon of W/H=2 and highlight the influence of the turbulence model as main 

reason for the deviation between measurements and model predictions. Nazridoust 

and Ahmadi present numerical simulations of three different arrays of 2D street 

canyons using FLUENT 6.3 [Nazr06]. In one of them, they use the urban geometry 

model from [Mero96]; however, they fail to contrast the measurements with the 

simulation results from the second street canyon where most probably a fully 

developed flow for the atmospheric boundary layer cannot be found. They compare 

the pollution predictions qualitatively using a simplified source design of the 

pollutants and changing its composition from ethane (in the experiments) to CO2 (in 

simulations). More recently [Izar07a] present an extensive comparison of pollution 

dispersion predictions using several turbulence models (Standard k-ε, RNG k-ε, 

Realizable k-ε, Standard k-ω, SST k-ω, Spalart-Allmaras and differential Reynolds 

stress model) together with different computational conditions in a 2D street canyon 

with W/H=1. Further details of this work are given in Chapter 7. 

In addition to the study of a variety of street canyon configurations and similar 

geometries, there are also many studies about the prediction of pollutant dispersion in 

bigger domains. A good example is the Mock Urban Setting Test (MUST), which 

belongs to the group of regular arrays of buildings and is the second case selected in 

the present work to evaluate the CFD model performance. The original MUST field 

experiment was carried out in September 2001 in a flat area located in the Great 

Basin desert of western Utah (USA). The experiment consists of an array of 12 by 10 

shipping containers with gaps between and is fully equipped to measure air velocities 

and the dispersion of a contaminant [Yee04] (further details are given in Chapter 8). 

Although it is a very recent work, a considerably large amount of research groups 

have made use of this experiment. For example, the MUST case with some geometry 

simplifications was studied in a wind tunnel experiment at scale 1:50 by the Defence 

Science and Technology Organization of Australia at Monash University [Gail06]. A 

similar water-channel experiment of MUST was performed at scale 1:102.5 at Canada 

R&D Corporation [Yee06]. With more rigorous geometrical details, the MUST case 
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was studied in a wind-tunnel experiment (scale 1:75) at the Meteorological Institute 

of the University of Hamburg (Germany)3 [Bezp07]. 

The MUST field experiment has also been the motivation of many 

computational modelling studies. Some examples are the evaluation of empirical 

urban dispersion models [Warn06]; Gaussian and Lagrangian micro- or meso-scale 

dispersion models [Baum08], [Amic08], [Eich08]; RANS and Unsteady-RANS 

approaches [Hsie07], and the prediction capabilities for different computational 

approximations like the models for turbulence [Mill07], for heat [Mill06], for 

dispersion [Izar08], for dispersion variance [Mill08], variable grid conditions 

[Barm08] and many other parameters needed to set up an appropriate CFD numerical 

simulation of pollution dispersion [Salo07], [Coir06], [Efth08]. The MUST 

experiment was also selected by the Cost Action 732 (Quality assurance and 

improvement of micro-scale meteorological models) [Cost732], where it was 

modelled by more than a dozen research groups (see e.g. [Oles08], [Disa08], 

[Fran08]). Some of the first LES studies of the MUST experiment were published by 

[Dejo09], [Sant07] and a VLES study was published by [Came05]. In most of these 

pollutant transport studies the usual discussed topics are Euler or Lagrange dispersion 

modelling for gaseous emissions or different sizes of particle emissions in 

conjunction with the effects of building size and shape, street width, wind velocity 

variation, wind direction, heat transfer and viscous turbulence models. 

The numerical prediction of pollution dispersion in urban environments by 

means of the solution of the statistically steady RANS equations has shown to be 

strongly dependent on the selected turbulence models. In the case of pollution 

dispersion, turbulence models do not only have to be used for the Reynolds stresses, 

but also for the turbulent scalar fluxes. While the influence of several turbulence 

models for the Reynolds stresses on the dispersion in urban environments has already 

been examined several times, the turbulent scalar fluxes are usually modelled by the 

simple gradient diffusion assumption. This model assumes isotropic diffusion 

behaviour for species transport in analogy to the turbulent transport behaviour of 

momentum. It means that the scalar diffusivity is proportional to the eddy diffusivity 

with a factor equivalent to the inverse of the (usually constant) turbulent Schmidt 

number (Sct). Different isotropic scalar flux models were recently applied in pollution 

dispersion using various constant values of the turbulent Schmidt number by 

[Tomi07], [Disa07], and one anisotropic scalar flux model by [Wang09]. Also the 

recent publications from Rossi [Ross09a], [Ross09b], [Ross10a], [Ross10b] present a 

                                                
3  This last wind tunnel experiment is the one used in the present work for comparison and 

evaluation of numerical results. 
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very good analysis of two anisotropic scalar flux models in pollution/mass dispersion. 

To the knowledge of the author, only [Izar07b] and [Izar08] have published a 

qualitative and quantitative comparison of the performance for several isotropic and 

anisotropic scalar flux models for pollution dispersion including algebraic and second 

moment modelling. Further details and the complete list of turbulent models 

employed in those publications are described in the present work. 

Fortunately, the lack of references using advanced scalar flux models is not 

the same in other engineering applications. Many different approximations of these 

terms have been studied for the analogue heat flux term in heat transfer applications, 

when the temperature is approximated as a passive scalar. Formally discussed, a 

passive heat transfer approximation is not real but under very low temperature 

variations and neglecting buoyancy effects, it can yield relatively good estimations. In 

such heat transfer applications, the variation of the turbulent Prandtl number Prt 

(analogue to Sct) is usually computed by using different constant values. Additional 

and less common options to model heat fluxes include empirical equations or more 

advanced first and second order anisotropic heat flux models. The simulation 

improvements obtained by the implementation of those advanced heat flux models in 

heat transfer applications may also occur for the transport of passive pollutants in the 

atmosphere. This idea represents the original hypothesis and main motivation of the 

present work. 

In this dissertation, the effects of several numerical parameters involved in the 

CFD simulation of atmospheric pollution dispersion are analyzed. The numerical 

parameters under consideration are the selection of turbulent stress models, 

active/passive pollutant, first/second order spatial discretization schemes and grid 

uncertainty in combination with different isotropic/anisotropic algebraic/differential 

scalar flux models. The anisotropic scalar flux models were implemented for passive 

scalar transport conditions using the commercial CFD package FLUENT 6.3 

[Flue06]. The well known geometries of a bi-dimensional street canyon and the 

already widespread MUST experiment have been selected for this purpose due to the 

considerable literature available to evaluate the influence of the previously mentioned 

elements. The model predictions are compared with experimental measurements 

using statistical performance measures to assess their predictive capability. As a final 

goal this dissertation is intended to evaluate the effort/improvement relation by the 

selection of advanced models, to propose a criterion for the selection of the suitable 

model for pollutant dispersion modelling, and to contribute to the experience in this 

topic for further practical engineering and research. 
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1.4 Structure of the Dissertation 

The information is presented in the following order. Chapter 2 presents the 

governing equations and computational approach needed to compute the fluid and 

contaminant transport. It introduces the reader to the turbulence problem and explains 

the necessity of turbulence models. Chapter 3 presents the different options available 

to model the turbulence effects in fluid flow equations (Reynolds stresses), in the 

pollutant transport equation (scalar flux term), and in the near wall region. Chapter 4 

gives a short overview of how the previous equations are solved through a 

Computational Fluid Dynamics (CFD) analysis and presents the numerical 

approximations included in it. Chapter 5 explains how the advanced scalar flux 

models were implemented in the commercial CFD software. Chapter 6 shows the 

model validation employed for the evaluation of the numerical results. Chapter 7 and 

8 present the details of the numerical simulation setups and analyze the results for the 

two studied test cases, the dispersion in a 2D street canyon and in the 3D urban 

MUST experiment. Finally, Chapter 9 presents some general observations and 

analysis of results for both test cases, and Chapter 10 states the conclusions drawn 

and gives recommendations for future works. The appendices contain some details of 

the implemented anisotropic scalar flux models, additional images from the results 

chapters and the source codes for the implemented models. 

 

 



 

 

2  Simulation of Pollution 

Dispersion Using CFD 

Pollution dispersion in the atmosphere is a good example of a scalar quantity 

dragged by a turbulent flow. Therefore, the turbulent flow field must be calculated 

with the intention to estimate the pollutants' movement.  

In fluid dynamics turbulent flow is a fluid regime characterized by chaotic, 

unstable, and 3D property changes. It consists of convection transport that is many 

times higher than its diffusion transport and a rapid variation of pressure and velocity 

in space and time. Some dictionary definitions already associate turbulence with the 

atmosphere and identify it as an irregular motion of the atmosphere characterized by 

gusts and lulls or up-and-down currents of the wind. After a century of experience, it 

has been seen that the “turbulence problem” is notoriously difficult to estimate, and 

still there are not prospects of a simple analytic theory. Consequently, in last the 30 

years, there have been a lot of efforts to use the increasing power of digital computers 

to find an approximated solution to this problem through CFD analysis. 

2.1 Governing Equations and Computer 

Approach 

To simulate fluid flow and pollution dispersion in CFD, the fundamental 

equations of fluid mechanics must be solved. First, these fundamental equations must 

be regarded for a continuum medium, which means that the behaviour of fluid is 

considered with macroscopic properties, i.e. velocities, pressure, density, viscosity, 

temperature and species fraction have macroscopic length scale (approx. 1µm or 

larger). These may be thought as averages over suitably large numbers of molecules. 

The governing equations needed to describe the fluid flow motion are the 



2.  Simulation of Pollution Dispersion Using CFD 

12 

conservation of mass (or continuity equation), conservation of momentum, 

conservation of energy and conservation of species:4 
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Eq. 2-1 

Eq. 2-2 

Eq. 2-3 

Eq. 2-4 

where ρ is the density, ui are the three velocity components, p is the pressure, fi are 

the body forces and any additional momentum sources, h is the enthalpy, c is a scalar 

contaminant, and ST and Sc represent the generation/destruction rate of energy and 

species respectively. The τij is the momentum shear stress tensor, jih is the diffusion 

flux of energy transport, and jic is the diffusion flux of species transport. These 

equations have been written in a general form for easier recognition of the terms. The 

first and second terms in the left side of all equations are the local time change and 

convective transport respectively. The first term on the right in every equation 

corresponds to the diffusion transport of the term between brackets.   The rest of the 

terms are computationally considered or treated as source terms. 

In a Newtonian fluid, the viscous stress is proportional to the rate of 

deformation. This means that the momentum equation (Eq. 2-2) for Newtonian fluids 

the shear stress tensor τij, is calculated from: 
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 Eq. 2-5 

where µ is the fluid viscosity and δij is the Kronecker delta (δij=1 if i=j and δij =0 if 

i≠j). Substituting Eq. 2-5 in Eq. 2-2, the transport equation becomes the same form as 

the well known Navier-Stokes equations. 

In the energy equation (Eq. 2-3), the diffusion flux of energy transport term 

(jih) includes the energy transfer due to conduction and species diffusion. Similarly, in 

the species equation (Eq. 2-4) the diffusion flux arises due to the concentration of 

gradients. Finally, they are calculated as: 

                                                
4  Continuity, momentum, and energy equations are usually considered the fundamental 

equations of fluid mechanics.  However, in the case of pollutant dispersion in an isothermal 

atmosphere, the energy equation plays no role but the species equation must be solved. The deductions 

of these equations can be found in any basic fluid mechanics book. 
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Eq. 2-7 

where the factors Γh and Γc are the diffusion coefficients for the enthalpy (Fourier’s 

law) and species (Fick’s law) transport respectively. The second term on the right side 

in Eq. 2-6 represent the energy transport by the diffusion. The last term in Eq. 2-3 is 

the viscous dissipation Φ, it is defined as [Cebe02]:  
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 Eq. 2-8 

To describe turbulent flows in CFD, the governing equations of mass, 

momentum, energy and species concentration are estimated using a numerical 

method. The selection method will depend on the level of description, completeness, 

computational cost, ease of use, range of applicability, and accuracy. The methods to 

simulate turbulent flows can be grouped into three categories: the Direct Numerical 

Simulation (DNS), the Large Eddy Simulation (LES), and the Reynolds-Averaged 

Navier-Stokes (RANS) simulations. The RANS approach was the method selected in 

the present work for the numerical simulations of the flow field and pollution 

dispersions. Therefore, this approach will be better explained in the next chapter. 

Direct numerical simulation (DNS) is a simulation technique in CFD in which 

the Navier-Stokes equations are numerically solved without any turbulence model. 

This means that the whole range of spatial and temporal scales of turbulence is 

resolved. All the spatial scales of the turbulence must be resolved in the 

computational mesh, from the smallest dissipative scales (Kolmogorov micro-scales 

η), up to the integral scale L, associated with the motions containing most of the 

kinetic energy. In case of homogeneous turbulence, the number of grid points in each 

direction must be at least L/η. Ιt can be shown that this ratio is proportional to ReL
3/4. 

Here ReL is a Reynolds number based on the magnitude of the velocity fluctuations 

and the integral length scale. Since this number of points must be employed in each of 

the directions of the three coordinates, and the time step is related to the grid size, the 

cost of a simulation typically scales as ReL
3 [Ferz02]. 

Consequently, the computational cost of DNS is very high, even at low 

Reynolds numbers. For the Reynolds numbers encountered in most industrial 

applications, the computational resources required by a DNS would exceed the 

capacity of the most powerful computers currently available. However, DNS is a 

useful tool in fundamental research of turbulence. Using DNS it is possible to 
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perform "numerical experiments" and extract information from them that is difficult 

or impossible to obtain in the laboratory, allowing a better understanding of the 

physics of turbulence. Also, DNS is useful in the development of turbulence models 

for practical applications, such as sub-grid scale models for LES and models for 

methods that solve the RANS equations.  

The next step of lower computer demanding modelling is the Large Eddy 

Simulation (LES). LES is a numerical technique used to solve the partial differential 

equations governing turbulent fluid flow. It was initially formulated in the late 1960s 

and early 1970s by the meteorologist Smagorinsky and his co-workers to simulate 

atmospheric air currents and climate predictions [Smag70]. Therefore, the primary 

use of LES was for meteorological applications but later, during the 1980s and 1990s, 

it became widely used in the field of engineering. 

The deduction of this approach is based on Kolmogorov’s (1941) famous 

theory of self similarity, which is that large eddies of flow are dependent on flow 

geometry, while smaller eddies are self similar and have a universal character 

[Kolm41]. For this reason, it became a practice to solve only for the large eddies 

explicitly, and model the effect of the smaller and more universal eddies on the larger 

ones. Thus, in LES, the large scale motions of the flow are calculated, while the effect 

of the smaller universal scales (the so-called sub-grid scales) are modelled using a 

sub-grid scale (SGS) model. In practical implementations, one is required to solve the 

filtered Navier-Stokes equations with an additional sub-grid scale stress term. The 

most commonly used SGS models are the Smagorinsky model and its dynamic 

variants. They compensate for the unresolved turbulent scales through the addition of 

an “eddy viscosity” into the governing equations. 

LES requires less computational effort than DNS but more effort than those 

methods that solve the Reynolds-averaged Navier-Stokes equations (RANS). The 

computational demands also increase significantly in the vicinity of walls, and 

simulating such flows for practical engineering applications is usually only possible 

in modern supercomputers today. This method has a big potential for the next 

generation of CFD simulations. The main advantage of LES over computationally 

cheaper RANS approaches is the increased level of detail it can deliver. While RANS 

methods provide “averaged” results, LES is able to predict instantaneous flow 

characteristics and resolve turbulent flow structures.  

In the particular case of pollution dispersion modelling in urban environments, 

LES is currently possible and recommended. However, the demanding computational 

resources of typical micro-scale meteorological geometry reduce the applicability to 

small and simplified cases. The RANS approach has been selected in the present 
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work as a manageable computational method to simulate fluid flow motion and to 

maximize the applicability of currently available computational resources in a 

relatively new CFD application such as a real city section or a similar 3D urban area.  

 

2.2 Reynolds Averaged Navier-Stokes 

Equations 

Using the Reynolds averaged approach to turbulence, all of the unsteadiness is 

averaged out, meaning all unsteadiness is regarded as part of the turbulence. The 

Reynolds-averaged Navier-Stokes (RANS) equations govern the transport of the 

averaged flow quantities, with the whole range of the scales of turbulence being 

modelled. The RANS-based modelling approach therefore greatly reduces the 

required computational effort and resources, and has been widely adopted in practical 

engineering applications. When applying Reynolds averaging, also called Reynolds 

decomposition, the solution for any variable in the Navier-Stokes equations are 

decomposed into the mean (ensemble-averaged or time-averaged) and its fluctuating 

components.  

( ) ( ) ( )txxtx ,, φφφ ′+=  Eq. 2-9 
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Here t is the time and T is the averaging interval. This interval must be very large 

compared to the typical time scale of the fluctuations. The mean value (Eq. 2-10) will 

depend only on the spatial coordinate x. 

Applying the definition presented in Eq. 2-9 and Eq. 2-10 for the velocity, enthalpy 

and any scalar contaminant yields: 
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Figure 2-1. Averaged and fluctuating parts of a property φφφφ under a steady state flow conditions. 

 

Then, starting from the fundamental equations, the continuity equation (Eq. 

2-1) and Navier–Stokes equations (Eq. 2-2 with the substitution of Eq. 2-5) expressed 

for steady state flow conditions are: 
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Eq. 2-13 

Using the time-average definition from Eq. 2-9 these equations can be written as:  
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Eq. 2-14 

 

Eq. 2-15 

where the fluid properties ρ and µ are constants. This set of equations is known as 

Reynolds Averaged Navier Stokes (RANS) equations. All terms in these equations 

can be easily recognized as the average quantities of their source equations except for 

the last term in the right side of Eq. 2-15. The part inside the parenthesis of this term 

corresponds to the fluctuating component of the turbulence and is known as the 

φφφφ    

φ′φ′φ′φ′    

φφφφ = φ φ φ φ + φφφφ′′′′    

time 
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Reynolds stress tensor. In laminar flow conditions, this term does not exist.  

However, in our case of interest and in most practical fluid flow problems, a 

turbulence model for the Reynolds stresses term must be used. There are several 

Reynolds stress turbulent models and most of them have many different variations in 

model coefficients and/or extra source terms. Seven selected turbulence models for 

the Reynolds stress have been employed in this work. A short description of each one 

of the models used is given in Chapter 3. 

2.3 Passive Contaminant Transport 

Turbulence transport of scalar contaminants is analogue and similar to the 

transport of momentum. A passive contaminant transport is defined as the movement 

of a substance (c) that does not affect the dynamical flow field, which is contrary to 

the case of active scalar (presented in next section), where the contaminant 

participates in the development of the dynamical flow field. Under the first passive 

scalar conditions, the mean flow can be computed and analyzed without any attention 

to the scalar field. The scalar field can subsequently be computed afterwards.  

To estimate the transport of pollutants, one extra non-linear differential 

equation must be solved in addition to the flow field (RANS) equations. This extra 

equation is the species transport. Performing the Reynolds average (Eq. 2-9) on the 

species transport equation (Eq. 2-4), in case of a passive scalar and steady state 

conditions, can be written as: 
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where Γc is the molecular diffusion coefficient of the transported scalar pollutant 

quantity c. This equation can be easily recognized as a general Reynolds averaged 

convection-diffusion transport equation. The two terms on the left side are the 

convection and the diffusion of c respectively, but special attention must be taken in 

the right side. The new term on the right side comes up from the convective term after 

performing the Reynolds averages to the species transport equation. The term inside 

of the right side parenthesis is called turbulent scalar flux term. It is analogue to the 

Reynolds stress and needs to be modelled with the intention to resolve the transport 

of pollutants in turbulent flow. In Chapter 3 a detailed description for the deduction of 

some of the most common models for scalar fluxes is presented.  
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2.4 Active Contaminant Transport 

The CFD calculation of a transport equation for an active scalar contaminant 

in turbulent flow conditions needs some additional reflections because at this point, 

this equation becomes fully coupled with the complete flow field. An active scalar 

contaminant may have different density, viscosity, temperature, chemical 

composition or concentration than the main fluid; therefore any difference between 

the fluid properties will affect the main flow field through buoyancy, viscosity, heat, 

or mass transport. 

The first problem that needs to be addressed is the fact that the density varies 

as a function of position. In the case of turbulent flow, additional to the velocity and 

scalar fluctuations presented by Eq. 2-12, there would also be density fluctuations. 

The Reynolds averages for this additional variable would be: 

ρρρ ′+=  Eq. 2-17 

It is easy to realise that the use of density fluctuations would introduce 

additional terms in the continuity, momentum, energy and species equations when the 

Reynolds average is used. Many of these additional terms are unknown and need to 

be modelled. To reduce the number of separated terms requiring modelling in active 

scalar flows with variable density, a density-weighted averaging procedure known as 

Favre average is used [Vers07]. 

For density variable simulation, the density-weighted averaging of the mean 

velocity in x direction is defined as: 

ρ

ρu
u =~

 Eq. 2-18 

Thus, the instantaneous velocity is written as: 

( ) ( ) ( ) u
u

txuxutxu ′′+=′′+=
ρ

ρ
,~,  Eq. 2-19 

In contrast to the Reynolds average, u˝ includes effects of density fluctuations 

in addition to the velocity fluctuations. Please note that if the flow is incompressible, 

the density is constant, so uu =~
 and uu ′=′′ .  

The governing equations presented by Eq. 2-1 to Eq. 2-4, i.e. the continuity, 

momentum, energy, and species respectively, with the velocity and scalars—but not 

the density and pressure—decomposed according to density-weighted Favre-

averaging yields: 
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Eq. 2-20 

Eq. 2-21 

Eq. 2-22 

Eq. 2-23 

Special attention must be given to the mixture properties because they are no 

longer constant. It means that there are different density and viscosity for every 

species. 

The mixture density is calculated in this work based on the ideal gas law for 

incompressible flow. In this case the density is computed as [Flue06]: 
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where R is the universal gas constant (8.3145 J/Kmol), ci is the mass fraction of 

species i, Mw,i is the molecular weight of the species i, and T and pop are the operation 

temperature and pressure respectively. 

Similarly, the mixture viscosity based on kinetic theory is calculated from: 
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and Xi is the mole fraction of species i. 

As can be observed in Eq. 2-20 to Eq. 2-23, the new set of flow field transport 

equations yields the same form as those for turbulent constant density flows. Here 

again the momentum fluxes ( jiuu ′′′′ρ ), heat fluxes ( hui ′′′′ρ ) and scalar fluxes ( cui ′′′′ρ ) 

need to be modelled with a turbulence model. The deduction of these Favre average 
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transport equations is outside of the objective of this thesis but it can be found in any 

book dealing with simulation of compressible fluid flow e.g. [Cebe02]. 

 



 

 

3  Closure of Fundamental 

Equations 

As was shown in the previous chapter, after performing the Reynolds or Favre 

average of the Navier-Stokes equations and of the pollutant transport equation, an 

additional unknown term arises in each of these equations. To close the complete set 

of equations and compute the fluid flow field and pollutant transport field, a 

turbulence model must be used to estimate these unknown terms as a function of 

known quantities. There are several kinds of turbulence models for the Reynolds 

stresses and for the scalar fluxes. Models for Reynolds or Favre averaged equations 

are usually the same. Therefore only the Reynolds average form of the models is 

shown and for active scalar the fluid density ρ only needs to be replaced by averaged 

density ρ . A selected group from some of the most common turbulence models for 

Reynolds stresses and scalar fluxes are explained in this chapter. 

A very important and unfortunate fact to mention at this point is that no single 

turbulence model has been universally accepted as being superior for all classes of 

problems. The choice of the best turbulence model in a specific case depends on 

many considerations. To make the most appropriate choice of a model for an 

application, one needs to understand the capabilities and limitations of the various 

options. 

3.1 Reynolds Stress Modelling 

The Reynolds stress tensor appears in the RANS equations after determining 

the Reynolds average of the convective term in the Navier-Stokes equation. It is 

determined by a turbulence model, either via the turbulent viscosity hypothesis or 

more directly from modelling the Reynolds-stress transport equations. Within the 

turbulent viscosity based models the number of additional equations to solve also 
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varies, while the Reynolds stress transport model always needs to solve one transport 

equation for every stress (3 equations in 2D and 6 equations in 3D), plus one equation 

for the turbulent dissipation rate (ε) and sometimes also for turbulent kinetic energy 

(k). In summary, these turbulent models could be classified as shown in Table 3-1. 

Table 3-1. Reynolds stress modelling classification. 

No. of extra 

transport equations 
Model Name 

Zero Mixing length model 
One Spalart-Allmaras model 

Two 
k-ε models 
k-ω models 

Seven Reynolds stress model 

 

The Zero, One and Two equation models are based on the turbulent viscosity 

hypothesis. This hypothesis, also known as Boussinesq hypothesis, proposes that the 

Reynolds stresses are proportional to the mean rate of deformation. It is based on the 

presumption that an analogy exists between the action of viscous stresses and 

Reynolds stresses on the mean flow. It can be written as: 
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where µt is a scalar property called the turbulent viscosity (often called eddy 

viscosity), ( )22221 wvuk ′+′+′=  is the turbulent kinetic energy. Eq. 3-1 is 

analogous in turbulence transport to Eq. 2-5 for viscous stresses. As before, the last 

terms are equal to zero for incompressible flow. In this form, the Boussinesq 

hypothesis (Eq. 3-1) provides all missing unknowns in the RANS flow equations (Eq. 

2-15). The turbulent viscosity is calculated in a specific way for all turbulent viscosity 

based models. 

The Boussinesq assumption is both the strength and the weakness of two 

equation models. This assumption is a huge simplification of a turbulent transport and 

it allows thinking and estimating the effects of turbulence on the mean flow in the 

same way as molecular viscosity affects laminar flow. The main weakness of the 

Boussinesq assumption is that it is not valid generally. There is no formal analytical 

relation which says that the Reynolds stress tensor must be proportional to the strain 

rate tensor. It is true in simple flows like straight boundary layers and wakes, but in 

complex flows—such as flows with strong curvature or strongly accelerated or 

decelerated flows—the Boussinesq assumption is simply not valid. The turbulent 

viscosity based models present inherent problems to predict strongly rotating flows 
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and other flows where curvature effects are significant. They also often have 

problems to predict strongly decelerated flows like stagnation flows. In summary, 

although the turbulent viscosity hypothesis is not correct in detail, it is an easy way to 

implement turbulence modelling, and with careful application, it can provide 

reasonably good results for many flows [Vers07]. 
The simplest kind of model to estimate Reynolds stress is the algebraic or zero 

equation model.  In this model, an algebraic equation is used to compute a turbulent 

viscosity from a characteristic velocity and a specified mixing length scale of the flow 

field. The problem with this kind of model is that their range of applicability is 

extremely limited to very well defined and simplified geometries. Therefore, this kind 

of model has not been implemented in the present work. For further details about this 

kind of model, please refer to a turbulence modelling book such as [Pope00]. 

The next level of complexity is the one equation models, where a transport 

equation for a turbulent quantity is solved (usually for the turbulent kinetic energy). 

In this case, a second turbulent quantity (usually the turbulent length scale) is 

obtained from an algebraic expression. In the next level of complexity are the two 

equation models where two transport equations are used to estimate the turbulent 

characteristics of the flow. The eddy viscosity is obtained from an algebraic relation 

between these two transported turbulent parameters.  

Finally, the Reynolds stress transport equation models (also known in the 

literature as second-order or second-moment closure models) include six transport 

equations, one for each Reynolds stress. Each transport equation contains turbulent 

diffusion, production, pressure-strain and dissipation terms whose individual effects 

are unknown. Then, assumptions are made about these unknown terms and the 

resulting partial differential equations are solved in conjunction with the rate of 

dissipation of the turbulent kinetic energy (ε). The application of this kind of model 

outside of the academy or research is relatively new due to the increase of computer 

recourses and the increased time demand compared to standard two-equation models. 

The turbulence models selected in this work for the simulation of Reynolds 

stresses are: 

1) Spalart-Allmaras model (S-A) 

2) Standard k-ε model (SKE) 

3) Renormalization-group  k-ε model (RNG) 

4) Realizable k-ε model (RKE) 

5) Standard k-ω model (SKW) 
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6) Shear-stress transport k-ω model (SST) 

7) Differential stress model (LRRIP) 

All these turbulence models are already available in the commercial software 

FLUENT 6.3. The first one, S-A, is a one-equation model. Models 2-6 are two-

equation models. The last one, LRRIP, is the most advanced available model and 

belongs to the category of Reynolds stress transport equations. 

3.1.1 One Equations Spalart-Allmaras model 

The Spalart-Allmaras (S-A) turbulence model is the only one-equation model 

used in the present work; therefore it is presented in a separate section. The Spalart-

Allmaras model is a relatively simple one-equation model that solves a transport 

equation for a modified eddy (turbulent) viscosity instead of the turbulent kinetic 

energy like most of the one-equation turbulent models. It represents a relatively new 

class of one-equation models in which it is not necessary to calculate a length scale 

related to the local shear layer thickness which is often a critical assumption in other 

one equation models. The S-A model was developed specially for aerospace 

applications but it is currently gaining popularity in other areas. Nevertheless, no 

claim is made regarding its suitability to all types of complex engineering flows. 

The S-A model belongs to the group of turbulent viscosity based models. A 

peculiar advantage of this model is that it provides economical computations of 

boundary layer in external aerodynamics and the near-wall gradients of the 

transported variable in the model are much smaller than the gradients of the 

transported variables in the k-ε or k-ω models. This might make the model less 

sensitive to numerical errors when non-well refined meshes near walls are used 

[Spal94]. 

The transported variable in the S-A model is a modified turbulent viscosity 

ν~ which is identical to the standard turbulent viscosity except in the near-wall 

(viscous-affected) region. The transport equation for the S-A model is given by: 
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where the turbulent viscosity is calculated as: 

1
~

vt fνρµ =  Eq. 3-3 

with 
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The additional terms are: 
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Where d is the distance to the closest wall and Ωij is the mean vorticity tensor defined 

as: 
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The remaining constants are given in Table 3-2: 

Table 3-2. Spalart-Allmaras model coefficients. 

Some S-A model coefficients 

Cb1 = 0.1355 
( )

σκ
2

2

1
1

1 bb

w

CC
C

+
+=  

Cb2 = 0.622 Cw2 = 0.3 
σ = 2/3 Cw3 = 2.0 

Cv1 = 7.1 κ = 0.4187 

3.1.2 Two Equations Models 

Historically, many two-equation models have been proposed. By definition, 

two-equation turbulent models are those in which two extra transport equations that 

represent the turbulent properties of the flow are solved. They are the simplest 

“complete models” of turbulence in which the solution of two separate transport 

equations allows the turbulent velocity and length scales to be independently 

determined.  

The two-equation turbulence models are the most common turbulence models. 

In most of these models the turbulent kinetic energy k is taken as one of the variables, 

but there are different options for the second. Models like the k-ε model and the k-ω 
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model have become industry standards and are commonly used for a variety of 

different engineering problems. However, two equation turbulence models are also 

still a research area in progress and new modified two-equation models are 

continuously being developed.  

Within the two-equation transport model category, three different options of 

the k- ε models and two different options of the k-ω models have been employed in 

the present work. All these models have a similar form, based on the Boussinesq eddy 

viscosity or turbulent viscosity assumption, which is computed from an algebraic 

relation between the two transported turbulence quantities. 

3.1.2.1 k-ε Turbulence Models 

The k-ε models are probably the most commonly used turbulence models in 

engineering applications and at least one variant of them (usually the standard k-ε) is 

incorporated in most of the commercial CFD codes. It is a two-equation model, which 

means it makes use of two extra transport equations to model the turbulent 

characteristics of the flow. The two transported parameters are the turbulent kinetic 

energy (k) and the turbulent dissipation rate (ε).  

Three different options of k-ε models were employed in the present work: the 

standard k-ε (SKE)[Laun72], the re-normalization group k-ε (RNG) [Yakh86], and 

the realizable k-ε (RKE) [Shih95] models. 

The SKE model is a semi-empirical model where the model transport equation 

for k is derived from the exact equation, while the model transport equation for ε was 

obtained using physical reasoning and bears little resemblance to its mathematically 

exact counterpart. In the derivation of the SKE model, the assumption is that the flow 

is fully turbulent, and the effects of molecular viscosity are negligible. The SKE 

model is therefore valid only for fully turbulent flows. The main advantage of this 

model is its simplicity, for which only initial and/or boundary conditions need to be 

supplied. It has shown excellent performance in many industrial flows, is numerically 

stable, and is the most widely validated turbulence model. However, the common 

problem of this model is its poor performance in some kind of flows including 

unconfined flows, flows with extra large strain (e.g. curved boundary layers [Bern86], 

swirling flows or rotating flows [Lill84]) and flows driven by anisotropy of normal 

Reynolds stresses. In wind engineering one of the well known limitations where the 

SKE model leads to very bad results is for the pressure distribution around buildings. 

This limitation is a result of the stagnation point anomaly—excessive production of k 

in stagnation flow regions. Therefore the pressures on the windward walls and 

especially behind the first corners are not well predicted [Fran07b].  
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The RNG model was developed with the intention to improve the SKE 

model's problems. It was derived using a rigorous statistical technique called 

renormalization group theory. It is similar in form to the SKE model, but includes 

different model coefficients and an additional term (not derived from RNG theory) in 

its ε equation that significantly enhances accuracy for rapidly strained flows. This 

additional term reduces the dissipation of ε in regions of high strain and therefore 

increases ε in those locations. The model consequently alleviates the stagnation point 

anomaly by leading to higher dissipation in regions of large k production. The RNG 

theory provides also an analytical formula for turbulent Prandtl numbers to improve 

diffusion, while the SKE model uses constant values. 

Another option to reduce the deficiencies of the SKE model is the realizable 

k-ε (RKE) turbulent model. The RKE model is the newest of these three models and 

differs from the SKE model in having a new formulation for turbulent viscosity and a 

new transport equation for the dissipation rate (ε). The ε equation has been derived 

from an exact equation for the transport of the mean-square vorticity fluctuation but 

taking into account two of the realizability conditions for the Reynolds stresses 

(positivity of normal stresses and Schwarz inequality for shear stresses) [Pope00], 

[Shih95]. It has shown better predictions for the spreading rate of both planar and 

round jets. The RKE model is likely to provide superior performance for flows 

involving rotation, boundary layers under strong adverse pressure gradients, 

separation, and recirculation. In wind engineering applications, this model has a short 

history. Some examples of satisfactory applications with predictions of the flow in 

street intersection and flow around buildings were observed and published by 

[Fran05] and [Bloc08]. 

The three k-ε model options have been synthesized in a general expression for 

easy formulation. Considering incompressible flow, the transport equations for the 

turbulent kinetic energy k and for the turbulent dissipation rate ε are resumed as: 

( )
bkk

j

k

ji

i GDG
x

k

xx

uk
+−+













∂

∂
Γ

∂

∂
=

∂

∂ ρ
 Eq. 3-7 

( )
εεε

ερε
DG

xxx

u

jji

i −+












∂

∂
Γ

∂

∂
=

∂

∂
 Eq. 3-8 

where the definition of each term and the constants vary for the k-ε model option 

selected. The common terms for these three models are the production of turbulent 

kinetic energy Gk, its dissipation Dk, and the production of turbulent kinetic energy 

due to buoyancy Gb, which are calculated as:  
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where Prt is the turbulent Prandtl number, calculated in a different way according to 

every model, S is the modulus of the mean rate-of-strain tensor defined as 

S≡(2SijSji)
1/2  and the mean rate-of-strain tensor Sij, defined as: 
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Additionally, the turbulent viscosity for these three models is always estimated from 

the relation: 

ε
ρµ µ

2
k

Ct =  Eq. 3-11 

The definitions for the different parameters and constants are specified in Table 3-3 

and Table 3-4. 

Table 3-3. Terms from the k-εεεε transport equations. 

Parameters SKE RNG RKE 

Γk µ+µt/σk α(µ+µt) µ+µt/σk 

Γε µ+µt/σε α(µ+µt) µ+µt/σε 

Gε Gk C1ε/k Gk C1ε/k ρC1Sε 

Dε C2ρε2/k [C2+Cµη3(1-η/η0)/(1+βη3)]ρε 2/k ρC2ε
2/(k+(νε)½) 

 

Table 3-4. Model coefficients for the k-εεεε transport equations. 

 

 where Pr is the molecular Prandtl number. The other parameters are calculated from: 

Constants SKE RNG RKE 

σk 1.3 - 1.0 

σε 1.0 - 1.2 

C1 1.44 1.42 Max[0.43,η/(η+5)] 
C2 1.92 1.68 1.9 
Cµ 0.09 0.0845 1/(A0+ASkU

*/ε) 

Prt 0.85 

36.063.0

39.2Pr1

39.2

39.1Pr1

39.1
−−

+

+

−

− αα
 0.85 
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Eq. 3-12 

3.1.2.2 k-ω Turbulence Model 

Historically, many two-equation turbulence models have been proposed. In 

most of these, k is taken as one of the variables, but there are diverse choices for the 

second. The specific dissipation rate ω(≡ε/k) is the second variable to solve for the 

k−ω based models and represent the second most widely used two-equation models. 

They are well known for their capability to be usable near boundaries without a 

requirement of near-wall functions. The reason they have this ability is, that different 

from the k-ε models, an extra dissipation term for near-wall flows is included in the 

k−ω models. They are also based on the Boussinesq hypothesis but with a modified 

turbulent viscosity formulation. Their application to building aerodynamics is still 

very uncommon [West02]. An example of its application to wind engineering is 

[Defr10]. 

In the present work two options of k-ω turbulence models are employed: the 

standard k-ω model (SKW) [Wilc98] and the shear-stress transport k-ω model (SST) 

[Ment94]. They have similar forms with transport equations for k and ω. The SKW 

model was the first model originally proposed as superior to the SKE model for 

boundary layer flows due to the better treatment of the viscous near-wall region, 

which accounts for the effects of streamwise pressure gradients. This model 

incorporates modifications for low-Reynolds-number effects, compressibility, and 

shear flow spreading. However, the treatment of non-turbulent free-stream boundaries 

is a common limitation of the model.  

The SST model is designed to combine the advantages of the SKE and SKW 

models by means of an accurate formulation of the SKW model in the near-wall 

region with the free-stream independence of the SKE model in the far field. To 

achieve this, the SKE model is converted into a SKW formulation, then the SKW 

model and the transformed SKE model are both multiplied by a blending function and 

both models are added together. The blending function is designed to be one in the 

near-wall region, which activates the SKW model, and zero away from the surface, 

which activates the transformed SKE model. The SST model incorporates a damped 

cross-diffusion derivative term in the ω equation. The definition of the turbulent 

viscosity is modified to account for the transport of the turbulent shear stress. The 
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modelling constants are also different. The modifications implemented in the SST 

model have shown more accurate and reliable results for a wider class of flows 

(including aerodynamics flows) than the SKW model [Flue06]. 

The transport equations of the two different k-ω model options have been 

synthesized for easier explanation in two general expressions—one for each transport 

parameter. For both of these models, the turbulent kinetic energy k can be calculated 

from: 
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and the specific dissipation rate ω, from: 
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where the diffusion coefficients for both models (SKW and SST) are calculated in 

analogy to the SKE model. It means: 
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k +=Γ+=Γ  Eq. 3-15 

The different terms and model coefficients in these equations depend on the selected 

k-ω model. See Table 3-5. 

 

Table 3-5. - Terms from the k-ωωωω transport equations. 

Parameters SKW SST 

Gk µtS
2 

min[µtS
2
,10ρβ*

kω] 

Gω αGkω /k Gkα/νt 

Yk ρβ∗
fβkω ρβ∗

kω 
Yω ρβfβω2 ρβω2 

Dω − 2(1-F1)(ρσω,2/ω)(∂k/∂xj)( ∂ω/∂xj) 

µt α∗ρk/ω ρk/(ω⋅max[1/α∗,SF2/a1ω) 
 

The remaining constants are given in Appendix A.  

3.1.3 Differential Stress Models 

The most complex classical RANS turbulence model is the Reynolds stress 

transport equation model, also called the second-order or second-moment closure 

model. They are usually employed in cases when the two-equation models fail, such 
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as for complex flows with strain field, significant body forces, and high anisotropic 

flows. This model does not use the isotropic eddy-viscosity hypothesis and closes the 

RANS equations by solving transport equations for every one of the Reynolds 

stresses, together with an equation for the dissipation rate ε. It means that five 

additional transport equations must be solved in 2D flows and seven additional 

transport equations in 3D flows. 

This is the most elaborate turbulence model employed in the present work. 

The Reynolds stress model used in this work is commonly known as LRRIP model 

from the proposal of Launder, Reece, and Rodi [Laun75] with the inclusion of an 

Isotropization of Production (IP) term. This IP model term supposes that one part of 

the pressure term (presented in Eq. 3-16) partially counteracts the effect of production 

to increase the Reynolds-stress anisotropy. This effect is introduced as a consequence 

of observations from the rapid distortion axisymmetric expansion [Pope00]. 

Since the LRRIP model accounts for the effects of streamline curvature, swirl, 

rotation, and rapid changes in strain rate in a more rigorous manner than one-equation 

or two-equation models, it has greater potential to give accurate predictions for 

complex flows. However, the ability of LRRIP predictions is limited by the closure 

assumptions employed to model various terms in the exact transport equations for the 

Reynolds stresses. The models for the pressure-strain and dissipation-rate terms (see 

Eq. 3-16) are particularly important and often considered to be mainly responsible for 

the accuracy of the predictions with these kinds of models. For this reason, the 

LRRIP model might not always yield results that are clearly superior to the simpler 

models. Therefore, the additional computational effort does not always guarantee 

better results. However, use of this model is mandatory when the flow characteristics 

of interest are the result of anisotropy in the Reynolds stresses. Some examples are 

cyclone flows, highly swirling flows, rotating flow passages, and the stress-induced 

secondary flows in ducts. In atmospheric flows the LRRIP model has been reported 

with good agreement to experimental measurements but not necessarily better than all 

two-equation models [Fran05]. 

The transport equations of the Reynolds stress tensor can be derived from the 

subtraction of the RANS equations with the exact momentum equation. Then, the 

exact momentum equations are multiplied by a fluctuating property and the product is 

Reynolds averaged. This deduction is not of main interest of this work and has been 

left out but it can be found in fundamental texts on turbulent flows (see e.g. [Durb01] 

[Pope00]). The exact transport equation for the Reynolds stresses in statistically 

steady conditions reads: 
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Where each term is identified as: 

Cij  = Convection 

DTij  = Turbulent Diffusion 

DLij  = Molecular Diffusion 

Pij  = Stress Production 

Φij  = Pressure Strain 

εij  = Dissipation 

Gij=Buoyancy Production 

Unfortunately, several of the terms in the exact equation are unknown and 

modelling assumptions are required in order to close the equations. Of the various 

terms in these exact equations, Cij, DLij and Pij do not require any modelling, but Dij, 

Gij, εij and Φij need to be modelled. There are several options to model those terms but 

only the LRRIP model option has been employed in the present work and it is 

explained next. 

Due to numerical stability, the turbulent diffusion transport is not modelled by 

the original proposal (GGDH) but with the gradient diffusivity relation, presented as: 
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where the turbulent viscosity, µt, is computed using the same equation for the SKE 

model (Eq. 3-9) and the turbulent Prandtl number is specified as a constant (σk=0.82). 

Similarly, the effects of buoyancy Gij are modelled based on the gradient 

diffusion relation and the ideal gases assumption as: 
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The Pressure-Strain term has been estimated by using the Linear Pressure-

Strain Model [Gibs78] [Laun89]. This is probably the most difficult term to model in 
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Eq. 3-16 and also very important for good model performance. The employed Linear 

Pressure-Strain model, also called the basic option by some second moment model 

specialists [Craf02] [Craf93], consists in the decomposition of the Pressure-Strain 

term as: 

wijijijij ,2,1, Φ+Φ+Φ=Φ  Eq. 3-19 

where Φij,1 is the slow Pressure-Strain term or the return-to-isotropy term, Φij,2 is 

called the rapid Pressure-Strain term, and Φij,w is the near-wall treatment for the 

model and called the wall-reflection term. The slow Pressure-Strain term, Φij,1, is 

modelled from [Rott51] as: 
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where C1=1.8. The model for the rapid Pressure-Strain term, Φij,2, is taken from 

[Fu87] as: 
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where C2 = 0.60, Pij, Gij, and Cij are defined in the Eq. 3-16, P = ½Pkk, G=½Gkk, and 

C = ½Ckk. 

Finally, the wall-reflection term, Φij,w, responsible for the redistribution of 

normal stresses near the wall, damps the normal stress perpendicular to the wall while 

enhancing the stresses parallel to the wall. It is approximated as proposed by 

[Gibs78]: 
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where C’1 = 0.5, C’2 = 0.3, nk is the xk component of the unit normal to the wall, d is 

the normal distance to the wall, and Cl = Cµ
3/4 /κ, where Cµ = 0.09 and κ is the von 

Karman constant (= 0.4187). The turbulent kinetic energy is calculated as 

( ) iiuuk ′′⋅= 21 . 

The dissipation tensor term is modelled as: 

ρεδε ijij
3

2
−=  Eq. 3-23 

where the scalar dissipation rate, ε, is computed from  
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and σε=1, Cε1=1.44, Cε2=1.92 and Cε3=tanhǀug/uǀ. The symbol ug is the component of 

the flow velocity parallel to the gravitational vector and u is the component of the 

flow velocity perpendicular to the gravitational vector. With this and all previously 

mentioned approximations, the transport equations for the Reynolds stresses are in 

closed form and can be solved with appropriate boundary conditions. 

3.2 Passive Scalar Flux Modelling 

Similar to the Reynolds stresses in the RANS equation, the scalar flux term 

( φ ′′iu ) appears after performing the Reynolds average to any scalar transport equation 

with the form of the species transport equation (Eq. 2-16). This new term is unknown 

a priori and needs to be modelled in order to close the set of governing equations. 

This chapter discusses the different ways to estimate the scalar fluxes. 

Most of the research performed on turbulence closure modelling has been 

focused on momentum transport with much less attention paid to the transport of 

passive scalars. The main reason of these differences is because the mean velocity 

and turbulent stresses constitute very important input to the passive scalar flux 

equations, while the opposite is not true: passive scalar field is mathematically 

decoupled from the dynamical equations governing the flow field. A solution of the 

flow field is thus a prerequisite to the solution of the scalar field.  

In addition to the passive scalar case, the equation of active scalar transport 

also brings the new scalar flux term after performing the Favre average. This term 

should also be modelled when an active scalar field is calculated. However, due to the 

primary interest of this thesis, the active scalar was only implemented using the 

simplest isotropic scalar gradient model. Consequently, the deduction of anisotropic 

scalar flux models is presented here only for passive scalar transport.  

The modelling approach of scalar fluxes is usually carried out with the 

simplest isotropic scalar fluxes model. The simulation of passive pollutant dispersion 

in an urban environment by means of advanced anisotropic scalar flux models is 

extremely rare and therefore not well documented. From the literature review it can 

be observed that this is one of the first times that the second moment models are 

employed in this engineering application. With the intention to compare and access 

the prediction capabilities and possible improvement with the use of these advanced 

models, they have been implemented according to their classification as algebraic 
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scalar flux models and second moment scalar flux models.  Their deduction and 

formulation are explained in next sub-sections. 

3.2.1 Algebraic Scalar Flux Models 

The algebraic scalar flux models proposed in the present section are based on 

an explicit algebraic relation for φ ′′iu . The relation is not constructed from their 

traditional simplification of the transport equation for scalar fluxes, but rather from 

the use of tensor representation theorems based on a rationally assumed functional 

relationship reduced through the application of appropriate constraints. For the 

general case of a compressible, reacting flow with consideration of gravitational 

effects, the scalar fluxes follow a functional relationship as [Youn05]: 
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where Ma is the Mach number, gi is the gravity vector, τ is the turbulent time scale, 

φ  and 
2φ ′  are respectively the average concentration and its variance and ijS  and 

ijΩ  are respectively the mean rate of strain tensor (Eq. 3-10) and mean vorticity 

tensor (Eq. 3-6). 

In the case of incompressible flow of passive scalar and neglecting buoyancy 

effects, the functional relationship can be written in a mathematical general 

representation as [Youn05]: 
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where every iα  represent model coefficients with units that depend on the terms they 

multiply. They can be expressed as: 

( )αρφεα IkFi ,,,, 2=  Eq. 3-27 

With k and ε as the turbulent kinetic energy and its dissipation rate, respectively, and 

the density ρ. Iα represent all possible invariants of the relevant tensor variables 

which appear in Eq. 3-25. 
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Using additional assumptions in Eq. 3-26, (like negligible anisotropy, very 

small turbulent time scales, balance between rotational and irrotational strain-rates or 

for simple evaluation of the relevant terms and their order of magnitude), the majority 

of the algebraic scalar flux models proposed in the literature may be obtained. The 

algebraic scalar flux models are the simplest way to estimate the scalar flux term 

because they have the advantage of their simpler and shorter formulation alternative 

to the traditional, more complex scalar flux transport models. Table 3-6 presents some 

of the most common algebraic models with their corresponding coefficients.  

Table 3-6: Algebraic Scalar Flux Models 

Model Name α1 α2 α3a α3b α4 Α9 

1.-Simple Eddy 
    Diffusivity (SED)  

µt / Sct 0.0 0.0 0.0 0.0 0.0 

2.-Daly-Harlow 
    (GGDH) [Daly70] 

0.0 0.3τ 0.0 0.0 0.0 0.0 

3.-Abe-Suga  
   (ABE-SUGA) [Abe01] 

0.0 0.0 0.0 0.0 0.45τ/k 0.0 

4.-Abe  
    (ABE) [Abe06] 

0.0 0.22τ 0.0 0.0 0.45τ/k 0.0 

5.-Younis et. Al.  
    (YOUNIS) [Youn05] 

-0.045kτ 0.37 -0.0037kτ2 0.0 0.0 -0.023τ2 

6.-Launder 
    (WET)5

 [Laun88] 
0.0 0.3τ 0.0 0.0 0.0 0.0 

where Sct is the turbulent Schmidt number, τ (=k/ε for SED model and 

[ ]ενε 6,kMax  otherwise) is the turbulent time scale and the additional coefficients 

α5, α6, α7 α8 and α10 were always set to 0. One of the most relevant characteristics of 

the advance scalar flux models presented in this table (models 2 to 6) is their 

capability to assess the anisotropic behaviour of scalar transport. Therefore, this 

condition has been considered for the classification of scalar fluxes in two groups 

which are the isotropic and the anisotropic scalar flux models.  

3.2.1.1 Isotropic Algebraic Scalar Flux Models 

The first model presented in Table 3-6 is the simplest scalar flux model, here 

called the Simple Eddy Diffusivity (SED) model. It is the most common way to 

calculate the scalar fluxes in practical engineering applications and it is usually the 

only available model in most Computational Fluid Dynamic codes. The SED 

                                                
5  The WET model includes an additional term. i.e: ( )kiikkii xuuxuuCu ∂∂′′+∂∂′′=′′− φφτφ

φ  
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approach is numerically very stable, very simple and does not include much computer 

effort. This model assumes the gradient diffusion analogy between momentum and 

scalar transport with the proportionality factor of a usual constant turbulent Schmidt 

number (Sct) instead of a molecular Schmidt number (Sc).  

The molecular Schmidt number is a dimensionless number defined as the ratio 

of molecular momentum diffusivity (kinematic viscosity) and molecular diffusivity of 

mass. The Sc number is used to characterize fluid flows in which there are 

simultaneous momentum and mass diffusion processes. In a similar way, the 

turbulent Schmidt number is defined as the ratio of the turbulent momentum 

diffusivity (eddy viscosity) µt and the turbulent mass diffusivity (Γt) dealing with the 

relation between turbulent diffusion by momentum and mass processes. The role of 

Sct in dispersion modelling has not been studied extensively, especially in urban 

areas. However, different estimates of this parameter have been published based on 

field or wind tunnel observations and CFD applications for different atmospheric and 

wind conditions.  

Experimental studies of Sct are usually presented together or in relation to its 

heat transfer analogue turbulent Prandtl number (Prt). Reynolds [Reyn75] measured 

the Prt and Sct under different flow conditions and proposed empirical formulae 

representing a limited amount of data. Koeltzsch [Koel00] performed wind tunnel 

experiments in a turbulent boundary layer above a flat plate and found a strong 

dependence of Sct with height in the boundary layer. Wilson et al. [Wils01] and 

Flesch et al. [Fles02] reported estimated values of Sct based on field observations 

under different flow conditions. They suggested a Sct of 0.6 with a standard deviation 

of 0.31 based on measurements of pesticide concentrations in the atmosphere. 

CFD modelling of the turbulent mass transport around building or urban 

diffusion problems has usually been carried out using constant Sct values ranging 

from 0.7 to 0.9 (e.g. Baik et al., [Baik03]; Kim et al., [Ketz02]; Cheng and Hu, 

[Chen05] 2005; Wang and McNamara, [Wang06]; Lien et al., [Lien06]; Santiago et 

al., [Sant07]; Yassin et al., [Yass08]). These values are usually set as the default in 

most commercial CFD codes. As pointed out by Tominaga and Stathopoulos 

[Tomi07], it is very surprising that many papers do not report the Sct values used in 

the simulations, although this parameter is known to have a significant effect on the 

predictions.  

There are various CFD research studies which have investigated the 

sensitivity of Sct on the predicted concentration in the empty boundary layer and in 

the presence of buildings. Riddle et al. [Ridd04] and Di Sabatino et al. [Disa07] 

studied this problem for a point source within a neutral boundary layer and highlight 
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that the typical underestimation of the turbulent kinetic energy near the ground 

obtained from most CFD codes strongly affects the dispersion predictions. Therefore, 

they proposed to artificially increase the plume dispersion by reducing the Sct to 0.3 

and 0.4 respectively. Tang et al. [Tang06] performed a parametric study using various 

Sct values which he compared with the field data under near-neutral stability 

conditions and reported the best agreement (on average) using Sct=1.  

The influence of Sct on dispersion around an isolated cubic building was 

recently investigated by Tominaga and Stathopoulos [Tomi07] and Blocken et al. 

[Bloc08]. They publish the best agreement with measurements by using Sct=0.3 and 

both studies discuss an observed underestimation of the lateral plume spread.  

CFD simulations of dispersion around more complex structures, such as street 

canyons and building arrays, have presented interesting results. Hanna et al. [Hann04] 

and Milliez and Carissimo [Mill07] pointed out that a large number of obstacles 

increase the production of turbulent kinetic energy and these obstacles  compensates 

the underestimation of turbulent diffusion often observed in RANS simulations of 

open countryside or single buildings. Di Sabatino et al. [Disa08] mention the 

possibility of artificially reducing Sct to increase the turbulent diffusion of species. A 

change of the turbulent Schmidt number may produce a change in the diffusion 

coefficient in the scalar diffusion equation, and therefore it would influence only the 

diffusion mechanism and not the fluid dynamics. In this sense the Schmidt number in 

CFD models may be considered merely as an adjustment parameter which needs to be 

evaluated on the basis of field or laboratory experiments, or with other models. Di 

Sabatino et al. [Disa07] support this conclusion with the obtained variable Schmidt 

number as a function of the packing density (ratio of built to un-built area), i.e. the 

larger the packing density the lower the Schmidt number. They suggest that Sct =0.4 

for low and medium level packing density and they project further lowering the Sct 

for further increasing the density. A similar tendency of Sct was found by Gromke et 

al. [Grom08] in a study of an isolated street canyon with avenue-like tree planting. 

They found that when the street canyon was filled with vegetation, the optimum Sct 

number (around 0.6 to 0.7) was larger than the typical value used for an empty street 

canyon.  

As shown above, the optimum value provided in previous studies for Sct are 

sometimes very different from the commonly used values of 0.7–0.9. Values from 

about 0.3 to 1 are recommended in the literature, depending on various flow 

properties and geometries. Nevertheless, it is clear that the Sct has a large influence 

on the prediction accuracy of mass transfer. In general, the turbulent momentum 

diffusion is often underestimated when using RANS models.  An underestimation of 

the turbulent diffusion for scalars can be compensated for with a smaller value of Sct 
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in order to provide better predicted results on concentration distribution. Since most 

commercially available CFD codes operate with default values in the range of 

Sct = 0.7–1.0, it is recommended [Disa07] that the turbulent Schmidt number be 

critically reviewed when using standard turbulence models for pollutant dispersion 

investigations in urban areas. However, it should be kept in mind that such 

cancellation of errors cannot be generalized, so the optimum value of Sct should be 

considered from the viewpoint of the dominant effect in the turbulent mass transport. 

3.2.1.2 Anisotropic Algebraic Scalar Flux Models 

The SED model implies that turbulent diffusivity is isotropic and that 

turbulent scalar fluxes and mean scalar gradients are aligned (See Table 3-6). It has 

been proven (see e.g. [Durb01]) that neither result holds true in complex two- and 

three-dimensional shear flows. Consequently, the second presented model, originally 

introduced by Batchelor [Batc49], proposes a generalization of the gradient transport 

hypothesis inserting the new definition of a tensor diffusion coefficient. 

Subsequently, [Daly70] proposed this tensor diffusion coefficient directly 

proportional to the Reynolds stresses. This proposal is based on the supposition that 

all the mean stream and buoyancy generation is obliterated by pressure fluctuations in 

the scalar flux transport equation. Thus, this model arises as the simplest one that 

includes anisotropy effects and allows the non-alignment with the gradient of scalar 

fluxes, overcoming the principal SED model limitation. However, two-dimensional 

simulation of this model, Generalized Gradient Diffusion Hypothesis (GGDH), has 

shown that it cannot successfully predict the two components of the scalar flux vector 

with a single coefficient because near walls the scalar fluxes correlates stronger with 

the streamwise than with normal Reynolds stresses [Kim89]. Application of this 

model can be found in many different transport phenomena including the diffusion 

term in the transport equations of momentum and scalar fluxes (See Chapter 3.1.3 and 

3.2.2.2), and as a direct approximation of the analogue heat transfer term called 

turbulent heat fluxes (e.g. [Abe01], [Rubi91], [Roge89]). 

Subsequently, the DNS calculations from [Kim89] were interpreted by 

[Abe01] to propose the “quadratic” (here called ABE-SUGA) model with the 

intention to simplify the determination of the model coefficient in the GGDH model. 

Thus, this model is presented as a modification of the GGDH inserting a scaling 

factor of Reynolds stresses non-dimensionalized with the turbulent kinetic energy. 

Also [Abe01] in the same and other posterior publications proposed a combination of 

GGDH and the “quadratic” models. This new combination of models with their 

respective model coefficients was finally presented by [Abe06] and it is referred hear 

as the ABE model. Although these two models were developed for passive scalar 
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transport, their model calibration and applications have been used almost exclusively 

for heat transfer purposes. 

The model from Younis et al. [Youn05] (here called YOUNIS) is based on the 

enhancement of the isotropic approach of the SED model and corresponds to the most 

recent and complex algebraic model formulation implemented in the present work. It 

was developed from the general functional relationship presented by Eq. 3-26 under 

the assumption of small anisotropic effects, a small turbulent time scale and a balance 

between rotational and irrotational strain rates. Its final formulation includes the 

isotropic term with the collaboration of Reynolds stresses and velocity gradients. Due 

to this very recent model’s development, it has not been implemented in many 

different engineering applications beyond heat transfer (e.g. [Diet07]). This model 

has recently been improved for the near-wall treatment including a variable model 

coefficient using Lumley’s flatness factor [Youn07]. 

Finally, the WET [Laun88] model is a little bit special because this model has 

an additional term which does not perfectly fit in the mathematical general 

representation of Eq. 3-26. The reason is because its deduction comes directly from 

the scalar flux transport equation (Eq. 3-28) and it is based on the assumption that the 

scalar fluxes are proportional to their rate of production. The WET model is 

distinctive for two main differences in its formulation. First, it is implicit in the scalar 

fluxes which is an undesirable feature for the algebraic models because it may 

produce anomalies in complicated geometries [Youn05]. Secondly, the WET model is 

not of the gradient transport type, which means that it does not allow the model to 

sustain finite levels of turbulent scalar fluxes in the absence of mean scalar gradient. 

In practice, it is possible to occur but only when the scalar field is being transported 

by the mean flow of the turbulence. These transport processes constitute a non-local 

mechanism that cannot be catered by a rotational algebraic closure. Probably due to 

this implicit formulation and the convergence problems that it produces, this model is 

not usually employed in many engineering applications of anisotropic model 

comparisons for heat transfer purposes. 

In general, algebraic scalar flux models can be classified in two main groups. 

The first group of models depends exclusively on Reynolds stresses (models like 

GGDH, ABE-SUGA and ABE) and the second group also depends on velocity 

gradients as an improvement of the SED model (e.g. [Youn05], [Laun88]). The 

majority of the models in the second groups are not directly applicable for high 

velocity gradients close to the walls (see e.g. [Diet07]). Therefore damping functions 

or variable model coefficients are usually implemented for these models in near-wall 

flows.  
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As a final note, it must be mentioned that several of the implemented 

algebraic scalar flux models are probably still under development and therefore they 

have not been implemented or calibrated in many engineering applications as 

pollution dispersion in atmospheric environments. This understanding is important 

because it means that the recommended standard model coefficient is not always the 

best selection for each model in each specific test case. However, only their standard 

model coefficients have been used for the model comparison in this work. 

3.2.2 Second Moment Models for Passive Scalars 

The transport equation for the scalar fluxes can be obtained analogously to the 

transport equation for the Reynolds stress tensor. It is formulated by: (1) subtracting 

the species convection-diffusion equation (Eq. 2-4) from the mean scalar transport 

concentration (Eq. 2-16), (2) multiplying by ui, and (3) adding the result to the i-

component of the momentum equation, multiplied by φ’. The result is the transport 

equation for the scalar flux:  
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 Eq. 3-28 

where 

  Ciφ  = Convection of scalar flux term 

Piφ  = Production of scalar flux term 

Φiφ  = Pressure-Scalar Gradient Term 

εiφ  = Molecular Dissipation or Destruction of Scalar Fluxes 

Diφ  = Turbulent and Molecular Diffusion of scalar flux term 

The convection of scalar fluxes (Ciφ) does not need modelling. The production 

of scalar flux term (Piφ) expresses the rate of creation due to the combined actions of 

mean velocity and mean scalar gradients. The former tend to increase the velocity 

fluctuations and the latter intend to increase the magnitude of the scalar fluctuations. 

The molecular dissipation or destruction term (εiφ) is associated with small scales. 

The isotropic value of the scalar flux dissipation rate is zero and also negligible in 
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non-isotropic flows when the turbulence Reynolds number is high. The turbulent and 

molecular diffusion (Diφ) rapidly remove small scale directional preferences, so at a 

high Reynolds number, the small scale motion is nearly isotropic. Also based on this 

consideration, the turbulent diffusion controls the rate of mixing, thus the molecular 

diffusion of the scalar flux term is usually neglected. The pressure scalar gradient 

term (Φiφ) is the counterpart of the pressure-strain term in the stress equation and of 

main relevance in the balance of this equation. With the direct dissipation negligible, 

it provides the mechanism which limits the growth of the fluxes.  

The last three terms in Eq. 3-28 need to be modelled with the intention to 

close the turbulent scalar flux transport equation. Next some models to estimate the 

Pressure-Scalar term (Φiφ) and the Turbulent Diffusion Term (Diφ) are shown. The 

molecular dissipation or destruction term is sometimes included as a part of the 

turbulent diffusion term. However, in the present work it is neglected based on its low 

magnitude in comparison to the turbulent diffusion; thus, no model for this term is 

proposed. 

3.2.2.1 Pressure-Scalar Term 

After neglecting the influence of viscous transport and dissipative terms, only 

the pressure-scalar gradient term is responsible for counteracting the scalar fluxes 

production. Therefore, the accuracy of the pressure-scalar gradient term (Φiφ) model 

plays a determinant role. The approximation of this term is based on the Poisson 

equation for the fluctuating pressure multiplied by a concentration gradient. If 

buoyancy is neglected, the pressure-scalar term is usually decomposed into two parts: 

21 φφφ iii ΦΦΦ +=  Eq. 3-29 

where Φiφ1 is the slow part and Φiφ2 is the rapid part, and they are the analogue to the 

slow and rapid pressure-strain terms of Reynolds stress models (See Eq. 3-16). A 

general expression to include the different model proposals available in the literature 

can be written as [Shab97]: 
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where the first two terms correspond to the slow (turbulence) part and the last two 

correspond to the rapid (mean strain) part. Most of the first proposals for 

approximating the scalar-flux term include only the slow part. Nowadays, the 

importance of the rapid part effects on the pressure fluctuations is generally 

recognized, at least in approximating the pressure-strain correlation in the stress 

equation. However, there is not consensus in the literature on the value for the 

constants. Some of them are summarized in the next table. 
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Table 3-7. - Resume of different pressure-scalar gradient models coefficients. 

Case C0φφφφ    C1 φ φ φ φ    C2 φ φ φ φ    C3 φ φ φ φ    

Basic (Rotta-Monin) 
[Rott51][Moni65] 

3.0 0 0 0 

Launder [Laun75b] 3.2 0 0.8 -0.2 
Launder [Laum75c] 3.2 0 0.5 0 

Gibson-Launder [Gibs78] 3.0 0 0.33 0 
Donaldson [Laun78] 5.0 0 - - 

Owen [Laun78] 4.1 0 0 0 
Meroney [Laun78] 2,5 0 0 0 

Jones-Musonge6 [Jaya69] C1
* 0.12 1.09 0.51 

Launder [Laun89] 2,9 0 0.4 0 
Craft [Craf93] 3.0 0 0.5 0 

Durbin [Durb93] 2.5 0.45 0 0 
Shabany-Durbin [Shab97] 2.89 0 0.41 0.21 

Wikstrom [Wiks98]7 3.2 0.7 0 -1.0 
Hanjalic-Jakirlic [Hanj02]   3.5 0 0.55 0 

 

In Table 3-7 an untidy disarray among the various proposals is presented, 

which reflects the fact that most of these suggestions are based on comparison with 

specific non-universal data and sometimes without any recourse to experimental data. 

All cited models include a model coefficient for the slow part first term, (C0φ in the 

order of 3), which is usually recognized as the direct counterpart of the [Rott51] 

“return to isotropy” model from the momentum stress equations. Similarly used but 

less common appears in the third column the recommendation of the first term for the 

rapid part (C2φ in the order of 0.5). Finally, only one from the 14 cited models 

includes the four model coefficients, and three and four models of the list include the 

use of the second slow part (C1φ) or second rapid part (C3φ) terms as an intention to 

accommodate effects of turbulent anisotropy. 

In addition to these “basic” second moment models, some further advanced or 

complex models for the pressure-scalar gradient term can be found in literature. Some 

examples are the proposal given as the TLC model from Craft and Launder [Craf96] 

and some newer models such as [Wiks00] and [Lueb01]. However, the validation of 

these recent models is still limited to very few applications/cases. 

                                                

6 The first model coefficient is: ( )
ijij bbC .313*

1 +=   where the anisotropy tensor is ;
3

1

2
ij

ji

ij
k

uu
b δ−

′′
=  

7 Wikstrom uses a different time scale based on the mixture of the dynamic (k/ε) and an analogue 

scalar (kφ/εφ) time scale. Please see the cited reference for details. 
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3.2.2.2 Turbulent Diffusion Term 

The turbulent diffusion term is usually neglected in homogeneous turbulent 

flow, but to calculate inhomogeneous flows, it is required. The estimation of the 

turbulent diffusion term is proposed as [Laun78]: 
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where the constants C1 and C2 are a pair of model coefficients which vary according 

to the different authors' proposals as 0.15 and 0 by [Wyng74], 0.1 and 0.1 by 

[Laun78], 0.18 and 0 by [Craf93], 0.15 ± 0.04 and 0 by [Durb01] or 0.15 and 0 by 

[Hanj02]. 

As mentioned earlier, the majority of the model proposals for turbulent 

diffusion include only the first term of the general model correlation presented by Eq. 

3-31. This assumption is equivalent to make use of a calibrated Generalized Gradient 

Diffusion Hypothesis (GGDH) model from [Daly70] taken from a severe truncation 

of the third-moment transport equations. This assumption is the most common 

method used to estimate the turbulent diffusion term (Diφ). Similar to the scalar-

pressure gradient term, some more advanced and complex models for turbulent 

diffusion can be found in the literature (see e.g. [Wiks98], [Craf02b] and [Ilyu02]). In 

the present work, considering passive scalar without buoyancy effects, the GGDH 

model was employed with the coefficients C1=0.15 and C2=0. 

3.3 Near Wall Modelling Approach 

Turbulent flows are significantly affected by the presence of walls due to the 

imposition of the no-slip boundary condition in such regions. Very close to the walls, 

the viscous effects are significant and govern the fluid motion. However, the 

turbulence is rapidly augmented with the wall distance by the production of turbulent 

kinetic energy and the large gradients in mean velocities. The pollutant 

concentrations, as a passive scalar, are directly affected by the accuracy of these 

boundary fluid flow models. 

The majority of turbulence models given in the previous chapters are suitable 

for completely developed turbulent flows. But the validity of these models is 

questionable in the regions where the viscous effects prevail over the turbulence. To 

solve this problem, the easy and favourable results of near-wall functions have been 

converted to a common practice for a turbulence modelling assumption. The inclusion 

of near-wall models can significantly impact the fidelity of numerical solutions. 
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Therefore, accurate representation of the flow in the near-wall region determines 

successful predictions of wall-bounded turbulent flows. 

The derivation of the velocity profile in a boundary layer can be found in any 

fundamental fluid mechanic book. For modelling purposes, it is usually divided and 

approximated in several regions as in Figure 3-1. The first sub-layer beside the wall is 

the viscous sub-layer, which extends from the wall to the non-dimensional wall 

distance z+
≈5. In this region the molecular viscosity plays a dominant role in 

momentum and species transport. The other important part, the turbulent or log-law 

region, extends from about z
+>30 to the first 30% of the complete boundary layer 

(z/δ<0.3, where δ is the boundary layer thickness).  It is in this region where 

turbulence plays the major role. The buffer layer is the overlap or intermediate region 

between the viscous sub-layer and the log-law region where both phenomena, viscous 

and turbulence transport, have similar magnitude. Finally, in the top wake region, the 

constant free stream velocity is usually approached.  
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Figure 3-1. Boundary layer profile of non-dimensional velocity u
+
(=u·z/uττττ, where uττττ=[ττττw/ρρρρ]

1/2
) as 

a function of the non-dimensional wall distance (z
+
≡ρ·uτ/µ) and the non-dimensional wall 

distance z/δδδδ. 

Analytical wall functions have been developed to estimate the near wall flow 

field for velocities and species concentrations in every region of the boundary layer. 

Next, the formulation and implementation of the wall functions used in the software 

are presented and explained for each of the transport equations of interest. 

3.3.1 Near-Wall Functions  

The commercial software employed for the numerical simulation of pollutant 

dispersion uses by default (for all transport equations) the so-called standard wall 

functions. This is the most common approach to model the flow at the wall. Here the 

viscosity affected region close to walls is bridged by wall functions, removing the 

necessity to resolve the large velocity gradients near the walls. These functions are 

applied always in the first cell beside the wall with the purpose of bridging the 

numerical solution away from the wall to the analytical solution at the walls. 
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The employed standard wall functions are taken from the proposal of Launder 

and Spalding [Laun74]. The law-of-the-wall for mean velocity reads: 

( )** ln
1

Ezu
κ

=  Eq. 3-32 

where  

ρτ

µ

W

PP kCu
u

2141
* =      and      

µ

ρ µ PP zkC
z

2141
* =  Eq. 3-33 

and κ(= 0.4187) is the von Karman constant, E(= 9.793) is an empirical constant, ūP  

is the mean velocity of the fluid at the evaluation point P, kp is the turbulence kinetic 

energy at the same point, zp is the perpendicular distance from point P to the wall, and 

µ is the dynamic viscosity of the fluid. 

This logarithmic law for mean velocity is implemented in the first adjacent 

cell beside the wall when z
* 

> 11.225. When the near wall mesh is finer than this 

lower limit, i.e. z* < 11.225 at the first wall-adjacent cell’s centre, it is applied to the 

linear or laminar stress-strain relationship u* = z*. 8 

For flows over rough walls, the log-law is still valid but the velocity decreases 

due to the increased drag exerted by the roughness elements. The reduction of the 

velocity is taken into account by the inclusion of a roughness measure in the 

logarithmic velocity distribution. The roughness is expressed in terms of the sand-

grain roughness ks and the velocity change is taken into account inserting an 

additional parameter ∆B. Then, the log-law for flows over rough walls reads: 

( ) BEzu ∆−= ** ln
1

κ
 Eq. 3-34 

The new inserted term ∆B is a function of the non-dimensional roughness 

height ks
+ (=uτ·ks/ν). Τhe influence of this roughness is divided into three regimes. 

For ks
+ ≤ 2.25 the wall is called hydrodynamically smooth because the roughness has 

no influence on the velocity distribution, i.e. ∆B=0. For ks
+ > 90, the regime is called 

fully rough because the influence of the roughness is dominant. Between these values 

of ks
+ the wall is transitionally rough. 

                                                
8  It should be noted that the laws-of-the-wall for mean velocity and species are based on the 

wall unit, z∗, rather than on the standard z+ (≡ ρuτz/µ). However, these quantities are approximately 

equal in equilibrium turbulent boundary layers. 



3.  Closure of Fundamental Equations 

47 

Several empirical formulas have been proposed to describe the dependence of 

∆B on ks
+, (e.g., [Ligr86] and [Cebe77]). The proposal from [Cebe77] is implemented 

in the commercial code FLUENT 6.3. For a fully rough regime it is: 

( )++=∆ srkCB 1ln
1

κ
 Eq. 3-35 

where the constant Cr ∈ [0,1] must be chosen by the user. A discussion of the 

equivalent z0 roughness commonly used in meteorology is given by [Fran07b]. 

Similarly to the velocity, the law-of-the-wall for the mean species (φ ) can be 

expressed as: 
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 Eq. 3-36 

where iφ  is the species mass fraction in the cell adjacent to the wall, wi,φ  is the 

species mass fraction at the wall, Sc and Sct are the molecular and turbulent Schmidt 

numbers, respectively, Ji,w is the diffusion flux of species at the wall, and ρ is the 

density of fluid. The non-dimensional thickness of the viscous sub-layer for species, 

zφ*, is computed as the z
* value at which the linear law and the logarithmic law 

intersect each other. 

Finally, Pφ is computed by using the formula given by Jayatilleke [Jaya69]: 
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The turbulent parameters are solved in different ways depending on the 

selected turbulence model. When the differential Reynolds stress turbulence model 

LRRIP is used, the transport equation for the Reynolds stresses jiuu ′′ and ε are not 

calculated at wall-adjacent cells centres, but their respective specific values are set for 

this region instead. The turbulent kinetic energy at the wall-adjacent cells is obtained 

by solving the following equation. 
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where σk=0.82. Eq. 3-38 can be obtained by contracting the modelled equation for the 

Reynolds stresses (Eq. 3-16). As one can expect, it is essentially the same equation 

used to estimate the turbulent kinetic energy in the SKE model. 
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The equation for the turbulent dissipation rate ε is not solved but instead is 

computed at the first node under the assumption of equilibrium between production 

and dissipation. 
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⋅
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κ
ε µ

2343

 Eq. 3-39 

where the sub-index P makes reference again to the wall-adjacent cell's centre. 

The Reynolds stresses also need to be specified at the wall-adjacent cells' 

centres. The near-wall values of the Reynolds stresses are calculated from the wall 

functions. Explicit wall boundary conditions for the Reynolds stresses are applied by 

using the log-law and the assumption of equilibrium, disregarding convection and 

diffusion in the transport equations for the stresses. With a local coordinate system 

with 1 as the stream wise direction and 3 as the perpendicular direction from the 

walls, see Figure 3-2, the near-wall values Reynolds stresses values are: 

098.111 =
′′

k

uu
 ,  655.022 =

′′

k

uu
 ,  247.033 =

′′

k

uu
 ,  255.031 =

′′

k

uu
 Eq. 3-40 

Similarly, when the k-ε turbulence model is used, the turbulent dissipation rate 

(ε) is solved by Eq. 3-39 and the turbulent kinetic energy (k) transport equation is 

solved in the whole domain including the wall-adjacent cells. The boundary condition 

for k imposed at the wall is: 

0=
∂

∂

n

k
 Eq. 3-41 

where n is the local coordinate normal to the wall.  

With these and previous assumptions, the turbulent parameters needed to 

solve the transport equations at the wall boundaries are completed. 

3.3.2 Enhanced Wall Treatment  

The enhanced wall treatment is a near-wall modelling method available in the 

used commercial software (FLUENT 6.3) that combines a two-layer model with 

enhanced wall functions [Flue06]. If the near-wall mesh is fine enough to be able to 

resolve the laminar sub layer (typically y+ ≈ 1), then the enhanced wall treatment will 

be identical to the two-layer zone model (explained below). This method is 

recommended by [Flue06] to skip the necessity of creating a very fine grid at the 

walls, which thus avoids the requirement of large computational resources in detailed 

near-wall flow simulations. 
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The two-layer near-wall model employed with the enhanced wall treatment 

consists of resolving the governing equations through the viscosity-affected near-wall 

region. The two-layer approach is used to specify the turbulent dissipation rate ε and 

the turbulent viscosity µt in the near-wall cells. Like in the standard approach, the 

domain is subdivided into a viscosity-affected region and a fully-turbulent region. 

The limit of these two regions is determined by a wall-distance-based turbulent 

Reynolds number, Rez, defined as: 

µ

ρ kz
z ≡Re  Eq. 3-42 

where z is the normal distance from the closest wall to the cell centres. 

In the turbulent region ( 200Re  ,  ReRe ** => zzz ), the k-ε models or the LRRIP 

models are employed. In the viscosity-affected near-wall region (
*ReRe zz < ), the 

one-equation model proposed by [Wolf69] is employed. In this one-equation model, 

the transport equation of momentum and turbulent kinetic energy k are calculated. 

However, the turbulent viscosity, µt, here is computed from: 

klClayert µµρµ ≡2,  Eq. 3-43 

where the length scale lµ is calculated by [Chen88]: 
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This two-layer definition is smoothly blended with the high-Reynolds-number 

formulation for the outer region, as proposed by [Jong92]: 

( ) layerttenht 2,, 1 µλµλµ εε −+=  Eq. 3-45 

where µt is the standard turbulent viscosity for high-Reynolds-number definition k-ε 

and LRRIP models. The blending function, λε, is equal to unity far from walls and is 

zero very near to walls. The blending function chosen is: 
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When this model is chosen, the turbulent dissipation rate ε is computed from: 
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and the additional constants are:   
43** and,2 −=⋅= µε κCCCA ll  
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Then, this law-of-the wall is expressed as a single equation for the entire wall region 

by blending linear (laminar) and logarithmic (turbulent) laws-of-the-wall using a 

function suggested by [Kade81]: 

+

Γ+Γ+ +=
turbu

lam eueu

1
 Eq. 3-48 

where the blending function Γ is given by: 

( )
+

+

+

−
=Γ

bz

za

1

4

 Eq. 3-49 

with a = 0.01 and b = 5. 

Then, the enhanced wall functions are developed by smoothly blending an enhanced 

turbulent wall law with the laminar wall law. The enhanced turbulent law-of-the-wall 

for incompressible flow including pressure gradients and neglecting temperature and 

compressible effects was derived by [Flue06] from [Whit71] and [Huan06] proposals.  

It is calculated as: 
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where  

( ) x
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u ∂

∂
=

3*2ρ

µ
α  Eq. 3-51 

and 
+
sz  is the location at which the log-law slope will remain fixed. The default value 

in the software is 60=+
sz . The α coefficient in Eq. 3-50 represents the influences of 

pressure gradients. As can be observed, when this coefficient is equal to zero, an 

analytical solution would lead to the classical turbulent logarithmic law-of-the-wall. 

The enhanced wall functions for species follow the same approach developed for the 

profile of u+. The unified wall species formulation blends the laminar and logarithmic 

profiles according to the method proposed again by [Kade81]: 
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 Eq. 3-52 

where the notation for Pφ  and Jφ,w are the same as for standard species wall functions 

(see Eq. 3-36). Furthermore, the blending factor Γb is defined as: 
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 Eq. 3-53 

where Sc is the molecular Schmidt number, and the coefficients a and b were defined 

in Eq. 3-49. 

Apart from the formulation for φ+ in Eq. 3-52, the enhanced wall functions for species 

follow the same logic as was shown for standard wall functions (see Section 3.3.1) 

and result in the following definition for turbulent and laminar wall functions: 
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where the quantity +
cu  is the value of u

+ at the fictitious intersection between the 

laminar and turbulent region and the function Pφ is defined in the same way as for 

standard wall functions. For further details about this model, please refer to the 

original source of this section in the FLUENT 6.3 User's Guide [Flue06]. 

3.3.3 Derivation of Second Moment Boundary-Layer Flow 

Modelling 

For the implementation of the algebraic scalar flux model, the mean species 

transport equation with a boundary condition of zero perpendicular flux of species 

from the wall must be specified. But special attention must be taken for the second 

moment models because there is a transport equation for every scalar flux, and 

therefore boundary conditions for every one of them must be set. A short analysis of 

the boundary condition for these equations is presented in this section. 

Following the ideas from Prandtl in 1904 [Pran04], the boundary layer theory 

is applied to a plane surface with steady state, incompressible, viscous flow with the 

coordinates ‘x’ as the streamwise direction parallel to a flat plane with  velocity ‘Uo’, 

and ‘z’ as the vertical direction normal to the plane with velocity ‘w’ (see Figure 3-2). 

The gravity is neglected, which is only important in boundary layers where fluid 

buoyancy is dominant.  
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Figure 3-2. Flat Plane Boundary Layer coordinates 

 

With the intention to analyse the wall boundary conditions for the scalar flux 

transport equations, the proposal from Hanjalic-Jakirlic [Hanj02] has been selected 

and analyzed. The general expression of this model for the scalar flux transport 

equation can be seen in 0: 

At the walls, considering only the [Hanj02] proposal in the x-direction, the 

model transport equation for the φ′′u  scalar flux component would read: 
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Eq. 3-55 

Taking into account the boundary layer approximations for a fully developed 

flow with a large Reynolds number, w  and x∂∂  are zero. Additionally, considering 

that the flow is statistically independent in the y-direction, it is equal to a 2D flow for 

the presented coordinate system. Then, it can also be stated that v  and y∂∂  are zero. 

Finally, the diffusion transport through the wall boundaries is neglected because the 

diffusion transport of pollutants through the walls is not of current interest and 

therefore this case was not considered in the present study. With these simplifications, 
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only the four terms between braces ({ }) need attention. After some algebra, the scalar 

flux for the streamwise direction (x) at the walls can be reduced to: 
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 Eq. 3-56 

and following an analogue procedure for the other two scalar flux components, the 

result is: 
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These results coincide with the well known second moment boundary layer 

model proposed by Gibson & Launder [Gibs78], neglecting buoyant terms. These 

three equations (Eq. 3-56, Eq. 3-57 and Eq. 3-58) must be used in the simulations as 

wall boundary conditions for the transport equations of scalar fluxes. 

For the interest of this work, the simulation of pollution dispersion from a 

single pollutant source within a well defined urban area, there is not transport of 

pollutants from the solid walls (street or buildings) to the flow field. Therefore, the 

boundary condition at all wall boundaries for the transport equation of the mean 

species concentration is zero gradient in the direction perpendicular to the walls 

( )0=∂∂ zφ . It is the equivalent setup to an adiabatic wall boundary condition if the 

scalar were the temperature. Including this new condition, the boundary conditions at 

walls for every one of the scalar flux transport equations is zero, i.e. 

0=′′=′′=′′ φφφ wvu . 

The ratio of scalar fluxes for each of the implemented scalar flux models were 

calculated and compared using the analytic solution of the log-law. The scalar fluxes 

were evaluated at the first cell beside the walls because the near-wall treatment only 

takes place in those locations. These scalar flux ratios were compared with the values 

reported in the publication of the well known second moment scalar flux model of 

Gibson and Launder [Gibs78]. Comparing all presented models with their respective 

coefficients, the scalar flux ratios are:9 

 

 

                                                
9  The used turbulent kinetic energy and dissipation rate profiles have been calculated based on the log-

law approximation of an equilibrium boundary layer over a rough wall from [Rich93]. 
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Table 3-8. Comparison of scalar flux ratios using different models. 

MODEL       Scalar flux ratio  
SED (Sct=0.7) 0.0 

GGDH [Daly70] -1.03 
Abe-Suga [Abe01] -2.72 

ABE [Abe06] -1.89 
WET [Laun89] -2.03 

Younis et al [Youn05] -2.30 
Hanjalic & Jakirlic [Hanj02]  -1.46 
Gibson & Launder [Gibs78] -2.1 
Wyngaard et al. [Wyng71] -4.0 

 

The comparison of the models' behaviour at near-wall boundaries (Table 3-8) 

show that all the studied advanced anisotropic scalar flux models keep similar order 

of magnitude but within an appreciable range of differences. It can be seen that the 

SED model presents the worst predictions in comparison with those calculated by the 

old and well known second moment model from Gibson & Launder [Gibs78]10. 

These results and their effects in the prediction of scalar fluxes in anisotropic flows 

(e.g. flows very close to walls) must produce appreciable differences for the 

calculation of pollution dispersion in atmospheric applications. 

 

                                                
10 [Gibs78] recognize that “the value of the near-wall heat-flux ratio in neutral conditions is the subject 

of considerable uncertainty” and justify his differences stating that “in this region the level of 

temperature fluctuations is necessarily very small and the signal contamination by velocity fluctuations 

may become significant”. 

u´φ´/w´φ´ 



 

 

4  Numerical Procedure 

The fundamental equations in fluid mechanics are partial differential 

equations and their analytical solutions are only possible under very simple geometry 

and fluid flow conditions. For a general fluid flow and geometry case, these equations 

can only be solved numerically through their transformation into algebraic equations 

by means of discretization in space and possibly in time. To perform this 

transformation, several numerical approaches can be employed, including the Finite 

Difference Method, Finite Element Method, Finite Volume Method and others. In the 

present chapter, only the Finite Volume Method (FVM) will be described because it 

is the method employed by FLUENT V6.3, which is the commercial software 

employed for the numerical simulations. Although most of the description of the 

FVM is based on the used capabilities of this software, many of the presented aspects 

can be directly transferred to other numerical approaches.  

4.1 General Convection-Diffusion Transport 

Equation: Discretization and Solution 

The conservative form of all governing equations in fluid mechanics and any 

other transport phenomenon of the convection-diffusion problem can be written in the 

following form: 

( ) ( ) ( ) φφ φρφ
ρφ

Su
t

+∇Γ⋅∇=⋅∇+
∂

∂ r
 Eq. 4-1 

where φ is a generic scalar variable. By setting φ equal to 1, u, v, w, h or c and setting 

appropriate values for the scalar diffusion coefficient Γφ and source terms Sφ, it is 

possible to obtain the continuity, the three momentum components, energy or species 

transport equations respectively. To solve Eq. 4-1 numerically, the flow field domain 

is first divided into discrete macroscopic control volumes (or cells) using a 

computational grid. The control volume technique consists of integrating the transport 
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equation over each control volume, which yields a discrete equation that represents 

the conservation law on a control-volume basis. The discretization of the governing 

equations is illustrated by considering the integral of Eq. 4-1 over an arbitrary control 

volume V, as follows: 

( ) ( ) ( ) ∫∫∫∫ +∇Γ⋅∇=⋅∇+
∂

∂

VVVV

dVSdVdVudV
t

φφ φρφ
ρφ r

 Eq. 4-2 

where ρ is the density and u
r

 is the velocity vector. The first term on the left side is 

easily recognized and signifies the rate of change of the total amount of fluid property 

φ in the control volume. In steady state problems, like in the present work, this first 

term is equal to zero. The convection and diffusion terms (second from the left side 

and first on the right side, respectively) can be rewritten as surface integrals by 

applying the Gauss divergence theorem. Integrating over a boundary surface S around 

the control volume V leads to: 

( ) ( ) ∫∫∫ +∇Γ⋅=⋅

VSS

dVSdSndSun φφ φρφ
rrr

 Eq. 4-3 

where n
r

 is the unitary vector in perpendicular direction to the surface S. The surface 

integrals are estimated with the second-order midpoint rule—i.e. the integral is 

approximated as the product of the integrand function evaluated at the surface centre, 

multiplied by the surface area: 

SFFdA centre

S

.≈∫  Eq. 4-4 

Similarly, the volume integral is also estimated with a second-order accurate 

approximation as the product of the source term SP in the cell centre and the total 

volume: 

VSVSdVS P

V

,φφφ ≈=∫  Eq. 4-5 

Considering the case of a general simple equidistant 2D mesh as appears in 

Figure 4-1, the integrals of Eq. 4-3 over each volume yield: 
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Eq. 4-6 

where N is the number of faces enclosing the control volume.  Here N = 4 for the 2-D 

case (N = 6 in 3-D), and the i indexes correspond to n = north, s = south, e = east, w = 

west. In this form, φi is the value of φ on the face i, iii Au
rr

⋅ρ  is the mass flux through 
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the face i, iA
r

 is the area vector of the face i, ∇φi is the gradient of φ at the face i, V is 

the cell volume, and PS ,φ  is the value of the source in the cell centre. The calculated 

surface and volume integrals are second order accurate and the resulting equation is 

applied to each control volume in the entire computational domain.  

 

Figure 4-1. - Cartesian computational grid and definition of the volume VP. 

 

The convective and diffusive terms in Eq. 4-6 include the value of the variable 

φ and its gradient evaluated on the surfaces between two control volumes. The FVM 

estimates only the discrete value of the scalar φ at the cell centres; therefore, the face 

values φi must be approximated by an interpolation from the surrounding cells. There 

are different interpolation methods depending the respective term and they are 

explained next. 

4.1.1 Approximation of Diffusion Terms 

The discretization of the diffusion term is usually based on the simple linear 

profile assumption between the cell centres. At this level, the diffusion coefficient Γφ 

as well as any other fluid property are the assumed scalar constant quantity and are 

known in all locations. But the gradient on the face (∇φi) must be estimated with the 

intention to calculate the diffusion transport through every face. The most common 

way to calculate the gradient of φ at the faces is using the central difference method. 

The standard central difference method evaluated at the east face (See Figure 4-1) 

would read: 
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e xxx −

−
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


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



∂

∂ φφφ
 Eq. 4-7 

where φE and φP are the cell centre values of φ and xE and xP are the corresponding 

coordinate positions at the east and middle cell centres. When the location of the face 

‘e’ is in the middle between P and E (e.g. on a uniform grid), the approximation is of 

second order accurate and first order otherwise.   

Another possibility for the approximation of the derivatives in the face centres 

is to first approximate them in the cell centres and then interpolate these 

approximations to the face centres. This gradient is calculated based on the Green-

Gauss theorem, as: 

∑
=

≈∇
wesni

ii A
V ,,,

1 r
φφ  Eq. 4-8 

where φi is the value of φ at the cell face centred, computed from the simple 

arithmetic average of the values at the neighbouring cell centres. For boundary faces 

no interpolation is made, but the value of the gradient is derived from the boundary 

conditions, i.e. it is either fixed (Dirichlet) or extrapolated from the interior (von 

Neumann). 

4.1.2 Approximation of Convective Term 

With the intention to discretize the convective term, it is important to 

remember the fundamental definition of this phenomenon. Convection in the most 

general terms refers to the movement of fluid particles (parcels) within fluids. The 

convection, which is also called advection in meteorology, is the transport 

phenomenon of a substance or a conserved property with a moving fluid. Therefore, 

the convection transport must produce influence only in the direction of the flow 

instead of in the negative gradient directions like it occurs for the diffusion transport. 

Therefore, the discretization of this term is carried out in this work with the upwind 

schemes. 

The upwind schemes mean that the main upstream transport direction is 

favoured. Two different options of upwind spatial discretization schemes available in 

the commercial software have been used during the simulations. They are: 

1. The first-order upwind scheme considers that the cell-centre value of φ 

represents a cell-average and it remains constant through the entire cell. 

Therefore, the face value φi is set equal to the cell-centre value of φ in the 



4.  Numerical Procedure 

59 

upstream cell. Using again the nomenclature from Figure 4-1 for the east face, it 

would be:  





<⋅

>⋅
=

0 if  ,

0 if  ,

eeE

eeP
e
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nu
rr

rr

φ

φ
φ  Eq. 4-9 

where eu
r

corresponds to the face centre velocity vector. This result comes after 

retaining only the first term of the Taylor series expansion about P (for a 

cartesian grid and ( nu ˆ⋅
r

)e>0): 
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φφ  Eq. 4-10 

where H denotes higher order terms. This method is very stable on computing 

iterative solutions but usually considerable numerical diffusion11 is produced 

due to the truncation error. 

2. The second-order upwind scheme consists of computing the cell face quantities 

(φi) using a linear interpolation approximation and the gradient limiting function 

factor of the multidimensional linear reconstruction approach proposed by 

[Bart89]. Thus, supposing a horizontal main flow direction (( nu
rr

⋅ )e>0) and 

following the notation from Figure 4-1, the second-order upwind scheme 

computes the face value φe  as: 

( ) frePPe ⋅⋅∇+=
r

φφφ  Eq. 4-11 

where φP and (∇φ)P are the cell-centred values and its gradient in the upstream 

cell, and r
r

 is the displacement vector from the upstream cell centre to the face 

centre (in this case err
rr

=  = (xe-xP , ye-yP)T ). In comparison to the first-order 

interpolation scheme, this formulation approach allows higher-order accuracy at 

cell faces through the inclusion of an additional term from the Taylor series 

expansion (Eq. 4-10) of the cell-centred solution in the cell centroid. Also, the 

use of this approximation is usually recommended in best practice guidelines 

instead of the first-other upwind scheme. The second-order upwind scheme 

requires the implementation of good quality meshes and the determination of 

the gradients. The gradient term in Eq. 4-11 is computed using the divergence 

theorem as was written in Eq. 4-8. 

                                                
11  Numerical diffusion is a numerical error which appears after the discretization of the 

transport equations and depends on the spatial discretization scheme and numerical grid used [Ferz02]. 
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Finally, the resultant value of the gradient (∇φP) is limited by its 

multiplication with a function factor f ∈ [0,1]. This limiting function imposes 

the monotonic principle commanding that values of the linear reconstruction 

function must not exceed the minimum and maximum of neighbour centroid 

values (including the centroid value in P). Defining φmax=max(φp, φnb) and 

φmin=min(φp, φnb), it means:  

maxmin
PPP φφφ ≤≤  Eq. 4-12 

Then, a function f is calculated as the minimum averaged function 

obtained over every neighbour cell 

),,,min( PwPePsPn fffff =  Eq. 4-13 

where 
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 Eq. 4-14 

and the sub-index i represents the face indices n, s, e and w from Figure 4-1. 

The second-order upwind method was used in all simulation of this work 

except when it is specified otherwise. 

It must be mentioned that a well known Best Practice Guideline [Case00] 

recognizes the possible improvement of results using the first-order spatial 

discretization scheme in special conditions. For example, [Case00] mentions that the 

first-order spatial discretization scheme can perform better than second-order when a 

characteristic wavy pattern with a wavelength of two cell sizes appears in the 

neighbourhood of steep gradients. Also, after some experience in simulation of 

pollution dispersion, the author of this book highlights the possible improvement of 

results of first-order over the second-order spatial discretization schemes when the 

selected combination of turbulent models underestimate the turbulence diffusion of 

scalar transport. Under these conditions the higher numerical diffusion of the first-

order increases the transport and improves the accuracy of pollution dispersion. It is a 

typical case of compensation of errors or better known as “right for the wrong 

reason.” 
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4.1.3 Approximation of Source Terms 

As shown in Eq. 4-5, the simplest approximation of the integrals, the mid-

point rule, is applied to the sources. Here, the source term in the cell centre is 

approximated as the source integrand function evaluated at the cell centre. Following 

the notation from Figure 4-1, it would be: 

( )VSVS PP φφ ≈,  Eq. 4-15 

where S(φP) is the original source function per unit volume evaluated at the middle 

cell centre. When there is considerable variation of S as a function of φ, a 

linearization of the source function is performed to improve the numerical solution of 

the equation. The linearization of the source function can then be written as: 

( ) PPCP SSS φφ +=  Eq. 4-16 

where SC  represents the constant part of S and SP is the coefficient of φP. 

4.2 General Solution Procedure. 

After making the substitution for the approximation of convective, diffusion 

and source terms, the discretized scalar transport equation (Eq. 4-6) contains only the 

unknown scalar variable φ at the cell centres from the middle (φP) and the 

surrounding neighbour (φN, φS, φΕ, φW, φNN, φSS, etc.) cells. Using any of the presented 

interpolation methods, reorganizing and grouping the coefficients for every cell 

centre value with the respective indexes (see Figure 4-1), the following equation is 

obtained: 

baaaaa SSNNWWEEPP ++++=     φφφφφ  Eq. 4-17 

or in general form as: 

baa nbnbpp +=∑ φφ  Eq. 4-18 

where the sub-index nb refers to each neighbour cell, aP and anb are the linearized 

coefficients for φp and φnb respectively, and b represents the φ’s non-dependent terms 

resulting from contributions of the constant part of the source term (SC in Eq. 4-16) 

and the boundary conditions. The deduction of equation Eq. 4-18 was written for a 

2D structured grid, but the number of neighbours would vary depending on the grid 

dimension and topology. In general, the number of neighbours will be equal to the 

number of faces enclosing the cell (boundary cells being the exception). The centred 

coefficient, aP, in Eq. 4-18 is calculated as: 
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P

nb

nbp Saa −=∑  Eq. 4-19 

Similar equations can be formulated for each cell in the entire computational 

domain, resulting in a closed algebraic system of equations of the form:  

11 ixixixi bA =Φ  Eq. 4-20 

where A is the coefficient matrix of dimensions ixi, Φ is the vector solution of 

dimension ix1, and b is the independent terms’ vector of dimension ix1. Here, i is 

equivalent to the number of unknowns or cells’ centre values in the complete 

computational domain. Because every equation is formulated from a different control 

volume, the equations are independent of each other and the system has a unique 

solution. Due to the typical large size of the matrix A, this system of equations is 

usually solved using numerical methods.  

There are two main families of methods available for the solution of an 

algebraic system of equations: direct and iterative methods. Direct methods are based 

on a finite number of arithmetic operations leading to an exact solution of a linear 

algebraic system. Unfortunately, the number of operations of the direct method can be 

very high and computationally too expensive, as they can increase up to N3, where N 

is the number of unknowns. Furthermore, the discretization error is usually larger 

than the accuracy of computer arithmetic so there is no reason to solve the system of 

equations entirely accurately considering the final solution would never be better than 

the discretization error. In fact, direct methods are very seldom used and mostly 

limited to particular conditions. 

On the other hand, the iterative methods consist of a succession of 

approximate solutions, leading to the exact solution after, in theory, an infinite 

number of iterations. In practice, a first initial solution is guessed and then the 

equations are used to systematically improve it until a tolerance error is reached. In 

CFD software, this is usually the method employed. The iterative point implicit 

Gauss-Seidel linear equation solver method is implemented and used for the 

simulations in the commercial software FLUENT 6.3 coupled to an Algebraic 

Multigrid (AMG) method. The AMG method uses a multigrid scheme to accelerate 

the convergence of the solver by computing corrections on a series of coarse grid 

levels, reducing the number of iterations and the CPU time required to obtain a 

converged solution [Flue06]. 

Considering the iterative solution methods, the system of equations presented 

by Eq. 4-20 would be modified to: 
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)()()( mmm
rbA =−Φ  Eq. 4-21 

where r(m) is the residual vector and m is the iterations number. The residual vector is 

a very useful parameter because it allows monitoring the difference or imbalance 

between the current and the exact solutions. In a hypothetical case with an infinite 

computational precision, these residuals will go to zero as the solution converges. But 

on a real computer, the residuals reduce until some small value and then stop 

changing. The residual vector depends on the iteration number and it is usually 

monitored by its scaled norm. This “scaled” residual is defined as: 
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 Eq. 4-22 

In the case of momentum equations, the denominator term aPφP is replaced by aPvP , 

where vP is the magnitude of the velocity at cell P. There is not a standard definition 

of residuals in all CFD software. As an example, in FLUENT v.6.3 uses a residual 

that is normalized with the maximum residual norm of the first five iterations for the 

continuity equation.  

The iterative solution of Eq. 4-22 is limited by the user when a threshold value 

for the normalized residual is specified. This threshold value indicates the stopping 

criteria when the normalized residual for a solved variable drops below the 

corresponding convergence criteria. Overly high convergence criteria specified by the 

user may result in an incomplete iterative solution. Depending on the magnitude of 

the prescribed convergence criteria, the computed solution still contains appreciable 

errors from the incomplete iterative solution, as the computed solution does not fulfil 

Eq. 4-20. The magnitude of this incomplete iterative solution error should be 

analyzed by comparing the results obtained with different values for the convergence 

criteria. 

4.3 Discretization of Continuity and 

Momentum Equation 

As mentioned at the beginning of this chapter, the discretization principles of 

a generic conservation equation represented by Eq. 4-6 also apply to the momentum 

and continuity equations. Here, it is described how terms which differ between 

momentum equations and general conservation equations can be treated. The 

deduction and final formulation are always based on the considerations and 

simplifications needed for this work—i.e. for a Newtonian, steady and incompressible 

fluid flow. 



4.  Numerical Procedure 

64 

The unsteady terms in the continuity and momentum transport equations are 

again neglected. After the corresponding substitutions, the convective and diffusion 

terms in both transport equations are very similar to their counterparts in the generic 

equation but, because the velocity is a vector, the substitution contributions become a 

bit more complex. Also, the momentum equations contain a pressure gradient term 

which is out of the form presented by the generic equation; thus, it is taken into 

account as a source term or as a surface force. The main complication of this 

discretization process is that since every velocity component appears in each of the 

momentum and continuity equations, all these equations are intricately linked. 

However, the most complex question to resolve is the role played by the pressure 

because it appears in each momentum equation and there is not an explicit (transport 

or other) equation for it. 

The pressure field is solved by employing an algorithm for coupling the 

solution of the momentum and continuity equations. It is performed by a restriction in 

the solution of the flow field: if the correct pressure field is applied in the momentum 

equations then the resulting velocity field should satisfy continuity. With this in mind, 

a pressure equation is derived from the continuity and the momentum equations in 

such a way that the velocity field, corrected by the pressure, satisfies the continuity. 

Since the governing equations are nonlinear and coupled to one another, the solution 

process involves iterations wherein the entire set of governing equations is solved 

repeatedly until the solution converges. An additional problem arises because the 

pressure locations needed in the discretized equation do not coincide with the cell 

centres; therefore a spatial interpolation scheme of pressure must be implemented. 

4.3.1 Discretization of the Momentum Equation 

Following the discretization scheme described for the general scalar transport 

equation in Eq. 4-1 to the algebraic form given in Eq. 4-18, the discretization of each 

velocity component (e.g. the x-momentum equation) can be obtained by setting φ = u, 

then: 

pfnbnbpp SiApuaua +⋅+= ∑∑ ˆ  Eq. 4-23 

The y- and z-velocity momentum equations can be found analogously. 

Different from Eq. 4-18, the second and third terms on the right side of last equation 

correspond to the discretization of the pressure gradient term and any additional term 

from the viscous and turbulent stresses that cannot be represented by the diffusion 

term. These two terms are usually collected in the source term. 
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Nowadays, the most common way to solve Eq. 4-23 with CFD commercial 

software (including FLUENT 6.3) is by using a co-located scheme, which means that 

the pressure and velocity are both stored at cell centres. However, this equation 

requires the value of the pressure at the faces. If the pressure field at face locations is 

known, Eq. 4-23 can be solved in the manner outlined for the generic transport 

equation, and a velocity field obtained. Nevertheless, the pressure field is not known a 

priori and must be obtained as a part of the solution. Therefore, an interpolation 

scheme is required to compute the face values of pressure from the cell centre values. 

One of the simplest schemes to interpolate pressure values at the faces is using 

the momentum equation coefficients. Following the notation from Figure 4-1, the east 

cell face pressure interpolation would read: ([Rhie83]) 
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=  Eq. 4-24 

where aP and aE represent the momentum equation coefficients in the middle and east 

cells respectively. 

This procedure works well as long as the pressure variation between cell 

centres is smooth. When there are jumps or large gradients in the momentum source 

terms between control volumes, the pressure profile has a high gradient at the cell 

face, and cannot be interpolated using this scheme. 

Some alternate methods for cases in which the standard pressure interpolation 

scheme is not valid are: 

• A linear scheme, which computes the face pressure as the average of the 

pressure values in the adjacent cells. 

• A second-order scheme, which calculates the face pressure value in the 

manner used for second-order accurate convection terms (see Section 4.1.2). 

This scheme may provide some improvement over the standard and linear 

schemes, but it may have some trouble if it is used at the start of a 

calculation, with a bad mesh resolution or when the flows presents 

discontinuous pressure gradients, such as flow in porous media [Flue06].  

All results reported in the present work are converged using the second-order 

scheme except when specified otherwise. 
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4.3.2 Discretization of the Continuity Equation 

The continuity equation can be found after the substitution of φ = 1 for the 

general transport equation (Eq. 4-1), together with the Γφ = S φ = 0 for the diffusion 

coefficient and source terms. Finally, the corresponding integrated equation (Eq. 4-6) 

remains only with the convective term. Following the notation from the control 

volume in Figure 4-1 yields the discrete equation: 
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ρ  Eq. 4-25 

where N is again the number of faces and iii Au
rr

⋅ρ  is the mass flux through face Ai. 

Next, the cell centre values of velocity (ui) must be interpolated to the faces. 

To prevent checkerboard effect, the face value of the velocity is not averaged linearly; 

instead, momentum-weighted averaging—using weighting factors based on the aP 

coefficient from the momentum equation—is performed. Using this procedure and 

the same notation as before, the total face flux Je (=ρue) going through the east face 

may be written as [Flue06]: 
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4-26 

where pP , pE and uP,n , uE,n are the pressures and normal velocities, respectively, 

within the two cells on either side of the east face, and the Ĵe term is a substitution 

which represents the influence of velocities in this cell. The term de is a function of 

the relation between the average face area perpendicular to the flux, and the aP and aE 

which are the coefficients from the momentum equation. 

4.3.3 Pressure-Velocity Coupling 

Pressure-velocity coupling is achieved by using Eq. 4-26 as an additional 

condition for pressure. Some of the most common algorithm options for pressure-

velocity coupling are SIMPLE, SIMPLER, SIMPLEC, PISO, etc. The SIMPLE 

algorithm was selected for all simulations in the present work. The problems 

associated with the non-linearity of the momentum equations and the coupling 

between transport equations are tackled by adopting an iterative solution strategy. The 

majority of these schemes are based on the predictor-corrector approach, which 

consists of improving the calculated or guessed solution of the previous iteration.  

The most popular solution algorithms for pressure and velocity calculations 

with the finite volume method possess the following common steps: 



4.  Numerical Procedure 

67 

• Solve discretized momentum equation to yield intermediate velocity field. 

• Calculate pressure or equivalent mass flux correction by solving the continuity 

equation in the form of an equation for pressure (Eq. 4-26). 

• Correct pressure and velocities by adding the correction to the corresponding 

previous iteration result. 

• Solve all other discretized transport equations (e.g. k,ε, φ). 

• Repeat until p, u, v, w and any scalar φ fields have all converged. 

4.3.4 Under-Relaxation of Variables 

In an iterative solution of the algebraic equations or in the overall iterative 

scheme employed for handling nonlinearity, the calculation processes is often 

susceptible to divergence unless some under-relaxation is used. Additionally, over or 

under-relaxation are often useful to speed up or to slow down the changes, from 

iteration to iteration, in the values of the dependent variable. The under-relaxation of 

a variable φ consists of the reduction of the change produced during each iteration by 

limiting the influence of the previous iteration over the present one. If you choose a 

small value, it may prevent divergence or oscillations in residuum developing, but at 

the same time the solution may need more time to converge. In a simple form, the 

new value of the variable φ within a cell depends upon the old value, φold, the 

computed change in φ, ∆φ(=φnew−φold), and the specified under-relaxation factor, α, as 

follows: 

φαφφ ∆+= old  Eq. 4-27 

This expression is always used for any general variable φ. 

 



 

 

5  Implementation of scalar flux 

modelling. 

In Chapter 3, different advanced models that can be used to estimate the scalar 

flux term which appears after performing the Reynolds average of the transport 

equation of pollutant dispersion were presented. However, there is a problem in 

implementing these advanced scalar flux models because they cannot be represented 

with a simple scalar diffusion coefficient like the one used by the standard isotropic 

gradient diffusion model. Therefore, small changes in the discretization of the 

transport equation of pollution dispersion must be done to employ these models. 

These changes are explained in the present chapter. 

5.1 Numerical Solution of Scalar Transport 

Equation  

In addition to the fluid flow field equations calculated by the commercial 

software (FLUENT), it is possible to solve some extra equations (such as pollutant 

transport or any other arbitrary scalar quantity φ) using the same fluid flow domain. 

Solving these extra equations can be done in two ways: using the species transport 

equation or defining a User-Defined Scalar (UDS) equation. Under general steady 

state conditions, both equations are comparable and can be reduced to the form:  
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where Γφ is the diffusion coefficient and S(φ ) is the source term of φ . This equation 

is equivalent to the equation of transport of pollutants (Eq. 2-16), just considering the 

source as the gradient of the scalar flux term. It is: 
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FLUENT solves the UDS and species equations (Eq. 5-1) in the same way as 

the continuity and Navier-Stokes equations, using the Finite Volume Method (FVM). 

The FVM transforms the differential transport equations into an algebraic form. This 

process is done by integrating the equation over every finite volume in the 

computational domain. In steady state flow conditions it will be: 

∫∫ =










∂

∂
Γ−•

VS j

ji dVSds
x

un )(φ
φ

φρ φ  Eq. 5-3 

The complete term on the left side of Eq. 5-3 is automatically discretized and 

resolved by FLUENT through the FVM following the procedure explained in the last 

chapter. The source term (Sφ) needs to be linearized and separated into two parts for 

the solution of the algebraic equation (See Eq. 4-16). This step is done because the 

nominally linear framework would allow only a formal linear dependence and 

because the incorporation of linear dependence is usually better than treating Sφ  as a 

constant [Pata80]. However, the approximation of the source to a linearized form is 

not always possible. 

From a simple examination of each of the scalar flux models considered in 

this work (presented in Table 3-6), it can be seen that there are no linear dependencies 

of the concentration φ with the scalar fluxes in any of the models. Therefore, there are 

only two possibilities to include them in Eq. 5-1, treating all models as the constant 

part source term (SC) or as an anisotropic diffusivity coefficient tensor (Γij). The 

descriptions and implementations of both methods are explained in the next sub-

section.  

5.1.1 Species or UDS Equation 

As mentioned earlier, there are two ways to compute the pollution dispersion 

transport equation (Eq. 5-1) in FLUENT 6.3: using the species transport equation or 

defining a UDS equation. These two equations are the same and can be presented in 

the form of Eq. 5-1. However, there are some differences between the two methods to 

solve this equation. When the species transport equation is used, it is considered a 

mixture of different materials or “species” with a list of rules governing their 

interaction. They are: 

( )φρφ ′′
∂

∂
−= j

j

u
x

S )(  Eq. 5-2 
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•••   A list of mixing laws dictating how mixture properties (density, viscosity, 

specific heat, etc.) are to be derived from the properties of individual species, if 

composition dependent properties are desired. 

•••   A direct specification of mixture properties if composition-independent 

properties are desired. 

•••   Diffusion coefficients for individual species in the mixture. 

•••   Other material properties, chemical reactions and other phenomena not 

considered in this work. 

For the special case of interest of this work, all reaction source and thermal 

effects can be neglected, but the species transport equation does not allow setting up 

anisotropic (tensor) diffusion coefficients. As a result, in addition to the SED model 

(already available in the software), all scalar fluxes models should be treated in the 

species equation as a source. After some simulations with the anisotropic models 

implemented as a source term in the species transport equation, numerical instability 

that was too high was found. In accordance with the theory [Pata80], this high 

instability is due to the strong imbalance effects created by the implementation of the 

complete model terms in the constant part (
CS ) of the source (see Eq. 4-16). All 

implemented scalar flux models are anisotropic and have a non-linear dependency on 

the concentrations, making it impossible to adapt them to the linear equation of the 

source term (Eq. 4-16). Therefore, it has been needed to discard the use of the species 

equation and change to the anisotropic diffusion facility of the UDS transport 

equation.  

The UDS is a FLUENT feature that provides the possibility to calculate an 

additional differential transport equation to simulate pollutants' dispersion and set a 

customized anisotropic diffusion coefficient. In comparison to the species transport 

equation, the UDS equation does not have any pre-specified physical rules or mixing 

laws to set the variation of scalar properties. However, this lack in the software is not 

relevant when the pollutants are considered as a passive scalar. To measure the 

influence of the active/passive scalar transport simplification, both the simulation of 

pollution dispersion with the species transport equation and with the UDS transport 

equation were performed. The results of these two simulations appear in the results 

chapter of the two-dimensional street canyon. (see 7.4.3, page 104) 

5.1.2 Anisotropic Diffusion Programming for UDS  

The UDS transport equation of the commercial software FLUENT 6.3 was 

employed for the simulation of pollutants as a passive scalar with the implementation 
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of advance turbulent scalar flux models in the anisotropic diffusion coefficient. This 

is a new software feature available since the FLUENT version 6.3, which includes the 

possibility to edit a tensor diffusion coefficient for each additional UDS transport 

equation. To understand it better, the diffusion term of this UDS transport equation 

(Eq. 5-1) can now be re-written in a general form as: 
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where Γij is the tensor diffusion coefficient. It is a second order tensor with six-

components in case of bi-dimensional flow and nine components in case of three-

dimensional flow. The software allows to specify in the simulation setup every one of 

the tensor diffusion components. They can be set as constant values or as a function 

of the flow variables through a “User-Defined Function” (UDS) subroutine called 

“DEFINE ANISOTROPIC DIFFUSIVITY” [Flue06]. All tensor diffusion 

components must be specified. 

The programmed subroutines for the implementation of the anisotropic scalar 

flux models make use of flow field and turbulent parameters already calculated by the 

software, e.g. k (turbulent kinetic energy), ε (Turbulent dissipation rate), the velocity 

gradients ( ji xu ∂∂ ) and in some cases geometry information (wall distance), in 

conjunction with the respective model coefficients. When the LRRIP second moment 

Reynolds stress model is not used, the Reynolds stresses must be calculated for the 

implementation of the algebraic scalar flux models. This calculation was done using 

the Boussinesq relation (Eq. 3-1). 

This general implementation procedure was applied for all algebraic isotropic 

and anisotropic scalar flux models. However, there were two exceptions: the WET 

model and the second moment models. Because the WET model's formulation is 

implicit, it makes use of its own results for scalar fluxes. Therefore, the implicit term 

was decoupled from the original model and inserted as a source of the mean pollutant 

transport equation. 

The second moment models were implemented by calculating not only one 

additional transport equation for the mean concentration (as was done for the 

algebraic models), but also one additional transport equation for every one of the 

scalar fluxes. As a result, in addition to the flow field, one transport equation for 

mean concentrations and two additional transport equations in bidimensional flows or 

three transport equations in three-dimensional flows must be solved. Each of the 

scalar flux transport equations also includes an anisotropic diffusion term like the 
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GGDH with different model coefficient and some additional terms always included as 

sources. 

For further details about the model implementation, the User-Defined 

Function from FLUENT’s subroutines are included in the Appendix D (page191). In 

the next section, the boundary conditions employed for these simulations in the 

commercial software FLUENT 6.3 are described. Specific details for every 

simulation setup are given with each of the selected geometries. 

5.2 Boundary Conditions  

Boundary conditions are a set of restraints needed for the solution of partial 

differential equations. The most common boundary conditions in CFD applications 

are the Dirichlet (boundary value fixed), the Neumann (boundary gradient value 

fixed) or mixed (Dirichlet and Neumann). The commercial CFD packages usually 

employ aggregated boundary conditions for all flow variables with different names 

for easier understanding and application. The commercial names of boundary 

conditions used in the present work during the test cases are: 

• Velocity Inlet 

• Pressure Outlet 

• Wall 

• Symmetry 

• Periodic 

• Mass Flow Inlet 

Next, a short description of these used boundary conditions is given. For 

further details please refer to FLUENT 6.3 User Manual. 

5.2.1 Velocity Inlet 

Velocity inlet boundary conditions are used to define the flow velocity and all 

relevant scalar properties of the flow, at flow entrances. At velocity inlet boundary 

conditions, the velocity magnitude and direction or velocity components, temperature 

(for energy calculations), turbulence parameters (for turbulent calculations) and 

chemical species mass fractions (for species calculations) must be set. 

The velocity inlet boundary condition is normally used to specify a flow 

entering the computational domain. In this case, the software uses both the velocity 

components and the scalar quantities defined to compute the inlet mass flow rate, 
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momentum fluxes, and fluxes of energy and chemical species. The mass flow rate 

entering a fluid cell adjacent to a velocity inlet boundary is computed as: 

∫ ⋅= Advm
rr

& ρ  Eq. 5-5 

Note that only the velocity component normal to the control volume face 

contributes to the inlet mass flow rate. 

5.2.2 Pressure Outlet Boundary Condition 

Pressure outlet boundary conditions require the specification of a static 

(gauge) pressure at the outlet boundary. At pressure outlets, the used commercial 

software, FLUENT, uses the specified boundary condition pressure as input for the 

static pressure of the fluid at the outlet plane and extrapolates all other conditions 

from the interior of the domain (von Neumann boundary condition). When the 

pressure outlet BC is set, a fully developed flow is specified at the given boundary 

( )0=∂∂ x  where x is the coordinate with direction perpendicular to the pressure 

outlet boundary condition. 

5.2.3 Wall Boundary Condition 

Wall boundary conditions are used to bound fluids with solid surfaces. By 

definition, no-slip boundary conditions are enforced at walls for viscous flows. The 

shear stress and heat transfer between the fluid and the wall are computed based on 

the flow details in the local flow field. 

When a wall boundary is specified, the boundary conditions for turbulent 

quantities are directly specified by the software. These expressions are explained in 

detail under the Near Wall Modelling Approach section in Chapter 3.3. 

5.2.4 Symmetry Boundary Conditions 

The symmetry boundary conditions are used when the physical geometry of 

interest and the expected pattern of the flow solution have mirror symmetry. They can 

also be used to model zero-shear slip walls in viscous flows. It is unnecessary to set 

any additional information at symmetry boundaries due to the fact that all variables 

are equally set at this kind of boundary condition. This process is accomplished by 

neglecting the derivatives for each variable in perpendicular direction to this 

boundary. 
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5.2.5 Periodic Boundary Condition 

FLUENT 6.3 provides the ability to calculate fully-developed (so-called 

periodic) fluid flow. This boundary condition is originally designed to simulate flows 

in compact heat exchanger channels and flows across tube banks. However, other 

applications include fully-developed flow in pipes and ducts. In such flow 

configurations, the geometry varies in a repeating manner along with the direction of 

the flow, leading to a periodic fully-developed flow regime in which the flow pattern 

repeats in successive cycles. These periodic conditions are achieved after a sufficient 

entrance length, which depends on the flow Reynolds number and geometric 

configuration. The periodic flow conditions exist when the flow pattern repeats over 

some length L, with a constant pressure drop across each repeating module in the 

streamwise direction. Additionally, some limitations apply for the use of this kind of 

boundary condition in the commercial software including that the flow must be steady 

state and incompressible, and that additional net mass through extra inlets/exits and 

multiphase modelling are not allowed. 

This boundary condition was used to create a fully developed atmospheric 

boundary layer in the 2D street canyon exercise. 

5.2.6 Mass Flow Inlet Boundary Conditions 

Mass flow boundary conditions can be used in FLUENT to provide a 

prescribed mass flow rate or mass flux distribution at an inlet. Physically, specifying 

the mass flux permits the total pressure to vary in response to the interior solution. 

This is in contrast to the pressure inlet boundary condition where the total pressure is 

fixed while the mass flux varies. 

It is possible to specify the mass flow rate through the inlet zone and make 

FLUENT convert this value to mass flux or specify the mass flux directly. For cases 

where the mass flux varies across the boundary, you can also specify an average mass 

flux. If the mass flow rate is set, it will be converted internally to a uniform mass flux 

over the zone by dividing the flow rate by the area of the zone.  

 



 

 

6  Model validation 

The evaluation of the turbulence models has been performed with special 

emphasis on the prediction capabilities of the variable C*, which is the normalized 

concentration defined as: 

( ) Sref QLUCC
2* ⋅⋅=  Eq. 6-1 

where C is the actual measured concentration (ppm), Uref is the reference velocity 

(m/s), L is a characteristic length (m) and QS is the pollutant flow rate introduced in 

the computational domain (m3/s). The parameters Uref and L are defined in a different 

way for every test case. 

6.1 Statistical Evaluation Parameters 

6.1.1 Metrics 

In general, any model can be evaluated in at least three ways [Chan05]:   

statistically (e.g., [Hann93]), scientifically (e.g., [Nappo98]), and operationally (e.g., 

[Chan98]). Statistical evaluation mainly consists of comparing model predictions 

with observations (sometimes called validation). Scientific evaluation examines 

model algorithms, physics, and assumptions in detail for their accuracy, efficiency, 

and sensitivity, and requires in-depth knowledge of the model’s scientific basis. 

Operational evaluation mainly considers issues related to the user-friendliness of the 

model, such as the user’s guide, the user interface, error checking of input data, 

internal model diagnostics, output display, and consistency of application by multiple 

users. 

Statistical evaluations describe the comparison of model predictions with 

certain reference states, which in most cases are simply “observations.” Observations 

can be directly measured by instruments, or can be themselves products of other 
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models or analysis procedures. Statistical evaluations provide general information on 

model performance, but it is possible to have a situation where the model produces 

the right answers but for wrong reasons (i.e. compensating errors). On the other hand, 

the reliability or accuracy of these reference “observations” is not estimated in this 

model evaluation. 

Quantitative statistical measures for evaluating air dispersion models have 

already been recommended by [Hann91] and [Hann93], and the procedure were 

implemented in a computational software package called BOOT. Nowadays, these 

evaluation metrics have been commonly used by many researchers in this application 

area. For example, it has been adopted as a common model evaluation framework by 

the European Initiative on “Harmonisation within Atmospheric Dispersion Modelling 

for Regulatory Purposes” [Oles01] and as a validation metric for model evaluation 

within the European Cooperation in Science and Technology (COST) Action 732: 

Quality Assurance and improvement of microscale meteorological models” [Brit07] 

[Scha10]. 

In order to evaluate model performance for turbulent numerical simulations, 

the statistical model evaluation parameters described by Chang and Hanna [Chan04] 

and implemented in the BOOT software [Chan05] have been employed in the present 

work. They propose the use of the fractional bias (FB), geometric mean bias (MG), 

the normalized mean square error (NMSE), geometric variance (VG) and the fraction 

of predictions within a factor of two of observations (FAC2) given by: 
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Eq. 6-2 

where *
oC , *

pC and 〉〈 *
C  are observations, model predictions and the average over the 

data, respectively. Different to the BOOT software, the FAC2 was implemented here 

with a case differentiation based on the threshold W, also used in the hit rate. If the 

observation is below the threshold W then it is counted as within a factor of two (see 

[Scha10]). A perfect model would have MG, VG, and FAC2 equal to 1.0, and FB and 
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NMSE equal to 0.0. Additionally, [Chan04] gives a range of typical values for an 

‘acceptable’ model performance, as appears beside each parameter in Eq. 6-2. The 

acceptable model performance detailed in Eq. 6-2 was originally proposed by 

[Hann04], based on research-grade field experiments. Acceptable model performance 

means that the fraction of predictions within a factor of two of observations is higher 

than 50%, the mean bias is within ± 30% of the mean, and the random scatter is lower 

than approximately a factor of two of the mean [Scha10]. The translation of these 

values to a particular test case is not straightforward but based on the idea that 

[Hann04] uses these values for comparisons of maximum concentrations on arcs—i.e. 

unpaired in space.  As the present exercise is based on a point by point comparison, 

which is more stringent, less strict criteria might be used. The values of metrics can 

differ widely depending on the data that the metrics actually represent [Scha10]. 

It is necessary to consider multiple performance measures, as each measure 

has advantages and disadvantages and there is not a single measure that is universally 

applicable to all conditions [Chan05]. The relative advantages of each performance 

measure are partly determined by the distribution of the variable of interest. The 

distribution resembles a log-normal distribution for atmospheric pollutant 

concentrations. The linear measures FB and NMSE are strongly influenced by 

infrequently occurring high observed and predicted concentrations, whereas 

logarithmic measures MG and VG provide a more balanced treatment of extremely 

high and low values. Therefore, for a dataset where both predicted and observed 

concentrations vary by many orders of magnitude, MG and VG are more appropriate. 

However, [Chan04] mention that MG and VG are also known to be strongly 

influenced by extremely low values, and are undefined for zero values. These low and 

zero values are not uncommon in dispersion modelling, where a low concentration 

value might be at a receptor that the plume has missed. Therefore, when calculating 

MG and VG, it is useful to impose a minimum threshold for data values. The FAC2, 

which sometimes includes a threshold, is the most robust measure because it is not 

overly influenced by high and low outliers. 

FB and MG are measures of mean bias and indicate only systematic errors, 

whereas NMSE and VG are measures of scatter and reflect both systematic and 

unsystematic (random) errors. For FB, which is based on a linear scale, the systematic 

bias refers to the arithmetic difference between C*
p and C*

o. For MG, which is based 

on a logarithmic scale, the systematic bias refers to the ratio of C*
p to C*

o. Because 

FB and MG are based on the mean bias, it is possible for a model whose predictions 

are completely out of phase with observations to still have an FB = 0 or MG = 1. As 

solution to this problem, a modified version of these parameters can be calculated 

[Chan05]. The error can be separately considered in two components, the over-
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prediction part (FBFP) and the under-prediction part (FBFN) where FB = FBFN – FBFP. 

These two and their analogues MGFP and MGFN are also available from the BOOT 

software with MG = MGFN / MGFP. These error metrics are calculated as: 
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Eq. 6-3 

where N is the total number of measurements. 

Additionally, some general statistical parameters are given from the BOOT 

software. For example, the correlation coefficient, R, reflects the linear relationship 

between the predicted and observed concentrations and is thus insensitive to either an 

additive or a multiplicative factor. That is, if C*
p = α + βC

*
o, where α and β (>0) are 

arbitrary constants, R will always equal 1.0 between C*
p and C*

o. Therefore, a perfect 

correlation coefficient is necessary, but not in itself sufficient to create conditions for 

a perfect model [Chan04]. Similar conditions may occur with other reported general 

evaluation parameters such as the MEAN (arithmetic average), the SIGMA (standard 

deviation) and the BIAS (absolute difference of means). They are calculated as: 
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All of the presented statistical parameters together with the HIGH (highest 

prediction/observation) and the second HIGH (second highest prediction/observation) 

complete the results output file from the BOOT software. However, due to the 

intrinsically overly general or partial information in the definition of most of the 

presented statistical parameters, those from Eq. 6-2 have been taken into account for 

the error analysis and the rest are used as complementary information.  

In summary, the BOOT software reports all the aforementioned statistical 

metrics and the ideal values for a full agreement with the experiments. The complete 

list of the statistical metrics are: MEAN (mean average), SIGMA (Standard 

Deviation), BIAS (Difference in the means), NMSE (Normalized-Mean-Square-

Error), CORR (Correlation Coefficient R), FA2 (Factor of Two), FB (Fraction Bias), 

FBFN (Fraction Bias False Negative), FBFP (Fraction Bias False Positive), VG 

(Geometric Variance), MG (Geometric Mean-bias), MGFN (Geometric Mean-bias 

False Negative), MGFP (Geometric Mean-bias False Positive), HIGH (highest 

prediction/measurement), 2nd.HIGH (2nd. Highest prediction/measurement). For 

further details please refers to [Chan05]. For illustrative proposes, an example of the 

BOOT software output file is included in the Appendix C (page 183). 

6.1.2 Hit-Rate  

In addition to the metrics, the concept of Hit-Rate from the German VDI 

Guideline as an evaluation of prognostic wind-field models [VDI05] has been also 

employed for the model evaluation. On the basis of the normalised model results Pi 

and the normalised comparison values Oi , the Hit-Rate q  indicates the proportion of 

the total correctly predicted values (in) in the total number of comparison values (N): 
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Eq. 6-5 

 

where D is the allowed relative difference and W is the allowed absolute difference 

specified for every variable. For successful validation, the [VDI05] recommends an 

equivalent “acceptance criterion” of q ≥ 0.66% in comparisons with the 

measurements or observations. A new utility from the BOOT software package also 

computes the Hit-Rate and it has been employed in the present work. A graphic 

explanation of this metrics is given by [Scha10]. 
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6.2 Discretization Error Estimation 

The grid dependency of the results has been calculated through the use of the 

generalized Richardson Extrapolation technique at all the measurement point 

locations. The Richardson extrapolation is a postprocessor error estimation technique 

independent of the numerical method used to obtain the numerical solutions. It can be 

applied to each fluid flow variable as well as to derived quantities. This error 

estimator comes from the statement that the discretized equations represent a 

truncated approximation of the differential equation. After a general CFD simulation, 

the exact solution of a variable (fex) and the numerical simulation results on a specific 

mesh (fi) can be related by a Taylor series.  
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where hi is a (linear) measure of the grid i, p is the order of accuracy and gi are their 

coefficients [Fran07]. In the asymptotic convergence range, all terms of higher order 

than p can be neglected. From this assumption, the remaining variables fex, gp and p 

can be estimated with the solution obtained on three different grids. If i = 1, 2 and 3 

denote the fine, medium and coarse grids, then two grid refinement ratios 1221 hhr =  

and 2332 hhr =  can be calculated. With these ratios, the truncated series can be 

written as: 
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The applicability of generalised Richardson extrapolation with solutions from 

three well-refined meshes is accurate when the solution displays monotonic 

convergence [Ferz02]. From the ratio of the solution changes, R = (f2 – f1)/(f3 – f2), 

three different behaviours can be discerned. 
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For divergence, no error estimation can be obtained, and for oscillatory 

convergence, the use of more solutions than three to compute the error is generally 

required [Fran07]. To calculate the solution changes it is necessary that all solutions 

are available in the same positions. In the case of always doubling the number of cells 

in each coordinate direction (i.e. r = r21 = r32=2) without moving the nodes of the 

coarse grid, this requirement is fulfilled. Another option is interpolation of the results 
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from the medium and fine grid onto the nodes of the coarse grid. Then the order of 

the interpolation must be at least as high as the formal order of the numerical 

approximations. In this work a similar approach was used. The results of all grids 

were linearly interpolated onto the measurement positions, where all numerical error 

estimates were performed. 

Assuming a general case where all solutions are available on the coarse grid 

and monotonic convergence according to Eq. 6-8 is fulfilled, the order of accuracy 

can be calculated from Eq. 6-7 by solving the transcendental equation 
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with an iterative method. After the elimination of gp in Eq. 6-7, an estimation of the 

exact solution is obtained as: 
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The second term on the right side of Eq. 6-10 defines a correction of the fine 

grid solution f1. This correction is only available at the positions of the variable on the 

coarse grid. The (spatial) discretization error DE1 of the fine grid solution, i.e. the 

difference between the solution on the fine grid and the extrapolated solution used to 

estimate the unknown exact solution after truncation of the Taylor series expansion, 

can be calculated from Eq. 6-10 as: 
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In similar way, the discretization errors for the medium and coarse grid are 

calculated as: 
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If the computed order of accuracy p is larger than the theoretical order 

(considered in the present work between one and two), the relation for the error 

estimation 1ED ′ is solved with the grid triplet [Roy05]: 
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Finally, the estimation of numerical uncertainty U1 used in the present work 

employ the GCI method originally proposed by [Roac94] but with the improvements 

proposed by [Eca04] and recommended by [Fran06] and [Fran08b] in wind 

engineering applications. [Eca04] mention that when the three grid solutions are 

diverging no uncertainty estimation can be made. But for any other case, at least four 

categories to calculate the numerical uncertainty can be specified. For cases of 

monotonic convergence and oscillatory convergence (using Eq. 6-8), the performed 

estimation of U1 depends on p following the next Table 6-1: 

 

Table 6-1.-Grid Convergence Index (GCI) for uncertainty estimation. 

Case Condition Uncertainty Estimation 

( I ) 
Monotonic convergence with 

0.5 < p < 2 11 25.1 DEU ⋅=  

( II ) 
Monotonic convergence with 

2 < p < 3 
( )111 ,25.1 EDDEMaxU ′⋅=  

( III ) 
Monotonic convergence with 

p < 0.5 or p > 3 
( )12231 ,3 ffffMaxU −−⋅=  

( IV ) Oscillatory convergence ( )12231 ,3 ffffMaxU −−⋅=  

( V ) Divergence No uncertainty estimation. 

 

 



 

 

7 Flow and Dispersion in a 2D 

Street Canyon  

The first test case selected to study the performance of the advanced turbulent 

scalar flux models in urban environment applications is the data set published by 

Pavageau and Schatzmann [Pava99]. It is a wind tunnel experiment of a bi-

dimensional street canyon performed at the Meteorological Institute of the University 

of Hamburg, Germany. The main reasons for this selection were the simplicity of its 

2D characteristics (ideal condition for a first test), the well detailed measurements and 

description of the experiments, and the already large amount of work available in this 

or similar geometries which allow for the comparison of results.  

In this chapter, the wind tunnel experiment is briefly explained, emphasizing 

the relevant information used for the construction and definition of the computational 

domain and boundary conditions. Subsequently, the grid dependence of the results for 

the normalized concentrations is analysed by means of the Richardson Extrapolation 

technique. Finally, the wind tunnel measurements and other published LES results are 

used to discuss and evaluate the numerical simulations of the concentrations and the 

most relevant variables affecting the implemented passive scalar flux models and 

pollutant predictions. 

7.1 Experiment Description 

The selected wind tunnel measurement published by [Pava99] is an idealized 

model of a street canyon inserted within an urban area, consisting of 26 equally 

spaced bars of rectangular cross section located in perpendicular direction to the main 

flow direction. The 20th canyon (formed by the 20th and 21st bar) was considered as a 

fully developed flow and was selected to represent an urban 2D street canyon. In the 

centre-bottom of this canyon a constant mass flow of ethane was introduced and 

subsequently measured in 70 locations across the canyon. The detection of tracer 
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concentrations was achieved with a fast Flame Ionisation Detector (FID). The 

experiment is sketched in Figure 7-1.  

Figure 7-1. Wind tunnel setup of street canyon from Pavageau and Schatzmann [Pava99].  Red 

lines represent the flow field area selected as computational domain of the numerical 

simulations. 

 

The wind tunnel experiment reproduces the atmospheric boundary layer. The 

velocity profile of the flow approaching the modelled urban area was reported in the 

experiments using an approximation of the power law equation. It is: 

α












−

−
=

0

0)(

dz

dz

U

zu

refref

 Eq. 7-1 

 

where d0 is the displacement height, )(zu is the mean velocity at elevation z, and Uref 

is the mean velocity at the reference height zref(=0.65m). The vertical wind profile 

exponent α and the displacement height d0 reported from the wind tunnel experiments 

were 0.28 and 2 mm, respectively. 

In the same way, the wind tunnel experiments reported the measurements of 

pollution concentration based on a similar definition of the previously mentioned  

normalized concentration C* (see Chapter 6). It is: 

( )
Sref QLHUCC ⋅⋅⋅=*

 Eq. 7-2 

where C is the actual measured concentration (ppm), Uref is the x-velocity at the 

reference point Pref(x,y)=(0,0.65) in (m/s), H is the height of the buildings in the street 

canyon (0.06m), L is the length of the source line of pollutants (0.91 m in the 

experiments but 1 m for the 2D simulation case), and QS is the pollutant flow rate 

(1.23·10-6 m3/s).  
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7.2 Computational Domain and Boundary 

Conditions 

Figure 7-2(a) shows a general view of the fluid flow domain and boundary 

conditions used for the simulation of the street canyon. The geometry dimensions 

were taken from the wind tunnel setup detailed in [Pava99] and the pollutants' source 

design from [Mero96]. As can be seen in this figure, a pollutant source was located at 

the bottom of the selected canyon with a small “roof” to remove any vertical 

momentum effects. Although this small pollutant roof appears to be a solid block 

inserted within the flow field (or computational domain), it is usually neglected in 

previous simulations of this experiment. The dimensions of this pollutant roof appear 

in Figure 7-2(b) in addition to the graphical distribution of measurement locations 

where the pollution dispersion models are evaluated. 

 

a) 

 

b) 

Figure 7-2. - (a) Computational Domain and boundary conditions. (b) Measurement point 

locations and pollution source dimension details. 

 

The boundary condition at the main flow entrance was fixed with a previously 

generated fully developed flow profile (explained below) with a velocity-inlet 
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condition of pure air and zero pollutant concentration. Similarly, symmetry condition 

at the top and constant pressure-outlet condition on the exit of the flow were set. The 

wall boundary condition was specified in all other borders except at the entrance of 

the pollutants (i.e. mixture of air and ethane), where a mass-flow-inlet boundary 

condition with mass flow rate of 5.26·10-05 Kg·s-1 and ethane mass fraction of 

2.9643% was specified. Except in cases where a different specification is explicitly 

given, the pollutant transport was always treated as a passive scalar. 

The near wall treatment used was always the Enhanced Wall Treatment 

[Flue06] (see Chapter 3.3.2 for a short description of this method). This near wall 

treatment is recommend by [Flue06] for grids where the y+ of the first cell beside the 

grid is within the laminar sub-layer. In the studied canyon, all y+ values were around 

5 for all simulations using the middle grid. 

The fully developed flow profile prescribed at the flow entrance for each of 

the simulations were generated in FLUENT 6.3 using the software feature of periodic 

boundary conditions and the finest available grid (shown later). This type of boundary 

condition allows a pressure drop to occur across translational periodic boundaries, 

enabling the modelling of “fully-developed” periodic flow (see Chapter 5.2.5 for 

more details). It was set by specifying the equivalent mass flow rate obtained from 

the integral of the power law but using the velocity profile above the bars as 

recommended by the experiments—the same Eq. 7-1 with α=0.28 and d0=60mm. The 

seven developed flow profiles, which include the velocity components and turbulent 

parameters for each turbulence model, were individually generated using the same 

numerical parameters and boundary conditions of the final simulations but setting 

zero mass flow at the pollutant entrance. At the end, the generated profiles were used 

as constant velocity and turbulence parameters at the main flow entrance in every 

corresponding simulation. 

Figure 7-3 shows the velocity profiles and turbulence parameters used as 

boundary conditions for the simulation of the atmospheric boundary layer. The 

velocity profiles for each turbulence model in the main flow direction are compared 

with the analytical solution of the power-law (Eq. 7-1 with α and d0 equal to 0.28 and 

60mm respectively) and the log-law equation based on equilibrium boundary layer 

profiles [Rich93]. The analytic profiles for the time-averaged velocity component in 

the x-direction (u ), the turbulent kinetic energy (k), and its dissipation (ε) are 

calculated as: 

( ) 






 +
=

0

0* ln
z

zzu
zu

κ
 Eq. 7-3 
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 Eq. 7-5 

 

where u
* is the friction velocity derived from Eq. 7-3 with z0 = 0.5mm and Uref = 

3.07m/s at (x,y) = (0.0, 0.65)m; κ = 0.4187, the von Karman constant; Cµ = 0.09, a 

constant from the standard k-ε model. The y-velocity component, based on the 

equilibrium boundary condition assumption, must be equal to zero. 

As can be seen in Figure 7-3, the main flow direction in the atmospheric 

boundary layer (x-velocity) presents a similar behaviour between all models and the 

described analytical solutions. However, the x-velocity maintains a general over-

prediction for all models at low y-coordinates levels, which exceeds the analytical 

results by up to 20% when the SKW model is used. The reason for these results is the 

smooth wall boundary conditions set at the walls for all simulations. If the analytical 

approximations (power-law or logarithmic profile) accurately represent the wind-

tunnel experiment, higher velocities around or within the canyon may be expected in 

the numerical simulations. The y-velocity profiles present values very close to zero 

for most of the domain with some small variations at the bottom. This behaviour of 

the y-velocity component may be expected as a product of the mass and momentum 

exchange between the main flow field over the street canyon and the recirculations 

within it.  

Figure 7-3 also reports the turbulence parameters (k and ε) for some of the 

used turbulence models, together with their respective profiles for the equilibrium 

boundary layer. As expected, the strongest velocity gradients and thus production of 

turbulent kinetic energy (k) accompanied by the highest turbulent dissipation rate (ε) 

take place close to the walls. Farther from the walls, the production of turbulent 

kinetic energy is reduced. However, the predicted turbulent kinetic energy of all 

models is two or three times higher than in an equilibrium boundary layer. The 

highest turbulent kinetic energy predictions are obtained by the k-ω based models. On 

the other hand, the LRRIP model leads to the lowest k predictions. The different 

predictions reported for the turbulent kinetic energy are especially relevant in this 

work because of its explicit (using k) and implicit (through the Reynolds stresses) 

effects in the formulation of the scalar flux models. 
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Figure 7-3. - Plots of inflow profiles developed for every turbulent model. 

 

In addition to the previously mentioned numerical and computational 

considerations, an important change in the geometry was needed to perform the 

numerical simulations of the canyon. This geometrical change was needed due to the 

translation of the real 3D experiments to a simplified 2D test case. In the real 

experiments, the pollution is introduced in the fluid field through a row of 302 small 

pipes (diameter Φ0=2.50·10-4m) located along the width of the wind tunnel test 

section. The two-dimensional simulations used an equivalent two-dimensional source 

channel with width Φ (=1.62·10-5m) calculated from the summation of the total pipes' 

areas, distributed in the same distance as the wind tunnel width. To examine the 

influence of the selected 2D channel size, additional simulations were performed 

using the new 2D-source-channel of width Φ and another 2D-source-channel with 

width of the original pipe’s diameter Φ0. For both sizes, the same mass flow rate was 

prescribed as a boundary condition, resulting in flow velocity variations of around 

one order of magnitude (0.2 m/s vs. 2.8 m/s). The results showed differences in the 

computed concentrations at the measurement locations with a maximum of only 

1.1%. Therefore, it has been considered that the choice of a different inlet size has 

almost no influence on the results.  

7.3 Discretization Error Estimates 

Three systematically refined meshes have been used to estimate the spatial 

discretization error of results. The first created mesh was the middle one, consisting 
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of 16484 quadrilaterals with a cell height of 8.3•10-3 H and 1•10-5 H on the buildings 

and bottom of the canyon, where H = 6•10-2m is the height of the buildings. Doubling 

and halving the number of elements in each coordinate direction, the fine and coarse 

meshes were generated with 65936 and 4121 quadrilateral cells, respectively. All 

meshes were completed keeping the maximum expansion ratio below 1.1. 

Figure 7-4 shows a detail of the fine, middle and coarse grids used to perform 

the generalized Richardson Extrapolation analysis. After the discretization error 

estimate, the middle size mesh was selected to carry out all simulations comparing the 

performance of the models.  

 

a) Fine Mesh 

 

b) Middle Mesh 

 

c) Coarse Mesh 

Figure 7-4.- Detail of the three used grids for the 2D street canyon geometry. 

 

The Richardson extrapolation technique was implemented to estimate the 

spatial discretization error in the 2D street canyon at all measurement locations. Table 

7-1 and Table 7-2 present the uncertainty results on the fine mesh for the normalized 

concentrations, using the fine, middle and coarse mesh in the specified geometry for 

some of the possible combinations of turbulence models. Columns I, II, III, IV and V 

are the percentages of measurement locations separated in categories according to 

Table 6-1 (p.82). <p> is the arithmetic mean order of accuracy for monotonic 

convergence of cases I, II and III. <R> is the mean arithmetic ratio of solution 

changes for cases I to IV. Finally, <U1> is the mean absolute uncertainty in the finest 

grid for cases I to IV and it represents the final output of the method. The local 

uncertainty values U1 in each specific location can be used as error bars (where 

available) to represent the spatial discretization error or grid uncertainty.  

The results obtained in Table 7-1 from the application of Richardson 

Extrapolation show that the numerical error from the finest grid can be calculated in 

the majority of points where the concentrations were compared with the experiments. 

For example, the first line of Table 7-1 shows that the RKE model for Reynolds 

stresses in combination with the SED model for scalar fluxes has more than 94% of 

the total measurement points where the grid uncertainty can be estimated. This result 
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means that under this combination, more than 47% of the points fulfil the monotonic 

convergence conditions for cases I, II and III, and approximately 47% of the points 

fulfil it for the oscillatory convergence condition of case IV. Only in 5.74% of the 

points does one find that the spatial grid uncertainty cannot be estimated. The last 

columns show the average absolute uncertainty of C* in the finest grid, which means 

that 10.47 units of C* is the spatial grid uncertainty for this specific case. The <p> of 

1.87 (larger than 1) means that the order of accuracy of this grid is on average slightly 

below second order. Please refer to Chapter 6.2 for further details about the 

estimation of spatial discretization error using the Richardson Extrapolation 

technique. 

 

Table 7-1. - Grid uncertainty estimation on the finest grid (U1) of normalized concentrations C* 

at the measurement locations for the combination of some turbulent momentum and scalar flux 

models. 

Predicted 

C* using 

Monotonic 

convergence 

(Cases I,II 

and III [%]) 

Oscillatory 

convergence 

(Case IV [%]) 

Divergence 

(Case 

V[%]) 

<p> <R> <U1> 

RKE and 
SED 

47.14 47.14 5.71 1.876 0.154 10.47 

LRRIP and 
SED 

31.43 34.29 34.29 1.197 -0.28 3.10 

LRRIP and 
GGDH 

61.34 21.43 17.14 1.221 -0.65 5.45 

LRRIP and 
ABE-SUGA 

60.00 20.00 20.00 1.474 0.846 12.07 

LRRIP and 
ABE 

57.06 32.86 10.00 1.998 0.04 19.51 

 

In a general view of Table 7-1, one can see that monotonic convergence 

occurs in a high percentage of the measurement points for the majority of the 

presented cases. Also the oscillatory convergence occurs in a lower but appreciable 

amount of these points, and the lowest percentages were usually found with 

divergence. The values reported for the first two cases (monotonic and oscillatory 

convergence) imply that the points where the estimation of spatial discretization error 

is possible are always more than those where this uncertainty is unknown.  

 Another interesting illustration in the previous table is that fixing the 

turbulence model for Reynolds stresses (e.g. LRRIP from the second to the fifth 

model combination), the grid uncertainty increases with the complexity of the scalar 

flux models. This tendency of increase in grid uncertainty may be due to an 

accumulative spatial grid error as a consequence of the inclusion of additional terms 
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in the more complex scalar flux models. In general, it can be said that the Richardson 

Extrapolation technique presents reasonable values of numerical uncertainties and it 

is a very useful technique to quantify the quality of a grid in view of specific 

parameters of interest. 

Table 7-2. - Grid uncertainty estimation of normalized concentration C* for the combination of 

some turbulent momentum and scalar flux models. All reported grids uncertainties are 

calculated only for cases I, II and III (see Table 6-1). 

Predicted C* 

using 

Monotonic 

convergence 

(Cases I and II 

[%]) 

Monotonic 

convergence 

(Case III [%]) 

<U1> <U2> <U3> 

RKE and SED 34.29 12.86 1.14 1.81 3.35 
LRRIP and SED 24.29 7.14 1.23 1.96 3.99 

LRRIP and 
GGDH 

47.14 14.29 1.01 1.72 2.98 

LRRIP and ABE-
SUGA 

42.86 17.14 0.37 1.06 5.10 

LRRIP and ABE 22.86 34.29 0.19 0.89 9.34 
 

The grid uncertainty of results for the other two grids may be partially 

estimated by applying the generalized Richardson extrapolation. In this way, Table 

7-2  presents the grid uncertainty calculated for all three grids but only taking into 

account the points with convergence tendency corresponding to cases I, II and III. In 

this table, one can observe that the grid uncertainty reported from this fraction of the 

data shows similar values for the finest and middle grid. These results are relevant 

and valuable parameters for the selection of the middle grid to study the performance 

of different turbulence model combinations in this work. 

 

Figure 7-5.- Example of grid uncertainty distribution according to the five cases used for 

Richardson Extrapolation in Table 6-1. Simulation carried out using RKE and SED models.  The 

colours (cases) are: (I) Dark Blue, (II) Light Blue, (III) Green, (IV) Orange, (V) Red. 
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Figure 7-5 shows the spatial distribution of convergence behaviour for 

concentrations using the turbulence model combination RKE and SED. The five cases 

are identified by colours to show a geographical distribution of the discretization error 

estimate. The absolute uncertainty calculated for every point has been included in the 

next sub-section as error bar for the comparison of predicted and measured 

concentrations in the 2D street canyon. 

 

7.4 Analysis of Results 

7.4.1 Concentration Prediction Using Different Turbulence 

Models for Reynolds Stresses 

The street canyons contain some peculiar flow characteristics, and depending 

on the selection of turbulence model for Reynolds stresses, considerable important 

flow field variations can be obtained. As a consequence, important variations may 

also occur in the pollutant field. Figure 7-6 presents some details of the streamlines 

obtained with seven turbulence models (SKE, RNG, RKE, LRRIP, SKW, SST, SA) 

and the LES results of the same street canyon reported from [Liu02] (see section 1.3). 

Please note that the y-coordinate in this work corresponds to the z coordinate in the 

LES. 

The flow field presented in each case consists of three main recirculation areas 

using any of the turbulent models, but substantial changes in size and shape can be 

distinguished. In all studied cases, a big recirculation located close to the centre of the 

canyon has been found (see Figure 7-6), with a diameter of circulation around the 

height of the canyon. It covers the majority of the flow field within the canyon and 

governs the predominant fluid motion. In the second level of details, there are two 

other vortices located at every bottom corner of the canyon rotating in the opposite 

direction of the big recirculation. These two secondary vortices also show small 

changes in size and shape for every model but always keep similar dimensional 

proportions between them. A fourth small recirculation was also found on the top-

leeward corner for the turbulence models SA, SKW and SST.  
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LES [Liu02] SKE 

  
RNG RKE 

  
LRRIP  SA 

  
KW-SST SKW 

Figure 7-6.-Streamlines numerically predicted for each of the used turbulence 

models for Reynolds stresses and LES predictions from [Liu02]. 

 

The direction and magnitude of all recirculation regions are produced and 

maintained by the transport of momentum taken by the big recirculation from the free 
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flow area above the top of the canyon. Inside the canyon, this momentum is 

transported to the smaller vortices and then dissipated. 

 

a) 

 

b) 

 

Figure 7-7.-Velocity field under pollution source roof in the centre bottom of the canyon.  

Details for (a) LRRIP and (b) SKW 

 

 

Figure 7-7 presents a detail of two kinds of flow fields observed at the 

entrance of the pollutant to the canyon. Figure 7-7 (a) represents the model 

performance of a group (a), composed of the models SKE, RKE, RNG, LRRIP and S-

A, and Figure 7-7 (b) represents the second kind of model performance of a group 

(b), composed of the SKW and SST models. The important aspect to take into 

account from the velocity fields (Figure 7-6) and the pollutant entrance performance 

(Figure 7-7) is how the recirculation sizes and entrance conditions affect the pollutant 

distribution. The flow field predicted by the models (a) presents two small 

recirculations at the bottom corners of the canyon. However, in the case of group (b), 

larger recirculations are formed in the same locations allowing flow contact between 

the windward bottom corners with the pollutant’s source entrance. As a result, the 

pollutant in the first group enters at the bottom of the canyon and disperses following 

the main direction of the flow, from right to left. However, the second group performs 

very differently. The big recirculations at the bottom corners of the canyon, produced 

by the smaller prediction of turbulent viscosity in the k-ω based models (see 

comparison of turbulent viscosity in Appendix B (page 178), generate a flow 

movement with almost symmetrical flow direction (left and right) at the pollutant’s 

entrance (see Figure 7-7 b).  

Figure 7-8 shows how the different flow fields at the entrance of the pollutant 

using the k-ω based models generate a completely different dispersion of pollutants 

within the street canyon. 
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Exp. LRRIP 

  
SKE  RNG 

  
RKE S-A 

  
SST SKW 

 

Figure 7-8. - Prediction of normalized concentration (C*) for all turbulence models 

for Reynolds stresses with the SED model. Experiments from [Pava99]. 
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The analysis of the two different behaviours of the flow at the pollutant 

entrance are not present in the LES results because this simulation neglects the flow 

effects produced for the pollution source roof, meaning the “roof” body located in 

front of the pollution source was not included in the simulations. However, looking at 

the small size of the bottom corner recirculations in the LES, it can be inferred that 

the LES results also behave as the flow field represented by group (a) in Figure 7-7. 

Figure 7-9 shows the concentration comparison in the street canyon between 

the seven turbulence models for Reynolds stresses with the SED model and the 

experiments. The results have been separated into seven vertical lines (at constant x-

coordinate) to cover all 70 measurement locations. This figure also includes the error 

bars from the spatial discretization error U2 calculated from the Richardson 

extrapolation method in the simulation of the LRRIP model (see Table 7-2). 

The evaluation of model performance has been based on the prediction of the 

normalized concentration C
* (see Eq. 7-2). The numerical predictions show a 

qualitatively fixed overestimation of concentrations within the entire canyon for the 

k-ω based models (SKW and SST). The rest of the models (SKE, RNG, RKE, SA and 

LRRIP) maintain similar predictions of concentration and in many cases, their 

differences are smaller than the mesh uncertainty (plotted only as example for the 

LRRIP). Again, in general it is possible to confirm that the SKW model presented the 

worst predictions for the concentrations C*. Previous works like [Liu02] mention the 

predominance of the turbulence diffusion phenomenon for the transport and expulsion 

of pollutants outside of the canyon. Those results also coincide with the very high 

concentrations of pollutants observed in the k-ω based models as a consequence of 

their always lower turbulent viscosity predictions.  

Another observation is that all models present the biggest errors and highest 

over-predicted concentrations at the first evaluation point located on the left side after 

the pollutant source entrance (see LINE X=-1.0E-02m of Figure 7-9), and it coincides 

with the area of the largest concentration gradient. In the second level of errors, some 

high concentration errors can be seen in the middle and right side of the canyon, 

which is probably due to the wrong prediction of diffusion coefficients. The specific 

locations of bad concentration predictions for all used turbulence models appear to be 

a common lack of RANS. The most probable reasons of these modelling limitations 

are due to the application of isotropic models. 
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Figure 7-9. - Normalized concentration predictions for the seven turbulence models for Reynolds 

stresses with SED model for passive scalar concentration. Error bars for LRRIP show 

uncertainty U2. 

Finally, the numerical simulations have been quantitatively compared with the 

experiments through statistical metrics commonly used for the evaluation of model 

performance. Please refer to Chapter 6.1.1 for details about their calculation or 

directly to its original source at [Chan04]. These implemented statistical evaluation 

parameters have been used to compare the prediction capabilities of the seven 



7. Flow and Dispersion in a 2D Street Canyon 

98 

turbulence models for Reynolds stresses in combination with the Simple Eddy 

Diffusivity (SED) model (with Sct=0.7) for the species transport equation at the 70 

measurement points. The BOOT software [Chan05] was used to compute the 

evaluation metrics. The results are presented in Table 7-3 and Table 7-4. The 

software’s authors recommend a rage for “acceptable” model prediction (see Chapter 

6.1). The given ranges for each metric are FAC2 > 0.5, |FB| < 0.3, NMSE < 4, 0.7 < 

MG < 1.3 and VG < 1.6. The gray coloured cells in Table 7-3 are those where the 

results fulfil these conditions.  

Table 7-3. - Reynolds stress model comparison using SED scalar flux model (Part I).  

Model VG MG MGFN MGFP NMSE FAC2 FB FBFN FBFP q 

Exp 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 
SKE 3.13 1.4 1.58 1.12 0.62 0.86 0.13 0.24 0.11 0.46 
RKE 2.72 1.22 1.36 1.12 0.75 0.89 -0.05 0.11 0.16 0.77 
KW 65.4 0.94 1.87 2.00 3.34 0.36 -0.95 0.01 0.95 0.29 
SST 24.8 1.1 1.70 1.54 2.1 0.57 -0.65 0.01 0.65 0.40 
RNG 3.01 1.28 1.44 1.13 0.61 0.87 0.02 0.16 0.14 0.67 

LRRIP 4.18 1.53 1.68 1.10 0.33 0.89 0.08 0.23 0.15 0.31 
S-A 7.5 1.36 1.50 1.11 2 0.93 -0.19 0.09 0.28 0.79 

Table 7-4.-Reynolds stress model comparison using SED scalar flux model (Part II). 

Model Mean Sigma Bias High 2
nd

 High R 

Exp 39.52 32.07 0.0 181.34 132.5 1.0 
SKE 34.64 50.85 4.87 400.03 111.37 0.86 
RKE 41.47 58.66 -1.96 462.43 126.68 0.86 
KW 110.44 117.8 -70.92 615.09 387.29 0.71 
SST 77.21 97.23 -37.69 705.57 278.32 0.88 
RNG 38.63 53.95 0.89 420.28 123.23 0.87 

LRRIP 36.43 47.45 3.09 288.1 176.55 0.93 
S-A 48.03 84.41 -8.51 676.2 180.88 0.82 

 

The first line in Table 7-3 and Table 7-4 are the experimental values which 

represent the ideal values at which a model would give a perfect numerical prediction. 

The FAC2 in Table 7-3 is probably the easiest metric to fulfil the acceptance criteria 

recommended by [Chan05] because it allows a high percentage of error with the 

prescribed tolerance of 50%. The results show very good FAC2 values for most of the 

models with the anticipated exception of SST and KW. The SST model is included 

inside of the minimum tolerance with lower ranking, but the SKW model already falls 

out. The Fractional Bias (FB), which is a measure of the arithmetic difference 

between observed and predicted concentrations, is well predicted by all models 

except again the k-ω based models, but this time both SKW and SST fail. The FBFP 

and FBFN (FB= FBFN-FBFP) confirm the obvious over-prediction using these two 

models. A smaller over-prediction occurs for RKE and S-A. Under-prediction 
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predominance is found for the SKE model in coincidence with previous works like 

[Walt02] and in lower proportion for the RNG and LRRIP model. Similar conditions 

to FB occur for the Normalized Mean Square Error (NMSE) parameter. This factor 

measures the scatter and reflects both, systematic and unsystematic (random) errors, 

and again excludes the same models as FB from the “acceptable” range, but adds S-

A.  

The VG and MG metrics may be seen as analogues to FB and NMSE but in 

logarithmic scale. This scale has the advantage to provide a more balanced treatment 

for extremely high and low values. However, the dependency of logarithmic 

functions at low concentrations makes them unstable. In this case, the considerable 

high amount of points with very low pollution concentrations (mostly located at the 

top of the canyon) cause the VG and MG parameters to report some incongruence 

with the other metrics for the best model selection. This behaviour occurs because the 

logarithmic values of the concentrations close to zero are not mathematically defined. 

Therefore, when calculating MG and VG, it is usually recommended to impose a 

minimum threshold for data values. The typical solution to overcome this problem is 

to set the instrument detection limit as the lower bound for both observed and 

predicted concentrations. In this case, the measurement uncertainty of 10ppm was 

used as the limit for full agreement for negligible pollutant concentrations. The MGFN 

and MGFP are mathematically analogous to the FBFN and FBFP in logarithmic scale 

and therefore suffer from the same problems as MG and VG. 

Another important parameter presented in Table 7-4 is the Hit Rate “q” (see 

Chapter 6.1.2). It is a metric similar to FAC2 but it employs a lower relative tolerance 

W(=2) and the absolute tolerance or threshold from the measurements’ uncertainty 

D(=25%), which is very useful for low concentration areas. The original Hit Rate 

acceptance criterion of 66% proposed by [VDI05] was used. The Hit Rate results 

show two interesting aspects. The first is that it confirms that the S-A, RKE and RNG 

models are in good agreement as was earlier reported by the FAC2. The second 

interesting observation is that the SKE and the most complex Reynolds stress model 

LRRIP got considerably worse marks than for the conservative FAC2. The most 

apparent reason for this change in the best model selection used by the Hit Rate is that 

the SKE and LRRIP models have a considerably high percentage of measurement 

points with a relative concentration error between 25% and 50%.  

The additional reported parameters also corroborate the previously mentioned 

results. For example, the high values in the MEAN, SIGMA and BIAS help to 

observe the general large over-prediction of the data and their errors when these 

parameters from the k-ω based models are compared with the experiments. These 

results, in addition to those reported from the HIGH and second HIGH parameters, 
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are useful to understand the differences between the systematic (FB and MG) and 

unsystematic (NMSE and VG) parameters when highly disperse error distributions 

are obtained. Finally, the correlation R close to one is a pre-requirement for a good 

model prediction, but in this case it does not present considerable differences to report 

relevant information for a best model selection.  

Unfortunately, the wind tunnel experiment [Pava99] selected to validate these 

numerical simulations does not report any details about the velocity field or 

turbulence parameters. Therefore, the evaluation of turbulence models can only be 

performed based on the predicted concentration accuracy. It must be mentioned that 

this assumption only makes it possible to evaluate the model combination (for 

stresses and scalar fluxes).  It does not necessarily mean that the best model 

combination coincides with the best prediction of velocity field or pollutant 

dispersion. 

7.4.2 Reynolds Stress Tensor Prediction 

The Reynolds stresses are very important parameters to take into account for 

anisotropic scalar flux modelling. They are inserted in most of the scalar flux models 

(see Table 3-6), and therefore an analysis of them must be done. The Reynolds 

stresses are calculated explicitly by the LRRIP model. For the two-equation models, 

the stress components have been calculated using the predicted turbulent kinetic 

energy, turbulent viscosity and velocity gradients with the Boussinesq hypothesis 

(Eq. 3-1). All implemented turbulence models for Reynolds stresses were computed 

and compared in this way except for the S-A model, because this approach does not 

incorporate an explicit estimation of turbulent kinetic energy (see section 3.1.1 for 

more details). 

A qualitative comparison of Reynolds stresses was carried out contrasting the 

computed Reynolds stresses with the LES results from [Liu02]. The root-mean-

square for u (urms) and v (vrms) velocity fluctuations, non-dimensionalized with the 

reference velocity (Uref) are shown in Figure 7-10 and Figure 7-11. From the results, 

general similarities can be seen between most of the RANS models with LES. The 

LES presented two very clear locations of maximum values of the urms and vrms 

parameters. However, these local maximums are not always so clearly observed in the 

RANS results. 

The root-mean-square of the streamwise turbulent normal stress (urms) 

presents the highest maximum along the top and top-windward corner of the canyon, 

and a second local maximum is located at the bottom leeward corner of the canyon. 

Similarly, the vrms predictions present again the highest values at the top and second 
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highest at the bottom windward corner of the canyon. The reason for these locations 

is due to the formation of a flapping shear layer at the top of the street canyon due to 

the continuous exchange of mass and momentum with the atmospheric boundary flow 

above. It also causes strong velocity variations close to the windward wall in which 

the flow impinges. The other two local maximums at the two bottom corners are due 

to the presence of the secondary recirculations. These corner eddies should be very 

unstable and change their form and local velocity directions continuously. 

The RANS models present a comparable order of magnitude for the urms 

results but the locations of the maximum normal stresses are more dispersed and not 

as high and clearly defined as reported from the LES results. As can be seen in the 

graphics, the urms values were always under-predicted in comparison to the LES. 

Between the RANS models, the three k-ε based models (SKE, RNG and RKE) 

present close similarity and some few bigger differences were found using the LRRIP 

model. The simulations using the LRRIP model report lower urms in comparison to 

the k-ε models at the leeward bottom recirculation area but they also report higher 

values at the general maximum located at the top of the canyon.  

The RANS predictions of vrms for the same four models (SKE, RNG, RKE and 

LRRIP) agree with the location of the general maximum along the top of the canyon 

with extension through the windward wall and its bottom corner. The magnitude of 

the vrms reported for all RANS models is also under-predicted in the entire canyon 

compared to the LES. 

The results for the k-ω based models (SKW and SST) have been also included 

in the figures and they show much lower Reynolds stress predictions in the entire 

canyon. Thus, the lower predictions of turbulent viscosity from these two-equation 

models do not produce sufficiently high normal stresses. To observe some qualitative 

comparison of these model predictions please refer to Figure B- 5. 
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Figure 7-10.- Contour plots of normalized Reynolds stresses (urms /Uref) for LES [Liu02] and 

SKE, RKE, RNG, LRRIP, KW, SST. 
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Figure 7-11.- Contour plots of normalized Reynolds stresses (vrms /Uref) for LES [Liu02] and SKE, 

RKE, RNG, LRRIP, KW, SST. 
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7.4.3 Active and Passive Pollutant Simulation 

As explained in Chapter 5.1.1, an additional study was performed to compare 

the pollutant dispersion in the canyon considering the pollutants either as a passive or 

an active scalar. This possible influence is analysed here. 

The active scalar transport equation is simply the Reynolds averaged species 

transport equation (Eq. 2-4) which was introduced as one of the governing equations 

in fluid mechanics but with some additional source terms. The active scalar transport 

considered in this work takes into account buoyant effects and fluid property 

variations due to the inclusion of a different fluid in the flow field. When a passive 

scalar is considered, it is an inert species, meaning that the species transport equation 

is reduced to a simple convective-diffusion transport equation without buoyancy or 

property variations. In this case, the transported scalar quantity does not affect the 

flow field. 

The general setup conditions for these simulations are separated in two cases:  

• Case 1. Simulation of pollutants as an active scalar: This simulation has been 

done through the calculation of the species transport equation considering the 

inclusion of a different fluid (ethane) in the main fluid flow (air). It is 

theoretically the most accurate calculation without taking into account chemical 

reactions and heat transfer between the two different fluids. These other 

transport phenomena were also neglected in the experiments. 

• Case 2. Simulation of pollutants as a passive scalar: This simulation has been 

accomplished through the calculation of a UDS transport equation and a 

subroutine to implement the same scalar flux model (SED). The same 

computational domain, grid and setup conditions used for the Case 1 were 

maintained but all fluid properties were changed from the pollutant (ethane) 

equal to the main fluid (air). 

Figure 7-12 shows the concentration profiles for the simulation of pollutant 

dispersion as an active and passive scalar in contrast with the experiments. The used 

turbulence models were the LRRIP for Reynolds stresses and the Simple Eddy 

Diffusivity (Sct=0.7) for scalar fluxes. The two simulation results are plotted along 

seven vertical lines to cover all the measurement points within the canyon. In general, 

the active and passive scalar computations predict very similar species concentrations 

for most of the domain. As expected, the point with biggest absolute concentration 

difference between both simulations is where the highest measured concentration is 

found, which can be seen at the bottom part of the line X=-1.0·10-2m. However, the 
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average relative difference in C* between both cases was under 4% and in most cases, 

these differences were smaller than the mesh uncertainty.  
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Figure 7-12.- Passive/active scalar dispersion and experiment. Error bars from passive LRRIP 

and SED model combination behaviour. 
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The previous observations can be corroborated with statistical metrics 

analysis. To quantify the differences between passive and active pollutant 

simulations, statistical metrics have been included in Table 7-5 and Table 7-6. The 

ideal metric values for a perfect model agreement are presented in the line Exp (it 

means here that there is a perfect agreement of the experiments with itself). The 

results show again very high similarity between the two studied cases in most 

evaluation parameters, with some very small improvement for the full species (active 

scalar) transport equation. With these results, it has been shown that the small 

property differences between air and ethane at this low concentration do not produce 

considerable changes in the flow. Under these conditions, ethane can be perfectly 

considered as a passive scalar pollutant. 

Table 7-5. – Metrics of C*for active and passive scalar treatment. (Part I) 

Model VG MG MGFN MGFP NMSE FAC2 FB FBFN FBFP q 

Exp 1 1 1.00 1.00 0.0 1.0 0.0 0.0 0.0 1 
Passive 4.57 1.61 1.77 1.10 0.36 0.81 0.11 0.26 0.16 0.31 
Active 4.18 1.53 1.68 1.10 0.33 0.88 0.08 0.23 0.15 0.31 

Table 7-6. - Metrics of C*for active and passive scalar treatment. (Part II) 

Model Mean Sigma Bias High 2
nd

 High R 

Exp 39.52 32.07 0.0 181.34 132.5 1.0 
Passive 35.35 47.45 4.17 279.92 182.04 0.92 
Active 36.43 47.45 3.09 288.10 176.55 0.93 

 

7.4.4 First and Second Order Spatial Discretization 

Schemes 

The comparison between first (1st) and second (2nd) order spatial discretization 

schemes was also performed. This study was carried out with the intention to take 

into account as many parameters as possible which can influence a pollution 

dispersion prediction of a CFD simulation. Some published studies about CFD good 

practices or technical recommendations ([Case00] and [Flue06], for example), 

suggest the selection of second order spatial discretization schemes to obtain results 

with lower numerical errors.  

To analyse the first and second order influence in pollution dispersion, the 

numerical simulation of three different cases has been performed. They are: (a) 1st 

order (all variables), (b) 2nd order (all variables), (c) 1storder2 (1storder for species and 

2ndorder for any other variable). The results are shown in Figure 7-13 where 

experimental measurements are always included.  
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Figure 7-13. - Comparison of 1
st
 and 2

nd
 order spatial discretization schemes. The three simulations 

are: 1storder (all variables), 2nd order (all variables), 1st order2 (1st order for species and 2nd order for 

any other variable). 

The pollution dispersion for the first and second order spatial discretization 

schemes was calculated using the LRRIP and SED models with the middle size mesh. 

The results show a similar prediction between all cases with average relative error of 

7.63% (1storder – 2ndorder), 2.66% (2ndorder – 1storder2) and 6.38% (1storder – 

1storder2), with respect to the experiments, i.e.: 
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P

BA

Exp

SimSim
Percentage

−
=  Eq. 7-6 

where SimA and SimB are the two different predicted concentrations from simulations 

A and B respectively, and Exp is the corresponding experimental measurement. All 

three parameters were evaluated at the same location P. 

The biggest relative error was found between the full 1st and 2nd order 

simulations (up to 100% with absolute error C* ≈0.77) and is located in a point 

situated at the top leeward corner. The second highest prediction difference (up to 

24% with absolute error C*≈43) is located at the first measurement point after the 

pollutant entrance. Both cases coincide with points where high concentration 

gradients exist.  

Table 7-7 and Table 7-8 present the computed metrics of the three studied 

cases. Similar to the graphical plots, it can be observed that the concentration 

predictions are very similar between the three simulations. An interesting observation 

from these tables is that the presented metrics show non-uniform behaviour in making 

a clear “best model” selection. The best model performance changes depending on 

the selected statistical evaluation parameter.  

For example, an ideal model (see line Exp) would have a NMSE equal to zero, 

thus NMSE report the best agreement for the C* from 1storder2, followed closely by 

the C* from 2ndorder and the worst predictions are for the C* from 1storder. If the 

ideal FB must be equal to zero and FAC2, VG and MG equal to one, the best model 

agreement is always different. This case is a good example of the BOOT software 

recommendation of taking into account more than one statistical metric. Other authors 

(e.g. [Oles08]) also suggest looking at the graphical representation of results in 

conjunction with the metrics. 

Table 7-7. – Metrics of C*for 1
st
 and 2

nd
 order spatial discretization schemes (Part I) 

Model VG MG MGFN MGFP NMSE FAC2 FB FBFN FBFP q 

Exp 1 1 1.00 1.00 0 1 0 0.00 0.00 1 
C*1stord 1.95 1.34 1.52 1.13 0.52 0.84 0.02 0.23 0.21 0.34 
C*2ndord 4.18 1.53 1.68 1.10 0.33 0.89 0.08 0.23 0.15 0.31 
C*1stord2 2.13 1.42 1.56 1.10 0.30 0.86 0.09 0.24 0.14 0.31 

Table 7-8. - Metrics of C*for 1
st
 and 2

nd
 order spatial discretization schemes (Part II) 

Model Mean Sigma Bias High 2
nd

 High R 

Exp 39.52 32.07 0 181.34 132.5 1 
C*1stord 38.67 54.23 0.84 331.58 208.44 0.92 
C*2ndord 36.43 47.45 3.09 288.1 176.55 0.93 
C*1stord2 35.92 46.4 3.6 281.07 177.38 0.93 
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In conclusion, no significant differences were seen for the selection of 1st or 

2nd order spatial discretization schemes for better performance of the numerical 

simulation of pollutant dispersion. However, a different analysis of results would be 

possible depending on the relevance of these reported “insignificant” differences. For 

example, small increases of toxic or radioactive pollutants in an urban area may 

represent a significant health risk for the inhabitants in the surroundings. Therefore, 

the neglection of these small variations in the numerical predictions may represent an 

important issue in specific applications. 

All simulations performed in the present work have been carried out following 

the cited theoretical recommendations. Therefore, the second order spatial 

discretization scheme was selected for the evaluation of all turbulence models.  

7.4.5 Concentration Predictions Using Different 

Turbulence Models for Scalar Fluxes 

Analogous to the Reynolds stress models, it was expected that the scalar flux 

models would also produce major differences in the prediction of pollution 

dispersion. In total, nine scalar flux models were employed in this work. They can be 

classified into three groups (see Chapter 3.2).  The first group has two versions of the 

isotropic Simple Eddy Diffusivity model with Sct=0.7 (SED1) and Sct=0.9 (SED2). 

The second group has five different algebraic anisotropic models—the Generalized 

Gradient Diffusion Hypothesis (GGDH), the ABE-SUGA model, the ABE model, the 

WET model, and the YOUNIS model. Finally, the third group has two second 

moment models represented by the S-M DURBIN model and the S-M HANJALIC 

model. Similar to the previous studies, the normalized concentration C* has been 

used to compare the combined performance of each of the implemented scalar flux 

models together with the LRRIP Reynolds stress model.  

Figure 7-14 shows the scalar predictions of each scalar flux turbulence model 

plotted along the seven vertical lines to cover the 70 measurement points. From this 

figure, several important observations can be mentioned. The most evident is 

probably the expected better behaviour in a high percentage of the measurement 

points when using the second moment models. In general, the algebraic scalar flux 

models present a similar performance with the usual under-predicted concentrations 

in the centre and on the right side of the canyon. The region on the left side of the 

canyon presents similar over- and under-prediction behaviour for most models. All 

models fail as they consistently over-predict the concentration of the passive scalar at 

the highest measured concentration (C*=181) located on the left side of the 

pollutant’s entrance (see bottom point in LINE X=-017H, Figure 7-14). The highest 



7. Flow and Dispersion in a 2D Street Canyon 

110 

absolute error for all models and the highest relative error for several models occur at 

this location. These values are: 

Table 7-9. – Maximum absolute and relative error at the point with highest measured 

concentration, which is the closest point to the pollutant source. 

 SED1 SED2 GGDH 
ABE- 

SUGA 
ABE WET YOUNIS 

S-M 

DURBIN 

S-M 

HANJALIC 

Absolute 
error 
(C*) 

98.57 109.82 96.48 111.44 47.61 156.89 259.92 246.95 259.88 

Relative. 
error 
(%) 

54.36 60.56 53.21 61.45 26.25 86.52 143.33 136.18 143.31 

 

As can be seen in Table 7-9, both second moment models (S-M DURBIN and 

S-M HANJALIC) together with the YOUNIS model have the highest over-prediction. 

The same tendency also occurs for a few more points with high concentrations. 

Therefore, although general improvement can be seen for the second moment models’ 

behaviour, their prediction close to the source is still problematic. The highest relative 

error for all algebraic models is located at the top of the canyon where the 

concentration values are generally small. From Table 7-9, one may conclude that the 

RANS models usually over-predict concentrations in locations with very high 

concentration gradients. 

These results have also been analysed by means of statistical evaluation 

metrics (see Table 7-10 and Table 7-11). The FAC2 and q (Hit-Rate), which are 

commonly known as very stable statistical metrics, report considerable differences 

between them. The FAC2 presents relatively good and comparable results between 

most of the models (within ±6%), with special outstanding behaviour for the SED2 

and GGDH model and the two second moment models with values for FAC2 over 

90%. However, the q (Hit-Rate) results only promote the use of the second moment 

models. The differences between these two metrics may be produced due to the more 

strict conditions of the allowed relative difference (D=25%) and the inclusion of a 

very small allowed absolute tolerance of C*(W=2) in the Hit-Rate calculation. On the 

other hand, the WET model fails in being always out of the recommended range of an 

“acceptable” model, and presents the worst agreement with the experiments. As can 

be observed in Table 7-10 and Table 7-11, there is an appreciable change between the 

SED models due to a simple variation of the turbulent Schmidt number (Sct), meaning 

that the selection of this parameter must be done with special care (see discussion in 

Chapter 3.2.1.1). The Sct is usually set at a value between 0.7 and 0.9 (see e.g. 

[Durb01] and [Tomi07]), and for that reason these two limits were selected to 

represent the SED1 and SED2 models, respectively. 
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Figure 7-14. - Comparison of normalized concentration C* for several turbulent models for 

scalar fluxes in combination with the LRRIP model for Reynolds stresses. 

 

The NMSE metric shows that all the models’ performance is inside of the 

recommended range. The best performance was found for the ABE and GGDH model 

and the worst for the YOUNIS model. Similar to the NMSE, the FB includes almost 

all models inside of the recommended range, but with the FB the selection of the best 

models should be analysed in conjunction with their over-prediction (FBFP) and 

under-prediction (FBFN) parts. The SED2, GGDH and ABE-SUGA models present 
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the best FB factor under 0.05. However, the FB metric of SED2 results come from 

the difference of a much higher absolute value for under- and over-predictions, which 

means that this good FB factor is more a result of error compensation than a genuine 

accurate prediction. Table 7-10 also confirms the high over-prediction (large FBFP and 

negative FB) of the second moment models (S-M DURBIN and S-M HANJALIC) 

and the YOUNIS model. Therefore, the GGDH and ABE-SUGA can be mentioned as 

the best performers for the metric FB. 

The VG and MG parameters, with acceptance criteria of VG<1.6 and 

0.7<MG<1.3, perform similarly to their analogues NMSE and FB.  However, VG and 

MG errors are larger and their acceptance criteria exclude the WET and SED models 

as well as the ABE and the two Second Moment models (S-M DURBIN and S-M 

HANJALIC) for VG. The GGDH model performs best for these two factors and the 

S-M DURBIN model also presents good agreement for MG. This general lower 

ranking in the VG parameter is a reflection of an unsystematic error distribution 

within the data. 

Table 7-10.- Scalar flux model predictions using LRRIP model(Part I). 

Model VG MG MGFN MGFP NMSE FAC2 FB FBFN FBFP q 

Exp 1 1 1.00 1.00 0 1 0 0.00 0.00 1 

SED1 4.57 1.61 1.77 1.10 0.36 0.81 0.11 0.27 0.16 0.31 
SED2 8.39 1.6 1.76 1.10 0.45 0.94 0.02 0.22 0.20 0.39 

GGDH 1.3 1.12 1.28 1.15 0.25 0.91 0.05 0.17 0.12 0.57 
ABE- 
SUGA 

1.46 0.96 1.22 1.27 0.36 0.86 -0.02 0.15 0.17 0.57 

ABE 1.68 1.15 1.43 1.24 0.21 0.70 0.22 0.29 0.07 0.40 

WET 1.78 1.61 1.78 1.11 0.69 0.44 0.30 0.42 0.13 0.31 

YOUNIS 1.39 0.89 1.16 1.30 1.14 0.84 -0.21 0.10 0.30 0.63 

S-M HANJALIC 3.26 1.23 1.29 1.19 0.81 0.94 -0.18 0.06 0.24 0.83 

S-M DURBIN 1.86 0.98 1.18 1.20 0.79 0.90 -0.32 0.01 0.32 0.73 

Table 7-11.- Scalar flux model predictions using LRRIP model (Part II) 

Model Mean Sigma Bias High 2
nd

 High 

Exp 39.52 32.07 0 181.34 132.5 

SED1 35.35 47.45 4.17 279.92 182.04 
SED2 38.87 52.18 0.64 291.17 210.58 

GGDH 37.71 45.71 1.81 277.83 197.37 
ABE-SUGA 40.15 49.85 -0.63 292.79 228.26 

ABE 31.62 37.48 7.9 228.96 159.42 

WET 29.3 49.58 10.21 338.24 205.96 
YOUNIS 48.55 72.08 -9.03 441.27 344.21 

S-M HANJALIC 47.08 65.21 -7.56 441.23 257.49 
S-M DURBIN 54.53 67.14 -15.01 428.30 286.46 

 

In addition to the mentioned metrics, some general statistical parameters are 

given in Table 7-11. They are the MEAN, SIGMA, BIAS, R, HIGH and 2nd HIGH. 
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These additional parameters have been taken into account as secondary or 

complementary information for the error analysis. The MEAN (arithmetic mean 

average), SIGMA (standard deviation) and BIAS (Difference in the means) are very 

general parameters and therefore must be taken into account with careful 

consideration. From these three parameters one can note the pronounced under-

prediction by the WET model and the predominant over-predictions of both second 

moment models. All these parameters together with the HIGH and 2nd HIGH are also 

useful for understanding the systematic and unsystematic distribution characteristics 

of the data, and for avoiding possible incongruence from the average-based metrics. 

For example, the reported HIGH and 2nd HIGH values express an idea of the large 

range of concentrations and the unsystematic distribution of errors of the second 

moment models.  The HIGH and 2nd HIGH over-predictions explain the reported high 

values in the MEAN, SIGMA or BIAS, although the second moment models have 

very good FAC2 and Hit-Rate. 

It is important to refer to the good FAC2 ranking of the SED based models 

under the special flow case which occurs within the street canyon. A possible reason 

for this high ranking may be due to an alignment of the scalar gradient direction 

coinciding with the main fluid flow direction at the pollutant entrance. This condition 

is one of the most well known and important limitations of this model, but it looks 

like the SED model was applied in a favourable condition. Also, previous works like 

[Tomi07] mention that the convection transport inside a street canyon is the 

predominant transport phenomenon of pollutants. Therefore, it can be expected that 

this model should achieve similar results like the other models. 

Next, Figure 7-15 shows the contours of the normalized concentration C* 

corresponding to the results of Table 7-10 and Table 7-11. This figure presents the 

contour plot for the two isotropic algebraic scalar flux models (SED1 and SED2), all 

the anisotropic algebraic scalar flux models (GGDH, ABE-SUGA, ABE, WET and 

YOUNIS), the two implemented second moment models (S-M DURBIN and S-M 

HANJALIC), and the experimental measurements plotted in a coarse distribution of 

70 measurement points inside the canyon. The comparison of scalar flux models in 

the contour plots presents good agreement with the previously reported statistical 

metrics. In general, all concentration predictions show similar behaviour with some 

variation in the shape of the pollutant dispersion. Based on the qualitative description 

presented by the contour plot and the reported statistical metrics, the two versions of 

second moment models (S-M DURBIN and S-M HANJALIC) present the closest 

agreement with the experimental measurements. 
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Figure 7-15.- Normalized concentration C* from computed scalar flux models and experiments. 
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7.4.6 Comparison of Turbulent Scalar Flux Predictions 

Turbulent scalar fluxes are the inter-medium results for the calculation of the 

pollutant distribution because they represent the value of one term within the 

complete average pollutant transport equation.  They are, however, the final result for 

each of the scalar flux models studied in this work. Therefore, they are analysed in 

this separate section. 

The first inconvenience of a scalar flux study is that the numerical quantities 

cannot easily be measured in the experiments and therefore are usually not reported12. 

Unfortunately, the wind tunnel experiment used in the present work to validate the 

numerical results ([Pava99]) did not report the scalar fluxes. Therefore, no 

quantitative error evaluation like statistical metrics or Hit-Rate can be done. Thus, 

only the qualitative comparison of contours with the further advanced LES [Liu02] 

results may be used for the analysis of scalar flux predictions. 

Figure 7-16 and Figure 7-17 show the contour plots of the calculated scalar 

fluxes φ ′′u  and φ ′′v  respectively. The LES results from [Liu02] were also included 

in each of these figures for qualitative comparison purposes. The normalization of 

scalar fluxes was done with the factor ( )QHL where H [m] is the building height, L 

[m] is the bi-dimensional pollutant source line length and Q [m3/s] is the pollutant 

volume flow rate. The Reynolds stress model selected for this analysis is the LRRIP 

model because this model should help to maximize the anisotropic effects of these 

advanced turbulent scalar flux models. 

To understand the behaviour of scalar fluxes, a preliminary physical 

description is needed. Scalar fluxes are turbulent parameters used to measure the 

fluctuating convective transport of pollutants. They are formed by time averaged 

products of fluctuating velocity components and fluctuating concentrations. Due to 

the physical definition of the concentrations, their value cannot be negative and 

therefore the sign of these parameters is exclusively dependent on the direction of the 

fluctuating velocities. Thus, the absolute value of the scalar fluxes is the actual 

magnitude of these fluctuating convective transports and the sign represents the 

direction in which the transport takes place. 

The highest scalar flux magnitudes calculated for both φ ′′u  and φ ′′v  were 

found at the bottom leeward corner of the canyon. Similarly, an important local 

minimum for the streamwise scalar flux and almost general maximum for the vertical 

scalar flux was found at the top level of the canyon. In general, the results from the 

                                                
12 See e.g. [Pfad08] for a description of a method to measure the analoguous heat fluxes. 
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RANS simulations are congruent with the reported LES from [Liu02], but include 

some variations in contour shapes, their magnitudes, and differences in the location of 

maximum/minimum scalar fluxes. 

The distributions of the scalar fluxes have a clear reason. The scalar fluxes are 

formed by the multiplication of a velocity fluctuation and a scalar fluctuation. 

Therefore, the only possibility to have a local/general maximum or minimum in the 

scalar fluxes is when either the velocity and/or scalar fluctuations are large. 

Examining the urms distribution within the canyon (Figure 7-10) and the scalar 

fluctuation reported from the experiments (Figure B- 4, Appendix B, p.178) one can 

understand the location of the high scalar flux values. For example, the large local 

minimum of the streamwise scalar flux and the local maximum of the vertical scalar 

flux both located at the top of the canyon are the result of the high velocity fluctuation 

in the shear layer (see Figure 7-10 and Figure 7-11). As mentioned before, the sign of 

the scalar fluxes are only a consequence of the direction of the velocity fluctuation. 

The location of the maximum at the bottom leeward corner of the canyon has a 

different reason because it is produced by the combined effect of high urms and very 

high scalar fluctuations.  

The highest φ ′′u  maximum situated at the bottom leeward corner is captured 

by all the models but with some differences in size and shape. These differences are 

directly dependent on the parameters affecting the calculation of the Reynolds 

stresses. The lowest and spatially extended local minimum (situated along the top of 

the canyon) was only reported for the anisotropic models with considerable shape 

differences. The isotropic models (SED1 and SED2) do not show the local minimum 

at all.  

As evident in Figure 7-16, the highest scalar flux magnitude is obtained by the 

WET model, and then in a second group with similar order of magnitude, the ABE, 

YOUNIS, LES, ABE-SUGA, GGDH, S-M DURBIN and S-M HANJALIC appear. 

Finally, in the third and lowest level of streamwise scalar flux predictions are the 

SED models. In a general qualitative view, it looks like the two second moment 

models present the best scalar flux prediction agreement with the LES simulations. 
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Figure 7-16. - Comparison of normalized turbulent scalar flux component ( ) ( )QHLu ⋅′′φ . 
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The range of the predicted vertical scalar flux component ( φ ′′v ) presents a 

considerably lower magnitude (up to four to five times lower) than the streamwise 

component. This flux component shows two local maximums, one situated in the 

leeward bottom corner and the other one situated along the top of the canyon. Both 

highest local concentrations of vertical scalar fluxes have a similar order of 

magnitude and were similarly predicted for almost all models. Only the WET model 

presents some negative areas in addition to the mentioned common behaviour.  

The gradient of scalar fluxes is the exact term that participates in the 

differential equation of pollutant transport.  Therefore this gradient is one of the most 

relevant terms to be taken into account, and the shape of the scalar flux distribution 

becomes very important. Some examples of relevant differences based on this term 

are that the LES results show thinner and longer shapes in comparison to the majority 

of the RANS models in both scalar flux components. The small areas with high 

concentrations of scalar fluxes imply high and concentrated areas of scalar flux 

gradients, and therefore different turbulent diffusion of pollutants take place. This 

analysis is congruent with the larger extent of pollutant dispersion and the general 

under-prediction of concentration typically seen in the RANS scalar flux models. 
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Figure 7-17. - Comparison of normalized scalar flux component ( ) ( )QHLv ⋅′′φ . 



 

 

8 Flow and Dispersions in the 

MUST Urban Model 

Experiment  

The Mock Urban Setting Test (MUST) is the three-dimensional wind-tunnel 

experiment selected in this work for the evaluation and comparison of the advanced 

scalar flux models. The simulations of the MUST experiment presented in this 

chapter (and probably also those presented for the two-dimensional test case) 

represent first time in which this geometry is simulated using anisotropic scalar flux 

models for pollution dispersion. Different from the street canyon, the MUST 

experiment is a relatively new study and the use of its experimental data was provided 

to this dissertation under agreement and cooperation with the COST action 73213. 

Thus, this experiment has been selected not only for its detailed description of the 

experimental setup and measurements, but also because many research groups have 

recently been working with the MUST geometry, providing EXCEL evaluation tools 

and a constructive comparison of results. 

Following a similar procedure of the previous two-dimensional exercise, this 

chapter first presents a brief description of the MUST wind tunnel experiment, 

emphasizing the necessary information for the setup of simulations and grid 

description. Then, the simulation results are presented in two parts. The first part 

shows the study of the flow field including a qualitative and quantitative discussion of 

prediction accuracy for the velocities and turbulence parameters.  The second part 

presents a similar analysis but for normalized pollution concentrations, using several 

                                                
13  COST Action 732 is an European Cooperation in Scientific and Technical research 

group entitled “Quality Assurance and Improvement of Micro-scale Meteorological Models.” The 

wind tunnel data used are now available on the internet. See address in reference [Cost732]. 
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combinations of turbulence models for Reynolds stresses (LRRIP and RKE) and 

scalar fluxes (GGDH, ABE-SUGA, ABE, S-M HANJALIC). 

8.1 MUST Experiment 

The MUST experiment was a scaled urban dispersion experiment conducted 

for the Defence Threat Reduction Agency (DTRA) at the U.S. Army Dugway 

Proving Ground (DPG) Horizontal Grid test site, in cooperation with many 

international institutions. Its objective was to acquire meteorological and dispersion 

data sets at near full-scale to provide a better understanding of how plume structure 

dispersion is affected by a large array of obstacles, and to help develop and validate 

urban toxic hazard assessment models.  

Another objective of MUST was to overcome the scaling and measurement 

limitations of laboratory experiments, and to characterize the main flow field 

parameters to overcome difficulties presented in real urban area studies. Real urban 

areas create their own roughness boundary layers, also called roughness sub-layers 

(RSL), that affect the dispersion of pollutants in ways that are not well defined. Many 

research efforts are still under development to test urban dispersion models. 

Nowadays, there are data sets available from wind tunnel experiments or 

measurements conducted in real urban settings, and both are used for model 

validation. However, it is not easy to achieve the proper scaling in the experiments 

and obtain detailed RSL measurements in laboratory settings because of the size and 

complexity of real cities. Consequently, there are few adequately scaled and 

thoroughly documented urban dispersion data sets that meet the needs of urban 

dispersion model developers. The need for an intermediate case where both the 

abovementioned limitations are overcome was one of the main motivations in 

designing and studying the MUST experiment. 

The field measurement of the MUST experiment was carried out in September 

2001 in a flat area in the Great Basin desert of western Utah, USA. The experiment 

consisted of an array of 120 obstacles placed in an aligned configuration consisting of 

12 rows of 10 obstacles each. The array contains 119 shipping containers (12.2 m 

long, 2.4 m wide and 2.54 m high) and one so called VIP building located roughly in 

the centre of the array. The obstacles were placed with gaps between them 

intentionally spaced to produce a flow regime that connects the wake interference and 

isolated flow regime [Oke87]. The array was sufficiently large to create its own 

internal roughness sub-layer, but sufficiently small to be adequately characterized 

using available instrumentation. For further details please refer to [Yee04].  
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This experiment was simulated in 2005 in the large boundary layer wind 

tunnel “WOTAN” by Bezpalcová [Bezp07] from Hamburg University (see Figure 

8-1). Bezpalcová did measurements of the flow fields (shear stress profiles, 

development of the flow within the canopy, dependence on wind direction, etc.) and 

concentrations for several wind directions. She made her flow velocity measurements 

using a two-dimensional Laser Doppler Anemometer (LDA) with a spatial resolution 

of 1mm. The dispersion experiment was carried out using ethane (C2H6) as a neutral 

buoyant tracer gas. It was measured using a slow Flame Ionization Detector (SFID) 

for the background concentrations and a fast Flame Ionization Detector (FFID) for the 

concentrations within the model. The MUST field geometry, including the small 

irregularities in the containers’ sizes and locations, was modelled at a scale of 1:75. 

These wind tunnel measurements are well suited for the evaluation of RANS 

simulations due to their statistically steady boundary conditions. In addition they are 

reproducible with known uncertainties. 

 

 

Figure 8-1.- The -45 degree setup of the MUST experiment in the boundary layer wind tunnel 

“WOTAN” of Hamburg University [Bezp07]. 
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The measurement accuracy was also reported. The maximum positioning error 

in the model setup was 1mm.  The instrumentation for the flow and dispersion 

measurement (LDA and FFID) had to be located in agreement with the model 

coordinate system. Each instrumentation setup reports an accuracy error of 1mm. The 

turn table used to change the approach flow direction includes an imprecision lower 

than 0.5º. The flow measurement equipment (LDA) presents a velocity exactness of 

0.05 ms-1. The concentration measurement equipment reports a 3% error for the FFID 

and 1% error for the SFID from the measurements, with a minimum detection of 2 

ppm. The pollutant volume flow introduced in the model also presents an accuracy 

error of 1%.  

The instrument uncertainties are very important data because they are 

commonly used to specify the total uncertainty of the measurements. Although these 

measurement uncertainties are very well specified from the wind tunnel experiments, 

to define the final thresholds for the statistical metrics (FAC2 and Hit-Rate), only the 

repeatability uncertainty of the wind tunnel measurements were taken into account in 

this work, under agreement with COST action 732 [Cost732]. 

8.2 Computational Domain 

Two different computational domains were used for the simulations of 

MUST. The two computational domains are shown in Figure 8-2 with their distances 

between boundaries and obstacles. In both cases, the flow is in the positive x direction 

(from left to right). The two implemented computational domains and their respective 

grids were provided to this work after collaboration with its main creator [Fran09]. 

 

(a)ROTDOM (b)STDDOM 

 

 

Figure 8-2. Computational domains for the simulations. (a) Rotated domain (ROTDOM) and   

(b) Standard wind tunnel setup domain (STDDOM). The wind blows from left to right. 
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The first computational domain, shown in Figure 8-2(a), is called ROTDOM 

from “rotated domain.” Its name relates to the fact that it was obtained by a rotation 

of -45° around the centre from the original and simplest MUST case 0 degree, where 

the approach flow was perpendicular to the main street canyons (not shown here). 

This -45° rotated domain ROTDOM was used for the simulation of pollutants 

because there were not wind tunnel concentration measurements reported for the 0° 

case.14 The second domain, shown in Figure 8-2(b), was generated by using the same 

grid distribution between the obstacles as ROTDOM, but it extended the 

computational domain up to the wind tunnel walls. This domain is referred to as 

STDDOM (from “standard domain”), and it includes the side walls and boundaries as 

they appear in the wind tunnel experiment. The reason that two different domains 

were implemented was because the first domain was already available from the 0° 

MUST simulation, and the second domain was developed with the intention to study 

the possible influence of the wind-tunnel walls that were not included in the previous 

computational domain. 

The height of both computational domains is 6Hmax, where Hmax = 3.51 m, 

which is the height of the highest obstacle located in the middle of the domain. It is 

called the VIP building from the field’s nomenclature. The standard container height 

is 2.54m. Although the wind tunnel measurements were used for the comparison of 

numerical predictions, the computational domain size used was based on the full 

scale. 

 

8.3 Boundary Conditions  

The type of boundary conditions employed for all simulations in both 

computational domains are summarized in Figure 8-3. A velocity-inlet boundary 

condition was set with a fully developed flow profile at the entrance of the flow, 

using a mixture between analytical relations and experimental measurements. 

                                                
14  The 0 degree MUST experiment was not studied in this work. 
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Figure 8-3. Boundary conditions details for computational domains. 

 

The velocity profile in the wind tunnel experiment was described by using the 

logarithmic law equation. With the Reynolds averaged velocity vector defined as 

),,( wvuui =  [m/s], the x-direction mean velocity components specified for the 

numerical simulation are given by the expression: 


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

 +
=

0

0* ln)(
z

zzu
zu

κ
 Eq. 8-1 

where the friction velocity u* = 0.07 m/s (from Uref = 1m/s at the point Pref = (-144, -

2.25,7.29)m), the roughness height z0=0.0165m, and the Von Karman constant 

κ=0.4187. The other two perpendicular velocity components at the main flow 

entrance were set to zero ( 0== wv m/s). The components of the inlet approaching 

Reynolds stresses were approximated by constant values taken from the 

measurements above the container height, and are summarized in Table 8-1.  

Also at the main flow entrance, k (only in two equations models) and ε (in all 

cases) must be specified. The turbulent kinetic energy (k) was calculated from the 

three normal Reynolds stress components.  The turbulent dissipation rate (ε) at the 
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inlet was calculated from the turbulent kinetic energy under the assumption of local 

equilibrium ([Rich93]). 

 

( )wwvvuuk ′′+′′+′′=
2

1
 Eq. 8-2 

( )0
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+
=

κ
ε

µ
 Eq. 8-3 

 

These velocity and turbulence parameter profiles were also used to specify the 

flow field at the top boundary, using the corresponding value from the flow inlet 

profiles at the top boundary height 6 Hmax. Figure 8-4 presents the profiles of the 

velocities and turbulence parameters specified for all simulations at the main flow 

entrance in comparison to the values predicted and measured at the approach flow 

location, which does not coincide with the inlet boundaries of the computational 

domains. This location is situated at 6.4H upwind the containers and 10.2H 

downwind from the inlet boundary of case STDDOM (see Figure 8-8). The results 

presented in Figure 8-4 correspond to the predictions using STDDOM and the LRRIP 

turbulence model. As can be observed, these graphics show satisfactorily good 

agreement between the three presented cases—measured (Exp), specified (at Inlet 

BC) and predicted (at approach flow measurement location) — for most of the fluid 

flow parameters. The most relevant exception is the y-direction velocity component 

“v”, where the calculated profile deviates from the measured and specified values due 

to the occurrence of transversal pressure gradients ( 0≠∂∂ yp ). This calculated 

profile is presented and discussed in section 8.5.1. For further details about the 

implementation of these boundary conditions in the commercial software, please refer 

to the source code attached in Appendix D (page 191). 

A constant pressure was prescribed at the exit of the flow with a pressure 

outlet boundary condition. The floor was partly treated as a rough wall in the upwind 

side of the obstacles (see Figure 8-3), corresponding to the simulated area located 

outside the turn table in the wind tunnel (Figure 8-1). In this region, the 

hydrodynamic roughness height used (z0= 0.0165m) was converted to a sand grain 

roughness (ks ≈0.1616m) as explained by [Fran07] and [Fran09], because the CFD 

software FLUENT uses wall functions based on sand grain roughness. Any other 

walls—such as all of the containers and the two lateral walls in case of the STDDOM 

domain—were treated as smooth walls.  
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Figure 8-4.-Comparison of the specified boundary condition at the flow inlet with the measured 

and predicted velocity and turbulence parameters at the approach profile location in front of the 

obstacles. All measurements include its measurement error. 
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Table 8-1. - Boundary Conditions for MUST Simulation 

Boundary Name Type Setup Details 

Bottom Wall 

Roughness Height(m): udf bottom_ks.c 
Roughness Constant: 1 
Mean dispersion: Specified Flux=0 
Scalar Fluxes (2nd Moment): Specified Flux=0 

Inlet Velocity Inlet 

Velocity components: 
u : udf profile.c 
v : 0.0 m/s 
w : 0.0 m/s 
Reynolds stresses: 

smwv

smvu

smwu

smww

smvv

smuu

2

2

2

2

2

2

0.0

0.0

004722.0

009216.0

016384.0

0225.0

=′′

=′′

=′′

=′′

=′′

=′′

 
Turbulent kinetic energy (k): udf profile.c 
Turbulent dissipation rate (ε):udf profile.c 
Mean dispersion: Specified Value=0 
Scalar Fluxes (2nd Moment): Specified Value=0 

Left and Right Wall 

Roughness Height(m): 0 
Roughness Constant: 1 
Mean Dispersion: Specified Flux=0 
Scalar Fluxes (2nd Moment): Specified Flux=0 

Live Fluid 
A source term for the passive scalar was defined in the 
cell containing the centre of the experimental source 

with m& =1.872⋅10-5kg/s. 

Outlet Pressure Outlet 
Mean Dispersion: Specified Flux=0 
Scalar Fluxes (2nd Moment): Specified Flux=0 

Top Velocity Inlet 

Velocity components: 
u : udf profile.c 
v : 0.0 m/s 
w : 0.0 m/s 
Reynolds stresses: 

smwv

smvu

smwu

smww

smvv
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2

2

2
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Turbulent kinetic energy (k): udf profile.c 
Turbulent dissipation rate (ε):udf profile.c 
Mean Dispersion: Specified Value=0 
Scalar Fluxes (2nd Moment): Specified Flux=0 

Note: The User-Define Function (UDF) files bottom_ks.c and profile.c can be found in Appendix D. 

 

Finally, for the concentration, a value of zero at the inflow boundaries and a 

vanishing normal gradient at all other boundaries was set. The source was 

implemented as a volumetric source term in the cell that contained the centre of the 
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experimental ground source location (x=-102.48, y=-7.06, z=0.0). Some differences 

must be expected from this assumption because in the wind tunnel experiment, the 

pollutants were inserted at the ground level through a circular area (pipe) with 

diameter equivalent to 0.6m. A summary of the boundary conditions implemented in 

the MUST numerical simulations appear in Table 8-1. 

8.4 Discretization Error Estimates 

A total of four block-structured hexahedral grids were employed, which are 

presented in Figure 8-5. Three systematically refined grids were used to assess the 

influence of the grid resolution on the results for the ROTDOM geometry. These 

three grids are grid #1 (for the finest), grid #2 (for the middle) and grid #3 (for the 

coarsest), consisting of 3,208,752 cells, 1,552,792 cells and 751,194 cells, 

respectively. The numbers of cells between each grid were increased by a factor of 2, 

approximately. The expansion ratios of these three grids never exceeded a factor of 

1.3. However, grid #3 has 1.61% cells with an expansion ratio above 1.3 but below 

1.45. All implemented grids were created by Franke [Fran09]. 

 

 
a)Grid #1 (Finest) 

 

 
b)Grid #2 (Middle) 

 

 
c)Grid #3 (Coarsest) 

 

 
d)Grid STD 

  
Figure 8-5.Detail of the four grids implemented for the MUST experiment. 

 

The numerical simulations of the STDDOM computational domain were 

performed using only one hexahedral grid.  This grid has the same resolution between 

the obstacles as the middle grid of ROTDOM, but gridlines approaching the walls 

and in/out flow boundaries are perpendicular. A comparison of the middle grid of 

ROTDOM and the STDDOM’s grid is shown in Appendix C (p.183). The STDDOM 
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has a maximum expansion ratio that is always below 1.3, and the vertical resolution is 

identical to the ROTDOM grids. The final number of cells for the STDDOM grid is 

1,675,712.  

The numerical uncertainty of the finest grid was quantified through the 

Richardson Extrapolation technique, as explained in Chapter 6.2. The predictions of 

the three grids for ROTDOM were analysed in the 1742 measurement points for the 

flow field and 256 measurement points for concentrations. Their locations are shown 

in Figure 8-8 and Figure 8-11, respectively.  

Table 8-2 and Table 8-3 present the application of RE for flow and 

concentration predictions for the finest grid in the MUST exercise, using the LRRIP 

turbulence model. The column for monotonic convergence includes the total 

percentage of cases I, II and III according to Table 6-1. The monotonic and 

oscillatory convergence cases (I, II, III and IV) are the grid points where spatial 

uncertainty estimation is possible. Symbol <p> is the mean observed order of 

accuracy and <R> is the mean ratio of solution changes, and both reported averages 

are for the monotonic convergence cases I to III. <U1> is the mean absolute 

uncertainty for cases monotonic and oscillatory convergence (I to IV). The refinement 

ratio is a relation between a characteristic size of every grid 

(rij=ri/rj=(V/Ni)/(V/Nj)=Nj/Ni, where V is the total volume and Ni is the total amount 

of cells in grid i). As the refinement ratios r21 and r32 differ in the present work only 

by 10-5, a constant r = (r21+r32)/2 was used in the Richardson extrapolation. 

Compared to the street canyon exercise, the application of the Richardson 

Extrapolation technique in the MUST experiment shows that the numerical 

uncertainty of the grid can be calculated in a much lower percentage of the points. 

The most probable reason of these results is that these three are not fine enough to be 

in the asymptotic range, which is a requirement to apply the Richardson 

Extrapolation. The spatial discretization analysis for the flow field shows that the two 

main velocity components, u  and v , cannot be estimated in more than the half of the 

studied points. Slightly better results were found for the w  velocity component and 

for the root-mean-square of the turbulent normal stresses (urms, vrms and wrms), which 

show convergence in approximately 60% of the points. Similarly, this table shows 

that for all variables, the mean ratio of solution changes <R> is always around 0.5 and 

the mean calculated order of accuracy <p> is around 1.6. However, the calculated 

mean uncertainty <U1> is as expected different for every velocity component because 

the main velocities have mean uncertainties one order of magnitude higher than the 

uncertainties for the fluctuating velocities. 
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The concentration predictions for the combination of different scalar flux 

models and the LRRIP turbulent model (Table 8-3) presents a much lower percentage 

of points where the grid uncertainty can be estimated. In this case, oscillatory 

convergence characteristics were found in more cases than monotonic convergence. 

Other studies carried out with the same implemented computational grids [Scha10] 

have shown that the Richardson Extrapolation analysis of these three grids is affected 

by the wrong treatment of the source. As the source was always specified for only one 

cell, the source volume changed from grid to grid. In conclusion, the divergence case 

is therefore the most common tendency for all concentration predictions. Another 

difference from the Richardson Extrapolation table of the flow field is that this table 

shows the mean ratio of solution changes for the concentrations <R> lower and closer 

to the limit of oscillatory convergence (0), which coincides with the higher 

percentage of points with this tendency. The mean calculated order of accuracy <p> 

is again lower than 2 and there are some considerable differences between the 

models. The maximum <p> was reported for SED1 and ABE-SUGA models, and the 

minimum was reported for the S-M HANJALIC model. Reviewing the results of 

concentration uncertainties <U1> from a different combination of models presented in 

this table, one can compare values for the absolute value of <U1> and observe that  

the S-M HANJALIC model is by far the model with the largest uncertainty. 

In general, a similar amount of uncertainty and tendencies were found for the 

flow and concentrations in previous works [Scha10], but with a slightly lower number 

of locations where the grid uncertainties could not be measured. The possible source 

of these differences may come from the specified simulation setup like turbulence 

models and boundary conditions. 

Table 8-2. - Richardson extrapolation grid analysis for flow field (using LRRIP model for 

Reynolds stresses). 

Model 
Monotonic 

convergence 

Oscillatory 

convergence 
Divergence <R> 

(E-01) 
<p> 

<U1> 

(E-02) 

u  34.67% 12.92% 52.41% 4.96 1.64 7.83 

v  29.91% 11.19% 58.90% 5.02 1.59 5.35 

w  40.36% 12.69% 46.96% 5.58 1.49 4.65 

urms 38.23% 16.82% 44.95% 4.89 1.69 0.545 

vrms 45.58% 19.23% 35.19% 4.38 1.72 0.479 

wrms 42.19% 13.66% 44.14% 5.24 1.63 0.301 

Average: 38.49% 14.42% 47.09%    
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Table 8-3. - Richardson extrapolation grid analysis for C* (using LRRIP model for Reynolds 

stresses). 

Model 
Monotonic 

convergence 

Oscillatory 

convergence 
Divergence <R> 

(E-01) 
<p> <U1> 

(E-02) 

SED1 11.24% 20.60% 68.16% 3.20 1.87 1.83 

SED2 13.11% 25.84% 61.05% 3.83 1.68 2.01 

GGDH1 12.73% 31.46% 55.81% 2.87 1.49 1.57 

GGDH2 12.73% 31.09% 56.18% 3.02 1.45 1.57 

ABE- 
SUGA 

10.86% 36.70% 52.43% 3.89 1.84 1.57 

ABE 14.23% 26.59% 59.18% 4.48 1.55 1.10 

S-M 
HANJALIC 

7.12% 14.23% 78.65% 5.32 1.42 2.62 

Average: 12.48% 28.71% 58.80%    
 

As mentioned earlier, the flow field accuracy has a significant influence on 

the pollutant dispersion. To quantify the flow uncertainty at different levels between 

the containers, an RE analysis (included in Appendix C) was performed separately for 

four planes located at different heights, including the plane where concentrations 

were measured. The numerical simulations show a similar convergence tendency and 

an average uncertainty in comparison to the total flow field. The maximum 

uncertainties of all parameters are around one order of magnitude above the reported 

average uncertainty in each case. 

 

8.5  Results 

8.5.1 General Description of Flow Field 

The results obtained from the numerical simulations of the MUST flow field 

show congruent prediction with the wind tunnel and field measurements reported in 

literature [Bezp07]. The simulation shows that the flow approaches the containers in a 

positive x direction (from left to right in Figure 8-6), which strongly affects the 

velocity field. When the flow reaches the first line of containers, the lower part of the 

velocity profile is deformed and the flow changes its direction bordering the 

containers, which produces boundary layer separation, recirculation, and stagnation 

areas around them (see in Figure 8-6a). The same fluid behaviour also occurs for the 

internal blocks but with lower flow impact because the previous ground obstructions 
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retard the movement of the air moving close to the ground.  This reduction of wind 

speed produces a change in the boundary layer profile which includes the flow effects 

of these obstacles 

Due to the position and shape of the containers, at low flow levels in the area 

between the containers, the main velocity changes from the initial positive x-direction 

at the inlet and tends to follow the direction parallel to the principal street canyons 

(see in Figure 8-6b). This change of the main velocity direction only occurs close to 

the containers, and it progressively vanishes in the vertical direction at a farther 

distance from the bottom. Thus, the resulting velocity profile is a good example of a 

three-dimensional flow field. Figure C- 2 (Appendix C, page 183) presents contour 

and vector plots of velocity magnitude for better understanding of the flow field 

approaching the obstacles.  

Some important aspects should be mentioned about the flow field. When the 

simulation of one block or array of blocks is performed, special attention must be 

paid to the flow field around or between the obstacles, because this region presents 

highly non-uniform and non-homogenous flow directions. This region also contains 

the largest velocity and pressure gradients, and the ground obstacles are the largest 

source of turbulent kinetic energy within this computational domain. For these 

reasons, it is especially important to employ a very high refinement of the grid close 

to the walls and around the containers.  

 

 
 

Figure 8-6. (a) Detail of velocity vectors and (b) streamlines at the horizontal plane at 

half height of the containers (z=H/2). 

 

A qualitative analysis of the pressure field also shows interesting results. 

Figure 8-7 shows the geographical distribution of the pressure variation in 

comparison to the reference pressure level set at the exit of the flow. Around each 
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container it can be seen that the highest pressure levels are always located in the 

container’s side situated in front of the flow direction (windward side) and the lowest 

pressure levels are located on the opposite side of the containers (leeward side). 

Between the windward sides, higher pressures occur always on the longer windward 

sides than on the shorter windward sides. Similarly, the longer leeward sides have 

lower pressures than the shorter sides. This pressure distribution repeated for a group 

of obstacles like MUST produces a large pressure increase in the region of the 

approaching flow towards the longer windward walls (y < 0) and the asymmetric 

pressure field observed in the figure.  
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Figure 8-7. Contour plots of pressure variation in the STDDOM computational domain with 

some vectors showing the flow direction. Two different heights are plotted: (a) for z=H and (b) 

for z=3H. 

 

The lowest pressures within the container's array are located at the corner with 

highest y-coordinate values and their location is also consequence of the asymmetric 

pressure field in the upwind side of the containers. Another interesting observation 

from these pressure plots is that the pressure distribution does not have significant 

changes at different heights as can be seen by the velocity magnitude contours. The 

most likely reason for this difference between the velocity and pressure fields is due 

to the square-linear relation between these two parameters (see e.g. Bernoulli 

equation). Linear changes in the pressure at a given height within a streamline are 

compensated with the square change in the velocity field. In addition, it is well known 

that the pressure field in a boundary layer wind tunnel is relatively constant and 

essentially governed by the main flow where the downwind pressure gradient is 

usually negligible. 

Unfortunately, no pressure measurements were reported from the wind tunnel 

experiments, so it is not possible to have a quantitative comparison. The only relevant 
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value to mention is the global pressure difference. The simulations reported a very 

small pressure difference (less than 1 Pa) for the complete domain. This result is a 

congruent flow characteristic after the fully developed incompressible flow field 

condition imposed for the simulation setup and the zero horizontal pressure gradients 

imposed in the wind tunnel experiments.  

The contour plot of pressure variation with an asymmetric increase of pressure 

in the upwind side of the containers may represent a problem. This local pressure 

increase is a problem because it occurs before the flow enters the studied flow field, 

meaning outside the computational domain. This non-constant pressure distribution in 

the boundary condition is affected by the specified velocity imposed at the entrance 

of the flow. Also, a wrong pressure prediction modifies the velocity field and may 

produce a wrong velocity profile in front of the containers. Neither condition creates 

accurate results because a wrong (and probably non-real) flow could be arriving to 

the containers' array. A zero pressure gradient in the y-direction is a prerequisite to set 

a fully developed flow condition, which is not fulfilled here. A good signal to show 

the absence of a fully developed flow can be observed in the y-velocity approach flow 

profile presented in Figure 8-4. At this location, the y-velocity is not zero as it was set 

at the inlet, and therefore it does not fulfil the “horizontal homogeneity” condition 

which means that an unstable and non-fully developed velocity profile was set. The 

term “horizontal homogeneity” refers to the absence of stream-wise gradients in the 

vertical profiles of both the mean wind speed and of the turbulence quantities. These 

profiles must be maintained with downstream distance. This flow type occurs when 

the vertical mean wind speed and turbulence profiles are in equilibrium with the 

roughness characteristics of the ground surface [Bloc07].15 

In summary, to improve the two previously mentioned weaknesses in the 

performed simulations, the grid refinement and the size of the computational domain 

must be increased. These two computational settings are opposite to each other 

because the number of finite volume elements to solve in CFD simulations is limited 

by the available computational resources. Similarly, to increase the computational 

domain without losing the previously prescribed flow discretization would increase 

the number of cells. Therefore, a compromise between both parameters always exists 

for a CFD practitioner. At the moment of development of this thesis, the available 

computational resources did not allow the author to do substantial refinement or 

increase of computational domain. Therefore, further modifications of the grid or 

computational domains have been left for future studies. As final advice, with the 

                                                
15  At this point is also important to mention that the data obtained from the wind tunnel 

measurements fulfil the horizontal homogeneity condition. 
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very low reported values of pressure variation in the simulations, for future 

improvements, the author would suggest testing the higher grid refinement within the 

containers area and then, when possible, increasing the size of the computational 

domain. 

8.5.2 Flow Field at Measurements Positions 

Two different turbulence models for Reynolds stresses have been used to 

calculate the flow field. They are the two-equation Realizable k-ε (RKE) model and 

the Reynolds Stress Transport model (LRRIP). See Chapter 3.1 for their details. Here 

two simulations are shown using the computational domain STDDOM with both 

turbulence models. The Reynolds numbers predicted in the simulations were 

compared with those reported in the experiments (approximately 2.4·105) with the 

velocities at the reference point and as characteristic length the maximum obstacle 

height (Hmax). The calculated Reynolds numbers were predominantly under-predicted 

(with exception of the coarse grid), with a small variation of a Reynolds number 

always below 2.3%. The flow field results in the rest of the domain were studied 

using some of the statistical evaluation parameters recommended in the literature to 

assess the model performances for pollution dispersion.  

 

  
Figure 8-8. MUST flow field measurement zones used for model validation.  

 

A total of 1742 measurement points from the wind tunnel experiment were 

studied and grouped into four major zones. They are the two horizontal zones 

“coarse-uv” and “fine-uv,” the vertical “profiles-uw,” and the vertical “profile-

approach”. These zones are shown in Figure 8-8. The coarse-uv and fine-uv zones 
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contain measurements at three and four different heights, respectively. The coarse-uv 

measurement planes are located at z = 1.275, 2.55, and 5.1 m and the fine-uv 

measurements planes are located at z = 0.9, 1.275, 1.575 and 2.55 m. The vertical 

profiles-uw contain different measurement locations with height in the range of z = 

0.45 m to z = 13.5 m. Similarly, the approach-profile includes measurements at the 

fixed location of (-144 m, -2.25 m, z), with z in the range of 2.25 to 21.6 m.  

Table 8-4 to Table 8-6 present the statistical metrics of Hit-Rate and FAC2 

(explained in Chapter 6.1) used to quantitatively compare the numerical predictions 

with the experiments16. For the flow field only these two evaluation parameters were 

calculated because the velocities may have positive and negative signs, therefore the 

parameters FB, MG NMSE and VG are mathematically undefined or senseless. All 

results presented in these tables have been calculated and corroborated with the 

BOOT software [Chan05] for the Hit-Rate in Table 8-4 and Table 8-5, or with the 

EXCEL tool [Cost732] for FAC2 in Table 8-6. Table 8-7 provides the allowed 

tolerances used for both metrics. 

Table 8-4. Hit-Rate for LRRIP model predictions. 

Model  LRRIP 

z [m] refUu  refUv  refUw  urms /Uref vrms /Uref wrms /Uref 

Hit-Rate for planes coarse-uv 
1.275 0.82 0.73  0.79 0.77  
2.55 0.97 0.42  0.87 0.81  
5.1 1.00 0.14  1.00 0.98  

Hit-Rate for planes fine-uv 
0.9 0.81 0.66  0.73 0.72  

1.275 0.89 0.74  0.74 0.86  
1.575 0.87 0.73  0.79 0.82  
2.55 0.93 0.34  0.84 0.81  

Hit-Rate for all planes-uv 
 0.91 0.50  0.85 0.83  

Hit-Rate for profile-uw 
0.45-
13.5 

0.87  0.20 0.98  0.70 

Hit-Rate for approach-profile 
2.25-
21.6 

1.00 0.05 0.86 1.00 0.95 1.00 

All 
 0.90 0.49 0.23 0.89 0.83 0.72 

                                                
16  The velocity measurements were carried out with 2D Laser Doppler Anemometry (LDA). 

Therefore, only two velocity components and three Reynolds stress components are available at each 

measurement position. 



8. Flow and Dispersions in the MUST Urban Model Experiment 

138 

 

Table 8-5. Hit-Rate for RKE model predictions. 

Model  RKE 

z [m] refUu  refUv  refUw  urms /Uref vrms /Uref wrms /Uref 

Hit-Rate for planes coarse-uv 
1.275 0.88 0.43  0.72 0.69  
2.55 0.97 0.38  0.85 0.87  
5.1 1.00 0.15  0.94 1.00  

Hit-Rate for planes fine-uv 
0.9 0.84 0.36  0.72 0.68  

1.275 0.85 0.31  0.78 0.79  
1.575 0.79 0.32  0.82 0.80  
2.55 0.95 0.22  0.86 0.88  

Hit-Rate for all planes-uv 
 0.92 0.32  0.82 0.82  

Hit-Rate for profile-uw 
0.45-
13.5 

0.92  0.18 0.92  0.68 

Hit-Rate for approach-profile 
2.25-
21.6 

1.00 0.05 0.91 1.00 0.95 0.09 

All 
 0.92 0.32 0.21 0.85 0.83 0.65 

 

Table 8-6. FAC2 for LRRIP and RKE model predictions. 

FAC2 
  LRRIP RKE 

u uv 0.99 0.99 
v uv 0.64 0.63 

Horizontal 
Planes-uv 

kuv 0.85 0.92 
u uw 0.97 0.99 
w uw 0.43 0.29 

Vertical 
Planes-uw 

kuw 0.99 0.99 
 

Table 8-7. Allowed tolerance used in the calculation of the Hit-Rate and FAC2 for RKE and 

LRRIP model predictions. 

refUu  refUv  refUw  urms / refU  vrms / refU  wrms / refU  

0.008 0.007 0.007 0.006 0.005 0.005 
 

As mentioned earlier, statistical metrics are very useful parameters to estimate 

the quality of a model prediction.  However, these parameters show only part of the 

information and therefore they do not always represent the complete model 
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performance [Oles08], [Fran08], [Scha10]. To complete the possible information 

missing for the flow analysis, Figure 8-9 and Figure 8-10 present scatter plots of these 

results made with the COST Action Excel tool [Cost732]. 

In general, the Hit-Rate analysis shows very good agreement between the 

simulation and measurements for the main velocity component u . Also good Hit-

Rate performance can be seen for the three normal Reynolds stresses, which are 

represented by their root-mean-square values (urms, vrms and wrms). Slightly better Hit-

Rates were found for the flow field predicted with the LRRIP model, the more 

complex model, than with the RKE turbulence model.  

In a more detailed analysis of the horizontal planes, one can observe that there 

are better predictions for all flow field variables when distance from the bottom is 

increased. Only the v  velocity component does not show this tendency. The better 

agreement at higher planes could be expected because the absence of obstacles allows 

for homogenization of the flow direction, reduction of velocity gradients, and neglect 

of near-wall function effects. The main velocity component u  definitively has the 

best Hit-Rates at almost every zone, and it gives perfect, congruent agreement 

between the graphics and metrics. On the other hand, the v  velocity component has 

the worst results and a completely reversed Hit-Rate tendency within the horizontal 

planes (meaning a lower Hit-Rate at higher planes). This general behaviour of the 

flow field variables was also found by [Fran09] for simulations performed with a 

different turbulence models. 

In addition to the aforementioned errors inserted into the y-velocity 

component at the approach flow, there are other reasons to understand the different 

Hit-Rate behaviour, which can be explained by looking at the allowed tolerances and 

the graphic analysis of results. The Hit-Rate evaluation parameter represents a 

fraction of the total amount of locations where a tolerance condition is fulfilled. This 

is the case when the difference between measurements and predictions is lower than a 

specific relative or absolute tolerance. From the scatter plots, where a generally good 

prediction of the y-velocity component is shown, one can see that it changes from 

negative to positive. Additionally, in contrast to the behaviour of the x-velocity 

component, at higher planes the y-velocity component reduces its magnitude to a 

level where the relative allowed tolerance loses its effects. Under these conditions, 

only the absolute tolerance is in charge of the Hit-Rate achievement, and it appears 

that the range of differences for the y-velocity component is not low enough to be 

within the absolute tolerance. 
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Figure 8-9. Flow field measurements vs. LRRIP model predictions in the MUST flow field measurement points. 

The segmented lines are the limits of FAC2 and the red segmented line represents the correlation coefficient R (see 

Chapter 6.1.1). The U/Uref, V/Uref, W/Uref, TKE/Uref
2
, Wind/Uref and Fi are the normalized results for the three 

mean velocities, turbulent kinetic energy, wind velocity magnitude and velocity vector direction, respectively.  
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Figure 8-10. Flow field measurements vs. RKE model predictions in the MUST flow field measurement points. The 

segmented lines are the limits of FAC2 and the red segmented line represents the correlation coefficient R (see 

Chapter 6.1.1). See variable definitions in Figure 8-9. 
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Contrary to the y-velocity component, the scatter plots of the turbulent kinetic 

energy (TKE) do not show agreement as good as expected from the high Hit-Rates of 

the root-mean-square normal stresses. The reason is the comparison of different 

parameters. On one hand, three normal velocity fluctuations were not measured in the 

experiments for technical reasons. Therefore, these model predictions are compared 

with an approximation of two perpendicular velocity fluctuations under the 

assumption of wwvv ′′=′′ . See comparison of vv ′′  and ww ′′ in Figure 8-12. Other 

studies has shown that the main source of differences are because the root-mean-

square fluctuations enter the turbulent kinetic energy quadratic. If the variances of the 

fluctuations are evaluated with the Hit-Rate, lower results are obtained.[Fran09] 

 Table 8-6 shows the results for the FAC2 statistical metric. As can be 

observed, this metric presents similar results to the Hit-Rate but with higher values. 

Based on the equations presented in Chapter 6.1 and using the full agreement 

condition over the data below the measurement and absolute tolerance, the only 

difference between both metrics is the larger relative tolerance used for the FAC2. 

The relative tolerance of the FAC2 is calculated from the difference between the 

predictions and wind-tunnel measurements within an error of 50% to 200%, but the 

Hit-Rate only allows a difference of ±25%. In general, these FAC2 values confirm 

the results from the Hit-Rate with considerably good agreement for the predictions of 

the x-velocity component and normal stresses (represented by the high values for the 

turbulent kinetic energy), and lower agreement for the other two ( v  and w ) 

velocities. 

In addition to the normalized parameters of u , v  and w velocities and k 

turbulent kinetic energy, mentioned earlier, Figure 8-9 and Figure 8-10 present the 

scatter plots of Wind/Uref for the normalized wind magnitude and the angle FI of the 

velocity vector direction using the Excel tool recommended from [Cost732]. These 

two parameters present very good agreement between numerical predictions and wind 

tunnel measurements. Again, they show the best behaviour at a larger distance from 

the bottom and some accuracy improvements when the LRRIP model is used instead 

of RKE.  

8.5.3 Concentration Field 

The normalized concentration C* is a common way to report concentration 

distribution of experiments and numerical simulations. It has been also implemented 

in the present work and it is defined here as:  
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source

ref*

Q

HUC
C

2⋅⋅
=  Eq. 8-4 

where C[ppm] is the actual concentration, Uref [ms-1] is the reference velocity in x-

direction at the reference point Pref(x,y,z) = (-144,-2.25,7.29)m, H(=2.54 m) is the 

height of the containers, and Qsource (= 1.527⋅10-5 m3s-1) is the volumetric flow rate of 

the concentration source. As can be seen, the reference point is located within the 

vertical zone called the profile approach. 

The source and measurement locations for the concentrations are shown in 

Figure 8-11. The concentration measurements are all located at constant height z = 

1.275 m. The exact source location in the wind-tunnel experiment is Psource(x,y,z) = (-

102.48, -7.064, 0)m. The source of concentration is introduced as volume source in 

the computational domain of the numerical simulations in the cell centre of the 

computational grid cell which contains the point Psource.  

 

Figure 8-11. Ground source location (blue point) and concentration measurement positions (red 

points) at z=1.275m for the MUST experiment. 

 

Table 8-8 presents eight of the evaluation parameters (defined in Chapter 6.1) 

used to compare and quantify the error of results for each of the seven scalar flux 

models implemented in this test case. The results of five simulations from different 
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combinations of turbulence models and computational/grid domains are compared 

with the experimental measurements. Table 8-8 shows the numerical predictions of 

concentrations using the STDDOM domain together with the LRRIP or RKE 

turbulence models (Cases 1 and 5), and the numerical predictions of concentrations 

for three different grid refinements necessary to access the grid dependency of results 

of the ROTDOM domain with the LRRIP turbulence model (Cases 2 to 4). The scalar 

flux models implemented for this test case were the SED1, SED2 (with Sct of 0.7 and 

0.9, respectively), GGDH1, GGDH2 (without and with wall damping functions, 

respectively), ABE-SUGA, ABE, and S-M HANJALIC (see Chapter 3.2 for details). 

Table 8-8. Metrics for the six scalar flux models in a total of five different simulations  

Simulation 

Case 
Model FBFN FBFP FB NMSE MG VG FA2 Q 

SED1 0.16 0.12 0.04 1.46 1.05 1.12 0.92 0.84 

SED2 0.29 0.04 0.25 1.55 1.2 1.17 0.90 0.73 

GGDH1 0.12 0.34 -0.22 2.52 0.89 1.18 0.93 0.81 

GGDH2 0.12 0.34 -0.22 2.52 0.89 1.18 0.94 0.81 

ABE-SUGA 0.18 0.49 -0.31 4.96 0.88 1.51 0.81 0.66 

ABE 0.22 0.28 -0.06 4.02 1.02 1.24 0.92 0.79 

1) STDDOM-
LRRIP 

S-M HANH 0.10 0.64 -0.54 6.32 0.74 1.42 0.85 0.50 

SED1 0.18 0.50 -0.32 4.39 0.83 1.54 0.80 0.53 

SED2 0.21 0.57 -0.36 5.22 0.83 1.82 0.68 0.5 

GGDH1 0.26 0.58 -0.33 7.24 0.84 2.04 0.72 0.5 

GGDH2 0.25 0.58 -0.33 7.24 0.84 2.03 0.73 0.5 

ABE-SUGA 0.34 0.68 -0.34 13.2 0.87 3.04 0.67 0.49 

ABE 0.27 0.52 -0.25 11.09 0.89 1.74 0.77 0.67 

2) ROTDOM 
Fine-LRRIP 

S-M HANH 0.28 0.50 -0.22 9.23 0.98 1.68 0.79 0.62 

SED1 0.17 0.46 -0.32 3.52 0.83 1.35 0.86 0.61 

SED2 0.16 0.51 -0.34 4.19 0.84 1.51 0.79 0.53 

GGDH1 0.22 0.51 -0.29 5.58 0.85 1.72 0.75 0.52 

GGDH2 0.22 0.51 -0.29 5.57 0.85 1.71 0.75 0.52 

ABE-SUGA 0.34 0.59 -0.24 10.45 0.90 2.39 0.70 0.53 

ABE 0.24 0.47 -0.23 8.35 0.88 1.57 0.82 0.72 

3) ROTDOM 
Middle-LRRIP 

S-M HANH 0.19 0.77 -0.59 9.31 0.71 2.5 0.56 0.44 

SED1 0.17 0.53 -0.35 4.84 0.84 1.53 0.81 0.55 

SED2 0.20 0.59 -0.39 5.73 0.84 1.82 0.70 0.48 

GGDH1 0.25 0.62 -0.37 8.16 0.83 2.1 0.70 0.46 

GGDH2 0.25 0.62 -0.37 8.14 0.83 2.09 0.70 0.46 

ABE-SUGA 0.35 0.70 -0.35 12.68 0.86 3.34 0.66 0.46 

ABE 0.26 0.55 -0.29 10.7 0.86 1.78 0.78 0.67 

4) ROTDOM 
Coarse-LRRIP 

S-M HANH 0.20 0.87 -0.68 13.06 0.69 3.27 0.52 0.42 

SED1 0.12 0.18 -0.06 0.67 0.97 1.13 0.95 0.74 

SED2 0.09 0.29 -0.20 1.27 0.89 1.12 0.97 0.69 

GGDH1 0.26 0.09 0.16 0.86 1.11 1.27 0.82 0.70 

GGDH2 0.26 0.09 0.17 0.86 1.11 1.27 0.82 0.70 

ABE-SUGA 0.32 0.09 0.23 1.26 1.18 1.35 0.79 0.69 

ABE 0.57 0.07 0.51 2.85 1.39 1.75 0.68 0.60 

5) STDDOM-
RKE 

S-M HANH 0.05 0.78 -0.74 7.92 0.59 1.56 0.54 0.36 

Exp. Meas. - 0 0 0 0 1 1 1 1 



8. Flow and Dispersions in the MUST Urban Model Experiment 

145 

 

It is necessary to consider multiple performance measures because each 

measure has its own advantages and disadvantages and there is not a single measure 

that is universally applicable to all conditions. The ideal metric values are given at the 

bottom of Table 8-8 and they represent the values at which the prediction would 

present perfect agreement with the experimental measurements. To analyse these 

results, the recommended acceptance criterion or range of tolerance proposed by 

[Chan04] and [VDI05] was employed. The grey colour cells represent the results that 

fulfil the respective acceptance criterion, which are FAC2 > 0.5, |FB| < 0.3, NMSE < 

4, 0.7 < MG < 1.3 VG < 1.6 and q>0.66. The absolute and relative threshold of q 

(Hit-Rate) was fixed at 0.003 and 25%, respectively. As complementary information 

to Table 8-8, Figure 8-14 and Figure 8-15 present these same results plotted in the 

form of concentration profiles for each scalar flux model at a different distance from 

the pollutant source.  

A first overall view of the Table 8-8 shows that most of the metrics reported 

an oscillatory behaviour with grid resolution. This trend means that the results are 

likely to change with further grid refinements and this is the reason why the three grid 

results are included at this point. The fine, middle and coarse grid implemented in the 

ROTDOM computational domain to assess the grid sensitivity of the results shows 

that the numerical predictions are not always in the asymptotic range. For example, 

the Hit-Rates obtained from the ROTDOM-middle grid are higher than for the 

ROTDOM-fine grid. This performance is also consistent with the low percentage of 

points where the calculation of grid uncertainty was possible, because reaching the 

asymptotic range is necessary to quantify the numerical grid uncertainty applying the 

Richardson extrapolation technique. However, the Richardson Extrapolation is also 

adversely affected by the inconsistent definition of the volumetric source, as 

explained in Chapter 8.4. 

The concentration results show that the calculated values of the metric FAC2 

are for all cases inside the recommended acceptance criteria (FAC2>0.5). The high 

agreement of this metric is given due to its appreciable large relative tolerance. A 

similar condition to FAC2 also occurs for the metric MG where only three simulated 

cases (two of S-M HANJALIC and one of ABE model) fail the recommended 

acceptance criterion. The MG measures systematic errors and it shows a relatively 

good systematic agreement for the majority of the models. However, this information 

may not be relevant because this case contains one of the well-known limitations of 

MG where large fractions of measurements have very low concentrations [Chan05]. 

The other evaluation parameters provide a different selection of models that fulfil the 

recommended acceptance criteria. With a few exceptions, the metrics NMSE, FB, VG 
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and q show the best agreement when using algebraic anisotropic models with the 

STDDOM domain. The FB metric (FB=FBFN-FBFP) also shows some good results for 

the three cases of ROTDOM, but they can be easily neglected because of their very 

high over-prediction value reported by FBFP. Another clear interesting result from the 

table is that the S-M HANJALIC model often fails the acceptance criteria and 

generally performs worse than the algebraic models. 

Between the algebraic models, one may observe that in a rather complex 

case—pollution release within an array of obstacles—the most simple and well 

known model SED1 (with Sct=0.7) performed best for most of the evaluation 

parameters considered here. However, when using the LRRIP Reynolds stress 

turbulence model, the anisotropic models ABE and GGDH also performed as well as 

or sometimes better than the SED1 model. From the two GGDH model variations, it 

could be observed that the large size of the cells employed close to the walls (which is 

common practice in micro-scale meteorology simulations), supersedes the necessity 

of wall damping functions in urban scale pollution dispersion applications. A more 

interesting output from these results is the considerably good agreement obtained for 

the recently published ABE model. While its results are sometimes even better than 

any other of the models studied here, the ABE model is not in common use yet. The 

worst predictions of the ABE model were obtained when it was combined with the 

RKE turbulence model for the Reynolds stresses. A probable reason for this worse 

behaviour could be the less accurate calculation of Reynolds stresses using k-ε based 

models.  

From Table 8-8, it can be observed that the usage of the STDDOM 

computational domain best replicates the experimental set up. This computational 

domain together with the LRRIP model yields the best prediction of concentrations, 

which is very clear in the comparison between Cases 1 and 3. Although both 

computational domains present exactly the same grid refinement between the 

obstacles, the metrics NMSE, VG and FB perform very differently. Both domains 

have the same grid resolution in the centre of the domain, which corresponds to the 

area where the concentration measurements took place. Therefore, the different 

concentrations can only be due to changes in boundary conditions and the subsequent 

flow predictions in the surrounding array of blocks. Some of the most important 

differences in the boundary conditions between both domains are the altered approach 

velocity profile generated by the STDDOM domain (see discussion in Chapter 8.5.1) 

and the neglect of wall effects in the ROTDOM computational domain.   

When using the RKE turbulence model for the Reynolds stresses, the 

concentration results show a noticeable change. With exception of NMSE, all metrics 

are slightly worse for RKE than when using the LRRIP model. Another exception is 
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evident for the SED models, which improve in the FAC2 and are not considerably 

affected in the majority of the metrics, as the other scalar flux models are. Comparing 

only the algebraic model performance within the same computational domain and 

grid (for example, Case 1 STDDOM-LRRIP and Case 5 STDDOM-RKE), there is an 

exact change of sign of the FB metric. The SED models changed from predominant 

under-prediction (positive sign) to predominant over-prediction (negative sign), and 

the reverse for the opposite case. Within the RKE turbulence model, the worst model 

prediction was found again for the S-M HANJALIC model and within the algebraic 

models, the ABE model presents the worst results. The most likely reason for the 

worse results of concentrations when using the RKE is because the worse prediction 

of Reynolds stresses with the k-ε based formulation. Therefore, it could be considered 

that the SED models were not as strongly affected by this change because the 

Reynolds stresses have no direct influence on the turbulent scalar fluxes, as is the 

case for all the anisotropic scalar flux models presented here.  

The predictions of the anisotropic algebraic flux models ABE, ABE-SUGA 

and GGDH are fundamentally related because all of them are based on different 

combinations of the Reynolds stresses, and therefore they suffer the same kind of 

problems. Looking at their derivation, the ABE and ABE-SUGA were developed 

with the intention to overcome the limitations of the GGDH at near-wall regions. In 

this work as well as in most microscale meteorological studies, the first off-wall 

calculation points are located at a large distance from the walls well in the logarithmic 

region. Some improvements were achieved for the ABE model when Reynolds 

stresses were calculated more accurately. However, further tests and validation of 

these models with different applications must be done before stating final 

conclusions. 

Based on the high dependence of the anisotropic algebraic scalar flux models 

on the Reynolds stresses, each Reynolds stress component (3 normal and 3 shear 

stresses) must be analyzed to understand the anisotropic model behaviour. Figure 

8-12 presents the six Reynolds stress components plotted at half the height of the 

containers, which is where the concentration measurement took place.  
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Figure 8-12. Contour plots of Reynolds stresses [m2

·s-2] calculated using LRRIP model in MUST 

experiment. Plane z=H/2. 

 

 As mentioned earlier in the two-dimensional test case, the values of the 

Reynolds stresses represent the main source of differences between the isotropic and 

anisotropic scalar flux models. The comparison of these models may be observed by 

their turbulent diffusion coefficients (i.e. Γij in Eq. 5-4). In tensor notation, the 

diffusion coefficient for the isotropic turbulence model (SED) is a scalar multiplied 
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by the identity matrix. Thus, if the turbulent diffusion coefficient of an anisotropic 

model is equal to the Reynolds stress tensor (e.g. GGDH), the differences between 

these two models (i.e. SED vs. GGDH) are exclusively concentrated in the variation 

of each respective value of the tensor Γij. Figure 8-12 shows that the usual higher 

values of the normal stresses over the shear Reynolds stresses reflect the similar 

behaviour between the isotropic and anisotropic models. However, the three normal 

stresses located in the main diagonal of the anisotropic diffusion coefficient (Γij) are 

not equal, as occurs for the isotropic models. The contour plots of Reynolds stresses 

(Figure 8-12) show that the uu ′′  and vv ′′  components are the highest terms and 

therefore they represent the predominant direction of the scalar transport by turbulent 

diffusion. From this analysis, one can conclude that the main difference between the 

isotropic and anisotropic algebraic models is that the last one provides higher 

diffusion in the horizontal direction and lower in the vertical direction. These results 

are consistent with the higher concentrations reported by the isotropic models at 

larger vertical distance from the MUST experiment (see Figure 8-13).  

 

(a)  (b)  

(c)  (d)  

 

Figure 8-13. Contour plot of C* concentration for SED1 [(a) and (b)] and GGDH1 [(c) and (d)] 

scalar flux models in the MUST experiment. Two different heights are plotted: Plane 1 [(a) and 

(c)] at 0.175m (≈≈≈≈H/14) and Plane 2 [(b) and (d)] at 1.275m(≈≈≈≈H/2). 
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The qualitative analysis of the results presented in Table 8-8 is completed by 

concentration profiles presented in Figure 8-14 and Figure 8-15. The first noticeable 

result from these plots is that all the models present similar behaviour at large 

distances from the source, which is usually with differences smaller than the 

measurement uncertainty of C*(=3·10-3). The biggest variations of model predictions 

are concentrated in the few evaluation points located close to the pollution source, 

which is why the metrics report only a few quantitative differences. The shape of 

concentration profiles (typically of Gaussian curve shape) also changes according to 

the selection of the Reynolds stress turbulence model. In comparison to the LRRIP, 

the RKE model produces an evident reduction of lateral dispersion for all models and 

an increase of over-prediction tendency in the case of S-M HANJALIC and SED 

models. This tendency can be also observed from the negative sign of FB for RKE 

simulations reported in Table 8-8. These results are a consequence of the worst 

predictions of anisotropic effects when the RKE is used, the typical over-prediction of 

turbulence viscosity obtained from k-ε based turbulence models (See comparison of 

turbulent viscosities in Appendix C) and the lack of calibration of each term of the 

second moment model formulation. Other observations of profiles in Figure 8-14 and 

Figure 8-15 include a higher disparity of the concentration predictions using the 

LRRIP models, and the general tendency of lateral displacement of the dispersion 

puff away from the Gaussian shape, presented by the too coarse positioning of the 

measurement points. These graphics do not present clear enough behaviour to state 

the best Reynolds stress and scalar flux model combination. 

Finally, from an engineer's point of view, the concluding goal of this work 

must be to define a ranking for the best general model performance. It is not an easy 

task based on the qualitative comparison of results of concentration profiles, but it can 

be relatively well done based on the results for the FAC2 and the Hit-Rate records 

presented in Table 8-8. These two metrics are very robust measures for the agreement 

between measurement and numerical predictions. They report the worst predictions 

for the LRRIP runs using the S-M HANJALIC model, mainly due to a persistent 

over-prediction of concentrations. For the RKE model, the worst predictions were 

found for the ABE and S-M HANJALIC model. In general, a decrease in almost all 

marks was observed with these two models in comparison to LRRIP runs. Other 

model combinations present better and similar results with agreements inside of the 

recommended acceptance criteria of FAC>0.5 and q>0.66. Of all scalar flux models, 

the best agreement with the experimental measurements of the MUST exercise was 

found for the SED1 and GGDH models using both LRRIP and RKE. Further 

discussion of model improvements and analysis of the MUST results, together with 

the previous two-dimensional street canyon exercise, is done in Chapter 9. 
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Figure 8-14.- Comparison of concentration model performance for LRRIP at different distances from the 

source location 
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Figure 8-15.- Comparison of concentration model performance for RKE at different distances from the 

source location 

 



 

 

9 Analysis of Results 

In this dissertation, two different test cases were examined (a 2D street canyon 

and a 3D urban area) to study pollution dispersion in urban environments. Different 

turbulence models for Reynolds stresses (SA, SKE, RKE, RNG, SKW, SST, LRRIP) 

and scalar fluxes (SED, GGDH, ABE, ABE-SUGA, YOUNIS, S-M HANJALIC, S-

M DURBIN) were used in these simulations and have been quantitatively evaluated 

by means of statistical metrics, and qualitatively analyzed with scatter and contour 

plots of velocities and concentration profiles. However, different conclusions may be 

extracted from each case. Here, three important arguments are presented to explain 

the different results and the intrinsic considerations which make them possible. 

1) First, two different conclusions from the Simple Eddy Diffusivity (SED) 

models were obtained. From the MUST exercise, one may conclude that the SED2 

model (with Sct = 0.9) does lead to worse results than the SED1 model (with Sct = 

0.7). However, in the street canyon exercise, the SED2 model performs better than 

the SED1 model17. These statements are not true for all considered metrics, but they 

show a trend, which is at least part of the reason why many authors recommend a 

range [0.7 to 0.9] (e.g. [Durb01]) instead of one value for Sct. Other authors have 

even recommended lower values than 0.7 (e.g. [Tomi07] [Disa07]) or higher values 

than 0.9 (e.g. [Tang06]), usually based on a specific simulation exercise. Therefore, if 

a detailed analysis is carried out with more than one diffusion coefficient, the final 

recommendation for the best model prediction may yield different result.  

The considerable improvement obtained in this work after the change of Sct in 

the simplest isotropic SED model is not an isolated case. Another example of 

modelling improvements by modification of the diffusion model coefficient can be 

observed with the different value recommendation for the turbulent Prandtl number 
                                                
17  The increase/reduction of the constant Sct is equivalent to set a lower/higher 

diffusion coefficient for the scalar. The best model coefficient depends on a number of reasons. Please 

refer to Chapter 3.2.1.1 for a discussion of different recommended values of Sct. 
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(Prt=0.85)18 and turbulent Schmidt number (Sct=0.7) in the employed commercial 

software [Flue06]. Similarly, the GGDH model is also used with a different model 

coefficient for the turbulent diffusion term in the differential models for momentum 

and scalar. Thus, the calculation of the appropriate diffusion coefficient is not a 

simple task and its value is definitely related to the final engineering application. 

Therefore, because momentum, heat and species transport are different physical 

phenomena, the influence of the diffusion terms in these transport equations are 

different. In addition, the different predictions of Reynolds stresses obtained from the 

variation of turbulence models produce variations of the concentration field. As a 

consequence, the anisotropic model employed to simulate the diffusion transport must 

be also calibrated according to the specific case of interest. 

The sensitivity of Sct in the SED model and the GGDH model coefficients 

were analysed in the MUST experiment for a discrete range of values and for several 

turbulent models of Reynolds stresses. These results are presented in Figure 9-1. As 

expected, the variation of the model coefficient for both models (SED and GGDH) 

produces a wide range of results. These results are sometimes better than those 

obtained with the respective standard (recommended) model coefficients. As a 

preliminary analysis, it appears that there is an optimum value of model diffusion 

coefficients different for each scalar flux model, each turbulence model and each 

computational domain. These results may modify the reported ranking order given for 

the best scalar flux model selection. For example, the optimum value of Sct in the 

MUST experiment using the SED-LRRIP simulation case is a value between 0.7 and 

0.5, and it is different for the SED-RKE and for any other combinations of turbulence 

models. Similarly, the GGDH-LRRIP simulations show the best agreement with the 

measurements for a model coefficient value between 0.4 and 0.5 (when its standard 

value is 0.3), but changing for any other simulation conditions. Preliminary studies of 

model coefficient sensitivity for the second moment models have also shown a 

possible prediction improvement. Behind this analysis there is a large theory and list 

of scientific publications about the physical and experimental considerations used to 

develop each scalar flux model and/or propose new scalar flux model coefficients. 

Due to the complexity of these physical and mathematical parameters in each of the 

implemented scalar flux models, it is not possible to present a final conclusion for the 

optimum model coefficients in this work. Thus, further analysis of sensitivity of 

model coefficients is proposed for a future study. 

                                                
18 Prt is the analogue of Sct in the energy equation. 
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Figure 9-1.- Sensitivity analysis of MUST experiment for different Sct in SED and GGDH model 

coefficients with different turbulence models for Reynolds stresses. 
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2) The second observation and probably one of the most relevant findings of 

this work is that although some improvements may be obtained from a more 

exhaustive analysis of model coefficients, the implemented advanced anisotropic 

models presented only small improvements over the simple isotropic gradient based 

models. This observation confirms that there are some applications where the simple 

SED model can perform almost as well as theoretically more advanced models. To 

understand these unanticipated results, the flow field and the Reynolds stresses were 

analysed carefully. In free turbulent flow (far from the walls), the scalar transport is 

dominated by convection and therefore diffusion processes play no dominant role. 

However, close to the wall the transport budget of the scalar changes. Within the thin 

diffusive sub-layer part of the boundary layer, lower flow velocities exist and hence 

the diffusion transport becomes the predominant transport phenomenon. Farther from 

the wall, these phenomena become rapidly negligible. Thus, it is in this region close 

to the wall where an accurate formulation of the turbulent diffusion of scalar fluxes 

must be used. Also close to the walls, the maximum anisotropic behaviour of the flow 

occurs and consequently the anisotropic models deviate more from the isotropic 

model behaviour. At high Reynolds numbers and a relatively high molecular Schmidt 

numbers (like the air flow in the atmosphere) the thickness of the diffusive sub-layer 

is very small. Due to the large cell sizes near walls usually used in micro-scale 

obstacle resolving simulations, the calculated concentration profile in these locations 

is mainly determined by the scalar near-wall function, where the diffusive sub-layer is 

usually not resolved. As a result, the anisotropic effects inserted by the implemented 

anisotropic turbulence models have practically only a weak influence on the complete 

dispersion field.  

3) The third and final argument is the lack of three-dimensional measurements 

in both wind tunnel experiments. The first test case is a street canyon which was 

intentionally defined and measured considering a two-dimensional flow field. 

Therefore, no three-dimensional information could be obtained from it. The second 

test case is the 12x10 array of obstacles called the MUST experiment. Although it 

was carried out in complete three-dimensional flow field conditions and without any 

plane of symmetry, all of its concentration measurements are located in a horizontal 

plane with a constant distance from the floor.  

To understand this situation better, one must remember the intrinsic 

characteristic of anisotropic flows. Anisotropic flows deal with directional preference 

or predominance of transport—in this case, the transport of a scalar or pollutant. As in 

any other transport phenomenon in turbulence conditions, the anisotropic 

characteristic of a flow is highly related to the convection transport, and hence to the 

convection of velocity fluctuations known as Reynolds stresses. The well-known high 
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anisotropy effects close to walls actually result from the variations of each of the 

normal and shear stresses as a function of the wall distance. Thus, in comparison to 

the standard isotropic scalar flux model, an anisotropic model is able to predict the 

directional preference of dispersion according to the turbulence characteristics of the 

flow. Therefore, although one selected isotropic model may replicate better the 

measurements than the anisotropic models in a specific plane, the constant value of 

Sct may not adapt to the changes in the scalar transport at different heights from the 

floor. 

Furthermore, if an exhaustive study is presented for the calibration of the 

scalar flux model coefficients using the MUST experiment, the best model coefficient 

would be limited to the best prediction of dispersion in a single plane. Thus, the 

optimal model coefficient will always depend on the number of planes and the 

amount of measurements used for the validation of simulation results.  



 

 

10  Conclusions 

The numerical simulation of passive pollutant dispersion in urban 

environments under different setup conditions has been realized satisfactorily. The 

main objective of this dissertation —the application of advanced anisotropic scalar 

flux models for the solution of the transport equation of averaged concentrations—

was performed and their behaviours were contrasted with the generally used standard 

isotropic scalar flux model and wind-tunnel experimental measurements. The 

implemented anisotropic scalar flux models were originally developed and applied to 

other engineering applications with analogue diffusion transport phenomena. Their 

performance in pollution dispersion is evaluated here, based on the comparison 

between numerical predictions and experimental concentration measurements of the 

two-dimensional street canyon model from [Pava99] and the three-dimensional urban 

area model, MUST, from [Bezp07]. The results were qualitatively and quantitatively 

analysed using different plots and statistical metrics recommended in the literature to 

assess the predictive capability of pollution dispersion models [Chan04]. 

Complex physical phenomena are involved in turbulent pollution dispersion in 

urban environments. Therefore, a good simulation of atmospheric flows in urban 

environments is necessarily related to the good simulation capabilities of the applied 

software. Recent progress of commercial CFD codes with advanced and attractive 

features, up-to-date computational models, validated for different flow conditions and 

with well documented technical support included, has caused many institutions to 

shift from their local software to commercial CFD codes. Nevertheless, the local 

codes are usually well specialized in specific engineering applications and have 

completely accessible source code in comparison to the general propose commercial 

CFD codes. These differences are very important because before performing any 

CFD simulation one must take care of the current capabilities and limitations of the 

available commercial code and its effects on the predominant physical phenomena of 

interest. For example, in this work the anisotropic characteristics of the flow are 

expected to be a very important physical phenomenon in understanding the behaviour 
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of passive pollutant dispersions. The reliable and accurate prediction of the pollutant 

field demands the accurate prediction of the velocity field. Therefore, these 

simulations also required the analysis of turbulent momentum shear stress (Reynolds 

stress) models. 

Several turbulence models for Reynolds stresses were briefly explained and 

discussed in this work as a function of their different calculation approaches with the 

intention of studying how their predictions influence the passive scalar dispersion in 

urban environments. Some of the most commonly used Reynolds stress models were 

tested and the results corroborated that the main velocities and turbulent parameters 

can be estimated quite well. However, an accurate estimation of the flow field 

requires high numerical efforts, such as the set-up of a well detailed geometry, an 

extended computational domain, a sufficiently refined grid, the utilization of more 

complex turbulence models and others. The predicted dispersions in atmospheric 

turbulent flows confirmed its strong dependence on the right flow field and therefore 

on the selected Reynolds stress model. The comparison of simulation results for the 

studied two-dimensional test case shows that the three k-ε based models (Standard, 

RNG and Realizable), the Reynolds stress transport model (LRRIP), and the Spalart-

Allmaras (S-A) model, combined with the Simple Eddy diffusivity model for scalar 

fluxes, performs relatively well and considerably better than when using the k-ω 

based models (Standard and SST) for Reynolds stresses. From this exercise, it was 

also observed that qualitatively small variations in the movement of the flow (such as 

changes in the size or shape of flow recirculations within the canyon) may produce a 

completely different pollution dispersion field with a Hit-Rate reduction for 

concentrations in up to 50% points (See Chapter 7.4.1).  

The comparison of the three-dimensional simulations with their respective 

experimental measurements revealed that within the flow field and Reynolds stress 

model predictions there is still an area of possible improvement. This range of 

improvement can be observed from the low Hit-Rate values reported for the y-

velocity component which were on ocations only 14% to 15% using the LRRIP or 

RKE turbulence model (see Chapter 8.5.2).  

As shown in this work, the accurate calculation of atmospheric flow fields is 

not a simple task. Some better results may be obtained with future improvements in 

computational speed, which would allow overcoming the aforementioned numerical 

and computational limitations, and applying the new generation of turbulence models 

(such as LES) in atmospheric pollution dispersion.  

The turbulent scalar flux models were also classified and discussed in light of 

their ability to reproduce experimental measurements of pollutant dispersion. Based 
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on the evidence of the already present errors and uncertainties in the computed 

turbulent flow field, an ideal or perfect scalar flux model would produce wrong 

results. Thus, the analysis and discussion presented here is only valid for the specific 

combination of turbulent momentum and scalar flux transport models.  

The combination of turbulence models is a common flaw in most commercial 

codes because these codes (like FLUENT) usually present many options and highly 

sophisticated models of turbulent Reynolds stresses (including large numbers of 

transport equations and turbulence quantities) but for scalar transport, the algebraic 

Simple Eddy Diffusivity (SED) model is the only one available. This model assumes 

the Reynolds analogy between momentum and scalar transport where the 

proportionality factor is the inverse of the usually assumed constant parameter, the 

turbulent Schmidt number. Most code users are aware of this problem, but 

unfortunately they usually apply the constant default value given in the code which 

may change due to many reasons (see discussion in Chapter 3.2.1.1).  

In addition to this “standard” option represented by the SED model, five 

algebraic scalar flux models were implemented in this study (the Generalized 

Gradient Diffusion Hypothesis so-called GGDH from [Daly70] and the proposals 

ABE-SUGA [Abe01], ABE [Abe06], WET [Laun88] and YOUNIS [Youn05]), as 

well as two second moment scalar flux models (S-M HANJALIC [Hanj02] and S-M 

DURBIN [Durb93]) for the simulation of pollution dispersion using the commercial 

software FLUENT v6.3. From these scalar flux models, the SED and GGDH models 

were arbitrarily selected for a sensitivity study of model coefficients within a discrete 

range of values. All the employed models showed congruent and similar pollution 

distribution. The simplest and most well-known SED model, which has proved to fail 

in simple heat transfer applications in many previous works, presented satisfactory 

results in the present work (up to 84% Hit-Rate in MUST experiment and 79% in the 

street canyon), and was comparable to the advanced models for most of the statistical 

evaluation parameters. Nevertheless, no single constant optimum value for the Sct 

was found. 

The formulation of the turbulent anisotropic scalar flux models shows that the 

results from these models are highly related not only to the value of concentration 

gradients (like expressed by SED) but also to the correct prediction of each of the 

Reynolds stresses. Therefore, the anisotropic scalar flux models are expected to 

perform better when the differential Reynolds stress turbulence models for the flow 

field are used. This analysis is congruent with the results obtained in this work. In 

general, the results revealed a lack of calibration for most of the scalar flux model 

coefficients for their application to the simulation of atmospheric pollution 

dispersion. The most straightforward method to overcome this problem may be 
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following an analogous procedure to estimate the model coefficients of heat transfer, 

but by using a “passive” mass transport. This process is usually completed by 

comparing numerical predictions with experimental measurements at different 

boundaries or flow conditions. It may also be accomplished by extracting each term 

of interest from LES/DNS or by carrying on a statistical/mathematical genetic 

algorithm procedure for optimization of the coefficients (e.g. [Jani07]). 

Other relevant simulation results should also be mentioned. The grid 

uncertainties of results in both geometries were estimated through the application of 

generalized Richardson Extrapolation. This grid post-processing procedure presented 

reasonable numerical uncertainty values and turned out to be a very useful technique 

for quantifying grid quality in view of each specific variable of interest. Additionally, 

other parameters needed for the simulation of pollution dispersion were studied. 

Small differences were found after the assumption of ethane as an active or passive 

scalar (less than 4%) and from the use of first or second order spatial discretization 

schemes (less than 24%). The model evaluation of all of these parameters—the 

different grids, passive/active scalar transport, and spatial discretization schemes—

were also performed using the statistical metrics recommended by [Chan04] and 

[VDI05]. These metrics proved to be a very useful measurement tool, but they do not 

abandon the necessity of carefully reviewing data by alternative post-processing 

techniques, like simple graphical comparisons. 

Furthermore, one of the most relevant findings of this work is that the 

implemented advanced anisotropic models hardly presented any improvement over 

the simple isotropic gradient based model (SED). The improvement measured is so 

small that its advantage may be judged against the extra work needed for its complex 

implementation and resolution. With these results, the well-known SED model (the 

oldest and simplest scalar flux model) showed why it is still commonly used in 

advanced engineering applications and in up-to-date CFD software. This work 

confirms that there are some applications where the simple SED model can still 

perform as well as other advanced models. However, it must be highlighted that in the 

present study the fluid properties were not changed:  only air was used at isothermal 

conditions because this work is concentrated in the specific case of passive pollution 

dispersion within the atmosphere. Thus, direct inference to other fluids is only 

possible based on the theory of fluid dynamics similarity, paying special attention to 

possible changes in the boundary layer thickness and fluid properties. 

The anisotropic scalar flux models results showed superior performance to the 

isotropic model in at least one or more of the utilized statistical evaluation 

parameters. The algebraic anisotropic models demonstrated a strong potential for 

further improvement with a relatively small amount of work. From the algebraic 
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anisotropic models, the GGDH model may be highlighted and recommended for all 

pollution dispersion simulations due to its easy implementation and usual good 

predictions obtained within the suggested acceptance criteria. On the other hand, the 

second moment models confirm their unquestionable position as the most complete 

models because their formulation takes into account the majority of effects 

incorporated in turbulent flow modelling. However, similar to other scalar flux 

models, the second moment models showed reasonably strong agreement in the two-

dimensional experiment but worse performance in the three-dimensional experiment. 

The results demonstrate that the better capabilities to predict scalar fluxes by using 

second moment models are highly related to the accurate calculation of each physical 

phenomenon and the precise calibration and validation of each term inserted in their 

formulation. Therefore, the complete implementation of second moment models for 

pollution dispersion would mean considerably more work compared to the algebraic 

models. Although in different proportion, the general worst performance was always 

observed in the three-dimension exercise for all of the studied scalar flux models. The 

most likely reason is a lack of previous applications and the calibration of the 

additional terms included in the three-dimensional formulation. 

Finally, similar to other first time works of research groups in new application 

areas, this dissertation has raised many questions about further model improvements. 

Due the finite time to develop a doctoral dissertation, these questions were left as 

recommendations for future works. Some of these recommendations for future works 

are: 

• Perform LES of a three-dimensional test case with the intention to obtain a much 

more accurate prediction of the mean velocities and Reynolds stresses. 

• Perform the solution of the presented turbulent scalar flux (RANS) models with 

the fixed LES results for the flow field. This process would allow for a more real 

and complete assessment of these model predictive capabilities. 

• Perform a model coefficient calibration of a selected group of algebraic 

anisotropic scalar flux models.  

• Concerning the heat transfer experiences, study of model improvements using 

combined effects of the turbulent time scale of momentum (k/ε) and their scalar 

transport analogue (kφ/εφ) may also be of interest. 

• Toward the real pollution dispersion phenomena in the atmosphere, the final goal 

must be to study the transport of different kinds of active pollutant dispersions, 

taking into account chemical reactions and strong buoyancy effects. 



 

 

11 References 

[Abe01] Abe, K., and Suga, K., 2001. Towards the development of Reynolds-
averaged algebraic turbulent scalar-flux model, International Journal of 
Heat and Fluid Flow, 22, pp.19-29. 

[Abe06] Abe, K., 2006. Performance of Reynolds-averaged turbulence and scalar-
flux models in complex turbulence with flow impingement, Prog. in 
Computational Fluid Dynamics, 6, pp.79-88. 

[Abe95] Abe, K., Kondoh, T., and Nagano, Y., 1995. A new turbulence model for 
predicting fluid flow and heat transfer in separating and reattaching flows-
II. Thermal field calculations, Int. J. Heat Mass Transfer, 38, 8, pp. 1467-
1481. 

[Abe96] Abe, K., Kondoh, T. and Nagano, Y., 1996. A two-equation heat transfer 
model reflecting second-moment closures for wall and free turbulent flows, 
Int. J. Heat and Fluid Flow, 17, pp.228-237. 

[Amic08] Amicarelli, A., Leuzzi, G., Monti, P. and Thomson, D.J., 2008. A stationary 
3D Lagrangian stochastic numerical model for concentration fluctuations, in 
Proceedings of the 12th International Conference on Harmonization within 
Atmospheric Dispersion Modelling for Regulatory Purposes, Cavtat, 
Croatia, pp. 387-391. 

[Baik03] Baik, J.J., Kim, J.J., and Fernando, H.J.S., 2003. A CFD model for 
simulating urban flow and dispersion, Journal of Applied Meteorology, 42, 
pp. 1636–1648. 

[Barm08] Barmpas, F., Ossanlis, I., and Moussiopoulos N., 2008. The effect of source 
treatment on pollutant dispersion in an idealised urban roughness in 
numerical simulation using the standard k-ε turbulence closure model, in 
Proceedings of the 12th International Conference on Harmonization within 
Atmospheric Dispersion Modelling for Regulatory Purposes, Cavtat, 
Croatia, pp. 680-684. 

[Bart89] Barth, T. J. and Jespersen, D., 1989. The design and application of upwind 
schemes on unstructured meshes, Technical Report AIAA-89-0366, AIAA 
27th Aerospace Sciences Meeting, Reno, Nevada, USA. 

[Batc49] Batchelor, G. K., 1949. Diffusion in a field of homogeneous turbulence, 
Australian Journal of Scientific Research A 2, 4, pp.437-450. 

[Baum08] Baumann-Stanzer, K., Piringer, M., Polreich, E., Hirtl, M., Petz, E. and 
Bügelmayer, M., 2008. User experience with model validation exercises, in 
Proceedings of the 12th International Conference on Harmonization within 
Atmospheric Dispersion Modelling for Regulatory Purposes, Cavtat, 



11. References 

164 

Croatia, pp. 52-56. 
[Bern86] Bernard, P., 1986. Limitations of the near-wall k-ε turbulence model, AIAA 

Journal, 24, pp. 619-622. 
[Bezp07] Bezpalcová, K., 2007. Physical Modelling of Flow and Dispersion in an 

Urban Canopy, PhD thesis, Faculty of Mathematics and Physics, Charles 
University, Prague. Czech Republic. 

[Bloc07] Blocken, B., Stathopoulos, T., and Carmeliet, J., 2007. CFD simulation of 
the atmospheric boundary layer: wall function problems, Atmospheric 
Environment, 41, 2, Pages 238-252. 

[Bloc08] Blocken, B., Stathopoulos, T., Saathoff, P., and Wang, X., 2008. Numerical 
evaluation of pollutant dispersion in the built environment: Comparisons 
between models and experiments, Journal of Wind Engineering and 
Industrial Aerodynamics, 96, pp. 1817–1831. 

[Bous77] Boussinesq, J., 1877. Theorie de l’ Ecoulemen Tourbillant. Mem. Presentes 
par Divers Savants Acad. Sci. Inst. Fr., 23, pp. 46-50. 

[Brit07] Bitter, R., and Schatzmann, M., 2007. Background and justification 
document to support the model evaluation guidance and protocol, COST 
Action 732: Quality assurance and improvement if musicale meteorological 
models, Hamburg, Germany. 

[Camb08] Cambridge Advanced Learner’s Dictionary, 2008. Cambridge University 
Press; 3 edition, ISBN-10: 0521885418. 

[Came05] Camelli, F.E., Lohner, R., and Hanna, S.R., 2005. VLES study of MUST 
experiment, 43rd AIAA Aerospace Meeting and Exhibit, paper 1279, Reno, 
Nevada, USA. 

[Came06] Camelli, F., Coirier, W.J., Hansen, O.R., Huber, A., Kim, S., Hanna, S., and 
Brown, M., 2006. An inter-comparison of four computational fluid 
dynamics models: transport and dispersion around Madison Square Garden, 
American Meteorological Society, 6th Symposium on the Urban 
Environment. Atlanta GA, USA. 

[Case00] Casey, M., and Wintergerste, T., 2000. Best Practice Guideline, 
ERCOFTAC Special Interest Group on: Quality and Trust in Industrial 
CFD, Published by ERCOFTAC. 

[Cebe02] Cebeci, T., 2002. Convective Heat Transfer, Second Edition. Springer. 
[Cebe77] Cebeci, T., and Bradshaw, P., 1977. Momentum Transfer in Boundary 

Layers, Hemisphere Publishing Corporation, New York. 
[Chan01] Chang, Ch-H., and Meroney, R.N., 2001. Numerical and physical modelling 

of bluff body flow and dispersion in urban street canyons, Journal of Wind 
Engineering and Industrial Aerodynamics, 89, pp.1325–1334.  

[Chan02] Chan, T.L., Dong, G., Leung, C.W., Cheung, C.S., and Hung W.T., 2002. 
Validation of a two-dimensional pollutant dispersion model in an isolated 
street canyon, Atmos. Environ. 36, pp.861–872. 

[Chan04] Chang, J., and Hanna, S., 2004. Air quality performance evaluation, 
Meteorology and Atmospheric Physics, 87, pp.167-196.  

[Chan05] Chang, J., and Hanna, S., 2005. Technical Descriptions and User’s Guide 
for the BOOT Statistical Model Evaluation Software Package, Version 2.0. 
http://www.harmo.org/kit/BOOT_details.asp 

[Chan98] Chang, J.C., Fernau, M.E., Scire, J.S., and Strimaitis, D.G., 1998. A Critical 
Review of Four Types of Air Quality Models Pertinent to MMS Regulatory 
and Environmental Assessment Missions, U.S. Department of the Interior, 
Minerals Management Service, Gulf of Mexico OCS Region, 1201 



11. References 

165 

Elmwood Park Blvd., New Orleans, LA 70123, by Earth Tech, Inc., 196 
Baker Avenue, Concord, MA 01742. USA. 

[Chen05] Cheng, X., and Hu, F., 2005. Numerical Studies on Flow Fields Around 
Buildings in an Urban Street Canyon and Cross-Road, Avances in 
Amospheric Siences, 22, pp. 290–299. 

[Chen88] Chen, H. C., and Patel, V. C., 1988. Near-Wall Turbulence Models for 
Complex Flows Including Separation, AIAA Journal, 26, 6, pp.641-648. 

[Chua05] Chua, A.K.M., Kwok, R.C.W., and Yu, K.N., 2005. Study of pollution 
dispersion in urban areas using Computational Fluid Dynamics (CFD) and 
Geographic Information System (GIS), Environmental Modelling & 
Software, 20, pp.273–277. 

[Coir06] Coirier, W.J., and and Kim, S., 2006. CFD Modelling for Urban Area 
Contaminant Transport and Dispersion: Model Description and Data 
Requirements, Sixth Symposium on the Urban Environment, The 86th AMS 
annual meeting, Atlanta, USA. 

[Coir06b] Coirier, W.J., and Kim, S., 2006. Summary of CFD Urban Results in 
Support of the Madison Square Garden and Urban Dispersion Program 
Field Tests, American Meteorological Society, 6th Symposium on the Urban 
Environment. Atlanta, GA, USA. 

[Cost732] URL 1: COST Action 732: European Cooperation in Scientific and 
Technical research group titled as: Quality Assurance and Improvement of 
Micro-scale Meteorological Models. 
http://www.cost.esf.org/index.php?id=400, 
http://www.mi.uni-hamburg.de/index.php?id=464 

[Craf02] Craft, T.J., and Launder, B.E., 2002. Closure Modelling Near the Two-
Component Limit, pp. 102-126, in Launder, B. and Sandham, N., (eds.), 
Closure Strategies for Turbulent and Transitional Flows, Cambridge 
University Press. ISBN-13: 9780521792080. 

[Craf02b] Craft, T.J., and Launder, B.E., 2002. Application of TCL Modelling to 
Stratified Flows, pp. 407-423, in Launder, B., and Sandham, N., (eds.), 
Closure Strategies for Turbulent and Transitional Flows, Cambridge 
University Press. ISBN-13: 9780521792080. 

[Craf93] Craft, T.J., 1993 Impinging jet studies for turbulence model assessment – II. 
An examination of the performance of four turbulence models, Int. J. Heat 
Mass Transfer, 36, 10, pp.2685-2697. 

[Craf96] Craft, T.J., and Launder, B.E., 1996 Recent developments in second-
moment closure for buoyancy-affected flows, Dynamics of Atmospheres 
and Oceans, 23, pp.99-114. 

[Daly70] Daly, B., Harlow, F., 1970. Transport Equations in Turbulence, Phys. Fluids 
13, 2634-2649. 

[Defr10] Defraeye, T., Blocken, B., and Carmeliet, J., 2010. CFD analysis of 
convective heat transfer at the surfaces of a cube immersed in a turbulent 
boundary layer, International Journal of Heat and Mass Transfer, 53, 1-3, 
297-308. 

[Dejo09] Dejoan, A., Santiago, J. L., Pinelli, A., and Martilli, A., 2007. Comparison 
between LES and RANS computations for the study of contaminant 
dispersion in the MUST field experiment, American Meteorological 
Society, Submitted.  

[Diet07] Dietz, Ch., Neumann, O., Weigand, B., 2007. A Comparative study of the 
performance of explicit algebraic models for the turbulent heat flux, 



11. References 

166 

Numerical Heat Transfer, Part A, 52: pp.101-126. 
[Disa07] Di Sabatino, S., Buccolieri, R., Pulvirenti, B., Britter, R.E., 2007. Flow and 

Pollutant Dispersion in Street Canyons using FLUENT and ADMS-Urban, 
Environ. Model. Assess. 13, pp. 369-381. 

[Disa08] Di Sabatino, S., Olesen, H., Berkowicz, R., Franke, J., Schatzmann, M., 
Britter, R., Schlünzen, H., Martilli, A. and Carissimo, B., 2008. A model 
evaluation protocol for urban scale flow and dispersion models, in 
Proceedings of the 12th International Conference on Harmonization within 
Atmospheric Dispersion Modelling for Regulatory Purposes, Cavtat, 
Croatia, pp. 409-413. 

[Durb01] Durbin, P.A., Pettersson, B.A., 2001. Statistical Theory and Modelling for 
Turbulent Flows, Wiley & Sons, Chichester. 

[Durb93] Durbin, P.A., 1993. A Reynolds stress model for near-wall turbulence, J. 
Fluid Mech., 249, pp.465-498. 

[Eca04] Eça, L., and Hoekstra, M., 2004. A verification exercise for two 2-D steady 
incompressible turbulent flows, in: Neittaanmäki, P., Rossi, T., Majava, K., 
Pironneau, O. (Eds.), Proceedings of the ECCOMAS 2004, Jyväskylä. 

[EEA08] European Environment Agency, report bulletin 171, September, 2008.  
www.transportenvironment.org. 

[Efth08] Efthimiou, G.C., Bartzis, J.G., Andronopoulos, S., and Sfetsos, T., 2008. 
Modelling the concentration fluctuation and individual exposure in complex 
urban environments, in Proceedings of the 12th International Conference on 
Harmonization within Atmospheric Dispersion Modelling for Regulatory 
Purposes, Cavtat, Croatia, pp. 392-395. 

[Eich08] Eichhorn, J., and Balczó, M., 2008. Flow, dispersal simulations of the Mock 
Urban Setting Test, in Proceedings of the 12th International Conference on 
Harmonization within Atmospheric Dispersion Modelling for Regulatory 
Purposes, Cavtat, Croatia, pp. 67-72. 

[Feng98] Fenger, J., and Hertel, O., Palmgren, F., 1998. Urban Air Pollution – 
European Aspects, Kluwer Academic Publishers, Dordrecht – The 
Netherlands. ISBN 0792355024. 

[Ferz02] Ferziger, J. H., and Peric, M., 2002. Computational Methods for Fluid 
Dynamics, Springer, Third edition. 

[Fles02] Flesch, T.K., 2002. Turbulent Schmidt number from a tracer experiment. 
Agricultural and Forest Meteorology, 111, pp. 299–307.  

[Flue06] Fluent V6.3, 2006. User’s Guide. FLUENT Inc., Lebanon, New Hampshire, 
USA. 

[Fran05] Franke, J., and Frank, W., 2005. Numerical simulation of the flow across an 
asymmetric street intersection, EACWE4 — The Fourth European & 
African Conference on Wind Engineering, J. N´aprstek & C. Fischer (eds); 
ITAM AS CR, Paper #138, Prague.  

[Fran06] Franke, J., and Frank, W., 2006. Application of Richardson extrapolation to 
the prediction of the flow field around building models, Fourth International 
Symposium on Computational Wind Engineering – CWE2006, Yokohama. 

[Fran07] Franke, J., Hellsten, A., Schlünzen, H., and Carissimo, B., 2007. Best 
Practice Guideline for the CFD Simulation of Flows in Urban Environment, 
COST Action 732, Hamburg, Germany. 

[Fran07b] Franke, J., 2007. Introduction to the Prediction of Wind Loads on Buildings 
by Computational Wind Engineering (CWE), in Baniotopoulos C.C. and 
Stathopoulos T., editors, Wind Effects on Buildings and Design of Wind-



11. References 

167 

Sensitive Structures, number 493 in CISM Internatinal Centre of 
Mechanical Sciences, chapter 3, Springer Verlag, Berlin Heidelberg New 
York. ISBN 978-3-211-73075-1. 

[Fran08] Franke, J., Bartzis, J., Barmpas, F., Berkowicz, R., Brzozowski, K., 
Buccolieri, R., Carissimo, B., Costa, A., Di Sabatino, S., Efthimiou, G., 
Goricsan, I., Hellsten, A., Ketze, M., Leitl, B., Nuterman, R., Olesen, H., 
Polreich, E., Santiago, J., and Tavares, R., 2008. The MUST model 
evaluation exercise: statistical analysis of modelling results, in Proceedings 
of the 12th International Conference on Harmonization within Atmospheric 
Dispersion Modelling for Regulatory Purposes, Cavtat, Croatia, pp. 414-
418. 

[Fran08b] Franke, J., and Frank, W., 2008. Application of generalized Richardson 
extrapolation to the computation of the flow across an asymmetric street 
intersection, Journal of Wind Engineering and Industrial Aerodynamics, 96: 
pp. 1616 - 1628. 

[Fran09] Franke, J., 2009. Validation of a CFD model for the prediction of flow and 
dispersion in the urban environment, Proceedings of the 4th International 
Building Physics Conference, Istanbul, Turkey, pp.969-976. 

[Fu87] Fu, S., Launder, B.E., and Tselepidakis, D.P., 1987. Accommodating the 
effects of high strain rates in modelling the pressure-strain correlation, 
Thermo-fluids report TFD/87/5, UMIST, Manchester. 

[Gail06] Gailis, R.M., and Hill, A., 2006. A wind-tunnel simulation of plume 
dispersion within a large array of obstacles, Boundary-Layer Meteorology, 
119, pp.289–338. 

[Gibs78] Gibson, M.M., and Launder, B.E., 1978. Ground effects on pressure 
fluctuations in the atmospheric boundary layer, J. Fluid Mech., 86, pp.491-
511. 

[Grom07] Gromke, C., Denev, J., and Ruck, B., 2007. Dispersion of traffic exhausts in 
urban street canyons with tree plantings – Experimental and numerical 
investigations, in Proceedings of Physmod 2007 – International Workshop 
on Physical Modelling of Flow and Dispersion Phenomena, University of 
Orléans, France. ISBN 2-913454-32-1. 

[Grom08] Gromke, C., Buccolieri, R., Di Sabatino, S., and Ruck, B., 2008 Dispersion 
study in a street canyon with tree planting by means of wind tunnel and 
numerical investigations – Evaluation of CFD data with experimental data, 
Atmospheric Environment, 42, pp. 8640-8650. 

[Hanj02] Hanjalic, K., Jakirlic, S., 2002. Second-Moment Turbulence Closure 
Modelling, in Launder, B., Sandham, N., (eds.), Closure Strategies for 
Turbulent and Transitional Flows. Cambridge University Press, Cambridge. 

[Hann04] Hanna, S. R., Hansen, O. R. and Dharmavaram, S., 2004. FLACS CFD air 
quality model performance evaluation with Kit Fox, MUST, Prairie Grass, 
and EMU observations. Atmospheric Environment 38, pp.4675-4687 

[Hann91] Hanna, S.R., Strimaitis, D.G., and Chang, J.C., 1991. Hazard Response 
Modelling Uncertainty (A Quantitative Method), Volume I: User’s Guide 
for Software for Evaluating Hazardous Gas Dispersion Models; Volume II: 
Evaluation of Commonly-Used Hazardous Gas Dispersion Models; Volume 
III: Components of Uncertainty in Hazardous Gas Dispersion Models. 
Report no. A119/A120, prepared by Earth Tech, Inc., Concord, MA, for 
Engineering and Services Laboratory, Air Force Engineering and Services 
Centre, Tyndall Air Force Base, FL 32403; and for American Petroleum 



11. References 

168 

Institute, Washington, D.C., USA. 
[Hann93] Hanna, S.R., Chang, J.C., and Strimaitis, D.G., 1993. Hazardous gas model 

evaluation with field observations, Atmos. Environ., 27A, pp. 2265-2285. 
[Hass98] Hassan, A.A., Crowther, J.M., 1998. Modelling of fluid flow and pollutant 

dispersion in a street canyon, Environ. Monit. Assess., 52, pp. 281–297. 
[Hov94] Hov, O., Hjollo, B.A., Eliassen, A. 1994. Transport distance of ammonia 

and ammonium in Northen Europe I. Model description. J. Geophys. Res. 
99, 18, pp.735-748. 

[Hsie07] Hsieha, K.-J., Liena, F.-S. and Yee, E., 2007. Numerical modelling of 
passive scalar dispersion in an urban canopy layer, Journal of Wind 
Engineering and Industrial Aerodynamics, 95, pp. 1611–1636. 

[Huan06] Huang, H., Ooka, R., Kato, S., Chen, H., Takahashi, T., and Watanabe, T., 
2006. CFD Analysis on Traffic-Induced Air Pollutant Dispersion with Non 
Isothermal Condition in a Complex Urban Area in Winter, 4th Intl 
Symposium on Computational Wind Engineering (CWE2006) Japan. 

[Huan93] Huang, P., Bradshaw, P., and Coakley, T., 1993. Skin Friction and Velocity 
Prole Family for Compressible Turbulent Boundary Layers. AIAA Journal, 
31, 9, pp.1600-1604. 

[Ilyu02] Ilyushin, B.B., 2002. Higher Moment Diffusion in Stable Stratification. 
Launder, B., and Sandham, N., (eds.), Closure Strategies for Turbulent and 
Transitional Flows, Cambridge University Press. 

[Izar07a] Izarra-Garcia, R., Franke, J. and Frank, W., 2007. CFD simulation of 
pollution dispersion in a 2D Street canyon, in Proceedings of MicroCAD 
2007. Miskolc, Hungary. 

[Izar07b] Izarra-Garcia, R., Franke, J., and Frank, W., 2007. Evaluation of Pollution 
Dispersion Prediction Using RANS and Turbulence Models Available in 
FLUENT 6.3, in Proceedings of Physmod 2007 – International Workshop 
on Physical Modelling of Flow and Dispersion Phenomena, 29 - 31 August, 
University of Orléans, France. ISBN 2-913454-32-1. 

[Izar08] Izarra-Garcia, R., Franke, J., and Frank, W., 2008. Pollution dispersion 
prediction for the MUST wind tunnel experiment with anisotropic algebraic 
models for turbulent scalar fluxes, in Proceedings of the 12th International 
Conference on Harmonization within Atmospheric Dispersion Modelling 
for Regulatory Purposes, Cavtat, Croatia, pp. 380-384. 

[Jani07] Janiga, G., 2007. Optimization of the Model Parameters of the Spalart-
Allmaras Turbulence Model, in Proceedings of MicroCAD 2007. Miskolc, 
Hungary. 

[Jaya69] Jayatilleke, C., 1969. The influence of Prandtl number and surface 
roughness on the resistance of the laminar sublayer to momentum and heat 
transfer, Prog. Heat Mass Transfer, 1, pp.193-321. 

[Jones88] Jones W.P. and Musonge P. 1988. Closure of the Reynolds stress and scalar 
flux equations, Physics & Fluids, 31, 12.pp. pp.3389-3604. 

[Jong92] Jongen, T., 1992. Simulation and Modeling of Turbulent Incompressible 
Flows, PhD thesis, EPF Lausanne, Lausanne, Switzerland. 

[Kade81] Kader, B., 1981. Temperature and Concentration Proles in Fully Turbulent 
Boundary Layers, Int. J. Heat Mass Transfer, 24, 9, pp.1541-1544. 

[Kast99] Kastner-Klein, P. and Plate, E.J., 1999. Wind-tunnel study of concentration 
fields in street canyons, Journal of Atmospheric Environment, 33, pp.3973-
3979.  

[Ketz02] Ketzel, M., Louka, P., Sahm, P., Guilloteau, E., Sini, J.-F. and 



11. References 

169 

Moussiopoulos, N., 2002. Inter-comparison of numerical urban dispersion 
models – part II: street canyon in Hannover, Germany, Water, Air, and Soil 
Pollution: Focus 2: pp.603–613. 

[Kim03] Kim, J-J. and Baik, J-J., 2003. Effects of inflow turbulence intensity on flow 
and pollutant dispersion in an urban street canyon, Journal of Wind 
Engineering and Industrial Aerodynamics, 91, pp. 309–329. 

[Kim89] Kim, J., and Moin, P., 1989. Transport of passive scalar in a turbulent 
channel flows, Turbulent Shear Flows, 6 Springer, Berlin, pp.85-96. 

[Koel00] Koeltzsch, K., 2000. The height dependence of the turbulen Schmidt 
number within the boundary layer, Atmospheric Environment 34, pp.1147–
1151. 

[Kolm41] Kolmogorov, A.N., 1941. The local structure of turbulence in 
incompressible viscous fluid for very large Reynolds numbers, Proceedings 
of the USSR Academy of Sciences 30, pp.299–303, (Russian), translated 
into English and published at the Proceedings of the Royal Society of 
London, Series A: Mathematical and Physical Sciences 43, 4, pp.9–13. 

[Laum75c] Launder, B.E., 1975. On the effects of a gravitational field on the turbulent 
transport of heat and momentum, J. Fluid Mech. 67, pp. 569-581. 

[Laun72] Launder, B. E., and Spalding, D. B., 1972. Lectures in mathematical models 
of turbulence, Academic Press, London, England. 

[Laun74] Launder, B.E., and Spalding, D.B. 1974. The numerical computation of 
turbulent flows, Computer Methods in Applied Mechanics and Engineering,  
3, pp.269-289. 

[Laun75] Launder, B. E., Reece, G. J., and Rodi, W. 1975. Progress in the 
development of a Reynolds-stress turbulence closure, J. Fluid Mech., 68, 3, 
pp.537-566. 

[Laun75b] Launder, B.E., 1975. Lecture Series No. 76, Von Karman Inst., Rhode St. 
Genese, Belgium. 

[Laun78] Launder, B.E., 1978. Heat and Mass Transport, Bradshaw P. Topics in 
Applied Physics. 12. Springer-Verlag. 1978. 

[Laun88] Launder, B. E. 1988. On the computation of convective heat transfer in 
complex turbulent flows, Journal of Heat Transfer. 110. pp. 1112–1118. 

[Laun89] Launder, B.E., 1989. Second-moment closure: present and future?, Inter. J. 
Heat Fluid Flow, 10, 4, pp.282-300. 

[Leit02] Leitl, B., Schatzmann, M., Thielen, H., and Martens, R., 2002. A new 
validation data set for pollutant dispersion models, in proceedings from the 
8th International Conference on Harmonisation within Atmospheric 
Dispersion Modelling for Regulatory Purposes, Sofia. 

[Leit97] Leitl, B.M., and Meroney, R.N., 1997. Car exhaust dispersion in a street 
canyon. Numerical critique of a wind tunnel experiment, J. Wind Ind. 
Aerodyn. 67–68, pp.293–304.  

[Lien06] Lien, F.S., Yee, E., Ji, H., Keats, A. and Hsieh, K.J., 2006. Progress and 
challenges in the development of physically based numerical models for 
prediction of flow and contaminant dispersion in the urban environment, 
International Journal of Computational Fluid Dynamics, 20, pp. 323–337. 

[Ligr86] Ligrani, P.M., and Moffat, R.J., 1986. Structure of transitionally rough and 
fully rough turbulent boundary layers, J. Fluid Mech. 162, pp.69-98. 

[Lill84] Lilley, D.G., and Abujelala, M.T., 1984. Limitations and empirical 
extensions of the k-epsilon model as applied to turbulent confined swirling 
flows, American Institute of Aeronautics and Astronautics, Aerospace 



11. References 

170 

Sciences Meeting, Reno, NV, USA. 
[Liu02] Liu, Ch.-H., and Barth, M., 2002. Large-Eddy Simulation of Flow and 

Scalar Transport in a Modelled Street Canyon, American Meteorological 
Society. 41, pp.660-673. 

[Louk01] Louka, P., Ketzel, M., Sahm, P., Guilloteau, E., Moussiopoulos, N., Sini, J.-
F., Mestayer, P.G., and Berkowicz, R., 2001. CFD inter-comparison 
exercise within TRAPOS European research network, 7th International 
Conference on Environmental Science and Technology, Syros, Greece 

[Lueb01] Luebcke, H.M., 2001. Entwicklung expliziter Darstellungen zweiter 
statistischer Momente zur numerischen Simulation turbulenter 
Stroemungen. PhD Thesis. T.U. Berlin.  

[Ment94] Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for 
engineering applications, AIAA Journal, 32, 8, pp.1598-1605. 

[Mero96] Meroney, R.N., Pavageau, M., Rafailidis, S., and Schatzmann, M., 1996. 
Study of line source characteristics for 2-D physical modelling of pollutant 
dispersion in street canyons, J. Wind Engineering an Industrial 
Aerodynamics 62, pp.37-56. 

[Mero99] Meroney, R., 1999. Perspectives on air pollution aerodynamics, 10th 
International Wind Engineering Conference, Copenhagen, Denmark. 

[Mill06] Milliez, M., 2006. Modelisation micro-meteorologique en milieu urban: 
dispersion des pollutants et prise en compte des effets radiatifs, PhD thesis, 
Ecole Nationale Des Ponts Et Chaussees. France. 

[Mill07] Milliez, M., and Carissimo, B., 2007. Numerical simulations of pollutant 
dispersion in an idealized urban area, for different meteorological 
conditions, Boundary-Layer Meteorology 122, pp.321–342. 

[Mill08] Milliez, M.,·Carissimo, B., 2008. Computational Fluid Dynamical 
Modelling of Concentration Fluctuations in an Idealized Urban Area, 
Boundary-Layer Meteorology, 127, pp.241–259. 

[Mill95] Miller, G., 1995. Environmental science: working with the Earth (5th ed.). 
California: ITP. ISBN 0-534-21588-2. 

[Moni65] Monin, A.S., 1965. On the symmetry properties of turbulence in the surface 
layer of air, Atmos. Oceanic Phys. 1, 1, pp.45-54. 

[Mora96] Moran, M.D., and Pielke, R.A., 1996. Evaluation of mesoscale atmospheric 
dispersion modelling system with observations from 1980 Great Plains 
Meso-scale tracer field experiment, Part II: Dispersion simulations. J. Appl. 
Meteorol., 35, pp.308-329. 

[Mosc98] Mosca, S., Graziani, G., Klug, W., Bellasio, R., and Bianconi, R., 1998. A 
statistical methodology for the evaluation of long-range dispersion models: 
an application to the ETEX exercise, Atmos. Environ., 24, pp.4307-4324. 

[Nappo98] Nappo, C.J., Eckman, R.M., Rao, K.S., Herwehe, J.A., and Gunter, R.L., 
1998. Second Order Closure Integrated Puff (SCIPUFF) model verification 
and evaluation study, NOAA Technical Memorandum ERL ARL-227, Air 
Resources Laboratory, National Oceanic and Atmospheric Administration, 
Silver Spring, MD. USA. 

[Nasa-url] NASA web site. URL: http://www.nasa.gov 
[Nazr06] Nazridoust, K., and Ahmadi, G., 2006. Airflow and pollutant transport in 

street canyons, J. Wind Engineering and Industrial Aerodynamics, 94, 
pp.491-522. 

[Oke87] Oke, T.R., 1987 Boundary Layer Climates, Routledge, London. ISBN 0-
20340721-0, 



11. References 

171 

[Oles01] Olesen, H.R., 2001. Ten years of harmonization activities: past, present, and 
future, 7th International conference on Harmonisation within Atmospheric 
Dispersion Modelling for Regulatory Purposes, Belgirate, Italy. National 
Environmental Research Institute, Roskilde, Denmark. 

[Oles08] Olesen, H.R., Baklanov, A., Bartzis, J., Barmpas, F., Berkowicz, R., 
Brzozowski, K., Buccolieri, R., Carissimo, B., Costa, A., Di Sabatino, S., 
Efthimiou, G., Franke, J., Goricsan, I., Hellsten, A., Ketzel, M., Leitl, B., 
Nuterman, R., Polreich, E., Santiago, J. and Tavares, R., 2008. The MUST 
model evaluation exercise: Patterns in model performance, in Proceedings 
of the 12th International Conference on Harmonization within Atmospheric 
Dispersion Modelling for Regulatory Purposes, Cavtat, Croatia, pp. 403-
408. 

[Pasq61] Pasquill, F., 1961. The estimation of the dispersion of windborne material, 
Meteorol. Mag. 90, 33-49. 

[Pasq74] Pasquill, F., 1974. Atmospheric Diffusion, Ellis Horwood Ltd, Chichester, 
England. ISBN 0-85312 015-3 

[Pata80] Patankar, S., 1980. Numerical Heat Transfer and Fluid Flow, Series in 
computational methods in mechanics and thermal sciences, Hemisphere 
Publishing Corporation. 

[Pava99] Pavageau, M., and Schatzmann, M., 1999. Wind tunnel measurements of 
concentration fluctuations in an urban street canyon, Atmospheric 
Environment 33, pp. 3961-3971. 

[Pfad08] Pfadler, S., Leipertz, A., and Dinkelacker, F., 2008. Systematic experiments 
on turbulent premixed Bunsen flames including turbulent flux 
measurements, Combustion and Flame 152, pp.616–631. 

[Pope00] Pope, S., 2000. Turbulent Flows, Cambridge University Press, United 
Kingdom. 

[Pran04] Prandtl, L., 1904. “Motion of Fluids with Very Little Viscosity”, English 
translation of “Über Flüssigkeitsbewegug bei sehr kleiner Reibung”, Third 
International Congress of Mathematicians at Heidelberg, 1904, from “Vier 
Abhandlungen zur Hydrodynamik und Aerodynamik”, pp. 1-8, Göttingen, 
1927, NACA TM-452, 1928. 

[Reyn75] Reynolds, A.J., 1975. The prediction of turbulent Prandtl and Schmidt 
numbers, International Journal of Heat Mass Transfer 18, pp.1055–1069. 

[Rhie83] Rhie, C.M. and Chow, W.L., 1983. Numerical study of the turbulent flow 
past an airfoil with trailing edge separation, AIAA Journal, 21, 11, pp.1525-
1532. 

[Rich93] Richards, P.J., Hoxey, R.P., 1993. Appropriate boundary conditions for 
computational wind engineering models using the k-ε turbulence model, J. 
Wind Eng. Ind. Aerodyn. 46&47, pp.145-153. 

[Ridd04] Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., and Stocker, J., 2004. 
Comparisons between FLUENT and ADMS for atmospheric dispersion 
modelling, Atmospheric Environment, 38, pp. 1029–1038. 

[Roac94] Roache, P.J., 1994. Perspective: a method for uniform reporting of grid 
refinement studies, J. Fluids Eng., 116, pp.405-413. 

[Roge89] Rogers, M., Mansour, N., Reynolds, W., 1989. An algebraic model for the 
turbulent flux of a passive scalar, J. Fluid Mechanics, 203. pp.77-101. 

[Ross09a] Rossi, R., Philips, D.A., and Iaccarino, G., 2009. Numerical simulation of 
scalar dispersion in separated flows using algebraic flux models, in 
Proceedings of the 6th Symposium on Turbulence, Heat and Mass, Rome, 



11. References 

172 

Italy. 
[Ross09b] Rossi, R., and G., Iaccarino, 2009. Numerical simulation of scalar 

dispersion downstream of a square obstacle using gradient-transport type 
models, Atmospheric Environment, 43, pp.2518–2531. 

[Ross10a] Rossi, R., Philips, D.A., and Iaccarino, G., 2010. A numerical study of 
scalar dispersion downstream of a wall-mounted cube using direct 
simulations and algebraic flux models, International Journal of Heat and 
Fluid Flow 31, pp.805–819. 

[Ross10b] Rossi, R., 2010. A numerical study of algebraic flux models for heat and 
mass transport simulation in complex flows, International Journal of Heat 
and Mass Transfer 53, pp.4511–4524. 

[Rott51] Rotta, J., 1951. Statistische Theorie nichthomogener Turbulenz, Mitteilung. 
Zeitschrift für Physik, 129, pp.547-572. 

[Roy05] Roy, C.J., 2005. Review of code and solution verification procedures for 
computational simulation, J. Comp. Phys., 205, pp.131-156. 

[Rubi91] Rubinstein, R., and Barton, J.M., 1991. Renormalization Group Analysis of 
Anisotropic Diffusion in Turbulent Shear Flows, Phys. Fluids A, 3, pp.415–
421. 

[Sahm02] Sahm, P., Louka, P., Ketzel, M., Guilloteau, E. and Sini, J.-F., 2002. Inter-
comparison of Numerical Urban Dispersion Models – Part I: Street Canyon 
and Single Building Configurations, Water, Air and Soil Pollution: Focus 2, 
pp.587-601. 

[Salo07] Saloranta, J., and Hellsten, A., 2007. Evaluation of general CFD-solver for a 
micro-scale urban flow, in Proceedings of the 11th International Conference 
on Harmonization within Atmospheric Dispersion Modelling for Regulatory 
Purposes Cambridge, United Kingdom. 

[Sant07] Santiago, J.L., Dejoan, A., Martilli, A., Martín, F., and Pinelli, A., 2007. 
LES and RANS simulations of the MUST experiments, Study of incident 
wind direction effects on the flow and plume dispersion, 7th International 
Conference on Urban Climate, June 29-July 3, Yokohama, Japan.  

[Scha10] Schatzmann, M., Olesen, H. and Franke, J. (eds.), 2010. COST 732 model 
evaluation case studies: approach and results, COST Office, Brussels. 

[Scir96] Scire, J.S., Strimaitis, D.G., and Fernau, M.E., 1996. New developments in 
the CALPUFF non-steady state modelling system, Air pollution modelling 
and its application. Edited by S-E Gryding and F. Schiermeier, Plenum 
Press, New York. ISBN 0-306-45381-9. 709. 

[Shab97] Shabany, Y., Durbin, P.A., 1997. Explicit Algebraic Scalar Flux 
Approximation, AIAA Journal, 35, 6. pp. 985-989. 

[Shih95] Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J., 1995. A new k-
ε eddy-viscosity model for high reynolds number turbulent flows – model 
development and validation. Computers Fluids, 24, 3, pp.227-238,  

[Sini96] Sini, J.-F., Anquetin, S., and Mestayer, P.G., 1996. Pollutant dispersion and 
thermal effects in urban street canyons, Atmospheric Environment 30, 15, 
pp. 2659 2677. 

[Smag70] Smagorinsky, J., 1970. Numerical simulation of the global atmosphere, in 
The Global Circulation of the Atmosphere, G. A. Corby, Editor, London, 
UK, Royal Meteorological Society, 24-41. 

[Spal94] Spalart, P.R., 1994. Allmaras S.R.: A one-equation turbulence model for 
aerodynamic flows. Recherche Aerospatiale 1, pp.5-21. 

[Stul88] Stull, R., 1988. An Introduction to Boundary Layer Meteorology, Springer. 



11. References 

173 

[Sutt32] Sutton, O.G., 1932. A Theory of Eddy Diffusion in the Atmosphere, in 
Proceedings of the Royal Society of London. Series A, 135, 826, pp. 143-
165.  

[Tang06] Tang, W., Huber, A., Bell, B., and Schwarz, W., 2006. Application of CFD 
simulations for short-range atmospheric dispersion over open fields and 
within arrays of buildings, in AMS 14th Joint Conference on the 
Applications of Air Pollution Meteorology with the A&WMA, Atlanta, 
USA. 

[Tomi07] Tominaga, Y., Stathopoulos, T., 2007. Turbulent Schmidt numbers for CFD 
analysis with various flow fields. Atmospheric Environment, 41, 37, 
pp.8091-8099. 

[Trem93] Tremback, C.J., Lyons, W.A., Thorson, W.P., and Walko, R.L., 1993. An 
emergency response and local weather forecasting software system, in 
Proceedings of the 20th ITM on air Pollution and its Application, Valencia, 
Spain, pp.423-429. 

[Turn94] Turner, D.B., 1994. Workbook of Atmospheric Dispersion Estimates: An 
Introduction to Dispersion Modelling, (2nd Edition ed.), CRC Press, ISBN 
1-56670-023-X.  

[Urba08] Urban, J., Warner, S., Platt, N., and Heagy, F., 2008. Evaluation of 
atmospheric transport and dispersion models using data from the joint 
Urban 2003 filed experiment, in Proceedings of the 12th International 
Conference on Harmonization within Atmospheric Dispersion Modelling 
for Regulatory Purposes, Cavtat, Croatia, pp. 19-23. 

[US-EPA] United States Environmental Protection Agency (USEPA), URL: 
www.epa.gov/ 

[VDI05] VDI, 2005. Environmental meteorology – Prognostic microscale windfield 
models – Evaluation for flow around buildings and obstacles, VDI guideline 
3783, Part 9, VDI, Düsseldorf, Germany. 

[Vers07] Versteeg, H.K., and Malalasekera, W., 2007. An introduction to 
computational Fluid Dynamics, The Finite Volume Method, Second 
Edition, Pearson Prentice Hall. 

[Walt02] Walton, A., and Cheng, A.Y.S., 2002. Large-Eddy Simulation of Pollution 
Dispersion in Urban Street Canyon. – Part II. Idealized Canyon Simulation, 
Atmospheric Environment 36, pp.3615-3627. 

[Wang06] Wang, X., and McNamara, K.F. 2006. Evaluation of CFD simulation using 
RANS turbulence models for building effects on pollutant dispersion, 
Environmental Fluid Mechanics, 6, pp. 181–202. 

[Wang09] Wanga, B.-Ch., Yee, E., Lien, F.-S., 2009. Numerical study of dispersing 
pollutant clouds in a built-up environment. International Journal of Heat and 
Fluid Flow 30, pp.3–19. 

[Warn06] Warner, S., Platt, N., Heagy, J.F., Jordan, J.E., and Bieberbach, G., 2006. 
Comparisons of Transport and Dispersion Model Predictions of the Mock 
Urban Setting Test Field Experiment, Journal of Applied Meteorology and 
Climatology, 45, 10, pp.1414-1428. 

[West02] Westbury, P., 2002. CFD application on the evaluation of pedestrian-level 
winds, in Proceedings of the Workshop Impact of Wind and Storm on City 
life and Built Environment, Nantes, France, pp. 172-181. 

[Whit71] White, F., and Christoph, G., 1971. A Simple New Analysis of 
Compressible Turbulent Skin Friction Under Arbitrary Conditions, 
technical report AFFDL-TR-70-133. 



11. References 

174 

[Wik-ADM] http://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling 
[Wiks00] Wikström, P.M., Wallin, S., and Johansson, A.V., 2000. Derivation and 

investigation of a new explicit algebraic model for the passive scalar flux, 
Phys. Fluids 12, pp.688-702. 

[Wiks98] Wikstrom, P., Hallbäck, M., and Johansson, A., 1998. Measurements and 
heat-flux transport modelling in a heated cylinder wake. Int. Journal of Heat 
and Fluid Flow. 19, pp.556-562.  

[Wilc98] Wilcox, D.C., 1998. Turbulence Modelling for CFD, DCW Industries, Inc., 
La Canada, California, USA. 

[Wils01] Wilson, J., Flesch, T., and Harper, L., 2001. Micro-meteorological methods 
for estimating surface exchange with a disturbed windflow, Agricultural and 
Forest Meteorology, 107, pp. 207–225. 

[Wolf69] Wolfstein, M., 1969. The velocity and temperature distribution of one-
dimensional flow with turbulence augmentation and pressure gradient. Int. 
J. Heat Mass Transfer, 12, pp.301-318. 

[Wood89] Wood, C., 1989. Planning Pollution Prevention, Heinemann Newnes, 
Oxford – UK. ISBN: 0434922749. 

[Wyng71] Wyngaard, J.C., Coté, O.R., and Izumi, Y., 1971. Local free convection, 
similarity and the budgets of shear stress and heat flux, J. Atmos. Sci. 28, 
pp.1171-1182. 

[Wyng74] Wyngaard, J.C., and Coté, O.R., 1974. The evolution of a convective 
planetary boundary layer — A higher-order-closure model study, Boundary-
Layer Meteorology. 7, 3, pp.289-308. 

[Xi06] Xi, X., Liu, Ch., Leung, D., and Lam, K.M., 2006. Recent progress in CFD 
modelling of wind field and pollutant transport in street canyons, 
Atmospheric Environment, 40, pp.5640-5658. 

[Xian06] Xian-Xiang, L., Liub, Ch.-H., Leunga, D.Y.C., and Lam, K.M., 2006. 
Recent progress in CFD modelling of wind field and pollutant transport in 
street canyons, Atmospheric Environment 40, pp.5640–5658. 

[Yakh86] Yakhot, V., and S.A., Orszag, 1986. Renormalization group analysis of 
turbulence I. Basic theory, Journal of Scientific Computing, 1, 1, pp.1-51. 

[Yass08] Yassin, M.F., Kellnerová, R., and Jaňour, Z., 2008. Impact of street 
intersections on air quality in an urban environment, Atmospheric 
Environment, 42, pp. 4948–4963. 

[Yee04] Yee, E., and Biltoft, C.A., 2004. Concentration fluctuation measurements in 
a plume dispersing through a regular array of obstacles, Boundary-Layer 
Meteorol 111, pp.363–415. 

[Yee06] Yee, E., Gailis, R.M., Hill, A., Hilderman, T., and Kiel, D., 2006. 
Comparison of wind-tunnel and water channel simulations of plume 
dispersion through a large array of obstacles with a scaled field experiment, 
Boundary-Layer Meteorology 121, pp.389–432.  

[Youn05] Younis, B., Speziale, Ch., Clark, T., 2005. A rational model for the 
turbulent scalar fluxes, Proceedings of the Royal Society A 461, pp.575-
594. 

[Youn07] Younis, B., Weigang, B., Spring, S., 2007. An explicit algebraic model for 
turbulent heat transfer in wall bounded flow with streamline curvature, 
Journal Heat transfer, 129, pp.425-433. 

 

 



 

 

Appendix A. Additional Model 

Description 

 

A.1 Second Moment Model from Hanjalic-Jakirlic [Hanj02] 
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where: 

35,00 =φC  55,0'1 =φC  15,04 =φC  2,0=φφC  R=0,5 

 

A.2 Second Moment Model from Durbin [Durb93] 
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A.3 Model coefficients and functions of Standard k-ω model  

For the computation of the turbulent viscosity  
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In the dissipation of ω, Yω: 
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A.4 Model coefficients and functions of k-ω SST model  

The turbulent Prandtl numbers are calculated from: 
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And for the turbulent viscosity (µt): 
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where y is the distance to the next surface and +
ωD  is the positive portion of the cross-

diffusion term Dω presented in Table 3-5.  
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In the dissipation of k (term Yk), fi=1. 

In the dissipation of ω (term Yω),  fβ=1 and β=βi=F1βi,1+(1-F1)βi,2. 
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C* Measurements [Pava99] 

 

 

 
C* with LES predictions 

from [Liu02] 
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Figure B- 1. - Prediction of C* dispersion using different turbulence model for Reynolds stresses and 

SED1 for scalar fluxes. Experiments from [Pava99]. 

 



Appendix B. Additional Figures from the Simulation of the 2D Street Canyon 

179 

10
10

20

20
30

30

40
4

0
50

5
0

60

6
0

70

8
0

9
0

100130140
1701

9

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model GGDH 

10

10

20

2
0

20

30

3
0

40

4
0

50

5
0

60

60

7
0

8
0

80

9
0

90

1
0

0

110
130140

170

1
9
0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model SED1 

10

10

20

20

30

3
0

40

4
0

50

5
0

60

60

7
0

80

80

90

90

1
0

0

100

1
1

0

120

1
3

0
1
4
0

170

1
9
0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model SED2 

   

10 1020

20

20

30

3
0

40

4
0

5
0

6
0

8090
100130

1
4

1701
9

0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model ABE 

10

10
20

20

30

30

40

4
0

50

5
0

60

6
0

70

8
0

9
0

100130140
170

1
9
0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model ABE-SUGA 

10

1020

2
0

30

3
0

4
0

4
0

5
0

50

6
0

7
0

8
0

90120

1
3
0

160

1
8
0

190 140

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model WET 

   

10

10
20

20
30

3
0

40

4
0

50

5
0

60

6
0

7
0

8
0

80

9
0

90

1
0
0

110

130

1
4
0

170
190

160

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* Model YOUNIS 

10

10

20 2
030

3
0

40

4
0

4
0

50

5
0

60

60

7
0

8
0

9
0

90

1
0

0

130

150
160

180 1
1
0

14
0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* S-M HANJALIC 

10
20

30

3
0

40 40

40

50

5
0

50

6
0

6
0

6
07

0

7
0

70

8
0

80

9
0

90

100
110

1601
7
0

190

5
0

x/H

y
/H

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

 
C* S-M DURBIN 

  

Figure B- 2.- Contour plot of normalized concentration C* for all implemented scalar flux models.  
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Figure B- 3.- Contour plot of pressure variation in the street canyon [Pa]. Predictions obtained 

using middle grid with LRR-IP and SED turbulence models. 

 

 

 

Figure B- 4. - Spatial Distribution of the concentration variance in the street canyon [Pava99]. 
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Turbulent Viscosity Comparison 

using 7 different turbulent models in street canyon exercise
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Figure B- 5.- Comparison of turbulent viscosity predictions (µµµµt) using seven turbulence models 

for Reynolds stresses in the street canyon test case (see Figure 7-2-b). There are 10 nodes per line 

(7 lines=70 nodes) and they are plotted within each line in ascendant direction, i.e. from left 

(bottom of the canyon, y=0) to right (top of canyon, y=H). 
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Figure B- 6.- Velocity vector predictions obtained using middle grid and LRRIP turbulence 

model. Vectors are colored by velocity magnitude [m/s] 



 

 

Appendix C. Additional Figures 

from the Simulations of the MUST 

Experiment 



Appendix C. Additional Figures from the Simulations of the MUST Experiment 

184 

 

 
 

 
Figure C- 1. Detail of middle size grid of ROTDOM (a) and STDDOM(b). 
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Plane Z=H/14 (≈≈≈≈0.18m) 

 

Plane Z=H/2 (1.27m) 

 

Plane Z=H (2.54m) 

 

Plane Z=2H (5.08m) 

 

Plane Z=3H (7.62m) 

Figure C- 2. Contour plots of velocity magnitude at different heights and vectors showing the 

flow direction of MUST test case. Results from computational domain STDDOM using LRRIP 

turbulence model. 
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Table C- 1.- Grid analysis by Richardson extrapolation for MUST flow field at z=1.275 m 

(considering only coarse-uv plane and using LRRIP model for Reynolds stresses). 

Model 
Monotonic 

convergence 

Oscillatory 

convergence 
Divergence 

<R> 

(E-01) 
<p> 

U1-max 

(E-01) 

<U1> 

(E-02) 

U 35.58% 18.73% 45.69% 4.45 4.84 3.84 5.92 

V 36.33% 19.48% 44.19% 4.86 4.29 5.25 7.62 

w 38.20% 14.23% 47.57% 4.94 4.12 2.74 5.00 

urms 30.34% 17.98% 51.69% 4.80 3.74 0.216 0.515 

vrms 32.58% 30.34% 37.08% 4.24 4.94 0.268 0.615 

wrms 42.32% 15.73% 41.95% 5.42 3.48 0.239 0.411 

Average: 35.89% 19.41% 44.69%     
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Figure C- 3. Scatter plots (1
st
 and 2

nd
 columns) and FAC2 plot (3

rd
 column) of scalar flux models 

employed in MUST experiment using the Excel tool from the research group COST Action 732. Part I. 
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Figure C- 4. Scatter plots (1
st
 and 2

nd
 columns) and FAC2 plot (3

rd
 column) of scalar flux models 

employed in MUST experiment using the Excel tool from the research group COST Action 732. Part II.  
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Figure C- 5. Contour plots of normalized concentration C* in MUST case using the STDDOM 

domain and the LRRIP turbulence model together with several scalar flux models. Plane 

z=H/14 (1
st
 cell centre above bottom wall). 
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Figure C- 6. Contour plots of normalized concentration C* for LRRIP and several scalar flux 

models in MUST case. Plane z=H/2. See Figure C- 5 for more details of simulation setup. 
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D.2 Code for three-dimensional algebraic scalar flux models 

#include "udf.h" 

#include "mem.h" 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(Matrix_SED,c,t,i,dmatrix) 

{ 

real diff,Sc,visc; 

Sc=0.7; 

visc=C_MU_T(c,t)/Sc; 

diff=visc+C_MU_L(c,t); 

 dmatrix[0][0] =diff; 

 dmatrix[1][1] =diff; 

 dmatrix[2][2] =diff; 

 dmatrix[1][0] =0.; 

 dmatrix[0][1] =0.; 

 dmatrix[2][0] =0.; 

 dmatrix[0][2] =0.; 

 dmatrix[2][1] =0.; 

 dmatrix[1][2] =0.; 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(Matrix_SED2,c,t,i,dmatrix) 

{ 

real diff,Sc,visc; 

Sc=0.9; 

visc=C_MU_T(c,t)/Sc; 

diff=visc+C_MU_L(c,t); 

 dmatrix[0][0] =diff; 

 dmatrix[1][1] =diff; 

 dmatrix[2][2] =diff; 

 dmatrix[1][0] =0.; 

 dmatrix[0][1] =0.; 

 dmatrix[2][0] =0.; 

 dmatrix[0][2] =0.; 

 dmatrix[2][1] =0.; 

 dmatrix[1][2] =0.; 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_GGDH,c,t,i,dmatrix) 

{ 

  real con,Tao; 

  real uu, vv, uv, vu, uw, wu, vw, wv, ww; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  vu=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  wu=C_RUW(c,t); 

  vw=C_RVW(c,t); 

  wv=C_RVW(c,t); 

 Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/(C_D(c,t)*C_R(c,t)))); 

  con=0.3*Tao*C_R(c,t); 

  dmatrix[0][0] =con*uu+C_MU_L(c,t); 

  dmatrix[0][1] =con*vu; 

  dmatrix[0][2] =con*uw; 

  dmatrix[1][0] =con*uv; 

  dmatrix[1][1] =con*vv+C_MU_L(c,t); 

  dmatrix[1][2] =con*vw; 

  dmatrix[2][0] =con*uw; 
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  dmatrix[2][1] =con*vw; 

  dmatrix[2][2] =con*ww+C_MU_L(c,t); 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_GGDH2,c,t,i,dmatrix) 

{ 

  real con, fmu, Rek, Ret, Tao; 

  real uu, vv, uv, vu, uw, wu, vw, wv, ww; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  vu=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  wu=C_RUW(c,t); 

  vw=C_RVW(c,t); 

  wv=C_RVW(c,t); 

  Rek=C_R(c,t)*sqrt(C_K(c,t))*C_WALL_DIST(c,t)/C_MU_L(c,t); 

  Ret=C_R(c,t)*pow(C_K(c,t),2)/(C_MU_L(c,t)*C_D(c,t)); 

  fmu=pow((1-exp(-0.0225*Rek)),2)*(1+(41/Ret)); 

 Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/(C_D(c,t)*C_R(c,t)))); 

  con=0.3*fmu*Tao*C_R(c,t); 

  dmatrix[0][0] =con*uu+C_MU_L(c,t); 

  dmatrix[0][1] =con*vu; 

  dmatrix[0][2] =con*uw; 

  dmatrix[1][0] =con*uv; 

  dmatrix[1][1] =con*vv+C_MU_L(c,t); 

  dmatrix[1][2] =con*vw; 

  dmatrix[2][0] =con*uw; 

  dmatrix[2][1] =con*vw; 

  dmatrix[2][2] =con*ww+C_MU_L(c,t); 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_Abe_Suga,c,t,i,dmatrix) 

{ 

  real con, Tao; 

  real uu, vv, uv, vu, uw, wu, vw, wv, ww; 

 Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/(C_D(c,t)*C_R(c,t)))); 

  con=0.45*C_R(c,t)*Tao/C_K(c,t); 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  vu=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  wu=C_RUW(c,t); 

  vw=C_RVW(c,t); 

  wv=C_RVW(c,t); 

  dmatrix[0][0] =con*(uu*uu+uv*vu+uw*wu)+C_MU_L(c,t); 

  dmatrix[0][1] =con*(uu*uv+uv*vv+uw*wv); 

  dmatrix[0][2] =con*(uu*uw+uv*vw+uw*ww); 

  dmatrix[1][0] =con*(vu*uu+vv*vu+vw*wu); 

  dmatrix[1][1] =con*(vu*uv+vv*vv+vw*wv)+C_MU_L(c,t); 

  dmatrix[1][2] =con*(vu*uw+vv*vw+vw*ww); 

  dmatrix[2][0] =con*(wu*uu+wv*vu+ww*wu); 

  dmatrix[2][1] =con*(wu*uv+wv*vv+ww*wv); 

  dmatrix[2][2] =con*(wu*uw+wv*vw+ww*ww)+C_MU_L(c,t); 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_Abe,c,t,i,dmatrix) 

{ 
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  real con1,con2, Tao; 

  real uu, vv, uv, vu, uw, wu, vw, wv, ww; 

 Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/(C_D(c,t)*C_R(c,t)))); 

  con1=0.22*C_R(c,t)*Tao; 

  con2=0.45*C_R(c,t)*Tao/C_K(c,t); 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  vu=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  wu=C_RUW(c,t); 

  vw=C_RVW(c,t); 

  wv=C_RVW(c,t); 

  dmatrix[0][0] 

=con1*uu+con2*uu*uu+con2*uv*vu+con2*uw*wu+C_MU_L(c,t); 

  dmatrix[0][1] =con1*uv+con2*uu*uv+con2*uv*vv+con2*uw*wv; 

  dmatrix[0][2] =con1*uw+con2*uu*uw+con2*uv*vw+con2*uw*ww; 

  dmatrix[1][0] =con1*vu+con2*vu*uu+con2*vv*vu+con2*vw*wu; 

  dmatrix[1][1] 

=con1*vv+con2*vu*uv+con2*vv*vv+con2*vw*wv+C_MU_L(c,t); 

  dmatrix[1][2] =con1*vw+con2*vu*uw+con2*vv*vw+con2*vw*ww; 

  dmatrix[2][0] =con1*wu+con2*wu*uu+con2*wv*vu+con2*ww*wu; 

  dmatrix[2][1] =con1*wv+con2*wu*uv+con2*wv*vv+con2*ww*wv; 

  dmatrix[2][2] 

=con1*ww+con2*wu*uw+con2*wv*vw+con2*ww*ww+C_MU_L(c,t); 

} 

 

D.3  Code for three-dimensional second moment scalar flux model of 

HANJALIC 

#include "udf.h" 

#include "mem.h" 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_GGDH_Sec_Mom,c,t,i,dmatrix) 

{ 

  real con, Visc, Tao; /* fmu, Rek, Ret;*/ 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  vw=C_RVW(c,t); 

/*  Visc=-1*C_MU_T(c,t)/C_R(c,t); 

  uu=Visc*2.*C_DUDX(c,t)+(2./3.)*C_K(c,t); 

  vv=Visc*2.*C_DVDY(c,t)+(2./3.)*C_K(c,t); 

  ww=Visc*2.*C_DWDZ(c,t)+(2./3.)*C_K(c,t); 

  uv=Visc*(C_DUDY(c,t)+ C_DVDX(c,t)); 

  uw=Visc*(C_DUDZ(c,t)+ C_DWDX(c,t)); 

  vw=Visc*(C_DVDZ(c,t)+ C_DWDY(c,t));*/ 

  vu=uv; 

  wu=uw; 

  wv=vw; 

/*  Rek=C_R(c,t)*sqrt(C_K(c,t))*C_WALL_DIST(c,t)/C_MU_L(c,t); 

  Ret=C_R(c,t)*pow(C_K(c,t),2)/(C_MU_L(c,t)*C_D(c,t)); 

  fmu=pow((1-exp(-0.0225*Rek)),2)*(1+(41/Ret));*/ 

  Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/C_D(c,t))); 

  con=0.15*C_R(c,t)*Tao; 
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  dmatrix[0][0] =con*uu; 

  dmatrix[1][1] =con*vv; 

  dmatrix[2][2] =con*ww; 

  dmatrix[1][0] =con*uv; 

  dmatrix[0][1] =con*uv; 

  dmatrix[2][0] =con*uw; 

  dmatrix[0][2] =con*uw; 

  dmatrix[2][1] =con*vw; 

  dmatrix[1][2] =con*vw; 

} 

 

DEFINE_SOURCE(source_UDS0,c,t,dS,eqn) 

{ 

  real source; 

  source =-

(C_UDSI_G(c,t,1)[0]+C_UDSI_G(c,t,2)[1]+C_UDSI_G(c,t,3)[2]); 

  dS[eqn] = 0.; 

 return source; 

} 

 

DEFINE_SOURCE(source_UDS1,c,t,dS,eqn) 

{ 

  real source; 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  real T1, T2, T3; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  vw=C_RVW(c,t); 

/*  Visc=-1*C_MU_T(c,t)/C_R(c,t); 

  uu=Visc*2.*C_DUDX(c,t)+(2./3.)*C_K(c,t); 

  vv=Visc*2.*C_DVDY(c,t)+(2./3.)*C_K(c,t); 

  ww=Visc*2.*C_DWDZ(c,t)+(2./3.)*C_K(c,t); 

  uv=Visc*(C_DUDY(c,t)+ C_DVDX(c,t)); 

  uw=Visc*(C_DUDZ(c,t)+ C_DWDX(c,t)); 

  vw=Visc*(C_DVDZ(c,t)+ C_DWDY(c,t));*/ 

  vu=uv; 

  wu=uw; 

  wv=vw; 

T1=uu*C_UDSI_G(c,t,0)[0]+uv*C_UDSI_G(c,t,0)[1]+uw*C_UDSI_G(c,t,0)[2]

; 

T2=0.45*(C_UDSI(c,t,1)*C_U_G(c,t)[0]+C_UDSI(c,t,2)*C_U_G(c,t)[1]+C_U

DSI(c,t,3)*C_U_G(c,t)[2]); 

  T3=3.5*C_UDSI(c,t,1)*C_D(c,t)/C_K(c,t); 

  source =-T1-T2-T3; 

  dS[eqn] = -0.45*C_U_G(c,t)[0]-3.5*C_D(c,t)/C_K(c,t); 

 return source; 

} 

 

DEFINE_SOURCE(source_UDS2,c,t,dS,eqn) 

{ 

  real source; 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  real T1, T2, T3; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  uw=C_RUW(c,t); 
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  vw=C_RVW(c,t); 

/*  Visc=-1*C_MU_T(c,t)/C_R(c,t); 

  uu=Visc*2.*C_DUDX(c,t)+(2./3.)*C_K(c,t); 

  vv=Visc*2.*C_DVDY(c,t)+(2./3.)*C_K(c,t); 

  ww=Visc*2.*C_DWDZ(c,t)+(2./3.)*C_K(c,t); 

  uv=Visc*(C_DUDY(c,t)+ C_DVDX(c,t)); 

  uw=Visc*(C_DUDZ(c,t)+ C_DWDX(c,t)); 

  vw=Visc*(C_DVDZ(c,t)+ C_DWDY(c,t));*/ 

  vu=uv; 

  wu=uw; 

  wv=vw; 

T1=vu*C_UDSI_G(c,t,0)[0]+vv*C_UDSI_G(c,t,0)[1]+vw*C_UDSI_G(c,t,0)[2]

; 

T2=0.45*(C_UDSI(c,t,1)*C_V_G(c,t)[0]+C_UDSI(c,t,2)*C_V_G(c,t)[1]+C_U

DSI(c,t,3)*C_V_G(c,t)[2]); 

  T3=3.5*C_UDSI(c,t,2)*C_D(c,t)/C_K(c,t); 

  source =-T1-T2-T3; 

  dS[eqn] = -0.45*C_V_G(c,t)[1]-3.5*C_D(c,t)/C_K(c,t); 

 return source; 

} 

 

DEFINE_SOURCE(source_UDS3,c,t,dS,eqn) 

{ 

  real source; 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  real T1, T2, T3; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  vw=C_RVW(c,t); 

/*  Visc=-1*C_MU_T(c,t)/C_R(c,t); 

  uu=Visc*2.*C_DUDX(c,t)+(2./3.)*C_K(c,t); 

  vv=Visc*2.*C_DVDY(c,t)+(2./3.)*C_K(c,t); 

  ww=Visc*2.*C_DWDZ(c,t)+(2./3.)*C_K(c,t); 

  uv=Visc*(C_DUDY(c,t)+ C_DVDX(c,t)); 

  uw=Visc*(C_DUDZ(c,t)+ C_DWDX(c,t)); 

  vw=Visc*(C_DVDZ(c,t)+ C_DWDY(c,t));*/ 

  vu=uv; 

  wu=uw; 

  wv=vw; 

T1=wu*C_UDSI_G(c,t,0)[0]+wv*C_UDSI_G(c,t,0)[1]+ww*C_UDSI_G(c,t,0)[2]

; 

T2=0.45*(C_UDSI(c,t,1)*C_W_G(c,t)[0]+C_UDSI(c,t,2)*C_W_G(c,t)[1]+C_U

DSI(c,t,3)*C_W_G(c,t)[2]); 

  T3=3.5*C_UDSI(c,t,3)*C_D(c,t)/C_K(c,t); 

  source =-T1-T2-T3; 

  dS[eqn] = -0.45*C_W_G(c,t)[2]-3.5*C_D(c,t)/C_K(c,t); 

 return source; 

} 

 

DEFINE_SOURCE(source_UDS4,c,t,dS,eqn) 

{ 

  real source; 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  real T1, T2, R; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 
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  uw=C_RUW(c,t); 

  vw=C_RVW(c,t); 

/*Visc=-1*C_MU_T(c,t)/C_R(c,t); 

  uu=Visc*2.*C_DUDX(c,t)+(2./3.)*C_K(c,t); 

  vv=Visc*2.*C_DVDY(c,t)+(2./3.)*C_K(c,t); 

  ww=Visc*2.*C_DWDZ(c,t)+(2./3.)*C_K(c,t); 

  uv=Visc*(C_DUDY(c,t)+ C_DVDX(c,t)); 

  uw=Visc*(C_DUDZ(c,t)+ C_DWDX(c,t)); 

  vw=Visc*(C_DVDZ(c,t)+ C_DWDY(c,t));*/ 

  vu=uv; 

  wu=uw; 

  wv=vw; 

  R=0.5; 

T1=-

2*(C_UDSI(c,t,1)*C_UDSI_G(c,t,0)[0]+C_UDSI(c,t,2)*C_UDSI_G(c,t,0)[1]

+C_UDSI(c,t,3)*C_UDSI_G(c,t,0)[2]); 

  T2=(-C_D(c,t)/(2*R*2*C_K(c,t)))*C_UDSI(c,t,4); 

  source =T1+T2; 

  dS[eqn] = -C_D(c,t)/(2*R*2*C_K(c,t)); 

 return source; 

} 

 

DEFINE_ANISOTROPIC_DIFFUSIVITY(diff_GGDH_Variance,c,t,i,dmatrix) 

{ 

  real con, Visc, Tao; /* fmu, Rek, Ret;*/ 

  real uu, vv, ww, uv, uw, vw, vu, wu, wv; 

  uu=C_RUU(c,t); 

  vv=C_RVV(c,t); 

  ww=C_RWW(c,t); 

  uv=C_RUV(c,t); 

  uw=C_RUW(c,t); 

  vw=C_RVW(c,t); 

  vu=uv; 

  wu=uw; 

  wv=vw; 

  Tao=MAX(C_K(c,t)/C_D(c,t),6*sqrt(C_MU_L(c,t)/C_D(c,t))); 

  con=0.2*C_R(c,t)*Tao; 

  dmatrix[0][0] =con*uu; 

  dmatrix[1][1] =con*vv; 

  dmatrix[2][2] =con*ww; 

  dmatrix[1][0] =con*uv; 

  dmatrix[0][1] =con*uv; 

  dmatrix[2][0] =con*uw; 

  dmatrix[0][2] =con*uw; 

  dmatrix[2][1] =con*vw; 

  dmatrix[1][2] =con*vw; 

} 

 

D.4 Code Profile.c 

#include "udf.h" 

DEFINE_PROFILE(inlet_u,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 
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F_PROFILE(f,thread,nv)=(0.068716405/0.4187)*log((x[2]+0.0165)/0.0165

); 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_v,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) = 0.; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_w,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) = 0.; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_uu,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) =0.15*0.15; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_vv,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 
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      { 

          F_PROFILE(f,thread,nv) = 0.128*0.128; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_ww,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) = 0.096*0.096; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_uv,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) = 0.0; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_uw,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) =-0.00472; 

      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_vw,thread,nv) 

{ 

  face_t f; 

  real x[ND_ND]; 

 

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

      { 

          F_PROFILE(f,thread,nv) = 0.0; 
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      } 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_k, thread, nv) 

{ 

  face_t f; 

  real x[ND_ND], uu, vv, ww; 

   

  /* loop over each of the faces of this zone */ 

  begin_f_loop (f,thread) 

    { 

      uu=0.15*0.15; 

      vv=0.128*0.128; 

      ww=0.096*0.096; 

      F_PROFILE(f,thread,nv)=0.5*sqrt(uu+vv+ww); 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(inlet_eps, thread, nv) 

{ 

  face_t f; 

  real x[ND_ND], uu, vv, ww; 

    /* loop over each of the faces of this zone */ 

      uu=0.15*0.15; 

      vv=0.128*0.128; 

      ww=0.096*0.096; 

  begin_f_loop (f,thread) 

    { 

      F_CENTROID(x,f,thread); 

          F_PROFILE(f,thread,nv) = 

pow(uu+vv+ww,1.5)/pow(0.09,0.75)/0.4187/(x[2]+0.0165) ; 

    } 

  end_f_loop (f,thread) 

    } 

DEFINE_PROFILE(bottom_ks, t, i) 

{ 

  real x1, x2, x[ND_ND]; 

  face_t f; 

 

  begin_f_loop(f, t) 

    { 

      F_CENTROID(x,f,t); 

      x1 = x[0]; 

      x2 = x[1]; 

      if (x1 < -76.05 && (x1 * x1 + x2 * x2) > 17226.5625) 

        { 

          F_PROFILE(f,t,i) = 0.1615845; 

        } 

      else 

        { 

          F_PROFILE(f,t,i) = 0.; 

        } 

    } 

  end_f_loop(f, t) 

} 
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