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Zusammenfassung

3D-Kartengenerierung und 3D-Bewegungsschätzung in Echtzeit aus-

schließlich unter Verwendung visueller Daten sind zwei anspruchsvolle

Problemstellungen, mit denen sich der Arbeitskreis zum maschinel-

len Sehen in den vergangenen Jahren intensiv auseinandergesetzt hat.

Für die erfolgreiche Erstellung einer 3D-Karte bedarf es der genau-

en 3D-Bewegungsschätzung mit Hilfe eines Eingangssensors während

des Kartierungsprozesses. Bisher waren die meisten Versuche zur Ver-

besserung der 3D-Bewegungsschätzung vor allem auf die eingesetzten

Software-Algorithmen gerichtet. Doch trotz ausgeklügelter Algorith-

men wird eine exakte 3D-Bewegungsschätzung weiterhin durch die

Grenzen behindert, die durch den verwendeten visuellen Sensor her-

vorgerufen werden. Eine einzelne Kamera besitzt nur ein kleines Sicht-

feld, was zum Problem der Bewegungsmehrdeutigkeit im Fall kleiner

Bewegungen führt und damit zu ungenauen Bewegungsinformationen

und einer schlechten Kartenqualität.

Diese Doktorarbeit stellt eine neue Multikamera-Hardware vor, die

als ein optisches 3D-Messgerät zur Lösung der Probleme der Echtzeit-

3D-Bewegungsschätzung und -3D-Kartierung verwendet werden kann.

Der Fokus liegt dabei nicht allein auf der Software-Lösung, sondern

geht einen alternativen Weg zur Verbesserung der Genauigkeit und

Zuverlässigkeit der Bewegungsschätzung, nämlich mit Hilfe eines bes-

seren Hardware-Designs. Das Ergebnis dieser Herangehensweise ist

eine Multikameraeinheit (MKE), die auf eine extrem genaue 3D-Bewe-

gungsdetektion ausgelegt ist. Sie besteht aus drei Stereokamerapaa-

ren, die zu einer kompakten, mobilen Hardwareplattform zusammen-

gefügt werden. Die einzigartige Kameraanordnung beseitigt die Mehr-
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deutigkeit des Bewegungsfehlers, welche man in Einzelkamerasyste-

men findet, und liefert so eine präzise Bewegungsschätzung. Das

erweiterte Sichtfeld dank mehrerer Kameras ermöglicht außerdem

eine einfache, aber genaue Detektion der 3D-Bewegung der Kamera

in Echtzeit ohne komplizierte Berechnungen. Die begleitenden Algo-

rithmen, die für die Echtzeit-3D-Bewegungsschätzung benötigt wer-

den, einschließlich der Detektion und des Abgleichs von Merkmalen in

Echtzeit sowie Algorithmen zur Unterdrückung von Ausreißern, wer-

den ebenfalls für die MKE implementiert. Darüber hinaus wird der

FastSLAM-Algorithmus für die simultane Echtzeit-3D-Lokalisierung

und Kartenerstellung implementiert, um eine einheitliche Merkmal-

punktkarte und den Standort und die Ausrichtung der MKE bei-

zubehalten. Infolge dessen erbringt das vorgestellte 3D-Bewegungs-

schätzungs- und 3D-Kartierungssystem mittels der MKE im Vergleich

zu den herkömmlichen Einzelkamerasystemen eine höhere Leistung,

was durch Simulationsergebnisse und Experimente unter realen Bedin-

gungen bestätigt wird. Dies gilt besonders für die Leistungsfähigkeit

der 3D-Bewegungsschätzung, bei der sowohl die rotatorische als auch

die translatorische Mehrdeutigkeit des Bewegungsfehlers kompensiert

wird. Der wahrscheinlichkeitstheoretische Ansatz für die Generierung

von Merkmalpunktkarten zeigt eine hohe Echtzeit-Leistung und Kon-

sistenz mit guter Genauigkeit. Schließlich wird die vorgestellte Multi-

kamera-Hardware für 3D-fotorealistische Kartierungsprojekte verwen-

det, in denen ein hochwertiges 3D-Modell, welches die Umgebung kor-

rekt repliziert, in Echtzeit erstellt werden kann.
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Abstract

Real-time 3D map building and 3D motion estimation using only

visual data are two challenging problems which have been intensively

studied by the machine vision community in the past decade. In

order to successfully build a 3D map, the accurate 3D motion estima-

tion of the input sensor during the map building process is needed.

Up to now, most of the attempts to improve the 3D motion estima-

tion process have been concentrated on the software algorithms used.

However, despite the use of sophisticated algorithms, accurate 3D

motion information is still hindered by the limitation of the visual

sensor used, e.g. a single camera with small field of view which

suffers the motion ambiguity problem in the case of small movements,

leading to inaccurate motion information and poor map quality.

This thesis work proposes a new piece of multi-camera hardware to be

used as a 3D visual sensing device for the real-time 3D motion estima-

tion and 3D map building problems. Instead of focusing only on the

software solution, this work takes an alternative approach to improve

the motion estimation accuracy and robustness by means of a better

hardware design. A multi-camera unit (MCU) which is aimed for high

accuracy 3D motion detection is constructed. It consists of three pairs

of stereo cameras which are put together as a compact, mobile hard-

ware platform. This unique camera arrangement eliminates the mo-

tion ambiguity error found in single camera systems and so accurate

motion estimation is obtained. The increased field of view by means

of multiple cameras also enables a simple but accurate detection of

3D movement of the camera in real-time without any complex calcula-

tions. The accompanied algorithms which are needed for the real-time
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3D motion estimation including the real-time feature detection and

feature matching as well as outlier rejection schemes are also imple-

mented for the MCU system. Moreover, the FastSLAM algorithm for

real-time 3D localization and map building approach is implemented

in order to maintain a consistent feature point map and the location

and orientation of the MCU. As a result, the proposed 3D motion

estimation and 3D map building using the MCU system gives a better

performance compared to the conventional, single camera systems as

confirmed by the simulation results and real world experiments. This

is especially the case for 3D motion estimation performances, where

the motion ambiguity error is being compensated in both rotation and

translation cases. The probabilistic approach for 3D feature point map

building shows a strong real-time performance and consistency with

good accuracy. Finally, the proposed multi-camera hardware is used

for a 3D photorealistic map building task where a high quality 3D

model which correctly replicates the surrounding environment can be

constructed in real-time.
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Chapter 1

Introduction

Overview — Goals — Contributions — Content of the Thesis

1.1 Overview

The 3D Map

A map is a material or database that contains useful information of the observed envi-

ronment including the basic geometric descriptions of objects within the environment

such as location, length, size, appearance, etc. A map is usually presented by means of

miniature graphics that are directly captured from the real environment. The images

captured from different locations and perspectives of the environment are tiled together

to present a complete replication of the environment. Figure 1.1 is an example of such

a graphical map being made from a set of images captured by the Mars exploration

robot. Not only does this map represent the 2D graphical explanation of the remote

site in terms of intensity image, but the depth information of the site is also provided,

which promotes the usefulness of the map even further.

While 2D graphic maps might be sufficient for many applications, many others

require the full explanation of the environment in three dimensions. A 3D map is then
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1.1 Overview

Figure 1.1: A well-traveled ‘Eagle crater’, a 3D version of the view from the Mars explo-

ration rover Opportunity on its 56th sol on Mars. The blue and red color in this anaglyph

image encodes the depth information of the scene which can be seen when viewed with a

pair of two color glasses. (photo credit: NASA/JPL)

a better candidate since it contains the corresponding volume and fully 3D dimension

information of the real world environment. Figure 1.2 shows an example of a 3D map

captured by the Wägele platform [Biber et al. (2005)]. In this case complete geometry

information as well as the texture of the environment is available in the map. Such a

map is considered a 3D photorealistic map since an image derived from an arbitrary

viewpoint of the 3D map has a similar quality compared to a photo taken from a real

scene at the same location.

Some uses of the 3D maps include, but are not limited to:

• remote exploration with autonomous systems, autonomous robot navigation, etc.,

• cultural site preservation, engineering site measurement and

• generation of 3D multimedia contents for the entertainment industry.

3D Motion Estimation

The tasks of 3D map building are usually carried out using a 3D visual sensor. For

instance, a stereo camera can be used to generate a high quality 3D image in less

than a second. However, it is usually impossible to generate a 3D image of the entire

environment in one shot due to certain limitations such as limited field of view, limited

range of operation, etc. Therefore, to generate a map of a large environment, multiple

measurements have to be taken in order to fully describe the environment. Generally

the measurement tool is moved around the environment so that the entire space can

be discretely observed. In order to join these multiple measurements the egomotion
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1.1 Overview

Figure 1.2: An example of a 3D model built by the Wägele platform. (photo credit:

University of Tübingen)

between each measurement is needed. Figure 1.3 depicts this scenario. Firstly, the

first 3D image frame is taken. However the small field of view of the sensor makes it

impossible to cover the whole space of the environment and therefore the 3D sensor is

moved to a new location in order to make another 3D image of the environment. These

two measurements can be easily combined if the 3D motion information between the

two frames is available.

In machine vision, the motion information can be estimated using series of images

captured by the observer during a movement. From each time step feature points are

extracted from the images. The process called visual odometry uses these feature points

to estimate the 3D motion information at each time step. The resulting 3D motion is a

composition of two main components – translation and rotation, which can be described

in terms of displacement, velocity and acceleration. The path that the observer has

undergone can be described as a time-ordered collection of 3D locations and poses.

Such a path is called a trajectory. It is also common to define a reference coordinate

frame in order to describe the motion according to a certain reference frame.
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(a)

(c)

(b)

(d)

motion

frame 1

frame 2

Figure 1.3: Relationship between motion and map building. (a) target environment (b)

image frame 1 is captured (c) camera is moved and image frame 2 is captured (d) two

image frames can be put together if the motion is known.

1.2 Goals

The main objective of this thesis work is the realization of a new 3D visual sensor for

the 3D motion estimation and map building tasks. The 3D motion information is to be

estimated using only visual information from the proposed hardware; no other odometry

devices are used. The accompanied software algorithms for the 3D motion estimation

and map building processes are to be implemented. Particular emphasis is also placed

on the implementation of a probabilistic approach for real-time map building that copes

with the uncertainties of the motion estimation and measurement error. Finally, the

proposed hardware and its software system should be able to produce a photorealistic

3D map of any indoor environment as well as record the travelled trajectory during the

map building process in real-time.
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1.3 Contributions

The main contributions in this work are:

• Realization of a new mobile, multi-camera unit with the main purposes as a 3D

motion estimation and 3D map building device (Chapter 3). Relevant publica-

tion: “Real-Time Photorealistic 3D Map Building Using Mobile Multiple Stereo

Cameras Setup”[Netramai & Roth (2007)].

• Design and implementation of the accompanied algorithms and information us-

age scheme that tightly integrate and maximize the benefits for the 3D motion

estimation process using the proposed multi-camera unit (Chapter 4).

• Provide a complete probabilistic implementation of the six degree of freedom

localization and mapping solution using the proposed multi-camera unit as an

input device (Chapter 5). Relevant publication: “Real-Time 3D Motion Esti-

mation and Map Building Using Enhanced Multi-Camera System”[Netramai &

Roth (2010)].

1.4 Content of the Thesis

The content of the thesis is organized as follow:

• Chapter 1 contains this introduction.

• Chapter 2 gives an overview of the different types of sensors. These include

stereo camera, 3D laser scanner and PMD camera. Brief information, working

principles and capability of each sensor are discussed. A comparison between

each type of sensor is also given in order to show the advantage and disadvantage

of each sensor, which is important for the selection of the 3D visual sensor for

the multi-camera unit.

• Chapter 3 introduces the multi-camera unit, its state of the art, hardware

description, software description, hardware simulation results and calibration

technique.

• Chapter 4 describes the process of real-time 3D motion estimation using the

multi-camera system. The algorithms that are used within the whole process will

be explained. The motion estimation process which includes 3D motion detection

using only 2D data and final 3D motion estimation are explained.
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• Chapter 5 describes the real-time 3D map building process. A probabilistic

approach for the localization and map building is explained. A simulation of

the multi-camera system is given in order to observe the performance of the

map building algorithm. A method to generate a 3D photorealistic map is also

explained.

• Chapter 6 presents some experiment results by using the multi-camera system

for real-time 3D motion estimation and map building. Several tests including

motion estimation using pre-defined motions and paths are conducted and the

obtained results are discussed. Several 3D photorealistic maps gathered using

the multi-camera system are also presented at the end of the chapter.

• Chapter 7 contains the conclusion of the work. Insights into future improve-

ments to the system are discussed at the end of the chapter.
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Chapter 2

3D Visual Sensors

Introduction — 3D Visual Sensors — Single-Beam Laser Range Finder —

PMD Camera — Stereo Camera — Comparison of 3D Visual Sensors —

Selection of 3D Visual Sensor for the Multi-Camera Unit — Conclusion

2.1 Introduction

This chapter gives a quick overview of the current 3D visual sensor technology including

the basic understanding about how the 3D sensors work and their usage for the task

of 3D motion estimation and 3D map building. The introduction includes three kinds

of 3D sensors, namely single-beam laser range finder, PMD camera and stereo camera.

A brief technical review is provided, the strengths and weaknesses of each sensor are

listed and compared. Finally, the key reasons for selecting the stereo camera as the

current 3D sensor for the multi-camera hardware are provided.

2.2 3D Visual Sensors

A 3D visual sensor is a visual-based, non-contact sensor that is able to percept the

three-dimensional geometry information and other physical properties such as texture

7



2.3 Single-Beam Laser Range Finder

and color of the surrounding environment. There is a wide range of 3D sensors for

indoor and outdoor usage and they can be classified by the techniques being used to

gather depth information. Generally, there are two major techniques that are widely

used to percept 3D information: time of flight and triangulation. The time of flight

sensor is usually known as a laser range finder where a laser beam is used to determine

the depth of the scene. The PMD camera, which is a newly developed time of flight

3D camera, is also becoming another candidate for short and medium range 3D vision

applications. The triangulation visual sensor is mostly known as a stereo camera where

images from two cameras are used for the calculation of the depth information. Since

these sensors have different working principles they each have certain advantages and

disadvantages. The following sections provide the explanations and comparison of the

different types of 3D sensors used in the 3D motion and map building task in detail.

2.3 Single-Beam Laser Range Finder

The single-beam laser range finder is an optical sensing device that uses a laser beam

to determine the distance to the objects within its sweeping angle and operational

range. The time of flight (ToF) principle is used for the determination of the distance

or range information. An example of a single-beam laser range finder that is being used

in robotic and navigation applications is the SICK LMS200 (Figure 2.1). The LMS200

can detect objects within a 180 degree sweeping angle and 80 meter range. Due to the

fast scanning frequency of up to 75 Hz it is one of the most widely used sensors for

real-time navigation and obstacle avoidance for automated vehicles and autonomous

robots. Table 2.1 lists the specifications of this particular hardware model.

2.3.1 Working Principle

The ToF principle is straightforward. First the sender, i.e. laser diode, emits a light

signal which travels from the sender to the object. This light signal hits the object and

reflects back to the receiver. By measuring the round-trip time, the distance between

the sensor and the object can be calculated. The relationship between the round trip

time and the distance is defined by:

distance =
(c t)

2
(2.1)

where c is the speed of light and t is the round-trip time of the light signal between the

sensor and the object. The ToF principle is illustrated in Figure 2.2.
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2.3 Single-Beam Laser Range Finder

Figure 2.1: SICK LMS200 laser range finder. (photo credit: SICK AG)

Table 2.1: Technical specification of the SICK LMS200 laser range finder. (source: SICK

AG, June 2009)

Light source Infrared (905 nm)

Field of view 180◦

Scanning frequency 75 Hz

Operating range 0 - 80 m

Angular resolution 0.25, 0.5 and 1◦

Resolution 1 mm

Statistical error 5 mm

Interfaces Serial (RS-232, RS-422)

Power 24 VDC, 20 W

Weight 4.5 kg

Dimensions 156× 155 × 210 mm

In many implementations the single-beam laser range finder operates by shooting

a laser beam on a rotating mirror which sweeps it across the scanning area. Figure 2.3

illustrates this operation in a few steps. First, the laser beam sweeps counter-clockwise

from one side of the scene (a) to the other side of the scene (b and c respectively) where

the scene and an object are scanned. The red line represents the laser beam, the green

circles represent the scene and the obstacles and the figures with blue dots represent

the data points gathered by the laser range finder.
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2.3 Single-Beam Laser Range Finder

Figure 2.2: The time of flight principle.

Figure 2.3: The laser range finder in operation.

For a 3D map building task, the laser range finder is usually equipped with an extra

actuator such as a servo motor so that it can be tilted within the vertical direction in

order to extend the scanning range. As a result, the full 3D scan of the scene is possible.

Figure 2.4 illustrates the tilting mechanism for the 3D volume scanning.

2.3.2 Implementations and Applications

Many 3D map building applications were successfully implemented using a single-beam

laser range finder due to its high accuracy and long operation range. Surmann et al.

did extensive research and produced a number of scientific papers about six degrees

of freedom simultaneous localization and mapping (SLAM) with the SICK laser range
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2.3 Single-Beam Laser Range Finder

object

laser
scanner

Sweeping
laser beam

sweep

tilt

Figure 2.4: A normal sweeping plane of a 3D laser range finder (left) and the extended

vertical scanning using a tilting mechanism (right).

finder [Surmann et al. (2006), Nüchter et al. (2005)]. The laser range finder with a

tilting mechanism is fitted on a mobile robot (Figure 2.5) that drives in the indoor

and outdoor environment. Some sample scans derived from such systems are shown in

Figure 2.6.

Figure 2.5: A mobile robot equipped with a SICK laser range finder and a tilting mechanism.

(photo credit: Fraunhofer Institute AIS)

Beside the use of the single-beam laser range finder among the robotic research

community, there are also commercially available products that are specifically designed

for large size 3D scanning of buildings and interiors. These scanners provide more

sophisticated solutions for detailed 3D scans by sweeping the laser scanning plane across

11
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Figure 2.6: Sample scenes acquired by the laser range finder. (photo credit: Fraunhofer

Institute AIS)

a full 360 degree rotation. An on-board computer is integrated into the scanner for

controlling and data logging purposes. The color information that is not available from

the laser range finder can be inserted to the acquired 3D model using a high resolution

digital camera. By acquiring several 360 degree scans of a scene from several locations

within the environment, a complete 3D model of the environment can be constructed

using specific post-processing software. An example of such a commercial laser range

finder product is the FARO Photon laser scanner shown in Figure 2.7. It has a scanning

range of 120 meters with an error of ±2 mm and it completes a full 360 degree scan

in 233 seconds. Figure 2.8 shows an example of a 3D model of a cathedral built by

the FARO Photon scanning system. The cloud of 3D points is collected by the laser

scanner and a digital camera is used to provide the texture and color information to

the finished model.
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Figure 2.7: The FARO Photon laser scanner which is specifically designed for the capturing

of large scenes with optional color enhancement using a digital camera. (photo credit:

FARO Technologies Inc.)

Figure 2.8: An example of a 3D model of a cathedral using the FARO Photon laser scan-

ner. Note that the chairs and other small objects within the model are inserted manually

afterwards using simple 3D polygons. (photo credit: FARO Technologies Inc.)
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2.4 PMD Camera

2.4 PMD Camera

The Photonic Mixer Device or the PMD camera represents an important technological

advancement in 3D visual sensing. It realizes a 3D scanning method using the time

of flight concept. Instead of a rotating mirror solution found on the laser range finder

hardware, the PMD camera illuminates the whole scene with its modulated light source

and percepts the bounced back signal with a 2D array of diodes or PMD pixels (Figure

2.9). This enables the PMD system to percept a 3D volume without the need of

moving mechanisms, which greatly reduces the hardware size and weight. An example

of a PMD camera, PMD[vision]R© CamCube, is shown in Figure 2.10 and its technical

specification is listed in Table 2.2. An example output of a PMD camera is shown in

Figure 2.11

Light source

Object Lens
PMD pixels

Figure 2.9: PMD camera working principle.

2.4.1 Working Principle

The PMD system consists of the sender, called illumination modules, and the receiver,

which consists of an array of PMD pixels. The capture process starts by emitting light

pulses from the illumination modules; the light pulses then hit the object, bounce back

through the optical lens and are projected on the PMD pixels. The distance to the

object is then determined according to the phase shift of the light signal. The phase

shift which is proportional to the distance to the object is determined by the following

equation:

ϕ = arctan(
A1 −A3

A2 −A4
) (2.2)
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2.4 PMD Camera

Figure 2.10: An example of a PMD camera (PMD[vision] R© CamCube) equipped with

illumination modules. (photo credit: PMDTechnologies GmbH)

Figure 2.11: An example of a 3D image acquired by a PMD camera. (source: PMD

Technologies GmbH, 2008)

where A1, A2, A3 and A4 are four samples from the PMD pixel measurement with 90

degree phase shift from each other. The distance d is then calculated by:

d =
cϕ

4πfmod
(2.3)

where constant c is the speed of light and fmod is the modulation frequency of the

illumination module. With the wavelength of the modulation frequency λmod, the

maximum range of detection for the PMD camera dmax is determined by:

dmax =
λmod

2
(2.4)
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Table 2.2: Technical specification of the PMD[vision] R© CamCube. (source: PMDTech-

nologies GmbH, 2009)

Light source Infrared

Sensor resolution 204 × 204 pixels

Field of view 40◦ vertical

40◦ horizontal

Scanning frequency 25 Hz

Operating range 0.3 - 7 meters

Distance resolution <3 mm

Interfaces USB2.0

Power supply 12 VDC

Weight <1 kg

Dimensions of camera module 194 × 80 × 60 mm

Although the PMD camera provides an elegant and robust solution for 3D measure-

ment tasks, the current hardware still has some considerable hindrances. Two main

drawbacks of the PMD camera at the moment are the low resolution of the PMD sensor

and the lack of color information. Currently, the resolution of a PMD camera can be

as low as 32× 64 pixels. However, the resolution has been increased rapidly due to the

growing demand for the PMD sensor in the past few years. The PMD camera with a

VGA resolution of 320 × 240 pixels or higher can be expected to be available soon.

2.4.2 Implementations and Applications

The PMD camera is currently gaining more acknowledgement in the industry and auto-

motive applications, where size and performance are the important factors. The PMD

camera is also gaining more attention among machine vision researchers. In the work

conducted by Joochim et al. (2009), a PMD camera is mounted on a mobile robot

(Figure 2.12) and is used as a core sensor to gather 3D information for a map building

process. Figure 2.13 shows the result of a 3D model derived using the PMD camera,

which was enhanced with color information obtained from an accompanying 2D camera.
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2.5 Stereo Camera

Figure 2.12: PMD[vision] R© A2 mounted on a mobile robot.

Figure 2.13: A 3D model obtained using depth information from a PMD camera.

2.5 Stereo Camera

A stereo camera is hardware that produces 3D images using the triangulation technique.

It consists of two cameras whose optical axes are parallel to each other and are separated

from each other by a certain offset distance called baseline. The baseline distance makes

two cameras see the same object from two different viewpoints. As a consequence

the disparity value can be determined. The disparity value together with the other

information such as focal length can then be used to calculate the depth information.

This whole process is known as triangulation. Figure 2.14 shows some example images

acquired by a stereo camera.
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Figure 2.14: Some example images acquired by a stereo camera. The upper left image is

the color image, the lower left image is the disparity image and on the right hand side is

the 3D image.

2.5.1 Working Principle

The principle of stereo triangulation is shown in Figure 2.15. Two cameras are placed

alongside each other with the baseline b between their optical centers. A general point

P (X,Y,Z) appears on the image plane of each camera at two different positions (X1, Y1)

and (X2, Y2). The distance between these two points is called disparity and it is in-

versely proportional to the distance Z of the point P . By assuming that the x- and

z-axes of both cameras are parallel and the optical center of both cameras are located

on the same horizontal baseline, the disparity value D can be calculated as:

D = X1 −X2 (2.5)

Consider similar triangles, PF1F2 and PC1C2

Z − f

Z
=

b− (X1 −X2)

b
(2.6)

thus

Z =
fb

X1 −X2
=

fb

D
(2.7)
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where

f focus length

b baseline

C1 location of point P projected on image plane 1

C2 location of point P projected on image plane 2

F1 focal point of image sensor 1

F2 focal point of image sensor 2

Figure 2.15: The working principle of the stereo triangulation technique.

By using the triangulation technique as described, the recovery of the depth in-

formation is straightforward. The actual complicated and time consuming part is the

determination of the exact position of the points C1 and C2 on the left and the right im-

age. This problem is known as the correspondence problem. Several techniques are used

to deal with this problem and one of the techniques that can be efficiently implemented

for a real-time system is the area-based correlation technique. A brief introduction to

this technique is given in the following section.
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Area-based Correlation

One widely used technique for solving the correspondence problem is the area-based

correlation technique. Instead of comparing a single point or pixel in the scene, small

searching windows among images are used for the correlation process. This technique

provides an effective way to solve the correspondence problem where noticeable visual

features or highly contrasting features are not available. Figure 2.16 illustrates the

working principle of the area-based correlation operation. Firstly, the area of interest

in the first image defined by a search window is chosen at one fixed position. Then on the

second image another search window is translated to every position within the search

area. At each position the pixel intensities within two search windows are compared for

their similarity and the correspondent point is located where the maximum similarity

is found.

Figure 2.16: The search windows and the search area of the area-based correlation tech-

nique.

In many implementations an epipolar line is used. The epipolar line is a line that

presents the possible location of the correspondent feature on the second image in

respect to a distinctive point found in the first image. Thus the search dimension is

reduced from two to one. This technique is widely used to increase the stereo vision

performance and reduce the computational time. Figure 2.17 shows the geometry of

the epipolar line for a stereo camera.

2.5.2 Implementations and Applications

Several works present the results of 3D map building using a stereo camera. In Sáez

& Escolano (2004) a stereo camera is used to observe feature points within the test
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P(X,Y,Z)

F1

F2

camera 1

camera 2

epipolar line

Figure 2.17: An epipolar line spanning two image planes.

scene which are used for the indoor map building of an environment with flat terrain.

In Garcia & Solanas (2004) a stereo camera is used for the map building task where

the motion of the camera can be estimated and some results of the captured 3D model

are presented.

2.6 Comparison of 3D Visual Sensors

Three types of 3D visual sensors mentioned in this chapter use different kinds of tech-

nology and possess different working principles. This section compares these sensors

according to certain aspects including the coverage area, precision, visual detail, mobil-

ity, real-time performance, affordability and the energy saving factor. A short analysis

about each aspect is given below.

Coverage Area

The coverage area or the field of view indicates the size of the 3D volume that can

be acquired by the 3D visual sensor. This ability is important for map building tasks

since gathering of the map data is faster when the sensor can see a large portion of the

environment at a time. The coverage area is mainly defined by the working principle of

the sensor. In Figure 2.18, it can be seen that the observed area of the stereo camera

and the PMD camera are defined by the field of view of the optical lens whereas the

observed area of the laser range finder depends on the sweeping and the tilting angles.

• Laser range finder: The coverage area of a laser range finder depends on the

sweeping angle and the tilting mechanism.

21



2.6 Comparison of 3D Visual Sensors

• PMD camera: For the PMD camera the coverage area depends on the field of

view of the equipped optical lens.

• Stereo camera: For the stereo camera the coverage area depends on the field

of view of the equipped optical lens.

(b)(a) (c)

Figure 2.18: Comparison of the working principles of the 3D visual sensors (a) PMD camera

(b) stereo camera and (c) laser range finder.

Precision

The measurement principle has a big effect on the precision of the depth measurement.

The time of flight sensor can sense the depth of the scene directly at high accuracy

using its own light source while the stereo camera depends on the triangulation, which

relies heavily on the texture and the light conditions of the observed environment.

• Laser range finder: The precision of the measurement depends on the quality

of the laser beam signal and the timing circuit.

• PMD camera: The precision of the measurement depends on the quality of the

light signal which is directly affected by the power of the illumination module

and the ambient light.

• Stereo camera: The precision depends on the resolution of the camera sensor

and the algorithm used to determine the depth information as well as the light

conditions.
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Visual Detail

The visual detail indicates the ability of the 3D sensor to acquire information about

the geometric description and the texture of the environment, which is important in

an application such as photorealistic map building where these information need to be

acquired at high resolution.

• Laser range finder: The resolution of the geometric scan depends on the finest

movement of the rotation and the tilting mechanism. Moreover, since texture

information cannot be acquired directly by the laser range finder a digital camera

is needed to capture the texture and color of the objects in the scene. Therefore

the quality of the texture depends on the image resolution of the additional digital

camera.

• PMD camera: The resolution of the geometric scan and texture image depends

on the spatial resolution of the PMD sensor. At the moment the resolution of

the PMD sensor is still low and is also lacking of color information.

• Stereo camera: The resolution of the geometric scan and texture depends on

the spatial resolution of the image sensor. Commercial stereo camera hardware

offers a high resolution sensor and therefore good geometric resolution can be

obtained using sophisticated algorithms at the expense of calculation time. The

texture information is directly available from the high resolution color image

acquired from the left and right camera of the stereo camera.

Mobility

Mobility indicates the size and portability of the 3D visual sensor. This is important

if the target system needs high mobility and a small hardware size.

• Laser range finder: The laser range finder has the largest size and weight

compared to the other 3D visual sensors described in this work. It also contains

moving mechanical parts, which is undesired by many applications.

• PMD camera: The PMD needs an illumination module and therefore makes it

slightly larger in size and weight compared to the stereo camera.

• Stereo camera: The stereo camera solution is the most compact in size and

weight compared to the other two 3D sensors.
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Real-time

In order to build a 3D map in real-time the 3D visual sensor should be able to capture

a portion of the scene at high speed, i.e. a high output or frame rate is desired to catch

up with the rapid movement of the target platform.

• Laser range finder: The laser range finder solution requires a relatively slow

tilting mechanism and therefore it is not suitable for real-time application where

a portion of 3D volume is needed to be captured at high speed.

• PMD camera: The PMD camera is capable of producing 3D images of the

scene at high speed.

• Stereo camera: The stereo camera is capable of producing 3D images of the

scene at high speed.

Affordability

This reflects the availability and the price of the sensor. This factor could have a big

impact if multiple sensors are needed in one design.

• Laser range finder: The laser range finder is available from several manufac-

turers and it can be obtained in the moderate to high price range.

• PMD camera: The PMD camera is available from a limited number of manu-

facturers and the price is relatively high compared to the other two sensors.

• Stereo camera: The stereo camera is available from many manufacturers. It

can also be easily constructed from scratch using simple off-the-shelf hardware

and therefore it is the most affordable system compared to the other two sensors

of the three.

Energy Saving Factor

This reflects the energy usage of the sensor. This factor is important for target system

that has a limited power capacity. If the sensor consumes small amount of energy then

the operation time of the target system is prolonged.

• Laser range finder: The laser range finder consumes moderate to high amount

of energy. The energy consumption is rated at 20 Watts, although this number

could get even higher when the tilting mechanism is used.
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• PMD camera: The PMD camera consumes low to moderate amount of energy.

The power consumption ranges from 5-20 Watts depending on the power of the

illumination modules.

• Stereo camera: The stereo camera consumes only small amount of energy since

there are no active elements such as illumination modules or moving mechanism

used. Only less than 1 Watt is being drawn from the IEEE1394 interface during

the operation time.

Table 2.3 summarizes the information of all three visual sensors according to the

mentioned aspects. It can be seen that the laser scanner has the longest measurement

range and also a good precision. The PMD camera performs as well as the laser scanner

and it has a smaller size and weight, which makes it an all-around versatile 3D sensor.

The stereo camera has an outstanding advantage, namely the high 2D image resolution.

The stereo camera is also a 3D visual sensor with the smallest size and has the lowest

power consumption of all three sensors.

The disadvantage of the laser scanner is the moving mirror mechanism and the

need of the tilting mechanism as well as its size and weight. The PMD camera is a

very good all-around 3D sensor but until now the sensor resolution is still too low for

many image processing tasks and it also lacks color information. The PMD is also

not yet available in the mass market, which makes it difficult to obtain. The stereo

camera uses the triangulation technique, which requires an extra post-processing task.

However there are already some products with an embedded FPGA-chip that takes

care of depth calculations on the camera in real-time. The stereo camera is relatively

cheap and widely available, making it an optimal choice as the 3D visual sensor for the

multi-camera hardware.
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Table 2.3: Comparison between different types of 3D sensors.

Laser PMD camera Stereo camera

range finder

Coverage area Large FoV Moderate FoV Moderate FoV

(max 180◦), (max 40◦), (max 60◦),
long range (80 m) short range (40 m) short range (10 m)

Precision High Moderate - high Moderate - high

(<5 mm) (3-10 mm) (5-20 mm)

Visual detail No 2D image Low resolution 2D

grayscale image

High resolution 2D

color image

(204×204 pixels) (640×480 pixels)

Mobility Large and heavy,

contains moving

parts

Small and light Small and light

(1.5 kg) (ca. 1 kg) (320 g)

Real-time Requires tilting to

capture 3D scene

Instant 3D scene

capturing

Instant 3D scene

capturing

(<0.5 Hz) (25 Hz) (30 Hz)

Affordability Commercially

available, expensive

Not widely avail-

able, expensive

Widely available,

cheap

Energy saving Poor Moderate - poor Good

2.7 Selection of the 3D Visual Sensor for the

Multi-Camera Unit

The main contribution of this thesis work is the multi-camera unit (MCU). As the

name implies, the MCU is constructed using multiple 3D visual sensors. The selection

of the 3D visual sensor for the MCU hardware is done based on the circumstances of

the applications which, in this case, are the real-time motion estimation and the map

building tasks. The main requirements for the 3D visual sensor for these tasks are:

• Real-time or fast image capture time in order to deal with the constant movement

of the MCU, which is placed on a mobile robot or used as a hand-held device.
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• High mobility, which means the MCU size should be small and light so that it

can be easily integrated into a small hardware platform or held in an operator’s

hand.

• High resolution (both texture and geometric scanning resolution) to ensure the

quality of the map.

• Affordability, since multiple sensors are needed for the design of the MCU.

• Good measurement precision to ensure the 3D motion estimation result.

• Moderate coverage area. The MCU design eliminates the need for a large field of

view camera by combining information from multiple cameras which, in several

cases, works better compared to the single camera solution equipped with a large

field of view lens.

• Low power consumption, which prolong the operation time of the target system

with limited amount of power supply.

Figure 2.19 illustrates the properties of all three 3D visual sensors according to

their relative performance. It can be seen that the stereo camera is the best candidate

for the MCU hardware since it covers most of the requirements with high scores and

therefore it is selected as the 3D visual sensor for the current implementation of the

MCU.

The second-most suitable sensor is the PMD camera. However the low image reso-

lution, the lack of color information and the high price prevent it from being chosen for

the MCU hardware at the moment. Nevertheless, once these drawbacks are eliminated,

the PMD camera is likely to replace the stereo camera as an equal or better 3D visual

sensor for the MCU system.
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Figure 2.19: Comparison between different types of 3D sensors for 3D motion estimation

and map building task.

2.8 Conclusion

This chapter gives a brief description of three different 3D visual sensors. Two kinds

of depth recovery techniques are explained including the time of flight operation used

in the laser range finder and the PMD camera as well as the triangulation used in the

stereo camera. The advantages and disadvantages of each 3D sensor are explained and

some example applications from each 3D sensor are shown. The comparison between

three kinds of sensor are given and the results show that the laser range finder is the

biggest in size and weight and is not suitable for the real-time 3D map building task

or for a small hardware platform. The PMD camera is a robust and compact piece of

hardware but it still cannot produce high resolution images for some image processing

tasks and the color information is also missing. The stereo camera is well-balanced

according to the considered abilities and it fulfils most of the requirements for the 3D

motion estimation and map building tasks. It is therefore selected as the 3D visual

sensor for the multi-camera unit.
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Chapter 3

The Multi-Camera Unit

Introduction — The Multi-Camera Unit — Hardware Description — Soft-

ware Description — Elimination of Motion Ambiguity using Multi-Camera

Systems — Multi-Camera Hardware Simulation — Multi-Camera Hard-

ware Calibration — Conclusion

3.1 Introduction

The multi-camera unit (MCU) is the main contribution of this thesis work. It intro-

duces a unique arrangement of three stereo cameras to overcome the motion ambiguity

problem which exists in the single camera system. This results in a new visual odom-

etry device that is highly sensitive to 3D movement. At the same time it also acts as

a 3D sensor that produce high density 3D information at a high acquisition rate. This

chapter explains the advantage of the multi-camera configuration over the single camera

configuration as well as its hardware and software components. A software simulation

of the multi-camera system is also implemented to investigate its performance. Finally,

a calibration method for the MCU hardware is explained at the end of the chapter.
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3.2 The Multi-Camera Unit

The multi-camera unit (MCU) was first introduced in Netramai & Roth (2007). The

MCU is designed to improve the sensitivity of the real-time 3D motion detection as

well as to increase the data acquisition rate for the 3D map building task. The MCU

uses three stereo cameras whose optical axes point perpendicular to each other in the

direction of the x-, y- and z-axes. By doing so, the accurate 3D motion of the MCU can

be efficiently detected since the motion ambiguity in one camera is always compensated

by the other two cameras. Figure 3.1 shows the current hardware implementation of

the MCU.

Figure 3.1: The multi-camera unit.

MCU System Overview

The overview of the MCU system for the 3D map building task is shown in Figure 3.2.

Three stereo cameras are used to acquire a set of 2D and 3D images from the environ-

ment which are used for the motion estimation and map building process. An example

of the image set acquired from the MCU is shown in Figure 3.3. The main processes
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3.2 The Multi-Camera Unit

of the 3D map building task include feature point extraction, motion estimation and

real-time map building. The result of these operations is a 3D photorealistic map of

the observed environment as well as the detailed 3D trajectory of the MCU during the

map building process.

Range Image

Stereo Camera 1

2D Images

Reliable
Landmarks

3D Motion/Pose Estimation 3D Map Building

Range Image

Stereo Camera 2

2D Images Range Image

Stereo Camera 3

2D Images

Color Reliable
Landmarks

Reliable
Landmarks

Color Color

Map Database

User Applications, e.g. 3D photorealistic map building for
tele-operation robots, real-time 3D Robot trajectory estimation, etc.

Figure 3.2: An overview of the MCU system for 3D map building tasks.

Figure 3.3: Example images acquired from the MCU which includes (left) 2D images and

(right) clouds of 3D points.
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The detailed descriptions of the 3D motion estimation process and map building

process are given in Chapter 4 and Chapter 5 respectively.

3.3 Hardware Description

The MCU consists of three pairs of stereo cameras. The cameras are mounted on a

rigid aluminum platform and are connected to the host computer via the IEEE1394

interface. The mechanical drawing of the MCU is given in Appendix A.2. The following

section contains the description of the stereo cameras used in the MCU system.

3.3.1 The Stereo Camera

The current MCU hardware consists of three pairs of STH-MDCS stereo cameras from

Videre Design (Figure 3.4). Videre Design supplies a ready-to-use solution which con-

sists of a stereo camera and the compatible software library (Small Vision System

– SVS library) that efficiently computes the depth information using the area-based

correlation algorithm.

Figure 3.4: The STH-MDCS stereo camera.

The STH-MDCS stereo camera consists of two identical CMOS sensors which are

separated by a 90 mm horizontal baseline. Both cameras are equipped with the identical

lenses (e.g. identical construction, same focal length, etc.). The stereo camera produces

two video outputs, one from the left camera and the other from the right camera. These

video signals are interlaced by the hardware circuit on the camera to produce a single

video stream which is transmitted to the host computer via the IEEE1394 interface.

The adjusting of the camera parameters is also done over the IEEE1394 interface, where

parameters such as exposure, gain and capture size can be manipulated. The technical

detail of the STH-MDCS camera is listed in Table 3.1.
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Table 3.1: Technical specification of the STH-MDCS stereo camera.

Image sensor 1/2” format color CMOS (Micron MT9M001)

1280× 960 active pixels, progressive scan

Image formats (pixels) 320× 240, 640× 480, 1280× 960 (max)

Frame rates 3.75, 7.5, 15, 30 Hz

Gain 0 - 18 dB

S/N > 45 dB, no gain

Power < 1 W

Synchronization Internal: pixel-locked

External: 60 µs

Lens 6 mm, F1.2, C-mount (Fujinon)

6 mm, F1.4, C-mount (Kowa)

8 mm, F1.2, C-mount (Rainbow)

Size (excluding lenses) 44× 132× 33 mm

(see Appendix A.2 for more detail)

Weight ca. 320 g including lens

Stereo baseline 90 mm

SVS software Running on Linux kernel 2.4, 2.6

In addition, the error characteristic of the stereo camera was tested and the results

are available in Appendix B.

3.3.2 The Host Computer

The host computer runs the software pieces which are necessary for the operation of the

MCU and related tasks. The data from the MCU is transferred to the host computer

via three IEEE1394 PCI interface cards where one card is directly connected to one

stereo camera in order to obtain the maximum data transfer rate. A powerful graphic

card is installed for 3D visualization tasks. The specification of the host computer is

listed in Table 3.2.
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Table 3.2: Technical specification of the host computer.

CPU Intel Core 2 Quad processor Q6600

running at 3.0 GHz (overclocked)

System board Gigabyte EP35-DS3R

System memory 4 GB DDR2-800 SDRAM

Graphic card Nvidia GeForce 9800GT with

1 GB video RAM

Frame grabber cards Three Texas Instruments TSB43AB23

IEEE-1394a PCI cards

Operating system Linux 32-bit with kernel version 2.6.27

3.4 Software Description

This section describes the basic software components of the MCU system including the

software library that controls the stereo cameras, the auxiliary functions that provide

the necessary functionalities to the MCU system and the graphic user interface that

gives an easy way to control and adjust the parameters of the MCU system during

run-time.

3.4.1 SVS Software Library

The SVS library is a pre-compiled software library that communicates between the

stereo camera and the host computer. It controls the parameters and operation of the

stereo camera such as image resolution, frame speed, exposure setup, image grabbing,

etc. The library also takes care of the stereo depth calculation using highly-optimized

machine code for real-time performance. The SVS library is supplied by Videre Design,

which is the producer of the STH-MDCS stereo camera. The main functions of the

SVS software library are:

• Control of the stereo camera parameters including initialization routine for the

stereo camera. The initialization includes setting the image rectification, 3D

image transformation matrix and other camera parameters such as frame speed,

frame size and relevant stereo calculation parameters.
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• Grabbing the images from the stereo camera and storing them in the image buffer

on the host computer.

• Calculating the stereo image on the host computer using the images from the left

and right cameras.

More information about the SVS software library is available in the software manual

[Konolige & Beymer (2007)].

3.4.2 Auxiliary Functions

In order to efficiently manage all three stereo cameras at the same time, the auxiliary

functions are written by the author to wrap up the set of functions to operate multiple

stereo cameras in one single command. These functions include the synchronization

function, the time stamp function and the multi-threaded wrapper function.

Synchronization Function

It is important that the images from all three stereo cameras are captured at the

same time in order to use them for the time-discrete motion estimation process. The

synchronization of the stereo cameras is done at software level. The procedure includes

issuing the grab command for all three cameras at the exact same time using the timer-

interrupt function. The function first check whether all stereo cameras are ready to

grab a new image, and if they are then the grab command is issued to three image

grabbing threads with millisecond precision. Each thread then takes care of the image

grabbing from each camera separately.

Timestamp Function

The timestamp function gives a time stamp in millisecond resolution to the images

captured by the MCU. This time information is useful for the calculation of motion

parameters such as speed and acceleration.

Multi-Threaded Wrapper Function

The wrapper function contains the time consuming tasks of the stereo camera including

image grabbing, stereo image calculation as well as the higher lever tasks such as corner

detection and noise filtering. These tasks are the main bottlenecks and they can lead

to a huge performance degradation if processed in a serial manner. The separate
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threads are then distributed over different cores of the multi-core CPU in order to take

advantage of the multi-threaded operation.

3.4.3 MCU System Graphic User Interface

An easy to use graphical user interface (GUI) is created by the author to be able

to control and adjust the parameters of the MCU system during run-time. The GUI

contains some useful operations such as start and stop of the MCU system and adjusting

the threshold value of various algorithms using the slider bars. The live image streams

from all cameras are displayed as well as the 3D visualization of the 3D map being

created. Figure 3.5 shows the MCU system GUI during a 3D map building task.

Figure 3.5: The MCU system graphic user interface. On the left hand side is the main

control panel where important parameters can be observed and adjusted at run-time. On

the right hand side is the live display of the video streams and the 3D visualization of the

3D map.
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3.5 Elimination of Motion Ambiguity using

Multi-Camera Systems

One of the main benefits of using a multi-camera system is the elimination of the

motion ambiguity. The motion ambiguity is usually found in the single camera system

and occurs due to the limited field of view of the optical lens as well as the inaccurate

depth estimation according to the error of the stereo image calculation. Two kinds of

motion ambiguities are explained in this section: rotation ambiguity and translation

ambiguity. The solutions for these ambiguities using multi-camera systems are also

given.

3.5.1 Rotational Ambiguity

The rotational ambiguity occurs when a small rotation about the axis which is perpen-

dicular to the optical axis takes place. In this case, the motion field obtained from a

small rotation is similar to the motion field obtained from a small translation perpen-

dicular to the optical axis, which leads to the wrong motion estimation result. This

situation is illustrated in Figure 3.6. The square object represents the camera or the

observer and the arrows-filled area presents the image and the motion field of the fea-

ture points within the image. When the observer moves to the left the position of the

feature points shift to the right parallel to the observer’s movement direction. How-

ever, when a small rotation around the axis that is perpendicular to the optical axis of

the observer is introduced, the similar motion field is obtained. Therefore such small

rotation can be confused as translation from the observer’s point of view.

To solve this problem, a larger field of view optical lens can be used [Davison & Cid

(2004)]. However, using an optical lens with a large field of view can reduce the quality

of the stereo calculation if the resolution of the camera sensor is not high enough to

accommodate the increased field of view.

The multi-camera system solves this problem by introducing a second camera whose

optical axis points in the direction perpendicular to the first camera’s optical axis. For

example, in Figure 3.7 another camera which points to the right direction of the first

camera is introduced which provides one more image to the system. Although the

optical axes of both cameras are pointing in the perpendicular direction to the rotation

of the observer, it is now easier to distinguish a rotation from a translation. That is,

if the motion field on both cameras have similar magnitudes and directions then the

detected motion can be confirmed as a rotation.
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cam 1 cam 1

Figure 3.6: Rotational ambiguity between a small translation (left) and small rotation

around an axis perpendicular to the optical axis (right). The motion fields obtained from

both cases are similar.
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m 

1 cam 2

Figure 3.7: Elimination of the rotational ambiguity using two cameras: 1st solution.
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Another solution is to point a second camera along the axis of rotation as shown

in Figure 3.8. In this case the rotation can be directly detected by the second camera

and hence by using the motion field from both cameras the rotation can be confidently

confirmed.

ca
m 

1cam 2

Figure 3.8: Elimination of the rotational ambiguity using two cameras: 2nd solution.

3.5.2 Translational Ambiguity

The translation ambiguity occurs when a small translation along the optical axis takes

place. According to the pinhole camera model, the displacement of an object can be

detected as shown in Figure 3.9. The object’s displacement along a direction that is

perpendicular to the optical axis is denoted bym and the displacement along a direction

parallel to the optical axis is denoted by n. It can be seen that the displacement

needed for the object to be seen by the next sensor’s element is larger when the object

is displaced along the optical axis. This implies that the resolution of the detected

translation along the optical axis is coarser than along the perpendicular one. This is

also the main cause of stereoscopic depth estimation error, since the uncertainty of the

depth calculation is higher when the location is far away from the camera. Such depth

39



3.5 Elimination of Motion Ambiguity using Multi-Camera Systems

error may cause a sensation of a small translation along the optical axis without the

actual movement of the camera. Therefore by using only one camera whose optical axis

points to the direction of the translation, the estimation of the translation could suffer

from the translation ambiguity.

(b)

(a)

(c)

m

n

individual pixels

Figure 3.9: Detection of an object’s displacement according to the pinhole camera model.

It can be seen that the resolution of the detected translation along the optical axis (c) is

coarser than along the perpendicular one (b).

By using multiple cameras the information from the cameras that are looking in the

direction perpendicular to the translation can be used to eliminate the translational

ambiguity, since the resolution of the motion detection of the other two cameras are

better than the one in trouble. This effect can be seen in Figure 3.10.
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Figure 3.10: Elimination of translational ambiguity using three cameras. While the camera

that points in the movement direction detect hardly any movement, the other two camera

can detect the movement just fine and therefore the correct translation estimation can be

obtained.

3.6 Multi-Camera Hardware Simulation

A simulation of the multi-camera system is implemented using MATLAB. The goal of

this implementation is to evaluate the advantage of the multi-camera system over the

single camera system. Two different models were implemented, namely a one camera

system and a three camera system. Within each system, the cameras are placed at the

origin and are pointed at the direction of the x-, y- and z-axes. For the one camera

system only one camera, i.e. the y- or z-axis camera, is considered and for the three

camera system all cameras are considered. A set of four data points placed at a distance

of two meters is presented to each camera. The complete setup of this simulation is

illustrated in Figure 3.11.
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Figure 3.11: The setup of the multi-camera system simulation.

The Gaussian noise is added to the data point in order to imitate errors character-

istic of the stereo camera. Using the right hand rule the maximum magnitude of the

noise w is given by:

w =

{
±10mm along X and Y axis

±20mm along Z axis

This value is determined from the real error characteristic of the stereo camera used for

this work where the measurement error is highest along the camera optical axis. More

detail about the stereo camera error is given in Appendix B.

For this multi-camera system simulation, the motion estimation is done using least

square minimization of the Euclidean distance of the marker locations after a pre-

defined motion. The same motion estimation algorithm is used for both single camera

and multiple camera simulation hardware. The tests include the following pre-defined

motions:

• Small translation along optical axis (5 and 10 mm)

• Large translation along optical axis (50 and 100 mm)

• Rotation around optical axis (5, 10 and 50 degrees)

• Rotation perpendicular to the optical axis (5, 10 and 50 degrees)

In the first test a set of small translation along the camera optical axis are introduced

to the simulated multi-camera hardware and the result is shown in Figure 3.12. It
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can be seen that the estimated translation results using only one camera are heavily

corrupted. These corruptions take place due to the stereo calculation error, so the

translation along the optical axis is hard to observe correctly. By using three cameras

this error is compensated and the translation estimation result is greatly improved.

Figure 3.13 confirms the same effect when large translations along the optical axis are

used.
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Figure 3.12: Translation estimation results of the small movements along the x-axis (5 mm

and 10 mm) using one camera (left) and three cameras (right).

Two scenarios for rotation estimation are introduced. In the first case the rotations

along the optical axis are used and in the second case the rotations perpendicular to the

optical axis are used. Figure 3.14 shows the simulation result of the first case where the

single camera system can correctly estimate the rotation with good consistency, which

is comparable to the results obtained using a multiple camera system. However, when a
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Figure 3.13: Translation estimation results of the large movements along the x-axis (50

mm and 100 mm) using one camera (left) and three cameras (right).

rotation perpendicular to the optical axis is introduced the single camera system shows

a large estimation error compared to the multiple camera system. This effect can be

observed in Figure 3.15. The poor performance is expected since the single camera

system suffers the rotational ambiguity.

From the simulation results it can be seen that the multi-camera system gives

better motion estimation results over the single camera system in both translation and

rotation cases. More information about the motion estimation using the multi-camera

system is given in Chapter 4.
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Figure 3.14: Rotation estimation results of the rotation around the camera optical axis (5

degrees, 10 degrees and 50 degrees) using one camera (left) and three cameras (right).
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Figure 3.15: Rotation estimation results of the rotation around the axis perpendicular to

the optical axis (5 degrees, 10 degrees and 50 degrees) using one camera (left) and three

cameras (right).
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3.7 Multi-Camera Hardware Calibration

The MCU hardware must be calibrated before it can be used in any tasks. The MCU

calibration consists of two parts. The first part is the calibration of the internal pa-

rameters of the stereo camera and the second part is the calibration of the external

parameters for the stereo cameras mounted on the MCU hardware platform. The cal-

ibration for the internal parameters is done separately on each stereo camera and the

goal is to determine the rectification parameters for the left and the right camera so

that the epipolar line is correctly aligned between their image planes. The calibration

for the external parameters is done in order to determine the relative location between

the three cameras so that the data acquired from different cameras can be merged in

the same coordinate system. This section explains both calibration process in detail.

3.7.1 Calibration of the Internal Parameters

The internal parameters which are needed for the rectification of the left and right

images of the stereo camera can be obtained through the calibration process similar

to the one described in Tsai (1986). The calibration is done by using a chessboard

pattern where the array of feature points are extracted and used to determine the lens

distortion and relevant parameters. In this work, the actual calibration is done using

the calibration routine included in the SVS library. More details about the calibration

process using the SVS library can be found in Konolige & Beymer (2007).

3.7.2 Calibration of the External Parameters

The main task of the MCU is to acquire 3D images from the scene using three cameras.

In order to do this, 3D images from all cameras have to be transformed into the same

coordinate frame and thus the 3D transformation information between the cameras are

needed. Figure 3.16 shows the geometric relationship between all three cameras.

To simplify the calibration process, two cameras are to be calibrated at a time. In

other words, one camera is chosen as a reference camera and the 3D transformation

between the reference camera and the other camera is determined using a calibration

target. By using this approach, two calibrations are needed to find all the transforma-

tion information between the reference camera and the other two cameras.

From Figure 3.16, let z-axis camera be the reference camera so that the reference

axes of the MCU coincide with those of the z-axis camera defined by Zx, Zy and

Zz. The goal of the calibration process is to determine the transformations xMz and
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Figure 3.16: Relation between three cameras on the MCU.

yMz, which refer to the transformation of the x-axis camera’s coordinate to the z-axis

camera’s coordinate and the transformation of the y-axis camera’s coordinate to the

z-axis camera’s coordinate respectively. The calibration target used is shown in Figure

3.17. The target consists of several square markers (1.5 × 1.5 cm) placed on a flat

surface which form the shape of two cross patches located 140 cm apart from each

other. Since the cameras are pointing 90 degrees away from each other they do not

share any common views and therefore the large distance of 140 cm between the two

cross patches is used to make sure that both patches can be seen by the cameras at the

same time. The position of the cameras are then determined related to the calibration

target and finally the relative position and orientation between the two cameras can

be determined. Figure 3.18 shows the geometric description of this calibration scheme.

The location and pose of camera 1 is related to the calibration patch A by a rigid

transformation MA and location and pose of camera 2 is related to the calibration

patch B by a rigid transformation MB . Once MA and MB are available the resultant

transformation between camera 1 and camera 2 (2M1) can be determined.

Figure 3.19 shows the MCU hardware and the calibration target during the cali-

bration process. In this case the y-axis camera is to be related to the z-axis camera.

The markers from each cross patch are detected by both stereo cameras. Figure 3.20

shows the 3D plot of the markers’ location in the same coordinate frame before and

after using the correct transformation information respectively.

Once the calibration process is done, the transformation information can be used

to merge the 3D images acquired from all three stereo cameras into the same reference

coordinate for use in further processes.
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10 cm
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Figure 3.17: The calibration target specially designed for the MCU.

Figure 3.18: Calibration for the transformation parameters between two cameras.
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Figure 3.19: Calibration of the Y- and Z-camera using a calibration target.
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Figure 3.20: The 3D plots of the cross patches as seen by the y-axis and z-axis camera (a)

before and (b) after applying the correct transformation information obtained during the

calibration process.
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3.8 Conclusion

This chapter explained the state of the art of the MCU system and the detailed de-

scription of the hardware and software components of the MCU system. The main

advantage of the multi-camera arrangement used in the MCU system is the elimination

of the motion ambiguities which results in an increased 3D motion estimation accuracy

compared to the single camera system. Simulation results confirming the improved ac-

curacy are also presented. A calibration method for the MCU hardware system using

a specially designed calibration procedure is also explained.
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Chapter 4

Real-time 3D Motion Estimation

using MCU

Introduction — Feature Detection — Feature Matching — 3D Motion De-

tection using 2D features — Six Degree of Freedom Motion Estimation —

Conclusion

4.1 Introduction

Motion estimation is a process that determines the 3D rigid motion information of the

observer related to a certain reference frame, e.g. the environment, static objects, etc.

The 3D motion can be broken down into two components – rotation and translation. By

analyzing sequences of images, the motion between the image frames can be recovered.

This chapter explains the entire 3D motion estimation process realized by the MCU.

It consists of five major steps as listed below:

1. Feature detection

2. Feature matching
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3. Outlier detection

4. Motion detection using 2D feature points

5. Six degree of freedom motion estimation using 3D feature points

The relationship between these processes is illustrated in Figure 4.1.

3D Image

Stereo Camera 2

2D Images

Feature Detection

Feature Matching

Thread-B

3D Motion Detection
using 2D Features

3D Image

Stereo Camera 1

2D Images

Feature Detection

Feature Matching

Thread-A

3D Image

Stereo Camera 3

2D Images

Feature Detection

Feature Matching

Thread-C

Outlier Detection

6 DOF
Motion Estimation

Figure 4.1: An overview of the 3D motion estimation process.

A Note about Multi-Threaded Approach

In this work, the multi-threaded technique is used in order to utilize the computing

power of the multi-core CPU available on the host computer. The multi-threaded

approach makes use of the multi-core CPU by distributing the calculation of the time

consuming functions among the processor cores. This speeds up the whole process train

since the processing of the image frame from each camera is a very time-consuming

task. The processes included in each thread are images acquisition, feature detection

and feature matching processes. Each thread takes care of the information from one

camera and therefore three threads are needed for the MCU system, as shown in Figure

4.1.
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The following sections describe the entire 3D motion estimation process using MCU

in detail.

4.2 Feature Detection

Feature detection is a process that detects unique or specific features that are embedded

within an image such as point, line, color blob, etc. Feature detection has a vital role

since it is frequently used to generate initial input that serves through the pipeline of

the entire process train. In this work, the corner feature is chosen as the feature point

for the MCU system. The input of the feature detection process is the 2D image and

the correspondent 3D information or the disparity value. The output is a set of corner

features with valid x-, y- and z-location. The main components of the feature detection

include the pre-processing of the input images and the corner detection process itself.

Figure 4.2 shows the entire feature detection process realized for the MCU system.

4.2.1 Pre-processing of the Input Image

The goal of the pre-processing of the input image is to ignore the pixels that are not

suitable as feature points so that the number of pixels to be checked for cornerness

can be reduced. Moreover, not every detected feature point contains the required

information which is needed for the 3D motion estimation and map building task and

thus they should also be ignored. Two detection methods are used to pre-process the

input image in order to find these unwanted pixels or outliers. The first method quickly

checks for the cornerness property of the pixel location using an intensity similarity

check and the second method checks for the valid disparity value, since the disparity

value is needed for the calculation of the x-, y- and z- location of the feature point.

These two methods are explained below.

Intensity Similarity Check

This process checks for the basic corner property of the target pixel by comparing its

pixel intensity against the neighbouring pixels. A corner is usually found at a loca-

tion where the pixel intensity changes abruptly compared to the neighbouring pixels.

Therefore there is a low chance that the target pixel represents a corner location if the

intensity of the target pixel is similar to that of the neighbouring pixels. The neighbour-

ing pixels to be checked for local intensity are shown in Figure 4.3. The pixels under

the 7 × 7 pixels cross-shape are checked for the intensity similarity. If their intensity
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Figure 4.2: The feature detection process.
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difference is below a threshold value then the current pixel location is ignored from the

feature detection process.

Figure 4.3: Example of the local intensity check. On the left hand side the pixels under

the seven-pixel horizontal line have a similar intensity so there is a high likelihood of a low

CRF response. On the right hand side the local pixels along both lines are different (the

center pixel and the other three pixels above) and therefore there is a high likelihood that

the pixel location represents a corner location and thus would not be rejected.

Disparity Value Check

Not every pixel that passes the intensity similarity check has a valid disparity value.

The disparity value is computed by the SVS library and it indicates the availability of

the depth information of the pixel. Without this value the x-, y- and z-location of the

pixel cannot be determined. Therefore it is logical to ignore the pixel that has no valid

disparity value. Figure 4.4 shows an example of a disparity image obtained from the

SVS library. The black area in the disparity image indicates no disparity value and

the grey area indicates that the disparity values are available. It can be seen that a

large portion of the image does not contain valid disparity values and therefore it is

not necessary to apply the feature detection process to this area.

By applying the intensity similarity check and the disparity value check methods,

the number of pixels to be checked for cornering is reduced and the overall speed of

the feature detection process is shortened by a factor of five to ten, depending on the

complexity of the environment.
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Figure 4.4: A test scene (left) and its disparity image (right).

4.2.2 Corner Detection using a Corner Response Function

The corner-type feature is a well studied feature within the machine vision community.

The term corner does not directly refer to the true physical corners. Instead, corner in

this case refers to the interest point or a certain place within an image where the change

of intensity in certain directions occur. An example of the corner detector output is

presented in Figure 4.5.

Figure 4.5: An example output of the corner detector. The green crosses indicate the

location of the corners found within the image.
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In this work, corners are used as reference points for the motion estimation process.

The main reasons are:

• Corner is a feature that can be found from within almost any environment (in-

doors, outdoors).

• Corner is a strong, accurate and consistent feature since the exact 2D location

of an individual corner can be obtained up to sub-pixel accuracy.

• Corner detection is fast and robust. Using corners instead of every pixel within

the image reduces the magnitude of data needed to process which is a big benefit

for the real-time system.

The current implementation of the MCU system uses the Corner Response Function

(CRF) [Trajković & Hedley (1998)] as a corner detector due to its speed, simplicity and

robustness. The CRF algorithm does not consider only the intensity gradient within

the horizontal and vertical direction but also takes into account the intensity gradient

in other directions according to the masks being used. This makes it robust against

the detection of the same feature point against a slight rotation of the camera.

Consider Figure 4.6. Let C be the location of the pixel to be tested for corner

response. The corner response function is defined by:

RCRF = min((iP − iC)
2 + (iP ′ − iC)

2) (4.1)

where

iP image intensity at point P

iP ′ image intensity at point P ′

iC image intensity at center point C

The point pair P and P ′ is replaced by other point pairs that are opposite to each

other, e.g. A and A′ or B and B′. These point pairs are defined according to the

mask definition. The pixel at location C is considered a corner if the smallest response

derived from any of the point pairs is larger than a certain threshold. In other words,

a small CRF response indicates the small intensity gradient change and a large CRF

response indicates a large intensity gradient change, which is a typical property of a

corner. This effect is illustrated in Figure 4.7.

Another advantage of the CRF algorithm is the use of multiple masks. A mask size

of 3× 3 pixels would yield a total number of four pixel pairs while a mask size of 7× 7

would yield a number of eight pixel pairs. By having more pixel pairs the cornerness
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Figure 4.6: Illustration of the neighbouring pixels required for the CRF calculation.

Figure 4.7: Some different scenarios for the corner detection. On the left most figure there

are many pixel pairs, indicated by dotted lines, that would generate small CRF responses

since the intensity differences at both ends of such lines are small. In the middle figure

there is one pixel pair that produces a small CRF response. In the rightmost figure there

are no pixel pairs that would produce a small CRF response and thus a corner is found.

is being checked using finer angle steps. The use of larger masks also confirms the

cornerness in the larger area, which makes it more robust against image noise. Note

that all masks can be deployed iteratively at the same location in order to securely

confirm the cornerness property of the tested pixel. The CRF masks with different

sizes are shown in Figure 4.8.

Improvement for the Corner Detection Process

The 2D images from the MCU usually contain noise and it is helpful to apply a blurring

filter to the image before the detection of the corners. A Gaussian convolution mask is

used to smoothen the image. The 3× 3 convolution mask is defined by:
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C CC

Figure 4.8: CRF masks with different sizes (3× 3, 5× 5 and 7× 7 pixel).
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By smoothening the image, the noisy pixels are no longer identified as corners and

only strong feature points are taken into account in the next process. Figure 4.9 shows

the difference of the image before and after applying a Gaussian convolution mask.

The left image shows a sample scene with sharp edges from black objects where rough

edges can be seen. These rough edges are considered as noise since the real physical

shape of the object does not contain such spiky shapes.

Figure 4.9: Comparison between images with and without the Gaussian blur.

Figure 4.10 shows the corner detection result with and without the blurring filter.

The left image produces far too many corners due to the sharp and dusty noise of the

image while the right image shows only significant features. Note that the Gaussian
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mask is not applied on the image buffer itself but instead on a separate buffer in order

to keep the original intensity value of the pixel for later use, e.g. for back-projecting

on the 3D model or for viewing in the real-time user interface.

Figure 4.10: The corner detection results with (right) and without (left) the Gaussian blur.

4.3 Feature Matching

Feature Matching is the process that matches the same location on the physical object,

e.g. feature point, that is being seen on two successive image frames. This problem is

also known as the correspondence problem. The goal is to match a small patch of the

previously captured image (at time t−1) to a certain area of similar size in the current

image (at time t). The matching is successful when a patch with similar intensity and

pattern can be found in the target image. The input of the feature matching are two

lists of corner points found in the current image and the previous image. These corner

points are derived by the corner detection routine described earlier. The output is a

subset of the feature points which appear on both images and that correspond to each

other. Figure 4.11 shows an example of the same feature points being matched after a

camera movement.

The entire feature matching process realized for the MCU system includes:

• 2D displacement boundary checking

• Feature matching using NCC coefficient
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Figure 4.11: An example of the feature matching after a camera movement. On the left

hand side is the image acquired at time t − 1 and on the right hand side is the image

acquired at time t.

The interaction between these processes is shown in Figure 4.12. More detailed expla-

nations for these processes are given in this section.

4.3.1 Checking the Feature Point Displacement

The simplest way to match the feature set after a camera movement is to compare a

selected feature in the first image against every feature available in the second image.

While this method can give a correctly matching result, the time required to check every

point pairs is large. By taking into account the assumption of the system behavior,

i.e. fast acquisition rate and slow movement of the MCU, the matching process can be

narrowed down to a certain area on the target image, i.e. the change of feature point

location should be small since the MCU movement within a time step is assumed to be

small.

In the current implementation, a 2D displacement threshold is used to limit the

search boundary. Consider Figure 4.13; a feature in image frame 1, marked by a

white cross, is to be matched against the feature set on image frame 2 after a camera

movement. By defining a search area on image frame 2 within a certain radius the

number of feature points to be tested for matching is lessen and therefore the time

required to find the corresponding match is reduced.

The condition whether the feature points in image frame 2 should be checked or

not is defined by:
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Figure 4.12: The feature matching process.

Feature point displacement checking

{
returns true if displacement < r

returns false if displacement > r

The radius r is defined by:

r =
√

(x− x′)2 + (y − y′)2 (4.3)

Where (x, y) and (x′, y′) are the 2D coordinates of the feature point in image frame 1

and image frame 2 respectively. The calculation is done in pixel units.

The set of narrowed down feature points is then tested for the corresponding match

using the normalized cross correlation as described in the following section.
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frame 1 frame 2

P(x,y)

translation

P´(x´,y´)

Figure 4.13: The displacement boundary checking of the 2D feature points. In frame 1, a

feature (marked by a white cross) is to be matched to the candidate features on frame 2.

By assigning a boundary (marked by a circle with defined radius around the target feature),

the search for the matched feature is narrowed down to only the features within the circle

radius r.

4.3.2 Feature Matching using Normalized Cross Correla-

tion

In this work, the Normalized Cross Correlation (NCC) technique described in Lewis

(1995), Lewis (2005) and Belle (2007) is used for the feature matching process. NCC

is an intensity based, cross-correlation that normalized the input images according to

the pixel information of the image patch. The normalization helps to cope with the

changing light conditions and thus the same feature can be detected again after several

time steps or after a change of camera location. Figure 4.11 shows a result of the

feature matching on two successive images from the left camera of the stereo camera.

For the feature point P(x,y) and P ′
(x′,y′), the normalized cross correlation coefficient

is defined by:

∑
x,y[P(x,y) − P̄ ][P ′

(x′,y′) − P̄ ′]{∑
x,y[P(x,y) − P̄ ]2

∑
x,y[P

′
(x′,y′) − P̄ ′]2

}0.5 (4.4)
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where

P̄ mean of the intensity in the region under point P

P̄ ′ mean of the intensity in the region under point P ′

The current NCC implementation has an effective comparison area of 9× 9 pixels.

The empirical value for the NCC coefficient (NCC=0.9) is found during the develop-

ment of the MCU system and is used for the selection of the matched feature, that is:

feature points matching

{
returns true if NCC coefficient ≥ 0.9

returns false if NCC coefficient < 0.9

4.3.3 Outlier Detection

Although the feature points are successfully matched using the NCC coefficient, it is

possible that some outliers are still existing. Further steps can be used to detect and

reject these outliers.

Outlier Detection using Hue Component Matching

The color match constraint makes use of the hue component to reject the outliers.

It compares the matched feature points derived from the feature matching process to

determine whether the hue values are similar or not. If the hue values of the matched

feature point are not similar then they are considered outliers. The color information of

the feature point can be retrieved from the 2D color image from the stereo camera. The

stereo camera gives out the color information in RGB format. However the use of an

RGB color model is not suitable for the matching scheme since it is easily manipulated

by the brightness of the scene. In order to get around this problem, the HSV color

model is used. The HSV color model is better for color matching since it separates the

color information into a unique channel and therefore the outlier rejection can be done

robustly against the change of light conditions in the scene.

The hue value h is usually represented in degrees and it runs from 0◦ to 360◦. Given

the RGB value from the stereo camera, the hue value is calculated by:

h =

⎧⎪⎨
⎪⎩

60× (4 + (r−g)
max−min ) if max = b

60× (2 + (b−r)
max−min ) if max = g

60× ( (g−b)
max−min ) if max = r
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4.4 3D Motion Detection using 2D Features

where max = max(r, g, b) and min = min(r, g, b). The r, g and b values are the red,

green and blue components of the RGB model, which range from zero to one.

Figure 4.14 shows a common color representation of the hue value. For example,

red is located at 0◦ and 360◦, blue is located at 240◦ and green is located at 120◦.

Figure 4.14: A color scale according to the hue component.

Outlier Detection using the Detected MCU Motion

This process rejects the feature points whose motion vectors are not in agreement with

the detected MCU motion. More explanation about this outlier detection is given later

in Section 4.4.

4.4 3D Motion Detection using 2D Features

By using just the 2D images from the MCU, a very accurate 3D motion of the MCU

such as forward/backward movement as well as rotations can be detected. As described

in Section 3.5, the unique design of the MCU makes it possible to correctly detect even

a small rotation and translation with low motion ambiguity error. The 3D motion

detection is done based on the calculation of the 2D features’ location and thus it is

simple and fast, yet accurate and robust. This motion information is used to reject the

feature points that are not in agreement with the current movement of the MCU and

it can also be used to initiate the final 3D motion estimation using the ICP algorithm

later on.

Consider Figure 4.15. The feature points P and P ′ represent the matched feature

point derived from the feature matching process. The motion detection starts by cal-

culating the 2D displacement of the feature point between two successive frames. The

2D displacements are calculated separately in x- and y-axes by the following equations:
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4.4 3D Motion Detection using 2D Features

xdisplacement = x+ u− x = u (4.5)

ydisplacement = y + v − y = v (4.6)

where

x previous location of the feature point in x-axis (in pixels)

y previous location of the feature point in y-axis (in pixels)

u displacement of the feature point in x-axis (in pixels)

v displacement of the feature point in y-axis (in pixels)

P´(x+u, y+v)

P(x,y)

u

v

x

y

Figure 4.15: 2D displacement of a feature point after a movement of the camera.

The displacement information of the feature point is then used to determine the 2D

motion of the camera in terms of translation in the x- and y-axes. For example, in Fig-

ure 4.15 the feature point P is displaced to the new location P ′. This displacement is

obtained by the movement of the camera toward the left direction along the x-axis and

down direction along the y-axis. That is, while the new location of the feature point

appears to be at the north-east of the previous location, the camera is in fact moved in

the south-west direction. By calculating the 2D displacement of all the feature points

available within the camera image, the 2D movement of the camera related to the rigid

scene is obtained as follows:

2D motion in x-axis =

{
right (positive direction) if u < 0

left (negative direction) if u > 0
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4.4 3D Motion Detection using 2D Features

2D motion in y-axis =

{
up (positive direction) if v < 0

down (negative direction) if v > 0

These motion directions are illustrated in Figure 4.16.

up

down

left

right

Figure 4.16: Directions of the 2D motion of a stereo camera.

In the case of single camera, this information is prone to motion ambiguity. How-

ever, in multi-camera systems the information from all three cameras is combined and

the ambiguity error is compensated1. The combination of the 2D motion information

from all cameras is illustrated in Figure 4.17, where the movement directions of the

MCU are referred to the coordinate frame of the x-camera. For example, if the x-axis

camera detects an up-movement and the z-axis camera also detects an up-movement

while the y-axis camera reports no movement then it can be concluded that the MCU

is undergoing an upwards movement. Although simple, this method has proved to be

very efficient and is good enough to be used for the outlier detection as well as to

generate initial values for the 3D motion estimation algorithm. Table 4.1 lists some of

the possible combinations and the estimated motions.

1See Section 3.5 for more details about the elimination of motion ambiguity using multi-

camera system.
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X
Z

Y

up

down
left

right

up

down
left

right
up

down

left

right

Figure 4.17: 3D motion detection of the MCU using 2D features. Here the 2D motions

from all three cameras are combined to produce the 3D motion of the MCU. This motion

is then used in the later processes, i.e. for the outlier detection and final 3D motion

estimation.

Outlier Detection using the Detected MCU Motion

Now that the 3D motion of the MCU is detected, further outliers among the detected

feature points can be screened out. This is done by looking at the feature points that

have different motion vectors compared to the detected 3D motion of the MCU. For

example, if the detected MCU motion is the combination of up and right directions,

there might be some feature points that have different motion vectors which are not

in agreement. Such feature points are considered as outliers. Figure 4.18 explains this

scenario in brief.
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4.4 3D Motion Detection using 2D Features

Table 4.1: 3D motion detection using 2D motion information.

X-cam Z-cam Y-cam motion

up up - up

down down - down

left - up left

right - down right

- left left forward

- right right backward

- down down rotate cw around x-axis

- up up rotate ccw around x-axis

up - right rotate cw around y-axis

down - left rotate ccw around y-axis

left left - rotate cw around z-axis

right right - rotate ccw around z-axis

up, right up, right - up and rotate ccw around z-axis

note: cw = clockwise, ccw = counterclockwise

Figure 4.18: The detected 3D motion can be used to eliminate the outliers. In this example,

the 2D features with red motion vectors are considered outliers since they have different

motion vectors compared to the detected MCU motion.
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4.5 Six Degree of Freedom Motion Estimation

Now that the set of matched feature points without outliers is available, the six degree

of freedom (DoF) motion can be estimated. The six DoF motion is expressed in terms

of three rotations and three translations along the x-, y- and z-axis. To begin with,

the initial estimation of the motion parameters are determined using the RANSAC

algorithm and afterward the final 3D motion is estimated using the ICP algorithm.

These two processes are explained in detail in the following sections.

4.5.1 Initialization of Motion Parameters using the

RANSAC Algorithm

The Random Sample Consensus (RANSAC) algorithm is used for the initialization of

the motion parameters. The RANSAC algorithm is a tool to estimate the parameters

of a system model as well as for generating a set of inliers apart from the noisy data

set. More detail about RANSAC can be found in the work of Fischler & Bolles (1981).

The input of the RANSAC algorithm is the set of matched feature points derived

from the previous process and the output are the consensus set of feature points and

an estimation of the 3D motion. Figure 4.19 shows the author’s implementation of the

RANSAC algorithm used in this work.

Once the RANSAC algorithm is executed, the motion initial parameters including

the rotation and translation components as well as the average 3D distance error be-

tween the two set of matched feature points are obtained. This information is then

used for the final 3D motion estimation using the ICP algorithm, which is explained in

the next section.

4.5.2 Estimation of Motion Parameters using the

ICP Algorithm

In this work, the Iterative Closest Point (ICP) is used to find the rotation and trans-

lation of the MCU at each timestep. The ICP algorithm determines the optimal 3D

transformation of the MCU that fits the two sets of feature points acquired before and

after the camera movement by iteratively minimizing the Euclidean distance error be-

tween the feature points. More information about the ICP algorithm can be found in

the work from Besl & Mckay (1992) and Rusinkiewicz & Levoy (2001).

The input of the ICP algorithm are two sets of feature points acquired before and

after the camera movement and the information derived from the RANSAC algorithm
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4.5 Six Degree of Freedom Motion Estimation

Figure 4.19: The RANSAC algorithm.

including initial 3D motion information and the average 3D distance error. The output

of the ICP algorithm is the 3D rotation and translation that optimally describes the

motion of the MCU. The ICP algorithm consists of the following steps:

• Set the error threshold Dmax using the average error distance derived from the

RANSAC algorithm (first time only).

• Compute the optimal motion between the matched feature points using SVD.

• Apply motion to the feature points set.
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4.5 Six Degree of Freedom Motion Estimation

• Update the threshold Dmax and repeat the whole process until the maximum

number of iterations is reached or the 3D distance error is lower than a threshold

value.

The author’s implementation of the ICP algorithm is illustrated in Figure 4.20.

Figure 4.20: The ICP algorithm.
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4.5 Six Degree of Freedom Motion Estimation

The Dmax Value

The Dmax is the threshold value that is used for the selection of the feature points

during each ICP iteration. If Dmax is bigger than necessary then the ICP algorithm

may not converge because the bad point pairs are always included during the iterations.

On the other hand, if the Dmax value is too small, the number of iterations will increase

since the good point pairs are not being included, which results in a long converge time.

This problem was addressed by Zhang [Zhang (1994)] and the solution is to recalculate

the Dmax value at each iteration according to the statistical analysis.

Let p = {p1,p2, ...,pn} and q = {q1,q2, ...,qn} be the set of feature points acquired

before and after the camera movement and di be the 3D Euclidean distance error

between the ith correspond feature points in p and q. The mean distance dmean and

the deviation of the distance σ are calculated by:

dmean =
1

N

N∑
i=1

di (4.7)

σ =

√√√√ 1

N

N∑
i=1

(di − dmean)2 (4.8)

Where N is the number of the corresponding feature point. For each iteration, the

value of Dmax is selected according to the value of dmean as follows:

Dmax =

⎧⎪⎨
⎪⎩

dmean + 3σ if dmean < Dmax (the registration is good)

dmean + 2σ if dmean < 3Dmax (the registration is moderate)

dmean + σ if dmean < 6Dmax (the registration is poor)

The new Dmax is then used to select the corresponding feature points in p and q at

each iteration of the ICP algorithm. If the distance between the corresponding feature

points in p and q is larger than Dmax then the feature point is ignored and only the

remaining feature points are used for the estimation of the motion information.

Finding Optimal Rotation and Translation using SVD

The process to determine optimum rotation and translation between two feature point

sets, say p and q, using the Singular Value Decomposition (SVD) consists of two steps.

First the translation component is detached by using the centroid information of both

data set:
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4.5 Six Degree of Freedom Motion Estimation

p′
i = pi − pcentroid (4.9)

q′
i = qi − qcentroid (4.10)

Where i = {1, 2, 3, ..., N} and N is the number of feature points in the point set. The

covariance matrix H is computed by:

H =
N∑
i=1

q′
ip

′
i
T

(4.11)

The next step is to compute the SVD of H:

H = UΣVT (4.12)

As a result, the optimal 3D rotation R is defined by:

R = VUT (4.13)

and the 3D translation vector t is defined by:

t = pcentroid −Rqcentroid (4.14)

Euclidean Distance Error Calculation

The goal of the ICP algorithm is to find the optimal rotation and translation information

that minimize the Euclidean distance between the matched features within two sets of

feature points after a camera movement, i.e. p and q:

N∑
i=1

‖pi − qi(R, t)‖ (4.15)

The Euclidean distance between pi and qi is defined by:

‖pi − qi‖ =
√

(xpi − xqi)
2 + (ypi − yqi)

2 + (zpi − zqi)
2 (4.16)

As shown in Figure 4.20, the Euclidean distance is used to determine the termination

of the ICP algorithm. If the change of the Euclidean distance in the current iteration

compared to the previous iteration is smaller than a certain threshold value then the

algorithm can be terminated before the maximum number of iterations is reached.
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4.6 Conclusion

This chapter explained how 3D motion estimation using MCU works. First the feature

points are detected using the CRF corner detector. Then the feature points between

two successive frames are related to each other by feature matching process using the

NCC coefficient. Once the correct correspondences are found the 2D motion from all

three cameras are determined. This 2D motion information is combined to produce

the initial 3D motion of the MCU. Finally, the ICP algorithm is used to determine the

final 3D motion estimation of the MCU.
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Chapter 5

Real-time 3D Map Building

using the MCU

Introduction — Real-time 3D Map Building using a Probabilistic Approach

— FastSLAM — MCU System Equations — FastSLAM Implementation —

Simulation of the FastSLAM System — Real-time 3D Photorealistic Map

Building using 3D Images — Conclusion

5.1 Introduction

This chapter presents a method for a real-time 3D map building using the MCU system.

The main goal is to maintain a consistent map of the environment as well as the

location of the MCU and its travelled trajectory. In order to reduce the computational

complexity and to achieve the real-time performance, the use of full resolution 3D

images is avoided. Instead, a set of feature points obtained during the motion estimation

process is used. A probabilistic approach is then used to maintain the consistency of

the feature points and the MCU location in real-time. The result is a consistent feature

point map that represents the geometric structure of the environment and the estimated

location of the MCU. By knowing the MCU location, every newly acquired 3D image

77



5.2 Real-time 3D Map Building using a Probabilistic Approach

can be merged to create a 3D photorealistic map of the environment. The inputs of the

map building process are the motion estimation information, the feature points and the

3D images from the stereo cameras. The map building process is illustrated in Figure

5.1.

Figure 5.1: Overview of the map building process.

5.2 Real-time 3D Map Building using a Proba-

bilistic Approach

Generally, two main components are needed for the creation of a complete 3D map. The

first one is the set of feature points that are extracted from the environment and the

second one is the rigid transformation information that relates the two sets of feature

points from different time steps to the same reference coordinate. If both components

are available, a 3D map can be constructed without difficulty. However, there are

problems when dealing with map building in real world situations. These problems

are:
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5.2 Real-time 3D Map Building using a Probabilistic Approach

• The measurement of the feature point location is corrupted with noise.

• The motion information contains uncertainty.

Failing to cope with these uncertainties usually results in the instability of the map

building algorithm and a corrupted map.

In order to deal with these uncertainties the probabilistic approach for map building

is needed. There is a framework that deals with the mapping and motion estimation

uncertainties, namely the Simultaneous Localization And Mapping (SLAM). One of the

well known SLAM implementations is based on the Extended Kalman Filter (EKF).

However the design of the EKF itself poses a problem for the map building task, namely

the computational complexity of the system matrices. A straightforward implementa-

tion of the EKF-based SLAM requires time quadratics related to the number of features

in the map, which is the result of the massive system matrix multiplications [Thrun

(2002)]. The EKF approach also copes poorly with the correspondence problem in

which the wrong association of the feature points measurement and the map data can

result in the instability of the algorithm.

The FastSLAM1 algorithm is another probabilistic approach that is realized based

on the particle filter technique [Montemerlo et al. (2002), Montemerlo (2003), Monte-

merlo et al. (2003), Bailey et al. (2006), Sim et al. (2005)]. It copes with the correspon-

dence problem by introducing multiple hypotheses on the observer localization and the

associated feature point map. FastSLAM contains set of particles that individually keep

track of the path history and the feature point map. It uses particle filter to sample

the new pose and uses low-dimension EKFs to maintain the location of each individual

feature point in the map. This design requires a smaller memory footprint and shorter

computational time compared to the EKF-based SLAM approach [Montemerlo et al.

(2003)]. For these reasons the FastSLAM algorithm is chosen for the map building task

in this work.

1Currently there are two implementations of the FastSLAM algorithms, which are Fast-

SLAM 1.0 and FastSLAM 2.0. Unless otherwise stated, the term FastSLAM in this work refers

to the FastSLAM 2.0 implementation.
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5.3 FastSLAM

5.3.1 Overview

The objective of the FastSLAM algorithm is to integrate the new feature point measure-

ment into a consistent feature point map and at the same time maintain the location

of the MCU related to the map coordinate system. The main information within the

FastSLAM algorithm are the path of the MCU denoted by st and the feature point map

denoted by Θ. Both are being maintained by a set of particles within the FastSLAM

algorithm. The path st can be written as a set of the MCU pose vectors from the first

until the latest time step:

st = {s1, s2, s3, ..., st} (5.1)

The feature point map Θ is a set of N feature point locations and it can be written as:

Θ = {θ1,θ2,θ3, ...,θN} (5.2)

In the FastSLAM algorithm, the posterior probability of the feature point map

given the MCU path is expressed as:

p(Θ, st|zt, ut, nt) (5.3)

where

zt set of the feature points measurement zt = {z1, z2, ..., zt}
ut set of the MCU odometry measurement ut = {u1,u2, ...,ut}
nt set of the data associate variables nt = {n1, n2, ..., nt}

The probabilistic model of the feature points measurement is:

p(zt|st,Θ, nt) (5.4)

and the probabilistic motion model of the MCU is:

p(st|ut, st−1) (5.5)

Both probabilistic models are modeled by non-linear functions g and h with indepen-

dent Gaussian noise εt and δt and the covariance Σε and Σδ respectively.

p(zt|st,Θ, nt) = g(st,θn,t) + εt (5.6)

p(st|ut, st−1) = h(st−1,ut) + δt (5.7)
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The FastSLAM algorithm solves the feature point location estimation independently

from the MCU pose estimation. That is, assuming that the path of the MCU is known,

the location of each feature point can then be estimated independently. Therefore the

factorization of the posterior distribution in Equation 5.3 becomes:

p(Θ, st|zt, ut, nt) = p(st|zt, ut, nt)

N∏
n=1

p(θn|st, zt, ut, nt) (5.8)

where p(st|zt, ut, nt) is the path posterior and p(θn|st, zt, ut, nt) is the feature point

location estimator.

The FastSLAM algorithm samples the path using a particle filtering technique where

a number of m particles are used to maintain m unique MCU paths and m feature

point maps. Figure 5.2 illustrates the components of each FastSLAM particle where

µ
[m]
n,t and Σ

[m]
n,t are the mean and covariance matrix representing the nth feature location

conditioned on the path st,[m] at time t.
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Figure 5.2: The FastSLAM with m particles.

5.3.2 The FastSLAM Algorithm

At every iteration, the FastSLAM algorithm samples the new MCU pose s
[m]
t based

on the set of MCU pose up to the previous iteration (st−1,[m]), the MCU odometry

measurement, the measurement of the feature point locations and the data association
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variable:

s
[m]
t ∼ p(st|st−1,[m], ut, zt, nt) (5.9)

The measurement function g(st,θn,t) is approximated by linear functions so that

the distribution is Gaussian and a standard EKF solution can be applied. The Taylor

expansion of g is:

g(st,θn,t) ≈ ẑt +Gθ(θn,t − µ
[m]
n,t−1) +Gs(st − ŝt) (5.10)

Where ŝt and ẑt are the predicted pose and predicted measurement and the matrices

Gθ and Gs are the Jacobians of g. By using the linear approximation of the measure-

ment function g, the covariance Σ
[m]
st and the mean µ

[m]
st of the MCU pose are then

determined:

Σ[m]
st = [GT

s Z
−1
t Gs +Σ−1

δ,t ]
−1 (5.11)

µ[m]
st = Σ[m]

st GT
s Z

−1
t (zt − ẑt) + ŝ

[m]
t (5.12)

Zt = Σε,t +GθΣ
[m]
n,t−1G

T
θ (5.13)

Next, the FastSLAM algorithm updates the observation of the feature points ac-

cording to the following posterior:

p(θn,t|st,[m], nt, zt) = ηp(zt|θn,t, s
[m]
t , nt)p(θn,t|st−1,[m], zt−1, nt−1) (5.14)

where η is the normalizer constant. By using the linearized measurement function g,

the mean µ
[m]
n,t and the covariance Σ

[m]
n,t of all feature point locations are updated using

EKF.

µ
[m]
n,t = µ

[m]
n,t−1 +Kt(zt − ẑt) (5.15)

Σ
[m]
n,t = (I −KtGθn,t)Σ

[m]
n,t−1 (5.16)

The FastSLAM algorithm recalculates the weight of all particles at every itera-

tion. The probability for the mth particle to be sampled is given by its importance

weight w
[m]
t , which is defined by the ratio of the target distribution over the proposal

distribution:

w
[m]
t =

target distribution

proposal distribution
(5.17)

=
p(st,[m] | zt, ut, nt)

p(st−1,[m] | zt−1, ut−1, nt−1)p(s
[m]
t | st−1,[m], zt, ut, nt)

(5.18)
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For the complete information about the FastSLAM algorithm please refer to Mon-

temerlo (2003).

5.4 MCU System Equations

The MCU pose can be represented by the pose vector xv, which consists of the position

of the MCU related to the 3D world coordinate (x, y, z), and the orientation (α, β, γ),

which represent the relative angle to the x-, y- and z-axes of the world coordinate using

the right hand rule.

xv = [xv yv zv αv βv γv]
T (5.19)

The odometry output from the MCU at each time step is denoted as ut and it is

consists of the translation and rotation parameters:

ut = [xu yu zu αu βu γu]
T (5.20)

Each feature point is described by a vector yn, which simply consists of the x, y

and z components. The subscribe n = {1, 2, ..., N} denotes the number of the feature

points at the current time step t. This can be written as:

yn = [xn yn zn]
T (5.21)

The Motion Model

The pose of the MCU (xv) at each time step t can be derived by:

xvt = fv(xvt−1 ,ut) (5.22)

The transition function fv can be written using the previously defined coordinate

system as:

fv(xvt−1,ut) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xvt−1 +R11xu +R12yu +R13zu

yvt−1 +R21xu +R22yu +R23zu

zvt−1 +R31xu +R32yu +R33zu

αvt−1 + αu

βvt−1 + βu

γvt−1 + γu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.23)
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where the terms Rij are the corresponding entries of the 3D rotation matrix R:

R =

⎛
⎜⎝ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞
⎟⎠

=

⎛
⎜⎝ cosα cosβ cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ

sinα cosβ sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ

−sin β cos β sin γ cos β cos γ

⎞
⎟⎠

(5.24)

The Measurement Model

The measurement zn of the nth feature point yn is defined by:

zn = hn(xv,yn) (5.25)

where xv is the pose of the MCU and yn is the 3D coordinate of the feature point.

5.5 FastSLAM Implementation

The implementation of the FastSLAM algorithm using MCU consists of the following

process:

• Update the current MCU pose and the new measurement.

• Data association of known feature points using lookup table.

• Add new feature points to the map.

• Compute weight of the particles.

• Resample the particles.

• Calculate sample proposal.

• Update known feature points using EKFs.

The relationship of these process is shown in Figure 5.3.
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5.5 FastSLAM Implementation

Figure 5.3: An overview of the FastSLAM algorithm.

Update the Current MCU Pose and the New Measurement

The pose of the MCU and the new measurement are updated according to Equation

5.23 and Equation 5.25 respectively.

Data Association

This process associates the new feature point measurements to the known feature points

using a look-up table. If a known feature point is found then it will be updated by the

following process. Unknown feature points will be added to the map by the add new

feature point process.
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Add New Feature Point

This process adds new feature points to the feature point map. An index number is

then assigned for the new feature point and is kept in the look-up table.

Compute Weight of the Particles

The new weights of the particles are calculated according to Equation 5.18.

Resample Particles

This process draws a new set of samples from the current particles set with probabilities

in proportion to the newly computed weight. Resampling is done in order to avoid the

depletion of the particles.

Sample Proposal

The new sample proposal of the MCU pose is derived according to Equation 5.11 and

Equation 5.12

Update Known Feature Points

This process updates the mean and covariance of the feature points in every particles

according to Equation 5.15 and Equation 5.16 respectively.

5.6 Simulation of the FastSLAM System

A software simulation of the FastSLAM algorithm is implemented using MATLAB

in order to investigate the behavior of the algorithm. The simulation includes the

full implementation of the FastSLAM algorithm and the 3D data visualization. The

simulation provides a set of 3D feature points and a pre-defined trajectory that the

simulated 3D sensor has to follow. Gaussian noise is introduced to the measurement of

the feature point location as well as the estimated motion information.

At each iteration the simulated 3D sensor observes the feature points that are seen

within its field of view and updates its pose and location according to a simple motion

model. The pose and location of the 3D sensor and the location of the feature points

are then used as input for the FastSLAM algorithm. The output is the probabilistic

map of the feature points as well as the estimated location of the 3D sensor.
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The following important parameters are used for the simulation system:

• Number of particles used is 500.

• The motion of the 3D sensor along the defined trajectory consists of pure trans-

lation along the path and pure rotation around the turning points.

• The estimated motion information contains uncertainties of 20 mm and 0.5 de-

grees in cases of translation and rotation respectively.

• The maximum translation and rotation of the 3D sensor per iteration are limited

to 10 mm and 3 degrees respectively.

• The feature point measurement contains uncertainly of 20 mm in the x, y and z

direction.

• The 3D sensor has to complete the whole trajectory twice.

Results

The motion information including the location and pose of the 3D sensor are recorded

during each iteration and the error between the estimated and actual values are calcu-

lated. Figure 5.4 shows the motion estimation errors during two completions around

the defined trajectory. It can be seen that the estimated values are very close to the

actual values.

In Figure 5.5, the sum of trace of the covariance matrices of the feature points are

calculated and plotted against iteration steps in order to observe the consistency of the

derived feature point map. From the start to the end of the first completion of the

trajectory (from the 1st to the 325th iteration), new feature points are being added to

the map, as can be seen by the increasing sum of trace value which eventually decreased

after several iterations. As the 3D sensor begins its second round of the trajectory (after

the 325th iteration), there are no more new features being added to the map and it can

be seen that the sum of trace converges and gets smaller as more iterations pass by.

This shows that the consistency of the map is continuing to improved over time.

Figure 5.6 shows the graphic representation obtained from the FastSLAM simula-

tion during the simulation process. In Figure 5.6(a), the estimated location of feature

points obtained from each particle are distributed around the actual locations and these

estimated locations converge to the actual locations as more iterations pass by (Figure

5.6(b), Figure 5.6(c) and Figure 5.6(d)). In Figure 5.6(e), several new features are
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Figure 5.4: The pose and location error obtained from the FastSLAM simulation.
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Figure 5.5: The sum of trace of the feature point covariance matrices.

added to the map and their locations also converge to the actual locations as shown in

Figure 5.6(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Result of the FastSLAM algorithm simulation implemented in MATLAB using

500 particles. The yellow-green triangle polygon indicates the actual pose of the 3D sensor

while the blue triangle polygon indicates the estimated pose. The green markers represent

the actual locations of the feature points and the red markers represents the estimated

values as derived from every particles. The result shows the convergence of the feature

point’s location as well as the accurately estimated pose of the 3D sensor compared to the

actual one.
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5.7 Real-time 3D Photorealistic Map Building

using 3D Images

The procedure to obtain the 3D photorealistic map of the environment is to incremen-

tally merge the 3D images acquired from the MCU together according to the location

and pose of the MCU. This process is illustrated in Figure 5.7 where new 3D images

(Xi, Yi, Zi) are being added to the map according to the pose Pi of the MCU.

P1

P2

P3

z1

z2

z3

x1

x2

x3

y2

y1

y3

Figure 5.7: The goal of the map building process is to incrementally build a photorealistic

3D map of the environment by merging new 3D images to the map data.

The current implementation of the 3D photorealistic map building is simple. First

the 3D images or the clouds of 3D points acquired at each time step are stored on the

hard drive as map tiles. At the same time the location and pose of the MCU is also

recorded. Then the map rendering software periodically fetches these files and adds the

3D points from the map tile files to the map data and renders the 3D photorealistic

model in real-time. These processes are shown in Figure 5.8.
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5.7 Real-time 3D Photorealistic Map Building using 3D Images

Figure 5.8: The 3D photorealistic map building process.

5.7.1 MCU Log File

The MCU log file contains the location and pose of the MCU derived at every time

step from the FastSLAM algorithm. This information is stored on a hard drive as a

text file. Figure 5.9 shows the log file format used in this work.

<24490, 0, 0, 0, 0, 0, 0, 0.00287006, 0.0008779, 0.0049752, 0.282576, -0.095407, -0.072662>
<25080, 0, 0, 0, 0, 0, 0, -0.00726685, 0.0090541, 0.0101487, 0.285235, -0.302657, 0.234023>
<25722, 0, 0, 0, 0, 0, 0, -0.00612231, 0.0096857, 0.0106534, 0.282811, -0.325240, 0.211693>
<26324, 0, 0, 0, 0, 0, 0, -0.00334177, 0.0039395, 0.0034720, 0.015731, -0.328844, 0.055948>
<26909, 0, 0, 0, 0, 0, 0, -0.00466342, 0.0029244, -9.6588605, -0.048754, -0.122407, 0.029919>

< , b,c,d,e,f,g, h , i , j , k , l , m >a

Figure 5.9: Example of the MCU log file. This example log file contains five entries where

various information about the MCU during five time steps are recorded.

The MCU log file contains the following information:

• (a): time stamp (in millisecond).
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• (b - g): movement directions of the MCU (according to Section 4.4).

• (h, i, j): orientation of the MCU (roll, pitch, yaw) in degree.

• (k, l, m): position of the MCU (x, y, z) in millimeter.

The log file can be used to generate a travelled trajectory of the MCU. By rendering

every MCU position available in the log file using the map rendering software, the

travelled trajectory of the MCU can be easily inspected. Example trajectories can be

found in the results of the map building experiments in the next chapter.

5.7.2 Map Tiles

The map tiles are text files that contain the clouds of 3D points captured at each time

step by the MCU. These tiles can be put together in order to create a photorealistic

model of the explored environment. Figure 5.10 shows the file format of the map tile

used in this work.

version 1
size 293642
< 127.906,0.683879,-9.15094 >
< 0.218903,-0.960612,-1.52567 >
< -1330,-443,-205,57,40,24 >
< -1330,-443,-203,55,40,26 >
< -1330,-443,-201,54,41,26 >
< -1331,-443,-199,52,40,29 >

version number
number of 3d point
MCU position
MCU orientation

<x, y, z, r, g, b>

.
.

.

Figure 5.10: Example of a map tile file. Each file consists of the header information and

the entries of the 3D points. Only the first four entries are shown in this example.

As can be seen, the header of the map tile contains the information about MCU

location and orientation at the capture time. This makes it easy to merge several map

tiles together afterwards since the location and orientation information are all referred

to the same origin.

The header contains the following information:

• Version number: this gives the map building system a flexibility to handle

possible file format changes in the future.
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• Number of 3D point: this indicates the total number of 3D points available

in the file.

• MCU position: the position of the MCU (x, y, z) in millimeter.

• MCU orientation: the orientation of the MCU (roll, pitch, yaw) in degree.

The rest of the file is the entries of the 3D points where each line represents one 3D

point. The information for each point consists of the x, y and z location as well as the

color information which is stored according to the RGB color format.

5.7.3 3D Map Rendering Software

The map rendering software is written by the author in order to visualize the 3D map

building process in real-time. The 3D points are rendered using the OpenGL graphic

library. Figure 5.11 shows the map rendering software used in this work.

Figure 5.11: The 3D map rendering software.

By following the procedures shown in Figure 5.8, the 3D map can be incrementally

built. Figure 5.12 shows the progress of the map building process as being visualized

by the map rendering software.
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Figure 5.12: The map building progress. First the map rendering software renders only the

first map tile (left). As time pass by, more map tiles are being added (middle), resulting in

a 3D photorealistic map that keep expanding over time (right).

5.8 Conclusion

This chapter explained the map building process which is based on the probabilistic

analysis approach. The goal is to maintain a consistent map of the environment as well

as the location of the MCU and its travelled trajectory. The feature set derived during

the motion estimation process is used as a sparse representation of the environment in

order to archive the real-time map building performance. The location of the feature

points as well as the location and pose of the MCU are maintained consistent with

the real world values using the FastSLAM algorithm. A MATLAB simulation of the

FastSLAM algorithm shows the convergence of the map as well as a consistent MCU

localization. Finally, the 3D photorealistic map of the environment is obtained by

merging the 3D images acquired by the MCU during the exploration time.
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Chapter 6

Experiments and Results

Introduction — Experiment Setup — 3D Motion Estimation Experiments

and Results — 3D Photorealistic Map Building Experiments and Results

— Conclusion

6.1 Introduction

This chapter presents the experiment results of the 3D motion estimation and map

building tasks using the MCU system. In the motion estimation experiments the MCU

is moved along the pre-defined trajectories and the estimated 3D motion is to be deter-

mined using the procedures described in Chapter 4. In the map building experiments,

the MCU is used to explore an environment where knowledge about the environment

is zero at the start and the procedures described in Chapter 5 are used to produce the

3D photorealistic maps of the environment.

96



6.2 Experiment Setup

6.2 Experiment Setup

6.2.1 Assumptions

Certain assumptions were made for the 3D motion estimation and map building ex-

periments using the MCU system. The following assumptions are required so that the

MCU can operate correctly for both 3D position estimation and map building tasks.

• The test environment should be an indoor environment. This is to make sure that

undesired effects such as strong sunlight, reflections, unexpected moving objects,

etc. will not interfere with the experiment, since the current implementation of

the MCU system is not designed to cope with such strong disturbances.

• The environment to be explored should be static. No moving objects and no

changing of the geometry within the environment occurs during the experiment.

• The environment provides enough visual texture for the stereo camera. The

texture information is necessary for the visual odometry process. Environments

without any visual texture, e.g. a white room with empty walls would void the

use of MCU since the visual odometry process would fail to find any feature

points.

• The test environment should contain no mirrors since its reflection could give

the MCU false geometric information and bring about a corruption of the data

scheme.

• The environment is well lit, i.e. adequate light is present so that the camera can

produces proper image with low noise.

6.2.2 The Test Environment

Figure 6.1 and Figure 6.2 show the test environment to be used for the experiments.

The test environment has an approximate dimension of approximately 4× 5× 3 meters

and it contains no specific or artificial landmarks.

6.2.3 The Measurement Tool

The measurement scales are attached to the tripod that holds the MCU hardware.

They are used for the measurement of the actual rotation and translation of the MCU
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Figure 6.1: A panoramic view of the test environment.

Figure 6.2: Some different views from the test environment.

after each adjustment on the tripod during the experiments. Figure 6.3 shows the

tripod and the measurement scales.

6.2.4 The Test Procedures

The following procedures are to be carried out during each test.

1. Initialization of the MCU system and the map data. Reset the starting MCU

position to the origin.
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Figure 6.3: The setup for the displacement measurement tool.

2. Navigate the MCU along the planned trajectory.

3. During each movement, the MCU estimates the 3D motion and incrementally

updates the feature point map. The trajectory and the feature point map are

recorded until the MCU finishes the given trajectory.
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6.3 Experiment I: 3D Motion Estimation

In this experiment a set of different trajectories are used in order to test the performance

of the MCU system for the 3D motion estimation task. The 3D motion estimation is

derived using information from one camera, two cameras and three cameras respectively

so that the performance between each system can be compared.

The trajectory and the number of cameras used during each test are listed below.

6.3.1 Small Rotation Estimation

Test 1: Estimate 15 degrees rotation around the y-axis using only X-camera.

Test 2: Estimate 15 degrees rotation around the y-axis using only Y-camera.

Test 3: Estimate 15 degrees rotation around the y-axis using only Z-camera.

Test 4: Estimate 15 degrees rotation around the y-axis using X- and Z-cameras.

Test 5: Estimate 15 degrees rotation around the y-axis using all three cameras.

Test 6: Estimate 25 degrees rotation around the y-axis using all three cameras.

6.3.2 Small Translation Estimation

Test 1: Estimate 50 mm translation along the y-axis using only Y-camera.

Test 2: Estimate 50 mm translation along the y-axis using only Z-camera.

Test 3: Estimate 50 mm translation along the y-axis using X- and Z-cameras.

Test 4: Estimate 50 mm translation along the y-axis using all three cameras.

Test 5: Estimate 10 mm translation along the y-axis using all three cameras.

Test 6: Estimate 100 mm translation along the y-axis using all three cameras.

6.3.3 Large Rotation Estimation

Test 1: Estimate 25 degrees rotation around the x-axis using all three cameras.

Test 2: Estimate 45 degrees rotation around the y-axis using all three cameras.

6.3.4 Large Translation Estimation

Test 1: Estimate 500 mm translation along the x-axis using all three cameras.

Test 2: Estimate 1000 mm translation along the z-axis using all three cameras.

100



6.3 Experiment I: 3D Motion Estimation

6.3.5 �-shape Trajectory Estimation

Estimate the movement along the �-shape trajectory using all three cameras.

6.3.6 Additional Trajectories

Test 1: Rotation 90 degrees around the y-axis using all three cameras.

Test 2: Rotation 180 degrees around the y-axis using all three cameras.

Test 3: Movement along a trapezoidal trajectory using all three cameras.
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6.3.1 Small Rotation

The following 3D motion estimation tests are done using some small rotations around

the y-axis of the MCU reference frame. The MCU is rotated back and forth according to

the pre-defined angle and the 3D motion information during the movement is recorded.

The tests also includes the use of a one camera system, a two camera system and a

three camera system in order to compare the different performances. The following

tests are included in this section:

Test 1: Estimate 15 degrees rotation around the y-axis using only X-camera.

Test 2: Estimate 15 degrees rotation around the y-axis using only Y-camera.

Test 3: Estimate 15 degrees rotation around the y-axis using only Z-camera.

Test 4: Estimate 15 degrees rotation around the y-axis using X- and Z-cameras.

Test 5: Estimate 15 degrees rotation around the y-axis using all three cameras.

Test 6: Estimate 25 degrees rotation around the y-axis using all three cameras.
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Test 1: Estimate 15 degrees rotation around the y-axis using only X-

camera.

In this test the MCU is rotated 15 degrees back and forth around the y-axis. Figure 6.4

shows the results of the 3D motion estimation derived using only information derived

from the X-camera.
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Figure 6.4: Results of the rotation estimation using 15 degrees of rotation around the

y-axis. Only the X-camera is used.

103



6.3 Experiment I: 3D Motion Estimation

Test 2: Estimate 15 degrees rotation around the y-axis using only Y-

camera.

In this test the MCU is rotated 15 degrees forth and back around y-axis. Figure 6.5

shows the results of the 3D motion estimation derived using only information derived

from the Y-camera.
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Figure 6.5: Results of the rotation estimation using 15 degrees of rotation around the

y-axis. Only the Y-camera is used.
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Test 3: Estimate 15 degrees rotation around the y-axis using only Z-

camera.

In this test the MCU is rotated 15 degrees back and forth around the y-axis. Figure 6.6

shows the results of the 3D motion estimation derived using only information derived

from the Z-camera.
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Figure 6.6: Results of the rotation estimation using 15 degrees of rotation around the

y-axis. Only the Z-camera is used.
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Test 4: Estimate 15 degrees rotation around the y-axis using X- and

Z-cameras.

In this test the MCU is rotated 15 degrees back and forth around the y-axis. Figure

6.7 shows the results of the 3D motion estimation derived using information derived

from X- and Z-cameras.
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Figure 6.7: Results of the rotation estimation using 15 degrees of rotation around the

y-axis. The X- and Z-cameras are used.
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Test 5: Estimate 15 degrees rotation around the y-axis using all three

cameras.

In this test the MCU is rotated 15 degrees back and forth around the y-axis. Figure

6.8 shows the results of the 3D motion estimation derived using information derived

from all three cameras.
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Figure 6.8: Results of the rotation estimation using 15 degrees of rotation around the

y-axis. All three cameras are used.
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Test 6: Estimate 25 degrees rotation around the y-axis using all three

cameras.

In this test the MCU is rotated 25 degrees back and forth around the y-axis. Figure

6.9 shows the results of the 3D motion estimation derived using information derived

from all three cameras.
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Figure 6.9: Results of the rotation estimation using 25 degrees rotation around the y-axis.

All three cameras are used.
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Result Analysis

Test 1 and Test 3

From Figure 6.4 and Figure 6.6, it can be seen that the rotation estimated results using

only one camera contains number of errors. Although the direction of the rotation

is correctly detected, the estimated angles are wrong. Some rotations around the x-

and y-axes are also presented although no actual rotation around these two axes were

given. This effect is expected due to the rotation ambiguity existing in the single camera

system, as explained in Section 3.5.

Test 2

Figure 6.5 shows a good rotation estimation result eventhough only one camera is used.

This is the case where the rotation occurs around the optical axis of the camera and

the effect of the motion ambiguity is low.

Test 4

By using two cameras the estimated rotation becomes more accurate compared to

the single camera system. Figure 6.7 shows a close estimated rotation compared to

the actual rotation even though the optical axis of both cameras are perpendicular to

the rotation axis. This is the case where information from both cameras are used to

compensate the motion ambiguity, as explained in Section 4.4.

Test 5

Figure 6.8 shows that the estimated rotation using three cameras is close to the actual

rotation. The pose of the MCU after returning to the starting point is also close to the

value of the start angle, which indicates the consistence of the 3D motion estimation

process. Note that there are small rotations detected on the x- and z-axes due to a

small misalignment of the rotational axis of the tripod and the internal coordinate of

the MCU. This internal coordinate is assigned internally during the calibration of the

MCU and it is not easy to relate it to the outside world, i.e. to the rotation and

translation axes of the tripod.

Test 6

Figure 6.9 shows that the estimated rotation using three cameras is close to the actual

rotation.
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6.3.2 Small Translation

The following 3D motion estimation tests are done using some small translations along

the y-axis of the MCU reference frame. The MCU is translated back and forth accord-

ing to the pre-defined distance, and the 3D motion information during the movement

is recorded. The tests also include the use of a one camera system, a two camera sys-

tem and a three camera system in order to compare the different performances. The

following tests are included in this section:

Test 1: Estimate 50 mm translation along the y-axis using only Y-camera.

Test 2: Estimate 50 mm translation along the y-axis using only Z-camera.

Test 3: Estimate 50 mm translation along the y-axis using X- and Z-cameras.

Test 4: Estimate 50 mm translation along the y-axis using all three cameras.

Test 5: Estimate 10 mm translation along the y-axis using all three cameras.

Test 6: Estimate 100 mm translation along the y-axis using all three cameras.
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6.3 Experiment I: 3D Motion Estimation

Test 1: Estimate 50 mm translation along the y-axis using only Y-

camera.

In this test the MCU is translated 50 mm back and forth along the y-axis. Figure 6.10

shows the results of the 3D motion estimation derived using only information derived

from the Y-camera.
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Figure 6.10: Results of the translation estimation using 50 mm distance along the y-axis.

Only Y-camera is used.
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Test 2: Estimate 50 mm translation along the y-axis using only Z-

camera.

In this test the MCU is translated 50 mm back and forth along the y-axis. Figure 6.11

shows the results of the 3D motion estimation derived using only information derived

from the Z-camera.
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Figure 6.11: Results of the translation estimation using 50 mm distance along the y-axis.

Only Z-camera is used.
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Test 3: Estimate 50 mm translation along the y-axis using X- and

Z-cameras.

In this test the MCU is translated 50 mm back and forth along the y-axis. Figure 6.12

shows the results of the 3D motion estimation derived using information derived from

the X- and Z-cameras.
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Figure 6.12: Results of the translation estimation using 50 mm distance along the y-axis.

The X- and Z-cameras are used.
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Test 4: Estimate 50 mm translation along the y-axis using all three

cameras.

In this test the MCU is translated 50 mm back and forth along the y-axis. Figure 6.13

shows the results of the 3D motion estimation derived using information derived from

all three cameras.
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Figure 6.13: Results of the translation estimation using 50 mm distance along the y-axis.

All three cameras are used.

114



6.3 Experiment I: 3D Motion Estimation

Test 5: Estimate 10 mm translation along the y-axis using all three

cameras.

This test is designed to observe the ability of the MCU to detect a very small translation.

The MCU is moved by 10 mm back and forth along the y-axis at low speed. Figure

6.14 shows the results of the 3D motion estimation derived using information from all

three cameras.
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Figure 6.14: Results of the translation estimation using 10 mm translation along the y-axis.

All three cameras are used.

115



6.3 Experiment I: 3D Motion Estimation

Test 6: Estimate 100 mm translation along the y-axis using all three

cameras.

In this test the MCU is moved 100 mm back and forth along the y-axis. Figure 6.15

shows the results of the 3D motion estimation derived using information from all three

cameras.
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Figure 6.15: Results of the translation estimation using 100 mm distance along the y-axis.

All three cameras are used.
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Result Analysis

Test 1 and Test 2

From Figure 6.10 and Figure 6.11 it can be seen that the estimated translations are

heavily corrupted. This is expected from the single camera system due to the effect of

the motion ambiguity explained in Section 3.5.

Test 3

By using two cameras, the result of the translation estimation is improved. Figure

6.12 shows a good translation estimation result where the estimated translation of

-46.22 mm is close to the actual transformation of -50 mm. Also, unlike single camera

cases, there are no false estimations of the translation along the x- and z-axes since the

motion ambiguity is compensated using information from both cameras, as explained

in Section 4.4.

Test 4

Figure 6.13 shows the translation estimation result using three cameras. The translation

estimation of -49.07 mm is very close to the actual translation of -50 mm and the false

translation estimation along the x- and z-axis is smaller compared to the single camera

system.

Test 5

The three camera system shows a promising result for a very small translation estima-

tion. This can be seen in Figure 6.14 where the estimated translation of -10.73 mm is

close to the actual translation of -10 mm.

Test 6

Figure 6.15 shows a good translation estimation result using three cameras. The esti-

mated translation is -101.4 mm which is close to the actual translation of -100 mm.
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6.3.3 Large Rotation

The following 3D motion estimation tests are done using two large rotations around

the x- and y-axes of the MCU reference frame. The MCU is rotated back and forth

according to the pre-defined angle and the 3D motion information during the movement

is recorded. In addition to the previous tests, the speed information and the detected

3D motion are also presented in some of the tests. The following tests are included in

this section:

Test 1: Estimate 25 degrees rotation around the x-axis using all three cameras.

Test 2: Estimate 45 degrees rotation around the y-axis using all three cameras.
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6.3 Experiment I: 3D Motion Estimation

Test 1: Estimate 25 degrees rotation around the x-axis using all three

cameras.

In this test the MCU is rotated 25 degrees back and forth around the y-axis. Figure

6.16 shows the results of the 3D motion estimation and Figure 6.17 shows the speed

information using information derived from all three cameras.
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Figure 6.16: Results of the rotation estimation using 25 degrees rotation around the x-axis.

The plots on the left-hand side show the rotation estimation and the plots on the right-

hand side show the detected direction of rotation during the test (1=counter-clockwise,

-1=clockwise).
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Figure 6.17: The rotation and translation speed of the MCU during the 25 degrees rotation

around the x-axis.
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Test 2: Estimate 45 degrees rotation around the y-axis using all three

cameras.

In this test the MCU is rotated 45 degrees back and forth around the y-axis. Figure

6.18 shows the results of the 3D motion estimation and Figure 6.19 shows the speed

information using information derived from all three cameras.
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Figure 6.18: Results of the rotation estimation using 45 degrees rotation around the y-axis.

The plots on the left-hand side show the rotation estimation and the plots on the right-

hand side show the detected direction of rotation during the test (1=counter-clockwise,

-1=clockwise).
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Figure 6.19: The rotation and translation speed of the MCU during the 45 degrees rotation

around the y-axis.
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Result Analysis

Test 1

Figure 6.16 shows the good rotation estimation results using three cameras. The es-

timated target angle is around -21.81 degrees, which is close to the actual value of

-25 degrees. In addition, the 3D motion detection results which are derived using the

procedures described in Section 4.4 are also presented. Two numerical values present

the direction of the rotation: 1 for counter-clockwise and -1 for clockwise rotation

around the rotation axis. Figure 6.17 shows the estimated speed derived during the

test. This includes the rotation speed and translation speed on all three axes. The

speed is calculated using the estimated translation and rotation and the time stamp

information.

Note that there are small rotations detected on the y- and z-axes due to a small

misalignment of the rotation axis of the tripod and the internal coordinate of the MCU.

This internal coordinate is assigned internally during the calibration of the MCU and

it is not easy to relate it to the outside world, i.e. to the rotation and translation axes

of the tripod.

Test 2

Figure 6.18 shows the good motion estimation results using three cameras. The es-

timated target angle is around -43 degrees, which is close to the actual value of -45

degrees. The 3D motion detection results are also presented and they are in agree-

ment with the actual rotation during the test. Figure 6.19 shows the estimated speed

including the rotation speed and translation speed of the MCU during the test.

Note that there are small rotations detected on the z-axis due to a small misalign-

ment of the rotation axis of the tripod and the internal coordinate of the MCU. This

internal coordinate is assigned internally during the calibration of the MCU and it is

not easy to relate it to the outside world, i.e. to the rotation and translation axes of

the tripod.
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6.3.4 Large Translation

The following 3D motion estimation tests are done using two large translations along

the x- and z-axes of the MCU reference frame. The MCU is translated back and

forth according to the pre-defined distance and the 3D motion information during the

movement is recorded. The following tests are included in this section:

Test 1: Estimate 500 mm translation along the x-axis using all three cameras.

Test 2: Estimate 1000 mm translation along the z-axis using all three cameras.
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6.3 Experiment I: 3D Motion Estimation

Test 1: Estimate 500 mm translation along the x-axis using all three

cameras.

In this test the MCU is translated by 500 mm back and forth along the x-axis. Figure

6.20 shows the results of the 3D motion estimation and Figure 6.21 shows the speed

information using information derived from all three cameras. Figure 6.22 shows the

screen captured image obtained during the test.
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Figure 6.20: Results of the translation estimation using 500 mm distance along the x-axis.

The plots on the left-hand side show the translation estimation and the plots on the right-

hand side show the detected direction of translation during the test (1=positive direction,

-1=negative direction).
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Figure 6.21: The rotation and translation speed of the MCU during the 500 mm movement

along the x-axis.
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Figure 6.22: The estimated 3D trajectory captured by the MCU during the 500 mm move-

ment along the x-axis.
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Test 2: Estimate 1000 mm translation along the z-axis using all three

cameras.

In this test the MCU is translated 1000 mm back and forth along the z-axis. Figure

6.23 shows the results of the 3D motion estimation using information derived from all

three cameras. Figure 6.24 shows the screen captured image obtained during the test.
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Figure 6.23: Results of the translation estimation using 1000 mm distance along the z-axis.

The plots on the left-hand side show the translation estimation and the plots on the right-

hand side show the detected direction of translation during the test (1=positive direction,

-1=negative direction).
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Figure 6.24: The estimated 3D trajectory captured by the MCU during the 1000 mm

movement along the z-axis.
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Result Analysis

Test 1

From Figure 6.20 the translation estimation result of -441 mm is acceptable compared

to the actual translation of -500 mm. The detected 3D motion information derived

according the procedure described in Section 4.4 is also presented. The rotation and

translation speeds shown in Figure 6.21 are obtained using the estimated motion infor-

mation and the time stamp information. Figure 6.22 shows the screen-captured image

of the map building software during the test. It shows the feature points being used

for the 3D motion estimation task as well as the travelled trajectory, which closely

represents the actual trajectory given to the MCU hardware.

Test 2

From Figure 6.23 the translation estimation result of -939.2 mm is acceptable compared

to the actual translation of -1000 mm. It can also be seen that the movement of the

MCU stopped at around the 20th second and is resumed at the 35th second, which is

correct since there was a 15 second interval with no movement during the test. Figure

6.24 shows the screen-captured image of the map building software during the test. It

shows the feature points being used for the 3D motion estimation task as well as the

travelled trajectory, which closely represents the actual trajectory given to the MCU

hardware.
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6.3 Experiment I: 3D Motion Estimation

6.3.5 The �-shape Trajectory

In this test the MCU was moved slowly along the �-shape trajectory and the estimated

3D trajectory was captured. The �-shape trajectory consists of several straight line

sections as illustrated in Figure 6.25. The results of the 3D motion estimation and the

speed are shown in Figure 6.26 and Figure 6.27 respectively. A 3D plot of the estimated

3D trajectory is shown in Figure 6.28. Some screen capture images of the estimated

3D trajectory and the feature point map are shown in Figure 6.29.

Figure 6.25: The �-shape trajectory.
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6.3 Experiment I: 3D Motion Estimation
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Figure 6.26: Results of the motion estimation of the MCU travelled along the �-shape

trajectory.
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6.3 Experiment I: 3D Motion Estimation
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Figure 6.27: The estimated rotation and translation speed of the MCU travelled along the

�-shape trajectory.
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6.3 Experiment I: 3D Motion Estimation

Figure 6.28: A 3D plot of the estimated �-shape trajectory derived from the MCU.

Figure 6.29: Some screen capture images of the estimated 3D trajectory acquired from the

movement along the �-shape trajectory.
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6.3 Experiment I: 3D Motion Estimation

Result Analysis

Figure 6.26 and Figure 6.27 show the estimated translation and rotation and the esti-

mated speed of the MCU captured along the test trajectory. The estimated trajectory

closely resembled the actual test trajectory, which can be confirmed by checking the

geometric dimension of the captured trajectory shown in Figure 6.28. In addition, the

screen captured images of the map building software during the test are shown in Figure

6.29.
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6.3 Experiment I: 3D Motion Estimation

6.3.6 Additional Trajectories

Some additional trajectories were used for the 3D motion estimation experiment. The

screen capture images of the map building software are presented in order to show the

3D feature point map that is incrementally built during the test. The MCU hardware

is shown in the visualized 3D map using a triangle-shape polygon, the estimated 3D

trajectory of the MCU is shown using a solid yellow line, the feature points are shown

using red circles and the green numbers indicate how often each individual feature

point has been seen by the MCU since the beginning of the test. The following tests

are included in this section:

Test 1: Rotation 90 degrees around the y-axis using all three cameras.

Test 2: Rotation 180 degrees around the y-axis using all three cameras.

Test 3: Movement along a trapezoidal trajectory using all three cameras.
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6.3 Experiment I: 3D Motion Estimation

Test 1: A 90 degrees rotation around the y-axis

In this test the MCU is rotated 90 degrees around the y-axis. Figure 6.30 shows the

3D feature points and the estimated 3D trajectory of the MCU.

Figure 6.30: A screen capture image that shows the 3D feature points and the estimated

3D trajectory of the MCU during a 90 degree rotation around the y-axis.
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6.3 Experiment I: 3D Motion Estimation

Test 2: A 180 degrees rotation around the y-axis

In this test the MCU is rotated 180 degrees around the y-axis. Figure 6.31 shows the

3D feature points and the estimated 3D trajectory of the MCU.

Figure 6.31: A screen capture image that shows the 3D feature points and the estimated

3D trajectory of the MCU during a 180 degree rotation around the y-axis.
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6.3 Experiment I: 3D Motion Estimation

Test 3: Movement along a trapezoidal trajectory using all

three cameras.

In this test the MCU is moved along a trapezoidal trajectory. Figure 6.32 shows the

3D feature points and the estimated 3D trajectory of the MCU.

Figure 6.32: A screen capture image that shows the 3D feature points and the estimated

3D trajectory of the MCU travelled along a trapezoidal trajectory.
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6.3 Experiment I: 3D Motion Estimation

Result Analysis

Figure 6.30, Figure 6.31 and Figure 6.32 show the estimated trajectories of the MCU

captured from the movement along the following trajectories: 90 degree rotation around

y-axis, 180 degree rotation around the y-axis and the movement along a trapezoidal

trajectory. The estimated trajectories are closely resembled the given test trajecto-

ries. In addition, the screen captured images also show the 3D features and the 3D

trajectories that are being maintained by the FastSLAM algorithm during the test in

real-time.
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6.4 Experiment II: 3D Photorealistic Map Building

6.4 Experiment II: 3D Photorealistic Map Build-

ing

In this experiment several 3D photorealistic maps were captured from the test environ-

ment shown in Figure 6.1. Most of the maps presented in this section were built using

the 3D images acquired during the tests within Experiment I. Below is a list of the 3D

photorealistic maps presented in this section.

6.4.1 A 3D photorealistic map from the �-shape trajectory.

6.4.2 A 3D photorealistic map from the 90 degrees rotation trajectory.

6.4.3 A 3D photorealistic map from the trapezoidal trajectory.
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6.4 Experiment II: 3D Photorealistic Map Building

6.4.1 A 3D photorealistic map from the �-shape trajec-

tory.

In this test the MCU uses the 3D images and 3D motion estimation obtained during

the �-shape trajectory test in Section 6.3.5 to construct a 3D photorealistic map of the

test environment. Figure 6.33 and Figure 6.34 show the screen captured images of the

resultant map.

Figure 6.33: A 3D photorealistic map of the environment obtained during the movement

along the �-shape trajectory.
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6.4 Experiment II: 3D Photorealistic Map Building

Figure 6.34: Another view of the 3D photorealistic map of the environment obtained during

the movement along the �-shape trajectory.
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6.4 Experiment II: 3D Photorealistic Map Building

6.4.2 A 3D photorealistic map from the 90 degrees rota-

tion.

In this test the MCU uses the 3D images and 3D motion estimation obtained during

the 90 degree rotation test in Section 6.3.6 to construct a 3D photorealistic map of the

test environment. Figure 6.35 shows the screen captured image of the resultant map.

Figure 6.35: A 3D photorealistic map of the environment obtained during a 90 degrees

rotation .
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6.4 Experiment II: 3D Photorealistic Map Building

6.4.3 A 3D photorealistic map from the trapezoidal tra-

jectory.

In this test the MCU uses the 3D images and 3D motion estimation obtained during

the trapezoidal trajectory test in Section 6.3.6 to construct a 3D photorealistic map of

the test environment. Figure 6.36 and Figure 6.37 show the screen captured images of

the resultant map.

Figure 6.36: A 3D photorealistic map of the environment obtained during the movement

along the trapezoidal trajectory.
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6.4 Experiment II: 3D Photorealistic Map Building

Figure 6.37: A close-up view of the 3D photorealistic map of the environment obtained

during the movement along the trapezoidal trajectory.
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6.4 Experiment II: 3D Photorealistic Map Building

Result Analysis

This section shows some results of the 3D photorealistic obtained using the MCU

system. The maps presented here contain around one to two million 3D points per map,

which provides dense geometric and detailed texture descriptions of the environment.

The quality of the captured map can be seen better from a close-up view of the model

such as the one in Figure 6.37.
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6.5 Conclusion

6.5 Conclusion

This chapter presented the result of the experiments for 3D motion estimation and 3D

map building tasks using the MCU system. Several trajectories were introduced and

the MCU is capable of detecting the on-going trajectory at good accuracy in real-time.

The motion estimation experiment shows that the MCU system gives a better result

compared to the single camera system in both rotation and translation tests. Several 3D

photorealistic maps acquired during the motion estimation experiment are presented.

The constructed maps successfully replicated the test environment and they provide

good geometric descriptions and detailed textures in respect to the real environment.
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Chapter 7

Conclusions

This work presents a state of the art multi-camera unit as a powerful 3D visual sensor

for the real-time 3D motion estimation and map building tasks. The MCU hardware

is designed and successfully implemented using three stereo cameras whose optical axis

are pointing perpendicular to one other, i.e. each pointing in the direction of the x-

, y- and z-axes. The stereo cameras are used due to their good overall abilities in

terms of speed, resolution and size compared to the available visual sensors of the same

application. The finished MCU hardware is compact in size and weight and it can

be conveniently used as a hand-held device for a 3D map building task. The MCU

hardware, together with the accompanied algorithm described in this work, is capable

of detecting and estimating its 3D movement correctly and robustly using only the

visual information available, and no auxiliary odometry devices are required.

The 3D motion estimation process is successfully implemented using the iterative

closest point algorithm, where the corner features extracted from the environment are

used as input. An outlier detection scheme that utilizes a unique arrangement of a three

camera system is also implemented and it provides robust 3D motion detection by using

only 2D motion vectors derived from three cameras. By using a multiple camera design,

the motion ambiguity that is commonly found in a single camera system is eliminated.

This was proven by the simulation results and the real world experiments, where the

multi-camera system performs better than the single camera and two camera systems.

A probabilistic 3D map building approach is used in order to cope with the mea-

surement and map points’ location uncertainty. The position of the 3D feature points

extracted from the environment and the location of the MCU related to the environ-

ment are maintained using the FastSLAM algorithm. The 3D map building system

using the FastSLAM algorithm is tested in a MATLAB simulation and good results are

obtained. Afterwards, the FastSLAM algorithm is implemented using C++ language
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in order to integrate it into the MCU software system. As a result, a complete 3D

motion estimation and 3D map building system using the MCU is successfully imple-

mented. The complete system is then tested in a real world environment and good

results for 3D motion estimation are obtained. The MCU system is able to estimate its

travelled trajectory at good accuracy. It can also incrementally merge the 3D images

acquired from the stereo cameras into a 3D photorealistic map that correctly replicates

the actual geometric and textual properties of the environment in a real-time manner.

Possible Future Works

The current implementation of the MCU is only a first attempt to prove the concept

of such multi-camera design. Further improvement that can be done to the MCU

is to replace the stereo camera with a better visual sensor, e.g. a high resolution

PMD camera. Another improvement is a design that uses more cameras in order to

increase the accuracy and the redundancy of the 3D motion estimation process. In

terms of software improvement, a better and faster map building algorithm is to be

implemented. A faster computer with larger memory may also increase the overall

speed of the system. Another possible configuration might be to dedicate a separate

computer for the 3D photorealistic map building task. Currently, the 3D photorealistic

map rendering software consumes a lot of processing time as well as heavy disk usage

due to the vast number of 3D points within the map. Therefore a second computer

that solely takes care of this task can improve the overall speed of the real-time map

building system even further, allowing bigger environment sizes to be handled.
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Appendix A

Hardware Drawing

A.1 Mechanical Drawing of the STH-MDCS Stereo

Camera

Figure A.1: Drawing of the STH-MDCS stereo camera with dimensions. (photo credit:

Videre Design)
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A.2 Mechanical Drawing of the Multi-Camera Unit

A.2 Mechanical Drawing of the Multi-Camera

Unit
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Figure A.2: Drawing of the Multi-Camera Unit with dimensions.
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Appendix B

Error Characteristics of the

Stereo Camera

Error Characteristics of the Stereo Camera

The most useful information from a stereo camera is the depth information. Quality of

the depth information depends on several factors such as the spatial resolution of the

cameras sensor, the video signal noise, the algorithm being used, the distance to the

observed object, etc. Even a small amount of mistake will lead to a significant error for

the depth calculation. This error increases proportionally to the distance of the point

observed and the longitude error is higher than the lateral Figure B.1.
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Figure B.1: Stereo camera depth calculation error.

Stereo Camera Error Analysis

A stereo camera is subjected to high measurement errors once the target object is moved

further away along the direction of its optical axis. In this section the real measurements

were taken using the stereo camera which is used within the MCU system in order to

evaluate its error characteristics. This includes the measurement error in the x-, y- and

z-axes respectively. A test setup as shown in Figure B.2 is used to generate the test

results. The test target with four rectangular shapes is used as reference points and the

stereo camera is translated in the x-, y- and z-axes while the position of the centroid

of the test target is being determined at each individual location.

The results show that the change of the stereo camera location in the x- and y-axes

does increase the measurement error within the corresponding axis. However the change

of the stereo camera location along the z-axis or the camera optical axis yields a large

measurement error as the distance between the camera and the test target increase.

These error measurements are shown in Figure B.3 and Figure B.4 respectively.

159



Y
X

Z

Figure B.2: Setup for the testing of stereo camera depth calculation error.
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Figure B.3: The measurement error versus camera displacement along (a) the x-axis and

(b) the y-axis.
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Figure B.4: The measurement error versus camera displacement along the z-axis.
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