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Kurzfassung 
 
 

Aufgrund der tendenziell zunehmenden Nachfrage an Systemen zur 
Unterstützung des alltäglichen Lebens gibt es derzeit ein großes Interesse an 
autonomen Systemen. Autonome Systeme werden in Häusern, Büros, Museen sowie 
in Fabriken eingesetzt. Sie können verschiedene Aufgaben erledigen, beispielsweise 
beim Reinigen, als Helfer im Haushalt, im Bereich der Sicherheit und Bildung, im 
Supermarkt sowie im Empfang als Auskunft, weil sie dazu verwendet werden können, 
die Verarbeitungszeit zu kontrollieren und präzise, zuverlässige Ergebnisse zu liefern. 
Ein Forschungsgebiet autonomer Systeme ist die Navigation und Kartenerstellung. 
Das heißt, mobile Roboter sollen selbständig ihre Aufgaben erledigen und zugleich 
eine Karte der Umgebung erstellen, um navigieren zu können.  

Das Hauptproblem besteht darin, dass der mobile Roboter in einer 
unbekannten Umgebung, in der keine zusätzlichen Bezugsinformationen vorhanden 
sind, das Gelände erkunden und eine dreidimensionale Karte davon erstellen muss. 
Der Roboter muss seine Positionen innerhalb der Karte bestimmen. Es ist notwendig, 
ein unterscheidbares Objekt zu finden. Daher spielen die ausgewählten Sensoren und 
der Register-Algorithmus eine relevante Rolle. Die Sensoren, die sowohl Tiefen- als 
auch Bilddaten liefern können, sind noch unzureichend. Der neue 3D-Sensor, nämlich 
der „Photonic Mixer Device“ (PMD), erzeugt mit hoher Bildwiederholfrequenz eine 
Echtzeitvolumenerfassung des umliegenden Szenarios und liefert Tiefen- und 
Graustufendaten. Allerdings erfordert die höhere Qualität der dreidimensionalen 
Erkundung der Umgebung Details und Strukturen der Oberflächen, die man nur mit 
einer hochauflösenden CCD-Kamera erhalten kann. Die vorliegende Arbeit 
präsentiert somit eine Exploration eines mobilen Roboters mit Hilfe der Kombination 
einer CCD- und PMD-Kamera, um eine dreidimensionale Karte der Umgebung zu 
erstellen. 

Außerdem wird ein Hochleistungsalgorithmus zur Erstellung von 3D Karten 
und zur Poseschätzung in Echtzeit unter Verwendung des „Simultaneous Localization 
and Mapping“ (SLAM) Verfahrens präsentiert. Der autonom arbeitende, mobile 
Roboter soll ferner Aufgaben übernehmen, wie z.B. die Erkennung von Objekten in 
ihrer Umgebung, um verschiedene praktische Aufgaben zu lösen. Die visuellen Daten 
der CCD-Kamera liefern nicht nur eine hohe Auflösung der Textur-Daten für die 
Tiefendaten, sondern werden auch für die Objekterkennung verwendet. Der „Iterative 
Closest Point“ (ICP) Algorithmus benutzt zwei Punktwolken, um den 
Bewegungsvektor zu bestimmen. Schließlich sind die Auswertung der 
Korrespondenzen und die Rekonstruktion der Karte, um die reale Umgebung 
abzubilden, in dieser Arbeit enthalten. 
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Abstract 
 
 

Presently, intelligent autonomous systems have to perform very interesting 
tasks due to trendy increases in support demands of human living. Autonomous 
systems have been used in various applications like houses, offices, museums as well 
as in factories. They are able to operate in several kinds of applications such as 
cleaning, household assistance, transportation, security, education and shop assistance 
because they can be used to control the processing time, and to provide precise and 
reliable output. One research field of autonomous systems is mobile robot navigation 
and map generation. That means the mobile robot should work autonomously while 
generating a map, which the robot follows.  

The main issue is that the mobile robot has to explore an unknown 
environment and to generate a three dimensional map of an unknown environment in 
case that there is not any further reference information. The mobile robot has to 
estimate its position and pose. It is required to find distinguishable objects. Therefore, 
the selected sensors and registered algorithms are significant. The sensors, which can 
provide both, depth as well as image data are still deficient. A new 3D sensor, namely 
the Photonic Mixer Device (PMD), generates a high rate output in real-time capturing 
the surrounding scenario as well as the depth and gray scale data. However, a higher 
quality of three dimension explorations requires details and textures of surfaces, 
which can be obtained from a high resolution CCD camera. This work hence presents 
the mobile robot exploration using the integration of CCD and PMD camera in order 
to create a three dimensional map.  

In addition, a high performance algorithm for 3D mapping and pose estimation 
of the locomotion in real time, using the “Simultaneous Localization and Mapping” 
(SLAM) technique is proposed. The flawlessly mobile robot should also handle the 
tasks, such as the recognition of objects in its environment, in order to achieve various 
practical missions. Visual input from the CCD camera not only delivers high 
resolution texture data on depth volume, but is also used for object recognition. The 
“Iterative Closest Point” (ICP) algorithm is using two sets of points to find out the 
translation and rotation vector between two scans. Finally, the evaluation of the 
correspondences and the reconstruction of the map to resemble the real environment 
are included in this thesis.  
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Chapter 1  
 
 
 
Introduction 

 
Autonomous systems nowadays have to perform very interactive tasks due to 

trendy increases in facility support demands of human living. Autonomous systems 
have been used in various houses, offices, museums as well as in factories. The 
autonomous system can to operate several kinds of applications such as cleanings, 
house helpers, deliveries, safety, educations, supermarket helpers, receiving officers 
because it can be used to control the processing time, and to provide precise and 
reliable outputs. The autonomous processes do not need to be paused. They can work 
all day without pause or rest. Therefore, they are expected to fulfill many human task 
demands. Reliability is not only the main target in adapting the autonomous system 
instead of human works but also safety issues are important. Industrial robots have a 
variety of uses in industries. They are used, instead of humans for material handling, 
spot and arc welding, as well as for carrying heavy items.  
 
1.1 The mobile robotics candidates 
 

The mobile robot is one subset of the autonomous system. Mobile robots have 
been extensively studied for many decades. The mechanical constructions and modern 
control strategy have been developed at the same time. Energy efficiency is one of the 
most challenging issues in the design of mobile vehicle systems. The mechanical parts 
have been improved by many researchers over centuries, e.g. a small vehicle, robots 
with two legs (humanoid) and many legs (insects), as well as flying robots. Several 
kinds of modern robots can simulate and imitate particular natural living things. 
ASIMO was created by Honda. It has an appearance resembling a human being. It can 
walk or run on two feet at speed of up to 6 km/h. MSR-H01 is hexapod robot. It can 
control the 3 DOF freedoms smoothly, and walks on six legs. It has generated a great 
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deal flexibility of movement. The Blue fin robotics is an autonomous underwater 
vehicle (AUV). It travels underwater, and makes detailed maps of the seafloor before 
starting to build a subsea infrastructure. The Foster-Miller TALON is a small 
unmanned ground vehicle (UGV). It is an extension of human capability in the battle 
field. It is generally capable of operating outdoors and over a wide variety of terrain. 
The md4-100 is the unmanned aerial vehicle (UAV), quad rotor helicopter. It can 
explore the sky, do aerial photography and plant inspection. Previous examples 
mentioned above are minority applications of the modern mobile robots. There are 
still many fantastic mobile robotics that we do not cite. In particular, the improvement 
of mechanical technique is as interesting as the vision system. Mobile vision is similar 
to human vision. The human eye sends the environment vision to the brain. The brain 
recognizes what the objects are that the human eye is watching. Those objects can be 
caught, eaten, or can walk away. Further, humans have a left and a right eye. The 
small different focus between the two eyes is sent, and calculated in brain. The 
distance between the object and the human body can be precisely estimated.  
The capability of an unmanned ground vehicle (UGV) to determine its location is a 
fundamental issue of autonomous navigation. The high performance navigation 
system should enable strategic path planning. The goal location is to reach the region 
of coverage, as well as exploring and avoiding obstacles. This should make the 
following trajectories possible. The general problems to solve are to let a mobile robot 
explore an unknown environment using range sensing and to build a map of the 
environment from sensor data. The sensors data with an alignment method can be 
used to represent the world model. If merging several scans from different locations, 
it is essential to align the scanned data. The difficulty is that using only odometry 
information alone is inadequate for determining the relative poses. When each frame 
of sensor data is obtained, it is aligned to a previous frame or to a cumulative global 
model. To be able to resolve inconsistency once, we need to maintain the local frames 
of data together with their estimated poses.   
 
1.2 Simultaneous Localization and Mapping, SLAM 
 

The principle problems of mobile robot navigation are three basic questions. 
Where am I? Where am I going? How do I go there? Figure 1.1 shows the 
fundamental problem of mobile robot locomotion. To answer these questions, the 
mobile robot has to have a model of the environment, to perceive and analyze the 
environment, to find its position within the environment and to execute the 
movement. Thus, mobile robot navigation requires competencies in modeling, 
perception, planning and controlling. The vision system and the high performance of 
mobile robot controller are the most important keys to solve these problems. For 
mobile robots, applications are indispensable to recognize 3D objects.  
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The question is whether or not it is possible for mobile robots to start in an 
unknown location in an unknown environment, and at the same time to build a map of 
the environment while simultaneously using this map in the mobile robot locomotion. 
The SLAM lets the mobile robots operate in an environment without previous 
information. The SLAM increases the range of potential mobile robots application. 
The eventual SLAM output makes mobile robots truly autonomous operation. The 
research output represented by the SLAM technique can solve indeed those problems. 

 

Figure 1.1 The fundamental of mobile robot locomotion 

The real world environment is very complex. The estimation of six dimensions 
for robot pose by using visual sensors is a challenging problem. The six dimensions 
are x, y and z directions as well as roll, yaw and pitch angles coordinates. When the 
robot moves in the natural environment, these degrees of freedom have to be 
considered. The good sensors plus the highly efficient algorithm are necessary. The 
sensors, which SLAM applications use, separate into two types, the passive and active 
sensors.  
 
Passive sensors : 2D camera, stereo camera, GPS, RFID 
Active sensors   : Laser range finder, ultrasonic, radar, infrared, sonar, time of flight 
camera. 
 

The passive sensors do not contact the object, nor are they irritable to the 
environment, as they run on low energy and have low costs. They further have the 
ability of a fast data acquisition rate. On the other hand though, the active sensors are 
bigger, and consume much energy but are very robust and reliable. Nevertheless, the 
requirements are dependent on the pros and cons of the sensors. The prominent keys, 
which have to be considered, are 
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Speed :  data acquisition speed should be high enough for the accuracy of mobile 
robot locomotion. 
Robustness  : output of sensors shouldn’t be varying in the different environments 
high/low temperature, humidity, dust, fog, light and surface.  
Energy  : low energy consumption can extend the operating period of the 
mobile robot tasks.    
 

 

Figure 1.2 Sensors candidates (a) Sonar [1], (b) GPS from outdoor environment [2], 
(c) 3D laser scanner output represents as a point cloud [3], (d) Vision output from 

single camera [4]. 

Figure 1.2 shows the output from several sensors (a) [1] used sonar sensor for 
mobile robot navigation. Sonar outputs provide a pretty nice output and low cost 
construction. The useful operating range is 20 feet with a typical range resolution of 1 
inch. Moreover, the emitting source is an infrared LED, therefore potential eye safety 
problems are avoided compared with a laser source. The two dimension path planning 
can be created easily from a sonar sensor. However, the sonar’s rate of data 
acquisition is limited by the speed of sound, which is 343.2 m/s at 20 degrees Celsius. 
It should be possible to obtain and process 100 returns per second in tracking a target 
1 meter away. A very high vehicle position update rate should be possible, if directed 
sensing strategies are combined with a faster firing capability. (b) One interesting 
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sensor is GPS, [2] presented a real-time low cost system to localize a mobile robot in 
outdoor environments. Their system relies on stereo vision fusion on a low-cost GPS 
sensor using a Kalman filter to prevent long-term drifts. The experimental results 
were presented for outdoor localization in moderately sized environment over 100 
meters. (c) [3] proposed a framework for analyzing the results of a SLAM approach 
based on a metric for measuring the error of the corrected trajectory using laser 
scanner. (d) [4] presented a vision based navigation algorithm. He used the output 
from the single camera to operate an autonomous mobile robot based on a frontal 
optical flow estimation algorithm. He proposed the control strategy by using the main 
input from vision sensor. The mobile robot could be built at a low cost, but could also 
provide the high performance of autonomous strategy image, and obstacle avoidance.        

In an outdoor environment the Global Positioning System (GPS) is very well 
known, and provides the high reliability. However, indoor mobile robots cannot use 
the Global Positioning System (GPS) to reset dead-reckoning error growth unless they 
surface, which is usually undesirable. In this research, we aim to use the novel active 
sensor, the time of flight camera, to create the three dimension mapping. The new 3D 
sensor namely the Photonic Mixer Devices (PMD) purposes real-time capturing the 
surrounding volume. The PMD is becoming more attractive because it has its own 
modulated light source. It can work independently from the environmental lights. The 
PMD cameras can measures the depth of the objects by using the time of flight which 
emits from the transmitter, and fly back to the receiver. The main drawback of the 
current PMD camera is the low output resolution (64x48) compared to other types of 
cameras available. However, we do not use the PMD sensor on its own. We propose 
to integrate the passive and active sensor (high resolution and time of flight camera) 
in order to compensate the drawback from both kind of sensors. SLAM is expected to 
build a map at the same time and to estimate the pose of the locomotion in real time. 
The flawlessly mobile robotic application tasks meanwhile should be able to 
recognize objects in the environment in order to achieve a variety of practical 
missions. The high resolution image (2D camera) is registered on the 3D volume 
(PMD) subsequently rescaling and calibrating both sensors. Visual input from the 2D 
camera not only delivers high resolution texture data on 3D volume but also is used 
for object recognition. In the object detection technique, we apply the open source 
library from the “Intel Open Source Computer Vision Library, OpenCV”. The 
OpenCV is the open source visual C++ code library. It is very famous in real time 
image processing, and gives a very powerful vision processing.  
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Figure 1.3 Mapping problem 

 
Robotic mapping addresses the problem of acquiring spatial models of 

physical environments through mobile robots. Figure 1.3  shows the fundamental 
mapping problem. To complete the overall mapping, it is necessary that each single 
step is mapped. This in turn means that in order to solve the overall mapping problem, 
each step needs to be solved as each step proposes a problem. Figure 1.3 expresses the 
mobile robot moved through the narrow path.  
 
Where 
n  : discrete time index ሼ݊ ൌ 1,2,3, … ሽ 

௡ܲ : currently robot position 
 ௡ : robot pose vectorܯ
ܱ݈௡ : observed objects on the left hand side 
 ௡ : observed objects on the right hand sideݎܱ
 

The observation of the environmental object is the first problem that needs to 
be solved in order to commence with the mapping. The observed objects on the left 
hand side (ܱ݈௡) and right hand side (ܱݎ௡) of the robot path are used to be the 
reference positions for the next robot pose ( ௡ܲ). The object detecting technique 
requires an accuracy method. The maximum robot movement vector (ܯ௣) is limited, 
and must not control beyond the observed objects, as it will otherwise cause the next 
robot pose to be raveled. Therefore, the history states ሼ݊, ݊ െ 1, ݊ െ 2, … ሽ are 
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necessary to keep in the databank, and let them be used in the future steps. The robot 
starts at ௡ܲ, and is moving to the nearby position ௡ܲାଵ, ௡ܲ subsequently. In general, 
the result of matching pairwise scans is a complex and possibly conflicting network 
pose relations. Spatial relations between local frames are derived from matching pairs 
of scans or from odometry measurements. Maps are commonly used for robot 
navigation (e.g., localization) and in wide variety application areas. The robotic 
mapping problem is commonly referred to as SLAM (simultaneous localization and 
mapping) or CML (concurrent mapping and localization).  

Since robotic maps are needed in many applications, techniques for building a 
map as quickly as possible would be highly beneficial. Survey class AUVs must 
maintain forward motion for controllability. Hence, the ability in adaptively choosing 
a sensing and motion strategy, which obtains the most information about the 
environment, is especially important. The ICP algorithm is taken over the theatrical 
image registration due to yield the real time data frames registration. Figure 1.4 shows 
the principle ideas of ICP algorithm. Assuming that the motion between the two 
frames is small or approximately known, we can apply the approximate poses of the 
motion between the two frames to the first one. Then, the motion between the 
intermediate frame and the second frame can be small. The motion of robot should 
not be bigger than the range of the maximum pattern distance. ICP algorithm is the 
method to find rotation and translation relationship between two frames. After we the 
relation, the two frames can merge, and build the 3D maps afterwards. 
 

 

Figure 1.4 Basic ICP concept 

Regarding enhancing 3D real time applications, several researchers have 
purposed. Prasad et. al [5] presented the first step to combine a high resolution two 
dimension camera and PMD camera. They showed the idea to setup the mechanical 
platform. Their outputs could enhance the 3D vision and express output in real time. 
Schiler et. al [6] presented a calibration model between the PMD and CCD cameras. 
Since the field of view and resolution of PMD are low, the traditional calibration has 
difficulty providing the correct output. However, an intensive study about the use of 
such a combination system for a motion estimation task is still missing. Their work 
therefore seeks a way to combine the output from PMD and the stereo camera for the 
6D motion estimation task. A data combination method, which compensates the 
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strong and weak features from each camera, was presented. The suggested method is 
implemented on the real combined camera system. Carefully designed experiments 
are presented in order to demonstrate and evaluate the improvement of the result over 
the conventional single camera system. 

If the robot poses were known, the local sensor inputs of the robot, i.e., local 
maps, could be registered into a common coordinate system to create a map. 
Unfortunately, any mobile robot's self localization suffers from imprecision. 
Therefore, the structure of the local elements, e.g., of single scans, needs to be used to 
create a precise global map. On the other hand, it is relatively easy to localize a robot, 
if the environment is known, i.e., a map is provided. The nature of SLAM is like the 
chicken-egg problem, namely the coordinates of the elements of the map depends on 
the robot’s position, and the robot’s position is estimated with by the use of the map 
navigation. 
 

1.3 Thesis overview 
 

In this thesis, the aim is to present the 3D mapping approach using new 3D 
camera sensors. To achieve this, several kinds of knowledge have to be combined. We 
separate all details in 7 chapters as shown below. 
 
Chapter 2 presents the literature review of researchers. Their studies involve 
intelligent mobile robotics, vision, image processing as well as SLAM. Several 
essential fundamental concepts are included and discussed in this chapter. The related 
works, methods, sensors etc., which relate to or use the same background, are 
discussed for their pros and cons. Many ideas are also applied and cited in our thesis.  
 
 
Chapter 3 demonstrates the mobile robot, MERLIN and all hardware agriculture 
designs. The construction, details and prominent points of each sensor are described. 
The control of mobile robot has been separated into two modes i.e., the manual and 
autonomous mode. The software used to control the mobile robot from the work 
station is LABVIEW. The C programming language is used to program the 
microcontroller. The image processing code is developed by using Visual C++. All 
software is explained in detail relating to the functions and techniques used. The 
software examples are demonstrated. 
 
Chapter 4 presents the fundamental concepts of image processing. The introduction 
of how to capture the raw data from 2D/3D cameras is included. The image from high 
resolution 2D camera is combined with the 3D data from the PMD camera in order to 
yield the 3D scenario with the texture information. The data from 2D camera is not 
only used to increase the texture to 3D data but is also used for object detection. The 
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camera calibration method is proposed to combine data between 2D/3D data. The data 
relevance is important for the high quality output. The sharewares OpenCV and 
OpenGL are the main keys for capturing 2D and showing the combination output 
respectively.  
 
Chapter 5 introduces the principle of SLAM. The robot navigations have to be 
calculated for the pose estimation. In general, robot poses consist of the translation 
and rotation matrices. The ICP is a key algorithm to calculate the translation and 
rotation. The translation and rotation are afterwards used to build the real world 
mapping and to show mobile robot path.  
 
Chapter 6 the real-time object detection and SLAM results are presented. The real 
implementation is tested and presented in this chapter. The experiments are separated 
in sections. Firstly, the motion estimation is tested by evaluating the output of the 
stereo and PMD camera in order to understand the performance of the navigation 
system. The results conclude that PMD camera provides an excellent translation result 
but rotation results are worse than the results of the stereo camera. The combination 
approach is the optimize solution to yield better results. Secondly, the object detection 
in a 3D environment is presented. The experiments prove the proposed method can 
detect the artificial landmark in real time. The 2D/3D cameras combination approach 
is used and presented the results. The 3D map buildings are presented in several 
environments, with and without 2D combination. The output from 2D/3D camera 
combination approach shows the reliability of the three dimension map building. The 
suggestions regarding pros and cons of using a new 3D camera are concluded in this 
chapter. 
 
Chapter 7 concludes and summarizes the works. This research aims to use the novel 
3D sensors, PMD, for mobile robot applications. Many approaches are presented to 
improve the performance of 3D map building. Future works focus on increasing the 
field of view of 3D image, mobile robot hardware, moving speed and processing time. 
The matching approach is also inquired to improve a step in this direction. 
 
Some parts of this thesis were published at international conferences. The symposium 
areas varied in topics, but were all related in the fields of telematic, sensors network, 
mobile robot applications as well as image processing. The following is a 
summarization of the according publications.  
 
1. Jens Bernshausen, Chanin Joochim, Hubert Roth, “Mobile Robot Self Localization 
and 3D Map Building using a 3D PMD-Camera”, 18th World Congress of the 
International Federation of Automatic Control (IFAC), August28 – September2, 2011. 
Milan, Italy. 
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2. Chanin Joochim, Hubert Roth, “Mobile Robot Exploration Based On Three 
Dimension Cameras Acquisition”, The Second IFAC Symposium on Telematics 
Applications (TA 2010), October 5-8, 2010, Timisoara, Romania. 
 
3. C. Joochim, H. Roth, “The Indoor SLAM using Multiple Three Dimension 
Sensors Integration”, The IEEE 5th International Workshop on Intelligent Data 
Acquisition and Advanced Computing Systems: Technology and Applications 
(IDAACS’2009), September 21-23, 2009, Rende (Cosenza), Italy. 
 
4. C. Joochim, C. Netramai and H. Roth, “Coordination of SLAM and Artificial 
Landmark Recognition using 2D/3D Sensors for Mobile Robot Vision”, The Tenth 
International Conference on Pattern Recognition and Information Processing 
(PRIP’2009), May 19-21, 2009, Minsk, Belarus. 
 
5. C. Joochim, H. Roth, “Development of a 3D Mapping using 2D/3D Sensors for 
Mobile Robot Locomotion”, The 2008 IEEE International Conference of 
Technologies for Practical Robot Applications, TePRA”, 10-11 November 2008. 
Woburn, Massachusetts, USA. 
 
6. Hubert Roth, Anatoly Sachenko, Vasyl Koval, Chanin Joochim, Oleh Adamiv, 
Viktor Kapura.“The 3D Mapping Preparation using 2D/3D cameras for Mobile 
Robot Control”, The Scientific-theoretical journal "Artificial Intelligence”, State 
University of Informatics and Artificail Intelligence, No.4 2008, Ukraine. 
 
7. C. Netramai, O. Melnychuk, C. Joochim and H. Roth, “Combining PMD and 
Stereo camera for Motion Estimation of a Mobile Robot”, The 17th IFAC 
(International Federation of Automatic Control) World Congress, International 
conference, 6 - 11 July 2008. Seoul, South Korea. 
 
8. C. Netramai, O. Melnychuk, C. Joochim and H. Roth, “Motion Estimation of a 
Mobile Robot using different types of 3D Sensors”, The international conference, 
ICAS2008 (The Fourth International Conference on Autonomic and Autonomous 
System) at Gosier, Guadeloupe on March 16-21 2008. 
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Chapter 2  
 
 
 
Literatures Review 

 
The development of 3D structure from data set of 2D cameras has been largely 

studied for several years and is known in the computer vision community as 
“structure from motion”. The SLAM has most often been used in combination with 
other sensors rather than with regular cameras. The mapping and localization of the 
mobile robot community has been proposed for a decade. These topics are interesting 
for new applications with novel mobile robots. The sensors and algorithms to generate 
the tasks should cooperate appropriately. Many researchers have adapted the novel 
sensors in order to use it in mobile robot applications. Well known sensors such as 
cameras, laser scanners, ultra sonic, infrareds, gyroscopes, global positioning systems 
and electronic compasses have always been used. This chapter introduces the 
principle of localization sensors and the literature review of related works. A literature 
review discusses published information in a particular subject area. 
 

2.1 Mobile robot localization and sensor candidates 
 

Sensors are important inputs to control the performance of the mobile robot. 
Normally, sensors used in mobile robot localization are sonar, stereo cameras, laser 
scanners and video cameras. This section introduces the behavior of each sensor, its 
pros and cons, and the reasons why the PMD camera is selected for the purpose of our 
work. There are several different types of sensor candidates which can be used in a 
mobile robot. This section compares the pros and cons of the PMD camera with other 
sensing alternatives, and discusses the future trend of the PMD camera.  
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2.1.1  Sonar 
Sonar or ultrasonic sensor stands for Sound Navigation and Ranging, and was 

initially developed for underwater applications. In Figure 2.1 (a), SRF04 Ultra Sonic 
sensor [7] is an ultrasonic range finder that can measures a wide range from 3cm to 
3m. This ranger finder is a perfect for your robot or any other projects requiring 
accurate ranging information. As shown in Figure 2.1 (b), SonaMini-S Model is a 
complete sonar transmitter/receiver systems. It is designed to be used as a rangefinder 
but can be hacked for a variety of other purposes (communications, etc). The 
SonaMini is controlled by a small on-board microprocessor and can be used in a 
variety of modes with a wide range from 15 cm-5.8 meters. Urick [8] described 
airborne ultrasonic range sensing, in which a single transducer acts as both transmitter 
and receiver. Sonar sensors use the principle time of flight. Sonar sensor emits sound 
from the transmitter to the object, and counts the time till the sound echoes back to the 
receivers. Sonar rate data acquisition is limited by the speed of sound which is 343.2 
meters per second at 20 degrees Celsius. The limitation of sound principle is that it 
depends on the ambient temperature and modulation frequency. It is well know that 
using sonar sensor is for intelligent obstacle avoidance and bumpers. Gough et al. [9] 
consider frequency modulation techniques, which developed for underwater and 
airborne applications. Mobile robot navigation using sonar has been the subject of 
much research over the last decade. Sonar is heralded as a cheap solution to mobile 
robot sensing problems because it provides direct range information at a low cost. 
Initially, sonar sensor was popular for the usage as mobile robot obstacle sensors but 
it now has also been adapted to mobile robot 3D mapping techniques as well. Leonard 
et al. [1] adapted the sonar sensor in mobile robot navigation. They analyzed the sonar 
acquiring results, displaying, and processing a large amount of sonar data acquired in 
a variety of indoor scenes, with several different robots. They developed the 
conviction, contrary to popular belief, that sonar is in fact a very good sensor. The to 
be considered characteristics of the sonar sensor are the data ranges which can be 
seriously corrupted by reflections [9]. Poor directionality that limits the accuracy in 
determination of the spatial position of an edge to 10-50 cm, depends on the distance 
and angle between the obstacle surface and the acoustic beam.  
 

2.1.2  Orientation sensors 
Odometry sensor provides the three main outputs that are the rotation angle of 

pitch, yaw and roll. The odometry sensor is excellent to provide the precise rotation 
angle. Odometry sensor fusion with encoder can serve for finding actual position and 
orientation. The advantage of odometry is to provide orientation in matrix, quaternion 
and Euler formats.      
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(a)  (b)  (c) (d) 

Figure 2.1 (a) SRF04 Ultra Sonic sensor (b) SonaMini-S Model  
(c) Micro Strain [10] (d) MTi [11] 

 
Figure 2.1 (c) 3DM is a 3-axis orientation sensor capable of measuring: +/-

180˚ of yaw heading, +/-180˚ of pitch, and +/-70˚ of roll. Orthogonal arrays of 
magnetometers and accelerometers are used to compute the pitch, roll and yaw (also 
referred to as heading or azimuth) over a wide angular range. Figure 2.1 (d) MTi is 
low-power signal processor providing drift-free 3D orientation as well as calibrated 
3D acceleration, 3D rate of turn and 3D earth-magnetic field data. The MTi is an 
excellent measurement unit (IMU) for the stabilization and the control of cameras, 
robots, vehicles and other (un)manned equipment. Nister et al. [12] presented a 
system to estimate the motion by using conjunction with information from several 
sources such as GPS, inertia sensors, wheel encoders. [13] localized robot in map and 
matching data by taking advantage of whatever surface features. Their research 
concentrated on metrically precise maps that are derived from dense range readings, 
such as those provided by sonar arrays, scanning laser range finders or stereo vision 
systems. 
 

2.1.3  Stereo and single camera 
The general camera provides the two-dimensional image which can only be 

used for object detection and obstacle avoidance. The depth information cannot be 
received from the normal vision. However, the technique, which improves the vision 
can measure the depth data namely the stereo camera. This technique uses two CCD 
cameras to fix the position. If we know the intrinsic parameters as well as the base 
line between two cameras, the depth data then can be measured from the triangle 
formula. The stereo camera is also very well known in mobile robot application. 
However, the limitation of stereo is that it is not an active sensor. It calculates the 
depth from a passive technique. That means the accuracy depends on the ambient 
light. If at that time, the ambition light is not sufficient, the depth data is in question 
and cannot calculate accurately. The stereo camera is one of the most well known 
depth enabled camera which exists. It has been widely used in robotics and 
automation applications for decades, particularly the short baseline stereo camera, 
which is small in size and can be easily integrated into many applications. Whereas 
the problem of motion estimation using a stereo camera is perfectly feasible, the depth 
measurement precision of the stereo camera is usually limited due to its stereoscopic 
design and the software computational complexity. High precision depth 
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measurement can be achieved using large baseline stereo system with high resolution 
imagers and complex algorithms. Nevertheless, this would hinder the use of such 
systems on many applications where space and computational power are limited. 
Therefore, one always has to come to a good compromise in order to derive the most 
benefits from the stereo camera system. Due to the fact that the PMD and stereo 
camera do share one important purpose in common, namely their purpose to acquire 
the depth of the 3D scene, there have been some works which compare and combine 
the output of both camera systems in several ways to gain advantages over the use of 
a single camera system. Figure 2.2(a) the stereovision camera namely the 
MobileRanger C3D [14]. It could measure the depth for demanding applications such 
as mobile robot navigation object tracking, gesture recognition, 3D surface 
visualization and advanced human computer interaction. MobileRanger can be used 
as a 3D sensor in robot navigation or object sensing. Specular reflections occur when 
the angle between the wave front and the normal to a smooth surface are very large 
[15]. Figure 2.2 (b) shows his result, the 120 frames captured in a meeting room. [16] 
presented a hybrid technique for constructing geometrically accurate, visually realistic 
planar environments from stereo vision information. The technique is unique for 
estimating camera motion from two sources, i.e. range information from stereo and 
visual alignment of images. Figure 2.2 (c) shows his output that the reconstructed 3D 
mapping from stereo camera. The output is not only provides visually realistic images 
but also demonstrates the depth information.  

 

(a) (b) (c) 
Figure 2.2 (a) Stereovision [14]  (b) 3D map from stereo camera [15]. (c) 

Reconstructed 3D mapping [16] 
 

[17] used a mobile robot to generates a mapping in a consistent, globally 
correct map for outdoor environments. They use the stereo camera to demonstrate a 
complete system for off-road navigation in unstructured environments. Their robot 
could run at an average speed 1.1 m/s. [18] presented an algorithm for creating 
globally consistent three-dimensional maps from depth fields produced by stereo 
camera based range measurement systems. The point-to-plane variant of ICP is used 
for local alignment, including weightings that favor nearby points and a novel outlier 
rejection strategy that increases the robustness for this class of data while eliminating 
the burden of user-specified thresholds. [19] Employed edge points to perform SLAM 
with a stereo camera. The edge-point based SLAM is applicable to non-textured 
environments since plenty of edge points can be from even a small number of lines 
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obtained. They proposed a method to estimate camera poses, and build detailed 3D 
maps robustly by aligning edge points between frames using the ICP algorithm. [20] 
used the Rao-Blackwellised Particle Filter (RBPF) for the class of indoor mobile 
robots equipped only with stereo vision. They purposed to construct dense metric 
maps of natural 3D point landmarks for large cyclic environments in the absence of 
accuracy of landmark position measurements and motion estimates. Their work 
differs from other approaches because landmark estimates are derived from stereo 
vision and motion estimates are based on the sparse optical flow. [21] [22] [23] 
presented a new algorithm for determining the trajectory of a mobile robot, and 
created a detailed volumetric 3D model. The algorithm exclusively utilizes 
information provided by a single stereo vision system. The algorithm can deal with 
both planar and uneven terrain in a natural way without requiring extra processing 
stages or additional orientation sensors. However, the SLAM process is unstable in 
non-textured environments, where sufficient corner-like features cannot be extracted. 
Since many environments are non-textured, the importance of alternative feature 
forms such as lines is indicated in [24] [25]. 

In addition to the stereo camera, the single camera can also be used in SLAM 
application. [26] presented a method to incorporate 3D line segments in vision based 
SLAM. A landmark initialization method that relies on the Plücker coordinates to 
represent a 3D line is introduced: a Gaussian sum approximates the feature initial 
state and is updated as the new observation that is gathered by the camera. [27] used 
line features in real-time visual tracking applications, which are commonplace when a 
prior map is available. They described how straight lines can be added to a monocular 
Extended Kalman Filter Simultaneous Mapping and Localisation (EKF SLAM) 
system. In addition, they also presented a fast straight-line detector that hypothesizes, 
and tests straight lines connecting detected seed points. [28] described how to 
initialize new landmarks to observe mapped landmarks in subsequent images, and to 
deal with the data association challenges of edges. Initial operation of these methods 
in a particle-filter based SLAM system is presented. [29] described a principled, 
Bayesian, top-down approach to sequential SLAM, and demonstrated robust 
performance in an indoor scene. The image features used, being 2D patches, are 
limited in viewpoint-variance. The algorithm would benefit from the use of features 
such as planar 3D patches whose change in image appearance that could be better 
predicted from different viewpoints.  

 
2.1.4  Laser scanner 
The laser scanner rangefinder appears to be the most popular one, as many 

researchers have used it in real time mobile robot exploration. The laser range finder 
is a powerful sensor to obtain the depth data. The laser range finder is mainly used 
with mapping and localization techniques. The laser beams are transmitted, and their 
echoes are received, which is quite similar to time-of-flight concept. The laser scanner 
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source is based on light, and the exact value speed of light travels in vacuum is 
299,792,458 m/s. The laser scanner has a very precise resolution, 10 mm. On the 
other hand, the laser beam can provide an accuracy depth over hundred meters, on the 
other hand, its limitation on output power makes it seem inaccurate though, and the 
sizes are comparatively large and heavy. One disadvantage of scanning laser range 
finders is the slow data acquisition rate due to the mechanical scanning mechanism.  
Hence, the power is lost for moving the mechanical parts. [30] [31] [32] [33] [34] [35] 
proposed the real time accuracy 6D SLAM using laser scanner with a powerful fast 
variant of the ICP algorithm registers 3D scan taken by a mobile robot into a common 
coordinate system. Measurement rate is about 3.4 seconds ሺ181 ൈ  [36] .(ݏݐ݊݅݋݌ 256
used the data from laser scanner to present an alternative matching 2D range scans the 
Normal Distributions Transform. He subdivided the 2D plane into cells. Each cell is 
assigned a normal distribution. The result of the transformation is a piecewise 
continuous and differentiable probability density, that can be used to match another 
scan using Newton's algorithm. One drawback from laser scanner is the field of view. 
The conventional laser scanner provides only one row with 180°, which is not 
sufficient for 3D mapping. Wulf et al. [37] [38] presented the modification technique 
to raise up the field of view and performance of laser scanner. They improved the 
infrastructure basement by integrating the servo motor, actuator and processing unit. 
Sensor output can provide 3D geometric in real time with scan times 1.6 second for an 
apex angle of 180° ൈ 180° to 5 seconds for 360° ൈ 180° without distortion. Figure 
2.4 (a)-(b) shows the scanner models, which are used, and output. Figure 2.4 (c) 
shows the figure from the Fraunhofer IAIS 3DLS-K, and consists of two SICK LMS 
291 2D laser range finders mounted on a rotatable carrier [39].  

 

 

 

(a) (b) (c) (d) 
Figure 2.3 (a) 3D scanner consisting of a 2D laser range sensor and a servo drive [37] (b) 
Yawing scan in outdoor application [37] (c) The Fraunhofer IAIS 3DLS-K scanner [39] 

(d) Output from the Fraunhofer IAIS 3DLS-K scanner [40] 
 
This carrier is continuously rotated around the vertical axis. Depending on the 

current orientation, the 2D laser range scans of the scanners are transformed into a 
sensor-centric coordinate frame. [40] used this scanner to show transformed scans that 
are aggregated to form a local 3D point cloud as Figure 2.4 (c). They presented a 
sensor setup for a 3D scanner that is especially appropriate for a fast 3D perception. 
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Their robot moved and used fast 3D perception for collision avoidance. The 
representation of these maps is defined in a way that they can be used with any 
algorithm for SLAM or collision avoidance, which is operating on 2D laser range 
scans. [41] extracted a line map from the sequence of points in each laser scan using a 
probabilistic approach, and then computes virtual corners between two lines in the 
same line map. The movement of the robot is estimated from correspondences of 
virtual corners between the two line maps. [42] considered the computation of motion 
strategies to efficiently build polygonal layouts of indoor environments using a 
mobile robot equipped with a range sensor. They handled the model that was being 
built for the robot which was going to be used for the next sensing operation 
performance. The paper argues that the polygonal layout is the convenient 
intermediate model to perform other visual tasks. [43] created maps for natural 
environments, it is however necessary to consider the 6DoF pose case. They 
demonstrated the functionality of estimating the exact poses and their covariance in 
all 6DoF, leading to a globally consistent map. The correspondences between scans 
are found automatically by use of a simple distance heuristic. 
 

2.1.5  Omnidirectional camera 
The omnidirectional camera [44] is a camera that provides 360 horizontal 

degree field of view, whereas the normal 2D camera in generally has less than 180 
horizontal degree. The Omnidirectional sensor can capture 360 horizontal degrees 
without calibration. This reduces the maintenance and hidden costs. It applies in many 
applications such as traffic transportation, outdoor navigation and the robotics 
community. The high efficiency video visual odometry output using a single camera 
has been a goal for many years. [45] presented a robust SLAM framework using a 
single camera catadioptric stereo system that composed of vertically aligned two 
hyperboloidal mirrors and a CCD camera. They improved the conventional stereo 
cameras with a narrow field of view by fusing a single camera catadioptric stereo 
system, and proposed the rectification algorithm that aligns the mirrors and a camera 
parallel to one another in order to satisfy the single viewpoint (SVP). The 
omnidirectional camera dominates the panoramic area and robotics. The concept of 
omnidirectional camera is to capture the light from all direction falling onto the focal 
point from a full sphere shape. The output of omnidirectional camera can provide the 
panoramic scenario in real time without any register image frame technique. Thus, the 
output gives the better quality and frame rate in the same field of view. The 
omnidirectional camera is always use in visual odometry as well as simultaneous 
localization and mapping, SLAM.  

Scaramuzza et al. [48] proposed the motion estimation of the vehicle, which is 
estimated by using the property of the ground plane projection into two different 
camera views. The goal is to estimate the motion of the vehicle in outdoor 
environments over long distances. Due to the large field of view (FOV) of the 
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panoramic camera, interesting points (all around the car) are extracted, and matched 
from the pairs of consecutive frames. Kiyokawa et al. [47] proposed a visualization 
and interaction technique for remote surveillance using both 2D and 3D scene data 
acquired by a mobile robot equipped with an omnidirectional camera and an 
omnidirectional laser range sensor.  

 

    
(a) (b) (c)  
Figure 2.4 (a) Mobile robot with omnidirectional cameras [44] (b) Image is 

projected on camera [46] (c) Output from omnidirectional cameras [47] 
 
An egocentric-view is provided using high resolution omnidirectional live 

video on a hemispherical screen. As depth information of the remote environment is 
acquired, additional 3D information can be overlaid onto the 2D video image such as 
a passable area and the roughness of the terrain in a manner of video see-through 
augmented reality. A few functions to interact with the 3D environment through the 
2D live video were provided, such as path-drawing and path-preview. The path-
drawing function allows planning a robot’s path by simply specifying 3D points on 
the path on screen. In addition, a miniaturized 3D model is overlaid on the screen 
providing an exocentric view which is a common technique in virtual reality. In this 
way, their technique allows an operator to recognize the remote place and to navigate 
the robot intuitively by seamlessly using a variety of mixed reality techniques. 
 

2.1.6  PMD camera 
The PMD camera is the novel 3D sensor. The base sensor that uses the 

Photonic Mixer Devices entitled PMD sensors as a smart pixel can be an integration 
element for a 3D imaging camera on a chip based on standard CCD- or CMOS-
technology. The main feature is an array sensor which can measure the distance to the 
target in parallel without scanning. The key execution is based on time of flight 
principle. A light pulse is transmitted from a sender unit, and the target distance is 
measured by determining the turn around time back to the receiver. According to the 
speed of light, the interval distance can easily be calculated. The detail of the PMD 
camera will be more thoroughly described in the next chapter. 
 
 



 
 

26 
 

2.2 Conclusion 
 

In this chapter, the principle of several sensors for the purpose of mobile robot 
localization is introduced. The well-know sensors, which have been used, are 
presented. Many types of sensors, for example the Sonar, Stereo, Vision, Laser 
scanner, Odometry, Omnidirectional camera as well as the PMD camera have been 
presented. Each sensor has its pros and cons. The sonar has the lowest cost for 
generating the robot navigation. The output range is acceptable, but it is still to follow 
at various ambient temperatures. Stereo and vision systems are attractive sensors, 
which can be used in obstruction avoidance, and can show the environment texture. It 
should be noted, however that these sensors have the limitation of the ambient light. If 
the ambient light is not sufficient, both sensors will give the wrong data or worst case 
and they cannot provide any information. The Omnidirectional camera is a very 
creative novel sensor that they can capture 360 degree by using only one camera, 
however, the high processing compensate mathematic are required. Moreover, the 
ambient light also affects the quality of the data. The Laser scanner is the longest and 
most accurate distance detection, but the acquisition for whole volume requires the 
mechanical part and is time consuming. The PMD is the newest sensor using the time 
of flight principle. The capturing frame rate is high and accurate. Nevertheless, the 
PMD output volumetric is still limited, and the several kinds of textures are affected 
by noise disturbances. For those reasons, the fusion sensor seems to be the best 
solution in order to receive the best sensor information. This means that we combine 
every pro and reduce cons to any sensor. In the next section, we will present the 
fusion between the PMD and 2D camera in order to use these fusion output in the 
mobile robot navigation system.       
  



 
 

27 
 

 
 
 
Chapter 3  
 
 
 
Mobile Robot Hardware 

 
This chapter presents an overview of mobile robots, which are used in this 

thesis. The details of the mobile robot construction, sensors, wireless communication 
as well as the software, which are used to handle all features including the server PC 
and robot client are introduced. The Mobile Experimental Robots for Locomotion and 
Intelligent Navigation, MERLIN, have been designed based on several models, and 
adapted in many environmental missions. The previous prototypes were designed and 
tested using radio wireless radio communication protocol, speed and steering control 
algorithm. The compactable software and hardware are improved in order to enhance 
the reliability and suitability for 3D mapping mission.  
 
3.1 Data communication and interfacing method  
 

Data communication plays a decisive role in the communication between 
mobile robots and users. Several kinds of data interfaces are very attractive such as 
WLAN, radio link, blue tooth and RS-232/485 communication. The blue tooth and 
WLAN are powerful for the big and fast data transfer package. The radio link can 
easily communicate with the microcontroller and can also reduce the process steps. 
RS-232 is prominent in simple access and can easily find the interface tools, which 
are included in every window version. The overall process has the server station 
(computer based user) and client station (computer on mobile robot). The mini 
computer is needed because the image processing and wireless data package are too 
complex to use only microcontrollers. The server station uses LABVIEW to create 
Graphic User Interface (GUI) for interfacing between the user and the robot. 
LABVIEW is used to receive commands from a joystick (manual mode) via USB, the 
keyboard and the mouse. It sends the user commands to RS-232 wireless module via 
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serial communication. The 8 bits data command the robot movement. The 3DM 
sensor is mounted on the top in order to avoid the electromagnetic noise from the 
motor and high current from the battery. The PMD camera is processed in real-time 
by using an onboard mini-computer. Appendix A shows the detail of the mini-PC, 
MICROSPACE-PC41. Since the mini-PC has a high performance and efficient 
input/output ports, it was suitable to be used in my research. 

 
Serial port : micro controller communication 
USB  : 2D camera interface  
Firewire : PMD camera interface 
Wireless LAN : remote desktop monitoring 

 
The goal of this research is to have an affordable autonomous mobile robot for 

indoor environments that is able to generate 3D geometry maps of natural scenes from 
the scratch. It should work completely autonomous with or without manual control, 
with landmarks or beacon. 
 

3.1.1  Three orthogonal magnetometers, 3DM 
Generally, the pose estimation can be calculated by using the sensor or image 

processing. The image processing approach uses the optical flow estimation to test the 
pose in each angle. The three dimension orthogonal magnetometer, namely 3DM is 
the sensor, which can measure the absolute angle from the three axis: roll, pitch and 
yaw. The measurement refers to the magnetic earth’s pole and gravitation. The output 
is capable to measure angles from 0° to 360° degrees on yaw, 0°-360° degrees on 
pitch and -70°-+70° degrees on roll. It calculates the yaw angle using the magnetic 
field from the earth and compensates the errors using the accelerometers. The data is 
sent via the serial communication (COM Port) with a board rate of 9600 bit/sec. The 
3DM sensor is used to compensate the pose estimation error by optical flow approach. 
Moreover, the pose estimation from the image cannot be calculated because there is 
an error due to the bad environment. This sensor is used for position estimation during 
mobile robot navigation. It is also sometimes used to describe the distance traveled by 
a vehicle. The 3DM is used by some robots independent of the fact whether they are 
legged or wheeled robot. It is used to estimate their positions relative to the starting 
location. Odometry is the use of data from the movement of actuators to estimate 
change in position over time. This method is often very sensitive to errors. Rapid and 
accurate data collection, equipment calibration and processing are required in most 
cases for odometry to be used effectively. Appendix B shows the data sheet and the 
acquired data via RS-232 source code based on VC++ programming. 
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ultrasonic sensors are used for an autonomous locomotion. The GPS is also used in 
order to get the outdoor position. Moreover, the installed 2D camera is used for image 
processing requirements. 

(c) Track MERLIN has the special flip arms in front of the robot. It has 
prominent arms used to climb up sharp slopes such as hills or stairs. The main power 
drive uses the high performance I2C motor with installed high resolution encoder in 
order to precisely control the arms and moving track. All three types of the ground 
based mobile robots distribute their own suitable tasks and terrain. 
 

3.3 Mobile Experimental Robots for Locomotion and 
Intelligent Navigation (MERLIN) 

 
The goal of this research is to have an affordable autonomous mobile robot for 

indoor environments that is able to generate 3D geometry maps of natural scenes from 
the scratch. It should work completely autonomous with or without manual control. 
MERLIN inherits the distinctive features of these building blocks by the integration 
and adds some useful features for this purpose. MERLIN is a four wheels drive, high 
speed movement. Its tasks can be used in smooth and rough areas, wide surfaces and 
few obstacles. It communicates to a workstation via a wireless communication 
module. The mobile robot can run into two modes. In the first mode, i.e. the manual 
mode, the microcontroller receives the command from the joystick via the RS-232 
wireless module. The data is sent as package, 8 bits each for controlling the direction 
of the robot by user command. In the second mode, i.e. the autonomous mode, the 
mobile robot localizes autonomously without any command from the user. It locates 
by itself using only the information from the sensors, the encoder and 2D/3D images. 
Since the digital 3D models of the environment are important in order to localize the 
position of the mobile robot itself in an unknown environment, the PMD and high 
resolution 2D camera are equipped. The 3D mapping and object recognition can be 
achieved by using the MERLIN. The MERLIN is the selected robot, which is used in 
our project. We will explain the details in the next section. 

The RST, “Institut für Regelungs- und Steuerungstechnik” research works 
[49] are focusing on the unmanned autonomous mobile robots, flying robots, 
industrial robots and intelligent control. The mobile robot applications in our group 
aim to enhance the intelligent potential operation. The case studies of the obstacle 
avoidance using classical, fuzzy and neural network control as well as the image 
processing have been studied, and implemented simultaneously. The robot vision is 
one of our attractive points. Not only the object detection but also the 3D SLAM for 
the purpose of mobile robot exploration is implemented. The stereo camera as well as 
the Photonic Mixer Devices (PMD) camera are our concentrated vision sensor 
research goal. We realize that the automatic control and mobile robot applications are 
very attractive tasks, which requires researches and developments continuing forward, 
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as the high performance mobile robots nowadays should operate by themselves in 
many applications. The variety of sensors such as wireless communication, GPS, 
ultrasonic sensors, infrared sensors, intelligent obstacle avoidance, vision systems as 
well as self localization techniques are generally used on the mobile robots in order to 
accomplish all the tasks. Many control procedures have been studied, implemented 
and tested strictly in real mobile robot applications. The integration between the 
passive sensors and visions sensor are cooperated in a suitable way in order to yield a 
robust and reliable output.  

 
3.3.1  Data communication structure 
Figure 3.2 depicts the process of data communication. For the Client robot, the 

microcontroller sends the PWM signal to the driving circuit (full H-bridge) to control 
the DC motor and stepping motor for driving and steering operation, respectively. The 
encoder signal is sent back to the microcontroller via counter port to calculate the 
robot speed. Microcontroller exchanges the data to the mini-PC via serial 
communication port RS232. The mini-PC is the main processing core. The mini-PC 
required two serial communication ports for connecting with 3DM, COM1 and 
microcontroller, COM2.  

 

Figure 3.2 Overall control system structure 
 
The PMD and the 2D camera send the image information via firewire and 

USB, respectively. Server PC is the main computer station for the user interface. 
LabVIEW is the most important software to control all features. The Graphic User 
Interface (GUI) is built in order to be a tool to interface between the user and low 
level hardware. LabVIEW is the powerful tool to generate the easy GUI and to 
interface with hardware. The most appropriate way to freely control the robot 
movement is to use joystick control. The joystick connects with the computer server 
via a USB port. LabVIEW receives the XY axis joystick command and twelve buttons 
with reserve using in any demands. Mouse and keyboard also can also transmit the 
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command to control the robot. Finally, all data are sent to the robot client via RS-232 
wireless module. 
 

3.3.2  LabVIEW and joystick interface 
LabVIEW is a program development environment from National Instruments, 

which is not a text-based language of code but a graphical programming language 
like a block diagram programming form. LabVIEW is like C or BASIC, which is a 
general-purpose programming system with extensive libraries of functions for any 
programming task. LabVIEW includes libraries for data acquisition and serial 
instrument control, data analysis, data presentation and data storage. In particular, 
conventional program development tools and hardware interface are included. One 
prominent feature of LabVIEW is that it is easy to interface with hardware that could 
reduce the working time for programming, including acquiring data from the joystick 
via the USB port. Several buttons and axis controls can easily be captured on one 
block library.  

 

 

Figure 3.3 LabVIEW Interface 
 
Thus, for server part, we use LabVIEW, which is the main core program to be 

interactive between users and mobile robot. Figure 3.3 show some parts of the 
LabVIEW program. The main purposes to use LabVIEW are to capture the data from 
the joystick and to send this command to serial connection. LabVIEW uses the VISA 
protocol for sending the data to the serial port. The important thing is the 
configuration (baud rate, start/stop bit, data) that must be synchronized to the receiver 
part (microcontroller). The data is sent in packages, each package contains 8 bits. The 
microcontroller uses the serial interrupt routine to sort out the data in the package e.g. 
steering direction and robot speed. All data packages are sent via RS232 wireless 
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module to the RS-232 wireless module, connected with the microcontroller on the 
robot. Moreover, the LabVIEW page also shows the speed and basics of the mobile 
robot behavior. All details in each LabVIEW block modules can be seen in [50] and 
[51].  
 

3.3.3  Microcontroller 
The Infineon C167CR-LM, is a 16-bit microcontroller of the Infineon C166 

family. Figure 3.4 illustrates the Infineon C167CR-LM. It was designed to meet the 
high performance requirements of real-time embedded control applications. In 
addition, it also supports C language programming by Keil compiler, which is suitable 
for developing the complex systems. The architecture of this family has been 
optimized for high instruction. The Infineon C167CR-LM is an improved 
representative of full featured 16 bit single-chip CMOS microcontrollers.  

 

Figure 3.4 Microcontroller Infineon C167CR-LM 

The architecture combines the advantages of both RISC and CISC. The sum of 
the features, which is combined that result it is a high performance microcontroller. 
The Infineon C167CR-LM does not only integrate a powerful CPU core and a set of 
peripheral units into one chip but it also connects the units in a very efficient way. 
Furthermore, since the mobile robot system is complex, the microcontroller has to 
receive the data from the mini-computer, surrounding sensors and send commands to 
the driving dc motor. As a result, the microcontroller must be fast enough for the 
calculation. Therefore, it should not be lower than 16 bit. Thus, the Infineon C167CR-
LM is used in this research. 
 

3.3.4  RS-232 wireless module  
The Wireless “WI Z-434-SML-I.A” module (Figure 3.5) is a transceiver and 

receiver for point-to-point data transfer in the full-duplex mode. They are the right 
solution for all those applications in which the so called “virtual cable” has to be 
implemented, like this case, the RF connection of two systems with RS232 output (for 
instance two PCs.). The “WI Z-434-SML-I.A” module is available in a 12V and 5V 
version voltage supplied through the input 10 of the data connectors. The W232 
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adapter can be connected to the module. It foresees inside an integrated circuit which 
shall care for the conversion of the electric signals from RS232 logic to TTL logic and 
vice versa.  

Transceiver modules which are suitable to 
replace a serial wire connection with RF 
wireless [433.92 Mhz] Half-duplex. The 
transmission speed is selectable at 9600, 
19200, 57600 and 115200 bps. Max 
allowed data packet length is 96 bytes. The 
module has small dimensions (4 x 9 cm) 

and its card integrates a 100 kbps XTR transceiver, a microprocessor which 
administrates the RF synchronizing protocol and a tuned antenna realized on a printed 
circuit. Besides, this component also has a selected dip-switch with six positions and 
two indication LED for changing the baudrate. The module is enclosed in a special 
case, which complies with the EN 661000-4-2 rule. 
 

3.3.5  Merlin model  
MERLIN is sorted in wheeled robot types. It means the power source to move 

the robot use motorized wheels. This robot type is simpler than using legs because it 
is easy to design, to construct and certainly to program. It is suitable to use in flat 
terrains. Even though, wheeled robots locate themselves excellently, they still have 
areas lacking in this ability. They cannot locate well in cut and obstructed terrain such 
as rocky areas, in collapsed buildings or low friction surfaces. Thus, there are several 
kinds of wheeled robots. A popular one is differential steering. Robots can have many 
wheels, but the minimum for stabling the dynamic balance is three wheels. Additional 
wheels can be added for more robustness or more payloads efficiently. Wheeled 
robots separately use driven wheels for movement, named differential steering [52]. It 
can change the direction by rotating each wheel at different speed. They may have 
other wheels that are used only for keeping the balance.  

Two wheeled robots: are harder to balance than other types because they must 
keep moving to remain upright. The center of gravity of the robot body is kept below 
the axle. Usually, this is accomplished by mounting the batteries below the body. 
They can have their wheels parallel to each other, these vehicles are called bicycles, 
or one wheel in front of the other, tenderly placed wheels. Two wheeled robots 
maintain their upright position by driving in the direction that the robot is falling. For 
balancing, the base of the robot must stay under its center of gravity. For a robot that 
has the left and right wheels, it needs at least two sensors. A sensor is used to 
determine angle and wheel encoders, which keep the track of the position of the 
platform of the robot. 

Three wheeled robot: The three wheeled robot has two types of driving. 
Firstly, different two steered wheels and one additional free rotating wheel are used to 

Figure 3.5 RS-232 wireless Module 
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keep the body in balance. Second, two wheels are powered by a single source and one 
additional wheel is the steering control. In the case of different steered wheels, the 
robot direction may be changed by varying the relative rate of the rotation of the two 
separately driven wheels. If both wheels are driven in the same direction and at the 
same speed, the robot will go straight forward. Otherwise, depending on the speed of 
rotation and its direction, the center of rotation may fall anywhere in the line joining 
the two wheels. 

 

 

(a) Prototype of MERLIN robot (b) Car-like model 
Figure 3.6 Car-like mathematical model 

 

 

(a) Angular velocity (b) World coorinate transformation  
Figure 3.7 World coordination and robot position 

 
Four wheeled vehicles: (two powered, two free rotating wheels), this type is 

similar to the differential drive but they have two front rotating wheels for a more 
reliable balance. This is more stable than in three wheeled robots because the center 
of gravity is really a rectangle shape instead of a triangle. It has a more stable 
movement, especially when moving in a sharp area (more roll, yaw angles). The 
center of gravity remains inside the rectangle form; moreover, it provides more useful 
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space. The car-like steering method allows the robot to turn in the same way a car 
does. It provides a lacking area, but it is very stable for a fast movement. 
 

 

Figure 3.6(b) shows the mathematical model of the car-like model. In order to 
understand how to calculate the locomotion of the car-like model. The position of the 
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Figure 3.8 MERLIN robot 
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robot consists of two parameters, i.e. translation and rotation. Eq. (3.2) ݔሶ௖,  ሶ௖ are theݕ
vector of translation and ߠ is the rotation of the robot, which is controlled by the front 
steering angleሺߙሻ. From eq.(3.3)  we can use to find the centroid position of the robot. 
Due to the fact that the robot has a long dimension ሺܮሻ, the centroid position is 
different from the robot front. The next step is to find the update front robot position, 
ሺ݀ሻ in eq. (3.4) is the front robot position, which comes from the relation of the 
translation and rotation of previous position. Eq. (3.5) explains the final equation to 
find the position of the robot. The related position of the detected objects and the 
robot MERLIN in Figure 3.8 is equipped with a PMD, a CCD camera, a 16-bit 
microcontroller, a RS-232 wireless module, a 3D compass and an embedded PC.  All 
image data from CCD and PMD camera are processed in the embedded PC. The 
output from image processing is sent to the microcontroller. It sends commands to 
control a mobile robot in order to autonomously avoid the obstacles. Furthermore, 
MERLIN can be controlled in manual mode by receiving the command from the 
joystick which is handled in the LabVIEW core program. 

 
3.3.6  Steering control using servo motor  

(a) Turn left maximum 10% duty cycle 

(b) Turn right maximum 5% duty cycle 

(c) Straight forward, 8% duty cycle 
Figure 3.9 Steering control 
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The servo motor is the main source used for steering the two front wheels. 
Pulse-width modulation (PWM) is the command to control the position of the robot. 
The position is controlled by adjusting the duty cycle and speed is controlled by 
adjusting the frequency of PWM. The PWM could be generated from interrupting 
routine in the microcontroller. To control MERLIN, the PWM frequency is set to 50 
Hz. The servo motor can rotate from 0°-180° degree but the ideal robot steering is 
also fixed by mechanical part. The maximum angle is an acquisition from the 
experiment. Then, the maximum left angle is obtained with a duty cycle of 10%, 2 
ms. The maximum angle to the right is 5%, 1ms and with a duty cycle of 8% in order 
to keep the straight direction. The following condition represents the output of the 
steering control.  

 
3.4 Conclusion 
 

This chapter describes the overall hardware system, how a mobile robot works 
and how the mobile robot can be controlled. The controller unit is separated into two 
parts; i.e. the server and the client. The server part is the main computer that interacts 
with the user. The client part is the computer unit on the mobile robot. Several kinds 
of mobile robot candidates are presented. Each robot has its pros and cons. In this 
research, MERLIN has been selected because we attempt to generate the 3D mapping, 
for which the accurate control is required. MERLIN is a car-like model, which 
obviously has high speed locomotion. The mathematical model of car-like is 
described in order to clearly understand how we can calculate the robot position and 
its locomotion. Steering uses two front wheels. The basic assistance circuit is also 
introduced for the 3DM, RS-232 wireless module, microcontroller and minicomputer. 
LabVIEW is used for the main program in the server part because it acquires the data 
from the joystick, and sends the command data via the RS232-wireless module. 
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Chapter 4  
 
 
 
Three Dimensional Images Enhancement 
and Object Detection 

 
This chapter describes the fundamental concepts of image processing and the 

preparation of the raw data before approving the SLAM technique. The raw data from 
PMD camera has to approve and reduce noises before use. The 2D data is fused to the 
3D data in order to get more reliability of 3D mapping. The 2D information from 
fusion is useful for users in order to distinguish which kind of scenario we want. 
Moreover, the high quality 2D images are used for objects detection applications 
which are crucial in mobile robots nowadays. The three dimension images 
enhancement and object detection method (Haar-like features) will be proposed. The 
PMD camera is a main sensor used.  The PMD camera models and principles will be 
described in this chapter. Then theory will be presented in order to understand the aim 
of this thesis. It is indispensable to be aware of the three basis dimensional geometric 
theories, in order to comprehend the pose estimation phenomenal. In this chapter, the 
mobile robot locomotion and the vision processing are mentioned. The key 
regulations are the rotation and translation matrix between two imaging frames. The 
first basic concept is a rotation matrix. A rotation matrix is a matrix that multiplies 
with vector rotations while preserving its length. One of the toughest computer 
graphics problems is understanding the effects of combined three dimensional 
transformations. Figure 4.1 shows the 3D cube, the cube rotates on itself around the z-
axis, and translates to the positive x-axis. If we rotate the object first, the translation of 
the final destination is still on the x-axis. On the other hand, if we put the same 
rotation and translation matrix to the cube but translate through the x-axis and rotate 
around the z-axis, the final position will be different from the first condition. To 
implement the three dimension mapping, a clear understanding of the three 
dimensional mathematical structure is required. 
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(a) Rotate then translate (b) Translate  then rotate 

Figure 4.1 Principle of 3D transformation 

 

4.1 Rotation representation using Euler angles 
 

The Cartesian coordinates ݔ, ,ݕ ,௫ߠ and ݖ ,௬ߠ  ௭ are essential terms to describeߠ
the object pose (position and orientation Թଷ respectively). Figure 4.2-Figure 4.4 
describe the orientation on three axis: roll, pitch and yaw [53].  
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Figure 4.2 Roll rotation (X-axis) 
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Figure 4.3  Pitch rotation (Y-axis) 
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Figure 4.4 Yaw rotation (Z-axis) 
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yaw 
rotation 
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Figure 4.5 Fundamental rotation matrix 

 
The final formulas of orientation angles are concluded in Figure 4.5. Figure 

4.5 shows the matrices of relation from each roll, pitch and yaw. However, for the real 
time applications, the objects rotate every angle at the same time. The overall 
orientation is computed by the cross product of each of the elements. The final output 
equation is in terms of 3 ൈ 3 matrix, ܴଷ஽. 

 

Figure 4.6 Three Dimensional Rotation 
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4.2 OpenGL (Open Graphics Library) introduction 
 

The 3D scenario output is the main output of our work, the well known 
programming interfaces are OpenGL and DirectX. OpenGL is a software interface to 
graphics hardware. The OpenGL is one of the Application Programming Interfaces 
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(APIs), freeware developed by Silicon Graphics, Inc (SGI). It interfaces to graphic 
hardware that is 3D modeling library which is highly portable and very fast, elegant 
and can create beautiful 3D graphics. OpenGL provides the prepackaged 
functionality. It can be used for a variety of purposes e.g. for CAD engineering, 
architectural modeling, computer three dimension demonstrations and video games. 
The OpenGL provides the 3D modeling library that is highly portable and very fast. It 
is based on the Visual C runtime library which provides some package functionality. 
It can easily be used with a program based on Visual C++. All the command library 
can insert in the main C program by including only header files #include<gl/gl.h> and 
#include<gl/glu.h>. Setting up requires a few steps for complier tools to link to the 
correct OpenGL library Windows, Macintosh and Linux. In addition, there is no fee 
for using OpenGL for non profit research. It can create elegant and beautiful 3D 
graphics in high quality. The OpenGL is intended to be used with computer hardware 
that is designed and optimized for the display and manipulation of 3D graphics. An 
OpenGL-based application is used for showing the 3D scenario of 3D mapping. 
OpenGL is a powerful three dimensional graphic presentation programming. 
Moreover, it also has the useful library assistant to easily render and smooth the 3D 
shape. All output results in this research use OpenGL is use for display all output 
results in this research.  

 

 
Figure 4.7 OpenGL output examples 

It is possible to use any programming language (VB,VC++, etc) can be used in 
combination with the OpenGL libraries. In this research, we use VC++ for access to 
API. It also has the useful library assistant to render, draw and  smooth complex 3D 
image. For the mapping in this research, OpenGL is used to be a display. The raw 
data from PMD and 2D cameras are corrected and analyzed in order to make a 3D 
mapping. Figure 4.7 shows the examples of OpenGL output [54] [55]. From the 
figure, we can see that OpenGL can generate several high texture 3D images which 
are attractive. OpenGL is intended for use with computer hardware that is designed 
and optimized for the display and manipulation of 3D graphics. OpenGL-based 
application is used for showing the 3D scenario of 3D mapping.  Table 4.1 expresses 
the preprocessing of how to include the herder file in VC++ programming. This 
example expresses the empty frame ሺ800 ൈ 600ሻ with blue background color. 
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#include <gl/gl.h> 
#include <gl/glu.h> 
#include "glut.h"  
 
/////////////////////////////////////////////////////////// 
// Setup the rendering state 
void SetupRC(void) 
    { 
    // Set clear color to blue 
    glClearColor(0.0f, 0.0f, 1.0f, 1.0f); 
    } 
 
////////////////////////////////////////////////////////////// 
// Called by GLUT library when the window has chanaged size // 
////////////////////////////////////////////////////////////// 
void ChangeSize(int w, int h) 
 { 
 GLfloat aspectRatio; 
 // Prevent a divide by zero 
 if(h == 0) 
    h = 1; 
 // Set Viewport to window dimensions 
      glViewport(0, 0, w, h); 
 // Reset coordinate system 
 glMatrixMode(GL_PROJECTION); 
 glLoadIdentity(); 
 // Establish clipping volume (left, right, bottom, top, near, far) 
 aspectRatio = (GLfloat)w / (GLfloat)h; 
      if (w <= h)  
 glOrtho (-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio, 1.0, -1.0); 
      else  
 glOrtho (-100.0 * aspectRatio, 100.0 * aspectRatio, -100.0, 100.0, 1.0, -1.0); 
 glMatrixMode(GL_MODELVIEW); 
 glLoadIdentity(); 
 } 
 
int main(int argc, char* argv[]) 
    { 
      glutInit(&argc, argv); 
      glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 
      glutInitWindowSize(800, 600); 
      glutCreateWindow("Simple Example"); 
      glutReshapeFunc(ChangeSize); 
       SetupRC(); 
       glutMainLoop(); 
      return 0; 
    } 

Table 4.1 The simple example for starting the OpenGL frame 

 
In Figure 4.8 the approach of how to show the 3D data in OpenGL is 

demonstrated. Figure 4.8 is separated into two main parts, i.e. PMD depth data and 
2D image capturing. The 2D camera is used with OpenCv library to capture the image 
frames. Meanwhile, PMD camera use “pmdaccess.dll”, which is provided from PMD 
software, CamVisPro. Additionally, the 2D camera is used for demanding and 
controlling the behavior of image registration. Thus, many algorithms are applied 
before yielding the final output. The PMD camera is used for providing the exact 
depth data to generate the high performance SLAM in real-time. Both data are fused, 
and showed the output on the monitor screen based on OpenGL library. Figure 4.9 
shows a shot at capturing the output from PMD camera which was taken of the 
corridor. The output uses OpenGL in a mode cube plot to show the depth data. 
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Figure 4.9 One shot PMD capturing by using OpenGL plotting 

 
4.3 The PMD camera principle 
 

4.3.1  The principle of PMD 
The PMD camera stands for Photonic Mixer Devices. It is the product of 

PMDTechnologies Company [56] which is located at the same area as the University 
of Siegen, Germany. The first PMD camera prototype was a research product from 
the Center for Sensor Systems (Zentrum für Sensorsysteme, ZESS) at the University 
of Siegen. The PMD has been researched over decade of scientific research on 3D 
time-of-flight imaging. The PMD has been subject of decades of scientific research on 
3D time of flight imaging. The scientific research was detached from the mass 
product, namely PMDTec. ZESS and PMDTec, which support each other. The PhD 
research work attempts to improve the scientific work. PMDTec supports not only the 
hardware, but also deals with issues associated with reality from industrial relations. 
The PMD camera as a smart pixel can be an integration element for a 3D imaging 
camera on a chip based on standard CCD- or CMOS-technology and time-of-flight 
principle [57] [58] [59] [60]. Thus, the complete 3D information is captured in 

 

 

 

 

 

 

Figure 4.8 Using OpenGL to express 3D data 
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parallel without needing excessive calculation power. The smart-pixel sensor is able 
to capture a complete 3D scene in real time without any moving part. PMD based 3D 
imaging can be deployed in a wide range of indoor and outdoor applications. The 
Photonic Mixer Devices entitled PMD sensor as a smart pixel can be an integration 
element for a 3D imaging camera on a chip based on standard CCD- or CMOS-
technology. The main feature is an array sensor, which can measure the distance to 
the target in parallel without scanning. The key execution is based on time of flight 
principle. A light pulse is transmitted from a sender unit and the target distance is 
measured by determining the return time back to the receiver. According to the speed 
of light, the interval distance can easily be calculated.  

 

 

Figure 4.10 Principle of PMD sensor [60] 
 
In Figure 4.10, the principle of time of flight principle based on PMD camera 

is illustrated. It is a single pixel PMD sensor element. There are two conductive 
diodes inside the pixel construction. The light sensitive Photo gates influences diodes 
to conduct the bias voltage. The voltage output generates the readout-circuit. If the 
incident light is constant and the modulation is the rectangular signal with a duty 
cycle of 50%, the phase shift to diode bias gate is the main influence to generate the 
differential voltage at the readout-circuit. 
 

4.3.2  Distance analysis 
To calculate the distance between obstacles and camera, the relative function 

of electrical and optical signal uses a phase-shift algorithm. The main component is an 
array sensor. It can measure the distance to the target in parallel without scanning. A 
light pulse is transmitted from a sender unit and the target distance is measured by 
determining the return time back to the receiver. According to the speed of light, the 
interval distance can easily be calculated. [60] shows the models and the principle 
time of flight principle based on PMD camera. Figure 4.11 expresses an easy 
understanding to calculate the distance. A source light emits a pulse and at the same 
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time also starts the highly accurate stopwatch. If we can calculate a period based on 
the stopwatch, the distance can be calculated based on the following equation: 

 

 ݀ ൌ
ܿ. ݐ
2  (4.1) 

 
The equation (4.1) is the distance analysis method based on the time of light 

principle. ݀ is the measured distance, ܿ is the speed of light and ݐ is duration time 
after emitting until receiving back. Dividing by 2 because time (ݐ) goes both ways 
(out-backward). Therefore, the precise measurement depends on the accuracy of the 
sensor. Since the time of flight of light is 299,792,456 meter per second. The accuracy 
timer counter is required. The measured time is applied to use the phase shift 
determination method. In order to send the modulated signal to the target, the phase is 
shifted when it returns back to the receiver. The modulated light is measured for the 
intensity and phase shift, equation (4.2). The cross correlation method can determine 
the relation between the transmitted and received signal. Where a reference signal is 
݃ሺݐሻ and optical signal is ݏሺݐሻ. ܿሺ߬ሻ is the correlation function and the internal phase 
delay is ߬ [58].  

 

 
Figure 4.11 Principle distance calculation 
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 (4.2) 

 
The PMD sensor uses the reference sinusoidal signal ݃ሺݐሻ ൌ cos ሺ߱ݐሻ and the 

optical received signal is ݏሺݐሻ ൌ ݇ ൅ acos ሺ߱ݐ ൅ ߮ሻ. Where ߱ is the modulation 
frequency, ߮ is the phase shift of feedback signal, ܽ is modulation amplitude. The 
correlation function ܿሺ߬ሻ can be calculated  
 
 



 
 

48 
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(4.3) 

 
The sending signal is the difference in phase ሺ߱ݐሻ, selecting ሺ߱ݐ଴ሻ = 0°, ሺ߱ݐଵሻ = 90°, 
ሺ߱ݐଶሻ = 180°, ሺ߱ݐଷሻ = 270°. By the correlation function at four selected points, we 
can determine the phase ߮ and amplitude ܽ of the received optical signal ݏሺݐሻ as 
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4  

(4.4) 

 
The amplitude ܽ is the measurement for the quality of the distance. ݄ is offset of 

sinusoidal signal obtain by four sampling points ܿఛ଴, … , ܿఛଷ. The distance between the 
target and camera ሺ݀ሻ can easily be calculated, see equation (4.5). Where ܿ଴ is the speed 
of light, ߮ is the phase shift and ௠݂௢ௗ is the modulation frequency.  
 

 ݀ ൌ
ܿ଴߮

.ߨ4 ௠݂௢ௗ
 (4.5) 

 
Many applications use the PMD camera such as machine vision. Range 

measurements are obtained exclusively via time-of-flight (TOF) information. The 
PMD camera provides three data, i.e. the distance, amplitude and 8 bits gray scale 
value. The PMD chip is the prominent component, which provides depth information 
in each pixel of the corresponding point in the object plane. Additionally, the PMD 
camera has the advantage of fast image mapping. It has been used in the automotive 
sector, security and surveillance, medical technology and life sciences. This camera 
enables fast optical sensing and demodulation of incoherent light signals in one 
component. It also gives both intensity and distance for each pixel. The PMD can be 
used to get the excellent depth information as well as gray scale value of the scene. A 
common modulation frequency is 20 MHz, which results in an unequivocal distance 
range of 7.5 to 40 meters. The depth data is obtained from the phase shift of the out-



 
 

49 
 

coming and incoming signals. The cross correlation is a measurement method of the 
similarity of two waveforms as a function of the shifting time. It applies in pattern 
recognition and signal electron analysis. 
 

4.3.2.1 Review the related PMD camera researches  
The PMD camera has been researched in several applications. This section 

reviews the related works of PMD cameras, which are separated into the following 
topic:  

Combination and noise reduction: Prasad et al. [5] presented the first step of 
the combination of the high resolution with two dimension camera and PMD camera. 
They showed the idea to setup the mechanical platform. Their outputs could enhance 
the 3D vision and express output in real time. Wiedemann et al. [61] analyzed and 
proposed the characteristics of the PMD camera in mobile robot applications. They 
proposed that the integration time of the PMD camera is affected by the distance of 
the objects. By adjusting the integration time, an increasing reliability output can be 
achieved. They also used their work for autonomous movements, map building and 
obstacle avoidance. Beder et al. [62] compared the performance between the PMD 
and stereo camera using an oriented planar 3D patch. Their outputs showed that the 
PMD could provide the better accuracy but the low resolution is the main drawback of 
PMD. They suggested combining the PMD and stereo in order to yield better and 
potentially benchmarking vision surface reconstructions. Reulke et al. [63] combined 
the distance data with the high resolution image. The object coordinates the depth 
from PMD transformed into the lab coordinate frame. Schiller et al. [6] proposed the 
use of a planer calibration pattern for calibrating the PMD and standard 2D CCD 
camera. They found the new calibration methods, because the traditional method 
could not be used due to the small field-of-view and low pixel resolution of the PMD. 
The aim for the precise calibration is to find the intrinsic parameters, lens distortions 
and the systematic range error. Lindner et al. [64] proposed the  data fusion between 
the PMD and RGB image. The final output could express the high depth with texture. 
The hidden surface removal was expressed by the mechanical setting up. Huhle et al. 
[65] discussed the denoising algorithms for the depth data and introduced a novel 
technique based on the NL-Means filter. Their works could remove the outliers from 
the depth data and accordingly achieve an unbiased smoothing result. Huhle et al. [66] 
presented a scene acquisition system, which allows for fast and simple acquisition of 
arbitrarily large 3D environments. They processed the frames consisting of depth and 
color information at interactive rates. A novel registration method was introduced that 
combines geometry and color information for enhanced robustness and precision. 
Santrac et al. [67] combined the 3D time of flight camera with a standard 2D camera 
to improve the robustness of the segmentation and to lower its computation 
complexity. 
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Mobile robotics: Ruangpayoongsak [49] used the PMD camera to detect the 
artificial landmark for the mobile in order to localize a mobile robot. The 3D output 
could sort out the object e.g. the bottle or the chair. Vacek et al. [68] performed the 
collision avoidance for the autonomous vehicles. The PMD and video cameras were 
assembled on the top of the vehicle, and showed how it could detect the obstacles. 
The depth data had to be filtered, afterward segmented into regions of equal depth. In 
the next step, a part of the segmented regions is compared with previous regions 
stored in the object list. At last, the updated objects are written into the real-time 
database so that the obstacle information can be achieved by the situational 
interpretation.  

Machine learning: Ringbeck et al. [69] applied 3D data for object detection. 
Moreover, they presented the clarified 2D/3D output. 
 

4.3.3  The PMD camera models 
(a) The PMD A2: A2 is very powerful for the long distance detection with the 

maximum of 40 meters detecting distance. It provides 64 ൈ 16 pixels with an angle of 
view of 52° ൈ 18°. The model is approved for the automotive application for the 
safety in road traffic. It can recognize the relevant and non relevant objects. 

(b) PMD [vision]® S3: S3 is a universal 3D camera with high robustness 
against background illumination. It provides 64 ൈ 48 pixels. The maximum sampling 
rate is 20 Hz. It is emphasized in games, automation and automotive applications.  

(c) The PMD[vision]® O3 is a universal, compact and lightweight 3D camera. 
It is robust and has excellent background illumination suppression properties. The 
resolution is 64 ൈ 48 pixelswith 25 Hz max sampling rate. The interface with 
Ethernet is 10Base-T/100Base-TX. The camera can be used with both indoor and 
outdoor applications. It can also be applied to autonomous guided vehicles and 
robotics, security and protection as well as to automotives. 

(d) The PMD[vision]® CamCube 3.0 is the highest resolution of time-of-flight 
camera worldwide (since 2010) The optical sensor 200 ൈ 200 pixels, provides both 
of the depth and gray scale information with standard measurement of 0.3-7 meters. 
The field of view is 40° ൈ 40°. USB 2.0 interface. This sensor increases the frame rate 
and integrated SBI technology. It can be used in indoor and outdoor environments. 
The embedded motion blur resistance allows for detecting fast moving objects.  

(e) The PMD PhotonICs® 3k-S and 19k-s, the configuration is the same as 
before. But the array size output 3k-S provides 64 ൈ 48 pixels, 19k-S provides 
160 ൈ 120 , and does not have the suppression of the background illumination (SBI). 
The SBI is included on the PMD chip, which can reduce the infrared light from the 
environment. The light source generates wavelength 870 nm with 3 watt energy 
consumption. The modulated light reaches its maximum at 20MHz with an expected 
distance of 7.5 meters. 
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The data is sent via the Ethernet (IEEE802.3u) and FireWire (IEEE 1394). The 
voltage range is 9-18 V. The 3k-S imager is in its third generation, and is fully 
certified in line with the relevant industry requirements. Every imager features SBI 
and can be used indoors as well as outdoors. Moreover, there is another kind of PMD, 
which is PhotonICs® 41k-S. It has 204 ൈ 204 pixels and a high modulation 
bandwidths. The imager opens up a host of possibilities across a variety of 
applications, such as robotics, manufacturing, consumer electronics, gaming and 
medical technology. It offers excellent distance measurement capabilities without 
compromising resolution and boasts the following uniqueness. The PhotonICs® 1k-S 
chip has been approved for the deployment in automotive industry and is now in its 
third generation. The sensor has a resolution of 64 ൈ 48 pixels ToF pixels. It reaches 
the automotive qualification according to ZVEI recommendations for Robustness 
Validation and can be deployed immediately in product development. Every imager is 
equipped with SBI, enabling indoor as well as outdoor use. 

 
4.3.4  Starting connection 
For the example of getting the raw data from FireWire (IEEE 1394), the 

header file “pmdmsdk.h” has to be included in the main file. A software development 
kit (SDK) is used for retrieving the data in variable dat. It contains 3072 pixels for the 
depth data. To calculate PMD data, we have to arrange the data into matrix by using 
two for loop. 
 
#include "pmdmsdk.h" 

PMDHandle hnd; 
 unsigned int res, width, height; 
 double * dat; 
        #define Width 64 
        #define Heigh 48 
        float PMDdata[Heigh][Width]; 
void GetPMD(void) 
{ 
 int x,y; 

  

 

(a) The PMD A2 (b) PMD[vision]® S3 (c) PMD[vision]® O3
  

(d) PMD[vision]® CamCube 3.0 (e) 3k-s and 19k-s 
Figure 4.12 PMD camera models 
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 res = pmdConnectFireWire (&hnd);            // connect to camera 
 if(res !=PMD_OK) 
    printf("Could not connect\n"); 
 else  
    printf("Access complete\n"); 
  
        pmdSetIntegrationTime (hnd, 3000);         //set the integration time 
        pmdSetModulationFrequency (hnd, 30);       //set the modulation frequency 
        res = pmdUpdate (hnd); 
 if (res !=  PMD_OK) 
           exit(3); 
  
        res = pmdGetDistances (hnd, (void**)&dat); //retrieve depth data 
 if (res != PMD_OK)   
           exit(4);  
      
           for (y=0;y<Heigh;y++)                   //arrange data to matrix 64x48 
         for(x=0;x<Width;x++) 
      PMDdata[x][y]=dat[(64*y)+x];    //PMDdata contains depth [64][48] 
} 

 
4.3.5  PMD camera characteristics 
This section explains the pros and cons of each camera model. Table 4.2  

shows the conclusion of the PMD camera’s characteristics [61]. It expresses the detail 
of the resolution output (pixels), the field of view (height ൈ width, degree), the 
sampling rate (Hz), the suppression of background illumination (SBI) as well as 
connection methods. Each model has its own pros and cons. It is used in different 
tasks depending on the required applications. PMD camera has two parameters, which 
can adjust the modulation frequency ሺݖܪሻ and integration time ሺݏߤሻ. Both parameters 
can tune by software which is provided from PMD library. The integration time is 
effected by the distance between the object and camera. It is used to calculate the 
distance. In particular, the PMD also relates to other parameters like the time of light 
and the phase shift on which both parameters are fixed. Figure 4.13 depicts the 
different integration time that is adjusted. When the integration time is shot ሺ100 ݏߤሻ, 
the overall image is noisy but the camera can provide the  faster data, the near objet 
(book) is acceptable but the far object (chair) is not.  

 
Model Resolution 

(pixels) 
Field of 

view 
(degree) 

Sampling 
rate (Hz) 

SBI Connection 

PMD[vision]® 1k-S 64x16 45x16  Yes Ethernet / 
FireWire 

PMD[vision]® 3k-S 64x48 40x30 120 Yes Ethernet / 
FireWire 

PMD[vision]® 19k-S 160x120 40x30  No Ethernet / 
FireWire 

PMD[vision]® S3 64x48 40x30 20  Ethernet 
PMD[vision]® O3 64x48 40x30 25  Ethernet 
PMD[vision]® A2 64x16 52x18 100 Yes Ethernet 

CamCube 2.0 204x204 40x40   USB 2.0 

Table 4.2 PMD camera characteristics 
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2D image 100 ݏߤ 500 ݏߤ 

 
 ݏߤ 5000 ݏߤ 2000 ݏߤ 1000

Figure 4.13 Changing integration time effect to the noise 
 
When increasing the integration time, the output quality is increased step by 

step (noises reduce) but the giving data speed from the camera is slower. The high 
integration time ሺ5000 ݏߤሻ has less noise than the low integration time. If we 
consider the high quality output the high integration time is suitable but in mobile 
robot applications the speed of the data capturing cannot be ignored. Wiedemann et 
al. [61] proposed the optimum integration time that related to the distance objects. 
They suggested that the integration time should adjust according to the distance. 
Especially the integration time has to be adapted for near the near objectሺ൏ 1݉ሻ. 
They proposed a simple adaptation in three steps. Firstly, the average amplitude of 
each frameሺ݁ݒܣ௔௠௣ሻ is calculated. Secondly, the deviation ሺ݀݁ݒሻ of the average 
amplitude and ሺ݌݉ܣሻ each amplitude depth pixel ሺ݀݁ݒ ൌ ௔௠௣െ,݁ݒܣ  ሻ are݌݉ܣ
calculated. Thirdly, the new integration time ሺݐ݊ܫ௡௘௪ ൌ ௢௟ௗݐ݊ܫ ൅ .ݒ݁݀  ௢௟ௗሻ isݐ݊ܫ
adapted. 
 

4.3.6  PMD camera acquisition 
The reason to use the PMD camera for mobile robot application is that it 

provides the fast 3D volume compared to the frame size of other sensors. It does not 
require the additional moving mechanism. However, many drawbacks of PMD still 
have to be improved such as the field of view and maximum detected range. Figure 
4.14 shows the one scan data that takes in the corridor using the A2 PMD camera.  
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(a) Image from 2D camera (b) Depth data from PMD camera 
Figure 4.14 PMD scan raw data in the corridor 

 

4.4 Median filtering  
 

The raw data from the PMD camera probably contains the unpredictable noise 
because of the varied environment scenes and adaptations of the integration time. The 
main occurring of disturbing noise are the reflecting surfaces, e.g. the transparency 
glass and pure white color surface. The PMD camera is based on the light source that 
sometimes has an effect on the glass surfaces, strongly absorbing and reflecting 
surfaces. In this section, the simple algorithm to reduce the random noise and salt 
pepper is discussed. Noise reducing and filter algorithm are necessary to improve the 
raw data. The main idea to reduce the noise is to find the threshold data points, which 
are close (neighbor data) and join them together into one data. The filter removes the 
outliers by replacing the old data point with the new value of their surrounding points. 
The noises, which may occur, are defined as Gaussian noise, salt and pepper noise. 
The fundamental consideration concerning noise reduction is separated into two steps. 
Firstly, the raw data is filtered by checking the intensity of each point. The intensity 
of each pixel expresses the quality of data. Secondly, the interpolation of the neighbor 
data points to their surrounding points and join each point. Beyond the threshold 
length data has to be eliminated. The simple method uses the convolution technique 
implementing weighting kernels, but it is suitable for linear neighborhood operations. 
A median filter is one of the interesting topics to remove salt and pepper noise as well 
as outliner data. The median filter performs the neighboring pixels that are ranked 
according to intensity. Each output pixel contains the median value in the 
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neighborhood around the corresponding pixel. The problem of unpredictable noise 
sometimes occurs. 

The mean filtering [70] is the simplest type of the low-pass filter to replace 
each pixel value in an image with the mean value of its neighbors, eliminating the 
unrepresentative pixels, and attenuating the image noise. It uses the convolution filter 
based on a kernel, which often uses 3 ൈ 3 square kernel. The characteristic of low-
pass filter is that it can remove the high frequency information. It affects edges, lines 
and points that are smoothed. 

 

,ሺ݉ݒ  ݊ሻ ൌ ෍ ෍ ܽሺ݇, ݈ሻݕሺ݉ െ ݇, ݊ െ ݈ሻ
ሺ௞,௟ሻאௐ

 
(4.6) 

 
Where ݕሺ݉, ݊ሻ and ݒሺ݉, ݊ሻ are the input and output of the images, 

respectively. ܹis a suitably chosen window, ܽሺ݇, ݈ሻ are the filter weights. A common 
class of spatial averaging filters that has all equal weights is  
 

,ሺ݉ݒ  ݊ሻ ൌ
1

ܰௐ
෍ ෍ ሺ݉ݕ െ ݇, ݊ െ ݈ሻ

ሺ௞,௟ሻאௐ

൅ ,ҧሺ݉ߟ ݊ሻ 
(4.7) 

 
Where ܽሺ݇, ݈ሻ ൌ ଵ

ேೈ
 , ܰௐ is the number of pixels in the window ܹ and 

,ഥሺ݉ߟ ݊ሻ is the white noise average with zero mean and variance ఙആ
మ

ேೈ
. The noise power 

is reduced by a factor equal to the number of pixels in the window. Figure 4.15 (a) 
shows the common mean filter mask coefficients. Median filter [71] is a nonlinear 
process that is useful for impulsive reduction, random noise, salt and pepper noise. 
Impulsive or salt-pepper noise can occur due to a random bit error. Median filter 
slides a window along the image. The media intensity value of pixels within the 
window becomes the output intensity of the pixel being processed. The Median Filter 
does somewhat the same, instead of taking the mean or average, it takes the median. 
The median is gotten by sorting all the values from low to high and then taking the 
value in the center. If there are two values in the center, the average of these two is 
taken. A median filter gives better results to remove salt and pepper noise because it 
completely eliminates noise. With an average filter, the color value of the noise 
particles are still used in the average calculations. When taking the median we only 
keep the color value of one or two healthy pixels. The median filter also reduces the 
image quality however.  
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,ሺ݉ݒ  ݊ሻ ൌ ݉݁݀݅ܽ݊ሼݕሺ݉ െ ݇, ݊ െ ݈ሻ, ሺ݇, ݈ሻ א ܹሽ (4.8) 

 
Where ܹ is a suitably chosen window. The algorithm for median filtering 

requires arranging the pixel values in the window in increasing or decreasing order 
and picking the middle value. The window size is chosen that ܰௐ is odd. If ܰௐ is 
even, the median is taken as the average of the two values in the middle. Figure 4.15 
(b) shows the simply median value. If we arrange the data in ݒሺ݉, ݊ሻ window and the 
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Mask 1 Mask 2 Mask 3 Median = 15 
(a) Mean filter (b) Median filter 

Figure 4.15 Filter mask coefficients 
 

4.4.1  Data filtering results 
This section shows the output after using the median filter. Figure 4.16(a) 

shows the one shot of PMD camera, which does not have many noises that disturb the 
system. Figure 4.16(b) compares the raw data (circle red dash) and filtered data (blue 
line). The blue line is the average data in every column. The results show that if the 
noise is under the threshold, the filtered data can still track the raw data. Figure 4.17 
and Figure 4.18 show the salt-pepper noise which occur in the raw data. Top left is the 
raw data, top right is the filtered data. The bottom right is the error data that is 
eliminated and the bottom right compares the raw data (circle red dash) and filtered 
data (blue line). The figure shows the salt-pepper noise that could be eliminated while 
the filtered data will be used to build the map. 
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(a) (b) 
Figure 4.16 (a) Raw PMD data (b) Outliner removal using media filter 

 

 
Figure 4.17 Median filter, remove the outliner 
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Figure 4.18 Median filter, remove the outliner 

 
 

4.5 Camera calibration  
 

The PMD camera provides precise depth data, however for the mobile robot 
application the multi tasking is necessary. The depth PMD data can be applied very 
well for moving object application but for non-moving objects is difficult. Figure 4.19 
explains the moving and non moving object. The figure shows two dimension data on 
top left hand side and depth data from PMD camera on below right hand side. As 
figure, human being moves in the room (red square covering). The depth information 
changes continuously, thus to detect the moving object is not difficult to deal. The 
segmentation, background subtraction and classification the particles in the image 
plane can be done [72]. On the other hand, jacket is non-moving object (yellow square 
covering). Use only depth data cannot detect the jacket because the depth of jacket 
and the wall are quite same. Classification the jacket (non-moving object) is too 
complicated. The most efficiency and easiest to classify the non-moving object is to 
use the information from high resolution camera. Object detection is an important 
element of various computer vision areas. The goal is to find an object of a pre-
defined class in a static video frame. Sometimes this task can be accomplished by 
extracting certain image features, such as edges, color regions, textures contours etc. 
Then use heuristics to find configurations and combinations of those features specific 
to the object of interest. However the complex objects, such as human faces are hard 
to find features and heuristics that will handle the huge variety of instances of the 
object class. Inspire by this problems the Haar-like features is use for the complex 
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object detection. Before handle this algorithm, the calibration two cameras is 
processed in order to acquire the trustable data. 

 

 
Figure 4.19 Object detection motivation 

 
The Camera calibration is an essential step before handling image processing 

tasks in order to extract the metric information from image frames, especially the 
calculation between two cameras. Camera calibration is important for the 
measurement in real three dimensions and relation between camera and world 
coordinate. This research acquires the image data from two cameras, i.e. PMD and 2D 
camera. The camera calibration is an essential step in 3D computer vision in order to 
extract the metric information from 2D image. Ordinarily, calibration technique can 
be classified into two categories, photogrammetric and self calibration. 
Photogrammetric calibration uses an observing calibration object in 3D geometry 
space, which provides the good precision output. The calibration objects consist of 
couple related orthogonal planes. This method requires an expensive calibration 
equipment and elaborate setup. Self calibration does not use any calibration object. A 
moving camera in a static scene is required. Coordinate of scene provides the internal 
parameters from one camera displacement by using image information alone. If the 
images are taken by the same camera with fixed internal parameters, correspondences 
between three images are approved to find out the internal and external parameters in 
order to construct the 3D geometry. This approach is very flexible. However, there are 
many parameters that have to be estimated, and reliable results cannot be obtained. 
Lindner et al. [64] presented a precise calibration approach using the transformation 
methodology of 2D camera ՜ World coordinate ՜ PMD camera. This would increase 
the reliability of comprehensive results and we probably will attach in the future steps. 
A CCD frame is transformed onto the PMD frame through a rotation and translation 
matrices. Zhang [73] proposed a flexible technique to calibrate cameras using cameras 
to observe a planar pattern shown at a few different orientations. This approach 
combines the photogrammetric and self calibration techniques. Only 2D metric 

Moving 
Object

Non-Moving 
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information was used instead of 3D one. The process of camera calibration gives us 
both a model of the camera’s geometry and a distortion model of the lens. These two 
informational models define the intrinsic parameters of the camera. The camera 
calibration is an essential preliminary step before solving the vision tasks. The 2D 
camera and PMD camera are set up in the proper angle. Figure 4.20 shows the 
assumption that both of cameras point out to the same object. However, the extrinsic 
parameters such as focal length, image center, etc. are unlike. Thus, the intrinsic 
matrix between both cameras has to be found out by calibration. Fundamentally, PMD 
camera provides two data, depth and intensity. The intensity of PMD camera output is 
used for calibration only. Prasad et al. [5] presented the fundamental enhancement in 
the 3D vision output. They placed the 2D and 3D camera in a special structure and 
assumed that the fields of view of both cameras are almost the same. The real 3D 
range information with high intensity was generated. Lindner et al. [64] described a 
fast combining approach for the high resolution RGB image with PMD distance data. 
The RGB data is projected onto the geometry reconstructed depth information from 
the PMD camera. Mischler [74] reconstructed the 3D model of stereo and PMD data 
by using an OpenCV library.  

 

 

Figure 4.20 Camera calibration model 
 
This thesis followed the hardware setting up principles and projective texture 

on geometry. Nevertheless, we are still not considering hidden surface removal and 
distortion factor. As shown in Figure 4.20 denotes that ሺݍ௫, ,௬ݍ  ௭ሻ are the coordinatesݍ
of point ݍ in the world space. It was assumed that the object is pointed out by the 

CCD camera, ݍ஼஼஽ ୀ ሺݍ஼஼஽_௔,  ஼஼஽_௕ሻ் is the projected coordinate onto an artificialݍ
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camera frame, if the original of the image coordinate does not align on ݖ image plan 
axis. Denote ሺܽ଴, ܾ଴ሻ is the center of the artificial frame (principal point) and ݂ is the 
focal length of the camera [75].  

 

 

݂
ܼ ൌ

ݑ
ܺ ൌ

ݒ
ܻ 

ݑ ൌ ܿ௫ ൅
݂ܺ
ܼ  

ݒ ൌ ܿ௬ ൅
݂ܻ
ܼ  

(4.9) 

 
By using the perspective transformation, we can define that using homogeneous 
coordinates, can be performed Q in a matrix. 
 

 ቂݑ
ቃݒ ൌ ൤ ௫݂ 0 ܿ௫

0 ௬݂ ܿ௬
൨ ൥

ଵଵݎ ଵଶݎ ଵଷݎ ଵݐ
ଶଵݎ ଶଶݎ ଶଷݎ ଶݐ
ଷଵݎ ଷଶݎ ଷଷݎ ଷݐ

൩ ቎

௫ݍ
௬ݍ
௭ݍ
1

቏ (4.10) 

 
Where ௫݂ and ௬݂ are the focus lengths in x and y axis respectively. Finally, a matrix 
can be arranged as  
 

 

U ൌ ൤ ௫݂ 0 ܿ௫
0 ௬݂ ܿ௬

൨ 

E ൌ ൥
ଵଵݎ ଵଶݎ ଵଷݎ ଵݐ
ଶଵݎ ଶଶݎ ଶଷݎ ଶݐ
ଷଵݎ ଷଶݎ ଷଷݎ ଷݐ

൩ 
(4.11) 

 
Where U is an intrinsic matrix of a camera. R is an extrinsic matrix of a camera. The 
projection from point Q onto the camera screen m is  
 

 m ൌ UEq (4.12) 

 
In practice, every lens has its distortions. The major components of the lens distortion 
are the radial distortion and slight tangential distortion. The radial distortion is a result 
of the lens shape. Because the lens shape is barrel, the distortion can be characterized 
by the terms of a Taylor series expansion [76]. The conventionally called ݇ଵ, ݇ଶ and 
݇ଷ. The image point location is distorted following equation.  
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(a) (b) 
Figure 4.21 (a) Radial distortion (b) Tangential distortion 

 

 
௨_௥௔ௗݔ ൌ ௗሺ1ݔ ൅ ݇ଵݎଶ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ 
௨_௥௔ௗݕ ൌ ௗሺ1ݕ ൅ ݇ଵݎଶ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ (4.13) 

 
The ሺݔௗ, ,௨_௥௔ௗݔௗሻ is the original location of the distorted point and ሺݕ  ௨_௥௔ௗሻ is theݕ
corrected location which compensated by radial distortion factors. The tangential 
distortion is a manufacturing defects process. The lens is not being exactly parallel to 
the image sensor. The distortion can be described from two parameters ݌ଵ and ݌ଶ as. 
 

 
௨_௧௔௡ݔ ൌ ௗݔ ൅ ሾ2݌ଵݕ ൅ ଶݎଶሺ݌ ൅  ଶሻሿݔ2
௨_௧௔௡ݕ ൌ ௗݕ ൅ ሾ݌ଵሺݎଶ ൅ ଶሻݕ2 ൅  ሿ (4.14)ݔଶ݌2

 
The ൫ݔ௨_௧௔௡,  ௨_௧௔௡൯ is the corrected location which compensated by tangentialݕ
distortion factors. The total lens distortion comes up the summation of radial and 
tangential distortion. The above model is extended as: 
 

 
௨ݔ ൌ ௗሺ1ݔ ൅ ݇ଵݎଶ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ ൅ ௗݔ ൅ ሾ2݌ଵݕ ൅ ଶݎଶሺ݌ ൅  ଶሻሿݔ2
௨ݕ ൌ ௗሺ1ݕ ൅ ݇ଵݎଶ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ ൅ ௗݕ ൅ ሾ݌ଵሺݎଶ ൅ ଶሻݕ2 ൅  ሿ (4.15)ݔଶ݌2

 
Where: ሺݔ௨, ,ௗݔ௨ሻ is undistorted location point. ሺݕ  .ௗሻ is distorted location pointݕ
ሺݔ௖,  .௡ is tangential distortion coefficient݌ .௖ሻ is center of distortion (principal point)ݕ
݇௡ is radial distortion coefficient, หݎห ൌ ඥሺݔௗ െ ௖ሻଶݔ ൅ ሺݕௗ െ  ௖ሻଶ. When theݕ
calibration is done, the distortion parameters are known and we can compensate for 
the data lost through distortion. 
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4.5.1  Jean-Yves Bouguet camera’s calibration toolbox for MATLAB 
As already mentioned in the previous section, the C implementation can easily 

be found by OpenCV which opens the source library based on C language. 
Nevertheless, the same method is implemented in MATLAB by Bouguet [77]. He 
created the MATLAB toolbox, which can find the intrinsic parameters (camera 
model) accurately. The advantage of his toolbox is that it does not only provides the 
accurate intrinsic and geometrical output, but also the graphical three dimensional 
fundamental behaviors of the camera that are easy to understand. This calibration 
method requires the checkerboard which has symmetrical shapes and knows the exact 
dimension. The used checkerboard is window size 30 ൈ 30 ݉݉, 5 squares per side. 
Figure 4.22 shows the setting up CCD/PMD camera. Checkerboard places about 
60 ܿ݉ far from the camera. The CCD camera is fixed above the PMD camera. The 
mechanical part has to be forced on the accurate position because changing 
mechanical setting will directly affect the calibration matrix, which effects the fused 
data. Figure 4.23 shows the field of view (FOV) of CCD and PMD cameras. The field 
of view depicts that both cameras are different. Thus not only the projected point, but 
also the resolution is dissimilarity as well. Thus, this figure strongly shows that the 
calibration is very important before fusing the images data.  

 

 

Figure 4.22 Calibration setting up 

 

(a) CCD camera (b) PMD camera 

Figure 4.23 Images from CCD/PMD camera on the setting up position 

CCD image
PMD image
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Bouguet’s toolbox is very powerful for calibrating the single camera, the 

stereo camera as well as the fish eye camera. The stereo camera calibration is applied 
in this work to find the relation of 2D and PMD camera in order to find the rotation 
and translation between both cameras. Then, the geometrical relation is used to fuse 
CCD and PMD data. Bouguet’s method separates calibration into three steps.  

Firstly, take checkerboard images from CCD and PMD 14 pairs. These images 
are used for calibration the coordinate.  

Secondly, extract grid corners from the checkerboard. By extracting the corner 
from the CCD camera, the corner can be accurately found. On the other hand, the 
PMD camera has a problem. Since the resolutions of the PMD camera are small, the 
corner is rarely detected. Setting the ambient light is important. The experiments had 
to be corrected many times before getting a satisfactory output. The collected data 
from CCD and PMD have to be captured at the same time with the ambient 
environment.  

Thirdly, calibrating the output of calibration provides five terms, as shown 
below. The intrinsic parameters [78]  [79]consist of  

Focal lengthሺ݂ሻ: the focal length in pixels ሾݔ௔௫௜௦,  ௔௫௜௦ሿݕ 
Principal pointሺܿܿሻ: the principal point coordinates ሾܽ଴,  ܾ଴ሿ 
Skew coefficientሺ݈݄ܽܽ݌_ܿሻ: the skew coefficient defining the angle between x 

and y pixel axes. 
Distortionsሺ݇ܿሻ: the image distortion coefficients (radial and tangential 

distortions) ሾ݇ଵ, ݇ଶ, ݈ଵ, ݈ଶሿ 
Pixel errorሺ݁ݎݎሻ : the possibility of an error in each pixel ሾݔ௔௫௜௦,  ௔௫௜௦ሿݕ 
 

(a) CCD images (b) PMD images 
Figure 4.24 First step, take checkerboard images pairs 

 
Moreover, this toolbox creates the graphical view of the camera extrinsic 

parameters. The extrinsic parameters show both camera centered point and world 
centered point, which is easy to understand. Figure 4.24 shows the first step, image 

CCD images PMD gray scale images
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pairs of CCD and PMD. Each image pair has to be recorded at the same time at the 
same condition; otherwise the related coordinate of calibration will be wrong. From 
the figure, we can see that the dissimilarity resolution of both cameras that is huge (10 
times, data sheet), and field of view has a small wrinkle, which has to be ironed out. 
Figure 4.25 shows the second step, extracting corners from the checkerboard in order 
to use the coordinate to calibrate intrinsic parameters afterward. Table 4.3 shows the 
summary of the intrinsic parameter of CCD camera. The intrinsic parameter is 
necessary in order to find the project image in the processor chip. Figure 4.26 shows 
the graphical view of extrinsic parameter in camera/world centered mode, making it 
an accessible understanding for the calibration method. Figure 4.26(a) shows 14 
graphical square images. They represent the random rotation of checkerboard. 
Trapezoidal red square represents the model of CCD camera. Trapezoidal peak to 
square base represents the CCD focusing point.  

 

(a) CCD images (b) PMD images 
Figure 4.25 Second step, extract corners 

 
Figure 4.26(b) adapts the data from (a), arranging new coordinates between 

the camera and checkerboard. The checkerboard is fixed to the one position, but the 
camera is rotated around the checkerboard instead. Figure 4.26(c) shows a lens pixel 
error. Ideally, the lens should not have the distortions. The main reason is the quality 
of the manufactured product. The high ideal quality lens is the parabolic shape, but 
almost low quality lens are the spherical shape instead because it is easy to build. 
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Lens distortion occurs in the rays farther from the lens center. It is bent because the 
projected image on CCD sensor is distorted. This distortion is the radial distortion. 
This distortion occurs from the shape of lens. The distortion in the center of the image 
is zero and is increased by the distance toward to periphery. The second distortion is 
the tangential distortion. It comes from the lens position and is not exactly parallel to 
the image sensor. The projected image is bent out of focus. The combination of both 
distortions is the complete distortion. Figure 4.27 visualizes the distortion error of 
CCD cameras: (a) radial distortion (b) tangential distortion and (c) complete distortion 
that is the combination of radial and tangential distortion. The tangential distortion of 
the CCD camera is not so good. The complete distortion is then showing as an 
amorphous shape.  
 
Intrinsic parameters of CCD camera: 
Focal Length: ݂ [780.037   777.844] േ [6.28701   6.224] 

Principal point: ܿܿ [353.244  223.784] േ [10.114   9.484] 
Skew: ݈ܽ[0.000] ܿ_݄ܽ݌ േ [0.000]=> 

angle of pixel axes = 90.000 േ 00000 degrees 
Distortion: ݇ܿ [0.024  0.015  -0.006  0.0109  0.000] േ [0.058  0.393  0.005  

0.004  0.000] 
Pixel error: ݁[0.142  0.179] ݎݎ 

Table 4.3 CCD camera intrinsic parameters 

 
(a) Extrinsic parameter camera centered 

-100
0

100
0

100
200

300
400

500
600

700
800

900
1000

-200

-150

-100

-50

0

5

9
8
4

7

3
6

1132

12

1014
11

Extrinsic parameters (camera-centered)

Xc

Zc

Yc

Oc

Extrinsic parameters (camera-centered)



 
 

67 
 

(b) Extrinsic parameter world centered (c) pixel error 
Figure 4.26 CCD geometrical graphic related to checkerboard parameters 

 

(a) (b) 

 
(c) 

Figure 4.27 CCD Camera distortion visualization 
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Intrinsic parameters of PMD camera: 
Focal Length: ݂ [2049.807  1460.607]േ[ 89.570  60.338] 

Principal point: ܿܿ [571.588  432.630] േ [ 87.242  41.540] 
Skew: ݈ܽ[0.000] ܿ_݄ܽ݌ േ [0.000]=>angle of pixel axes = 90.000േ0.000 degrees  

Distortion: ݇ܿ [ -0.245  7.826  -0.023  -0.020  0.000]േ[0.372  8.167  0.015  
0.015 0.000] 

Pixel error: ݁[1.504  1.560] ݎݎ 
Table 4.4 PMD camera intrinsic parameters 

 
(a) Extrinsic parameter camera centered 

(b) Extrinsic parameter world centered (c) pixel error 
Figure 4.28 PMD geometrical graphic related to checkerboard parameters 

 
Table 4.4 shows the intrinsic parameters of the PMD camera in the same 

condition of the CCD camera. Figure 4.28 (a-b) shows the graphic between camera 
and checkerboard, we can see that the coordinate of PMD and checkerboard 
compared to Figure 4.26(a-c) are nearly the same. This confirms that the setting of the 
position of calibration method is collectedly done. Figure 4.29 shows the visualization 
distortion error of PMD camera: (a) radial distortion (b) tangential distortion and (c) 
complete distortion that is the combination of radial and tangential distortion.  
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4.5.2  Two cameras calibration 
Human eyes receive images from objects from two different positions. The 

human brain knows the focusing point of each eye and can differentiate between the 
focusing points of each eye (base line). The triangular principle can help us to 
calculate the distance from objects to the camera. This idea inspired the stereo camera 
system. A stereo camera is a type of camera with two lenses with separated image 
sensors, which can provide three dimensional images or movies. To calculate the 
stereo system, the essential things that have to be considered are as follows. Firstly, 
the radial and tangential lens distortions (undistortion factor) have to be removed. 
Secondly, the angle and the distance between the cameras are fixed. The output is two 
coplanar with exactly aligned rows. Thirdly, the correspondent features are found in 
the left and right camera views. Fourthly, the geometric of the camera turns into 
distances using the triangular principle. This method is called reprojection.  

 

(a) (b) 

 
(c) 

Figure 4.29 PMD Camera distortion visualization 
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The combination of CCD and PMD cameras is similar to a stereo camera 
system. Then, we apply the stereo theory for fusing CCD/PMD cameras. After getting 
the initial intrinsic parameters, CCD and PMD are assumed to point in the same 
direction, which has an overlap area of both cameras. On the other hand, some areas 
are not overlapped. The extrinsic parameters of both cameras are shown in the 
previous section. Therefore we can use these parameters to sort out the relative 
matrix, which is shown in Table 4.5. This table shows the R and T, which relates two 
cameras to each other. We can see that the CCD camera is far from the PMD center 
approximately 14.31, 63.96 and 70.83 mm in the x, y and z axis, respectively. The 
rotation from the PMD center with an angle 0.05058, 0.07940 and -0.01120 in rows, 
pitch and yaw, respectively. It can be easily understood from Figure 4.31 that 
calibration data is matched with physical setup in Figure 4.22.  

 

 
Figure 4.30 Extrinsic parameter between CDD/PMD cameras 

 
 
Figure 4.31 Relative coordinate between CCD/PMD cameras  
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The two coordinate vectors ݔ௅and ݔோ are respectively the left and right camera 
reference frames that are related to each other through the rigid motion transformation 
xR ൌ RxL ൅ t ,where R is the 3x3 rotation matrix corresponding to the rotation vector 
from the calibration result. It is assumed that the object is projected onto the CCD 
frame and the PMD frame in different orientations. A CCD frame is transformed into 
the PMD frame through a rotation and translation matrix. Denote ሺx୔MD, y୔MD, z୔MDሻ 
are the coordinates of the PMD camera on artificial frame and ሺxCCD, yCCD, zCCDሻ are 
the coordinates of the CCD camera frame. Then, the CCD frame can be projected 
onto the PMD frame by the equation shown in equation (4.16) 

 
Relative vector (cm) 

Rotation vector ሺݎሻ [ 0.05058   0.07940  -0.01120 ] 
Translation vector ሺݐሻ [ 14.31872   63.96501  70.83500 ]T 

Table 4.5 Relative matrix between CCD/PMD 
 

 ൥
௉ெ஽ݔ
௉ெ஽ݕ
௉ெ஽ݖ

൩ ൌ ൣܴ ڭ ൧ݐ ቎

஼஼஽ݔ
஼஼஽ݕ
஼஼஽ݖ

1

቏ (4.16) 

௉ெ஽ݍ  ൌ ൣܴ ڭ  ஼஼஽ݍ൧ݐ
(4.17) 

 
4.6 Data fusion 
 

The depth 3D information is a consistent and dominates point of the PMD 
camera, but the gray scale output still has pattern lacking. To achieve this, the high 
resolution 2D camera is operated to register 2D/3D vision providing more realistic 
correlative 3D color images, which are prepared for the future SLAM raw sources. 
The 3D scene is captured from PMD while the texture is mapped by the 2D camera. 
The resolution of the 3D data from the selected PMD camera is 64 ൈ 48 pixels, which 
is approximately ten times less than the 2D camera (640x480 pixels). Huhle et al. [80] 
and Prasad et al. [5] presented the capability of these cameras to attain the high 
resolution, gray scale image and depth data. The gray scale image from the PMD 
camera is only used for the first time to calibrate the camera, after that this data is 
ignored. The interpolation method is then used for adjusting PMD image size in order 
to be equal with 2D data set. Figure 4.32 illustrates the interpolated depth and 2D 
data. Each depth data registers to the nearby 2D 10 pixels. The bunch of pixels has the 
same depth data [81].  
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Figure 4.32 Registration and rescale image sets 

 

 ௉ܲெ஽ሺݔ௡, ௠ሻݕ ൌ ܳଶ஽ሺ݅௡
௡ାଵ଴, ݆௠

௠ାଵ଴ሻ 
݉, ݊ ൑ ܳ୫ୟ୶ _ୱ୧୸ୣ (4.18) 

 

 
(a) (b) (c) 

(d) 
Figure 4.33 Output of (a) 2D camera (b) PMD camera (c) Fusion 2D/3D data 

(d) Rescaling fusion 2D/3D data 
 

The bunch of pixels has the same depth data as in equation (4.18). ௉ܲெ஽  is the 
new matrix depth data and ܳଶ஽ is the RGB data from the 2D camera. The 3D 
mapping yields the texture for the 3D model. The OpenGL is subsequently used to 
display the entire 3D mapping output. The proposed method straightforwardly 
presents the achievement of the 3D mapping building. This ensures an easy 
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calibration of both cameras and there is only a small loss of information. Figure 4.33 
(a-d) shows the output of the image before and after enhancement.  
One experiment uses PMD A2 [82]. The depth data has to be rescaled by interpolating 
point to point. The raw data resolution is up from 64x16 pixels to 1280x320 pixels (20 
times). Figure 4.34 shows the scenario around the second floor stair. This area has the 
complex information. (a) shows the depth data from the PMD camera. The data 
without processing is difficult to recognize or sort out the scenarios. (b) Categories 
depth data using the color range difference. The results look better, but can roughly 
recognize the scenario. (c) shows the fusion of 2D/3D data, the output can look 
clearly at what the scenario is because of the texture information from the 2D camera. 
Moreover, the depth can show the volumetric scenario. The area around the windows 
has the most erroneous data because of the glass reflection. However, for the rescale 
approach, we only suggest one frame capturing. In real time, 3D mapping is not 
necessary because it consumes the processing time. It has an effect on the real time 
application. Compared to the mapping quality which we will receive, it is worse. 
 

 

Figure 4.34 (a) Raw depth PMD data (b) Category depth using color 
(c) Fusion 2D/3D 
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4.7 Object detection 
 

Nowadays, many complex functions are included in one complex mobile robot 
such as a wireless communication, Global Positioning System (GPS), smart obstacle 
avoidance, vision systems as well as self localization techniques. On the other hand, 
the real time three dimensional map building task to obtain the realistic visual 
appearance of particular environmental volume is also a very challenging task for 
modern mobile robots. The Simultaneous Localization and Mapping (SLAM) is a 
technique used for map building. SLAM is employed on a mobile robot it can be used 
for localization task and helps the robot to move autonomously through an unknown 
environment. SLAM can be represented by various active sources, e.g. ultrasonic 
sensors and laser scanners or by passive sources, i.e. vision sensors from cameras. 
Cameras can be used to find unique characteristics of features based on the pixels in 
and around the features, whereas the active sources are not able to do that. Besides the 
high performance for 3D mapping and estimating the pose of the locomotion in real 
time, the flawlessly mobile robot should also handle tasks such as the recognition of 
objects in its environment in order to achieve various practical missions. This topic 
hence aims to fulfill the high performance robot tasks by the recognition of the objects 
using fusing the data from the 2D/3D sensors. The 2D high resolution image is 
registered on the PMD 3D volume.  Subsequently rescale and used this data for 
camera calibrating. The visual input from the 2D camera does not deliver only high 
resolution texture data on 3D volume, but it is also used for object recognition.  

 

 

Figure 4.35 Coordination of SLAM and landmark recognition 

The object detection is an important subfield element of various mobile 
robotic areas. Many tasks can be accomplished by extracting certain image features 
such as edges, color regions, textures and contours. A heuristic algorithm is used to 
find configurations, combinations of those features and specific objects of interest.  
However, it is difficult for artificial landmarks to recognize the features in a complex 
surrounding environment. Moreover heuristics handle the huge variety of instances of 
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the object class. This topic describes algorithms for object detection based on object 
detection Haar-like features. The aims of object detection are developing navigation 
and vision systems for mobile robots applications. The object detection is used to 
detect the artificial landmarks which are on the robot’s path. Mobile robots can move 
autonomously by following the hanging artificial landmarks. In mobile robotic tasks 
we want mobile robots to go to the door way autonomously, while detecting the 
artificial landmarks. The artificial landmarks are any figures or any symbols which 
are established by users. It should be unusual or totally different from the surrounding 
environment. It is probably easy for recognition and learning. 

We attempt to reduce and assist the surrounding sensor which is used in 
mobile robots. Therefore, the CCD camera based on the object detection Haar-like 
features method, is capable of processing images extremely rapid and achieving high 
detection rates. The PMD camera is capable of capturing reliable depth images 
directly in real-time and it is a compact size with an affordable price which makes it 
attractive for versatile applications including surveillance and computer vision. 
Furthermore, the resulting gray scale image from the PMD camera can also be used 
for the basic vision recognition task. For these reasons, PMD is a novel and attractive 
tool for implementing the SLAM. However, the high performance SLAM is not only 
implemented only for a 3D map in real time, but it should also include recognizing 
objects and avoiding obstacles as well as estimating the trajectory simultaneously. 
The prominent output from the PMD camera provides spatial depth measurement 
from every pixel. The high resolution 2D camera is then combined with the PMD 
camera output in order to serve the complicated image processing tasks and support 
the complex machine learning requirements. Nevertheless, searching the objects 
within a complex environment is not an easy task.  The Haar-like Features represent 
one method in which object searching takes place in real-time. This method can 
provide accurate and robust detection of the desired objects. It can be applied to detect 
any features, patterns, shapes and colors which might be present within complex 
environments. Figure 4.35 demonstrates an idea for the coordination of SLAM based 
on artificial landmark recognition. The different pixel resolutions and overlapping 
positions due to the machine setup are also considered in this work.  
 

4.7.1  Rapid object detection using Haar-like features  
Lienhart et al. [83] describes a visual object detection framework which is 

capable of processing images at extremely rapid detection rates and improved by 
Viola et al. [84]. Their method has been used widely for such things as faces, hands 
and body detection. We applied their algorithm to detect the artificial landmark in any 
environment without color needed. By now, their research has been included in the 
OpenCV library. Their algorithm is very powerful and can detect the objects with a 
high speed rate. The steps of the process are, first, a classifier is trained with 
thousands of sample views of a particular object, so called the positive samples and 
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the negative samples. The Negative samples are the images which do not contain the 
interested objects. After a classifier is trained, it will be applied to a region of interest 
in an input image. The classifier output is “1” when that area is likely to show the 
object and “0” if another. To search for the objects in the whole image, one can move 
the search window though the image and check every location using the classifier. 
The classifier can be resized so that it is able to find the objects of interest of different 
sizes which is more efficient than resizing the image itself. They introduced a new 
image representation called the “Integral Image” which allows the features used by 
our detector to be computed very quickly. The second is a learning algorithm based 
on AdaBoost, which selects a small number of critical visual features from a larger set 
and yields extremely efficient classifiers. The third contribution is a method for 
combining increasingly more complex classifiers in a “cascade” which allows 
background regions of the image to be quickly discarded while spending more 
computation on promising object-like regions. Each classifier is the sum of 
rectangular followed by a selected threshold. In each round of boosting one feature is 
selected as the lowest weighted error. An input window is evaluated for every 
classifier of the cascade in which if the classifier returns false, that window evaluation 
is finished and the detector is returns false. If the classifier returns true, the window is 
passed to the next classifier in the cascade. The next classifier is evaluated in the same 
way. If the window passed through every classifier, then that window is respectable 
and the detector returns true. The processing time in windows that look like the 
expected object to evaluate and classify take a longer processing time than the non 
look like objects. The non look like object images are rapidly rejected in the 
beginning of the classification. 

 

 

Figure 4.36 Feature prototypes of simple haar-like features. Black areas have a 
negative, and white areas have positive weights [85] 
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4.7.1.1 Feature detection using integral images 
The learning algorithm principle uses features or raw pixel as input. The main 

reason to use the features instead of raw pixel is to operate much faster. A general 
pool of simple Haar-like features combined with feature selection can increase the 
capability of the learning algorithm. Figure 4.36 (a) shows the basic Haar-like features 
i.e. edge, line, diagonal and center surround features.  
 

 

Figure 4.37 (a) Upright summed area (b) Rotated summed area [83] 

 
A rectangle of pixels with top left corner ሺݔ,  height ݄ and orientation ,ݓ ሻ, widthݕ
ߙ א ሼ0°, 45°ሽ. A rectangle is inside a window and specified by ݎ ൌ ሺݔ, ,ݕ ,ݓ ݄,  .ሻ்ߙ
The summation of pixel is ܲ݅݉ݑܵݔሺݎሻ. The set of used features is  
 

 ߱ଵܲ݅݉ݑܵݔሺݎଵሻ ൅ ߱ଶܲ݅݉ݑܵݔሺݎଶሻ (4.19) 

 
Where the weights ωଵ, ωଶ א R is compensated value of different area size between 
the rectangles ݎଵ and ݎଶ. Rectangle features can compute rapidly, an integral imaged I 
is an intermediate representation for the image and contains the sum of gray scale 
pixel values of image N with height y and width x  
 

ܫ  ൌ ሺݔ, ሻݕ ൌ ෍ ෍ ܰሺݔ,́ ሻݕ́
௬

௬́ୀ଴

௫

௫́ୀ଴

 (4.20) 

 
The integral image can be computed by 
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,ݔሺܫ ሻݕ ൌ ,ݔሺܫ ݕ െ 1ሻ ൅ ݔሺܫ െ 1, ሻݕ ൅ ܰሺݔ, ሻݕ െ ݔሺܫ െ 1, ݕ െ 1ሻ 

,ሺെ1ܫ ሻݕ ൌ ,ݔሺܫ െ1ሻ ൌ ሺെ1,1ሻܫ ൌ 0 
(4.21) 

Then only one scan over the input data is required. This intermediate representation 
,ݔሺܫ ,ݔሻ allows the computation of a rectangle feature value at ሺݕ  ሻ with height andݕ
width ሺ݄, ݎ ሻ. The pixel sum of any upright rectangleݓ ൌ ሺݔ, ,ݕ ,ݓ ݄, 0ሻ can be 
determined by using four references, see figure Figure 4.37(a). 
 

ሻݎሺ݉ݑܵݔ݅ܲ  ൌ ,ݔሺܫ ሻݕ ൅ ݔሺܫ ൅ ,ݓ ݕ ൅ ݄ሻ െ ,ݔሺܫ ݕ ൅ ݄ሻ െ ݔሺܫ ൅ ,ݓ  ሻ (4.22)ݕ

For the computation of the rotated feature, the sum of pixels of the rectangle rotated 
by 45° with the right most corner at ሺݔ,  ሻ and extending till the boundaries of theݕ
image, see Figure 4.37(b).  
 

,ݔ௥ሺܫ  ሻݕ ൌ ෍ ෍ ܰሺݔ,́ ሻݕ́
௫ି|௫́ି௬|

௬́ୀ଴

௫

௫́ୀ଴

 (4.23) 

From equation (4.23) the rotated integral image ܫ௥ can be computed by  
 

 

,ݔ௥ሺܫ ሻݕ ൌ ݔ௥ሺܫ െ 1, ݕ െ 1ሻ ൅ ݔ௥ሺܫ ൅ 1, ݕ െ 1ሻ െ ,ݔ௥ሺܫ ݕ െ 1ሻ
൅ ܰሺݔ, ሻݕ ൅ ܰሺݔ, ݕ െ 1ሻ 

,௥ሺെ1ܫ ሻݕ ൌ ,ݔ௥ሺܫ െ1ሻ ൌ ,ݔ௥ሺܫ െ2ሻ ൌ ,௥ሺെ1ܫ െ1ሻ ൌ ,௥ሺെ1ܫ െ2ሻ ൌ 0 
(4.24) 

The pixel sum of any rotated rectangle ݎ௥ ൌ ሺݔ, ,ݕ ,ݓ ݄, 45°ሻ can be determined by 
 

 
௥ሻݎሺ݉ݑܵݔ݅ܲ ൌ ݔ௥ሺܫ ൅ ݓ െ ݄, ݕ ൅ ݓ ൅ ݄ െ 1ሻ ൅ ,ݔ௥ሺܫ ݕ െ 1ሻ

െ ݔ௥ሺܫ െ ݄, ݕ ൅ ݄ െ 1ሻ െ ݔ௥ሺܫ ൅ ,ݓ ݕ ൅ ݓ െ 1ሻ (4.25) 

 
The features are compositions of rectangles. The computation with several lookups 
and subtractions weighted with the area of the black and white rectangles is required. 
Threshold is automatically determined during a fitting process. The return values 
ሺߙ,  ሻ of the feature are determined. An error of the examples is minimized. Theߚ
examples are given in a set of images that are classified as positive or negative 
samples.  
 



 
 

79 
 

4.7.1.2 Learning classification functions 
An AdaBoost approach is used to select a small set of features and train the 

classifier. In particular, AdaBoost learning approach is used to boost the classification 
performance of a simple learning approach. The key insight is generalization 
performance related to the margin of the examples. AdaBoost achieves large margins 
rapidly, using over 117,000 rectangle features with each image 24ൈ 24 sub window. 
The weak learning algorithm is designed to select the single rectangle feature which 
best separates the positive and negative examples. Each feature allows the weak 
learner to determine the optimal threshold classification function. AdaBoost is a 
method to select a low number of good classification functions, namely "weak 
classifiers", ௝݄ሺݔሻ to form a final "strong classifier" which is a linear combination of 
the weak classifiers. θ୨ is a threshold and ݌௝ a parity indicating if ௝݂ is bigger or less 
than the threshold for a positive classification.  

 
Input: Training example ሺݔ௜, ݅ ,௜ሻݕ ൌ 1, … , ܰ where positive ሺݕ௜ ൌ 1ሻ and 

negative ሺݕ௜ ൌ 0ሻ.  
Initialize weights ݓଵ,௜ ൌ ଵ

ଶ௠
, ଵ

ଶ௟
  where ݉ is number of negatives and ݈ is the 

number of positive examples. 
For ݐ ൌ 1, … , ܶ 

1. Normalize the weights, where ߱௧,௜ is a probability distribution. 
௧ାଵ,௜ݓ                            ൌ ௧ߚ௧,௜ݓ

ଵି௘೔    
2. For each feature, ݆ train a classifier ௝݄ which is restricted to usi a single 

feature. The error is evaluated with respect  
3. to choose the classifier, ݄௧ with the lowest error ߳௧ 
4. Update the weights: 

                    with ݁௜ ൌ ቄ0: ݂݀݁݅݅ݏݏ݈ܽܿ ݕ݈ݐܿ݁ݎݎ݋ܿ ௜ݔ
1: ݁ݏ݅ݓݎ݄݁ݐ݋

    and ߚ௧ ൌ ఢ೟
ଵିఢ೟

 

    
5. The final strong classifier is:  

݄ሺݔሻ ൌ ൝1: ෍ ሻݔ௧݄௧ሺߙ ൒ 0.5 ෍ ௧ߙ

்

௧ୀଵ

்

௧ୀଵ
0: ݁ݏ݅ݓݎ݄݁ݐ݋

 

where ߙ௧ ൌ log ሺ ଵ
ఉ೟

ሻ 

 
Table 4.6 The AdaBoost algorithm for classifier learning 

 

 ௝݄ሺݔሻ ൌ ൜1 ׷ ݂݅ ௝݌ ௝݂ሺݔሻ ൏ ௝ߠ௝݌
0: ݁ݏ݅ݓݎ݄݁ݐ݋

 (4.26) 
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In practice no single feature can perform the classification task with low error. 
Features which are selected in early rounds of the boosting process had error rates 
between 0.1 and 0.3. 
 

4.7.1.3 Cascade of classifiers 
The cascade of classification is increased by the detection performance rate 

and a reduced computation time. The boosted classifiers can enhance the rejected 
negative sub window rate and detect the rate of the positive sub window. Classifiers 
are used to reject the majority of sub windows before doing the next classifiers step. It 
can enhance the low false positive rates.  

 

 

Figure 4.38 Cascade of classifiers with N stages. In each stage, the classifier is trained 
to achieve a hit rate of h and a false alarm rate of f 

The principle of the cascade of classifiers is the generation of the decision tree 
where each stage is trained to detect all objects of interest and reject a certain fraction 
of the non-object patterns. Each stage uses the AdaBoost approach (Table 4.6) for the 
principle training algorithm. AdaBoost is a machine learning algorithm which can 
make a strong classifier based on a large set of weak classifiers by reweighting the 
training samples. Increasing the stage number and the number of weak classifiers is 
needed to achieve the desired false alarm rate at the given hit rate [84] [86].  
 

4.7.2  Experiment description 
In this work a scheme adaptation of the Haar-like features [76] is applied. The 

Haar-like Features are the real-time, accuracy and robustness approach for detecting 
the object. It can be used to detect any features, patterns, shapes, colors even in a 
complex environment. The artificial landmarks contrasts from the environment are 
easy to notice. Some kinds of artificial landmarks which we invent are shown in 
Figure 4.39. They consist of the mathematical shape e.g. square, circle and triangle 
with black or white edges. In research, we used square figures (the first left hand 
side). 
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Figure 4.39 The samples of artificial landmarks 
 

Object detection is an important element of various mobile robotic areas. 
Some tasks can be accomplished by extracting certain image features such as edges, 
color regions, textures, contours etc. However, for artificial landmarks with complex 
surrounding environments, it is tough to find the features. The applications of object 
detection are examples of autonomous moving follow the artificial landmarks. The 
robot can autonomously move by tracking the artificial landmarks which are hanged 
on working path. In industrial works, mobile robots were used to carry stuffs from the 
starting point to the destination point e.g. carry the tool boxes, heavy machines, spare 
parts and garbage.  
 

 

Regarding the real industrial applications, the mini electrical cars and folk lift 
trucks can be used by these applications. They use an electrical energy for the main 
sources. We can use the mobile robot instead of the human control vehicles. The 
collected set of positive examples which is artificial landmarks under different 
viewing conditions and a set of negative examples which are from random cropped 

  
  
  
  
  
  
  

 

Figure 4.40 Non-artificial landmarks samples (7170 negative samples) 

  

  

  

  

  

  

  
Figure 4.41 Artificial landmarks samples ( 1500 positive samples) 
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image regions and do not contain the artificial landmarks. To yield the lower false 
rates, we successively collected misdetections from an image which does not contain 
the landmark into the negative sample set. The negative set has to be much more than 
the positive set in order to keep the false positive rate. All training examples had the 
size 20x20 and were normalized to have zero mean a standard deviation of 1.0. The 
cascade of classifiers has to collect the negative and positive samples [87]. The 
negative samples are the images that must not contain any object inside for detecting 
requirement and artificial landmark. In this experiment, the 7170 negative samples are 
used (see Figure 4.40). The positive samples are the images that must contain the 
artificial landmark. There are 1500 positive samples which were used in the 
experiments. Figure 4.41 shows the positive samples using the classifiers. This work 
uses the Intel Pentium 4, 3 GHz, 3GB RAM for training. The training times are 
approximately 80 hours.  
 
4.8 Conclusion 
 

This chapter explains the principle of Euler angles that is an important theory 
in order to understand the behavior of three dimensional locomotion. Euler angles 
explain the fundamental of rotation in each axis row, pitch, yaw as well as rotation in 
the three axis at the same time. The 3 ൈ 3 matrices output describes can be left out the 
degree of freedom of both cameras and objects. Fundamentals of PMD cameras which 
are used for the main capturing sensor was described. The principle of the light source 
and the PMD chip were explained in order to clearly comprehend the PMD camera 
processing. Several types of PMD cameras were explained and the overall 
characteristics were concluded. The pros and cons between the PMD camera and 
other candidate sensors (laser scanner, range finder, sonar, vision) were compared. 
The PMD camera was the best sensor in terms of fast data volume capturing rate and 
precise data providing. However, the main cons are low resolution and effected by 
reflecting surfaces. The idea of the combination of the PMD and CCD camera was 
then proposed. In addition, median filtering was implemented in order to eliminate 
pepper-salt noise which is an unpredictable occurrence from the PMD camera 
capturing because the scenario in which the robot moves is very varied. The median 
filtering could eliminate the outliner noises from the grouping data. However, the 
noise and low resolution of the PMD camera is still the expression. The idea of fusion 
high resolution to PMD’s depth data then was proposed in this chapter as well.  

First of all, the calibration process has to be handled in order to get the 
intrinsic/extrinsic parameter of both cameras. Camera parameters are used to find out 
the relation between CCD and PMD cameras. Output from the relative matrix is used 
to optimize the position of RGB frame and the depth frame. The depth frame is fixed 
and the RGB frame projects to the depth frame with the calibration matrix from the 
calibration output. The MATLAB calibration toolbox is used in this work.  
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To enhance the performance of mobile robot applications, the object detection 
is included in these works. High resolution RGB data is used to sort out the object 
detection. When objects are detected, we get to know the coordinate from the objects 
to the camera from the PMD data because both images have already been registered. 
Eventually, the object detection in 2D and 3D were shown in the experiments. 
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Chapter 5  
 
 
 
Simultaneous Localization and Mapping, 
SLAM 

 
In Chapter1, the Simultaneous Localization and Mapping (SLAM) was 

previewed. This chapter again presents in depth the technique of SLAM and considers 
the three dimensional mapping problems. As a simple mobile robot behavior, all parts 
have to cooperate with each other perfectly. The set of robot wheels is connected to 
motors, microcontroller, computer, cameras, actuators and sensors for controlling the 
locomotion of the robot. The sensor for controlling the robot moves properly, and the 
image for the camera is used remotely by an operator to map inaccessible places. The 
camera provides the visual information for the operator to understand what the 
surrounding objects are, and how the robots can recognize them. Determining the 
locating of objects in an unknown environment and meanwhile locating the robot 
position related to these objects, is an example of SLAM. The aims of SLAM are to 
let robots make the maps without any previous map information or human assistance 
whatsoever. Maps could be made in areas, which are dangerous or inaccessible to 
humans such as deep-sea, mine, cave and unstable structures. 

Concerning the development of the SLAM, we will first of all examine the 
localization and mapping individually to better understand how and why we should 
find a simultaneous solution. If a solution to the SLAM problem could be found, it 
would open the door for innumerable mapping possibilities where human assistance is 
cumbersome or impossible. A solution to SLAM should obviate outside localization 
methods like GPS or man-made beacons. It makes robot navigation possible in places 
like damaged (or undamaged) space stations and other planets. Even in the locations 
where GPS or beacons are available, a solution to the SLAM problem would be 
invaluable. Currently GPS is only accurate to within about one half of a meter, which 
is often more than enough to be the difference between successful mapping and 
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getting stuck. Placing man-made beacons is expensive in terms of time and money. In 
situations where beacons are an option, simply mapping by hand is almost always 
more practical. 
 

Figure 5.1 Principle of robot locomotion 
 

Figure 5.1 shows a principle of how to calculate the present position of the 
robot. Where ௡ܲ is the present position with the original ݔ௡,  ௡ are startingߠ ௡ andݕ
coordinates.  ௡ܲାଵ is the next position with accumulative distance from the previous 
position. ܯ௣ and ߠ௡ are two main parameters to change the robot position. ܯ௣ is the 
vector from the previous position to the present position. ߠ௡ is the steering angle 
related to the previous position to the present position as well. But the real 
experiments of the triangle principle cannot be used accurately because slipping 
between the robot wheel and ground, the complex environment, mechanical errors as 
well as the real experiment is a three dimensional system. The considering of the x 
and y axis only is not sufficient, the z axis has to be included in the conditions. Biber 
et al. [88] presented a method for the n scan matching technique that is built upon 
existing pairwise scan matching algorithms. They presented a theoretical motivation 
and showed a basic solution to include n scan matching into the SLAM technique. 
Zhao et al. [89] used two 2D laser range finders for acquiring 3D data. One laser 
scanner is mounted horizontally and another vertically. The latter one grabs a vertical 
scan line, which is transformed into 3D points based on the current robot pose. Since 
the vertical scanner is not able to scan sides of objects, Zhao et al. used two 
additional, vertically mounted 2D scanners, shifted by 45 to reduce occlusions  
 

5.1 The principle of Simultaneous Localization And 
Mapping, SLAM 

 
One of the major problems to develop the SLAM is the accumulation of the 

pose error. The accumulation exists because an error in localization has a universal 
effect on the perceived location of all features. Understanding and utilizing the 
relationship among errors in feature locations and robot pose is at the core of SLAM 
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research. It is the major motivation behind solving localization and mapping 
concurrently. The SLAM is a technique to use autonomous mobile robots to create a 
map within an unknown environment without a priori knowledge, or update a map 
within a known environment from a given priori map to keep track of their current 
location, whether the robot has the priori map or generates the map itself. The final 
maps are used to determine the localization in an environment. Maps hence support 
the assessment of the actual location as obtained by means of navigation.  

The precision of any locating steps supports a locally relevant map. That 
improves the assessment of the real location. Some researchers have defined the 
SLAM as a chicken or egg problem, which one came first. Concerning the SLAM 
problem, the map or robot localization should come first. An unbiased map is needed 
for the localization; meanwhile an accurate pose estimate is needed to build that map 
as well. For the iteration of the measured distance, the direction travelled in has an 
effect to inherent imprecision and accumulates the sensor error. Thus, every feature 
that has been located in the map will contain corresponding errors. There are various 
techniques to compensate errors such as Kalman filters, particle filters and scan 
matching of range data. The SLAM is therefore defined as the problem of building a 
model leading to a new map or repetitively improving an existing map while 
localizing the robot within that map at the same time. In practice, the answers to the 
two characteristic questions cannot be delivered independently of each other. Before a 

 

Figure 5.2 Principle of mapping 
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robot can contribute to answer the question of what the environment looks like given 
a set of observations, it needs to know, e.g., when a robot starts to scan features; it is 
capable of estimation the distance between the feature and itself as well as the 
direction of the feature. The distance can be estimated in a number of ways. If a 
feature is of known physical dimensions, the perceived size of the feature can indicate 
the distance. Another method of estimating the depth is to use multiple cameras and to 
employ stereo vision techniques to triangulate the distance. The distance estimation, 
like the feature tracking, is a nontrivial problem, which resides outside the scope of 
this project. In a simple case, the pose is a vector containing the x and y coordinates 
of the robot along with the orientation. In reality, the pose of the vehicle can be more 
complicated.  

Furthermore, because we wanted to perform the visual odometry in city 
streets, flat terrains as well as on motorways where buildings or the 3D structure are 
not always present, we chose to estimate the motion of the vehicle by tracking the 
ground plane. 

 

 
(a) (b) 

Figure 5.3 Autonomous robot tasks   
 

Figure 5.3 expresses the autonomous robot tasks. The robot is standing in a 
corridor with the interested objects. The detected objects are, for example, chairs, 
tables, artificial landmarks and human beings. The robot starts from the starting point, 
and moves autonomously along the doorway. If the environment has obstructing 
objects, how does the mobile robot decides whether the object is the obstruction or the 
interested object? In the experiments, the mobile robot considers the obstruction as 
first priority. Otherwise, the mobile robot probably cashes into obstruction, and 
damages itself. Later, the robot decides what the interesting objects are, and then the 
robot must react early enough to calculate all objects in the environment. In the 
following section, the navigation technique which is integrated into the object 
detection algorithm will be proposed. The navigation technique predicts the future 
motions, avoids the obstruction, and detects the interesting objects. 
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5.2 Problem definitions 
 

One general problem of mobile robot exploration in an unknown environment 
is to build the world model or mapping by using the range data. The out coming range 
data could use the reference distance from the robot itself to the surrounding 
environment in order to build the model. The easiest way to build the world model is 
to correct every moving step. The presented data is combined with the previous data 
continuously, thus the world model can be easily aligned. By merging many such 
scans taken at different locations, a more complete description of the world can be 
obtained. In order to integrate all sensor data, it is essential to find the replacing 
aligning data formulation. Moreover, the error of each scanning data is accumulated 
in the raw data that trends the data to the wrong direction. The spatial relationships are 
derived from the matching pair wise scan data. When each frame of sensor data is 
obtained, it is aligned to a previous frame to a cumulative global model. Figure 5.4 (a) 
shows the one scanning data from the range sensor in the robot, e.g., the laser range 
scanner, the sonar, the PMD and stereo camera. Figure 5.4 (b) shows the multi 
scanning data. The figure shows the ideal scanning data being received because each 
scanning data can be aligned continuously. The major problem of this approach is that 
the resulting world model may eventually become inconsistent as different parts of the 
model are updated independently.  

 

(a) (b) 
Figure 5.4 (a) One scanning data from range sensor 

                   (b) Multi scanning data from range sensor 
 

For the simulation example in Figure 5.5, it is assumed that the robot starts at 
position 1, 2,…,n to the destination in the close loop area. The robot uses 14 scanning 
times along the way. But ideally Figure 5.5 (a) can occur, if we have a very accurate 
sensor, and there is no slip between the ground and the wheel, as well as no obstacles 
in the way. If obstacles are laid in the way, basically the mobile robot has to avoid 
them because the robot cannot align the trajectory. The output then comes out as 
shown in Figure 5.5 (b), this figure shows the target alignment based on a network of 
relative pose constraints. The original posts are represented in the solid line and the 
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dash line shows the new suitable trajectory that will provide the new pose constraints. 
The world model adjusts the new trajectory line. Spatial relations between local 
frames are derived from matching pairs of scanning measurement.  
 

(a) (b) 
Figure 5.5 An example of consistently aligning a set of simulated scans. 
(a) The original scans badly misaligned due to accumulated pose error 

(b)  Result of aligning these scans based on a network of relative pose constraints 

The alignment methods have two estimates, i.e. local and global. Local 
estimation is the fundamental estimate between the neighbors pairwise. It eliminates 
the fundamental error and registers the scan pair which constrains the limited range of 
scanning. The global estimation is a network of relative pose estimation, which 
calculates the overall relation from every pose data. However, the error may occur 
from a slip between the floor and robot wheel. For example, the processor commands 
the robot wheel meanwhile the encoder reads the feedback data for counting the 
distance of the robot. In practice, the robot should operate in the close loop area, but if 
the floor is very slippery, the encoder data, which is sent to the processor, is wrong 
and that affects the trajectory like a zigzag wave, and this is unacceptable. This is 
unacceptable. In Figure 5.5 (a), the constraints are indicated by the line connecting 
pair of poses. Figure 5.5 (b) generates the world model from using sensors only, 
which is usually inadequate for determining the relative scan poses because of the 
accumulating error. 
 

5.2.1  Lu and Milios Global consistent alignment approach 
The classical globally consistent range scan alignment was presented by Lu 

and Milios, 1997 [90]. Their method was very powerful to align the n-scanning 
matching for two dimension data sets. The phenomenal aspect of the exploration is 
that the robot scans a horizontal locomotion from a single robot, yaw angle. The range 
scan represents a partial view of the environment. It is assumed that the robot travels 
along a path from position ݔଵ, ,ଶݔ … ,  ௜ , the robot captures theݔ ௡. At each poseݔ
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surrounding environment. Matching two scanning neighbor data at different poses is 
essential.  
 

Figure 5.6 Robot moving steps 
 
Figure 5.6 considers each robot move from ݔ௡ to ݔ௡ାଵ and the spatial distance 

ቚ݀௜௝ቚ ൌ ቚݔ௜ െ  ௝ቚ. The optimal estimation of all poses to build a consistent map of theݔ

environment can be calculated.  
 

 ቚ݀௜௝ቚ ൌ ቚݔ௜ െ  ௝ቚ (5.1)ݔ

The observation ݀௜௝ could be modeled as ݀௜௝
ᇱ ൌ ݀௜௝ ൅ ∆݀௜௝ where ∆݀௜௝ is a 

random Gaussian error distribution, which mean is zero, and the covariance matrix ܥ௜௝ 

is assumed to be known. Assume that all observation errors are Gaussian and 
independently related. To minimize estimation in the most optimal way, the 
observation is ݀௜௝

ᇱ  by using the Mahalanobis distance. 

 

௜௝ݓ  ൌ ෍ ቀ݀௜௝ െ ݀௜௝
ᇱ ቁ

்
௜௝ܥ

ିଵ ቀ݀௜௝ െ ݀௜௝
ᇱ ቁ

௡

ሺ௜,௝ሻ

 (5.2) 

Consider the simple linear term of the estimation problem. Without any losses of the 
network connection, ݔ௜ െ  ௝ that is assumed to be connected in every pairwise. If theݔ

݀௜௝ is out of range, ܥ௜௝ is assumed zero. Eq (5.2) can be represented as 

 

௜௝ݓ  ൌ ෍ ቀݔ௜ െ ௝ݔ െ ݀௜௝
ᇱ ቁ

்
௜௝ܥ

ିଵ ቀݔ௜ െ ௝ݔ െ ݀௜௝
ᇱ ቁ

௡

ሺ଴ஸ௜ஸ௝ஸ௡ሻ

 (5.3) 

Where ݓ௜௝ is represented as a function of all positions ݔ௡. Represent the measurement 

equation in a matrix form as 
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ܦ  ൌ ܺܪ (5.4) 

 
Where  ܺ  is the nd-dimensional matrices which is the concatenation of  ݔଵ, ,ଶݔ … ,  .௡ݔ
 is the incidence matrix ܪ is the concatenation of all position difference of ݀௜௝ and ܦ

with all entries being 1, -1 or 0.  
 
 ܹ ൌ ሺܦᇱ െ ᇱܦଵሺିܥሻ்ܺܪ െ ሻܺܪ (5.5) 

 
Where ܦᇱ is the concatenation of all the observations ݀௜௝

ᇱ  and ܥ is the covariance of 

  ᇱ. Then the solution for ܺ which minimizes ܹ is given byܦ
 

 ܺ ൌ ൫ିܥ்ܪଵܪ൯ᇣᇧᇧᇤᇧᇧᇥ
ିଵ

ீ

ᇱᇣᇧᇧᇤᇧᇧᇥܦଵିܥ்ܪ
஻

 (5.6) 

The covariance of ܺ is 
 
௑ܥ  ൌ ሺିܥ்ܪଵܪሻିଵ (5.7) 

Denote matrix ܩ ൌ ܤ is defined, and ܪଵିܥ்ܪ ൌ  ᇱ simplifies the notation ofܦଵିܥ்ܪ
the solution. ܩ consists of  
 

 
௜௝ܩ ൌ ෍ ௜,௝ܥ

ିଵ , ሺ݅ ൌ ݆ሻ
௡

௝ୀ଴

 

௜௝ܩ                            ൌ െܥ௜,௝
ିଵ , ሺ݅ ് ݆ሻ 

(5.8) 

The entries of ܤ is obtained by 
 

௜ܤ  ൌ ෍ ௜,௝ܥ
ିଵܦᇱ

௡

௝ୀ଴,௝ஷ௜

 (5.9) 

Solving the linear optimal estimation problem (5.9) is equivalent to solve the 
following linear equation system 
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 ܺ ൌ  (5.10) ܤ௫ܥ

 
After solving ܺ, using ܺ is the solution to update the new pose and each 

covariance. By merging each time scan, the complete 3D mapping can be obtained. 
When each frame of the sensor data is obtained, it is aligned to the previous frame or 
to a cumulative global model. The major problem of this approach is that the result of 
the environment model may eventually become inconsistent as different parts of the 
model are updated independently. Moreover, it may be difficult to resolve such 
inconsistency, if the data frames have already been permanently integrated. To be able 
to resolve the inconsistency, it is necessary to maintain the local frames of data 
together with their estimated pose. Each local frame is defined as the collection of 
sensor data measured from a single robot pose. The idea of the approach is to 
maintain all the local frame data. Spatial relations between local frames are derived 
from matching pairs of scans or from odometry measurements. New sensor data are 
matched to the current model of individual object frames. If some objects, which have 
been discovered earlier is observed again, its object frame pose is updated. A scalar 
random variable represents the uncertainty of a three degree of freedom pose. When a 
previously recorded object is detected again, the system only attempts to update the 
pose along the path between the two instances of detecting this object. 
 

5.2.2  Pose estimation 
 

 

(a) (b) 
Figure 5.7 The raw scanning data 

For the scan pose estimation, the mobile robot moves and scans through the 
environment. The estimation of the motion has to be accurate. To understand the 
fundamental concept of algorithm, the simulation has to be implemented. This section 
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shows the simulation output from Lu and Milios’s approach. In the first simulation, it 
is assumed that the robot moves in a close area. The robot travels around a central 
object, and forms a loop enclosing area. The random sensor’s data error is included in 
the supposing robot path. In Figure 5.7 (a) show the raw scanning data where the pose 
of each scan is obtained by the range data. According to the accumulation error of the 
sensor data, the shape of the map seems poor, and is not in alignment. Figure 5.7 (b) 
shows the result after correcting the pose errors and scanning data. The final output 
can obtain a good mapping and alignment.  

 

5.3 Feature tracking and correspondence finding 
 

In the first step for SLAM, it is assumed that the mobile robot moves from the 
first position to another. The correspondence points between two frames have to be 
found in order to merge those frames. The good feature tracking is a feature point 
extracted from an image. The Open Source Computer Vision Libraries (OpenCV) are 
a very famous collection of algorithms for image processing and computer vision. 
Some libraries are used in basic image analysis such as corner detection, canny edge 
detection and non-maxima suppression [91]. The good feature tracking library from 
OpenCV is used to find the correspondence points in image frames. In Figure 5.8, 
green points show the corresponding points between two image frames. In each step 
of generation mapping, the previous and next frames must have the same 
corresponding points; otherwise each step map cannot merge to the large map.   

 

 

Figure 5.8 Corresponding points of two image frames 

5.3.1  The optical flow 
The unpredictable mobile robot locomotion for obstacle avoidance is a 

complex task for generating 3D mapping. In addition, posing the robot, for instance 
turning left, right, going forward, backward and climbing steep inclines is an arduous 
achievement of 3D mapping. In fact, the direction that should merge the frame is very 
important. The optical flow is hence perused to seek the pose estimation of a mobile 
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robot. One of the famous optical flow techniques is the motion template. It was 
proposed by [92] [93]. They proposed effective methods to track the moving object 
using the different edge segmentation from the camera image frame to frame.  
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Figure 5.9 Optical flow motion 

A model of zeppelin airship movement is demonstrated in Figure 5.9. The 
white indication is the current zeppelin position. Coming up of new silhouettes is 
captured in the next frame and overlaid on the white position. Each step of fading 
sequences of silhouettes is recorded, and referred to as the motion history image 
(MHI). The image input of the camera frame should sufficiently contain texture 
information in order to estimate the correspondence points between two frames. It is 
assumed that in Figure 5.9, the first frame is captured at time ݐ and pointሺݔ,  ሻ. Thisݕ
point contains the color intensity, ,ݔሺܫ ,ݕ  ሻ. When the zeppelin changes the position, aݐ
camera captures the second frame at the same time, but the same point is still kept in 
the second frame. The intensity in the present frame is the same as in the previous 
frame.   
 
ݔଶሺܫ  ൅ ,ݔ∆ ݕ ൅ ,ݕ∆ ݐ ൅ ሻݐ∆ ൌ ,ݔଵሺܫ ,ݕ  ሻ (5.11)ݐ

 
Where ݔ,  are the coordinates on x-axis and y-axis, respectively. The Taylor series ݕ
represents the (5.11)  as a summation term. 
 

 
ݔଶሺܫ ൅ ,ݔ∆ ݕ ൅ ,ݕ∆ ݐ ൅ ሻݐ∆

ൌ ,ݔଵሺܫ ,ݕ ሻݐ ൅
ܫ߲
ݔ߲ ݔ∆ ൅

ܫ߲
ݕ߲ ݕ∆ ൅

ܫ߲
ݐ߲ ݐ∆ ൅  ڮ

(5.12) 

 
It is assumed that the higher order terms are very small and can be ignored. Equation 
(5.12) is equal to equation (5.13). 
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ݔଶሺܫ ൅ ,ݔ∆ ݕ ൅ ,ݕ∆ ݐ ൅ ሻݐ∆

ൌ ,ݔଵሺܫ ,ݕ ሻݐ ൅
ܫ߲
ݔ߲ ݔ∆ ൅

ܫ߲
ݕ߲ ݕ∆ ൅

ܫ߲
ݐ߲  ݐ∆

(5.13) 

 
 

ܫ߲
ݔ߲ ݔ∆ ൅

ܫ߲
ݕ߲ ݕ∆ ൅

ܫ߲
ݐ߲ ݐ∆ ൌ 0 

ܫ߲
ݔ߲

ݔ∆
ݐ∆ ൅

ܫ߲
ݕ߲

ݕ∆
ݐ∆ ൅

ܫ߲
ݐ߲

ݐ∆
ݐ∆ ൌ 0 

(5.14) 

 
 

ܫ߲
ݔ߲ ௫ݒ ൅

ܫ߲
ݕ߲ ௬ݒ ൅

ܫ߲
ݐ߲ ൌ 0 (5.15) 

 
Where ݒ௫ ൌ ∆௫

∆௧
 and ݒ௬ ൌ ∆௬

∆௧
 are the image velocity or optical flow at pixel ሺݔ,  ሻ. Theݕ

డூ
డ௫

, డூ
డ௬

 and డூ
డ௧

 are the point intensity gradients. This equation can be rearranged 

concisely. 
 
 
௫ܫ  ൌ

ܫ߲
ݔ߲ , ௬ܫ ൌ

ܫ߲
ݕ߲ , ௧ܫ ൌ

ܫ߲
 (5.16) ݐ߲

 
 

௫ݒ௫ܫ ൅ ௬ݒ௬ܫ ൌ െܫ௧ (5.17) 

 
,ݔis the image velocity at pixel ሺ ݒ  ሻ. Figure 5.10 shows the optical flow output. Theݕ
camera moves from the right to the left side. The arrow length expresses the direction 
of mobile robot locomotion. The directions of optical flow are used to find spatial 
distance for merging the image frames in order to generate SLAM in real time. 

5.3.2  Convex set 
After realizing the direction of the robot, the next issue is how to find the 

overlapping of image frames. It can be noticed from Figure 5.10 that the camera 
moves from the previous position ሺ1௦௧ሻ to the next position ሺ2௡ௗሻ and the last 
positionሺ3௥ௗሻ. Corresponding points still appear on every frame. The frame is used to 
merge and create the map frame. The frame is important to calculate and keep it 
before the robot moved out of range. To determine the map frame, the fixed boundary 

 
position 1 position 2 position 3 

Figure 5.10 Optical flow output 
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of corresponding points is important to be found out. The Quick hull, Graham’s scan, 
Jarvis March and Convex hull are very famous for determining the smallest interested 
convex of clown points. Figure 5.11 demonstrates the steps to find the convex hull. 
Step1: finding the lowest point (L) within all set points. Step2: sorting the set points in 
counterclockwise direction and network for each point. Step3: sorting by calculating 
the relative angle. The orientations of three points ݌,  are the ordering points in ݎ and ݍ
the network. Angles  ׎௣௤ and ׎௣௥ in counterclockwise are determined. The smaller 
angle is a convex vertex. In the third step, it can be seen that the three nonvertex 
points are out of boundary. Figure 5.12 shows the boundary of the corresponding area 
when the camera changes its positions. The green area is the overlapping area, which 
has to keep and register this area by using the matching algorithm, which will be 
presented in the next section.  

 

 
 

prφ

pqφ

step 1௦௧ step 2௡ௗ step 3௥ௗ 
Figure 5.11 Convex hull computation 

 

5.4 Interactive Closest Point (ICP) matching algorithm 
 

The ICP (Iterative Closest Point) algorithm is a method to search the closest of 
three dimensional points when a relative pose estimate is available. The basic concept 
is to capture the closest corresponding points by the calculation transformation and 
rotation matrix. In general, the iterative closest point (ICP) is widely used for the 
registration of 3D clouds. Umeyama et al. [94] proposed to find the similarity 
transformation parameters in m-dimensional space that gives the least mean squared 
error between these point patterns. Wen [95] presented to solve the special absolute 

 
position 1௦௧ position 2௡ௗ position 3௥ௗ 

Figure 5.12 Corresponding area 
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orientation problem, searching a reduced gradient algorithm together with its 
convergence proof and generalizing it to the case with weighted errors, based on the 
classic absolute orientation technique. Surmann et al. [31] [30]  justified an applied 
ICP algorithm to generate mapping based on locally consistent 3D laser range scans. 
The results were excellent for solving the SLAM problem.  
 
5.5 Algorithm overview 
 

The ICP algorithm was proposed by Besl and McKay [96]. They used to 
register two given point sets in a common coordinate system. The output can provide 
the parameter of the rotation and translation matrix. In each interaction step, their 
algorithm selected the closest points as correspondences, and calculated the 
transformation. The basic method to compute the close between two points on any 
geometrics view is to find the Euclidean distance ห݀ห between two points ݌ ൌ

ሺ࢖࢞, ,࢖࢟ ݍ ሻ and࢖ࢠ ൌ ሺࢗ࢞, ,ࢗ࢟ ݍሻ. ቚࢗࢠ െ ቚ݌ ൌ ට൫ࢗ࢞ െ ൯૛࢖࢞ ൅ ൫ࢗ࢟ െ ൯૛࢖࢟ ൅ ሺࢗࢠ െ  ሻ૛. The࢖ࢠ

closest point method mentions in ݊ dimension form. The quaternion based algorithm 
is normally expressed over the single value decomposition, SVD. The SVD is based 
on the cross covariance matrix of two cloud point distributions. The multiple scans 
registration and pose relation are an estimated spatial relation between the two poses, 
which can be derived from matching two range scans. We estimate all the poses by 
solving an optimization problem. Since a robot pose defines the local coordinate 
system of a scan is used, the pose relation between scans can be directly obtained 
from the odometry, which measures the relative movement of the robot. More 
accurate relations between scan poses are derived from aligning pairwise scans of 
points. After aligning two scans, it can record a set of corresponding points on the two 
scans. This correspondence set will form a constraint between the two poses. The 
amount of overlap between two scans is estimated empirically from the spatial extent 
of the matching parts between the two scans. The pose is defined as a three dimension 
vector ሺݔ, ,ݕ  ሻ௧ consisting of 2D robot position. The two types of link between twoߠ
pairs of nodes are defined. Firstly, two poses are very close or on sufficient overlap 
data. It is called a weak cloud pairwise data between the two nodes. Secondly, the two 
pose data is not too close, and has sufficient overlap information. It is called a strong 
cloud pairwise data. For each strong cloud pairwise data, a constraint on the relative 
pose is determined by the set of corresponding points on the two scans. It is assumed 
that the robot starts on the pose ௥ܲ௘௙, and takes one scan ܵ௥௘௙. Afterward, the robot 
moves to the new pose ௡ܲ௘௪ and takes another scan ܵ௡௘௪. The approximation between 
two poses is implemented easily from the odometry information. Unfortunately, the 
providing information is sometimes incorrect due to wheel slippage between the 
robot’s wheels and surface environment. The relative optimization problems of the 

௥ܲ௘௙ and ௡ܲ௘௪ have to be solved. The scanning crowded data represents the contour 
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shape of the passing robot environment. Due to the existence of accumulated sensor 
noise and slippage of the wheel, it may sometimes happen that two scan data cannot 
align suitably. Generally, the adopted scan matching data is used to find the best 
alignment of the overlapping part based on the minimum error. We can estimate the 
matching criterion as the minimization of a distance between the two scans, as the 
function of the rotation and the translation. 

 

Figure 5.13 Robot movement and scan data 

[97] concluded the least-squares rigid motion using SVD which assumed point 
set ݌=ሺ݌௜, … , ,௜ݍሺ=ݍ ௡ሻ and݌ … ,  ௡ሻ are interaction cloud points between two robotݍ
positions, ݅׊ א 1, … , ܰ. Searching rotation ܴ, ,ݐ and translation ߠ∆  between the two ݐ∆
data frames, reference and corresponding clown points are the main problems. The 
aim is to properly estimate the next position, getting an ideal minimum error. 
 

 ݁ ൌ ݉݅݊
࢚,ࡾ

෍ ߱௜ ቛ݌௜ െ ሺܴݍ௜ ൅ ሻቛݐ
ଶ

௡

௜ୀଵ

 (5.18) 

Where ߱௜ ൐ 0 is the weight for each point pair. 

 

݌  െ ݁ ൌ  (5.19) ݍ
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 ݁ ൌ
1
݊ ෍ ቛ݌௜ െ ቀܴݍ௜ ൅ ቁቛݐ

ଶ
௡

௜ୀଵ

 (5.20) 

Where ݁ ൌ ሺ݁ଵ, … , ݁௡ሻ is an error vector. Equation (5.20) is an observation equation, 
which is achieved by least square minimization and ሺR, tሻ represents the optimum 
rotation and translation.  
 

5.5.1  Translation calculation  
First step, calculation the centroid of the cloud points, it is assumed that the ݌ 

and  ݍ are the centroid of two cloud points.  
 

݌  ൌ ଵ
௡

∑ ௜݌
௡
௜ୀଵ ݍ    ,    ൌ ଵ

௡
∑ ௜ݍ

௡
௜ୀଵ  (5.21) 

The movement of all points to the artificial center is accomplished by subtracting with 
each centroid. 
 

 
௜݌

ᇱ ൌ ௜݌ െ  ҧ݌
௜ݍ

ᇱ ൌ ௜ݍ െ  തݍ
(5.22) 

The summation of each point in centroid is zero 
 

 ∑ ௜݌
ᇱ ൌ 0௡

௜ୀଵ    and   ∑ ௜ݍ
ᇱ ൌ 0௡

௜ୀଵ  (5.23) 

The error between two cloud points is 
 

 ݁ ൌ ௜݌
ᇱ െ ௜ݍܴ

ᇱ െ  ᇱ (5.24)ݐ

The summation of the absolute error is  
 

 ݁ ൌ ෍ ቛቂ݌௜
ᇱ െ ௜ݍܴ

ᇱቃ െ ݐ́ ቛ
ଶ

௡

௜ୀଵ

 (5.25) 

 
From Eq.(5.25) we can rearrange the new equation, and minimize an error in order to 
find the ܴ. In order to minimize the error, ݁. The middle term is zero because 
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summation of ∑ ௜݌
′ ൌ 0௡

௜ୀଵ  and ∑ ௜ݍ
′ ൌ 0௡

௜ୀଵ  are zero. Therefore, there are only the first 

and the third term left. The first term does not depend on the parameter ́ݐ. The third 
term must be not less than zero. The total error, which then leaves only the third term 
must be greater than zero. A special solution can be. 
 

 

0 ൑ ᇱݐ െ ௜݌
ᇱ ൅ ௜ݍܴ

ᇱ 

ᇱݐ ൎ ௜݌
ᇱ െ ௜ݍܴ

ᇱ 

(5.26) 

 
The translation between two cloud points then depends on each centroid. We denote 
in terms of simplified equation referring to the artificial centroid.  
 

 ݁ ൌ ௜݌
ᇱ െ ௜ݍܴ

ᇱ (5.27) 

 
If ́ݐ ൌ 0, the total error to be minimized is just 
 
 

෍ ቛ݌௜
ᇱ െ ௜ݍܴ

ᇱቛ
ଶ

௡

௜ୀଵ

 (5.28) 

 
5.5.2  Rotation calculation  
From equation (5.28), we can minimize the error. Where ԡݔԡ ൌ ඥݔ்ݔ. Thus 

 

 

ቛ݌௜
′ െ ௜ݍܴ

′ቛ
ଶ

ൌ ቀ݌௜
′ െ ௜ݍܴ

′ቁ
்

ቀ݌௜
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′ቁ 

ൌ ቂ݌௜
′் െ ௜ݍ

′்்ܴቃ ቂ݌௜
′ െ ௜ݍܴ

′ ቃ 

ൌ ௜݌
௜݌்′

′ െ ௜ݍ
௜݌்்ܴ′

′ െ ௜݌
௜ݍ்ܴ′

′ ൅ ௜ݍ
′் ்ܴถܴ

ூ

௜ݍ
′  

ൌ ௜݌
௜݌்′

′ െ ௜ݍ
௜݌்்ܴ′

′ െ ௜݌
௜ݍ்ܴ′

′ ൅ ௜ݍ
௜ݍ்′

′  

(5.29) 

 
Where the rotation matrix implies ்ܴܴ ൌ ௜ݍ Which .(is the identity matrix ܫ) ,ܫ

௜݌்்ܴ′
′  

is a scalar, for any scalar ܽ ൌ ்ܽ, therefore 
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௜ݍ 
௜݌்்ܴ′

′ ൌ ሺݍ௜
௜݌்்ܴ′

′ሻ் ൌ ௜݌
௜ݍ்ܴ′

′  (5.30) 

 
Equation (5.30) is substituted into equation (5.29) 
 

 ቛ݌௜
′ െ ௜ݍܴ

′ቛ
ଶ

ൌ ௜݌
௜݌்′

′ െ ௜݌2
௜ݍ்ܴ′

′ ൅ ௜ݍ
௜ݍ்′

′   (5.31) 

 
Equation (5.31) is minimized in order to find the rotation term 
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ோ

෍ ߱௜ ቛ݌௜
′ െ ௜ݍܴ

′ቛ
ଶ

௡
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ோ
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௡
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ோ

෍ ߱௜ ሺ݌௜
௜݌்′
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௡

௜ୀଵ
                  ଴
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ோ

෍ ߱௜ ቀ2݌௜
௜ݍ்ܴ′

′ቁ
௡

௜ୀଵ
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ோ

෍ ߱௜ ቀݍ௜
௜ݍ்′

′ቁᇣᇧᇤᇧᇥ
଴

௡

௜ୀଵ

 

= min
ோ

∑ ሺെ2߱௜݌௜
௜ݍ்ܴ

ᇱሻ௡
௜ୀଵ  

(5.32) 

 

Where ∑ ሺ݌௜
ᇱ்݌௜

ᇱሻ௡
௜ୀଵ and ∑ ሺݍ௜

ᇱ்ݍ௜
ᇱሻ௡

௜ୀଵ  are the equation zero because these terms do not 

depend on ܴ. Where ܹ ൌ ݀݅ܽ݃ሺ߱ଵ, … , ߱௡ሻ is a ݊ ൈ ݊ diagonal matrix. ܶ݁ܿܽݎ൫ܣ൯ ൌ
ܽଵଵ ൅ ܽଶଶ ൅ ڮ ൅ ܽ௡௡ ൌ ∑ ܽ௜௜

௡
௜ୀଵ  .  

 

 ෍ሺ߱௜ ௜݌
௜ݍ்ܴ′

′ሻ ൌ ሻݍ்ܴ݌ሺܹ݁ܿܽݎܶ
௡

௜ୀଵ

 (5.33) 

 

Where ܶ݁ܿܽݎ൫ܤܣ൯ ൌ  ൯, thereforeܣܤ൫݁ܿܽݎܶ
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݁ܿܽݎܶ ቀ்ܹܴܲܳቁ ൌ ݁ܿܽݎܶ ൬ቀ்ܹ݌ቁ ቀܴݍቁ൰ 

ൌ  ሻሻ்݌ሻሺܹݍሺሺܴ݁ܿܽݎܶ
(5.34) 

 

From the single value decomposition theory, it is assumed that ܵ ൌ ቂܴሺ்݌ܹݍሻቃ ൌ

ܴሺܷΣVTሻ. The substitution is in equation (5.34). 
 

݁ܿܽݎܶ  ቀ்ܴ݌ܹݍቁ ൌ ൫ܴܷΣVT൯݁ܿܽݎܶ ൌ  ሻ (5.35)்ܷܴܸߑሺ݁ܿܽݎܶ

 
A Σ is a diagonal matrix. All elements is in the diagonal and cannot be less than zero 
ሺߪଵ, ,ଶߪ … , ௡ߪ ൒ 0ሻ. Thus 
 

 

൫ΣM൯݁ܿܽݎܶ

ൌ ݁ܿܽݎܶ ൮൦

ଵߪ 0 ڮ 0
0 ଶߪ ڮ 0
ڭ ڭ ڰ ڭ
0 0 ڮ ௡ߪ

൪ ൦

݉ଵଵ ݉ଵଶ ڮ ݉ଵ௡
݉ଶଵ ݉ଶଶ ڮ ݉ଶ௡

ڭ ڭ ڭ ڭ
݉௡ଵ ݉௡ଶ ڮ ݉௡௡

൪൲ 

ൌ ෍ ௜݉௜௜ߪ

௡

௜ୀଵ

൑ ෍ ௜ߪ

௡

௜ୀଵ

 

(5.36) 

 
It can be notice that ܸ, ܴ and ܷ are orthogonal matrices. If ܯ ൌ ்ܸܴܷ is defined, 
then ܯ also is an orthogonal matrix meaning that ܯ is the identity matrix. 
 

 

ܫ ൌ ܯ ൌ ்ܸܴܷ 
ܸ ൌ ܴܷ 
ܴ ൌ ்ܸܷ 

(5.37) 

 
Thus, the rotation can be calculated from equation (5.37). 
 
 
 

 



 
 

103 
 

5.6 Simulation results 
 

The matching approach is aimed at finding the minimum error of rotation and 
translation matrices between two scans and to search for an appropriate 
transformation matrix. In order to prove the previous suggested method, the 
simulation results using MATLAB are being discussed in this section. The simulation 
presents two crowning points with differential rotation and translation elements. 
Figure 5.14 (a) top, shows the principle of the simulation result. In this simulation, we 
want to prove the ICP technique that is proposed. The two data ሺ݀ܽܽݐଵ,  ଶሻ areܽݐܽ݀
assumed as shown below. Two data consist of twelve random elements in x, y and z 
axis, respectively. Figure 5.14 (a) below, illustrates the rotation of the field of view 
into two dimensions. We can clearly see that the two data are totally different 
translation and rotation. After applying the ICP algorithm, the rotation and translation 
matrices are acquired. The matrices are multiplied to ݀ܽܽݐଵ, then to the new ݀ܽܽݐଶ. 
Figure 5.14 (b) top, shows in the three dimension data that we can see the Euclidean 
distance to be minimized. Figure 5.14 (b) below, shows the rotation of the field of 
view into two dimensions. We can clearly see that the two data come close together. 
The rotation and translation are minimized. The rotation and translation matrices are 
also shown below. The rotation matrix is firstly multiplied to ݀ܽܽݐଵ, after that the 
translation is multiplied to ݀ܽܽݐଶ. Figure 5.14 (c) shows an error of each point. Steam 
plotting is an error value with the difference between ݀ܽܽݐଵ and ݀ܽܽݐଶ. Moreover, 
the error data from each point is shown in the data below as well.  
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(c)  
Figure 5.14 Simulation result (a) Before matching (b) After matching  

(c) Error between two frames 
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In Figure 5.15 (a), the equation ݔ ൌ sinሺݐሻ , ݕ ൌ cos ሺݐሻ and ݖ ൌ ሺݐሻ are 

assumed as the first data set, where ݐ is the various time. The ݀ܽܽݐଵ is multiplied with 
the random rotation matrix ሺܴሻ and the center translation of the mass ሺݐ଴ሻ. The ICP 
algorithm calculates the translation and rotation matrix. The registration data are 
shown in Figure 5.15 (b). Figure 5.16 (a) and (b) show the random data using a 
pseudo-random generated function. The simulation results prove that the translation 
and rotation matrix are found and matched with two different corresponding points. 
The translation and rotation data matrices are also shown. The simulation results give 
the appropriate output, which can be applied in the next step of experiments. Figure 
5.16 shows the spatial distance enhancement before and after the correction of the data. 
Figure 5.17 the blue line, shows the spatial distance between ݀ܽܽݐଵ and ݀ܽܽݐଶ. The 
spatial distances are about 28 units far. The red line represents the spatial distance 
after the correction. The average is nearly zero that means the simulation is going 
towards a suitable result. 
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Figure 5.15 Simulation results1 
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(a) Before matching (b) After matching 

Figure 5.16 Simulation results2 

 
The next section is tested from the real PMD data. One PMD data frame is 

taken (red points), and another frame is taken (blue points) with the differential 
position. The simulation is implemented like the previous experiment. Figure 5.18 (a) 
top, shows the results from the PMD camera. The results are implemented before the 
ICP algorithm. Figure 5.18 (a) bottom, shows the rotation of the field of view in two 
dimensions. We can see that the two frame data are all different in three dimension 
positions. 
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Figure 5.17 Spatial distance enhancement before and after correction 

 
  

(a) (b) 
Figure 5.18 Result from PMD 
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Figure 5.19 Diagram for 3D mapping 

 
Figure 5.18 (b) shows the result after the implementation of ICP algorithm. 

Figure 5.18 (b) top, shows that the data can be registered between two frames. Figure 
5.18 (b) bottom, shows the rotation of the field of view in two dimensions. We can 
see that the two frame data can be merged to very close points. The rotation and 
translation matrices are also shown in the matrices data below. Two matrices are 
relative vectors of each other. For this method, a real-time experiment will be used in 
the next chapter. 

The overall process for generating 3D mapping is shown in Figure 5.19 that is 
separated into 4 blocks. Firstly, capture PMD depth data, the depth data is connected 
to a computer via firewire interface. The depth data has to eliminate the pepper-salt 
noise after getting the data. The enhanced data, which has the low noise, will calculate 
the three dimensional coordinates in the next step. Secondly, RGB data capturing, the 
color data is sent via the USB interface. Scale interpolation is handled. Thirdly, data 
fusion block, the depth and RGB data are fused using the calibration model. In this 
block, the ICP matching approach has been done and has generated the three 
dimensional map. This block is also the main command loop to send the trickle signal 
to the new capturing RGB/PMD data as well as control the mobile robot. Otherwise, 
if the mobile robot does not wait for the command from this block, the mobile robot 
will move randomly, and the mapping outcome cannot be predicted. The detail about 
the fusion is proposed in the previous section. Fourthly, the mobile robot localization 
block, the final block, is the mechanical control part. The synchronization of the 
image processing and mechanical parts has to be appropriately handled. 

 



 
 

108 
 

5.7 Conclusion 
 

This chapter introduced and discussed SLAM techniques. The discussion 
showed that the SLAM technique is one of the most interesting mobile robot 
applications. The SLAM can locate itself while building the map in real time. This 
technique integrates various knowledge e.g., knowledge about control system, image 
processing, machine learning, sensor designs, data fusion, mechanical design as well 
as mathematical optimization. The main problems are to match the scanning data 
between each localization step. The alignment methods have to be estimated. The 
local estimation is the fundamental estimation between the neighbors pairwise. The 
global estimation is a network of relative pose estimation that will process the overall 
data again after the scanning is finished. The searching corresponding points between 
two frames are the first step to find the frame relative. Those corresponding points 
between two frames are used to find the intersection area. The intersection area is 
limited by a convex set technique. The convex set area evaluates the intersection area, 
because when the robot moves far away to the next frame, no intersection. The 
convex set will evaluate the next step frame. The optical flow is used to calculate the 
translation of the image frame. The optical flow uses a principle of comparing the 
pixel intensity. If the pixel intensity changes within the sampling period, the 
calculation of the image movement is feasible. 

The aim of this research is to propose the novel 3D sensor, i.e., the PMD 
camera for mobile robot applications. It is expected to become an outstanding sensor 
within the next decade, especially for mobile robot 3D vision. The classical image 
register, ICP, is proposed in order to combine each robot step. The ICP simulation 
results are shown in order to clearly understand. However, the local registration does 
not suffice to yield 3D mapping reliability. The global registration then is also 
included in this research. 
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Chapter 6  
 
 
 
Experimental Results 

 
In the previous chapters, the concepts of object detection and SLAM are 

presented. To test the capability of those approaches, the real implementation is tested 
and presented in this chapter. The experiments are tested. Firstly, the motion 
estimation is tested by an evaluation between the stereo and PMD camera in order to 
understand the performance of the navigation system. Secondly, the object detection 
in 3D environment is presented. The 2D/3D camera combination approach from 
chapter 4 is used and the results are presented in this chapter. The 3D map buildings 
are presented in several environments, with and without 2D combination. The 2D/3D 
combination output shows the reliability improvement of the three dimension map 
buildings.  

 
6.1 Motion estimation 
 

The first part of this chapter introduces an improvement of the motion 
estimation solution by comparing the Photonic Mixer Device (PMD) and Stereo 
Camera. For the main feature of the stereo camera, the stereo camera has one sensor, 
which can detect and provide the depth data from the object to the camera by using 
the triangle principle of the focus lens between two cameras. The stereo camera 
provides the higher resolution of the 2D image compared to the one from the PMD 
camera, whereas the depth information derived from a PMD is usually far superior to 
the result from a stereo camera. This section proposes a combination scheme for the 
PMD and stereo camera in order to improve the results of the motion estimation. The 
combined setup is placed on a mobile robot and carried on the motion estimation task 
using a provided artificial landmark. Figure 6.1 shows the setting up method for the 
experiment. Both cameras are calibrated, and evaluate the position. It is assumed that 
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stereo camera view. Figure 6.3 (a) illustrates the gray scale and depth data from the 
PMD camera.  

 
Grayscale image Depth data

 

(a) PMD camera 

(b) Stereo camera 

Figure 6.3 Estimate of the artificial landmark 

 

 
Figure 6.4 Result of trajectory curve movement 

At the same position, Figure 6.3 (b) shows the gray scale and the depth data 
from the stereo camera. The experiment simulates a movement of a robot along a half 
circle around the landmark. The relationship between each rotation angle on the 
translation axes of the robot along this movement is illustrated by Figure 6.4. This 
movement provides a complete experiment result of 3D rotation and translation. The 
starting point of the experiment is on point A. Hence, the mobile robot moves to point 
B and C up to point F, respectively. Therefore the relative movement between A and 
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B, A and C up to F has five different positions. The motion between two successive 
positions is calculated by using the landmark as a reference. The hand measurement 
data that tells the true translation and rotation of the mobile robot is used as a 
reference value for evaluating the motion estimation result. The motion estimation 
and the measurement of the robot’s movement from the stereo, the PMD camera and 
the combination of both cameras are illustrated in Figure 6.4.  

An  Analysis for stereo data: can be seen from the experimental result in 
Figure 6.5 (a) that the stereo camera seems to provide a slightly better performance 
due to its higher optical resolution, which helps for locating the exact position of the 
feature points on the landmark. However, Figure 6.5 (b) shows how the stereo camera 
has failed to defeat the PMD in terms of depth measurement due to its limitation of 
the stereoscopic design, which only delivers modest results compared to the excellent 
depth measurement when using the time of flight principle.  

An Analysis for PMD data: The low resolution of the PMD camera does not 
allow the correct detection of the corners of the artificial landmark. A consequence is 
that the robot rotation has a higher error rate compared with the results from the stereo 
camera. However, the depth measurement performs better results for the translation.  

 

(a) (b) 
Figure 6.5 Percentage error of rotation and translation 

 
This section compares the results of the motion estimation by using PMD and 

stereo camera systems. A test environment with an artificial landmark is constructed 
for the experiments. The gray scale images and the depth data from both cameras are 
used as the input. Three motion estimation results are obtained using only the PMD 
camera, stereo camera and the combination of both cameras. The results from the 
stereo, the PMD and the combination of stereo and PMD investigation show that the 
stereo and PMD camera provide results with almost comparable accuracy. The PMD 
camera can thoroughly measure 3D points with better depth accuracy than a stereo 
camera but the low resolution of gray scale image from the PMD camera (64ൈ48 
pixels) is not excellent enough to precisely locate the corners within the artificial 
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landmark. The best results of motion estimation are obtained from using a 
combination of both PMD and stereo, where the advantages of both cameras are 
combined, that is, the precise corner detection from 2D high resolution stereo camera 
and the accurate depth data from the PMD camera. Each figure shows the distance in 
cm as well. A reliable tracking distance from the camera to the artificial landmarks 
ranges from 20cm up to 2.2 m. The limit of 2.2 m is because of the extreme wide-
angle lenses mounted on the camera, so that the objects that are far away have an 
extremely small size in the projected image plane and could not be tracked. 
 
6.2 Objects detection 
 

6.2.1  2D object detection 
The algorithm is tested in real world environment. The experiments of the 

artificial landmark detection are tested in many distances and rotational angles. From 
the experiments presented, the artificial landmarks could be detected even in a 
cluttered environment. Figure 6.6 shows the output of artificial landmark detection. 
Moreover, if we know the dimension of artificial landmarks we can easily calculate 
the distance from the landmarks to the camera using the normal rectangular ratio 
theory. Figure 6.7 shows the measurement distance that can be measured by 
calculating the area of the detecting object.  

 

 

Figure 6.6 Artificial land mark detection output from 2D data 
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No. real measurement (mm) object detection (mm) error (%) 
1 20 23.21 16.05 
2 30 29.79 0.70 
3 45 44.45 1.22 
4 50 52.07 4.14 
5 80 79.84 0.20 
6 100 97.28 2.72 
7 120 120.63 0.50 
8 140 143.20 2.28 
9 160 157.81 1.36 

10 215 215.54 0.25 

Table 6.1 Different distance between real measurement and object detection 
 

     
Figure 6.7 Distance measurement 

 
6.2.2  3D object detection 
The next experiment is designed to detect objection in 3D environments. In 

chapter 4 the calibration approach between the CCD and the PMD camera is 
described. After 2D and 3D data are registered, the coordinates of both pixels are 
registered. It can be assumed that each pixel of the CCD and PMD camera have the 
same coordinate. The object detection technique acquired from the CCD camera is 
transferred to the 3D coordinate. 

A proper distance calibration is absolutely necessary due to the algorithm in 
dependence on an accurate geometric reconstruction. In Figure 6.8, the acquisition of 
an artificial landmark scenario is illustrated. The artificial landmark is detected in a 
3D environment that can be extended to the future three dimensional mapping in real 
time. Figure 6.9 shows one application of moving object detection from 3D data. The 
artificial landmark is stuck behind the human being. The mobile robot can run 
automatically following the moving human being. This application can be applied in a 
supermarket. A cart can follow a human being who is shopping, or an incapacitated 
person who cannot move the cart by himself.  
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Figure 6.8 3D artificial landmark detection 

 

 
Figure 6.9 Following the moving objects 

 
6.3 Off line 3D mapping operation 
 

To understand the 3D mapping, the 3D mapping off-line operation is tested. 
The PMD camera, which is used in the experiment, is the 3k-S model with the 
resolution of 64× 48 pixels. The horizontal field of view (FOV) is approximately 
10.0° and the vertical 12.5°. The 2D camera has a resolution of 640 × 480 pixels, 45° 
and 34° are the values of the horizontal and vertical FOV.  
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(a) 2D image (b) gray scale PMD (c) combination 
Figure 6.10 One snap shot for 3D mapping 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.11 Off-line 3D mapping and object detection 

 
The different FOV and mounting position between both cameras impact on the 

overlap between the output frames. Figure 6.10 shows the one snap shot used to 
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generate 3D mapping of differential field of view from PMD and 2D cameras [100]. 
Figure 6.10 (a) is the field of view of 2D image. (b) is the depth data (shown in gray 
scale) from the PMD camera. (c) is the combination data from 2D/3D camera. One 
snap shot in (a) and (b) expresses that the field of view of both camera is really 
different. Thus, the calibration model is essential. The off-line testing is tested by snap 
data shot to shot. The rotation angle is known, which means that the overlapping of 
each frames is too small. The matching approach then could generate very precise 3D 
mapping. Figure 6.11 shows the 3D map which is approximately 7 meters long. Not 
only depth volume is shown, but also the scenario contour is shown. The scenario (left 
to right) consists of a cabinet, door, artificial landmark, computer monitor and cabinet 
again. This data can be applied to mobile robot intelligent locomotion and the user 
also knows what those certain scenarios are. Furthermore, the real-time object 
detection is implemented in the experiment. In Figure 6.11 (c), we can see the red 
square that is in the position of an artificial landmark, which is detected. 

 
6.4 Real time operation 
 

6.4.1  Mapping without the combination of 2D/3D cameras 
This section shows the real time operation of 3D mapping without the 

combination with the 2D camera [101]. Figure 6.12 demonstrates the testing when the 
camera position (translation) is fixed, but the camera rotates around the room 180 
degree. The 3D map output can show the dimension of the closed room, but users 
probably do not understand the detail of this scenario. Actually, this output is 
sufficient for autonomous mobile robot navigation. Figure 6.13 shows another 
environment on the indoor corridor. The output could also show the map of mobile 
robot trajectory. Nevertheless, the qualities of the map output are not precise like the 
off-line operation because the robot movement speed and mapping approach have to 
be related. The synchronization is then necessary for providing the high quality 
output.          

 

Figure 6.12 Closed room 
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Figure 6.13 3D mapping at the corridor 

6.4.2  Mapping with the combination of 2D/3D cameras 
Figure 6.14 shows the experiment in the parallelogram closed room. The testing fixed 
the position (translation) of the camera but rotated the camera 360 degrees clockwise. 
It can be seen that the shape of the closed room is shown. However, the top area of 3D 
map image shows the shape of the room is distorted because that area has windows 
and is a reflecting area. The sunshine from outside comes into the room and that 
affects the PMD depth data. This testing explains that the PMD camera still has a 
problem with the outdoor environment. The closely wavelength of PMD led source 
and sunshine is directly affected to the PMD depth data. Thus, testing should avoid 
strong sunshine areas. Thus, if we use the PMD camera with very strong sunshine, the 
PMD depth data is affected.  Therefore, that recommends that the PMD camera be 
used only for indoor applications. Figure 6.15 shows testing in the same scenario 
again, but the windows are covered by a curtain. The sunshine could not come into 
the room, but the influence of light is still seen. The experiment shows that the 
influence of light has not much effect on the quality of PMD depth data. We can see 
that the shape of the room looks better. The size of the room is around 7ൈ10 meters. 
The expanded red squares show the original image from 2D camera compare with the 
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3D scenario. However the 3D scenario can show the dimension of parallelogram 
closed room, even through the outliner noise is still occur.      
 

 
(a) (b) 

Figure 6.14 The open room with strongly sunshine 

 
The next section shows the testing in order to generate the three dimensional 

mapping by combination of 2D and 3D cameras. The output is described in detail and 
gives the user more understanding of the 3D environment in detail, instead of using 
only the PMD camera. Figure 6.16 closed-up in a short distance in the map along the 
90 degree corner around 10 meters. We can see the texture of environment and the 
detail of that scenario. Figure 6.17 show the testing on along the distance while the 
mobile robot moves in the closed loop indoor corridor. Figure 6.18 shows the 
schematic diagram of the tested environment. Figure 6.19 shows the output from 
testing. The 3D mapping shows the dimension of environment 25ൈ20 meters with 
5.30% and 5.00% error compare with the schematic diagram. 

 
(a) (b) 

Figure 6.15 The parallelogram closed room obtained during rotating the camera 360 
degree clockwise
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Figure 6.16 Closed-up short distance testing at the 90 degree corner 

 
Figure 6.17 First corridor scenario and a close-up view of the 3D map 

 
Figure 6.18 The schematic diagram of tested corridor dimension 26.40 x 21.00 meter 

Camera 
unit
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Figure 6.19 Second corridor obtained during the mobile robot moves along the indoor 
closed scenario 

 
6.5 Conclusion 
 

This chapter describes the evaluation of motion estimation, the output of the 
3D mapping, the combination of 2D/3D mapping, and the object detection results. 
The stereo camera is a well-know inactive 3D sensor. It is used for the evaluation of 
the motion estimation. The results show that the translation result from the PMD 
camera is better, but that the stereo camera rotation result is an advantage. Eventually, 
the combination sensor is the best solution for using those sensors in the motion 
estimation tasks. The object detection approach can detect the artificial landmark in 
the 3D environment real time. The results are satisfactory and can be applied in future 
variety applications. One lacking of the PMD output is the small field of view which 
is the reason that the map can be generated on one side of the robot only. The new 
PMD camera model, which has a bigger field of view can enhance the quality of the 
output. Alternatively, the construction of the mechanical rotating part to rotate a 
camera from 0°-180° can solve this problem but the speed of robot movement may be 
decreased. Another solution is using two cameras. To equip a camera point to the left 
and right hand side, thus the mobile robot can move at the same speed while 
generating the 3D mapping in real time.  
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Chapter 7  
 
 
 
Conclusions 
 
7.1 Conclusions and summaries 
 

This thesis presents the autonomous navigation system by modeling the small 
indoor mobile robot. One of the interesting problems of mobile robot applications is 
the map building to detect the interested objects in any environment. The car-like 
robot model is used in the experiments because it could locate smoothly and it was 
easy to control the steering angles. Furthermore, the speed control is flexible for 
obstacle avoidance behavior. The main embedded computer is powerful enough to 
process the image frame from the 3D sensors. The servo motors are used to steer the 
front wheel, and the DC motor is the main power source to drive the robot. All sensor 
data are calculated in the 16 bit microcontroller. The 3D magnetometer is also 
equipped for measuring the rotating 3D axis. Several sensors are investigated for 
designing, which sensors are suitable to acquire the depth information from scenario. 
The PMD has the capability to capture the real-time depth data in matrix frame data. 

This thesis aims to propose and focus on the new 3D depth sensors, PMD 
camera, which is still new in the mobile robot application communities. In addition, 
the PMD camera itself has pros and cons in its ability to capture the 3D data. The fast 
data frame rate is excellent for detecting the moving objects. However, with non-
moving objects, it is normally difficult to distinguish what the objects are. The 
solution to this problem is the high resolution 2D, CCD camera, employing the PMD 
for depth data. The output result from the combination is the depth data and contour 
information of the 3D environment. The high resolution from the 2D camera is used 
for detecting the objects in the clutter area or non-moving objects. The Haar-like 
features are also studied. This approach has a very high accuracy and performance, as 
well as a fast tracking rate. We apply the Haar-like feature technique to detect the 



 
 

123 
 

artificial landmarks that are hung in the environment. The artificial landmarks are 
assumed to be any object which users want to detect. From this task, the mobile robot 
can detect the interesting objects. If we attach the artificial landmark to a human being 
(back or leg), it can be applied in a way that the mobile robot interactive movement 
follows the humans or moving objects. The main interests of this thesis are not only to 
build the autonomous mobile robot, but also to present the application to build the 
map of mobile robot trajectory. The main problem of high quality output is the image 
processing time. The detecting distance sensor and noises directly affect the 
processing time of the system. If the detecting distance is too short, the mobile robot 
is often required to update the new distance. If the sensor is affected by the ambient 
environment, noise occurs. The noise filter is then required to reduce the outliner 
points. The median filter is a well-known approach to reduce the 3D outliner point. It 
is used for the principle of the convolution window with a constant coefficient factor 
to reduce the salt-pepper noise from the 3D sensor data. The main effort put into this 
research is the integration of the image processing time and the robot locomotion. The 
robot speed and the map building have to match in order to create the high quality 
three dimensional map.   

Eventually, the mobile robot, MERLIN is able to avoid the unknown obstacles 
and escape from unpredictable objects. It can also be controlled with the joystick 
interface from the user work station via wireless RS232 module. However, because of 
the distance limitation from the PMD camera, the MERLIN can operate at 
approximately 0.5 meter/second. In the final experiment, the 3D mapping and object 
detection approaches are shown. The system demonstrates that the objects could be 
detected in the 3D scenario, even though they are in a clutter environment. The 
experiment shows that the system is robust and efficient within the real unexpected 
scenario.   
 
7.2 Future works 
 

The works in this thesis are intended to demonstrate the car-like autonomous 
mobile robot applications and the 3D map building. Some parts of this work can be 
improved upon for future work.   

The performance of the system is focusing on the new 3D sensor, PMD 
camera. Nowadays, the technology of the PMD camera is improving step by step. The 
newest model has a frame rate of 40 fps with 200 ൈ 200 pixels, field of view 40° ൈ
40°. This can increase the 3D mapping versatility. Moreover, the field of view of the 
PMD camera we use is approximately 10.0° horizontal and 12.5° vertical. This field 
of view is rather small for covering all mobile robot application. The camera field of 
view can be enhanced by rotating the camera from 0°- 180°. Moreover, the further 
suggestions can improve by following.   
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(a) Rotate the camera or use two cameras (b) Increasing the field of view 

Figure 7.1 Enhancement of field of view 

• The mobile robot hardware can be improved for more performance by 
including the increment of the number of sensors, e.g., the inferred on robot rear, left-
right side, energy checking system, increased high precise encoder.    
• For the co-operative multi robot operation; the speed of map building can be 
increased by using the multi robots co-operation. If the system has several robots, the 
work will independent and send the information to the same map server. The shared 
data can improve the speed of map building when the map covers a large area.  
• For the outdoor environment, the grounding robot and flying Zeppelin are in 
the plans for operation. The co-operation between multi distributed mobile robots is 
performed in order to generate the real-time outdoor 3D mapping. The mobile robots 
are separated in two groups, i.e., flying airship and ground based mobile robots. The 
flying airship predictably investigates the overall terrain from the top view. The 
information of the terrain, i.e., flat, roughly, barbed wire as well as dead end is 
transferred to the ground based mobile robots. The 3D mapping then is built 
efficiently and faster than with only ground based mobile robots. Therefore, the flying 
airship solves one problem by making ground based mobile robots more suitable for 
all types of terrains. 

It would be of interest to test the mobile robot in several environments. 
Referring to cooperative mobile robots, the performance of small robot communities 
will hopefully be enhanced in the next step. The speed of exploration should be 
increased, but the mathematical model is also more complex. The mentioned aspects 
will be challenging tasks for future works.       
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Appendix A  
 
Mini Computer MICROSPACE-PC41  
 
Feature  
• Pentium M-738 Standard  
• 512MB Memory  
• 80GB disk  
• DVD/CDRW Drive  
• 5x USB V2.0  
• LAN-Port A • 2x IEEE1394  
• LPT and COM1  
• DirectX 9, 64MB video Memory, VGA, DVI, TV In/Out  
• MiniPCI connector  
• Wake up from LAN and Boot over LAN (RPL/PXE)  
• Fanless operating temperature +5°C to +50°C  
• Small Dimensions: 159 x 245 x 66mm  
• MPEG2 Encoder  
 
Ordering Information Description  

Item Codes Part# Description The MICROSPACE PC normally comes 
equipped with a hard disk, memory, video, USB 
ports, LAN ports and has been factory tested to 
assure functionality. Each model has a unique 
feature incorporated to differentiate it from the 
other models. The unit can come pre-configured 
with the operating system and drivers in- stalled. 
The MICROSPACE PC41 may be installed 
horizontally or vertically as well as mounted in a 
vehicle - it is very versatile. Its Remove 
DVD/CDRW compact size makes the computer 
easy to install in places where limited space is 
available. The MICROSPACE PC also works well 
in extremely dusty environments, since no dust 
particles are drawn in (fan-less design) as it is 
protected by the book size aluminum case. It is 
designed for maintenance free long-term operating 
in a rugged environment. These are the special 
features of the MICROSPACE PC which make it 
the smallest, quietest PC we know of in the market 
with this much processing power. Each 
MICROSPACE PC model is equipped with 
unique features and a wide range of options. 
Please see backside for details and contact   

Microspace-PC41 
 

812470 For MPEG2 Video-streaming 
 

Options    

Wireless LAN  
 
1GB  
 
DVDRW  
 
DVD/CDRW  
 
CF upgrade  
 
Celeron-M300  
 
Celeron-M373  
 
Pentium-M745  
 
Pentium-M755  
 
US Power Cable  
 
Active cooler  
 
MPC-AC-cooler  
 

813087 
 

807363 
 

807371 
 

807376 
 

807373 
 

807356  
 

807357  
 

807358  
 

807358 
 

100-9639 
 

814190  
 

814195 
 

WLAN (must be ordered with unit)  
 
Upgrade to 1GB DDR memory  
 
Upgrade to DVDRW  
 
Remove DVD/CDRW 
 
Compact Flash TypeII 
 
 Replace CPU with CeleronM300 
 
 Replace CPU with CeleronM373  
 
Replace CPU with Pentium M745  
 
Replace CPU with Pentium M755**  
 
US Power Cable  
 
USB 5VDC fan  
 
Mechanical interface to a vehicle 
A/C 
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Appendix B  
 
3DM Magnetometer 
 

The 3DM is three magnetometers and 
accelerometers to calculate pitch, roll and yaw. We 
use the magnetic compass from MicroStrain. The 
three angles are relative to the earth’s magnetic and 
gravitational field. The output is capable of measuring 
angles from 0-360 degrees on yaw, 0-360 degrees on 
pitch and -70-+70 degrees on roll. It calculated the 
yaw angle using the magnetic field from the earth 
and compensates the errors using the 
accelerometers. The data is sent via serial 
communication (COM Port) with a board rate of 9600 
bit/sec using the VC++ to receive the raw data. The 
3DM is a three magnetic compass using magnetometers and accelerometers to 
calculate pitch, roll and yaw angles. The three orientation angles are provided via 
serial RS232 or RS485. The device is capable of detecting three orientation angles as 
illustrated in table B. 

 
Angle Degree 
Yaw 0 – 360 
Pitch 0 – 360 
Roll -70 - +70 

Table B 3DM magnetic specification 
 

The 3DM is sensitive to magnetic field and electromagnetic compatibility 
(EMC), thus mounting is required to avoid EMC sources such as chassis, motors as 
well as batteries. The mounting position is then made of aluminum approximately 20 
cm higher than the robot body. The source code below shows the fundamental 
program to read the three angles via serial RS-232 port by using the Visual C++.  The 
table below shows an example reading the data source code via the serial RS-232 
port, (COM1). The absolute roll, pitch and yaw can be read in real time.   

 
 
 
 

0-360° 
Yaw

0-360°
Pitch

-70°-+70° 
Roll
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using namespace std; 
 
FILE *stream; 
DCB dcb = {0}; 
HANDLE hComm; 
BOOL fSuccess, fSuccess2; 
unsigned char buffer2, buffer3[14]; 
 
 bool write_status; 
        unsigned char szBuffer[14]; 
 DWORD dwRead, dwWritten; 
 OVERLAPPED ovlr = {0}, ovlw = {0}; 
 COMMTIMEOUTS cto; 
  
 char message; 
 char *lpBuffer=&message; 
 
 int roll, pitch, yaw, DeltaYaw; 
  
void initialRS232() 
{ 
    ovlr.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 
    ovlw.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 
 
    DWORD num_bytes_written = 0; 
 
    // configulation COM 1 
    hComm = CreateFile(TEXT( "COM1"), GENERIC_READ | GENERIC_WRITE,  0, NULL, 
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, 0); 
  
 dcb.BaudRate = CBR_9600;   // BaudRate 9600 
 dcb.ByteSize = 8;          // number of byte 
 dcb.StopBits = ONESTOPBIT; // StopBits 
 dcb.Parity   = NOPARITY;    
 
 dcb.DCBlength = sizeof(dcb); 
 GetCommState(hComm, &dcb); 
 SetCommState(hComm, &dcb); 
 
  cto.ReadIntervalTimeout         = 1000; 
  cto.ReadTotalTimeoutConstant    = 1000; 
  cto.ReadTotalTimeoutMultiplier  = 1000; 
  cto.WriteTotalTimeoutConstant   = 1000; 
  cto.WriteTotalTimeoutMultiplier = 1000; 
   
 szBuffer[dwRead] = 0; 
} 
 
void get3DM_Data()  
{ 
    int i; 
       message = 0x74;//'t';        //send 't'= 0x74 to 3DM for 'Poll-Mode' 
 WriteFile(hComm, &message ,1 , &dwWritten, &ovlw); 
 Sleep(35); 
 
    //buffer2 = '4';//0xC0;       //send '1100 0000' = 0xC0 to 3DM for 'Command 4' 
    message = 0xC0; 
 WriteFile(hComm, &message ,1 , &dwWritten, &ovlw); 
 Sleep(35); 
      
 ReadFile (hComm, &buffer3, 1, &dwRead, &ovlr); 
 if(buffer3[0]!=0x44)  
  printf("Error 0x44\n"); 
 
 
    for(i=0; i<6; i++)  
  buffer3[i]=0; 
     
 ReadFile (hComm, &buffer3, 6, &dwRead, &ovlr); 
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} /* End of 'get3DM_Data()' */ 
 
void get_RollPitchYaw() { 
 
    roll = (int)buffer3[0]*256 + buffer3[1];            //Alternative: 
roll=(int)buffer3[0];         
    if(roll>=49151) roll = (int)(0.0055*roll-361); 
    else roll = (int)(0.0055*roll); 
 
 
    pitch = (int)buffer3[2]*256 + buffer3[3];            //Alternative: 
pitch=(int)buffer3[2];       
    if(pitch>=32768) pitch = (int)(360-0.0055*pitch); 
    else pitch = (int)(-0.0055*pitch); 
 
    yaw = (int)buffer3[4]*256 + buffer3[5];            //Alternative: 
yaw=(int)buffer3[4]; 
    yaw = (int)(360-0.0055*yaw); 
 
 
} /* End of 'get_RollPitchYaw()' */ 
 
void GetCompass (int yaw)  
{ 
 static int State = 1; 
 static int LastReading; 
 int CurrentReading; 
 
 switch ( State ) 
 { 
 case 1: 
     LastReading = yaw; 
     State = 2; 
     break; 
  
 case 2: 
  State = 1; 
     CurrentReading = yaw; 
     DeltaYaw = CurrentReading-LastReading; 
     break; 
 }  
} 
 
void main(void) 
{ 
     initialRS232(); 
     get3DM_Data(); 
     get_RollPitchYaw(); 
     printf("\nRoll=%i Pitch=%i Yaw=%i\n", roll, pitch, yaw); 
     GetCompass (yaw) ; 
     CloseHandle(hComm); 
} 
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Appendix C 
 
Microcontroller Infineon C 167 

 
The rapidly growing area of embedded control applications represents one of 

the most time-critical operation environments for today’s microcontroller. The 
microcontroller is a very important part of a mobile robot. It can be compared to the 
brain of a human being. It is used to compute every activity which the robot should 
do. It receives the output signal of the sensor, the command from the computer and 
the wireless communication data. On the other hand, it can also send the controlling 
commands to the motor control circuit. Presently, there are many kinds of 
microcontrollers. Many companies produce many high benefit microcontrollers, for 
example PIC, 8051, ARM, 68HC, Z80, BASIC STAMP, MPS430, Infineon. Each 
type of microcontroller has different characteristics i.e., I/O port, analog to digital 
converter, pulse width modulation, CAN interface capacity of RAM and ROM, speed 
of processor. Infineon is one type of microcontroller which consists of important parts 
for the construction of a high efficient mobile robot. For this reason my thesis focuses 
on microcontroller Infineon C167CR-LM.  

 

 

(a) C167 Functional Block Diagram (b) Microcontroller 

 
Instruction 

Infineon C167CR-LM is a 16-bit microcontroller of the Infineon C166 family, 
the C167-class. It has been designed to meet the high performance requirements of 
real-time embedded control applications. The architecture of this family has been 
optimized for high instruction. The C167CR-LM is an improved representative of full 
featured 16 bit single-chip CMOS microcontrollers. The architecture combines the 
advantages of both RISC and CISC. The C167CR not only integrates a powerful CPU 
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core and a set of peripheral units onto on chip, but it also connects the units in a very 
efficient way. 
 
The PHYTEC miniMODUL-167 

Before using microcontroller C167CR-LM, this chip consists of an accessory 
circuit which is used for communication to a computer or interfacing with 
input/output port. The PHYTEC miniMODUL-167 is belonging to PHYTEC 
Meßtechnik GmbH. They combine with C167 to create a suitable accessory circuit. 
The miniMODUL-167 is intended for the use in memory-intensive applications and 
running within a CAN-bus network and is fitted with two RS-232 transceivers, a 
CAN-bus interface and an additional UART to provide the second asynchronous 
serial interface and a CAN-bus interface. These pins provide a 16-bit bidirectional I/O 
port, including 16 analog inputs with 10-bit resolution. The useful features of the 
miniMODUL-167 follow. 
 
•  16-bit microcontroller, running at a 20 MHz clock speed. 
•  Delivering instruction cycles in 100 ns. 
•  400/300 ns multiplication (16-bit x 16-bit), 800/600 ns division (32-bit/16-bit). 
•  Integrated on-chip memory (2 KB internal RAM, 2 KB on-chip high-speed 
RAM, 

and 128 KB or 3 KB on-chip ROM). 
•  256 KB (to 2 MB) external SRAM. 
•  256 KB (to 2 MB) external Flash. 
•  Flash supports on-board programming via RS-232 interface. 
•  Up to 1 MB optional EPROM. 
•  16-parity-level interrupt system. 
•  16-channel 10-bit A/D converter with programmable conversion time (7.76 
ms) 

minimum) with auto scan mode. 
•  4-channel PWM unit. 
•  Asynchronous/Synchronous serial channel (USART). 
•  Five general purpose16-bit timers/counters. 
•  16-bit bi-directional I/O port. 
•  High-level language support. 
 
Keil Software 

Software development tools for the C16x, ST10, and XC16x support every 
level of developer from the professional applications engineer to the student just 
learning about embedded software development. The industry-standard Keil C 
Compiler, Macro Assembler, Debugger, Real-time Kernel, and Single-board 
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Computers support ALL C16x derivatives and help you getting your projects 
completed on schedule. These higher languages would then be compiled 
automatically into a machine language, which you can then upload into your robot. 
Probably the easiest language to learn would be BASIC, with a name true to itself. 
The BASIC Stamp microcontroller uses that language. But BASIC has its limitations, 
so if you have any programming experience at all, I recommended you to use the 
program in C. This language was the precursor to C++, so if you have already gained 
programming experience in C++, it should be really simple for you to learn. This 
aspect is complicated by the fact that is no existing standard to program 
microcontrollers. Each microcontroller has its own features, its own language, its own 
compiler, and its own uploading to the controller method. This is why I do not go into 
too much detail because there are too many options out there to talk about. The 
supporting documents that are delivered with the controllers should answer your 
specific questions. In addition, if you decide to use a PIC, you have to be aware of the 
fact that the compiler program (at least the good ones) can cost hundreds of dollars. 
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Appendix D  
 
2D Image Processing Fundamental  
 

The 2D image processing in this thesis was handled by using the OpenCV 
open source library. The OpenCV was used to capture the image frames from CCD 
camera and also process the fundamental data e.g. camera frame capturing, edge 
detection, point detection and pixel color reading. The fundamental setting up e.g. 
library files, include files, sources files installation can be found in OpenCVWiki 
[102]. Following examples show the beginning program for capturing image frame 
via USB, Canny edge detection, save data to hard drive, read pixel color,  

 
Beginning with OpenCV, VC++ 

 
          Reading data from 2D camera: Read image frames from the USB camera. The image frames are 
captured in pointer *cv_cap 

 
#include "stdafx.h" 
#include <windows.h> 
#include <cv.h> 
#include <highgui.h> 
 
void main(int argc,char *argv[]) 
{ 
 int c; 
 IplImage* color_img; 
 CvCapture* cv_cap = cvCaptureFromCAM(-1); 

cvNamedWindow("Video",1);    // create window 
 for(;;)  
 { 
  color_img = cvQueryFrame(cv_cap);  // get frame strucre 
  if(color_img != 0) 
  cvShowImage("Video", color_img);  // show frame 
  c = cvWaitKey(10);    // wait 10 ms or for key stroke 
      } 
cvReleaseCapture( &cv_cap ); 
cvDestroyWindow("Video"); 
 } 
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          Edge detection: Detect the image edge by using the Canny edge detection. The output is 
shown in pointer “Myimage”. The output shows the edges which have in the original image.  

 
#include "stdafx.h" 
#include<stdio.h> 
#include<cv.h> 
#include<highgui.h> 
#include<stdlib.h> 
 
int main() 
{ 
 
 IplImage *image = 0; 
 IplImage *img1,*img2; 
 IplImage *gray_scale; 
 
 double LowThreshold; 
 double HighThreshold; 
 int ApertureSize; 
     

IplImage* Myimage = cvLoadImage("D:/VisualStudio2005/ko2.jpg",0); 
 cvNamedWindow("My Window", CV_WINDOW_AUTOSIZE); 
 cvCanny(Myimage,Myimage,140,80); 
 cvShowImage("My Window", Myimage); 
 cvSaveImage("ImageEdge.jpg", Myimage); 
 
 cvWaitKey(0); 
 cvDestroyWindow("My Window"); 
 return 0; 
} 
 

       Safe data to hard drive: The data after processing have to be saved in the hard drive in order to 
recall them again when we want to show. The format files are saved in text file.  

 
#include "stdafx.h" 
#include<stdio.h> 
#include<cv.h> 
#include<highgui.h> 
#include<stdlib.h> 
 
int main() 
{ 
    int ApertureSize[4][4],i,j; 
    FILE * pFile; 
    pFile = fopen ("myfile.txt","w"); 
 for(int i=0;i< 4 /*Myimage->width*/;i++) 
 {   pFile = fopen ("myfile.txt","a"); 
  for(int j=0;j<4 /*Myimage->height*/;j++) 
   { 
   ApertureSize[i][j]=j;    
   fprintf (pFile, "%d ",ApertureSize[i][j]);  
   printf("%d ",ApertureSize[i][j]); 
                } 
   fprintf (pFile, "\n");  
                fclose (pFile); 
   fprintf(stream, "\n"); 
 }  
  return 0; 
} 
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       Read pixel color: Read pixel data is important for basically data processing. CvGet2D is the library 
from OpenCV that allow reading the data in each image pixel. The pixel data are stored in pointer “s” 

 
#include "stdafx.h" 
#include "cv.h" 
#include "highgui.h" 
#include <stdio.h> 
 
int main () 
{ int i,j; 
     
    FILE * pFile; 
    pFile = fopen ("myfile.txt","w"); 
    IplImage* Myimage = cvLoadImage("D:/VisualStudio2005/cup2.jpg",0); 
 
for (i=0; i< Myimage->height ;i++)  
        {  pFile = fopen ("myfile.txt","a"); 
           for (j=0; j< Myimage->width ; j++)  
          { 
              CvScalar s; 
              s=cvGet2D(Myimage,i,j); 
   printf("%3.0f ",s.val[0]); 
   fprintf (pFile, "%3.0f ",s.val[0]);     
   } 
   printf(";\n");  
   fprintf (pFile, ";\n");  
   fclose (pFile); 
  } 
         
      printf("width=%d\n height=%d\n nChannels=%d\n widthstep=%d\n",Myimage-
>width,Myimage->height,Myimage->nChannels,Myimage->widthStep ); 
 cvNamedWindow("My Window", CV_WINDOW_AUTOSIZE); 
 cvShowImage("My Window", Myimage); 
 cvWaitKey(0); 
 cvReleaseImage(&Myimage); 
 cvDestroyWindow("My Window"); 
 return (0); 
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Appendix E  
 
OpenGL Based on MFC 

 
OpenGL is the library to be used for showing the 3D data. Using only 

OpenGL library and VC++ are low level programming. Users can not interact real-
time to the program. Thus, user interactive program is required in order to 
communicate and update data to the users. Graphic User Interface, GUI, is used to 
enhance the performance of user interactive program. In this thesis selected Microsoft 
Foundation Classes, MFC, to be a GUI based program. MFC is a library that wraps 
portions of the Windows API in C++ classes, including functionality enables to use a 
default application framework. The fundamental template of OpenGL based on MFC 
has been provided from Alliez [103]. We applied that template to this thesis which is 
shown below.  

 

 
 

The MFC page combines OpenGL, OpenCV and MATLAB engines in order to 
generate the 3D map. The GUI page can show the 3D data in real-time, the 2D data, 
enable/disable optical flow and object detection functions, automatic rotation scene, 
change color mode, zoom in/out and three rotation angles (roll, pitch, yaw) from the 
3DM sensor.   
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Appendix F 
 
MATLAB Interfacing Engine 
 
 Mathematic calculation is importance part for calculation all processes. That is 
part which consume the most processing time. The one well-known library is GNU 
library. The GNU Scientific Library (GSL) is a routines collection for numerical 
computing. The routines have been written form scratch in C. The GSL provides 
several numerical calculations in C library code. It can calculate complex numerical 
problem very fast. However, the language structure is still low level. The rearrange 
source code and understanding are rather difficult. The second choice is using 
MATLAB interfacing engine. As known, MATLAB is a powerful calculating 
program. The program structure is easy to comprehend, even though the calculation 
time is slower than GNU. The MATLAB engine interfacing [104] is then used. The 
method is VC++ main program sends data to MATLAB via MATLAB engine. The 
numerical problems are calculated by using MATLAB library. After getting the 
result, results are also returned back to VC++ main loop via interfacing engine. The 
following example program shows sending the array [10][1] to MATLAB. Use this 
data put in the non-linear equation and plot two dimension graph on MATLAB. 
Return those variable back to the VC++ main loop and show on the command page.  
 
#include "engine.h" 
#include "C:/Program Files/MATLAB/R2006a/extern/include/engine.h" 
#pragma comment (lib,"C:/Program 
Files/MATLAB/R2006a/extern/lib/win32/microsoft/libeng.lib") 
#pragma comment (lib,"C:/Program 
Files/MATLAB/R2006a/extern/lib/win32/microsoft/libmx.lib") 
#pragma comment (lib,"C:/Program 
Files/MATLAB/R2006a/extern/lib/win32/microsoft/libut.lib") 
 
using namespace std; 
 
int main() 
{ 
  Engine *ep;   
  mxArray *T = NULL, *d = NULL; 
  double *xValues,avg; 
  int rowLen, colLen,i,j; 
  double time[10] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 }; 
  T = mxCreateDoubleMatrix(1, 10, mxREAL); 
  memcpy((void *)mxGetPr(T), (void *)time, sizeof(time)); 
  engPutVariable(ep, "T", T);  // Place variable T into the MATLAB workspace 
  engEvalString(ep, "D = .5.*(-9.8).*T.^2;"); // Execute a MATLAB command     
  engEvalString(ep, "plot(T,D,'or');"); 
  engEvalString(ep, "title('Position vs. Time for a falling object');"); 
  engEvalString(ep, "xlabel('Time (seconds)');"); 
  engEvalString(ep, "ylabel('Position (meters)');");   
  d = engGetVariable(ep, "D"); 
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  xValues = mxGetPr(d); 
  rowLen = mxGetN(d); 
  colLen = mxGetM(d); 
      printf("%d\n",rowLen); 
      printf("%d\n",colLen); 
 
      for(i=0;i<rowLen;i++) 
         { 
          avg=0; 
          for(j=0;j<colLen;j++) 
             { 
              avg = xValues[(i*colLen)+j]; 
              printf("The average of row %d,%d is %f\n",i,j,avg); 
       }   
         } 
  mxDestroyArray(T);    /* Free memory */  
  engEvalString(ep, "close;");  
  engClose(ep);   /* Close MATLAB engine */ 
  printf("Done!\n");  
  scanf("%d"); 
  return EXIT_SUCCESS; 
} 

 
 

  

(a) Using MATLAB engine interfacing (b) Returning data to main VC++ program 
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