






































































































































































































































































































IV.

In the End
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7. Summary

Spline methods are a popular tool when solving ill-posed inverse problems like
the inverse gravimetric problem. However, there are a few clear draw-backs of
these methods that we were able to rectify in this work.

First of all, when inverting with a spline method we need to solve a linear equa-
tion system, whose size corresponds directly to the number of data points used
for the inversion. However, systems corresponding to the very high number of
data points that we use in this work, i.e. more than 25, 000 data points, can-
not be handled numerically anymore. Because of its iterative character, our new
method does not know such limitations.

Secondly, spline methods produce a solution that is adapted to the data struc-
ture. This, in itself, is a clear advantage over other already existing methods.
However, it is even more advantageous to procure a solution that is adapted to
the data structure and the detail structure of the solution itself. Again, our new
method provides us with such a solution.

A third comment is that we may only use one kind of basis function for the
expansion of the solution when using a spline method. However, the reconstruc-
tion may be more efficient if, for certain structures, different basis functions were
available, e.g. functions with a global character to reconstruct global trends and
localized functions to reconstruct detail structures. The new method allows such
a mix of expansion functions.

The mystery ingredient is the idea of a Matching Pursuit which is an adaptive and
iterative greedy algorithm introduced in signal recovery and subsequently used
in the field of sparse regularization. However, we introduce three new concepts
into the Matching Pursuit: The data is now given by a linear and continuous
operator and not by the target function itself. Secondly, this algorithm will not
depend on prior knowledge of the sparsity of the target function. Furthermore,
we leave the Euclidean setting to operate on a setting of an inverse problem on
the three-dimensional ball.
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Chapter 7 Summary

Since most real-world problems are ill-posed, we construct a regularization method,
too, where we introduce different penalty terms, i.e. norms corresponding to the
smoothness or the sparsity of the solution as well as the sparsity of the coeffi-
cients of the expansion itself. In this work, the best results are obtained with the
L2(B)-norm corresponding to the smoothness of the solution.

We prove convergence results for all developed algorithms as well as the conver-
gence rate of the unregularized version of the method. Furthermore, we discuss
the main properties of a regularization method, i.e. the existence and the stabil-
ity of a solution as well as the convergence of the regularization.

As we mentioned before, another main feature of the new methods is that we
may collect all different kinds of functions in a so-called dictionary to reconstruct
different structures in the solution, accordingly. In our applications, we collect
functions with a global character and localized kernel functions in our dictionary.
We demonstrate the power of the new methods in a case study with respect to
the reconstruction of the density distribution of South America out of satellite
data where we have to solve the ill-posed inverse gravimetric problem. The reg-
ularized version of the algorithm provides us with solutions that are primarily
matched to the structure of the target function and not only the data structure.
We discussed the behavior and the results of all methods critically and in detail.

Furthermore, we see great potential in the method to be used in other research
areas, too, as we demonstrated by reconstructing the mass transport in the Ama-
zon area for the year 2008 out of satellite data. Of course, the method may be
applied to other ecologically relevant problems, too, e.g. the investigation of the
deglaciation of Antarctica and Greenland. Furthermore, we consider applications
in medical imaging.

Reconstructing the density distribution out of gravitational data only, gives us
information about the harmonic part of the density distribution exclusively. To
get information about the anharmonic part and, thus, the interior of the Earth,
we need to include seismic data, as well. However, the new method is very well
matched to the joint inversion of different data types as we demonstrated in the
joint inversion of gravitational data and seismic data in the form of normal mode
anomalies where we used the most recent data available. We were able to present
a new model of the density distribution in the interior of the Earth.
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8. Outlook

For Algorithm 3.1 (FMP), i.e. the unregularized version, we were able to show
that the speed of the convergence strongly depends on the choice of the dic-
tionary. However, we have not been able to show a similar correlation for the
regularized version, Algorithm 4.1 (RFMP), although it surely exists. In further
research, we aim to prove the existence of such an interrelation and, in the best
case, construct some indicator for the quality of the chosen dictionary depending,
e.g. on the coherence of the dictionary elements or the vectors Fd, d ∈ D, as
done in related research areas.

Although the performance of the algorithm in our numerical considerations con-
formed very well with the theoretical expectations, we had to discuss some un-
expected results as well. The choice of localized dictionary elements Kh(x, ·)
involves the choice of the center point x as well as the choice of the parameter
h which controls the localizing character of the function. The center points were
clearly chosen according to the structure of the target function, as intended. The
use of localized kernel functions in the form of scaling functions only, might be a
reason for the unexpected choices of the parameter h. In further research, we in-
tend to rectify the problem by using a mixture of localized kernel functions in the
form of a scaling function as well as in the form of a wavelet d = Kh(x, ·)−Kh̃(x, ·)
as dictionary elements.

In our further research, we will try to adapt other ideas from signal recovery and
sparse regularization to our setting to improve our algorithm. The convergence
behavior may be improved by using ideas from the Orthogonal Matching Pursuit,
as we discussed before. As an alternative, we will implement the aforementioned
back-projection where we use l1-optimization to compute the (already recovered
but sub-optimal) coefficients αk for the expansion of the solution anew. Further-
more, we will try to upgrade the behavior of the method when confronted with
noisy data which, obviously, includes treating boundary effects.

We assumed a rather simple relation between the density and the velocities to
simplify our computations. It is, however, questionable whether a description in
this way is viable. To solve this problem, we propose to use a vectorial approach
as was done in, e.g. [17, 18].

In the applications, we demonstrated that our new method is capable to recon-
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Chapter 8 Outlook

struct natural phenomena like the mass transport on the surface of the Earth.
However, we have to remark that we were not able to use the full potential of
the algorithms since the data that we used was given in spherical harmonics
coefficients. We displayed before that spherical harmonics are global functions.
Thus, local data errors are distributed to the whole model. Moreover, the detail
structure of the data is compromised by this representation. In further research,
we intend to include other, less preprocessed data types, too, to increase the per-
formance of the algorithm and produce results that are as detailed and precise
as needed in global environment studies.

In this work, we showed that the presented method also allows us to combine dif-
ferent data types. Our main goal is to recover an advanced model for the density
distribution of the interior of the Earth. We explained before that gravitational
data only gives information about the harmonic part of the density. However, the
anharmonic part can be partially recovered by seismic data, e.g. normal mode
anomalies or travel times. Here, we presented first results for a joint inversion of
gravitational data and normal mode anomalies. In further research, we propose
to study a combined inversion of even more different data types with our new
method.
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V.

Appendix
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A. Treating Boundary Effects

If we limit our computations to only a part of the Earth’s surface, e.g. the area
around South America, and choose the expansion elements and the correspond-
ing coefficients according to Algorithm 3.1 (FMP) or Algorithm 4.1 (RFMP) we
observe minor to major boundary effects. These boundary effects can be distin-
guished clearly when considering noisy data (see the bottom row of Figure 5.14
and the top row of Figure 5.15 corresponding to the noise level ε = 0.1). We
want to treat these boundary effects by influencing the choice of the optimal ex-
pansion elements, i.e. where the center points of the chosen expansion elements
are located, directly with an appropriate weight function.

Remember that the second choice of dictionary functions d = GI
m,n,j is a global

function. Thus, it is of no importance when treating boundary effects.

In the next sections, we will introduce both a basic and a regularized algorithm
that include a weight function to treat boundary effects. Furthermore, we will
present examples for such weight functions. For theoretical results with respect
to the algorithms developed in this section we refer to a later work. However, we
expect that most results may be transferred.

Weighted Functional Matching Pursuit

To influence the choice of the optimal expansion functions we can, for example,
choose to minimize the weighted residual g(d)2||Rn||2

Rl where g is the weight func-
tion that penalizes proximity of the centers of the localized dictionary elements
to the boundaries of the considered area. Its value g(d) will depend only on the
center point of the chosen kernel function d = Kh(x, ·). If the chosen expan-
sion function is d = Gm,n,j the weight function g will not influence this choice.
Moreover, the weight function g has to fulfill some more minor requirements:

Assumption A.1
We assume that the weight function g maps continuously onto a codomain [a, b]
where 0 < a < b, i.e. g is strictly positive.

We will give examples for such admissible weight functions later in this section.
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Chapter A Treating Boundary Effects

To derive the corresponding algorithm, we again assume that, in step n + 1, Fn

is given. Since Fn+1 = Fn + αn+1dn+1, we are looking for a combination α ∈ R

and d ∈ D that minimizes g(d)2 ||y − F(Fn + αd)||2
Rl, i.e.

(dn+1, αn+1) = argmind∈D,α∈R g(d)
2||Rn − αFd||2

Rl,

since the operator F is assumed to be linear.

For all d ∈ D, the minimizing α is then given by

0 =
∂

∂α
g(d)2||Rn − αFd||2

Rl = g(d)2
∂

∂α
||Rn − αFd||2

Rl.

Clearly, this is the same partial derivative as in the case where we do not weight.
Thus, we get

0 = g(d)2
(

−2〈Rn,Fd〉Rl + 2α||Fd||2
Rl

)

and, since g(d) was assumed to be strictly positive for all dictionary elements
d ∈ D (see Assumption A.1), we get the same formula for α as before

α =
〈Rn,Fd〉Rl

||Fd||2
Rl

.

Again, we use this representation of α to derive an expression from which we can
determine the optimal dictionary element dn+1 at step n+ 1.

Let us insert the expression for α into the weighted residual g(d)2||Rn−αFd||2
Rl.

With the same steps in the calculation as in the case without the weight function
g (see Section 3.2) we get

g(d)2||Rn − αFd||2
Rl = g(d)2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

.

Now let us state the complete algorithm:

Algorithm A.2 (Weighted FMP (WFMP))

Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 minimizes g(d)2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

and

αn+1 =
〈Rn,Fdn+1〉Rl

||Fdn+1||2Rl

.
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Although the expression for the choice of the dictionary function now includes
the norm of the residual, we do not expect an increase in the computation time
since the norm of the residual was already updated and stored in the preceding
step from n−1 to n. Note that the weight function directly influences the choice
of the optimal dictionary element only, as we required for this version of the
algorithm.

Weighted Regularized Functional Matching Pursuit

In this section, we will derive a regularized version of Algorithm A.2 (WFMP)
by weighting the target function, i.e. we are looking for the dictionary element
and the corresponding coefficient such that

(dn+1, αn+1) = argmind∈D,α∈R g(d)
2
(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

,

in the step from n to n+ 1 chosen expansion functions. Again, the weight func-
tion is denoted by g and fulfills Assumption A.1. We can derive the minimizing
dictionary element dn+1 and the corresponding coefficient αn+1 with the same
technique as before.

The minimizing α fulfills

0 =
∂

∂α
g(d)2

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2
∂

∂α

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2
(

−2 〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ

(

2 〈Fn, d〉L2(B) + 2α||d||2L2(B)

))

(see Section 4.1 for more details) and with Assumption A.1, i.e. g(d) > 0 for all
dictionary elements d ∈ D, we get

α =
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

||Fd||2
Rl + λ||d||2L2(B)

.

Again from Section 4.1, we can derive that the dictionary element that is chosen
in step n + 1 minimizes

g(d)2
(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

.

Thus, we get the following algorithm for the weighted regularized version of the
Functional Matching Pursuit:
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Chapter A Treating Boundary Effects

Algorithm A.3 (Weighted RFMP (WRFMP))
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 minimizes g(d)2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

and

αn+1 =
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Note that this algorithm, too, fulfills our expectation that the weight function
only influences the choice of the dictionary element dn+1 directly. The com-
putation of the corresponding coefficient depends only indirectly on the weight
function.

An Appropriate Weight Function

To treat the boundary effects occurring in our applications, we have to use a
weight function that penalizes the choice of a kernel function that is centered
near the boundary. Since we minimize, the penalty term should have a large
value close to the boundary and a small one in the center of the considered area.

For the sake of clearness, we start with a cosine-roll-off (see Figure A.1) and put
on the constraints for the minimization at a later stage, i.e. we choose a weight
function that has the value 1 in the middle and decreases towards the boundaries.
Let us first give an example of such a weight function on the interval. We will en-
large that definition to a plane and, then, fit it to fulfill Assumption A.1. At last,
we will fit it to the requirements of Algorithms A.2 (WFMP) and A.3 (WRFMP).

Let us introduce a cosine-roll-off (see [9]) that can be used as a weight function
on the interval [−1, 1]. With the help of the parameter β ∈ [0, 1] we will define a
cosine flank where β allows us to directly control the length of the flank as well
as its position.

Example A.4
On the interval [−1, 1] the cosine-roll-off can be defined by

f1D(x) =











1 , |x| ≤ 1−β
2

1
2

(

1 + cos
(

π
β

(

|x| − 1−β
2

)

))

, 1−β
2
< |x| ≤ 1+β

2

0 , otherwise

, x ∈ [−1, 1]

with the parameter β ∈ [0, 1]. In Figure A.1 we display the effect of the parameter
choice, i.e. that the slope of the flank steepens with decreasing β. Note that the
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codomain of the weight function is [0, 1]. Furthermore, the weight function is
continuous.
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Figure A.1.: Cosine-roll-off f1D on [−1, 1] with parameters β = 0, β = 0.3, β =
0.5, β = 0.7, β = 1 (in order of the plots from top left-hand to
bottom right-hand)

Now, we will consider two possibilities to expand a one-dimensional weight func-
tion on the interval [−1, 1] to a two-dimensional setting on the domain [−1, 1]×
[−1, 1].

Example A.5
We can build a two-dimensional continuous weight-function on [−1, 1]× [−1, 1]

(i) by taking the product of two one-dimensional weight functions on [−1, 1],
i.e.

f2D(x, y) = f1D(x)f1D(y), x, y ∈ [−1, 1],

or

(ii) by rotating a one-dimensional weight function on [−1, 1], i.e.

f2D(x, y) = f1D

(

√

x2 + y2
)

, x, y ∈ [−1, 1].

Examples for both possibilities are displayed in Figure A.2.
Clearly, possibility (i) punishes proximity to the boundaries while possibility (ii)
punishes distance to the center point (0, 0).
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Chapter A Treating Boundary Effects

Figure A.2.: Two-dimensional cosine-roll-off f2D on [−1, 1]× [−1, 1] with param-
eter β = 0.3 as the product of two one-dimensional weight functions
on [−1, 1] (left-hand) and as a rotation of a one-dimensional weight
function on [−1, 1] (right-hand)

Looking at the two possibilities to build a two-dimensional weight function on
[−1, 1] × [−1, 1] in Example A.5, we clearly prefer the first possibility for our
purpose since we want to punish proximity to the boundaries.

In Assumption A.1, we require that 0 is not in the codomain of the weight function
that we want to use. The weight functions, that we introduced so far, do not
fulfill this requirement. However, we can change this fact by scaling accordingly.

Lemma A.6
The codomain of the two-dimensional weight function g2D, which is displayed in
Figure A.3 and defined by

g2D(x, y) = g1D(x)g1D(y), x, y ∈ [−1, 1]

where

g1D(x) =











1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1 + β

0 otherwise

, x ∈ [−1, 1],

=

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

with β ∈ [0, 1] fulfills the requirements of Assumption A.1, i.e.

g2D(x, y) ∈ [a, b], 0 < a < b, for all x, y ∈ [−1, 1],

where g2D is continuous.
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Figure A.3.: Two-dimensional cosine-roll-off on [−1, 1]× [−1, 1] with parameters
β = 0.3 (left-hand) and β = 0.7 (right-hand) as the product of two
adapted one-dimensional weight functions on [−1, 1]

Proof.
First, we will show that g1D fulfills the requirements of Assumption A.1. From
the nature of the assumption and our two-dimensional weight function g2D we
can then conclude that g2D fulfills the requirements of Assumption A.1, too.

Since we only included continuous functions in the definition of g2D, we can con-
clude that it is continuous, too.

Clearly, we only need to take a look at the case where 1 − β < |x| ≤ 1 and,
accordingly, β ∈]0, 1] since otherwise g1D(x) = 1.

Since 1− β < |x| ≤ 1, we know that

0 <
π

2β
(|x| − 1 + β) ≤ π

2

and, consequently,

0 ≤ cos

(

π

2β
(|x| − 1 + β)

)

< 1.

Thus, we can derive for x with 1− β < |x| ≤ 1 that

1

2
≤ g1D(x) =

1

2

(

1 + cos

(

π

2β
(|x| − 1 + β)

))

< 1,

i.e. we can conclude that g1D(x) > 0 for all x ∈ [−1, 1].
�
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Chapter A Treating Boundary Effects

Note, that for x, y ∈ [−1, 1]

1

4
≤ g2D(x, y) = g1D(x)g1D(y) < 1,

i.e. g2D maps to the interval [0.25, 1[ as may be observed in Figure A.3 where we
display the two-dimensional cosine-roll-off for different parameters β.

As a last step, we need to know how to apply the weight function g2D introduced
in Lemma A.6 to our dictionary functions. Furthermore, we want to introduce
intervals different to [−1, 1] since we need to characterize the part of the Earth’s
surface that we limit our computation to, i.e. we want to operate on the interval
[r1, r2], 0 < r1 < r2, which is, typically for our case, a subinterval of [0, 2π[
(longitude) or [0, π] (latitude). Therefore, we need to introduce new parameters
0 < r1 < r2 to the definition of g1D and adapt it from the interval [−1, 1] to the
new interval [r1, r2] by the transformation

x = 2
r − r1

r2 − r1
− 1, x ∈ [−1, 1], r ∈ [r1, r2].

Thus, we get a new one-dimensional weight function on the interval [r1, r2]

g1D(r, r1, r2) =

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

x = 2
r − r1

r2 − r1
− 1, r ∈ [r1, r2].

Let us define a two dimensional weight function on an arbitrary area that is
characterized by the two intervals [ϕ1, ϕ2] and [ϑ1, ϑ2] and a dictionary element
as input

g2D(d) =

{

1 , d = Gm,n,j

g1D(ϕ, ϕ1, ϕ2)g1D(ϑ, ϑ1, ϑ2) , d = Kh(x(ϕ, ϑ, r), ·) . (A.1)

This function, too, fulfills Assumption A.1 and now maps to the interval [0.25, 1].

Let us consider the role of the weight function in Algorithm A.2 (WFMP). It is
a factor of the expression that is to be minimized, i.e.

dn+1 minimizes g(d)
2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

.

We want to penalize the choice of a dictionary function which is centered close
to the boundaries and, thus, the weight function should have larger values close
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to the boundaries than in the middle of the considered area. The aforementioned
weight functions do not fulfill this requirement. Thus, we will consider

g(d) = (1.25− g2D(d)) ∈ [a, b],
where g2D(d) maps to the interval [0.25, 1] as in Equation (A.1), as a weight func-
tion for the weighted version of the Functional Matching Pursuit. Note that g(d)
now maps to the interval [0.25, 1], too.

In the regularized case (see Algorithm A.3 (WRFMP)) we, too, minimize the
expression where the weight function appears, i.e.

dn+1 minimizes g(d)
2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

and, thus, we can choose the same weight function as in the unregularized case,
i.e.

g(d) = (1.25− g2D(d)).

Now let us formally define the weight function g which we will use in our further
considerations to treat boundary effects.

Definition A.7
The weight function g : D → [0.25, 1] fulfills Assumption A.1. It is defined by

g(d) =

{

1 , d = Gm,n,j

(1.25− g1D(ϕ, ϕ1, ϕ2)g1D(ϑ, ϑ1, ϑ2)) , d = Kh(x(ϕ, ϑ, r), ·) ,

where g1D is given by

g1D(r, r1, r2) =

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

x = 2
r − r1

r2 − r1
− 1, r ∈ [r1, r2].

Here, [ϕ1, ϕ2] and [ϑ1, ϑ2] are subintervals of [0, 2π[ and [0, π], respectively. They
characterize the part of the Earth’s surface that we limit our computations to.

For some applications, weighting with a function that maps to the interval [0.25, 1]
might be too strong, i.e. the influence is so large that no dictionary elements with
center points on the flank of the weight function are chosen anymore. To remedy
this, we concatenate the weight function with, e.g. a linear function to change
the range of the weight functions. We may, for example, use

f(x) = 0.1x+ 0.9, x ∈ R.

Then, g(d) = f(g(d)), d ∈ D, has the range [0.925, 1] and is potentially better
fitted for the application.
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du Problème du Potentiel Terrestre. Bulletin Géodésique, 51:227–237, 1977.
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