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Abstract

To recover the density of the Earth we invert Newton’s gravitational potential.
It is a well-known fact that this problem is ill-posed. Thus, we need to develop a
regularization method to solve it appropriately.

We apply the idea of a Matching Pursuit (see Mallat and Zhang 1993) to recover
a solution stepwise. At step n + 1, the expansion function dn+1 and the weight
αn+1 are selected to best match the data structure.
One big advantage of this method is that all kinds of different functions may be
taken into account to improve the solution stepwise and, thus, the sparsity of
the solution may be controlled directly. Moreover, this new approach generates
models with a resolution that is adapted to the data density as well as the detail
density of the solution.

In the numerical part of this work, we reconstruct the density distribution of the
Earth.
For the area of South America, we perform an extensive case study to investigate
the performance and behavior of the new algorithm. Furthermore, we research
the mass transport in the area of the Amazon where the proposed method shows
great potential for further ecological studies, i.e. to reconstruct the mass loss of
Greenland or Antarctica.
However, from gravitational data alone it is only possible to recover the harmonic
part of the density. To get information about the anharmonic part as well, we
need to be able to include other data types, e.g. seismic data in the form of
normal mode anomalies. In this work, we will perform such an inversion and
present a new model of the density distribution of the whole Earth.



Zusammenfassung

Zur Bestimmung der Dichte der Erde invertieren wir Newtons Gravitationspo-
tential. Da dieses Problem bekanntlich schlecht gestellt ist, entwickeln wir ein
geeignetes Regularisierungsverfahren um es zu lösen.

Wir wenden die Idee eines Matching Pursuits (siehe Mallat und Zhang 1993)
an. Das heißt, wir bestimmen, der Datenstruktur bestmöglich entsprechend, die
Entwicklungsfunktion d und den Koeffizienten α schrittweise. Vorteilhaft ist,
dass die unterschiedlichsten Funktionen zur Entwicklung der Lösung beitragen
können. Desweiteren erhalten wir Modelle, deren Auflösung an die Datendichte
und die Detailstruktur der exakten Lösung angepasst ist.

Wir wenden die Methode auf die Rekonstruktion der Dichteverteilung der Erde
(mit Erdinnerem) an.
Für das Gebiet um Südamerika führen wir eine Fallstudie durch, in der wir die
Güte und das Verhalten der Methode ausführlich studieren. Desweiteren un-
tersuchen wir den Massentransport im Amazonasgebiet. Die Ergebnisse lassen
erwarten, dass die Methode auch für andere ökologisch relevante Problemstellun-
gen, wie die Untersuchung des Massenverlustes in Grönland und der Antarktis,
geeignet ist.
Allerdings kann man aus Gravitationsdaten nur den harmonischen Anteil der
Dichte rekonstruieren. Das Einbeziehen von seismischen Daten, wie Normal Mode
Anomalies, erlaubt es, auch Informationen über den anharmonischen Anteil zu
erhalten. In der vorliegenden Arbeit wird das Ergebnis einer solchen Inversion
als neues Modell für die gesamte Erde vorgestellt.
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Introduction

Every new satellite mission concerned with the gravitational potential of the
Earth allows us to construct more precise models of, e.g. the mass density dis-
tribution of the Earth. In a joint inversion with seismic data, e.g. normal mode
anomalies or travel times of earthquake waves, we can develop a reasonable model
of the density distribution in the interior of the Earth.

Missions like the Gravity Recovery and Climate Experiment (GRACE) (see [85])
allow us to reconstruct temporal variations of the mass density distribution, too.
Thus, it is possible to get a more global overview over climate changes than with
conventional Earth-bound methods.

Nonetheless, satellite missions can only measure the gravitational potential and
not the density distribution itself. Newton’s Law states the link between the
gravitational potential V and the density distribution ρ as

V (x) = γ

∫

B

ρ(y)

|x− y|dy,

where B is a ball representing the Earth, x ∈ R3 \ B and γ is the gravitational
constant. This problem is known as the inverse gravimetric problem and the cor-
responding data as well as the mentioned seismic data types may be represented
as the values of a functional applied to the target function (see, e.g, [18]).

Note that the solution to the inverse gravimetric problem is not unique. In this
work, we will use a harmonicity constraint to get a unique solution. Such an
a priori condition lacks a physical interpretation but can be motivated by some
mathematical arguments. At present, no uniqueness constraint with a satisfac-
tory physical interpretation is known. For further details, see the survey [107].

Needless to say, the inverse gravimetric problem has been solved with a wide vari-
ety of methods. Among them are classical methods such as the truncated singular
value decompositions (see, e.g. [143, 147]), the domain subdivisions in block-like
structures (see, e.g. [74, 93, 96, 145]), and the approximation by point-masses
(see, e.g. [74, 127]). Within the last decade, more advanced approximation meth-
ods were developed. These are spline methods (see, e.g. [56, 108]) and wavelet
methods (see, e.g. [102, 104, 105]). However, most of these methods only allow
us to use one kind of predefined basis function on a point grid that is determined
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Introduction

by the given data and, thus, mostly equidistributed. Furthermore, the number
of data points is strongly bounded by most methods.

Normal mode anomalies can be observed after major earthquakes as free oscilla-
tions of the Earth and give in-depth information about the density distribution of
the interior of the Earth. Today, normal modes from earthquakes with a surface
wave magnitude larger than 6.5 can be recorded easily such that the number of
recordings, that are available for normal mode research, grows steadily. Each
normal mode defines a unique splitting function. The coefficients of this splitting
function are the given data for the inverse problem. Here, we will use the most
recently acquired data by Dr. Arwen Deuss, University of Cambridge.

At the beginning of the century, a number of groups have been concerned with
the inversion of normal modes to recover a density model of the deep Earth (see,
e.g. [83, 92, 100, 121, 122, 126]). In these works, among others, it was discussed
very controversially whether the data situation was sufficient to recover an inde-
pendent model of the density of the Earth. However, recent advances and the
observation of some major events, for example the Sumatra earthquake on De-
cember 26, 2004, have greatly increased the number of available normal modes
and improved their reliability and the accuracy of the coefficient uncertainties.
Thus, using normal mode data in inversions for global models is, again, a promis-
ing topic in current research.

Note that a joint inversion of gravitational and seismic data has only rarely been
realized. In [60, 81], a combination of gravitational data with normal mode data
and travel time data was inverted. However, in recent years, research has appar-
ently been more concerned with the joint inversion of only two out of these three
data types, see [40, 43, 90, 129, 130] for a combination of travel times and grav-
itational data, [17, 18, 19, 82, 95] for a combination of normal mode anomalies
and gravitational data, and [84, 87] for joint inversions of normal mode anomalies
and travel times. Although, we present here a combination of gravitational and
normal mode data the developed method is capable to handle a joint inversion of
all three considered data types, too, which will be realized in our further research.

One approach to the inversion of gravitational data seems to be especially promis-
ing for our case:
Free-positioned point-mass modeling (see [13, 14]) is a method that positions
point-masses shortly below the surface of the Earth stepwise to best match the
gravitational potential given by the data. In every step, the nonlinear problem is
optimized for the position of the point-masses as well as their magnitudes. Thus,
a solution is generated that is adapted to the structure shortly below the surface
of the Earth. However, as with most nonlinear optimization methods, this one,
too, requires initial values for the positions of the point-masses. Moreover, all ear-
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lier positions have to be recomputed when adding another point-mass where the
positions of the point-masses in the last step give us an initial value for the new
optimization. These are considerable difficulties in regard to the computations.
Furthermore, the method becomes instable if the positions of the point-masses
are too close to each other or if the point-masses are located deeper than about
100 km below the surface. Additionally, a later study (see [28]) showed that
the algorithm is very sensitive with regard to inconsistent gravity data types as
well as an irregular distribution of data points. Thus, it is difficult to determine
whether one reconstructed a discontinuity in the solution or just the result of
data inconsistencies.

Although we favor this idea, we develop an essentially different algorithmic ap-
proach due to these problems to realize it. Even though we choose the expansion
functions to recover the solution stepwise, too, we use an approach that does not
require the determination of some initial value for the position. We will present
a new method that allows us to use all different kinds of functions imaginable to
expand the solution and to include much more data points as data input than
commonly used up to now. In this work, we will use some kind of localized kernel
functions that are comparable to point-masses in some characteristics. However,
the solution generated by our new algorithm will be adapted to the structure of
the signal as well as the data structure. Moreover, the iterative selection of the
expansion functions differs with respect to the strategy and the type of available
functions, since we use localized basis functions similar to splines or wavelets.
The ideas for such a method stem from the field of sparse regularization.

Research in sparse regularization is concerned with solving under-determined or
ill-conditioned systems of linear equations with respect to the sparsity of the so-
lution. Of course, there exists a rather large number of different approaches. The
main research areas seem to be combinatorial algorithms (see, e.g. [69, 70, 71, 72])
and convex relaxation (see, e.g. [22, 27, 35, 57, 91]), to name a few. However,
these methods either need a very large number of measurements or they are very
slow. Iterative greedy algorithms (see, e.g. [34, 48, 98, 112, 113, 144]) seem to
be efficient with respect to the computational effort and the needed number of
measurements (see [112]).

For further details on the general Hilbert space setting as well as sparsity with
respect to inverse problems, we refer to, e.g. [12, 33, 36, 42, 142].

However, most of these methods require prior knowledge about the sparsity of
the solution. In our case, as well as in most applications, we do not possess this
knowledge. Furthermore, the bases display different properties on the ball than
in the Euclidean setting. As a consequence, existing methods and algorithms
cannot be used directly to solve our problem. In this paper, we introduce a new
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approach that allows us to exploit the advantages of iterative greedy algorithms
on the ball without prior knowledge of the sparsity.

Approximation on the ball differs strongly from the Euclidean setting. One major
difference is the set of available basis functions to expand the solution and their
behavior with respect to the reconstruction methods.

The most common approach on the sphere is to use an expansion in terms of
spherical harmonics which form an orthogonal basis system to represent the data
continuously on the whole sphere. However, because of the global character of
these functions small local changes of the data lead to changes in all spherical
harmonic coefficients. Furthermore, spherical harmonics are strongly limited by
data gaps.

Different groups proposed localized basis systems to remedy the disadvantages
of spherical harmonics. Slepian functions, for example, are a locally and glob-
ally orthogonal system of functions on the sphere that is optimally suited for
a local reconstruction in areas of interest to minimize the effects of data gaps
(see [2, 3, 109, 131, 132, 133, 134, 156] for theoretical results and applications).
However, this concept is, up to now, limited to the sphere.

The Geomathematics Groups at the University of Kaiserslautern and the Uni-
versity of Siegen developed space localizing kernel functions on the sphere as well
as the ball. They, too, allow us to minimize the effects of data gaps or differ-
ences in the data density. In this work, we will exploit the localizing character of
these functions to reconstruct the detail structure of the density distribution of
the Earth. For further theoretical details and applications mostly to geophysical
problems, we refer to [7, 18, 55, 56, 63, 64, 66, 88, 102, 108, 114, 148].

This work is divided into four parts: Fundamentals, Matching Pursuit, Numerical
Applications and Furthermore.

I. Fundamentals:

In Section 1, we summarize a few important but well-known notations and fun-
damentals. In Section 2, we give an overview over the involved problems, i.e. the
inverse gravimetric problem and the normal mode tomography. Furthermore, we
present functional representations for both problems.

II. Matching Pursuit:

Section 3 is concerned with the development of the Functional Matching Pursuit
(FMP) as well as some theoretical results regarding the convergence of the algo-
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rithm and its convergence rate.

We develop an adaptive and iterative greedy algorithm to solve approximation
problems where the data is given directly by a linear and continuous operator,
i.e. FF = y where y ∈ Rl is the given data, F : L2(B)→ Rl is the operator corre-
sponding to the inverse problem and F ∈ L2(B) is the unknown target function.
Furthermore, this algorithm will not depend on prior knowledge of the sparsity
of the target function F .

We intend to approximate the solution F by a (theoretically infinite) expansion
F =

∑∞
k=1 αkdk where each dk is an element of the dictionary D and αk is the

associated scalar coefficient. Note that the dictionary is the collection of all func-
tions that may be used in the expansion of the solution. Starting with F0 = 0,
we iteratively proceed as follows.

At step n+1, the expansion function dn+1 and the corresponding coefficient αn+1

are selected to best match the signal structure, i.e. to minimize the approxima-
tion error ||Rn−αFd||2

Rl where R
n := y−FFn is the residual and Fn =

∑n
k=1 αkdk

is the approximation to the target function F that was recovered in the preceding
step.

The algorithm can be divided into a preprocessing part that can be parallelized
and the main part where, in every step, we just need to search for the optimal
dictionary element and update the residual.

Since the inverse gravimetric problem is an ill-posed problem we need to enhance
this algorithm to become a regularization method. This process is explained in
Section 4 where the Regularized Functional Matching Pursuit (RFMP) is devel-
oped and theoretical results with respect to the convergence of the regularized
solution are given. Moreover, the main requirements for a regularization method,
i.e. the existence and stability of the solution and the convergence, are addressed
there as well.

III. Numerical Applications:

Our novel method has the advantage over spline and wavelet methods that dif-
ferent types of functions may be combined to reconstruct the target function. In
our numerical applications, we will use the L2(B)-basis functions GI

m,n,j, m, n ∈
N0, j = 1, . . . , 2n+1, (see [11, 50, 66, 102, 106]) to reconstruct global trends. The
kernel functions KI

h(x, ·), h ∈]0, 1[, x ∈ B, (see [5, 7, 17, 19, 105, 106]) which are
hat-functions centered at x, where h correlates with the hat-width, are localized
functions and will be used to reconstruct detail structures of the solution. Note
the similarities of these kernel functions to the point-masses that were used in

5



Introduction

free-positioned point-mass modeling. The collection of all functions that may be
chosen as functions in the linear expansion of the signal is called a dictionary and
will be denoted by D.

Note that the character of the method allows us to use a much denser grid for
the centers of the localized kernel functions than in already existing methods to
reconstruct the mass density variation of the Earth. This corresponds to the
sparsity of the solution. If an equidistributed point grid of centers were chosen
with a (global) point density that corresponds to the highest local point density
in the irregular grid of centers produced by our method then this grid would have
essentially more grid points. This, however, is associated to a very high number of
spline basis functions. As a consequence, the system of linear equations required
to determine the spline would have a matrix (which is usually ill-conditioned and
dense) which cannot be handled numerically due to its size. The new algorithm,
however, allows us to gain such a high resolution in regions where this is reason-
able without having to solve systems of linear equations.

In Section 5, we will reconstruct the mass density variations of South America
out of gravitational data, in particular, and of the whole Earth out of a combi-
nation of gravitational and seismic data in the form of normal mode anomalies.
We will use the Earth Gravitational Model 2008 (EGM2008) developed by the
National Geospatial Intelligence Agency (NGA) (see [117]) as gravitational data
input. As data input for the normal mode anomalies we will use splitting function
coefficients provided by Dr. Arwen Deuss, University of Cambridge. We discuss
the properties of the new method extensively in a case study of the density dis-
tribution of South America out of gravitational data only.

In Section 6, we will concern ourselves with the reconstruction of the mass trans-
port in the Amazon area for the year 2008. Here, we will use the monthly solutions
collected by the Gravity Recovery and Climate Experiment (GRACE) satellite
mission and preprocessed by the Jet Propulsion Laboratory (JPL, see [85]).

IV. Furthermore:

At last we want to summarize this work in Section 7 and give an outlook to
further research opportunities in Section 8.
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I.

Fundamentals
In this part, we introduce two known L2-basis systems on the ball as well as a
basis system on the ball in form of localized kernel functions for which we show
a new property.

Furthermore, we will remind you of some ideas from functional analysis, inverse
problem theory, constructive approximation and Sobolev theory.

Moreover, we want to give brief basic introductions to the considered geophysical
problems, i.e. inverse gravimetry and normal mode tomography and discuss the
considered data.
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1. Preliminaries

In this section, we will summarize some basic concepts that are needed to under-
stand the ideas introduced in this work.

1.1. Basic Settings and Spherical Geometry

We denote the set of all positive integers by N, the set of all non-negative integers
by N0, the set of all real numbers by R, and the set of all positive real numbers
by R+.

The three-dimensional Euclidean space is denoted by R3 with the canonical or-
thonormal basis ε1 = (1 , 0 , 0)T, ε2 = (0 , 1 , 0)T and ε3 = (0 , 0 , 1)T. Thus, we
can represent every element x ∈ R3 in Cartesian coordinates as

x =

3
∑

i=1

xi ε
i = (x1, x2, x3)

T .

We use the following - usual - definitions in R3:

inner product : x · y := xTy = x1 y1 + x2 y2 + x3 y3 ,

x2 := x · x = x21 + x22 + x23 ,

norm : |x| :=
√
x2 =

√

x21 + x22 + x23 ,

vector product : x ∧ y :=





x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1



 ,

Laplace operator : ∆x := ∇x · ∇x =

3
∑

i=1

(

∂

∂xi

)2

,

where the last two are the representations of the aforementioned operators in
Cartesian coordinates of R3.

Let the unit sphere in R3 be denoted by Ω := {ξ ∈ R3| |ξ| = 1} . Then every
element x ∈ R3 can be written in the form x = rξ where r = |x| ∈ R

+
0 and ξ ∈ Ω.

This representation is unique if x 6= 0. Moreover, x ∈ R3 can also be represented

9



Chapter 1 Preliminaries

in polar coordinates

x(r, ϕ, t) =





r
√
1− t2 cosϕ

r
√
1− t2 sinϕ

rt



 , i.e. x(r, ϕ, ϑ) =





r sinϑ cosϕ
r sin ϑ sinϕ
r cosϑ



 ,

where r = |x| ∈ R
+
0 denotes the distance to the origin, ϕ ∈ [0, 2π[ denotes the

longitude, t = cosϑ ∈ [−1, 1] denotes the polar distance and ϑ ∈ [0, π] denotes
the latitude. Thus, now we may represent the space R3 in another local basis

εr(ϕ, t) =





√
1− t2 cosϕ√
1− t2 sinϕ

t



 , εϕ(ϕ) =





− sinϕ
cosϕ
0



 , εt(ϕ, t) =





−t cosϕ
−t sinϕ√
1− t2





which is a local tripod on the sphere. Note that εr ∧ εϕ = εt.

With the help of this basis we can give another representation of the gradient ∇x

as well as the Laplace operator ∆x where these are decomposed into their radial
and angular parts, respectively,

∇x = εr
∂

∂r
+
1

r
∇∗ ,

where ∇∗ = εϕ
1√
1− t2

∂

∂ϕ
+ εt

√
1− t2

∂

∂t
is the surface gradient and

∆x =

(

∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗ ,

where ∆∗ =
∂

∂t
(1− t2)

∂

∂t
+

1

1− t2

(

∂

∂ϕ

)2

is the Beltrami operator.

Let D ⊂ Rn and W ⊂ Rm, n,m ∈ N. Then C(k)(D,W ) denotes the set of all
k-times continuously differentiable functions F : D → W where k ∈ N0 ∪ {∞}.
If D is additionally compact we write for F ∈ C(D,W )

‖F‖∞ := ‖F‖C(D,W ) := max
x∈D

|F (x)|.

Then, (C(D,W ), ‖·‖∞) is a Banach space.

Let now D ⊂ Rm be measurable. Lp(D,Rn) denotes the set of all equivalence
classes of almost everywhere identical functions F : D → R

n with
∫

D
|F (x)|pdx <

∞ where 1 ≤ p <∞. Note that Lp(D,Rn) equipped with the norm

‖F‖Lp(D,Rn) :=

(
∫

D

|F (x)|pdx
)1/p

10



1.2 Orthogonal Polynomials

is a Banach space.

Let us take a look at p = 2 in particular. Then L2(D,Rn) equipped with the
scalar product

〈F,G〉L2(D,Rn) :=

∫

D

F (x) ·G(x) dx, F,G ∈ L2(D,Rn),

is a Hilbert space.

Let M ⊂ X where (X, ‖·‖X) is a normed space. Then the closure of M with

respect to ‖·‖X is denoted by M
‖·‖X .

Let a function G : [−1, 1]→ R and ξ ∈ Ω be given. Then a function Gξ mapping
from Ω to R with Gξ(η) := G(ξ · η) for all η ∈ Ω is called a ξ-zonal function on
Ω.

Since |ξ − η|2 = 2 (1 − ξ · η), ξ, η ∈ Ω, a ξ-zonal function only depends on the
spherical distance to ξ.

Moreover, we get that G ∈ L2([−1, 1]) satisfies
∫

Ω

Gξ(η) dω(η) = 2π

∫ 1

−1

G(t) dt

for all ξ ∈ Ω.

1.2. Orthogonal Polynomials

In this section, we want to recapitulate the main features of Legendre and Jacobi
polynomials. A very detailed introduction to orthogonal polynomials in general
as well as to the special cases examined here can be found in [138]. Furthermore,
we will introduce orthonormal systems on the sphere as well as on the ball.

1.2.1. Legendre Polynomials

A very special but widely known and used case of orthogonal polynomials are the
so-called Legendre polynomials.

11
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Theorem 1.1 (Definition of the Legendre Polynomials)
There exists one and only one system of polynomials {Pn}n∈N0 called the Legendre
polynomials, that satisfies the following conditions:

(i) Pn is a polynomial of degree n defined on [−1, 1],

(ii)
∫ 1

−1 Pn(t)Pm(t) dt = 0 for all n,m ∈ N0 with n 6= m and

(iii) Pn(1) = 1 for all n ∈ N0.

Let us give an alternative definition of the Legendre polynomials.

Definition 1.2 (Rodriguez’s Formula)
The Legendre polynomials {Pn}n∈N0 are given by Rodriguez’s formula

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

for n ∈ N0 and t ∈ [−1, 1].

Furthermore, we have certain recurrence formulae

P ′n+1(t) = tP ′n(t) + (n + 1)Pn(t),

(t2 − 1)P ′n(t) = ntPn(t) + nPn−1(t) and

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t)

for all n ≥ 2 where P0(t) = 1 and P1(t) = t for all t ∈ [−1, 1].

Note that we get the following result for the norm.

Lemma 1.3
The L2([−1, 1])-norm of the Legendre polynomial Pn is given by

||Pn||2L2([−1,1]) =

∫ 1

−1

(Pn(t))
2 dt =

2

2n+ 1

for all n ∈ N0.

Now let us recapitulate the Clenshaw algorithm, as introduced and proven in
[29]. This recursive method is a powerful and efficient feature to numerically
evaluate linear combinations of certain polynomials which will be of great use in
our computations. Note that the Legendre polynomials fulfill the requirement of
the Clenshaw algorithm because of the third recurrence formula.

12



1.2 Orthogonal Polynomials

Theorem 1.4 (Clenshaw Algorithm)
Let a system of one-dimensional functions Tk satisfy the linear second order re-
currence relation

Tk(x)− ak(x) Tk−1(x)− bk(x) Tk−2(x) = 0

where k = 2, . . . , N , N ∈ N with N ≥ 2. T0(x) 6= 0 and T1(x) are given. More-
over, let bk(x) 6= 0 for all k = 2, . . . , N .

Then the sum

SN(x) =

N
∑

k=0

Ak(x) Tk(x)

can be calculated by

SN(x) = (A0(x) + b2(x) U2(x)) T0(x) + U1(x) T1(x)

where

UN+1(x) := UN+2(x) := 0,

Uk(x) := ak+1(x) Uk+1(x) + bk+2(x) Uk+2(x) + Ak(x) for k = N, . . . , 1.

Moreover, we have explicit representations for particular series of Legendre poly-
nomials.

Lemma 1.5
The identities

∞
∑

n=0

Pn(t) h
n =

1√
1 + h2 − 2ht

and

∞
∑

n=0

(2n+ 1) Pn(t) h
n =

1− h2

(1 + h2 − 2ht)3/2

hold for all t ∈ [−1, 1] and h ∈]− 1, 1[.

Lastly, let us introduce the associated Legendre function of degree n and order k
as

P k
n (t) := (1− t2)k/2

(

d

dt

)k

Pn(t), t ∈ [−1, 1]. (1.1)

For further details on this topic we refer to [75] and [78].

13
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1.2.2. Jacobi Polynomials

Let us define the Jacobi polynomials P
(α,β)
n as follows. Clearly, the Legendre

polynomials Pn = P
(0,0)
n are a special case hereof.

Theorem 1.6 (Definition of the Jacobi Polynomials)

There exists one and only one system of polynomials {P (α,β)
n }n∈N0, α, β > −1,

called Jacobi polynomials, that satisfies the following conditions:

(i) P
(α,β)
n is a polynomial of degree n defined on [−1, 1],

(ii)

∫ 1

−1

(1− t)α(1 + t)βP (α,β)
n (t)P (α,β)

m (t) dt = 0 for all α, β > −1 and all n,m ∈
N0 with n 6= m and

(iii) P (α,β)
n (1) =

(

n+ α

n

)

:=
Γ(n + α+ 1)

n!Γ(α + 1)
for all α > −1 and all n ∈ N0,

where Γ is the Gamma function.

For a more detailed description of the Gamma function and its properties we
refer to [1].

In the left-hand plot of Figure 1.1, we display the behavior of the Jacobi poly-
nomials P

(0,β)
m with different parameters β while α = 0. The basis systems of

L2(B) that we want to use in this work depend on Jacobi polynomials of this
type only (see Sections 1.2.4 and 1.3). Due to the definition, the extremum at
the boundary x = −1 changes for different parameters β > −1 while it stays the
same at the boundary x = 1.

On the right-hand side of Figure 1.1, we display the behavior of the Jacobi poly-
nomials P

(0,β)
m for differing parameters m. For increasing m, the number of zeros

increases, too. Secondly, the x-value of the largest zero increases.

Evaluating the integral from Theorem 1.6 (ii) we get

∫ 1

−1

P (α,β)
m (t) P (α,β)

n (t) (1− t)α (1 + t)β dt

=
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n + α + β + 1)
δmn

where δmn =

{

1 , m = n

0 , otherwise
is called the Kronecker-Delta.
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Figure 1.1.: Jacobi polynomials P
(0,β)
3 for β = 2, 3, 4 (left-hand) and P

(0,2)
m for

m = 0, 1, 2, 3, 4 (right-hand)

In addition, we get the recurrence formulae

2(n+ 1)(n+ α + β + 1)(2n+ α + β)P
(α,β)
n+1 (t)

=
[

(2n+ α+ β + 1)(α2 − β2)

+(2n+ α + β + 2)(2n+ α + β + 1)(2n+ α+ β)t]P (α,β)
n (t)

−2(n+ α)(n+ β)(2n+ α + β + 2)P
(α,β)
n−1 (t)

for all n ≥ 1 and all t ∈ [−1, 1] and

(2n+ α + β)(1− t2)
d

dt
P (α,β)
n (t)

= n [α− β − (2n+ α + β)t] P (α,β)
n (t) + 2(n+ α)(n+ β) P

(α,β)
n−1 (t)

for all n > 1 and all t ∈ [−1, 1], where

P
(α,β)
0 (t) = 1 and P

(α,β)
1 (t) =

1

2
(α + β + 2)t+

1

2
(α− β)

for all t ∈ [−1, 1].

1.2.3. Spherical Harmonics

Spherical harmonics are the restrictions of homogeneous harmonic polynomials
to the unit sphere. Thus, let us first explain what a homogeneous harmonic poly-
nomial is and then state some properties of spherical harmonics. A more detailed
introduction can be found in [65, 67, 78, 110].
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Definition 1.7 (Spherical Harmonic)
Let D be an open and connected subset in R3.

(a) A function F ∈ C(2)(D) is called harmonic if ∆xF (x) = 0 for all x ∈ D.
The set of all harmonic functions in C(2)(D) is denoted by Harm(D).

(b) A polynomial P on Rn, n ∈ N, is called homogeneous of degree m ∈ N0 if
P (λx) = λnP (x) for all x ∈ R3 and all λ ∈ R. The set of all homogeneous
polynomials of degree m on Rn is denoted by Homm(R

n).
The set of their restrictions to a subset D ⊂ Rn is defined as

Homm(D) := {P |D |P ∈ Homm(R
n)}.

(c) The set of all homogeneous harmonic polynomials on Rn with degree m ∈ N0

is denoted by Harmm(R
3).

Furthermore:

Harm0...m(R
3) :=

m
⊕

i=0

Harmi(R
3), m ∈ N0,

Harm0...∞(R
3) :=

∞
⋃

i=0

Harm0...i(R
3),

and for D ⊂ R3

Harmm(D) = {P |D | P ∈ Harmm(R
3)}, m ∈ N0,

Harm0...m(D) = {P |D | P ∈ Harm0...m(R
3)}, m ∈ N0,

Harm0...∞(D) = {P |D | P ∈ Harm0...∞(R
3)}.

(d) The elements Yn of the space Harmn(Ω), n ∈ N0, are called the scalar
spherical harmonics of degree n.

Note that dimHarmn(Ω) = 2n+ 1. Moreover, two scalar spherical harmonics of
different degrees are orthogonal in the L2(Ω)-sense, i.e.

〈Yn, Ym〉L2(Ω) =

∫

Ω

Yn(ξ) Ym(ξ) dω(ξ) = 0

if n,m ∈ N0 with n 6= m where Yn ∈ Harmn(Ω) and Ym ∈ Harmm(Ω).

Moreover, there exist other definitions of spherical harmonics.

Theorem 1.8 (Alternative Definition of Spherical Harmonics)
The spherical harmonics Yn ∈ Harmn(Ω), n ∈ N0, are the only infinitely often
differentiable eigenfunctions of the Beltrami operator ∆∗ corresponding to the
eigenvalue −n(n + 1) =: (∆∗)∧(n), where the sequence ((∆∗)∧(n))n∈N0 is called
the spherical symbol of ∆∗.
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1.2 Orthogonal Polynomials

Now we may define a complete orthonormal system in the space L2(Ω).

Definition 1.9 (Complete Orthonormal System in Harmn(Ω))
For every fixed n ∈ N0, the system {Yn,j}j=1,...,2n+1 represents an arbitrary choice
of a complete orthonormal system in the space Harmn(Ω) equipped with the scalar
product 〈·, ·〉L2(Ω), i.e.

(i) 〈Yn,k, Yn,l〉L2(Ω) = δkl, k, l = 1, . . . , 2n+ 1 and

(ii) if F ∈ Harmn(Ω) satisfies 〈F, Yn,j〉L2(Ω) = 0 for all j = 1, . . . , 2n + 1 then
F = 0.

We call n the degree and j the order of Yn,j.

The Fourier coefficients are given as the scalar product of the function with the
basis elements of L2(Ω).

Definition 1.10 (Fourier Coefficients in L2(Ω))
Let F ∈ L2(Ω). Then

F∧(n, j) := 〈F, Yn,j〉L2(Ω)

are the Fourier coefficients of F with respect to Yn,j, n ∈ N0, j = 1, . . . , 2n+ 1.

Let us consider the relation between spherical harmonics and Legendre polyno-
mials.

Theorem 1.11 (Addition Theorem of Spherical Harmonics)
Let {Yn,j}j=1,...,2n+1, n ∈ N0, be an L2(Ω)-orthonormal system in Harmn(Ω).
Then

2n+1
∑

j=1

Yn,j(ξ) Yn,j(η) =
2n+ 1

4π
Pn(ξ · η) for all ξ, η ∈ Ω.

In this work, we will use the following system of real fully normalized spherical
harmonics for ϕ ∈ [0, 2π[ and t ∈ [−1, 1] which is commonly used in geoscience:

Yn,k(ξ(ϕ, t)) :=

√

(2− δ0k)
2n+ 1

4π

(n− |k|)!
(n+ |k|)! P

|k|
n (t)

{

cos(kϕ) , k ≤ 0
sin(kϕ) , k > 0

with n ∈ N0 and k = −n, . . . , n. Note that we get the index j = 1, . . . , 2n + 1
from above using the index shift k = j − n − 1. Remember the associated Leg-
endre function P k

n (see Equation (1.1)).

Let us consider the global behavior of the spherical harmonics. We can distinguish
three types of behaviors:

17



Chapter 1 Preliminaries

Figure 1.2.: Spherical harmonics Y8,0 (left-hand), Y8,4 (middle) and Y8,8 (right-
hand)

In Figure 1.2, we display the fully normalized spherical harmonic Y8,0 on the
left-hand side. It displays the typical behavior of a zonal function which is a
particular feature of all spherical harmonics with k = 0. This type of spherical
harmonics has n colatitudinal nodes and no longitudinal ones. The spherical har-
monics with 0 6= |k| 6= n, displayed in the middle of Figure 1.2 in the case of Y8,4,
are called tesseral. They have n − |k| colatitudinal nodes and 2|k| longitudinal
ones. The spherical harmonics with |k| = n, as for example Y8,8 on the right-hand
side of Figure 1.2, are called the sectorial functions. They have no colatitudinal
nodes and 2n longitudinal ones.

Note that all spherical harmonics have a global character. From a theoretical
point of view, we can attribute that to the fact that spherical harmonics are
based upon polynomials. Thus, these functions are determined to approximate
global trends on the sphere and help to construct a basis system of L2(B) to
approximate global trends on the ball, too (see Section 1.2.4). To approximate
detail structures on the ball we will use localized kernel functions which will be
introduced in Section 1.3.

1.2.4. An Orthonormal System on the Ball

Let us denote the closed ball with radius a > 0 by B = {x ∈ R3| |x| ≤ a}. From
now on, a := 6371 km denotes the Earth’s radius.

Definition 1.12 (Direct Sum, Orthogonal Complement)
Let H, H1 and H2 be Hilbert spaces.

(i) The direct sum of H1 and H2 is defined as H1⊕H2 where for all x ∈ H1⊕H2

exactly one y ∈ H1 and exactly one z ∈ H2 exist such that x = y + z.

(ii) Let V ⊂ H be closed. Then the orthogonal complement of V is defined as
V ⊥H := {x ∈ H | 〈x, v〉H = 0 for all v ∈ V }.
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1.2 Orthogonal Polynomials

Theorem 1.13 (Decomposition of a Hilbert Space)
Every Hilbert space H can be decomposed orthogonally as H = V ⊕ V ⊥H where
V is a closed linear subspace of H.

Every function in L2(B) can be decomposed uniquely into a harmonic and an
anharmonic part (see [102]).

Theorem 1.14 (Decomposition of L2(B))
The space L2(B) can be decomposed orthogonally as

L2(B) = Harm(B)⊕Harm(B)⊥L2(B)

where Harm(B)⊥L2(B) is denoted by Anharm(B). The elements of Anharm(B) are
called anharmonic.

The following complete orthonormal system in L2(B) allows such a decomposition
easily.

Theorem 1.15 (Complete ONS in L2(B): Type I)
A complete orthonormal system in the space L2(B) is given by

GI
m,n,j(x) :=

√

4m+ 2n + 3

a3
P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)( |x|
a

)n

Yn,j

(

x

|x|

)

where m,n ∈ N0, j = 1, . . . , 2n+ 1 and x ∈ B.

Theorem 1.16 (Complete ONS in L2(B): Type II)
Another complete orthonormal system in the space L2(B) is given by

GII
m,n,j(x) :=

{ √

2m+3
a3

P
(0,2)
m

(

2 |x|
a
− 1
)

Yn,j

(

x
|x|

)

, if x 6= 0

1 , if x = 0

where m,n ∈ N0, j = 1, . . . , 2n+ 1 and x ∈ B.

Let us refer to [11, 50, 66, 102, 106] for the basis system of type I and to [5, 6, 146]
for the basis system of type II.

The complete orthonormal system of type I can be divided into harmonic and
anharmonic functions where the functions corresponding to m = 0 are the har-
monic ones. Thus, we can easily reproduce, for example, only the harmonic part
of a function with this orthonormal system. Furthermore, every function is a
polynomial and well-defined in x = 0.

Spline and wavelet bases constructed from the complete orthonormal system of
type II can be divided into an angular and a radial part. Thus, this system is
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more convenient in numerical applications. As a disadvantage, the functions are
not defined in x = 0 for n > 0 and we have to set the values of the function to
an arbitrarily chosen value. However, these functions display a discontinuity at
the source x = 0.

In Figure 1.4, we display GI
2,4,2 and G

II
2,4,2 on the x2-x3-plane of the ball B, i.e.

on an equatorial cut through B (see Figure 1.3). In the plots concerned with
the basis function of type II we can clearly see the discontinuity at x = 0. The
lower right-hand plot in Figure 1.4 displays GII

2,4,2 in the area of the ball that we
will later consider in our numerical application when reconstructing the density
distribution of the Earth in the mantle area based on data given by normal
mode anomalies. Clearly, the difficulties near the center of the ball are of no
consequence in our applications.

Figure 1.3.: Equatorial cut through the ball B

Let us define the Fourier coefficients with respect to the basis of the space L2(B):

Definition 1.17 (Fourier Coefficients in L2(B))
Let F ∈ L2(B). Then

F∧(m,n, j) := 〈F,Gm,n,j〉L2(B)

are the Fourier coefficients of F with respect to Gm,n,j, m, n ∈ N0, j = 1, · · · , 2n+
1.

If we write Gm,n,j both types I and II can be used. However, the choice has to
be fixed for all considerations.
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1.2 Orthogonal Polynomials

Figure 1.4.: Basis functions GI
2,4,2 (upper left-hand) and G

II
2,4,2 (upper right-hand)

in the x2-x3-plane (see Figure 1.3); GII
2,4,2 with adjusted colorbar

(lower left-hand) and plotted in the mantle area only (lower right-
hand) in the x2-x3-plane
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1.3. Kernel Functions

As mentioned before, we use the basis functions of the space L2(B), introduced in
Section 1.2.4, to reconstruct global trends of the target function. In this section,
we introduce localized kernel functions (see [5, 17, 19, 103, 105, 106]) that we will
use to reconstruct detail structures of the target function.

Definition 1.18 (Product Kernel)
A function K ∈ L2(B × B) is called a product kernel if it has the form

K(x, y) =
∞
∑

m=0

∞
∑

n=0

2n+1
∑

j=1

K∧(m,n) Gm,n,j(x) Gm,n,j(y) (1.2)

where x, y ∈ B, provided that all Gm,n,j belong to the same type, i.e. type I or
type II.

We will mark the kernel functions KI and KII with an index according to the
basis functions that we use to construct them. (K∧(m,n))m,n∈N0 is called the
symbol of K.

Note that, for numerical reasons, we have to truncate the series, i.e. we truncate
the summation over k at Ek. In our applications, we use the Abel-Poisson symbol
K∧(m,n) = (Ah

m,n)
2 = (Ah

mA
h
n)

2 where we define for fixed h ∈]0, 1[

Ah
k =

{

hk/2 , k ≤ Ek

0 , otherwise
, k ∈ N.

Thus, h is a parameter to influence the localizing character of the kernel function.
The hat-width decreases for h getting closer to 1. The peak of y 7→ K(x, y) is
centered at x and the values decrease the larger the distance between x and y is
(see Figure 1.5). In this work, we endow the kernel functions with an additional
index h to specify the localization property, i.e. we use the notation Kh(x, ·) for
the kernel function centered at x. For the explicit representation of the kernel
functions we refer to Section 3.5.

However, we need to know whether the series in Equation (1.2) converges. Thus,
let us state the following result given in [106].

Theorem 1.19 (Convergence of Equation (1.2))
The series in Equation (1.2) converges in the space L2(B × B) if and only if

∞
∑

m=0

∞
∑

n=0

n (K∧(m,n))
2
<∞.
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It converges uniformly on B × B if

in the case of type I:

∞
∑

m=0

∞
∑

n=0

|K∧(m,n)| n(2m+ n)
(n +m+ 1

2
)2m

(m!)2
<∞ or

in the case of type II:

∞
∑

m=0

∞
∑

n=0

|K∧(m,n)| nm5 <∞.

Let us document the localizing character of the kernel functions. In Figure 1.5,
we display the localizing character in angular direction for different parameters
h for both types KI

h and K
II
h . As we mentioned before, the localization property

advances with increasing h. However, the kernel function of type I seems to be
more localized on the sphere ∂B than the kernel function of type II.

Furthermore, we can observe a localizing effect in radial direction, too. In Figure
1.6, we display the equatorial plane (i.e. the x2-x3-plane, confer Figure 1.3) of
the ball B for KI

h(x, ·) and KII
h (x, ·), x = (0, 0.5, 0)a, for different parameters h.

Note that the form of the hat of the kernel functions differs.

In Figure 1.7, we display the kernel functions KI
0.8(x, ·) and KII

0.8(x, ·) at points
x = rξ in the equatorial plane for changing radial distances r. Note the differences
of localizing behavior in regard to the local effects near the center x of the kernels.

Using Lemma 1.5, we get another representation of the kernel function of type
II:

KII
h (x, y) =

∞
∑

m=0

∞
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 GII
m,n,j(x) G

II
m,n,j(y)

=

(

∞
∑

m=0

hm
2m+ 3

a3
P (0,2)
m

(

2
|x|
a
− 1

)

P (0,2)
m

(

2
|y|
a
− 1

)

)

×
(

∞
∑

n=0

hn
2n+ 1

4π
Pn

(

x

|x| ·
y

|y|

)

)

=
1− h2

4π
(

1 + h2 − 2h
(

x
|x| ·

y
|y|

))3/2

×
(

∞
∑

m=0

hm
2m+ 3

a3
P (0,2)
m

(

2
|x|
a
− 1

)

P (0,2)
m

(

2
|y|
a
− 1

)

)
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Figure 1.5.: Kernel functions KI
h(x, ·) (top row) and KII

h (x, ·) (bottom row) for
x = (0,−1, 0)a on the sphere ∂B with h = 0.5 (left-hand), h = 0.8
(middle) and h = 0.9 (right-hand)

Figure 1.6.: Kernel functions KI
h(x, ·) (top row) and KII

h (x, ·) (bottom row) on
the x2-x3-plane (see Figure 1.3) for x = (0, 0.5, 0)Ta with h = 0.5
(left-hand), h = 0.8 (middle) and h = 0.9 (right-hand)
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1.4 Inverse Problems

Figure 1.7.: Kernel functions KI
h(x, ·) (top row) and KII

h (x, ·) (bottom row) on
the x2-x3-plane (see Figure 1.3) with h = 0.8 at x = (0, 0.9, 0)Ta
(left-hand), x = (0, 0.7, 0)Ta (middle) and x = (0, 0.2, 0)Ta (right-
hand)

1.4. Inverse Problems

If we want to obtain the original model (the cause) from observed data (the
effect) we deal with an inverse problem. In a mathematical formulation, we get
the following definition.

Definition 1.20 (Inverse Problem)
A mathematical model is a mapping A : X → Y where the set of causes X is
mapped to the set of effects Y. If we compute the effect directly from the causes
we have a direct problem, i.e. we compute Ax for x ∈ X. If we try to find the
cause from the effects we have an inverse problem, i.e. for given y ∈ Y we find
x ∈ X such that Ax = y.

Hadamard molded the concept of well-posed problems (see [73]).

Definition 1.21 (Well-Posedness (Hadamard))
Let A : X → Y be a mapping between the topological spaces X and Y . The
problem (A,X, Y ) is well-posed if the following three properties are fulfilled:

(i) The equation Ax = y can be solved for every y ∈ Y .

(ii) This solution is uniquely determined.

(iii) The inverse mapping A−1 : Y → X is continuous, i.e. the solution depends
continuously on the data.
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If one of these properties is not fulfilled, the problem is ill-posed.

Hadamard believed that mathematical models of physical phenomena should al-
ways be well-posed (see [124]). Only incorrect or incomplete models could result
in an ill-posed problem. However, this belief is wrong, since most real-world
problems are typically ill-posed. Often the third property cannot be fulfilled, for
example, if the data is not given exactly but is given by measurements. Even
small measurement errors can lead to enormous reconstruction errors if a problem
is ill-posed.

If we switch to a Hilbert space setting, we may generalize the concept of the
solution of an operator equation such that only item (iii) in Definition 1.21 is
critical anymore. Then a problem (A,X, Y ) in a Hilbert space setting is ill-posed
if the range of A in Y is not closed.

Let us first shortly introduce the more general concept of the Moore-Penrose
inverse and list some of its properties. For a more detailed introduction on this
topic, we refer to [53, 124].

Definition 1.22 (Moore-Penrose Inverse)
Consider the problem (A,X, Y ) between Hilbert spaces.

(i) Let R(A) ⊂ Y be the range of A.

(ii) A∗Ax = A∗y is called normal equation where A∗ is the adjoint operator of
A, i.e. 〈Ax, y〉Y = 〈x,A∗y〉X for all x ∈ X and y ∈ Y .

(iii) The operator A+ : R(A)⊕R(A)⊥ → X mapping each element y ∈ R(A)⊕
R(A)⊥ ⊂ Y to the unique element x+ ∈ {x ∈ X | A∗Ax = A∗y} with
minimimal norm is called generalized inverse or Moore-Penrose inverse of
A.

Theorem 1.23 (Properties of A+)
The Moore-Penrose inverse fulfills the following properties:

(a) If y ∈ R(A)⊕R(A)⊥ then x+ = A+y is the unique solution of the normal
equation in N (A)⊥ := {x ∈ X | Ax = 0}⊥.

(b) R(A)⊕R(A)⊥ = Y if and only if the range R(A) of A is closed.

(c) R(A+) = N (A)⊥

(d) A+ is continuous if and only if the range R(A) of A is closed.
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1.5 Foundations of Functional Analysis

Remember the definition of well-posedness by Hadamard (see Definition 1.21):
the problem (A,X, Y ) is well-posed if the inverse of A exists, is unique and
continuous. All three are fulfilled by A+ if and only if R(A) = R(A). This
justifies an alternative definition of well-posedness by Nashed (see [111]) for the
special case of a Hilbert space setting.

Definition 1.24 (Well-Posedness (Nashed))
Let A : X → Y be a mapping between the Hilbert spaces X and Y . The problem
(A,X, Y ) is well-posed if the range of the operator A is closed. Otherwise, it is
called ill-posed.

In order to solve an ill-posed problem we can use a regularization technique to
include additional information. Usually, this additional information is a penalty
for complexity. In this work, we use a restriction on the smoothness of the so-
lution. A simple form of regularization applied to integral equations, generally
termed the Tikhonov regularization, is essentially a trade-off between fitting the
data, i.e. reducing the approximation error, and reducing a norm of the solution,
i.e. the penalty term.

For further details we refer to, e.g. [53, 124].

1.5. Foundations of Functional Analysis

In this section, we recall some well-known definitions and results from the fields
of analysis and functional analysis. We will only introduce those that are needed
in later sections. For a more detailed introduction we refer to [4, 76, 157].

First let us state a very important inequality.

Theorem 1.25 (Cauchy-Schwarz Inequality)
Let X be an inner product space. For all x, y ∈ X the following inequality holds

|〈x, y〉X| ≤ ||x||X ||y||X

where || · ||X is the induced norm of the scalar product 〈·, ·〉X.

To prove the convergence of the regularized versions of the algorithms that we will
develop in this work we need the concepts of weak convergence, strong continuity,
weak sequential closedness, and minimum-norm solutions.
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Definition 1.26
Let X and Y be Hilbert spaces and F : D(F) ⊂ X → Y be an operator.

(a) A sequence (xn)n ⊂ X converges weakly to x ∈ X if

〈xn, y〉X → 〈x, y〉X as n tends to infinity for all y ∈ X.

We use the usual notation xn ⇀ x for weak convergence.

(b) F is strongly continuous if xn ⇀ x ∈ X implies F(xn)→ F(x) ∈ Y for n
tending to infinity.

(c) F is weakly sequentially closed if we can conclude that x ∈ D(F) and
F(x) = y for all sequences (xn)n ⊂ D(F) where xn converges weakly to
x ∈ X and F(xn) converges weakly to y ∈ Y for n tending to infinity.

(d) F+ is called a minimum-norm solution of FF = y if

||F+||X = min
FF=y

F∈D(F)

||F ||X.

Note that every strongly continuous operator is weakly sequentially closed, too.
Moreover, x+ in Definition 1.22 is, obviously, a minimum-norm solution in the
sense of this definition.

Furthermore, let us state that any continuous function on a closed and bounded
interval can be uniformly approximated on that interval by polynomials to any
degree of accuracy (see [58]).

Theorem 1.27 (Weierstraß Approximation Theorem)
Let F be a continuous real-valued function on the interval [a, b]. For every ε > 0
there exists a polynomial P on [a, b] such that |F (x)−P (x)| < ε for all x ∈ [a, b].

Moreover, the following two results will be needed (see, e.g. [77, 153]).

Theorem 1.28 (Bolzano-Weierstraß Theorem)
Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Theorem 1.29
Let (xn)n ⊂ H converge weakly to x ∈ H for n tending to infinity where H is a
Hilbert space. Then

||x||H ≤ lim inf
n→∞

||xn||H.

The following result is given in [158].
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1.6 Sobolev Spaces

Theorem 1.30
Every linear and compact operator is strongly continuous.

Furthermore, let us recapitulate the requirements for an exchange of a derivative
and an integral, i.e. we want to use

d

dt

∫

E

f(x, t) dx =

∫

E

∂

∂t
f(x, t) dx

where f : E × I → R is integrable and I is an interval. For further details on
this topic, we refer to [101].

Theorem 1.31 (Differentiation under the Integral Sign)
Let f : E × I → R be summable over the set E for each fixed t in the interval I
and let t0 ∈ I be a value of t. Let the following conditions be fulfilled:

(i) There exists an integrable function g such that for all t ∈ I and all x ∈ E
∣

∣

∣

∣

f(x, t)− f(x, t0)

t− t0

∣

∣

∣

∣

≤ g(x).

(ii) The partial derivative
∂

∂t
f(x, t)|t=t0 exists for all x ∈ E \ E0 where E0 is a

set of measure 0.

Then the derivative of the integral corresponding to t0 exists and

(

d

dt

∫

E

f(x, t) dx

)∣

∣

∣

∣

t=t0

=

∫

E\E0

∂

∂t
f(x, t)

∣

∣

∣

∣

t=t0

dx.

Note that all integrals in this work are Lebesgue integrals.

1.6. Sobolev Spaces

In this section, we want to define Hilbert spaces of functions on the ball B such
that they have a reproducing kernel and we recover a basis system of the space
L2(B) consisting of such reproducing kernels (see [106]). For theoretical results
on the related version of such spaces defined on the sphere (Sobolev spaces), see
[15, 61, 62, 63, 64, 68]. Please remember the definition of a product kernel (see
Definition 1.18).

First, let us introduce reproducing kernels.
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Definition 1.32 (Reproducing Kernel)
Let H be a Hilbert space of real functions on the subset D ⊂ Rn. KH : D×D → R

is a reproducing kernel if

(a) KH(x, ·) ∈ H for all x ∈ D and

(b) 〈KH(x, ·), F 〉H = F (x) for all x ∈ D and all F ∈ H.

For further details on reproducing kernels in general we refer to [39]. For details
on the setting of a three-dimensional ball see, e.g. [5, 6, 17].

Definition 1.33 (I/II-Summability)
A real sequence (K∧(m,n))m,n∈N0 is I-summable if

∞
∑

m=0

∞
∑

n=0

(K∧(m,n))
2
n(2m+ n)

(n +m+ 1
2
)2m

(m!)2
<∞.

It is called II-summable if

∞
∑

m=0

∞
∑

n=0

(K∧(m,n))
2
nm5 <∞.

Note the similarity to the requirements in Theorem 1.19. From now on, all
sequences (K∧(m,n))m,n∈N0 are assumed to be summable with respect to the
corresponding type I or II.

Definition and Theorem 1.34
Let the given (non-trivial) sequence (K∧(m,n))m,n∈N0 satisfy the respective summa-
bility condition. The function F is an element of the Hilbert (Sobolev) space
H = H((K∧(m,n)),B) if and only if F is function in L2(B) with

(i) 〈F,Gm,n,j〉L2(B) = 0 for all m,n ∈ N0 and j = 1, . . . , 2n+1 with K∧(m,n) =
0,

(ii)
∞
∑

m,n=0
K∧(m,n) 6=0

(K∧(m,n))−2
2n+1
∑

j=1

〈F,Gm,n,j〉2L2(B) <∞,

where the type of the summability condition matches the considered type of basis
functions Gm,n,j.
The scalar product is defined as

〈F1, F2〉H :=

∞
∑

m,n=0
K∧(m,n) 6=0

(K∧(m,n))
−2

2n+1
∑

j=1

〈F1, Gm,n,j〉L2(B)〈F2, Gm,n,j〉L2(B)

where F1, F2 ∈ H.
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1.6 Sobolev Spaces

In accordance to the spherical case, every element of the Hilbert space H can be
related to a continuous bounded function.

Theorem 1.35 (Sobolev Lemma)
Every space H in Definition 1.34 is a subspace of C(B \ {0}). If we use the basis
system of type I, H is also a subspace of C(B).

As a result of the proof to this theorem, we get for F ∈ H the estimate

||F ||2C(B)

≤
(

∞
∑

m=0

∞
∑

n=0

(K∧(m,n))2
(2n+ 1)(4m+ 2n+ 3)

4πa3

(

m+ n+ 1
2

m

)2
)

||F ||2H (1.3)

for type I.

Theorem 1.36 (Reproducing Kernel)
Every H((K∧(m,n)),B) in Definition 1.34 is a reproducing kernel Hilbert space.
The corresponding reproducing kernel is the product series associated to the se-
quence ((K∧(m,n))2)m,n∈N0, i.e.

KH(x, y) =
∞
∑

m=0

∞
∑

n=0

2n+1
∑

j=1

(K∧(m,n))
2
Gm,n,j(x)Gm,n,j(y)

for x, y ∈ B.

At last, let us state a few density results for the kernel functions of type I.
Ultimately, we will show in the third result that the reproducing kernels of type
I build a basis in L2(B). The ideas of the proofs follow those of the spherical
setting. Nonetheless, as far as we know, these results are new.

Theorem 1.37 (Denseness in H)
Let X ⊂ B be countable and dense. Then the system {KI

H(x, ·) | x ∈ X} is closed
(in the sense of the approximation theory) in (H, || · ||H), i.e.

span{KI
H(x, ·) | x ∈ X}

||·||H
= H.

Proof.

We know that span{KI
H(x, ·) | x ∈ X}

||·||H
is a closed subset of H. Thus, we can

decompose the space H as follows (see Theorem 1.13):

H = span{KI
H(x, ·) | x ∈ X}

||·||H ⊕
(

span{KI
H(x, ·) | x ∈ X}

||·||H
)⊥H

.

To prove the theorem, we need to show that the space on the right-hand side of
this direct sum only contains the function that is identical to 0.
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Let us start with an arbitrary function

F ∈
(

span{KI
H(x, ·) | x ∈ X}

||·||H
)⊥H

⊂ H ⊂ C(B).

Obviously, we get for all functions G ∈ span{KI
H(x, ·) | x ∈ X}

||·||H
that the scalar

product vanishes, i.e.

〈F,G〉H = 0.

In particular, it follows that 〈F,KI
H(x, ·)〉H = 0 for all x ∈ X . Since KI

H(x, ·) is
a reproducing kernel we conclude that F (x) = 0 for all x ∈ X .

Let us assume that there exists a point y ∈ B where F (y) 6= 0. Since F is a
continuous function we conclude that there exists an open neighborhood U of y
where the function F does not vanish. However, X is a dense subset of B and,
thus, there exists a point x ∈ X where the function F does not vanish either, i.e.
F (x) 6= 0, which is a contradiction to the explanations above.

Thus, the function F is identical to 0 and we getH = span{KI
H(x, ·) | x ∈ X}

||·||H
.

�

Note that this result is certainly true for the kernel functions of type II, too.

Theorem 1.38 (Denseness in C(B))
Let X ⊂ B be countable and dense and let K∧(m,n) 6= 0 for all m,n ∈ N0. Then
the system {KI

H(x, ·) | x ∈ X} is closed in (C(B), || · ||C(B)),i.e.

span{KI
H(x, ·) | x ∈ X}

||·||C(B)
= C(B).

Proof.
First of all we know that

{

GI
m,n,j

}

m,n∈N0,j=1,...,2n+1
⊂ H ⊂ C(B),

since K∧(m,n) 6= 0 for all m,n ∈ N0.

Secondly, {GI
m,n,j}m,n∈N0,j=1,...,2n+1 is a basis of the space of all polynomials on B

(see [102] for the anharmonic part where the results for the harmonic part can be
shown analogously). With the help of the Weierstraß Approximation Theorem
(see Theorem 1.27), we conclude that

span
{

GI
m,n,j

}

m,n∈N0,j=1,...,2n+1

||·||C(B)

= C(B) and, thus, H||·||C(B) = C(B).
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1.6 Sobolev Spaces

Now, we conclude for F ∈ C(B) and ε > 0 that there exists a function G ∈ H
such that ||F −G||C(B) <

ε
2
.

From Theorem 1.37, we know that there exists a functionH ∈ span{KI
H(x, ·) | x ∈

X} such that

||G−H||H <
ε

2

(

∞
∑

m=0

∞
∑

n=0

(K∧(m,n))2
(2n+ 1)(4m+ 2n+ 3)

4πa3

(

m+ n+ 1
2

m

)2
)−1/2

.

With the Sobolev Lemma (see Theorem 1.35) and Inequality (1.3), we conclude
that

||G−H||C(B) ≤
(

∞
∑

m=0

∞
∑

n=0

(K∧(m,n))2
(2n+ 1)(4m+ 2n+ 3)

4πa3

(

m+ n+ 1
2

m

)2
)1/2

× ||G−H||H
<

ε

2
.

Let us summarize these results:

||F −H||C(B) ≤ ||F −G||C(B) + ||G−H||C(B) < ε.

Thus, the system {KI
H(x, ·) | x ∈ X} is closed in (C(B), || · ||C(B)).

�

Theorem 1.39 (Denseness in L2(B))
Let X ∈ B be countable and dense and let K∧(m,n) 6= 0 for all m,n ∈ N0. Then
the system {KI

H(x, ·) | x ∈ X} is closed in (L2(B), || · ||L2(B)),i.e.

span{KI
H(x, ·) | x ∈ X}

||·||L2(B)
= L2(B).

Proof.
First, let us prove that C(B)||·||L2(B) = L2(B).

Let B′ be an open ball that includes B. All continuous functions F defined on B
can be extended continuously into B′, i.e. by F (rξ) := F (aξ) for all r > a. The-
orem 3.2.2 of [151] yields that {ϕ ∈ C∞(B′) | supp ϕ ⊂ B′ is compact} ⊂ C(B′)
is dense in L2(B′). Thus, C(B′)|B is dense in L2(B), too, where C(B′)|B :=
{F |B | F ∈ C(B′)}. Since any continuous function on B′ is continuous on the
subset B we conclude that C(B) is dense in L2(B).

For all F ∈ C(B) we get that

||F ||L2(B) =

√

4πa3

3
||F ||C(B).
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Let F ∈ L2(B) and ε > 0. Since C(B) is dense in L2(B) there exists a function
G ∈ C(B) such that

||F −G||L2(B) <
ε

2
.

From Theorem 1.38, we know that there exists a functionH ∈ span{KI
H(x, ·) | x ∈

X} such that

||G−H||C(B) <
ε

2
√

4πa3

3

.

As a summary of the above estimates, we conclude that

||F −H||L2(B) ≤ ||F −G||L2(B) + ||G−H||L2(B)

≤ ||F −G||L2(B) +

√

4πa3

3
||G−H||C(B)

< ε

and, thus, we have a basis system of L2(B) consisting of reproducing kernel func-
tions of type I.

�

1.7. Point Grids

In our computations, we will use two different types of point grids on the sphere.
We will use the equiangular Driscoll-Healy grid, introduced in [49], and the
equidistributed Reuter grid, introduced in [123].

Definition 1.40 (Driscoll-Healy Grid)
A Driscoll-Healy grid on the unit sphere is given by polar coordinates (ϕi, ϑj).
After choosing a control parameter γ ∈ N we have

(i) ϕi = i 2π
γ+1

and

(ii) ϑj = j π
γ+1

for i, j = 0, . . . , γ.

The Driscoll-Healy grid is an equiangular grid with γ2 + 1 points. Note that
the density of the points is much higher at the poles than at the equator (see
left-hand side of Figure 1.8). Moreover, the Driscoll-Healy grid is based on the
commonly used geographical grid of the Earth in terms of longitude and latitude
which is why data is often given in terms of this grid.
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1.7 Point Grids

Figure 1.8.: Driscoll-Healy grid (left-hand) and Reuter grid (right-hand) with pa-
rameter γ = 20

Definition 1.41 (Reuter Grid)
A Reuter grid on the unit sphere is given by the polar coordinates (ϕij, ϑj). After
choosing a control parameter γ ∈ N we have

(i) ϑ0 = 0 and ϕ01 = 0 at the North Pole,

(ii) ∆ϑ = π
γ
,

(ii) ϑi = i∆ϑ for 1 ≤ i ≤ γ − 1,

(iv) γi =





2π

arccos
(

cos∆ϑ−cos2 ϑi

sin2 ϑi

)



, where the Gauß bracket [x] denotes the largest

integer less than or equal to x,

(v) ϕij =
(

j − 1
2

)

2π
γi

for 1 ≤ j ≤ γi and

(vi) ϑγ = π and ϕγ1 = 0 at the South Pole.

The control parameter γ + 1 gives the number of equidistributed latitudes. The
points on each latitude are constructed such that two adjacent points have the
same spherical distance as two adjacent latitudes. Thus, we get an equidistributed
grid with N(γ) ≤ 2 + 4

π
γ2 points (see right-hand side of Figure 1.8).
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2. Basic Problems

We want to reconstruct the mass density distribution of the Earth. It is rather
self-evident to consider gravitational data that is assembled by numerous satel-
lite missions. However, we can only reconstruct the harmonic part of the density
distribution out of gravitational data (see Section 2.1 and, e.g. [50, 94, 118, 119,
152]). For an approximation of the anharmonic part it is sensible to use seismic
data.

However, a joint inversion of gravitational and seismic data has only rarely been
realized. In [60, 81], a combination of gravitational data with normal mode data
and travel time data was inverted. However, in recent years, research has appar-
ently been more concerned with the joint inversion of only two out of these three
data types, see [40, 43, 90, 129, 130] for a combination of travel times and grav-
itational data, [17, 18, 19, 82, 95] for a combination of normal mode anomalies
and gravitational data, and [84, 87] for joint inversions of normal mode anomalies
and travel times. Although, we present here a combination of gravitational and
normal mode data the presented method is capable to handle a joint inversion of
all three considered data types, too, which we will realize in our further research.

In order to fully understand the problem we will give a brief introduction to
inverse gravimetry and normal mode tomography. For a more detailed introduc-
tion, we refer to [17] and the references therein.

2.1. Inverse Gravimetry

We already mentioned that it is quite obvious to use gravitational data to recon-
struct the mass density distribution of the Earth. Newton’s Law of Gravitation
states the link between the gravitational potential V and the density distribution
ρ as

V (x) = γ

∫

B

ρ(y)

|x− y| dy, x ∈ R
3 \ B, (2.1)

where γ is the gravitational constant. Note that we can only reconstruct the
harmonic part of the mass distribution ρ from the gravitational potential V ,
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since the operator T : L2(B)→ T (L2(B)), where

(TF )(x) :=

∫

B

F (x)

|x− y| dy for x ∈ R
3 \ B,

has the anharmonic subspace of L2(B) as its null-space (see [50, 94, 118, 119, 152]).

Figure 2.1.: Gravitational potential given by EGM2008 for the whole Earth up
to degree 2,190 and order 2,159

In our numerical applications, we use the spherical harmonics model of the Earth’s
gravitational potential given by the NASA and NIMA joint geopotential model
EGM2008 as data input (see [117]). We use EGM2008 from degree 3 up to degree
2,190 and order 2,159 to create a data set that is given pointwise. Out of this
data set we want to reconstruct the harmonic part of the density variation at
the surface. In our applications, we concentrate on reconstructing the density
distribution of South America as a case study. In the Figures 2.1 and 2.2, we
display the given data, i.e. the gravitational potential of the whole Earth and
South America, in particular, slightly above the surface of the Earth. Clearly,
some of the main structures can already be discerned. However, these structures
are overlaid with fog that we will eviscerate with our method.
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2.1 Inverse Gravimetry

Figure 2.2.: Gravitational potential given by EGM2008 for South America up to
degree 2,190 and order 2,159
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Let us represent the functionals that map the density to the gravitational poten-
tial in terms of both kinds of L2(B)-basis systems defined in the Definitions 1.15
and 1.16.

In Terms of Type I:

We are interested in the functional for the gravitational potential

Fk
G ρ :=

∫

B

ρ(y)

|xk − y| dy

where ρ ∈ L2(B) is mapped to R and xk ∈ R3 \B. Furthermore, in [103], a series
representation is derived which we use in our considerations:

Fk
G ρ =

∞
∑

n=0

2n+1
∑

j=1

4π

2n+ 1

√

a3

2n + 1

〈

ρ,GI
0,n,j

〉

L2(B)

(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

.

In Terms of Type II:

[19] gives us a representation of the mass density ρ as the unique twice differ-
entiable solution of Equation (2.1) in B with respect to the constraint that the
mass density ρ is harmonic in the interior of B, i.e. ∆ρ = 0:

ρ =

∞
∑

n=0

n
∑

m=0

2n+1
∑

j=1

2n+ 1

4π

(

n
∑

l=0

(2l + 3)

(

n!(n + 2)!

(n− l)!(n + 3 + l)!

)2
)−1

(2.2)

×
√

2m+ 3

a

n!(n+ 2)!

(n−m)!(n + 3 +m)!
Vn,j G

II
m,n,j.

Since the gravitational potential V is harmonic outside the gravitating body and
regular at infinity we can expand it in terms of outer harmonics for x ∈ R

3 \ B:

V (x) =
∞
∑

n=0

2n+1
∑

j=1

Vn,j

(

a

|x|

)n+1

Yn,j

(

x

|x|

)

.

If we consider now that the mass density distribution ρ can also be represented
in terms of the basis elements

ρ =

∞
∑

n=0

∞
∑

m=0

2n+1
∑

j=1

〈ρ,GII
m,n,j〉L2(B)G

II
m,n,j

we get from Equation (2.2) a representation for Vn,j, i.e.
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Vn,j =
4π

2n+ 1

(

n
∑

l=0

(2l + 3)

(

n!(n+ 2)!

(n− l)!(n+ 3 + l)!

)2
)

×
√

a

2m+ 3

(n−m)!(n+ 3 +m)!

n!(n + 2)!
〈ρ,GII

m,n,j〉L2(B)

where n ∈ N0, j = 1, . . . , 2n+ 1 and m ∈ {0, . . . , n}.

A harmonic function is given by its values at the surface. Thus, it is for all
pairs (n, j) enough to calculate the scalar product 〈ρ,GII

m̃,n,j〉L2(B) for one m̃ ∈
{0, . . . , n} to obtain Vn,j uniquely since the parameter m̃ corresponds exclu-
sively to the radial part of the basis function (see Definition 1.16). This al-
lows us to calculate the other expansion coefficients of the mass density ρ for
m ∈ {0, . . . , n} \ {m̃} out of 〈ρ,GII

m̃,n,j〉L2(B).

Let now µ(n) ∈ {0, . . . , n} be the chosen value for m̃. Then a functional mapping
ρ ∈ L2(B) to V (xk) ∈ R can be written as

Fk
Gρ =

∞
∑

n=0

2n+1
∑

j=1

4π

2n+ 1

(

n
∑

l=0

(2l + 3)

(

n!(n+ 2)!

(n− l)!(n+ 3 + l)!

)2
)

×
√

a3

2µ(n) + 3

(n− µ(n))!(n+ 3 + µ(n))!

n!(n+ 2)!

×〈ρ,GII
µ(n),n,j〉L2(B)

(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

.

Application to Density Deviations:

Since there already exist approximate models of the mass density distribution of
the Earth - for example PREM (see [51]) - it is useful to apply the functionals to
the deviation δρ = ρ − ρM as the difference of the mass density and the density
of a reference model.
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Chapter 2 Basic Problems

Thus, we need to calculate the gravitational potential Vδ associated to this devi-
ation. For instance, in a radially symmetric model we have for all x ∈ R3 \B and

the gravitational constant γ = 6.6739 · 10−20 cm
3

g · s2 that

Vδ(x) = γ

∫

B

δρ(y)

|x− y| dy

= γ

∫

B

ρ(y)− ρM(|y|)
|x− y| dy

= V (x)− γ
4π

|x|

∫ a

0

r2ρM(r) dr.

For PREM as a reference model, we get Vδ(x) = V (x)− γ 4πa3

3|x| 5.5134
g

cm3
(see

[102]).

Note that this is an ill-posed problem.

2.2. Normal Mode Tomography

Free oscillations - or normal modes - of the Earth can be observed after major
earthquakes, for example the Sumatra earthquake on December 26, 2004, and
give in-depth information about the density structure of the Earth. Most impor-
tantly, with this data we may gain information about the anharmonic part of the
density as well. Thus, by a joint inversion of normal mode data and gravitational
data it is possible to derive an advanced Earth model.

Normal modes are separated into spheroidal modes kSl and toroidal modes kTl.
Here, the index k ∈ N0 denotes the overtone of the mode and the index l denotes
that the mode is related to the spherical harmonic of degree l ∈ N0, i.e. Yl,m where
m = 1, . . . , 2l + 1. Spheroidal modes produce motion both in the perpendicular
direction and parallel to the surface of the Earth. Therefore, they can be seen
in both vertical and horizontal components of a seismogram. Only spheroidal
modes are both sensitive to the inner core and observable at the surface of the
Earth.

In a spherically symmetric, non-rotating, isotropic Earth model (SNREI model)
the frequency of the modes is independent of the order m. Thus, we have 2l + 1
modes with the same frequency, i.e. each mode consists of a (2l + 1)-fold degen-
erate multiplet, whose singlets all have the same frequency. As a consequence,
each mode contributes a single peak to the seismogram.
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2.2 Normal Mode Tomography

However, the Earth deviates from the SNREI model, e.g. due to the elliptical
shape, lateral heterogeneity or anisotropies within the Earth. These deviations
remove the degeneracy of the normal modes such that each mode multiplet is
split into a set of 2l+1 singlets with different frequencies. This means, in reality,
we do not observe modes as peaks but as broadened peaks. This effect is called
splitting and can be described by a unique splitting function σ. Furthermore,
cross-coupling or resonances between different modes change the frequencies of
the singlets, too.

For further information on this topic we refer to [32] and [80].

In Figure 2.3, we display some examples of splitting functions (see [41, 80]). We
will work with a data set provided by Dr. Arwen Deuss, University of Cambridge.
Note that the data is, again, given in spherical harmonic coefficients which we
will use as the data input for the inversion in this work.

Figure 2.3.: Splitting functions 0S3 (left-hand) and 0S12 (right-hand)

Instead of measuring the splitting function we may measure a shift of the peak
frequencies, directly. The representation of splitting functions as frequency shifts
has the additional advantage that they can be represented without using spheri-
cal harmonics (see, e.g. [86, 135, 154]), i.e. this representation is more useful for
local considerations.

As a third option, we may approximate the splitting function coefficients directly
and, thus, avoid the problem of locality.

In the following, we present functionals describing these three representations, i.e.
the representation by splitting functions, the representation by frequency shifts
and the representation by splitting function coefficients. Our computations, how-
ever, will be limited to the representation by splitting function coefficients since
it is the most time-efficient alternative.
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In this work, we will use a spherically symmetric, non-rotating, elastically isotropic
Earth model where we have no mode coupling as a reference model, e.g. PREM.
Furthermore, we describe the isotropic material properties by the compressional
velocity α, the shear velocity β and the mass density ρ.

Splitting Functions

As mentioned above the splitting function only depends on the direction ξ ∈ Ω.
Thus, it can be regarded as a function in L2(Ω), i.e. we can expand an arbitrary
splitting function σ as

σ =

∞
∑

n=0

2n+1
∑

j=1

∫ a

0

((

Kα
n , K

β
n , K

ρ
n

)

· δm∧(n, j)
)

(r) dr Yn,j

where δm =
(

δα
αM
, δβ
βM
, δρ
ρM

)

is the relative deviation and Kα
n , K

β
n and Kρ

n are

sensitivity kernels (see [32]). The reference values αM, βM and ρM are given in an
Earth model, e.g. PREM. Note that

((δm∧(n, j)) (r))i = 〈(δm(r·))i, Yn,j〉L2(Ω).

Let us derive a functional that maps the deviations to the splitting function:

Fk
S (δα, δβ, δρ) = σ(ξk)

=

∞
∑

n=0

2n+1
∑

j=1

∫ a

0

((

Kα
n

αM
,
Kβ

n

βM
,
Kρ

n

ρM

)

· (δα, δβ, δρ)∧(n, j)
)

(r) dr Yn,j (ξk)

where ξk ∈ Ω.

We assume that the material coefficients (δm∧(n, j)) (r) show a certain decay for
n tending to infinity. Thus, the Fourier series is uniformly convergent and we can
evaluate it pointwise. Note that, up to now, the data is only given up to degree
12, i.e. the Fourier series is finite anyway.

As a simplification, we assume that the density ρ and the velocities α and β are
not independent of each other (see, e.g. [82, 97]):

cα
δα

αM
= cβ

δβ

βM
=
δρ

ρM
. (2.3)

The scaling coefficients cα and cβ are mostly obtained by empiric studies in the
different sciences (see, e.g. [8, 10, 52, 60, 89]). However, using such a simple
relation between the density and the velocities is very questionable, for instance,
if non-thermal effects result in lateral variations (see [59, 99]). This problem may
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2.2 Normal Mode Tomography

be solved by using a vectorial approach (see [17, 18]).

However, using these dependencies, the functional can be simplified to only map
the deviation of the density to the splitting function:

Fk
Sδρ =

∞
∑

n=0

2n+1
∑

j=1

∫ a

0

Kn(r)

ρM(r)
· (δρ∧(n, j)) (r) dr Yn,j (ξk)

where Kn =
1
cα
Kα

n +
1
cβ
Kβ

n +Kρ
n and ξk ∈ Ω.

Frequency Shift

Alternatively, we can observe a shift of the peak frequency to avoid the repre-
sentation in spherical harmonics which is advantageous for a local reconstruction.

Let us denote a frequency shift of a fixed multiplet on the great circle with pole
η with

δω(η) = ω(η)− ω̄

where ω(η) is the peak frequency and ω̄ is the mean frequency.

If we interpret this shift as a great circle average of the splitting function and use
Theorem 2.5 in [17] we get

δω(η) =
1

2π

∮

η

σ(ξ) d∆(ξ)

=

∞
∑

n=0

2n+1
∑

j=1

Pn(0)

∫ a

0

((

Kα
n , K

β
n , K

ρ
n

)

· δm∧(n, j)
)

(r) dr Yn,j(η).

Note that Pn(0) = 0 if and only if n is odd. Thus, only modes with even degree
can be used in this approach.

Let us present the functional that maps all deviations δα, δβ and δρ to the
frequency shift function.

Fk
F(δα, δβ, δρ) = δω (ξk)

=
∞
∑

n=0
n even

2n+1
∑

j=1

Pn(0)

∫ a

0

((

Kα
n

αM

,
Kβ

n

βM
,
Kρ

n

ρM

)

· (δα, δβ, δρ)∧(n, j)
)

(r) dr Yn,j (ξk)

With Kn =
1
cα
Kα

n +
1
cβ
Kβ

n + Kρ
n and ξk ∈ Ω we may, again, simplify this repre-

sentation and get a functional where only the density deviation δρ is mapped to
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the frequency shift function

Fk
Fδρ =

∞
∑

n=0
n even

2n+1
∑

j=1

Pn(0)

∫ a

0

Kn(r)

ρM(r)
· (δρ∧(n, j)) (r) dr Yn,j (ξk) .

Splitting Function Coefficients

As a third option, we may use the splitting function coefficients directly as data
input, i.e.

σ∧kl(n, j) =

∫ a

0

((

K(kl,α)
n , K(kl,β)

n , K(kl,ρ)
n

)

· δm∧(n, j)
)

(r) dr

where again

((δm∧(n, j)) (r))i = 〈(δm(r·))i, Yn,j〉L2(Ω).

Note that σ∧kl(n, j) are the splitting function coefficients corresponding to the
splitting function σkl associated to the normal mode kSl, k, l ∈ N0. For the sake
of readability, we omitted the reference ’kl’ to the corresponding normal mode
beforehand.

A functional that maps the deviations to the splitting function coefficients may
be given as

F (kl,nj)
C (δα, δβ, δρ) =

∫ a

0

((

K
(kl,α)
n

αM
,
K

(kl,β)
n

βM
,
K

(kl,ρ)
n

ρM

)

· (δα, δβ, δρ)∧(n, j)
)

(r) dr.

Let us again assume that the velocities α and β as well as the density ρ depend
on each other and, thus, Kkl

n = 1
cα
K

(kl,α)
n + 1

cβ
K

(kl,β)
n +K

(kl,ρ)
n . Now, let us state

the simplified functional that maps the density deviation to the splitting function
coefficient:

F (kl,nj)
C δρ =

∫ a

0

Kkl
n (r)

ρM(r)
· (δρ∧(n, j)) (r) dr.
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2.2 Normal Mode Tomography

The choice of the splitting functions to be used

We want to recover the density distribution of the Earth’s mantle. Thus, it is
appropriate to use splitting functions which are sensitive in that area. The sensi-
tivity of the splitting functions kSl or kTl, k, l ∈ N0, is described by the respective
sensitivity kernels K

(kl,α)
n , K

(kl,β)
n and K

(kl,ρ)
n for the velocities α and β as well as

the density ρ.

In Figure 2.4, we display the sensitivity kernels Kα
2 , K

β
2 and Kρ

2 for the splitting
functions 0S4 (left-hand side) and 6S1 (right-hand side), as an example. Note the
abbreviations for the core-mantle boundary (CMB at a radius of 3, 486 km, i.e.
a depth of 2, 885 km) and the inner-core boundary (ICB at a radius of 1, 216 km,
i.e. a depth of 5, 155 km). Clearly, the sensitivity kernels corresponding to 0S4

are mostly sensitive to the mantle, while the sensitivity kernels corresponding to

6S1 are sensitive to the whole radius of the Earth. With these possible differences
in the behavior of the sensitivity kernels with respect to the radius of the Earth in
mind, we should choose the splitting functions, that we will use as a data input,
carefully.

0 1.216 (ICB) 3.486 (CMB) 6.371 km

radius
0 1.216 (ICB) 3.486 (CMB) 6.371 km

radius

Figure 2.4.: Sensitivity kernels Kα
2 (blue), Kβ

2 (red) and Kρ
2 (green) of the split-

ting functions 0S4 (left-hand) and 6S1 (right-hand)

0 1.216 (ICB) 3.486 (CMB) 6.371 km

radius
0 1.216 (ICB) 3.486 (CMB) 6.371 km

radius

Figure 2.5.: Sensitivity kernels Kα
2 (blue), Kβ

2 (red) and Kρ
2 (green) of the split-

ting functions 1S2 (left-hand) and 1S14 (right-hand)
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Moreover, we have to take into account that the splitting functions display differ-
ent sensitivities to the velocities α and β as well as the density ρ. For example,
the splitting function 1S2 depends more on the density than 1S14 in comparison
to the velocities, see the left-hand side and the right-hand side of Figure 2.5,
respectively.

In this work, we use the collection of splitting function coefficients given in Table
2.1 where all coefficients corresponding to the given splitting function kSl up to
the given degree n (only even degrees) are used. Current research in the field of
normal mode anomalies gives perspectives to the inclusion of odd-degree splitting
function coefficients as well.

0Sl n 1Sk n 2Sk n 3Sk n 4Sk n 5Sk n

0S3 2 1S2 2 2S4 6 3S6 4 4S1 2 5S3 6

0S4 2 1S3 2 2S5 6 3S7 4 4S2 2 5S4 6

0S5 4 1S4 4 2S6 6 3S8 6 4S3 6 5S5 6

0S6 6 1S5 6 2S7 6 3S9 4 4S4 4 5S6 8

0S7 6 1S6 6 2S8 6 4S5 4

0S8 8 1S7 8 2S9 6

0S9 8 1S8 10 2S10 6

0S12 12 1S9 6 2S11 6

0S13 12 1S10 4 2S12 6

0S14 12 1S14 2 2S13 6

0S15 12

0S16 12

0S17 12

0S19 12

0S20 12

0S21 12

Table 2.1.: List of coefficients used in our computations (see Section 5.3): co-
efficients of the splitting function kSl for even degrees up to degree
n
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II.

Matching Pursuit
In this part, we will develop new methods for a joint inversion of different data
types and the corresponding theoretical considerations. The Matching Pursuit
(see [98]) decomposes a signal into a linear expansion of functions which are
selected stepwise to best match the signal structure such that the difference
between the given data and the approximation is minimized. Unfortunately, our
data is not given as the values of the target function F . Instead, it is given as the
values of a functional applied to the target function, i.e. yi = F iF, i = 1, . . . , l,
and we cannot apply this algorithm directly.

We will derive an algorithm which we call ’Functional Matching Pursuit’ (FMP)
that can be applied to this kind of problems. Since we want to solve an ill-posed
inverse problem it is very important to develop a regularized version of the
algorithm, too. We will present the algorithm (’Regularized Functional Matching
Pursuit’ (RFMP)) and some theoretical results about the main characteristics
of regularization methods - the existence and the stability of the solution as well
as the convergence of the regularization.

The iterative character of the method in choosing the expansion functions allows
us to directly control the sparsity of the solution. Coupled with the fact that
the expansion functions are chosen according to the structure of the solution and
the data structure these are the main advantages over already existing methods.
Additionally, we may mix different types of functions to best match different
structures of the target function.
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3. Functional Matching Pursuit

We will start our considerations with an overview over sparse regularization tech-
niques and overcomplete signal representation to motivate our new approach in
Section 3.1. Then we will develop the ’Functional Matching Pursuit’ (FMP) and
give theoretical results with respect to the convergence of the method and its con-
vergence rate. In Section 3.4, we will discuss why we used the original Matching
Pursuit as a basis for our research and not the refined version called Orthogonal
Matching Pursuit. At last, we will address some issues that arise when imple-
menting the method for our special case, i.e. recovering a tomographic model of
the Earth by a joint inversion of gravitational and normal mode data.

3.1. Sparse Regularization and Overcomplete Signal

Representation

Research in sparse regularization is, e.g. concerned with finding a sparse or a
maximally sparse representation of a signal of an ill-conditioned, linear system
of equations. Thus, we minimize an objective function which typically includes a
squared error term combined with a penalty term concerned with the sparseness
of the solution, e.g. we minimize

||Ax− y||2l2 + λ||x||l0

where y ∈ Rl is the given data, A ∈ Rm×l is a matrix and x ∈ Rm is the
unknown target vector, e.g. wavelet coefficients of a function. However, solving
the optimization problem corresponding to

||x||l0 := #{k | xk 6= 0} =
m
∑

k=1

|xk|0

is known to be NP-hard. Thus, we will use a relaxed sparsity measure in the
form of || · ||lp :=

∑

k |xk|p where using p = 1 can, under certain conditions on
the matrix A, again be interpreted as a sparsity constraint (see, e.g. [149]). The
research area concerned with the case p = 1 is known as compressed sensing (see,
e.g. [45, 47] for an overview).

Of course, there exists a rather large number of different approaches to solve this
problem. However, all of these methods display disadvantages that disallow us
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to use them for our special case. Combinatorial algorithms, e.g. Fourier sam-
pling (see [69, 70]), Chaining Pursuit (see [71]) or HHS Pursuit (see [72]) acquire
highly structured samples of the signal that support rapid reconstruction via
group testing. Although these methods are very fast, a very high number of data
is needed for a proper approximation. The other extreme can be found in the
field of convex relaxation, e.g. Basis Pursuit (see [27]), Interior Point methods
(see [22, 91]), Projected Gradient Methods (see [57]) and Iterative Thresholding
(see [35]). They solve a convex program where the minimizer is known to ap-
proximate the target signal. These methods, indeed, require only a small number
of data but turn out to be very slow in acquiring the solution.

Iterative greedy algorithms, e.g. Matching Pursuit (MP, see [98]), Orthogonal
Matching Pursuit (OMP, see [116, 144]), Regularized Orthogonal Matching Pur-
suit (ROMP, see [113]), Stagewise Orthogonal Matching Pursuit (StOMP, see
[48]), Subspace Pursuit (SP, see [34]) and Compressive Sampling Matching Pur-
suit (CoSaMP, see [112]), seem to balance running time and efficiency:
With an intermediate running time they display sampling efficiency when build-
ing up an approximate solution stepwise. At each iteration, one or more coor-
dinates of the vector x are selected for testing based on the correlation between
the columns of A and the regularization measurement vector. While MP, OMP,
ROMP and StOMP display a bottom-up approach, i.e. they add a basis func-
tion in every step to build up the solution, SP and CoSaMP display a top-down
approach, i.e. they iteratively refine the solution x.

Obviously, we decide to use an iterative greedy algorithm. However, because of
two main reasons, we cannot use one of the existing methods:

(i) The problem that we want to solve in this work differs from the problem
considered in the sparse regularization community, i.e. we want to recon-
struct a sparse solution F of FF = y where y ∈ Rl is the possibly noisy
data, F : L2(B)→ Rl is a linear and continuous operator and F ∈ L2(B) is
the unknown target function. As a consequence, the expansion of the solu-
tion F is not build up out of the columns of a matrix A anymore but out of
functions in L2(B). Furthermore, including a penalty term concerned with
the sparsity of the solution requires to compute the L1-norm of a function
which is connected to a very high computational effort in our case.
Our aim is to reconstruct a sparse signal by finding the smoothest expansion
to represent the signal, instead of finding a (maximally) sparse representa-
tion of a signal as in the sparse regularization community. However, we see
a great potential in iterative greedy algorithms to help solve our problem.
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(ii) All greedy pursuit algorithms require that the target function is sparse, i.e.
that it can be represented exactly as a finite expansion in L2(B). Further-
more, the number of elements in this expansion has to be known beforehand.
In our case, the target function F is probably not sparse at all. However, we
expect that it can be approximated well enough with a finite but unknown
number of expansion elements.
Some existing algorithms might be modified to handle this case. The halt-
ing condition of the OMP may be changed such that the iteration is stopped
when the approximation error is smaller then a certain threshold. However,
there are no theoretical results concerning the convergence and stability of
such a modification.
The Sparsity Adaptive Matching Pursuit (see [44]) allows signal reconstruc-
tion without prior knowledge of the sparsity. However, it involves much
more iterations and, thus, a higher computational effort than we can afford
in our applications.

Let us give a more detailed overview with regard to overcomplete signal repre-
sentations and pursuit algorithms (see, e.g. [140, 141, 142]), a particular case
of iterative greedy algorithms. These representations offer a wider range of pos-
sible elements used in the expansion of the solution than the more traditional
approaches and, thus, allow more flexibility and effectiveness in signal recon-
struction. Nonetheless, most researches specialize on one kind of basis function
at a time, e.g. multiscale Gabor functions (see [98, 120]), amalgams of wavelets
and sinusoids (see [27]), collections of windowed cosines were the windows have
a range of different widths and locations (see [30]) and systems generated at ran-
dom (see [46]). In this work, we will attempt to use a combination of localized
functions (as in [30]) and a system with a global character.

Applications of recovery out of overcomplete systems can be found in a vari-
ety of research areas, e.g. theoretical neurosciences (see [115]), constructive ap-
proximation (see [20]), signal processing (see [16, 31]) and image processing (see
[136, 137]).

We want to apply the idea of overcompleteness, especially that of the Matching
Pursuit (see [98]), to our problem, i.e. we want to recover an approximation to the
unknown target function F ∈ L2(B) adaptively and iteratively out of an overcom-
plete collection of functions were the data y ∈ Rl is given explicitly with respect
to a linear and continuous operator F : L2(B)→ Rl, i.e. FF = y. However, our
algorithms as a combination of ideas from sparse regularization and overcomplete
signal representation will not depend on prior knowledge of the sparsity of the
target function F .

In the two already known methods, i.e. the Basic Matching Pursuit (see [98])
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and the Kernel Matching Pursuit (see [150]), as well as our newly developed ones
we get three different versions each:
In the basic version, the optimal expansion functions and the corresponding coef-
ficients are found stepwise. In the version with back-fitting, the expansion func-
tions are found stepwise as well but the optimal set of coefficients is recomputed
at every step. This version is more time-consuming but also more accurate. The
most accurate one is the version with pre-fitting where all coefficients and the
next expansion function are computed at the same time at every step. However,
it is easily understood that this is the most time-consuming version as well (see
[38]).

Choosing the optimal expansion functions stepwise is advantageous in a number
of points. First of all, we can directly control the sparsity of the solution. We
will be able to refine solutions or zoom in on interesting structures, since we can
reuse earlier results as a starting point in further computations. Furthermore,
the expansion functions to represent the solution are chosen according to the
structure of the solution as well as the data structure. This allows us to use a much
denser grid for the localized kernel functions than in already existing methods
to reconstruct the mass density variation of the Earth, e.g. spline and wavelet
methods. Moreover, we are able to include much more data points and it is of no
importance whether the data grid is well-distributed. Additionally, the algorithm
will allow us to mix different types of functions to best match different structures
of the target function. In our numerical applications, we will use the L2(B)-basis
system {GI

m,n,j}m,n∈N0,j=1,...,2n+1 (see Section 1.2.4) to reconstruct global trends.
The localized kernel functions KI

h(x, ·), h ∈]0, 1[, x ∈ B, (see Section 1.3) will be
used to reconstruct detail structures of the target function.

3.2. The Algorithm

In this section, we will introduce the new algorithm. Let l noisy observations
y1, . . . , yl ∈ R of linear and continuous functionals F1, . . . ,F l applied to the
target function F be given, i.e.

yi = F iF, i = 1, . . . , l.

Moreover, let a dictionary D ⊂ {d ∈ L2(B) | ||d||L2(B) = 1} be chosen beforehand.
The dictionary is the collection of all functions that may be used in the expansion
of the solution. Note that we do not put any further restrictions on the elements
of this dictionary. Furthermore, we use normalized functions as dictionary ele-
ments since their use reduces the computational effort in the regularized version
of the new algorithm. However, this restriction is not imposed by the algorithm
itself.
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3.2 The Algorithm

We are looking for an approximation to the target function F as a linear combi-
nation of selected dictionary elements Fn =

∑n
k=1 αkdk where n is the number of

functions in the expansion, dk ∈ D for all k = 1, . . . , n are the dictionary elements
used in the expansion and αk ∈ R for all k = 1, . . . , n are the corresponding co-
efficients of the expansion.

From now on, we will use the notation FF := (F1F, . . . ,F lF ) ∈ Rl, F ∈ L2(B).
Note that Fk : L2(B) → R, k ∈ N0, are linear and continuous functionals while
F : L2(B) → Rl is a linear operator with functionals as components. We call
the difference between the actual data y ∈ Rl and the data corresponding to the
approximation the residual Rn := y −FFn ∈ Rl.

The idea of the matching pursuit is to choose a collection of dictionary elements
{d1, . . . , dn} ⊂ D and coefficients {α1, . . . , αn} ⊂ R such that they minimize the
norm of the residual

||Rn||2
Rl = ||y −FFn||2Rl =

l
∑

i=1

(yi −F iFn)
2 where Fn =

n
∑

k=1

αkdk.

We present an iterative method starting with F0 = 0 where we append dictio-
nary elements to the initially empty expansion stepwise while trying to reduce the
residual at each stage. Note that no initial information about the solution will
be introduced into the algorithm apart from the choice of the dictionary (which
involves, for instance, the harmonicity constraint in the case of gravitational data
only).

Let us develop the method for the step from n to n+1 chosen expansion functions.
We assume that Fn is given. Since Fn+1 = Fn + αn+1dn+1, we need to look for a
combination α ∈ R and d ∈ D that minimizes

||y −F(Fn + αd)||2
Rl = ||y −FFn − αFd||2

Rl = ||Rn − αFd||2
Rl,

since the operator F is linear, i.e.

(dn+1, αn+1) = argmind∈D,α∈R||Rn − αFd||2
Rl.

For each choice of d ∈ D, the corresponding minimizing α has to satisfy

∂||Rn − αFd||2
Rl

∂α
= 0.
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By computing the partial derivative we get

0 = −2〈Rn,Fd〉Rl + 2α||Fd||2
Rl and, thus, α =

〈Rn,Fd〉Rl

||Fd||2
Rl

.

Let us insert this expression into ||Rn − αFd||2
Rl to derive an expression from

which we can determine the optimal dictionary element dn+1 for the step n + 1.

||Rn − αFd||2
Rl = ||Rn||2

Rl − 2α〈Rn,Fd〉Rl + α2||Fd||2
Rl

= ||Rn||2
Rl − 2

〈Rn,Fd〉Rl

||Fd||2
Rl

〈Rn,Fd〉Rl +

(〈Rn,Fd〉Rl

||Fd||2
Rl

)2

||Fd||2
Rl

= ||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2

As a consequence, a dictionary element d minimizes ||Rn−αFd||2
Rl if and only if

it maximizes

∣

∣

∣

∣

〈Rn,Fd〉Rl

||Fd||Rl

∣

∣

∣

∣

.

Let dn+1 be the dictionary element fulfilling this requirement. Then we conclude
that the corresponding coefficient αn+1 can be computed by

αn+1 =
〈Rn,Fdn+1〉Rl

||Fdn+1||2Rl

.

Let us state the whole algorithm.

Algorithm 3.1 (Basic Functional Matching Pursuit (FMP))
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 maximizes

∣

∣

∣

∣

〈Rn,Fd〉Rl

||Fd||Rl

∣

∣

∣

∣

and αn+1 =
〈Rn,Fdn+1〉Rl

||Fdn+1||2Rl

.

Note that this algorithm does not provide us with the best match to the target
function F . Since we determine the expansion functions and the corresponding
coefficients at every step iteratively, the expansion with n elements is possibly
not optimal at step n+1. To remedy this inaccuracy we can do a back-projection
in analogy to [38]. That means we choose the dictionary function dn+1 as in the
original algorithm but recompute the optimal set of coefficients in each step, i.e.

(αn+1
1 , . . . , αn+1

n+1) = argmin(α1,...,αn+1)∈Rn+1 ||y − FFn+1||2Rl.

This extension of the algorithm gives us a better approximation while the com-
putation time is increased. To get an even more accurate result we can use
pre-fitting, again suggested in [38], where we directly optimize

(dn+1, α
n+1
1 , . . . , αn+1

n+1) = argmin(d,α1,...,αn+1)∈D×Rn+1 ||y − FFn+1||2Rl.
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3.3 Theoretical Results

It can easily be seen that this is the most time-consuming version of the three
but it will give the best-fitting solution, too. Nonetheless, in this work, we will
only use the original version of Algorithm 3.1 (FMP) to reduce the computational
effort.

As in the Kernel Matching Pursuit (see [150]), there are no restrictions on the
dictionary elements and we may mix different types of functions in the dictionary.

Let us now consider Algorithm 3.1 (FMP) from a computational point of view.
We compute Fd and ||Fd||Rl beforehand for all d ∈ D and store them. This is an
essential part of the algorithm that can be parallelized to reduce the computation
time. Furthermore, we can store the solution FFn to reduce the costs to compute
the residual Rn+1 = y − FFn+1, since the operator F is supposed to be linear
and, thus, FFn+1 = FFn + αn+1Fdn+1. Thus, in step n + 1, we just need to
search for the optimal dictionary element dn+1 and update the residual R

n+1.

3.3. Theoretical Results

By stepping out of the Euclidean setting pursued in [98] we lose some major
properties which were exploited in [98] to prove the convergence of the algo-
rithm. However, we sidestep this problem and will now prove the convergence of
Algorithm 3.1 (FMP) in this subsection.

In this section, F : L2(B)→ Rl will always be a linear and continuous operator.
To treat theoretical questions, let us first rewrite the expression for the residual
Rn. For n = 0, we get R0 = y = FF . For n > 0, we get with the linearity of the
operator F that

Rn = y − FFn = y − FFn+1 + αn+1Fdn+1 = Rn+1 + αn+1Fdn+1

= Rn+1 +
〈Rn,Fdn+1〉Rl

||Fdn+1||2Rl

Fdn+1. (3.1)

Furthermore, in step n + 1, we are looking for the dictionary element dn+1 such
that

|〈Rn,Fdn+1〉Rl|
‖Fdn+1‖Rl

≥ sup
d∈D

|〈Rn,Fd〉Rl|
‖Fd‖

Rl

. (3.2)
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3.3.1. Convergence of Algorithm 3.1 (FMP)

Let us derive some important properties of the residual which we will need to
prove the convergence of the algorithm later on.

Theorem 3.2
Let all dictionary elements and the corresponding coefficients be chosen according
to Algorithm 3.1 (FMP). Then the Rl-norm of the residual (‖Rn‖

Rl)n, where
the residual Rn is given in Equation (3.1), converges for n tending to infinity.
Furthermore, the following equalities hold:

‖Rn‖2
Rl =

∥

∥Rn+1
∥

∥

2

Rl +
〈Rn,Fdn+1〉2Rl

‖Fdn+1‖2Rl

and (3.3)

0 = 〈Rn+1,Fdn+1〉Rl.

Proof.
Let us first consider the scalar product 〈Rn+1,Fdn+1〉Rl where we use Equation
(3.1) on the residual Rn+1:

〈Rn+1,Fdn+1〉Rl =

〈

Rn − 〈R
n,Fdn+1〉Rl

||Fdn+1||2Rl

Fdn+1,Fdn+1

〉

Rl

= 〈Rn,Fdn+1〉Rl − 〈R
n,Fdn+1〉Rl

||Fdn+1||2Rl

||Fdn+1||2Rl

= 〈Rn,Fdn+1〉Rl − 〈Rn,Fdn+1〉Rl

= 0

Considering the norm of the residual, we get with Equation (3.1)

‖Rn‖2
Rl =

∥

∥Rn+1
∥

∥

2

Rl +

(〈Rn,Fdn+1〉Rl

||Fdn+1||Rl

)2

which proves that Equation (3.3) holds.

Since the second summand of Equation (3.3) is always non-negative we get that

‖Rn‖2
Rl ≥

∥

∥Rn+1
∥

∥

2

Rl .

Thus, the sequence (‖Rn‖
Rl)n is monotonically decreasing. Obviously, it is bounded

from below by 0. Consequently, the sequence (‖Rn‖
Rl)n converges for n tending

to infinity.
�
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3.3 Theoretical Results

Now let us do some preliminary work to prove that the residual in itself tends to
0.

Lemma 3.3
Let all dictionary elements and the corresponding coefficients be chosen according
to Algorithm 3.1 (FMP). Then

lim
n→∞

〈Rn,Fdn+1〉2Rl

||Fdn+1||2Rl

= 0.

Proof.
Let us display the norm of R0 by means of a telescoping sum. Due to Theorem
3.2, we get

||R0||2
Rl =

m−1
∑

n=0

(

||Rn||2
Rl − ||Rn+1||2

Rl

)

+ ||Rm||2
Rl

=

m−1
∑

n=0

〈Rn,Fdn+1〉2Rl

||Fdn+1||2Rl

+ ||Rm||2
Rl.

For m tending to infinity, we get with the convergence of ||Rm||Rl (see Theorem
3.2) that

lim
n→∞

〈Rn,Fdn+1〉2Rl

||Fdn+1||2Rl

= 0.

�

With Theorem 3.2 and Lemma 3.3 we are now able to prove that Algorithm 3.1
(FMP) provides us with the right solution.

Theorem 3.4 (Convergence of Algorithm 3.1 (FMP))
Let the dictionary D be large enough such that span{Fd | d ∈ D} = Rl. Further-
more, let all dictionary elements and their corresponding coefficients be chosen
according to Algorithm 3.1 (FMP). Then, the residual Rn converges to 0 for n
tending to infinity.

Proof.
We already know from Theorem 3.2 that the sequence of the norm of the residuals
(||Rn||Rl)n converges. Furthermore, we know that it is a monotonically decreas-
ing sequence starting with the element ‖R0‖

Rl = ‖y‖Rl, i.e. it is bounded from
above. Of course, it is bounded from below by 0. Thus, the sequence of residuals
(Rn)n is bounded, too. That means that there exists a convergent subsequence
(Rnj )j in Rl with limit R∞ for j tending to infinity.
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Chapter 3 Functional Matching Pursuit

Due to Lemma 3.3, we already know that

lim
n→∞

〈Rn,Fdn+1〉2Rl

‖Fdn+1‖2Rl

= 0

and, consequently,

lim
j→∞

〈Rnj ,Fdnj+1〉Rl

∥

∥Fdnj+1

∥

∥

Rl

= 0.

In combination with Inequality (3.2), we conclude for all dictionary elements
d ∈ D that

lim
j→∞

〈Rnj ,Fd〉Rl

‖Fd‖
Rl

= 0.

Putting the limit into the scalar product, we get for all d ∈ D that

〈limj→∞R
nj ,Fd〉Rl

‖Fd‖
Rl

=
〈R∞,Fd〉Rl

‖Fd‖
Rl

= 0

and, since we chose the dictionary D large enough such that span{Fd | d ∈ D} =
R

l, we conclude that R∞ = 0. Now we know that the subsequence of the residual
(Rnj )j tends to 0 for j tending to infinity. Due to the monotonicity, we get

lim
n→∞

‖Rn‖
Rl = 0.

�

To prove that the sequence (Fn)n converges, we need a particular condition on
the dictionary.

Theorem 3.5
Let y ∈ Rl be the given data. Moreover, let the dictionary satisfy

1) span{Fd | d ∈ D} = Rl and

2) ’semi-frame condition’:
There exists a constant c > 0 such that for all L2(B)-convergent expansions
H =

∑∞
k=0 βkdk, βk ∈ R, dk ∈ D, (not necessarily pairwise distinct) the

following inequality holds:

c‖H‖2L2(B) ≤
∞
∑

k=0

β2
k .

3) C := inf
d∈D

||Fd||Rl > 0
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3.3 Theoretical Results

Let all dictionary elements and the corresponding coefficients be chosen according
to Algorithm 3.1 (FMP). Then the sequence (Fn)n of the algorithm converges to
a function F ∈ L2(B) with FF = y.

Proof.
Due to Algorithm 3.1 (FMP), Equation (3.3) and Theorem 3.4, we obtain

∞
∑

k=N

α2
k ≤ 1

C2

∞
∑

k=N

(

‖Rk−1‖2
Rl − ‖Rk‖2

Rl

)

=
1

C2

(

‖RN−1‖2
Rl − lim

k→∞
‖Rk‖2

Rl

)

=
1

C2
‖RN−1‖2

Rl

N→∞−→ 0.

Hence, the conditions on the dictionary imply that

‖F − FN−1‖L2(B) =

∥

∥

∥

∥

∥

∞
∑

k=N

αkdk

∥

∥

∥

∥

∥

L2(B)

N→∞−→ 0.

Since F is continuous, we finally get FF = lim
n→∞

FFn = y from Theorem 3.4.

�

Note that Condition 3) of Theorem 3.5 is no constraint in practice, since the dic-
tionary will always be finite in numerical implementations. Furthermore, Condi-
tion 1) is obviously necessary, since a data vector y ∈ Rl \ {0} with 〈y,Fd〉Rl = 0
for all d ∈ D would cause a failure of Algorithm 3.1 (FMP) already in the initial
step.

3.3.2. Convergence Rate of Algorithm 3.1 (FMP)

In this subsection, we prove that the norm of the residuals decays exponentially.
We use the main ideas from [98] but we have to deal with some difficulties that
arise since we do not operate in the Euclidean setting.

The decay of the norm of the residuals depends upon the correlation between the
residual and the dictionary elements. We will denote the correlation ratio of a
vector v ∈ R

l \ {0} with respect to a dictionary D with

τ(v) = sup
d∈D
Fd6=0

|〈v,Fd〉Rl|
||v||Rl||Fd||Rl

.

Because of the Cauchy-Schwarz inequality (see Theorem 1.25), τ(v) cannot ex-
ceed 1. The maximal value 1 is obtained if there exists a sequence (dk)k ⊂ D
such that Fdk converges to a vector in Rl which is collinear with respect to
v. Thus, τ(v) describes how well the data v can be matched by the dictionary

61



Chapter 3 Functional Matching Pursuit

D. Remember the criterion for selecting the optimal dictionary element in Algo-
rithm 3.1 (FMP). Clearly, the dictionary element that maximizes τ(Rn) is chosen.

Furthermore, let us denote the infimum of the correlation ratio with

I(τ) = inf
v∈Rl\{0}

τ(v)

to quantify the ’worst case’.

First, let us guarantee that the norm of the residuals decays exponentially with
a rate proportional to I2(τ).

Theorem 3.6 (Exponential decay of ||Rn||Rl)
Let F ∈ L2(B) with FF = y ∈ Rl. Furthermore, let all dictionary elements and
the corresponding coefficients be chosen according to Algorithm 3.1 (FMP). Then
we get that

||Rm||Rl ≤ ||y||Rl

(

1− I2(τ)
)m/2

for all m ∈ N.

Proof.
Algorithm 3.1 (FMP) chooses the next dictionary element dn+1 according to
Inequality (3.2), i.e.

|〈Rn,Fdn+1〉Rl|
‖Fdn+1‖Rl

≥ sup
d∈D

|〈Rn,Fd〉Rl|
‖Fd‖

Rl

= τ(Rn)||Rn||Rl.

Substituting this result in Equation (3.3), we get that

∥

∥Rn+1
∥

∥

2

Rl = ‖Rn‖2
Rl −

〈Rn,Fdn+1〉2Rl

‖Fdn+1‖2Rl

≤ ‖Rn‖2
Rl − sup

d∈D

〈Rn,Fd〉2
Rl

‖Fd‖2
Rl

= ||Rn||2
Rl − τ 2(Rn)||Rn||2

Rl

and we conclude that
∥

∥Rn+1
∥

∥

2

Rl ≤ ‖Rn‖2
Rl

(

1− τ 2(Rn)
)

.

Following this line of thought, we get for all m ∈ N the inequality

‖Rm‖
Rl ≤

∥

∥R0
∥

∥

Rl

m−1
∏

n=0

(

1− τ 2(Rn)
)1/2 ≤ ‖y‖

Rl

(

1− I2(τ)
)m/2

.

�

Note that this result is not very useful if I(τ) = 0. Thus, we show in the following
theorem that this is not the case.
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Theorem 3.7
Let the dictionary D be large enough such that span{Fd | d ∈ D} = Rl. Then
τ(v) is larger than a strictly positive constant for any v ∈ Rl \ {0}, i.e. I(τ) > 0.

Proof.
Let us assume that the statement of the theorem is wrong, i.e. I(τ) = 0. Then
there exists a sequence (vn)n of unit vectors in Rl and a monotonically decreasing
sequence (τn)n ⊂ R that converges to 0 for n tending to infinity such that for all
n ∈ N0

τ(vn) = sup
d∈D
Fd 6=0

|〈vn,Fd〉Rl|
||vn||Rl||Fd||Rl

= sup
d∈D
Fd6=0

|〈vn,Fd〉Rl|
||Fd||Rl

≤ τn. (3.4)

We know that the unit sphere Sl−1 of Rl is compact and, thus, there exists a
subsequence (vnp

)p that converges to an element v of the unit sphere S
l−1 for p

tending to infinity.

Let us consider the correlation ratio

τ(v) = sup
d∈D
Fd6=0

|〈v,Fd〉Rl|
||v||Rl||Fd||Rl

= sup
d∈D
Fd6=0

|〈v,Fd〉Rl|
||Fd||Rl

= lim
p→∞

sup
d∈D
Fd 6=0

|〈vnp
,Fd〉Rl|

||Fd||Rl

≤ lim
p→∞

τnp
= 0

where we use Inequality (3.4).

Hence, 〈v,Fd〉Rl = 0 for all d ∈ D and, since F is linear, also for all d ∈
span D. Due to the assumption of the theorem, this implies that v = 0 which is
a contradiction, since v ∈ Sl−1.

�

The requirement that the dictionary D is large enough such that span{Fd | d ∈
D} = Rl means that all possible combinations of real data y1, . . . , yl can be
achieved by taking appropriate linear combinations of dictionary elements. In
other words, for given y ∈ Rl, an algorithm could (theoretically) find a finite
linear combination

Fn =

n
∑

k=1

αkdk,

where n = l is possible, such that FFn = y.

Note that the decay rate decreases if the correlation ratio τ(v) decreases. More-
over, if the data includes coherent structures with respect to Fd, d ∈ D, then
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Chapter 3 Functional Matching Pursuit

τ(Rn) is high for all n, i.e. we get a faster decay of the norm of the residu-
als. Thus, it is an important step in the preprocessing to choose an appropriate
dictionary with respect to the structures of the solution. If we have some idea
about the signal structure we may impose this information on the choice of the
dictionary functions. Otherwise, we recommend to use a dictionary with more
general functions of different kinds to get a faster convergence of the algorithm.

3.4. Outlook: Orthogonal Matching Pursuit

In the Euclidean setting, the Orthogonal Matching Pursuit (OMP) (see [37, 116])
– a refined version of the Matching Pursuit – was developed to increase the qual-
ity of the approximation. It can be shown that, in a finite-dimensional space,
OMP converges with a finite number of iterations. However, adapting this idea
to our setting seems to be problematic. In this section, we want to discuss the
arising problems.

In [116], it was proposed to ensure full backward orthogonality of the error to
increase the approximation quality. That means we describe every expansion
function in terms of the previously chosen ones

dn+1 =

n
∑

k=1

bnkdk + ζn with 〈ζn, dk〉L2(B) = 0 for all k = 1, . . . , n

where ζn denotes the ’new’ information that cannot be described by the previ-
ously chosen expansion functions, i.e. ζn is the orthogonal projection of dn+1 onto

span{d1, . . . , dn}
⊥
. However, applying this to our current problem seems to be

difficult since we do not know how to determine ζn with respect to the dictionary
elements used in this work.

In [37], another method of orthogonalizing, that allows us to include the setting
of inverse problems, was proposed. In step n + 1 of Algorithm 3.1 (FMP), we
choose the dictionary element dn+1 ∈ D such that Inequality (3.2) holds. Then
we project Rn on Fdn+1 in Equation (3.1). The idea of the Orthogonal Matching
Pursuit is to orthogonalize the directions of the projection, e.g. with a Gram-
Schmidt procedure.

For our setting as an inverse problem, this means to orthogonalize Fdn+1 with
respect to {Fd1, . . . ,Fdn}. With u1 := Fd1 we get with a Gram-Schmidt proce-
dure

uk := Fdk −
k−1
∑

p=1

〈Fdk, up〉Rl

‖up‖2Rl

up (3.5)
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3.5 Implementation of Algorithm 3.1 (FMP)

for k = 2, . . . , n+ 1 which provides us with a new approximation

FFn+1 =
n+1
∑

k=1

〈Rk+1,Fdk〉Rl

‖uk‖2Rl

uk (3.6)

in orthogonalized elements.

In contrast to the usual setting, we aim to recover an approximation Fn to the
target function F itself and not to the data y = FF . In the case of Algorithm
3.1 (FMP) which is based on the Matching Pursuit we may exploit the linearity
of the operator F to recover the approximation Fn. However, this is not possible
when using the Orthogonal Matching Pursuit as a basis for our considerations.
Although we may resubstitute Fdk for uk in Equation (3.6) to, again, use the lin-
earity to get the approximation Fn this seems to be very inconvenient since all uk
iteratively depend on the orthogonalized choices beforehand (see Equation (3.5)).

Thus, in this work, we do not follow the idea of the Orthogonal Matching Pursuit.
Furthermore, it is still questionable if the OMP performs faster when applied to
real data. Numerical examples showed that the OMP may only be advantageous
for very redundant dictionaries. However, we would not call the dictionaries used
in this work very redundant.

Nonetheless, we see potential to improve the performance of our algorithms by
adapting some of the ideas introduced in the Euclidean setting, e.g. the Orthog-
onal Matching Pursuit, in further research.

3.5. Implementation of the Basic Functional

Matching Pursuit

We implement Algorithm 3.1 (FMP) as described in Section 3.2. As a first step,
we have to decide which dictionary functions we will use. Secondly, we compute
the expressions for Fd as is required in the algorithm. In the following, En de-
notes the truncation index of a series over n.

In this work, we put the L2(B)-basis system {Gm,n,j}m,n∈N0,j=1,...,2n+1 (see Section
1.2.4) into the dictionary D, to reconstruct global trends of the target function.
Furthermore, we use localized kernel functions Kh(x, ·), h ∈]0, 1[, x ∈ B, (see
Section 1.3) corresponding to the L2(B)-basis system {Gm,n,j}m,n∈N0,j=1,...,2n+1 to
reconstruct detail structures. Thus, for now, the dictionary D is given as

D =
{

KI
h(x, ·), KII

h (x, ·)
∣

∣ h ∈ [0, 1], x ∈ B
}

∪
{

GI
m,n,j, G

II
m,n,j

∣

∣ m ∈ N0, n ∈ N0, j = 1, . . . , 2n+ 1
}

.
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Using the Dictionary Elements of Type I

First let us consider the localized kernel functions corresponding to the basis of
type I. Since the normalized functions are denoted with Kh(x, ·) we denote the
original kernel functions with K̃h(x, ·) where

Kh(x, ·) :=
K̃h(x, ·)

||K̃h(x, ·)||L2(B)

.

We use this notation for kernel functions corresponding to both types of basis
systems. In the following, let us derive the expressions for the kernel function
and its norm.

K̃I
h(x, ·) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 GI
m,n,j(x) G

I
m,n,j(·)

=
Em
∑

m=0

En
∑

n=0

4m+ 2n + 3

a3
P (0,n+1/2)
m

(

2
| · |2
a2

− 1

)

P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

× hm+n 2n+ 1

4π
Pn

( ·
| · | ·

x

|x|

)( | · |
a

)n ( |x|
a

)n

,

since x ∈ B and, in our case, Ah
m,n := h

m+n
2 where h ∈]0, 1[.

The Parseval identity (see, e.g. [65]) yields

||K̃I
h(x, ·)||2L2(B) =

∫

B

(

K̃I
h(x, y)

)2

dy

=
Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
n,m)

4
(

GI
m,n,j(x)

)2
∫

B

(

GI
m,n,j(y)

)2
dy.

Since {GI
m,n,j}m,n∈N0,j=1,...,2n+1 is an orthonormal system in the space L2(B), we

conclude that

||K̃I
h(x, ·)||2L2(B) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

4
(

GI
m,n,j(x)

)2

=

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

4 4m+ 2n+ 3

a3

(

P (0,n+1/2)
m

(

2
|x|2
a2
− 1

))2

×
(

Yn,j

(

x

|x|

))2 ( |x|
a

)2n

.
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If we now use the addition theorem for spherical harmonics (see Theorem 1.11)
we get the identity

||K̃I
h(x, ·)||2L2(B) =

Em
∑

m=0

En
∑

n=0

(Ah
m,n)

4 4m+ 2n+ 3

a3
2n+ 1

4π

×
(

P (0,n+1/2)
m

(

2
|x|2
a2
− 1

))2 ( |x|
a

)2n

where we use that

Pn

(

x

|x| ·
x

|x|

)

= Pn(1) = 1

for all n ∈ N0 and x ∈ B. Note that the norm depends on h and the radial
distance |x| only.

Remember that these localized kernel functions only influence a part of the ball
B strongly. Thus, they seem to be very promising to reconstruct detail structures
of the target function. However, if we used these functions to reconstruct global
trends they would be by far too expensive from a computational point of view.
Thus, it is advantageous to include a function type with a more global character
to reconstruct these global trends. The previously introduced orthonormal basis
systems fulfill this characteristic.

Thus, we will consider here the basis functions of type I, i.e.

GI
m,n,j =

√

4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
| · |2
a2

− 1

)( | · |
a

)n

Yn,j

( ·
| · |

)

.

As derived in Section 3.2, the algorithm chooses the next expansion function to
be the dictionary element that maximizes

∣

∣

∣

∣

〈Rn,Fd〉Rl

||Fd||Rl

∣

∣

∣

∣

which translates into

∣

∣

∣

∣

〈Rn,FKI
h(x, ·)〉Rl

||FKI
h(x, ·)||Rl

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

〈Rn,FGI
m,n,j〉Rl

||FGI
m,n,j||Rl

∣

∣

∣

∣

∣

, respectively.

Thus, we need to compute FKI
h(x, ·) and FGI

m,n,j for the operators FG, FS, FF

and FC corresponding to gravitational data, data given as splitting functions, as
frequency shifts or as splitting function coefficients, respectively (see Section 2).
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Chapter 3 Functional Matching Pursuit

Operator FG corresponding to the gravitational potential

For the L2(B)-basis {GI
m,n,j}m,n∈N0,j=1,...,2n+1, we get

Fk
GG

I
m,n,j = δm0

4π

2n + 1

√

a3

2n+ 3

(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

.

When introducing this basis system in Section 1.2.4, we mentioned that the basis
system of type I can be partitioned into a harmonic and an anharmonic part
where the harmonic part corresponds to the basis functions with m = 0. Re-
member that we can only recover information about the harmonic part of the
density distribution when we consider gravitational data only. Thus, we will use
the harmonic basis functions GI

0,n,j only, when gravitational data is the only data
type being considered, since the other functions are elements of the null-space of
Fk

G. However, we use all basis functions when we consider different data types to
recover information about the anharmonic part, too.

Subsequently, for x ∈ B and with the help of the addition theorem for spherical
harmonics (see Theorem 1.11) we get

Fk
GK̃

I
h(x, ·) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 Fk
G(G

I
m,n,j) G

I
m,n,j(x)

=
Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 δm0
4π

2n+ 1

√

a3

2n+ 3

×
(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

GI
m,n,j(x)

=

En
∑

n=0

2n+1
∑

j=1

(Ah
0,n)

2 4π

2n+ 1

√

a3

2n+ 3

(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

GI
0,n,j(x)

=
En
∑

n=0

2n+1
∑

j=1

(Ah
0,n)

2 4π

2n+ 1

( |x|
|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

Yn,j

(

x

|x|

)

=

En
∑

n=0

(Ah
0,n)

2

( |x|
|xk|

)n
1

|xk|
Pn

(

xk

|xk|
· x|x|

)

where we use the fact that P
(0,n+1/2)
0 ≡ 1. Moreover, since FG is a linear operator

we get for the normalized kernel function

Fk
GK

I
h(x, ·) =

Fk
GK̃

I
h(x, ·)

||K̃I
h(x, ·)||L2(B)

.
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If we consider FG only, we use (as explained above) the dictionary

D =
{

KI
h(x, ·)

∣

∣ h ∈ {h1, . . . , hs} ⊂ [0, 1], x ∈ grid(B)
}

∪
{

GI
0,n,j

∣

∣ n ∈ N0, j = 1, . . . , 2n+ 1
}

,

s ∈ N, where the point grid grid(B) was chosen in advance and Ah
m = δm0.

Operator FS corresponding to the splitting functions

The data corresponding to splitting functions is given at points on the surface of
the Earth. Thus, we consider locations ξk ∈ Ω and get for the basis functions

Fk
SG

I
m,n,j =

Ep
∑

p=0

2p+1
∑

q=1

∫ a

0

Kp(r)

ρM(r)
(GI

m,n,j(r·))∧(p, q) dr Yp,q(ξk)

=

√

4m+ 2n+ 3

a3

∫ a

0

Kn(r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr Yn,j(ξk),

since

(GI
m,n,j(r·))∧(p, q)

=

∫

Ω

GI
m,n,j(rξ)Yp,q(ξ) dω(ξ)

=

√

4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

×
∫

Ω

Yn,j(ξ) Yp,q(ξ) dω(ξ)

=

√

4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

δnp δjq. (3.7)

For x = tη ∈ B we get

Fk
S K̃

I
h(x, ·) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 Fk
S (G

I
m,n,j) G

I
m,n,j(x)

=

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
t2

a2
− 1

)

×
∫ a

0

Kn(r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

×
(

t

a

)n

Yn,j (η)Yn,j(ξk).
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Applying the addition theorem (see Theorem 1.11), we get

Fk
S K̃

I
h(x, ·) =

Em
∑

m=0

En
∑

n=0

(Ah
m,n)

2 2n+ 1

4π

4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
t2

a2
− 1

)

×
∫ a

0

Kn(r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

×
(

t

a

)n

Pn(ξk · η)

where, again,

Fk
SK

I
h(x, ·) =

Fk
S K̃

I
h(x, ·)

||K̃I
h(x, ·)||L2(B)

since FS is a linear operator.

Operator FF corresponding to frequency shifts

The expressions of FFK
I
h(x, ·) and FFG

I
m,n,j can be derived similarly to those of

FSK
I
h(x, ·) and FSG

I
m,n,j, since the structure of the corresponding functionals, i.e.

the components of these operators, is very similar. Thus, we only state the results.

For ξk ∈ Ω and x = tη ∈ B we get

Fk
FG

I
m,n,j = Pn(0)

√

4m+ 2n+ 3

a3
Yn,j(ξk)

×
∫ a

0

Kn(r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

and

Fk
FK̃

I
h(x, ·) =

Em
∑

m=0

En
∑

n=0

Pn(0)(A
h
m,n)

2 2n+ 1

4π

4m+ 2n + 3

a3
P (0,n+1/2)
m

(

2
t2

a2
− 1

)

×
∫ a

0

Kn(r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

(

t

a

)n

Pn(ξk · η)

where

Fk
FK

I
h(x, ·) =

Fk
FK̃

I
h(x, ·)

||K̃I
h(x, ·)||L2(B)

since FF is a linear operator, too.
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Operator FC corresponding to splitting function coefficients

Compared to the operator FS we do less work when considering the operator
FC, since we are concerned with the splitting function coefficients only. With
Equation (3.7), we get for the coefficient σ∧kl(n, j), n, k, l ∈ N0, j = 1, . . . , n + 1,
corresponding to the splitting function σkl associated to the normal mode kSl

F (kl,nj)
C GI

m,p,q =

∫ a

0

Kkl
n (r)

ρM(r)
(GI

m,p,q(r·))∧(n, j) dr

=

√

4m+ 2n+ 3

a3

∫ a

0

Kkl
n (r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr δnp δjq.

For x ∈ B we get

F (kl,nj)
C K̃I

h(x, ·) =

Em
∑

m=0

Ep
∑

p=0

2p+1
∑

q=1

(

Ah
m,p

)2F (kl,nj)
C (GI

m,p,q) G
I
m,p,q(x)

=
Em
∑

m=0

Ep
∑

p=0

2p+1
∑

q=1

(

Ah
m,p

)2

√

4m+ 2n+ 3

a3
GI

m,p,q(x)

×
∫ a

0

Kkl
n (r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr δnp δjq

=
Em
∑

m=0

(

Ah
m,n

)2

√

4m+ 2n+ 3

a3
GI

m,n,j(x)

×
∫ a

0

Kkl
n (r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

=

Em
∑

m=0

(

Ah
m,n

)2 4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

×
( |x|
a

)n

Yn,j

(

x

|x|

)

×
∫ a

0

Kkl
n (r)

ρM(r)
P (0,n+1/2)
m

(

2
r2

a2
− 1

)

(r

a

)n

dr

where again

F (kl,nj)
C KI

h(x, ·) =
F (kl,nj)

C K̃I
h(x, ·)

||K̃I
h(x, ·)||L2(B)

since FC is a linear operator, too.
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Comparing the three operators corresponding to the normal mode anomalies, re-
covering the splitting function coefficients directly with F (kl,nj)

C seems to be the
most efficient version with respect to the computational effort.

If we consider the operators corresponding to gravitation and normal modes,
both, we will use anharmonic basis functions GI

m,n,j with m 6= 0 as dictionary
elements, too, i.e.

D =
{

KI
h(x, ·)

∣

∣ h ∈ {h1, . . . , hs
}

⊂ [0, 1], x ∈ grid(B)}
∪

{

GI
m,n,j

∣

∣ m ∈ N0, n ∈ N0, j = 1, . . . , 2n+ 1
}

,

s ∈ N, where the point grid grid(B) was chosen in advance.

Using the Dictionary Elements of Type II

If we compare the expressions FkK̃I
h(x, ·) of the different functionals Fk

G, Fk
S , Fk

F

and F (kl,nj)
C , the computational effort will be largest for Fk

S and Fk
F corresponding

to the normal mode tomography, since we have to compute two sums instead of
one as in the case of Fk

GK̃
I
h(x, ·) and F (kl,nj)

C K̃I
h(x, ·). Using the separable basis

functions of type II instead of the inseparable basis functions of type I we may
expect a reduction of the computation time. However, this is questionable as will
be explained below.

Remember the L2(B)-basis system {GII
m,n,j}m,n∈N0,j=1...,2n+1

GII
m,n,j(x) :=

{ √

2m+3
a3

P
(0,2)
m

(

2 |x|
a
− 1

)

Yn,j

(

x
|x|

)

, if x 6= 0

1 , if x = 0
.

Because of their global character, we will use these functions to reconstruct global
trends of the target function. For the detail structures of the target function we
will again use localized kernel functions corresponding to the basis system of
type II. As the expressions for x = 0 are trivial we only present the results for
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3.5 Implementation of Algorithm 3.1 (FMP)

x ∈ B \ {0}.

K̃II
h (x, ·) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 GII
m,n,j(x) G

II
m,n,j(·)

=

Em
∑

m=0

En
∑

n=0

2m+ 3

a3
P (0,2)
m

(

2
| · |
a
− 1

)

P (0,2)
m

(

2
|x|
a
− 1

)

× (Ah
m,n)

2 2n+ 1

4π
Pn

( ·
| · | ·

x

|x|

)

=

(

Em
∑

m=0

(Ah
m)

2 2m+ 3

a3
P (0,2)
m

(

2
| · |
a
− 1

)

P (0,2)
m

(

2
|x|
a
− 1

)

)

×
(

En
∑

n=0

(Ah
n)

2 2n+ 1

4π
Pn

( ·
| · | ·

x

|x|

)

)

,

since x ∈ B \ {0} and Ah
m,n = h

m+n
2 = h

m
2 h

n
2 = Ah

mA
h
n where h ∈]0, 1[. Again, we

need to compute the norm of the kernel functions K̃II
h (x, ·) since we want to use

normalized functions in the dictionary.

With the Parseval identity we get

||K̃II
h (x, ·)||2L2(B) =

∫

B

(

K̃II
h (x, y)

)2

dy

=
Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

4
(

GII
m,n,j(x)

)2

=

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

4 2m+ 3

a3

(

P (0,2)
m

(

2
|x|
a
− 1

))2 (

Yn,j

(

x

|x|

))2

=

Em
∑

m=0

En
∑

n=0

(Ah
m,n)

4 2m+ 3

a3
2n + 1

4π

(

P (0,2)
m

(

2
|x|
a
− 1

))2

=

(

Em
∑

m=0

(Ah
m)

4 2m+ 3

a3

(

P (0,2)
m

(

2
|x|
a
− 1

))2
) (

En
∑

n=0

(Ah
n)

4 2n+ 1

4π

)

.

Note that this norm, again, only depends on h and the radial distance |x|. Let
us denote the normalized kernel functions with

KII
h (x, ·) :=

K̃II
h (x, ·)

||K̃II
h (x, ·)||L2(B)

.

As in the case of type I, we need to compute FKII
h (x, ·) and FGII

m,n,j for the four
different operators FG, FS, FF and FC (see Section 2).

73



Chapter 3 Functional Matching Pursuit

Operator FG corresponding to the gravitational potential

Let us present the equations of FGK
II
h (x, ·) and FGG

II
m,n,j first.

Fk
GG

II
m,n,j = δmµ(n)

4π

2n+ 1

(

n
∑

l=0

(2l + 3)

(

n!(n + 2)!

(n− l)!(n+ 3 + l)!

)2
)

×
√

a3

2µ(n) + 3

(n− µ(n))!(n+ 3 + µ(n))!

n!(n+ 2)!

×
(

a

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

and, subsequently, for x ∈ B \ {0} with the help of the addition theorem (see
Theorem 1.11)

Fk
GK̃

II
h (x, ·) =

En
∑

n=0

min{n,Em}
∑

m=0

2n+1
∑

j=1

(Ah
m,n)

2 Fk
G(G

II
m,n,j) G

II
m,n,j(x)

=
En
∑

n=0

min{n,Em}
∑

m=0

2n+1
∑

j=1

(Ah
m,n)

2

√

2m+ 3

a3
P (0,2)
m

(

2
|x|
a
− 1

)

× δmµ(n)
4π

2n+ 1

(

n
∑

l=0

(2l + 3)

(

n!(n + 2)!

(n− l)!(n + 3 + l)!

)2
)

×
√

a3

2µ(n) + 3

(n− µ(n))!(n+ 3 + µ(n))!

n!(n + 2)!

×
(

a

|xk|

)n
1

|xk|
Yn,j

(

x

|x|

)

Yn,j

(

xk

|xk|

)

=
En
∑

n=0
µ(n)≤Em

(Ah
µ(n),n)

2 P
(0,2)
µ(n)

(

2
|x|
a
− 1

)

×
(

n
∑

l=0

(2l + 3)

(

n!(n+ 2)!

(n− l)!(n + 3 + l)!

)2
)

× (n− µ(n))!(n+ 3 + µ(n))!

n!(n + 2)!

×
(

a

|xk|

)n
1

|xk|
Pn

(

x

|x| ·
xk

|xk|

)

where Fk
GK

II
h (x, ·) =

Fk
GK̃

II
h (x, ·)

||K̃II
h (x, ·)||L2(B)

, since FG is a linear operator.
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Operator FS corresponding to the splitting functions

For ξk ∈ Ω we get

Fk
SG

II
m,n,j =

Ep
∑

p=0

2p+1
∑

q=1

∫ a

0

Kp(r)

ρM(r)
(GII

m,n,j(r·)∧(p, q) dr Yp,q(ξk)

=

√

2m+ 3

a3

∫ a

0

Kn(r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr Yn,j(ξk),

since

(GII
m,n,j(r·)∧(p, q) =

∫

Ω

GII
m,n,j(rξ)Yp,q(ξ) dω(ξ)

=

√

2m+ 3

a3
P (0,2)
m

(

2
r

a
− 1

)

∫

Ω

Yn,j(ξ)Yp,q(ξ) dω(ξ)

=

√

2m+ 3

a3
P (0,2)
m

(

2
r

a
− 1

)

δnp δjq. (3.8)

For x = tη ∈ B \ {0} we get

Fk
S K̃

II
h (x, ·) =

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 Fk
S (G

II
m,n,j) G

II
m,n,j(x)

=
Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 2m+ 3

a3
P (0,2)
m

(

2
t

a
− 1

)

×
∫ a

0

Kn(r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr Yn,j (η)Yn,j(ξk)

=
Em
∑

m=0

En
∑

n=0

(Ah
m,n)

2 2n+ 1

4π

2m+ 3

a3
P (0,2)
m

(

2
t

a
− 1

)

(3.9)

×
∫ a

0

Kn(r)

ρM (r)
P (0,2)
m

(

2
r

a
− 1

)

dr Pn(ξk · η)

=

∫ a

0

(

En
∑

n=0

2n+ 1

4π
(Ah

n)
2Pn(ξk · η)

Kn(r)

ρM(r)

)

(3.10)

×
(

Em
∑

m=0

(Ah
m)

2 2m+ 3

a3
P (0,2)
m

(

2
t

a
− 1

)

P (0,2)
m

(

2
r

a
− 1

)

)

dr
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where

Fk
SK

II
h (x, ·) =

Fk
S K̃

II
h (x, ·)

||K̃II
h (x, ·)||L2(B)

,

since FS is a linear operator. Note that we use the addition theorem (see Theo-
rem 1.11) to get Equation (3.9) and exchange the integration and the summation
to get Equation (3.10).

From a computational point of view, it is questionable if the partitioning of the
sums in the step from Equation (3.9) to Equation (3.10) is advisable. On the
one hand, the partitioning of the sums reduces the computational effort as ex-
pected. On the other hand, we have to compute the integral in every step anew.
In Equation (3.9) we can compute the integral for the required cases beforehand
and store the results which reduces the computational effort on the cost of having
to evaluate a double sum.

Operator FF corresponding to frequency shifts

Correspondingly, we get for ξk ∈ Ω and x = sη ∈ B

Fk
FG

II
m,n,j = Pn(0)

√

2m+ 3

a3

∫ a

0

Kn(r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr Yn,j(ξk)

and

Fk
FK̃

II
h (x, ·) =

Em
∑

m=0

En
∑

n=0

Pn(0) (A
h
m,n)

2 2n+ 1

4π

2m+ 3

a3
P (0,2)
m

(

2
s

a
− 1

)

×
∫ a

0

Kn(r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr Pn(ξk · η)

=

∫ a

0

(

En
∑

n=0

2n+ 1

4π
(Ah

n)
2 Pn(0) Pn(ξk · η)

Kn(r)

ρM(r)

)

×
(

Em
∑

m=0

(Ah
m)

2 2m+ 3

a3
P (0,2)
m

(

2
s

a
− 1

)

P (0,2)
m

(

2
r

a
− 1

)

)

dr

where, again,

Fk
FK

II
h (x, ·) =

Fk
FK̃

II
h (x, ·)

||K̃II
h (x, ·)||L2(B)

,

since FF is a linear operator, too.
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3.5 Implementation of Algorithm 3.1 (FMP)

Operator FC corresponding to splitting function coefficients

Compared to the operator FS we do less work when considering the operator
FC, since we are concerned with the splitting function coefficients only. With
Equation (3.8), we get for the coefficient σ∧kl(n, j), n, k, l ∈ N0, j = 1, . . . , n + 1,
corresponding to the splitting function σkl associated to the normal mode kSl

F (kl,nj)
C GII

m,p,q =

∫ a

0

Kkl
n (r)

ρM(r)
(GII

m,p,q(r·))∧(n, j) dr

=

√

2n+ 3

a3

∫ a

0

Kkl
n (r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr δnp δjq.

The expression for FCK̃
II(x, ·) is

F (kl,nj)
C K̃II

h (x, ·) =
Em
∑

m=0

Ep
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2p+1
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q=1
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Ah
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C (GII
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II
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Em
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Ep
∑

p=0
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∑
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(

Ah
m,p

)2

√
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a3
GII

m,p,q(x)

×
∫ a

0

Kkl
n (r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr δnp δjq

=
Em
∑

m=0

(

Ah
m,n

)2 2n+ 3

a3
P (0,2)
m

(

2
|x|
a
− 1

)

Yn,j

(

x

|x|

)

×
∫ a

0

Kkl
n (r)

ρM(r)
P (0,2)
m

(

2
r

a
− 1

)

dr

where again

F (kl,nj)
C KII

h (x, ·) =
F (kl,nj)

C K̃II
h (x, ·)

||K̃II
h (x, ·)||L2(B)

,

since FC is a linear operator, too.
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4. Regularized Functional Matching
Pursuit

The ill-posedness of the inverse gravimetric problem requires the use of a regular-
ization technique. Unfortunately, we may doubt the performance of Algorithm
3.1 (FMP) when considering even slightly inaccurate data (see [155] where the
ill-posedness that can result was documented for a special case and our consid-
erations regarding noise in our application, see the end of Section 5.1). We use
here a Tikhonov regularization, i.e. we try to achieve a trade-off between fitting
the data and reducing a norm of the solution. The regularization parameter λ
correlates both terms.

In Section 4.1, we introduce a regularized version of Algorithm 3.1 (FMP) that
is developed similarly to the unregularized version where the penalty term is
concerned with the smoothness of the solution, i.e. its L2(B)-norm. In Section
4.2, we address the main requirements for regularization methods, i.e. we will give
results about the existence and stability of the solution as well as the convergence
of the regularized solution in the limit for the regularization parameter for both
exact and noisy data. In the last two sections, we will discuss some practical
topics when implementing the algorithm and an alternative approach where the
penalty term includes the L1(B)-norm, respectively.

4.1. The Algorithm

Using a Tikhonov regularization, we need to find

(dn+1, αn+1) = argmind∈D,α∈R

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

in the step from n to n + 1 chosen expansion functions where λ > 0 is the reg-
ularization parameter. We derive the optimal dictionary element dn+1 and the
corresponding coefficient αn+1 with the same technique as before.

The minimizing α fulfills

0 =
∂

∂α

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= −2〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ

∂

∂α
||Fn + αd||2L2(B).

79



Chapter 4 Regularized Functional Matching Pursuit

Since

∂

∂α
||Fn + αd||2L2(B)

=
∂

∂α

∫

B

(Fn(y) + αd(y))2 dy

= 2

∫

B

Fn(y)d(y) dy + 2α

∫

B

d(y)2dy

= 2 〈Fn, d〉L2(B) + 2α||d||2L2(B),

we get

0 =
∂

∂α

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= −2 〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ

(

2 〈Fn, d〉L2(B) + 2α||d||2L2(B)

)

and, thus,

α =
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

||Fd||2
Rl + λ||d||2L2(B)

.

Again, we insert this into the target function of the optimization:

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

= ||Rn||2
Rl + λ||Fn||2L2(B) + 2α

(

−〈Rn,Fd〉Rl + λ〈Fn, d〉L2(B)

)

+α2
(

||Fd||2
Rl + λ||d||2L2(B)

)

= ||Rn||2
Rl + λ||Fn||2L2(B)

+2
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

||Fd||2
Rl + λ||d||2L2(B)

(

−〈Rn,Fd〉Rl + λ〈Fn, d〉L2(B)

)

+

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

||Fd||2
Rl + λ||d||2L2(B)

)2
(

||Fd||2
Rl + λ||d||2L2(B)

)

= ||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

. (4.1)

And, consequently, a dictionary element d minimizes

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

if and only if it maximizes
∣

∣

∣

∣

∣

∣

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)
√

||Fd||2
Rl + λ||d||2L2(B)

∣

∣

∣

∣

∣

∣

.
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4.2 Theoretical Results

Thus, we get the following algorithm for the regularized version of the Functional
Matching Pursuit:

Algorithm 4.1 (Regularized Basic Functional MP (RFMP))
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 maximizes

∣

∣

∣

∣

∣

∣

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)
√

||Fd||2
Rl + λ||d||2L2(B)

∣

∣

∣

∣

∣

∣

and

αn+1 =
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Here, too, we can improve the approximation quality of the method at the expense
of the computation time by introducing back-projection or pre-fitting. Further-
more, we can use the same ideas on preprocessing and parallelization to reduce
the computational costs as in the unregularized version (see the end of Section
3.2).

Note that, in this work, all dictionary elements d ∈ D are normalized to reduce
computational costs, i.e. ||d||L2(B) = 1 for all d ∈ D due to our choice of the
dictionary.

4.2. Theoretical Results

In this section, we examine the main properties of the regularization method.
In the following, let F : D(F) ⊂ L2(B) → Rl be an arbitrary operator and let
span D = D(F). All other requirements on this operator will be addressed in
the lemmata and theorems, individually.

In Section 4.2.1, let us first examine the case where the data is given exactly. We
will give results on the existence of a solution F λ of the regularized optimization
problem as well as a convergence result for the regularization, i.e. F λ → F+ for
λ tending to 0 from above, where F+ is a minimum-norm solution of FF = y,
i.e. an exact solution of the unregularized problem with minimal norm. In this
section, we do not need to consider the stability of the solution, since the data is
given exactly for now.

In Section 4.2.2, we include noisy data. We will give results on the three im-
portant topics when dealing with regularization methods - the existence and the
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Chapter 4 Regularized Functional Matching Pursuit

stability of the solution as well as the convergence with respect to the regulariza-
tion parameter.

The results of the following two subsections follow the ideas of [53, 54, 124, 128].

4.2.1. for Exactly Given Data

Let us now denote the expression that is to be minimized by

Jλ(F, y) := ||FF − y||2
Rl + λ||F ||2L2(B)

where λ > 0 is the regularization parameter. Furthermore, let the data y ∈ Rl

be given exactly. Here, F is a series expansion in dictionary elements, i.e.
F =

∑∞
k=1 αkdk.

First, we will prove that there always exists a solution to the optimization prob-
lem.

Theorem 4.2 (Existence of a Solution)
Let the operator F be weakly sequentially closed and let y ∈ Rl be arbitrary data.
Then there always exists a solution F λ ∈ D(F) such that

Jλ(F
λ, y) = min

F∈D(F)
Jλ(F, y), where F

λ =

∞
∑

k=1

αλ
kd

λ
k .

Proof.
Obviously, Jλ(F, y) ≥ 0 for all F ∈ D(F) and y ∈ Rl where λ > 0. Thus, there
exists a sequence of solutions (F n)n ⊂ D(F) such that Jλ(F n, y) monotonically
converges from above to infF∈D(F) Jλ(F, y) for n tending to infinity, where we
keep y ∈ Rl fixed. Note that each F n is a series expansion in dictionary elements,
i.e.

F n =

∞
∑

k=1

αn
kd

n
k .

First let us consider the norm of F n and FF n. From the definition of Jλ(F, y),
we get

||F n||L2(B) =

√

1

λ

(

Jλ(F n, y)− ||FF n − y||2
Rl

)

≤
√

1

λ
Jλ(F n, y) ≤

√

1

λ
Jλ(F 1, y).

Using the Cauchy-Schwarz inequality (see Theorem 1.25), we get

(||FF n||Rl − ||y||Rl)2 = ||FF n||2
Rl − 2||FF n||Rl||y||Rl + ||y||2

Rl

≤ ||FF n||2
Rl − 2〈FF n, y〉Rl + ||y||2

Rl

= ||FF n − y||2
Rl

= Jλ(F
n, y)− λ||F n||2L2(B)

≤ Jλ(F
n, y)
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4.2 Theoretical Results

and conclude that

||FF n||Rl ≤ ||y||Rl +
√

Jλ(F n, y) ≤ ||y||Rl +
√

Jλ(F 1, y).

Thus, both these norms ||F n||L2(B) and ||FF n||Rl are bounded with respect to
all n and, consequently, both sequences (F n)n and (FF n)n have a weakly con-
vergent subsequence (see Theorem 1.28 (Bolzano-Weierstraß)), i.e. there exists
a subsequence (F ni)i ⊂ L2(B) that converges weakly to F̃ ∈ L2(B) for i tending
to infinity such that (FF ni)i ⊂ Rl converges weakly to ỹ ∈ Rl for i tending to
infinity.

Since F was assumed to be weakly sequentially closed (see Definition 1.26), it
follows that F̃ ∈ D(F) and F F̃ = ỹ. Furthermore, with the help of Theorem
1.29, we get

inf
F∈D(F)

Jλ(F, y) = lim
i→∞

Jλ (F
ni, y)

= lim
i→∞

(

||FF ni − y||2
Rl + λ||F ni||2L2(B)

)

≥ ||F F̃ − y||2
Rl + λ||F̃ ||2L2(B)

= Jλ

(

F̃ , y
)

and can conclude that

Jλ

(

F̃ , y
)

= inf
F∈D(F)

Jλ(F, y)

which proves the theorem.
�

We know that a linear operator that maps into a space with finite dimensions
is compact, i.e. the operators considered in this work are compact, too. Since
every linear and compact operator is strongly continuous (see Theorem 1.30), we
can conclude that the operators corresponding to our applications are strongly
continuous, too, and therefore weakly sequentially closed. Thus, they fulfill the
condition imposed in Theorem 4.2. Note that this is the only serious restriction
that will occur in this whole section.

Now we know that there exists a solution F λ of the regularization problem which
fulfills

Jλ(F
λ, y) = min

F∈D(F)
Jλ(F, y). (4.2)

However, we need to prove that Algorithm 4.1 (RFMP) actually converges and
provides us with such a solution to the optimization problem. Let us consider
the sequence

(

||FFn − y||2
Rl + λ||Fn||2L2(B)

)

n
=

(

||Rn||2
Rl + λ||Fn||2L2(B)

)

n
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and let us prove its convergence. Note that

Rn = Rn+1 + αn+1Fdn+1

= Rn+1 +
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

Fdn+1 (4.3)

and

Fn+1 = Fn + αn+1dn+1

= Fn +
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

dn+1. (4.4)

Theorem 4.3
Let F be a linear operator and let all dictionary elements and the corresponding
coefficients be chosen according to Algorithm 4.1 (RFMP). Then the sequence
(

||Rn||2
Rl + λ||Fn||2L2(B)

)

n
, where the residual Rn is given in Equation (4.3) and

Fn is given in Equation (4.4), converges for n tending to infinity.

Proof.
Let us consider the sequence element Fn+1. With Equation (4.1) we get

||Rn+1||2
Rl + λ||Fn+1||2L2(B)

= ||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

)2

||Fdn+1||2Rl + λ||dn+1||2L2(B)

≤ ||Rn||2
Rl + λ||Fn||2L2(B).

Thus, the sequence (||Rn||2
Rl +λ||Fn||2L2(B))n is monotonically decreasing. Since it

is bounded from below by 0, we can conclude that it is convergent, too.
�

Next we will prove that the solution F λ of the regularization problem converges
to a solution of the unregularized Algorithm 3.1 (FMP) for λ tending to 0. Let
us denote the regularization with (Rλ)λ>0, where

Rλ : R
l → L2(B), y 7→ F λ

and F λ is chosen to fulfill Equation (4.2). Clearly, F λ depends on the data y ∈ Rl,
too. Since the solution to the regularization is not unique, we now choose F λ to
be one representative of these solutions. From Theorem 4.2 we know that such a
solution F λ exists.
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Theorem 4.4 (Convergence of the Regularization)
Let the operator F be weakly sequentially closed and let y be in the range of F .
Furthermore, let F+ be a minimum-norm solution of FF = y. Then the family
(Rλ(y))λ>0 has at least one convergent subsequence. The limit of each of these
subsequences is a minimum-norm solution of FF = y.
If the minimum-norm solution F+ is additionally unique then the regularization
converges to F+ for λ tending to 0, i.e.

lim
λ→0+

||Rλ(y)− F+||L2(B) = 0.

Proof.
From the definition of the regularization we get

Jλ(F
λ, y) = min

F∈D(F)
Jλ(F, y)

= min
F∈D(F)

(

||FF − y||2
Rl + λ||F ||2L2(B)

)

≤ ||FF+ − y||2
Rl + λ||F+||2L2(B)

= λ||F+||2L2(B),

since F+ is a minimum-norm solution. Thus,

||FF λ − y||2
Rl + λ||F λ||2L2(B) ≤ λ||F+||2L2(B)

and, consequently,

lim
λ→0+

||FF λ − y||2
Rl = 0. (4.5)

Furthermore, we can conclude that

||F λ||2L2(B) ≤ ||F+||2L2(B) −
1

λ
||FF λ − y||2

Rl ≤ ||F+||2L2(B)

which leads to the assertion that

lim sup
λ→0+

||F λ||2L2(B) ≤ ||F+||2L2(B). (4.6)

Thus, the family (F λ)λ>0 is bounded and there exists a sequence (F λk)k that
weakly converges to F̃ for k tending to infinity (with λk tending to 0 from
above). Since the operator F was assumed to be weakly sequentially closed
and limk→∞FF λk = y due to Equation (4.5), we can conclude that F̃ ∈ D(F)
and F F̃ = y.

Since (F λk)k converges weakly to F̃ for k tending to infinity we know that

||F̃ ||L2(B) ≤ lim inf
k→∞

||F λk||L2(B) ≤ ||F+||L2(B) (4.7)
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where the first inequality stems from Theorem 1.29 while the second inequality
stems from Inequality (4.6). Since F+ is a minimum-norm solution, it follows
that

||F̃ ||L2(B) = ||F+||L2(B)

and, thus, F̃ is a minimum-norm solution, too.

Moreover, Inequalities (4.6) and (4.7) imply that limk→∞ ||F λk ||L2(B) = ||F̃ ||L2(B)

such that the convergence of F λk to F̃ for k tending to infinity is strong.

In the second part of the proof, we consider the unique minimum-norm solution
F+. Clearly, each subsequence of (Fλ)λ>0 converges to this unique solution in
its norm. Thus, we can conclude that the whole family converges, too, since the
limit F+ is unique.

�

4.2.2. for Noisy Data

Of course, regularization techniques are mostly used to deal with data from mea-
surements, i.e. noisy data yε where ||y − yε||Rl ≤ ε. Again, we first give a result
concerned with the existence of a solution of the regularized algorithm where
noisy data is considered.

Theorem 4.5 (Existence of a Solution)
Let the operator F be weakly sequentially closed. Furthermore, let the noisy data
yε ∈ Rl be given. Then there always exists a solution F λ,ε ∈ D(F) such that

Jλ(F
λ,ε, yε) = min

F∈D(F)
Jλ(F, y

ε), where F λ,ε =
∞
∑

k=1

α
λ,ε
k d

λ,ε
k .

Proof.
See the proof of Theorem 4.2.

�

Theorem 4.6
Let F be a linear and continuous operator and let all dictionary elements and the
corresponding coefficients be chosen according to Algorithm 4.1 (RFMP). Then
(||Rn||2

Rl + λ||Fn||2L2(B))n, where the residual is given by Rn := yε − FFn and Fn

is given in Equation (4.4), converges for n tending to infinity.
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Proof.
We refer to the proof of Theorem 4.3, since the introduction of noisy data has no
influence on the result.

�

The family {Rλ}λ>0, indeed, represents a regularization due to the convergence
result in Theorem 4.4 and the continuity of each Rλ, which is proven in the
following theorem.

Theorem 4.7 (Stability of the Regularized Solution)
Let the operator F be weakly sequentially closed and let yε ∈ R

l be given noisy
data. Furthermore, let (yεk)k ⊂ Rl be a sequence that converges to yε for k tend-
ing to infinity. Let (F λ,εk)k be a corresponding sequence of minimizing elements
of Jλ(·, yεk). Then there exists a convergent subsequence of (F λ,εk)k and every
convergent subsequence converges to a minimizing element F λ,ε of Jλ(·, yε).
Moreover, if F λ,ε is unique then (F λ,εk)k converges to F λ,ε for k tending to infin-
ity.

Proof.
From the definition of F λ,εk , we get for all F ∈ D(F) that

||FF λ,εk − yεk||2
Rl + λ||F λ,εk||2L2(B) = Jλ(F

λ,εk , yεk) ≤ Jλ(F, y
εk). (4.8)

Similarly to the proof of Theorem 4.2, we get that

||F λ,εk||L2(B) =

√

1

λ

(

Jλ(F λ,εk , yεk)− ||FF λ,εk − yεk||2
Rl

)

≤
√

1

λ
Jλ(F λ,εk , yεk)

and

||FF λ,εk||Rl ≤ ||yεk||Rl +
√

Jλ(F λ,εk , yεk),

since, with the Cauchy-Schwarz inequality (see Theorem 1.25),
(

||FF λ,εk||Rl − ||yεk||Rl

)2
= ||FF λ,εk||2

Rl − 2||FF λ,εk||Rl||yεk||Rl + ||yεk||2
Rl

≤ ||FF λ,εk||2
Rl − 2〈FF λ,εk , yεk〉Rl + ||yεk||2

Rl

= ||FF λ,εk − yεk||2
Rl

= Jλ(F
λ,εk , yεk)− λ||F λ,εk||2L2(B)

≤ Jλ(F
λ,εk , yεk).

With Inequality (4.8) we further conclude for all F ∈ D(F) that

||F λ,εk||L2(B) ≤
√

1

λ
Jλ(F, yεk)

=

√

1

λ
||FF − yεk||2

Rl + ||F ||2L2(B)

≤
√

1

λ
(||FF ||Rl + ||yεk||Rl)2 + ||F ||2L2(B).
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Moreover, the definition of F λ,εk yields for all F ∈ D(F) that

||FF λ,εk||Rl ≤ ||yεk||Rl +
√

Jλ(F, yεk)

≤ ||yεk||Rl +
√

(||FF ||Rl + ||yεk||Rl)2 + λ||F ||2L2(B).

Thus, both ||F λ,εk||L2(B) and ||FF λ,εk||Rl are bounded for all k since (yεk)k is
convergent and, consequently, ||yεk||Rl is bounded, too. With Theorem 1.28
(Bolzano-Weierstraß) and the weak sequential closedness of the operator F we
know that both (F λ,εk)k and (FF λ,εk)k have weakly convergent subsequences
where F λ,εki converges weakly to F̃ ∈ D(F) and FF λ,εki converges weakly to
F F̃ .

With Theorem 1.29, we get that

||F̃ ||L2(B) ≤ lim inf
i→∞

||F λ,εki ||L2(B) and (4.9)

||F F̃ − yε||Rl ≤ lim inf
i→∞

||FF λ,εki − yεki ||Rl (4.10)

and we conclude for all F ∈ D(F) that

Jλ(F̃ , y
ε) = ||F F̃ − yε||2

Rl + λ||F̃ ||2L2(B)

≤ lim inf
i→∞

(

||FF λ,εki − yεki ||2
Rl + λ||F λ,εki ||2L2(B)

)

= lim inf
i→∞

Jλ(F
λ,εki , yεki)

≤ lim sup
i→∞

Jλ(F
λ,εki , yεki)

≤ lim
i→∞

Jλ(F, y
εki)

= Jλ(F, y
ε).

Thus, F̃ minimizes Jλ(·, yε). Setting F = F̃ above, we get

lim
i→∞

Jλ(F
λ,εki , yεki) = Jλ(F̃ , y

ε). (4.11)

Now, let us assume that (F λ,εki)i does not converge (strongly) to F̃ for i tending
to infinity. Due to Inequality (4.9), we then get that

lim sup
i→∞

||F λ,εki ||L2(B) > ||F̃ ||L2(B). (4.12)

Furthermore, there exists a subsequence (F
λ,εkij )j that satisfies

lim
j→∞

||F λ,εkij ||L2(B) = lim sup
i→∞

||F λ,εki ||L2(B).
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With Equation (4.11), we conclude that

lim
j→∞

(

||FF λ,εkij − y
εkij ||2

Rl + λ||F λ,εkij ||2L2(B)

)

= lim
j→∞

Jλ(F
λ,εkij , y

εkij )

= Jλ(F̃ , y
ε)

= ||F F̃ − yε||2
Rl + λ||F̃ ||2L2(B).

Now, with Inequality (4.12) and the convergence of the norm of the subsequence
we get that

lim
j→∞

||FF λ,εkij − y
εkij ||2

Rl = ||F F̃ − yε||2 + λ

(

||F̃ ||2L2(B) − lim sup
i→∞

||F λ,εki ||2L2(B)

)

< ||F F̃ − yε||2
Rl

which is a contradiction to Inequality (4.10) and, thus, we proved the assumption
wrong and get that (F λ,εki )i (strongly) converges to F̃ for i tending to infinity
which proves the first part of the theorem.

If F λ,ε is unique we, again, conclude that each subsequence of (F λ,εk)k converges
to F λ,ε. Therefore, the whole sequence converges to F λ,ε, too.

�

For the case of noisy data we will denote the regularization with (Rη
λ(ε))λ(ε)>0

where

Rη
λ(ε) : R

l → L2(B), yε 7→ F λ(ε),ε,η

and F λ(ε),ε,η is chosen such that

Jλ(ε)(F
λ(ε),ε,η, yε) ≤ min

F∈D(F)
Jλ(ε)(F, y

ε) + η.

Note that the regularization parameter λ was replaced by the function λ that
depends on the data error ε. We use η = η(λ(ε)) to describe the error that
arises when minimizing numerically. From Theorem 4.5, we already know that
there exists a solution F λ(ε),ε,η of the regularized problem with noisy data as input.

The following theorem may be considered as a fusion of Theorems 4.4 and 4.7.

Theorem 4.8 (Convergence of the Regularization)
Let the operator F be weakly sequentially closed and let y in the range of F be
exactly given data. Furthermore, let F+ be a minimum-norm solution of FF = y.
Let the family (yε)ε>0 fulfill ||y− yε||Rl ≤ ε. Let us choose λ :]0,∞[→]0,∞[ such
that λ(ε) and ε2

λ(ε)
tend to 0 for ε tending to 0 from above. Let the error η satisfy

η = η(λ(ε)) = o(λ(ε)) for ε tending to 0 from above where o is a Landau symbol.
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Chapter 4 Regularized Functional Matching Pursuit

Then the family
(

Rη(λ(ε))
λ(ε) (yε)

)

ε>0
has at least one convergent subsequence and

the limit of each of these subsequences is a minimum-norm solution of FF = y.
If the minimum-norm solution F+ is additionally unique then the regularization
converges to F+ in its norm for ε tending to 0 from above, i.e.

lim
ε→0+

∣

∣

∣

∣

∣

∣
Rη(λ(ε))

λ(ε) (yε)− F+
∣

∣

∣

∣

∣

∣

L2(B)
= 0.

Proof.
From the definition of the regularization, we get

Jλ(ε)(F
λ(ε),ε,η, yε) ≤ min

F∈D(F)
Jλ(ε)(F, y

ε) + η

= min
F∈D(F)

(

||FF − yε||2
Rl + λ(ε)||F ||2L2(B)

)

+ η

≤ ||FF+ − yε||2
Rl + λ(ε)||F+||2L2(B) + η

= ||y − yε||2
Rl + λ(ε)||F+||2L2(B) + η

≤ ε2 + λ(ε)||F+||2L2(B) + η.

Thus, we conclude that

||FF λ(ε),ε,η − yε||2
Rl + λ(ε)||F λ(ε),ε,η||2L2(B) ≤ ε2 + λ(ε)||F+||2L2(B) + η(λ(ε)).

Note that, according to our requirements, η(λ(ε)) = o(λ(ε)) for ε tending to 0

from above, i.e. η(λ(ε))
λ(ε)

tends to 0 for ε tending to 0 from above and, thus, for

λ(ε) tending to 0 from above, too. Furthermore, this implies that η tends to 0
for ε tending to 0 from above. Thus, we get for the limit

lim
ε→0+

||FF λ(ε),ε,η − yε||2
Rl = 0

and, consequently,

lim
ε→0+

||FF λ(ε),ε,η − y||Rl ≤ lim
ε→0+

(

||FF λ(ε),ε,η − yε||Rl + ||yε − y||Rl

)

= 0.(4.13)

Using the assumptions on λ, we conclude that

||F λ(ε),ε,η||2L2(B) ≤ ε2

λ(ε)
+ ||F+||2L2(B) +

η(λ(ε))

λ(ε)
− 1

λ(ε)
||FF λ(ε),ε,η − yε||2

Rl

≤ ε2

λ(ε)
+ ||F+||2L2(B) +

η(λ(ε))

λ(ε)
,

which leads to the assertion that

lim sup
ε→0+

||F λ(ε),ε,η||2L2(B) ≤ ||F+||2L2(B).
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Thus, (F λ(ε),ε,η)ε>0 is bounded and there exists a subsequence (F
λ(εk),εk,ηk)k with

ηk := η(λ(εk)) that weakly converges to F̃ for k tending to infinity. Since the
operator F was assumed to be weakly sequentially closed and Equation (4.13) is
valid we can conclude that F̃ ∈ D(F) and F F̃ = y.

Thus, we have the same setup as in the proof to Theorem 4.4 and refer to that
for the rest of the proof.

�
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Chapter 4 Regularized Functional Matching Pursuit

4.3. Implementation of the Regularized Basic

Functional Matching Pursuit

Remember that, in step n + 1, we determine the dictionary element and the
corresponding coefficient fulfilling

(dn+1, αn+1) = argmind∈D,α∈R

(

||Rn + αFd||2
Rl + λ||Fn + αd||2L2(B)

)

.

First let us recapitulate Algorithm 4.1 (RFMP) to see which expressions we need
to consider in this section.

Algorithm 4.9 (RFMP)
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 maximizes

∣

∣

∣

∣

∣

∣

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)
√

||Fd||2
Rl + λ||d||2L2(B)

∣

∣

∣

∣

∣

∣

and

αn+1 =
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Note that, in our case, ||d||L2(B) = 1 for all d ∈ D. Furthermore, we already
computed Fd and its norm in Section 3.5. We only need to consider 〈Fn, d〉L2(B)

for all d ∈ D.

Using the Dictionary Elements of Type I

Since

〈Fn, d〉L2(B) =

〈

n
∑

i=1

αidi, d

〉

L2(B)

=

n
∑

i=1

αi〈di, d〉L2(B),

let us consider the scalar products 〈di, d〉L2(B). We get the following three combi-
nations of dictionary elements where x, x̃ ∈ B:
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4.3 Implementation of Algorithms 4.1 (RFMP)

〈GI
m,n,j, G

I
m̃,ñ,j̃

〉L2(B) = δmm̃ δnñ δjj̃ ,

〈GI
m,n,j, K̃

I
h(x, ·)〉L2(B) =

∫

B

GI
m,n,j(y) K̃

I
h(x, y) dy

=

Em̃
∑

m̃=0

Eñ
∑

ñ=0

2ñ+1
∑

j̃=1

(Ah
m̃,ñ)

2 GI
m̃,ñ,j̃

(x)

∫

B

GI
m,n,j(y) G

I
m̃,ñ,j̃

(y) dy

=

Em̃
∑

m̃=0

Eñ
∑

ñ=0

2ñ+1
∑

j̃=1

(Ah
m̃,ñ)

2 GI
m̃,ñ,j̃

(x) δmm̃ δnñ δjj̃

= (Ah
m,n)

2

√

4m+ 2n+ 3

a3
P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

× Yn,j

(

x

|x|

)( |x|
a

)n

,

and

〈

K̃I
h(x, ·), K̃I

h̃
(x̃, ·)

〉

L2(B)
=

∫

B

K̃I
h(x, y) K̃

I
h̃
(x̃, y) dy

=

Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 (Ah̃
m,n)

2 GI
m,n,j(x) G

I
m,n,j(x̃)

=
Em
∑

m=0

En
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2 (Ah̃
m,n)

2 4m+ 2n+ 3

a3

× Yn,j

(

x

|x|

)

Yn,j

(

x̃

|x̃|

) ( |x| |x̃|
a2

)n

× P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

P (0,n+1/2)
m

(

2
|x̃|2
a2
− 1

)

=
Em
∑

m=0

En
∑

n=0

(Ah
m,n)

2 (Ah̃
m,n)

2 2n+ 1

4π

4m+ 2n+ 3

a3

× Pn

(

x

|x| ·
x̃

|x̃|

) ( |x| |x̃|
a2

)n

× P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

P (0,n+1/2)
m

(

2
|x̃|2
a2
− 1

)

.
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For the normalized dictionary elements we get

〈GI
m,n,j, G

I
m̃,ñ,j̃

〉L2(B) = δmm̃δnñ δjj̃,

〈GI
m,n,j, K

I
h(x, ·)〉L2(B) =

1

||K̃I
h(x, ·)||L2(B)

〈GI
m,n,j, K̃

I
h(x, ·)〉L2(B)

=
1

||K̃I
h(x, ·)||L2(B)

(Ah
m,n)

2

√

4m+ 2n+ 3

a3
Yn,j

(

x

|x|

)

× P (0,n+1/2)
m

(

2
|x|2
a2
− 1

) ( |x|
a

)n

and

〈

KI
h(x, ·), KI

h̃
(x̃, ·)

〉

L2(B)

=
1

||K̃I
h(x, ·)||L2(B)||K̃I

h̃
(x̃, ·)||L2(B)

×
Em
∑

m=0

En
∑

n=0

(Ah
m,n)

2 (Ah̃
m,n)

2 2n+ 1

4π

4m+ 2n+ 3

a3
Pn

(

x

|x| ·
x̃

|x̃|

) ( |x| |x̃|
a2

)n

× P (0,n+1/2)
m

(

2
|x|2
a2
− 1

)

P (0,n+1/2)
m

(

2
|x̃|2
a2
− 1

)

.

Using the Dictionary Elements of Type II

Again we get three combinations of dictionary elements of type II where x, x̃ ∈ B.

〈GII
m,n,j, G

II
m̃,ñ,j̃

〉L2(B) = δmm̃ δnñ δjj̃,

〈GII
m,n,j, K̃

II
h (x, ·)〉L2(B) =

∫

B

GII
m,n,j(y) K̃

II
h (x, y) dy

= (Ah
m,n)

2

√

2m+ 3

a3
Yn,j

(

x

|x|

)

P (0,2)
m

(

2
|x|
a
− 1

)

,
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and

〈

K̃II
h (x, ·), K̃II

h̃
(x̃, ·)

〉

L2(B)

=

Em
∑

m=0

En
∑

n=0

(

Ah
m,n

)2
(

Ah̃
m,n

)2 2n+ 1

4π

2m+ 3

a3
Pn

(

x

|x| ·
x̃

|x̃|

)

× P (0,2)
m

(

2
|x|
a
− 1

)

P (0,2)
m

(

2
|x̃|
a
− 1

)

=

(

En
∑

n=0

(

Ah
n

)2
(

Ah̃
n

)2 2n+ 1

4π
Pn

(

x

|x| ·
x̃

|x̃|

)

)

×
(

Em
∑

m=0

(

Ah
m

)2
(

Ah̃
m

)2 2m+ 3

a3
P (0,2)
m

(

2
|x|
a
− 1

)

P (0,2)
m

(

2
|x̃|
a
− 1

)

)

.

Of course, these expressions have to be normalized, too, as done above.

4.4. Alternative: The Least Mixed Norms Problem

(MRFMP)

Solving the least squares problem to get a viable solution is the classical ap-
proach, i.e. we minimize the amount of energy in the system by minimizing the
L2-norm. Although this approach can be mathematically realized pretty easily it
often leads to poor results in practical applications.

Algorithm 4.1 (RFMP) already provides us with a solution that displays some
properties of a sparse solution. Nonetheless, we may enforce sparseness by mini-
mizing the L0-norm, i.e. by maximizing the number of zero coefficients. However,
for most applications, this is a computationally infeasible problem since it is NP-
hard. We may replace the L0-norm with a L1-norm (see [21, 22, 23]) to solve an
easier problem. If we consider the solution of our problem to be a vector, as usual
in the field of compressive sensing, we can find the one with the smallest l1-norm
with already existing, very efficient methods. In our case, however, the solution
is still a function existing in L2(B) and although it is relatively easy to compute
the L2-norm of the solution, it is not as easy to compute its L1-norm. Anyway,
we cannot expect the behavior corresponding to the l1-norm to translate to the
L1-setting.

Nonetheless, we will try to derive the algorithm corresponding to the least mixed
norms problem.
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For practical reasons, let us assume that the setNα := {y ∈ B | Fn(y)+αd(y) = 0}
is of measure 0 for fixed α ∈ R and n ∈ N0.

We want to find

(dn+1, αn+1) = argmind∈D,α∈R

(

||Rn − αFd||2
Rl + λ||Fn + αd||L1(B)

)

,

in the step from n to n + 1 chosen expansion functions. In the following, we
will see that we cannot derive the optimal dictionary element dn+1 and the cor-
responding coefficient αn+1 with the same technique as before.

The minimizing α fulfills

0 =
∂

∂α

(

||Rn − αFd||2
Rl + λ||Fn + αd||L1(B)

)

= −2〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ

∂

∂α
||Fn + αd||L1(B).

Since

∂

∂α
||Fn + αd||L1(B) =

∂

∂α

∫

B

|Fn(y) + αd(y)| dy,

we need to know whether we are allowed to exchange the derivative and the in-
tegration. Remember the theorem on differentiation under the integral sign (see
Theorem 1.31).

Of course, the function f : B ×R→ R, (y, α) 7→ |Fn(y) +αd(y)| is integrable on
B for fixed α.

For the fixed value α0 ∈ R we get for all y ∈ B and all α ∈ R that

∣

∣

∣

∣

f(y, α)− f(y, α0)

α− α0

∣

∣

∣

∣

=

∣

∣

∣

∣

|Fn(y) + αd(y)| − |Fn(y) + α0d(y)|
α− α0

∣

∣

∣

∣

≤ |αd(y)− α0d(y)|
|α− α0|

= |d(y)|

where we used the inequality | |x| − |y| | ≤ |x− y| for x, y ∈ R. Note that |d(y)|
is an integrable function only depending on y since d ∈ L1(B).

The requirement that the partial derivative exists for all y ∈ B \ Nα0 is fulfilled,
too, since

∂

∂α
f(y, α)

∣

∣

∣

∣

α=α0

=
∂

∂α
|Fn(y) + αd(y)|

∣

∣

∣

∣

α=α0

= sgn (Fn(y) + α0d(y))d(y).
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Thus, all requirements of Theorem 1.31 are fulfilled and we may exchange the
derivative and the integration. Consequently, we get that

∂

∂α
||Fn + αd||L1(B) =

∂

∂α

∫

B

|Fn(y) + αd(y)| dy

=

∫

B\Nα

∂

∂α
|Fn(y) + αd(y)| dy

=

∫

B\Nα

sgn (Fn(y) + αd(y)) d(y) dy

=

∫

B

sgn (Fn(y) + αd(y)) d(y) dy.

Thus, we conclude that

0 = 2α||Fd||2
Rl − 2 〈Rn,Fd〉Rl + λ

∫

B

sgn (Fn(y) + αd(y)) d(y) dy.

However, we cannot solve this equation for α analytically. Thus, it is not practi-
cal to use the L1(B)-norm approach although it seemed to be promising.

Furthermore, note that Theorem 1.29 is valid in a Hilbert space setting only.
Thus, the results regarding the existence, stability and convergence of the regu-
larization problem (see Section 4.2) may not apply here either.
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III.

Numerical Applications
In times of sea-level rise, rapid mass-loss in the polar regions and other climate
changes of global impact, the processing of data that is collected by the various
satellite missions rapidly gains importance. Satellite missions allow a global or
supra-regional overview over events that may not be distinguishable from a local
point of view or even from the surface of the Earth itself.

In this part, we are concerned with two kinds of problems and data. We
will recover the mass density distribution of South America out of the Earth
Gravitational Model 2008 (EGM2008) developed by the National Geospatial
Intelligence Agency (NGA) (see [117]). Right now, this model is the gravity
model with the highest resolution available. Moreover, we recover the mass
density distribution of the whole Earth by a joint inversion of gravitational and
seismic data in the form of normal mode anomalies. Dr. Arwen Deuss, University
of Cambridge, kindly provided us with the most recent model coefficients.

Furthermore, we examine the mass transport in the Amazon area for the year
2008. The satellite mission Gravity Recovery and Climate Experiment (GRACE)
has provided us with monthly solutions of the gravitational potential since the
mid of 2003. Thus, these solutions are predestined to be used to reflect temporal
changes caused, e.g. by large changes of ground water levels or the deglaciation.
We will use the solutions provided by the Jet Propulsion Laboratory (JPL, see
[85]).
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5. Reconstructing the Mass Density
Distribution of the Earth

Let us demonstrate the advantages of our new method by reconstructing the mass
density distribution of the Earth. As data input, we will use the gravitational
potential EGM2008 (see [117]). Its coefficients are given up to spherical harmonic
degree 2, 190 and order of 2, 159.

Since it is well-known that the harmonicity constraint in particular and gravita-
tional data in general are only appropriate for the determination of mass anoma-
lies in the uppermost layer of the Earth (see [107]), we reconstruct the density
close to the surface when considering gravitational data only, in Section 5.1. Af-
terwards, we will give a remark on l1-optimization in Section 5.2. In Section 5.3,
we reconstruct the density distribution of the whole Earth by a joint inversion of
gravitational and seismic data in the form of normal mode anomalies.

5.1. by Using Gravimetric Data (EGM2008):

Example South America

As a case study, let us reconstruct the mass density distribution of South America
to analyze the proposed algorithms.

The solution of Algorithm 4.1 (RFMP)

The first step for the application of Algorithm 4.1 (RFMP) is to choose an ap-
propriate dictionary D. Here, we use the dictionary

D =
{

KI
h(x, ·)

∣

∣ h ∈ {0.95, 0.97, 0.99}, x ∈ grid(B)
}

(5.1)

∪
{

GI
0,n,j

∣

∣ n = 3, . . . , 8, j = 1, . . . , 2n+ 1
}

where grid(B) is a Driscoll-Healy grid restricted to a spherical rectangle covering
South America, i.e. an equiangular grid, with 39, 800 grid points. We stop the
summation in the kernel functions at degree 2, 190 in accordance to the degree of
the spherical harmonics coefficients used to compute the data. This dictionary
suits our needs since we may reconstruct global trends with the basis elements
GI

0,n,j while the localized kernel functions K
I
h(x, ·) are a very good choice to re-

cover detail structures of the target function. If not specified otherwise, the data
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will be given at 25, 440 points on a Driscoll-Healy grid slightly above the Earth’s
surface at 7 km height. The method will be stopped after N = 20, 000 steps, i.e.
20, 000 dictionary functions will be chosen to represent the target function.

Since the inverse gravimetric problem is ill-posed, we use the regularized ver-
sion of our algorithm, i.e. Algorithm 4.1 (RFMP), to reconstruct the density
distribution of South America. However, this means we are confronted with the
problem to choose an appropriate regularization parameter λ. This is never an
easy task but in our case we are additionally strained with the problem that our
computations are too time-consuming to use the common methods. Usually, the
parameter is determined by computing the L-curve where for different parameters
λ the approximation error ||RN ||2

Rl is plotted against the penalty term ||FN ||2L2(B).
Another possibility is to choose the regularization parameter by trial and error.
However, we want to make an informed choice. Therefore, we adapt the L-curve
method to our purpose.

After 100 steps, the weighted norm of the residual
||R100||2

Rl

||y||2
Rl

, where ||y||2
Rl = ||R0||2

Rl

is the initial error, is already very small and we compute an L-curve for different
regularization parameters λ after 100 expansion functions were chosen instead of
at the end of the computations after 20, 000 steps.
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Figure 5.1.: Adapted L-curve for the choices λi = 10−2+4i/30, i = 3, . . . , 30 (left-
hand) and zoomed-in on the interesting part (right-hand)

On the left-hand side of Figure 5.1, we display the resulting L-curve for param-
eters λi = 10−2+4i/30, i = 3, . . . , 30, i.e. λ = 0.025119, . . . , 100, where the values
of the approximation error are given on the x-axis and the norm of the solution
on the y-axis. Furthermore, the value of the regularization parameter λ is given
at the corresponding point in the plot itself. On the right-hand side of Figure
5.1, we zoom in on the important part and choose λ = 4.6416 as an appropriate
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5.1 by Using Gravimetric Data (EGM2008): Example South America

regularization parameter.

Using this regularization parameter, we get the solution displayed on the left-
hand side of Figure 5.2. We clearly see the outline of the continent and the main
topographic structures, i.e. the Andes and the Caribbean. Furthermore, we see
parts of Antarctica and the Mid-Atlantic Ridge. In the right-hand side plot of
Figure 5.2, we display the center points x of the chosen kernel functions KI

h(x, ·).
Note that we artificially include the coast lines of South America in blue as an
orientation.

 80
° W  60

°
 W  40°

 W 

 40
° S 

 20
° S 

  0
°

 20
° N 

Figure 5.2.: Reconstructed density deviation (left-hand) and center points x of
the chosen expansion functionsKI

h(x, ·) (right-hand) computed out of
25, 440 data points with 20, 000 selected functions from the dictionary
D (i.e. F20,000 is shown), λ = 4.6416

Remember that we aimed to develop a method that recovers a solution adapted
to the structure of the target function. As can be seen in the right-hand side plot
of Figure 5.2, the center points of the localized expansion functions are chosen
mainly in areas where the detail structure needs to be more accurate, i.e. in the
Andes and the Caribbean.
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Note that the data was given on a Driscoll-Healy grid which is nearly equidis-
tributed in the area of South-America. Thus, it can be seen clearly that the
center points were primarily selected according to the structure of the solution
and not just the data structure.

Now imagine a data grid that is as large as the one chosen in this application, i.e.
25, 440 data points. A spline method would not be able to handle this data grid
since the corresponding (ill-conditioned and dense) matrix is much too large to
be handled in the computations. In spline methods, the chosen data points and
the center points x of the kernel functions KI

h(x, ·) used to expand the solution
are directly connected. Thus, it is not possible to get a resolution as high as in
the Andes with a spline method.

The localized character of the solution

In Figure 5.3, we examine the influence of the solution F20,000 as displayed in
Figure 5.2, i.e. the influence of the expansion elements, on exactly one point

x = (0.3784,−0.8661,−0.3267)Ta

situated in the Andes. We mark this point in the left-hand plot of Figure 5.3
with a red dot. On the right-hand side of Figure 5.3, we display the influence of
the expansion functions of the solution F20,000 on the value at the point x with
a logarithmic colorbar, i.e. we display log |αkdk(x)| for all expansion elements.
For a localized expansion function, we display log |αkK

I
hk
(x, xk)| as a value at the

center point xk. The influence of an expansion function G
I
mk,nk,jk

is included as
an additive at all points in the plot.

Since we use a logarithmic colorbar, the blue color denotes a very small influence
of about e−15 while the red color denotes a large influence of about e2 on the
value at the point x. Obviously, the value at x is mostly influenced by localized
expansion functions. Furthermore, we clearly observe that the impact of the lo-
calized expansion functions increases when the distance between x and the center
xk decreases. This behavior was, obviously, expected.
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Figure 5.3.: Influence of the expansion functions of the solution F20,000 (right-
hand) on the point x = (0.3784,−0.8661,−0.3267)Ta (red dot) lo-
cated in the Andes (left-hand)

The approximation error

We require the method to be adaptive and iterative. Thus, we may expect that
the solution is improved when we increase the number of chosen dictionary func-
tions in the expansion. First of all, let us consider the trend of the weighted
approximation error, i.e.

||Rn||2
Rl

||R0||2
Rl

=
||Rn||2

Rl

||y||2
Rl

where ||R0||2
Rl is the initial error. Thus, we may display the approximation qual-

ity in percentages with respect to the initial error where 1 = 100% denotes the
starting point.

In Figure 5.4, we display the evolution of the residual for the first 100 steps as
well as the development from step 100 to 10, 000 for λ = 4.6416 (in blue). We can
see clearly that the residual decreases rapidly in the beginning. After choosing
only 100 expansion functions, the approximation error is already reduced to less
than 1% of the initial error. Thus, it is appropriate to terminate the computation
after 100 dictionary functions are chosen when computing the adapted L-curve.

Moreover, we see that the approximation error can be reduced to less than 0.5%
of the initial error after about 500 steps and after approximately 10, 000 steps we
get a weighted approximation error of 0.09% for the optimal choice of the regu-
larization parameter λ = 4.6416. Let us remark that the approximation error is
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Figure 5.4.: Evolution of the weighted approximation error when reconstructing
the density deviation out of 25, 440 data points for n = 1, . . . , 100
(top) and n = 100, . . . , 10, 000 (bottom) in case of the solution com-
puted with Algorithm 3.1 (FMP), i.e. with regularization parameter
λ = 0 (red), and the solutions computed with Algorithm 4.1 (RFMP)
with regularization parameters λ = 4.6416 (blue) and 100 (green).
Note that the evolution of all three is very similar in the upper plot.
Only the green line can be seen.
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only reduced slightly anymore in the steps from 10, 000 to 20, 000 chosen expan-
sion functions. These results are not unexpected. Remember the regularization
functional ||Rn||2

Rl+λ||Fn||2L2(B) that is to be minimized. We may expect that, for
large n, the penalty term becomes more important in comparison to the residual.
Thus, its influence in the choice of the next dictionary function increases, too. We
expect the algorithm to concentrate on the reduction of the approximation error
in the beginning and shift its focus to reducing the penalty term, i.e. increasing
the smoothness of the solution, in a distinct iteration with respect to the chosen
regularization parameter λ.

The convergence based on the evolution of the coefficients α

In Figure 5.5, we display the evolution of the absolute value of the corresponding
weights αn obtained by Algorithm 4.1 for λ = 4.6416 up to n = 20, 000.
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Figure 5.5.: Evolution of |α| when reconstructing the density deviation out
of 25, 440 data points for n = 1, . . . , 20, 000 (top) and n =
3, 000, . . . , 10, 000 (bottom) for the solution computed with Algo-
rithm 4.1 (RFMP) with regularization parameter λ = 4.6416

Note that the absolute values of the weights αn of the representation of the
solution decrease very quickly which is evidence for a fast convergence of the
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algorithm. However, they do not decrease monotonically as is the case in the
original matching pursuit (see [98]).

The iterative character of the method

We developed an iterative method to reconstruct the target function. Thus, we
may expect that the solution improves stepwise. Let us consider the solution
after 3, 000 and 10, 000 steps in comparison to the solution after 20, 000 steps
(see the left-hand column of Figure 5.6). Clearly, the solution improves if we
choose 10, 000 dictionary functions instead of only 3, 000. The main structures
of the continent are displayed better. Moreover, we discern connected structures
and not just the local peaks of the localized kernel functions. After acquiring a
result as F3,000, one should obviously decide to refine the solution to get a better
resolution. Note that the result F3,000 may be used as an initial approximation
in the refinement. Thus, we do not lose valuable computation time. We will
consider such a refinement later in this section.

At first sight, we do not see much improvement if we increase the number of
the chosen expansion functions from 10, 000 to 20, 000 (compare the middle and
top plot of the left-hand column of Figure 5.6). However, this is not surprising
since the main structures were obviously already reconstructed after choosing
only 10, 000 expansion functions (see the display of centers x of the chosen local-
ized expansion functions in the right-hand column of Figure 5.6). However, the
additional 10, 000 expansion functions in F20,000 clearly refine the resolution of the
detail structures of the target function as can be observed, e.g. at the western
border of the Andes where the edges are not as rough anymore. Note that these
observations match remarkably well with our findings from the approximation
error (see Figure 5.4).

Now let us consider the center points x of the chosen kernel functions KI
h(x, ·),

again for F3,000, F10,000 and F20,000, as displayed in the right-hand column of Figure
5.6. As suggested by the plot of the solution F3,000, the displayed center points
again show that the main structures have been identified already this early in the
reconstruction process. We clearly see beginning shapes of the Andes and the
Caribbean. Moreover, we may even discern the coast lines of the eastern border
of the continent. As expected, all these features are much more prominent after
10, 000 expansion functions were chosen.
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Figure 5.6.: Reconstructed density deviation (left-hand column) and center points
x of the chosen dictionary functions KI

h(x, ·) (right-hand column)
computed out of 25, 440 data points with 3, 000 (bottom), 10, 000
(middle) and 20, 000 (top) selected expansion functions, λ = 4.6416
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The selection of the center points in the solution F10,000 compared to the one
in F20,000 confirms that the additional 10, 000 expansion functions in F20,000 are
mainly chosen to refine the detail structure of the approximation since we distin-
guish a cumulation of centers in the Caribbean, the Andes and part of Antarctica.
Note that we again added artificial blue coast lines to the plots of the centers to
ease the orientation.

The influence of the regularization parameter λ

In Figure 5.4, we displayed the weighted residuals for the unregularized approx-
imation with Algorithm 3.1 (FMP) (λ = 0 in red) as well as for the regularized
approximations with Algorithm 4.1 (RFMP) for λ = 4.6416 (in blue) and λ = 100
(in green). We clearly see that there are no major differences in the development
of the residuals up to step 100 (upper plot). However, in later steps, the effects
of the choice of the regularization parameter are more obvious. Choosing the
regularization parameter λ = 0, i.e. a reconstruction with no regard for the
smoothness of the solution, provides us, as expected, with the smallest weighted
approximation error of about 0.06% after 10, 000 expansion functions were cho-
sen. With increasing regularization parameter the importance of the penalty
term which forces the smoothness of the solution increases, too, and, thus, the
focus shifts from finding the solution with the smallest approximation error to
finding a solution that is smooth, too. As a consequence, the approximation error
of the smoothest solution (λ = 100, see Figure 5.7) is with a value of about 0.2%
the largest one.

In Figure 5.7, we compare the solution of the unregularized method (Algorithm
3.1 (FMP)) with the solution of the regularized method (Algorithm 4.1 (RFMP))
for the ’optimal’ regularization parameter λ = 4.6416 and the larger parameter
λ = 100. In each case, we reconstruct the density deviation out of 25, 440 data
points by selecting 10, 000 expansion functions out of the dictionary D given in
Equation (5.1). The left-hand column of Figure 5.7 displays the solutions with
the original colorbar while the colorbars of the same solutions in the right-hand
column are adapted for comparison to the values of the ’optimally’ regularized
solution.

Regarding the plots with adapted colorbar, we clearly see the characteristics of
a regularization. With increasing regularization parameter, the influence of the
penalty term increases, too. In our case, the penalty term is concerned with the
smoothness of the solution, i.e. the solution becomes smoother when we increase
the regularization parameter.
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Figure 5.7.: Reconstructed density deviation computed out of 25, 440 data points
with 10, 000 selected expansion functions from the dictionary D (i.e.
F10,000 is shown) for λ = 0 (bottom), λ = 4.6416 (middle) and λ =
100 (top) with original (left-hand) and adapted (right-hand) colorbar
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If we consider the range of the recovered values for the density deviation we ob-
serve another trait of a regularization. Smoothening oftentimes manifests as a
change in magnitude of the solution when we have only comparably small varia-
tions in the surrounding regions.

Anyway, these considerations demonstrate that the introduced method (Algo-
rithm 4.1 (RFMP)) is, indeed, a regularization method as was proven in Section
4.2.

The evolution of the penalty term

In Figure 5.8, we display the evolution of the penalty term for the unregular-
ized case (λ = 0 in red) as well as the regularization with different parameters
λ for 10, 000 iterations of Algorithms 3.1 (FMP) and 4.1 (RFMP), respectively
(λ = 4.6416 in blue, λ = 10 in a dashed magenta line style and λ = 100 in green).

With increasing regularization parameter λ the influence of the penalty term
in the choice of the next expansion function increases, too. Thus, we expect the
approximation to become smoother with increasing regularization parameter. Re-
member that, in our case, the smoothness of the approximation is expressed by
its L2(B)-norm, i.e. the penalty term. Thus, we expect the penalty term to de-
crease with increasing regularization parameter.

Clearly this expectation is fulfilled if we compare the results for λ = 0, λ = 4.6416
and λ = 10. However, the curve for the penalty term corresponding to λ = 100
displays larger values than the curves corresponding to less regularized com-
putations. That means the values of the L2(B)-norm are higher, although the
approximation is indeed smoother, as we displayed in Figure 5.7 and discussed
before.

If we consider the approximation error for the same regularization parameters
(see Figure 5.9), we do not observe any unexpected behavior. The approxima-
tion error increases for increasing regularization parameter - for all choices of λ.

Unfortunately, we do not understand this behavior, yet. However, for small reg-
ularization parameters the evolution of the penalty term is as expected. And
for larger regularization parameters the solution becomes smoother although this
behavior is not depicted in the evolution of the penalty term.
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Figure 5.8.: Evolution of the penalty term ||Fn||L2(B) when reconstructing the
density deviation out of 25, 440 data points for n = 1, . . . , 10, 000
(top) and n = 4, 000, . . . , 5, 000 (bottom) for the solution computed
with Algorithms 3.1 (FMP) and 4.1 (RFMP) with regularization pa-
rameters λ = 0 (in red), λ = 4.6416 (in blue), λ = 10 (in dashed
magenta) and λ = 100 (in green)
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Figure 5.9.: Evolution of the approximation error ||Rn||L2(B) when reconstructing
the density deviation out of 25, 440 data points for n = 1, . . . , 10, 000
(top) and n = 4, 000, . . . , 5, 000 (bottom) for the solution computed
with Algorithms 3.1 (FMP) and 4.1 (RFMP) with regularization pa-
rameters λ = 0 (in red), λ = 4.6416 (in blue), λ = 10 (in dashed
magenta) and λ = 100 (in green)
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The choice of expansion functions, in particular the choice of the
localization parameter h

Let us examine the choice of the expansion functions KI
h(x, ·) and GI

m,n,j. We
already know that the centers x are chosen according to the structure of the so-
lution (see right-hand side of Figure 5.2). Now, we want to consider the choice
of the localization parameters h corresponding to the chosen localized expansion
functions KI

h(x, ·), displayed in Figure 5.10. Choices of an expansion function
GI

m,n,j are denoted with the value 1.

It is not clear whether these results should be ranked as a success. On the one
hand, the choice of the localization parameters clearly depends on the choice of
the regularization parameter. Remember that the hat-width of a localized kernel
function increases if the localization parameter h decreases. With increasing reg-
ularization parameter the less localized dictionary elements are preferred, i.e. the
algorithm chooses more dictionary elements with lower localization parameter h
to build an approximation that is smoother. This behavior was expected.

On the other hand, we expect the algorithm to choose the less localized dictionary
elements first to recover main structures of the solution, i.e. we expect it to start
with the dictionary elements with global character followed by weakly localized
dictionary elements before it chooses strongly localized dictionary elements to
recover the detail structures of the target function. Clearly, the algorithm does
not fulfill this expectation.

Up to now, we only use localized kernel functions in scaling function form as
dictionary elements, i.e.

d = Kh(x, ·) =
∞
∑

m=0

∞
∑

n=0

2n+1
∑

j=1

(Ah
m,n)

2Gm,n,j(x)Gm,n,j(·), h ∈]0, 1[, x ∈ B.

We propose to use localized kernel functions in wavelet form, too, i.e.

d = Kh(x, ·)−Kh̃(x̃, ·), h, h̃ ∈]0, 1[, h > h̃, x, x̃ ∈ B

to improve the results.
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Figure 5.10.: Choice of localization parameters h in the localized expansion el-
ements KI

h(x, ·) when reconstructing the density deviation out of
25, 440 data points for n = 1, . . . , 10, 000 expansion functions cho-
sen by Algorithm 3.1 (FMP), i.e. λ = 0 (top in red), and Algorithm
4.1 (RFMP) with regularization parameters λ = 4.6416 (middle in
blue) and λ = 100 (bottom in green). Choices of an expansion
element GI

m,n,j are denoted with the value 1.
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Refinement

We mentioned that the iterative character of our method allows us to reuse results
from previous computations to, e.g. zoom in on certain parts of the solution. We
investigate this property by refining Middle-America and the Caribbean.

In the refinement, we want to improve the approximation in a certain area only.
Thus, it is reasonable to consider a dictionary that consists of functions with a
local character exclusively, e.g. the dictionary

D =
{

KI
h(x, ·)

∣

∣ h ∈ {0.95, 0.97, 0.99}, x ∈ grid(B)
}

(5.2)

where grid(B) is a Driscoll-Healy grid restricted to a spherical rectangle covering
the area of Middle-America and the Caribbean, i.e. an equiangular grid with
39, 800 grid points. Furthermore, we use a data grid with 25, 440 points on a
Driscoll-Healy grid slightly above the Earth’s surface at 7 km height for this
same area of the refinement. We choose the regularization parameter λ = 10
with the adapted L-curve method.

In the left-hand column of Figure 5.11, we display the solution and the center
points of the chosen localized expansion functions corresponding to Algorithm
4.1 (RFMP) where we use a regularization parameter λ = 4.6416 and stop the
computation after 3, 000 expansion functions were chosen out of the dictionary D
given in Equation (5.1). We considered this solution before when we investigated
the iterative character of the method in Figure 5.6. For the refinement, we use
this solution as a basis for the new computations. Thus, in this example, we save
half of the computation time.

In the middle column of Figure 5.11, we display the refinement and the center
points of the 3, 000 additionally chosen expansion functions. Remember that
the dictionary D given in Equation (5.2) for the refinement consists of localized
functions only. When comparing the solution without the refinement (upper left-
hand plot) and the solution corresponding to the refinement (upper middle plot)
we clearly see, that the resolution of Middle-America and the Caribbean is by
far improved. If we consider the center points of the chosen expansion functions
(lower middle plot) we observe that they are mostly centered in these regions,
i.e. Middle-America and the Caribbean, as well. Furthermore, we observe some
minor boundary effects. Note that we give some ideas to control these boundary
effects in Appendix A.

In the right-hand side column of Figure 5.11, we consider the changes that the re-
finement introduces. Again we observe, that most changes are located in Middle-
America and the Caribbean, i.e. the regions where something happens. This is,
of course, expected behavior as we investigated these properties before. However,
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it is quite remarkable how well the refinement process works. It allows us to do a
coarse investigation of a certain area first. And then, with these results in mind,
we may decide where we want to refine this solution. Furthermore, this property
allows us to save major computational effort when refining.
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Figure 5.11.: Reconstructed density deviation (top) and the center points x of
the chosen localized expansion functions (bottom) computed out
of 25, 440 data points with 3, 000 selected expansion functions for
λ = 4.6416 (left-hand column), refined in the North-West out of the
set of 25, 440 data points located in the North-West with additional
3, 000 selected expansion functions out of the dictionary given in
Equation (5.2) for λ = 10 (middle column) and the refinement only
(right column)
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Dealing with noise

In this section, we want to examine the behavior of the regularizing Algorithm
4.1 (RFMP) when applied to noisy data yε. Here ε denotes the noise level where
a value ε = 0.01 corresponds to a data input that is disturbed with 1% random
noise relative to the exact data y, i.e.

yεi = yi + ε randi yi, i = 1, . . . , l

where randi is a random number in the interval [0, 1].

In this section, we consider the reconstructed density deviations out of 25, 440
data points where we stop the algorithm after 10, 000 expansion functions are
chosen out of the dictionary given in Equation (5.1).
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Figure 5.12.: Reconstructed density deviation (top) and center points of the cho-
sen localized expansion functions (bottom) computed out of 25, 440
data points with 10, 000 selected expansion functions from the dic-
tionary D (i.e. F10,000 is shown) for λ = 0 out of exact data (ε = 0,
left-hand column) and out of data with 1% noise (ε = 0.01, right-
hand column)
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In Figure 5.12, we display the solution and the position of the center points of the
chosen localized expansion functions of the unregularized Algorithm 3.1 (FMP)
when considering exact data and a noise level of ε = 0.01 which corresponds to
1% of noise. We can clearly observe that the introduction of noise has a very
negative influence on the reconstruction quality of the algorithm since the main
structures are hardly identified anymore. Furthermore, the solution suffers from
major boundary effects. Thus, using a regularization method seems to be very
important.

Figure 5.13.: Reconstructed density deviation computed out of 25, 440 data
points with 10, 000 selected expansion functions from the dictionary
D (i.e. F10,000 is shown) for λ = 0 (left-hand), λ = 10 (middle) and
λ = 100 (right-hand with adapted colorbar) out of data disturbed
with 1% noise (ε = 0.01)

Let us compare F λ,ε = F 0,0.01, F 10,0.01 and F 100,0.01 in Figure 5.13. It is not sur-
prising that the regularized solutions are much smoother than the unregularized
one. However, the unregularized solution clearly displays boundary effects that
do not appear in the regularized ones. Furthermore, F 0,0.01 shows some artefacts,
e.g. in the Caribbean and the Andes. Again, we do not observe such artefacts
in the regularized solutions. As a result, we strongly recommend to use our reg-
ularization method when working with noisy data. Of course, this confirms our
theoretical results.

In Figure 5.14, we investigate the solutions for the three different noise levels
ε = 0, ε = 0.01 and ε = 0.1 where ε = 0 corresponds to the case with exact data
that we examined in the prior sections. Moreover, we use the two regularization
parameters λ = 10 (left-hand column) and λ = 100 (middle column with origi-
nal colorbar and right-hand column with adapted colorbar) for our considerations.
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5.1 by Using Gravimetric Data (EGM2008): Example South America

Figure 5.14.: Reconstructed density deviation computed out of 25, 440 data
points with 10, 000 selected expansion functions from the dictionary
D (i.e. F10,000 is shown) for λ = 10 (left-hand column), λ = 100
(middle) and λ = 100 with adapted colorbar (right-hand column)
out of exact data (ε = 0, top), data with 1% noise (ε = 0.01, middle
row) and data with 10% noise (ε = 0.1, bottom)
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

Let us first consider the solutions regularized with λ = 10, i.e. the left-hand col-
umn of Figure 5.14. Clearly, some of the important features of South America,
namely the Andes, the Caribbean and parts of Antarctica may still be distin-
guished when we use noisy data as an input to Algorithm 4.1 (RFMP). However,
the more shallow structures close to the Mid-Atlantic Ridge and the eastern coast
of South America can, obviously, not be recovered correctly anymore. Surpris-
ingly, the reconstruction does not worsen as much as may be expected when
raising the noise level from 1% (ε = 0.01) to 10% (ε = 0.1). However, we observe
boundary effects in the solution corresponding to ε = 0.1 (see Figure 5.15, too)
that are not present in the solution corresponding to ε = 0.01.

When comparing the reconstruction with regularization parameter λ = 10 to the
solutions corresponding to λ = 100 we clearly observe the regularizing character
of the method. All solutions corresponding to λ = 100 are smoother than the
respective ones corresponding to λ = 10, as expected. However, the solutions
corresponding to the noisy data input for λ = 100 display the same strengths
(see Andes, Caribbean and Antarctica) and shortcomings (see the east coast of
South America and the Mid-Atlantic Ridge) as the reconstructions corresponding
to the regularization parameter λ = 10. Moreover, the solution corresponding to
the noise level ε = 0.1 and the regularization parameter λ = 100 clearly displays
boundary effects as well as some artefacts (see, e.g. the maximum in the east of
the Caribbean in white) that are not distinguishable in the solution correspond-
ing to the noise level ε = 0.01 with λ = 100.

Let us summarize that the reconstruction of the density deviations out of noisy
data still produces results where the main structures are distinguishable if we
use a regularization method. However, the quality of the reconstruction seems
to worsen from North to South. Furthermore, we observe some boundary effects
and artefacts for larger noise levels. We will give a short outlook on treating
boundary effects in Appendix A.

The choice of the center points x of the localized expansion functions KI
h(x, ·)

confirms all these observations (see Figure 5.15 where we display this choice for
the regularization parameters λ = 10 (left-hand column) and λ = 100 (right-hand
column) as well as noise levels ε = 0 (exact data, bottom), ε = 0.01 (middle)
and ε = 0.1 (top)). Clearly, the ability of the algorithm to choose the expansion
functions according to the structure of the target function is corrupted when we
consider noisy data. Furthermore, the main structures of the solution cannot be
distinguished in the plot of the center points of the chosen expansion functions,
anymore. Nonetheless, an increasing regularization parameter bears a positive
impact on this ability since more structures may be detected in the plots corre-
sponding to λ = 100.
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Figure 5.15.: Center points x of the chosen dictionary functions KI
h(x, ·) com-

puted out of 25, 440 data points with 10, 000 selected expansion
functions from the dictionary D (i.e. F10,000 is shown) out of exact
data (ε = 0, bottom), data with 1% noise (ε = 0.01, middle) and
data with 10% noise (ε = 0.1, top) for regularization parameters
λ = 10 (left-hand column) and λ = 100 (right-hand column)
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

In Figure 5.15, the boundary effects, that we already detected for the noise level
ε = 0.1, are more obvious and intensify with increasing regularization parame-
ter λ. Again, we refer to Appendix A for an outlook on treating boundary effects.

At last, let us investigate the behavior of Algorithm 4.1 (RFMP) when consid-
ering noisy data by means of the relative error corresponding to the optimal
solution for the exact data, i.e. corresponding to F 4.6416,0. We use a relative error
to keep comparability. The optimal solution seems to be an appropriate choice
for a reference solution, since we do not know the exact solution.

Let the solution F λ,ε
n be described by the vector zλ,ε ∈ RM , M ∈ N, where

z
λ,ε
i := F λ,ε

n (xi), i = 1, . . . ,M , and M is the number of grid points xi for the
evaluation of the solution. Then the relative error may be described as

||z4.6416,0 − zλ,ε||2
RM

||z4.6416,0||2
RM

.

For our choice of regularization parameters λ = 0, λ = 10 and λ = 100 and noise
levels ε = 0 (corresponding to exact data), ε = 0.01 and ε = 0.1, we get the
values displayed in Table 5.1 for the relative error with respect to the solution
F 4.6416,0.

relative λ = 0 λ = 10 λ = 100

ε = 0 18.6283 1.7455 1.1255
ε = 0.01 10.1487 1.5769 1.0499
ε = 0.1 10.9906 2.4077 1.1169

Table 5.1.: Relative error (corresponding to the optimal solution F
4.6416,0
10.000 with

respect to the exact data) of the solutions corresponding to the regu-
larization parameters λ = 0, λ = 10 and λ = 100 and the parameters
ε = 0, ε = 0.01 and ε = 0.1 denoting the noise level of the data input

When considering the relative error in Table 5.1, we clearly see that our chosen
regularization works. For a certain noise level ε, the relative error correspond-
ing to the unregularized solution F 0,ε is certainly larger than the relative errors
corresponding to the regularized solutions F 10,ε and F 100,ε. In this example, we
reach relative errors for the unregularized solution that are up to 10 times (but at
least 4 times) larger than in the regularized cases. Note that the regularization
parameter λ = 10 still corresponds to a weak regularization in our case. Thus,
it is very important and appropriate to use a regularization method when con-
fronted with noisy data as we mentioned before.

124



5.2 Remark: The Sparse Regularization Point of View (MRFMP l1)

If we consider the development of the relative error with respect to a certain
regularization parameter λ, we observe that, as has to be expected, the value
increases when we raise the noise level from ε = 0.01 to ε = 0.1. Surprisingly,
the value corresponding to F 100,0.1 is still rather small although we observe ma-
jor boundary effects in this case (see Figure 5.14). We may conclude that the
approximation quality does not suffer much from these effects.

Note that we are not able to make conclusions about the optimal value of the
regularization parameter out of the values given in Table 5.1. One reason is that
we compare relative values where the choice of the reference value might play an
important role. Secondly, we cannot expect that the behavior with respect to
one certain noise level ε is linear, e.g. for ε = 0 we get the values

relative λ = 0 λ = 4.6416 λ = 10 λ = 100
ε = 0 18.6283 1 1.7455 1.1255

which is not a linear relation.

In summary, these considerations clearly demonstrate that the proposed reg-
ularization method works. Furthermore, this example showed that it is very
important to use a regularization method when confronted with noisy data.

5.2. Remark: The Sparse Regularization Point of

View (MRFMP l
1)

As we discussed in Sections 3.1 and 4.4, from a sparse regularization point of
view, it seems to be advantageous to use l1-optimization in the penalty term of
the Tikhonov regularization. Since we operate in function spaces we are stuck
with the L1(B)-norm (see Section 4.4) which is rather expensive in computations
in comparison to the L2(B)-norm.

In the Euclidean setting, usually the l1-norm is minimized (see Section 3.1). Here,
we want to show that it is not possible to just adapt methods from the Euclidean
setting to our setting of an inverse problem on the ball. Thus, let us consider the
l1-norm of the coefficients αk of the expansion of the solution as a penalty term
in the regularization, i.e. we minimize

||Rn||2
Rl + λ||An||l1

where An = (α1, . . . , αn)
T ∈ Rn consists of the coefficients of the expansion of
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

the solution Fn. Note that ||An||l1 =
∑n

k=1 |αk|.

Let us now develop the corresponding algorithm. In step n + 1, we are looking
for the dictionary element dn+1 and the corresponding coefficient αn+1 that fulfill

(dn+1, αn+1) = argmind∈D,α∈R

(

||Rn − αFd||2
Rl + λ||An+1||l1

)

where An+1 = (α1, . . . , αn, α)
T ∈ R

n+1. We derive the optimal dictionary element
dn+1 and the corresponding coefficient αn+1 with the same technique as before.

The minimizing α fulfills

0 =
∂

∂α

(

||Rn − αFd||2
Rl + λ

n
∑

k=1

|αk|+ λ|α|
)

= −2〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ sgn α.

and, thus,

α =
2〈Rn,Fd〉Rl − λ sgn α

2||Fd||2
Rl

(5.3)

which is solved by

α1/2 =
2〈Rn,Fd〉Rl ± λ

2||Fd||2
Rl

.

Remember that we do not add to the expansion of the solution if α = 0. Thus,
we do not need to consider this case.

With this approach, we might produce a false solution. Thus, we have to verify
whether Equation (5.3) holds true for α1 and α2.

Again, we insert the expression for α (see Equation (5.3)) into the target function
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5.2 Remark: The Sparse Regularization Point of View (MRFMP l1)

of the optimization:

||Rn − αFd||2
Rl + λ

n
∑

k=1

|αk|+ λ|α|

= ||Rn||2
Rl − 2α〈Rn,Fd〉Rl + α2||Fd||2

Rl + λ

n
∑

k=1

|αk|+ λ|α|

= ||Rn||2
Rl − 2〈Rn,Fd〉Rl − λ sgn α

||Fd||2
Rl

〈Rn,Fd〉Rl

+

(

2〈Rn,Fd〉Rl − λ sgn α

2||Fd||2
Rl

)2

||Fd||2
Rl

+λ

n
∑

k=1

|αk|+ λ
|2〈Rn,Fd〉Rl − λ sgn α|

2||Fd||2
Rl

= ||Rn||2
Rl + λ

n
∑

k=1

|αk|+
−4〈Rn,Fd〉2

Rl + λ2 + 2λ |2〈Rn,Fd〉Rl − λ sgn α|
4||Fd||2

Rl

.

And, consequently, a dictionary element d minimizes

||Rn − αFd||2
Rl + λ

n
∑

k=1

|αk|+ λ|α|

if and only if it minimizes

−4〈Rn,Fd〉2
Rl + λ2 + 2λ|2〈Rn,Fd〉Rl − λ sgn α

4||Fd||2
Rl

.

Thus, we get the following algorithm for the regularized version of the Functional
Matching Pursuit with l1-norm:

Algorithm 5.1 (Basic RFMP - Mixed l
1 (MRFMP l

1))
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 minimizes
−4〈Rn,Fd〉2

Rl + λ2 + 2λ|2〈Rn,Fd〉Rl − λ sgn α|
4||Fd||2

Rl

and

αn+1 =
2〈Rn,Fdn+1〉Rl − λ sgn αn+1

2||Fdn+1||2Rl

.

In the top row of Figure 5.16, we display the result of the inversion with respect
to the proposed l1-regularization compared to the results we acquired before with
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Figure 5.16.: Reconstructed density deviation (top) for the L2(B)-regularization
(left-hand) and the proposed l1-regularization with original (middle)
and adapted colorbar (right-hand) and center points x of the cho-
sen expansion functions KI

h(x, ·) (bottom in the same order) com-
puted out of 25, 440 data points with 10, 000 selected functions from
the dictionary D given in Equation (5.1) for λ = 4.6416 (L2(B)-
regularization) and λ = 100 (l1-regularization)
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5.2 Remark: The Sparse Regularization Point of View (MRFMP l1)

L2(B)-regularization.

Clearly, the solution corresponding to the l1-regularization is less smooth than
the original solution. This has to be expected since it was acquired with no regard
to this property of the solution. Although the main structures of South America
are recovered with this regularization as well we get much more obvious errors in
the reconstruction. Furthermore, the amplitudes are too extreme to be a good
approximation.

Let us now consider the arrangement of the center points of the chosen expansion
functions for both regularizations in the bottom row of Figure 5.16. Clearly and
as expected, the expansion functions are not chosen according to the structure of
the solution anymore. In the l1-case, we get a very even arrangement of center
points.

Overall, this example shows that ideas and methods from the Euclidean setting
cannot just be applied to inverse problems in general. The ideas have to be
adjusted carefully, as was done when developing a regularized algorithm in this
work.
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

5.3. by Combining Gravitational and Normal Mode

Data

As we mentioned before, we may only reconstruct the harmonic part of the den-
sity distribution out of the gravitational potential. For information about the
anharmonic part, we need to include seismic data as well. For the joint inversion,
we use the gravitational potential EGM2008 up to degree 2, 190 and order 2, 159
as data input. The data are given at 1, 560 data points on a sphere located 7 km
above the surface of the Earth. As seismic data, we use 1, 738 splitting function
coefficients corresponding to 49 different splitting functions (see Table 2.1) con-
structed out of the normal mode anomalies of the Earth recovered by Dr. Arwen
Deuss, University of Cambridge. For further details on these data types we refer
to Section 2.

Since we now operate on the whole Earth, i.e. the interior is included, we need
a dictionary that includes anharmonic functions as well. In this section, the
dictionary D is given by

D =
{

KI
h(x, ·)

∣

∣ h ∈ {0.9, 0.95, 0.99}, x ∈ grid(B)
}

(5.4)

∪
{

GI
m,n,j

∣

∣ m,n = 0, . . . , 12, j = 1, . . . , 2n+ 1
}

where grid(B) is a Driscoll-Healy grid with 9, 900 points on spheres with three
different radii r1 = 6, 071 km, r2 = 6, 220.5 km and r3 = 6, 370 km. Thus, grid(B)
consists of 29, 700 points and the dictionary includes more than 89, 000 functions.
We choose to reconstruct the upper 300 km of the interior of the Earth as a case
study, since the main structures in this region are defined by subduction zones
and ridges, i.e. we will be able to discuss the results critically. We stop the sum-
mation in the localized kernel functions KI

h(x, ·) at degree 2, 190 in accordance
to the degree of the spherical harmonics coefficients used to compute the data.

Algorithm 4.1 (RFMP) will be stopped after N = 10, 000 expansion functions
are chosen to reconstruct the target function.

Normal Mode Anomalies Only

First of all, let us consider the inversion for seismic data only. In Figure 5.17,
we display the reconstruction of the density deviation up to a depth of 300 km
plotted on an equatorial cut through the Earth (confer Figure 1.3) where we al-
ready labeled the main features, i.e. the main subduction zones and ridges, close
to the equator. Clearly, the new method reproduces the known features in the
upper part of the crust of the Earth.
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5.3 by Combining Gravitational and Normal Mode Data

Figure 5.17.: Reconstructed density deviation in the upper 300 km (enlarged) of
the x2-x3-plane (see Figure 1.3) computed out of 1, 738 splitting
function coefficients corresponding to 49 different splitting func-
tions with 10, 000 selected expansion functions from the dictionary
D given in Equation (5.4) (i.e. F10,000 is shown), λ = 10−30
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

Secondly, we will investigate the approximation quality in more detail. There-
fore, in the top of Figure 5.18, we compare the data, i.e. the splitting function
coefficients corresponding to 49 different splitting functions (see Table 2.1), with
the approximation FCF10,000. We display the values of the coefficients in blue,
the values of the approximation in red and the difference in green.
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Figure 5.18.: Values of the splitting function coefficients (blue), approximation
FCF10,000 (red) and error (green) for all 1, 738 coefficients (top)
and the coefficients corresponding to the splitting functions 3Sl,
l = 6, . . . , 9, with 10, 000 selected expansion functions from the dic-
tionary D given in Equation (5.4), λ = 10−30

We can clearly see that the main features of the coefficients were reconstructed by
our new method. The best match can be found in the coefficients corresponding
to the splitting functions 0Sl, l = 3, . . . , 9, 12, . . . , 17, 19, . . . , 21, i.e. the funda-
mental modes. In the bottom plot of Figure 5.18, we display the value of the
coefficients, the approximation and the error for 3Sl, l = 6, . . . , 9, where the al-
gorithm again delivers a very good approximation to the input data. Most errors

132



5.3 by Combining Gravitational and Normal Mode Data

are connected to the amplitude of the approximation and not to the structure
itself. Maybe, further research in the direction of finding a fitting regularization
parameter will provide us with an even better approximation.

Combined Inversion

If we combine different data types, we get the optimization functional

||y−FFn||2Rl+λ||Fn||2L2(B) =
la
∑

i=1

(yai −F i
aFn)

2+

lb
∑

i=1

(ybi −F i
bFn)

2+λ||Fn||2L2(B)

where Fa and Fb are two operators corresponding to the two different data types
ya ∈ Rla and ya ∈ Rlb , l := la + lb.

In our combination of gravitational data and normal mode anomalies, we expect
the inversion to be dominated by the gravitational data (see [17, 18] where a
joint inversion of these two data types was considered as well). Thus, we attempt
to weight the data appropriately, i.e. we are looking for weights wi > 0, i =
1, . . . , la + lb with respect to the optimization functional

||ỹ−F̃Fn||2Rl+λ||Fn||2L2(B) =

la
∑

i=1

wi(y
a
i−F i

aFn)
2+

lb
∑

i=1

wla+i
(ybi−F i

bFn)
2+λ||Fn||2L2(B)

where ỹ = Wy and F̃ = WF for the diagonal matrix W = diag(
√
w1, . . . ,

√
wla+lb) ∈

R(la+lb)×(la+lb). Note that the theoretical results hold for this optimization prob-
lem as well.

For our numerical considerations, we weight the data corresponding to the normal
mode anomalies with a factor 105, i.e. w1, . . . , wlG = 1 and wlG+1, . . . , wlG+lC =
105 where lG corresponds to the number of gravitational data points and lC cor-
responds to the number of splitting function coefficients. Furthermore, we choose
the regularization parameter λ = 10−30 as in the case where we consider normal
mode anomalies only.

In Figure 5.19, we display the result of this combined inversion. Moreover, in
Figure 5.20, we display the difference between the result corresponding to nor-
mal mode anomalies only (see Figure 5.17) and the result corresponding to the
combined inversion to present the gain of a combined inversion. Note that we use
the same coordinate system as in Figure 5.17. Thus, the main features that we
labeled in Figure 5.17 are still in the same areas in these figures corresponding
to the combined inversion.
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

Figure 5.19.: Reconstructed density deviation in the upper 300 km (enlarged) of
the x2-x3-plane (see Figure 1.3) computed out of 1, 738 splitting
function coefficients corresponding to 49 different splitting func-
tions weighted with a factor of 105 and 1, 560 gravitational data
points with 10, 000 selected expansion functions from the dictionary
D given in Equation (5.4) (i.e. F10,000 is shown), λ = 10−30
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5.3 by Combining Gravitational and Normal Mode Data

Figure 5.20.: Difference of the result of the combined inversion (see Figure 5.19)
and the reconstruction out of normal mode data only (see Figure
5.17) in the upper 300 km (enlarged) of the x2-x3-plane (see Figure
1.3)

Clearly and as expected, we gain more information close to the surface of the
Earth when we reconstruct the density deviation out of a combination of grav-
itational data and data corresponding to normal mode anomalies compared to
the result corresponding to normal mode anomalies only. Furthermore, we re-
construct different structures in the area of New Guinea and Indonesia, i.e. in
the upper part of the plots. Note that the solution is not dominated by the
gravitational data as was observed in [17, 18] where the same data types were
inverted with a spline method. By weighting, we seem to have reached some kind
of balance between both data types.
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Chapter 5 Reconstructing the Mass Density Distribution of the Earth

In [17, 18] a vectorial spline method was developed to invert gravitational data
and normal mode anomalies jointly. Comparing the results directly leads us to
the conclusion that we get a much more detailed reconstruction with our new
method. Next to using more recent and accurate data sets, this may be ascribed
mainly to two features of our new method:
In [17, 18], the data corresponding to 10 splitting functions and 500 data points
corresponding to the gravitational data were used for the combined inversion
which leads to a large ill-conditioned matrix. Our new method allows us to con-
sider the data corresponding to 49 different splitting functions and 1, 560 gravi-
tational data points where we have not reached the limit of data points that may
be considered by far.
Secondly, with our new approach, we are able to consider different types of func-
tions in our dictionary to reconstruct the solution. This is, of course, not possible
with a spline method.

Thus, our new method seems to be very well matched for the kind of problems
considered in this work, since we are able to present a much more detailed model
of the interior of the Earth that displays the main features of the upper crust of
the Earth, i.e. the subduction zones and ridges.

Nonetheless, we see potential for improvements of these first results. First of all,
it seems to be advisable to use point grids that are adapted to the depth, i.e.
we might use a denser point grid close to the surface of the Earth. Secondly,
we might link the choice of the localization parameter h to the depth, i.e. we
might give different choices of localization parameters in different depths, since
we expect a more detailed reconstruction close to the surface of the Earth. As
a third improvement, we should choose the regularization parameter and the
weights more sophisticated.
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6. Reconstructing the Mass
Transport in the Amazon Area

The satellite mission GRACE (Gravity Recovery And Climate Experiment) was
started in 2002 to gain more information about the Earth’s gravitational poten-
tial which allows us to detect climate phenomena like the water mass transport
in the gravitational field (see [24]). The GRACE mission provides us with a
monthly global coverage of the gravitational potential such that we are able to
investigate temporal variations, too. In this section, we will concentrate on de-
tecting the monthly mass transport, i.e. seasonal changes, in the Amazon area.
It is very important to observe the mass transport in the Amazon area regularly,
since it is one of the largest watersheds on Earth. Thus, it has been observed
by other research groups using different techniques and observation periods (see
[25, 26, 55, 139]).

We will use the monthly data provided by the Jet Propulsion Laboratory (JPL,
see [85], Release 04). The data, i.e. the spherical harmonics coefficients, are
given up to degree and order 120. To analyze the temporal variations of the
monthly given gravitational potential of the Amazon area, we will subtract a
mean potential from the monthly solutions and use this difference as an input to
our algorithm. We use the available coefficients from July 2004 to June 2009 to
compute the mean potential.

However, it is well-known that the higher degrees and orders contain noise that
needs to be removed from our data. Thus, we have to use some kind of smoothing.
Note that smoothing also attenuates the real signal such that we have to expect a
change in magnitudes. In [139], a smoothing function with an effective Gaussian
radius was suggested. In this work, we prefer wavelets to analyze variations in
the gravitational potential of the Earth as suggested in [55], i.e. we consider

√
4π

γM

a

En
∑

n=3

2n+1
∑

j=1

ψJ(n)Ṽn,jYn,j

(

x

|x|

)

to reconstruct the data from the given spherical harmonics coefficients Ṽn,j. Note
that γM is a constant representing the product of the gravitational constant γ
and the Earth’s mass M .
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Chapter 6 Reconstructing the Mass Transport in the Amazon Area

Here, we will use the P-wavelet corresponding to the CuP-scaling function as a
filter (see also [65]), i.e. the function ψJ(n) defined as

ψJ(n) =















(1− 2−J−1n)4(1 + 2−Jn)2

−(1− 2−Jn)4(1 + 2−J+1n)2 , n = 0, . . . , 2J − 1
(1− 2−J−1n)4(1 + 2−Jn)2 , n = 2J , . . . , 2J+1 − 1
0 , n ≥ 2J+1

.

As shown in Figure 6.1, the filter ψJ controls up to which degree and to what
extent the coefficients of the spherical harmonics are considered. An increasing
scale J admits more detail information. However, it bears the risk to include
errors or artefacts like satellite tracks as well. Thus, it has to be investigated
carefully which filter yields a realistic and useful viable input. We refer to [55]
for such an investigation for our case.
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Figure 6.1.: ψJ for J = 4 (top left-hand), J = 5 (top right-hand), J = 6 (bottom
left-hand) and J = 7 (bottom right-hand)

In [55], the problem of choosing the right scale was already considered. As a re-
sult, it was proposed to use scale J = 4, since scale J = 5 already includes errors.
In Figure 6.2, we display the difference between the mean gravitational potential
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Figure 6.2.: Difference between the mean gravitational potential and the gravita-
tional potential of November 2008 (left-hand column) at scale J = 4
(bottom), scale J = ln 25

ln 2
(middle) and scale J = 5 (top) as well as

the CuP-filter functions ψJ (n) for J = 4, J = ln 25
ln 2

and J = 5 in the
right-hand column (in the same order as above)
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Chapter 6 Reconstructing the Mass Transport in the Amazon Area

and the gravitational potential of November 2008 at scale J = 4 and scale J = 5
(bottom row and top row of Figure 6.2, respectively). Clearly, the potential at
scale J = 5 includes too many data errors, e.g. the vertical structures probably
indicate satellite tracks. On the other hand, the potential at scale J = 4 provides
us with a very low scale data input and does not seem promising to recover the
desired effects.

At scale J = 4, all spherical harmonics coefficients up to degree 31 are considered,
while at scale J = 5 the degree of considered coefficients is increased up to 63. To
get a better input to recover the seasonal changes in the Amazon area we choose
a filter where all spherical harmonics coefficients up to degree 49 are considered
(see middle row of Figure 6.2, J = ln 25

ln 2
). Now we expect that there are enough

details included to recover the desired effects where the contained noise is still
suppressed sufficiently.

We will use the dictionary given in Equation (5.1), where the series in the kernel
functions is terminated after 100 summations. Moreover, we will stop Algorithm
4.1 (RFMP) after N = 10, 000 steps. As input we use 11, 990 data points given
on a Driscoll-Healy grid computed on a sphere 7 km above the Earth’s surface.

Again using the adapted version of the L-curve method to choose the regulariza-
tion parameter λ, we would ideally choose the monthly parameters given in Table
6.1. In this work, we use the mean value of these regularization parameters, i.e.
λ = 8.7128, for all months to keep comparability.

January λ = 11.6591 July λ = 8.577
February λ = 8.577 August λ = 8.577
March λ = 8.577 September λ = 6.3096
April λ = 8.577 October λ = 8.577
May λ = 6.3096 November λ = 8.577
June λ = 8.577 December λ = 11.6591

Table 6.1.: Ideal choice of regularization parameters λ in 2008

In Figures 6.3 and 6.4, we display the resulting density deviations for January
2008 up to December 2008. Here, the color blue denotes that the humidity is
higher than in the mean, i.e. the surface and ground water levels are higher than
in the mean, while red denotes that the humidity is lower than in the mean.

Looking at April 2008 (bottom right-hand plot in Figure 6.3), we conclude that
we have a rainy season north of the equator and a dry season south of the equa-
tor. These findings conform with meteorological and hydrological observations
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(see Global Land Data Assimilation System (GLDAS) [79, 125]). In comparison
to September 2008 (top left-hand plot in Figure 6.4), we clearly see the seasonal
changes, since now there is a dry area north of the equator and a wet region south
of the equator.

Moreover, we observe a clear separation of the Amazon watershed and the Orinoco
watershed in the north of South America. This separation is a very important
feature to be reconstructed, since we do not only have a meteorological separation
by the equator but a topographic separation by the Guiana highlands, too.

Overall, the displayed results conform to empiric data from a temporal perspec-
tive as well as from a spatial one, i.e. the changes appear in accordance to the
seasons in the Amazon area and the equator seems to be a natural interface for
the change of conditions.

In Figure 6.5, we display the centers x of the kernel functions KI
h(x, ·) chosen by

the algorithm where we artificially included the coast lines of South America for
orientation. Again, we clearly see one of the advantages of our new method. The
expansion functions are primarily chosen in accordance with the detail density of
the solution.
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Chapter 6 Reconstructing the Mass Transport in the Amazon Area

Figure 6.3.: Density deviation from January 2008 (bottom left-hand), February
2008 (middle left-hand) to June 2008 (top right-hand) computed out
of 11, 990 data points with 10, 000 selected expansion functions, λ =
8.7128
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Figure 6.4.: Density deviation from July 2008 (bottom left-hand) to December
2008 (top right-hand) computed out of 11, 990 data points with
10, 000 selected expansion functions, λ = 8.7128
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Figure 6.5.: Choice of centers x of the dictionary functions KI
h(x, ·) for the year

2008 (upper left-hand: January, upper right-hand: March) computed
out of 11, 990 data points with 10, 000 selected expansion functions,
λ = 8.7128
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7. Summary

Spline methods are a popular tool when solving ill-posed inverse problems like
the inverse gravimetric problem. However, there are a few clear draw-backs of
these methods that we were able to rectify in this work.

First of all, when inverting with a spline method we need to solve a linear equa-
tion system, whose size corresponds directly to the number of data points used
for the inversion. However, systems corresponding to the very high number of
data points that we use in this work, i.e. more than 25, 000 data points, can-
not be handled numerically anymore. Because of its iterative character, our new
method does not know such limitations.

Secondly, spline methods produce a solution that is adapted to the data struc-
ture. This, in itself, is a clear advantage over other already existing methods.
However, it is even more advantageous to procure a solution that is adapted to
the data structure and the detail structure of the solution itself. Again, our new
method provides us with such a solution.

A third comment is that we may only use one kind of basis function for the
expansion of the solution when using a spline method. However, the reconstruc-
tion may be more efficient if, for certain structures, different basis functions were
available, e.g. functions with a global character to reconstruct global trends and
localized functions to reconstruct detail structures. The new method allows such
a mix of expansion functions.

The mystery ingredient is the idea of a Matching Pursuit which is an adaptive and
iterative greedy algorithm introduced in signal recovery and subsequently used
in the field of sparse regularization. However, we introduce three new concepts
into the Matching Pursuit: The data is now given by a linear and continuous
operator and not by the target function itself. Secondly, this algorithm will not
depend on prior knowledge of the sparsity of the target function. Furthermore,
we leave the Euclidean setting to operate on a setting of an inverse problem on
the three-dimensional ball.
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Chapter 7 Summary

Since most real-world problems are ill-posed, we construct a regularization method,
too, where we introduce different penalty terms, i.e. norms corresponding to the
smoothness or the sparsity of the solution as well as the sparsity of the coeffi-
cients of the expansion itself. In this work, the best results are obtained with the
L2(B)-norm corresponding to the smoothness of the solution.

We prove convergence results for all developed algorithms as well as the conver-
gence rate of the unregularized version of the method. Furthermore, we discuss
the main properties of a regularization method, i.e. the existence and the stabil-
ity of a solution as well as the convergence of the regularization.

As we mentioned before, another main feature of the new methods is that we
may collect all different kinds of functions in a so-called dictionary to reconstruct
different structures in the solution, accordingly. In our applications, we collect
functions with a global character and localized kernel functions in our dictionary.
We demonstrate the power of the new methods in a case study with respect to
the reconstruction of the density distribution of South America out of satellite
data where we have to solve the ill-posed inverse gravimetric problem. The reg-
ularized version of the algorithm provides us with solutions that are primarily
matched to the structure of the target function and not only the data structure.
We discussed the behavior and the results of all methods critically and in detail.

Furthermore, we see great potential in the method to be used in other research
areas, too, as we demonstrated by reconstructing the mass transport in the Ama-
zon area for the year 2008 out of satellite data. Of course, the method may be
applied to other ecologically relevant problems, too, e.g. the investigation of the
deglaciation of Antarctica and Greenland. Furthermore, we consider applications
in medical imaging.

Reconstructing the density distribution out of gravitational data only, gives us
information about the harmonic part of the density distribution exclusively. To
get information about the anharmonic part and, thus, the interior of the Earth,
we need to include seismic data, as well. However, the new method is very well
matched to the joint inversion of different data types as we demonstrated in the
joint inversion of gravitational data and seismic data in the form of normal mode
anomalies where we used the most recent data available. We were able to present
a new model of the density distribution in the interior of the Earth.
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8. Outlook

For Algorithm 3.1 (FMP), i.e. the unregularized version, we were able to show
that the speed of the convergence strongly depends on the choice of the dic-
tionary. However, we have not been able to show a similar correlation for the
regularized version, Algorithm 4.1 (RFMP), although it surely exists. In further
research, we aim to prove the existence of such an interrelation and, in the best
case, construct some indicator for the quality of the chosen dictionary depending,
e.g. on the coherence of the dictionary elements or the vectors Fd, d ∈ D, as
done in related research areas.

Although the performance of the algorithm in our numerical considerations con-
formed very well with the theoretical expectations, we had to discuss some un-
expected results as well. The choice of localized dictionary elements Kh(x, ·)
involves the choice of the center point x as well as the choice of the parameter
h which controls the localizing character of the function. The center points were
clearly chosen according to the structure of the target function, as intended. The
use of localized kernel functions in the form of scaling functions only, might be a
reason for the unexpected choices of the parameter h. In further research, we in-
tend to rectify the problem by using a mixture of localized kernel functions in the
form of a scaling function as well as in the form of a wavelet d = Kh(x, ·)−Kh̃(x, ·)
as dictionary elements.

In our further research, we will try to adapt other ideas from signal recovery and
sparse regularization to our setting to improve our algorithm. The convergence
behavior may be improved by using ideas from the Orthogonal Matching Pursuit,
as we discussed before. As an alternative, we will implement the aforementioned
back-projection where we use l1-optimization to compute the (already recovered
but sub-optimal) coefficients αk for the expansion of the solution anew. Further-
more, we will try to upgrade the behavior of the method when confronted with
noisy data which, obviously, includes treating boundary effects.

We assumed a rather simple relation between the density and the velocities to
simplify our computations. It is, however, questionable whether a description in
this way is viable. To solve this problem, we propose to use a vectorial approach
as was done in, e.g. [17, 18].

In the applications, we demonstrated that our new method is capable to recon-
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Chapter 8 Outlook

struct natural phenomena like the mass transport on the surface of the Earth.
However, we have to remark that we were not able to use the full potential of
the algorithms since the data that we used was given in spherical harmonics
coefficients. We displayed before that spherical harmonics are global functions.
Thus, local data errors are distributed to the whole model. Moreover, the detail
structure of the data is compromised by this representation. In further research,
we intend to include other, less preprocessed data types, too, to increase the per-
formance of the algorithm and produce results that are as detailed and precise
as needed in global environment studies.

In this work, we showed that the presented method also allows us to combine dif-
ferent data types. Our main goal is to recover an advanced model for the density
distribution of the interior of the Earth. We explained before that gravitational
data only gives information about the harmonic part of the density. However, the
anharmonic part can be partially recovered by seismic data, e.g. normal mode
anomalies or travel times. Here, we presented first results for a joint inversion of
gravitational data and normal mode anomalies. In further research, we propose
to study a combined inversion of even more different data types with our new
method.
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A. Treating Boundary Effects

If we limit our computations to only a part of the Earth’s surface, e.g. the area
around South America, and choose the expansion elements and the correspond-
ing coefficients according to Algorithm 3.1 (FMP) or Algorithm 4.1 (RFMP) we
observe minor to major boundary effects. These boundary effects can be distin-
guished clearly when considering noisy data (see the bottom row of Figure 5.14
and the top row of Figure 5.15 corresponding to the noise level ε = 0.1). We
want to treat these boundary effects by influencing the choice of the optimal ex-
pansion elements, i.e. where the center points of the chosen expansion elements
are located, directly with an appropriate weight function.

Remember that the second choice of dictionary functions d = GI
m,n,j is a global

function. Thus, it is of no importance when treating boundary effects.

In the next sections, we will introduce both a basic and a regularized algorithm
that include a weight function to treat boundary effects. Furthermore, we will
present examples for such weight functions. For theoretical results with respect
to the algorithms developed in this section we refer to a later work. However, we
expect that most results may be transferred.

Weighted Functional Matching Pursuit

To influence the choice of the optimal expansion functions we can, for example,
choose to minimize the weighted residual g(d)2||Rn||2

Rl where g is the weight func-
tion that penalizes proximity of the centers of the localized dictionary elements
to the boundaries of the considered area. Its value g(d) will depend only on the
center point of the chosen kernel function d = Kh(x, ·). If the chosen expan-
sion function is d = Gm,n,j the weight function g will not influence this choice.
Moreover, the weight function g has to fulfill some more minor requirements:

Assumption A.1
We assume that the weight function g maps continuously onto a codomain [a, b]
where 0 < a < b, i.e. g is strictly positive.

We will give examples for such admissible weight functions later in this section.
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Chapter A Treating Boundary Effects

To derive the corresponding algorithm, we again assume that, in step n + 1, Fn

is given. Since Fn+1 = Fn + αn+1dn+1, we are looking for a combination α ∈ R

and d ∈ D that minimizes g(d)2 ||y − F(Fn + αd)||2
Rl, i.e.

(dn+1, αn+1) = argmind∈D,α∈R g(d)
2||Rn − αFd||2

Rl,

since the operator F is assumed to be linear.

For all d ∈ D, the minimizing α is then given by

0 =
∂

∂α
g(d)2||Rn − αFd||2

Rl = g(d)2
∂

∂α
||Rn − αFd||2

Rl.

Clearly, this is the same partial derivative as in the case where we do not weight.
Thus, we get

0 = g(d)2
(

−2〈Rn,Fd〉Rl + 2α||Fd||2
Rl

)

and, since g(d) was assumed to be strictly positive for all dictionary elements
d ∈ D (see Assumption A.1), we get the same formula for α as before

α =
〈Rn,Fd〉Rl

||Fd||2
Rl

.

Again, we use this representation of α to derive an expression from which we can
determine the optimal dictionary element dn+1 at step n+ 1.

Let us insert the expression for α into the weighted residual g(d)2||Rn−αFd||2
Rl.

With the same steps in the calculation as in the case without the weight function
g (see Section 3.2) we get

g(d)2||Rn − αFd||2
Rl = g(d)2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

.

Now let us state the complete algorithm:

Algorithm A.2 (Weighted FMP (WFMP))

Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 minimizes g(d)2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

and

αn+1 =
〈Rn,Fdn+1〉Rl

||Fdn+1||2Rl

.
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Although the expression for the choice of the dictionary function now includes
the norm of the residual, we do not expect an increase in the computation time
since the norm of the residual was already updated and stored in the preceding
step from n−1 to n. Note that the weight function directly influences the choice
of the optimal dictionary element only, as we required for this version of the
algorithm.

Weighted Regularized Functional Matching Pursuit

In this section, we will derive a regularized version of Algorithm A.2 (WFMP)
by weighting the target function, i.e. we are looking for the dictionary element
and the corresponding coefficient such that

(dn+1, αn+1) = argmind∈D,α∈R g(d)
2
(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

,

in the step from n to n+ 1 chosen expansion functions. Again, the weight func-
tion is denoted by g and fulfills Assumption A.1. We can derive the minimizing
dictionary element dn+1 and the corresponding coefficient αn+1 with the same
technique as before.

The minimizing α fulfills

0 =
∂

∂α
g(d)2

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2
∂

∂α

(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2
(

−2 〈Rn,Fd〉Rl + 2α||Fd||2
Rl + λ

(

2 〈Fn, d〉L2(B) + 2α||d||2L2(B)

))

(see Section 4.1 for more details) and with Assumption A.1, i.e. g(d) > 0 for all
dictionary elements d ∈ D, we get

α =
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

||Fd||2
Rl + λ||d||2L2(B)

.

Again from Section 4.1, we can derive that the dictionary element that is chosen
in step n + 1 minimizes

g(d)2
(

||Rn − αFd||2
Rl + λ||Fn + αd||2L2(B)

)

= g(d)2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

.

Thus, we get the following algorithm for the weighted regularized version of the
Functional Matching Pursuit:
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Chapter A Treating Boundary Effects

Algorithm A.3 (Weighted RFMP (WRFMP))
Start with F0 = 0.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 minimizes g(d)2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

and

αn+1 =
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Note that this algorithm, too, fulfills our expectation that the weight function
only influences the choice of the dictionary element dn+1 directly. The com-
putation of the corresponding coefficient depends only indirectly on the weight
function.

An Appropriate Weight Function

To treat the boundary effects occurring in our applications, we have to use a
weight function that penalizes the choice of a kernel function that is centered
near the boundary. Since we minimize, the penalty term should have a large
value close to the boundary and a small one in the center of the considered area.

For the sake of clearness, we start with a cosine-roll-off (see Figure A.1) and put
on the constraints for the minimization at a later stage, i.e. we choose a weight
function that has the value 1 in the middle and decreases towards the boundaries.
Let us first give an example of such a weight function on the interval. We will en-
large that definition to a plane and, then, fit it to fulfill Assumption A.1. At last,
we will fit it to the requirements of Algorithms A.2 (WFMP) and A.3 (WRFMP).

Let us introduce a cosine-roll-off (see [9]) that can be used as a weight function
on the interval [−1, 1]. With the help of the parameter β ∈ [0, 1] we will define a
cosine flank where β allows us to directly control the length of the flank as well
as its position.

Example A.4
On the interval [−1, 1] the cosine-roll-off can be defined by

f1D(x) =











1 , |x| ≤ 1−β
2

1
2

(

1 + cos
(

π
β

(

|x| − 1−β
2

)

))

, 1−β
2
< |x| ≤ 1+β

2

0 , otherwise

, x ∈ [−1, 1]

with the parameter β ∈ [0, 1]. In Figure A.1 we display the effect of the parameter
choice, i.e. that the slope of the flank steepens with decreasing β. Note that the
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codomain of the weight function is [0, 1]. Furthermore, the weight function is
continuous.
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Figure A.1.: Cosine-roll-off f1D on [−1, 1] with parameters β = 0, β = 0.3, β =
0.5, β = 0.7, β = 1 (in order of the plots from top left-hand to
bottom right-hand)

Now, we will consider two possibilities to expand a one-dimensional weight func-
tion on the interval [−1, 1] to a two-dimensional setting on the domain [−1, 1]×
[−1, 1].

Example A.5
We can build a two-dimensional continuous weight-function on [−1, 1]× [−1, 1]

(i) by taking the product of two one-dimensional weight functions on [−1, 1],
i.e.

f2D(x, y) = f1D(x)f1D(y), x, y ∈ [−1, 1],

or

(ii) by rotating a one-dimensional weight function on [−1, 1], i.e.

f2D(x, y) = f1D

(

√

x2 + y2
)

, x, y ∈ [−1, 1].

Examples for both possibilities are displayed in Figure A.2.
Clearly, possibility (i) punishes proximity to the boundaries while possibility (ii)
punishes distance to the center point (0, 0).
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Chapter A Treating Boundary Effects

Figure A.2.: Two-dimensional cosine-roll-off f2D on [−1, 1]× [−1, 1] with param-
eter β = 0.3 as the product of two one-dimensional weight functions
on [−1, 1] (left-hand) and as a rotation of a one-dimensional weight
function on [−1, 1] (right-hand)

Looking at the two possibilities to build a two-dimensional weight function on
[−1, 1] × [−1, 1] in Example A.5, we clearly prefer the first possibility for our
purpose since we want to punish proximity to the boundaries.

In Assumption A.1, we require that 0 is not in the codomain of the weight function
that we want to use. The weight functions, that we introduced so far, do not
fulfill this requirement. However, we can change this fact by scaling accordingly.

Lemma A.6
The codomain of the two-dimensional weight function g2D, which is displayed in
Figure A.3 and defined by

g2D(x, y) = g1D(x)g1D(y), x, y ∈ [−1, 1]

where

g1D(x) =











1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1 + β

0 otherwise

, x ∈ [−1, 1],

=

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

with β ∈ [0, 1] fulfills the requirements of Assumption A.1, i.e.

g2D(x, y) ∈ [a, b], 0 < a < b, for all x, y ∈ [−1, 1],

where g2D is continuous.
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Figure A.3.: Two-dimensional cosine-roll-off on [−1, 1]× [−1, 1] with parameters
β = 0.3 (left-hand) and β = 0.7 (right-hand) as the product of two
adapted one-dimensional weight functions on [−1, 1]

Proof.
First, we will show that g1D fulfills the requirements of Assumption A.1. From
the nature of the assumption and our two-dimensional weight function g2D we
can then conclude that g2D fulfills the requirements of Assumption A.1, too.

Since we only included continuous functions in the definition of g2D, we can con-
clude that it is continuous, too.

Clearly, we only need to take a look at the case where 1 − β < |x| ≤ 1 and,
accordingly, β ∈]0, 1] since otherwise g1D(x) = 1.

Since 1− β < |x| ≤ 1, we know that

0 <
π

2β
(|x| − 1 + β) ≤ π

2

and, consequently,

0 ≤ cos

(

π

2β
(|x| − 1 + β)

)

< 1.

Thus, we can derive for x with 1− β < |x| ≤ 1 that

1

2
≤ g1D(x) =

1

2

(

1 + cos

(

π

2β
(|x| − 1 + β)

))

< 1,

i.e. we can conclude that g1D(x) > 0 for all x ∈ [−1, 1].
�
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Chapter A Treating Boundary Effects

Note, that for x, y ∈ [−1, 1]

1

4
≤ g2D(x, y) = g1D(x)g1D(y) < 1,

i.e. g2D maps to the interval [0.25, 1[ as may be observed in Figure A.3 where we
display the two-dimensional cosine-roll-off for different parameters β.

As a last step, we need to know how to apply the weight function g2D introduced
in Lemma A.6 to our dictionary functions. Furthermore, we want to introduce
intervals different to [−1, 1] since we need to characterize the part of the Earth’s
surface that we limit our computation to, i.e. we want to operate on the interval
[r1, r2], 0 < r1 < r2, which is, typically for our case, a subinterval of [0, 2π[
(longitude) or [0, π] (latitude). Therefore, we need to introduce new parameters
0 < r1 < r2 to the definition of g1D and adapt it from the interval [−1, 1] to the
new interval [r1, r2] by the transformation

x = 2
r − r1

r2 − r1
− 1, x ∈ [−1, 1], r ∈ [r1, r2].

Thus, we get a new one-dimensional weight function on the interval [r1, r2]

g1D(r, r1, r2) =

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

x = 2
r − r1

r2 − r1
− 1, r ∈ [r1, r2].

Let us define a two dimensional weight function on an arbitrary area that is
characterized by the two intervals [ϕ1, ϕ2] and [ϑ1, ϑ2] and a dictionary element
as input

g2D(d) =

{

1 , d = Gm,n,j

g1D(ϕ, ϕ1, ϕ2)g1D(ϑ, ϑ1, ϑ2) , d = Kh(x(ϕ, ϑ, r), ·) . (A.1)

This function, too, fulfills Assumption A.1 and now maps to the interval [0.25, 1].

Let us consider the role of the weight function in Algorithm A.2 (WFMP). It is
a factor of the expression that is to be minimized, i.e.

dn+1 minimizes g(d)
2

(

||Rn||2
Rl −

(〈Rn,Fd〉Rl

||Fd||Rl

)2
)

.

We want to penalize the choice of a dictionary function which is centered close
to the boundaries and, thus, the weight function should have larger values close
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to the boundaries than in the middle of the considered area. The aforementioned
weight functions do not fulfill this requirement. Thus, we will consider

g(d) = (1.25− g2D(d)) ∈ [a, b],
where g2D(d) maps to the interval [0.25, 1] as in Equation (A.1), as a weight func-
tion for the weighted version of the Functional Matching Pursuit. Note that g(d)
now maps to the interval [0.25, 1], too.

In the regularized case (see Algorithm A.3 (WRFMP)) we, too, minimize the
expression where the weight function appears, i.e.

dn+1 minimizes g(d)
2

(

||Rn||2
Rl + λ||Fn||2L2(B) −

(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

||Fd||2
Rl + λ||d||2L2(B)

)

and, thus, we can choose the same weight function as in the unregularized case,
i.e.

g(d) = (1.25− g2D(d)).

Now let us formally define the weight function g which we will use in our further
considerations to treat boundary effects.

Definition A.7
The weight function g : D → [0.25, 1] fulfills Assumption A.1. It is defined by

g(d) =

{

1 , d = Gm,n,j

(1.25− g1D(ϕ, ϕ1, ϕ2)g1D(ϑ, ϑ1, ϑ2)) , d = Kh(x(ϕ, ϑ, r), ·) ,

where g1D is given by

g1D(r, r1, r2) =

{

1 , |x| ≤ 1− β
1
2

(

1 + cos
(

π
2β
(|x| − 1 + β)

))

, 1− β < |x| ≤ 1
,

x = 2
r − r1

r2 − r1
− 1, r ∈ [r1, r2].

Here, [ϕ1, ϕ2] and [ϑ1, ϑ2] are subintervals of [0, 2π[ and [0, π], respectively. They
characterize the part of the Earth’s surface that we limit our computations to.

For some applications, weighting with a function that maps to the interval [0.25, 1]
might be too strong, i.e. the influence is so large that no dictionary elements with
center points on the flank of the weight function are chosen anymore. To remedy
this, we concatenate the weight function with, e.g. a linear function to change
the range of the weight functions. We may, for example, use

f(x) = 0.1x+ 0.9, x ∈ R.

Then, g(d) = f(g(d)), d ∈ D, has the range [0.925, 1] and is potentially better
fitted for the application.
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[74] G. Hein, F. Sansò, G. Strykowsky, and C.C. Tscherning. On the Choice
of Norm and Base Functions for the Solution of the Inverse Gravimetric
Problem. Ricerche di Geodesia Topografia Fotogrammetria CLUP, 5:121–
138, 1989.

[75] W.A. Heiskanen and H. Moritz. Physical Geodesy. W.H. Freeman and
Company, San Francisco, 1967.

[76] H. Heuser. Funktionalanalysis. B.G. Teubner, Stuttgart, 1992.

[77] H. Heuser. Funktionalanalysis: Theorie und Anwendung. Lehrbuch. B.G.
Teubner, Wiesbaden, 2006.

[78] E.W. Hobson. The Theory of Spherical and Ellipsoidal Harmonics. (Second
Reprint), Chelsea Publishing Company, New York, 1965.

[79] Hydrological Sciences Branch. NASA/Goddard Space Flight Center,
Greenbelt. mirador.gsfc.nasa.gov.

[80] J.C.E. Irving, A. Deuss, and J.H. Woodhouse. Normal Mode Coupling due
to Hemispherical Anisotropic Structure in Earth’s Inner Core. Geophysical
Journal International, 178:962–975, 2009.

[81] M. Ishii and J. Tromp. Normal-Mode and Free-Air Gravity Constraints
on Lateral Variations in Velocity and Density of Earth’s Mantle. Science,
285:1231–1236, 1999.

[82] M. Ishii and J. Tromp. Even-Degree Lateral Variations in the Earth’s
Mantle Constrained by Free Oscillations and the Free-Air Gravity Anomaly.
Geophysical Journal International, 145:77–96, 2001.

[83] M. Ishii and J. Tromp. Constraining Large-Scale Mantle Heterogeneity
Using Mantle and Inner-Core Sensitive Normal Modes. Physics of the Earth
and Planetary Interiors, 146:113–124, 2004.

[84] M. Ishii, J. Tromp, A.M. Dziewonski, and G. Ekström. Joint Inversion of
Normal Mode and Body Wave Data for Inner Core Anisotropy 1. Laterally
Homogeneous Anisotropy. Journal of Geophysical Research, 107:2379, 2002.

[85] Jet Propulsion Laboratory. California Institute of Technology, Pasadena.
http://podaac.jpl.nasa.gov/grace/index.html.

[86] T.H. Jordan. A Procedure for Estimating Lateral Variations from Low-
Frequency Eigenspectra Data. Geophysical Journal of the Royal Astro-
nomical Society, 52:441–455, 1978.

169



Bibliography Bibliography

[87] T.H. Jordan and D.L. Anderson. Earth Structure from Free Oscillations
and Travel Times. Geophysical Journal of the Royal Astronomical Society,
36:541–576, 1974.

[88] P. Kammann and V. Michel. Time-Dependent Cauchy-Navier Splines and
their Application to Seismic Wave Front Propagation. Zeitschrift für Ange-
wandte Mathematik und Mechanik (ZAMM), 88:155–178, 2008.

[89] S. Karato. Importance of Anelasticity in the Interpretation of Seismic
Tomography. Geophysical Research Letters, 20:1623–1626, 1993.

[90] A. Khan, J.A.D. Connolly, J. Maclennan, and K. Mosegaard. Joint In-
version of Seismic and Gravity Data for Lunar Composition and Thermal
State. Geophysical Journal International, 168:243–258, 2007.

[91] S.J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An Interior-
Point Method for Large-Scale l1-Regularized Least Squares. IEEE Journal
on Special Topics in Signal Processing, 1:606–617, 2007.

[92] C. Kuo and B. Romanowicz. On the Resolution of Density Anomalies in the
Earth’s Mantle Using Spectral Fitting of Normal Mode Data. Geophysical
Journal International, 150:162–179, 2002.

[93] B.J. Last and K. Kubik. Compact Gravity Inversion. Geophysics, 48:713–
721, 1983.

[94] G. Lauricella. Sulla Distribuzione della Massa nell’Interno dei Pianeti.
Rendiconti dell’Accademia Nazionale dei Lincei, 21:18–26, 1912.

[95] J.M. Lees and J.C. VanDecar. Seismic Tomography Constrained by
Bouguer Gravity Anomalies: Applications in Western Washington. Pure
and Applied Geophysics, 135:31–52, 1991.

[96] E. Lewi. Modelling and Inversion of High Precision Gravity Data. PhD
thesis, University of Darmstadt, Deutsche Geodätische Kommission bei der
Bayerischen Akademie der Wissenschaften, Munich, 1997.

[97] X.-D. Li, D. Giardini, and J.H. Woodhouse. Large-Scale Even-Degree Struc-
ture of the Earth from Splitting of Long-Period Normal Modes. Journal of
Geophysical Research, 96:551–577, 1991.

[98] S.G. Mallat and Z. Zhang. Matching Pursuits with Time-Frequency Dic-
tionaries. IEEE Transactions on Signal Processing, 41:3397–3415, 1993.

[99] G. Masters, G. Laske, H. Bolton, and A. Dziewonski. The Relative Behavior
of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the
Mantle: Implications for Chemical and Thermal Structure. In S. Karato,

170



Bibliography Bibliography

A.M. Forte, R.C. Liebermann, G. Masters, and L. Stixrude, editors, Earth’s
Deep Interior: Mineral Physics and Tomography from the Atomic to the
Global Scale, volume 117, pages 63–87. AGU, Washington D.C., 2000.

[100] G. Masters, G. Laske, and F. Gilbert. Matrix Autoregressive Analysis of
Free-Oscillation Coupling and Splitting. Geophysical Journal International,
143:478–489, 2000.

[101] E.J. McShane. Integration. Princeton University Press, Princeton, New
Jersey, 1944.

[102] V. Michel. A Multiscale Method for the Gravimetry Problem: Theoreti-
cal and Numerical Aspects of Harmonic and Anharmonic Modelling. PhD
thesis, Geomathematics Group, Department of Mathematics, University of
Kaiserslautern, Shaker Verlag, Aachen, 1999.

[103] V. Michel. A Multiscale Approximation for Operator Equations in Sepa-
rable Hilbert Spaces – Case Study: Reconstruction and Description of the
Earth’s Interior. Shaker Verlag, Aachen, Habilitation thesis, Geomathe-
matics Group, Department of Mathematics, University of Kaiserslautern,
2002.

[104] V. Michel. Scale Continuous, Scale Discretized and Scale Discrete Harmonic
Wavelets for the Outer and the Inner Space of a Sphere and Their Applica-
tion to an Inverse Problem in Geomathematics. Applied and Computational
Harmonic Analysis, 12:77–99, 2002.

[105] V. Michel. Regularized Wavelet-Based Multiresolution Recovery of the Har-
monic Mass Density Distribution from Data of the Earth’s Gravitational
Field at Satellite Height. Inverse Problems, 21:997–1025, 2005.

[106] V. Michel. Tomography: Problems and Multiscale Solutions. In Handbook
of Geomathematics, pages 949–972, 2010.

[107] V. Michel and A.S. Fokas. A Unified Approach to Various Techniques for
the Non-Uniqueness of the Inverse Gravimetric Problem andWavelet-Based
Methods. Inverse Problems, 24:045019, 2008.

[108] V. Michel and K. Wolf. Numerical Aspects of a Spline-Based Multiresolu-
tion Recovery of the Harmonic Mass Density out of Gravity Functionals.
Geophysical Journal International, 173:1–16, 2008.

[109] L. Miranian. Slepian Functions on the Sphere, Generalized Gaussian
Quadrature Rule. Inverse Problems, 20:877–892, 2004.

[110] C. Müller. Spherical Harmonics. Springer, Berlin, Heidelberg, New York,
1966.

171



Bibliography Bibliography

[111] M.Z. Nashed. A new Approach to Classification and Regularization of Ill-
Posed Operator Equations. In Inverse and Ill-Posed Problems, volume 4 of
Notes and Reports in Mathematics in Science and Engineering, 1974.

[112] D. Needell and J.A. Tropp. CoSaMP: Iterative Signal Recovery from In-
complete and Inaccurate Samples. Applied and Computational Harmonic
Analysis, 26:301–321, 2009.

[113] D. Needell and R. Vershynin. Signal Recovery from Incomplete and Inac-
curate Measurements via Regularized Orthogonal Matching Pursuit. IEEE
Journal of Selected Topics in Signal Processing, 4:310–316, 2010.

[114] H. Nutz and K. Wolf. Time-Space Multiscale Analysis by Use of Tensor
Product Wavelets and its Application to Hydrology and GRACE Data.
Studia Geophysica et Geodaetica, 52:321–339, 2008.

[115] B.A. Olshausen and D.J. Field. Sparse Coding with an Overcomplete Basis
Set: A Strategy Employed by V1? Vision Research, 37:311–325, 1997.

[116] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal Matching
Pursuit: Recursive Function Approximation with Applications to Wavelet
Decomposition. In Asilomar Conference on Signals, Systems and Comput-
ers, 1993.

[117] N.K. Pavlis, S.A. Holmes, S.C. Kenyon, and J.K. Factor. An Earth Gravi-
tational Model to Degree 2160: EGM2008. presented at the 2008 General
Assembly of the European Geosciences Union, Vienna, Austria, April 13-18,
2008.

[118] P. Pizzetti. Corpi Equivalenti Rispetto alla Attrazione Newtoniana Esterna.
Rendiconti dell’Accademia Nazionale dei Lincei, 18:211–215, 1909.

[119] P. Pizzetti. Intorno alle Possibili Distribuzioni della Massa nell’Interno della
Terra. Annali di Matematica Pura ed Applicata, 17:225–258, 1910.

[120] S. Qian and D. Chen. Signal Representation Using Adaptive Normalized
Gaussian Functions. Signal Processing, 36:1–11, 1994.

[121] J.S. Resovsky and M.H. Ritzwoller. Regularization Uncertainty in Density
Models Estimated from Normal Mode Data. Geophysical Research Letters,
26:2319–2322, 1999.

[122] J.S. Resovsky and J. Trampert. Reliable Mantle Density Error Bars: an
Application of the Neighbourhood Algorithm to Normal-Mode and Surface
Wave Data. Geophysical Journal International, 150:665–672, 2002.

172



Bibliography Bibliography

[123] R. Reuter. Integralformeln der Einheitssphäre und Harmonische Spline-
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