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Deutschsprachige Kurzfassung
Die Systembiologie hat das ehrgeizige Ziel, die biologischen Zusammenhänge in lebenden
Organismen ganzheitlich zu verstehen. Um dieses Ziel zu erreichen, werden experimentelle
Studien gekoppelt mit Computersimulation in einem iterativen Prozess eingesetzt. Biolo-
gische Prozesse werden gemeinhin als Netzwerke aufgefasst, welche die unterschiedlichen
Stoffe in einer Zelle und die Stoffübergänge beschreiben. Solche sogenannten metaboli-
schen Netzwerke sind Gegenstand vieler Studien zum Verständnis des zellulären Stoff-
wechsels.
Moderne Hochdurchsatz-Techniken und Hochleistungs-Computersimulation führen

heutzutage zu Unmengen von Daten, welche diese Stoffwechsel-Netzwerke betreffen. Die
Auswertung dieser Daten stellt eine große Herausforderung für die heutige Forschung dar.
Visualisierung ist hier ein bedeutendes Hilfsmittel. Diese Doktorarbeit befasst sich mit der
Visualisierung von Daten in metabolischen Netzwerken. Dabei werden neuartige Ansätze
in vier verschiedenen Themengebieten entwickelt:
Zeichnen von Netzwerkdiagrammen

Es wird ein Zeichenwerkzeug für Stoffwechsel-Diagramme entwickelt, welches eine
hohe Anwenderfreundlichkeit aufweist und die speziellen Anforderungen metaboli-
scher Netzwerke unterstützt.

Netzwerklayout
Im Zusammenhang mit metabolischen Netzwerken sind de facto Standards für das
Anordnen der Netzwerkkomponenten entstanden, die von gängigen Netzwerklayout-
Algorithmen nicht unterstützt werden. Es werden semi-automatische Layouttech-
niken entwickelt, welche das Zeichnen von Netzwerken nach konventionellen Stan-
dards unterstützen.

Datenvisualisierung
Zur Visualisierung von Daten in Netzwerkdiagrammen wird eine neuartige Herange-
hensweise vorgestellt: die skript-basierte Visualisierung. Es wird eine Skriptsprache
eingeführt, mit der Anwender die Datenvisualisierung nach eigenen Anforderungen
programmieren können.

Erweiterbarkeit durch Plugins
Damit ein Visualisierungswerkzeug an zukünftige Anforderungen anpassbar bleibt
ist eine Plugin-Schnittstelle unumgänglich. Der Entwurf dieser Schnittstelle und
bestehende Modellierungs- und 3D-Visualisierungs-Plugins werden vorgestellt.

Eine hohe Anzahl an Beispielanwendungen in der Arbeit macht den großen Nutzen der
hier entwickelten neuen Ansätze für die Systembiologie deutlich.
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Preface

“Of making many books there is no end, and much study wearies the body.
Now all has been heard; here is the conclusion of the matter:
Fear God and keep his commandments, for this is the whole duty of man.”

Ecclesiastes 12:12b-13, New International Version

With these biblical words I want to begin my dissertation because, in my honest opinion,
science and faith belong together. Science is founded upon human curiosity, upon human
quest for understanding. Above all, faith reminds us that everything has a deeper sense
that is far beyond human ability to grasp. Hence, belief in God brings modesty and
gratitude. Not the ego comes first but the privilege to participate in something that is
bigger that oneself and bigger than one can recognize.
In five years working on my doctoral graduation I was more than ever confronted with

the situation that one cannot learn everything, that the whole is much more enormous
than one alone can ever know in detail. It was and will be a pleasure to contribute my
expertise to a science that aims at understanding the complexity of life.
Finally, faith reminds us about our ethic base that is an indispensable prerequisite for

a responsible research. In the context of the current debate about intellectual property
and plagiarism in Germany’s society it is advisable to remember:

“You shall not steal.”
“You shall not give false testimony against your neighbour.”

Now all has been heard; here is the conclusion of the matter: It is the duty of any scientist
to follow these ethical principles.

My doctoral work started in the Simulation Group at the Institute of Systems Engineer-
ing at the University of Siegen in 2006. The research project was financially supported
by several funding agencies and industrial partners which I have gratefully acknowledged
on page 14. I would like to thank the colleagues of the Simulation Group, especially
Prof. Dr. Roland Reichardt and Dr. Marc Kalkuhl. I also want to thank Prof. Dr. An-
dreas Kolb from the Computer Graphics group at the University of Siegen for all valuable
scientific discussions in the colloquia and correspondence.
Since 2009 the work was continued in the Modeling & Simulation Group at the Institute

of Bio- and Geosciences; IBG-1 of the research center Jülich. I want to thank all mem-
bers of the “ModSim” group for cooperativeness and collegiality, in particular Dr. Michael
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Weitzel, Remo Winz, Tobias Vehrkamp, Andreas Dietrich, Sebastian Niedenführ, Elisa-
beth Zelle, Tolga Dalman and our group leader Dr. Eric von Lieres.
All members of the institute deserve my thanks that supported my work with valuable

scientific discussions and by employing the tool that I have developed. My special ac-
knowledgment have Dr. Stephan Noack and Stephan Miebach. Additionally, I want to
thank all users of my visualization tool that gave encouraging comments and interesting
suggestions.
I am furthermore very grateful to Dr. Katharina Nöh for good advisory and for all en-

couragements. My particular gratitude goes to my supervisor Prof. Dr. WolfgangWiechert
for encouraging me to work on my doctorate, for guiding me into the research field of the
life sciences and for all support during the years. Thank you very much.

Acknowledgements to family and friends are given in my mother tongue:

Ich möchte mich bei all meinen Freunden bedanken, dass sie in der Zeit des Schreibens
meiner Doktorarbeit zu mir gestanden haben, auch wenn ich nicht viel Zeit hatte. Ein
besonderer Dank gilt meinem besten Freund Michael Bender.
Ich danke meinen Eltern Hermann und Beatrix für die liebevolle Unterstützung während

meiner Schulzeit, meines Studiums und meiner Promotion. Ohne euch würde ich heute
nicht da stehen, wo ich stehe.
Meine größte Dankbarkeit gilt meiner lieben Frau Petra, der ich diese Arbeit widme.

Du hast all die Jahre zu mir gestanden und mich hingebungsvoll unterstützt, auch wenn
du oft auf mich verzichten musstest. Du bist unseren Kindern eine großartige Mutter,
was mich sehr stolz macht. Du hast mir immer den Rücken gestärkt. Ohne dich wäre
diese Arbeit nicht möglich gewesen. Dafür danke ich dir von Herzen.

Lennestadt, March 21, 2011

Peter Droste
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previously submitted to another academic institution.

Software Resources
This document was prepared using the (pdf)LATEX1 typesetting system and Kile2. The
figures in this document were prepared using the software systems Omix3, GIMP4,
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8see http://www.openoffice.org
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in silico
(Latin: within the silicon) performed on computer.

in vitro
(Latin: within the glass) performed on whole or on parts of organisms in a controlled
environment.

in vivo
(Latin: within the living) performed on whole, living organisms.

Comma/Character Separated Values
Textual spreadsheet file format.

Enzyme Commission number
Standard for enzyme classification.

Excel
Proprietary table calculation software by Microsoft Corporation.

Extensible Markup Language
Textual all-purpose file format.

FML
File format for models of the 13C FLUX 2 simulation framework based upon XML.

FWDSim
File format for simulation results of the 13C FLUX 2 simulation framework.

Java Native Interface
Allows to call platform dependent native code from inside Java code and vice versa.

MathML
XML based data type for the representation of mathematical formulas.

Matlab
Name of a proprietary simulation environment of MathWorks and likewise of its
scripting language (derived from matrix laboratory).
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Modelica
Equation-based programming language for the modeling of complex systems.

OpenOffice.org
Open source office software providing a text processing, slide show, spreadsheet,
drawing and formula tool.

Scalable Vector Graphics
Vectorial graphics file format based upon XML.
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Chapter 1.

Introduction

1.1. The Complexity of Life

The notion of what is life is not an easy task. What makes the difference between non-
living and living matter? Respiration and reproduction? Fire, for instance, respires and
reproduces itself but it does not live. On the other hand, viruses do neither breathe nor
be able to reproduce themselves but we might consider them as to be living. Koshland
(2002) defines life by seven essential principles:

• Program – The genes encoding the organization of a living organism.

• Improvisation – The ability to change the program as response to a changing
environment (evolution).

• Compartmentalization – The property of living organisms to be spatial separated
from its environment and, in case of higher organisms, to be subdivided into multiple
subunits (organelles, cells, organs).

• Energy – Due to a constant loss of energy by moving and entropy, living matter
requires energy to exist. Almost all live on earth gets the energy from the sun.

• Regeneration – Living organisms are able to compensate losses and degradation
in various mechanisms including the import of molecules from the environment, the
synthesis of new components and the complete system’s restart by creating a new
generation (cell division, reproduction).

• Adaptability – The ability of living things to temporarily adapt to requirements,
danger and environmental changes as an inherent part of the program.

• Seclusion – Refers to the specificity of molecules and enzymes and the subdivision
of the living system into different functional pathways.

Life is complex and its complexity can be observed in different layers. Some exam-
ples: The coexistence of multiple different species of animals, plants and microbes in an
ecological system composes a complex mesh of population control leading to a relative
equilibrium. The human body is composed of highly specialized subcomponents building
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a complex functioning system. Every single cell is a complex “engine” consisting of thou-
sands of mechanisms to collect energy, to adapt to environmental changes, to regenerate
and to reproduce. And last but not least, every single enzyme in this cell is a com-
plex macro molecular structure consisting of one or several specifically folded polypeptide
chains leading to their particular catalytic function.
Biology is the science dealing with the understanding of life in all its diversity and

complexity. This includes the structure of living organisms, their function, growth, origin,
evolution and distribution. In the context of this work, the living cell, its composition
and function is of main interest.

1.2. Systems Biology

In order to understand a complex system like the cell it does not suffice to know the list
of ingredients and their specific properties and function. Kitano (2002) compares this
situation with understanding the technical complexity of an airplane from a catalog of its
sole components which is simply impossible. The whole must come into focus because it
is greater than the sum of its parts (Saraiya et al. 2005). The interrelations between all
single components and their contribution to the system need to be identified in order to
gain a holistic understanding of the living cell.
A system theoretic view for biological issues has already been postulated at mid-

twentieth century as figured out by Wolkenhauer (2001). Since a rapid technological
advance in molecular biology research occurred in the later decades – at least expressed
by the publication of the complete human genome (Venter et al. 2001) – a paradigm shift
has taken place in biology from the reduced observation of single components changing
to a system-oriented thinking. In these years, systems biology occurred as a new scientific
discipline aiming at the understanding of cellular processes by applying a system-level ap-
proach. Wolkenhauer (2001) defines: “Genomics is the field of biological research taking
us from the DNA sequence of a gene to a structure of the product for which it codes (usu-
ally a protein) to the activity of that protein and its function within a cell and, ultimately,
the organism. [. . . ] Systems theory is [. . . ] the study of organisation and behaviour per
se and a natural conclusion is therefore to consider systems biology as the application of
systems theory to genomics.”
Today, the research in systems biology is promoted in many countries in Europe, Asia

and North America. For instance the German Federal Ministry of Education and Re-
search (BMBF) funds systems biology research projects by about 25 million € per year
according to the funding catalog data base published by the Government of the Fed-
eral Republic of Germany (2011). Scientific symposia like the International Conference
on Systems Biology (ICSB) have evolved in recent years and the availability of multiple
high-ranking journals like BMC Systems Biology or Molecular Systems Biology demon-
strate that systems biology today is well-established.
The investigations of systems biology include the analysis of the system’s structure and

organization as well as its dynamics (behavior over time, control mechanisms). Systems
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biology combines in vitro and in vivo experimental approaches with mathematical mod-
eling and in silico simulation. Increasing knowledge about the intracellular processes is
achieved by a closed loop cycle of different research steps as depicted in Fig. 1.1. The cy-
cle begins with a particular biological question. Upon that question experimental studies
are made leading to an amount of measurement data. The next step is to analyze the
experimental data and to formulate mathematical models about what has happened in
the biological system during the experiments. Thereafter, computer simulation is applied
to ensure the significance of the model. The mathematical model is successively validated
in iterated simulation steps where the model and model parameters are fitted until simu-
lated results correspond to the real experimental measurements. The valid mathematical
model again implies a new question. Is the model suitable under altered conditions?
Here, a new circle run starts by performing new experiments, modeling, simulation, data
processing and so on.

Figure 1.1.: Iterative process of increasing knowledge about biological systems in an in-
terdisciplinary research field.

There are basically two different approaches in modeling of biological systems. The
first one is called top-down. In top-down modeling the complete system with all known
properties and processes is included without knowing the details. In order to fill these
gaps, many experiments are made and the model is successively improved upon the ex-
perimentally obtained insights. The second approach, called bottom-up, starts with small
models of parts of the system which are successively enlarged upon the experimentally
obtained insights until a holistic systems description is achieved.
Systems biology is highly interdisciplinary (cf. Fig. 1.1): Biology asks the general ques-

tions about the organization and control of living systems. It provides decades of expe-
riences in analyzing the life on a microscopic level. Biology and biochemistry contribute
their knowledge about the single components inside the cell as well as the techniques
to investigate them. Engineering provides experience in systems modeling as well as
high-throughput and nano-technologies for experiment and data processing. Mathemat-
ics brings the ability to handle complex computational issues like differential equations and
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optimization. Computer science and bioinformatics contribute high-performance compu-
tation, data management, data analysis and the necessary software infrastructure. Ex-
perts from these different disciplines closely work together in systems biology research
projects. Because every research group has its own disciplinary terminology, way of
thinking and view of the whole, interdisciplinary communication becomes an important
issue. Visualization is the key to solve this issue. In many situations, especially in the
discourse about models and data as well as for the presentation of results visualization
can significantly benefit communication processes.

1.3. Benefit of the Holistic Approach
Systems biology with its holistic approach changes the traditional biology from a de-
scriptive to a predictive science able to make realistic assertions about the dynamics of
a living organism. The understanding of living organisms on a systems level is valu-
able in many application fields. Kitano (2002) argues: “The most feasible application of
systems biology research is to create a detailed model of cell regulation, focused on par-
ticular signal-transduction cascades and molecules to provide system-level insights into
mechanism-based drug discovery [. . . ]. Such models may help to identify feedback mech-
anisms that offset the effects of drugs and predict systemic side effects.” A medical vision,
for instance, is to build computational models of the intracellular processes in a patient’s
individual tumor and, basing on this, to simulate the impact of certain pharmaceuticals
in order to find the most effective treatment (Reiß 2002).
Another promising application field for systems biology approaches is biotechnology

being a discipline that deals with the usage of cells or cellular processes in technical ap-
plications. A classical application are the fermentation processes used since millennia to
produce wine and beer. Here, microorganisms produce alcohol from carbohydrates as a
natural behavior under anaerobe conditions. In modern biotechnology microorganisms
are functionalized for the production of various chemical substances like fine chemicals,
bulk chemicals, food and feed additives, pharmaceuticals and biofuels. Therefore, the
metabolism of production organisms is specifically manipulated. A key discipline in this
context ismetabolic engineering which is concerned with the purposeful alteration of an or-
ganism’s genes to achieve a specific characteristics (Stephanopoulos 1994, Stephanopoulos
et al. 1998, Vemuri and Aristidou 2005). Metabolic engineering aims at the manipulation
of intracellular reaction pathways and even at the design of new pathways in order to
decrease the cellular growth in favor of the over-production of desired substances. Here,
an indispensable precondition for metabolic engineering is a holistic understanding of the
complex interrelations in the metabolism maintained by systems biology.

1.4. “Ome” and “Omics”
In biology one speaks of genotype in order to refer the genetic program life bases on given
in the DNA and of phenotype as the observable physical characteristics of an organism.
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Figure 1.2.: Different levels of intracellular processes between genotype and phenotype
and their relation to omics disciplines and data. The figure was inspired by
(Vemuri and Aristidou 2005).

The intracellular process generating a specific phenotype upon a genotype is called gene
expression. Fig. 1.2 shows a schematic overview of different steps of the gene expression.
Another use of the term gene expressions only refers the process of generating proteins
from a genetic code.
A gene encodes a specific protein in the cell. When a protein is to be created, the

corresponding gene is transcribed into messenger RNA (ribonucleic acid). This mRNA
is translated into an amino acid sequence, a so-called polypeptide. Proteins consist of
one or multiple specifically folded polypeptides. An important type of proteins are the
enzymes catalyzing biochemical reactions in the metabolism. In a biochemical reaction,
small molecules so-called metabolites are converted into each other. By this the organism
can convert nutrients into energy and cell components (biomass).
The investigations of the intracellular processes can be subdivided into different disci-

plines regarding the levels gene expression takes place as illustrated in Fig. 1.2.

• Genomics is the study of the genome being the entire set of genes of an organism.

• Transcriptomics is concerned with the transcriptome, meaning the transcription
process leading from gene to proteins.
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• Proteomics aims at understanding the complex interactions between proteins (pro-
teome, interactome).

• Fluxomics deals with the identification and quantification of all intracellular fluxes,
i.e. biochemical reactions (Sauer 2004).

• Metabolomics is the research field profiling the range of all metabolites which is
consequently referred as metabolome (Khan and Ather 2006).

The neologism omics (Lederberg and Mccray 2001) has arisen as a term standing for the
totality of all levels to study biological systems. Many other -ome and -omics combinations
have been created in the life sciences in recent years like regulomics, bibliomics, ribosomics,
metallomics etc. (cf. http://omics.org) which are not necessarily sensible. The word
nonsensomics hits the bull’s eye. Nevertheless, the -ome and -omics terms are useful to
refer a certain field of study and classify experimental data. Especially in combination
with data, often used terms are poly-omics and multi-omics representing the diversity of
available data concerning a biological system. As a certain extend, systems biology can
be regarded as the integration of different omics approaches by modeling and computer
simulation.

1.5. Biological Processes represented by Networks
Intracellular biochemical processes are usually considered as networks whose nodes rep-
resent the actors of the complex biological system. These actors can be metabolites,
enzymes, transcripts, genes etc. The edges in the networks represent relations between
these actors, for instance, conversion, activation, inhibition, degradation, synthesis etc.
Biochemical networks are substructured in several layers: Genetic networks describe

the processes of the gene expression (Kolpakov et al. 1998). Signal transduction networks
show the stimulus-response mechanisms of a cell (Paek et al. 2004). Protein-protein
networks display interaction between different proteins (Schwikowski et al. 2000). The
network layer this work is focused on is the metabolic network (Michal 1999). Metabolic
networks describe the steps by which metabolites are converted in enzymatically driven
reactions.
Fig. 1.3 a) shows a typical metabolic network. In the diagram, the metabolites are

represented by their names and the reactions by the connecting arrows. Biochemical
reactions do not necessarily convert metabolites in a one-to-one relation but can convert
several educt metabolites into several products. Hence, the interconnecting edges can
have splitting and/or joining characteristics. In graph theory the term hyperedge denotes
an edge that can have multiple start and end nodes. Consequently, a metabolic network is
a hypergraph. Another way of representing metabolic networks is by inserting particular
nodes for the biochemical reactions. By this, the network consists of two kinds of nodes
whereas edges always connect nodes of different kind. This is called a bipartite graph.
The bipartite graph representation of metabolic networks is depicted in Fig. 1.3 b) where
metabolites are symbolized by rectangles and reactions by small squares.
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a) b)

Figure 1.3.: A metabolic network in a hypergraph representation (a) and in a bipartite
graph representation (b).

The different filled reaction symbols of Fig. 1.3 b) already indicate, that biochemical
reactions are classified in so-calledmetabolic pathways being series of reactions which share
a certain functional role in the metabolism. Prominent pathways are, for instance, the
glycolysis for breakdown of glucose and other sugars and the citric acid cycle producing
high-energy reduction equivalents (both displayed in Fig. 1.3 a and b). Pathways are the
building blocks for the graphical representation of the metabolism (Michal 1998).
Another aspect frequently included in metabolic networks is regulatory interaction be-

tween metabolites and reactions (Noack et al. 2007). A metabolite can take influence
on the velocity of a reaction without being a reactant. Here, positive effects are called
activation and negative ones inhibition. These regulatory effects are usually displayed by
a second kind of edge between the metabolites and the reactions.

1.6. Multi-Omics Data

Technologies like rapid sampling, screening robots, gel electrophoresis, gas and liquid
chromatography (GC, LC), mass spectrometry (MS), nuclear magnetic resonance spec-
troscopy (NMR), DNA sequencing, micro arrays and others have been developed in recent
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years (cf. Gehlenborg et al. 2010). They allow fast and detailed measurements from the
biological system in in vitro and in vivo experiments. Therefore, a huge and continually
increasing amount of available multi-omics data arises continually from classical as well
as high-throughput experiments (cf. Fig. 1.2):

• concentrations of the individual metabolites in the cell,

• uptake of extracellular nutrients as well as excretion rates,

• occurrence of RNA transcripts representing the amount of gene-to-protein transla-
tion processes,

• DNA sequences of the genome of an organism,

• amino acid sequences of the individual proteins,

• mass distributions of isotopic enriched compounds,

• concentrations of proteins and their localization and modification,

• kinetic parameters of enzymes,

• binding sites and concentration of regulating factors.

Beside experiments, simulations are performed producing all of these types of omics data
in silico. Additionally, in combination with modeling and simulation further data occurs
that is computationally derived from measurement data:

• intracellular flux rates (i.e. reaction velocities) recomputed from the isotopic distri-
butions inside of the cell,

• quantified regulatory influences of certain metabolites on enzymes resulting from
the enzyme kinetics combined with measured concentrations,

• molecular structures of enzymes,

• thermodynamic potentials of the metabolites derived from their concentration.

Beside data based on measurements, further complex information are related to biochem-
ical networks, such as:

• kinetic laws of biochemical reactions,

• chemical structures of metabolites,

• exchange pathways of single atoms in metabolic reactions,

• literature citations,

8
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• database references,

• research notes etc.

It is a big challenge of systems biology to post-process all the data arising from current
research activities in order to enforce scientific insights.

1.7. Visualization of Data

The plain presentation of experimental data in scientific discussions and talks in form
of tables has been observed at countless opportunities. This is as amazing as suspicious
considering the broad presence of data visualization in today’s life. It can be compared as
if the daily weather forecast was presented by tables showing the temperature, sunshine
hours, precipitation amount, air pressure, wind speed and direction and other information
related to all cities in a country. However, in fact this data is visually displayed on the map
of the country usually by color-coding the local temperature (cf. Fig. 1.4 a), graphical
symbols representing sunshine and rainfall (Fig. 1.4 b), isobars, front lines as well as
arrows indicating the wind speed and direction. The weather changes over a daytime are
usually visualized by animation. In this way, the viewer can immediately identify the
important information by keeping the eyes on their local region. The overall view of the
map, furthermore, allows to understand the global coherences.

a) b)

Figure 1.4.: Information visualization in meteorology. Examples taken from ZDF weather
http://wetter.zdf.de.

Visualization is an important tool that helps to get a visual image of data connected
to an underlying system which can be a map or, as in the context of this work, a bio-
chemical network. Information visualization is the scientific discipline dealing with the
visual representation of abstract data amplifying human cognition i.e. allowing the viewer
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to acquire insights into the data inherent structures and relations (Card et al. 1999). In
contrast to scientific visualization, information visualization is typically concerned with
the representation of non-numeric, non-spatial, and high-dimensional data (Chen 2005).
In systems biology, information visualization is important in analyzing and understand-

ing the plenty of experimental and simulated data concerning biochemical systems. The
challenge lies “in the analysis of a huge amount of data to extract meaningful information
and use them to answer some of the fundamental biological questions. Given the hetero-
geneity and the sheer amount of data it is a challenge to detect the relevant information
and to provide a way to communicate the findings of the researcher in an efficient and
appropriate way” (Pavlopoulos et al. 2008). “The pure amount of data and their hetero-
geneity pose a challenge for efficient visualization tools. The main goal of the visualization
tools should be the intuitive representation of data to provide an efficient interpretation
and to allow a hypothesis driven planning of the next experiment” (ibid.). Saraiya et al.
(2005) wrote “it is critical that pathway visualizations depict this richness of information
in order to be biologically relevant.”
Particularly, multi-omics data (cf. Section 1.6) has a direct relation to the nodes and

edges of a metabolic network, for instance, the compound concentrations are related to
the metabolites and the flux rates are related to the reactions. However, in the context of
life sciences it is still predominating that experimental data is presented by isolated bar
charts, scatter plots, histograms or function graphs of all state variables of the biological
system even in case of time series of experimental data (e.g. Qeli et al. 2005, Wiklund et al.
2008, Schroer et al. 2009). This solution is not satisfying because the network context is
completely lost. It hampers the ability to grasp the visualized data in a system-oriented
manner. Hence, a network-integrated visualization of data is advocated here.

1.8. Existing Visualization Tools

In the context of biochemical networks many visualization tools have been developed in
recent years. About that, informative reviews have been given by Suderman and Hallett
(2007), Pavlopoulos et al. (2008) and Gehlenborg et al. (2010). Many software tools arise
from a top-down approach of network modeling especially in the field of protein-protein
interaction and gene expression profiling. Here, the network size is typically up to several
hundred thousand nodes. In this situation, the network itself is the information to be
visualized. Hence, a suitable automatic network layout, interactive network exploration
and analysis of the interconnections in the network are of tremendous importance for the
human viewer to gain knowledge from the visualization, for instance, by identifying highly
connected nodes.
Networks from top-down approaches are not composed manually but are assembled from

literature and database information (Yao et al. 2004) or automatically generated from
measurement data (Zupan et al. 2003). Thus, powerful layout algorithms are necessary to
generate a network diagram from the large-scale network topology. Tools like Cytoscape
(Shannon et al. 2003), Osprey (Breitkreutz et al. 2003), Ondex (Köhler et al. 2006),
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ProViz (Iragne et al. 2005), PIVOT (Orlev et al. 2004), VisANT (Hu et al. 2005; 2007) and
Pajek (Batagelj and Mrvar 2002) are designated for this field of application. They support
the insights from the visualization by node filtering capabilities, collapsed subnetworks,
network analysis, clustering etc.
Quite different is the situation in bottom-up approaches of network modeling. Here,

networks are small, about a few dozens up to thousands of nodes and, particularly, the
topology of the network is well-known in most cases. The quantities of the model com-
ponents are of main interest. Hence, the network with all its nodes and edges is not the
information that is to be visualized. In contrast, the quantitative experimental and simu-
lated data and its relation to the network nodes and edges are to be visually represented in
a network visualization. By this, an overall view of the data can be achieved. The visual
representation of the network serves as environment for the information visualization.

a) b)

Figure 1.5.: Example metabolic networks: (a) Biochemical pathway map, taken from
http://www.expasy.ch/tools/pathways/. (b) Sub-section of the global
pathway map of KEGG Atlas (Okuda et al. 2008), taken from http:
//www.genome.jp/kegg/.

This work focuses on the visualization of data in metabolic networks because it arises
from the research context of metabolomics and fluxomics. The metabolic network has
two advantages significant for information visualization. The first is, almost all types
of omics data have a direct or indirect relation to the nodes or edges of the metabolic
network. Therefore, they can be visualized by being mapped to the visual appearance of
the network items. A further advantage is that metabolic network drawings have become
generally known among life scientists. The metabolic level is being visually presented
since decades. A famous large-scale metabolic network has already been published as a
wall chart in 1968 by Gerhard Michal (see Fig. 1.5 a). The arrangement of pathways
in this wall paper has established itself in the representation of metabolic networks in
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publications and textbooks (Stephanopoulos 1994, Madigan et al. 2003, Cortassa et al.
2002). For instance, Fig. 1.5 b) shows a subsection of the overview diagram used in
the KEGG databases (Kanehisa and Goto 2000) for navigation in the pathway database
contents (also compare Fig. 1.3). By serving the established layout conventions in a
diagram, the viewer of a metabolic network visualization does not have to concentrate on
localizing the single network components. In contrast, the data visualized by the network
nodes has the observer’s full attention in a well-known pathway map.

1.9. Restrictions of Existing Tools
Over one hundred different tools have been found in the literature that are mentioned in
combination with network and/or omics data visualization. The full range of published
visualization approaches cannot be exhaustively discussed here. The diversity of these
tools with respect to their focus, scientific background and application field is very broad.
Gehlenborg et al. (2010) make the important differentiation between tools that primarily
focus on gene regulatory networks, protein-protein networks and metabolic networks.
Many software tools for data visualization in metabolic networks have been published in
recent years. Here, different scopes can be identified the individual tools aim at:

• Focus on diagram editing, for instance:
– Edinburgh Pathway Editor (Sorokin et al. 2006)
– CellDesigner (Funahashi et al. 2003)
– JDesigner (Sauro et al. 2003)
– Cell Illustrator (Nagasaki et al. 2010)
– MetVis (Qeli et al. 2003)
– “Java editor for biological pathways” (Trost et al. 2003)
– VitaPad (Holford et al. 2005)
– PathwayEditor (Byrnes et al. 2009)
– PATIKA (Demir et al. 2002)

• Focus on network modeling and simulation. Examples:
– CellDesigner (Funahashi et al. 2003)
– JDesigner (Sauro et al. 2003)
– Cell Illustrator (Nagasaki et al. 2010)
– INSILICO (Müller et al. 2005)
– FCModeler (Dickerson et al. 2001)
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• Focus on database navigation, for instance:
– KEGG Atlas (Okuda et al. 2008)
– PGViewer (Tao et al. 2004)

• Focus on network topology visualization and layout, for instance:
– Cytoscape (Shannon et al. 2003)
– Arcadia (Villéger et al. 2010)
– Vanted (Junker et al. 2006)

• Focus on network-integrated data visualization, for example:
– Cytoscape (Shannon et al. 2003)
– ProMeTra (Neuweger et al. 2009)
– MetVis (Qeli et al. 2003)
– Paintomics (García-Alcalde et al. 2010)
– Caleydo (Streit et al. 2009)
– ArrayXPath (Chung et al. 2004)
– PATIKA (Demir et al. 2002)
– Vanted (Junker et al. 2006)
– PathwayExplorer (Mlecnik et al. 2005)
– VitaPad (Holford et al. 2005)
– CellPublisher (Flórez et al. 2010)
– PathwayEditor (Byrnes et al. 2009)

Further tools whose scope is the visualization of metabolic pathways are listed by Gehlen-
borg et al. (2010). All listed applications focus on or are at least suitable in the context
of metabolic networks. However, these tools come up with several limitations:

• Many tools cannot be employed because they are not publicly available (e.g. “Java
editor for biological pathways”), they require expert knowledge to compile a running
binary (e.g. Arcadia), the published version is instable (e.g. VitaPad) or the software
is no longer maintained (e.g. MetVis).

• In all known approaches, the way to visualize data is implemented as a hard-coded,
unchangeable part of the software. Data visualization methods only allow to be
parametrized by the user.

• In many cases the visualization methods address very specialized application fields
and/or require specific data formats (Killcoyne and Boyle 2009).
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• Many tools realize a user guidance that is too technical for a target user group from
life sciences (Killcoyne and Boyle 2009, O’Donoghue et al. 2010).

• Although a plenty of network visualization tools deal with network layout the es-
tablished traditional network layout is insufficiently supported (Saraiya et al. 2005).

• Most tools have little degrees of freedom concerning the network appearance (e.g.
Paintomics, PathwayExplorer, CellDesigner).

• In many cases, visualization is strictly separated from network drawing/modeling
(e.g. Paintomics, PathwayExplorer, ProMeTra, Arcadia).

• A crucial gap in network data visualization is the representation of time. Most tools
are not capable to visualize time series of data (Pavlopoulos et al. 2008, Suderman
and Hallett 2007).

These restrictions make the realization of a new approach of visualization tailored to the
application field of metabolomics and fluxomics reasonable.

1.10. Research Context
This research project began at the University of Siegen in the Simulation Group of the
Institute of Systems Engineering in 2007. Since 2009 the work was continued at the Insti-
tute of Biotechnology in the research center Jülich within the Modeling and Simulation
Group.
The project was partly funded by the German Research Foundation DFG (project

grant WI 1705/13). Furthermore, Evonik Industries supported the research project fi-
nancially within the SysMAP project co-funded by the German Ministry BMBF (project
no. 0313704) and within the EU-funded SysInBio project (project no. 212766).

1.11. Contribution of this Thesis
This dissertation presents a novel approach to customizable data visualization in the
context of metabolic networks. The approach has been realized in the software tool Omix
that is successively introduced in this thesis. The name Omix is derived from the above-
mentioned neologism “omics” standing for the vast possibilities in visualizing multi-omics
data. The tool serves as experimental environment for the novel visualization methods
discussed here. The restrictions mentioned in Section 1.9 lead to following requirements:

Ease of use
An intuitive user guidance is to be realized allowing a fast access to the functionality
of the visualization tool even for newcomers. The software usability must be suitable
for all levels of expertise corresponding to the interdisciplinary user community in
systems biology.
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Network construction
It must be possible to create network diagrams from scratch as well as load networks
from databases. This includes the combination of different small networks to a bigger
one.

Rapidly customizable style
The visual appearance of the network diagrams should be adaptable to individual
preferences and requirements of the software user.

Focus on different levels of detail
Metabolic networks should be abstracted in levels of different information depth in
order to hide complexity or to show different facets of datasets if available.

Flexible visualization
The way of data visualization in the network context should be freely and quickly
reconfigurable in order to deal with frequently changing requirements in the inter-
play of experiments and data evaluation. Particularly, the dynamic visualization of
time dependent data should be supported.

Network independent visualization
It should be possible to apply different visualization methods on the same network
and, vice versa, to use the same method on different networks.

Familiar layout
The major goal of visualization is a rapid and comprehensive understanding of
complex multi-omics datasets. For this reason the network layout should be familiar
to the user in order to facilitate orientation and navigation. Techniques for drawing
networks according to the traditional layout conventions must be provided.

Compatibility and extensibility
Networks ought to be reusable in different contexts of simulation and data eval-
uation. Therefore, established model describing file formats must be supported.
Furthermore, the software must allow to be combined with other software tools
in data processing work flows. In order to realize extensibility and adaptability
to changing requirements the visualization tool should be equipped with a plug-in
interface.

The overall vision this thesis is inspired of is a software that is the visual front end in
a scientific work flow as shown in Fig. 1.6. The work flow begins with the construction
of a network model in form of a diagram. The next step is the export of the network
to an external simulation framework. The user can start and control the simulation
runs via the network editor. Finally, data resulting from experiments and simulations
are visualized in the network diagram. Here powerful techniques are available for the
convenient representation of data in the network. The diagram can be used to present
the network model as well as the experimental and simulated data in scientific discussions
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Figure 1.6.: Vision of a visual front end in a scientific work flow consisting of network
modeling, simulations and experiments, data visualization and presentation
of results.

and talks. The network visualization tool is designed such that the simulator and data
formats sketched in the constellation are freely exchangeable.

1.12. Organization of this Thesis

In order to reach the goal given by the high vision (cf. Fig. 1.6) and to meet the require-
ments mentioned above this thesis is concerned with four main topics that are discussed
in single parts of the document:

Part I: Network drawing
Chapter 2 introduces the necessity of a new network drawing tool for visualization
purposes. In Chapter 3 the particular features of the network drawing editor are
discussed. The drawing features have in parts been published in (Droste et al.
2009a;b; 2010a; 2011b).

Part II: Network layout
This Part introduces a novel semi-automatic layout approach for metabolic networks
that is first of all motivated in Chapter 4. Thereafter, Chapters 5 and 6 introduce
two novel layout techniques. Finally, Chapter 7 discusses an example work flow of
applying the layout techniques in drawing diagrams. The semi-automatic layout
techniques have recently been published in (Droste et al. 2011b).

Part III: Visualization
In this Part, the customizable visualization approach is introduced. After giving an
introduction in the issues of this part in Chapter 8, the script-based visualization
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approach is presented in Chapter 9. Finally, Chapter 10 gives a number of applica-
tion examples for visualization. Parts of these chapters base on original publications
(Droste et al. 2009a; 2010b; 2011a).

Part VI: Extensibility
This Part deals with the concept of plug-ins for the visualization software which is
first of all motivated in Chapter 11. Chapter 12 illustrates the concepts and features
of the plug-in interface and, finally, Chapter 13 lists available plug-in solutions.
Excerpts of the chapters have been published in (Droste et al. 2008b;a).

Between the single Parts feature sheets give an overview about the novel developments
introduced in this work concerning the network drawing (p. 41), network layout (p. 42),
visualization (p. 103) and extensibility (p. 104). The feature sheet pages can be unfolded
to be present during the reading of the dissertation.
Finally, Chapter 14 concludes the thesis by summarizing the achieved results and giving

suggestions for potential future work. An Appendix supplies a drawing tool survey and
a user case study for the evaluation of the semi-automatic layout approach introduced in
Part II. The original publications of the author are listed preceding the general bibliog-
raphy at the end of this thesis. Lists of mathematical symbols and abbreviations used in
the dissertation as well as a glossary precede the list of contents.
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Network Drawing
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Chapter 2.

Introduction to Network Drawing

“Usability is an important consideration in the design
of products because it is concerned with the extent
to which the users of products are able to work effectively,
efficiently and with satisfaction.” (ISO 9241-11 1998)

2.1. State-of-the-Art in Network Drawing
In Chapter 1.9, a number of tools have been mentioned that realize drawing capabilities
for metabolic network diagrams. However, as a prevalent practice biologists and bio-
chemists predominantly use common graphics software or even office programs for draw-
ing metabolic network diagrams (cf. network diagrams taken from publications shown in
Fig. 4.1 on page 46). Clearly, all-purpose software solutions for graphics design enable
the user to draw adequate diagrams. However, these tools have several restrictions that
make the employment of a rather specialized drawing tool recommended:

• The special requirements and properties of metabolic networks are not supported
because the software aims at a common drawing approach. For instance, the soft-
ware cannot classify the graphical items as metabolites, reactions, pathways and so
on. They are just single items composed to a figure.

• The diagram inherent network topology cannot be reused for any other purpose, for
instance, simulation or network analysis.

• Common graphics software and office tools do not provide techniques for visualizing
data in the diagram. When quantitative data shall be mapped on the appearance
of the network components, every single drawing step has to be done manually.

In an email survey, scientists from systems biology have been asked if they ever have
drawn a network diagram and what software they have used for this purpose, or otherwise,
what tool would be first choice for drawing a metabolic network diagram. Nine people
responded to that questionnaire. The drawing software CorelDraw has been mentioned
7 times followed by Powerpoint (6 times) and other common drawing tools (5 times).
ChemDraw has been mentioned once, which is a drawing tool for chemical molecular
structures. Only one time, a special-tailored visualization tool for biochemical networks
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has been stated (CytoScape Shannon et al. 2003). Here, the question comes up: Why are
existing drawing tools for biochemical networks rarely accepted for drawing diagrams in
the community of the life sciences?
Possible answers may lie in the normal software usage patterns of life scientists and

in the effort that is necessary to become familiar with specialized tools. In the normal
work routine of biologists, software systems are just utilities. Usually, they do not spend
much time on finding new software tools and learning the deep features of new appli-
cations because this does not lie in their primary professional interest. The scientists
are familiar with office software because these tools are in daily use. When network dia-
grams are required, e.g. for presentation or publication purpose, office software is at hand.
Additionally, professional or semi-professional graphics software tools are widely spread.
If one is familiar with a graphics design program it is logically first choice for creating
comprehensive drawings.

2.2. Tool Survey

In Appendix A widespread common drawing tools are compared with drawing tools for
biochemical network diagrams. Three tools with objectives similar to this work have been
selected for the drawing tool evaluation: CellDesigner (Funahashi et al. 2003), Vanted
(Junker et al. 2006), and Cytoscape (Shannon et al. 2003). The tool comparison shows
that the user guidance of CellDesigner, Vanted and Cytoscape concerning the drawing
of nodes and edges is very different from common graphics and office software. Some
criticisms are:
The drawing capabilities of CytoScape are not directly apparent. The corresponding

functionalities are not available as toolbar buttons or menu entries. In CytoScape and
Vanted, the interaction design for adding nodes and edges to the drawing is very unusual.
The access to visual properties of the network components is cumbersome. The lack of
biologically motivated network symbolism in CytoScape and Vanted hinders the intuitive
access to the software for a biologist.
Only CellDesigner has a user guidance similar to, for instance, Corel Draw. However,

in CellDesigner biochemical networks are drawn as process diagrams according to the
Systems Biology Graphical Notation (SBGN) (Le Novere et al. 2009). The appearance
of these process diagrams is very technical and reminiscent of electrical circuit diagrams.
One must like this representation. There is no way to change it in CellDesigner except
adapting colors and line thickness.
The network representation of CellDesigner rather corresponds to engineers’ concep-

tions of biochemical processes whereas CytoScape andVanted realize the network concepts
of computer scientists (cf. Saraiya et al. 2005). It is hard to follow these conceptions for
biologists. This also includes the vocabulary used in the graphical user interfaces. The
biological sense of terms like “node”, “edge”, “entity” and “state transition” is not directly
perspicuous for life scientists.
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2.3. Proposed Standards
Electrical circuit diagrams have a clear symbolism which is a long established, worldwide
applied standard. In the context of biochemical networks the situation is quite different.
Several figures in this dissertation that are taken from various sources prove the lack of
standards concerning the network symbolism (cf. Fig. 1.3 on page 7, Fig. 1.5 on page 11,
Fig. 4.1 on page 46, Fig. 4.2 on page 47 a).

Figure 2.1.: Example diagram in the SBGN vocabulary created with CellDesigner. The
model is published as supplemental material of (Kitano et al. 2004).

In recent years, several efforts have been made to standardize the representation of
biological entities and relations in biochemical networks, for instance, by Pirson et al.
(2000) or in the BioD language (Cook et al. 2001), MIP diagrams (Kohn et al. 2006) and
the SBGN (Kitano et al. 2005, Le Novere et al. 2009). However, these proposed standards
are not accepted and even not widely known in the community of the life science. For
instance, Fig. 2.1 shows a network diagram in the SBGN vocabulary. The diagram has a
rather technical appearance which hampers the acceptance by life scientists. Furthermore,
in SBGN one is confronted with a huge set of network symbols which might confuse the
novice, especially, because their biological meaning is not evident in each case.

2.4. Requirements
The development of a new network drawing software must be strongly oriented at the
requirements, software usage patterns and knowledge of the intended end user group.
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Saraiya et al. (2005) found that life scientists “are skeptical about the biological value
of current pathway visualizations. When considering cost vs benefit, the cost seems to
outweigh the benefits. They are reluctant to invest time required to overcome the learning
curve for many of these systems. A large amount of effort is required to gain biologically
meaningful insight for specific projects from most of these systems.”
Learning new software is labor- and time-intensive. Hence, it is important to diminish

this effort by meeting a familiar user guidance. Here, de facto standards arose in the last
decades especially due to the popularity of office software. By miming the user guidance
of the popular drawing applications ease of access is warranted.
Proposed standards for network diagrams like SBGN should not be met due to a lack of

acceptance by the users. On the other hand, “visualizations that look like simple ball-and-
stick graph drawings are likely to be considered information-poor, and not biologically
meaningful” (Saraiya et al. 2005). A new editor for metabolic networks must provide a
clear, biologically motivated network symbolism with many degrees of freedom for highly
customizable network diagrams.
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The Network Diagram Editor

Visualization of data in metabolic networks requires the availability of network drawings.
Therefore, a highly flexible drawing tool has been created for the manual preparation
of network diagrams. The tool aims at providing extensive drawing features towards
established standards in user guidance as a highly customizable graphics tool for the
application field of metabolic networks. The network drawing facility is the first module
of Omix introduced in this thesis.
The tool has been developed in Java (Oracle Corporation 2011) by using Qt Jambi

(Sletta 2006, Qt Jambi Team 2011) for realizing the graphical user interface. Qt Jambi
is the Java bindings to the Qt library (Nokia Corporation 2011). Qt allows to develop
sophisticated drawing features by providing a 2D scenegraph technology called Graphics
View Framework.
The software is provided for download on the website www.13cflux.net/omix and li-

censed for non-commercial, academic use. The download is available after registration.
The website furthermore provides manuals teaching to employ Omix written for novices
and advanced users (Droste 2008a;b; 2011). The source code of the software is not pub-
lished. In the following, the outstanding features of the network editor are discussed in
more detail.∗

3.1. Ease of Use

Since the late 1980s, computer science is aware of the value of usability (Dumas 2007). It
is desirable to create usable and functional programs that improve productivity and allow
to be easily learned (Gould 1988). The ISO defines usability as “the extent to which
a product can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” (ISO 9241-11 1998). Characteristic
for usability engineering is the user-centric design of software. As illustrated in Chapter
2, a user-oriented approach is sine qua non for the acceptance of bio-related visualization
software by life scientists (Saraiya et al. 2005). “The principles of any system developed
in the research environment must be simple so that end users [. . . ] can quickly learn and
use the system” Killcoyne and Boyle (2009) wrote.

∗Excerpts of this chapter have been published in (Droste et al. 2009a; 2011b).
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The drawing tool Omix has been developed in close communication with its end users.
The intended end users of the software are, in general, all participants in systems biology
research (cf. Chapter 1.2). A special focus at the design of the network editing features
lies on researchers from the life sciences, i.e. biologists, biotechnologists, biochemists,
chemists, biomedical researchers etc. (Saraiya et al. 2005). Here, the most important
requirement is to satisfy familiarity. Life scientists are used to work with office software
and know the user guidance of drawing tools. Hence, Omix allows to be operated with
the intuition learned from daily employed software.
Fig. 3.1 shows the main window of the software consisting of a menubar, several toolbars

and, in particular, a drawing area in the center. Omix is document-based because the
scientific user community is most comfortable with this kind of content handling (Killcoyne
and Boyle 2009). The program offers a so-called multiple document interface (MDI) for the
parallel work on several networks. An MDI can contain multiple internal windows inside
of the main window that operates as window manager, a technique that is implemented
in most document-based tools.
Internationalization is an important prerequisite for usability (Gould 1988). The lan-

guage of the dialog texts on the graphical user interface (GUI) can be changed between
English, German and French. In order to minimize the user’s effort to performing sim-
ilar operations the GUI saves and reuses preferences of the user, for instance, window
position and mode, recent documents (presented as shortcuts), preferred directories for
loading and storing documents, last selected image export formats and so on.
The user guidance of the network editor corresponds to a vector graphics software.

Sophisticated graphics can be created and exported to the most important vector and
pixel oriented image formats (PNG, JPG, SVG, PDF and others). The drawing area is
equipped with rulers and a background grid. A number of tool buttons on the left vertical
toolbar can be activated to add graphical items on the drawing area (cf. Appendix A). The
drawing tool is self-explanatory (ISO 9241-110 2006), i.e. the button icons indicate their
functionality with a well-noticeable plus sign decorating the graphical symbol. Further-
more, the buttons are equipped with explaining “tool tips” being small prompts appearing
when the mouse hovers an interactive element. While the different editing utilities are
active, the mouse cursor indicates their functionality. For instance, an arrow decorated
with a graphical symbol and a plus sign indicates that the corresponding element can be
inserted by mouse click.
The graphical elements on the drawing area can be selected, moved, deleted, resized

and arranged to item groups. For editing shapes and lines the editor uses Bézier splines
(Salomon 2006), a primarily applied technique in vector graphics programs. The user can
split lines into several segments, convert the single segments into straight lines, arcs or
curves and define the smoothness at the join points. All editing steps are recorded and
can be undone by the user.
Most important features of the software are available on toolbars. Basically all function-

alities are accessible on the menubar. Furthermore, the GUI uses the platform-dependent
standard keyboard shortcuts for file operations, print, undo/redo, document search etc.
The network drawing editor is fully documented in the Omix User Manual (Droste 2008a),
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Figure 3.1.: Screen shot of the Omix main window containing a drawing area in the
center, several toolbars and side windows. Additionally, the figure shows the
logo of Omix bottom right.

an easy readable guide to the functionality of the software for newcomers. The design of
the user interaction has been continually discussed with end users from the life sciences.
In a recently performed case study a group of sixteen voluntary participants was asked

to solve a network drawing exercise with Omix and to assess its ease of use. The average
gave a degree of 6.3 (1 corresponds to “most difficult to use” and 10 “very easy”). Seven
participants gave additional comments on the user friendliness of the tool. Furthermore,
a short questionnaire was sent to about eighty users that are registered at the download
server. They were asked to value the software’s ease of use for newcomers. Seven people
responded to the request valuing the ease of use with 6.7 in average (same scale).

3.2. Network Symbols

The network editor is designed with a deliberately small set of network symbols with
a biologically meaningful semantics. As formerly introduced in Chapter 1.5, metabolic
networks are commonly represented as directed hypergraphs where metabolites are sym-
bolized by nodes and the connecting edges correspond to the biochemical reactions. Here,
every edge may have several sources and destinations (i.e. substrates and products of a
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reaction step). However, such directed hyperedges can also be represented in a bipartite
graph structure by introducing individual nodes for reactions. Networks in this approach
base on latter convention.

3.2.1. Network Nodes and Edges

As depicted in Fig. 3.2 the editor provides two distinct node symbols for the representation
of metabolites (rectangles) and reactions (diamonds) in the diagrams. Reactions are
labeled with an identifier that is unique in the set of reactions. Metabolites may occur
multiply in a network diagram as discussed later. Reaction and metabolite symbols can
be connected by edges indicating a flux relation (see the blue lines with arrowhead in
Fig. 3.2). These so-called flux edges are directed, i.e. that a metabolite can in general be
identified as substrate or product of a biochemical reaction.

Figure 3.2.: Example for a metabolic network in Omix. Reactions are displayed by di-
amonds, metabolites by rounded rectangles. The edges with a triangular
arrowhead indicate a flux relation, the edges with a circle arrow a regulatory
effect.

A second type of connection between metabolites and reactions, the so-called effector
edge represents regulatory effects in the network (Noack et al. 2007). Metabolites can
inhibit or activate reactions which is indicated by the appearance of the individual effector
edge. It is colored green and shows a plus sign in its circuit end marker in case of activation.
Inhibition is indicated by red color and a minus sign as shown in Fig. 3.2. When the kind
of regulation is unknown the effector edge is colored yellow with a question mark character
displayed in the end marker.
Basically, regulation can take place on different levels. On the metabolic level, com-

pounds can take effect on the activity of enzymes. On the genome level, the production
of enzymes can be affected or stimulated by the occurrence of the regulating metabo-
lite (Michal 1998). Here, effector relations represent regulation on all these levels as an
abstraction.
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Formalization

The above described network symbolism leads to a directed graph G = (V,E) describing
a metabolic network with set of nodes V = M ∪R and M ∩R = ∅ containing metabolite
nodes M and reaction nodes R connected by edges E ⊆ {M × R,R × M}. The set
E is subdivided into disjoint sets of the flux edges f ∈ F ⊆ E and the effector edges
x ∈ X ⊆ {M ×R}.A set of all edges connected to a node v ∈ V is denoted by E(v) ⊆ E
and the connectivity of v by |E(v)|.

Reaction Directions

Biochemical reaction steps are usually reversible (bidirectional) meaning that the enzy-
matic conversion proceeds in forward as well as in backward direction. Under certain
thermodynamic conditions a reaction is expected to be irreversible (unidirectional). In
contrast, in this approach flux edges are always directed even when they connect a re-
versible reaction. Reversibility is implemented as a flag of reaction nodes which can be
quickly changed without redrawing the connected flux edges. The reversibility of reactions
can be displayed in several ways. The user has the choice between showing a reversibil-
ity icon annotating the flux edges, showing bidirectional arrowheads and displaying flux
edges without arrows.
The actual direction of a flux edge connected to a reversible reaction is considered as

a nominal direction. Here, an advanced option is provided by the network editor that
enables the user to reverse the directions of all edges of a reaction. This option wraps a
numerous drawing steps in one action. Reversing a reaction direction in this way causes
a real stoichiometric change in the network. A second option is the visual property “in-
verted” of the reaction symbols. By setting this option only the visual representation of
the edge directions is changed. These two options are novel and very useful for model-
ing processes and visualization because assumed reaction directions frequently differ in
the literature and stoichiometric shifts of reactions are not seldom in non-steady state
experiments.

Properties of Flux Edges

In combination with metabolic reactions it can be distinguished between main metabolites
and cofactors. Examples for cofactors are the energy carriers NADP and NADPH that
occur at many reactions in the metabolism. Here, the high-energetic NADPH is converted
to the lower-energetic NADP. This parallel reaction step provides the energy that is
necessary to energetically upgrade another biochemical compound in the main reaction
step. This particular cofactor role of a metabolite in a reaction is property of their relation.
Hence, the flux edge can be marked as to represent a cofactor relation (cf. Fig. 3.2). Flux
edges that represent a cofactor relation are classified as cofactor edges F ′ ⊆ F .
Another important property of metabolites is, that they can participate in a reaction

in an n : m relation with n,m >= 1. For instance, two molecules of metabolite A are
combined to one molecule of metabolite B. In a correct model two edges would be necessary
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to represent this relation. In this approach, the flux edges have a coefficient representing
the proportions the metabolites participate in the biochemical reactions. Particularly,
this coefficient is specified as real number. By this, fractional proportions are possible
that are required in some cumulative reactions describing biomass formation.

Duplicated Nodes

A distinguishing feature of metabolic networks is the existence of a few nodes that show
a high degree of connectivity. This especially applies to the cofactors participating in
many enzymatic reactions over the entire network. Displaying a metabolic network with
only one representative of each of those cofactors would lead to a chaotic diagram with a
myriad of edge crossings and edges that span over the entire diagram as shown in Fig. 3.3.
In order to reduce edge crossings without affecting readability the diagram editor provides
the possibility to duplicate metabolites. By this, a metabolite can appear several times in
a network; i.e. several metabolite items in the diagram with the same label M.l represent
one single metabolite species M(m) = {m′ | m′.l = m.l}. In this way, the connectivity of
the visual representation is strongly reducible.

Figure 3.3.: Genome-scale network diagram without duplicated nodes. The figure was
taken from (Müller et al. 2005).
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An argument against node duplication is that it can distort the real network topology
and, in this way, affect the correct interpretation of the diagram (Bourqui et al. 2006).
Nevertheless, this does not apply to duplicated metabolite nodes in general. For instance,
it is a well-established practice to have multiple representatives of cofactors in a diagram
(cf. NADP and NADPH in Fig. 3.2 on page 28). The duplication of cofactors does not
lead to a missinterpretation of the diagram because the main focus lies on the reactions’
main metabolites.
The situation is quite different in combination with reaction nodes. It is difficult to

obtain an overview of all substrates and products of a reaction when there are several
representatives each connected with different metabolites. In such cases, the reaction
stoichiometry can easily be missinterpreted. Hence, reaction nodes cannot be cloned in
this approach.
Duplication of metabolite nodes can be performed by selecting the intended metabolite

and pressing the duplication tool button. Next to the original one a cloned node ap-
pears, which is initially unconnected with the network and can be connected by manually
inserting edges. If a metabolite node is multiply connected node duplication and the sub-
sequent reconnection to the network can be strongly simplified. Here, the user can choose
the option of duplicating the metabolite node m once per edge e ∈ E(m) as illustrated in
Fig. 3.4. If this is done, several new nodes are created each connected to one of the edges.
Thus, multiply connected cofactor metabolites can be distributed all over the network
diagram. Although duplicated nodes are supported in other network diagram editors this
particular feature of automatic duplication has not be found in any of them. The feature
is strongly useful when a network topology is imported from third party sources which
do not support duplicated nodes, as is commonly the case (e.g. SBML, Hucka et al. 2003,
and FML, Dalman et al. 2010a).

Figure 3.4.: Duplicating a metabolite once per connection. After duplication, the newly
inserted clones are arranged around the original node. Subsequently, a manual
repositioning step may follow.
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3.2.2. Metabolic Pathways

In metabolic networks, series of reactions are grouped to metabolic pathways (cf. Chapter
1.5). This way to organize the metabolic network is fully supported by the drawing
editor. A metabolic pathway P ⊆ R is a set of enzymatic reactions defining a special
functional module of the network. Let P1 and P2 be two pathways, then P1 ∩ P2 = ∅.
Like metabolites and reactions, pathways are also labeled with a unique identifier.
The periphery Πr = (Er,Mr) of a reaction r is given by its connected edges Er = E(r)

and the connected metabolites Mr = {m ∈ M | ∃e ∈ E(m) ∩ Er} (distance 1). The
peripheries Πr of all reactions of a pathway P lead to the “pathway subgraph” which we
denote GP = (P ∪ M̄, Ē) with

M̄ =
⋃

r∈P

Mr and (3.1)

Ē =
⋃

r∈P

Er \ {X ∪ F ′}. (3.2)

Equation 3.2 implies that effector edges X and cofactor edges F ′ are excluded from the
set of pathway edges.
An outstanding feature presented here is, pathways are not only internal sets of reactions

but also visualized in the diagram by highlighting the visible edges Ē of the pathway
subgraph GP as is shown in Fig. 3.5 on the next page. Initially, a pathway is created as
an empty set and by this invisible in the diagram. During the drawing process, reactions
can be assigned to pathways. A pathway becomes visible when Ē contains at least one
element, i.e. |Ē| > 0. The visual representation of pathways by highlighting the edges
of the involved reactions with a contour is novel and unique in the present literature.
Additionally, this pathway shapes are suited for data visualization purpose as illustrated
in Part III.
In contrast to other approaches where metabolic pathways are considered as series of

reactions and metabolites (Papin et al. 2003), pathways are deliberately defined different
here. Metabolites are excluded from the definition of metabolic pathways in order to re-
duce redundancy since most metabolites participate in many pathways in the metabolism.
The association of metabolites to pathways is established by the pathway subgraphs.
Furthermore, according to the upper definition, pathways do not necessarily demand a
consecutive series of reactions. This, consequently allows the composition of pathways
consisting of non-connected parts in principle.

3.2.3. Compartments

Another structural element in metabolic networks basing on real spacial subdivision of the
living cell is given in the compartments. Prominent compartments are for instance the mi-
tochondria, chloroplasts and the nucleus. Compartments in the network editor are drawn
as rectangular areas in the diagram as shown in Fig. 3.5 on the facing page. In particular,
metabolites that are located inside of the compartment shape are associated with the
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Figure 3.5.: Representation of metabolic pathways and compartments in Omix.

compartment. Since this network drawing approach allows duplicated metabolites there
can be multiple clones of one metabolite positioned in different compartments. In this
case, the internal network model contains distinguished “pools” of the same metabolite.
A pool represents the occurrence of a metabolite in the cell given by its concentration.
The concentration of a compound can vary between the compartments because they are
physically separated by the compartment membranes.

3.2.4. Additional Network Components
The above presented set of network symbols is fully sufficient for the design of biologically
meaningful and, likewise, well readable network diagrams. Nevertheless, the diagram
editor tool provides a custom node type and edge type in order to offer more degrees of
freedom in editing diagrams. Custom edges can connect all types of network nodes, for
instance, two metabolites or a custom node and a reaction. These components can be
used in the network diagrams occupied with arbitrary semantics the user requires.

3.3. Network Style
Michal (1998) stated that style is a very personal thing. The way biochemical networks
are fashioned greatly differs between different authors and individual aesthetics plays
an important role. Therefore, a network drawing software must offer many degrees of
freedom in adapting the visual appearance of a network diagram to individual preferences
and requirements.
The here realized network drawing approach allows to change the style of network

components in various ways. Fig. 3.6 shows a selection of available style parameters of
nodes and edges, the user can access. The amount of visual properties includes the shape,
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fill, text and stroke of reactions and metabolites as well as the curve shape, line width,
arrow size and color of edges in the network. Furthermore, the appearance of pathways
and compartments can be customized in various ways. The main window contains a
property editor (right window component shown in Fig. 3.1 on page 27). The property
editor always lists the properties of the currently selected network component and, thus,
allows the user to change them.

Figure 3.6.: Visual properties of nodes and edges in Omix diagrams

An outstanding feature of the editor is: changing visual properties cannot only be done
on individual network components one by one, but can additionally be done on an entire
type of network components globally. Thus, for instance, the color of all metabolites in
the diagram can be changed quickly in one step. In this way, the network style can be
changed very fast.
The totality of all globally defined attributes regarding the visual appearance of the

network components is a so-called style sheet. Style sheets are exchangeable between dif-
ferent network documents. Therefore, style sheet files can be exported from and imported
into diagrams. By applying a style sheet file on a network diagram, the appearance of
all components in the diagram changes immediately according to the style sheet. This,
furthermore, increases the flexibility and rapid adaptability of network diagrams.
An important property of the drawing tool is, the shapes of metabolite and reaction

symbols are not fixed. The user can choose between a set of primitive shapes like rectangle,
ellipse, hexagon etc. and even create custom shapes. By this, the actual symbolism used
in the diagrams is customizable to the users’ requirements. This includes the possibility
to represent the metabolic networks in SBGN (Le Novere et al. 2009) if required.

3.4. Levels of Detail

Although the set of network components available in the drawing tool is kept small
highly detailed network diagrams can be created. For instance, Fig. 3.7 a) shows a dia-
gram containing multiple metabolites and reactions of several pathways from the central
metabolism. Beyond displaying the substrate and product relations, the network shows
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activating and inhibiting effects between the components. Furthermore, the network con-
tains cofactors like ATP and ADP.
In many situations, certain details in metabolic networks are not of interest depending

on the field of application (Michal 1998). For instance, energetic cofactors and net-
work regulation mechanisms are often not considered in metabolic flux analysis (shortly
introduced in Chapter 13.3). Hence, the network visualization tool supports a context-
dependent view of network diagrams without the necessity to edit the diagram.
A network diagram can be displayed in various levels of detail because the user can

hide certain types of components of the network. This is exemplified by the image series
in Fig. 3.7. Entire classes of diagram components can be hidden in the diagram. In
Fig. 3.7 b), for instance, pathways are hidden as well as cofactors and effector edges.
Reaction nodes can be faded out leading to a hypergraph representation as shown in
Fig. 3.7 c). Likewise, metabolite nodes can be hidden. In this case the metabolites are
represented as dots (cf. Fig. 3.7 d and e). This dot representation as well as the label of a
hidden reaction and metabolite only appears if the corresponding node is still connected
with at least one visible edge. Finally, when all types of network components are hidden
except pathways as shown in Fig. 3.7 e) the network can be examined from a higher
abstraction level.
Beyond the option to globally hide entire classes of network components, all single

reactions and metabolites as well as pathways and compartments can be hidden individ-
ually by changing their “visibility” property. The possibility of representing a diagram in
various levels of details as well as the option to hide single components allows to use one
network diagram for multiple purposes with different and, if the case may be, contradic-
tory requirements.

3.5. Joining Networks

Like other document-editing software tools, the diagram editor supports copy and paste
functionality, meaning that parts of a diagram can be selected, copied to the systems
clipboard and pasted into other diagrams. This feature helps to join different networks in
a new diagram or to build up networks from parts (e.g. pathway by pathway). Because
metabolite and reaction identifiers are unique in a network diagram possibly occurring
name collisions have to be resolved after a paste operation. Here, different cases have to
be taken into account depending on the type of the inserted network component:

• If a reaction already exists, the user can decide between using the existing one,
renaming the pasted reaction or omitting it.

• This also applies when the name collision occurs with a metabolite. Here, inserting
a further duplication is additionally offered.

• If a node is skipped, all its connections are also omitted.
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Figure 3.7.: Classes of network components can be faded out entirely. Figure a) shows a
detailed diagram. In b), c), d) and e) certain network components are hidden
leading to a reduced representation of the network. In figure f) everything
but pathways is hidden. By this, a higher abstraction level of the network is
given.
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• If a pasted edge is already available between its source and destination node it is
skipped automatically.

In addition to the copy paste feature, it is possible to merge (sub)networks from different
documents by importing which likewise requires name collision handling.

3.6. Layout-less Components
In addition to the drawing area where the network diagram is edited, all components of
the metabolic network are listed in the so-called component view being a side window of
the main window as depicted in Fig. 3.8. All components of the network occur as ele-
ments in this list subclassified into reactions, metabolites, pathways and compartments.
All reaction and metabolite items, furthermore, contain subitems representing the edges
connected to the node in order to allow the inspection of these connections. The path-
way and compartment items contain subitems representing the associated reactions and
metabolites, respectively.

Figure 3.8.: Arrangement of layout-less networks on the drawing area.

When a network is imported from a file, database or other third party sources without
any layout information provided, node positions and edge shapes are initially not available.
These nodes and edges are not instantly visible in the diagram. Instead, they only appear
in the component view. The corresponding node entries in the component view are labeled
as to be non-positioned (cf. Fig. 3.8). The nodes represented in this way can be added to
the diagram by drag-and-drop. Only nodes can be inserted in this way. Initially invisible
edges are inserted automatically as soon as the source and destination nodes are added.
In order to accelerate the positioning of layout-less nodes in the diagram an option

is offered when a reaction node is dropped on the drawing area. Now the user can
choose whether all neighboring metabolite nodes should additionally be inserted. If this
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functionality is chosen, the neighboring nodes are inserted automatically and arranged
circularly around the reaction as shown in Fig. 3.8. Thereafter, they can be repositioned
as preferred before further nodes are inserted. In this way, an imported network without
positioning information must be arranged manually. Part II introduces a semi-automatic
network layout approach that accelerates this drawing task.

3.7. Example Drawing Process
Finally, a case study is presented that has been performed in order to prove the stability
and robustness of the drawing editor in a large-scale modeling process. Fig. 3.9 on the fac-
ing page shows a genome-scale metabolic network and a number of intermediate drawing
steps. The diagram was created by stepwise importing single pathways from the KEGG
databases (Kanehisa and Goto 2000) and combining them to a consistent diagram. The
model consists of 826 metabolites, 846 reactions and 59 pathways. The diagram has been
created by a biotechnologist who deals with modeling of metabolic networks.
The drawing process has taken eight days. Compared with automatic graph drawing

this seams to be long. However, Path II will demonstrate that automatic graph drawing
is not suitable to create a diagram according historically entailed layout standards. These
conventions necessarily require the human factor. Considering the costs of drawing such
a diagram with a common graphics software tool eight days are acceptable.
Another aspect is, the here presented drawing process corresponds to a network model-

ing process that includes proofreading of the complete model against literature informa-
tion. The diagram inherent network model can be used for multiple purposes for instance
data visualization (cf. Part III) and simulation (cf. Part IV). Having this high reusability
in mind, eight days are quite less compared with the time effort of separate drawing,
modeling and visualization tasks.
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3.7. Example Drawing Process

Figure 3.9.: Documentation of a drawing process.
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Omix Feature Sheet
Network Drawing Features Page

• Sophisticated drawing features by using Qt∗ . . . . . . . . . . . . . . . . . . . . . . . . 25
• Publicly available for academic use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
• Fully documented in a user manual∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
• User-centric software design∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
• Intuitive user guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
• Simultaneously editing multiple documents . . . . . . . . . . . . . . . . . . . . . . . . 26
• Language support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
• Diagram export to established pixel- and vector-oriented image formats . . . . . . . . 26
• Self-explanatory drawing tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
• Shape editing with Bézier splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
• Small set of biologically meaningful network symbols∗ . . . . . . . . . . . . . . . . . . 27
• Abstract representation of regulatory effects . . . . . . . . . . . . . . . . . . . . . . . 28
• Reversibility as a flag; flexible visual representation of reversibility∗∗ . . . . . . . . . . 29
• One-click-reversing of a reaction direction∗∗ . . . . . . . . . . . . . . . . . . . . . . . . 29
• Inverting the visual reaction direction∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . 29
• Cofactor role represented by edges∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
• Coefficient of flux edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
• Duplicated metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
• Duplication of a metabolite once per edge∗∗ . . . . . . . . . . . . . . . . . . . . . . . . 31
• Visual representation of metabolic pathways∗∗ . . . . . . . . . . . . . . . . . . . . . . . 32
• Compartments and compartmentalized metabolite pools∗ . . . . . . . . . . . . . . . . 32
• Custom nodes and edges as optional semantic-free components of a network∗ . . . . . 33
• Highly customizable network style∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
• Individual and global change of item properties∗ . . . . . . . . . . . . . . . . . . . . . 34
• Style sheets exchangeable between different documents . . . . . . . . . . . . . . . . . 34
• Flexible network symbol shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
• Displaying the diagram in different levels of detail∗ . . . . . . . . . . . . . . . . . . . . 34
• Copy-paste of network parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
• Joining multiple networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
• Importing networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
• Alternative model representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
• Representation and handling of layout-less components∗ . . . . . . . . . . . . . . . . . 37
• Automatically inserting all substrates and products of a reaction∗ . . . . . . . . . . . . 37
• High reusability of network drawings∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

∗particular feature of Omix, i.e. not novel in general but hardly realized by other tools for visualization
in the context of biochemical networks.

∗∗novel approach introduced in this thesis.
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• The layout pattern, a skeleton for the arrangement of pathways in the diagram∗∗ . . . 51
• Reshaping of edges according to the pattern section∗∗ . . . . . . . . . . . . . . . . . . 51
• Proper circular arrangement of the citric acid cycle pathway∗∗ . . . . . . . . . . . . . . 53
• Equidistant placement of nodes on an arbitrary shaped pattern section∗∗ . . . . . . . . 53
• Exchanging the layout pattern figure between different documents . . . . . . . . . . . 51
• Successive arrangement of metabolic pathways . . . . . . . . . . . . . . . . . . . . . . 53
• Semi-automatic network path search∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
• Pre-selection and exclusion of network paths for a fast overview∗∗ . . . . . . . . . . . . 55
• Pathway-oriented network layout∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
• The motif stamps wrap multiply occurring drawing steps into one action∗∗ . . . . . . . 57
• Capturing motif stamps from existing reactions∗∗ . . . . . . . . . . . . . . . . . . . . . 59
• Exchanging motif stamps between different documents . . . . . . . . . . . . . . . . . 59
• Rotating, scaling and inverting of the motif for an adapted arrangement∗∗ . . . . . . . 59
• “Snapping” to a smooth arrangement∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . 59
• Automatic node duplication and arrangement by the motif stamp∗∗ . . . . . . . . . . . 60

∗particular feature of Omix, i.e. not novel in general but hardly realized by other tools for visualization
in the context of biochemical networks.

∗∗novel approach introduced in this thesis.
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Chapter 4.

Introduction to Network Layout

“Despite the wealth of existing algorithms,
the layout problem still remains one of the crucial
bottlenecks in network visualization.”
(Pavlopoulos et al. 2008)

4.1. Layout Conventions

As introduced in Chapter 1∗, there are several different types of biochemical networks from
the genome, transcriptome or proteome layer displaying different aspects of intracellular
processes. Each of these layers has its own, very specific peculiarities. In the context of
metabolic networks, we are concerned with historically established conventions for network
layout. Biologists have these “familiar” layouts in mind when they draw networks inspired
by popular biochemical text books (Stryer 1995, Michal 1999, Madigan et al. 2003). These
textbooks share de facto layout rules which are commonly accepted although not casted
into formal layout definitions, but rather informal layout rules. These rules deal with
the arrangement and shape of metabolic pathways in a diagram as well as the design of
single reactions. Fig. 4.1 shows a few examples for metabolic network drawings that can
be found by searching for the term “metabolic network” in the Internet. This random
selection demonstrates the existence of a de facto standard for network layout.
When simulated and experimental data has to be visualized in a network context, the

established layout conventions should be obeyed in order to increase the acceptance and
readability. Following established layout conventions facilitates rapid orientation. The
human observer can concentrate on the essential quantitative or structural information
related to the network. This makes discussion of, for instance, measurement values visu-
alized in a metabolic network diagram much more efficient.

4.2. Automatic Versus Manual Approaches

As an illustrative example, Fig. 4.2 on page 47 shows a small network of microbial
central metabolism. In Fig. 4.2 a) the network was manually drawn according to the
∗Part II has in altered form been published in (Droste et al. 2011b).
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a) b)

c) d) e)

f) g)

Figure 4.1.: Examples for metabolic networks from literature and Internet: (a) taken from
Villas-Bôas et al. 2005, (b) Frick and Wittmann 2005, (c) Wang et al. 2005,
(d) Kiefer et al. 2004, (e) Zaparty 2010, (f) and (g) hand-drawn network
diagrams taken from White 2001.
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Chapter 4. Introduction to Network Layout

“standard” text book layout. Fig. 4.2 b) to g) display the same network but are de-
signed by means of six different automatic layout algorithms performed by CytoScape
(Shannon et al. 2003): Sugiyama algorithm (b), hierarchical network layout (c), grid
layout (d), force-directed placement (e), circle layout (f) and tree layout (g).

Even an untrained biologist is immediately able to identify all the essential metabolic
pathways shown in Fig. 4.2 a). It is quite obvious, however, that the automatic computed
diagrams are hard to read because even the prominent paths and cycles cannot be recog-
nized in the automatically computed arrangement (see Fig. 4.2 b to g). These diagrams
are inadequate for information visualization where orientation and fast identifiability is
an indispensable prerequisite as for metabolic networks.

As stated by Suderman and Hallett (2007), most tools in the context of biochemi-
cal network visualization support a fully automatic network drawing mode. Here, the
usual approaches of automatic graph drawing, as for instance hierarchical (Sugiyama
et al. 1981) or force-directed (Eades 1984, Fruchterman and Reingold 1991) methods are
adapted and improved according to the requirements of the biochemical application field
by, for example, clustering or grid-based approaches (Li and Kurata 2005, Bourqui et al.
2006, Rohrschneider et al. 2009). However, Saraiya et al. (2005) wrote that the utility
and impact of those approaches for visualization of metabolic networks is yet unclear.
Even these adapted automatic solutions rarely lead to well-accepted network layouts. For
instance, even the KEGG reaction database (Kanehisa and Goto 2000) uses manually
drawn diagrams for the visual representation of metabolic pathways.

This thesis does not argue against automatic graph drawing in general. Certainly, these
techniques are successfully applied in other types of biochemical networks, for instance,
protein-protein interaction networks (Schwikowski et al. 2000). In such application fields
the arrangement of nodes and edges in the diagram has no effect on the identifiability of
single components because there are no standardized layout rules. Hence, an automatic
layout of network components does not affect the gain of insight from the visualization.

Automatic graph drawing is feasible if no commonly accepted layout conventions are
available, or, graphs are generated for getting a qualitative impression by means of
connection-centric approaches. Furthermore, automatic network layout is undoubtedly
valuable where the size of the networks exceeds several ten thousands of nodes even
in the context of metabolic networks (Batagelj and Mrvar 2002, Shannon et al. 2003).
Gehlenborg et al. (2010) state “Although these specialized automated layout methods are
useful, they are usually of low quality compared to manually laid out pathways created
by human experts and often require manual editing in addition”. Human intervention is
necessary in order to adapt the automatically computed layout to the requirements of
the scientific application field (Villéger et al. 2010). This work focus on smaller networks
ranging from one hundred up to two thousand nodes.
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4.3. Circular Arrangements

Prevailing automatic graph layout algorithms are not able to arrange cycles as they
are commonly drawn in metabolic networks. From a graph theoretical point of view,
metabolic networks usually contain several potentially nested cycles as depicted in Fig. 4.3.
Here, a subsection of a network from central metabolism is shown with four exemplary
graph cycles highlighted in the network. Not all graph cycles, however, are actually
drawn as circles in a network diagram by convention. In the example from the central
metabolism, only the citric acid cycle (cf. Fig. 4.3 d) is arranged in a circle as it was
initiated by the pioneers of molecular biology. Obviously, graph analysis algorithms are
not able to identify the one network path conventionally drawn as circle.
A frequently applied automatic layout scheme is the arrangement of all network nodes

on a circumference interconnected by straight line edges (Breitkreutz et al. 2003) as
shown in Fig. 4.2 f). However, a circular arrangement of cyclic network paths as part of
a hierarchical network layout has not yet been applied successfully.

Figure 4.3.: Examples for cyclic paths in a subnetwork from central metabolism.
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4.4. Layout Requirements of Metabolic Networks
In the context of data visualization the design process of metabolic network diagrams is
governed by conserving recognition value which means rapid orientation in the diagram
and immediate identifiability of “familiar” network sections. Recognition value is very im-
portant in order to generate network-integrated data visualizations giving fast impressions
of the embedded information.
Another closely related aspect in drawing metabolic networks is aesthetics. Here aes-

thetics does not only and not necessarily include a minimized number of edge crossings
and bends, symmetry, and maximal angles between edges leaving a node (Purchase 1997).
Here, a more general concept of the term aesthetics is propagated including the shape of
edges and proportions of nodes. Fig. 4.2 a) shows differently formed edge shapes lead-
ing to an aesthetically pleasing diagram. Here, edges between circular arranged nodes
are shaped as arcs. Other edges have linear or curved characteristics adapted to the ar-
rangement of nodes. The shape of edges is a significant aesthetic criterion for metabolic
network diagrams.
A third aspect that becomes increasingly important for larger networks is efficiency.

Drawing networks is very time-consuming. Saving time by supporting the human activi-
ties is a necessary capability of a drawing software for metabolic networks. The efficiency
aspect includes an intuitive user guidance as well as the option of automating repetitive
actions.
These three requirements – recognition value, aesthetics and efficiency – must be sup-

ported by a network drawing tool. It is nearly impossible to perform all these requirements
for metabolic networks with automatic layout algorithms. Clearly, the automatic place-
ment of network elements is time-efficient but the designed network diagrams do neither
satisfy common aesthetics nor have any recognition value (see Fig. 4.2 on page 47). In the
context of metabolic networks, aesthetics and recognition value can only be sufficiently
preserved by the human factor but manual graph drawing is time-intensive.
Here, a novel semi-automatic graph drawing approach is introduced that aims at as-

sisting the manual drawing process by a small set of automatisms leading to satisfying
network drawings and acceptable time factors. This approach consists of the so-called lay-
out pattern, which is described in Section 5, and the motif stamps introduced in Section
6. In order to give an impression of the strength of the contribution Section 7 discusses a
work flow for applying the design and layout techniques presented here “in real life”. In
Appendix B a user case study is given evaluating the effectiveness of the here presented
semi-automatic layout approach against the requirements recognition value, aesthetics
and efficiency.
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The Layout Pattern: Shaping the Coarse
Network Structure

The drawing area of the diagram editor can be pre-structured with a so-called layout
pattern. A layout pattern is a skeleton on which series of nodes and edges can be arranged
(see Fig. 5.1). In the process of arranging nodes on the drawing area, the layout pattern
supports the user in finding the correct node sequences in a heterogeneously connected
graph. To a certain extent, the layout pattern is a meta-component of the diagram
imprinting an overall structure to the network. In the following, this novel method of
semi-automatic network layout is introduced in more detail. The usage of the layout
pattern for the arrangement of nodes and edges is illustrated and the challenges arising
from the combination of interaction and automation are stressed.
The layout pattern is an arbitrarily complex figure consisting of several spline segments,

the so-called pattern sections, which can be versatilely assembled. Fig. 5.1 a) shows a
pattern figure for the central metabolism. Every pattern section is an arbitrarily shapeable
spline between two branch points as illustrated in Fig. 5.1 b). On a pattern section a
sequence of nodes and edges is arranged according to the geometry of the path curve (see
Fig. 5.1 c). When the shape of a pattern section is subsequently changed the position of
all its nodes and the shape of all the edges are immediately adapted to the new shape of
the pattern. A node on a pattern section can have two neighbors; a node on a branch
point can have as many neighbors as pattern sections are connected to the point.
Pattern sections can be added to the drawing area. Here, user guidance is oriented to

the Bézier spline handling of common graphics software tools. Curvature can be edited
with control points, smoothness can be enforced and curve sections can be joined or split.
In this way, the diagram layout can be prepared. Furthermore, the layout pattern figure
is exchangeable between different network documents by an import/export functionality.
Network editing and layout pattern editing work in two different layers. When the

pattern is edited, it becomes a top level item whereas all components of the network
diagram are inaccessible and semi-transparently displayed in the background (cf. Fig.
5.1 b). Vice versa, the layout pattern is semi-transparent in the background in network
editing mode (Fig. 5.1 c). When the diagram is used for visualization, printout etc. the
layout pattern is invisible.
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Figure 5.1.: Layout pattern consisting of several pattern sections connected by branch
points (a). Pattern sections formed as a sequence of Bézier curves (b). Ar-
rangement of nodes and edges on a pattern section (c).

5.1. Using the Layout Pattern

This subsection gives an impression of the work flow of using the layout pattern. As
mentioned above, nodes and edges can be placed on the layout pattern. This is exemplified
in the image series in Fig. 5.2 on the next page where a chaotic network is being arranged
by a user-defined pattern section (see Fig. 5.2 a). Using the layout pattern is done by
positioning nodes either above a pattern section or a branch point. In Fig. 5.2 b) a
reaction node has been moved onto a position on a circular pattern section. When a node
v0 ∈ V is added to the layout pattern in this way, the layout pattern searches for paths
in the network that interconnect the added node v0 to its neighboring nodes v1 . . . vn,
n > 1. The path search requires human interaction because there can be many paths
between two nodes in a network. The challenges and requirements of this path search are
discussed below.
Since the pattern section in the example shown in Fig. 5.2 is a circle, a cyclic path must

be specified by the user to be arranged on the pattern. This path starts and ends with the
reaction node recently added to the layout pattern. After selecting the preferred path, its
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a) b)

c)

Figure 5.2.: Using the layout pattern to design a sequence of nodes and edges: (a) initial
situation, (b) starting the layout step by moving a node above the pattern,
(c) finished layout step after interactive search of matched node sequence.

node sequence is finally added to the pattern by arranging the nodes equidistantly and
reshaping the edges according to the form of the underlying pattern section as depicted
by Fig. 5.2 c).
Subsequently, further pattern paths can be inserted for the placement of the other node

sequences in the network. Thus, the layout pattern can be used to successively arrange
metabolic pathways in the diagram.

5.2. Challenges and Requirements

Human interaction is required to decide which network path is to be arranged between
two nodes v0, vn in the network positioned on the layout pattern. The user has to select
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the preferred path out of all possible network paths. A prior path search on the graph is
necessary in order to compute all possibilities. Here, the following conditions have to be
taken into account:

1. The directed metabolic network has to be regarded as an undirected graph because
the pattern sections are non-directional. This convention enables the user to arrange
sequences of opposed edges on the layout pattern.

2. A node may not occur twice in a network path except for it is a start as well as an
end node on a circular pattern section.

3. Only those nodes that are not already positioned on a pattern section may occur in
a network path.

The number of network paths between two nodes is O(n!) with n = |V | in the worst case
of a complete graph. Considering a maximal number k of edges connected to a node, the
complexity is diminished to O(nk) which nevertheless leads to two non-trivial problems:

1. Calculation of all possible paths with standard search algorithms like depth or
breadth search leads to computation times which are unacceptable for human inter-
action even for small networks.

2. Selecting the preferred path from an exhaustive list of all possible ones typically
requires distinguishing between a huge number of candidates. This is nearly impos-
sible even for experienced users.

Due to both of these reasons, fully automatic network analysis is unsuitable. Constraining
the analysis, for example, by a limited depth search certainly reduces the computation
time. However, a limited depth search leads to an incomplete set of result paths. Due
to these runtime and completeness problems, a novel concept of network path search
that assists the user in selecting the preferred path in an efficient and interactive way is
introduced here.

5.3. Semi-automatic Path Search
In order to deal with the mentioned runtime and completeness problem, the node path
search of the layout pattern is implemented in a semi-automatic manner. Here, the core
idea is a user-performed manual depth search which is software-supported by a pre-viewing
and pre-selecting search algorithm.

5.3.1. Human-Interactive Path Search

The human interaction interface is a tree view (see Fig. 5.3 on the facing page) representing
the graph in the form of a tree whose root element is the node v0 currently moved above
the layout pattern. All nodes connected to the node v0 are child elements of the node’s
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Figure 5.3.: Dialog window of the interactive node path search. In the scenario shown,
the user is asked to select a cyclic node path containing the node “tca1”.
Initially, the internal search algorithm has already found several valid node
paths. These paths are expanded and highlighted in the tree view. The arrow
symbols indicate the direction of the interconnecting edges.

tree element. The direction and type of an edge between two nodes is displayed by an
arrow symbol preceding the node name as shown in Fig. 5.3.
Initially, only the root element and its first nesting level elements are visible. The user

has to traverse the tree by expanding its elements until the target node vn occurs as a leaf
element in the tree. A leaf element containing vn represents a valid path which can be
added to the layout pattern. For a fast perception, the target leaf elements are highlighted
in green as pictured in Fig. 5.3. By selecting a leaf element, the corresponding node path
is designated for automatic arrangement on the layout pattern.

5.3.2. Software-Assisted Pre-Selection and Exclusion of Network Paths

When the tree is initialized and, likewise, every time the user expands a new tree element
a search algorithm traverses the graph. Triggered by expanding a tree element, the
algorithm is initialized with the currently expanded element. Thus, the software always
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pre-caches the network topology several nesting levels in advance of the user’s manual
search activity. Here, a depth-limited search algorithm is applied with an initial recursion
limit d = 15 whereas the limit is decreased in each recursion step depending on the
connectivity |E(vi)| of the currently traversed node vi:

dnext = dcurrent − |E(vi)| with vi ∈ V (5.1)

In particular, in the presence of highly connected nodes the context-dependent adjustment
of recursion depth avoids the impairment of the human-computer interaction.
The software search is conductive to the simplification and acceleration of the user

search. A valid network path ends with the target node vn. If vn is found during the
search procedure the complete branch path leading to the node is automatically expanded.
The user can inspect and optionally select the complete path immediately.
When a node occurs twice in a network path it is invalid. If the depth search algo-

rithm detects an invalid path the corresponding branch is eliminated from the tree. If
an eliminated branch was the only child element of its parent, the parent element is also
eliminated. This continues until a parent element has at least one child element left. If the
depth search does not lead to an assertion about the validity of a path, the corresponding
tree element remains unexpanded in the tree and may be expanded manually by the user
on demand.
Eliminating elements representing invalid paths prevents the user from traversing dead

branches and from selecting paths which contain loops. If no path exists between two
nodes in the network, the software search will successively traverse the complete graph
and eliminate all elements in the tree view. In this case, no further nodes and edges are
arranged on the layout pattern.
In case of short network paths between the nodes v0 and vn, the computer-performed

search can find the preferred path immediately during the initial traversing and offer it
for user selection. Furthermore, the user can successively trigger the complete analysis of
the network leading to the elimination of all invalid paths in the tree view.

5.3.3. Pathway-Oriented Layout
As mentioned in Section 3.2.2, metabolic pathways lead to a biologically motivated break
down of the main graph G into smaller subgraphs GP . The classification of reaction
sequences into metabolic pathways provides important meta-information about the net-
work structure. It can help to compute network layouts because these pathway subgraphs
consist usually, but not exclusively, of linear or circular node sequences surrounded by
short branches.
If both nodes v0 and vn added to the layout pattern are part of the same pathway

subgraph GP , the interactive node path search is optionally performed on GP in addition
to the search on the complete graph G. This, additionally, accelerates the interactive
path search process.
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Motif Stamps: Cloning Small Reaction
Patterns

Whereas the layout pattern concept helps to roughly arrange network diagrams, the
second novel technique of the semi-automatic graph layout introduced here is concerned
with a more detailed view: the so-called motif stamps are intended to speed up the
drawing of similar and multiply occurring compositions in a network diagram. The term
“motif stamp” is derived from similar concepts in pixel-oriented graphics software tools.

The concept of motif stamps aims at simplifying similar actions during the drawing
process of a metabolic network. A motif, in this sense, is a template periphery Πr (see
Section 3.2.2) surrounding a pseudo-reaction which can be appended (“stamped”) to other
reactions in the network diagram. If a motif is appended to a reaction, all metabolites
and edges are inserted according to the motif.

The concept of motif stamps is motivated by the observation that certain metabolic
reactions are similarly composed and connected metabolites and edges are frequently
arranged in a similar manner. Fig. 6.1 shows a subsection of a large network diagram.
The cofactors ATP and ADP are involved in many reactions all over the network as
highlighted in the figure. Many other similar cofactor pairs are frequently involved all
over a metabolic network like NADP and NADPH, FAD and FADH etc. (Becker et al.
2006). Other frequently occurring reaction partners are e.g. H2O, CO2 and ions. It is
a well-established practice to display cofactors by one node duplication per occurrence
with similar edge shapes (cf. Section 3.2.1). This leads to many similar actions the user
has to make during the drawing process, which includes duplicating and arranging nodes,
inserting edges, adapting the shape and visual properties of edges and so on.

Fig. 6.2 shows a schematic diagram of the motif stamp concept. Metabolites and edges
are arranged around a pseudo-reaction composing a motif stamp as shown in Fig. 6.2 a).
The pseudo-reaction is not part of the drawing but template for any reaction, the motif
is later appended to. By appending the motif to a reaction (Fig. 6.2 b) the metabolites
and edges are arranged around the reaction node as defined in the motif stamp (see Fig.
6.2 c).
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Figure 6.1.: Multiple occurring reaction partners ADP, ATP and H.

6.1. Creating Motif Stamps

The motif can be designed according to individual aesthetic aspects. A motif stamp
defines the connected metabolites of a reaction, their position relative to the reaction
node and the shape of the connecting edges. Furthermore, visual properties like color,
bounds or text font of the nodes and edges are also inherent in a motif stamp.
Motif stamps can basically be created in two ways:

1. The motif can be drawn step by step. Here, metabolites and edges are created
and connected to the pseudo-reaction node. Any number of nodes can be inserted
but there should be at least one edge between every node and the pseudo-reaction.
Basically, not only cofactor edges can be part of the motif stamp but also normal
flux edges and even effector edges.
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Figure 6.2.: Schematic diagram of the use of motif stamps in a drawing process.

2. The composition of a motif can be captured from the periphery of an existing
reaction in the network diagram. After selecting a reaction as a template for a new
motif, the user has to specify which connected metabolites should be part of the
motif stamp and which are dispensable components.

After naming the motif stamp, the definition process is finished. In this way, multiple
motif stamps can be defined containing certain constellations and graphical appearances of
reaction partners. Furthermore, motif stamps are exchangeable between different network
documents by an import functionality.

6.2. Appending Motifs to Reactions
Motifs can be appended in three steps: selecting a preferred motif stamp, selecting a
reaction for appending the motif and finally adjust the motif’s orientation. A motif stamp
can basically be rotated, scaled and inverted in order to adjust it to the environment of
the reaction it is appended to. These transformations are illustrated in Fig. 6.3 showing
the semi-transparent silhouette of the appended motif around a target reaction node. The
user can define the angle for the placement of the motif (Fig. 6.3 a). Fig. 6.3 b) shows
a scaled version of the motif stamp. In Fig. 6.3 c) the motif is mirrored and aligned
with the reaction’s connections. After confirming the alignment angle, the motif is finally
appended to the selected reaction node (Fig. 6.3 d).
In order to aid aesthetics, the software optionally helps to align the motif stamp in a

smooth manner with respect to the already existing periphery of the reaction. Therefore,
an axis is computed for the appended reaction node. The axis is the average of the
tangents of all edges at the docking position of a reaction. Likewise, motif stamps have
an axis which is indicated by a hairline (see Fig. 6.3 a to c). During the motif rotation
by the mouse, the user can choose to automatically align the motif’s axis to the axis of
the reaction node (cf. Fig. 6.3 c).
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a) b)

c) d)

Figure 6.3.: Different transformations available when a motif stamp is appended on a
reaction: (a) rotation, (b) scaling, (c) automatic “snapping” to a smooth
arrangement, (d) final result.

When a motif is appended to a reaction, three different cases can occur and have to be
taken into account (cf. Fig. 6.4 on the next page):

a) The target reaction is not yet connected to a metabolite M defined in the motif
stamp — In this case, the metabolite M is inserted and connected according to the
motif stamp.

b) The target reaction is connected to the metabolite M and the metabolite node has
further connections — Here, a further duplicate of the metaboliteM is inserted. The
connecting edge is switched to the new copy and arranged as defined in the motif
stamp. If the metabolite node does not yet have any layout information (see Section
3.6) the node and its edge is automatically inserted into the network diagram.

c) The target reaction is already connected to the metabolite M, which has no further
connections — Only the arrangement of the node and edge has to be adapted. This
also holds if the node has no layout information.

These three cases apply on every single metabolite connection defined in a motif stamp.
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Figure 6.4.: The motif stamp defines the connection between a metabolite M and a re-
action including curve shape, size and other visual properties. When a motif
stamp (dashed box) is appended to a reaction, three cases arise which dif-
fer with respect to whether and in what way M is already connected to the
appended reaction: (a) not connected, (b) connected amongst other connec-
tions, (c) solely connected.
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The motif stamp concept allows multiple motifs to be successively appended to a re-
action node. Hence, a more complex constitution can be assembled from several motif
stamps. The reaction periphery composed in this way can furthermore be a template for
a new, larger motif stamp. Summarizing, it has become clear that motif stamps can be
used to initialize new connections as well as to arrange existing connections between one
or more metabolites and a set of reactions in the diagram. The usage of motif stamps can
accelerate the drawing process considerably because metabolites do not have to be cloned
manually and edges do not have to be drawn and reshaped every time a certain repeating
configuration is needed. The motif stamps are a beneficial utility when multiply occurring
cofactor pairs, side metabolites or effectors have to be drawn. The semi-automatic layout
techniques introduced here are evaluated in a case study presented in Appendix B.
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Exemplary Work Flow
This section describes a work flow of drawing a biochemical network diagram and, hereby,
shows in which way the techniques of semi-automatic layout introduced above accelerate
the drawing process. In this example, a metabolic network is given in the form of a model
description file (e.g. in SBML Hucka et al. 2003) without layout information which is to
be drawn with the network drawing software Omix.
After importing the network, all reactions and metabolites appear in the component

view from where they are added to the diagram (cf. Chapter 3.6). An important precon-
dition for the semi-automatic network drawing solutions as presented here is knowledge
of the semantics of the network topology on the user side.

7.1. Metabolic Pathways
Before the network diagram is drawn it is recommended that reactions should be grouped
into metabolic pathways (cf. Section 5.3.3). The Systems Biology Markup Language
(SBML) format, for instance, does not directly support this kind of information; hence,
it is not available after model import by default.
The user can add pathways to the network model and assign reactions to each of them

(cf. Chapter 3.2.2). This optional task leads to the decomposition of the complex graph
into smaller, less complex subgraphs.

7.2. Using the Layout Pattern
The arrangement of nodes and edges in the diagram can now be performed by applying
the layout pattern concept. It is recommended to start with one of the central parts in
the network. This is a common practice in drawing metabolic networks. In the sketched
example work flow, the citric acid cycle (TCA) is chosen as a prominent example.
The next step is to draw a circular pattern section in the pattern editor (cf. Fig. 5.1

a), which will later carry the nodes of the TCA. After dragging a metabolite or reaction
node from the component view and dropping it onto the circular pattern section the
user is asked to select the network path representing the TCA in the network. This
can be performed fast because the semi-automatic path search uses the above-mentioned
classification into pathways as structural information about the network and, hence, offers
the correct network path immediately.
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After arranging the first pathway, the pattern can be enlarged by further sections in
order to later arrange directly connected pathways. In this way, a structural backbone of
the network diagram is drawn step by step.

7.3. Using Motif Stamps
After creating the structural backbone of the diagram motif stamps are used to arrange
cofactors and connecting edges in the environment of reactions already inserted. For this
purpose, several motif stamps can be drawn or imported from other network files. As an
example, the metabolite CO2 may be a product of several dozen reactions of the imported
network. When the CO2 node is inserted in the diagram all edges appear automatically,
connecting the new node to the reactions in which CO2 is involved. This results in many
edge crossings.
Hence, a new motif stamp is created to duplicate the CO2 node. A metabolite node CO2

is inserted into the motif stamp and connected to the pseudo-reaction. The connecting
edge can be reshaped as preferred. After creation, the motif stamp can be appended
to all reactions of the network, particularly to all reactions which are already connected
to CO2 (cf. Section 6.2). Every CO2 connection is visually designed according to the
arrangement in the motif stamp. The isomorph design of similar parts of the network
leads to an aesthetically pleasing diagram. In this way, all cofactors, and other secondary
reactants can be inserted in the network diagram.

7.4. Completing the Drawing Process
Finally, all remaining network components which have not yet been inserted by the layout
pattern or a motif stamp indicated in red in the component view are inserted manually.
After finishing the arrangement of all imported network components, the visual style of
the network can be adapted to individual preferences and requirements. The resulting
designed metabolic network diagram can subsequently be used for a wide variety of visu-
alization purposes. For this, Omix is equipped with extensive data visualization features
as introduced in Part III.
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Visualization
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Chapter 8.

Introduction to Customizable Visualization

“The purpose of information visualization is to amplify
cognitive performance, not just to create interesting pictures.
Information visualizations should do for the mind
what automobiles do for the feet.” (Card 2007)

8.1. State-of-the-Art in Multi-Omics Data Visualization
As introduced in Chapter 1 information visualization is an important tool for the inter-
pretation of multi-omics data in systems biology. A wide variety of large-scale data arises
incessantly from high-throughput experimental studies and computer simulations. In
most cases, the data is directly related to nodes and edges of the metabolic network. This
makes the visual representation of data in network diagrams the visualization technique
of choice. By this network-integrated visualization, an overall view of data correspond-
ing to the components of a network can be achieved and deeper insights into complex
interrelations between the components is enforced. Multiple tools have been developed
in recent years implementing a network-integrated data visualization approach. Section
1.9 has shown, that these visualization tools come up with several restrictions especially
regarding adaptability. All known tools rely on one single or only few, hard-coded and
mostly specialized visualization method. In the following, two visualization approaches
are discussed that represent examples for very low and a very high customizability.
ProMeTra (Neuweger et al. 2009) is a web service that uses static network diagrams

given in SVG file format to visualize metabolome, transcriptome and/or proteome data.
The manner data is visualized in ProMeTra is hardly customizable and requires specific
input formats. The user must submit their data in a specific arrangement and labeling
as spread sheet file (Excel or CSV). Likewise, the drawing of the network must be given
as SVG file. This file can be created in a normal graphics program but must specifically
be prepared to be usable by the web service. The data is visualized by color-coding the
network nodes. The user has the choice between eight different color codes (e.g. green
to red, white to blue etc.) and fourteen value ranges (e.g. −1.0 to 1.0, 0.0 to 100.0
etc.). Time-dependent data is displayed by subdividing the nodes into different parts
each color-coded according the represented time point.
A very customizable example for omics data visualization is Cytoscape (Shannon et al.

2003). Here, the user can add custom attributes to the nodes and edges. For example,
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an attribute “concentration” can be defined for all nodes. The user must specify the data
type of the new attribute. Four data types are possible: text, boolean values as well
as integer and real numbers. After defining, these attributes can be filled with concrete
values by manual editing or by loading data from spread sheet files. The visualization
of data is performed in a side window called “VizMapper™”. Here, the user can bind
visual properties of nodes and edges to custom attributes. By this, multi-omics data is
mapped to the appearance of the network diagram. The data mapping configurations can
be exported as a separate file and is hereby exchangeable between different documents.
Cytoscape realizes a very flexible visualization approach that is adaptable do various

application fields. The visual mapping of data is completely performed by the user and
can be designed toward individual requirements and preferences. All known approaches
to visualizing data in metabolic networks can be classified between the specificity of
ProMeTra and the flexibility of Cytoscape. Nevertheless, the visual mapping method of
Cytoscape has restrictions that motivate a new approach. Cytoscape does not support
the animated visualization of time-dependent omics data. Furthermore, data can only be
represented by the node and edge symbols themselves. Visualizations can easily become
confusing if too many visual properties are used for data mapping (Saraiya et al. 2005).
Hence, only a few types of data can be visualized simultaneously. There is no way to
annotate the nodes and edges with further information carriers like labels or images.
“Life sciences research is, by nature, borderline chaotic” (Killcoyne and Boyle 2009)

meaning that: “Research mechanisms constantly change; researchers are continually intro-
ducing new technologies and refining older technologies.” (ibid.) This highly-fluctuating
application fields for visualization software requires high adaptability and customizablil-
ity. The software Omix must meet these requirements in the underlying visualization
approach.

8.2. Network-Integrated Visualization of Data

Omics-data can basically be visualized in two different ways inside a network diagram.
The first way is by annotating the network components with concrete numerical values
from the dataset as shown in Fig. 8.1 a). This method provides an exact, quantitative
representation of data in the network diagram. In this way, the human observer can
inspect concrete quantities but can hardly get a comprehensive overview of the dataset in
combination with the complete diagram. Only two or three types of information should
be visualized simultaneously in this manner, otherwise, the diagram would be overloaded
which hampers the value of a visualization. Hence, a qualitative visualization of data in
a diagram is more appropriate in many situations.
Qualitative data visualization can be performed by mapping the data to visual prop-

erties of the network components as exemplified in Fig. 8.1 b) to f). These appearance
properties can be, for instance, the color fill level of network nodes (see Fig. 8.1 b) or the
line thickness of edges (Fig. 8.1 c). Another method is to use color interpolation in order
to indicate lower and higher numerical values (cf. Fig. 8.1 d). Categorical information

68



8.3. Basic Concept of the Visualization Approach

Figure 8.1.: Visualizing data in networks can be done by annotating nodes and edges (a)
or by mapping the data to the visual properties of nodes and edges: (b) fill
level size, (c) line thickness, (d) color, (e) node shape, (f) edge style.

such as states and roles can furthermore be visualized by using different node shapes or
edge styles as shown in Fig. 8.1 e) and f). Of course the here mentioned set of visual prop-
erties suitable to represent data is not exhaustive. A combination of both visualization
techniques is the annotation of network components with graphical items that themselves
visualize information by their visual properties.

8.3. Basic Concept of the Visualization Approach

The core idea of the visualization approach introduced in this work emerged from the
observation of typical user’s actions during a manual preparation of a data visualization
as it can be done with a graphics design software. For demonstration purpose, this
situation is sketched here.

Given: A dataset of metabolite concentrations available in a spreadsheet file and a
network diagram showing all metabolic reactions of interest.

Aim: The concentration data is to be indicated by the fill level of the metabolite
nodes.

Actions: The user selects a metabolite node in the diagram, searches for the correspond-
ing value in the table and changes the fill level of the selected node. This is
done until all metabolites in the diagram have been changed.
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Considered from the view point of computer science, the user’s actions sketched are
an algorithm that can be automated. Listing 8.1 shows a pseudo program realizing the
algorithm. Here, a value is read from the spreadsheet table identifiable by the metabolite
name and assigned to the fill level size of the corresponding metabolite. This step is done
for all metabolites in the diagram.

Listing 8.1: Pseudo code
for each m in metabolites
do

m.fillsize :=read_value_from_table(m.name)
end

This small example illustrates the core idea for a highly-customizable visualization
method, i.e. to allow the user automating own drawing activities by programming.
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Script-based Visualization

Customizability is very important, because biotechnological research rapidly develops
new visualization demands.∗ The novel approach of network-integrated data visualization
introduced here is to make network diagrams programmable in order to allow custom ways
of mapping data to the appearance of the network components. Programming a network
takes place in a particular scripting language that was developed for the visualization tool
Omix called Omix Visualization Language (OVL). The user can easily write small scripts
in OVL that manage the visualization of omics-data in network diagrams.
Fig. 9.1 shows the principle of OVL programming. The scripting language allows, for

instance, defining a button in the main window of the tool. This button is connected to
a function. Every time the button is pressed the function is executed. Such a function,
for example, might load a time series of data that is mapped to the appearance of nodes
and edges as illustrated in the pseudo code in Listing 8.1. The visualization of time-
dependent data furthermore can be controlled by a media-player-like control. All these
features can be programmed individually by the user. OVL offers many degrees of freedom
to visualize data on biochemical networks by giving access to the visual properties of
network components listed in Chapter 3.3.

Figure 9.1.: Schematic diagram of an example for OVL programming

∗Excerpts of this Chapter have been published in (Droste et al. 2009a; 2010b).
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In OVL visualization of omics-data can be realized in various ways. For the mapping of
data to the appearance of network components OVL allows to change all visual properties
of nodes and edges in the network diagram (cf. Fig. 3.6 on page 34). OVL comes up with an
extensive library for data visualization containing methods for loading data from various
sources and types, searching in datasets and scaling of data (refer Droste 2008b; 2010).
For the visualization of data by annotating network components, OVL allows to define

additional information carriers in the diagram. Here, the capabilities reach from simple
text annotations to comprehensive graphics items. Furthermore, interactive components
can be defined in a simplified manner. In this way, for instance, interaction with single
network components or the animation of time-dependent datasets can be realized. With
OVL, the user can extend network components with further custom properties and, by
this, augment a network with arbitrary information.

9.1. The Omix Visualization Language

The Omix Visualization Language (OVL) is a novel object-oriented scripting language
derived from the programming language Java (Gosling et al. 2005, Oracle Corporation
2011). The OVL execution engine realized by Omix is based upon the ANTLR parser
technology (Parr and Quong 1995). The main reason for creating a new scripting language
for visualization is to realize a highly customizable visualization approach combined with
the power of the Java programming language and the abundance of the Java runtime
library. A lightweight introduction into visualization with OVL is given in the Omix User
Manual (Droste 2008a). An expert reading is the OVL Technical Manual (Droste 2008b)
describing the visualization abilities of OVL in detail and giving an exhaustive definition
of the Omix Visualization Language. This section introduces the basic concepts of OVL
including special syntactical constructs to simplify the programming of interaction and
visualization. Some technical details shall demonstrate the elaborateness of the OVL
scripting language.

9.1.1. Extending Network Components

As introduced in Chapter 3.2, network diagrams consist of clearly demarcated, biologically
meaningful network symbols such as metabolites and reactions, flux edges, effector edges,
pathways and compartments. Each of these symbol types is defined with a set of properties
like color, stroke width, arrow size, text font etc. In OVL this default definition of the
network symbols can be extended. Therefore, the language introduces the keyword extend.
In Java the keyword extends is used for subtyping, i.e. deriving a class from another

superclass. As a related concept, extend in OVL means to augment the definition of a
class with further variables and methods. Listing 9.1 shows the principle setup of an
extension block in OVL.

72



9.1. The Omix Visualization Language

Listing 9.1: Type extension block in OVL.
1 extend «Type Name» {
2 // contents ...
3 }

All network symbol types exist as OVL type definition, for instance, Reaction,
Metabolite, FluxEdge, Compartment and others. In particular, the network diagram it-
self is also defined by an own type: MetabolicNetwork. Listing 9.2 shows an extension
of the Reaction type with an additional attribute database_ID and some functionality
implemented in the method connectDB(). After programming a network with the OVL
script of Listing 9.2 all reactions are augmented with a further property. The property
can be inspected and edited as other, predefined properties of the network items, e.g.
the reaction name. Without defining any kind of interactivity with the network, as later
introduced, the method connectDB() remains hidden and inaccessible for the user.

Listing 9.2: Extension of the Reaction type.
1 extend Reaction {
2 String database_ID ;
3
4 void connectDB (){
5 // method realization ...
6 }
7 }

The network symbol types have several methods allowing access to the network struc-
ture. For example, the type MetabolicNetwork contains methods like
metabolites(), reactions(), compartments() and others returning lists of the correspond-
ing network components in the diagram. The Metabolite and Reaction types allow access
to their incoming and outgoing flux edges via inEdges() and outEdges() and the FluxEdge
type has methods src() and dst() returning the source and destination node of an edge.
By this, functionality can be realized as an extension to MetabolicNetwork that changes
visual properties all over the network.

9.1.2. Simplified Access

The basic design target of OVL is to provide easy and programmable access to the visual
properties of the network components. In OVL, the appearance of network components
in the diagram can be changed by assignments. By this, many internal operations are
immensely simplified. For example, in Listing 9.3 the width of an edge line is set to a new
value. This simple assignment in OVL wraps an amount of polynomial computations and
an update of the drawing area that is done when the line is executed and the edge shape
is changed.
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Listing 9.3: Assignment: Changing the line width of an edge.
1 lineWidth = 5;

All visual properties are available in OVL as variables of the corresponding network
component type. They can be changed by assigning new values to the variable. In
contrast to Java, an assignment in OVL causes notification of change. In a normal Java
program, an object cannot recognize and react on changes of its member variables that are
performed from outside the object code. Therefore, variables are usually declared private
and changes are only allowed by using a mutator (“setter”) method. This concept is called
encapsulation (Scott 2009). Inside of the mutator method, the program can realize any
kind of response to the changed value. In OVL, member variables are an abstraction of
the underlying complex programming structures including the graphical effects of variable
changes. Assignments are much easier to read and to understand than the Java-typical
“setter” methods.

9.1.3. Data Types in OVL

Similar to Java, OVL is type sensitive. This means that methods, parameters and vari-
ables are declared with a data type, and the actual value returned by a method, stored
in a variable and submitted as parameter, respectively, must correspond to the declared
data type. OVL has exactly the same type system as Java including primitive types like
int and double, array types, object types and the type void for methods.
All classes available in Java can be used in OVL as object types. Furthermore, own

classes can be defined in OVL code. OVL supports inheritance as well as information
hiding. Unlike normal hard-coded Java classes, OVL classes can be created and modified
dynamically at run time. Furthermore, the visualization tool is able to inspect objects of
OVL classes, display all attributes, and even respond to attribute changes. An example
for OVL classes is given in Section 9.3.2.

9.1.4. Interactive Components

OVL allows the definition of interactive components in the main window. These so-
called triggers can be used to access a certain functionality implemented in the OVL
code, for instance, starting a visualization or controlling an animation. OVL provides
different trigger types with different properties, for example, stateless push buttons, check
buttons with a boolean state (checked/unchecked), sliders and spin boxes with a number
value, and players as media-control-like triggers. Triggers are always associated with a
component of the network diagram. Therefore, the definition of triggers takes place inside
of extension blocks. By this, the network components can be equipped with interactive
components. If a trigger is defined for the MetabolicNetwork the interactive component
appears on a separate toolbar and in the main window (see Fig. 9.2 a). By equipping
other network symbol types with triggers, the interactive elements appear as accessory of
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a)

b)

Figure 9.2.: Triggers as additives of the network: (a) three triggers (check button, player
and spin box) on a toolbar, (b) push button as equipment of metabolite
symbols in the diagram.

the corresponding graphical items in the diagram as depicted in Fig. 9.2 b). In this way,
interaction with the single network components can be realized.

Trigger Syntax

For the definition of triggers a special syntax has been developed which is simple and
avoids programming errors. A trigger definition starts with the trigger type and a variable
name. The name is followed by a colon and a method signature:

«Trigger Type»«Variable Name»:«Method Signature»;

OVL provides eight different trigger types (for a detailed description refer Droste 2008b).
The method signature consists of a method name and the types of the method parameters
in parentheses whereas the signature must represent an existing method of the item ex-
tension. The colon operator connects the interactive component with the method. Every
time the trigger is activated by the user the connected method is invoked. Since triggers
have a state the method parameters must comply with the kind of trigger state.
The relation between the trigger states and the method parameters is exemplified in

Listing 9.4. For instance, a PushButton is stateless and consequently connected to a
parameterless method (line 1). A CheckedButton can be connected to a method with
a boolean parameter (line 2). The checked state is correspondingly submitted at user
interaction. A SpinBox is an editor component for integer numbers. Hence, the trigger
can be connected to a method with an int parameter (line 3).

Listing 9.4: Exemplary trigger definitions
1 PushButton pushButton : pushButtonPressed ();
2 CheckButton checkButton : checkedChanged ( boolean );
3 SpinBox spinBox : valueChanged (int);
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Trigger Properties

The single trigger types contain properties concerning their visual and functional at-
tributes analogue to the network item types. For instance, the SpinBox has a minimum and
maximum variable defining the value range of the integer number editor. These property
variables can be accessed in OVL and simply changed by assignments as introduced in
Section 9.1.2. Beside changing the trigger properties from inside a method, OVL allows to
predefine the property values during the trigger definition. Therefore, the trigger variable
name can be followed by a number of parameter assignments enclosed in parentheses:

«Trigger Type»«Variable Name»( «Assignments» ) :«Method Signature»;

This is exemplified in Listing 9.5 as a modification of Listing 9.4.

Listing 9.5: Exemplary trigger definitions with initial property assignments
1 PushButton pushButton ( enabled =false) : pushButtonPressed ();
2 CheckButton checkButton ( checked =true) : checkedChanged ( boolean );
3 SpinBox spinBox ( minimum =0, maximum =100) : valueChanged (int);

Design Motivation

The special syntax of triggers is favorable due to four reasons:

1. Simplification – Programming of interactive components in normal Java devel-
opment is much more complicated. Listing 9.6 shows an example implementa-
tion of Listing 9.5 line 1 with Java. OVL is easier to read and to understand.

Listing 9.6: Implementation of user interaction in Java
1 JButton pushButton = new JButton (" pushButton ");
2 pushButton . setEnabled (false);
3 pushButton . addActionListener (new ActionListener (){
4 void actionPerformed ( ActionEvent e){
5 pushButtonPressed ();
6 }
7 });

2. Restrictions of Java – In Java there is no way to create a compile time constant
reference of a method. A reference to a method can only be created by using the
Java Reflection (Forman et al. 2004). Here, the Java compiler is not able to check
if the referenced method actually exists. Hence, invalid references cause exceptions
during the program execution.
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Listing 9.7: Using the Java Reflection to reference a method.
1 try{
2 Class <?> myClass = this. getClass ();
3 Method checkedChanged = myClass . getMethod (
4 " checkedChanged ", boolean .class);
5 // when method does not exist exception is thrown
6 }catch( NoSuchMethodException e){
7 e. printStackTrace ();
8 }

OVL introduces a new syntactical construct for the compile time sensitive referenc-
ing of methods in the program code, i.e. the compiler checks if the method signature
of the trigger definition references an existing method in the code.

3. Definition equals construction – The definition of a trigger variable causes the con-
struction of the trigger. Constructor calls like in Java are not necessary in combi-
nation with triggers.

4. Definite composition – A trigger can never be uncoupled from its owner or deleted. It
is not allowed to change a trigger variable. By this, a trigger belongs unambiguously
to the network component it has been defined in. The situation would be not clear
if normal Java-like constructor calls and assignments was allowed in combination
with triggers as sketched in Listing 9.8.

Listing 9.8: Example scenario of trigger construction and assignment.
1 CheckButton button = new CheckButton ();
2 for( Reaction reaction : reactions ()){
3 reaction . checkedButton = button ;
4 }
5 // who actually owns the button ?

Example OVL Script

Listing 9.9 implements a simple example as extension to the MetabolicNetwork type. Here,
a button is defined that invokes a method when pressed by the user. Inside of the method
the color fill level of all metabolite symbols in the network is changed to a random value
as seen in Fig. 9.3.
The impact of the simple code example in Listing 9.9 is that a button occurs on the

toolbar of the visualization tool. When this button is pressed, the described changes in
the diagram are performed. In this example, the assignment of a random value was chosen
for the sake of brevity. Of course, methods in OVL can implement data computation as
well as file and database in- and output as source for omics data.
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Figure 9.3.: Result of the OVL example in Listing 9.3.

Listing 9.9: OVL code example: Changing the color fill level after button click.
1 extend MetabolicNetwork {
2 PushButton change : changeLevels ();
3
4 void changeLevels () {
5 for( Metabolite m : metabolites ()){
6 m. fillLevel = Math. random ();
7 }
8 }
9 }

9.1.5. Additional Information Carriers
OVL allows to equip the network diagram with additional information carriers. These
can be textual annotations, images and even comprehensive graphical items. In OVL
these information carriers are called data annotations. Both concepts, data annotations
and triggers compose the group of accessories. Accessories are additives to the network
diagram and its nodes and edges.
Data annotations are defined with the same syntax as used for triggers. In contrast to

triggers, data annotations are not interactive and consequently cannot invoke methods.
Hence, the method signature is simply exchanged by the keyword void:

«Data Annotation Type»«Variable Name»( «Assignments» ) : void;

OVL provides seven different data annotation types (cf. Droste 2008b). Fig. 9.4 a) shows
a metabolite equipped with an ImageField and a TextField annotation. The data an-
notation type SubNode has the same set of visual properties as reaction and metabolite
symbols and, thus, can be used to visual data mapping (cf. Fig. 9.4 b).
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a) b)

Figure 9.4.: Examples for data annotations as additives of metabolites: (a) ImageField
and TextField, (b) arrays of data annotations (SubNode)

9.1.6. Accessory Arrays
Beside extending network components with single triggers and data annotations, OVL
allows to specify arrays of accessories with flexible size. An example is given in Fig. 9.4
b). The particular accessory type is called Array. The type of the accessories stored in the
array is specified by a generic type parameter, for instance, line 1 of Listing 9.10 defines
an array of text annotations. An accessory array definition can also define properties
for the inner accessories. These properties must be separated from the array properties
by a semicolon (see line 2). It is also possible to define multiply nested arrays (line 3).
Furthermore, it is possible to define arrays of triggers. In this case, the connected method
must contain a leading int parameter as shown in line 4 of Listing 9.10. When the method
is called by trigger activity, the int parameter contains the index of the calling trigger.

Listing 9.10: Arrays of data annotations
1 Array <TextField > textFields (size =5) : void;
2 Array <SubNode > subNodes (size =2; width =20, height =30) : void;
3 Array <Array < IntegerField >> arrays : void;
4 Array < CheckButton > checkButtons : checkedChanged (int , boolean );

9.1.7. Meta-Information
Variables in OVL scripts are not only visualized in the network but are also visible and ed-
itable in the property editor sidebar and in other window components of the visualization
tool. The presentation of these variables in window components and likewise the appear-
ance of triggers can be supplemented with meta-information by using the code annotation
concept of Java. In Java, variables, methods and other programming constructs can be
annotated by special annotation expressions consisting of an ‘@’ character, a type name
and optional parameters. This concept is adopted in OVL. Particularly, OVL provides a
set of annotation types that take effect on the appearance of variables and accessories.
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The code example in Listing 9.11 provides meta-information for a variable and a trigger.
The concentration variable in line 1 is supplemented with a physical unit (mole) in
order to be correctly interpreted. Here, the annotation type Unit causes suffixing of the
displayed value with the unit symbol wherever it is displayed in windows or in the diagram.
Line 2 changes the label of the push button changeLabels. By default, triggers are labeled
with the name of the trigger variable. However, variable names are restricted to a limited
character set. Hence, the Label annotation type is useful for overriding variable names
with more general labels. Refer the OVL Technical Manual (Droste 2008b) for further
annotation types provided by OVL.

Listing 9.11: Semantic code annotation in OVL
1 @Unit ("mol") double concentration ;
2 @Label (" Change Levels ")
3 PushButton changeLabels : changeLevels ();

9.2. OVL Development

OVL scripts can be developed as internal part of a network document or as standalone
text file. An OVL program can only be applied as embedded part of a network document.
Standalone OVL files cannot be executed, but, can be loaded into network documents.
The import/export functionality of the OVL editor allows that OVL solutions can quickly
be exchanged between different network documents.
The development of OVL scripts is supported by a complete integrated development

environment (IDE) for OVL realized as part of the visualization tool. The IDE contains
a syntax-highlighting editor and a parser that returns comprehensible messages in case of
programming errors. An overview table displays the structure of the OVL program for a
fast navigation in the code. A search engine helps to find and inspect available resources
for the OVL development. Fig. 9.5 on the next page shows the main window of the IDE
for OVL development.
An outstanding feature of the IDE is a debugger for line by line execution of OVL code

and for the inspection and manipulation of local variables during the program execution.
The debugger allows to verify the program and helps to understand OVL programming
by observation of the internal states caused by the program code. In Fig. 9.5 on the
facing page the debugger currently breaks at a certain line of the OVL code. The table
on the right side lists all local variables. Besides, object types can be expanded in order
to inspect the values of their internal variables. The variables can be edited in order to
manipulate the program flow.
OVL programs can use the complete Java runtime library that provides useful features

like data collections, file management, XML parsing etc. Moreover, OVL programming is
supported by a special OVL library containing classes and interface definitions that repre-
sent network components, interaction components, properties and diverse utilities for the
network-integrated data visualization. For instance, the OVL library offers several Java
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Figure 9.5.: Screen shot of the OVL development environment. The center shows the
syntax-highlighting editor. The left side windows contain information about
the program structure. The right side of the window shows the local variables
of the program during a debug operation.

classes in a simple programming interface that are specialized for extracting information
from CSV files. The reference documentation of the OVL library is publicly available
(Droste 2010).
Advanced developers can include any Java and even native libraries (via Java Native

Interface, JNI) in OVL scripts. Hence, custom Java classes can be developed implementing
arbitrary functionality as supplement to the OVL visualization solution. In particular,
the OVL execution environment allows accessing OVL code from inside Java code. Thus,
a user written Java class can, for instance, read OVL fields, change the appearance and
states of network components and accessories and even call OVL methods.

9.3. Visualization on Demand

Network-integrated visualization faces the challenge that each individual piece of informa-
tion is related to a specific node or edge of the network, and that complex interactions be-
tween hundreds and thousands of different compounds must be assembled and represented
even in mid-scale network models. As introduced in Chapter 8.2, data can be visualized in
association with a biochemical network by annotating the network components with data.
However, annotation of nodes with more than a few pieces of information causes informa-
tion overload, particularly in large networks. Moreover, inherent layout problems occur
when annotations are to be placed in the neighborhood of related network components
without collisions with other nodes, edges or annotations. Another suggested technique
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was to map the data to the visual appearance of network components. Unfortunately, this
concept is inherently limited by the human ability to capture several information types
from one diagram or animation.
This section addresses the visualization of manifold and extensive information in associ-

ation with nodes and edges of large biochemical networks, especially when the information
pieces are hierarchically organized with variable depth. The simultaneous visualization of
manifold and extensive information over entire diagrams of realistically sized biochemical
networks is practically impossible. Therefore, a novel Visualization on Demand approach
has been developed that solves this dilemma with interactive diagrams.

9.3.1. Interactive Visualization of Custom Properties

The cornerstone of the Visualization on Demand approach is the ability to extend the
network components with further variables of arbitrary data types (cf. Section 9.1.1) and
to define own class types in OVL as introduced in Section 9.1.3. OVL classes can define
member variables of complex data types that themselves have own member variables of
various types. This enables the user to compose hierarchies of information in any manner
and depth.
Visualization on Demand (VoD) is an optional network viewing mode in the visualiza-

tion tool. The VoD mode facilitates user controlled displaying of supplementary informa-
tion that is related to metabolite and reaction nodes, and to their interconnecting edges
in arbitrary levels of detail. In VoD mode, simple mouse hovering over network elements
activates displaying of all in OVL defined variables of the respective node or edge as illus-
trated in Fig. 9.6 on the next page. The user can open further levels of detail by hovering
over the respective displayed variable. Layout problems and information-overload are ef-
fectively avoided by showing properties of only one network component and zooming in
the details of only one property at a time.
Global representation of the network is hardly affected by the details of single compo-

nents, because user perception is temporarily directed to individual pieces of information
in their local context. The nodes and edges of the biochemical network are globally ar-
ranged in a macro layout, whereas the hierarchically organized details are locally arranged
in a dynamic tree-structured micro layout at the corresponding network components.
When the mouse hovers over a node or edge, the associated properties are itemized to the
left and right of this network component. In addition, the individual items are connected
with the corresponding node or edge by a dashed line.
The VoD approach is similar to a contextual menu. Context menus are a standard

interface component in nearly all desktop applications providing context-dependent func-
tionality in arbitrarily nested menu entries. In oposition to standard context menus, the
appearing VoD items do not represent actions but information. They are an integrated
component of the graphics scene. Thus, VoD can be captured by the image and movie
export feature of Omix. A similar approach is realized in CellPublisher (Flórez et al.
2010) by using the Google Maps JavaScript API (Google Inc. 2011) to interactively vi-
sualize background information on a network map. The strength of the here presented
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VoD feature is, the manner information is composed and organized in the network can
completely be programmed by the user.

9.3.2. Custom Data Types

Listing 9.12 shows how to use OVL for equipping biochemical networks with various
hierarchically organized information. In lines 1 to 3, an extension of Reaction is defined
containing a variable that stores information about the reaction’s enzyme. The class
Enzyme in lines 4 to 12 encapsulates not only the enzyme name, but also a structural
image of the molecule shape, a MathML formula of the enzyme kinetics, the atomic mass,
the Enzyme Commission (EC) number, the enzyme ID in a reference database, and a list
of subunits that are stored in an array.

Listing 9.12: Implementation of a custom data type.
1 extend Reaction {
2 Enzyme enzyme ;
3 }
4
5 class Enzyme {
6 String name;
7 Image image;
8 MML kinetics ; // as MathML formula
9 double mass;

10 String ecNumber ;
11 String databaseID ;
12 SubUnit [] subUnits ;
13 }

The variable types String (line 6 of Listing 9.12), Image (7) and MML (8) used for defining
the example Enzyme class are native Java classes, and provided by the Java runtime library
and other sources. The data type for describing the enzyme subunits (line 11) is an OVL
class that combines information on the activity of the subunit with information on the
expressing gene that could be a further custom data type. Listing 9.13 shows a possible
implementation of SubUnit.

Listing 9.13: Implementation of a custom data type.
14 class SubUnit {
15 boolean catalyticActive ;
16 Gene expressingGene ;
17 // ... further properties
18 }

The example illustrates in what manner the script-based visualization approach enables
the user in defining the organization of large data amounts in hierarchies, relations and
aggregations along the nodes and edges of biochemical networks. Individual networks
components can be augmented with many different information types that evolve from or
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refer to experiments, simulations and databases. Depending on the nature of the supple-
mentary information the definition of composed OVL class types can help to subclassify
complex data into different levels of detail.

9.3.3. Information Management

Custom properties of network objects are initially empty or set to default values. In order
to insert data into network diagrams the visualization tool offers two ways of loading prop-
erty variables with information: First, an OVL script can be programmed that imports
data from files or databases and automatically assigns this data to properties of network
components (cf. Section 9.2). Second, data can be inserted into networks by manually
changing the properties of all network components in the property editor (cf. Section 3.3).
The window collection of the tool provides editor components for a multitude of Java types
which are frequently used in OVL, for example, floating point numbers, boolean values,
plain text, colors, lists and arrays or file references, and many more. Generally, objects of
all kinds of Java classes can be constructed via dynamic access to their class definitions
in a set of dialog windows as shown in Fig. 9.7 on the following page.

9.3.4. VoD Example

Fig. 9.6 on page 83 shows four snapshots of a typical interactive visualization example for
the Enzyme property of a reaction from Listing 9.12 on the facing page with data from the
Protein Data Bank (PDB) (Berman et al. 2000): In Fig. 9.6 a), the mouse hovers over
the reaction node, and the property Enzyme appears besides the node. The appearance of
such property items is animated in order to assist the user with distinguishing between
underlying network elements and supplementary information. If the displayed variables
contain complex values, for example arrays, lists, or objects of custom OVL classes, the
representing graphical items can be further expanded for displaying the next level of
subordinate variables. The display of subordinate information is also triggered by mouse
hovering over expandable property items as illustrated in Fig. 9.6 b) and c).
In Fig. 9.6 b) the mouse hovers over the Enzyme property causing its expansion. The

name, image representation, kinetic equation, mass, EC number, database ID and sub-
units of the enzyme become visible. In Fig. 9.6 c) the SubUnit property of the enzyme
is additionally unfolded. Images that are elements of itemized properties are initially
displayed with a rather small default size, in order to avoid overloading of the network
diagram. On demand, such images can be magnified up to their original size by mouse
wheel interaction as illustrated in Fig. 9.6 d). This way, the user can visualize arbitrary
levels of detail on demand.

9.4. Advantages of OVL
The biggest advantage of OVL is: the manner of data visualization in network diagrams
is completely customizable and can be adapted to any preferences and requirement of the
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a) b)

c) d)

Figure 9.7.: Dialog windows that offer dynamic access for constructing objects from ar-
bitrary Java classes and custom OVL types: a) object creation and deletion,
b) input of Java expressions for dynamic object construction, c) constructor
selection for creating objects of unspecific type, d) editor dialog for values of
OVL defined data type.

single user. Inasmuch as OVL is based on Java, the complete power of the Java program-
ming language and Java runtime library is available in OVL. This allows comprehensive,
object-oriented solutions to be developed in OVL but, nevertheless, does not hamper the
usability of OVL.

OVL simplifies many internal operations. Thus, big effects can be achieved in only a
few lines of code. This makes visualization with OVL easy to learn. The slenderness
of the OVL example code given in the tutorials (cf. Droste 2008a;b) allows a rough un-
derstanding. These examples can be adapted to solve personal visualization tasks even
by users without skills and expertise in programming. An OVL script can be applied
on multiple networks since it can be freely exchanged between different documents and
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different users. In this way, a pool of existing solutions for different visualization issues
can arise, from which all members of a community can avail themselves of.
In recent studies many OVL solutions have been developed dealing with the visualiza-

tion of metabolome, fluxome and transcriptome data, regulatory effects, thermodynamic
data, literature and database information, isotopic mass distributions, comparative anal-
ysis of several datasets and more (cf. Chapter 10). In any case, the animation of time-
dependent data is possible in OVL.
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Chapter 10.

Application Examples

During the last years collecting experiences with the script-based visualization approach
many visualization solutions have been developed in OVL. This Chapter presents a set of
application examples pointing out the flexibility and impact of visualization with OVL.
The interdisciplinary authorship of the presented visualization examples demonstrates the
acceptance of script-based visualization under life scientists.∗

10.1. Comparative Visualization of Metabolome Data

In a typical metabolic fingerprinting approach intracellular concentrations from a wide
range of metabolites are detected with different analytical devices (Oldiges et al. 2007,
Kanani et al. 2008, Luo et al. 2007) and interpreted with respect to correlations between
relative changes of metabolite abundances between alike samples. This includes the com-
parison of metabolite levels under different experimental conditions or different strains of
the same organism. The main goal of comparative metabolome studies is the determi-
nation of significantly changed metabolite concentrations which are expressed in ratios
relative to a reference dataset. Due to the wide range – intracellular metabolic concen-
trations vary between some nmol up to several mmol – and the quantity of metabolites –
several hundred per experiment – a simple comparison from peak areas of heights of mass
spectra is not practicable. Thus, a conversion into comparable values, i.e. concentrations,
has to be enforced by peak area integration. Finally, visualization is a key for getting an
overall impression about the dataset and towards understanding the concerted changes of
metabolite pools within the cell in relation to the metabolic network. In order to high-
light the main changes in comparative analyses a specific visualization solution has been
developed in OVL.
In Fig. 10.1 on the next page the central carbon metabolism of Corynebacterium glu-

tamicum including simplified biosynthesis pathways for amino acids is shown. Metabolites
are indicated by orange-colored ellipses. Reaction symbols are hidden in the view, because
they are not of primary interest. Instead, the flux edges are joined at the reaction node’s
center and labeled by the reaction name (cf. Chapter 3.4). Visual attributes of metabolite
nodes like color, size, or shape can be directly used to visualize metabolite concentrations.

∗Excerpts of this Chapter originate from (Droste et al. 2009a; 2011a).
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10.2. Visualization in the Context of Metabolic Flux Analysis

As indicated in Fig. 10.1 (center), the measured concentration data is pre-processed
before visualized in the network context. In a first step, the data is normalized against
the reference dataset. Here, the comparison to a reference dataset leads to widespread
proportions with several orders of magnitude. It is a challenge to visualize these propor-
tions without hiding small changes (less than factor of 2). Thus, the step of data scaling
has to be done with care, in order to avoid a biased or distorted impression. There are
different methods (linear, exponential etc.) to scale data into a defined range feasible for
visualization. The data pre-processing has been realized in Matlab and Excel.
After scaling the comparative data in range [−1, 1] they are visualized in the network

diagram. Therefore, two methods have been implemented in OVL. The first method
shown in Fig. 10.1 (left) is mapping the data onto the metabolite symbol size. Big symbols
indicate higher concentrations in the measurement than in the reference dataset and, vice
versa, smaller symbols show lower concentrations. Here, a challenge is the limited space
for scaling the metabolite symbols. Thus, the scale factor 2 has been chosen to represent
the maximum discrepancy.
Another way, to visualize the comparative data is by coloring the metabolite symbols

(cf. Fig. 10.1 right). Here, a color interpolation from red to blue has been chosen. White
color represents equality between a measured and the corresponding reference concen-
tration value. Higher concentration is colored red, lower blue. By this, the intensity of
the color indicates the deviation from the reference value. The color-coded data visual-
ization, furthermore, makes it possible to show unmeasured metabolites in the diagram.
This information is given by gray colored metabolite symbols.
The graphical illustration of comparative metabolome data in biochemical network dia-

grams allows a fast qualitative impression of the dataset in relation to the network. In this
way, significant deviations can directly be detected and influences of cultivation condi-
tions or genetic modifications can be classified in biochemical pathways. The visualization
example consists of 90 lines OVL code. The script has been developed by a biotechnology
engineer with metabolomics and fluxomics objective.

10.2. Visualization in the Context of Metabolic Flux Analysis

One of the important aims of systems biology is to determine the velocity of all reactions
(the fluxes) in a metabolic network. The field of study dealing with this aim is metabolic
flux analysis (MFA). The most important tool for this purpose is the isotope labeling
experiment (ILE) (Wiechert 2001). Here shortly spoken, the measurement of isotope
labeling distributions in metabolic networks leads to an insight about the intracellular
reaction rates. The quantification of flux rates is a close interplay between in vivo exper-
imental studies and in silico simulation. Here, the intracellular fluxes are estimated by
applying an iterative high-performance computation approach (Weitzel et al. 2007, An-
toniewicz et al. 2007). The resulting fluxome data can be visualized in metabolic network
diagrams.
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Whereas in Section 10.1 metabolome data was mapped to the metabolite network nodes
of the network with omitted reaction nodes, the situation here is reversed: fluxome data
correspond to the reaction rates and, therefore, can be visualized by mapping onto the
visual appearance of reaction nodes. Another, more intuitive solution for visualizing
fluxomes is to change the line strength of the flux edges because their arrow symbolic
intuitively indicates some kind of flux velocity of throughput.
The present example is the visualization of fluxome data of the organism Gluconobacter

oxydans. Fig. 10.2 a) shows a basic reaction model representing the central metabolism of
the microorganism. The diagram contains metabolites indicated by rectangles and reac-
tions represented by diamonds. An additional attribute of reactions are their directions.
Flux directions may be either irreversible, i.e. the net flux of the reaction mainly proceeds
in the direction indicated by the arrowhead, or reversible meaning that flux edges are
equipped with both, start and end arrowheads.
The diagram furthermore contains several metabolic pathways shown by highlighting

the corresponding sets of reactions and flux edges. Additionally, compartments are shown

Figure 10.2.: Visualization of flux distributions in a metabolic network – a) shows the
diagram without visualized data, b) and c) show flux data from two different
phases. The enlarged subsections shows the inversion of a flux direction.
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in the diagram represented by rectangular areas. The network model uses a compartment
in order to mark metabolite pools as to be extracellular, periplasmic or cytosolic (cf.
Fig. 10.2 a) top). The periplasm is a special compartment located in the cell wall of the
Gluconobacter bacteria species, separated by the inner and outer cell membrane.
In order to sensibly reduce the plenty of information in the diagram, reaction and

metabolite nodes are hidden for the fluxome visualization in Fig. 10.2 b) and c). Metabo-
lites are represented by labeled dots, reactions are represented by joined flux edges.
In Fig. 10.2 b) and c) the diagram is augmented with data from the metabolic flux

analysis. Here, the flux strength is mapped to the width of the flux edges: strong lines
indicate high reaction conversion rates. This information is also reflected by the local
width of the pathway stroke. Hence, a global view of the flux distribution over the whole
network is facilitated.
A further visual property used in the example is an inversion flag owned by all reactions

(cf. Chapter 3.2.1). If a reaction is set to be inverted, the arrow direction of all its flux
edges reverses (cf. Fig. 10.2 b) and c) enlarged subsections). This makes it easy to display
a change in the nominal net flux direction without redrawing the edges in the diagram.
Fig. 10.2 b) shows the flux distribution of the organism at growth on glucose. In this

phase, more than 80% of the input substrate is metabolized in the periplasmic space
to gluconic acid. When glucose in the medium is (nearly) depleted, the metabolism
of Gluconobacter oxydans adapts by a metabolic shift towards gluconic acid utilization.
Fig. 10.2 c) shows the fluxes in a second phase. In this phase, the organism re-metabolizes
the previously produced gluconic acid in order to provide its central metabolism with input
substrate.
As it was demonstrated, enrichment of metabolic pathways with visualizations of meta-

bolite concentrations, flux rates or a combination of both can be very useful in under-
standing the concerted changes of metabolite pools within the cell. The visualization
solution consists of 122 lines OVL code developed by a mathematician primarily dealing
with MFA.

10.3. Visualization in the Context of Synthetic Biology

The Team TU Delft recently published the results of an in silico MFA on a synthetic
organism designed during the International Genetically Engineered Machines (iGEM)
competition 2010. The MFA has been performed by using CellNetAnalyzer (Klamt et al.
2007). Aim of the study was the optimization of the metabolic network toward the maxi-
mal rates of certain products for different input substrates as computational pre-processing
step preceding the experimental design. The results have been visualized by using the
network visualization tool Omix. The website of the iGEM Team 2010 TU Delft (2010)
shows the reference network. The user can choose between different input substrates and
product optimizations. By this, the image of the corresponding data visualization is laid
over the semi-transparent reference image. Fig. 10.3 on the following page shows two
snapshots of this interactive visualization.
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10.4. Visualization of Transcriptome Data

10.4. Visualization of Transcriptome Data

With transcriptome analysis cellular processes are screened under different external con-
ditions. A micro-array based experiment allows for the simultaneous measurement of
mRNA levels (the transcriptome) of thousands of genes (Shoemaker and Linsley 2002).
Repeated for different conditions, a massive amount of data is generated.
The main objective of the visualization example presented in Fig. 10.4 is to establish a

relation between the transcriptome data corresponding to the enzymes in the biochemical
system and the metabolic reaction catalyzed by these enzymes. The data used for this
example has been taken from Ishii et al. (2007). Here, omics data of 43 experiments is
made publicly available. The dataset is related to a reference state and logarithmically
scaled. For further information about data processing see Ishii et al. (2007).

Figure 10.4.: Visualization of a metabolic network of Escherichia coli. The change in
transcript level is indicated by the expression index for each protein partici-
pating in a reaction. The subsections of the network diagram on the left side
indicate that the user can switch between 43 different datasets visualized in
the network.

The experimental data related to the enzymes is displayed in the network diagram
beside the corresponding reactions. All catalyzing enzymes of a reaction are listed in
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single rows. In every row, an array of rounded rectangles (SubNode accessory cf. Section
9.1.6) represents a set of experimental data corresponding to the reaction. The index of
the displayed experiment is shown in each SubNode item. The user can switch between
several datasets as indicated in Fig. 10.4 (left). The number of experiments that are
simultaneously visualized is restricted to five in order to avoid an information overload of
the diagram.
The transcript level is displayed in a color code indicating a lower (red), equal (yellow) or

higher (green) expression in comparison with a specified reference state. This color range
is typical for transcriptome visualization (cf. Mlecnik et al. 2005, Neuweger et al. 2009) as
a side effect of microarray imaging technologies (Saraiya et al. 2005). If an enzyme has not
been measured in an experiment, the corresponding spot is displayed white. If an enzyme
is knocked out in an experiment the spot representing the experimental data is marked
with a magenta-colored, dotted stroke. Likewise, an over-expression of an enzyme coding
gene is marked with a cyan-colored, dotted stroke (not present in Fig. 10.4). In Fig. 10.4,
an enlarged subsection of the diagram shows the reaction of phosphofructokinase (Pfk)
using the two enzymes Pfk-A and Pfk-B. Both of them contribute to the overall activity
in the cell (Daldal 1984, Vinopal et al. 1975). In order to quickly identify the minima
and maxima in the dataset, the user can select to display the indexes of the experiments
with the lowest and highest transcript level, respectively. This min/max visualization is
shown in Fig. 10.5 on the next page.
The described way of displaying transcriptome data is typically useful for gene knock-

out and over-expression studies, because the experimenter can see direct effects on the
transcript level in the network context. The visualization solution has been created by a
graduate biotechnologist and consists of 235 lines OVL source code.

10.5. Animation of a Pulse Experiment

Previous sections have shown the visualization of static data concerning one omics level.
But in systems biology, investigations, whether in experiment or in simulation, result in a
plenty of data. This data usually spreads over various omics domains and is particularly
time-dependent. The current example shows the power of OVL in animating time-series
of multi-omics data in a metabolic network diagram.
To holistically understand the metabolism of cells, dynamic modeling of cellular pro-

cesses has become an important task in systems biology. Dynamic models describe the
state of each reacting metabolite and the enzymatic reaction rates in a time-dependent
manner. To set up such models, appropriate (mechanistic or approximate) rate laws have
to be assigned to each reaction within the network. Hence, dynamic models usually con-
tain a large number of parameters like the reaction rates, Michaelis constants, limiting
rates or constants describing the influence of inhibitors or activators (Chassagnole et al.
2002). Once a model is set up it provides an instance for making predictions how the
cell responds to environmental changes or perturbations. Visual screening of the systems’
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Figure 10.5.: Visualization of minimal and maximal transcript levels.

characteristics by variation of parameter values or the choice of alternative rate equations
offer insights to complex metabolic control mechanisms of metabolic fluxes.
The diagram in Fig. 10.6 on the following page shows the glycolysis and the pentose

phosphate pathway of Escherichia coli. For details about the underlying rate laws and
kinetic parameters see Chassagnole et al. (2002). The model is validated with measured
metabolite concentrations at transient conditions by performing a glucose stimulus exper-
iment. Here, the concentration of an extracellular metabolite, typically glucose, is rapidly
increased in the culture and the response in the cells in terms of intracellular metabolite
concentrations is measured.
The diagram shown in Fig. 10.6 visualizes metabolite concentrations, reaction rates and

regulatory strength in a metabolic network (Noack et al. 2007). Metabolite concentrations
are mapped to the color fill level of the metabolite nodes. Strength of the fluxes is shown
by the fill level of the reaction nodes which changes pie-chart-like. Furthermore, the flux
strength is indicated by the line width of the flux edges (cf. Section 10.2). In analogy
to the reaction rates, the regulatory strength is mapped to the line width of the effector
edges.
The simulated model response to the step increase of the extracellular glucose concen-

tration at time point 0.8 s is shown as animation. Temporal changes of all state variables
in the network can be followed over time in an automated or step-by-step manner (cf.
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Figure 10.6.: Visualization of dynamic changes in the network by animation. The network
starts in a steady state (cf. image at 0.0 s) until it is triggered by a substrate
pulse. The pulse causes a dynamic response of the concentrations, fluxes
and regulatory influences all over the network (cf. images at time points 0.8
s and 23.8 s).

Fig. 10.6). As a pronounced feature the strong non-linear feedback-feedforward link be-
tween the phosphotransferase system (PTS) and the glycolytic metabolite concentrations
of phosphoenolpyruvic acid (PEP) and pyruvic acid (PYR) can be regarded.

Since the visualization tool allows hiding information in the network diagram, the
visualization can be displayed in a higher abstraction level. As an example in Fig. 10.7 on
the next page everything in the network is hidden except for the pathways. The pathway
shape can also be used for information visualization because reactions can have influence
on the pathway’s local appearance. The contour around a reaction can be thinned (cf.
Fig. 10.7). By this, the visualization of information connected with metabolic reactions
can be performed in a network-wide, abstract view. This feature is an outstanding and
novel visualization method provided by the network symbolism and the levels of detail
combined with the OVL scripting language introduced in this work. In order to see the
global changes in the network in combination with the regulatory influences, the effector
edges are additionally shown in Fig. 10.7. The OVL script performing the here presented
visualization consists of 126 lines and is introduced as expanded, commented example
program in the OVL Technical Manual (Droste 2008b).
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Figure 10.7.: View of the data from Fig. 10.6 at a higher abstraction level.

10.6. Visualization of Isotopic Mass Distributions

In carbon labeling experiments, the natural 12C carbon atoms in the molecules of the input
substrate are specifically substituted with the heavy 13C isotope and the distribution of
the isotopes over the whole metabolism is observed. By this method, knowledge about
the intracellular fluxes is gained (Klapa et al. 1999). The isotope enrichment leads to
distinguishable higher masses of the single metabolites measurable by mass spectrometry.
A metabolite with n carbon atoms can appear with n + 1 different peaks in a mass
spectrum. These peaks represent different labeling states of the metabolite. Consequently,
the concentration of a metabolite can be subdivided into the concentrations of these
labeling states.
The present visualization example extends the visualization principle described in Sec-

tion 10.5 with ratios of isotope labeling states. Therefore, each metabolite is equipped
with an array of SubNode accessories. The single graphical items appear as circles beside
their corresponding metabolite symbol. Each SubNode in the array represents one of the
n + 1 different masses of the metabolite. The ratio of each labeling state in the overall-
concentration of the metabolite is visualized by a pie-chart-like change of the nodes’ fill
level.
A small network is depicted in Fig. 10.8 on the following page containing several metabo-

lites and reactions composed to a small example network. The network starts with an
input at the top and ends with two outputs bottom left. Additionally this network con-
tains three inhibiting effector edges. In analogy to the example of Section 10.5, metabolite
concentrations are mapped to the color fill level of the metabolite nodes, flux rates are in-
dicated by the width of the flux edges and the strength of regulatory influence is displayed
by the width of the effector edge.
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Figure 10.8.: Visualization of isotopic distributions in a network

Fig. 10.8 is a snapshot of an animation that visualizes dynamic changes of those four
different kinds of omics data regarding the network. Starting the animation, the dynamics
of the system stimulated with a labeling pulse from the top of the network can be tracked.
This pulse causes a network wide change of substance concentrations, flux rates, regulatory
influences and concentration rates of labeling states. The enlarged subsections on the
right show the local changes at one metabolite at four different time steps. The example
visualizes simulated data. The underlying model is a simplified example network. The
visualization illustrates a high aim of the metabolic flux analysis: to be able to predict the
systemic behavior under metabolically and isotopically non-stationary conditions. The
OVL script performing the visualization has been developed by a bioprocess engineer
based upon the given example in the OVL Technical Manual (Droste 2008b) consisting
of 151 lines.

10.7. Visualization of Enzyme Kinetics
The last example presented here visualizes the scientific insights into the kinetic behavior
of the alcohol dehydrogenase (ADH) from Lactobacillus brevis published by Schroer et al.
(2009). The enzyme catalyzes the reduction of methyl acetoacetate (MAA) in a substrate-
coupled cofactor regeneration approach by oxidation of isopropanol as shown in Fig. 10.9
on the next page. Schroer et al. (2009) introduce a comprehensive mathematical model
of the enzyme kinetics including all quantified model parameters.
The visualization example presents the results from (Schroer et al. 2009) by using

different visualization techniques that have been introduced in previous chapters:

• The network diagram shown in Fig. 10.9 is displayed with hidden reaction and
metabolite nodes (cf. Chapter 3.4). Instead, only the labels of the network compo-
nents are visible.
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Figure 10.9.: Visualization of enzyme kinetics by animation.

• The orange symbol in the center of the diagram is a custom node representing the
enzyme connected to the catalyzed reactions by custom edges (cf. Chapter 3.2.4).

• The main metabolites of the ADH reactions are annotated with their respective
chemical structure. The trained eye can immediately see that a hydrogen atom is
transported from the isopropanol via NAD(P)H to the methyl 3-hydroxybutyrate
(MHB) molecule.

• The enzyme kinetics is visualized by animating the concentration changes of the
participating metabolites and cofactors (cf. Fig. 10.9 enlarged image section).

• The constants and kinetic parameters in relation to the single components of the dia-
gram can be interactively inspected by Visualization on Demand (VoD) (cf. Chapter
9.3). The metabolites reveal their kinetic parameters (kpi, ksi, km cf. Schroer et al.
2009) as well as a function plot showing the concentration change in time as shown
in Fig. 10.10. When the enzyme symbol is touched by mouse cursor the weight of
the enzyme molecule is displayed. The reactions show their maximal velocity on
demand. All values are presented with standard deviation.

Figure 10.10.: Interactive visualization of enzyme parameters on demand.
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By default, the visualization tool Omix is not able to display chemical structures in the
network diagram. In order to be adaptable to this specific and many other requirements
the software allows to be extended by plug-ins as introduced in Part IV.
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Data Visualization Features Page
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Chapter 11.

Introduction to Extensibility

“Plugins are an important way for advanced users
to customize and extend an application” (Suderman and Hallett 2007)

11.1. Motivation

The visualization tool Omix faces the challenge to be adaptable to future requirements in
systems biology not only by providing a script-driven visualization approach. The range of
features of the software can be extended by plug-ins as illustrated in Fig. 11.1. Therefore,
the tool is equipped with an extension interface, also called application programming
interface (API). Today, extensibility is state-of-the-art in software development. Plug-
ins are known from web browsers, media player software, graphics and office programs.
Even in the area of visualization software for biological networks extensibility by plug-ins
is a widespread concept for keeping the applications flexible. Examples are CytoScape
(Shannon et al. 2003), CellDesigner (Funahashi et al. 2003), VisANT (Hu et al. 2005),
ProViz (Iragne et al. 2005) and Vanted (Junker et al. 2006). Extensibility is also realized
by the approach introduced in this work.

Figure 11.1.: Relation between the visualization tool Omix and plug-ins.
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Fig. 11.1 on the preceding page shows a principle scheme of the relation between the
software Omix and its plug-ins. Omix is a closed source project. The internal architecture
is not published and can neither be accessed nor changed by third person. By using the
extension interface, further called Omix API, specialized features useful in different areas
of life sciences can be added to the functional range of the tool. The Omix API is a well
documented interface allowing the communication between Omix and the plug-in module.
In this way, a plug-in can access internal operations and can offer the implemented fea-
tures to Omix. The Omix Plug-in Development Manual (Droste 2011) introduces how to
develop Omix plug-ins in detail. Furthermore, a reference documentation of all definitions
of the Omix API is publicly available (Droste 2010).

11.2. Differentiation to OVL
This section aims at clarifying the difference between OVL and a plug-in. OVL is a
scripting language whereas plug-ins are to be developed in Java. An OVL script runs in a
network diagram. It is textual and can be edited as part of the document. Unlike OVL,
a plug-in extends the entire visualization tool. Usually, a plug-in is distributed in binary
form. The user can neither inspect nor change the plug-in program. The plug-in code is
loaded at startup time and becomes an unchangeable part of the software.
The OVL scripting language is suitable for solving simple tasks of visualization inside

of the diagram whereas plug-ins can realize complex features. OVL scripts can be created
from the scratch by the user. Plug-ins can only be installed by the user. They are created
by programming experts and software developers. To a certain extend, OVL scripts can
be compared with so called “macros” in the popular word processing tools.

108



Chapter 12.

The Omix API

12.1. Interface Concept

The core of the extensibility realized in Omix is a plug-in manager. This software com-
ponent loads all plug-ins at startup and integrates their functionality into the main ap-
plication. The Omix API is a set of Java interface definitions. Such an interface is an
abstraction of the internal realization of a feature. The communication between the main
application and the plug-ins is exclusively realized via Java interfaces. A plug-in realizes
functionality that must be registered inside of the application in order to be available.
This is done by defining the feature by using the interfaces provided by the Omix API. On
the other side, the application must allow limited access to internal data and operations
for the plug-ins. This is provided as service for the plug-ins via interface definitions that
allow access on an abstract level.
Fig. 12.1 on the next page illustrates the principles behind the extensibility of Omix

in a schematic diagram. The interaction between the application and a database plug-in
is depicted in a simplified manner. The fictive plug-in sketched here provides a further
menu entry on the menubar. When the user selects the menu entry, a database can
interactively be searched and a network can be selected by the user. Thereafter, Omix
loads the network from the database as new document.

(1) At startup, the plug-in is instantiated by the plug-in manager.

(2) The plug-in has permissions to insert a further menu entry in the menu bar via the
corresponding application interface. This menu entry is connected with one of the
internal functions of the plug-in.

(3) At user interaction, the menu entry calls the feature that realizes the interactive
database search.

(4) After finishing the database search a network is available to be loaded as new Omix
diagram. Therefore, the plug-in prompts the application to start a document loading
procedure.

(5) The document loading service again calls the plug-in to assemble the network stoi-
chiometry.

109



Chapter 12. The Omix API

Figure 12.1.: Communication between Omix and a plug-in.

(6) Only in this phase of the process, the plug-in gets access to the internal operations
of Omix that instantiate new nodes and edges and assemble them to a network.

(7) After assembling the network upon the user selected database content, the plug-in
returns the results to the application.

(8) Omix starts a new document with the selected network as initial content.

In principle, the extensibility of Omix is realized in this way. The Omix API contains over
80 different interface definitions for distinct types of plug-ins as introduced in the next
section. A plug-in is an archive file containing a manifest and program code. The manifest
describes the plug-in in detail. This includes the name of the plug-in and, particularly,
the implemented interfaces. Based on the information from the manifest, the plug-in
functionality can be registered at the plug-in manager.

12.2. Features of the Omix API
The Omix API allows to develop plug-ins for different purposes. Each plug-in type has
limited access to a specific set of core operations and a specific life time during the runtime
of the application. A plug-in can basically implement multiple or even all of the available
types simultaneously. The plug-ins types can be classified as follows:
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Application Plug-in
An application plug-in is active for the complete runtime of Omix. It can, for
instance, add items to the menubar and insert toolbars on the main window. In
this way, Omix can be equipped with interactive components that provide plug-in
functionalities. An application plug-in can request access to the currently edited
document which includes the complete inherent network structure as well as the
document embedded OVL script. Furthermore, a new network can be assembled
and submitted to be loaded as new document. This case has been exemplified in
Section 12.1.

Document Plug-in
A document plug-in has the same privileges as the application plug-in but is docu-
ment bounded, i.e. it has to be explicitly activated on an open network document.

OVL Scripts
Plug-ins can be equipped with OVL code (cf. Chapter 9). When the plug-in is
activated on a network document, the OVL code runs parallel to the user defined
script in the network.

OVL Libraries
Plug-ins can extend Omix with any libraries to be used in custom OVL scripts.

Network Import/Export File Filter
A file filter registers a certain file format suffix at Omix. In an export operation
a file filter is called to traverse the internal network structure and generate the
corresponding constructs in the target file. During an import operation the file filter
plug-in gets the privilege to compose a network and commit it as new document.

Image export Filter
A plug-in can define a paint engine for certain image or video formats that can be
selected for image and animation export.

Data Type Management
Omix plug-ins can introduce new data types, for instance, concerning simulator
specific network parameters. The editing and visualization of plug-in specific data
is handled by a data type manager.

Plug-in Configuration
Plug-ins can register a configuration window at Omix appearing as subcomponent
in the configuration manager window of the application. By this, a plug-in can allow
to be configured by the user. A plug-in configuration manager has the permission
to store its specific settings in the Omix configuration registry.
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Communication Protocols
Omix can be extended by communication plug-ins that enable the software to handle
file management via particular Internet protocols. This includes security handling
and data streaming.

Internationalization
Plug-ins can provide multiple languages for the graphical user interface realized
inside of the plug-ins. Furthermore, additional languages can be provided for the
entire application.
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Existing Plug-In Solutions

Multiple plug-ins for Omix have been realized dealing with current issues in systems
biology research. This chapter gives an overview of the available plug-ins in order to
demonstrate the use of the Omix API.

13.1. Compatibility and External Resources

As figured out by Suderman and Hallett (2007) and Pavlopoulos et al. (2008) compatibility
with other software in the context of biochemical networks as well as the utilization of
available data sources is an important prerequisite for a visualization tool like Omix. This
Section introduces a set of plug-ins that meet this requirement.

13.1.1. Model Describing Formats

A widespread data exchange format for biochemical networks is the Systems Biology
Markup Language (SBML) (Hucka et al. 2003). Consequently, a file format filter plug-in
has been developed that allows the export and import of network stoichiometries from
SBML files. Another plug-in allows exporting a stoichiometry matrix representing the
network in Omix to Matlab (Attaway 2009, Sharma and Martin 2009) and CSV spread-
sheets.
Furthermore, a plug-in has been created for generating Modelica code from a given

network model (Tiller 2001). The plug-in requires an existing Modelica library imple-
menting reaction kinetics (Nilsson and Fritzson 2005). The user can select the kinetic
laws for each reaction in Omix and specify model parameters. The generated code instan-
tiates, parametrizes and connects programming constructs from the underlying kinetics
library. After export, the generated code can be simulated in respective tools like Dymola
(Elmqvist 1978) or OpenModelica (Fritzson et al. 2006).

13.1.2. Database Connectivity

A large number of databases exist storing information about biochemical networks aplenty.
(Cary et al. 2011) list over 300 publicly available resources. Examples are BRENDA
(Schomburg et al. 2002), BioCyc (Karp et al. 2005), Gene Ontology (Ashburner et al.
2000) or WikiPathways (Pico et al. 2008).
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In order to make such resources available for Omix a plug-in has been developed con-
necting the network editor with the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database system (Kanehisa and Goto 2000). Hereby, the huge amount of information
about the metabolic pathways of hundredth of organisms provided by KEGG is available
in Omix. The big advantages of this Japanese database is, it is connected to many other
related databases and it provides a programming interface, the KEGG API. Based upon
the KEGG API, software can directly access the database content. The KEGG plug-in
for Omix enables the user to search the database for certain information and download
single reactions, pathways or even entire organisms directly into Omix. Fig. 13.1 shows
the KEGG import dialog window.

Figure 13.1.: Dialog window for loading networks from the KEGG databases.

13.2. Visualization of Chemical Structures
Biologists need a biologically relevant representation of biochemical networks. In various
cases the symbolism of Omix networks consisting of primitive shapes like rectangles,
circles and diamonds might not meet the users’ requirements. A rather detailed depiction
of metabolites is desired. Metabolites represent the biochemical compounds involved in
the metabolic reactions and a compound consists of a distinct molecular structure.
In order to allow molecular structures to be displayed in Omix network diagrams the

Mol plug-in has been created; “Mol” because it bases on the Mol data format for describing
chemical structures (Dalby et al. 1992). The plug-in equips each metabolite in a diagram
with a property holding the chemical structure. In combination with the KEGG plug-
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in (cf. Section 13.1.2) chemical structures are automatically downloaded when the user
generates a network from the database. Otherwise, the structural formulas can be selected
from available compounds in the KEGG databases or even drawn manually (see Fig. 13.2
a). Subsequently, the chemical structures can be inspected in the VoD mode (cf. Chapter
9.3) or can be visualized directly in the network diagram as shown in Fig. 13.2 b).

a) b)

Figure 13.2.: Editor for chemical structures utilizing KegDraw (Kanehisa et al. 2005) (a).
Visualization of chemical structures in a metabolic network (b).

13.3. Metabolic Flux Analysis Work Flow

13.3.1. Background

Metabolic flux analysis (MFA) aims at identification and quantification of intracellular
fluxes (cf. Chapter 10.2). The flux rates in a cell cannot directly be measured. By
labeling the input substrates with 13C isotopes and by measuring the labeling enrichment
of the metabolites all over the network with highly sensitive mass spectrometry devices
(Szyperski 1998, Christensen and Nielsen 1999) the intracellular flux distribution can be
estimated (Wiechert 2001). Therefore, computer simulation is necessary. 13C FLUX 2 is
such a simulator framework for the quantification of metabolic fluxes from experimental
measurement data with high-performance computational methods (Weitzel 2009). The
framework consists of about twenty different command-line applications for simulation,
exploration, parameter fitting, statistical analysis and other purposes (Dalman et al.
2010a).
Simulation with 13C FLUX 2 bases on models that do not only include the stoichio-

metric information about a metabolic network. The number of carbon atoms for each
involved metabolite as well as the atom transitions of all reactions are also required. A

115



Chapter 13. Existing Plug-In Solutions

reaction’s atom transition describes the way the single carbon atoms are exchanged be-
tween the reaction’s substrates to the products. 13C FLUX 2 has an own XML-based
file format called FML carrying the network stoichiometry, atom numbers and transitions
and specific information necessary for a simulation run like start conditions, configura-
tions of the network, measurement data, simulation preferences and others. Results of
most 13C FLUX 2 simulation tools are stored in an own XML-based file format called
FWDSim (Dalman et al. 2010b).
Basically, FML files can be completely developed by the modeler. However, since the

visualization of simulation and experimental results requires a diagram of the network
model it makes sense to model in a graphical manner. Another pragmatic reason for
graphical modeling is: graphical modeling is much more intuitive and fail-safe than editing
a metabolic network model in a textual manner. A graphically modeled network structure
is easy to grasp because of the immediate visual representation. Hence, errors in the model
can be discovered very fast. Several Omix plug-ins have been developed dealing with the
pre- and post-processing of simulations with 13C FLUX 2.

13.3.2. 13C FLUX 2 Modeling Plug-In

The 13C FLUX 2 modeling plug-in extends Omix with the ability to edit FML models
for 13C FLUX 2 including all related information. The plug-in equips all metabolites in
the network with a “number of atoms” property and the reactions consequently with an
“atom transition” property. The network is equipped with properties for the constraints,
the simulation configuration, the network input and other relevant information. The
plug-in offers several dialog windows for graphical editing of these simulation parameters.
Fig. 13.3 shows the atom transition dialog window. The molecules are abstracted by a
“pea pod”-like item. The atoms are represented by different colored, numbered circles.
By drag and drop, every single substrate atom can be connected to a product atom.
The concrete chemical structures are not shown in the atom transition editor because
the simulator uses the same abstract representation of molecules and atom transition.

Figure 13.3.: Editor dialog for atom transitions.
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For now, the abstract array of atoms cannot automatically be translated to the atoms
in a molecule because of a lack of standardized atom numbering in chemical structures.
Closing this gap is a possible future task.
After editing all atom transitions of the model, a validation utility provided by the

13C FLUX 2 modeling plug-in warns against inconsistent parameter settings and an
invalid network topology. After editing the model, a plug-in inherent file filter allows to
export the model from Omix to an FML file as simulator input. Likewise, existing FML
files can be imported into Omix by the plug-in.

13.3.3. 13C FLUX 2 Launcher Plug-In
As illustrated in (Dalman et al. 2010a), the Unix-based applications of the 13C FLUX 2
simulation framework have been wrapped by Java web services and are hereby available
for each programs on each platform via local network of the research institute. This
situation allows to run the simulator tools directly from inside the Omix application.
Therefore, the 13C FLUX 2 launcher plug-in extends the Omix menubar with entries for
starting the single simulator tools remotely. When a simulator is started, the network
structure of the Omix document including all specified simulation parameters is converted
to a FML network description and sent to the web service that executes the simulation.
After finishing, the results are returned as data stream in FWDSim format. For now,
the import of measurement data into the FML specification is not realized. This is an
important future project in order to complete the MFA work flow performed with Omix.

13.3.4. FWDSim Import Plug-In
In order to make the simulation results available for visualization in the network diagrams
the FWDSim import plug-in realizes the loading of 13C FLUX 2 results into Omix. This
is realized by providing a set of classes that represent the contents of FWDSim files for
OVL. By this, the Omix user can develop own solutions in OVL for the visualization of
flux rates and other simulation results of 13C FLUX 2.

13.3.5. Network Analysis Plug-Ins
Further plug-ins have been developed dealing with metabolic network analysis, for in-
stance, searching and visualizing elementary flux modes (Terzer and Stelling 2008), per-
forming flux balance analysis (Orth et al. 2010) and determining free fluxes (Weitzel et al.
2007). The mathematical background of these plug-ins cannot be discussed here for the
sake of brevity. However, a short description of the Free Fluxes plug-in demonstrates the
value of visualization-aided network analysis.
In metabolic flux analysis all fluxes of a network can be computed when a certain

number of fluxes are known. These known fluxes are called free fluxes while all others are
called dependent (Weitzel et al. 2007). The Free Fluxes plug-in equips every reaction with
a button and a small, yellow colored spot as depicted in Fig. 13.4 on the following page. By
pressing the button, the reaction is chosen to be a free flux. This is immediately indicated
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Figure 13.4.: Interactive determination and visualization of free fluxes.

by the small spot icon that changes to green. By selecting a free flux, consequently
certain other fluxes become dependent. This is internally computed and the corresponding
reactions are labeled with a red spot while their button disappears. In this way, the
dependencies in a network can be visually explored. The network analysis plug-ins are
well-suited to teach the underlying mathematical analysis methods with an explorative
element.

13.4. 3D Visualization of Isotope Labeling Networks

13.4.1. Foundations

In Section 13.3 the carbon labeling approach has been shortly introduced as an important
tool in the MFA.∗ Isotope labeling experiments (ILEs) are an important tool to determine
intracellular fluxes in a living organism. In this context not the metabolite network
has to be visualized but a related network that shows the flow of 13C labeled carbon
atoms or groups of such carbon atoms. Isotope labeling networks (ILNs) associated to
metabolic networks have an extremely high dimension. Details on these networks can be
found in (Nöh et al. 2008, Weitzel 2009). Essentially, they describe the fate of isotope
labeled substances metabolized by the cell. To account for the fate of each differently
labeled molecule each metabolite pool has to be divided into so-called cumomers (different
labeled/unlabeled states).

∗Excerpts of this section originate from (Droste et al. 2008b;a).
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If a metabolite has n atoms which are accessible by isotope labeling then there are
2n different cumomers associated to this compound. These cumomers are connected by
cumomer reactions which are analogous to the underlying reactions in the metabolic net-
work. Interestingly, it could be proven in (Weitzel 2009) that cumomer networks can
always be decomposed into smaller subnetworks. The exploitation of this decomposition
has a strong impact on the performance of simulation algorithms, measurement evalua-
tion or experimental design (Wiechert et al. 1999). The cumomer network decomposes
into different levels. The levels are defined by the number of labeled atoms of the cu-
momers that belong to the level. The lowest level (level 0) corresponds to the metabolic
network. The level 1 is equivalent to the atom transition network. Any higher level de-
scribes the way certain molecule fragments are transported through the network. Each
level is furthermore decomposed into connected components (CCs) being isolated subnet-
works (Weitzel et al. 2007). Each CC can further be decomposed to strongly connected
components (SCCs) which represent cyclic paths in the network.

13.4.2. The CumoVis Plug-In

In order to communicate the mathematical background of MFA with 13C carbon label-
ing experiments to practitioners from biology and engineering and to allow the visual
exploration of ILNs, especially of the atom transition network, the plug-in CumoVis has
been developed. CumoVis allows an interactive exploration of any kind of ILN in a 3D

Figure 13.5.: Cumomer visualization (b) in relation to the metabolic network (a).
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visualization. Thus, the tool helps to bridge the communication gap between modeler
and experimenters. A comprehensive introduction into the scientific and mathematical
background of the cumomer visualization as well as the implementation details of the
CumoVis tool is given in (Droste et al. 2008b).
The cumomer visualization plug-in uses the planar metabolic network from Omix,

stacks the cumomers on top of the corresponding metabolites and interconnects them
with edges according to the atom transitions of the metabolic reactions. The edge shapes
are automatically computed with focus on a minimized number of edge intersections.

Figure 13.6.: Decomposition of the cumomer network: (a) complete network, (b) single
level, (c) CC, (d) SCC.
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Fig. 13.5 on page 119 shows the metabolic network diagram from Omix (a) and the 3D
visualization of level 1 of the cumomer network (b). CumoVis uses a “pea pod”-like
symbol to represent cumomers (cf. Section 13.3.2).
The 3D scene can be interactively explored by moving, zooming and rotating. The

user can choose between viewing the entire cumomer network as shown in Fig. 13.6 a)
and viewing the different levels of the network (see Fig. 13.6 b). Additionally, the user
can hierarchically break up the visual representation of the network by choosing the CCs
(Fig. 13.6 c) and SCCs (Fig. 13.6 d) of the single levels which are automatically computed
by graph analysis algorithms. To understand the labeling dynamics in an experiment
the search for cyclic paths is very important because, essentially, these cycles make the
quantitative determination of isotope enrichment in a network a non-trivial task.
The fate of a labeled particle can be studied by path tracing in forward and backward

direction. The user can choose a certain cumomer as start node for path tracing. Conse-
quently, all successors or predecessors are shown up to a certain path length. In the same
way, the user can choose a source and a target cumomer and the tool displays a path by
which these two particles are connected. By choosing the same cumomer as source and
target it is possible to display closed isotopomer fragment cycles. The respective reaction
paths are graphically highlighted as depicted by Fig. 13.7.
CumoVis provides an overview of the atom transitions of a complete metabolic network.

By this, errors in network models for the 13C FLUX 2 simulator can easily be detected.
Beside that, the path tracing is a very valuable feature because it is one of the most
time consuming operations that are often manually performed by experimenters. Since
CumoVis visualizes the complete ILNs and allows to interactively break up the network
the tool serves as an important educational tool in MFA that can be used to explain the
rather complicated structure of ILNs to newcomers.

Figure 13.7.: Path tracing of a molecule fragment in the cumomer network.
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13.5. 3D Visualization of Network Thermodynamics

13.5.1. Foundations

Like† any other process in nature biochemical reactions are governed by energetic prin-
ciples. A reaction can only proceed in its nominal direction if the sum of the energetic
reaction potentials of the educt metabolites is larger than the sum of these of the product
metabolites. Here it should be noticed that thermodynamics does only make a statement
on the feasibility of assumed reaction directions but not on the reactions’ velocity. Even
if a reaction has a large energy gradient there might be some regulatory effects on the
actual flux rates.
The free Gibbs energy potential of a chemical substance with concentration (or, more

precisely, activity) x is given by Eq. (13.1).

∆G = ∆G0 +RT ln(x) (13.1)

Here the term ∆G0 is the free Gibbs energy under standard conditions. R is the Boltz-
mann constant and T is temperature (Beard et al. 2004, Kummel et al. 2006, Maskow
and von Stockar 2005, Qian and Beard 2005). If a chemical reaction step has sources A,
B,. . . and targets U, V,. . . then Eq. (13.2) must hold for the reaction to proceed in forward
direction.

∆GA + ∆GB + . . . > ∆GU + ∆GV + . . . (13.2)

The set of thermodynamic constraints obtained in this way by collecting the respective
inequalities for every reaction step imposes a multidimensional relation between possible
substance concentrations, free Gibbs energies under standard conditions and flux direc-
tions. Because Eq. (13.2) holds both for the steady state and for dynamic transients,
the display of thermodynamic potentials is an interesting complement to other simulation
data like concentrations or fluxes.

13.5.2. The ThermoVis Plug-in

Using the third dimension is an appealing method to represent energy levels in a metabolic
network. Here the analogy between reaction flow and hydrodynamic flow helps to under-
stand the thermodynamic concept more intuitively. For this purpose the plug-in Ther-
moVis has been developed, a three dimensional thermodynamics visualization utility that
visualizes the energies of metabolites and reactions on a two dimensional network using the
third dimension. Such layered representations using the third dimension for information
visualization have also been called “2½D” in the literature (Brandes et al. 2004).
Fig. 13.8 on the next page shows a three-dimensional representation of some parts of

central metabolism with certain measured substance concentrations. Here, the Gibbs
energy potentials of each metabolite is indicated by the height of the metabolite symbol.
†This Section has been published in (Droste et al. 2008a).
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Figure 13.8.: Snapshot of a thermodynamic visualization. Here the citric acid cycle is
shown.

In ThermoVis, reactions are shown as spheres. For fast and intuitive conceiving of the
feasibility of reaction directions ThermoVis uses color. If an assumed reaction direction
is feasible, the reaction symbol as well as the incoming and outgoing edges are colored
green. The opposite case is indicated with red colorization. The tool supports interactive
navigation in the network moving, rotating and zooming in the scene and also by focusing
single reactions or whole pathways.
Many reacting compounds have almost the same Gibbs energy level and, of course,

are not really distinguishable. Because reactions between such metabolites cannot be
classified in their direction ThermoVis indicates size of the reaction’s energy gradient by
the diameter of the reaction symbol (see Fig. 13.8 and Fig 13.9 on the next page).
Fig. 13.9 a) shows a reaction that can be easily directed by the help of the reaction’s

energy level. As exemplified in Fig. 13.9 b) some reactions proceed only in the proposed
direction by using energetic cofactors (like ATP and ADP or NADPH and NADP). These
supporting metabolites balance the missing energy potential and realize the permutation
from low-energetic metabolites to high-energetic ones.
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a) b)

Figure 13.9.: ThermoVis snapshots of single reactions.

ThermoVis is a plug-in for Omix, i.e. it creates the three-dimensional network upon the
two-dimensional drawing. The layout of nodes and edges as well as the visual appearance
is completely taken from the network document. The biggest strength of the plug-in
is: ThermoVis is highly customizable because the visualization is controlled by the OVL
scripting engine. Hence, the user can equip the network documents with own OVL scripts
that map thermodynamic data of any format on the height of the metabolites and radius
of the reaction symbols, respectively.

13.6. Further Features
Further available plug-ins for Omix realize. . .

• . . . network communication protocols. It is possible to load and store data on re-
mote devices via SMB and SSH protocols independent from the executing operation
system.

• . . . data input from the popular spreadsheet programs Excel and OpenOffice.org.
The plug-ins provide classes for OVL that allow users to load corresponding files
directly within the visualization scripts.

• . . . graphics paint engines. Two plug-ins have been available that allow to save
images and animations as Flash file and to produce AVI and MPEG videos from
visualizations of time-dependent data.
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Chapter 14.

Summary and Discussion

14.1. Aims

The aim of this dissertation was the development of a new approach for information
visualization in metabolic networks. The realizing visualization tool must meet following
requirements:

• The approach must combine drawing and modeling features with highly customiz-
able abilities of data visualization.

• The resulting visualization tool must be oriented at the end users and their require-
ments.

• The drawing capabilities of the new tool must allow to create qualitative diagrams
with a biologically motivated symbolism and customizable style.

• Techniques must be provided that accelerate the manual drawing process.

• It must be possible to view the diagrams in different levels of detail.

• The new approach must allow the visualization of data by annotation as well as by
mapping on the visual properties of the network components.

• The tool must face the challenge to be adaptable to a rapidly changing application
field.

• The visualization tool should be compatible with other modeling and simulation
tools. Therefore, the software should be extensible by plug-ins.

The overall vision for this work was to create a tool that is the visual front end in a
scientific work flow as depicted in Fig. 1.6 on page 16. Here, the tool serves as visual
modeling software. The created model is exported to a simulator. Simulations are per-
formed that can be started and controlled in the visualization tool. Subsequently, the
simulation results as well as experimental data are visualized in the network diagram.
The new visualization tool has to be designed such that the simulation tools and data
formats in the scientific work flow are arbitrarily exchangeable.
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14.2. Results

14.2.1. Novel Solutions

The present work successively introduced the software tool Omix, an experimental plat-
form for a large number of novel methods for the customizable visualization in the context
of metabolic networks. The feature sheets (pages 41, 42, 103 and 104) list 67 particular
features of Omix that distinguish the visualization tool from other related approaches.
36 of these features are completely novel developments that have not existed until now.
Amongst them are important features like:

• The automatic duplication of multiply connected metabolites (cf. Chapter 3.2.1)

• The manner metabolic pathways are visually represented and the ability to use these
graphical elements for data visualization purpose (cf. Chapters 3.2.2 and 10.5)

• The layout pattern, a skeleton that helps to arrange pathways in the diagram (Chap-
ter 5).

• Motif stamps accelerate the manual drawing process by wrapping multiply occurring
drawing steps (Chapter 6).

• Making visualization of data programmable in the novel Omix Visualization Lan-
guage (OVL) (Chapter 9.1).

• A complete OVL development environment including a debugger for OVL code
(Chapter 9.2).

• Providing extensive visualization features like annotating the network components,
mapping data on the visual appearance of graphical elements and animating time-
dependent data (Chapter 10).

• The Visualization on Demand mode for the interactive exploration of hierarchically
organized data in networks (Chapter 9.3.1).

• A graphical modeling and visualization framework for 13C FLUX 2 (Chapter 13.3).

• 3D visualization of atom transition and isotope labeling networks (Chapter 13.4.2).

The broad usage of the software was proven in several application examples with respect
to the drawing features (cf. Chapter 3.7), the visualization capabilities (see Chapter 10)
and the possibilities in extending the tool with new features (cf. Chapter 13).
By providing extensive flexibility, Omix is very well suited as pre- and post-processing

framework for experimentation and simulation in a multi-disciplinary research field. Bi-
ologists, for instance, can use Omix for creating diagrams, for presenting results and for
interpreting data from the visualizations. Engineers can use Omix for network modeling
and visual data analysis. Mathematicians contribute their expertise in model validation
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and data pre- and post-processing and, finally, computer scientists can realize compre-
hensive visualization methods in OVL, have expertise to develop plug-ins and can embed
the software in scientific work flows.

14.2.2. Extraordinary Achievement
An extraordinary achievement of this doctoral work is the creation of a visualization tool
that is usable, stable and robust combined with a large amount of novel approaches de-
veloped in a one-person project. Killcoyne and Boyle (2009) stated that many tools in the
life sciences were developed only for publication purpose. “The expectation that software
should be as novel as a scientific discovery has meant that even software that a developer
would consider a failure (due to lack of use) can be considered a success by scientists”
(ibid.). This attitude must be seen critically because a novel idea about visualization
published in a journal paper is not necessarily a significant scientific contribution without
being realized in any kind of employable tool.
The maturity state of the here presented visualization tool Omix is far beyond that

of a prototype. The software project consists of ca. 300,000 lines source code originally
developed for Omix. The stability and usability of Omix has been proven, for it is em-
ployed in multiple scientific groups since 2009. Omix has become an established standard

Figure 14.1.: Number of Omix users per national origin.
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Figure 14.2.: Number of registrations over time.

for network drawing and visualization in the Institute of Bio- and Geosciences, IBG-1 of
the research center Jülich. The novel concepts realized in Omix have been published in
nine journal papers and conference contributions.
As has been said before, the program is available for non-commercial, academic use.

Since February 2010, Omix can be downloaded after registration on the website
www.13cflux.net/omix. In March 2011, 89 persons from 67 different institutes in 22
countries worldwide have registered at the download server as shown in Fig. 14.1. The
number of registrations continually increases (cf. Fig. 14.2). All these new customers can
hardly be directly associated with, for instance, international conference talks about the
software. This indicates a broad popularity of the tool.

14.2.3. Realized Vision

In Omix the overall vision is realized as shown in Fig. 14.3 on the next page. The software
allows to create network diagrams. Plug-ins can be activated on the document that equip
the network with certain parameters necessary in computer simulation. Likewise, a plug-
in can realize the user interaction for editing these parameters as has been demonstrated
in Chapters 13.1.1 and 13.3.2. Available plug-ins allow kinetic modeling in combination
with Modelica and the modeling of carbon labeling experiments for 13C FLUX 2. After
creating the diagram and specifying the model parameters the network can be exported
to the simulator specific data format. Here, plug-ins are available for the export to several
simulator specific formats like FML used by 13C FLUX 2 (Dalman et al. 2010a) or SBML
(Hucka et al. 2003).
The plug-in interface allows to equip the application with interactive components and

to develop comprehensive dialogs. By this, a plug-in can realize the control of simulator
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Figure 14.3.: Omix, a visual front end in a scientific work flow consisting of network
modeling, simulations and experiments, data visualization and presenting of
results.

programs. Many simulators are command line applications. By providing a window-
based dialog system for handling the simulations the user friendliness of those simulators
is enormously enhanced. This is demonstrated by the launcher plug-in for 13C FLUX 2
introduced in Chapter 13.3.3.

After simulation the results can be visualized in the network diagrams by creating a
specific visualization solution adapted to the given situation. By default Omix can handle
the CSV file format but the software can be extended by further file filters for the import
of data from experiment and simulation. The FWDSim data format of 13C FLUX 2
(Dalman et al. 2010a) is fully supported by an available plug-in (cf. Chapter 13.3.4). The
visualization can be used for presentation of results, scientific discussions and publication.
The software provides a set of export filters for generating images. Even this set can be
extended by plug-ins as demonstrated in Chapter 13.6.

The full cycle of modeling, simulation and visualization depicted in Fig. 14.3 has been
realized in the context of this work for the 13C FLUX 2 simulation framework. It has
become clear, that Omix can be employed as visual front end for many other simulators
dealing with metabolic networks only by implementing the necessary interfaces between
the simulators and Omix in plug-ins.
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14.3. Future Perspectives

Although the here presented visualization approach brings a large number of new features
that meet the urgent requirements of the research context, many wishes remain unfulfilled.
This section provides ideas for possible future projects in combination with the here
presented customizable visualization approach.

14.3.1. Other Network Layers

As introduced in Chapter 1.8 the current approach focuses on metabolic networks. A
possible future work can concentrate on the extension of the approach by the ability to
visualize genetic networks and signal transduction networks. Here, essential work has
been done in other approaches dealing with the layout of large scale networks (Batagelj
and Mrvar 2002, Shannon et al. 2003, Freeman et al. 2007). An interesting issue would
be to combine these approaches with the script-based data visualization presented in this
work.

14.3.2. Network Layout

Another interesting task is the combination of the layout pattern approach (cf. Chapter
5) with automatic layout algorithms. The layout pattern is well-suited to arrange familiar
pathways from a given layout-less network. However, in case of large networks this takes
only a rather short phase of a very time-consuming drawing process especially when most
network parts are unknown. Here, the manual arrangement of network components could
be prepared by applying for instance force-directed placement whereas all nodes and
edges on the layout pattern are fixed. It would be interesting to evaluate whether the
combination of semi- and full-automatic layout improves the time factors while preserving
the traditional layout conventions in a network drawing process.

14.3.3. Metabolic Flux Analysis

Atom Transitions

In the modeling process of carbon labeling experiments the atom transitions of the indi-
vidual reactions are edited with an abstract representation of the involved metabolites.
However, the representation of the atoms of a molecule by a set of colored circles is
not intuitive (cf. Chapter 13.3.2). It would be appealing if the single metabolites are
represented by the actual chemical structure of the compound. This would enormously
improve the visual modeling process because structural errors in the transition models
can immediately be identified.
The crucial gap is the lack of standardized atom numbering. The FML format of the

13C FLUX 2 simulator only represents atom transitions in abstract manner. The actual
position of the atoms in the molecules is not specified in FML. The Mol plug-in introduced
in Chapter 13.2 computes the visual image of chemical structures from the Mol data
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format (Dalby et al. 1992). Unfortunately, this format does not include a standardized
sequence of atoms. Two Mol files can represent the same molecule with different atom
order. Here, a promising solution may be given in the InChI code, a textual, unified
representation of chemical molecules (Stein et al. 2003). The InChI code realizes a unique
atom numbering, however, atom coordinates are not represented. Therefore, converters
between InChI and Mol exist.
An important future task is the utilization of the InChI code for the visualization of

chemical structures in combination with the modeling of atom transitions. A related task
is the extension of the CumoVis plug-in by the ability to visualize the spacial structures
of the single molecules.

Measurement Data

Another required improvement of the 13C FLUX 2 Modeling Plug-in is the ability to
load measurement data into the model. Currently, this can only be done by manually
copying contents into the FML files in a usual text editor. However, this procedure is
very error-prone. An interesting solution would be to realize inter-process communication
between the data post-processing software tools and the Omix plug-in for a file-system-
independent exchange of measurement data. Here, another crucial gap is the lack of
unified identifiers of reactions and metabolites. Sooner or later this can only be solved
by embedding the modeling processes in an integrative scientific work flow system that
utilizes various databases for the unification of identifiers.

14.3.4. 3D Visualization
As demonstrated in Chapter 13.5 the third dimension is suitable for the visualization of
information on a planar network diagram. An interesting task would be to find other
application fields for this approach, for instance, the visualization of network sensitivities.
In the context of 3D visualization, the representation on plain screens hampers the

ability to grasp the spacial dimension of the visualization. Interesting advances have been
published about biochemical network visualization in combination with virtual reality
(Dickerson et al. 2003, Yang et al. 2005; 2006). It should be discussed to equip meeting
rooms of scientific groups with stereoscopy technologies as it nowadays becomes state-of-
the-art in cinemas.
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Appendix A.

Drawing Tool Survey

In this appendix the user guidance and drawing capabilities of selected software tools for
drawing biochemical networks are compared with common graphics and office tools.

A.1. Office Software

Microsoft Office by Microsoft Corporation is a proprietary, widespread collection of vari-
ous office tools including a text processing application and a slide presentation program,
amongst others. A drawing engine is embedded in these tools as shown in Fig. A.1). The
user can draw items on the page or slide from a set of standard shapes like rectangle,
ellipse, triangle, pentagon etc. The shapes can carry additional text that is positioned
in the center of the item by default. Furthermore, text can be inserted as stand-alone
component of the diagram. Beside these components, edges can be inserted. Here, the
drawing engine provides three possible edge shapes: line, piecewise linear curve with
orthogonal segments and S-bend. Edges can be connected to the graphical items at a
number of docking positions. By this, flux diagrams can be created. In addition to the
standard sets for graphical items and edges, the user can draw arbitrary item shapes or
edge curves. Here, the shapes can be edited as sequence of cubic Bézier curves (Bézier
spline; refer Salomon 2006).
The single utilities for drawing components on the drawing area are available on a

toolbar (cf. Fig. A.1). Every drawing step consist of activating the corresponding feature
on the toolbar and dragging over the drawing area in order to define the shape or bounds
of the new component. The single drawing utilities are only active until the corresponding
component is inserted in the diagram. The activity of the drawing utility is indicated by
the mouse cursor.
Graphical items and edges can be changed in their appearance in many ways. After

selecting a component a further toolbar appears giving access to the item’s visual proper-
ties. The user can change the fill, line thickness, line shape, arrows etc. Furthermore, the
items can be equipped with a drop shadow or three-dimensional perspective. Drawings
in a text document or a slide show can be exported from Microsoft Office to established
image formats like PNG, TIFF and JPG. An open source software collection with nearly
the same drawing features and a comparable user guidance is OpenOffice.org.
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Figure A.1.: Screen shot of the office software Microsoft PowerPoint.

A.2. Graphics Software
A popular graphics software is Corel Draw, a proprietary drawing tool by Corel Corpo-
ration (see Fig. A.2). The software is vector-oriented and aims at providing high quality
graphics. Corel Draw allows to edit multiple graphics simultaneously. The single docu-
ment is page-based. Multiple pages can be created each carrying an independent drawing.
The drawing area always shows one page. Axis rulers, a background grid and the option
to insert guides help to locate items on the drawing area.
In Corel Draw, arbitrary graphical components can be drawn. The software provides

several standard shapes like rectangles, ellipses and polygons available as utility button
on a toolbar. Moreover, the user can create arbitrary figures with a freehand bend utility.
Curves are represented as Bézier splines that can be handled very intuitively. Curve
editing is done with an extra utility. The utility allows to split and join curves, define the
curve smoothness and even change the edge direction. Furthermore, different operations
can be performed on multiple polygons like combination, union and intersection. The
software also allows the integration of text fields in diagrams.
In Corel Draw, the activity of a drawing utility is always indicated by the appearance

of the mouse cursor. Here, the cursor shows individual symbols for the different active
features. A drawing utility is always enabled until the user selects another tool. The
single features of the drawing tool are available as individual buttons on the left, vertical
toolbar shown in Fig. A.2.
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Figure A.2.: Screen shot of the graphics design software CorelDraw.

The visual appearance of the graphical components can be adapted in many ways. Here,
Corel Draw has some outstanding features that allow filling shapes with color gradients,
fill patterns and generated textures that can be freely parametrized. When a graphical
component is selected in the drawing area, a further toolbar appears giving access to the
particular properties of the component like position, width and height. Furthermore, the
style preferences of selected components can be simply changed by choosing corresponding
utilities on the toolbar, for instance, the fill color utility used to change a rectangle’s color.
Analog to office software, flux diagrams can be created in Corel Draw by connecting

graphical items with edges and arrows. Corel Draw allows the export of drawings into
a large set of image and vector file formats. Other widespread vector graphics programs
are Adobe Illustrator, Microsoft Visio and Inkscape which provide similar functionalities
and user guidance.

A.3. Drawing Software for Biochemical Networks

In the following, a review is given about three selected software tools that are developed
for the application field of biochemical network. All tools deal with modeling and/or
visualization of biochemical network as pre- and post-processing of experiment and sim-
ulation.
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A.3.1. CytoScape

CytoScape is an open source visualization software for biochemical network originally
developed at the Institute of Systems Biology in Seattle, USA and published by Shannon
et al. (2003). Fig. A.3 shows a screen shot of the main window. The software allows to
map data to the visual properties of network nodes and edges in the network diagram. By
this, the software realizes the visualization approach advocated in this thesis. Hence, it is
worth taking a look on the network drawing capabilities of the application as a comparable
related work.

Figure A.3.: Screen shot of the visualization tool CytoScape.

In general, CytoScape can be used to draw metabolic network diagrams. However, the
user guidance of CytoScape is very different from the above discussed office and graphics
programs and, in most cases, takes a lot of getting used to:

1. The software is not document-based but session-based. A session can contain mul-
tiple networks, each drawn and displayed in an own subwindow. The entire session
is stored in a file. Only one file can be opened simultaneously.

2. The network editing utilities are not directly present on the main window. They do
neither appear on the toolbar nor in the menubar. On the left side the main window
contains a sidebar called “Control Panel”. This window component contains a tabs
representing further subcomponents. Here, the third tab called “Editor” reveals the
utilities for inserting edges and nodes as shown in Fig. A.3.

3. The edge and node adding feature is not available as tool button. A node and edge
symbol is displayed on a label widget. By dragging the node symbol and dropping
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it above the drawing area, a new node is inserted. New nodes are initially labeled
with a consecutively numbered default name.

An edge is inserted between two nodes by dragging the edge symbol from the control
panel dropping it above the start node and, subsequently, clicking on an end node.
By this, it is not yet defined, what kind of biological entities the nodes represent
and what kind of relation the edge displays.

4. The type of a node and likewise of an edge is property of the network item that
must be specified in the “Data Panel” which is a sidebar at the bottom of the main
window. After selecting components in the diagram area their properties appear
as rows in a table. Initially, only an identifier attribute of the nodes and edges is
displayed as column. The next step is to activate further displayed attributes from
a menu. The attributes “NODE_TYPE” or “interaction” can be edited to define
the type of the selected node and edge, respectively. As a further limitation, the
attribute editor does not offer a set of valid options. Without expert knowledge it
is simply impossible to make the correct input.

5. Changing a node’s or edge’s visual appearance is done globally in the style sheet of
the diagram. The network style includes global appearance properties for all nodes
and for all edges. Thus, in case of a metabolic network where two node symbols
are required, i.e. for metabolites and reactions, all reactions in the diagram have
to be changed individually in order to have a different appearance. Access to the
individual visual properties of a node and edge, respectively, is given in the context
menu. Here, the user can override the global settings for the respective network
component.

6. The drawing area does not offer scrollbars. Moving the drawing area in the bounds
of the displaying window component is done in a “bird’s-eye-view”. being a small
overview image of the diagram displayed on the left side of the main window. The
bird’s-eye-view shows the entire diagram and a rectangle representing the the cur-
rently displayed subsection. By moving the rectangle in the overview diagram, the
drawing area is scrolled.

This completely exceptional user guidance makes the access to the software very hard
for someone who is accustomed to office or graphics software. Actually, CytoScape
cannot be recommended for drawing metabolic networks from scratch. The user guid-
ance let the drawing process be even more time consuming than in a common drawing
software by guess. This is not an unexpected result because the software’s main pur-
pose is the visualization of molecular interaction networks with gene expression profiles
(Pavlopoulos et al. 2008). In this application field, networks are not drawn manually but
origin from databases or are computed from experimental interactome data.
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A.3.2. Vanted

Vanted is a visualization software developed at the Leibniz Institute of Plant Genetics and
Crop Plant Research (IPK), Gatersleben, Germany and originally published by Junker
et al. (2006). Gehlenborg et al. (2010) list Vanted as one of a small set of tools that are
recommended for building metabolic network diagrams from scratch or editing existing
ones. Fig. A.4 shows a screen shot of the main window.

Figure A.4.: Screen shot of the visualization tool Vanted.

Vanted is a document based program. Multiple network files can be edited simultane-
ously. One file can only contain one network. For drawing a network the tool provides
only two utilities. The first utility allows to insert nodes as well as edges and the second
one is used to select items in the diagram, to move and to reshape them. Both utilities
are available as tool buttons on the left, vertical toolbar in the main window. When the
utility for creating nodes is active, the mouse cursor shows a hand shape indicating that
components can be inserted. By clicking on an empty area in the diagram, nodes are
inserted. They appear as initially unlabeled and uncolored rounded squares. By clicking
on a node, edge drawing is started. By subsequently clicking on the drawing area control
points are inserted that define the shape of the Bézier curve. After clicking on a second
node the edge is finally inserted.
Thereafter, the moving/selecting utility allows to edit the single components individu-

ally and define their visual appearance. Double-click on a node or edge opens a property
dialog window. Here, a label can be entered. Furthermore, the visual properties of a se-
lected node and edge can be edited in the right side window. Here, a few visual properties
like font, text color, fill color, frame color, line thickness, arrow head and shape can be
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changed. For edge editing, Vanted implements Bézier curve handling usability. Against
the common standard, edges are not realized as series of cubic Bézier curves but as single
Bézier curve of arbitrary degree. Every time the curve is dragged in a certain direction,
a further control point is inserted. By this, the degree of the Bézier curve continually
increases. The only way to diminish the number of control points is to remove all of
them by converting the curve into a line. Another confusing behavior of the software in
combination with edge editing is that the single control points disappear while they are
moved.
By default, nodes and edges in Vanted do not represent a biological entity. They

are just network components. There is no way to assign a biological semantics to the
graphical items. Thus, it is not possible to export the diagram inherent network topology
to a simulator. Consequently, Vanted documents do not contain models, they are just
diagrams for visualization purpose. The lack of semantics of the diagram components
in Vanted is especially problematic in metabolic networks. As introduced in Section
1.5, metabolic networks can be represented either by hypergraphs or by bipartite graphs
(cf. Fig. 1.3). Unfortunately, Vanted does neither support hyperedges nor two node types
by default. There is an add-on available integrating the semantics of the Systems Biology
Graphical Notation (SBGN) (Le Novere et al. 2009) into Vanted (Czauderna et al. 2010).

A.3.3. CellDesigner

CellDesigner is an editor for genetic and metabolic networks. The tool serves as modeling
tool for various simulators by supporting the Systems Biology Markup Language (SBML)
(Hucka et al. 2003) in combination with the Systems Biology Workbench (Sauro et al.
2003). The software first published by Funahashi et al. (2003) has been developed in
multiple Japanese institutions and is freely available. Like Vanted, Gehlenborg et al.
(2010) recommend CellDesigner to be used for pathway drawing purpose. Metabolic
networks in CellDesigner are drawn as SBGN process diagram.
CellDesigner is a document-based editor. Multiple documents can be edited simulta-

neously. The main window of the software is shown in Fig. A.5. After creating a new
document, the user is asked to define the maximal bounds of the diagram. The dimen-
sions of the new diagram must be well-approximated because they can never be changed
anymore. Thereafter, network components can be added to the drawing area. For this,
the software provides over 30 different node and edge symbols which requires background
knowledge about their semantic meanings. The utilities for adding nodes and edges are
available on several toolbars in the main window. Nodes are added to the drawing area
by choosing one of the node adding utilities and simply clicking on an intended position in
the diagram. The mouse cursor does not indicate the activity of an adding utility. Before
a component is inserted, the user must enter the dedicated name of the new biological
entity. After adding a component, the editor returns to the selection mode.
Nodes are equipped with docking positions for edges. For adding edges to the drawing

area, a docking point of a source node and of a target node has to be selected. As a
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Figure A.5.: Screen shot of the network drawing software CellDesigner.

particular feature, CellDesigner allows to add further source and target nodes to edges
and, by this, realizes a proper hypergraph representation of the network.
In the selection mode, nodes and edges can be selected, moved and changed. Changing

the visual appearance of nodes is restricted to the node bounds, fill color, stroke thickness
and font size. The node shape cannot be changed unless the node type is changed. Edges
can only be adapted in their color and line thickness. Concerning edge shapes the user only
has the choice between a straight line and a polyline with optionally orthogonal segments.
Basically, CellDesigner allows the global definition of node and edge appearances in the
application’s preferences.
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Evaluation of the Semi-Automatic Layout
Approach

B.1. Case Study Design

To investigate the effectiveness of the semi-automatic layout techniques developed in Part
II a case study has been performed consisting of two phases. In the first phase, a layout-
less network had to be drawn with Omix either with or without the assistance of the
semi-automatic techniques. In a second phase, the resulting diagrams were rated by a
jury. The case study does not represent an exhaustive evaluation but it demonstrated the
use of the layout pattern and motif stamps for network drawing.

B.2. Elaboration

Sixteen researchers with bio(techno)logy background from five scientific groups partici-
pated in phase one. One half of the participants was encouraged to use the semi-automatic
layout techniques (group 1) whereas the other half was banned from using them (group 2).
The network to be drawn was medium-sized (44 metabolites and reactions composed in
five metabolic pathways, cf. Fig. B.1). The network topology did not contain duplicated
metabolites. A sample solution was not made available. In order to introduce the draw-
ing capabilities of the tool and using the layout pattern as well as the motif stamps we
provided video lessons. After a short training phase the network was to be drawn and the
time effort for the drawing exercise was measured. It was up to the participants to chose
a personal trade-off between drawing fast and drawing a “nice” diagram. After finishing,
group 1 was asked to assess the ease-of-use of both semi-automatic layout techniques and
their benefit for solving the exercise.
In the second phase, the drawing results were examined by ten experienced life scien-

tists. In addition to the manual drawings, a set of diagrams has been created by applying
automatic graph layout algorithms on the given network. Every jury member received
a random collection of automatically, full-manually and semi-automatically drawn dia-
grams. Each drawing was rated with respect to its recognition value and aesthetics.
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a) b) c)

Figure B.1.: Selected results of the network drawing case study: (a) automatically (spring
embedded layout), (b) manually and (c) semi-automatically drawn network.

B.3. Results

The results of the surveys are shown in Tables B.1 and B.2. Fig. B.1 shows one example
diagram from the automatically generated (Fig. B.1 a), the manually drawn (Fig. B.1
b) and the software-assisted drawn networks (Fig. B.1 c) in each case. In average, the
semi-automatic layout methods accelerated the drawing process for about half an hour
that roughly is 20% of the average duration (see Table B.1). The expert group valued the
recognition value as well as the aesthetics of the automatic computed diagrams very low
(see Table B.2). The recognition value of both, full and partly manually drawn networks
were comparably rated in the upper third. That is not surprising because the central
pathways of all diagrams were arranged according traditional conventions (cf. Fig. 4.1 on
page 46). The aesthetics of the semi-automatic drawings is slightly higher valued than
the manual drawings. Here, it was noticeable that the nodes and edges of the TCA
pathway in nearly all semi-automatic drawings were shaped to a perfect circle in contrast
to the manual arrangements (cf. Fig. B.1 b and c). This noticeably improves the aesthetic
impression as well as the recognition value of a diagram.

The benefit of the layout pattern for solving the exercise was assessed 6.9 and of the
motif stamps 6.4 in average (1=not useful, 10=very useful) (cf. Table B.2). The ease-of-
use of the layout pattern was valued 6.1 and of the motif stamps 7.0 in average.
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Time Effort Recognition Value Aesthetics
Automatic Drawing < 1 min 1.6 1.7
Manual Drawing 2:07 hours 7.6 5.8
Semi-Automatic Drawing 1:40 hours 7.7 6.7

Table B.1.: Time effort and ratings of the diagrams drawn with different approaches. The
ratings were given from a scale between 1 and 10 (1=very low, 10=very high).

Benefit Ease of Use
Layout Pattern 6.1 6.9
Motif Stamps 7.0 6.4

Table B.2.: Benefit of the two semi-automatic layout methods (1=not useful, 10=very
useful) and ease-of-use (1=very difficult, 10=very easy).

B.4. Conclusion
The case study demonstrates, that the semi-automatic layout techniques reduce the time
effort to manually layout a diagram according to established layout standards while they
simultaneously improve personal aesthetics. From further, informal discussions with the
participants it was found out that the layout techniques were considered valuable for
the arrangement of familiar pathways but that the most time-consuming issue was to
understand unfamiliar parts of the network before being able to arrange them. In a
scenario, where the drawing process intimately lies in the research objective of the user,
the layout techniques may be more beneficial. This scenario, however, was not intended
by this case study and remains as an interesting future evaluation task.
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