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Abstrakt

Diese Arbeit beleuchtet sieben neuartige Ansätze aus zwei Bereichen der maschinellen

Wahrnehmung: Erkennung von Vegetation und Klassifizierung von Gelände. Diese

Elemente bilden den Kern eines jeden Steuerungssystems für effiziente, autonome

Navigation im Außenbereich.

Bezüglich der Vegetationserkennung, wird zuerst ein auf Indizierung basierender

Ansatz beschrieben (1), der die reflektierenden und absorbierenden Eigenschaften

von Pflanzen im Bezug auf sichtbares und nah-infrarotes Licht auswertet. Zweit-

ens wird eine Fusionmethode von 2D/3D Merkmalen untersucht (2), die das men-

schliche System der Vegetationserkennung nachbildet. Zusätzlich wird ein inte-

griertes System vorgeschlagen (3), welches die visuelle Wahrnehmung mit multi-

spektralen Methoden kombiniert. Aufbauend auf detaillierten Studien zu Farb- und

Textureigenschaften von Vegetation wird ein adaptiver selbstlernender Algorith-

mus eingeführt der robust und schnell Pflanzen (bewuchs) erkennt (4). Komplet-

tiert wird die Vegetationserkennung durch einen Algorithmus zur Befahrbarkeit-

seinschätzung von Vegetation, der die Verformbarkeit von Pflanzen erkennt. Je

leichter sich Pflanzen bewegen lassen, umso größer ist ihre Befahrbarkeit.

Bezüglich der Geländeklassifizierung wird eine struktur-basierteMethode vorgestellt

(6), welche die 3D Strukturdaten einer Umgebung durch die statistische Analyse

lokaler Punkte von LiDAR Daten unterstützt. Zuletzt wird eine auf Klassifizierung

basierende Methode (7) beschrieben, die LiDAR und Kamera-Daten kombiniert,

um eine 3D Szene zu rekonstruieren.

Basierend auf den Vorteilen der vorgestellten Algorithmen imBezug auf die maschinelle

Wahrnehmung, hoffen wir, dass diese Arbeit als Ausgangspunkt für weitere En-

twicklung en von zuverlässigen Erkennungsmethoden dient.



Abstract

Environment sensing is required in order for robots to operate safely in either shared

workspaces between robot and human or unpredictable natural environments. How-

ever, available perceptual inference algorithms require many smoothness assump-

tions such as a flat ground plane, straight walls, and so on; thus their efficiency

depends on the degree of smoothness of the beliefs. In the real world, such these

assumptions often fails, leading to unreliable perceptual inference results. In fact,

there exists some investigations on making perceptual inference robust, but the re-

sults vary significantly under different outdoor scenarios. This is caused by the lack

of information due to the range discontinuities given by a LiDAR. Hence, robustly

classifying terrains into object types which benefit autonomous navigation is still

a challenging problem. Alternatively, current autonomous navigation techniques

only work well in highly structured environments such as on-road, hallway and

campus where objects are usually rigid and static, but fail to deal with cluttered

outdoor environments. Particularly, vegetated terrain introduces one more degree

of freedom to the problem that what is considered as an “obstacle” from a purely

geometric point of view, may not represent a danger for the vehicle if it is com-

posed of compressible vegetation. While current perception-based techniques do

not operate efficiently in terrains containing vegetation, the most reliable way for

navigation in such situations is to detect vegetation areas in the viewed scene, and

then enable possible strategies to cope up with.

Motivated by concrete robotics problems, we explicitly pursue solutions for two

perception tasks: Vegetation Detection and Terrain Classification, which are at the

core of any control system for efficient autonomous navigation in outdoor environ-

ments. Consequently, we have achieved eights contributions related to those tasks,

which have been published in peer-review journals and conferences, and are also

introduced in this thesis.

Regarding vegetation detection, we first describe a vegetation indices-based method

(1), which relies on the absorption and reflectance properties of vegetation to visual

light and near-infrared (NIR) light, respectively. Unlike previous art which focused

on applying polarized filters and colour filters to reduce illumination effects, we



study a new multi-spectral device which is equipped an active NIR lighting sys-

tem. By adding such independent light, the NIR reflectance is stabilised by ad-

justing the light intensity, and then a stable multi-spectral system is achieved by

simply setting the gain of colour sensor as an off-set of that of NIR sensor. We will

show through practical experiments that the proposed system setup really provides

the most stable multi-spectral system available. Within using the proposed multi-

spectral system, we devise a new vegetation index, the so-called Modification of

Normalized Difference Vegetation Index, through a regression analysis on red and

NIR reflectance changes in term of luminance. Through evaluation on a diverse

set of databases given by real robotics experiments, it is confirmed that the new

index far outperforms other indices as well as other available methods with regard

to vegetation detection in different lighting conditions, and under different illumi-

nation effects. Since vegetation detection is very easy done by human eye, human

perception-based methods are also of our interest. Within this regard, we present

a 2D/3D feature fusion method (2), which collects the world information from a

CMOS camera and a LiDAR in order to extract and fuse 2D/3D features to gener-

ate vegetation classifier. The classifier performs well and far better than previous

classification-based methods in accuracy, but similar in processing time. On the

other hand, a general vegetation detection using an integrated vision system (3) is

proposed to realise our greedy ambition in combining visual perception-based and

multi-spectral methods by only using a single device. The device is termed Mul-

tiCam, which mounts both the CMOS sensor and the Photo Mixer Device (PMD)

sensor into a molecular setup, and thus provides simultaneously colour, NIR inten-

sity and depth information. Even though the given depth information is not accurate

enough for any geometric distribution analyses, there are still good spatial features

extracted based on the interesting finding that there is a significant reduction of il-

lumination noise inside vegetation regions in the given depth image; this may be

explained by the strong reflectance of vegetation to the NIR light. Since the Multi-

Cam can operate as fast as a regular video camera, this approach is able to capture

both visual and spectral reflectance properties of vegetation while still producing

high frame rate. Consequently, this approach provides much higher accuracy and

higher frame rate than previous classification-based approaches or even the 2D/3D

feature fusion approach. By observing that the method (1) can be comparable to

the method (3) in accuracy in most cases, except it could not distinguish between

vegetation and warm or strong NIR reflectance objects and its performance in dim

lighting conditions is poor; in contrast, the method (1) produces the frame rate as



six times higher as that of the method (3). We come out with the idea of creating

a fast adaptive learning algorithm to detect general vegetation with the follow-up

of the system setup in the method (1). The algorithm is termed Spreading Al-

gorithm (4). It is an iterative region-growing technique coupled with annealing,

which is based on an annealed criteria, a convex combination of colour and tex-

ture dissimilarities. Remarkably, the unstructured texture feature derived within

this work is really distinct, which is able to intuitively distinguish vegetation from

other artificial dense edge objects; this is infeasible in previous approaches. In-

stead of building colour models, this method conducts an intensity shift-invariant

colour feature which is able to guarantee detecting variety of vegetation appeared

in different colours. Overall, the Spreading Algorithm far outperforms the state-of-

the-art, or provides the most efficient and robust vegetation detection mechanism.

Finally, in order to answer the question if the detected vegetation is passable or not,

we present an active approach for a double-check of passable vegetation detection

(5). The novel approach relies on the compressibility or less-resistance of vege-

tation, which is supposed to be movable by a strong wind. Hence, we design our

robot system with blowing devices which create strong wind to effect vegetation.

Motion detection and motion compensation techniques are applied detect moving

objects. Moving vegetation is pointed out through a mapping between the moving

objects and the detected vegetation (using one of the above methods). On the other

hand, the degree of resistance of vegetation is estimated by recording its movement

through an optical flow process. Consequently, the lower degree of resistance veg-

etation has, the more traversable it is. For the purpose of autonomous navigation,

the region of interest should be right at the front of the robot. Within that restric-

tion of region of interest, the performance of the method is really impressive with

high stability, accuracy and efficiency, which has been confirmed through many real

robotics experiments in both morning and afternoon conditions.

Regarding terrain classification, we first introduce a structure-based method (6)

to capture the world scene by inferring its 3D structures (linear, scatter, surface)

through a local point statistic analysis. Instead of sliding a cube in space to select a

local region to be analysed, a segmentation of the point cloud in terms of homoge-

neous distance and neighbourhood is proposed to result objects in form of regions

of interest. Thus, the proposed method is more flexible to cope with different ter-

rains, and avoids the problematic selection of the cube’s size. As a result, the clas-

sification accuracy is improved about 10% in average. Furthermore, this method

conducts a surface smoothness estimation through measuring distance variation in-



side edgeless regions, thus it is able to classify rough surface objects (low grass,

bushes) and smooth surface objects (wall, concrete road). Secondly, due to the lack

of objective information because of range discontinuities given by LiDAR data, we

propose a novel approach (7) which combines the LiDAR data and colour infor-

mation to reconstruct a 3D scene. Consequently, object representation is described

more details, thus enabling an ability to classify more object types including tree

trunk, human, wall/building, vegetation, sky, and road; this is infeasible in previous

approaches.

Based on the success of the proposed perceptual inference methods in the environ-

mental sensing tasks, we hope that this thesis will really serve as a key point for

further development of highly reliable perceptual inference methods.
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Preface
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Systems, University of Siegen, over the period from April 2009 to April 2013. This

dissertation is the result of my work and includes nothing which is the outcome

of work done in collaboration, except for a few instances which are stated in the

text. The material included in this thesis has not been submitted for a PhD degree

or diploma or any other qualification at any other university. Furthermore, no part

of my dissertation has already been or is currently submitted for any such degree,

diploma or other qualification.

The dissertation presents a number of novel approaches for vegetation detection

and terrain classification using different sensor systems under different configura-

tions. Hence, it would be very large or might causes confusion when writing the

thesis as a traditional monograph. While the number of publications is adicate for

the thesis to be written as cumulative texts, the understanding of the whole work

done within the PhD might be restricted under this format. I find the best way to

present this PhD thesis in the mixture between monograph and cumulative for-

mat. Whereby, different approaches are divided into different groups with respect to

their similarities, then each group is presented in one chapter. Additional chapters

will be added to introduce the motivation and contributions of the thesis, as well

as describe how concretely experiments carried out and the comparison between

available approaches.
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Chapter 1

Introduction

1.1 Motivation

Autonomous mobile outdoor robots which can drive autonomously in cluttered outdoor envi-

ronments have received a good deal of attention in recent years. Various agencies of the US

Department of Defence have become major sponsors of research in this field through DEMO

I, II and III projects; DARPA Grand Challenges. The autonomous off-road robot is foresee

able being employed not only in military operations, but also in civilian applications such as

wide-area environment monitoring, disaster recovering, search-and-rescue activities, as well as

planetary exploration. Different robot systems have been deeply investigated to cope up with

a number of challenging problems in domains needed to be solved as different as perception,

environment modelling, reasoning and decision-making, control, etc. Possibly the biggest tech-

nological challenge for these systems is the ability to sense the environment and to use such

perceptual information for control. Indeed, even if equipped with a Global Positioning System

(GPS) and an Inertial Measurement Unit (IMU), a robot still needs additionally reliable envi-

ronment sensing for autonomous operation beyond the line of sight of the operator. Also relying

purely on self-localisation could not lead to a safe and reliable autonomous navigation. First,

the resolution of GPS or prior environment maps is too low for tasks such as obstacle avoid-

ance. Second, the elevation information given by GPS is not accurate. Third, the information

provided by the prior environment maps is easy to become obsolete. Thus, environment sensing

is essential for any autonomous navigation tasks, especially in complex outdoor scenarios. It

should be clear that driving in outdoor, non-urban environments has to deal with more com-

plications, such as natural terrain, lighting changes, variety of unknown materials, and other

uncertainties, than driving indoors or in urban scenarios. In an indoor environment, one may

expect the ground surface in front of the robot to be planar, which helps detect obstacles as

something sticking out of the ground plane. In addition, the colour and texture of objects are
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often persisted from different viewing angles, which leads to ease the object recognition task

based on visual features. In contrast, a traditional definition of a lethal obstacle as an object

which is rigid and has significant height fails totally to deal with vegetation-like objects, for

example tall grass, tuft and small bushes, which are actually passable in real world navigation

tasks. This issue is more critical in the case of operating in a corn field, where the robot is not

able to move due to all paths blocked by dense geometric obstacles (tall grass, small bushes).

Also, on a bumpy dirt road the robot should constantly determine which bumps and holes are

small enough to be negotiated and which ones should be avoided. Other challenging situa-

tions include the illumination effects such as under/over exposure, shadow, shining, or presence

of negative obstacles like ditches, elements such as water, mud or snow, and bad atmospheric

conditions such as fog.

Taken all the above into account, this thesis addresses a set of perception tasks that are at the

core of any control system for efficient autonomous navigation in outdoor environments. More

precisely, we introduce new algorithms for (1) terrain classication and vegetation detection (2).

(1) Terrain classification without doubt is of utmost importance for autonomous navigation

especially in the recognition of a traversable or non-traversable terrain, thus attracting numerous

studies in robotics. However, existing algorithms apply mostly to urban or indoor environments

and do not work well under off-road conditions. This is because typical assumptions about the

scene, such as the existence of at ground surface, do not hold in this case. Therefore, this thesis

presents new approaches which investigate both 3D spatial distribution and visual features,

and fuse them to result in a robust terrain classification in outdoor environments. Feature-

based approaches proposed instead of the pixel-based enable our algorithms to capture much

more detailed object features than does prior art, and thus lead to a more robust classification

mechanism.

(2) The current terrain classification techniques mostly consider all obstacles as rigid and

static, which, however, fails totally to deal with vegetation-like obstacles. For example, the

appearance of a branch of leaves or tall grass looks exactly like lethal obstacles with respect to

conventional views, that the vehicle needs to avoid. Such unnecessary avoidance problems

coming up for the robot potentially lead to a situation of off-road driving or task-rejection

in complex outdoor environments. Therefore, a fully-functional navigation system working

outside essentially has to be equipped with a vegetation detection module. Surprisingly, the aim

of exploiting the mobility of an autonomous ground vehicle (AGV) has been accelerated very

soon while the consideration of affection given by the presence of vegetation in the vehicle’s

way seemed to be ignored or just few works done. Meanwhile, the presence of vegetation

is almost everywhere in the nature as well as its affection on the mobility capability of the

autonomous ground vehicle is huge. Locating vegetation areas in a scene helps not only to
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determine which traversable way to pass but also to understand the local environment for a re-

localisation purpose worthy of use in the case of Global Positioning System (GPS) loss. Also,

driving on grass or leaves for example would increase wheel slippage, which causes errors in the

odometry. Hence, vegetation lets the robot know which types of terrain it is dealing with, and

thus which strategies should be applied. In fact, only when the task of forest exploration was

given to autonomous ground vehicles recently, a large amount of researches started focusing on

vegetation detection, whereby the aim of mobility has switched to the next higher level, from

querying road or obstacle to which obstacles can be driven over and which need to be avoided.

Nevertheless, to approach a solution for the problem of vegetation detection, a diversity of ways

was proposed, underlining different techniques and different models on using different sensors

and so on. In order to evaluate those approaches, a structured overview of vegetation detection

should be shown beforehand. Therefore, this dissertation reviews the remarkable works done for

vegetation detection in outdoor navigation in a structured way. Alternatively, due to limitations

of the available approaches where a trade-off usually needs to be made between precision and

processing-time, a real-time and robust vegetation detection system is still infeasible. Hence,

this thesis addresses novel approaches in order to result in a real-time and robust vegetation

detection system.

1.2 Problem Description

1.2.1 Terrain Classification

According to the literature of robotic research, terrain classication is generally categorized as

vision-based, reaction-based or a combination of vision and reaction-based methods. Vision

and reaction-based approaches are analogous to a human driver’s recognition of a terrain based

on what is seen visually and felt through the vehicle’s reactions during traversal of the terrain.

The reaction-based method is mainly used for generally classifying different types of terrains,

such as soil, mud, concrete, rock, and snow. This is commonly based on estimating the vibration

of the robot as well as the resistance from the wheels through traversability. Such classification

only helps for speed control and has been done successfully using the available terrain models.

The more important and crucial aspect is to visually classify a terrain into traversable or non-

traversable parts, or in advance into many different object types such as ground, surface (wall,

building), linear structure (wire), positive scattering structure (barbed wire), negative scatter-

ing structure (tall grass, small bushes), etc. Consequently, an optimal path to go is computed

based on the classified terrain. The later method is called vision-based terrain classication and

typically performed using cameras or laser rangefinders. The traditional vision-based terrain
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classification relies solely on analysing 3D distribution of point clouds given by a LiDAR, or

stereo cameras. Meanwhile, scene interpretation based purely on geometric point of view is

very difficult, even for human experience and knowledge. Indeed, let’s start with very general

issues as many objects exist in quite similar 3D structures, so it seems to be impossible to clas-

sify them solely by point cloud analysis; when two or more objects are near each other, they

appear as one in the point cloud; many complex objects like vegetation might exist in different

shape, so it is not possible to build common 3D models for them; etc.

Particularly using a LiDAR, one might face more problems due to the scattering effect

of beam scattering angle. Whereby, lacking information of far objects usually causes mis-

classification. Furthermore, the LiDAR has to sweep up and down to scan the environment,

which is extremely time-consuming to acquire the whole frame of point cloud. This hinders

many real-time applications.

On the other hand, even though stereoscopic imaging provides both colour and distance

information, it also costs much time for calibration and rectification in order to obtain a good

depth. The effect of light changes in outdoor is really huge for such the approach, thus its

performance behaves differently in different lighting conditions. Especially, this approach can

not be used at night time. Overall, the depth produced by the stereoscopic imaging techniques

is not that trustable to be used for the safe navigation, and thus needs more investigation and

innovation.

Therefore, this dissertation tries to answer the question if it is possible to improve the speed

of the LiDAR so that it can be used for real-time applications. Also, we would like to clarify if

it is also worth to combine 2D and 3D approaches or fuse colour, texture with 3D distribution

information in sense of producing better feature vector components to train object classifiers.

1.2.2 Vegetation Detection

Regarding vegetation detection, it is intuitively trivial for human eye, but not at all for the robot

eye. Human eye is able to recognize reflectance changes without considering shadows and un-

exposed effects; contrariwise, using image processing techniques, an increasing or decreasing

in reflectance could happen under different lighting conditions. Indeed, regarding the view-

point of image processing, first, there are no specific shape and texture of general vegetation.

Second, although vegetation normally owns typical colours such as green, red orange, and yel-

low, the colour descriptor-based vegetation detection is unstable due to light colour and light

intensity changes under different sunshine conditions in outdoor environments. So, it should be

made clear that many publications regarding pattern recognition mentioning grass/leaf detec-

tion successfully by using texture and colour information, they however were indicating some

very specific species of vegetation but not vegetation in general. As a consequence, those ap-

4



1.2. Problem Description

proaches were just applied for robots operating in structured environments but not cluttered

ones as investigated in this work. Overall, the only use of colour and texture information cannot

result a robust vegetation detection in complex outdoor environments, which drives researchers

to come up with the other distinct features rather than colour descriptors, or combine many of

them. This might flash an ideal in one’s mind back to use laser scanner data, which is very

stable and precise against lighting changes. Nonetheless, interpreting point cloud is really chal-

lenging. Discriminative features might be extracted from investigating 3D object structures,

but currently it is not feasible to use them to robustly detect vegetation. A fusion approach of

visual and spatial features might be a good way to go, but a 2D/3D calibration problem needs

to be solved beforehand. The complexity of a calibration process between two different vision

systems, together with the computational expensive in extracting 2D and 3D features as well as

fuse and train them to result in vegetation classifier would make the final solution practically

complex or even infeasible for some real time applications.

Alternatively, vegetation is recognised as a visible light absorption specie, especially with red

and blue bands. The cell structure of the leaves, on the other hand, strongly reflects near-

infrared light. Consequently, the ratio of radiances in the near-infrared (NIR) and red bands has

been used as a measure of vegetation index in the satellite remote sensing field. Many different

vegetation indices have been derived based on such relationship of spectral reflectance in the

two bands. Even though those vegetation indices have been widely and successfully used in

many remote sensing applications, for example classifying and positioning the green areas of

the earth surface, it is still a problematic thought to apply them directly for mobile robotics ap-

plications due to drastically different view-points. Regarding to autonomous ground navigation,

there would be more complications to deal with, such as illumination effects (shadow, shining,

under-overexposure), views of sky, and presence of variety of different materials, from which

the reflected light can have a spectral distribution that is different from that of the sunlight.

Indeed, the performance of vegetation indices degrades sharply when an irregular illumination

occurs, while illumination effects are inevitable in outdoor environments. Hence, the only use of

vegetation indices, or standard multi-spectral approach, is not reliable for vegetation detection

in the real world navigation. Finally, since the visible light absorption property of vegetation

is indicated by the amount of chlorophyll inside the leaves, one might raise a question if such

vegetation indices are really useful in detecting different species/types of vegetation, whose

amount of chlorophyll in their leaves diverges considerably. Intuitively, dying vegetation (usu-

ally appeared in yellow, brown or red colour) contains very little chlorophyll. This makes the

problem of detecting vegetation in general become ever challenging.
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1.3 Goald of this Thesis

The purpose of this dissertation is to address the challenging problem of autonomous naviga-

tion in cluttered outdoor environments, and to present new ideas and approaches in this newly

emerging technical domain. The thesis surveys the state-of-the-art, discusses in detail various

related challenging technical aspects, and addresses upcoming technologies in this field. The

aim of the thesis is to establish a foundation for a broad class of navigation methodologies for

indoor, outdoor, and exploratory missions.

Two main topics located on the cutting edge of the state of the art are addressed, from both

the theoretical and technological point of views: terrain classification and vegetation detection.

Terrain classification is studied in a sense of interpreting the surrounding environment as

deep as possible. The knowledge about the local environment will be the key factor for robust

decision making, especially under uncertainty. Concretely, we goal to classify a terrain into dif-

ferent object types, such as ground, smooth surface (wall, building), rough surface (human, tree

trunk), linear structure (wire), positive scattering structure (barbed wire, wired fence), negative

scattering structure (tall grass, small bush, canopy). For that aim, different sensor systems and

techniques are thoroughly researched.

Alternatively, vegetation is treated as a special object to be deeply studied in this thesis due

to a crying need of vegetation detection supporting autonomous navigation in cluttered outdoor

environments. Up to now, there is no terrain classification or obstacle avoidance technique,

which can work properly under presence of vegetation while vegetation exists everywhere in

most of outdoor scenarios. The most reliable way to deal with terrains containing vegetation is

to equip a robust vegetation detection module to locate vegetation areas in the scene, and thus

provides suitable strategies to cope up with. Nevertheless vegetation is really a complex object

so that there still exists no complete solution for such detection task. Therefore, the gold of the

thesis is to get the problem solved completely.

1.4 Novel Contributions of the Thesis

The thesis provides five novel contributions with respect to the task of vegetation detection, and

two novel contributions for terrain classification. Besides, one contribution of depth correction

regarding the data acquisition of Tyzx DeepSea stereo cameras is also shown.
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1.4. Novel Contributions of the Thesis

1.4.1 Fitting plane Algorithm-based Depth Correction for Tyzx DeepSea

Stereoscopic Imaging

First, it should be clear that the thesis aims to solve two problems: vegetation detection and

terrain classification. However, those problems become ever challenging in cluttered outdoor

environments, so that many different approaches have been investigated as well as different

sensor systems are also used to enable possible solutions. Wherein, a new stereo vision system

is presented, the so-called Tyzx Deep stereo camera. Unlike a common stereo camera, the

Tyzx Deep stereo camera is equipped with a hardware module for calibration and rectification

processes, thus a ready depth image is achieved from the output of the camera. Due to the

aim of fast producing depth images and easy implementation, the calibration algorithm used is

the standard block-matching, which is not at that best performance compared with the adjusted

block-matching or propagation. In return, the frame rate of the camera is up to 60 fps. With

respect to our applications where the robot’s maximum speed is at about 3 m/s in an autonomous

mode, we do not really need that fast speed of image acquisition but robust depth information.

Therefore, the work presented in this contribution deals with the poor performance of depth

image generation given by Tyzx stereo vision system under different lighting conditions in both

indoor and outdoor environments. For that aim, we introduce a fitting plane algorithm to correct

distance information as well as to fulfil the missing points in the original depth. First, the colour

image is over-segmented into many small homogeneous regions of interest. Those small regions

can be approximately considered as planar surfaces which form the 3D scene. Since 3D points

inside each small region should found a plane, this insight is then used to enhance the depth

image. Indeed, our algorithm starts with the best fit plane which is built based on the geometric

distribution of all 3D points inside each small region, where the sum of all distances from those

points to the plane is minimum. When the plane has been built, a 3D point is considered as a

defect one if and only if its distance to the plane exceeds three times the average distance of all

the points inside the region to the plane. All the defect points will be removed. The new best fit

plane will be built with the remaining 3D points, and consider if there still exists defect points.

The process is repeated until there is no defect point found. As a result, the last plane is the

so-called fitting plane, which is later on used to fulfil all the missing points in the region.

However, the above technique is just applied for textured regions whose depth information

is available from the output of the Tyzx DeepSea camera. Due to the fact that there is no

depth information on a uniform region from stereoscopic imaging techniques, we presents also

in this contribution a new method to overcome this issue. First, the over-segmentation of the

colour image results in many small regions where edges are segmented as small regions. In the

other words, the neighbours of a uniform region are edge regions. Meanwhile an edge region is

textured one, which should have depth information available. Thus, our algorithm starts another
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loop for depth correction in a uniform region, which relies on the depth information from the

neighbours.

Finally assuming that the environment is made up of a number of small planes, we cer-

tainly make no explicit assumptions about the structure of the scene; this enables the algorithm

to cope up with many different scenes even with significant non-vertical structure. The algo-

rithm has been confirmed to be easily implemented and robust throughout many experiments in

different lighting conditions and different scenarios in both indoor and outdoor environments.

Concretely, the proposed approach enables a 3D reconstruction capability using Tyzx DeepSea

G3 vision system which is infeasible from the raw depth data. Moreover, the proposed algo-

rithm improves more than 48% of 3D reconstruction accuracy compared with the original result

given by the stereo vision system over testing 611 scenes under real-time constraint.

1.4.2 Vegetation Indices Applied for Vegetation Detection

Vegetation normally absorbs red and blue light for the photosynthetic process, while it strongly

reflects near-infrared light due to the cell structure of the leaves. Hence, vegetation indices are

defined as combinations of surface reflectance at two or more wavelengths designed to high-

light this particular property of vegetation. There exists many vegetation indices which have

been derived to detect vegetation in very different conditions and purposes. So, an overview

of available vegetation indices for vegetation detection is shown in this contribution, in order

to make clear the advantages and disadvantages from such a multi-spectral approach. At the

early state of this work, we tried to exploit some typical properties of vegetation such as ho-

mogeneous colour (green, orange, red, or yellow), scatter structure (porous volume) regarding

spatial distribution, and distinctive light absorption spectrum (absorb more red and blue band,

reflect strongly the NIR band from 800 to 1400 nm). Thus, we used the Tyzx Deep Sea stereo

camera where the left eye is covered by a NIR-blocking filter and the right eye is covered by

a NIR-transmitting filter, in order to obtain colour and NIR images, respectively. The NIR and

colour images can be used to compute vegetation indices. Nevertheless, both colour and NIR

information are not stable in outdoor environments, especially with respect to light intensity

and light colour changes. The huge impact from the sunlight degrades the performance of the

available vegetation indices-based vegetation detection approaches. Concretely, the changes of

NIR and red reflectance are not linear and unpredictable under different sunshine conditions,

and thus vegetation indices behave very differently, even for the normalized difference vegeta-

tion index (NDVI). Different ways have been suggested to overcome this issue, such as using

polarised filters, high dynamic range cameras, etc. Yet, the problem is still unsolved. In this

contribution, we would like to introduce a novel and efficient method for vegetation detection

against illumination effects by using an independent NIR lighting system. The independent
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light helps to stabilise the NIR reflectance, then the exposure of the colour sensor can be ad-

justed as an off-set of that of the near-infrared sensor. This really reduces the impact of lighting

changes on vegetation indices. Unfortunately, the use of the additional lighting system affects

the relationship between red and NIR reflectance of vegetation, so that traditional vegetation in-

dices can no longer classify robustly vegetation and non-vegetation. For example, NDVI detects

only chlorophyll-rich vegetation and all dark materials. Interestingly, a measure on the changes

of red and NIR in terms of luminance shows an approximately linear proportion of luminance

to red but a logarithm proportion to NIR. On the other hand, NIR-Red wavelength space is

sketched with selected vegetation points extracted from 1000 outdoor scenes captured in both

morning and afternoon conditions. The distribution of vegetation points is in the top-left part

in the space, and a hyperplane to classify vegetation and non-vegetation points is in logarithm

form. This confirms a logarithm relationship between the red and NIR information of vegetation

against illumination changes. As a result, a modification of normalized difference vegetation

index (MNDVI) is derived. TheMNDVI has a similar mathematics form as of NDVI, except the

red is replaced by log(red) in the formula. The logarithmic term in the later formula expresses

the less impact of the red when an artificial lighting system is used. In order to evaluate the per-

formance of MNDVI and other vegetation indices, our autonomous ground vehicle took 5000

raw images and 20 videos of outdoor scenes containing vegetation, under both morning and

afternoon conditions as well as shadow, shining and underexposed effects taken into account.

Overall, our approach shows out-performance compared with others when taking all environ-

mental and illumination complexities as well as real-time constraint into account. Regarding

the performance of the MultiCam, the range measurement is still poor in outdoor environments,

thus, the proposed approach could not use depth information for any detection application but

just for obstacle avoidance. Alternatively, the wavelength of the modulated light in the Mul-

tiCams lighting system strongly focuses on the band around 870 nm while the expected band

starts from 800 to 1400 nm, so the chlorophyll less-vegetation like orange/yellow grass is not

well detected. However, if extending the spectral width of the modulated light, it degrades the

range measurement of the MultiCam. Therefore, a compromise between range measurement

and vegetation detection will be considered in our future works. An idea to produce a similar

device only for vegetation detection with full band of 800 nm→ 1400 nm for the desired light-

ing system will also be taken into account for a further development of the vegetation detection

system for outdoor automobile guidance.

1.4.3 2D/3D Feature Fusion for Vegetation Detection

Regarding visual perception, vegetation is recognized through its typical colours like green,

yellow, brown, or red-orange. So, it seems to be quite straight forward to investigate colour
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descriptors in order to detect vegetation. Nevertheless, the colour information is not stable in

outdoor environments due to illumination effects, thus methods purely relied on colour features

could not provide a robust detection mechanism for safe navigation.

According to the literature of robotics research, interpreting 3D object structures from

analysing the point cloud given by a LiDAR is a common way to classify different object types

in the viewed scene. In that way, vegetation is detected as a scattering structure object which

is different from linear structure (wire), or surface structure (wall, building, tree trunk). Since

the laser data is quite stable and robust, this approach has been applied widely in autonomous

navigation. Due to the extreme challenge in geometric distribution-based environmental in-

terpretation, the accuracy of such the approach is not high. For instance, it is impossible to

distinguish between dense geometric objects (barbed wire) and vegetation in many cases.

This contribution enables a 2D/3D feature fusion approach which can utilize the comple-

ment of three dimensional point distribution and colour descriptor. First, point cloud is seg-

mented into regions of homogeneous distance, which are considered as objects. Local point

statistic analysis is then applied to classify the objects into three types of structure: linear, sur-

face, and scatter. Indeed, principle component analysis is applied for all 3D points inside each

region, as a result, three eigenvalues and three eigenvectors are computed. The main idea is

that: a linear structure object should have only one dominant direction, so the first eigenvalue

should be much superior to the others; a surface one should have two dominant directions, thus

the first two eigenvalues should be much superior to the last one; a scatter one should have no

dominant direction, hence three eigenvalues are not much different.

Second, a 2D/3D calibration needs to be implemented in order to map those segmented re-

gions into the corresponding colour image. Even though, there are many researchers attempted

to do full-calibration of coupled vision systems such as Fish-eye Laser Scanner and CCD cam-

era or CMOS camera, the result shows mean performance while the cost of computation is

very expensive. The precision of reconstructing 3D model drops sharply with the presence of

vegetation. One of the main reasons is that interest points are not stable due to the vibration

of vegetation. In fact, for the aim of detecting vegetation, we do not need a very precise cali-

bration. A simple 2D/3D mapping with all large objects reconstructed is sufficient. Therefore,

we on the other hand propose a simple but fast and efficient 2D/3D mapping technique for the

coupled systems: laser scanner and CMOS camera. The technique relied on the insight: if the

CMOS camera and laser scanner are positioned near each other in a vertical line, and when

objects are far enough, the views from CMOS camera and from laser scanner are nearly the

same in a narrow angle. So, a coarse calibration can be done by mapping two images lied on

two parallel coordinates. Interestingly, the implementation of this technique is very fast and the

robustness is reasonable.
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Third, the colours of corresponding objects are obtained by 2D/3D mapping after the coarse

calibration. In fact, the colour invariant descriptors have been evaluated individually in the

precious art, where they show high precision of detecting specific objects such as aeroplane,

person, horse, and car. However, the detection of vegetation, in particular potted plant, is still

very poor, at about 0.2 in average precision. One of the major problems for that is the shift

and changes of intensity and colour in different light conditions while the vegetation tends to

be recognized based mostly on its colour. So, two of interesting features should be taken into

account are the mean and standard variation values of intensity and colour which imply the light

condition of the view scene. The interesting point for vegetation images is that the main colour

should be theoretically green in the HSV colour space under most different environment condi-

tions. In reality, this is not always true for scenes containing sky. The affection of sky tends to

turn the colour of image to red, brown, etc. The issue is often caused by the low intensity of the

Value (in the HSV colour space), and thus can be solved by removing the pixels which have too

low the Value’ intensities. The green or orange colour appears as a majority colour in vegetation

images in the HSV colour space. This drives us to come up with a vegetation detection based

on colour histogram distribution which is well-known in image retrieval and in detecting ho-

mogeneous colour objects. Hence, colour histogram distances including histogram euclidean,

histogram intersection and histogram quadratic distances are applied to extract colour features.

Finally, brightness (mean,standard deviation of intensity), spatial features and colour features

are fused and then trained by Support Vector Machine (SVM) to generate vegetation classifier.

In order to evaluate the performance of the proposed method. 500 different scenes of cluttered

outdoor environments are captured by the SICK laser scanner LMS221 with 41x157 pixels res-

olution and the Logitech QuickCam Pro 9000 with 640x480 pixels resolution, in both morning

and afternoon conditions. The maximum distance set is 16 m. 300 pairs of point clouds and

CMOS images are used for training and the other 200 are used for testing. The accuracy of

the method is 82.86% while the total processing time is at around 2580 ms. It is clear that the

approach is not really reliable for on-board navigation. Thus, the main use is to predict the

scene categories at the front of the vehicle and interpret the current environment by localising

vegetation areas around. In reality, outdoor autonomous navigation has to face with unknown

environments and unknown situations. Whenever, the autonomous robot gets into a tough situa-

tion where it could not find which way to go or all paths seem to be blocked by lethal obstacles.

In such situation, the approach initiates a solution. The robust detection of the proposed method

enables a more interaction between autonomous robots and natural environments.
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1.4.4 General Vegetation Detection Using an Integrated Vision System

Although the 2D/3D feature fusion approach provides high accuracy in detecting vegetation, its

applicability in autonomous navigation is limited due to its computational expensiveness. On

the other hand, the multi-spectral approach can provide very fast detection results by thresh-

olding vegetation indices, but performs differently in different lighting conditions. The fact is

that those limitations of the two approaches come mainly from hardware issues. Therefore,

an improvement in hardware has to be taken into account. Indeed, we have developed a new

platform of SICK laser scanner LMS221 by mounting a light weight mirror directly in front

of the 2D laser scanner. In that way, the laser scanner is fixed while the mirror is rotated by

a motor to reflect the laser beam for capturing the environment. Hence, a higher velocity can

be achieved, which is proportional to the velocity of the motor. Even though, the achievement

of 6 Hz frame rate is reached, this is still not fast enough for real-time applications. So, when

the time issue is seriously taken into account, the use of the laser scanner is no longer suitable

(exceptionally Velodyne is very fast but too much expensive, and thus is not considered in our

case). Besides, the stereoscopic imaging is not a solution while it also takes time to result in a

depth image. Even worse, the depth information is not precise enough to be used for a statistic

analysis process. Therefore, a research on what information is really needed and which vision

devices can be worthy used to acquire the information has been done.

The spectral reflectance property, without doubt, is the most discriminative feature which

classifies vegetation with others, and thus should not be negligible. Although, the light spec-

tral distribution of the sunlight changes sharply due to illumination effects, which might be

compensated by using an independent lighting source. Second, regarding visual perception,

colour information is the most important element which helps human eye simply recognising

vegetation, and thus is deserved to be investigated. Taken all the above into account, this contri-

bution introduces the use of a new vision system integrated from Photonic Mixer Device (PMD)

equipped with a NIR lighting system and CMOS camera, the so-called MultiCam. The Multi-

Cam can provide simultaneously near-infrared (NIR), colour, and depth images. Whereby, the

reflectance of the modulated NIR given by the PMD sensor and the red channel of the CMOS

sensor are used to calculate Normalized Difference Vegetation Index (NDVI). The exposure

times of the PMD sensor and CMOS sensor are programmably adjustable, thus the NIR re-

flectance can be stabilised. A more stable multi-spectral system is achieved when the exposure

time of the CMOS sensor is set as an off-set of that of the PMD sensor. Practical experi-

ments reveal that thresholding NDVI could not provide robust vegetation detection, but fusing

NDVI, NIR, and brightness gives rather good performance. This comes out the idea of using a

classification-based method which might get more advantages when visual features are added.

In this contribution, we will derive a methodology for generating colour histogram models and
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assessing unstructured texture orientation to create visual features.

Alternatively, the MultiCam modulates the NIR light (wavelength centred at 870 nm) to

estimate the time-of-flight, and the distance is computed from the phase-shift between the re-

flected light and the emitted light. This is strongly affected by the sunlight which has a wide

spectral range. Particularly, the reflected NIR light from the poor NIR reflectance surfaces and

the very far objects has a very low intensity that is confused with the NIR light of the sunlight,

and thus might not be reconstructed correctly. Consequently, the phase-shift is not accurately

calculated or the computed distance is wrong. Interestingly, vegetation reflects dramatically the

NIR light, as a result its depth contains lesser noise than non-vegetation objects. This finding

can be worthy used to create good spatial features for the vegetation classifier. For that aim, a

new system setup where the MultiCam is positioned as looking down to restrict the distance of

the NIR light travel, and a relative distance estimation method referencing a perfect flat ground

is described to obtain quickly 3D point cloud in the vehicle frame, thus, enables a 3D distribu-

tion analysis for spatial feature extraction. Finally, NDVI, spatial features and visual features

are gathered to form feature vectors, which are then used to train a robust vegetation classifier.

In all real world experiments we carried out, with 1000 scenes captured in both morning and

afternoon conditions, our approach yields a detection accuracy of over 90%.

1.4.5 Spreading Algorithm for Efficient Vegetation Detection

A classification-based method is presented in 1.4.4 where visual and spatial features are ex-

tracted and trained to generate the vegetation classifier. As the general rule, the more features

are used the better classifier is achieved. The key limitations of such the classification-based

method are the dependence on the dataset; many features need to be extracted and trained

to obtain a good classifier, which increases the complexity of the method, and thus restricts

its applicability in many real-time applications. Interestingly, visual features are recognised

as playing an important role in producing and strengthening the vegetation classifier through

cross-validation in the training process. This motivates us to pay more attention on studying

colour and texture as well as spectral reflectance property of vegetation. A deep investigation

on colour and texture of vegetation has been carried out. Remarkably, there are two interesting

findings as follow.

• Although different species of vegetation can have different colours, considering a small

region of it, the colour is expected to be homogeneous.

• The textures of most of vegetations are unstructured or turbulent. That can be inferred

as we would find many pixels in a small vegetation region, which have different texture

orientations with the texture orientation of the region.
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So if we know a vegetation pixel, we can try to find the connected ones by measuring the

colour and texture dissimilarities between the pixel and its neighbours. However such colour

dissimilarity measure is variant in the RGB colour space. Thus, an opponent colour space is

conducted to achieve the intensity-shift invariance. On the other hand, as stated in the second

finding, the unstructured texture is evaluated by firstly estimating the texture orientation of a

small region and of all pixels inside the region. The percentage of pixels which have different

texture orientations with that of the small region expresses the degree of turbulence of the re-

gion. Object which has the similar colour with a given vegetation and high degree of texture

turbulence should be judged as vegetation.

Alternatively, a multi-spectral based method is described in 1.4.2 where vegetation indices

are applied to detect vegetation. In order to reduce the impact of illumination effects on the

performance of the system, an active NIR lighting system is used, and thus a modification of

normalised difference vegetation index (MNDVI) is derived. Consequently, the detection mech-

anism works well and fast in detecting chlorophyll-rich vegetation (which reflects strongly the

NIR light and absorbs significantly the red light), in different lighting conditions. Nevertheless,

there is a confusion between chlorophyll-less vegetation and warm objects or NIR reflectance

surfaces.

Taken all the above into account, this paper addresses a solution for efficient vegetation de-

tection by using a spreading algorithm. We aim to create an adaptive learning algorithm which

performs a quantitatively accurate detection, as well as fast enough for a real-time application.

Indeed, chlorophyll-rich vegetation can be detected using the multi-spectral approach, and then

considered as seeds of a “spread vegetation”. Chlorophyll-less vegetation is detected by spread-

ing the spread vegetation based on colour dissimilarity and the degree of texture turbulence.

Overall, there are two criteria on colour and texture that we have to deal with. To many experts

in the field of machine learning, it seems to be worthwhile to investigate a probabilistic combi-

nation of different classifiers in this case. Actually, in an early approach, we already tried to use

a Markov Random Field (MRF) to model the visual difference (colour and texture). However,

the trained MRF only helps to detect vegetation which has simultaneously high probabilities of

both colour and texture similarities,MRF = PtexturePcolor. Thus, the algorithm could not detect

vegetation in a dark region where there seems to be no texture detected, or Ptexture = 0; Two

vegetation neighbour pixels could not be joined if their colours are to too much different, or

Pcolor = 0. This hinders the purpose of detecting a variety of vegetation appeared in many dif-

ferent colours. The multiplication in MRF degrades the performance of the algorithm in the case

one feature missed. This leads us to the idea of using a convex combination. The convex com-

bination, trained via semi-supervised learning, models the difference of vegetation pixels and

between a vegetation pixel with a non-vegetation pixel, thus, allows a greedy decision-making
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to spread the spreading vegetation, so called vision-based spreading. Hence, the convex combi-

nation helps to vote for the candidate which dominates texture similarity or colour similarity, or

both of them. Certainly, we acknowledge that based on such convex combination the algorithm

is rather greedy. To avoid the over-spreading, especially in case of noise, a spreading scale is

set. On the other hand, another vegetation spreading based on spectral reflectance is carried out

in parallel. Concretely, we decrease the thresholds of vegetation indices step by step to restrict

the possible vegetation areas at which vision-based vegetation spreading can occupy. Finally,

the intersection part resulted by both vision-based and spectral reflectance-based spreading is

added to the root. The approach takes into account both vision and chlorophyll light absorp-

tion properties. This enables the algorithm to capture much more detailed vegetation features

than does prior art, and also give a much richer experience in the interpretation of vegetation

representation, even for scenes with significant over- or under-exposure as well as presence of

shadow and sunshine. Remarkably, the method of pointing out turbulent texture described in

this work leads to distinguish between an dense edge region (barbed wire) and an unstructured

texture region (vegetation), which is infeasible in previous works. Consequently, the proposed

method outperforms others; this is pointed out in a concrete evaluation on the performances of

all vegetation detection approaches in this contribution.

1.4.6 A Novel Approach for a Double-Check of Passable Vegetation De-

tection in Autonomous Ground Vehicles

Even if we could detect robustly vegetation, there is still a concern whether the vegetation is

passable or not, especially in the case the vegetation is at the front of the robot. A good passable

vegetation detection enables a safe autonomous navigation in cluttered outdoor environments.

While many publications in the remote sensing field have reported that the more chlorophyll

vegetation has the easier it is to drive through, it is still problematic of how to estimate accu-

rately the amount of chlorophyll inside vegetation. Approximately, vegetation indices indicate

a relative amount of chlorophyll existed in the vegetation but not accurate enough to be used

in our purpose. Regarding the kinematic consideration, some types of vegetation such as grass

and cornstalks are easy to drive through because of less resistance. Indeed grass and cornstalks

are soft and movable, which can be clearly seen that they are easy to be moved under blowing

wind. Therefore we propose a novel approach for a double-check of passable vegetation detec-

tion, which is based on the high amount of chlorophyll in and the less-resistance of vegetation.

The approach contains two phases: firstly vegetation in general is detected; secondly blow-

ing devices are used to create strong wind to effect vegetation. Based on motion estimation,

detected vegetation being soft or movable is then judged as passable one.
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At the first phase, one might use the spreading algorithm which is currently at the state of

the art in vegetation detection techniques and is introduced in the previous section. Alterna-

tively, while the aim is to detect passable vegetation at the front of the robot for the purpose of

navigation, it is preferable to position the MultiCam looking down to setup the region of inter-

est right at the front of the robot. Within that configuration, the impact of illumination effects

is significantly reduced, and thus practical experiments have shown that a convex combination

between vegetation indices can also result in a robust and fast vegetation detection mechanism.

Indeed, in this particular work, we prefer to use the later method which is much faster than the

first one.

At the second phase, moving vegetation after an initiation of blowing devices has to be

detected. There are two scenarios that we shouldmake clear: first, moving vegetation is detected

in case of a running robot; second, moving vegetation is detected in a halt state of a robot. At the

current state, it is still infeasible to detect moving vegetation in case of a running robot because

the vibration from driving on natural terrains and from the robot itself is somehow even bigger

than the movement of vegetation. Therefore, we state clearly that this work just aims to detect

passable vegetation in a halt state of the robot. That means the robot needs to stop, and then

starts the blowing devices. Even in a halt state, the robot itself still has a vibration caused by the

engine when operating. Thus, a motion compensation and motion detection techniques have to

be applied to detect foreground objects, which are then mapped to the detected vegetation in

the first phase to obtain moving vegetation. Furthermore, it is intuitive that the more movement

vegetation does the less resistance vegetation own, thus the easier vegetation is to drive through.

Hence, this paper also proposes optical flow techniques to record the movement of vegetation.

Regarding to the system design, we need a blowing device to create wind to effect vegeta-

tion. One might immediately think about utilising the available air compressor of the robot’s

air-brake system. This, however, is not a reliable solution. The robot lasts its battery quickly

because of high power consumption for the charging process of the air compressor. The blow-

ing duration is very short due to the small air compressor tank. More seriously, using the air

compressor would affect to the break system, thus, potentially causes an unexpected movement

of the robot. Then, we come up with an idea of using independent blowing devices. Take a

look at current products for such work, we find Bosch leaf blowers such as Bosch ALB 18 LI

Cordless Li-Ion and Bosch ALS 25 which are really suited for the work and quite cheap, at

around 80 Euro. Indeed, the leaf blowers can run continuously for 10 minutes at blow speeds

of up to 215 km/h. Meanwhile, the robot only needs to turn on the blowing device in case of

facing vegetation as obstacle, and for each time the blowing duration required is just from five

to ten seconds. Therefore, after each fully charge, the device can be used for at least 60 halt

states, which is so far satisfy us at the current stage.
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Finally, in all real world experiments we carried out, with 1000 input images captured from

50 halt states of the vehicle (20 frames per each halt state), our approach yields a detection ac-

curacy of over 98%. We furthermore illustrate how the active way can improve the autonomous

navigation capabilities of autonomous outdoor robot.

1.4.7 Terrain Classification Based on Structure for Autonomous Naviga-

tion in Complex Environments

Terrain classification is very important in regard to the efficiency and safety of a robot in au-

tonomous navigation. A robot able to classify the terrain ahead can optimize its speed for the

terrain (drive slower on a rough terrain and faster on a smooth terrain) or avoid potentially haz-

ardous areas, such as stretches of mud or sand in which a ground-based robot could become

stuck. Additionally, one of the goals of this study is also to interpret in details the terrain struc-

ture in sense that helps to determine different object types inside the terrain such as flat ground,

smooth surface obstacle (wall, building) linear structure objects (wire, branch of tree), scatter

structure (tree canopy, needle tree, bushes). This is worthy for decision-making frame-work

in navigation. With regard to the literature of robotic research, up to now, the most reliable

way to classify terrains is based on analysing the point cloud given by a LiDAR. While most

of recent methods for LiDAR processing are purely found on the local point density and spatial

distribution of the 3D point cloud directly. Commonly, the 3D-space occupied by the 3D point

cloud is divided equally into many voxels (for example, a cube). The number of 3D points

inside each voxel reveals the structure of it: surface (many points); empty (no point); scatter

(mixture). However, many hand-tuned parameters need to be fulfilled, and thus makes the ap-

proach unstable. Indeed, it is still problematic of how many 3D points inside a voxel should

be considered as “many” so that the voxel would be judged as having surface structure, while a

voxe with different selected sizes will behave differently, and thus requires different hand-tuned

parameters. Furthermore, there exists scattering effect of beam scattering angles, whereby the

farther an object is from the LiDAR the lesser the number of 3D points obtained about the ob-

ject is. Alternatively, analysing the 3D spatial distribution under pixel level has also got a good

deal of attention recently. This, however, could not bring much objective information and also

failed to deal with complex terrains.

From our perspective, there should be more objective information to view a scene under the

object level. Thereby, a segmentation of the point cloud should be done beforehand to result

objects in form of regions of interest. For that aim, we propose to apply the Graph-Cut tech-

nique which leads to segment the point cloud with respect to homogeneous distances in local

regions. Consequently, objects or segmented regions of interest can be classified into different

17



1.4. NOVEL CONTRIBUTIONS OF THE THESIS

3D structures through a local point statistic analysis. More precisely, a principle component

analysis is applied for a set of 3D points of each object to classify the object into three types

of 3D structure: linear (wire, small branches of tree), surface (wall, solid obstacles), scatter

(tree canopy, needle tree, bushes). Indeed, regarding geometric distribution, the three returned

eigenvalues from the principle component analysis are consistent with the 3D structure of those

analysed 3D points: a linear structure indicates only one dominant direction, so the first eigen-

value should be superior to the others; a surface structure implies two dominant direction, thus

the first two eigenvalues should be similar to each other and superior to the last one; scatter

structure reveals no dominant direction, hence three eigenvalues are similar to each others.

Besides, it is intuitively distinguishable between linear structure and surface objects. Still, there

exists some confusion between rough surface and scatter structure objects. Therefore, this sec-

tion proposes a distance variation estimation to ease the problem. Whereby, the variation of

distances of 3D points of a surface object, even a rough surface one, is expected to be lesser

than of a scatter object. Due to the imperfect segmentation of point cloud in an early step, it is

recommended to eliminate the edge points out of interest for such estimation, thus we would like

to call the outcome as distance variation inside edgeless regions (DViER). Through extensive

experiments, we demonstrate that this feature has properties complementary to the conditional

local point statistics features, and thus together show significant improvement in classification

performance.

Regarding to experiments and results, 300 different scenes of cluttered outdoor environments

are captured by the SICK laser scanner LMS221 with 81x330 = 26730 pixels resolution and the

maximum distance set is 16 m. The angular separation between laser beams is 1
4
degree over

a 900 field of view. The angular separation between laser sweeps is 2
3
of a degree over 1200.

The classification results are evaluated by comparing the output of the classifier with the hand-

labeled data. In this paper, we evaluate the discrimination between scatter, linear, and surface

structures rather than the specific classes of classification such as grass, trees, bushes, build-

ing, roads etc. Actually, if we can have a good classification of the three structures, the object

classification can lately be realized by evaluating the relationship between the object structure

and the three structures. For example, the grass should be a vegetation area with little presence

of linear structure, while the bushes and trees should be vegetation areas with dense presence

of linear structure. The discrimination between trees and bushes can be clarified by estimating

the elevation of their centroids. The roads and lethal obstacles can also be classified by their

elevation regarding the discrimination of solid surface areas. Overall, the proposed approach

provides an improvement of around 10% to 17 % in accuracy compared with previous ones.
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1.4.8 A Novel Approach of Terrain Classification for Outdoor Automobile

Navigation

The aim of this research is to achieve a terrain classification mechanism which is not only to

classify a terrain into traversable or non-traversable regions but also in advances to be able to

classify many object types inside the terrain, and thus brings much benefit for the safety and

efficiency of an autonomous robot operating in cluttered outdoor environments. The fact is that

the non-urban environments usually bring much more complications than the urban ones, hence

a method relied purely on geometric distribution analysis could not lead to a robust mechanism

in many circumstances. Indeed, interpreting a complex scene is somehow infeasible even with

human knowledge and experience by only observing the point cloud of it. The main issue is a

lack of information. It is intuitively clear that the classification problem should be easier to be

solved by having more colour and texture information. Therefore, a coarse 2D/3D calibration

is presented in this paper to connect colour, texture and 3D distribution information of the

viewed scene; consequently, a complete 3D scene is reconstructed. The coarse calibration

is proposed instead of the full one, because with current computer vision techniques the full

2D/3D calibration does not provide a significant improvement in the accuracy compared with

the proposed coarse calibration while requiring a heavy computation, especially for cluttered

outdoor scenes.

Regarding to visual perception, most of discriminative features of an object could not be

found under pixel level even with all available 2D/3D information. Hence, we suggest to seg-

ment the viewed scene into object types or regions of interest. To do so, one might use common

segmentation techniques on the colour image, this however does not really provide good results

in many circumstances due to the unstable colour information under different lighting condi-

tions. The appearance of shadow is inevitable in outdoor environments In our case, we apply

a Graph-Cut technique to segment the depth given by the LiDAR, thus having a more stable

result. Indeed, the distances given Laser Scanner are very precise whereby we can obtain a very

fine depth image which is quite stable even under complex conditions and environments. Fur-

thermore, the segmentation technique considers both local and global properties of the scene,

and thus the results are not either too coarse or too fine.

Overall, 2D features (extracted from colour, texture) and 3D features (extracted from 3D

structures, 3D distribution) gathered to form a feature vector. In this work, we have tested dif-

ferent sets of 2D/3D features ( for example: RGB-shift, HSV-shift, RGB histogram distances,

HSV histogram distances, opponent-shift, geometric similarity, local point statistic features) as

inputs for a training process using support vector machine (SVM), in order to point out the opti-

mal vector components for different object classifiers. We aim to classify terrain into six object

types: tree trunk, human, wall/building, sky, vegetation, road. There are more objects need to
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be detected, so we use the multi-classes SVM and one-against-all SVM instead of the binary

SVM which is commonly introduced in the literature of object detection-based classification.

Consequently, the classifier generated by the proposed method provides 54.3% for detecting

tree trunk, 72.5% for detecting human, 58.6% for detecting wall/building, 88.2% for detecting

sky , 86.4% for detecting vegetation and 87.5% for detecting road. The result is very impressive

and show a significant improvement to the art in terrain classification.

1.5 Document Structure

The remainder of this thesis is organized as follows:

Chapter 2 provides some fundamentals related to background knowledge and hardware sys-

tems for a better understanding of the works done in this thesis. Particularly, our autonomous

robot as well as different devices and sensor systems used are briefly presented. Since the first

main contribution is about improving the data acquisition in stereoscopic imaging, we prefer to

put it in the corresponding section in this chapter.

Chapter 3 surveysmulti-spectral approaches applied for vegetation detection, whereby propos-

ing the idea of using an active NIR lighting system to achieve a more stable multi-spectral sys-

tem; accordingly devising theModification of Normalized Difference Vegetation Index (MNDVI)

obtained from a regression analysis of the red and NIR reflectance of vegetation in different

lighting conditions. Practical experiments have confirmed that the new modification form is

worthy used whenever an independent light source is equipped.

Chapter [4&5] cover vegetation detection based on classification. Concretely by combining

data given by both a CMOS camera and a LiDAR, a 2D/3D feature fusion is described to exploit

discriminative visual features to robustly detect vegetation (see chapter 4). Secondly, Chapter

5 studies an integrated vision system, which is built from mounting both CMOS sensor and

PMD sensor into a molecular setup; and additionally equipped with an active near-infrared

lighting system, to acquire simultaneously colour image, near-infrared intensity and distance

information. Within this section, those outcomes from the vision system are well analysed to

extract the optimal vector components to be trained via support vector machine, in order to

robustly detect general vegetation.

Chapter 6 presents the work as a follow-up of the system setup in the Chapter 3. Whereby, a

spreading algorithm is devised to efficiently and robustly detect variety of vegetation in different

lighting condition as well as under different illumination effects. This approach significantly

outperforms the state of the art of general vegetation detection.

Chapter 7 deals with the problem of detecting passable vegetation for navigation in cluttered

outdoor environments. The approach relies on the spectral reflectance and the less-resistance
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properties of vegetation, whereby proposing an efficient model and systematic design for the

passable vegetation detection system.

Chapter 8 studies terrain classification based on geometric structure of object types. This is

done by applying local point statistic analysis and estimating distance variation inside edgeless

regions.

Chapter 9 introduces a novel approach for terrain classification. The approach utilises the

fusion of colour, texture and 3D distribution information to deeply interpret the world represen-

tation of different object types.

Chapter 10 concludes with a summary, discussion of applications, and thoughts about future

directions of research.

Appendix A, named as Expert Concerns and Rebuttal, mentions several interesting ques-

tions from Professors/Reviewers/Editors, and our rebuttal for that correspondingly. This part

might help readers to deeply get into technical discussion related to this work.

1.6 Publications

The research comprising this thesis has been presented at a number of international conferences

and workshops as well as published in international journals. The relevant publications are

listed below grouped by the publication types.

• Journal Articles

1. D.-V. Nguyen, L. Kuhnert, and K.-D. Kuhnert. General Vegetation Detection Using

An Integrated Vision system. International Journal of Robotics and Automation,

ACTA press, to appear 2013.

2. D.-V. Nguyen, L. Kuhnert, and K.-D. Kuhnert. Spreading Algorithm for Efficient

Vegetation Detection. Robotics and Autonomous Systems, Vol. 6, No. 12, pp. 1498-

1507, December-2012.

3. D.-V. Nguyen, L. Kuhnert, and K.-D. Kuhnert. Structure Overview of Vegetation

Detection. A Novel Approach for Efficient Vegetation Detection using An Active

Lighting System. Robotics and Autonomous Systems, Vol. 60, No. 4, pp. 498-508,

April-2012.

4. D.-V. Nguyen, Thuong-le. Super-resolution Method Combining Transforms be-

tween Frequency Domain andWavelet Domain. Journal on Information and Telecom-

munication, 5(1):40-48, April-2009.
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• Conference Papers

1. D.-V. Nguyen, L. Kuhnert, S. Thamke, J. Schlemper, and K.-D. Kuhnert. An Active

Approach for A Double-Check of Passable Vegetation Detection in Autonomous

Ground Vehicles. The 15th IEEE Intelligent Transportation Systems Conference,
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2. T. Jiang, D.-V. Nguyen and K. -D. Kuhnert. Auto White Balance Using the Coin-

cidence of Chromaticity Histograms. The 8th International Conference on Signal

Image Technology and Internet System (SITIS2012), Naples, Italy, Nov-2012.

3. T. Jiang, Duong Nguyen and K.-D. Kuhnert. A Flexible Auto White Balance Based

on Histogram Overlap. 11th Asian Conference on Computer Vision(ACCV2012)
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Chapter 2

Fundamentals

As outlined in the introduction, the investigation on vegetation detection and terrain classifica-

tion aims for guiding an autonomous robot to fully exploit its mobility capability in both urban

and non-urban environments. Therefore, the experimental wheel-based vehicle used for all ex-

periments to test the proposed algorithms for both vegetation detection and terrain classification

is briefly introduced in this chapter, please see section 2.1. As mentioned in section 1.2 that the

two perception tasks (vegetation detection and terrain classification) are very challenging in

outdoor environments, which could not be done efficiently within using a single sensor system.

Multiple approaches using multi-sensor systems have been proposed, and thus the principles of

the devices or sensor systems are presented, afterwards in this Chapter, for better understanding

the thesis content. Concretely, since the thesis goals to interpret not only the 2D (.e.g. colour,

texture) and 3D (.e.g. shape, structure) object appearance, but also the object reflectance prop-

erty in different spectral illuminant, three types of sensor systems are deeply studied, including

2D imaging sensors, 3D range sensors, and multi-spectral sensors. First, the introduction of

common 3D range measurement techniques and corresponding devices applied for distance

measurement is presented, including Light Detection and Ranging (.e.g. laser scanner) in sec-

tion 2.2, Structured Light (.e.g. Kinect sensor) in section 2.3, Stereoscopic Imaging (.e.g. stereo

cameras) in section 2.5. Section 2.6 describes the principle of multi-spectral imaging systems.

While multi-spectral sensor systems are very expensive, the section also points out how to build

a cheap system which is still worthy used for the purpose of detecting vegetation. Because the

2D imaging sensors (CCD/CMOS) are very popular, which are used in common digital cameras

and whose principle are mentioned in any computer vision books, they will not be repeated in

this chapter.
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2.1 The Experimental Platform AMOR

In order to validate the developed terrain classification and vegetation detection methodologies,

a mobile robot capable of traversing rugged terrain is required. The robot should have high

power enough to provide the required maneuverability across uneven ground, and thus needs

to be large and heavy. However, with the aim to operate autonomously in cluttered outdoor

environments, the robot must be small enough to drive through light forests. Fig. 2.1 shows

the experimental wheel-based vehicle AMOR (short for Autonomous Mobile Outdoor Robot),

which has been developed at the Institute for Real-Time Learning Systems of the University of

Siegen. The mechanical platform of AMOR is a quad-type Yamaha Kodiak 400, a model of

All Terrain Vehicle, which offers a superior cross-country performance while having relatively

small size. The robot is equipped with various sensors and actuators.

Typical operation terrain: Rugged off-road Typical operation terrain: Forest

Figure 2.1: The experimental platform AMOR

Steering, throttle, brake and gears can be remotely operated or controlled by the computer.

To capture its state and its surroundings, AMOR is equipped with the following sensors/devices:

Laser scanner SICK LMS221 (two front, one rear); Ultrasonic sensors (five forwards); Imag-

ing cameras (one forward-looking, one with centralized visibility); Smart camera; MultiCam;

Stereo-camera system; DeepSea Stereo Camera; Inertial sensor systems; Accelerometer; Rate

sensor; Optical motion sensor (two units at the rear of the vehicle); Electronic compass; Differ-

ential GPS; Weather station. Besides, in some applications, typically in planetary exploration

or rescue mission, a microdrone (Unmanned Aerial Vehicle) is mounted on the top of the robot

for ground and air cooperation. The size of the robot is 1.2m×2.6m×1.8m, and the weight is

about 650kg.

The robot has a powerful computer on x86-based, which is connected to those sensors and

actuators via a control area network (CAN) bus. The ATMEGA-32 8-bit micro controller from
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Atmel has been chosen mainly because of the large amount of free software available for this

type (i.e. the free IDE supplied by Atmel supports the free GNU GCC compiler). A key ele-

ment of the architecture is the VSAL (Virtual Sensor Actor Layer) which unifies the access to

all sensors and actors, creates virtual sensors out of one or more physical ones, and allows easy

reconfiguration of the system. A specialized sensor configuration description language supports

this part. The higher levels posses a hybrid architecture, the so called CAPTAIN (Control Ar-

chitecture Providing Task Arbitration and Sequencing in Intelligent Robot Navigation), which

is formed by a set of functional units and a mission control. Data and event from the functional

units will feed the mission control, which applies an hierarchical decision-tree to result in an

action. The more detailed information can be found in [Kuhnert & Seemann, 2007][Kuhnert,

2008][Kuhnert et al., 2012].

In this thesis, we emphasise the use of following sensors/devices: CMOS/CCD sensor, PMD

sensor, MultiCam, LiDAR, IMU, Stereoscopic imaging cameras, which are mounted on the

AMOR in different configurations depending on the requirements of different applications. Fig.

2.2 shows the configuration of the AMOR when the 2D/3D coupled system is mounted at the

front. The system consists of a LiDAR and CMOS camera positioned 5 cm lower. Fig. 2.3

illustrates the AMOR system when Tyzx DeepSea G2 Camera is used instead of a standard

traditional stereo vision system. Fig. 2.4 describes the AMOR’s configuration when multi-

ple sensors/devices used simultaneously to evaluate the performances of different approaches,

including stereo vision system, LiDAR, CMOS/CCD camera, and MultiCAM.

2.2 Light Detection And Ranging (LiDAR)

Light detection and ranging is an optical remote sensing technology that illuminates light to

a target to measure the distance to or other properties of the target. In this particular section,

we would like to discuss about distance measurement using a LiDAR. There are three common

laser range-finding techniques: triangulation, pulse time-of-flight and phase-shift measurement.

2.2.1 Optical Triangulation for 3D Digitizing

The original idea behind triangulation is to estimate the distance to a target based on the known

baseline and angles of emitted and received light. Indeed, assumed that we have the known

baseline B, angle of laser source a1, angle of sensor a2, the laser source P1, the sensor P2 , the

target P3, see Fig. 2.5. The distance from the laser source to the target is calculated as follow,

L= B
sin(a2)

sin(a3)
= B

sin(a2)

sin(a1+a2)
(2.1)
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LMS221

CMOS camera

Figure 2.2: Autonomousmobile robot with LiDAR and CMOS camera mounted near each other

to form a 2D/3D coupled system.

LMS 221

DeepSea G2 

LMS 221
Rotating Mirror

Ultrasonic
GPS receiver

Figure 2.3: Autonomous mobile robot with TYZX DeepSea Camera mounted at the front for

3D scene visualisation.
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Microdrone

LMS221

Multicam

Rotating Mirror

  Ultrasonic

Stereo Cameras

Figure 2.4: Autonomous mobile robot with LiDAR, CMOS camera, and MultiCam mounted at

the front up.

P3

P1

a3

L
a1

a2
P2

B

Figure 2.5: Triangulation Configuration

This is quite simple in theory, but turns out to be very challenging in the real world due

to the difficulty in measuring the baseline and the angles a1 and a2 robustly and repeatably.

Therefore, a reliable method is to mount a CCD camera together with the laser system, so that

the reflected laser beam passes through the optical axis of the camera.

Assume that we have a laser range finder with the configuration as in Fig. 2.6. It is quite
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Image Plane

Laser Beam

x2

Optical axis

x1

x

f O

A1

A

A2

BB1 B2

d1 d d0 d2

Figure 2.6: Geometric Model

straightforward to calibrate the system by manually placing a target at the position B1 with

the known distance d1, and then B2 with the known distance d2 in the real world; accordingly

determining the distance x1 and x2 in the image plane. At an arbitrary distance d in the real

world, we firstly determine the distance x in the image plane.

Regarding the property of two similar triangles, we have:

d1

f
=

A1B1

x1
;

d2

f
=

A2B2

x2
;

d0−d1

d2−d0
=

A1B1

A2B2

Thus, d0 can be derived as follows

d0 =
d1d2(x1+ x2)

d1x1+d2x2
(2.2)

Based on the property of two similar triangles, we also have:

d1

f
=

A1B1

x1
;

d

f
=

AB

x
;

d0−d

d0−d1
=

AB

A1B1
;

Hence

d =
d0d1x1

d1x1+d0x−d1x
(2.3)

The distance d can be computed through Eq. 2.2 and Eq. 2.3. In practice, due to the
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scattering of laser beam, the spatial coherence of the laser light is lost. which means that the

depth of eld used at the projection can be useful only if the lens aperture is closed down at the

collection. Otherwise the focused laser spot is imaged as a blurred disk of light on the photode-

tector [Amann et al., 2001]. A solution to this problem is to modify the conventional imaging

geometry to conform to the Scheimpug condition, see explanation in [Merklinger, 1996]. Still

there exists another problem in the sampling process in the Z axis, which usually requires image

pattern centroid location and interpolation; whereby coherence shows its limitation.

2.2.2 Laser Pulse Time-of-flight

The principle behind the Time-of-Flight (ToF) technique for distance measurement is to esti-

mate the amount of time, t, an laser pulse takes to hit the object, be reflected and reach back to

the detector. The distance d is then computed as follows.

d =
t× c

2
(2.4)

where c denotes the speed of light and t is the amount of time for the round-trip between the

laser and destination. Note that for an unambiguous measurement t should be greater than the

pulse width Tp [Jain, 2003].

t > Tp

or

d >
1

2
cTp (2.5)

While the velocity of light is approximately constant c = 3× 108m/s. The distance d is

proportional to the estimated time t. Thus, approximately the error in distance estimation is

δd =
δ t× c

2

Clearly, the main problem in designing such LiDAR is the realization of an exact time mea-

suring process. This is because the accuracy of the LiDAR depends on the speed of detector and

timing circuit used in the device. There exists some sources of inaccuracy in this type of laser

range-nders, including noise-generated timing jitter, walk, non-linearity and drift. However,

the final precision of distance measurement can be greatly improved by averaging, with the im-

provement being proportional to the square root of the number of results averaged [Amann et al.,

2001]. For instances, the final resolution can be improved to the millimetre level by averaging

100 successive measurements. The main advantage of this technique is its large unambiguous
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distance measurement which requires a high dynamic receiver with a large bandwidth [Luan,

2001]. Basically TOF laser range finder estimates the distance to a target point by projecting a

laser pulse to it. In order to scan many points, often a rotating mirror is used, so that points in

a plane can be scanned by sweeping a laser beam horizontally. In this case, the ToF laser range

finder is only able to scan in a horizontal direction, the so-called 2D laser scanner. To obtain

range information in 3D volumes, another mechanical module has to be added to rotate the

scanning module in vertical direction at regular time intervals, the so-called 3D laser scanner

[Surmann et al., 2001]. Regarding to 3D model reconstruction, using 3D laser scanner is really

time consuming due to the long acquisition time and sometime for converting from point cloud

to Cartesian coordinate (because the point cloud is not directly usable). In return, the precision

given by that 3D scanner is really precise compared with other 3D scanning devices.

2.2.3 Laser Phase-Shift Range Finder

The idea behind the laser phase-shift range finder is that when modulating the optical power by

a constant, the phase-shift between the sent light and the reflected light is proportional to the

time interval: ∆φ = 2π fm∆t where fm is the modulation frequency, c is the speed of light in free

space. Hence:

d =
1

2
c∆t =

1

2
c

∆φ

2π
fm (2.6)

So instead of estimating the time-of-flight of the travelling light, the distance can be deduced

from the phase-shift as in E.q 2.6. To ameliorate the accuracy of such phase-shift laser range

finder, the phase-shift is not directly measured at the working high frequency but at an inter-

mediate frequency fi f = | fm− fol| using a heterodyne technique that preserves the phase-shift

versus distance. The limitations of this technique include high level of the photoelectric signal,

intermediate frequency drift and electrical crosstalk, see more in [Amann et al., 2001].

2.2.4 Laser Scanner SICK LMS221

As SICK LMSxxx is the most common ToF laser range finder series in industry, we choose

the SICK LMS221 which shows impressive performance with very high precision in range

mesurement and stability in different environments, please see the default settings of LMS221

as follow.

From the datasheet, it is seen that the scanner does a 90 degree sweep of the beam with 0.5

degree angular resolution every 10ms, with the precision is about 10mm. This gives a scan rate

of approximately 18000 points per second.
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Parameters LMS221 LMS221 LMS221

Angular resolution 0.5o 0.5o 0.5o

Aperture angle 180o 100o 90o

Measured Range 80 m 80 m 80 m

Measured value resolution 100 mm 100 mm 10 mm

Table 2.1: Data Sheet of SICK LMS221

2.3 Structured Light

Structured light is an active illumination of the scene with specially designed 2D spatially vary-

ing intensity pattern. Structured light 3D scanning is about determining the 3D structure of a

scene based on the distortion of the projected pattern. In the structured light approach, a light

projector and a camera are used. The projector illuminates the scene with a light pattern, and

the reflection is captured by the camera, the so-called pattern image. Although many other

variants of structured light projection are possible, patterns of parallel stripes are widely used

(in black-white or colours). By determining the correspondence between what the projector

“sees” and what the camera sees, allows to triangulate the position of every projected pixel and

compute its depth. So, it is based on the same principle of passive stereo vision. However,

the identification in the structured light approach contrary to the correspondence problem in the

stereo case, is easier because the laser spots are normally brighter than the other points in the

pattern image which can be identified obviously [Haindl & Zid, 2007]. There usually happens

that more than one light plane is projected at a time, which challenges the identification of the

light planes. This problem can be solved by encoding the light planes with different indentifi-

cations, for example by assigning each light plane a specific colour, the light planes can then be

decoded in the pattern image [Forster et al., 2001]. The main drawbacks of such the structured

light technology are its strong constraints from which the structured light system can operate

properly, such as good scene reflectivity, low contrast of the texture in the scene, see more in

[Fechteler & Eisert, 2008].

2.4 The MultiCam

The MultiCam (see Fig. 2.7) is actually integrated from a CMOS camera and a Photo Mixer

Device (PMD) camera. The MultiCam consists of two imaging sensors (a conventional 10-bit

CMOS sensor with VGA resolution and a PMD sensor with 3K resolution), a dichroic beam

splitter, a near-infrared light system, FPGA based processing unit and USB 2.0 communication

interface [Ghobadi et al., 2010]. A general optical set-up can be seen in Fig. 2.8.

A single lens is used to gather the light for both sensors, so a 2D-3D calibration is not neces-
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Figure 2.7: MultiCam

Camera Lens

VIS−NIR 
Beam Splitter

PMD Sensor

CMOS Sensor

NIR−Edge Filter

Figure 2.8: Optical setup of the MultiCam

sary but an easy image registration can be done by a two dimensional translation function which

maps a 10x10 2D pixel to one single PMD pixel. While the 3D sensor needs to acquire the mod-

ulated near-infrared light (about 870 nm) back from the scene, the 2D sensor is used to capture

the images in the visible spectrum (approximately from 400 nm to 800 nm). As a result, the

MultiCam provides simultaneously four images: including depth image (64x48 pixels), mod-

ulation image (64x48 pixels), NIR intensity image (64x48 pixels) and colour image (640x480

pixels) [Möller et al., 2005]. The colour image is simply obtained from the CMOS sensor. In

order to understand how other images are generated, we will summarize the principle opera-

tion of the PMD camera which uses Time-of-Flight (TOF) technique to measure distances. The

principle of the range measurement in a TOF camera, similar to a laser range finder, is based on

the measurement of the time the light needs to travel from one point to another. This time which

is so-called Time-of-Flight is directly proportional to the distance the light travels because the

velocity of the light is approximately constant at 38m/s. However, a direct measure of the time

difference for each single emitting ray is infeasible, thus, a frequency modulation process is

applied for the active light source. Assume that, we use continuous sinusoidal modulation at

frequency fmod . The phase shift can be calculated in terms of time: ∆ϕ = 2π . fmod.t. Besides, if
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we take four samples A1,A2,A3, and A4 each shifted 90 degrees, the phase-shift of the sent and

received signals can be computed as

∆ϕ = arctan(
A1−A3

A2−A4
) (2.7)

Hence, the distance is calculated as follows [Möller et al., 2005]:

d =
c.∆ϕ

4π . fmod
(2.8)

The strength of the received signal a and the NIR intensity information b are expressed

as [Möller et al., 2005]:

a=
sqrt(A1−A3)

2+(A2−A4)
2

2
(2.9)

b=
A1+A2+A3+A4

4
(2.10)

The high frame rates can be achieved at around 50 fps to 60 fps, which is comparable to a

regular video camera. Thus, the MultiCam is suited for a real-time application.

Limitations

• As mentioned above that the MultiCam uses a modulated lighting system so the unam-

biguous range measurement in the camera is restricted. For example if the modulation

frequency is at 20MHz, it is limited to 7.5m. While the objects over this distance can be

observed in 2D image of the MultiCam, they do not have any reliable distance informa-

tion in the 3D image. Although reducing the frequency can increase the unambiguity of

range measurement, it reduces the resolution of range measurement as well (see more in

[Ghobadi et al., 2010]).

• The work of [Nguyen et al., 2010a] proposed a distance compensation to extend the range

of measurable distances, the performance was not impressive as well as stable in different

lighting conditions.

• For a good depth perception of the scene, a powerful lighting system is required, which

might increase the cost.

• The affection of the sunlight is huge to the distance measurement results.

Those limitations defeats outdoor applications of the MultiCam concerning distance measure-

ment. Nevertheless, in our work, we mainly do not use the distance information but NIR in-
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tensity and colour information. Also taking into account the energy reduction of the modulated

light during its travel, we restrict the maximum distance at 50m. The aim is to obtain the re-

flected light with strong energy enough to be classified with other NIR light from the sunlight

or other light reflectance sources. Fig. 2.9 illustrates some image samples captured by the

MultiCam.

Figure 2.9: Examples ofMultiCam’s images (from left to right): 2d; modulation; depth; infrared

intensity. Those images were captured around the campus Hölderlin of Universität Siegen.

2.5 Stereoscopic Imaging

Stereoscopic imaging is a passive triangulation method, so it does not require any light sources,

but multiple 2D sensors aligned. In a classical stereoscopic vision technique, the so-called

stereo vision, two cameras are employed in a binocular vision system, analogous to the two eyes

in the human visual system, to obtain two differing views on a scene. The idea is simple that

the correspondence between the two views are matched, then the depth can be estimated based

on triangulation by knowing the camera focal lengths. In reality, the task of robustly finding

the correspondence is challenging due to the imperfection of lens, low quality of stereo-pair,

illumination noise and illumination effects. Thus, there are some pre-processing steps needed

to do beforehand such as distortion removal and image rectification. In general, there are three

main steps in any stereo vision techniques: Calibration, Rectification, and Stereo Matching.
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Calibration: is to find the mathematical transformation that converts the 2D coordinates of

pixels in the stereo images into the real world 3D coordinate. For that aim, each camera is

self-calibrated to obtain the internal information or intrinsic camera parameters. Determining

the correspondence of the stereo images help to solve the camera calibration problem to achieve

exterior information or extrinsic camera parameters. The formation resulted from both intrinsic

and extrinsic parameters is the transformation matrix of the stereo system.

Rectification: is the process of re-sampling stereo images so that the epipolar lines corre-

spond to image rows. The basic idea is simple that if the left and right image planes are coplanar

and the horizontal axes are co-linear (no rotation about the optical axes), then the image rows

are epipolar lines and stereo correspondences can be found by searching for matches along

corresponding rows. In practice, this condition can be difficult to achieve and some vergence

(inward rotation about the vertical camera axes) may be desirable, but if the pixels in the left and

right images are projected onto a common plane, then the ideal epipolar geometry is achieved.

Stereo Matching: combines the two images obtained from the rectification process and takes

the position of the pixels in the left image to output the corresponding pixel location in the right

image. With this method we calculate the pixel’s distance from the camera. The depth is then

translated to a depth map where points closer to the camera are almost white whereas points

further away are almost black. Points in between are shown in gray-scale, which get darker the

further away the point gets from the camera, see Fig. 2.10 for an example depth map with the

original image. If there is no change to the configuration of the stereo system, the first two steps

only need be done off-line once, whereby the returned parameters can be used for the online

stereo matching process. Thus, the speed is improved.

The fact is that the stereoscopic imaging technique requires a computational software in

order to result in 3D scenes from pairs of images. A clever idea to improve the speed of the

process is to convert the software into hardware, given by Tyzx company. In that way, a block

matching algorithm used for stereo calibration is fast implemented in just around 10 ms for an

image resolution of 740x468 pixels. Consequently, the frame rate for depth image acquisition

is about 60 fps instead of 3 fps as in the software approach, which is really impressive.

Still, the main drawback of stereoscopic imaging approach is that no range data can be

obtained in uniform regions, like a white wall, where there are no features present for the corre-

spondence process [Sobottka, 2000]. The shadowing effect is also a typical problem for stereo

vision systems which can be minimized by using multi view triangulation systems at the price

of an enormous increase of data processing as well as increasing the number of cameras. Fi-

nally, illumination effects cause much noise in the acquired depth images, which restricts the

applicability of stereoscopic imaging techniques.

The next subsection will contribute a fitting plane algorithm-based depth correction for Tyzx
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Figure 2.10: Depthmaps (the second row) with the corresponding pictures (the first row), gray

values show the depth of the images. Those images were captured around the two campuses

Hölderlin and Paul-Bonatz of Universität Siegen.

stereoscopic imaging where problems of illumination noise and no range data in uniform re-

gions are completely solved.

2.5.1 Fitting Plane Algorithm-based Depth Correction for Tyzx DeepSea

Stereoscopic Imaging

The work presented in this paper deals with the poor performance of depth image generation

given by a Tyzx stereo vision system under different lighting conditions in both indoor and

outdoor environments. For that aim, we introduce a fitting plane algorithm to correct distance

information as well as fulfil the missing points in the original depth. First, the colour image is

over-segmented into many small homogeneous regions of interest. Those small regions can be

approximately considered as planar surfaces which form the 3D scene. While 3D points inside

each small region should found a plane, this insight is then used to enhance the depth image.

Assuming that the environment is made up of a number of small planes, we certainly make no
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explicit assumptions about the structure of the scene; this enables the algorithm to cope up with

many different scenes even with significant non-vertical structure.

The algorithm has been confirmed to be easily implemented and robust throughout many

experiments in different lighting conditions and different scenarios in both indoor and outdoor

environments. Concretely, the proposed approach enables a 3D reconstruction capability using

Tyzx DeepSea G3 vision system which is infeasible from the raw depth data. Moreover, the

proposed algorithm improves more than 48% of 3D reconstruction accuracy compared with

the original result given by the stereo vision system over testing 611 scenes under real-time

constraint.

This work has been published in Proceeding of ICCE-2012 [Nguyen et al., 2012a].

2.5.1.1 Introduction

Reconstructing 3D environments is one of the most popular research areas in computer vi-

sion and computer graphics, it is widely used in many fields, such as animation, video game,

robotics, and so on. Commonly 3D reconstruction techniques can be divided into two cate-

gories: active and passive. Active approaches based on light structure [Forster et al., 2001][Ohta,

2007], laser range finder [Surmann et al., 2001][Jain, 2003] and time-of-flight [PMD, 2009] can

directly provide 3D information, which nevertheless could not be used in some circumstances

due to limitations of active source properties(using modulated light can be strongly affected

by the sunlight; using laser costs too much time for data acquisition; etc.) and low resolution.

Moreover, for many purposes, researchers still need to use colour information which is not

available under these approaches. In contrast, stereoscopic imaging is a passive triangulation

method in which depth information about a scene is measured from multiple static 2D images,

each acquired from a different viewpoint in space.

Given the stereo geometry, the 3D image of the scene can be reconstructed after a compu-

tational process of affine transform. However, it is computational expensive for a very accurate

searching and matching process. Furthermore, no range data can be obtained in uniform re-

gions, like a white wall, where there are no features present for the correspondence process.

First, there must be no doubt about how important the speed of stereo vision process is, with

respect to real applications. Indeed, a fast and robust stereo vision system is able to simulate

what human eye sees in real time, the outcome as an online 3D model of the viewed scene can

lead to ease many autonomous tasks such as obstacle avoidance, terrain classification, object

tracking, object detection and recognition, which are often used in autonomous navigation or

man-machine interaction. There are two ways to speed up the real-time stereo vision, the first

way is to parallel the algorithms for stereo vision [van Beek & Lukkien, 1996]. The other way

is to use some hardware to speed up. Concretely, in this work, we present the Tyzx DeepSea
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G3 Stereo Vision System which includes a stereo camera, on-board image rectification, and an

interface to a general purpose processor over a PCI bus [Woodfill et al., 2004]. The system is

based on the DeepSea processor which computes the depth based on simultaneously captured

left and right images with high frame rate. The chip can run at 200 frames per second with

740x468 images. Due to some other hardware issues, the speed should be slowed down to

maximum 60 frames per second to obtain a good result. Regarding to the field of robotics, we

are really satisfied with that fast system, please see characteristics of elements of the camera in

Table 2.2.

Table 2.2: Characteristics of Elements

Dimensions 3.8cm.7cm.5cm
Temperature Range −40oC to +85oC

Weight 675 g

Power 12W typ. 12 vdc or PoE class III

Frame rate 60 FPS

Image size 740x468

Lens options 40o, 62o, 83o Horizontal FOV

Baseline options 3cm, 6cm, 8cm, 14cm

Stereo Algorithm Census

Search 64 Disparity + 4 bit subpixel

Pixel 10 bit or 12 bit

CPU PowerPC 64 bit data bus

Memory 256 MBytes

Operating System Linux 2.6 Kernel

The remaining issue as said is how to cope up with the case of uniform regions, point missing

in the raw depth, and noise caused by illumination effects. This is also the aim of this paper. In

order to understand our solution, let’s turn back to the idea of how openGL and DirectX models

used to build 3D scenes. Actually they use triangular facets to model shapes, even very complex

shapes. Therefore, we start with the idea of dividing the viewed scene into many small regions.

Thus, each small region should be a planar surface. An algorithm to find the best fit plane to

describe the planar surface of each region is introduced in this paper. The distances between

3D points inside the region to the plane can either tell us about the smoothness of the surface or

which points seem to be wrong measured, thus, need to be corrected. Our algorithm was able to

automatically enhance depth images that were both qualitatively correct and visual pleasing for

611 pairs of test images with more than 48% improved in 3D reconstruction accuracy compared

with the raw depth data, see an example in Fig. 2.11. Additionally, we also prove that good

depth results can be obtained based on our approach in real-time.

The rest of this paper is organized as follows. Subsection 2.5.1.2 discusses the intuitions
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Figure 2.11: (a) 2D image. (b) original depth (Best viewed in colours: orange(near);

green(neutral); purple(far); white(very far). In the same colour: the darker the nearer). (c)

corrected depth by proposed algorithm. (d) 3D scene reconstructed

from human vision to stereo vision in order to establish the fitting plane. Subsection 2.5.1.3

presents the fitting plane algorithm. Subsection 2.5.1.4 illustrated experiments and results. Fi-

nally Subsection 2.5.1.5 concludes this work.

2.5.1.2 Planar Surface for Scene Understanding

Given a 2D image, human eyes use many monocular cues to infer the 3D structure of the

scene. The cues are formed by firstly separating the image into many small pieces and then

together with geometrical intuition to imagine the projection for those pieces(or : cue = piece +

projection). For example, asking a kid to build a 3D scene from a still single 2D image, he/she

would prefer to cut the image into many small parts, then re-arrange them based on his/her

geometrical intuition about the scene (see Fig. 2.12-(Middle)). This proves one thing that 3D

structure can be intuitively modelled as a formation of many different planar surfaces.

In order to build the planar surfaces, we first need to segment image into many small re-

gions. Using superpixel image segmentation technique [Felzenszwalb & Huttenlocher, 2004],

an example of over-segmented image is shown in Fig. 2.12. The reason to use such segmen-

tation technique is because it provides a relative good segmentation (neither too coarse nor too

fine, see more in [Felzenszwalb & Huttenlocher, 2004][Saxena et al., 2009]). Additionally, the
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Figure 2.12: Left: An image of a scene. Middle: Simple cuts to construct 3D scene from one

single 2D image. Right: over-segmented image where each small region (superpixel) lies on a

plane in the 3D world.

computation is not expensive compared with other segmentation techniques (implemented to

run in O(mlogm) time).

Looking into more details of the over-segmented image which contains many small regions

of interest, each region is approximately homogeneous in colour. A good observation one can

recognize that a uniform region is usually extracted in a larger size compared with others con-

taining textures and edges. A carefully reading one must raise the question of how to determine

the depth of those uniform regions in which there is no depth information obtained from the

stereoscopic imaging process. We will answer that question later on when we have already

corrected depth information in areas which partially have raw depth data. Seeking the solution

that fulfils the missing points and corrects wrong or noise ones in the depth image, we first start

with regions which contain texture or have depth information from the raw depth data given by

the Tyzx DeepSea vision system.

So far, we continues now to understand how to build a planar surface for each small region

which has depth information in several scattered 3D points. Assume that a small region has N

pixels in the colour image but only M 3D points in the depth image (M ≤ N). Thus, we have

N−M missing points. Ideally all the points lies on the same plane ax + by + cz = d, thus, we

have

a× xi+b× yi+ c× zi = d (2.11)

In fact, the real surface is not completely smooth as well as affection from noise and wrong

measurement, thus, Eq. 2.11 is not correct for all 3D points (xi,yi,zi)∀i= {1→M}. This turns
out to an optimization problem of finding the best fit plane where the sum of distances from the

M 3D points to the plane is minimum, see Fig. 2.13. Or, we have to find the variables (a,b,c,d)
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Figure 2.13: A best fit plane for a set of given 3D points.

so that the distance α is minimum.

α = argmin(D(a,b,c,d)){a,b,c,d}∈ℜ;(a×b×c×d)6=0 (2.12)

where

D(a,b,c,d) =
∑i (axi+byi+ czi+d)2

a2+b2+ c2
(2.13)

If we can solve the optimization problem in Eq. 2.12, missing points of the region in the

depth image can be fulfilled. For example, the depth information z j of a missing point at the

position (x j,y j) in the depth image can be estimated as

ẑ j =
d̂− â× x j− b̂× y j

ĉ
(2.14)

(â, b̂, ĉ, d̂) are estimation values of (a,b,c,d) after the optimization process. Even we do

not know exactly what structure type of the cube corresponding with a small region, it is still

true to assume that every small region should represent a quite smooth surface. Therefore, if we

calculate the average of distances from the M 3D points to the fitting plane, we expect that all

correct points should have the distances smaller than three times of the average, or

dk ≤ davg = 3×

M

∑
i=1

di

M
; ∀k = {1→M} (2.15)

A point O is considered as a defect point if and only if O belongs the small region and

do > 3×davg. In that case, a repetition of the optimization process needs to be carried out again

without the point O. O is then treated as a missing point.
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Solving the optimization problem

Regarding to Eq. 2.13, If we set the partial derivative with respect to d equal to zero, we

can solve for d to get

d =−(a× xc+b× yc+ c× zc) (2.16)

where (xc,yc,zc) is the centroid of the points. So, we are finding a plane which pass through

the centroid and has least square distance to all points in the region. If we substitute it back into

E.q 2.11 we get

a× (xi− xc)+b× (yi− yc)+ c× (zi− zc) = 0 (2.17)

If we define the vector AT = [a b c] and X = {Xi : Xi = [xi yi zi], ∀i ∈ {1→M}}. Eq. 2.13
can be re-written as

D(a,b,c) =
ATXTXA

ATA
(2.18)

Let Cov = 1
M
XTX is covariance matrix of the data, so the distance D(a,b,c) is a Rayleigh

Quotient which is minimized by the eigenvector of X that corresponds to its smallest eigen-

value. Therefore, we simply find the eigenvalues and eigenvectors of Cov by Singular Value

Decomposition, the eigenvalues of Cov are the squares of the singular values of X , and the

eigenvectors of Cov are the singular vectors of X . Then the smallest sum distance is equal to

the smallest eigenvalue ofCov. The three eigenvectors are mutually orthogonal and define three

sets of (a,b,c). Thus, we want to choose the eigenvector associated with the smallest eigen-

value. The optimization problem has been solved.

Depth estimation for uniform regions

In fact, it is possible to use Markov Random Field (MRF) to model the depth information

of uniform regions. That means the depth information of a uniform region only depends on the

depth information of the region’s neighbours. However, this MRF needs some times for training

and evaluating, thus, destroys the real-time constraint. Consequently, this work investigates

another way for depth estimation that can be fast implemented but still tolerates qualitative

performance as well as visual pleasing. Consider an example of uniform region O in Fig. 2.14,

there are only few depth points in that region while we also are not sure if those points are

correct or not. A good observation in the over-segmented image in Fig. 2.14 can point out the

following insight:

Property 1: There are no two adjacent uniform regions. In other words, a uniform region should

connect with many other non-uniform regions.
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Figure 2.14: a) Gray-scale image. b) Raw depth (Best viewed in colour, the colour code is

orange: near; green: far; purple: very far, for each colour: the darker the nearer). c) Over-

segmented image. d) Mapping regions of interest where the contours of segmented regions are

marked in blue colour.

Proof: An over-segmentation process segments the 2D image into many small pieces where

edges are also segmented as small regions. Consequently, the edges of each uniform region are

also existed in form of region of interest. Therefore, the neighbours of the uniform regions are

edges regions or small textured regions, or there are no two adjacent uniform regions.

This enables an idea of estimating depth information of the uniform region by establishing

another fitting plane which has minimum sum distance to all 3D points of neighbor regions. So,

we actually turn back to the solved problem of finding a fitting plane for a set of 3D points.

2.5.1.3 Fitting Plane Algorithm

Algorithm—————————–

Step 1: Segment 2D image into many small regions using superpixel technique.

Step 2: Find textured regions which should contain a significant depth information (in our

case the regions have more than 10% depth information). Repeat step 3 and step 4 for all

textured regions.
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Step 3: Establishing the fitting plane for a set ofM 3D points obtained from raw depth data.

Step 4: Comparing the distance of each 3D point to the fitting plane.

• If there are m 3D points (m > 0) whose distances are superior than three times of the

average, treat the m points as missing points. Repeat the step 3 withM−m 3D points.

• if m= 0. All missing points in the depth image can be fulfilled based on the E.q 2.14.

Step 5. For each non-textured region or uniform region, search for all 3D points of the

neighbour regions in the depth image and consider them as the initial depth information of the

uniform region. Repeat step 3 and step 4 for all uniform regions.

Regarding to the time issue and illumination noise, it is better to downsample 2D image

using Gaussian Pyramid before taking the segmentation process. On the other hand, looking at

the raw depth data in Fig. 2.15 and Fig. 2.16, there exists many noise or errors (appeared as

white spots) which causes the repetition of step 3 when runing the step 4 (see the first option

if in the step 4), thus, slowdown the speed of the algorithm’s implementation. A simple way

to overcome this issue is to take a pre-processing step for depth denoise. We suggest to use a

continuity property of a planar surface that means the difference in distance of two continuous

points should be smaller than the difference from each point to the centre of the plane. In order

to realize the idea, from mathematic point of view, we can simply SORT the distance values

of all points in a small region, so that Ri = {Pj : Pj < Pj+1, j = {1→ M}}. The continuity is

expressed through:

{
Pj−Pj+1 < Pj−Pc

Pj−Pj+1 < Pj+1−Pc

}
(2.19)

∀ j= {1→M−1} where Pc is the centre point of the plane. If Eq. 2.19 is not satisfied, then
the point Pj+1 is refined as Pj+1 = Pj.

Figure 2.15: (Left) Raw depth. (Right) Depth refined.
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An example of the refinement result is illustrated in Fig. 2.15. Then, we will gain the faster

implementation of image segmentation due to the smaller size as well eliminate illumination

noise. Generally, the segmentation process takes around 40ms to 60 ms depending on the

complexity of the image texture. The whole fitting plane algorithm runs at around 346 ms, so

the frame rate is at about 2.8 fps (with CPU 2.4 GHz, 4G RAM).

2.5.1.4 Experiments and Results

In order to evaluate the proposed algorithm, we did two main experiments. First, we used Tyzx

DeepSea G3 vision system to take many images in indoor environments such as in office and

corridor. Second, we mounted the Tyzx DeepSea G3 vision system in front of our autonomous

mobile robot to collect data when the robot traversed throughout outdoor environments, see

Fig. 2.3 in section 2.1. Consequently, 200 indoor scenes and 311 outdoor scenes were captured

and used to evaluate the performance of the given approach. The good thing is that the way

of segmenting 2D images into regions of interest also helps to devise a way for precision mea-

surement. That is to count the percentage of segments to be correctly reconstructed. Several

examples of depth corrected by the proposed algorithm are shown in Fig. 2.16. Intuitively, the

results are visual pleasing and demonstrate a significant improvement to the depth information

obtained by Tyzx DeepSea G3 vision system. Clearly the depths of the uniform regions have

been reasonably estimated as well as depth defects are mostly eliminated for scenes in different

scenarios and different lighting conditions. Table 2.3 describes the accuracy of depth correc-

tion through counting the number of corrected facets reconstructed. The comparison between

our algorithm performance and raw depth data is described in Table 2.4 where the proposed

approach improves 48.22% of true depth to the raw result.

Table 2.3: Depth Correction Accuracy

indoor outdoor

No. scenes 200 311

No. facets 2000 3110

True depth (%) 68.41 72.83

Table 2.4: Comparison

Raw Depth Corrected Depth

No. scenes 611 611

No. facets 6110 6110

True depth in average (%) 71.06 22.83
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Figure 2.16: The first row describes 2D images. The second row show the corresponding

raw depth data. The last row demonstrates the depth correction given the proposed algorithm

(Best viewed in colours: orange(near); green(neutral); purple(far); white(very far). In the same

colour: the darker the nearer).

2.5.1.5 Conclusion

We have introduced the fitting plane algorithm for depth correction to enable 3D reconstruc-

tion capability using Tyzx DeepSea G3 vision system in both indoor and outdoor environments.

Experiments and results demonstrate that the proposed algorithm provides a robust depth cor-

rection in different scenarios: from an urban scene where the main structures are linear and

smooth surfaces (line; wall; road) to a forest scene where many textured regions appear (tree;

grass; soil). Compared with the raw depth data, the accuracy of true depth reconstruction is

improved more than 48% by our approach. The algorithm runs fast at around 2.8 fps, thus, can

be used for real-time 3D reconstruction. The limitation of the approach is to deal with very far

objects which lack depth information but more affected by illumination noise (that can bee seen

in Fig. 2.16 where the results of depth correction is not that good). The future work should

investigate the interaction between neighbour planar surfaces in order to improve the accuracy

of depth correction.

2.6 Multi-spectral Imaging

A traditional digital camera is designed to capture the light that falls onto the sensor in a fashion

that resembles the human perception of colour. For that aim, wideband filters are used to obtain
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red (R), green (G), and blue (B) channels. In contrary, multi-spectral imaging enables us to cap-

ture information that might be available or unavailable to the human observer. The considered

light spectrum might ranges from short-wavelength violet to infrared, depending on different

purposes and applications. A multi-spectral image is captured at specific frequencies across the

electromagnetic spectrum. In general, there exists two common ways to capture a multi-spectral

image. First, the light source is modulated from which the projecting light focuses on a narrow

band at a time. Whereby the spectrum of a single point is measured by continuously shifting

the band of the modulated light, and the entire eld of view is scanned over time. The com-

mon device using this technique is the spectrometer. Second, the basic idea is to separate the

incoming light into its spectral components, which are then sensed by many monochrome 2D

sensors. Each of these sensors are only sensitive at a specific band, thus we are able to obtain

multiple multi-spectral images at different bands from these different sensors. In fact, the use of

multiple 2D sensors is costly and not reliable due to difficulties in hardware design. Thus, only

one high dynamic range 2D sensor which is adjustable in its spectral sensitivity is often used.

By changing the spectral sensitivity of the sensor over time, multiple multi-spectral images are

captured. A popular way of changing the spectral sensitivity is to use prisms, diffraction grat-

ings, gel lters or tunable lters [Gat, 2000]. Existing systems differ in terms of how they trade

off spatial and temporal resolution to obtain multi-spectral measurements for each point in the

eld of view. Some hybrid approaches can simultaneously scan a static scene with respect to

space and spectrum by modifying a commodity camera. High-cost devices that use complex

optics and custom photo-sensors have been developed for remote sensing that can acquire hy-

perspectral videos of dynamic scenes. Overall, all these systems are quite expensive and long

data acquisition. Thus, the traditional multi-spectral approaches are often used in the remote

sensing field and military applications, but yet not applied in civilian applications especially in

case of requiring a real-time constraint.

Interestingly the reflectance of the scene at different bands is represented through the cap-

tured multi-spectral images. So, multi-spectral imaging helps to understand image formation

and reflectance phenomena. Thus, research on computer vision methods that interpret, or rely

on, scene reflectance often profits from analysing those multi-spectral images. However, ex-

tracting useful information from multiple multi-spectral images costs much computational ef-

fort while the efficiency varies significantly against the illuminating conditions where those

images are captured. In the robotics research, multi-spectral images are only taken in several

fixed bands in order to reduce the cost of building multi-spectral scanning devices and of com-

putation in multi-spectral image processing. For example, multi-spectral cameras with wide

band filters are designed to obtain red, green, blue and near-infrared channel, which are usually

used in agricultural applications, especially for detecting and analysing fruits and vegetation.
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Fig. 2.17 illustrates samples of multi-spectral images captured by DeepSea Stereo Camera with

NIR-Transmitting filter. Besides, visible and infrared sensors integrated in a monocular setup

like in the MultiCAM 2.4 or in the work of [Bradley et al., 2007] also provide simultaneously

red, green, blue and near-infrared information.

Figure 2.17: The first row describes colour images where each image consists of red, green and

blue channels. The second row shows the corresponding infrared images.
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Chapter 3

Vegetation Indices Applied for Vegetation

Detection

For use in the photosynthesis process, chlorophyll, the most well-known and most important

pigment causing the green colour of healthy plant leaves, strongly absorbs visible light (from 0.4

to 0.7 µm), especially red and blue light (see Fig. 3.1). The cell structure of the leaves, on the

other hand, strongly reflects near-infrared light (from 0.7 to 1.1 µm) (see Fig. 3.2). The more

leaves a plant has, the more these wavelengths of light are affected, respectively. This enables

vegetation indices (VIs) which are defined as combinations of surface reflectance at two or more

wavelengths designed to highlight a particular property of vegetation. For instance, the ratio of

radiances in the near-infrared (NIR) and Red bands has been used as a measure of vegetation

index in the satellite remote sensing field [Tarpley et al., 1984] [Wurm et al., 2009] [Crippen,

1990] [Manduchi, 2005]. There are many different vegetation indices devised in order to detect

vegetation in different scenarios, which are described in 3.1.

One might raise a question if such vegetation indices are really useful in detecting different

species/types of vegetation, whose amount of chlorophyll in their leaves diverges considerably.

Intuitively, dying vegetation (usually appeared in yellow, brown or red colour) contains very

little chlorophyll. To answer that question, an estimation on reflectance of different types of

vegetation from the sunlight was carried out by NASA (USA), using NOAA-AVHRR (National

Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) in-

strument. Accordingly, healthy vegetation (Fig. 3.3 Left) absorbs most of the visible light that

hits it, and reflects a large portion of the near-infrared light. Unhealthy or sparse vegetation (Fig.

3.3 Right) reflects more visible light and less near-infrared light. Therefore, it should be made

clear that all traditional vegetation index-based approaches tend to detect only chlorophyll-rich

vegetation, or green one. Chlorophyll-less vegetation is usually mis-detected or confused with

wet soils and other material surfaces.
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Figure 3.1: Absorbance Spectra of Chlorophyll a (green) and b (Red) [Asner, 1998]

Figure 3.2: Reflectance Spectrum of Green Leaf [Asner, 1998].
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Figure 3.3: Absorption and Reflectance of Green (Left) and Brown (Right) Vegetation [NASA,

2012].

Even though those vegetation indices have been widely and successfully used in many re-

mote sensing applications, for example classifying and positioning the green areas of the earth

surface, it is still a problematic thought to apply them directly for mobile robotics applica-

tions due to drastically different view-points. Regarding to autonomous ground navigation,

there would be more complications to deal with, such as illumination effects (shadow, shining,

under-overexposure), views of sky, and presence of variety of different materials, from which

the reflected light can have a spectral distribution that is different from that of the sunlight. This

explains why not much investigation is available on utilizing vegetation indices in the field of

robotics, except few works done for automatic fruit detection. Remarkably, a quite impressive

approach applying vegetation indices for detecting vegetation in autonomous ground vehicles

was introduced by [Bradley et al., 2007]. Again, the huge affection from illumination effects

restricts the applicability of the approach. [Bradley et al., 2007] then had to additionally use

LIDA data and colour information to extract more features in order to strengthen the vector

components. This, however, does not meet real-time constraint due to long-time data acqui-

sition of Laser Scanner (2s in average to acquire a frame with 6437 scanned points) [Nguyen
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et al., 2011b].

In order to be more stable against illumination changes in outdoor environment, and also

satisfy the real-time constraint, a new vision system set-up which combines CMOS sensor and

Photo Mixer Device sensor with a near-infrared lighting system is introduced to simultaneously

provide near-infrared and colour images at high frame rate. Those near-infrared and colour

information are then used to compute a novel vegetation index which is derived from doing

regression analysis on NIR and Red reflectance, and luminance data of vegetation pixels. The

novel index is so called as Modification of Normalized Difference Vegetation Index (MNDVI)

due to its similarity in formulation with the traditional form Normalized Difference Vegetation

Index. MNDVI is then defined as the new standard form of vegetation index for such vision

system integrated with an additional lighting system. The novel vegetation index is proved to

be more stable and efficiently used for detecting vegetation in different lighting conditions and

under real-time constraint. More interestingly, empirical evidences demonstrate that MNDVI

can help to also detect living chlorophyll-less vegetation (Brown/Yellow/Red colour leaves),

which is infeasible in the traditional vegetation indices-based approaches.

The chapter is organised as follow: Section 3.1 introduces related works. Section 3.2

presents a novel approach for real-time vegetation detection using an active NIR lighting source.

Section 3.3 discusses and compares the performance of the proposed approach with conven-

tional ones while section 3.4 summarises and concludes this work.

This work has been published in Journal of Robotics and Automation [Nguyen et al.,

2012c].

3.1 Related Work

The spectral properties of chlorophyll-rich vegetation are primarily determined by the absorp-

tion spectra of water and chlorophyll, and the refraction of light at cell walls [Willstatter &

Stoll, 1913]. The water presents in cells absorbs light with wavelengths longer than 1400 nm.

Chlorophyll strongly absorbs visible light, especially red and blue wavelengths [Clark et al.,

2003]. The remaining light is efficiently scattered by the critical internal reflection caused by

the change in refractive index from water to air at the cell wall. As a result, those wavelengths

between 800 nm and 1400 nm that escape both water and chlorophyll are strongly reflected

in all directions. Thus, in order to detect vegetation, a simple threshold on vegetation indices

should do the work. The following subsections will introduce most common vegetation indices

used in both remote sensing field and robotics research.
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3.1.1 Ratio Vegetation Index

[Jordan, 1969] assumed that lines of equal vegetation all intersect at the origin and developed

the Ratio Vegetation Index.

RVI =
NIR

Red
(3.1)

The RVI measures the slope of the line between the origin of Red-NIR space and the Red-

NIR value of the pixel. The higher value of RVI a pixel has, the more likely is it vegetation

one. Nevertheless, the absolute value of RVI varies considerably due to light intensity changes,

which restricts the applicability of the index in reality.

3.1.2 Normalized Difference Vegetation Index

Although a simple ratio of Band 5 (Red) and Band 7 (NIR) reflectance could be used as a

measure of relative greenness, location-to-location, cycle-to-cycle, and location-within-cycle

deviations would likely occur as a large source of error. Thus, the difference in Band 7 and

Band 5 reflectance values, normalized over the sum of these values, is used as an index value

and is called the Normalized Difference Vegetation Index (NDVI) [Rouse et al., 1974] [Tarpley

et al., 1984] [Townshend et al., 1985] [Tucker et al., 1986], which is now used as a standard

form of band ratio for vegetation studies.

NDVI =
NIR−Red

NIR+Red
(3.2)

NDVI is quite invariant against light intensity changes, it however behaves differently due

to reflectance spectra changes. This explains why NDVI approaches are not really applicable

under strong/low sunshine conditions where illumination effects occur.

3.1.3 Perpendicular Vegetation Index

Remarkably, the wet soil is usually confused as chlorophyll-less vegetation because the re-

flectance of NIR from water and soil is also very strong. In addition, the presence of soil back-

ground affects to the distribution of reflectance spectra where the expected hyperplane which

aims to classify vegetation and non-vegetation in NIR-Red space is no longer passing the origin

(see Fig. 3.4). Thus, [Richardson & C. L., 1977] suggested to measure the distance in the scat-

ter plot from the soil line, then, pursued this approach with the Perpendicular Vegetation Index

(PVI).

PVI = sin(α)ρNIR− cos(α)ρRed (3.3)

55



3.1. RELATED WORK

N
IR

 R
e
fl
e
c
ta

n
c
e

Red Reflectance0

0

255

255

Figure 3.4: Scatter plot of NIR reflectance vs. Red reflectance for all pixels in a typical image.

Different regions in the scatterplot clearly correspond to different types of pixels in the image.

Pixels in the green region correspond to vegetation, and pixels in the blue region correspond to

sky [Bradley et al., 2007].

Where α is the angle between the soil line and the NIR axis. With an additional variable α ,

the hyperplane could be modified to be forward or backward the origin.

3.1.4 Difference Vegetation Index

A common special case of PVI is when α equals 45o. Here the PVI is simplified to what has

been called Difference Vegetation Index [Lillesand & Kiefer, 1987].

DVI = ρNIR−ρRed (3.4)
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3.1.5 Soil-Adjusted Vegetation Index

[Huete, 1988] introduced a soil-adjusted vegetation index(SAVI) to minimize soil brightness

influences from spectral vegetation indices involving Red and NIR wavelengths.

SAVI =
NIR−Red

NIR+Red+L
× (L+1) (3.5)

The constant L is added to shift the origin toward negative values to a point where intermediate

densities of vegetation converge with the soil line. So, a measure of distances in the scatter

plot from the soil line reveals vegetation index. However, in different lighting conditions and

different circumstances, suited L values are unpredictable, which have to be manually adjusted.

This degrades the applicability of this index in an autonomous process, thus, NDVI is still more

preferable and well-known in this field.

3.1.6 Modified Soil Adjusted Vegetation Index

[Qi et al., 1994] provides a formula for automatically determining L from the current image data

in their Modified Soil Adjusted Vegetation Index (MSAVI). The closed form of this formula is

known as MSAVI2 [Jordan, 1969].

MSAVI2=
2(ρNIR−Red+1)−

√
(2ρNIR−Red+1)2−8(ρNIR−ρRed)

2
(3.6)

3.2 A Novel Vegetation Index : Modification of Normalized

Difference Vegetation Index

The work of [Bradley et al., 2007] proposed the combination between vegetation indices and

3D-point distribution. Accordingly, the precision of vegetation detection can be reached to

95.1%. Nevertheless, such results might be obtained for scenes captured in regular environ-

ments but not clutteRed ones and also under fine sunshine conditions. Under strong/weak sun-

shine conditions or in complex environments, the performance degrades sharply. First, with

the presence of shadow, shining, underexposure or overexposure effect, the vegetation indices

behave differently due to non-linear changes of NIR and Red reflectance. This is explained

through the mathematics expressions of those indices in Eq. 3.2, Eq. 3.3, Eq. 3.4, Eq. 3.5,

and Eq. 3.6, where vegetation indices are positively proportional with NIR but negatively to

Red. Second, the use of laser scanner’s data defeats the purpose of real-time because of time-

consuming in data acquisition (2s in average to acquire a frame with 6437 scanned points).
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In order to overcome the strong affection of the sunlight to the work of detecting vegetation

in outdoor environments, a suggestion to use a new vision system which consists of itself near

infrared lighting source has been investigated in this work. A modification of the normalized

difference vegetation index is devised, which is then defined as the new standard form of veg-

etation index for such vision system integrated with an additional lighting system. Finally, we

will show the out-performance of the proposed approach in comparison with more conventional

ones.

The more details will be drawn as follow. Subsection 3.2.1 derives the novel index applied

for detecting vegetation when an additional NIR lighting source used. Section 3.3 illustrates

experiments and results while section 3.4 concludes this work.

3.2.1 Derivation of Novel Index

Although NDVI is well known as the standard form for vegetation index, it is no longer repre-

sent normalized difference vegetation index under a strong/low sunshine condition and with a

presence of shadow, shining, overexposure or underexposure effect. Practical experiments show

that the changes of NIR and Red reflectance are not linear; concretely the change of the NIR

reflectance is much superior than of the Red one. Thus, if consider two parts of a vegetation

region where the first part is strongly shined by the sunlight and the other part is coveRed by a

shadow (see Fig. 3.5), the NDVI of the second part is much superior than of the first one.

Proof: Let NDVI1 = (NIR1−Red1)/(NIR1+Red1) and NDVI2 = (NIR2−Red2)/(NIR2+

Red2) represent the normalized difference vegetation indices of a vegetation in two different

lighting conditions (thus, expected NDVI1 ≈ NDVI2). Assume NIR1 ≈ NIR2 and Red1 >>

Red2, so if α = NIR1/Red1 and β = NIR2/Red2 then α << β . NDVI1 and NDVI2 are written

as:

NDVI1 = 1− 2.Red1
NIR1+Red1

= 1− 2

α +1
(3.7)

NDVI2 = 1− 2.Red2
NIR1+Red2

= 1− 2

β +1
(3.8)

Thus NDVI1 << NDVI2 due to 2
α+1

>> 2
β+1

. This destroys the meaning of “Normalized

Vegetation Detection Index”.

The MultiCam uses an active lighting system to send modulated NIR sinals and receive re-

flected NIR signals through the PMD senor, so that it is not much influenced by the shining,

shadow and under-overexposure effects. In fact, NIR intensity information is obtained from the

modulated light while the colour information is captured from the sunlight reflection. There-
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Figure 3.5: Illustration of variations in viewing and illumination conditions for real-world

scenes containing vegetation. The vegetation varies in imaging scale and are imaged under dif-

ferent outdoor lighting conditions (Samples of the data can be downloaded here: http://duong-

nguyen.webs.com/vegetationdetection.htm).

fore, the standard form of evaluating radiance of light bands, or NDVI, is also not relevant

for vegetation index. Practical experiments have shown the following properties of vegetation

regarding light absorption/reflectance spectra of vegetation.

Property 1: The vegetation areas reflects NIR light stronger than others. In other words,

NIR intensity values of the vegetation regions in the NIR image are higher than of others.

Property 2: The brighter the higher NIR intensity value is.

Property 3: Chlorophyll-rich vegetation strongly absorbs Red and blue light.

From the Property 1 and Property 2, thresholding NIR values seems to be detecting bright

areas. From the Property 1 and Property 3, thresholding NDVI values seems to be detecting
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dark areas because the NDVI is negatively proportional with the Red expressed in Eq. 3.2, Eq.

3.7, Eq. 3.8 (see Fig. 3.6).

b) Thresholding NIR

b) Thresholding NDVI d) Our result

a) Colour image

Figure 3.6: Examples of our vegetation detection result compared with thresholding NIR and

NDVI.

Practical experiments also show that the relation between NIR, Red, NDVI and Luminance

is somehow proportional but not linear, so a non-linear training technique was firstly proposed

in this work. From that, we hand-labelled vegetation areas in order to extract the corresponding

information (NIR, Red, Luminance) which were then gathered to form feature vectors used as

training data. Support vector machine with radial basic kernel was used to train and test the

results for 1000 scenes captured from both morning and afternoon conditions. The results are

quite appreciated with more than 93% of accuracy, however it is time-consuming due to a large

amount of points need to be trained and evaluated. Also, using machine learning technique

seems to be ad-hoc where the influences of each individual term of NIR, Red and Luminance

are unknown.

Alternatively, regarding the typical reflectance and absorption properties of vegetation, the
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impact of Luminance of the sunlight on the NIR and Red reflectance of vegetation areas is illus-

trated in Fig. 3.7 (Left) while NIR-Red wavelength space is sketched with selected vegetation

points drawn as green circles in the left picture of the Fig. 3.7 (Right) (1.172.929 points are

hand-labelled and selected in our case).

Figure 3.7: (Left) The impact of Luminance on NIR and Red reflectance (normalised grayscale

correlation) in vegetation areas. (Right) Vegetation samples are sketched on the space NIR-Red

as green circles, the impact of Luminance on NIR reflectance is referenced as the blue line.

Accordingly, Fig. 3.7 (Left) shows an approximately linear proportion of Luminance to

Red but a logarithm proportion to NIR. Again, the distribution of the vegetation points in Fig.

3.7 (Right) reveals that the hyperplane to classify vegetation and others could be in logarithmic

form instead of the linear one as resulted from the standard form of NDVI [Bradley et al., 2007].

This confirms a logarithm relationship between the Red and NIR information of vegetation

against illumination changes (notice: NIR used here is the active NIR at 870nm, produced by

our LED lighting system integrated in the MultiCam). Therefore, we expect the hyperplane in

the NIR-Red space is in a logarithm form.

Or:

NIR= A× log(Red+ ε) (3.9)

Where ε(≥ 1) is a constant used to avoid a negative NIR (in our case ε = 1). In order to

test the validity of the Eq. 3.9, we captured 4000 scenes and 20 videos. The performance of

using the hyperplane to detect vegetation is very impressive with more than 90% of accuracy.

Furthermore, the most suited hyperplanes focus on the region bounded by the green and Red

lines as sketched in Fig. 3.8.

Whereby the higher value of A set means the chlorophyll-richer vegetation supposed to be
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Figure 3.8: Vegetation spectra curves in NIR-Red wavelength space as predicted by the adjusted

normalized difference vegetation index (in grayscale). The region bounded by the green and

Red lines indicates the range of the most popular separated curves used for vegetation detection.
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Figure 3.9: Positive relationship between theModification of Normalized Difference Vegetation

Index and the factor A.

detected. Let’s take several mathematics transforms based on the Eq. 3.9:

A=
NIR

log(Red+ ε)
→ A−1

A+1
=

NIR− log(Red+ ε)

NIR+ log(Red+ ε)
(3.10)

If we denote MNDVI = A−1
A+1

, so:

MNDVI =
NIR− log(Red+ ε)

NIR+ log(Red+ ε)
(3.11)
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MNDVI: so called Modification of Normalized Difference Vegetation Index.

This index ranges from 0 to 1 (A>> 1, see Fig. 3.8), thus avoiding negative values (unlike

the NDVI). The relation between MNDVI and A is sketched as in Fig. 3.9. Accordingly, they

have a positive relation, so the MNDVI also represents the vegetation index where the higher

value of MNDVI is, the chlorophyll-richer vegetation is supposed to be detected. Look at NDVI

in Eq. 3.2 and MNDVI in Eq. 3.11, they share a similar mathematics form and all express

the Normalized Difference Vegetation Detection. The logarithmic term in the later formula

expresses the less impact of the Red when an artificial lighting system is used.

3.3 Experiments and Results

In order to evaluate the performance of the proposed approach in comparison with previous

ones, our autonomous ground vehicle took 5000 raw images and 20 videos of outdoor scenes

containing vegetation, under both morning and afternoon conditions as well as shadow, shin-

ing and underexposed effects taken into account. The configuration of the AGV can be seen

in [Nguyen et al., 2011b], subection 2.1 where the LiDAR, CMOS camera, and MultiCam

mounted at front up of the robot help in describing complex environments.

When the AGV traverses the environment, all data is collected and stored in its computer.

In the first experiment, we implemented vegetation detection algorithms based on “Local point

statistic” [Lalonde et al., 2006], “Conditional local point statistic” [Nguyen et al., 2010b] and

“2D-3D feature fusion” [Nguyen et al., 2011b], using CMOS and laser data. In the second ex-

periment, we built vegetation detection algorithms found on Normalized Difference Vegetation

Index using MultiCam’s data. In the later experiment, the performances of vegetation detection

based on Support Vector Machine training and Modification of Normalized Difference Vegeta-

tion Index are shown in the confusion matrix as in Table 3.1.

Table 3.1: Confusion Matrices for Different Methods(%)

SVM [Nguyen et al., 2011c] MNDVI (proposed)

Vegetation Others Vegetation Others

Vegetation 93.14 5.69 91.02 11.77

Others 6.86 94.31 8.98 88.23

The comparison between different vegetation detection approaches’ performances is illus-

trated in Fig. 3.10 and Table 3.2. Fig. 3.10 demonstrates the out-performance of the proposed

approach against NDVI approaches. Intuitively, MNDVI approach performs more robust and

stable vegetation detection under different illumination effects such as shadow, shining, under-

and over-exposure. In Table 3.2, the evaluation describes the confusion matrices of available
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Figure 3.10: The first row illustrates original colour images. The second row shows the re-

sults given by NDVI approach. The third row demonstrates the results given by the proposed

approach.

Table 3.2: Evaluation of Vegetation Detection performances against environmental complexities

(EC), illumination complexities (IC), and real-time constraint

Authors Methods Sensors Constraints Real-Time Confusion Matrix(%)

EC IC (fps) True True

Positive Negative

Lalonde,2006 (LPSA) Laser 4 5 < 1 0.48 0.41

Nguyen,2010b (CLPSA) Laser 4 5 < 1 0.58 0.47

Nguyen,2011b (2D3DFF) Laser+

mono 4 3 < 1 0.84 0.69

Wurm,2009 Laser

Remission Laser 1 5 1 up to 3 0.99 0.93

Bradley,2007 NDVI Laser+

(MSC) 4 4 1 up to 3 0.95 0.81

Nguyen,2011c SVM MultiCam 5 4 3 up to 5 0.93 0.83

Proposed MNDVI MultiCam 5 5 10 up to 14 0.91 0.85
(∗) Abriviation: (LPSA) Local Point Statistic Analysis; (CLPSA) Conditional Local Point Statistic

Analysis; (2D3DFF) 2D-3D Feature Fusion; (MSC) Multi-Spectral Cameras.
(∗∗) Levels of consideration: 5:very high; 4: high; 3: neutral; 2: low; 1: very low.

(∗∗∗)The frame rate was estimated using laser scanner-LMS221.

approaches whose levels of consideration in environmental and illumination complexities and

real-time constraint are relatively pointed out to assess the reliability and accuracy of the ap-

proaches. In this paper we consider five levels of illumination complexity, including: intensity-

colour change, shadow, shining, underexposure, overexposure. The number of illumination

effects taken into account of a approach reveals the level of illumination complexity of the

approach. Alternatively, regarding complex environments, we divide environments into five
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levels: level 1: hall-way/in yard/campus; level 2: rough/soil road; level 3: off-road with low-

grasses; level 4: off-road with tall-grass/ bushes, level 5: forest. Accordingly, the “Local point

statistic” is not affected by illumination changes, and can be applied for complex environments

if time is not a criteria. The figure is quite similar for the “Conditional local point statistic” but

the precision is improved at about 10%. “2D3D feature fusion” provides a significant improve-

ment of robustness where the precision reaches to 84%, it however is still a time consuming

approach. To approach more the real-time constraint, “Laser remission” restricts the complex-

ity of environments with only two classes analysed, as a result, the precision obtained is quite

high, at more than 99%, the processing time is neutral (around a half second using LMS221).

Emphasizing on the task of detecting vegetation, the approaches based on the photosynthesis-

related properties of vegetation enable faster and higher-precision processes for a real-time and

robust vegetation detection system. Indeed, the combination between Normalized Difference

Vegetation Index and three dimensional distribution can boot the precision up to 95% while the

processing time does cost very expensive. When the purpose is really to extend the reliability

and accuracy of vegetation detection in outdoor complex environments, the shadow, shining and

under-exposed have to be taken into account so that a new vision set-up with an active lighting

system is recommended. Actually, the performance of using MNDVI for MultiCam’s data to

detect vegetation is very impressive where all constraints are highly considered. In a traditional

NDVI approach [Bradley et al., 2007], vehicles painted with pigments that are reflective in

NIR can also be misclassified as vegetation. Meanwhile, the proposed approach uses an active

lighting system which can avoid this failure in most cases. Indeed, vehicles are usually de-

signed with smooth surfaces which reflect NIR rays from the active lighting system to another

direction, thus, PMD sensor would not receive any of that reflected NIR rays. As a result, the

NIR information received by PMD sensor are the NIR light reflected from the sunlight which

is rather weak, thus, does not cause hue impact as in the traditional way. Still, human wearing

dark clothes can be misclassified as vegetation in the both approaches due to a high infrared

radiation emitted from the human body.

3.4 Conclusion

We have introduced the overview of vegetation detection in a structured way with respect to

vegetation index-based approaches as well as presented our new vision set-up to completely

realize the work under the real-time and robust constraints. Overall, our approach shows out-

performance compared with others when taking all environmental and illumination complexi-

ties as well as real-time constraint into account. Regarding the performance of the MultiCam,

the range measurement is still poor in outdoor environments, thus, the proposed approach could
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not use depth information for any detection application but just for obstacle avoidance. Al-

ternatively, the wavelength of the modulated light in the MultiCam’s lighting system strongly

focuses on the band around 870 nm while the expected band starts from 800 to 1400 nm, so

the chlorophyll less-vegetation like brown/Red/yellow grass is not well detected. However, if

extending the spectral width of the modulated light, it degrades the range measurement of the

MultiCam. Therefore, a compromise between range measurement and vegetation detection will

be considered in our future works. An idea to produce a similar device only for vegetation de-

tection with full band of 800 nm 1400 nm for the desired lighting system will also be taken into

account for a further development of the vegetation detection system for outdoor automobile

guidance.
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Chapter 4

2D-3D Feature Fusion-based Vegetation

Detection

Vegetation detection is very simple for the human eye based on its typical colours, textures

and geometric distributions. Thus, the idea of capturing those characteristics of vegetation in-

tuitively has been investigated by using different visual sensors and techniques. In general,

most of available approaches base on image processing (2D sensor) or point cloud analysis (Li-

DAR) separately. The image processing-based vegetation detection exploits colour and texture

features of vegetation while the point cloud analysis-based vegetation detection examines its

3D structures. The performance of the first approach depends significantly on the illuminating

conditions where images are captured. The second one fails to deal with complex outdoor en-

vironments, especially with the presence of dense edges. Both approaches could not lead to

detect the variety of vegetation in nature; see more details in section 4.1. We, hence, propose

a 2D/3D combination approach which can utilize the complement of three-dimensional point

distribution and colour descriptor. First, a 2D/3D mapping needs to be carried out in order to

obtain the correspondences between the image plane and the LiDAR 3D coordinate; see section

4.2. Second, 3D point cloud is segmented into regions of homogeneous distance, and then 3D

features are extracted by implementing conditional local point statistic analysis on each region,

described in section 4.3. The regions of interest segmented from the point cloud are projected

into the image plane to result the corresponding regions of interest. Finally, colour descriptors

are studied and applied to those regions to extract colour features, see section 4.4. Those all

scatter and colour features will be trained to Support Vector Machine to generate a vegetation

classifier. Finally, we will show the superior performance of this approach in comparison with

more conventional ones, as in section 4.6.

This work has been published in Proceedings of IEEE ICIT-2011 [Nguyen et al., 2011b].
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4.1 Related Work

As mentioned above, vegetation detection is very simple for the human eye, it however is abso-

lutely not trivial for the robot’s eye. Human eye is able to recognize reflectance changes without

considering shadows and unexposed effects; contrariwise, using image processing techniques,

an increasing or decreasing in reflectance could happen under different lighting conditions. In-

deed, regarding the view-point of image processing, first there is no specific shape and texture of

general vegetation. Second, although vegetation normally owns typical colours such as green,

red orange, and yellow, the colour descriptor-based vegetation detection is unstable due to light

colour and light intensity changes under different sunshine conditions in outdoor environments.

So, it should be made clear that many publications regarding pattern recognition mentioning

grass/leaf detection successfully by using texture and colour information [Zafarifar & de With,

2008][Lu et al., 2009][Wu et al., 2004][Manduchi, 1999], they however indicated some spe-

cific species of vegetation but not vegetation in general. As a consequence, those approaches

were just applied for robots operating in structured environments but not cluttered ones as in-

vestigated in this work. Overall, the only use of colour and texture information cannot result a

robust vegetation detection in complex outdoor environments, which leads researchers to come

up with the other distinct features rather than colour descriptors, or combine many of them.

Regarding the literature of robotics research, vegetation, especially grass, is detected as one

class in several classes of classified terrains used for determining navigable or non-navigable

terrains [Wolf & Fox, 2005][Dahlkamp, 2006][Rasmussen, 2001][Manduchi, 2005]. Those ap-

proaches model ground surface and objects above the ground are generally obstacles. [Welling-

ton et al., 2006] introduced a more advance approach which models more complex terrains to

learn which obstacles can be driven over (low grass, ground) and which need to be avoided

(bushes). Indeed, [Wellington et al., 2006] modelled terrain structure as a set of voxels where

each voxel is a 15cm3 box-shape region of three dimensional space. The simple idea of detect-

ing vegetation can be explained as follows: the number of LiDAR rays that pass through each

voxel is recorded (pass-through); the number of LiDAR rays that hit that voxel is also recorded

(hits); thus, the voxels which contain mixture of hits and pass-through should be vegetation. To

improve the robustness, the work introduced Markov Random Field (MRF) models and Hid-

den semi-Markov models (HSMM) to model 3D structure of terrain based on laser remission,

infrared temperature and colour information. However the approach requires some constraints

which help for a better navigation but limit the applicability of the method for detecting a va-

riety of vegetation. For instance, the state between the ground height and vegetation height is

vegetation and above that is free- space; the similarity in vegetation height; etc. In this work,

we are more interested in approaches which can be applied for detecting a variety of vegetation

in nature.
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4.2 2D/3D Mapping

The problem of calibrating a vision system is extremely important for practical applications

such as 3D reconstruction and pose estimation of three-dimensional objects. Even though many

researchers attempted to do full-calibration of coupled vision systems such as Fish-eye Laser

Scanner and CCD camera or CMOS camera, the result showed mean performance while the

cost of computation was very expensive [Brun & Goulette, 2007]. The precision of reconstruct-

ing 3D model drops sharply with the presence of vegetation. One of the main reasons is that

interest points are not stable due to the vibration of vegetation. In fact, for the aim of detect-

ing vegetation, we do not need a very precise calibration. A simple 2D/3D mapping with all

large objects reconstructed is sufficient. Therefore, we on the other hand propose a simple but

fast and efficient 2D/3D mapping technique for the coupled system: Laser Scanner and CMOS

camera. The characteristics of elements are described in the Table. 4.1.

Table 4.1: Characteristics of Elements

Laser Scanner Number of points 6437 per profile

Aperture angle 410x770

Profiles velocity 2 s

Focal length 12 mm

Colour CMOS Number of points 640x480 pixels

CMOS ≈1/3.2”

Frame rate 25 Hz

Aperture angle 550x700

Focal length 3.7 mm

The technique is found on the following property:

Property 1: If the CMOS camera and Laser Scanner are positioned near each other in a

vertical line, and when objects are far enough, the views from CMOS camera and from Laser

Scanner are nearly the same in a narrow angle. So, a simple 2D/3D coarse calibration can be

done by mapping two images lied on two parallel coordinates.

Hence, we need two assumptions: At first, CMOS camera and Laser Scanner have to be

positioned near each other and in a vertical line. Secondly, all object are far enough to avoid

the stereo effect. One might concern wheather these assumptions are strong or weak ? In order

to answer the question, we have positioned CMOS camera as 5 cm under LMS221, and tested

for the performance of the coupled system, see Fig. 2.2 in section 2.1. The views of LMS221

and CMOS camera are quite correlative for the object distance of 3.8 m or more (see Fig. 4.2

a) b) c)). Specifically, the practice, with 525 scenes captured, has proved that the assumptions

are strong for purpose of vegetation detection in the distance range of 3.8 m to 15.8 m. The
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Figure 4.1: The proportion of size of CMOS image to depth image’s is equal to the proportion

of aperture of CMOS to LMS221’s, in each dimension. The 3D model is created by Johannes

Leidheiser, Lars Kuhnert and Klaus-Dieter Kuhnert, see more in Leidheiser [2009].

Figure 4.2: a) CMOS image, b) cropped CMOS image c)depth image d) segmented image.
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upper threshold for distances needs to be set due to the scatter effect of laser beam, whereby

very far objects will not be captured enough information to be recognized regarding 3D point

distribution. To calibrate the coupled systems, a 3D chessboard model is built, see Fig. 4.1.

The procedure of 2D/3D mapping is taken place as following.

1. Finding the size of the depth image projected to the CMOS image, denoted by LSize(width,

height). The proportion of size of CMOS image to depth image’s is equal to the proportion of

aperture of CMOS to LMS221’s, in each dimension (see Fig. 4.1).

2. The depth image is interpolated to the size of LSize. The technique used is linear interpolation.

3. Sliding a windowwith size of LSize across the CMOS image and do matching with the interpo-

lated image. Four interesting points matched are the conner points of the models. Considering

the centroid of each image, CMOS image or depth image, as the origin of the corresponding

image plane: Assume that O1(0,0) is the centroid of the CMOS image, and O2(xshi f t ,yshi f t) is

the centroid of the depth image projected on the CMOS image plane. The matching process

returns the shifting parameters (xshi f t and yshi f t) of the two image planes. The unit of these

parameters is pixel size with 640 x 480 of CMOS image resolution.

Figure 4.3: Example of reconstructed 3D scenes.
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After the mapping, we will obtain three parameters including LSize, xshi f t and yshi f t . These

parameters are then used to reconstruct 3D scene as seen in Fig. 4.3 where LSize = 398x472

pixels, xshi f t = 19 pixels and yshi f t =−74 pixels.

4.3 3D point cloud analysis

The traditional way for analysing 3D data given by a LiDAR is to capture the spatial distribution

of points in local neighbourhood [Vandapel et al., 2004]. In this work, we, on the other hand,

address a statistic approach based on 3D point distribution for analysing the 3D data. At the

early state of our work, we have done the local statistic analysis for 3D point cloud given by

the LMS221 (LiDAR)[Nguyen et al., 2010b]. The basic idea of this approach is that the point

clouds representing artificial constructions and tree trunks should have linear or surface struc-

ture while the vegetation should be represented by high textured or scattered structure clouds.

The work of [Lalonde et al., 2006] demonstrated that this idea can be potentially implemented

in describing outdoor environments. However, the task of finding an efficient way to classify

the 3D structures is very challenging.

The first suggestion is introduced by [Lalonde et al., 2006]. A sizeable cube crosses by the

3D point cloud to capture the local spatial point distribution by the decomposition into principal

components (PCA) of the covariance matrix of the 3D point positions, ordered by decreasing

eigenvalues. Intuitively, in the case of scattered points, there is no dominant direction in the

spatial distribution of the points, so the eigenvalues are nearly equal to each other. In the case

of linear structure, there should be only one dominant direction, so the first eigenvalue is much

superior to the others. Finally, in the case of solid surface, the principle direction is aligned

with the surface normal with the first two eigenvalues are close to each other and far differ-

ent from the last one. These properties are very efficient and characteristic to describe the 3D

spatial distribution of points in space. However, the way of sliding a cube across the space to

estimate the local point spatial distribution is time-consuming and can not deal with the variety

of environments. The suitable sizes of the cube are unpredictable and must be adjusted in dif-

ferent conditions. Besides, in the case of dense edge presence in artificial constructions, a set

of edge points will look like a porous volume which defines the character of vegetation. There-

fore, we have proposed a pre-processing procedure that segments 3D point cloud into regions

of homogeneous distances. The segmentation will help to avoid the edge effect ([Nguyen et al.,

2010b]) and extract objects in forms of region interest. As also discussed in our previous work

that the segmentation technique should be applied is Efficient Graph-based [Felzenszwalb &

Huttenlocher, 2004]. The technique covers both local and global properties of images, which is

proved neither too coarse nor too fine in the work of [Felzenszwalb & Huttenlocher, 2004]. In-
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deed, the distances given by the LMS221 are very precise. So, the image representing the point

cloud are more structured and finer than a regular image whereby the segmentation algorithm

has no longer to face illumination effects of natural scenes. Indeed, the segmentation of 3D

point cloud has been carried out successful in our previous work [Nguyen et al., 2010b], but for

the purpose of mapping 2D/3D, it is time-consuming. Because, we after segmented the point

cloud, then had to project it back into the CMOS image plane, and do matching with the CMOS

image. In this paper, we are going to directly segment the depth image given by a projection

of 3D point cloud into the CMOS image plane. The segmentation takes 42 ms for such image

sizes of around 41x157 pixels. The details of Efficient Graph-based technique used for image

segmentation is reference in [Felzenszwalb & Huttenlocher, 2004], while one result example is

illustrated in Fig. 4.2 d.

4.3.1 Scatter Feature Extraction

A. Conditional Local Point Statistic

In the work [Nguyen et al., 2010b], we have proved that three saliency features, including

Sscatter, Ssur f ace, and Slinear are efficiently used to classify terrain. Whereby we are able to clas-

sify scatter (tall grass, canopy, needle tree, thin bushes) from surface (wall/flat road/building),

and linear (wire) objects. The details of how to extract those conditional local point statistic

features are described in [Nguyen et al., 2010b] or in subsection 8.2.2.2 in Chapter 8. However,

there exists some kind of vegetation such as thick bushes, low grass, and broad leaves trees

which could not be distinguishable from surface objects when applying the local point statistic

technique. Also, in complex environment with presence of dense edge objects, the judgement

of scatter objects being vegetation is not always applicable. Therefore, a clever strategy is to

remove all smooth surface and linear objects out of interest by applying machine learning tech-

niques on the set of these conditional local point statistic features. Rough surface objects and

objects with porous volume in 3D structure are more investigated with their level of roughness

and colour features.

B. Regional Distance Distribution

Regarding the representation of distances from the point of view of image processing, a

histogram of depth images can describe the distribution of distances. In this work, we will

show that the histogram of distances can be used efficiently to estimate the scatter property

of points in space. We have done many experiments which prove that 20 bins of histogram

is sufficient for the estimation. A histogram model Hs is assumed to be built beforehand by
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averaging histograms of samples with scatter distribution.

Hs[i] =
1

N

N

∑
j=1

H j[i] (4.1)

where N: number of scatter samples, H j[i] is the value of the bin i in the jth histogram.

For each region Rk, distances firstly are normalized into the range of [1 20]. The histogram of

each region is Hk which has to be normalized with Hs, or:
20

∑
i=1

Hk[i] =
20

∑
i=1

Hs[i]. The quadratic

histogram distance between Hk and Hs is computed as following.

Dk = sqrt((Hk−Hs)
T ∗A∗ (Hk−Hs)) (4.2)

where ∗: denotes the convolution. Matrix A describes the internal element difference of Hs.

Ai j = 1− |Hs[i]−Hs[ j]|
argMaxi, j(Hs[i]−Hs[ j])

(4.3)

(Hk−Hs)
T ∗A∗(Hk−Hs) is positive semi-definite on the subspace ∑

i
(Hk−Hs)[i]= 0, soD2

k ≥ 0.

The distance Dk is then used as a scatter feature. Even though, the histogram quadratic distance

is computationally expensive for a big number of bins, it is very efficient and fast for such 20

bins in this work.

4.4 Colour Descriptors

The human eyes’ perception of colour is one of the most important visual elements which help

us to recognize different objects. In addition, vegetation does not have a specific shape or

texture but usually represented by green, orange, or yellow colour. Therefore, this work pays

more attention on studying colour descriptor. In fact, the work of [van de Sande et al., 2010] has

introduced a very structured overview of different colour invariant descriptors in the context of

image category recognition. The colour invariant descriptors have been evaluated individually

where high precision of detecting specific objects such as aeroplane, person, horse, and car is

shown. However, the detection of vegetation, in particular potted plant, is still very poor, at

about 20% in average precision. One of the major problems for that is the shift and change of

intensity and colour under different light conditions while the vegetation tends to be recognized

based mostly on its colour. So, two of interesting features should be taken into account are

the mean and standard variation values of intensity and colour which imply the light condition

of the viewed scene. The interesting point in vegetation images is that the main colour should

be theoretically green in HSV colour space under most different environment conditions. In
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Figure 4.4: a) an example of vegetation regions extracted from the section III. b)Raw hsv image

c) hsv image after thresholding Value’s intensities.

reality, this is not always true for scenes containing sky. The affection of sky tends to turn the

colour of image to red, red brown, etc. The issue is often caused by the low intensity of the

“Value” (in HSV colour space). Therefore, this can be solved by giving the lower threshold for

the Value’s intensities: If V [i]< κ then HSV [i] = 0.

The result is illustrated in Fig. 4.4 (It should be implicitly understood that an image pre-

processing step needs to be done beforehand such as noise and blur filtering). The green or

orange colour appears as a majority colour in vegetation images in HSV colour space. This

drives us to come up with a vegetation recognition based on colour histogram distribution. That

means the global properties of colour in an image are more emphasized than the local ones.

Colour histogram distribution is not new in content based image retrieval (CBIR) and image

category recognition [Hafner et al., 1995][Jeong et al., 2004][van de Sande et al., 2010]. How-

ever, the use of it in detecting vegetation or categorizing vegetation images with others has not

been done successfully up to now. In order to focus more on vegetation detection, we propose

a histogram model, denoted by Hv, which is obtained by averaging histograms of vegetation

images, or: Hv[i] =
1
N ∑

k

Hk[i]. N is the number of vegetation images inputted. Two common

histogram distances often used to compare histograms are Histogram Euclidean and Histogram

Intersection are also studied in this paper. The difference of histogram Hk and Hv can be calcu-

lated in different distance definitions as following.

Euclidean Distance:

de = sqrt(∑
i

(Hk[i]−Hv[i])
2 (4.4)

75



4. 2D-3D FEATURE FUSION

Histogram Intersection

di =

∑
i
min(Hk[i],Hv[i])

∑
j
Hv[ j]

(4.5)

The work of [Jeong et al., 2004] has showed the out-performance of Histogram Intersection

in HSV colour space compared with it in RGB colour space and with Euclidean Distance in

both colour spaces. However, the result is just applied for standard images where good light

condition is set. In worse light conditions, there is a shift and change of colour. The consid-

eration of absolute value difference of histogram bins is no longer appropriate. So, the result

shows poor performance, at about 30% → 0.4% in average precision for both the above dis-

tance measurement methods. The interesting point is that there is similarity between histogram

curves of vegetation images under different environmental conditions. Therefore, we suggest

to use Histogram Quadratic to measure the similarity and dissimilarity between two histogram

curves.

Histogram Quadratic:

dq = sqrt(
1

M
(Hk−Hv)

T ∗A∗ (Hk−Hv)) (4.6)

Ai j =
|Hv[i]−Hv[ j]|

maxm,n(Hv[m]−Hv[n])
(4.7)

where: M is the number of histogram bins; Hk has to be normalized ∑
i
Hk[i] = ∑

i
Hv[i]; A is the

cross correlation matrix of histogram bins of Hv. So, A can be computed beforehand to reduce

the on-line computation.

The Histogram Quadratic is firstly introduced by [Hafner et al., 1995] for image retrieval

based on colour histogram. However, it seems to be computationally very expensive because

the number of histogram bins is usually large. In fact, in HSV colour space, there is mostly

no identity of vegetation expressed through histograms of Value and Saturation. The Hue his-

togram describes more characteristics of the viewed scene. This enables a quantization of the

histograms in order to reduce the number of histogram bins or makes HistogramQuadratic more

applicable. Even though the histogram curves share some similarities regarding global shape

but they are not respectively correspondent with their histogram bin mapping values. So, the

increase of quantization levels does not accompany with the increase of accuracy of histogram

similarity measurement. A large number of tests has been carried out in our laboratory to choose

the best quantization levels of different colour channels in HSV colour space. Practical shows

that the proportion 20:4:3 corresponding to Hue:Saturation:Value results highest accuracy in

classifying vegetation’s histogram curves and others’. The evaluation of vegetation retrieval is

illustrated in Fig. 4.5. Two metrics for retrieval effectiveness are recall and precision. Recall
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Figure 4.5: Histogram-based retrieval effectiveness for vegetation.

signifies the vegetation images in the database which are retrieved. Precision is the proportion

of the retrieved images that are vegetation. Let A be the set of relevant items, B the set of

retrieved items.

Thus: recall = P(B|A) Precision= P(A|B)

4.5 Support Vector Machine

It is practically infeasible to hand-tune thresholds to use directly the saliency features to perform

classification because those feature values may vary depending on the type of environments,

the type of sensors, the number of scanned points, and the point density. Experimental research

shows that the variability of the values is manifested especially with the presence of tall grass

(or dense edge areas), so we usually confront with a nonlinear classification problem in the case

of cluttered environments. In fact, there are many nonlinear classification techniques proposed

at recent time, both supervised and unsupervised. While the supervised techniques usually cost

computational expense, the unsupervised ones are not well adapted to the nonlinear problems

in reality. In this work, we train data with only six features (see Table 4.2) in order to give the

decision, so the supervised classification technique is preferred.

Table 4.2: Six extracted features

Intensity Colour 3D distribution

Mean, Std dq Sscatter,Dk,Ssur f ace

We had tried to use Support Vector Machine (SVM) [Cortes & Vapnik, 1995], Naive Bayes
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classifier [Quinlan, 1993], Neuron Networks [Zhang, 2000], Adaboost [Freund & Schpire,

1997], and Expectation Maximization [Bilmes, 1997]. Consequently, proposed by Cortes and

Vapnik in 1995, SVM shows out performance and is more reliable than others. The kernel trick

used is Radial Basic Kernel [Baudat & Anouar, 2001].

4.6 Experiments and Results

In this work, 500 different scenes of cluttered outdoor environments are captured by the SICK

laser LMS221with 41x157 pixels resolution and the Logitech QuickCam Pro 9000with 640x480

pixels resolution, in both morning and afternoon conditions. The maximum distance set is 16

m. 300 pairs of 3-D point clouds and CMOS images are used for training and the other 200 are

used for testing. The classification results are evaluated by comparing the output of the classifier

with the hand-labeled data. Table. 4.3 shows the classification accuracy of the results.

Table 4.3: Confusion Matrix (%)

Vegetation Others

Vegetation 81.48 18.52

Others 15.76 84.24

The classification processing time of our approach is fast, at around 580 ms, however the

acquisition time of the LiDAR is quite slow, at around 2000 ms. Therefore, the total processing

time of this approach is at around 2580 ms, which is not really reliable for on-board navigation.

The main use of this approach is to predict the scene category front of the vehicle and interpret

the current environment by localizing vegetation areas around. In reality, outdoor autonomous

navigation has to face with unknown environments and unknown situations. Whenever, the

Figure 4.6: Some vegetation detection results obtained from the proposed method.
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automobile gets into a tough situation where he could not find which way to go or all ways seem

to be blocked by lethal obstacles. In such situation, the approach initiates a solution. The robust

detection of the proposed method enables a more interaction between automobile and natural

environments. The knowledge about location of vegetation areas around gives information not

only referenced for navigation by making decision of which obstacles can or can not be driven,

but also for localization. Fig. 4.6 illustrates some vegetation detection results obtained from the

given method. In general, vegetation is well detected, except the case that vegetation is very far

from the robot so that there is no 3D information about it, or the background light is too dark or

too bright where the colour information is too bad to extract 2D features of vegetation.

4.7 Conclusion

We have presented a new approach for vegetation detection, which is based on 2D/3D feature

fusion. The 3D point distribution has been investigated and fused with the colour descriptors to

form the feature vectors of vegetation, which are then fed to the training process using support

vector machine to generate vegetation classifier. Through many robotics experiments in a large

variety of object scenarios, the classifier shows impressive performance with accuracy of more

than 82%. Thus, the proposed method can be used to support decision-making of a robot in

its autonomous navigation or other agricultural applications which require to detect vegetation.

The limitation of the approach is that it requires a fully scanned 3D scene while all available

Laser Scanners need a long data acquisition process in order to result a reasonable point cloud

resolution. This lowers the speed of the entire sequence. The outlook of this work is to de-

velop a full functional system whose precision and time can be compromisable by reducing or

increasing the number of scanned points. Whereby, the system can be applied in different levels

of precision and processing time depending on purpose of a given task.
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Chapter 5

General Vegetation Detection Using an

Integrated Vision System

In this paper, we address a new vegetation detection model by using an integrated camera

mounted both CMOS and PMD sensors, the so called MultiCam, which can simultaneously

provide NIR, colour, and depth images. The aim is to deal with either obstacles avoidance or

scene category prediction in order to give a better decision-making framework for autonomous

navigation while still considering real-time constraints. The novelties of this work lie in the

following aspects:

• Chlorophyll of vegetation significantly absorbs visible light, especially red and blue wave-

lengths while strongly reflects NIR bands. Thus, the ratio of radiances in the NIR and red

bands leads to index vegetation.

• Observing that the strong reflectance of vegetation in the modulated NIR band helps

to acquire fine depth information for vegetation areas in the scene while the depths of

other objects usually consist of much noise (well-known issue of PMD sensor in outdoor

operating conditions). This enables good spatial features for vegetation detection based

on both estimating the probability of depth measurement noise and analysing the 3D

distribution of vegetation point-cloud.

• Vegetation usually appears in several typical colours such as red-orange, yellow, and

green. So, if we build three colour histogram models corresponding with the three

colours, histogram distances between an input and the models can be used as good colour

features to detect such homogeneous colour object like vegetation.

• The texture of vegetation is generally complex and unstructured, thus, an assessment on

texture orientation in a local region tends to provide discriminative texture features.
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SYSTEM

Whereby, the reflectances of the modulated NIR given by the PMD sensor and the red chan-

nel of the CMOS sensor are used to calculate Normalized Difference Vegetation Index (NDVI).

In addition, a relative distance estimation method referencing a perfect flat ground is described

to obtain quickly 3D point cloud in the vehicle frame, thus, enables a 3D distribution analysis

for spatial feature extraction. Since vegetation usually appears in several typical colours and

unstructured texture, the paper also derives a method for generating colour histogram models

and assessing unstructured texture orientation to create visual features. Finally, NDVI, spatial

features and visual features are gathered to form feature vectors, which are then used to train a

robust vegetation classifier. In [Nguyen et al., 2011c], we only used the colour and NDVI fea-

tures together with a training method to create vegetation classifier. We show through empirical

results that the vegetation detection accuracy is improved by taking texture and spatial features

into account. In all real world experiments we carried out, our approach yields a detection

accuracy of over 90%.

This paper is structured as follows. Subsection 5.1 presents the setup of our vegetation de-

tection system. Subsection 5.2 introduces spatial features extracted from MultiCam data. Sub-

section 5.3 mentions the fast calculation for normalized difference vegetation index. Subsection

5.4 discusses on colour and texture features of vegetation from human perspective. Subsection

5.5 demonstrates some experiments and results while Subsection 5.6 concludes this work.

A part of this work has been published in Proceedings of IASTED International Confer-

ence on Computer Graphics and Image Modeling [Nguyen et al., 2011c]. This work has

been accepted for publication in International Journal of Robotics and Automation [Nguyen

et al., 2013].

5.1 System Set-Up

Due to the high frame rate of data acquisition, MultiCam is well suited for a real-time object

detection whereby interactive 3D data can be obtained by moving the camera around in space.

Indeed, many applications have been implemented successfully on using a PMD camera such as

hand detection, man-machine interaction, and obstacle detection [Ghobadi et al., 2010]. These

firstly motivated us to extend the use of the camera in a diversity of other applications confi-

dently. However, a huge problem is arising regarding to the high probability of failed distance

measurement whenever the camera is working under strong sunshine conditions. There are ac-

tually many aspects affecting the degradation of measure, which were mentioned in [Nguyen

et al., 2010a] in details. Typically, we just want to emphasize: the illumination noise caused by
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abundant NIR of the sunlight; the significant influence of the distance aliasing effect 1 of mea-

sured distances relied on a phase modulation process used in ToF cameras. In case of the alias

occurring to some foreground objects and background, the measured distance results contain no

benefit information for those objects. Actually, this is not a big deal or not a frequent occurrence

in indoor structured environments such as hall-way and room space. In contrast, the outdoor

scenes include so many different objects at different distances, even the sky, which inevitably

challenges the distance aliasing effect. In fact, the purpose of terrain classification as well as

vegetation detection in order to help an AGV operate outside does not require all knowledge of

surroundings but the understanding of the front scene. Therefore, we propose to position the

MultiCam looking down as can be seen in Fig. 5.1(b). The angle θ between the MultiCam

optical axis and the horizontal axis can be calculated as:

θ = ÂBO+
ÂOB

2
= arcsin(

H

OB
)+

ÂOB

2
(5.1)

Where H is the height of the MultiCam. ÂOB is the vertical aperture angle of the MultiCam.
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Figure 5.1: (a) Optical set-up of the MultiCam. (b) System set-up.

Hence, the real world distances from all objects in the scene to the MultiCam are lesser than

7.5m. There is no more distance aliasing effect under this system-setup. Also, this setup helps

to avoid the direct sunshine to the camera, which consists of a wide range of light spectrum

including the visible light, UVA, UVB and even infrared, which affects the distance measure-

ment (see more in [Nguyen et al., 2010a]). Finally, a preferable speed of a reliable autonomous

1The distance aliasing effect is understood in this case as the overlap of measured distance values for objects

whose distance differences between them are multiples of 7.5m. For example, a target at 8.5 m would appear as

at the distance of 1 m (= 8.5 m - 7.5 m) from measuring (understood as a circular shift by the phase modulation

process used in the ToF camera).
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navigation system up to date is at about 3 m/s, so the maximum distance restriction of 7.5m is

acceptable.

5.2 Spatial Features

As mentioned in Section 5.1 that the 2D-3D setup of the MultiCam is monocular, so an implicit

calibration is done by a two dimensional translation function which maps a 10x10 2D pixel to

one single PMD pixel. If we assume that the roll and yaw angles are zero, then there is only a

pitch angle as shown in the system set-up in Fig. 5.1(b). Whereby, the 3D point cloud can be

reconstructed by comparing distances of a query scene with of the flat ground. Indeed, if we

assume that R= {ri : i= 1,2..N} and D= {di : i= 1,2..N} are sets of distance values measured

from the smooth and level ground surface and from a query scene, respectively. The height of

each point in the query scene can be calculated as follows:

hi = H× ri−di

ri
(5.2)

Similarly the distance of each point in the scene to the vehicle can be computed as:

si =
√

r2i −H2−
√

r2i −H2× hi

H
(5.3)

Each pair of (hi,si) and the position of the point projected into the imagery plane of the

3D sensor provide enough information to reconstruct the 3D point. Then, a 3D scene can be

reconstructed by putting the correct colour information into the 3D point cloud. Fig. 5.2(a)

shows some examples of reconstructed 3D scenes using our approach. Clearly this approach is

incompletely performing extrinsic calibration with assumptions of having zero roll and yaw an-

gles as well as perfect smooth and level ground surface to generate the flat ground model, thus,

is not very precise. However, a complete and automatic 2D/3D calibration (with intrinsic and

extrinsic parameters) returns unstable results due to the low depth resolution (64x48). Indeed,

good features are not always obtained to estimate properly intrinsic and extrinsic parameters.

The depth image contains noise, thus, affects to the process of estimating intrinsic parameters

even if the calibration is done manually. Overall, the proposed method is a clever way to solve

the calibration problem in our conditions.

In order to find spatial features, we suggest to over-segment the colour image into many

small regions of interest, and map those regions into the depth image to result the correspond-

ing regions of interest. The segmentation technique used in our work is Efficient-Graph-based

which was originally introduced in [Felzenszwalb & Huttenlocher, 2004]. To eliminate illu-
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mination noise and to save processing time, it is recommended to down-sample the colour

image beforehand using Pyramid technique. Thus, the time requested for the segmentation is

at around 40ms→ 60ms which is very fast. Then, we want to calculate the spatial features for

each small region based on the 3D information reconstructed. An expert in PMD sensor might

raise a question that PMD sensor is known to be strongly affected by the sunlight, so is that

a good idea to be based on distance information given the camera? We answer “yes” because

the strong reflectance of vegetation against near-infrared helps to eliminate illumination noise,

thus, provides reasonable depth for the vegetation areas from the scene [Nguyen et al., 2012c].

Consequently, we expect that there should be approximately no wrong distance measurement

for vegetation while there usually exists for a non-vegetation area. This insight enables an idea

to classify vegetation regions and others based on evaluating their noise and spatial distribu-

tion. With the camera positioned as in Fig. 5.1(b), we expect to see small vegetation regions

as rough surfaces. So if we build a least square plane for each region, the total sum of point-

to-plane distances from all 3D points inside the region can tell us about the smoothness of its

surface, denoted by Ssmooth. On the other hand, in a small region, if the distance of a 3D point to

the least square plane is superior to three times of the average of all other points’ point-to-plane

distances, the 3D point should be a defect. The number of defects found inside a small region

can tell us the probability of measurement noise appearing in the region, denoted by Pnoise. In

this work, we will prove that Ssmooth and Pnoise are good features to be trained to generate robust

vegetation detection classifier. Still we acknowledge that Ssmooth and Pnoise could not be used

efficiently to detect bushes which are not thick enough due to a “look through” effect where

some light beams may pass through the vegetation and return larger ranges.
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Figure 5.2: (a) Examples of reconstructed 3D scenes where the exposure-times of 2D and PMD

sensors are set at 10 ms. (b) Example of vegetation detection based on thresholding NDVI

values where the green colour represents living vegetation, cyan colour denotes dead grass or

wet soil. If giving a threshold: T = NIR−Red
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5.3 Vegetation Index Calculation

Although, vegetation indices have been widely used in many remote sensing applications to de-

tect vegetation areas, it is still a problematic thought to apply them directly to mobile robotics

applications due to the drastically different viewpoints. Regarding to autonomous ground nav-

igation, it would be more challenging in order to deal with views of the sky, shinning, shadow,

underexposed, and overexposed effects as well as the presence of a variety of different mate-

rials from which the reflected light can have a spectral distribution that is different from that

of the sunlight. Intuitively, the sensor noise and errors cause heavy effect in underexposed ar-

eas [Bradley et al., 2007], as a result, they are usually confused as vegetation areas. Fortunately,

the MultiCam uses an active lighting source to send a modulated NIR signal and receive the re-

flected NIR signal through the PMD sensor, so that it is not significantly influenced by those

illumination effects. The point is that we measure the reflectance of the modulated light from

the MultiCam’s lighting source instead of sunlight. There might be differences of light spectral

distributions, so:

Is it possible to only use NIR reflectance for vegetation detection? or:

Is it still possible to use NDVI for vegetation detection?

The answer is “yes” for both questions in case of good lighting condition and “no” for

both when an irregular illumination effect occurs. Since the active light has wavelengths lying

within the band from 800nm to 1400 nm (focusing on 870 nm in our case) which is strongly

reflected from chlorophyll, the representation of NIR or NDVI maintains its properties regarding

to vegetation index. This has been proved practically in our laboratory with 1000 scenes as well

as video sequences captured under different lighting conditions and different exposure-times set.

In case of only using NIR values, vegetation areas always show very high reflectance from NIR

bands compared with others, that means their representation is brighter in the intensity image

given by the PMD sensor. Thus, vegetation can be detected by evaluating or thresholding the

NIR values. The results of this approach are quite impressive if there is not much light intensity

and light colour change of the viewed scenes. In contrast, the threshold must be changed non-

linearly upon changes of lighting conditions of surroundings, which degrades the reliability of

the approach in outdoor environments.

The use of NDVI is still preferred in our approach, which considers both NIR reflectance

and illumination information. However, the NIR and red intensities are given by two different

light sources: one comes from the MultiCam, the other comes from the sunlight, which are

approximately independent.
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Let’s recall the normalized difference as follows,

NDVI =
NIR−Red

NIR+Red
(5.4)

From the mathematical point of view, this computation of the difference is more cumber-

some than of the simple ratio, including one subtraction, one addition and one division. A faster

calculation was proposed in [Crippen, 1990] by a reduction to the ratio between the NIR and the

addition of NIR and red, named as infrared percentage vegetation index, which is functionally

and linearly equivalent to the NDVI.

NIR

NIR+Red
=

1

2
× NIR−Red

NIR+Red
+

1

2
(5.5)

Consequently, this fast calculation is applied to compute the normalized difference veg-

etation index in our algorithm. Alternatively, from mathematics point of view, the NDVI is

negatively proportional with the red. As a result, these create the lower luminance level, the

higher NDVI. For instance, very dark areas usually act like chlorophyll-rich vegetation ones

due to high values of NDVI (because of small values of red). Hence, giving a threshold or

binary linear classification for NDVI values to detect vegetation is not really robust for scenes

in complex environments or under illumination effects. An example of detecting vegetation by

easily thresholding the NDVI values is described in space of NIR and Red reflectance as sepa-

ration curves passing through the origin (shown in Fig. 5.2(b)). Clearly, there is misdetection

between dead grass and soil. Therefore, to avoid biasing NDVI formula, we propose to use

brightness descriptor feature in the classifier to compensate changes on red band due to light

changes.

5.4 Colour and Texture Descriptors

Previous section has mostly done the work of detecting vegetation. However, there are mate-

rials absorbing much NIR light such as water, wet soil, wool, fungus/mould construction and

many other artificial ones, which can not be clearly distinguished from vegetation relying on

NDVI. Thus, we propose to add colour and texture descriptors to give more confidence for the

vegetation detection system. Indeed, vegetation owns its typical colour of green, orange and

yellow which are different from that of those NIR absorbing materials.

Colour Analysis: Since the colour of a vegetation area is quite homogeneous, so an easy com-

parison between a query region’s colour and yellow/green/orange colour model can also give

reasonable results. For more robustness, we suggest to use histogram distances in order to deal

with the intensity and light colour change in outdoor environments. In fact, histogram distances
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are proved to be discriminative features in image retrieval [Chakravarti & Meng, 2009] [Ku-

mar et al., 2009] [Nguyen et al., 2011b]. In our previous work [Nguyen et al., 2011b], we are

able to efficiently detect vegetation in form of regions of interest by computing the histogram

distances between the colour histograms of each region of interest and three colour histogram

models. In this work, we also build three colour histogram models (yellow/green/orange) and

use the histogram distances as colour features, see more details in. Nevertheless, instead of do-

ing segmentation on the depth image as in [Nguyen et al., 2011b], the colour image is directly

segmented to result the image in form of regions of interest (ROIs).

The work of [Jeong et al., 2004] showed the out-performance of Histogram Intersection in

HSV colour space compared with it in RGB colour space and with Euclidean Distance in both

colour spaces, with respect to image retrieval. However, the work of [Nguyen et al., 2011b]

pointed out that the Histogram Quadratic maintains its higher applicability than others’ for veg-

etation detection under different lighting conditions. However, the computation of Histogram

Quadratic distance is very expensive, up to 300 ms for such image of 640x480 pixels, which is

no longer suited for real-time applications. If the time is not critical, this feature is preferred to

give more robust results of vegetation detection.

Texture Analysis: Human eyes can easily recognize vegetation based on texture, which mo-

tivates us to investigate texture analysis for vegetation detection. In fact, even with human

knowledge of texture analysis, it is still hard to describe the texture of vegetation in general due

to a variety of vegetation species which own quite different textures. The interesting insight

is that such textures are unstructured in nature compared with artificial materials’ because the

human tends to design things in a linear structure. To utilize this property, we propose to use

Gabor Filter bank, which is well-known to be accurate in estimating texture orientation, to ex-

tract texture features. Step by step to obtain Gabor response images from different orientations

can be followed by the work of [Kong et al., 2010]. However, to speed up our algorithmwe only

use 18 orientations instead of 36 as in the work in [Kong et al., 2010]. If [Kong et al., 2010]

tried to get long edges to detect lines of road, we in contrast try to remove all edges in the Gabor

response images. We obtain 5x18=90 Gabor responses (5 scales and 18 orientations). At each

orientation, we compute the average of texture intensity for all scales. Overall, we finally have

18 average Gabor responses (AGRs). Project the ROIs from the over-segmented colour image

into AGRs to result small regions of interest there, denote as G−ROIs. Observing that: 1) If a

small region contains long edges or linear structures, so the maximum texture orientation of the

region should be the same as of the edge pixels. 2) If a small region is a smooth surface, so the

Gabor responses of the region have very low intensities. 3) If a small region has an unstructured

texture, so many edge pixels have different maximum texture orientations as of the region. We

define the maximum texture orientation of a small region (or of a pixel) as the orientation (or
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the angle) at which the Gabor response of the region(or the pixel) is maximized. Hence, for

each ROI:

• Calculate the average intensities of corresponding G−ROIs. Set counter= 0.

• If the averages are small, remove the ROI out of interest.

• Else, search for the maximum texture orientation of the region (for example, at the orien-

tation α corresponding to the G−ROI which has the maximum average intensity). For

each pixel of the ROI, search for its maximum texture orientation, for example at the

orientation θ .

– if α = θ , the pixel is an edge one.

– else, the pixel is an unstructured texture one. counter= counter+1

• Percentage of unstructured texture = counter / (total number of pixels inside the region).

Figure 5.3: Top-left: colour image; Top-right: segmented image; Bottom-left: unstructured

points extracted; Bottom-right: texture map is obtained by weighting the average intensity of

Gabor responses by the percentage of unstructured points inside the region.
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Then, ROIs which have less percentage of unstructured texture points are removed. The rest of

ROIs are potential to be vegetation regions. Within this consideration, the probability of a ROI

to be a vegetation should be positively proportional with the percentage of unstructured texture

pixels within the region. Consequently we obtain the texture map as in Fig. 5.3(b). Whereby

the unstructured texture regions show brighter intensities than others. We will prove that the

intensity of the texture map image can be used as a good texture feature for training vegetation

classifier, denoted by uTex f .

5.5 Experiments and Results

In order to demonstrate the applicability and reliability of the proposed approach, 1000 scenes

and 10 video sequences of outdoor environments were captured by theMultiCam, in both morn-

ing and afternoon conditions (see our autonomous ground robot’s configuration in [Nguyen

et al., 2011b] ). Whereby, 500 scenes are used for training and the other 500 for testing. Struc-

tured scenes were gathered from sites in the campus of University of Siegen, and cluttered

outdoor scenes were taken from the mountain nearby the university. The detection results are

evaluated by comparing the output of classifier with hand-labelled data.

Table 1 1 shows the accuracy of vegetation detection results under different features sets

trained by binary support vector machine classification algorithm with Radial Basic Kernel

[Cortes & Vapnik, 1995] [Lin & Chang, 2011]. The software LIBSVM is available online

at [Chang & Lin, 2012]. The times shown in the table are estimated from running the pro-

posed method in the autonomous ground vehicle’s computer with Intel Core 2 Dual CPU L7500

2x1.67 GHz and 4 GB of RAM. Clearly, the performance of the approach involves a trade-off

between accuracy and speed.

Table 5.1: Confusion Matrices for Different Feature Sets (%)

NDVI,Brightness(Time:128ms) NDVI,Brightness,Ssmooth,Pnoise(Time:138ms)

P-classes/T-classes Vegetation Others

Vegetation 76.51 23.49

Others 10.62 89.38

P-classes/T-classes Vegetation Others

Vegetation 85.08 14.92

Others 8.35 91.65

NDVI,Brightness,Ssmooth,Pnoise NDVI,Brightness,Ssmooth ,Pnoise

uTexf,HI(Time:416ms) uTexf,HQ(Time:1280ms)

P-classes/T-classes Vegetation Others

Vegetation 94.18 5.82

Others 4.02 95.98

P-classes/T-classes Vegetation Others

Vegetation 95.10 4.990

Others 2.51 97.49

1P-classes≡ Predicted classes; T-classes≡ True classes; Ssmooth ≡ Smoothness of surface; Pnoise≡ Probability

of measurement noise; uTex f ≡ Unstructured texture feature.
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The more features used the higher detection accuracy achieved. So when time is not critical,

it is recommended to use all features. Otherwise, HQ feature is usually ignored due to its

expensive computational complexity.

If comparing with the performance of [Nguyen et al., 2011b] (with 85% of precision and

time of 2580 ms per frame), our approach is much faster and more robust. Since [Nguyen et al.,

2011b] used laser scanner SICK for data acquisition which is extremely time-consuming, the

use of NDVI in our approach is more oriented and discriminative for vegetation detection than

geometric distribution. Although the proposed approach is less-robust than of [Bradley et al.,

2007], it runs much faster and can be used for real-time applications. In fact it is not clear about

the processing time of the approach in [Bradley et al., 2007] but we can see that they have to use

Ladar information which is time-consuming due to the slow data acquisition and the need of a

processing time to be interacted with 2D information. Compared with the preliminary version of

the paper [Nguyen et al., 2011c], the additional use of unstructured texture and spatial features

helps to provide more robust vector components. Consequently, the accuracy improves more

than 2% in average with available data. Nevertheless, the processing time is increased addition-

ally of 200 ms per frame. Importantly, we have recognized that without unstructured texture and

spatial features, the resulted classifier could not distinguish vegetation from warm objects (hu-

man/animal body) or strong NIR reflection objects (green mirror/synthetic clothing/red vehicle

paint [Bradley et al., 2007]). Therefore, if we consider many scenes including the presence of

those objects, the result of the current approach must be much higher overall accuracy than of

the preliminary one. Unfortunately, the evaluation on the performance of the current approach

Figure 5.4: Examples of vegetation detection results obtained from our approach. The first three

images are captured with the camera positioned as in Fig. 1(b), when the robot goes (a) down

slope, (b) up slope, (c) on flat road. The last image is captured when the camera is positioned

horizontally.

91



5. GENERAL VEGETATION DETECTION USING AN INTEGRATED VISION

SYSTEM

in detecting vegetation with the presence of all those objects has not yet completely done at the

current state. We are still in the process of testing the reflectance of different materials in the

MultiCam’s modulated NIR band under different illuminating conditions. Thus, the future work

should clarify concretely how many percentage the approach achieves in classifying vegetation

and warm objects or strong NIR reflection objects.

Finally, Fig. 5.4 shows some examples of vegetation detection results achieved from our

algorithm, which also reflects somehow the range of difficulty of our dataset. Overall, using the

feature set described in the Table 1(Bottom-Left) seems to be the best choice to balance the

accuracy versus computation time, so that the frame-rate can be achieved at about 2.4 fps and

the accuracy at 95.08% (= 95.98+94.18
2

, the number of positive and negative samples are equal).

5.6 Conclusion

We have introduced an efficient approach for vegetation detection using a MultiCam which is

mounted both 2D and PMD sensors into a monocular set-up. The benefit is to have a sufficient

2D-3D information from a single vision device. The achievements of the technical research in

this paper are to provide the optimal features used to robust the vegetation detection classifier.

Whereby, the results have been demonstrated to be robust as well as the consuming time is short,

which proves that the proposed approach can be used for on-board navigation. Image databases

and some videos of demonstrations are available online at [Nguyen, 2012]. Remarkably, the pa-

per enables a possibility of distinguishing vegetation from warm objects (human/animal body)

or strong NIR reflection objects (green mirror/synthetic clothing/red vehicle paint) by using tex-

ture and spatial feature descriptors in the classifier, which is infeasible in previous approaches.

Overall, our method outperforms conventional approaches concerning high precision and fast

processing. Still the approach has not been fully tested to be very robust in the presence of warm

objects or strong reflection objects, so the future work should carry out a concrete evaluation on

the performance of the approach on classifying vegetation and those objects.
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Chapter 6

Spreading Algorithm for Efficient

Vegetation Detection

The use of the MultiCam in detecting vegetation has been investigated successfully in Chapter

3 and Chapter 5. The use of an independent lighting source helps to stabilise NIR reflectance,

thus, reducing the hue impact of light changes.

In Chapter 3, a new vegetation index, the so called modification of normalized difference

vegetation index, has been derived to impressively detect vegetation. Generally, the approach is

fast and robust. However, it fails to deal with the presence of warm or strong reflection objects.

Also, the MNDVI is not applicable in dim lighting conditions.

In Chapter 5, a classification-based method has been introduced to detect general vegetation.

The accuracy is high when a set of vegetation indices, spatial and visual features is used to

train vegetation classifier. Remarkably, the addition of colour and texture features into the

feature vector potentially helps to distinguish vegetation from warm or strong reflection objects.

However, many features need to be extracted, and then trained, which degrades the usability of

the method for real-time applications, especially for on-board navigation with high speed.

Therefore, this chapter studies a way to improve the robustness of the multi-spectral ap-

proach in Chapter 3 and the speed of the classification-based method in Chapter 5. This leads

to an idea of detecting chlorophyll-rich vegetation using the multi-spectral approach, and a

spreading algorithm would help to spread out the vegetation based on colour and texture. Thus,

the aim of this chapter is to create an adaptive learning algorithm which performs a quantita-

tively accurate detection that is fast enough for a real-time application. Indeed, chlorophyll-rich

vegetation pixels are selected by thresholding vegetation indices, and then considered as the

seeds of a “spread vegetation”. For each seed pixel, a convex combination of colour and tex-

ture dissimilarities is used to infer the difference between the pixel and its neighbours. The

convex combination, trained via semi-supervised learning, models either the difference of veg-
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etation pixels or the difference between a vegetation pixel and a non-vegetation pixel, and thus

allows a greedy decision-making process to expand the spread vegetation, the so-called vision-

based spreading. To avoid overspreading, especially in the case of noise, a spreading scale is

set. On the other hand, another vegetation spreading based on spectral reflectance is carried

out in parallel. Finally, the intersection part resulting from both the vision-based and spectral

reflectance-based vegetation spreading is added to the spread vegetation. The approach takes

into account both vision and chlorophyll light absorption properties. This enables the algorithm

to capture much more detailed vegetation features than does prior art, and also give a much

richer experience in the interpretation of vegetation representation, even for scenes with signifi-

cant overexposure or underexposure as well as with the presence of shadow and sunshine. In all

real-world experiments we carried out, our approach yields a detection accuracy of over 90%,

which outperforms conventional approaches.

This work has been published in Journal of Robotics and Autonomous System [Nguyen

et al., 2012b].

6.1 Introduction

The repeated occurrence of task rejection of autonomous robots during forest exploration in the

European Land Robot Trial (ELROB) from 2005 to 2011 indicated that a basic task such as

obstacle avoidance could become an ever challenging issue in a cluttered outdoor environment,

especially with the presence of vegetation. Indeed, the concept of a lethal obstacle simply

defined as a solid and significantly high object is no longer applicable for vegetation such as

tall grass and leaves. Otherwise, unnecessary obstacle avoidance operations of the robot would

drive it to a situation of losing its way or stopping due to all paths being blocked by dense

geometric obstacles. Therefore, safe and reliable autonomous navigation requires a growing

need of an efficient vegetation detection module integrated in every autonomous mobile outdoor

robot. Locating vegetation areas in a scene helps not only to determine which traversable way

to pass but also to understand the local environment for a re-allocation purpose worthy of use in

the case of Global Positioning System (GPS) loss. Furthermore, driving on grass or leaves for

example would increase wheel slippage, which causes errors in the odometry. Hence, vegetation

detection lets the robot know which type of terrains it is dealing with, and thus which strategies

should be applied.

Upon seeing the image in Fig. 6.1, a human has no difficulty in understanding its use of

colour and texture to point out vegetation areas. However, inferring specific properties of vege-

tation in general remains extremely challenging for current computer vision systems. Different

species of vegetation have different shapes, textures, structures and colours. Thus, previous
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works in vegetation detection focused on several specific types of vegetation such as specific

colour: green leaf, green grass [Gu & Zhong, 210]; specific structure: foliage, needle tree

[Lalonde et al., 2006]; specific texture: grass-field [Zafarifar & de With, 2008], weed [Sabee-

nian & Palanisamy, 2009]. Even limiting applicable species, algorithms relying on only vision

features often end up ignoring illumination effects including shadow, strong shining, underex-

posure and overexposure which are inevitable outside. As a result, those approaches are not

stable and reliable enough for use in a safe navigation system.

Recently, [Lalonde et al., 2006] [Lu et al., 2009] and [Nguyen et al., 2010b] presented

algorithms for analysing 3D structures of foliage-like vegetation from 3D point clouds captured

by a laser scanner. [Wurm et al., 2009] measured the remission of a laser to classify vegetation

and non-vegetation regions in a structured environment. [Nguyen et al., 2011b] and [Lu et al.,

2009] proposed 2D-3D feature fusion approaches combining colour, texture and 3D distribution

information to detect vegetation. Although the use of laser data can improve the stability against

illumination changes, it significantly slowdowns the detection rate due to the long time needed

for data acquisition by a common laser scanner (exceptionally Velodyne LIDAR is fast and

robust but quite expensive).

Regarding the photosynthesis of vegetation, visible light, especially red or blue light, is

strongly absorbed by the chlorophyll in vegetation. The cell structure of the leaves, on the other

hand, strongly reflects near-infrared light (from 0.7 to 1.1 µm). Therefore, vegetation indices

established by measuring the ratio of radiances in the near-infrared (NIR) and red bands can be

used to detect vegetation, for instance detecting the green surface of the earth in the remote sens-

ing field [Tarpley et al., 1984] [Townshend et al., 1985] [Crippen, 1990] [Tucker et al., 1986].

Surprisingly, there is not much investigation available on utilizing this promising property for

ground-based terrain classification for navigation. Remarkably, one of the few contributions

successfully exploiting the spectral reflectance of vegetation was introduced by [Bradley et al.,

2007]. The author, however, still needs to additionally use laser data to approach a more robust

vegetation detection. Interestingly, [Nguyen et al., 2012c] has shown that by varying the ex-

posure time and adding independent light, the vegetation detection system performs in a more

Figure 6.1: From left to right: an original image; near-infrared image; texture image created by

the prosed approach; vegetation marked by the proposed algorithm.

95



6. SPREADING ALGORITHM FOR EFFICIENT VEGETATION DETECTION

robust and stable way against illumination changes. Nevertheless, such a system could not work

well in dim light condition (see the explanation in section 6.2). Also, based only thresholding

vegetation indices, the approaches in [Bradley et al., 2007] and [Nguyen et al., 2012c] could not

lead to a complete solution for an automatic vegetation detection in really different light condi-

tions. A manual adjustment on the range of the vegetation index threshold is usually required.

To overcome these difficulties, this paper introduces a spreading algorithm to automatically de-

tect vegetation in cluttered outdoor environments. This paper is a follow-up on the system setup

used in [Nguyen et al., 2012c].

The goal of the paper is to create an adaptive learning algorithm which performs a quantita-

tively accurate detection that is fast enough for a real-time application. We use the insight that

every vegetation pixel should have a significant reflectance from NIR as well as strong absorp-

tion of visible light, and that two adjacent vegetation pixels should have very similar colours

and textures. So, we simply detect chlorophyll-rich vegetation by setting high thresholds on

vegetation indices including Normalized Vegetation Index [Bradley et al., 2007] and Modifica-

tion of Normalized Vegetation Index [Nguyen et al., 2012c]. The chlorophyll-rich vegetation

pixels are then considered as seeds of our “spread vegetation”. We spread out the spread vege-

tation based on visual difference and spectral reflectance difference in parallel. The intersection

part between vision-based and spectral reflectance-based vegetation spreading is then judged as

vegetation.

Remarkably, instead of building colour models for vegetation, the colour similarity measure

between vegetation seeds and the neighbouring pixels, in order to expand the “spread vegeta-

tion”, helps to deal with a variety of vegetation appearing in different colours. The novelty of

the paper also lies in the finding of unstructured texture points extracted from analysing the

texture orientation of a colour image, which helps to distinguish vegetation from other artificial

objects with dense edges.

The paper is organized as follows. First, the spectral reflectance of vegetation is investigated

in a more detailed manner than in previous work in order to deal with illumination changes, ex-

plained in section 6.2. Second, we introduce new visible features including colour and texture

which will be then proved to be suited for representing characteristics of general vegetation,

see section 6.3. Section 6.4 describes the spreading algorithm for detecting and grouping veg-

etation. Experiments and results are illustrated in section 6.5 while section 6.6 concludes this

work.
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6.2 Discussion on Vegetation Indices

The NDVI has been proved to be problematic in oversaturation and underexposure conditions

in [Nguyen et al., 2012c]; this is because the light absorption spectrum of all objects including

vegetation changes considerably. In order to be more stable against light changes, we proposed

using a MultiCam equipped with a NIR lighting system (wavelengths centred at 870 nm) in

Nguyen et al. [2012c]. The MultiCam integrates Photo Mixer Device (PMD) and CMOS sen-

sors into a molecular setup, and thus provides simultaneously NIR and colour images with res-

olutions of 64x48 pixels and 640x480 pixels, respectively. The intensity of the lighting source

as well as the gain of PMD sensor are adjustable, which helps to stabilize the received NIR

intensity. Then, the gain of the CMOS sensor is slaved to match the gain of the PMD sensor

plus a constant offset. In that way, we obtain a more stable multi-spectral system. In order to

test the changes of the NIR and red bands against illumination effects, a measure of changes in

the near-infrared and red bands in terms of luminance has been done in part of this work. Con-

cretely, we took 500 scenes of vegetation in different illuminating conditions and normalized

the NIR, red and luminance information before doing regression analysis for the relationship

between NIR/red and luminance. As a result, the changes are most likely in a logarithm form

instead of a linear one, wherein the change of the red band is much stronger than of the NIR

band, especially in the case of overexposure or strong shining conditions, while it is lower in the

case of underexposure or shadow, see more in [Nguyen et al., 2012c]. [Nguyen et al., 2012c]

also proved that Normalized Difference Vegetation Index should be modified as follows when

using an active NIR lighting system:

MNDVI =
NIR− log(Red+ ε)

NIR+ log(Red+ ε)
(6.1)

where ε = 1 is used to guarantee a positive value of the log, so this index ranges from 0 to 1.

Generally, the MNDVI shows better performance compared with the NDVI in detecting

vegetation under different lighting conditions (see Fig. 6.2a,b,c) (see also the comparison be-

tween the two indices in [Nguyen et al., 2012c]). However, the softening impact of Red in the

MNDVI causes missed detection of some species of vegetation which absorb the red band from

the sunlight very strongly but reflects less near-infrared light, especially in circumstances of

underexposure or dim light conditions; see Fig. 6.2d,e.

Proof: Simply, when the value of Red is quite small, we have log(Red+1)≈ 0, so MNDVI≈
1 ∀ NIR.

In this paper, we propose a possible combination between the two indices to result in a more

robust detection using a MultiCam. Intuitively, the NDVI and MNDVI can supplement each

other to create a more stable vegetation detection against illumination effects; see Fig. 6.2.
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Figure 6.2: The figure shows five examples of multi-spectral data and results. The first column

contains original images. The second column shows near-infrared images. The third column

illustrates vegetation detection results using the NDVI. The last column demonstrates vegetation

detection results using the MNDVI.

Indeed, we will prove that the supplementation is worthy of the aim of detecting vegetation in a

cluttered outdoor environment under illumination changes using our algorithm.

6.3 Visual Features for Scene Understanding

There are many thousands of vegetation species available around us, which have different

shapes, colours, and textures in different lighting conditions. Therefore, the work of finding

a common characteristics of vegetation based on vision is difficult. However, the question why

a human can without doubt easily recognise vegetation motivates us to come back again to learn

visible features in order to generate possible discriminative features of vegetation. Actually, the

human eye sees different plant leaves as shades of green/red/orange/yellow etc., as character-
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Figure 6.3: The opponent colour space (left) is obtained by rotating the RGB colour space

(right) and swapping two channels R and G.

ized by the corresponding colour peaks in reflectance spectra. The eye/brain colour system can

differentiate shades of the colours under different lighting conditions, which is still infeasible

or too complex for current computer vision systems. Instead of giving a specific colour model,

this work prefers using a convex combination of colour and texture dissimilarities to infer the

visual difference, which partially relies on the property 1.

Property 1: Although different species of vegetation can have different colours, the colour in a

small vegetation region is expected to be homogeneous.

The property enables the idea that, if we know a vegetation pixel, we just need to search

for a connected vegetation pixel among neighbours which have very similar colours. Thus, we

choose colour dissimilarity as one distance parameter for estimating the visual difference in our

algorithm. In order to be invariant against illumination changes, we use the colour dissimilarity

in the opponent colour space which is explained in the next subsection.

6.3.1 Opponent Color Space

Colour dissimilarity has no invariance properties in the RGB colour space. Similar to the work

of [van de Sande et al., 2010], we rotate the RGB colour space and then swap two channels R

and G so that intensity changes do not affect the colour information in the new colour space,

the so called opponent colour space (see Fig. 6.3).
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In terms of mathematical expression, the transformation can be written as follows:




O1

O2

O3


=




G−R√
2

G+R−2B√
6

G+R+B√
3


 (6.2)

The reason to swap the two channels is to have a positive relation between the O1 and

Green channels. We also can see that O1 and O2 represent colour information while O3 denotes

intensity information. We will prove that the two pieces of colour information (O1,O2) are

invariant to an intensity shift.

Proof: Assume an image I has its RGB colour space and its opponent colour space (O1,O2,O3).

I′ is a shifted version of I, where R′ = R+ δ ; G′ = G+ δ ; B′ = B+ δ . The opponent colour

space of I′ can be written as




O′
1

O′
2

O′
3


=




G′−R′√
2

G′+R′−2B′√
6

G′+R′+B′√
3


=




G+δ−R−δ√
2

G+δ+R+δ−2B−2δ√
6

G+δR+δ+B+δ√
3


 (6.3)

Hence, O′
1 = O1 and O′

2 = O2 → intensity shi f t invariant. Certainly, when the intensity

shifts between different channels (red/green/blue) are different from each other (or different δ ),

the proposed method also could not result in any invariance property.

The colour difference between two pixels (O1[i],O2[i]) and (O1[ j],O2[ j]) is computed as

follows:

Ci, j =
√
(O1[i]−O1[ j])2+(O2[i]−O2[ j])2 (6.4)

Other than trying to detect a specific colour of vegetation, our approach enables more chances

to detect varieties of vegetation which can have many different colours. In fact, this colour

dissimilarity measure is not invariant against illumination changes. However, the algorithm still

works well in many cases of illumination changes because such a colour dissimilarity measure

does not change very much or two adjacent vegetation pixels are still expected to have similar

colours. We acknowledge that more investigation on colour invariance as in the works Finlayson

et al. [2006] and Berens & Finlayson [2000] can improve the performance of the algorithm. This

should be taken into account in our future work.

6.3.2 Unstructured Texture

Intuitively, vegetation has a texture. However, to define the texture in general or find a char-

acteristic of the texture which can differentiate one type of vegetation from another is often

impossible even for a human. So, our goal is not to find a discriminative texture of vegetation
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Figure 6.4: Gabor filter kernels in different scales in rows and orientations in columns.

but a common characteristic that most of types of vegetation share. Commonly, current ap-

proaches use edge detection methods to estimate the complexity of image textures as well as

infer the textures. Nevertheless, how to distinguish between vegetation and another object with

dense edges is still really difficult. Investigating more on that issue we recognise that, from a

human eye’s perception, most types of vegetations have unstructured textures.

Property 2: The textures of most types of vegetation are unstructured or turbulent. This can be

inferred as we would find many pixels in a small vegetation region, which have different texture

orientations from the texture orientation of the region.

This is a very interesting finding, because we can eliminate edges which emphasize the

texture orientation of a small local region. This distinguishes between a texture of vegeta-

tion/unstructured soil and of artificial objects with dense edges. The following explains how to

exploit this property to find a good texture feature of vegetation.

Since Gabor filters are known to be accurate in estimating texture orientations [Rasmussen,

2004], which has been shown to be well applied in detecting long edges and structured orien-

tations in the work of Kong et al. [Kong et al., 2010]. In contrast, we are going to prove that

Gabor filters can also be used to detect unstructured textures or remove long edges and struc-

tured orientations in a similar way. For an orientation φ and a scale ω , let g(ω,φ ,x,y) be the

function defining a Gabor filter centred at the origin.

g(ω,φ ,x,y) = e
− x2+y2

λ2 e2iπω(xcosφ+ysinφ+ψ) (6.5)

Where ψ = 90, kernel size = 11, λ = 4.73. We consider 5 scales(ω = ω0 × 2× k, k =

1,2,3,4,5) on a geometric grid and 6 orientations(180 divided by 30) (see Fig. 6.4).

Assume I(x,y) as a gray level value of an image at (x,y). The response of a Gabor filter at a
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scale ω and orientation φ with input I is defined as follows:

G= I⊕gω,φ (6.6)

The convolution ⊕ returns a real part and an imaginary part, which are then subjected to a

square norm to produce the texture intensity.

Iω,φ = Re(Gω,φ )
2+ Im(Gω,φ)

2 (6.7)

For saving computational effort, each response image for an orientation is defined as the

average of the responses at different scales.

Iφ =
1

M

M

∑
ω=1

Iω,φ (6.8)

where M = 5 (five scales used in our case). Then, at each position (x,y), we should obtain

an expectation vector of the Gabor responses as

ET
x,y = [E0E1..EN−1] (6.9)

The vector includes N elements corresponding to N orientations (= 6 orientations in our

case). We assume that θ is the maximum texture orientation of the pixel at position (x,y); then

Eθ ≥ Eφ ∀φ : 0 ≤ θ ,φ < N. We rewrite the expectation vector Ex,y into a new order if θ ≥ 1

(actually we are doing a circular shift),

ET
pix = [EθEθ+1..EN−1E0..Eθ−1] (6.10)

Epix is the so called expectation vector of the Gabor responses at position (x,y), which

reflects the texture orientation of the pixel.

In a small region Rs which contains the pixel at (x,y), we compute the average of each

expectation element.

Eφ =

∑
(x,y)∈Rs

Ex,y,φ

∑
(x,y)∈Rs

1
(6.11)

Assume that ξ is the maximum texture orientation of the region, so Eξ ≥ Eφ ∀φ , 0≤ ξ ,φ <

N. We rewrite the expectation vector Ex,y into a new order if ξ ≥ 1:

ET
reg = [EξEξ+1..EN−1E0..Eξ−1] (6.12)
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Ereg is the so called expectation vector of the Gabor responses at position (x,y), which

reflects the texture orientation of the region Rs. Therefore, the distance between the two vectors

represents the turbulent texture property of the pixel at (x,y).

Td(x,y) = ||Epix−Ereg||x,y (6.13)

or

Td(x,y) =

√
(Eθ −Eξ )

2+(Eθ+1−Eξ+1)
2+ ..+(Eθ−1−Eξ−1)

2

N
(6.14)

Clearly, if the pixel at (x,y) belongs to an edge, its texture orientation should be the same

as the texture orientation of Rs or θ = ξ , so Epix = Ereg or Td(x,y) = 0. This explains how we

distinguish edge points from vegetation points.

Property 3: The distance Td(x,y) is rotation invariant.

Proof: Assume I(x,y)′ is a rotated version of I(x,y) and assume the expectation of tex-

ture intensity as E ′
x,y = {E ′

0...E
′
θ ′...E ′

N−1}, θ ′: the maximum orientation of E ′. We rearrange

E ′
pix = [E ′

θ ′E
′
θ ′+1...E

′
N−1E

′
0...E

′
θ ′−1]. We have rotation properties as follows: E ′

θ ′ = Eθ , E
′
φ =

Eφ+θ−θ ′ , Eφ = EN+φ ∀φ . Hence: E ′
θ ′+i = Eθ ′+θ−θ ′+i = Eθ+i and E ′

φ = Eφ+θ−θ ′+N subject to

i= 0→ N−θ ′−1, ∀φ . Or E ′
pix = Epix, rotation invariance.

The confidence to be an unstructured region of the region Rs is estimated by counting the

number of turbulent texture pixels over the total number of pixels inside the region.

TRs
=

∑Td(x,y)≥T0,∀(x,y)∈Rs
1

∑(x,y)∈Rs
1

(6.15)

Thus, if a pixel i belongs to the small region Rs and a pixel j belongs to the small region R f ,

then the texture dissimilarity between i and j is estimated as

Ti, j = TRs
−TR f

(6.16)

A small local region Rs can be defined in many different ways depending on different pur-

poses, for instance, as a small region inside a small rectangular window. In our case, we prefer

to semantically connect the texture and colour features, so we define each Rs as a superpixel of

the corresponding segmented colour image, similarly to the method of [Saxena et al., 2009] and

[Felzenszwalb & Huttenlocher, 2004].

Examples of unstructured texture image response resulting from the above method are il-
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lustrated in Fig. 6.5. The fourth column of the Fig. 6.5 shows the confidence maps regarding

unstructured texture estimation where brighter means more confidence; see also the confidence

expression (Eq. 6.15). We can see that most of edges and structured textures have been removed

in those examples; the regions of vegetation are highly visible by their unstructured textures.

Figure 6.5: From left to right: original image; segmented image; unstructured texture intensity;

confidence map.

6.4 Spreading Algorithm

Our algorithm begins by thresholding the Normalized Vegetation Index (NDVI) and the Modi-

fication of Normalized Vegetation Index(MNDVI) (see more in section 2) to select chlorophyll-

rich vegetation pixels which are then considered as the seeds of our spread vegetation. For each

seed pixel, we calculate the distances of colour and texture between the pixel and its neighbours.

The neighbours whose distances are smaller than the internal difference of the seed pixel are

considered as a set of vision-based spread vegetation. On the other hand, decreasing the NDVI

and MNDVI thresholds provides a set of spectral reflectance-based spread vegetation. Pixels

belonging to the intersection of the two sets are joined into the spread vegetation . The process

is repeated until the percentage of joined pixels over the total pixels of the two sets is less than

an epsilon or a tolerance parameter.
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A pixel at (x,y) in the image has four dimensions: colour, texture, NDVI and MNDVI.

In order to start the spreading algorithm, we need to initialize some hand-tuned parameters:

τup, ηup, respectively, are the NDVI and MNDVI thresholds to select chlorophyll-rich vege-

tation; τlow,ηlow, respectively, are the lower bounds of the NDVI and MNDVI thresholds to

classify chlorophyll-less vegetation and non-vegetation. To estimate the first two thresholds,

we hand-labeled 2000 superpixels as vegetation samples from segmented colour images and

manually classified them into chlorophyll-rich vegetation (CRV) and chlorophyll-less vegeta-

tion(CLV). A linear classification of the two groups CRV and CLV helps to determine the values

of τup, ηup. The values of τlow and ηlow are obtained from the work of [Bradley et al., 2007]

and [Nguyen et al., 2012c] and practical experiments (in our case τ0 = 0.429, η0 = 0.961,

τlow = 0.231,ηlow = 0.956).

Definition 1: A pixel p is called the parent of a pixel i if and only if p belongs to the spread

vegetation and i is connected or joined to the spread vegetation through p.

Algorithm————————–

1. Thresholding NDVI and MNDVI to select chlorophyll-rich vegetation considered as the

seeds of the spread vegetation (sVeg). τ = τup and η = ηup

SEEDS= {(x,y) : NDVIx,y ≥ τ &&MNDVIx,y ≥ η}
sVeg = SEEDS

2. Segment the colour image into superpixels which are then used for calculating texture

features.

3. Assume that ζ is the size of sVeg. Repeat step 4 for i = 1,2..ζ .

. . .

Dij

j

N

Dip

N+1

if Dij <= Dip
8 neighbors of i

. . .
Root

p i

Figure 6.6: Vision-based spreading algorithm. Seed pixels are marked as dark green while the

others are white. (For interpretation of the references to colour in this figure legend, the reader

is referred to the electronic version of this dissertation.)
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4. Find the pixel spread by the vision-based approach (see Fig. 6.6). At the ith pixel of

the tree, a pixel j is a neighbour of pixel i in the colour image. Compute the colour distance

Ci, j using Eq. 6.4 and the unstructured texture distance Ti, j using Eq. 6.16. The dissimilarity

between the two pixels is defined as

Di, j = w1×Ti, j+w2×Ci j (6.17)

where w1+w2 = 1. Di, j is actually a convex combination of colour and texture dissimilari-

ties. Assume that p is the parent pixel of i (see Definition 1). If i has no parent then Di,p = 1/ζ .

• If j does not belong to sVeg, the pixel j is added to sVeg via the vision-based spreading

(VbS) if and only if the dissimilarity between j and i is equal to or smaller than the

dissimilarity between i and p, or Di, j ≤ Di,p.

• If j belongs to sVeg, we certainly have Di, j ≤ Di,p; this constraint is used to optimize w1

and w2.

If added:

{
Di j = Di j+ c/ζ

ζ = ζ +1

The constant c represents the spreading scale. The higher the value of c, the more aggressive

is the greedy algorithm which lets the “spread vegetation” spread out more aggressively.

5. Find the pixel spread by the spectral reflectance-based approach.

τ = (τ + τlow)/2

η = (η +ηlow)/2

SRbS= {(x,y) : NDVIx,y ≥ τ &&MNDVIx,y ≥ η}

6. The intersection part of the both vision-based and spectral reflectance-based spreading is

added into the tree: sVeg = sVeg + (VbS∩SRbS)

7. Estimate the percentage of the pixels added over the total number of candidates given

by both vision-based and spectral reflectance-based spreading. Repeat from the step 3 until the

percentage is equal to or lower than a tolerance parameter.

———————————

Step-by-Step Explanation

As stated in the works of Bradley et al. [2007] and Nguyen et al. [2012c], vegetation pixels

lie in the top-left part in a NIR-red space while those of soil and man-made structures are in
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the middle and those of the sky are at the bottom right. Consequently, it is hard to differentiate

and classify between chlorophyll-less vegetation, soil and man-made structures but classify-

ing chlorophyll-rich vegetation is simply done by thresholding the NDVI and MNDVI. This

confirms the validity of step 1 in our algorithm.

Step 2 oversegments the colour image to result homogeneous regions or superpixels. The

belief is that pixels inside an oversegmented region of an artificial object should have similar

colours and the same texture orientation while pixels inside an oversegmented region of veg-

etation could have also similar colours but many different texture orientations. This supports

the idea of measuring the unstructured texture confidence in step 4. Either vegetation or soil

appears as an unstructured texture object, so in order to distinguish vegetation and soil, we com-

bined both texture and colour features. Therefore, step 4 measures the difference between two

neighbour pixels based on weighted colour and texture dissimilarities.

Property 4: The dissimilarity measure in step 2 is intensity-shift invariant.

Proof: The colour dissimilarity is measured in the opponent colour space in order to obtain

the intensity-shift invariant property. The measure of unstructured texture confidence is based

on the turbulent orientation property of vegetation pixels, which is invariant to the texture in-

tensity shift, and thus also invariant to the image intensity shift (see Eq. 6.16). Thus a linear

combination between the colour and unstructured texture confidence dissimilarities (see Eq.

6.17) results in an intensity-shift invariant property for the dissimilarity measure.

In step 4, the two pixels (i, j), (i, p) are neighbours. In the case that j is a vegetation

pixel, we expect that the dissimilarities of (i, p) and of (i, j) should be very similar (note: i, p

are vegetation pixels). Therefore the dissimilarity of (i, j) should be equal or smaller than the

dissimilarity of (i, p) plus a spreading scale c/ζ . A higher value of c allows more greedy

spreading of vegetation. Practical assessment reveals that the value of c should be 2.4 for

scenes with good lighting conditions. The value of c should be decreased (to 1.8) in the case of

strong shining or shadow conditions in order to avoid an over-spreading. Thus, an early step of

checking lighting conditions of the current scene can guide the choice of the value of c, but this

is not so critical.

In step 5, one can easily see that in the case of good lighting conditions, the decreasing τ and

η step by step is equivalent to directly setting the lower bounds τ = τlow and η = ηlow. The aim

of that step is just to counter the influence of overspreading via the vision-based spread under

extremely strong shining conditions or shadows or extreme overexposure or underexposure.

Indeed, when such conditions occur, the performance of the classification based on colour and

texture degrades sharply, and thus leads to an overspreading via the vision-based spread. In

those cases, it is better to only detect chlorophyll-rich vegetation because the chlorophyll-less

vegetation is easily confused with other objects or materials, especially soil. While the decrease
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of the two thresholds still keeps detecting only chlorophyll-rich vegetation, the vision-based

spreading is really greedy. Consequently the “break” in step 7 would help to stop the algorithm.

The detection results in this case only rely on the spectral reflectance-based spread.

Examples of the two phases of spreading vegetation are illustrated in Fig. 6.7. Clearly, we

can see that a single phase has a lot of either false negatives or false positives. The intersection

of the two masks tends to be robustly covering vegetation areas.

Figure 6.7: From left to right: colour image; NIR image; spectral reflectance-based spreading

mask; vision-based spreading mask.

6.5 Experiments and Results

In this work, we used a MultiCam mounted on the front of an autonomous mobile outdoor

robot(see Fig. 6.8) to capture near-infrared and colour images. The MultiCam integrates a

Time-of-Flight (ToF) sensor and CMOS sensor into a molecular setup. A beam splitter is used

to separate the visible light and near-infrared light which are then sensed by the CMOS and

ToF sensors to result in colour and near-infrared images, respectively. The configuration of

the MultiCam is described in detail in [Ghobadi et al., 2010] [Ghobadi et al., 2008] [Nguyen

et al., 2012c]. Actually, this work does not particularly require the use of a MultiCam but a

multi-spectral camera with an active NIR lighting source to obtain NIR and colour images as

well as stabilise the NIR reflectance. The setup of two mono-cameras with one covered by a

NIR-Transmitting filter like in the work of Bradley Bradley et al. [2007] is also suitable, but

this needs an additional NIR lighting system. Indeed, in the case of not using an active light

source, the MNDVI is no longer useful because the log function in the MNDVI actually makes

it more sensitive to changes in illumination intensity rather than less so. We implemented the

approach of [Lalonde et al., 2006] using the SICK laser scanner LMS221. The approach of
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LMS221

  Siemens C810

MultiCam

GigCam 
(NIR−Blocking)

GigCam 
(NIR−Transmitting)

Figure 6.8: A model of our autonomous mobile outdoor robot.

Nguyen et al. [2011b] was carried out using the SICK laser scanner LMS221 and Siemens

C810. The approach of [Bradley et al., 2007] was realized by using stereo cameras with one

camera covered by a NIR-Transmitting filter and the other covered by a NIR-Blocking filter (we

use those filters from Hoya company:http://www.hoyaoptics.com).

Intuitively, the performance of the proposed algorithm is illustrated through Fig. 6.9 where

we consider all illumination effects including shadow, shining, overexposure, underexposure.

Looking at the texture feature images in the third row, we can again see that the long edges have

been mostly removed, the remaining texture areas mainly consist of turbulent texture points.

The vegetation detection is quite robust under various illumination effects; see the last row.

Regarding current multi-spectral approaches, a warm object or human is usually confused as

vegetation due to high infrared radiation emission. Remarkably, the algorithm can help to

classify humans and vegetation in most cases, that is infeasible in previous approaches [Bradley

et al., 2007][Nguyen et al., 2012c]. However, in the case that a human is wearing clothes in a

very similar colour as vegetation and is staying inside the vegetation area, the algorithm also

fails in the classification.

In order to give a quantitative comparison between the proposed method and previous ones,

2000 raw images and 10 videos of outdoor scenes were taken under both morning and afternoon

conditions as well as with shadow, shining, underexposure and overexposure effects being taken

into account. All data was collected and stored in the robot’s computer when the robot traversed
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6. SPREADING ALGORITHM FOR EFFICIENT VEGETATION DETECTION

Figure 6.9: The first row shows original images. Segmented images are illustrated in the second

row. The third row shows the unstructured texture intensities. The fourth row presents the

confidence maps. The last row demonstrates the results given by the algorithm.

throughout outdoor environments. Scenes were then manually classified into five groups: good

light condition, underexposure, overexposure, strong shining and shadow. We would like to

evaluate the performance of different algorithms for different groups of scenes. For that aim,

in each group, we oversegmented colour images into homogeneous regions using superpixel-

based segmentation [Felzenszwalb & Huttenlocher, 2004]. Those regions are then manually

classified to positive and negative samples. A positive sample is understood as a vegetation

region while a negative sample is understood as a non-vegetation region. A precision map was

established to store the information of each sample including the order of the image to which

the sample belongs, the order of the sample when segmented, and the status of the sample: 1 for

a positive and 0 for a negative. Therefore, whenever an image is inputted into the algorithm, the

outcome will be evaluated by counting the number of correct/incorrect positive samples and of

correct/incorrect negative samples compared with the precision map (or ground-truth). Table

6.1 shows the confusion matrices of different methods for different groups of scenes inputted.

In fact, the algorithm based on Local Point Statistic Analysis [Lalonde et al., 2006] does not

depend on the illumination changes due to stable laser data. The different detection rates just

imply the different complexities of the scenes in an outdoor environment where the group
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6. SPREADING ALGORITHM FOR EFFICIENT VEGETATION DETECTION

“Shining” contains a few more complex scenes (51.02% true positive percentage) and the

group “OverExposure” owns a few less complex scenes (45.52% true positive percentage), with

regard to 3D structures. In good lighting conditions, three previous methods [Nguyen et al.,

2011b][Bradley et al., 2007][Nguyen et al., 2012c] and the proposed one have very high de-

tection rates. However, when different illumination effects are taken into account, the three

previous methods degrade sharply while the proposed method still maintains reasonable per-

formance. Overall our algorithm outperforms the others in different scenarios as well as under

different illumination effects in outdoor environments. Image databases and videos related to

this paper are available at [Nguyen, 2012].

Regarding implementation and running time issues, step 1 and 2 runs with O(mlogm) time.

The step 4 also requires an O(mlogm) time. Step 5 takes O(m) time. The repetition from step 3

over time until reaching a tolerance parameter needsO(m2logm) time. Therefore, our algorithm

runs with O(m2logm) time. Concretely, for each frame (640x480 pixels), a computer with CPU

Intel Core 2 Dual CPU L7500 2x1.67 GHz and 1G of RAM takes around 145 ms to 348 ms for

processing.

6.6 Conclusion

We have introduced a spreading algorithm for vegetation detection using a multi-spectral ap-

proach. Compared with previous approaches, our algorithm provides a robust vegetation detec-

tion against illumination effects, which is both quantitatively more accurate and visually more

pleasing. Instead of giving a specific model of colour or texture, our algorithm investigates dis-

criminative characteristics of vegetation based on novel statements in properties 1,2,3,4. This

enables the algorithm to detect varieties of vegetation that appear in different colours and tex-

tures. On the other hand, using a multi-spectral approach helps to catch the most discriminative

characteristic of vegetation in light absorption and reflectance, which is distinguishable from

other objects in general. Overall, the algorithm enables a fast and robust vegetation detection

module which can be used for automobile navigation guidance when driving in complex envi-

ronments. We acknowledge that the use of a MultiCam has some limitations regarding to low

NIR image resolution (PMD sensor) and narrow sensor sensitivity (CMOS sensor). A desired

vegetation system should have a multi-spectral system, which consists of two high dynamic

range (HDR) cameras, and an active NIR lighting source. Such a system is planned to be estab-

lished to test the performance of the proposed algorithm in a future work. Additionally, the use

of polarizing filter, which helps to enhance the colour image with respect to reducing contrast,

should be also taken into account in order to reduce the changes of MNDVI and NDVI with

illumination changes.
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Chapter 7

A Novel Approach for a Double-Check of

Passable Vegetation Detection in

Autonomous Ground Vehicles

The chapter introduces an active way to detect vegetation which is at front of the vehicle, in

order to give a better decision-making in navigation. Blowing devices are to be used for creating

strong wind to effect vegetation. Motion compensation and motion detection techniques are

applied to detect foreground objects which are presumably judged as vegetation. The approach

enables a double-check process for vegetation detection which was done by a multi-spectral

approach, but more emphasizing on the purpose of passable vegetation detection. In all real

world experiments we carried out, our approach yields a detection accuracy of over 98%. We

furthermore illustrate how the active way can improve the autonomous navigation capabilities

of autonomous ground vehicles.

This work has been published in Proceeding of 15th IEEE Conference on Intelligent

Transportation System (ITSC-2012) [Nguyen et al., 2012d].

7.1 Introduction

Regarding to the literature of robotics research, to increase autonomous ground vehicle (AGV)

safety and efficiency on outdoor terrains, the vehicle’s control system should have different

strategies and settings for individual terrain surfaces. To enable more autonomous tasks in

complex outdoor environments, the vehicle must have more “feeling” and “seeing” [Boley et al.,

1989][Iagnemma & Dubowsky, 2002][Sadhukhan &Moore, 2003][Ojeda et al., 2006] [DuPont

et al., 2005][Collins, 2008][Angelova et al., 2007][Halatci et al., 2007][Rankin & Matthies,

2008][DuPont et al., 2008]. While good terrain models and terrain classification techniques
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7. PASSABLE VEGETATION DETECTION

are already available to deal with a variety of terrain surfaces, the key limitation of outdoor

autonomous navigation is to cope up with domains at which the vehicle has to navigate through

tall grass, small bushes, or forested areas. Since, current perception systems can not do effective

obstacle detection in these conditions, an idea to detect vegetation areas and try to set up a

new definition of an obstacle as vegetation is really appreciated. Indeed, a lethal obstacle is

conventionally defined as a solid object with significant height, which soon presents problems.

In situations such as a cornfield, a field of thick and tall grass, there may be dense geometric

obstacles on all sides of the robot. This can lead to the vehicle getting stuck. In contrast, the

vehicle can try to drive over vegetation without any damage that enables more autonomous tasks

in agricultural applications, rescue mission, or even military operations.

Recently, there was large amount of research investigating on vegetation detection based

on vision techniques and LiDAR-based terrain models [Nguyen et al., 2011a][Nguyen et al.,

2011b][Nguyen et al., 2010b][Lalonde et al., 2006][Macedo et al., 2000][Lu et al., 2009]

[Wellington et al., 2006]. However, different species of vegetation have different colours, tex-

tures, structures as well as shapes. Also, illumination changes in outdoor environments cause a

huge impact on the quality and reliability of the detection methods. These restrict the applica-

bilities of those approaches for the purpose of detecting vegetation in general.

Alternatively, vegetation needs sunlight to survive, using chlorophyll to convert radiant en-

ergy from the sun into organic energy. Chlorophyll exhibits unique absorption characteristics,

absorbing wavelengths around the visible red band (645 m), while being transparent to wave-

lengths in the near-infrared (NIR) (700 m)[Ünsalan & Boyer, 2004]. These characteristics of

chlorophyll are commonly used to design indices to estimate the local vegetation density in

the satellite remote sensing field [Shull, 1929][Jordan, 1969][Rouse et al., 1974][Huete, 1988].

[Nguyen et al., 2012c][Nguyen et al., 2011c] and [Bradley et al., 2007] investigated this dis-

criminative property of vegetation to apply for detecting vegetation in autonomous ground vehi-

cles. However, those works remarked that on-board navigation reveals much more complication

than in multi-spectral satellite or airborne, with presence of shadow, shining, under- and over-

exposure effects. Whereby, light spectral reflectance of objects changes significantly against

these effects, thus, a direct-applied vegetation index into robotics alone could not provide a

trust-able result for safe navigation. Therefore, [Bradley et al., 2007] had to combine the vege-

tation indices with 3D-features given by laser data analysis for a double-check. [Nguyen et al.,

2012c][Nguyen et al., 2011c] suggested to use an active lighting system to create more inde-

pendence with different sunshine conditions. Even though the approaches based on vegetation

indices perform high accuracy and efficiency, the question regarding to traversability is not yet

answered.

In this context, we are going to answer the question of traversability by classifying vege-

114



7. Passable Vegetation Detection

tation into two classes: navigable and non-navigable. For that aim, we first try to figure out

which vegetation can be passable for an AVG. For an easier understanding the case, let us start

to discriminate between a stand of grass and a roll of barbed wire, or between cornstalks and

thin trees. Respecting to the chlorophyll-light spectral synthesis, the more chlorophyll a ma-

terial has, the easier it is to drive through. Grass and cornstalks contain richer chlorophyll,

so they are easier to drive through. This property can be exploited using a multi-spectral ap-

proach. Particular in this work, we follow the works of [Nguyen et al., 2012c] and [Bradley

et al., 2007]. On the other hand, regarding to kinematic consideration, grass and cornstalks

are easy to drive through because of less resistance. In other words, grass and cornstalks are

softer and movable, which can be clearly seen that they are easier to be moved under blowing

wind. In order to utilize this characteristic, we suggest to use an air compressor device to create

strong wind. The movement of vegetation will be detected and recorded to set levels of “resis-

tance”. Overall, vegetation with rich chlorophyll and less resistance should be navigable one,

therefrom comes the title double-check of passable vegetation detection. The structure of the

paper is organized as follows: Section 7.2 describes how to index vegetation respecting to light

spectral reflectance. Section 7.3 introduces the system design of our robot while an active way

to measure the resistance of vegetation is illustrated in section 7.4. Experiments and results will

be discussed in section 7.5 while section 7.6 concludes the work.

7.2 Multi-spectral-based Vegetation Detection

7.2.1 Standard Form of Vegetation Index

Similar to the intense reflection of fluorescent light from snow, vegetation reflects strongly in all

direction the light in the near-infrared band. On the other hand, the photosynthesis process of

chlorophyll inside vegetation requires more light spectral absorption in the red and blue bands.

Let’s recall the Normalized Difference Vegetation Index as mentioned in Chapter 3.

NDVI =
ρNIR−ρRed

ρNIR+ρRed

(7.1)

[Bradley et al., 2007] applied this index quite successfully in the field of robotics under good

lighting conditions. When consideringmore illumination effects, the changes in light reflectance

in the near-infrared and red bands are not linear, thus, NDVI can not be used efficiently to detect

vegetation [Nguyen et al., 2012b]. Concretely NDVI of pigment metals, dark wet soil or black

polymer synthesis materials in many circumstances might be even higher than of vegetation.
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7.2. MULTISPECTRAL-BASED VEGETATION DETECTION

7.2.2 Modification Form of Vegetation Index

In order to be stable with respect to illumination effects in outdoor environments, [Nguyen

et al., 2012c] proposed to use a MultiCam which integrates a CMOS sensor and Photo-Mixer

Device (PMD) sensor into a molecular set-up [Ghobadi et al., 2010]. The MultiCam has its

own infrared lighting system with the wavelengths centred at 870 nm. The intensity of the

lighting source is adjustable, which lets a chance to stabilize the received NIR reflectance values.

[Nguyen et al., 2012c] illustrated that there was a linear proportion of illumination to red but

logarithm proportion to NIR. Thus, a better fit of normalized difference vegetation index was

devised as follows [Nguyen et al., 2012c]

MNDVI =
ρNIR− log(ρRed)

ρNIR+ log(ρRed)
(7.2)

Our previous work [Nguyen et al., 2012c] has shown that MNDVI performs much bet-

ter than NDVI in classifying vegetation and non-vegetation under different lighting conditions

while taken into account shadow, shining, and overexposure effects.

7.2.3 Convex Combination of Vegetation Indices

The logarithmic term in E.q 7.2 expresses the less impact of the red reflectance when an arti-

ficial lighting system is used. However, the softening red reflectance impact in MNDVI index

is presenting problems in applied in an under-exposure or dim lighting condition where the

logarithm term approaches to zero. In contrast, NDVI reveals good performance in these cir-

cumstances but failed to deal with strong shining and over-exposure effects. Therefore, in this

work, we propose a convex combination of both the indices and supposed to be less sensible

against illumination changes.

VInorm = α ×MNDVI+(1−α)×NDVI (7.3)

where,

α =




1, if RED> Texpo

0, otherwise

Texpo is manually set to define the state of dim lighting or under-exposure on the red channel

(in our case, Texpo = 0.3 when the red values are normalized). Thus, the NDVI index is only

used in case of under-exposure or dim lighting condition, otherwise vegetation detection relies

on the MNDVI index. Fig. 7.1 illustrates examples of vegetation detection results based on

NDVI, MNDVI and VInorm, respectively. The results perform a good supplement between the

two forms of vegetation indices against illumination changes. To have a more quantitative per-
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7.2. Multispectral-based Vegetation Detection

suasion, we provide the confusion matrices of vegetation detection based on different vegetation

indices as in Table 7.11. Whereby, MNDVI and VInortm perform better than NDVI. The VInorm

index increases the true positive precision rate but also allows more false positive compared

with the MNDVI. This issue can be covered when combined with the active method introduced

in the next section.

Figure 7.1: Example of vegetation detection results given by different vegetation indices. The

first column illustrates original images. The second column describes detection results given

by the NDVI approach. The third column shows results of MNDVI approach. The last column

demonstrates the results from VInorm approach.

Table 7.1: Confusion Matices of Different Vegetation Indices

NDVI MNDVI VInorm
[Rouse et al., 1974] [Nguyen et al., 2012c] (this approach)

Pos Neg Pos Neg Pos Neg

Pos 86.24 13.76 90.24 9.76 93.47 6.53

Neg 22.51 77.49 14.38 85.62 18.32 81.69

1The evaluation was carried out with 500 outdoor images captured in both morning and afternoon conditions.
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7. PASSABLE VEGETATION DETECTION

7.3 System Design

The main configuration in details of our autonomous mobile outdoor robot (AMOR) is de-

scribed in [Kuhnert & Seemann, 2007][Kuhnert, 2008][Nguyen et al., 2012c][Nguyen et al.,

2011c][Nguyen et al., 2011b]. As mentioned in the introduction part, for this particular task,

we need a blowing device to create wind to effect vegetation. One might immediately think

about utilizing the available air compressor of the robot’s air-break system. This, however, is

not a reliable solution. The robot lasts his battery quickly because of high power consumption

for the charging process of the air compressor. The blowing duration is very short due to the

small air compressor tank. More seriously, using the air compressor would affect to the break

system, thus, potentially causes an unexpected movement of the robot. Then, we come up with

an idea of using independent blowing devices. Take a look at current products for such work,

we find Bosch leaf blowers such as Bosch ALB 18 LI Cordless Li-Ion and Bosch ALS 25 which

are really suited for the work and quite cheap, at around 80 Euro. Indeed, the leaf blowers can

run continuously for 10 minutes at blow speeds of up to 215 km/h. Meanwhile, the robot only

needs to turn on the blowing device in case of facing vegetation as an obstacle, and for each

time the blowing duration required is just from five to ten seconds. Therefore, after each fully

charge, the device can be used for at least 60 halt states, which is so far satisfying us at the

current stage.

Figure 7.2: The AMORmodel is shown here where six blowing devices corresponding with six

pipes are mounted at front of the robot (figure provided by J. Schlemper).
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7. Passable Vegetation Detection

Since the aim is to detect tall grass or branches of leaves which block the path of the robot,

our interested area is basically located at the front. The goal is to cover the whole area with

wind, so many blowing devices should be used. The number of the devices used depends

heavily on the size of the robot to ensure that all front obstacles are effected by the wind created

by those devices. Also, it would be a waste of money to have more than what is needed. In

our case, the robot is 2.5 m long, 1.1 m wide, and 1.8 m high, so we need to use six blowing

devices mounted at the middle and two sides of the robot (see Fig. 7.2), at a height around 85

cm. Practical experiments show that the distance of 30 cm from one device to its horizontal

neighbour is reasonable for the wide cover. For the high cover, we only need to use other pipes

with the heads bending down 30 degrees. It is not necessary to have similar ones with the heads

bending up because the robot should not try to drive over obstacles including vegetation with

the height more than 1.2 m, which is out of our interest. The diameter of all pipes is 7 cm. The

design really meets our aim for the tasks of driving over tall grass and passing though a narrow

road with many branches of leaves bending down, which have been the main tasks in European

Land Robot Trial (ELROB) since 2007.

7.4 A Double-Check for Passable Vegetation Detection

As a general rule, the richer chlorophyll the material has, the easier it is to drive through.

Hence, vegetation revealing high values of VInorm tends to be passable. A double-check of

passable vegetation detection can be done by considering the resistance property of vegetation

with respect to kinematic consideration. For that aim, we implemented an air compressor device

to create strong wind to effect vegetation. Actually, the problem given to be solved in this work

is that the vehicle gets stuck in a corn field or tall grass area or the path is blocked by a branch

of leaves. Now, the vehicle has to decide which way provides less resistance based on detecting

passable vegetation. So, in this application domain, the vehicle is in halt state and processing

time is not extremely critical. Ideally, background subtraction techniques such as Mean and

Covariance [Wren et al., 1997], Mixture of Gaussians [Grimson, 1998], Normalized Block

Correlation [Matsuyama et al., 1999], Temporal Derivative [Haritaoglu et al., 1998], Bayesian

Decision [Nakai, 1995], Eigen-Background [Oliver et al., 2000] and Wallflower [Toyama et al.,

1999] could be directly used to establish a background model for the scene before winded.

This leads to detect vegetation as foreground objects when blown by the air compressor device.

However, even in the halt state, the vehicle has its own vibration created by the engine as

operating, which degrades the quality of those background subtraction techniques. In order to

assure a robust motion detection, a motion compensation process is necessary. The following

explanation reveals how to compensate the vibration of the vehicle. First, with the high speed of
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7. PASSABLE VEGETATION DETECTION

frame rate from theMultiCam, at about 30 fps, we can approximately assume that the movement

of objects in the scene is rather slow and has a brightness constancy. Assume that after the small

time δ t, the frame is shifted (δx,δy) and the rotation is θ . If (x′,y′) is the next stage of (x,y)

then,




x′ = (x+δx)cosθ +(y+δy)sinθ

y′ = −(x+δx)sinθ +(y+δy)cosθ

with the assumption of small movement, we have




x′ ≈ x+δx+ yθ

y′ ≈ −xθ + y+δy

Assume a brightness constancy, so

I(x′,y′, t+δ t) = I(x,y, t) (7.4)

where, I(x,y, t) is the intensity value of a point at the position (x,y) of the frame taken at the

time t. I(x′,y′, t+δ t) is the point when moved to the position (x′,y′).

From Taylor Series Expansions,

I(x′,y′, t+δ t)≈ I(x+δx+ yθ ,−xθ + y+δy, t+δ t)

≈ I(x,y, t+δ t)+
∂ I

∂x
δx+

∂ I

∂y
δy+

∂ I

∂x
yθ − ∂ I

∂y
xθ

substitution into Eq. 7.4,

I(x′,y′, t+δ t)− I(x,y, t)≈ I(x,y, t+δ t)− I(x,y, t)+
∂ I

∂x
δx+

∂ I

∂y
δy+

∂ I

∂x
yθ − ∂ I

∂y
xθ ≈ 0

or the difference of two adjacent frames can be written as,

I(x,y, t+δ t)− I(x,y, t) =
∂ I

∂x
δx+

∂ I

∂y
δy+

∂ I

∂x
yθ − ∂ I

∂y
xθ ≈ 0 (7.5)

Solving E.q 7.5 throughout the images using least square fit algorithm, the returned param-

eters of displacement and rotation help to compensate the vibration of the vehicle. The interest-

ing point is that when the robot stops on a slope, its vibration might be significant whereby the
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small movement assumption is no more valid. In this case, the estimation given by the above

vision-based method is not usable. Therefore, we propose to use the Inertial Measurement Unit

(IMU) information as a reference to judge whether the above vision-based motion estimation is

trustable. In an untrustable case, the IMU information is used instead of the estimated parame-

ters given by the vision-based method.

Figure 7.3: The first column describes original image and vegetation detection by by VInorm.

The second column shows accumulative background subtraction usingMean & Threshold with-

out and with motion compensation, respectively. The last row illustrates accumulative back-

ground subtraction using Mixture of Gaussians without and with motion compensation, respec-

tively.

In general, the proposed motion compensation algorithm helps to have a better background

subtraction, which has been proved by applying two background subtraction techniques with

and without the motion compensation process as demonstrated in Fig. 7.3. A performance

comparison between all current background subtraction techniques with and without the mo-

tion compensation process might be interesting, we, however, have not yet done it due to our

satisfaction with the background subtraction result given by the Mixture of Gaussians.

The problem now is that even if we have detected the movement areas in the scene, how

should we know which parts are most likely moved significantly? Then, we decide to record

all movements of moving pixels in the scene. Look into a local region of the current frame at

position (x,y) or look back to Eq. 7.4. We apply another Taylor Series Expansions as follows,
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I(x′,y′, t+δ t)≈ I(x+δx+ yθ ,−xθ + y+δy, t+δ t)

≈ I(x,y,θ , t)+
∂ I

∂x
δx+

∂ I

∂y
δy+

∂ I

∂x
yθ − ∂ I

∂y
xθ +

∂ I

∂ t
δ t

hence,

∂ I

∂x
δx+

∂ I

∂y
δy+

∂ I

∂x
yθ − ∂ I

∂y
xθ +

∂ I

∂ t
δ t ≈ 0 (7.6)

When already compensated, there should be no consideration in rotation but only local

movement of vegetation, so θ = 0. Eq. 7.6 is re-written as,

∂ I

∂x

δx

δ t
+

∂ I

∂y

δy

δ t
+

∂ I

∂ t
≈ 0 (7.7)

Or,

IxVx+ IyVy ≈−It (7.8)

with Ix, Iy are the derivatives, Vx = δx/δ t is the velocity in the horizontal axis, Vy = δy/δ t

is the velocity in the vertical axis.

Eq. 7.8 is re-written as

IT∆V =−It (7.9)

with IT∆ = [Ix Iy] and V
T = [Vx Vy]. Eq. 7.9 is such a familiar equation expressing the rela-

tionship between velocities and derivatives in optical flow problems. The main idea is that the

movement of living vegetation is most likely a damped oscillation after a blowing process given

by the air compressor device. Therefore, the block diagram of our algorithm is sketched as in

Fig. 7.4. Assume that the vehicle captured M frames before and N frames after the blowing

process. Background subtraction is carried out and accumulated to result the final accumula-

tive background subtraction, thus, the movement of vegetation should lie in the part marked as

foreground (see Fig. 7.3). The masks of the accumulative foreground (MAF) extracted from

the final accumulative background subtraction and of detected vegetation (MDV) from VInorm

are merged to generate the mask of possible dynamic vegetation(MPDV). The movement of

every pixel in the MPDV is recorded by the optical flow process to weight the resistance of

those vegetation pixels. Many optical flow algorithms can be applied to record the movements

of foreground objects such as in [Lucas & Kanade, 1981], [Horn & Schunk, 1981], [Farnebäck,

2003], and [Brox et al., 2009]. Regarding to the particular case of passable vegetation detec-
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tion, some challenging issues often found in the optical flow problem such as aperture problem

[Ullman, 1979], sudden lighting change [Toyama et al., 1999] are approximately not influen-

tial, thus, we propose to use a simple method like dense optical flow [Farnebäck, 2003] to do

the work. Also, the work [Farnebäck, 2003] demonstrated that the dense optical flow technique

shows out-performance compared with others when taken into account both computation and

precision for a two-frame algorithm.

Background
Subtraction

Background
Image

Frame K

  IMU

Motion
Compensation

Frame K−1

Passable 
Vegetation 
Detection

VI−NORM

−1

Optical Flow

Figure 7.4: Block Diagram of the Proposed Algorithm.

7.5 Experiments and Results

We used an autonomous ground vehicle with the configuration in details described in [Nguyen

et al., 2012c][Nguyen et al., 2011c][Nguyen et al., 2011b] and Fig. 7.2 for an evaluation of the

proposed algorithm. All data was collected and stored in the robot’s computer when the robot

traversed throughout outdoor environments in both morning and afternoon conditions. Colour

images were firstly segmented into small regions with respect to homogeneous colour [Felzen-

szwalb & Huttenlocher, 2004]. Whereby vegetation regions were hand-labelled as ground truth

to evaluate the outputs of the algorithm.

The quantitative evaluation shown in Table 7.2 is carried out with 1000 input images cap-

tured from 50 halt states of the vehicle (200 frames per each halt state). The result is quite con-

vincing with high accuracy of detecting and weighting passable vegetation, at about 98.37%.
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Table 7.2: Confusion Matix of Passable Vegetation Detection

Passable Vegetation others

Passable Vegetation 98.76 1.24

others 2.01 97.99

Figure 7.5: The first row, from left to right, illustrates original, background subtraction, optical

flow and result images, respectively. The second row and fourth row show original images

while the third row and the fifth row describe the outputs from our algorithm, respectively. The

green and dark green colours reveal passable and non-passable vegetation detected in the result

images, respectively.
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Notice that in this work, the vegetation with intense movement after the blowing process is

determined as passable vegetation. Thus, vegetation which is not effected by the blowing wind

due to far distance to the vehicle or out of the wind flow is detected as non-passable vegetation,

which would not be taken into account for evaluating passable vegetation detection. In other

words, passable vegetation detection accuracy is only evaluated inside the area effected by the

blowing wind. Alternatively, examples of passable vegetation detection are illustrated in Fig.

7.5 to have a better intuitive demonstration. Indeed, we can clearly see that branches of leaves

and vegetable are successfully detected as passable vegetation, which will be then utilized to

enhance decision-making in navigation. One with good observation might recognize that low

grass is detected as non-navigable vegetation (marked with dark green) because the movement

of low grass is much lesser than of leaves, which is usually confused as the vibration of the

robot. It is infeasible to distinguish between the small movement of low grass and the small

movement caused by the vibration of the robot even motion compensation already done. How-

ever, this issue can be simply resolved by taking the height information into account. Thus,

vegetation with low height or less-resistance should be navigable one.

7.6 Conclusions

We have introduced an active way for a double-check of passable vegetation detection, which

helps to have a better decision-making in outdoor navigation especially in complex outdoor en-

vironments with the presence of dense vegetation. Unlike previous approaches in vegetation

detection, the proposed approach is not to be significantly affected by visual effects or illumi-

nation changes. A double-check between a multi-spectral and an active approaches leads to

a more realistic and efficient mechanism for detecting vegetation respective to the purpose of

classifying navigable or non-navigable ones. The approach has been implemented and eval-

uated in several real-world experiments. The experiments show that our approach is able to

accurately detect tall or low grass and branches of leaves with an accuracy of more than 98%.

The current approach is limited to detecting and weighting passable vegetation in a halt state of

the vehicle. In a future work, we will investigate whether the described approach can also be

applied in case of a running vehicle.
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Chapter 8

Terrain Classification Based on Structure

for Autonomous Navigation in Complex

Environments

One of the main challenges for autonomous navigation in cluttered outdoor environments is

to determine which obstacles can be driven over and which need to be avoided. Especially in

off-road driving, the aim is not only to recognize the lethal obstacles on the vehicle’s way at all

costs, but also to predict the scene category thereby giving a better decision-making framework

for vehicle navigation. This chapter studies terrain classification based on structure, which

relies on sparse 3D data from LiDAR mobility sensors. While most of recent methods for

LiDAR data processing are purely found on the local point density and spatial distribution

of the 3D point cloud directly. We, on the other hand, introduce a new approach to analyse

the point cloud by considering local properties and distance variation of pixels inside edgeless

areas. First of all, the edgeless areas are extracted from segmenting the 3D point cloud into

homogeneous regions by Efficient Graph-based technique. Secondly, the neighbour distance

variation inside edgeless regions (NDVIER) features are obtained by calculating the euclidean

distance of neighbour distance variation inside each region. Through extensive experiments,

we demonstrate that this feature has properties complementary to the conditional local point

statistics features traditionally used for point cloud analysis, and show significant improvement

in classification performance for tasks relevant to outdoor navigation.

This work has been published in Proceedings of International Conference on Communi-

cations and Electronics [Nguyen et al., 2010b]
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8.1 Introduction

Recently, autonomous navigation techniques work well for environments such as hallways and

on roads, where obstacles are static and usually rigid. The remaining problem is the difficulty

in describing the environment of the vehicle in a way that captures the variability of natural en-

vironments. In order to solve the problem, there are many approaches proposed using different

sensor systems, such as LiDAR, PMD camera and multi-spectral camera.

The multi-spectral camera simply produces multiple images in different spectral range for

analysis. The interesting point is that a simple pixel-by-pixel comparison between red and near

infrared ray (NIR) reflectance, normally referred to as a vegetation index, potentially provides

a powerful and robust way to detect vegetation [Bradley et al., 2007][Willstatter & Stoll, 1913].

However, the dependency of trusted data acquisition on the change of light intensity makes the

camera’s applicability unstable under the presence of the sky, or shadowed areas.

PMD camera is a real time active 3D range camera based on time-of light technology using

the Photonic-Mixer-Device(PMD)[Plaue, 2006], which produces low-resolution images(64x48

pixels) of the depth and modulation amplitude at high frame rate, at around 50 to 60 fps, which

is comparable to a regular camera. Therefore the camera is well suited for real-time object

detection whereby interactive 3D data can be obtained by moving the camera around in space.

Nevertheless, the camera does not operate properly in an outdoor environment because of the

strong noise arising with the presence of intense sunlight, smooth surfaces, and metals [Nguyen

et al., 2010a].

On the other hand, the use of LiDAR has been proposed to get the stable depth data in out-

door environments [Tuley et al., 2004][Anguelov et al., 2005][Huang et al., 2000][Rasmussen,

2002]. A quite successful work to segment 3D point cloud into three classes: surfaces(ground

surface, rocks, large tree trunk), linear structures(wires thin branches, small tree trunk) and

porous volumes(foliage grass) is given by [Lalonde et al., 2006]. This technique is based on

local spatial statistics extracted over a fixed-size support volume, so it is computationally ex-

pensive and also highly depends on the size of the applied window. In addition, the edge effect

[Nguyen et al., 2010b] 1 affects to the linear property of extracted features, which usually causes

confusion between edge points in a linear structure or solid surface and scattered points.

In this chapter, we address a simple but very efficient approach for 3D point cloud process-

ing based on geometric structure to support ground vehicle mobility. We use the SICK laser

LMS221 mounted front of the vehicle (see Fig. 2.4 in section 2.1), so that, the 3D point cloud

data are obtained by sweeping the laser vertically, see Fig. 8.1. The basic idea is that the artifi-

1The edge effect here is understood as the scattering property of the edge points between two or more regions

with big distance difference, which makes the edge points behaviour like scattered points do regarding spatial

distribution.
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cial constructions, tree trunks, or roads are normally represented by linear structures or smooth

surfaces while the vegetation representation is considered as a highly textured region.

Figure 8.1: An example of 3D point cloud given by SICK LMS221 where a) colour image of

the scene; b) 3D points in Cartesian coordinate (the maximum distance set is 16 meters, so all

farther objects which are not in the case of consideration are illustrated by vertical lines with

distance of 18 meters); c) Point cloud triangulation; d) 3D reconstruction of the scene with

invalid faces removed.

In fact, there are several previous works having attempted to capture spatial texture analysis

in order to facilitate image segmentation and interpretation. Still, the unsolved problem of edge

effect lowers their complexity and makes them differ from the idea of being really robust. In

order to totally remove the bad effect of edge reflectance, we, at first, segment the 3D point

cloud into homogeneous areas by Efficient Graph-based technique. The distance variation of

each pixel to its neighbours is calculated by the euclidean distance of neighbours’ distances

inside each homogeneous region. The result is considered as neighbour distance variance in-

side edgeless region (NDVIER) features which are quite discriminative where vegetation areas

perform high distance variation compared with others’. In order to achieve a more robust and

complex detection, the 3D point distribution feature is taken into account with the main goal is
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to classify tree trunk and solid surface or roads, while the elevation information of each pixel is

accounted to discriminate grass, bushes and leaves.

The chapter is structured as following: Section 8.2 explains the methodology of our ap-

proach to terrain classification based on structure of 3D point cloud given by a LiDAR. To give

a demonstration of the proposed classification technique, section 8.3 discusses some experi-

ments and results, while section 8.4 concludes this work.

8.2 Methodology

The traditional way for analysing 3D data given by a LiDAR is to capture the spatial distribution

of points in local neighbourhood [Vandapel et al., 2004]. According to the state-of-the-art work

at Carnegie Mellon University [Lalonde et al., 2006], the local spatial point distribution, over

some neighbouring area, is captured by the decomposition into principal components of the co-

variance matrix of the 3D points position, ordered by decreasing eigenvalues. Intuitively, in the

case of scattered points, there is no dominant direction between the points, so the eigenvalues

are nearly equal to each other. In the case of linear structure, there should be only one dominant

direction, so the first eigenvalue is much superior than the others. Finally, in the case of solid

surface, the principle direction is aligned with the surface normal with the first two eigenval-

ues are close to each other and far different from others. The work of [Lalonde et al., 2006]

demonstrated that these properties can be potentially used in describing outdoor environments.

However, the approach of purely using the point distribution is not really robust in some scenes,

especially with the presence of dense edges. In the case, the linear structure points are usu-

ally confused as the scattered points. Therefore, the task to overcome this issue is to eliminate

edge points, as a result, we naturally come up with the idea of segmenting the 3D point cloud

into homogeneous regions. K-mean technique, a quite popular classification technique in data

analysis, is first used to do this task. Nevertheless, K-mean classifies data only relying on their

values without concerning about the spatial distribution and local properties. This causes many

drawbacks in recognizing or grouping real homogeneous regions. Fortunately, Efficient Graph-

Based Image Segmentation given by [Felzenszwalb & Huttenlocher, 2004] has provided a very

efficient technique in image segmentation. In this paper, we will demonstrate that the technique

is also very efficient in segmenting the 3D point cloud regarding to the spatial distribution, local

and global properties of points. The next part will describe the Efficient Graph-based technique

briefly.
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8.2.1 Efficient Graph-based Segmentation Technique

The idea of this technique is based on selecting edges from graph, where each pixel corresponds

to a node in the graph, and certain neighbouring pixels (usually four neighbours) are connected

by undirected edges. Weights on each edge measure the dissimilarity between pixels. Following

is a brief explanation of how to use the Grap-based technique:

The input is a graph G = (I,E), with N vertices and M edges. If the kth pixel and the

jth pixel are neighbours and denote the vertices connected by the ith edge in the ordering, the

dissimilarity between them is calculated as.

E[i] = |I[ j]− I[k]| (8.1)

Note: if I is a colour image, the dissimilarity should be combined of three colour channels’

differences.

E[i] = |I[ j]r− I[k]r|+ |I[ j]g− I[k]g|+ |I[ j]b− I[k]b| (8.2)

In this paper, I is the depth image obtained from distance information given by the laser sen-

sor. E is considered as an edge vector of size M (= 4N in case of considering four neighbours).

Assume the kth pixel belongs to the region a, while jth pixel belongs to the region b. If a and

b are disjoint components and the dissimilarity between them is small compared to the internal

difference of both those components, then merge the two components, otherwise do nothing.

To give more power to users, the segmentation technique allows to input the minimum size of

a region segmented. Hence, if the a and b are disjoint and the size of a or b is smaller than the

minimum size, then merge a and b. Or:

Loop{ # Start joining vertices

if {(a!= b) && (E[i]≤ Int[a]) && (E[i]≤ Int[b])} then
Merge(a, b);

Int[a,b] = E[i] + THRESHOLD(size(a)+ size(b));

else

do nothing

end if

} # End of the process

# Start to merge small regions

if {(size(a)< minSize)&&(size(b)< minSize)} then
Merge(a, b);

Int[a,b] = max(Int[a], Int[b]) + THRESHOLD(size(a)+ size(b));

end if
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E[i] is the dissimilarity between the kth pixel and the jth pixel, see Eq. 8.1. Int[a] is the

internal difference of the region a. The additional term THRESHOLD(size(x)) = c/size(x),

with c: constant number given by users, is applied to keep the global properties. For the range of

number of scanned points from a LiDAR usually from 10000 to 100000, the value of c should be

set at about 150 and the minimum size is at about 100 pixels. Initially, all vertices are considered

as edge points, where each point is considered as an “initial region” or one component, and the

values of the internal difference of all components are set equal to THRESHOLD(1).

The result in this method, even made by greedy decision, is verified that it is neither too

coarse nor too fine [Felzenszwalb & Huttenlocher, 2004]. Intuitively, Fig. 8.2 and Fig. 8.3

shows that the 3D point cloud is well segmented into regions regarding their distances and local

properties.

Figure 8.2: The first row shows colour images of the viewed scenes. The second row illustrates

the corresponding results from point cloud segmentation (best viewed in colours).
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Figure 8.3: The first row shows colour images of the viewed scenes. The second row illustrates

the corresponding results from point cloud segmentation (best viewed in colours).

8.2.2 Feature Extraction

8.2.2.1 Neighbour Distance Variation Inside Edgeless Regions

Definition 1: An edgeless region is defined as a region where there is no big distance difference

between any set of subregions.

From this definition, all objects in the viewed scene exist in form of edgeless regions after

segmented by the method in the subsection 8.2.1. Following describes how to calculate the

neighbour distance variation of edgeless regions: the input data is a graph G = (V,R) where

V is a matrix of 3D points position: Vi = {xi,yi,zi}, R contains n regions of the depth image

segmented in the previous subsection: R= {Rk;k= 1 : n}. We assume that the ith pixel belongs

to the region Rk. We search all neighbour pixels which also belong to the region Rk. So, the
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neighbour distance variation of the ith pixel is calculated as:

NDVIER[i] =
m

∑
j=0

|x[i]− x[ j]|+ |y[i]− y[ j]|+ |z[i]− z[ j]|
m×dst[i]

(8.3)

subject to i = {1:N}.
where N: the number of 3D points.

m: the number of neighbour pixels which belong to the same region, 0< m≤ 8 (each pixel has

maximum eight neighbour pixels).

A greedy decision is made by comparing the value of NDVIER[i] and the trained NDVIER

values. NDVIER feature is scale invariant because it normalizes the neighbour distance varia-

tion and also takes into account the distance information of applied points to avoid the scattering

effect of laser beam.

Property 1: Qualitatively, the high value of NDVIER refers the scatter structure (vegeta-

tion) of the selected volume, while the quite low value of NDVIER implies the solid surface.

Although, the intermediate value of NDVIER can not help to give any decision, it can be

complemented with the conditional local point statistics feature (see the next subsection).

8.2.2.2 Conditional Local Point Statistics

These saliency features are inspired by the local point statistics approach of [Lalonde et al.,

2006]. Instead of estimating directly 3D point distribution, the condition of the same region

between input points has been proposed to avoid the effect of edge reflectance. From subsection

A, the 3D point cloud is segmented into n homogeneous regions: {Rk,k = {1 : n}}. Assume

that there is a set of M 3D points: {Ii} = {(xi,yi,zi)T} with i= {1 :M}, in the same region Rk.

The symmetric positive definite covariance matrix of the set is expressed as

Cov=
1

M

M

∑
i=1

(Ii− Ī)(Ii− Ī)T (8.4)

With: Ī = 1
M

M

∑
i=1

Ii. Actually, the raw data from LiDAR consists of information about vertical,

horizontal angles, and distances. The values of x, y, z are easily computed by mapping from the

Spherical coordinate to the Cartesian coordinate.

The principle components of the matrix are extracted, and named as eigenvectors: ~e0,~e1,~e2,

and eigenvalues: λ0,λ1,λ2, ordered by decreasing: λ2 ≤ λ1 ≤ λ0.

Property 2: The relation of the three eigenvalues is normally referred as a spatial structure

index where λ0 ≈ λ1 ≈ λ2 denotes for scattering, λ0 >> λ1 ≈ λ2 denotes for linear structure,

and finally λ0 ≈ λ1 >> λ2 denotes for solid surface.
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Two saliency features can be obtained based on the Property 2: Sscatter = λ0 and Ssur f ace =

λ1 − λ2; the so called scatterness and surfaceness, respectively. Regarding Property 2, the

linear structure can be specified through Slinear = λ0− λ1, but the practical proves that, the

classification between linear structure and scattered is quite poor, at about 48% [Nguyen et al.,

2010b]. Additionally, the task of detecting vegetation does not force to do such classification,

so we do not use the linear feature in this case. In practice, the selection of M nearest points

is also considered to a compromise between computational efficiency, memory management,

and scene reconstruction accuracy. In the work of [Lalonde et al., 2006], the M nearest points

were selected by sliding a cube of 10 cm edge across the 3D point cloud in space. The size

of the cube was chosen experimentally in order to select the nearest points in the same object

rather than in two or more different objects, which avoids the edge effect. This, however, seems

subjective and highly depends on the type of laser sensor. In our approach, the segmentation

of 3D point cloud, and then the selection of nearest points in the same segmented region, have

implicitly done the work. Then, we suggest the mapping from the matrix of 3D point cloud into

an array where every four neighbours are arranged continuously. The selection of M nearest

points of 3D point cloud is now converted to the selection of a shifting interval of the array. Fig.

8.4 shows the mapping between the 3D point cloud to the array of neighbour pixels with M=4.

. . .24321

3

1

4

2

Point cloud (mxn)

Prototype point

Array (4xmxn)

Figure 8.4: Mapping from 3D point cloud to an array of neighbour pixels. The selection of M

(= 4) neighbours pixels in the 3D point cloud is actually taken place by capturing an interval of

four numbers in the array, so called prototype point. The new prototype point is one pixel shift

of the previous one.

8.2.3 Support Vector Machine

As described in the previous subsection that there are several parameters need to be set such as

eigenvalues of the covariance matrixCov and NDVIER values in order to clarify the Property

1 and Property 2 quantitatively. It is practically infeasible to hand-tune thresholds directly

to result classification because those values highly depends on the type of environments, the
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type of sensors, the number of scanned points, and the point density. Experimental research

shows that the variability of the values is manifested especially with the presence of tall grass

(or dense edge areas), so we usually face with a nonlinear classification problem in the case of

cluttered environments. In fact, there are many nonlinear classification techniques proposed at

recent time, both supervised and unsupervised. While the supervised techniques usually cost

computational expensive, the unsupervised ones are not well adapted to the nonlinear problems

in reality. In this work, we train data with only four features in order to give the decision, so the

supervised classification technique is preferred. We had tried to use Support Vector Machine

(SVM) [Cortes & Vapnik, 1995], Naive Bayes classifier [Quinlan, 1993], Neuron Networks

[Zhang, 2000], Adaboost [Freund & Schpire, 1997], and Expectation Maximization [Bilmes,

1997]. Consequently, proposed by Cortes and Vapnik in 1995, SVM shows out performance

and is more reliable than others. Following is a brief description about SVM.

We, for instance, have L training samples, where each input xi has D features and is in one

of two classes yi= -1 or +1. Assume that yi= +1 denotes pedestrian samples(or positive samples)

and yi= -1 denotes non-pedestrian samples(or negative samples).

Inputs: {xi,yi} where i=1,2..L, yi ∈ {−1,1} , x ∈ ℜD

The main task in training SVMs is to solve the following quadratic optimization problem:

minα f (α) =
1

2
αTQα − eTα s.t 0≤ αi ≤C, yTα = 0 (8.5)

Where e is the vector of all ones, C is the upper bound of all variables, Q is an L by L symmetric

matrix with Qi j = yiy jK(xi,x j), and K(xi,x j) is the kernel function. The kernel function is used

because there are some classification problems that are not linearly separable in the space of

the inputs x, which might be in a higher dimensionality feature space given a proper mapping

x→ φ (x).

In our work, the training samples are a set of NDVIER, scatterness, linearness and sur-

faceness features with their corresponding hand-labelled classes. In order to achieve a more

complex and accurate classification, the Kernel-Trick used is Radial Basic Function [Baudat &

Anouar, 2001].

K(xi,yi) = exp(−||xi− y j||2
2δ 2

) (8.6)

A cross validation process returns C = 75 with the stopping tolerance is set ε = 0.01.
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8.3 Experiments and Results

In this work, 300 different scenes of cluttered outdoor environments are captured by the SICK

laser LMS221 with 81x330 = 26730 pixels resolution and the maximum distance set is 16 m.

The angular separation between laser beams is 1/4 degree over a 900 field of view. The angular

separation between laser sweeps is 2/3 of a degree over 1200. 200 3D point clouds are used

for training and the other 100 are used for testing. The classification results are evaluated by

comparing the output of the classifier with the hand-labelled data. In this paper, we evaluate the

discrimination between scatter, linear, and surface structures rather than the specific classes of

classification such as grass, trees, bushes, building, roads, etc. Actually, if we can have a good

classification of the three structures, the object classification can lately be realized by evaluating

the relationship between the object structure and the three structures. For example, the grass

should be a vegetation area with little presence of linear structure, while the bushes and trees

should be vegetation areas with dense presence of linear structure. The discrimination between

trees and bushes can be clarified by estimating the elevation of their centroids. The roads and

lethal obstacles can also be classified by their elevation regarding the discrimination of solid

surface areas.

Figure 8.5: An example of 3D reconstruction

of a 3D point cloud delivered by the SICK laser

LMS221. The scene consists of flat area, grass,

tree and wall.

Figure 8.6: An example of 3D reconstruction

of a 3D point cloud delivered by SICK laser

LMS221. The scene consists of building (at

right hand), tree and flat area.

The classification processing time of our approach is short, at around 310 ms, however the

acquisition time of the LiDAR is quite slow, at around 820 ms. Therefore, the total processing

time of this approach is at around 1130 ms, which is not really reliable for on-board navigation.

The main use of this approach is to detect roads or obstacles and predict the scene category
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Figure 8.7: Example of data post-processing

for the 3D point cloud in Fig. 8.5. The green

colour denotes for vegetation areas, the dark

blue colour denotes for linear structure areas,

and finally the violet colour denotes for solid

surface areas

Figure 8.8: Example of data post-processing

for the 3D point cloud in Fig. 8.6. The green

colour denotes for vegetation areas, the dark

blue colour denotes for linear structure areas,

and finally the dark cyan colour denotes for

solid surface areas

front of the vehicle. Fig. 8.5, Fig. 8.6 and Fig. 8.7, Fig. 8.8 are the 3D reconstruction images

from a 3D point cloud and the corresponding results given by our approach, respectively.

Table 8.1: Classification accuracy

Confusion Matrix (%) scatter linear surface

scatter 58.2 33.1 8.7

linear 20.4 68.8 11.8

surface 2.3 12.6 85.1

Table 8.1 shows the classification accuracy of the results, which is 10 % to 17 % better than

previous approaches’ which purely rely on 3D point distribution. The discrimination between

surface and scatter points is quite successful from our approach, while the linear structure and

the solid surface, however, are more confused because of spurious misclassification. The work

in [Lalonde et al., 2006] suggests some filters to remove the bad effect such as isolated sur-

face filter, isolated density filter, ect. Nevertheless, the results just showed mean performance

while the required computation is quite expensive. So, we do not use them in our approach.

Importantly, we have tested the performances of both [Lalonde et al., 2006] our algorithm and

the algorithm in with the CMU dataset (http://datasets.visionbib.com), the classification results

confirm that our appproach outperforms the other (note that there exists no ground truth for

vegetation detection based on point cloud analysis, this is just another evaluation on another

dataset).
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8.4 Conclusion

We have presented a new approach to terrain classification based on structure for automobile

exploration, in a large variety of object scenarios. The neighbour distance variation inside edge-

less areas features clearly discriminates the smooth and scattering areas which are presumably to

denote artificial constructions and vegetation, respectively. The conditional local point statistics

features complement to a more complex object classification based on 3D point distribution. In

addition, the use of Efficient Graph-based technique for 3D point cloud segmentation in advance

helps in avoiding the edge effect affecting to the above features’ properties. Consequently, our

approach brings a significant improvement for terrain classification.
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Chapter 9

A Novel Approach of Terrain

Classification for Outdoor Automobile

Navigation

The investigation of reconstructing 3D model of the viewed scene has showed good perfor-

mance in environments such as in yard, hall way or on road. However, in cluttered outdoor

environments where frequently the scenes are unknown and the objects are no more static and

rigid, the only use of 3D-point analysis is not sufficient to give good decision for safe naviga-

tion. Therefore, we on the other hand address a new approach which reconstructs completely

3D scene based on calibrating Laser Scanner and CMOS camera and doing segmentation to re-

sult objects in form of region of interest. As a result, the characteristics of each region are then

expressed through their corresponding feature vectors, including 2D and 3D features. This is

the first time the term of feature vector used to describe a 3D object respecting to the analysis of

3D-point clouds given by a LiDAR. Finally, we also prove that the proposed approach leads to

more robust and faster processing and decision-making in terrain classification compared with

conventional approaches or pixel-based approaches.

This work has been published in Proceedings of IEEE International Conference on Com-

puter Science and Automation Engineering [Nguyen et al., 2011a].

9.1 Introduction

According to the literature of autonomous navigation for outdoor mobile robot, the main task is

to get from point A to point B. While this sounds to be rather simple that the vehicle just follows

the Global Positioning System (GPS) breadcrumbs, it is actually a huge problem. In real-world

applications, the vehicle has to deal with a variety of terrain, obstacle avoidance, roll-over
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stability and much more. Even though, the research on the field of autonomous navigation has

been started for more than a decade years, giving a methodology which can achieve a full safe

autonomous navigation system in outdoor environment is still a daunting challenge. Indeed,

there are many publications respecting to this field where we can find a dozen approaches and

ways to evaluate the risk and give solution to the vehicle during his operation. Most of methods

up to date only stop at comparing the global map planing and local map planing to guide the

decision-making of the robot. The deep interpretation of the current surrounding is still ignored,

which usually leads to some miss decisions or lost ways. Therefore, this study pays more

attention on how to understand the surrounding of the robot and also keeps in mind the given

tasks that the robot has to carry out. For that aim, we have built an autonomous mobile outdoor

robot(AMOR) which is equipped a laser scanner SICK-LMS221 and CMOS camera: Logitech

ProCam 9000, mounted at the front. Actually, we also use other accessories like compass

for direction and skewness information, ultra sound sonic sensor for reflectance, and even a

helicopter for surrounding and location information (see Fig. 2.2 in section 2.1). However, we

just discuss here the use of laser scanner and CMOS camera in describing surroundings in this

work. We tried to result objects in form of regions of interest (ROI) by segmenting the depth

image established from scaling distance information given by a LiDAR to greyscale. Each

region now represents one unknown object.

The segmentation technique applied in this work is so called Graph-Cut technique. The

basic idea of this technique is to compare the internal difference and component difference be-

tween two neighbor regions. The concrete difference here in this paper is the distance difference

to the robot. The initial work of [Felzenszwalb & Huttenlocher, 2004] inspired the technique to

segment colour images regarding the colour difference in three channels: Red, Green and Blue.

The segmentation results are impressive for those standard images, regarding to white balance

and standard light condition, but shows mean performance for irregular images. Fortunately, the

distances given by the ladar SICK LMS221 are very precise which leads to a nice depth image

which can be well segmented by the Graph-Cut technique. Secondly, unlike K-mean and other

common segmentation techniques, Graph-Cut technique segments image into regions based on

both local and global properties as well as object position taken into account. This satisfies

the goal of extracting objects. We will prove that the segmentation results are not either too

coarse or too fine. Alternatively, it is the first time feature-based approach is presented in this

paper to classify terrain, regarding to 3D-point cloud analysis. Previous approaches are based

on neighbour or local pixels’ consideration, which are time-consuming and less robustness.

In contrast, the feature approach potentially initiates a more robust terrain classification

system under real-time constraint (indeed, the LMS221 can get a whole frame of scanning

within a half second). The key idea of the approach is to fuse 2D and 3D features extracted from
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each object or ROI to create discriminative feature vectors. So, a coarse calibration needs to be

done to interact 2D and 3D scenes. The coarse calibration is implemented respecting to the time-

consuming and robustness, because a full-calibration between the two vision systems will cost

much computation and time but show mean performance in outdoor environment [Leidheiser,

2009]. Our calibration method is experimentally proved fast and efficient to the purpose of

mapping 2D-3D information.

The next contribution of the paper is to introduce 2D-3D feature fusion which leads to

more discriminative feature vectors. While, 2D and 3D features are extracted independently for

CMOS image and 3D-point cloud respectively, the interaction will be taken place by mapping

them into corresponding objects or ROI to generate a feature vector. Finally, Support Vector

Machine is presented in order to train and test the feature vectors. The comparison of the

proposed method and other conventional methods is also discussed.

The structure of the paper is organized as following: Related Works in section 9.2, 2D-3D

Coarse Calibration in section 9.3, Feature-based Classification in section 9.4, Experiments and

Results in Section 9.5, and Conclusion in section 9.6.

9.2 Related Works

The early approaches to terrain classification were based on the physical properties to pro-

vide semantic descriptions of the physical nature of a given terrain region. These descriptions

can be associated with nominal numerical physic parameters or traversability estimates to im-

prove traversability prediction accuracy Halatci et al. [2007][Manduchi, 2005][Iagnemma &

Dubowsky, 2002]Lalonde et al. [2006]. Specifically, oriented to the mobility capabilities of an

AMOR, there are some other approaches relied on terrain parameter identification via wheel-

terrain interaction analysis and terrain classification based on auditory wheel-terrain contact

signatures [Iagnemma & Dubowsky, 2002]. However, a large variety of terrain exist together

with scenes are often near monochromatic that makes the classification become more challeng-

ing. In order to overcome the problem, some researchers suggested to combine the traversabil-

ity parameters and obstacles detection-based parameters [Halatci et al., 2007][Iagnemma &

Dubowsky, 2002]. For that aim, one or more CCD/CMOS cameras are mounted at front of the

robot. The 2D cameras are positioned to look down to see the front terrain. One of the highlight

benefits is to utilize colour information to detect lethal obstacles at front. The approaches are

very abstractive and efficient for applications of planetary exploration rovers like Mars explo-

ration. The restriction of those approaches is just focusing on estimating the traversability of

terrain by its physical properties and potential obstacle estimates, while safe autonomous nav-

igation requires more knowledge of surrounding, especially on cluttered environment such as
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cornfield and off-road. One of the quite early approaches to describe the surrounding of the

robot is presented by [Lalonde et al., 2006]. The most remarkable contribution of this approach

is to classify surrounding into three classes: scatter represents porous volume objects such as

tree canopy and tall grasses, linear structure denotes to thin objects like wires, thin branches,

and small tree trunk, surface describes ground surface, rocks and large tree trunk. In order to

do so, a searching cube (with changeable size but often 10x10x10 cm3) slides around in space

to select local points. The statistic features of the selected points are then extracted based on

their 3D distribution (please see more details in [Nguyen et al., 2010a]). The disadvantage of

this way is how to choose the suitable size of the cube. The size should be changed in term of

distances, complexity of the viewed scene, etc. Especially, it turns out worst in case of presence

of dense edges which was explained clearly in our previous work [Nguyen et al., 2010b]. The

previous work also gave a solution for eliminating edge effect by segmenting 3D-point cloud

in regions of homogeneous distances. In general, such approach shows good performance in

detecting surface objects but mean performance in distinguishing linear structure and scatter

objects. Besides, this approach is still a pixel-based terrain classification one which just stops at

classifying scenes into three classes due to local point distribution analysis. From our perspec-

tive, we think that this is the time to approach a higher level of terrain classification whereby

the robot would know where is grass, tree, wall, road, and other obstacles specifically from the

viewed scene. This is also the most motivation of this paper.

9.3 2D/3D Coarse Calibration

The calibration between Laser scanner and CCD/CMOS camera becomes very important due to

growing need of robust object detection and recognition applications in outdoor environment.

However, a robust calibration is time-consuming and computational expensive as well as the

performance of the calibration drops significantly in outdoor environment containing vegetation

[Leidheiser, 2009]. Two of major reasons are the light intensity and light colour changes and

vibration of vegetation, which make interested points of both Laser Scanner data and CMOS

image unstable. In fact, regarding to the purpose of terrain classification, we do not need a very

precise calibration but reasonable one. In our previous work, we introduced a simple 2D/3D

mapping method to project the image plane of a 2D sensor to the 3D coordinate of a LiDAR,

see section 4.2. In fact, the method provided visual pleasing but small objects were often mis-

reconstructed. This would not affect to the result of detecting vegetation which commonly

appeared as a large object. However, for the aim of classifying different object (possible in

small or intermediate size) types in this work, the simple mapping is not precise enough. Hence,

we prose a 2D/3D coarse calibration which is relatively robust while still being simple and fast.
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Logitech Webcam Pro 9000 and LMS221 are used similar to the work in [Nguyen et al.,

2011b]. The applicable distance range of this coupled system lies in the interval [3.8÷15.8][m]

when the Laser Scanner is positioned 5cm higher the CMOS camera. The nearest distance

threshold is set due to diminishing the stereo effect [Liu et al., 2008], while the farthest distance

threshold is selected due to the quality of data acquisition of the Laser Scanner. The assumption

to have all objects located at least 3.8 meters far from the system sounds weak for navigation

applications but it is acceptable for our goal of classifying terrain and understanding surround-

ing of the robot. So, this proposed method is not really well applied for on-board navigation but

for prediction and interpretation of the surrounding.

Firstly, a single camera calibration needs to be carried out for CMOS camera to obtain the

camera matrix and distortion parameters, which consequently can be used to get undistorted

images from raw input images. This step will remove the radial and tangential lens distortion.

In this work, we use OpenCV library to do the calibration. From then, whenever we mention

CMOS images, we are implicitly talking about the images undistorted.

Secondly, when the Laser Scanner and CMOS camera are positioned very near each other,

the views of the two sensors are approximately quite the same in a narrow viewing angle, see

Property 1 in section 4.2. The geometric model of the coupled system can be described as in

Fig. 9.1. At a distance d, we assume that the sizes of scenes of Laser Scanner scene and CMOS

scene are (x1,y1) and (x2,y2) respectively. Let (α1,θ1) and (α2,θ2) denote the apertures of Laser

Scanner and CMOS camera, respectively. Then, we will have a geometric property as below:

Property 2: The ratio of sizes of the Laser Scanner scene to of the CMOS scene is equal to

the ratio of the tangents of the corresponding aperture angles.

The property 2 can be formulated as:

x1

x2
=

tan(α1)

tan(α2)
;
y1

y2
=

tan(θ1)

tan(θ2)
(9.1)

Thus, the projection of the CMOS scene onto the image plane of CMOS camera will have

a size of (x1/δx)x(y1/δy) where (δx,δy) is the pixel size of a CMOS image. Approximately,

the projection of the LS scene on the image plane should have a size of (x2/δx)x(y2/δy) ≡
(x1

tan(α2)
tan(α1)

/δx)x(y1
tan(θ2)
tan(θ1)

/δy) because we are assuming the views of the coupled system are the

same. Similarly, the projection of the intersection part of both scenes (see Fig. 9.1) on the

image plane should have a size of Ls = (x1/δx)x(y2/δy) or:

Ls = x2
tan(α1)

tan(α2)
/δx× y2/δy (9.2)

Specifically, in this work, the size of CMOS images is 640, so the size of projected LS scene

is (640
tan(41)

55
)x (480

tan(77)
70

) ≡ 390 and the size of the projection of the intersection part is 390.
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In order to do the projection, we are going to build a grid plane of (x1/δx)x(y1/δy) pixels which

will store the distance values of points from LS scene projected to the image plane. Of course,

the number of points are much lesser than the number of pixels so that we have to put each point

into a suitable pixel in the grid disorderly based on their relative positions. For example, for

each scanned line, we only have nSPL (number of scanned points per line) scanned points and

nPPL(number of pixels per line) pixels on the corresponding line in the grid. The first and last

point correspond to the first and last pixel (see Fig. 9.2). The pixel step in x-coordinate can be

calculated as:

λx =
xnSPL− x1

nSPL
(9.3)

So the ith scanned point will be stored in the kth column with:

k = Round(
xi− x1

λx

nPPL

nSPL
). (9.4)

Where (xi,yi,zi) denotes the position of the i
th scanned point.

Figure 9.1: Geometric model of Laser Scanner and CMOS scene planes.

Figure 9.2: Putting points from LS scene onto the grid plane per line.
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Figure 9.3: a) 3D chessboard model for Laser Scanner and CMOS camera calibration [Leid-

heiser, 2009]. b) Sketching planes from the centre of the searching window in different levels.

Similarly, for each column of scanned data, the first and last point correspond to the first

and last pixel. Let numSL is number of scanned lines, and nPL is number of pixel lines. The

pixel step in z-coordinate can be calculated as:

λz =
znumSL− z1

numSL
(9.5)

So the ith scanned point will be stored in the jth row with:

j = Round(
zi− z1

λz

nPL

numSL
). (9.6)

Hence, we have a grid plane containing points projected from Laser Scanner scene and

empty pixels. A linear interpolation process will help us to fulfil the empty pixels. The outcome

is an image which approximately represents the projection of Laser Scanner scene onto the

image plane of CMOS camera, so called projected image. Ideally, the outcome image now

can be mapped directly with the CMOS image to reconstruct 3D scene if the pinholes of both

devices are positioned at one point as in the geometric model in Fig. 9.1. Nevertheless, the

Laser Scanner is positioned 7cm above the CMOS camera so that there is a shift between the two

images. In order to figure out the shift, we have built a 3D chessboard model as shown in Fig.

9.3. The four corners of the orange centre box are detected by both Laser Scanner and CMOS

camera, which are also displayed on both CMOS image and projected image. Assume that the

coordinate of each corner in CMOS image is (xi,yi), in projected image is (Xi,Yi), i = 1÷ 4.

In an ideal case, the shift between the two images can be calculated as: shi f tx = Xi− xi and

shi f ty = Yi− yi where Xi− xi = X j− x j and Yi− yi = Yj − y j: ∀(i, j) = 1÷4. In practical, we
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obtain the mean value of them expressed as:

shi f tx =
∑4
i=1Xi− xi

4
; shi f ty =

∑4
i=1Yi− yi

4
(9.7)

Actually, the computation of the shift can be carried out with only one corner. However,

the sampling frequencies of Laser Scanner and CMOS camera are totally different, so the value

of each scanned point from Laser Scanner projected on the image plane is not absolute but

relative. Thus, the average of the shifts calculated via each corner practically gives more robust

result. Moreover, the standard deviation of them inspires the belief of accurateness where the

less standard deviation there is, the greater the precision of calibration.

Finally, we obtain three parameters of the coarse calibration including Ls,shi f tx, and shi f ty,

which are fixed for a specific set-up of the coupled system. Even though, this is a coarse

calibration method, its performance is very impressive. The maximum error of the calibration

Figure 9.4: Examples of calibration results.
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results is less than 5 pixels for all objects located at 3.6m or more far from the coupled system. In

fact, the calibration just needs to be done off-line once, the returned parameters can be used from

then on until the configuration of the coupled system is changed. As a result, the processing

time for an on-line 3D reconstruction is at around a decade of milliseconds with Pentium IV,

CPU 2GHz and 2GB of RAM. Examples of 3D reconstruction results are illustrated in Fig. 9.4.

9.4 Feature-based Classification

The traditional terrain classification methods focus on analysing local point distribution and

measuring neighbour point relation in order to obtain discriminative properties of points which

can classify the points into different classes. These methods can just only be used to query the

traversability of the viewed terrain while the aim of object detection and recognition is infeasi-

ble. As introduced in the section I, this paper will present a feature-based approach to classify

terrain and surrounding objects. The new approach enables a robust terrain classification and

make the task of object detection and recognition feasible.

Let us define the term of Image of Interest (IoI) and Depth Image of Interest (DIoI) as below:

Definition 1: The Image of Interest is the image cropped from the CMOS image with size

of Ls and the same image centre.

Definition 2: The Depth Image of Interest is the image cropped from the projected image

with size of Ls and the image centre shifted amount of (shi f tx,shi f ty).

Therefore, the IoI and DIoI images respectively represent the colour and distance infor-

mation of the intersection part of the Laser Scanner scene and CMOS scene. The following

subsection will show how to result objects in form of region of interest by segmenting the depth

image.

9.4.1 Depth Image Segmentation

Unlike pixel-based approaches, the feature-based one has to detect objects first before extracting

discriminative features. Thus, an image segmentation needs to be done. Nevertheless, if the

segmentation is implemented on the colour image or IoI, the affection from light conditions and

colour changes significantly degrades the results, especially with the presence of shadow areas.

In addition, the appearance of shadow is inevitable in outdoor environments. Consequently, we

come up with the decision of segmenting the depth image or DIoI. Fortunately, the distances

given Laser Scanner are very precise whereby we can obtain a very fine depth image which

is quite stable even under complex conditions and environments. The segmentation technique

used in this work is so called Efficient-Graph-Cut which is firstly introduced by [Felzenszwalb
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& Huttenlocher, 2004].

The technique was used to segment a colour image based on selecting edges from a graph,

where each pixel corresponds to a node in the graph, and certain neighbouring pixels are con-

nected by undirected edges. The weights of edges are calculated by colour distances between

pixels and also adjusted by the degree of variability in neighbouring regions of the image. The

joint-decision of two neighbour regions are made if the maximum distance of two arbitrary pix-

els in each region is superior or equal the weight of edge of the two regions (see more details in

[Felzenszwalb & Huttenlocher, 2004]). If in the work of [Felzenszwalb & Huttenlocher, 2004]

the distances of pixels are the differences of colour information, in our work they are the dif-

ferences of distance information. The reason we use the Graph-Cut is because this technique

considers both local and global properties of the scene and the results are not either too coarse

or too fine. In order to implement the Graph-Cut segmentation, we have to set some initial pa-

rameters like minimum size of regions Smin, σ for Gaussian smoothing applied to input images,

and the threshold K to controls the degree to which the difference between two components

must be greater than their internal differences in order for there to be evidence of a boundary

between them. The practical shows that the σ should be fixed at 0.8 while the minimum size

Figure 9.5: Examples of segmentation results.
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should be Smin = 750 pixels and the threshold K should be 250 for such number of scanned

points from 6437 (= 41x157) to 16810 (41x410) (normal scanning modes). If the number of

scanned points of Laser Scanner is higher, then σ = 0.8, K = 300, and Smin = 1000. Fig. 9.5

shows certain results of the segmentation.

9.4.2 2D/3D Feature Fusion

The previous section has shown the way to project 3D information onto the colour image.

This enables a 2D-3D feature fusion process. While the 2D-features are the features extracted

from CMOS images, the 3D-features are extracted from the 3D-point clouds of Laser Scanner.

From the subsection A, objects are already resulted in form of regions of interest (ROI) in the

depth image or DIoI. The ROI are then projected into the IoI and 3D-point cloud to obtain the

corresponding ROI in both CMOS image and 3D-point cloud. Therefore, 2D and 3D features of

each ROI can be created separately before gathered to generate a feature vector which describes

the characteristics of the object.

9.4.2.1 3D Features

The 3D features can be local point distribution statistic [Lalonde et al., 2006], neighbour dis-

tance variation [Nguyen et al., 2010b], tactile [Halatci et al., 2007], statistical distributions of

3D data point [Manduchi, 2005]. If the features help to classify 3D points into several classes

in pixel-based approaches, we on the other hand figure out the percentage of each class in each

object and consider it as one component of the object’s feature vector.

Fitting plane:

Besides, we also present here a new approach to measure the 3D-spatial distribution of local

points of 3D-point cloud through statistic method. Generally, 3D data is stored as a matrix

where each scanned line from Laser Scanner corresponds to a row of the matrix. A window

is slided across the matrix to select local points, with one pixel at each shifting unit from the

left to the right, from the top to the bottom. The main idea is to build a fitting plane so that

the summation of point-to-plane distances from selected points is minimum. The local point

distribution property of each selected point is then represented by the value of the summation,

so called local distribution weight of the point. An update of the weight of each point is taken

place only if its new weight is smaller than the current one.

Assume that, there are M local points selected. In order to get a scale invariant feature

vector later on, a local coordinate normalization process applies to all local points to normalize
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the values of each point’s coordinate.

xi = xi− x̄; yi = yi− ȳ; zi = zi− z̄ (9.8)

Where ū = ∑i ui
M

subject to u = {x,y,z}. (xi,yi,zi) and (x̄, ȳ, z̄) are the ith point’s coordinate

and the average coordinate of the local points, respectively.

Assume thatW0 = {wo[i] : i = 1 :M} is a set of the current weights of the M local points.

The new weights can be computed by minimizing the summation of point-to-plane distances

from the points to a plane : ax+by+ cz = 0, as in Eq. 9.9 and Eq. 9.10. In other words, we

have to build a fitting plane whereby the summation of distances from the points to the plane is

minimum.

w= argmin(dst(a,b,c,d))
{a,b,c,d}∈ℜ;(a×b×c×d)6=0

(9.9)

Where

dst(a,b,c,d) =
∑M
i=1 |axi+byi+ czi+d|√

a2+b2+ c2
(9.10)

This turns out to be an optimization problem containing absolute values. The accurate solu-

tion is so complex and not always feasible, thus, we come upwith a coarse solution implemented

by the following algorithm.

Algorithm:

Initiation: wo[i] = ∞; ∀i= {1 :M}.

• Assume that the centre of the current window isC(xc,yc). Sketch a set of planes given by

the centre C, the left Lk(xc−1,yc−k) and the right Rk(xc+1,yc−k) subject to k = {−3 : 3}
(see Fig. 4b).

• Calculate dst for each plane.

• w is set as the minimum value of dst.

for i= 0 to M do

if w< wo[i] then

wo = w;

else

do nothing

end if

end for
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• Shift the window one pixel and repeat.

——————————————–

We propose new 3D features, so called geometric similarity features, being formed by two

components: theMean Value and Standard Deviation of the weights of the 3D-points projected

in each region of interest (see Eq. 9.11). Even though the proposed method introduces a coarse

solution, we will prove that the result is robust enough and very impressive, especially for wall

fence, concrete road and building detection.

µ
(k)
gs f =

N

∑
i=1

w[i]

N
; σ

(k)
gs f =

√
N

∑
i=1

(w[i]−µ(k))2

N
(9.11)

Where N: the number of 3D-points projected into the kth region of interest.

9.4.2.2 2D Features

The 2D features can be histogram distances, colour descriptors and textures. Firstly, histogram

distance features are very efficient in detecting unknown-shape, homogeneous colour objects

such as vegetation and road, but show mean performance in recognizing multiple-colour ob-

jects such as human and arbitrary obstacles. Indeed, our previous work proved that even though

there are changes of light intensity and light colour, a very distinctive colour feature can still

be obtained for vegetation detection by measuring histogram quadratic distance with the quan-

tization proportion set is 20:4:3 corresponding to Hue:Saturation:Value in HSV colour space

[Nguyen et al., 2011b].

Histogram Quadratic:

dq = sqrt(
1

M
(Hk−Hv)

T ∗A∗ (Hk−Hv)) (9.12)

Ai j =
|Hv[i]−Hv[ j]|

maxm,n(Hv[m]−Hv[n])
(9.13)

Where M is the number of histogram bins. Hv is histogrammodel (of vegetation, wall fence,

road or etc). Hk is the histogram of a query object, which has to be normalized: ∑
i
Hk[i]=∑

i
Hv[i].

A is the cross correlation matrix of histogram bins of Hv. So, A can be computed beforehand to

reduce the on-line computation (please see more [Nguyen et al., 2011b]).

In this work, we also prove that the histogram feature can be well applied to detect homo-

geneous colour objects like concrete roads and wall fences. In order to detect unknown colour

objects like human with different cloths or multiple colour obstacles, texture and colour de-

scriptors should be taken into account. In fact, a structured overview given by [van de Sande
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et al., 2010] has described and compared the invariance properties and the distinctiveness of

colour descriptors applied for image retrieval. Similarly, we can apply those invariant colour

descriptors for terrain classification where the descriptors are extracted for each ROI instead of

the whole image. Although, [van de Sande et al., 2010] has proved that three descriptors includ-

ing Transformed Colour, Moment Invariants, and Transformed Colour Scale-Invariant Feature

Transform (SIFT) are invariant against light intensity and light colour changes, the applicability

of those descriptors in object recognition is quite poor. The reason is because they are so strong

features that require really precisely matched patterns in order to judge if the query object be-

long to a class or other class. For instance, even one object is captured from different view

angles or different light condition, its representations are usually judged to belong to different

classes. The out-performance is given by Opponent SIFT and RGB SIFT, where the Opponent

SIFT is a SIFT descriptor in opponent colour space defined as following (see more in [van de

Sande et al., 2010]).
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 (9.14)

Finally, the texture feature used in this work is Haar WaveLet of Gabor Filter (HWoGF) which

was firstly introduced by [Nguyen et al., 2010a]. The feature captures texture properties of

objects from different angle views and different object scales, thus, the feature is invariant

under rotation and scaling.

We have introduced many features in the this section, including both 2D and 3D features.

Actually, regarding to the processing time, we would not use all but some specific features for

a particular object detection, which will be explained in details next section.

9.5 Experiments and Results

We applied the proposed approach on the same database as in our previous work [Nguyen et al.,

2011b], where 500 scenes of cluttered outdoor environments are captured by both Laser Scan-

ner LMS221 and CMOS camera Logitech QuickCam Pro 9000, in both morning and afternoon

condition. 300 pairs of 3-D point clouds and CMOS images were used for training and the other

200 pairs were used for testing. The maximum distance set for the Laser Scanner is at about

16 meters. In fact, the idea of combining 2D and 3D features is a quit merit approach, how-

ever, the influences of those features affect to the classification result are really difficult to be

interpreted or in other words the problem of training the features is a non-linear one. Proposed

by [Cortes & Vapnik, 1995] SVM is one of the best available machine learning methods which
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can deal with non-linear problems. Indeed, our previous work has shown good performance

with 81.49% of precision in detecting vegetation using SVM [Nguyen et al., 2011b]. Those

motivations drive us to once again use SVM in this work. Nevertheless, there are more objects

need to be detected, so we use Multi-classes SVM and One-against-all SVM instead of binary

SVM. Fig. 9.6 and Fig. 9.7 show the average precision of the proposed method for object

detection where the classification results were evaluated by comparing the output of classifier

with the hand-labelled data. To obtain the labelled data, colour images are firstly segmented

into regions of interest (ROIs). The hand-labelled data contains all ROIs (segmented regions),

which are manually labelled as human, tree trunk, road, vegetation, building, and sky. Multi-

class SVM helps to classify objects simultaneously where seven features are used, including

HWoGF, Histogram Intersection, Histogram quadratic distance, RGB SIFT, Opponent SIFT,

Local point statistic, and Geometric similarity. This is time-consuming because the computa-

tion for extracting HWoGF and Histogram quadratic distance features is very expensive. The

consuming time of the whole evaluation process is at about one second. In reality, we do not

need to detect all but some of them, so we also introduce the single object detection by using

One-against-all SVM. In this case, we tried to figure out which features characterize a particu-

lar object, thus, the number of features is reduced. For example, in order to detect vegetation,

practical experiments show that three features including Geometric similarity(Red),Histogram

quadratic distance (Black) and Local point statistic (Pink) are most useful and discriminate (see

Fig. 9.7).

Average Precision

Local Point Statistic 

RGB SIFT

Opponent SIFT

Geometric Similarity

Histogram Intersection

Histogram Quadratic Distance

HWoGF

Tree Trunk

Human

Wall fence/Building

Road

Vegetation

Sky

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

Figure 9.6: Examples of classification evaluation (in percentage) when applied Multi-classes

SVM where seven features are used.
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Wall fence/Bulding

Tree Trunk

Vegetation

Sky

Road

Human

Figure 9.7: Examples of classification evaluation (in percentage) when applied One-against-all

SVM where some specific features are used to detect a particular object. Note: Road is concrete

and we also use elevation information in order to detect roads.

Except the data acquisition process of Laser Scanner is very slow, at about two seconds, the

other processes are quite reasonable when using One-against-SVM (see Table 9.1).

Table 9.1: Precision and Times

Types Precision Times(ms)

Tree trunk 0.543 280

Human 0.725 402

Wall/Building 0.586 223

Sky 0.882 435

Vegetation 0.864 593

Concrete road 0.875 435

The fastest speed of scanning reached is at about half second using a sweeping reflectance

mirror 1 [Schlemper et al., 2011] . However, regarding to the robustness and stability of current

system, we do not apply the technique in this paper but might be in the near future work.

1The laser scanner is kept fixed while an additional rotating mirror is used to reflect received signals to the

laser’s eye. The speed of scanning now is proportional to the speed of rotating the reflectance mirror.

156



9. A Novel Approach of Terrain Classification

9.6 Conclusion

We have introduced a novel approach of terrain classification for outdoor automobile navigation.

The approach reveals a very high precision of terrain classification and helps the automobile to

understand surroundings completely. This results many benefits in obstacles avoidance, object

localization, local and global map planning. The farthest applicable distance is at about sixteen

meters, so it is far enough for initializing an up-coming scene prediction application. Indeed, a

robust terrain classification system is approximately reached, however time issue is still a chal-

lenge for on-board automobile navigation. Therefore, this approach is up to now just applied

for scene prediction and surrounding interpretation. Regarding to navigation applications, the

method is used to deal with some tough situations that an automobile has to deal with, like

blocked around by tall grasses in a cornfield or stopped at a corner in forest environments. Ac-

tually, we are building a new way to speed up the data acquisition process of Laser Scanner,

that hopefully can improve the reliability of the proposed approach in the near future.
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Chapter 10

Conclusions

10.1 Summary

The thesis has addressed the problem of understanding vehicle environments through vegetation

detection and terrain classification tasks, which are explained to be at the core of any control

system for efficient autonomous navigation in outdoor environments. We identified the weak

points of the existing methods to be inability to cope with complex representation of vegetation,

lighting changes, and sharp transition in belief distribution. Since roughness of beliefs is caused

mainly by range discontinuities; various appearances of vegetation come from either variety of

vegetation species or lighting changes, it is important to develop methods capable of handling

those real world phenomena. To this end, we proposed five novel approaches for vegetation

detection and two novel approaches for terrain classification. Additionally, we conducted a

fitting plane algorithm for depth correction in stereo imaging, which is useful in case stereo

cameras are applied to collect the world information instead of a LiDAR. To evaluate these

novel approaches, we also implemented other remarkable approaches in the field from our best

knowledge and thoroughly compared all their performances through a diverse set of databases

and real robotics experiments. Overall, these proposed approaches far outperformed existing

methods by several orders of magnitude.

With regard to vegetation detection, it is well-known that vegetation needs to absorb more

red and blue light for its photosynthesis process while strongly reflecting NIR light due to the

structure of the leaf; this has been successfully exploited in the remote sensing field to detect

green areas on the earth surface. We pointed out that a difference of viewpoints between a

satellite and a mobile robot explained why it is a problematic thought to apply the available

multi-spectral approaches which are unstable in a robotics context with additional complica-

tions (shadow, shining, view of sky). Further more, we proposed the use of an active NIR

lighting source which enabled a stable multi-spectral system (Chapter 3). By doing regression
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analysis on the changes of red and NIR reflectance in terms of luminance observed by such

stable multi-spectral system, we derived a new vegetation index, the so-called Modification of

Normalized Difference Vegetation Index. Practical experiments confirmed that the new index

far outperformed other indices and other existing methods regarding vegetation detection in dif-

ferent lighting conditions and under different illumination effects. Still, the limitations of the

method were that its performance degraded sharply in dim lighting conditions; it could not help

to distinguish between vegetation and strong NIR reflectance or warm objects (a common issue

for all multi-spectral approaches).

Secondly, human perception-based approaches were also surveyed and investigated due to

the fact human eye without doubt could easily detect vegetation. Concretely, we presented a

2D/3D feature fusion approach (Chapter 4) using a calibrated vision system which contains a

CMOS CMOS camera and a LiDAR. Thereby typical visual features extracted from colours

(green, yellow,red-orange,brown) and 3D structures (linear, scatter,surface) were deeply ex-

ploited and combined to train a robust vegetation classifier. Consequently, this method was able

to provide a high accuracy (83.36%) in detecting a variety of vegetation species which might

appear in different colours. Nevertheless, the limitation of the approach was that it required

a fully scanned 3D scene while the processing time of data acquisition of LiDAR for a good

resolution was quite slow (2 seconds for acquiring 6437 3D points). This lowered the speed

of an entire sequence. As a result, this approach could not be applied for guiding on-board

autonomous navigation but possibly used in tough situations (corner, stuck point, forest path)

where the robot must run slowly or stop, and thus the time would not be really critical.

Chapter 5 realised our greedy ambition in combining both human perception-based and

multi-spectral approaches while still heading to a final real-time system. For that aim, we

suggested the use of an integrated vision system, the so-called MultiCam, which mounts both

CMOS sensor and PMD sensor into a molecular setup, and thus able to provide all data needed

for both multi-spectral and visual methods, while not breaking the real-time constraint. Impres-

sively, the MultiCam could provide simultaneously colour, NIR intensity and depth information

as fast as a regular video camera. In this work, visual features extracted from colour, texture

and spatial distribution were fused with vegetation indices to form optimal vector components

to generate an optimal feature vector. Consequently, the resulted classifier yielded a detection

accuracy of over 95% while the frame rate was up to 2 fps. This enables a robust and real-time

vegetation detection system. The fact is that the more features used, the more robustness ob-

tained, but the more computational expensiveness paid. There is always a trade-off between

accuracy and time in applying this method, in which a user might give modification to suite

his/her purpose. Nonetheless, the performance of this method, as that of other classification-

based methods, depends on the dataset and known scenarios. Thus, it is recommended to collect
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a sufficient training data which contains possible scenarios that the robot might has to deal with

in a specific task.

To obtain a fast and efficient vegetation detection, a spreading algorithm was conducted

(Chapter 6). Starting by thresholding vegetation indices, chlorophyll-rich vegetation is detected

and considered seeds of a spread vegetation. The algorithm relies on two parallel processes, the

so-called vision-based spreading and spectral reflectance-based spreading, to extend the spread

vegetation. The first process estimates colour and texture dissimilarities between a seed and its

neighbours in order to judge whether or not a neighbour is joined. The second process control

an overspreading of the first one by restricting possible regions of spreading for each iteration.

We have proven that the algorithm is neither too fine nor too coarse. We are able to detect variety

of vegetation in different sunshine conditions, even when all shining, shadow, underexposure,

overexposure effects as well as view of sky are taken into account. Furthermore, by dividing

dataset into several groups mainly based on light conditions, we show a concrete and detailed

performance comparison between all available methods in detecting general vegetation in dif-

ferent situations. Overall, this proposed algorithm outperforms others, and thus is considered

as the most efficient and robust vegetation detection mechanism.

To this end of our investigation on vegetation detection, we aim to answer the question of

whether or not detected vegetation is passable. Thus, we introduced a novel approach for a

double-check of passable vegetation detection (Chapter 7). This novel approach relies on an

estimation of compressibility or less-resistance of vegetation, which is realised by assessing the

moveability of vegetation effected by wind. Thus, we addressed a system design where blow-

ing devices were used to create wind to effect vegetation. Also we provided an architecture for

the passable vegetation detection system, in which moving vegetation was detected from map-

ping foreground objects (given by a motion detection and compensation) to detected vegetation

(given by a multi-spectral approach). The degree of less-resistance of the moving vegetation

was then estimated by referencing its recorded movement through an optical flow detection.

Finally, moving vegetation with higher degree of less-resistance is more likely to be detected

as passable vegetation. For the purpose of guiding robot navigation, we restricted the region

of interest right at the front of the robot. Whereby, the affection of illumination and lighting

changes would be significantly reduced, and thus we yielded a very high detection accuracy, at

about 98%. However, it should be clear that this method has been only verified to be applicable

for scenarios where a robot has already stopped due to tall vegetation as an obstacle at the front,

and thus tries to check its traversability.

With regard to terrain classification, we addressed a local point statistic analysis method

(Chapter 8); wherein instead of sliding a cube, cylinder, or sphere in space to select a local

region, we suggested to segment the point cloud using an efficient graph-cut technique. Thereby,
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the problematic selection of a volume size is not the case. We have proven that the segmentation

is neither too coarse nor too fine, and the classification results are improved significantly for

variety of terrains. In addition, we introduced a novel spatial feature, the so-called distance

variation inside edgeless regions, to capture the smoothness property of objects. Whereby, we

are able to classify between rough surface (low grass, thick bushes) and smooth surface (wall,

flat ground), which is infeasible in previous works. Still, the given method requires a fully

scanned 3D scene, which is time-consuming. Thus, it is usually used as a post-processing

method.

Alternatively, we proposed a machine learning-basedmethod for terrain classification (Chap-

ter 9). More precisely, support vector machine techniques (multi-classes and one-against-all)

were used to train different object classifiers. Again, a combination between LiDAR data and

colour vision information was exploited. Indeed, seven visual features were extracted from both

2D and 3D information, including local point statistic, opponent SIFT, RGB SIFT, geometric

similarity, HWoGF, HQ, and HI. In the first experiment, we applied multi-classes SVM to train

the multi-classes classifier which is able to detect six different objects simultaneously, includ-

ing tree trunk, human, wall/building, road, vegetation, and sky. Consequently, the detection rate

was high for vegetation and sky but quite low for others. In the second experiment, we used

one-against-all SVM. Different sets of visual features were trained and tested to optimise the

feature vector components in order to detect different objects individually. With regard to the

accuracy, the second method performed better than the first one. However, one classifier could

only allow to detect a single object. Thus, we might need to train many classifiers in order to

detect many objects. Overall, it is not clear which one is better, thus one might choose a method

which suits one’s purpose.

10.2 Discussion

While a variety of approaches have been proposed for both vegetation detection and terrain

classification, it would be great to discuss why many approaches are given and what are the

advantages and disadvantages of each. Since perceptual inference is very challenging in outdoor

environments where exist much uncertainty together with illumination changes, which leads to

the infeasibility of a general, complete solution for any perception task. Therefore different

approaches exploit the way they handle the trade-off of accuracy, reliability, and efficiency in

different sketched scenarios. Indeed, the investigation on point cloud analysis leads to model

3D structures of surrounding objects and flat-ground plane, which are worthy and efficiently

used for aiding autonomous navigation of an AGV in highly structured environments. Current
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autonomous navigation systems still rely mainly on this traditional approach because the range

information given by a LIDAR is precise and stable, while other imaging sensors are strongly

sensitive to illumination changes in outdoor environments. Yet, the task of interpreting the

point cloud is very difficult and not always feasible due to the range discontinuity and the

complexity of environments. Hence, even though robotic research has been deeply studied for

decade years with regard to outdoor autonomous navigation, there is still room to improve the

accuracy of this very early approach. Actually, the conditional local point statistic analysis

introduced in Chapter 8 improves the detection accuracy of 10 % for linear structure (wire,

branch of tree), and 10 → 17 % for scatter (needle tree, canopy) and surface (wall, ground)

structures compared with previous approaches which solely relied on 3D point distribution.

When the aim is not only to point out traversable and non-traversable areas of the terrain but

also to classify it into object types, e.g. ground, pedestrian, vehicle, and vegetation, it is not

feasible to rely solely on LIDAR data which is not informative enough. Meanwhile, images

contain abundant information about objects, and thus 2D/3D feature fusion is naturally derived

when taking more colour and texture information into account for a better understanding of

objects/classes/instances. In general, this approach shows better performance in either terrain

classification or vegetation detection compared with the sole LIDAR based analysis, but also

requires more time for 2D/3D calibration and 2D/3D feature fusion, please reference Table 8.1

and Table 9.1. Still with around 2 fps, 2D/3D feature fusion approaches are preferred to be only

used in tough situations, e.g. at the corner, stuck points where all paths are blocked by dense

geometric obstacles, to enable a possible solution. In contrast, for on-board navigation, LIDAR

data is solely used for modelling the ground surface and detecting regions of interest (ROI)

of possible obstacles while lethal obstacles are then detected by analysing their shape, colour

and texture inside the projected ROI on the image plane. Overall, it is clear that depending

on different purposes, applications, and situations, different approaches (or preferably called as

different strategies) should be applied.

Exceptionally, vegetation is studied in depth and separately from other objects due to its

diversity of species existed in a variety of appearances and shapes. While vegetation detection

is trivial by human visual system, it arises certainly the idea of imitating human vision in terms

of interpreting vegetation appearance. In addition, a coupled system (LIDAR and CMOS/CCD

camera) is currently essential for autonomous navigation, which provides both 2D and 3D infor-

mation of the viewed scene. Therefore investigating colour, texture and 3D spatial distribution

is intuitively a good direction to go, the so called human vision (or also 2D/3D feature fusion)

based vegetation detection, with no additional device required for the AGV. Since previous ap-

proaches only aimed to detect green vegetation, Chapter 4 proposed green/red-orange/yellow

colour models together with local point statistic analysis of point cloud, that lead to detect ef-
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ficiently vegetation in its three common colours. The accuracy was obtained at about 82.86%

for 500 outdoor scenes captured in different illumination conditions. Because this is the first

investigation on fusing 2D/3D features to detect different colour vegetation, so there exists no

previous ground truth for comparison. However, if compared with previous approaches, which

analyse solely LIDAR data or colour image to detect green vegetation, the proposed method

shows much better performance in accuracy, please reference Table [4.3, 9.1] and [Zafarifar &

de With, 2008]. Still one might concerns about the slow speed of this approach, at about 2 fps.

Again, a good argument is that when the aim is just to guide an AGVmainly for autonomous on-

road driving, the on-board navigation relies on the ground model given by point cloud analysis,

the 2D/3D feature fusion approach is only applied when getting stuck or uncertainty occurred.

In such situation, the time is not very critical. When the goal is to navigate most of the time in

vegetated terrains, this approach is no more applicable. For off-road driving, it is advisable to

use light spectral reflectance approaches to detect vegetation, as presented in Chapter [3, 5, 6].

While Chapter 3 relies solely on the light spectral reflectance property of vegetation, Chapter

[5 & 6] try to improve the accuracy by taking into account more visual features. The com-

parison in performance of different approaches for general vegetation detection was concretely

reported in Table [3.2, 5.1, 6.1]. Whereby the spreading algorithm in Chapter 6 outperforms

the others when taken into account the complexity of scenarios, illumination effects and real-

time constraint. Due to the fact that the idea of coming up with the spreading algorithm was

derived from the investigation on vegetation indices as well as colour and texture analysis in

Chapter [3 & 5], respectively. Hence, the three approaches are presented in this thesis for a

better understanding. In addition, the work described in Chapter 7 demonstrates that when con-

sidering the specific task as passable vegetation detection for autonomous navigation guidance

of an AGV, the vision system is specifically configured to restrict the view right at the front

of the AGV, whereby vegetation indices show more advantages than the spreading algorithm.

Indeed, with the restricted view the affection of illumination effects is significantly reduced,

and thus the performances of the approaches are similar while the vegetation indices are much

faster. Again, this confirms that while there exists no ideal solution for vegetation detection in

cluttered outdoor environments, the choice depends significantly on the purpose of applications

and the sketched scenarios for experiments. In a general case, the spreading algorithm shows

the best performance among all available vegetation detection approaches.
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10.3 Direction for Future Work

Classification-based methods for vegetation detection or terrain classification (see Chapter [4,

5, 9]) are very straightforward and intuitive where human perspectives of colour vision and 3D

spatial distribution are exploited to model objects. The accuracies of such approaches are rather

high when many features are used to train the object classifier. The fact is that the more features

are used, the more robustness is obtained, but the more computational expensiveness are paid.

Thus, there is always a trade-off between precision and processing time when applying those

approaches. This restricts the applicability of the classification-based methods for on-board

navigation applications. Indeed, such a vegetation detection or terrain classification module

using those techniques is just turned on when dealing with a very tough situation like at the

corner, at the stuck point, or in a forest path where the robot is running very slowly, and thus

time is not critical.

There are two possibilities for the future work to do in order to improve the performance

of those approaches. First, regarding a software development, finding optimal feature vector

components to train vegetation classifier might decrease the processing time while still keeping

the high accuracy of the approach. Second, regarding a hardware development, even though the

suggestion on using a rotating mirror instead of sweeping up and down the 2D Laser Scanner

helps to improve four times the data acquisition speed, it is still not fast enough for many real-

time applications. Clearly, the PMD camera is much faster than the LiDAR in acquiring distance

information, it can not operate properly in outdoor environments due to the huge affection from

the sunlight. Thus, an investigation on improving the speed of LiDAR in data acquisition or an

innovation in depth imaging of Time-of-Flight sensors in outdoor is really appreciated.

In line with the same idea of including information from different types of sensors to im-

prove the object detection/classification and allow the classification of multiple class of objects,

there is another possibility or direction to investigate, the so-called high-level fusion framework.

Instead of finding a set of features from multi-sensors’ data, then training them with machine

learning techniques to generate a multi-class classifier (see Chapter [4, 5, 9]), a set of object

detectors/classifiers might be applied, then the corresponding classification evidences might be

fused by a generic high-level sensor fusion framework using probability theories. Thus, the

advantages and drawbacks of an object detector/classifier can be complemented with the others

to improve the overall performance of such the object detection/classification. Let’s start with

a simple example. Assume that we have two classification hypotheses provided by a LiDAR

target detector, and four classification hypotheses (pedestrian, bike, car, truck) provided by a

camera target detector. When a big object is detected by the LiDAR, we would expect the ob-

ject should be car or truck. The probability that the object might be a car is PL−car = 50%, a

truck is PL−truck = 50%, a bike is PL−bike = 0%, a pedestrian is PL−pedes = 0%. Classification
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evidences (detected from several continuous frames) provided by the camera target detector can

be used to estimate the probability that the object might be a car is PC−car, a truck is PC−truck, a

bike is PC−bike, a pedestrian is PC−pedes. Finally, we are able to estimate the probability that the

object, for instance, might be a car as Pcar = PL−car×PC−car. Although this generic high-level

sensor fusion framework has not been deeply investigated, the idea is really promising. The fu-

ture work should provide a concrete comparison between this framework and the feature fusion

approaches presented in Chapter [4, 5, 9].

With regard to the light spectral reflectance approaches, it is quite naturally that the idea

arises to use several active lighting sources in different light spectral ranges to compensate

deficiencies of object representations in a narrow light band, and thus improve the result of

detecting vegetation or even other objects. By observing representations of different objects in

different light spectral bands, we might be able to obtain discriminative characteristics of those

objects. It should be clear that we are not promoting the traditional multi-spectral approach

which needs a long time spectral scanning process, and the required hardware is very expensive;

meanwhile the performance varies significantly depending on different sunshine conditions. We

on the other hand encourage the method using several active light bands such as red, blue, green,

and infrared, so that we are able to modulate the emitted light in order to receive selective light.

Also we can adjust the intensities of received light, thus reducing the affection from the sunlight.

Indeed, multi-spectral approaches using an active lighting source have been proven to be

accurate and efficient in detecting general vegetation (see Chapter [3, 6, 7]). Nevertheless,

when there is a significant change of background brightness, we still need to manually adjust

the exposure times of the two sensors in theMultiCam, in order to achieve optimal performance.

This limitationmainly comes from hardware issues that those sensors have low dynamic ranges,

thus being too sensitive against lighting changes. Therefore, it is advisable to build a new multi-

spectral system which includes two high dynamic range cameras and an active NIR system, in

order to have a more stable system. We suppose here three possible setups for that new system.

In Fig. 10.1, the new multi-spectral system can be established by replacing the two sensors

in theMultiCamwith two high dynamic range sensors. This setup requires a professional design

for the whole system and technology to integrate all components in one compact device.

Roughly, one might build a similar system which realises the multi-spectral system by com-

bining two high dynamic range cameras, cold mirror and LED NIR lighting system, as seen in

Fig. 10.2. It is also possible to position the two cameras as in a stereo setup, see Fig. 10.3. This

is much simple but we have to calibrate these cameras as well as a stereo effect is inevitable.
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CMOS/CCD
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VIS/NIR 
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Sensor

LED NIR lighting system

Figure 10.1: Monocular setup for the new multi-spectral system.

High dynamic range camera
Cold mirror

High dynamic range camera

LED NIR lighting system

Figure 10.2: Rough monocular setup for the new multi-spectral system.
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High dynamic range camera

High dynamic range camera

LED NIR lighting system

Figure 10.3: Stereo setup for the new multi-spectral system.
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Appendix A - Expert Concerns and Rebuttal

Vegetation Indices Applied for Vegetation Detection (Chapter 3)

Question 1

The Kinect sensor, which is currently under evaluation in many labs around the world, has

similar features than the Zess-Multicam. It would be therefore very interesting to know whether

the presented approach can be applied on the Kinect as well or not.

Answer

In principle, it seems to be no problem to apply the proposed method with Kinect sensor. How-

ever, Kinect sensor shoots out infrared light (please see here

http://www.extremetech.com/extreme/83908-microsoft-kinect-shoots-out-infrared-light-video).

This means that the sensor would receive the scattered light, thus, we would get an NIR image

that contains many separate near-infrared points. Therefore we might need region growing

techniques to connect those points (it is hard also). We actually are testing the applicability

of the proposed method with Kinect sensor. One more thing we concern about is the intensity

of received near-infrared light which is rather weak. Zess-Multicam gives a chance to change

the intensity of emitting near-infrared light, thus, expectedly adjust the intensity of the received

near-infrared light this provides a better stability of the outcome or performance.

Question 2

How do the authors determine the ”level of consideration”, a number from 1-5, for the cate-

gories ”Complex environment” and ”Complex illumination”. What would be, e.g., a level 3

environment complexity? What is the difference between a level 2 and a level 1 illumination

complexity?

Answer

Level of consideration is determined by Taxonomy Classification. Concretely, we considered

5 considerations for illumination complexity, including: intensity-colour change, shadow, shin-

ing, underexposure, overexposure. We consider howmany effects taken into account from those

available approaches. The number of effects considered reveals the level of consideration. For

complex environments: level 1: hall-way/in yard/campus; level 2: rough road; level 3: off-road
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with low-grasses; level 4: off-road with tall-grass/ bushes, level 5: forest.

2D/3D Feature Fusion (Chapter 4)

Question 3

The calibration range of the laser-camera-mapping is 3.8m to 15.8m. During navigation, most

interesting things happen in front of the robot (< 4m). Why is the mapping still useful for

navigation?

Answer

This range depends heavily on the speed of the robot which is already at 3m/s also for naviga-

tion, thus, a larger range is necessary than 4m. Moreover, the knowledge about the front scene

can help to understand the surrounding, thus, to have a better decision-making in some tough

situations. For example, the robot is stuck at the corner of the road inside the forest dues to

a wrong odometry (potentially caused by slippage when driving over grass). The knowledge

about the front scene together with the global map helped to solve the problem (note: GPS

points were limited according to the game rule, and GPS were frequently lost inside the forest).

Question 4

You give the impression that laser scanner data acquisition is time consuming: but SICK works

at 10Hz easily with RS232, it can be faster with a serial faster than RS232, and 180 distances

per acquisition is a lot less than 640x480 RGB pixels. So, your processing algorithms may

be slow, but I do not think SICK data acquisition in itself is slow. Maybe you are referring to

simulating a 3D Laser by moving a 2D one. Then, yes, as you have to tilt the SICK to generate

the 3D point cloud, it takes time. Is this what you mean? some 3D cameras are appearing in the

market. You are using a 3D camera in this role yourself. Although the current 3D cameras have

limited performance outdoor, maybe in the future you could cheaply take a 3D cloud at 20 or

30 Hz with commercial sensors.

Answer

Yes, LMS221 needs to sweep up and down to scan 3D points, then we need to put those points

into Cartesian Coordinate. Such operations take time to acquire the whole 3D point Cloud (in

our case, it takes nearly two seconds for acquiring 6437 points putting them into Cartesian Co-

ordinate). In fact, Velodyne LIDAR is fast and robust but quite expensive, so we are also in the

hope that the cheap ones will appear soon.

General Vegetation Detection using an Integrated Vision System (Chapter 5)

Question 5

If you see only a small part of the scene, it does not hamper navigation?

Answer
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The narrow angle of view and low image resolution are the main limitation of PMD camera.

However, the distances of interest lie in the interval (4,7) meters rather than (0,4) meters as

usual (please see the system setup). With that distance, the local scene viewed is not too much

small. The reason to focus on the distances (4,7) meters because we want to detect vegetation

on the robot’s way while the robot is running at around 1m/s to 3 m/s. At that speed, we also

did not expect the robot to turn sharply, thus, using the camera does not seriously hamper the

navigation. Of course, we still acknowledge that limitation.

Question 6

Why use a low-resolution PMD-prototype when the range measurements cannot be used?

Answer

The multi-spectral camera proposed by [Bradley et al., 2007] suffers strong affection from

illumination changes. We use theMultiCamwhich is equipped with an integrated active lighting

system for obtaining a more stable multi-spectral system. Please see the video in

http://www.youtube.com/watch?v=tnVnSDMnl-g. Viually, the detection is quite stable un-

der different lighting conditions. Additionally, we are developers of PMD-prototype, and we

are trying to use different lighting sources (with different wavelengths) simultaneously for the

aim of range measurement in outdoor environments, the results are promising. So, we have

some reasons to stay with PMD.

Spreading Algorithm for Efficient Vegetation Detection (Chapter 6)

Question 7

The presented algorithm essentially fuses information of three different sources: vegetation in-

dices, colour information, and texture information. While convincing results could be achieved

in the experiments, the algorithm seems to be rather ad-hoc. It is based on thresholded pixel

seeds that are expanded if neighbouring pixels fulfil certain criteria. To me it seems worthwhile

to investigate a probabilistic combination of the different classifiers instead.

Answer

Regarding to using probabilistic combination of the different classifiers. In an early approach,

we already tried to use a Markov Random Field (MRF) to model the visual difference (colour

and texture) instead of a convex combination as introduced in this paper. However, the trained

MRF only helps to detect vegetation which has simultaneously high probabilities of both colour

and texture similarity: MRF = PtexturePcolour. Thus, the algorithm could not detect vegetation

in a dark region where there seems to be no texture detected: Ptexture = 0. Two vegetation

neighbour pixels could not be joined if their colours are to too much different: Pcolour = 0. This

hinders the purpose of detecting a variety of vegetation appeared in many different colours.

Concretely, vegetation marked inside the red ellipses in the below image, for instance, could not
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Left: Colour image. Right: Vegetation marked as green from the proposed algorithm.

Left: The threshold is too low. Middle: the threshold is too high. Right: output from the

algorithm.

be detected because those regions are too dark, thus, no texture found there. The multiplication

in MRF degrades the performance of the algorithm in case one feature missed. This drives us

to the idea of using a convex combination.

The convex combination between colour and texture similarities help to vote for candi-

dates which dominate texture similarity or colour similarity, or both of them. Certainly, we

acknowledge that based on such convex combination the algorithm is rather greedy. However,

we already used the spectral reflectance-based spreading to control that.

Regarding to the THRESHOLD of vegetation indices

Vegetation detection is well done by thresholding vegetation indices (Normalized Different Veg-

etation Index, Perpendicular Vegetation Index, etc.) in a good lighting condition, which is well

known in the remote sensing field. However, a frequent occurrence is the presence of illumina-

tion effects including shadow, shining, under-exposure over-exposure when operating outdoor.

This degrades the performance of vegetation indices significantly due to the changes of all ob-

jects’ spectral reflectance distribution.

For example, in the left image in the below figure, with a low threshold of vegetation indices,

there appears many false negatives. When increasing the threshold, many vegetation areas are
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not detected, as shown in the middle image. The point is that even in a “bad” light condition with

the presence of above effects, we can still detect several parts of chlorophyll-rich vegetation

by setting a high threshold for vegetation indices , see the middle image. Consider detected

vegetation as seeds, we can spread them out based on visual features. This is what we aim

for. Actually, based on the seeds in the middle image, we can spread them out to obtain the

right image using the proposed algorithm. Based on the spectral reflectance distributions of

different materials, we can define the “high threshold” for vegetation indices, which helps to

detect chlorophyll-rich vegetation in different lighting conditions, please reference [Bradley

et al., 2007]. Therefore, the thresholds are not obtained by hand-tuned but from the study of

spectral reflectance distributions on different materials.

Regarding to criteria

The criteria is built from assessing the difference of vegetation pixel and its neighbours respect-

ing to colour and texture dissimilarities. First, although different species of vegetation can have

different colours, considering a small region of it, the colour is expected to be homogeneous.

Second, texture of vegetation is turbulent (this is trivial as you mentioned, but the way of in-

terpreting the turbulent texture is novel in this work, please see the explanation in the third

Answer). Based on those properties, a region-growing, graph-cut, etc. techniques can help to

expand vegetation. On the other hand, look at the spectral reflectance distribution of vegetation,

we expect that MNDVI and NDVI of vegetation pixel should be higher than a lower bound

threshold. Then we use the lower bound threshold to restrict possible vegetation regions in the

scene, whereby the vegetation expanding based on visual features (colour and texture) should

lie inside those regions. Therefore, the algorithm is neither too coarse or too fine.

Question 8

The proposed algorithm was evaluated using specialized equipment (a ”MultiCam”). The re-

sults will be hard to verify for someone that does not have access to this sensor. Would it be

possible to conduct experiments using of-the-shelf components?

Answer

As pointed out in the section 6.5, the work does not strongly require the use of a MultiCam,

a multi-spectral camera together with an additional NIR lighting system is suitable. Even in

case of not using an active lighting source, the algorithm can still work with NDVI solely.

Concretely, we have tested our algorithm from solely thresholding NDVI to generate vege-

tation seeds. We used stereo cameras with one camera covered by a NIR-Transmiting fil-

ter and the other covered by a NIR-Blocking filter (we used those filters from Hoya com-

pany http://www.hoyaoptics.com). Alternatively, one might use the setup built as in [Bradley

et al., 2007]. The point is that without using the NIR lighting system, vegetation indices

could not provide stable results in detecting vegetation due to spectral reflectance changes
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of all objects in different lighting conditions. Especially in a very dark background as at

http://www.youtube.com/watch?v=OWWay2I9Q-E. Thresholding NDVI is just to detect dark

areas in the viewed scene (the disadvantages of using NDVI is explained in details in our pre-

vious publication [Nguyen et al., 2012c]). In fact, this paper points out that the approach using

multi-spectral camera with an additional lighting system added enables a possibility to detect a

variety of vegetation in really different lighting conditions. We acknowledge that there exists

some limitations from using the MultiCam:

- The resolution is very low for NIR image: 64x48 pixels.

- CMOS sensor has a low dynamic range.

We encourage researchers to built a system which consist of a multi-spectral camera (built

as the above figure or using stereo camerasit is better to use High Dynamic Range (HDR)

cameras) with an additional NIR lighting system (can use NIR LED for example). The use of

an independent lighting source really leads to a stable and robust system. The reason that we use

the MultiCam currently is because we are a producer of PMD camera and MultiCam, and we

want to test the possibility of using a multi-spectral camera with an additional lighting system

to detect robustly variety of vegetation in different lighting conditions. We have already had a

plan to built a system: multi-spectral camera (2 HDR cameras) and LED NIR lighting source,

in a future work.

Question 9

How does this spreading algorithm handle false negatives like unwanted holes and bleeding into

false positives

Answer

There are two cases:

• Unwanted holes are selected as seeds. This is not usually the case because we already set

high thresholds for MNDVI & NDVI to select chlorophyll-rich vegetation. Exceptionally,

it is true that a dark and quite hot object can cause a problem (for example, black parts

of car/motobike car strongly shined by the sun). In this case, the algorithm does not help

to eliminate the object. However, object’s pixels could not be expanded out due to high

difference in colour and texture dissimilarity measure compared with the neighbouring

regions (recall that we over-segment the colour image into many small regions).

• If unwanted holes are not selected as seeds, based on the algorithm. They are only merged

into the “spreading vegetation” if they have high MNDVI & NDVI as well as similar

colour and texture with neighbouring vegetation. This is not expected to be happened.

However in reality, you can see that there exists false negatives in our vegetation detection

results, usually at the boundaries of vegetation regions. The problem comes from the
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low resolution (64x48) and low quality of NIR image, thus, the regions marked as high

MNDVI & NDVI are much larger than expected.
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