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Prüfer:

• Prof. Dr. Christian Gutt

• Prof. Dr. Otfried Gühne (Vorsitz der Prüfungskommision)
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Abstract

Multiparticle entanglement is a useful resource in quantum information processing. It is involved in some
quantum key distribution protocols, quantum metrology and many other physical applications and phenom-
ena and can be experimentally observed in various quantum systems. Having said this, its classification,
detection and especially its quantification is quite challenging. To this day there exists no general mixed
state measure for genuine multiparticle entanglement, which can be computed and analytically treated at
the same time.

In this thesis the analytical characterisation of genuine multiparticle entanglement in quantum systems
using the computable genuine multiparticle negativity as entanglement measure is provided. Furthermore,
the notion of stabiliser states, which are families of symmetric genuine multiparticle entangled states, is
generalised and a useful method to exploit local symmetries to speed up the computation of the investigated
entanglement measure is provided.

In the first part, after a short introduction, the genuine multiparticle negativity, which is defined as an
optimisation problem known as semidefinite programming problem, is investigated. It is discussed, how this
entanglement measure can be characterised in an analytical way. First, it is shown that the genuine multipar-
ticle negativity with an appropriate renormalisation can be considered as coming from a mixed convex roof
construction. Using this result, its analytical value for generalised n-qubit Greenberger–Horne–Zeilinger-
diagonal states and four-qubit cluster-diagonal states is determined.

In the second part of this thesis, the genuine multiparticle negativity is used to study the scaling and
spatial distribution of genuine multiparticle entanglement in three- and four-spin reduced states of a one-
dimensional spin model at its quantum phase transition. At the quantum phase transition of the one
dimensional XY -model, which can be studied with analytic rigour, a logarithmic divergence is observed in
the first derivative of the genuine multiparticle negativity. It is then shown that genuine three- and four-
particle entanglement obeys finite-size scaling and that the genuine three-particle entanglement has a finite
spatial range.

In the third part, a generalisation to the so-called stabiliser formalism is introduced. The idea of char-
acterising pure stabiliser states via a maximal commuting group of local symmetries is extended to mixed
states. These so-called stabilised states are then characterised by a not necessarily maximal commuting
group of local symmetries and unite graph diagonal states and X-states in a single framework. Finally, the
ambiguity of local base change is studied and a method to obtain a classification of the underlying symmetry
groups into equivalence classes under local Clifford operations is provided.

In the last part of this thesis, it is shown how symmetries of a state may be used to simplify the
optimisation problem defining the genuine multiparticle negativity. A relationship between the symmetry of
a state and the internal structure of the optimisation is established that can be used to reduce the number
of variables in the optimisation problem. The latter is an instance of a semidefinite programming problem
for which efficient numerical optimisation algorithms with a certified solution exist.
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Zusammenfassung

Echte Mehrteilchenverschränkung ist eine wichtige Ressource in der Quanteninformation. Sie ist ein wesent-
licher Bestandteil in einigen Quanten-Schlüsselaustausch-Protokollen, in der Quantenmetrologie und vielen
anderen physikalischen Anwendungen und Phänomenen. Nichtsdestotrotz ist ihre Klassifizierung, Detekti-
on und vor ihre allem Quantifizierung enorm herausfordernd. Bisher existiert kein allgemeines gemischtes
Zustandsmaß, welches sowohl numerisch berechenbar als auch analytisch behandelbar ist.

Diese Arbeit behandelt die analytische Charakterisierung echter Mehrteilchenverschränkung in Quanten-
systemen mit der numerisch berechenbaren echten Mehrteilchennegativität als Verschränkungsmaß. Sie ver-
allgemeinert den Begriff stabilisierter Zustände, die Familien symmetrischer echt mehrteilchenverschränkter
Zustände definieren, und zeigt auf, wie lokale Symmetrien genutzt werden können um die Berechnung des
Maßes zu optimieren.

Nach einer kurzen Einführung wird im ersten Teil die echte Mehrteilchennegativität untersucht. Die-
se ist über ein bekanntes Optmimierungsproblem, ein sogenanntes semidefinites Programmierungsproblem,
definiert. Es wird gezeigt, dass dieses Verschränkungsmaß auch analytisch behandelt werden kann. Hierfür
wird zuerst bewiesen, dass die echte Mehrteilchennegativität richtig renormalisiert auch über ein konvexes
Dach definiert werden kann. Dieses Resultat wird anschließend verwendet um analytische Werte für ver-
allgemeinerte n-Qubit Greenberger-Horne-Zeilinger-diagonale und vier Qubit clusterdiagonale Zustände zu
erhalten.

Im zweiten Teil dieser Arbeit wird die echte Mehrteilchennegativität verwendet um das Skalenverhal-
ten und die räumliche Verteilung echter Mehrteilchenverschränkung in drei- und vierteilchenreduzierten
Zuständen eines eindimensionalen Spinmodels nahe eines Quantenphasenübergangs zu studieren. Unter Ver-
wendung des exakt lösbaren eindimensionalen XY -Models wird eine logarithmische Divergenz in der ersten
Ableitung der echten Mehrteilchennegativität am Quantenphasenübergang festgestellt. Es wird gezeigt, dass
die echte Drei- und Vierteilchenverschränkung mit der Größe des XY -Systems skaliert und dass die echte
Dreiteilchenverschränkung räumlich begrenzt auftritt.

Im vorletzten Teil wird eine Verallgemeinerung des Stabilisatorformalismus eingeführt. Die Idee, reine
Stabilisatorzustände über eine maximal kommutierende Gruppe lokaler Symmetrien zu charakterisieren, wird
auf gemischte Zustände erweitert. Diese sogenannten stabilisierten Zustände werden über eine nicht notwen-
digerweise maximal kommutierende Gruppe lokaler Symmetrien charakterisiert und vereinen X-Zustände
und graphendiagonale Zustände in einem Konzept. Abschließend werden die Symmetriegruppen auf Equiva-
lenz unter lokalen Basiswechseln hin untersucht. Hierzu wird eine Methode aufgezeigt, welche die Gruppen
in Equivalenzklassen unter lokalen Cliffordoperationen aufteilt.

Im letzten Teil der Arbeit wird gezeigt, wie die Symmetrien eines Zustands dazu beitragen können das
Optimierungsproblem zu vereinfachen, das die echte Mehrteilchennegativität definiert. Die Optimierung ist
ein Problem des semidefiniten Programmierens, für das effiziente numerische Algorithmen zur Verfügung
stehen, welche eine zertifizierte Lösung liefern. Es wird ein Zusammenhang zwischen den Symmetrien und
der internen Struktur des Optimierungsproblems aufgezeigt, welcher dann zu einer Reduzierung der Zahl
freier Parameter des Optimierungsproblems verwendet werden kann.
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Introduction

Soon after quantum mechanics was developed in the early last century, Einstein, Podolsky and Rosen (EPR)
[1] and Schrödinger [2] described a “spooky” superposed state in a composite quantum system. In their
famous argument, EPR used these “entangled” states to question the completeness of quantum mechanics. It
was in 1964, when Bell took the EPR assumption of a “local hidden variable” model for quantum mechanics as
a working hypothesis to prove that entangled states can be used to experimentally rule out such a description
[3]. Nearly 20 years later, Aspect et al. [4, 5] performed the first convincing experiment to violate Bell’s
inequalities, providing strong arguments against a local hidden variable model for quantum mechanics.

During the 80’s, it was found that entanglement is the key ingredient of several interesting information
theoretical applications. Nowadays, it is viewed as a resource rather than a spooky phenomena. It can
be used to distribute a key between two distant parties [6] for secure communication. In dense coding
entanglement is crucial to transmit two bits of classical information by sending only one quantum bit [7].
Furthermore, it has been pointed out that an entangled state is necessary to teleport an unknown state of
one quantum system to another [8].

Another field, where entanglement is believed to be essential, is quantum computation [9], where the laws
of quantum mechanics are exploited to reduce the complexity of computational tasks compared to known
classical strategies. Prominent examples are the Deutsch algorithm [10] that solves a decision problem, and
the Shor algorithm [11] that factorises prime numbers.

For quite some time now, entanglement of more than two parties has been the subject of investigations
and there is continuous progress in understanding and utilizing its rich structure. In 1989, Greenberger,
Horne and Zeilinger showed that entangled states of more than two parties can be used to extend the
statements of Bell’s theorem [12]. Later, it was pointed out that highly entangled states in multiparticle
systems can be used for quantum computation in a measurement based scheme [13]. Further, one can use
multiparticle entanglement as a resource for high precision measurements by estimating a parameter with
fewer measurements than any classical strategy [14].

Nowadays, it is one of the main theoretical challenges to detect and quantify quantum correlations
such as “genuine multiparticle entanglement”, where all parts of a quantum system are entangled with
each other. Recent progress has been made by the introduction of the so-called “genuine multiparticle
negativity” [15], which is a measure of genuine multiparticle entanglement. Using this tool one can identify
genuine multiparticle entanglement in photon states of the triple Compton effect [16, 17], the high-energy
process in which a photon splits into three after colliding with a free electron. One can use it to track the
dynamics of entanglement of a multiparticle open quantum system from genuine multiparticle entanglement
to full separability [18]. Additionally, it can be utilised to study the robustness of different types of entangled
states against decoherence due to the interaction with the environment [19].

To reduce the complexity in classifying and detecting entanglement one often restricts studies to suitable
theoretical “laboratories”. These are usually families of quantum states that can be described by a small
number of parameters. An instance is the family of stabiliser states [20, 21]. These highly entangled states
were originally introduced in the context of quantum computation. They can be used as universal resource
in measurement based quantum computation and protect quantum information from errors to achieve fault
tolerant quantum computation [21, 22]. Beyond that, stabiliser states have been proven very useful to
investigate entanglement in the multiparticle setting [23–25] and to study state equivalence under local basis
transformation [26–29].

More realistic scenarios are considered in condensed matter systems. An interesting instance are the
ground and thermal states of spin models close to a quantum phase transition. Here, the investigation of
entanglement has shed some light on the nature of quantum phase transitions [30–40] and at the same time
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has provided new insights into the simulation of spin models [41, 42]. In such systems the entanglement in
the reduced state of two particles of a multiparticle system [30, 31] and the entanglement between one block
of particles and the remainder of the system [32] have been studied. More recently, these investigations were
extended to a qualitative study of genuine multiparticle entanglement in the reduced states of a few particles
[43–49].

In this thesis, we present an analytical study of the genuine multiparticle negativity. We show that a
renormalised version of this entanglement measure can be expressed as mixed convex roof of the minimum of
bipartite negativities [50, 51]. These mixed convex roofs were already studied in the context of entanglement
quantification in the bipartite setting in Refs. [52–55]. In our case and contrast to the usual pure state
convex roof constructions, the renormalised genuine multiparticle negativity can be efficiently computed
using semidefinite programming. We derive analytic expressions for the genuine multiparticle negativity for
two different state families. These are the GHZ-diagonal n-qubit and the cluster-diagonal four-qubit states.
These analytic formulas, given in terms of the fidelities of the GHZ and cluster basis, also provide lower
bounds of the genuine multiparticle entanglement for general mixed quantum states.

Using the genuine multiparticle negativity and a recently proposed separability algorithm [56, 57], we
also study the scaling and spatial distribution of genuine multiparticle entanglement at a quantum phase
transition in a one-dimensional spin model. For the reduced three- and four-particle states we demonstrate
that its derivative diverges at the critical point. For both cases we show that the entanglement obeys
finite-size scaling, which is used to compute the critical exponent for the infinite system from finite-size data.

Additionally, we provide a generalisation of the stabiliser formalism and introduce the notion of stabilised
states. Similar to stabiliser states, these states are characterised by a symmetry group. In the stabiliser
formalism this symmetry group induces a certain set of mixed states, which is diagonal in the stabiliser basis.
In our generalisation the restrictions on the stabilised states due to symmetry are in general weaker and hence
states are solely block-diagonal in the right basis. Similar to stabiliser states, however, many properties of the
state can be derived directly from the underlying symmetry group. Subsequently, a method will be provided
to identify and classify stabilised states with respect to LC-equivalence. Finally, the symmetry group is used
to simplify the problem of quantifying entanglement using the genuine multiparticle negativity.

This thesis is structured as follows: First, in Chapter 1, the basic notions and definitions are introduced.
On this basis, an analytical study of the genuine multiparticle negativity is presented in Chapter 2. In
Chapter 3, the genuine multiparticle negativity is used to study the scaling and spatial distribution of
genuine multiparticle entanglement in three- and four-spin reduced states of a one-dimensional spin model at
its quantum phase transition. Thereafter, a generalisation of the so-called stabiliser formalism is introduced
and a method to obtain a classification of the underlying symmetry groups into equivalence classes under
local Clifford operations is provided in Chapter 4. In Chapter 5, it is shown how symmetries of a state may
be exploited to simplify the optimisation problem defining the genuine multiparticle negativity. At the end
the main results are summarised and an outlook is given.
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Chapter 1

Basic concepts

Whatever you do will be insignificant, but it is very important that you do it.
Mahatma Gandhi

In this chapter we1 review several basic concepts related to entanglement. These are bipartite and
multiparticle entanglement, positive partial transposed (PPT) states, PPT mixtures, entanglement witnesses,
entanglement monotones, the bipartite and the genuine multiparticle negativity and the stabiliser formalism.
Note that it is not within the scope of this thesis to give a complete overview over all the subjects. It will
solely introduce the most important notions, which are necessary to understand this thesis. Following this
approach we will omit most of the technical details and proofs and refer the interested reader to the literature
on the subjects in Refs. [15, 20, 58–61, 61].

1.1 Bipartite entanglement

In this section the notion of bipartite entanglement in pure and mixed quantum systems will be introduced.
Note that within this thesis we will consider finite dimensional Hilbert spaces only.

1.1.1 Pure state

Consider two finite dimensional arbitrary quantum systems. These systems are controlled by two physicists
named Alice and Bob2. Then the physical states (pure states) of Alice and Bob are described by normalised
vectors |ψA⟩ and |ψB⟩ in the Hilbert spaces HA and HB , respectively, where the dimensions of the Hilbert
spaces dim(HA) = n and dim(HB) = m are arbitrary.

Let {|ψ(i)
A ⟩} be a basis of HA and {|ψ(j)

B ⟩} be a basis of HB . Then any vector of the joint system
HAB = HA ⊗HB can be written as a superposition

|ψAB⟩ =
n,m

i=1,j=1

cij |ψ(i)
A ⟩ ⊗ |ψ(j)

B ⟩, (1.1)

with the complex matrix of coefficients cij and total dimensions of the joint Hilbert space dim(HAB) = nm.
To improve readability one often omits the tensor product and shortens the notation to |a⟩ ⊗ |b⟩ ≡ |a⟩|b⟩ ≡
|ab⟩.

Given any bipartite pure state |ψAB⟩ ∈ HAB , it is called separable if it can be written as a product of
two vectors of the respective subsystems |ψA⟩ ∈ HA and |ψB⟩ ∈ HB

|ψAB⟩ = |ψA⟩|ψB⟩. (1.2)

If the state cannot be written in the above form it is called entangled.

1Throughout this work “we” refers to the author and the reader (“pluralis auctoris”). An exception constitutes the Chapters
2 and 3, where “we” refers to the author and its coauthors.

2Due to the close connection of cryptography and quantum information one chooses the same naming convention for different
parties as in the original work on the RSA public key cryptosystem in Ref. [62].

1



2 CHAPTER 1. BASIC CONCEPTS

For a general pure state as given by Eq. (1.1) it is known how to determine if a state is separable or
entangled. Given the rank of its matrix of coefficients (C)ij = cij the state is separable if and only if that
rank equals one. The rank r(|ψAB⟩) of C is also denoted as the Schmidt rank of the vector, which is upper
bounded by min (n,m). It can be alternatively obtained by calculation of the rank of the reduced states
ϱA = trB(|ψAB⟩⟨ψAB |) and ϱB = trA(|ψAB⟩⟨ψAB |), which are given by partially tracing out either system B
or A.

In essence, entanglement is a direct consequence of the composition of quantum systems and the super-
position principle, which clearly delimits quantum theory from classical physical theories, which lack the
quantum mechanical superposition principle. This is best illustrated in the preparation procedure of a sep-
arable state. To create such a state Alice and Bob simply prepare the states |ψA⟩ and |ψB⟩ locally in their
laboratories. The result is a separable state as given by Eq. (1.2). If subsequently Alice and Bob perform
measurements on their subsystems, the measurement outcomes factorise, i.e., the results of Alice and Bob
are uncorrelated in terms of their mathematical correlation coefficients.

The creation of an entangled state on the other hand requires some sort of interaction between the
quantum systems of Alice and Bob or at least some interaction with some other entangled system. Depending
on a subsequent measurement the outcomes of Alice and Bob can then be highly correlated.

1.1.2 Statistical local operations and classical communication

Referring again to the two experimenters Alice and Bob in spatially separated laboratories a natural question
to ask is: What transformations are possible, if both experimenters are limited to quantum operations3 on
their parts of a shared state and classical communication only? I.e., given a bipartite state shared between
Alice and Bob, both parties are allowed the following: Both parties may use any number of additional quan-
tum systems to combine with their local quantum state. On such an enlarged local system they may perform
arbitrary measurements, the outcomes of which they are free to communicate to the other party. During the
process they are also allowed to apply quantum transformations on their subsystem. All possible protocols,
which only consist of the steps above are called statistical local operations and classical communication
(SLOCC) protocols.

Two states which can be transformed into each other via any SLOCC protocol are said to be SLOCC-
equivalent. Cast into mathematical terms two states |ψ⟩ and |φ⟩ are SLOCC-equivalent iff they are related
by an invertible local operation [63]

|ψ⟩ = A⊗B|φ⟩. (1.3)

Note that the notions of SLOCC protocols and SLOCC-equivalence naturally generalises to more parties.

Furthermore, the concept of SLOCC-equivalence is closely related to entanglement as no separable state
is SLOCC-equivalent to any entangled state and if any SLOCC protocol is applied to an entangled state,
then entanglement does not increase.

1.1.3 Mixed states

Unfortunately, in most experimental cases one unavoidably has to deal with mixed rather than pure quantum
states. That is because in a realistic experimental situation one might not have full control over all degrees
of freedom and thus ends up in a situation, where in each experimental run the system is in some pure state
|ψi⟩ ∈ H from a given ensemble. Such a mixed state is described by the density matrix

ϱ =

i

pi|ψi⟩⟨ψi|, (1.4)

with probabilities pi,

pi = 1. The set of mixed states is convex, i.e., for all mixed states ϱ and σ and

1 ≤ λ ≤ 0 all convex combinations λϱ+ (1− λ)σ are also mixed states. Given any basis {|i⟩} in H, ϱ can be
represented as

ϱ =

ij

Mij |i⟩⟨j|, (1.5)

3These quantum operations may involve such operations, which have non-unit success probability.
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with positive semidefinite Hermitian4 matrix Mij with trM = 1. Conversely, any positive semidefinite
Hermitian matrix of trace one corresponds to a mixed state.

Given any mixed state ϱAB on the joint system HAB , it is separable if it can be written as statistical
ensemble of product states of the local subsystems

ϱsepAB =

i

piϱ
(i)
A ⊗ ϱ

(i)
B . (1.6)

Note that the set of all separable states S is convex, compact and invariant under change of local basis
(unitary product operations UA ⊗ UB). As for the pure states if such a decomposition does not exist the
state is said to be bipartite entangled.

Mixed states can be interpreted as a statistical ensemble, which is known from classical statistical me-
chanics. In any physical scenario, we end up in one of three situations. We either have a product state
ϱ = ϱA ⊗ ϱB . In this scenario, Alice and Bob have two independent sources and each one prepares a mixed
quantum state ϱA and ϱB , respectively. This procedure involves local operations on either of the subsystems
only. Another possibility is to have the more general separable state as given by Eq. (1.6). Here Alice and
Bob would make use of a joint random number generator to prepare their joint state, which results in a
statistical operation together with classical communication. Upon receiving the random number i, which is

sent with probability pi, Alice and Bob would locally prepare the mixed states ϱ
(i)
A and ϱ

(i)
B , respectively.

This procedure is still not employing any true quantum mechanical features and thus the statistics of any
succeeding experiment could also be generated in a suitable classical experiment. In the remaining sce-
nario, however, the mixed state is entangled. Here it is not possible to devise any procedure containing just
statistical operations and classical communication (SLOCC) to create the state.

The main problem of the theory of entanglement is called the separability problem. That is, for any
given state to check if it is separable or entangled. Although this problem is easy to solve for pure states
by using the Schmidt rank criterion, for mixed states this problem is extremely complex and there is a wide
range of criteria and mathematical tools available to detect entangled states5. This thesis will concentrate
on a criterion derived from the positive partial transpose (PPT) criterion, which partially describes the set
of mixed separable states.

1.1.4 Positive partial transpose

One of the strongest criteria for separability has been proposed by Peres in Ref. [59]. It is build on the idea
that the transposition operation maps the set of quantum states onto itself. Given any state as defined in
Eq. (1.5) then its transpose ϱT is given by

ϱT =

ij

Mij |j⟩⟨i|. (1.7)

Recall that for any given pair of bases {|i⟩} and {|k⟩} of the respective subsystems HA and HB any bipartite
state ϱAB on the joint system HAB can be expressed as

ϱ =

ij,kl

ϱij,kl|i⟩⟨j| ⊗ |k⟩⟨l|. (1.8)

Given such a state the partial transposition of subsystem A is defined by transposition of the first subsystem

ϱTA =

ij,kl

ϱij,kl|j⟩⟨i| ⊗ |k⟩⟨l|. (1.9)

The transposition of the second subsystem can be defined analogously. The positive partial transpose (PPT)
criterion then states that if ϱAB is a separable state, then ϱTA

AB is a quantum state. If on the other hand ϱTA

AB

has negative eigenvalues and hence is no quantum state, ϱAB is entangled.
In case the dimension of the joint Hilbert space HAB does not exceed six the PPT criterion is necessary

and sufficient [64], i.e., a state is separable if and only if it has positive partial transpose. For higher total
dimension there exist entangled states with positive partial transpose and hence the set of PPT SPPT states
is a superset of the set of separable states S.

4A finite dimensional matrix M is said to be Hermitian if it coincides with its conjugate transpose M = M†. Further, M is
said to be positive semidefinite if for all vectors x, x†Mx ≥ 0.

5At present there is no computable tool available to solve the separability problem for arbitrary mixed quantum states
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1.1.5 Entanglement witnesses

Another way to characterise the set of separable states is to use a geometric approach [64, 65]. Since every
convex set can be described by hyperplanes, a state ϱAB ∈ HAB is separable if it has non-negative expectation
value for all entanglement witnesses W

tr (WϱAB) ≥ 0. (1.10)

These are observables W that have at least one negative eigenvalue and satisfy

⟨ψAφB |W |ψAφB⟩ ≥ 0 (1.11)

for all product states |ψAφB⟩. Conversely, a state ϱAB ∈ HAB is entangled if there exists an entanglement
witness W with negative expectation value with respect to that state tr(WϱAB) < 0.

Note that the framework of witnesses can be also used to describe the set of PPT states SPPT . In
Ref. [66], the authors introduce the set of decomposable witnesses

W dec = P +QTA , (1.12)

with positive operators P,Q ≥ 0. It has been shown that these witnesses have non-negative expectation
value on SPPT and fully characterise the set of PPT states. For this characterisation it is even sufficient to
consider decomposable witnesses, where P = 0.
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Figure 1.1: Shown are the convex set of all states, the convex set of PPT states and its convex subset: the
separable states. States outside the set of separable states are entangled. The red line shows the hyperplane,
where the expectation value of a decomposable witness W dec vanishes. All states to the right of line are
detected to have no positive partial transpose. Similarly the blue line shows, where the expectation value
of an entanglement witness W vanishes and all states to the right of this line are detected to be entangled.

1.1.6 Negativity

Using the PPT criterion Życzkowsi et al. [50] first introduced the negativity, which was later shown to be a
measure of entanglement by Vidal and Werner [51]. Given any state ϱAB on a bipartite quantum system,
the negativity is defined as the sum


i |λ−i (ϱTA

AB)| of the negative eigenvalues λ−i of the partially transposed

state ϱTA

AB

N(ϱAB) =

i

|λ−i (ϱTA

AB)|. (1.13)

Hence the negativity measures the violation of the PPT criterion.
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In Ref. [51], it was further shown that the negativity can be cast into an optimisation problem, which
involves to write the partial transpose as a difference of two positive operators. That is

N(ϱAB) = infa− (1.14)

subjected to: ϱTA

AB = a+ϱ
+ − a−ϱ

−, where

a± ≥ 0 and

ϱ± are density matrices.

We finish this section by recalling the main properties of the GMN as proved in Ref. [50, 51]:

Lemma 1.1. The negativity N as defined by Eq. (1.13) satisfies:

1. N vanishes on all separable states ϱsepAB, i.e., N(ϱsepAB) = 0. Further, if ϱAB has no PPT, then Ng(ϱAB) >
0.

2. N is non-increasing under full LOCC operations (no joint operations on more than one part are
allowed), i.e., N(ΛLOCC(ϱAB)) ≤ N(ϱAB).

3. N is invariant under local basis changes Uloc, i.e., N(UlocϱABUloc†) = N(ϱAB).

4. N is convex, i.e., N(ϱAB) ≤


i piN(ϱ
(i)
AB) holds for all convex decompositions ϱAB =


i piϱ

(i)
AB.

5. N is bounded by N(ϱAB) ≤ 1
2 (dmin− 1), where dmin = min(dim(HA),dim(HB)) is the minimal dimen-

sion of either of the systems.

1.2 Genuine multiparticle entanglement

So far, only bipartite quantum systems composed of two quantum systems have been considered. In many
experimental situations, however, one wants to use genuine multiparticle systems, which consist of more
than two parts.

In this case, the notions of entanglement and separability become much richer. Additionally to the so-
called full separability and genuine multiparticle entanglement, which can be seen as counter parts to the
bipartite separability and entanglement, there are many types of partial separability and complementary
types of entanglement occurring.

1.2.1 The three-particle case

The simplest scenario, where genuine multiparticle entanglement can occur, is the case of three parties Alice
(A), Bob (B) and Charlie (C) with Hilbert space HABC = HA ⊗ HB ⊗ HC . In contrast to the bipartite
case, pure states will not be discussed separately.

A mixed three-particle state is fully separable and contains no entanglement if it can be written as a
statistical mixture of three particle product states

ϱfulsep =

k

pk|ψk
A⟩⟨ψk

A| ⊗ |φkB⟩⟨φkB | ⊗ |φkC⟩⟨φkC |. (1.15)

Apart from full separability it might also happen that particles A and B are entangled with each other,
whereas the particle C is not. Such a state is said to be partial separable with respect to the partition C
versus AB (C|AB) and can be written as a statistical mixture of product states on the system AB and the
system C

ϱsepC|AB =

k

pk|ψk
AB⟩⟨ψk

AB | ⊗ |φkC⟩⟨φkC |. (1.16)

These states are a straightforward generalisation of the bipartite separable states given by Eq. (1.6), where
one considers the systems AB as a single system without internal structure. This notion then generalises
naturally to states, which are separable with respect to other possible splittings B|AC and A|BC.
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Taking the convex hull of all states, which are separable with respect to some partition A|BC, B|AC, or
A|BC yields the set of biseparable states. Each such state can be written as

ϱbisep = pAϱ
sep
A|BC + pBϱ

sep
B|AC + pCϱ

sep
C|AC . (1.17)

States outside this set are called genuine multiparticle entangled. They cannot be written in the above form.
In summary, the different sets of separable states create a nested structure all of, which are contained

within the biseparable states (see Fig. 1.2).

1.2.2 Partial separability

The nested structure of different kinds of separable states generalises naturally to the case of an n-particle
system H =

n
k=1 HA1 . Let I = {1, 2, . . . , n} be the set of all indices, then a state ϱ is separable with

respect to a k-partition6 {I1, I2, . . . , Ik} if and only if it can be written as statistical mixture

ϱk−part =

i

piϱ
(i)
1 ⊗ ϱ

(i)
2 ⊗ · · · ⊗ ϱ

(i)
k , (1.18)

where the Il are disjoint subsets of I with


l Il = I and ϱ
(i)
l is defined as a state on the subsystems

m∈Il
HAm

. As an example consider the state ϱsepC|AB as given by Eq. (1.16), with I = {A,B,C}, I1 = {C}
and I2 = {AB}.

Similar to the biseparable states one defines k-separable states as the convex hull of all states, which are
separable with respect to some k − partition. Such a state is then given by

ϱk−sep =

i

piϱ
(i)
k−part, (1.19)

where the states ϱ
(i)
k−part are in general separable with respect to different k partitions. Note that this notion

also includes the fully separable states and the biseparable states, which we already introduced in the last
section. A n-separable state is also said to be fully separable and a 2-separable state is said to be biseparable.
As in the three-particle case a state is genuine multiparticle entangled if and only if it is not biseparable.

Note that the separability problem introduced in the bipartite case generalises quite naturally to the
multiparticle case. That is for a given state to check if it is k-separable for any k. Henceforth, we will leave
aside the different kinds of k-separability and concentrate on the detection and quantification of genuine
multiparticle entanglement.

1.2.3 Three-qubit SLOCC-equivalence

The simplest case, where genuine multiparticle entangled states might occur is the case of three-qubits
H = C2⊗C2⊗C2. Recall the notion of SLOCC-equivalence as introduced in Paragraph 1.1.2. One may ask
if for example all three-qubit genuine multiparticle entangled states are SLOCC-equivalent.

The answer to this question is no: For three qubits there are two inequivalent classes of genuine multi-
particle entangled states [67]. The class of GHZ (Greenberger-Horne-Zeilinger) states represented by

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) (1.20)

and the class of W states represented by

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩). (1.21)

GHZ-states can be transformed into all other states using SLOCC transformations but it is impossible to
transform a W -state into a GHZ-state.

Although at first sight this classification seems to be a mere mathematical distinction both states have
distinct entanglement properties with respect to particle loss. That is if one party sharing a W-state losses
its particle then the remaining two parties still share a bipartite entangled state. If, however, the shared
system was in a GHZ-state then after particle loss the remaining parties share a separable state.

6If k = 2 one often denotes the 2-partition as bipartition.
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(a) (b)

Figure 1.2: (a) The nested structure of the different convex sets of separable states within the set of all
states. The innermost set (dark dot) represents the fully separable states. The three sets of states, which
are separable (with respect to a partition A|BC, B|AC, or C|AB) are supersets of the set of fully separable
states, which is contained in but not equal to the intersection of the three. The biseparable states form
the convex hull of the separable states with respect to the different partitions. All states outside the set of
biseparable states are genuine multiparticle entangled. (b) The PPT mixtures are the convex hull of states,
which are PPT with respect to a single partition. As all states, which are separable with respect to a certain
partition are also PPT, the PPT mixtures form a superset of the biseparable states. States, which are not
PPT mixtures are genuine multiparticle entangled.

1.2.4 PPT mixtures and witnesses

At present, there is no general framework to prove or disprove the existence of a biseparable decomposition
for arbitrary mixed states. In Ref. [15], this problem was studied by introducing a relaxation. Instead of
trying to characterise the set of biseparable states as given in Eqs. (1.17) and (1.19)7 one characterises the
superset of so-called PPT mixtures.

The idea builds on the fact that the separable states are a subset of the states with a positive partial
transpose (PPT states) [59]. Recall the notion of bipartite PPT states from Section 1.1.4.

In the three-particle case [see Fig. 1.2(b)] PPT mixtures are states, which can be written as

ϱPPTmix = pAϱ
PPT
A|BC + pBϱ

PPT
B|AC + pCϱ

PPT
C|AB , (1.22)

where ϱPPT
A|BC , ϱ

PPT
B|AC and ϱPPT

C|AB is a state, which has positive partial transpose with respect to the transpo-
sition of subsystem A, B and C, respectively. A general PPT mixture on more than three parties will have
2n−1 − 1 terms, one for each partition m|m̄ of the system into two parts. Such a bipartition is a splitting
of the system into a part m and its complement m̄. Note, however, that m|m̄ and m̄|m label the same
bipartition.

The main advantage of this approach is that for any given multiparticle state ϱ one can directly check
whether it is a PPT mixture or not by using the concept of witnesses. In Ref. [15], it was shown that the non-
existence of such a decomposition is equivalent to the existence of a fully decomposable witness W detecting
the state tr(Wϱ) < 0. Such a witness is an operator W, which can be written for all possible bipartitions
m|m̄ as W = Pm + QTm

m , with positive operators Pm and Qm. That way, it is a direct generalisation of
a decomposable witness as defined in Eq. (1.12) taking into account that there is more than one possible
bipartition of a multiparticle system. One of the interesting features of this approach is that finding such
a witness can be cast into a so-called semidefinite program (SDP, see also below), which can be solved
efficiently with standard numerical routines [68, 69].

7Recall that biseparable states correspond to the case, where k = 2.
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1.3 Entanglement monotones

In the last two sections, the definitions of bipartite and multiparticle entanglement were reviewed and some
methods of entanglement detection were introduced. In this section, we will go a step further and review the
axiomatic approach of entanglement quantification that some of the most prominent entanglement monotones
are based upon. Finally, we will review the genuine multiparticle negativity, which is a genuine multiparticle
entanglement monotone based on fully decomposable witnesses introduced in Ref. [15].

1.3.1 Axioms

At first, many entanglement measures such as distillable entanglement or entanglement cost connect entan-
glement with its usefulness in specific quantum communication tasks [70, 71]. In the axiomatic approach
the entanglement quantifying functions only needs to satisfy two axioms and might be completely unrelated
to any quantum task.

Let E be a real valued function on the state space, then E is an entanglement monotone iff the following
two axioms are satisfied [72]:

1. E is monotonous under LOCC transformations. That is for any local operations and classical com-
munication protocols Λ, E(Λ(ϱ)) ≤ E(ϱ). Such a LOCC protocol is a special instance of a SLOCC
protocoll discussed above in Paragraph 1.1.2, where we demand the success probability of the proto-
col to be one. Note contrary to SLOCC transformations, LOCC transformations cannot be as easily
characterised by invertible local operations.

2. From the monotonicity under LOCC transformations, it follows that E is constant on the set of
separable states [72] and one usually demands the monotone to vanish on this set.

Remark 1.1. Note that both axioms also impose E being non-negative [72]. Furthermore, there are other
properties, which might be satisfied by some monotones, although these are not required by the definition
of a monotone.

As an example the negativity [50, 51]:

• is convex, i.e., E(ϱ) ≤i piE(σi) for all ensemble decompositions of ϱ into ϱ =


i piσi.

• is invariant under local basis change Uloc, i.e., E(UlocϱUloc†) = E(ϱ).

Its logarithm, called logarithmic negativity [51] is no longer convex but is:

• normalised in an information theoretic way. That is E(ϱ⊗n) = nE(ϱ).

1.3.2 Bipartite convex roof measures

A convenient method to obtain entanglement monotones in a bipartite setting, where the Hilbert space
consists of two parts H = HA ⊗HB , is to use a measure defined on pure states and extend it to mixed ones
via a pure state convex roof [73].

Let E be a function defined on the pure states E : H → R, which is monotonous under LOCC and
vanishes on the set of separable pure states. Then its pure state convex roof given by

E(ϱ) = inf

i

piE(|ψi⟩),

i

pi = 1, pi ≥ 0, (1.23)

where the infimum is taken over all possible decompositions ϱ =


i pi|ψi⟩⟨ψi|, is an entanglement monotone
[72].

Moreover, if E is a necessary and sufficient entanglement criterion for pure states, then its convex roof
extension also is. On the downside one has to add that it is in general not possible to numerically calculate
the minimisation given in Eq. (1.23) and hence one is often restricted to use lower bounds to estimate these
monotones.

Example 1.1. To mention but two prominent examples, where the convex roof construction is used to
obtain entanglement monotones consider the following examples:
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• Using the von Neumann entropy S(ϱ) = −trϱ log2 ϱ one defines the pure state measure entropy of
entanglement. It is given by by E(|ψ⟩) = S(ϱA) = S(ϱB), where ϱA and ϱB are the reduced density
matrices with subsystem A and B, respectively, traced out. Given this pure state measure, its convex
roof extension EF is an entanglement monotone called entanglement of formation [71].

Note that, although we did not require any quantum informational interpretation, this monotone upper
bounds the distillable entanglement [71].

• Another measure, whose convex roof extension is frequently used is the concurrence

C(|ψ⟩) =

2(1− trϱ2), (1.24)

where ϱ is either of the reduced states ϱA or ϱB .

Quite remarkably, the convex roof extension of the concurrence can be expressed in a closed form in
the case a two-qubit system is considered. In that case the concurrence is given by

C(ϱ) = max(0, λ1 − λ2 − λ3 − λ4), (1.25)

where λi are the eigenvalues of
√

ϱϱ̃
√
ϱ with ϱ̃ = (σy ⊗ σy)ϱ

∗(σy ⊗ σy)
8 in decreasing order [74].

Moreover, in Ref. [74] it has been shown that the concurrence is closely related to the entanglement of
formation. That is

EF (ϱ) = H


1 +


1− C2(ϱ)

2


, (1.26)

where H(x) = −x log2 x.

1.3.3 Genuine multiparticle convex roof measures

Now let us consider a multiparticle system. In the simplest case, it consists of three parts A, B and C. A
generalisation to more parts is straightforward. Given this setting, there is natural way to extend the convex
roof construction introduced in the last paragraph to obtain genuine multiparticle entanglement monotones
from bipartite pure state entanglement measures.

In analogy to the bipartite case, a genuine multiparticle entanglement monotone is a function mapping
mixed states to the real numbers, such that it is monotonous under LOCC transformations and vanishes for
all biseparable states.

Let {Ek}, k ∈ {A,B,C}, be a family of pure state entanglement monotones defined on H = HA ⊗HB ⊗
HC , such that EA, EB and EC vanish on states, which are separable with respect to the splitting A|BC,
B|AC and C|BA, respectively. Then define

µ(|ψ⟩) := min {EA(|ψ⟩), EB(|ψ⟩), EC(|ψ⟩)} . (1.27)

Then, µ is a pure state entanglement measure, which vanishes on all states that are separable with respect
to some bipartition. If µ(|ψ⟩) > 0, then |ψ⟩ is genuine multiparticle entangled.

One can then extend µ to mixed states using the pure state convex roof construction as given by Eq. (1.23)

E(ϱ) = inf

i

piµ(|ψi⟩) (1.28)

to obtain a genuine multiparticle entanglement monotone. Then E(ϱ) > 0 is sufficient for ϱ to be genuine
multiparticle entangled.

This general method was used in Ref. [75] to extend the bipartite concurrence as given by Eq. (1.24)
to a genuine multiparticle entanglement monotone. This monotone is denoted by GME-concurrence and is
necessary and sufficient to detect genuine multiparticle entanglement in mixed quantum states. As already
discussed it is in general not possible to calculate the expression given in Eq. (1.28). If analytic formulas are
known, then they are usually restricted to highly symmetric state families as for the GME-concurrence [76].

8Here ϱ∗ denotes the entry-wise complex conjugate of ϱ.
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Remark 1.2. So far, we considered the case where a family of bipartite measures on pure states was given.
If on the other hand bipartite monotones are given, which are already defined on mixed states, then one can
also perform a mixed convex roof construction [52–55] to construct a genuine multiparticle entanglement
monotone. Moreover, in certain instances the monotones defined that way are a convex optimisation problem
known as semidefinite program9, which can be efficiently numerically solved.

Let {Ek}, k ∈ {A,B,C}, be a family of mixed state bipartite entanglement monotones defined on
H = HA ⊗ HB ⊗ HC with the same properties, as in the pure state case. Given that, one can define a
genuine multiparticle entanglement monotone by

E(ϱ) = inf pAEA(ϱA) + pBEB(ϱB) + pCEC(ϱC), (1.29)

where the optimisation is performed over all mixed state decompositions ϱ = pAϱA+pBϱB+pCϱC . Later we
will show that a renormalised version of the genuine multiparticle negativity originates from such a mixed
state construction.

1.3.4 Genuine multiparticle negativity (GMN)

We already considered the construction of genuine multiparticle entanglement monotones using bipartite
ones. One might on the other hand also approach the quantification of genuine multiparticle entanglement
from a different direction.

Recalling Section 1.2 we showed that fully decomposable witnesses provide sufficient criteria for a state to
be genuine multiparticle entangled. Building upon this idea, Ref. [15] introduced a computable entanglement
monotone called the genuine multiparticle negativity (GMN). The basic idea is to take a fully decomposable
witness as above and use the violation of it as a quantifier of entanglement. More precisely, one defines the
GMN Ñg(ϱ) via the optimisation problem:

Ñg(ϱ) = −mintr (ϱW) (1.30)

subjected to: W = Pm +QTm
m ,

0 ≤ Pm ≤ 1,

0 ≤ Qm ≤ 1 for all partitions m|m̄.

That is, for the three-particle case the witness operator has to be decomposable into W = PA + QTA

A ,

W = PB +QTB

B and W = PC +QTC

C with 0 ≤ Pm, Qm ≤ 1. Since this measure is defined as an optimisation
over a set of witnesses, it is closely related to the approach to quantify entanglement based on entanglement
witnesses as in Ref. [77]. Furthermore, it can be directly computed using SDP [69], since the optimisation
problem in Eq. (1.30) is an optimisation problem of this class. We finish this section by recalling the main
properties of the GMN as proved in Ref. [15, 24]:

Lemma 1.2. The measure Ñg as defined by Eq. (1.30) satisfies:

i Ñg vanishes on all biseparable states ϱbisep, i.e., Ñg(ϱ
bisep) = 0. Further if ϱ is no PPT mixture, then

Ñg(ϱ) > 0.

ii Ñg is non-increasing under full LOCC operations (no joint operations on more than one part are allowed),

i.e., Ñg(ΛLOCC(ϱ)) ≤ Ñg(ϱ).

iii Ñg is invariant under local basis changes Uloc, i.e., Ñg(UlocϱUloc†) = Ñg(ϱ).

iv Ñg is convex, i.e., Ñg(ϱ) ≤


i piÑg(ϱi) holds for all convex decompositions ϱ =


i piϱi.

v Ñg is bounded by Ñg(ϱ) ≤ 1
2 (dmin − 1), where dmin is the lowest dimension of any subsystem [24].

vi If the system consists of two parties only, then Ñg equals the bipartite negativity [50, 51].

9Note that semidefinite programming will be discussed later in this thesis.
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1.4 Stabiliser formalism

The stabiliser formalism was originally developed for quantum error correction [21, 22] and yields a special
set of many-qubit states called stabiliser states [20, 21]. These states are defined as common eigenstates of
a set of commuting local operators and contain the so-called graph states, which are a particularly useful
class of states [61], as subset.

In this section, we review the basic notions of stabilisers and stabiliser states and their connection to
graph states. For a detailed review on the subject we refer the reader to Refs. [20, 61].

1.4.1 Stabiliser states and graph states

To begin with define the Pauli group Gn on n qubits as the set of elements consisting of arbitrary tensor
products of the operators {1, σx, σy, σz} with either of the phases {1,−1, i,−i}. Using σ0 ≡ 1, σ1 ≡ σx,
σ2 ≡ σy and σ3 = σz the Pauli group is given by

Gn = {ασj1 ⊗ σj2 ⊗ · · · ⊗ σjn |jk ∈ {0, 1, 2, 3}, α ∈ {1,−1, i,−i}} . (1.31)

The n qubit Pauli group has 4n+1 elements, which either commute or anti-commute. Furthermore, each
element of the Pauli group is a Hermitian or anti-Hermitian operator on the n-qubit Hilbert space Hn =n

i=1 C2.
In the stabiliser formalism one does not need the full Pauli group, but considers maximal Abelian sub-

groups10 S ⊆ Gn with −1 ̸∈ S only. These subgroups contain only Hermitian operators with eigenvalues +1
and/or −1 and are also referred to as stabiliser groups.

A quite convenient method to describe stabiliser groups is in terms of algebraic independent11 generators
g1, . . . , gn ∈ S. Using the fact that s2 = 1 for all s ∈ S and the commutativity of S, one can uniquely
express each t ∈ S as

t = gx1
1 gx2

2 . . . gxk

k , xl ∈ {0, 1} . (1.32)

Here the order of the generators in the product in Eq. (1.32) is irrelevant due to the commutativity of S.
One concludes that |S| = 2n and that S is completely determined by its generators. Hence we will

often identify S with the set of its generators {g1, g2, . . . , gn}. Note, however, that there are many possible
equivalent generator sets, which generate the same group.

Now let S be a stabiliser group and {g1, g2, . . . , gn} be a fixed set of generators. Then one can define
projectors onto the positive and negative subspaces of each of the gj by

Π±
j =

1

2
(1± gj). (1.33)

For each S there exists an one-dimensional subspace VS , which is the common eigenspace to eigenvalue +1
for all s ∈ S. The projector onto the common positive eigenspace V++···+ is then given by the product of
the projectors onto the individual positive eigenspaces

Π++···+ =
1

2n

n
j=1

(1+ gj). (1.34)

Similarly one can define projectors onto the other eigenspaces, which can be labelled by the n signs as done in
Eq. (1.34) by k times +. One defines the stabiliser state to be the up to a global phase uniquely determined
eigenvector |ψS⟩ to eigenvalue +1 for all gj

gj |ψS⟩ = |ψS⟩. (1.35)

A special class of stabilising groups is given by the so-called graph states, which are relevant in many
applications in quantum information processing [61].

As the name indicates, the corresponding maximal stabiliser groups are closely connected to mathematical
graphs in their definition. Therefore let us consider a graph G, which is a set of n vertices with edges

10A subgroup is said to be Abelian, iff all of its elements commute with each other. Furthermore, an Abelian subgroup
S ⊆ Gn is said to be maximal if there is no other Abelian subgroup S̃ ⊆ Gn, such that S ⊆ S̃.

11I.e., no generator can be written as a product of the remaining.
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Figure 1.3: In this figure the 4-vertex cluster graph, the 3-vertex star graph, the general n-vertex star graph
and a more fancy graph with labelled vertices are shown.

connecting them (see Fig. 1.3). For each vertex i we define its neighbourhood N(i) by the set of all vertices,
which are connected to i.

The graph state formalism then assigns a stabilising operator gi to each vertex of the graph. Denote by
X(i), Y (i) and Z(i) the Pauli matrices σx, σy and σz on the i-th particle with the identity on all the other,
then

gi := X(i)


j∈N(i)

Z(j). (1.36)

These operators commute pairwise and define the n independent generators {g1, g2, . . . , gn} of the stabilising
group S corresponding to the graph G. The graph state |G⟩ is then the unique n-qubit eigenstate to
eigenvalue +1 to all gi.

gi|G⟩ = |G⟩, for all i = 1, 2, . . . , n. (1.37)

Example 1.2. To illustrate the stabiliser and graph state formalism consider the following two examples:

1. First, consider the stabiliser group generated by g1 = XXX, g2 = ZZ1 and g3 = Z1Z12 then the
stabiliser group generated by gi is given by

G = {111, XXX,ZZ1, Z1Z, Y Y X, Y XY,1ZZ,XY Y } . (1.38)

The corresponding stabiliser state is the well known GHZ-state [12]. In the computational basis it
reads

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) . (1.39)

2. Second, consider the stabiliser group corresponding to the star graph with with three vertices (see
Fig. 1.3). Its generators are given by g1 = XZZ, g2 = ZX1 and g3 = Z1X according to Eq. (1.36).
The generated group is given by

G = {111, XZZ,ZX1, Z1X,Y Y Z, Y ZY,1XX,XY Y } . (1.40)

Then the corresponding graph state can be expressed in the computational basis as

|G⟩ = 1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩ − |101⟩ − |110⟩+ |111⟩) . (1.41)

12These operators do not correspond to a graph, but are equivalent to g1 = XZZ, g2 = ZX1 and g3 = Z1X (these arise
from the three vertex linear graph) by a local basis change. By a slight abuse of notation we omit the tensor product signs to
improve readability (XXX ≡ X ⊗X ⊗X).
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1.4.2 Local Clifford equivalence

It was already pointed out that each stabiliser state |ψS⟩ uniquely corresponds to a maximal Abelian subgroup
S ⊂ Gn of the Pauli group. However, it might still occur that two stabiliser states are equal up to some local
unitary operation, which corresponds to a simple basis change, i.e., given two stabiliser subsets S, S′ ⊂ Gn

there exists a U ∈ U(2)


n, such that
U |ψS⟩ = |ψS′⟩. (1.42)

Note, however, that even though the stabiliser states are LU equivalent the corresponding stabiliser groups
are in general not

USU† ̸= S′., (1.43)

since in general USU† is no longer a subgroup of Gn [29]13.
Hence to study the equivalence of stabiliser states within the stabiliser formalism one usually considers

the local Clifford (LC) group [20], which is the set of unitaries that map Gn onto itself

C


n
1 =


U ∈ U(2)


n|UGnU

† = Gn


. (1.44)

It is given by the n-fold tensor product of the single-qubit Clifford group, which is generated by the Hadamard
gate H and the single-qubit phase gate Φ

H =
1√
2


1 1
1 −1


and Φ =


1 0
0 i


. (1.45)

Similar to local unitary equivalence we denote two stabiliser states LC-equivalent if there is an element of
the local Clifford group mapping the states onto each other. I.e., given two stabiliser subsets S, S′ ⊂ Gn

there exists a U ∈ C


n
1 , such that

U |ψS⟩ = |ψS′⟩. (1.46)

In this case, the corresponding stabiliser groups are also equivalent

USU† = S′. (1.47)

In fact, it has been shown that any general stabiliser state is LC-equivalent to some graph state [78, 79].
Hence it often suffices to consider graph states only.

Example 1.3. To illustrate the result recall the example of the last paragraph with the GHZ-state

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) (1.48)

corresponding to a general stabiliser group and the graph state

|G⟩ = 1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩ − |101⟩ − |110⟩+ |111⟩) (1.49)

corresponding to the star graph. It turns out that these two graph states are local unitary equivalent

1⊗H ⊗H|GHZ⟩ = |G⟩. (1.50)

For this reason, one often by a slight abuse of notation identifies certain graph states by the most simple14

LC-equivalent counterpart.

Remark 1.3. Often, one wants to remove the ambiguity of a basis change and wants to consider LC-
inequivalent stabiliser states only. In this case one usually restricts first to graph states, since each stabiliser
state is LC-equivalent to some graph state. In a second step one then characterises graph states with respect
to LC-equivalence. This can be done solely on the basis of the corresponding graphs since it has been shown
that two graph states are LC-equivalent, iff their graphs can be transformed into each other by a sequence
of local complementations15 [26].

13This result is also known as a disproof of the conjecture that local unitary equivalence equals local Clifford equivalence.
14Here simple refers to the number of terms the state has in the computational basis. This simplification is often possible,

since any graph state always has the maximal number of 2n terms in the computational basis.
15A local complementation is an operation performed at a vertex, where all existing edges are deleted and edges to prior

unconnected nodes are created.
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Chapter 2

Analytical characterisation of the
genuine multiparticle negativity

Science is built up with facts, as a house is with stones. But a collection of facts is no more
a science than a heap of stones is a house.
Henri Poincaré

In this chapter we present an analytical study of the genuine multiparticle negativity (GMN). First, we
show that a renormalised version of the GMN can be expressed as mixed convex roof of the minimum of
bipartite negativities [50, 51]. These mixed convex roofs were already studied in the context of entanglement
quantification in the bipartite setting in Refs. [52–55]. In our case and contrary to the usual pure state
convex roof constructions the renormalised GMN can be efficiently computed using semidefinite program-
ming. Second, we derive analytic expressions of the GMN for two different state families. These are the
GHZ-diagonal n-qubit and the cluster-diagonal four-qubit states. These analytic formulas for the GMN in
terms of the fidelities of the GHZ and cluster states also provide lower bounds on the genuine multiparticle
entanglement of general mixed quantum states.

This chapter is organised as follows: First, we introduce the renormalised GMN and show that it can
be expressed as a mixed convex roof. We then compare the original GMN and the renormalised GMN
and provide the naturally arising upper and lower bounds to the latter. In the next section we derive an
analytic formula for the original and renormalised GMN for n-qubit GHZ-diagonal states and compare our
results to the GME-concurrence [76, 80]. We also show that an exact expression can also be obtained for
cluster-diagonal four-qubit states, where only lower bounds are known for the GME-concurrence [80–82]. We
conclude this chapter with a brief discussion of our results and a short outlook on possible future directions.

2.1 The GMN as a convex roof measure

In this section we introduce a renormalised version of the GMN by changing the normalisation of the witness
operator. Our main motivation is the following. So far, we have a good understanding of the GMN in terms
of witnesses. In state space, however, there is no satisfying interpretation. By slightly altering the definition
the GMN has a direct simple interpretation in the witness and in the state space picture.

2.1.1 Modifying the definition of the GMN

Consider any finite-dimensional multiparticle system and recall the definition of the genuine multiparticle
negativity [15] as introduced in Paragraph 1.3.4, which is a genuine multiparticle entanglement monotone.

15
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For any state ϱ the renormalised GMN Ng(ϱ) is given by

Ng(ϱ) = − inftr (ϱW) (2.1)

subjected to: W = Pm +QTm
m ,

0 ≤ Pm

0 ≤ Qm ≤ 1 for all partitions m|m̄.

Compared to the original definition in Eq. (1.30), the only difference is a relaxation in the constraints on
the positive operators Pm, which is not bounded by 1 anymore. Note that this definition was already used
in Ref. [83] to quantify genuine multiparticle entanglement in a device independent manner.

The interesting point is that the renormalised GMN has an interpretation in state space as coming from
an optimisation over decompositions of the density matrix ϱ. This is known as the mixed convex roof
construction [52–55] and many entanglement measures are defined via such an optimisation. In the present
case, one deals with such a mixed convex roof, and this can be derived from the the dual problem [68] to
the semidefinite problem in Eq. (2.1). We have:

Theorem 2.1. Let Nm be the bipartite negativity given by Nm(ϱ) =


i |λ−i (ϱTm)|, where λ−i (ϱTm) are the
negative eigenvalues of ϱTm . Then the genuine multiparticle negativity equals a mixed convex roof of bipartite
negativities. That is

Ng(ϱ) = min
ϱ=


m pmϱm


m

pmNm(ϱm), (2.2)

where the summation runs over all inequivalent partitions m|m̄ of the system and the minimisation is per-
formed over all mixed state decompositions of the state ϱ =


m pmϱm.

The proof of this Theorem can be found in A.1.
Note that the optimisation in Eq. (2.2) can also be written in a different way: If one defines for an arbitrary

multiparticle quantum state the quantity µ(ϱ) = minmNm(ϱ) as the bipartite negativity, minimised over all
bipartitions, then the multiparticle negativity can be written as

Ng(ϱ) = min
ϱ=


k pkϱk


k

pkµ(ϱk), (2.3)

where now the minimisation is over all decompositions ϱ =


k pkϱk into mixed states and k does not label
the bipartitions anymore. In this way, the connection to the usual convex roof construction (see Ref. [73]
and also Eq. (2.21) below) becomes more transparent. In general, however, mixed and pure state convex
roofs are extremely difficult to compute. In this respect it is important to highlight that the renormalised
GMN can be computed using semidefinite programming (SDP).

2.1.2 Comparison with the original definition of the GMN

First, we can state that all the properties of the GMN also hold for the renormalised definition and one
additional property is new.

Lemma 2.2. For the renormalised multiparticle negativity Ng as defined in Eq. (2.1) all the properties (i)
to (vi) listed in Lemma 1.2 hold. Additionally, it has the following property:

vii If |ψ⟩ is a pure state, then
Ng(|ψ⟩) = min

m
Nm(|ψ⟩), (2.4)

where the minimisation is performed over all bipartite splittings m|m̄ of the system.

Proof. The first properties from Lemma 2.2 can be proved directly as in Lemma 1.2 by modification of the
respective proofs in Refs. [15, 24]. Concerning statement (vii), note that for a pure state ϱ = |ψ⟩⟨ψ| there is
only a single (and trivial) decomposition, namely ϱ = 1 · |ψ⟩⟨ψ|.

Note that due to property (ii) of Lemmata 1.2 and 2.2 both versions of the GMN are entanglement mono-
tones. Naturally, the question arises how the renormalised GMN performs in detecting genuine multiparticle
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entangled states. If one is interested in the quantification of genuine multiparticle entanglement with the
help of an entanglement monotone then either of the two monotones can be used as they are non-zero on
the same set of states.1 One directly has:

Corollary. For all ϱ, Ñg(ϱ) ≤ Ng(ϱ) and Ñg(ϱ) = 0 ⇔ Ng(ϱ) = 0.

Another feature of the renormalised GMN are the natural upper and lower bounds, arising from Eq. (2.1)
and Eq. (2.2) in Theorem 2.1. First, as for the original GMN, every witness W, which satisfies the constraints
in Eq. (2.1) provides a lower bound on the renormalised GMN

− tr (Wϱ) ≤ Ng(ϱ). (2.5)

Second, every mixed state decomposition of a state ϱ =


m pmϱm, pm ≥ 0,


m pm = 1 provides an upper
bound on the renormalised GMN 

m

pmNm(ϱm) ≥ Ng(ϱ). (2.6)

This property makes the renormalised GMN easier to compute analytically. Note that the upper bounds of
the renormalised GMN also provide upper bounds for Ñg since Ñg ≤ Ng.

Finally, note that for pure states the renormalised GMN can directly be computed with the help of
Lemma 2.2. Sometimes it coincides with the original GMN for pure states, and sometimes not. An example
is the three-qubit GHZ state |GHZ⟩ = 1/

√
2(|000⟩+ |111⟩, where Ng(|GHZ⟩) = Ñg(|GHZ⟩) = 1/2. On the

other hand, for the three-qubit W state |W ⟩ = 1/
√
3(|001⟩ + |010⟩ + |100⟩), Ng(|W ⟩) =

√
2/3 ≈ 0.47 and

Ñg(|W ⟩) ≈ 0.43.

2.2 Analytic computation of the GMN

In this section we use our previous results to provide analytic formulas of the GMN for two important families
of multi-qubit states. These are the n-qubit GHZ-diagonal and four-qubit cluster-diagonal states. The idea
in both cases is to construct for each family of states a family of witnesses lower bounding the GMN and a
family of decompositions, which results in upper bounds. Since the bounds coincide and hold true for the
original and the renormalised GMN they provide closed formulas for both monotones.

2.2.1 Graph-diagonal states

Both state families are connected to so-called graph states, which were introduced in Section 1.4.1. Recall
that the main idea was to introduce a set of commuting stabiliser operators gi corresponding to the vertices
of a graph, which then give rise to an unique common eigenstate, called graph state.

One can extend this framework by considering all common eigenstates of the stabilising operators.
We label those 2n different states by their eigenvalues of ±1 on the stabilising operators gk, such that
gi|a1a2 . . . an⟩ = ai|a1a2 . . . an⟩ with ai = ±. Note that these states are all orthogonal ⟨a1 . . . an|b1 . . . bn⟩ =N

i=1 δaibi and thus form a basis in the n-qubit Hilbert space, the so-called graph state basis. Mixed states,
which are diagonal in the graph state basis are determined by their fidelities

Fa1a2...an
= ⟨a1a2 . . . an|ϱ|a1a2 . . . an⟩, (2.7)

i.e.,

ϱ =


a1,a2,...,an

Fa1a2...an
|a1a2 . . . an⟩⟨a1a2 . . . an|. (2.8)

They are called graph-diagonal and have the property that they are invariant under the group generated by
the stabilising operators, i.e., giϱg

†
i = ϱ for all i.

Note that an arbitrary state ϱ can be transformed into a graph-diagonal state by the symmetrisation
operation

ϱgraph−diag =
1

2n


g∈G

gϱg†, (2.9)

1One can modify the original MATLAB implementation of the PPT mixer [69] to get an implementation of the renormalised
GMN, by simply commenting line 90 in the “entmon.m” file.
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where the summation runs over all group elements of the group generated by the gi. Since all g ∈ G consist of
local Pauli operators only this symmetrisation does not increase entanglement and hence Ng(ϱgraph−diag) ≤
Ng(ϱ).

2.2.2 n-qubit GHZ-diagonal states

In this paragraph we consider generalised Greenberger-Horne-Zeilinger (GHZ) states. These states are
diagonal in the n-qubit GHZ-basis consisting of 2n states |ψi⟩ = 1/

√
2 (|x1x2 . . . xn⟩ ± |x̄1x̄2 . . . x̄n⟩), where

xj , x̄j ∈ {0, 1} and xj ̸= x̄j . In the three-qubit case this basis consists of the states 1/
√
2 (|000⟩ ± |111⟩),

1/
√
2 (|001⟩ ± |110⟩), 1/

√
2 (|010⟩ ± |101⟩) and 1/

√
2 (|011⟩ ± |100⟩). Note that these states are invariant

under the group generated by g1 = X(1)X(2) . . . X(n) and gi = X(1)X(i) for 2 ≤ i ≤ n. This group is local
unitary equivalent to the stabiliser group corresponding to the star graph as shown in Fig. 1.3, where each
node is connected to node one.

A three-qubit state diagonal in the GHZ basis is of the form

ϱ =



λ0 µ0

λ1 µ1

λ2 µ2

λ3 µ3

µ3 λ3
µ2 λ2

µ1 λ1
µ0 λ0,


, (2.10)

with λi, µi ∈ R.2 A general n-qubit GHZ-diagonal state would have the same shape, with 2n−1 independent
real λi on the diagonal and corresponding real µi on the anti-diagonal. The eigenvalues of these states are
λi±µi, 0 ≤ i < 2n−1. Hence to be a valid density matrix one needs λi ≥ 0 and |µi| ≤ λi for all 0 ≤ i < 2n−1.

We now make use of the special structure of this class of states to construct explicit upper and lower
bounds, which are valid for both versions of the GMN.

Lemma 2.3. For all GHZ-diagonal n-qubit states

Ng(ϱ) ≤ max
i

{0, |µi| − wi} = max
i


0, Fi −

1

2


, (2.11)

where wi =


k ̸=i λk and Fi = ⟨ψi|ϱ|ψi⟩ denotes the fidelity with the GHZ-basis state |ψi⟩. Ng(ϱ) ≤
maxi 0, |µi| − wi also holds for the slightly more general case with complex µi on the anti-diagonal.

Proof. We will prove the statement for the three-qubit case, a generalisation is straightforward. First,
consider the case where the right-hand-side of Eq. (2.11) is non-zero. Without loss of generality one can

assume that the maximum is achieved for i = 0 and thus we have |µ0| ≥
3

k=1 λk. Let pk = λk/(
3

k=1 λk)
for 1 ≤ k ≤ 3, then


i pi = 1 and

pk|µ0| ≥ λk. (2.12)

From the positivity of ϱ it follows that |µi| ≤ λi and so

pkλ0 ≥ pk|µ0| ≥ λk ≥ |µk|. (2.13)

Using these weights one decomposes ϱ into a convex combination ϱ =


k ̸=0 p̃kϱk with

ϱ1 =
1

p̃1



p1λ0 p1µ0

λ1 µ1

0 0
0 0
0 0

0 0
µ∗
1 λ1

p1µ
∗
0 p1λ0,


, (2.14)

2GHZ-diagonal states have real µi, but we stress that all of our results hold true for states with complex µi as well.



2.2. ANALYTIC COMPUTATION OF THE GMN 19

ϱ2 =
1

p̃k



p2λ0 p2µ0

0 0
λ2 µ2

0 0
0 0

µ∗
2 λ2

0 0
p2µ

∗
0 p2λ0,


, (2.15)

ϱ3 =
1

p̃k



p3λ0 p3µ0

0 0
0 0

λ3 µ3

µ∗
3 λ3

0 0
0 0

p3µ
∗
0 p3λ0,


(2.16)

and p̃k = 2(pkλ0 + λk).
To calculate the upper bound resulting from this decomposition we first have to compute the action

of partial transposition with respect to subsystem A, B and C on three-qubit GHZ-diagonal state. One
directly sees that the partial transposition permutes the anti-diagonal elements. In the three-qubit case
transposition of the first qubit exchanges µ0 ↔ µ1, µ2 ↔ µ3 and the corresponding conjugate pairs. The
partial transposition of the second qubit exchanges µ0 ↔ µ2, µ1 ↔ µ3 and conjugate pairs and the partial
transposition on the last qubit exchanges µ0 ↔ µ∗

3, µ1 ↔ µ∗
2 and conjugate pairs. So p̃kϱ

Tk

k has the following
four non-zero eigenvalues

{pkλ0 + |µk|, pkλ0 − |µk|, λk + pk|µ0|, λk − pk|µ0|} . (2.17)

Taking into account Eqs. (2.12) and (2.13) the only non-positive eigenvalue is λk−pk|µ0| and thus p̃kNk(ϱk) =
pk|µ0| − λk. This results in the conjectured upper bound

Ng(ϱ) ≤
3

k=1

pkNk(ϱk) =
3

k=1

pk|µ0| − λk = |µ0| −
3

k=1

λk. (2.18)

This bound can be rewritten as |µ0| −
3

k=1 λk = |µ0| + λ0 − 1
2 , since trϱ = 2

3
k=0 λk = 1. If we then

use the fidelities F0 = ⟨ψ0|ϱ|ψ0⟩ = λ0 + µ0 and F1 = ⟨ψ1|ϱ|ψ1⟩ = λ0 − µ0 with |ψ0⟩ = 1/
√
2(|000⟩ + |111⟩)

and |ψ1⟩ = 1/
√
2(|000⟩ − |111⟩), then |µ0| + λ0 = max {F0, F1} for µ0 real, which proves the alternative

expression Ng(ϱ) ≤ maxi

0, Fi − 1

2


in Eq. (2.11).

If, on the other hand, the right-hand-side of Eq. (2.11) is zero, then |µ0| ≤


k ̸=0 λk, which is known to
be a necessary and sufficient criterion for biseparability [23] and for all biseparable states ϱ, Ng(ϱ) = 0.

Lemma 2.4. Consider a n-qubit GHZ-diagonal state ϱ then there exists a fully decomposable witness W
satisfying the properties in Eq. (2.1), such that

Ng(ϱ) ≥ −tr(Wϱ) = min
i

{0, |µi| − wi} = max
i


0, Fi −

1

2


, (2.19)

where wi =


k ̸=i λk. Ng(ϱ) ≥ maxi 0, |µi| − wi also holds for the slightly more general case with complex µi

on the antidiagonal.

Proof. As in the last proof we consider the three-qubit case. Without loss of generality the minimum in
inequality (2.19) is achieved for i = 0. Then the position of µ0 in ϱ in the computational basis is given by the
tuple (000, 111). From this tuple we construct the witness W = 1

21 − |φ⟩⟨φ|, with |φ⟩ = 1√
2
(|000⟩+ |111⟩).

In the more general case, where the µi ∈ C one would insert an additional phase ei arg µ0 in front of |111⟩.
The witness is of the form of ϱ as in Eq. (2.10). From the discussion in the proof of Lemma 2.3 it follows

that WTm ≥ 0. Hence, W is fully decomposable with Pm = 0 and Qm =WTm . In case the minimum equals
zero the witness is given by W = 0, Pm = 0 and Qm = 0. This proves the claim.
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In summary, we have:

Corollary. For all GHZ-diagonal n-qubit states ϱ

Ng(ϱ) = max
i

{0, |µi| − wi} = max
i


0, Fi −

1

2


, (2.20)

where Fi = ⟨ψi|ϱ|ψi⟩ denotes the fidelity with the GHZ-basis state ψi. Ng(ϱ) = maxi 0, |µi| − wi holds also
true for the slightly more general case with complex µi on the anti-diagonal.

Three remarks are in order at this point. First, for general states the right hand side of Eq. (2.20) still
gives a lower bound on the renormalised GMN since every state can be transformed into a GHZ-diagonal by
means of local operations only. Thus the analytic expression in Eq. (2.20) might be used to estimate genuine
multiparticle entanglement also for a general state. Second, we calculated the value for the renormalised
GMN Ng(ϱ) as defined in Eq. (2.1), but the same result holds for the GMN Ñg(ϱ) according to Eq. (1.30).
This is because the witness constructed in the proof of Lemma 2.4 fulfils also the conditions of Eq. (1.30)
and Lemma 2.3 delivers an upper bound due to Corollary 2.1.2. Third, note that the analytic formula we
found coincides with the maximal violation of the biseparability criteria derived in Ref. [23].

Further, it is interesting to compare our expression for the GMN to the analytic formula of the gen-
uine multiparticle concurrence (GME-concurrence) [80] for GHZ-diagonal n-qubit states [76]. The GME-
concurrence is defined as follows: For a bipartite pure state |ψ⟩ the concurrence is given by CA|B(ψ) =

2[1− Tr(ϱ2A)] where ϱA is the reduced state on Alice’s system. For a pure multiparticle state |φ⟩, the
genuine multiparticle concurrence is defined as the minimum of the bipartite concurrences Cgme(φ) =
minm|m̄ Cm|m̄(φ), minimised over all bipartitions. Finally, for mixed states the measure is given by the
convex roof construction

Cgme(ϱ) = min
ϱ=


k pk|φk⟩⟨φk|


k

pkC
gme(φk). (2.21)

Note that contrary to the mixed convex roof optimisation in Eq. (2.2) here only pure state decompositions
are involved. This pure state convex roof, however, is in general nearly impossible to compute and therefore
one relies on lower bounds for practical applications.

The GME-concurrence has been computed for GHZ-diagonal states [76] and one observes that up to a
factor of two both expressions coincide. There are, however, deeper connections: For a pure multi-qubit
state one has

Ng(φ) ≤ Cgme(φ). (2.22)

This follows directly from known relations between the bipartite negativity and the bipartite concurrence
[84]. Since the GMN can be defined via the mixed convex roof, which is an optimisation over a larger set
than the pure convex roof of the GME-concurrence, the general bound

Ng(ϱ) ≤ Cgme(ϱ). (2.23)

holds for all mixed states. Therefore, Theorem 2.1 provides a way to obtain lower bounds on the GME-
concurrence via semidefinite programming or analytical calculations. We will see in the next section that
the value of the Ng(ϱ) is much more sensitive to entanglement than the known lower bounds on the GME-
concurrence.

2.2.3 Four-qubit cluster-diagonal states

In this section we consider the linear graph having four vertices as shown in Fig. 1.3. The corresponding
stabilising operators as defined in Eq. (1.36) are given by

g1 = XZ11, g2 = ZXZ1,

g3 = 1ZXZ and g4 = 11ZX. (2.24)

As already discussed, the corresponding graph state basis is given by |++++⟩, |+++−⟩, . . . , | −−−−⟩.
We will also write this states as |ijlk⟩, with i, j, l, k ∈ {+,−} and denote by k̄ the complement of k. Then
we consider the graph-diagonal state

ϱ =

i,j,k,l

Fijkl|ijkl⟩⟨ijkl| (2.25)
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and wish to compute the GMN for these states. Note that in the literature the four-qubit cluster state is
often defined via the local unitary equivalent stabilising operators g̃1 = ZZ11, g̃2 = XXZ1, g̃3 = 1ZXX
and g̃4 = 11ZZ. Then the corresponding eigenstate to eigenvalue +1 on all g̃i is the familiar cluster state

|CL⟩ = 1

2
(|0000⟩+ |1100⟩+ |0011⟩+ |1111⟩) (2.26)

in the computational basis.
For discussing genuine multiparticle entanglement of cluster-diagonal states, the following two classes of

witnesses

Wαβγδ =
1

2
− |αβγδ⟩⟨αβγδ| − 1

2


i,j

|ᾱijδ̄⟩⟨ᾱijδ̄|, (2.27)

Wαβγδµν =
1

2
− |αβγδ⟩⟨αβγδ| − |ᾱµνδ̄⟩⟨ᾱµνδ̄|, (2.28)

have turned our to be useful. It has been shown that these witnesses provide necessary and sufficient criteria
to detect genuinely multiparticle entanglement in these states [85]. Based on these, Chen et al. [86] provided
a closed formula for the genuine multiparticle relative entropy of entanglement as entanglement monotone.
Here we provide a closed formula for the GMN for four-qubit cluster-diagonal states.

In terms of the fidelity the expectation values of the witnesses in Eqs. (2.27) and (2.28) read

tr(Wαβγδϱ) = −Fαβγδ +
1

2


ij

Fαijδ̄ + Fᾱijδ + Fαijδ,

tr(Wαβγδµνϱ) = −Fαβγδ − Fᾱµνδ̄ +
1

2
. (2.29)

First we note that all of these witnesses can be used to bound the GMN from below:

Lemma 2.5. For all partitions m|m̄ of the four partied system ABCD there exists 0 ≤ Qm, Q̃m ≤ 1, such
that

Wαβγδ = QTm
m and Wαβγδµν = Q̃Tm

m . (2.30)

Proof. One can easily compute the eigenvalues of Qm = WTm
++++ and Q̃m = WTm

++++ij for all i, j ∈ {+,−}
to be 0 and 1

2 . For any other witness Wαβγδ (Wαβγδµν) there exists a local unitary transformations, such
that W++++ (W++++ij) transforms into it.

Taking into account that each of the above witnesses gives a lower bound on the GMN [see Eq. (2.5)] we
have that

− min
α,β,γ,δ,µ,ν

{tr(Wαβγδϱ)} ∪ {tr(Wαβγδµνϱ)} ∪ {0} ≤ Ng(ρ), (2.31)

for all four-qubit cluster-diagonal states. As done for the GHZ-diagonal states we can use specific decom-
positions [see Eq. (2.2)] to construct upper bounds on the GMN, which result in an analytic formula for all
four-qubit cluster states.

Theorem 2.6. Let ϱ =


αβγδ Fαβγδ|αβγδ⟩⟨αβγδ| be diagonal in the cluster graph basis, then the GMN of
that state is given by

Ng(ϱ) = − min
α,β,γ,δ,µ,ν

{tr(Wαβγδϱ)} ∪ {tr(Wαβγδµνϱ)} ∪ {0} . (2.32)

This means that effectively the largest violation of the witnesses in Eqs. (2.27) and (2.28) gives the value of
the GMN.

The proof of this Theorem is given in Appendix A.2.
Let us discuss some examples. For the graph state mixed with white noise ϱ = p|++++⟩⟨++++ |+(1−

p)1/16 we obtain Ng(ϱ) = max(13p−5
16 , 0), which gives the exact threshold p > 5/13 for genuine multiparticle

entanglement [85]. In Fig. 2.1 a two-parameter family is shown, which is is genuine multiparticle entangled
in three regions and biseparable in one. In each of the regions a different optimal witness gives the GMN.
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Figure 2.1: The GMN for a two-parameter family of cluster-diagonal states, given by ϱ = p1|++++⟩⟨++++
|+p2|−++−⟩⟨−++−|+(1−p1−p2) 12 (σ1+σ2), with biseparable σ1 = 1

2 (|++−+⟩⟨++−+|+|+−++⟩⟨+−++|)
and σ2 = 1

2 (|−+−−⟩⟨−+−−|+|−−+−⟩⟨−−+−|). In the regions I to III the GMN Ng is given by the negative
expectation value of different witnesses [see Eq. (2.32)]. In I it corresponds to−tr(W−++−ϱ) = 1

4 (p1+3p2−1),
in II it is given by −tr(W++++++ϱ) = p1 + p2 − 1

2 and in region III it is −tr(W++++ϱ) =
1
4 (3p1 + p2 − 1).

In the remaining region IV the state is biseparable.

Finally, we compare our results to computable lower bounds on the GME-concurrence introduced in
Refs. [80, 82] and general lower bounds on the linear entropy based genuine multiparticle entanglement
measure in Ref. [81]. To compare the performance we calculate the value p, down to which ϱ = p| + + +
+⟩⟨+ + + + | + (1 − p)1/16 is still detected as genuine multiparticle entangled. Using the general bound
of the GME-concurrence in Ref. [80] we found that even the pure four-qubit cluster-diagonal state is not
detected. Using instead a set of inequalities build to detect genuine multiparticle entanglement in n-qubit
Dicke states [82] we found ϱ to be detected for p > 0.982.3 A better detection was achieved with the general
lower bound on the genuine multiparticle entanglement measure given by Theorem 1 of Ref. [81]. We found
that the state ϱ was detected as genuine multiparticle entangled for p > 7/15 ≈ 0.47, which is closer to
the exact threshold p > 5/13 ≈ 0.38 but not the exact value. We can therefore conclude that although the
analytic formula for the GME-concurrence is equivalent to ours for n-qubit GHZ-diagonal states, the lower
bounds for four-qubit cluster-diagonal states do not match our analytic results.

2.3 Conclusions

In conclusion we have shown that the renormalised genuine multiparticle negativity can be expressed in
two equivalent ways: as an optimisation over suitable normalised fully decomposable witnesses as given by
Eq. (2.1) and as mixed convex roof of the minimal bipartite negativity as given by Eq. (2.2). As a direct
consequence of these equivalent definitions there are naturally arising lower and upper bounds, which we
used to obtain an exact algebraic prescription of the genuine multiparticle negativity for the n-qubit GHZ-
diagonal and four-qubit cluster-diagonal states. These analytic expressions can also be used to obtain lower
bounds on the genuine multiparticle negativity for arbitrary n-qubit states.

There are several questions arising, which one might investigate in the future. First, since the scheme
to obtain the analytic expression is quite general it should be possible to find closed expressions for other
highly symmetric state families such as other graph-diagonal states [61] or states with U ⊗U ⊗U symmetry
[87].

3Note that we applied local filters to the state ϱ →→ N(F †
A⊗F †

B ⊗F †
C ⊗F †

DϱFA⊗FB ⊗FC ⊗FD) to enhance its detectability,
where N is a normalisation and the Fi are linear maps on the single qubit systems.
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Second, it would be desirable to obtain an operational interpretation for the genuine multiparticle nega-
tivity. As the bipartite logarithmic negativity is the upper bound for distillable entanglement [51] one may
speculate that our monotone is connected to the distillation rate of genuine multiparticle entangled states.
Also, the multiparticle negativity may be related to different entanglement classes in the multiparticle case
and the dimensionality of multiparticle entanglement [88, 89].

Finally, recall that the shareability of quantum correlations among many parties is limited and these
restrictions are known as monogamy relations [90–93]. For example, for a three-qubit system the bipartite
entanglement of the splitting A|BC as measured by the concurrence is given by the entanglement in the
reduced marginals plus the three tangle τ3 as a genuine tripartite contribution, C2

A|BC = C2
AB + C2

AC + τ3
[90]. It would be very interesting to derive similar relations for the genuine multiparticle negativity.
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Chapter 3

Genuine multiparticle entanglement
in spin chains

After climbing a great hill, one only finds that there are many more hills to climb.
Nelson Mandela

In this chapter we study the scaling and spatial distribution of genuine multiparticle entanglement at a
quantum phase transition in one-dimensional spin models. Our results are enabled by recent progress in the
theory of multiparticle entanglement [15, 56, 57] in combination with an explicit determination of reduced
k-particle states in the transverse XY -model [94–97]. We consider the genuine multiparticle negativity
[15] as a measure genuine multiparticle entanglement for the reduced three- and four-particle states and
demonstrate that its derivative diverges at the critical point. For both cases we show that the entanglement
obeys finite-size scaling, which can be used to compute the critical exponent for the infinite system from
finite-size data.

This chapter is organised as follows: First, we review the transverse XY -model, the different phases of
its ground state and the method to explicitly determine the reduced k-particle states [94–97]. Second, we
investigate spatial distribution and strength of genuine multiparticle entanglement in three- and four-spin
reduced states of the transverse Ising model, which is a special case of the XY -model. Finally, we study the
scaling of genuine multiparticle entanglement same reduced states close to the quantum phase transition.

3.1 The model

We consider the one-dimensional XY -model with transverse magnetic field on L particles and periodic
boundary conditions [94–97]. The Hamiltonian of this model is given by

H = −
L

i=1

λ

4
[(1 + γ)σ(i)

x σ(i+1)
x + (1− γ)σ(i)

y σ(i+1)
y ] +

1

2
σ(i)
z , (3.1)

where the coupling constant λ ≥ 0 tunes the strength of the nearest neighbour coupling with respect to the
external magnetic field. The parameter γ sets the anisotropy of the system and connects the Ising model
(γ = 1) with the isotropic XY -model (γ = 0). In the thermodynamic limit and for 0 < γ ≤ 1 the ground
state of the model undergoes a quantum phase transition at the critical point λc = 1. For λ = 0 there is
an unique ground state, where all spins are aligned in the direction of the magnetic field and there is no
magnetisation in the XY -plane. For λ → ∞ the ground state is two-fold degenerate and hence is an equal
mixture of these two states. At the quantum phase transition the systems ground state changes from being
non-degenerate to degenerate, accompanied by an abrupt change of the magnetisation in the x-direction,
which is zero for λ < 1 and finite for λ ≥ 1. We use the XY -model as a paradigm for our approach since it
allows one to study a phase transition with analytical rigor [94–97].

25
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single site spins

x

y

z
B⃗

Figure 3.1: In this figure, a finite length one-dimensional spin chain with open boundary condition in an
external magnetic field is shown. Solid state models of these kind usually consist of a chain of interacting
spins in a external magnetic field, where the first and last spins are considered to be neighbours (periodic
boundary conditions) or open ends (open boundary conditions). Analytic models such as the one-dimensional
XY -model are often used to study the behaviour of observables close to critical points and phase transitions.
In this chapter, we use the XY -model as paradigm to study the scaling and distribution of the 3- and 4-site
genuine multiparticle entanglement of the ground state in the vicinity of a quantum phase transition. Recall
that a quantum phase transition is not driven by temperature but by the proportion of the strengths of
external magnetic field and internal interaction.

3.1.1 Diagonalizing the XY-model

We give a brief review of the analytical diagonalisation of

H = −
L

i=1

λ

4
[(1 + γ)σ(i)

x σ(i+1)
x + (1− γ)σ(i)

y σ(i+1)
y ] +

1

2
σ(i)
z . (3.2)

The strategy is as follows [94–97].

• First, we apply the so-called Jordan-Wigner transformation, which maps the model onto a fermionic
Fock space with creation and annihilation operators.

• Second, the transformed system decouples into a direct sum of four dimensional Hilbert spaces by
using discrete Fourier transformation.

• Finally, these subspaces can be diagonalised, giving access to the ground state, the energy spectrum
and expectation values of finite products of one-site Pauli operators.

First, apply the Jordan-Wigner transformation, which transforms the spin operators Sα
j , j = 1, . . . , L,

α = x, y, z into fermionic creators c†j and annihilators cj . It is composed of two intermediate transformations

a†j = Sj
x + iSj

y and aj = Sj
x − iSj

y, (3.3)

where a†j and aj are hard-core bosonic creation and annihilation operators. The fermionic operators are then
obtained by

cj = exp


πi

j−1
k=1

a†kak


aj , c†j = a†j exp


−πi

j−1
k=1

a†kak


. (3.4)

The new operators obey the fermionic anti-commutation relation
c†i , cj


= δij and {ci, cj} =


c†i , c

†
j


= 0. (3.5)

Applying the Jordan-Wigner transformation to the Hamiltonian (3.2) yields

H =
L

2
+
λ

2


c†Lc1 + γc†Lc1


+H.c.

exp

iπ
L

j=1

c†jcj

+ 1

− λ

2

L
i=1


c†i ci+1 + γc†i c

†
i+1


+H.c.+ c†i ci,

(3.6)
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where H.c. denotes the Hermitian conjugate of the parenthesised expression in front. For L large the second
term can be neglected. For odd L the second term vanishes. Thus by restriction to an odd number of
particles, one can proceed the diagonalisation procedure with the Hamiltonian

H =
L

2
−

L
i=1

λ

2


c†i ci+1 + γc†i c

†
i+1


+H.c.+ c†i ci. (3.7)

Next, one performs a Fourier transform to decouple the Hamiltonian into a direct product of Hilbert spaces
preserving the fermionic anti-commutation relations. Let φp = 2πp/L, then the operators ci are given in the
new operators bp as

cj =
1√
L

L/2
p=−L/2

exp(−ijφp)bp, (3.8)

where the summation runs over all possible momenta. Applying the Fourier transform (3.8) to the Hamil-
tonian (3.7) results in

H =
L

2
− (λ+ 1)b†0b0 −

L/2
p=1

(λ cosφp + 1)(b†pbp + b†−pb−p)− iγλ sinφp(b
†
pb

†
−p + bpb−p). (3.9)

The Hilbert space decomposes into non-interacting subspaces. The space of zero momentum is two dimen-
sional and already diagonal, whereas the other subspaces are four dimensional and non-diagonal.

In order to diagonalise the remaining subspaces in the Hamiltonian (3.9) let αp = (λ cosφp + 1), βp =
λγ sinφp and use then the canonically transformed operators

ηk = α̃kb−k − iβ̃kb
†
k, (3.10)

with

α̃k =
Λk − αk

2 (Λ2
k − Λkαk)

,

β̃k =
βk

2 (Λ2
k − Λkαk)

and

Λk =

α2
k + β2

k. (3.11)

In the new creation and annihilation operators η†k and ηk our Hamiltonian reads

H =

L/2
k=−L/2

Λkη
†
kηk − 1

2


k

Λk. (3.12)

Clearly, the ground state of the system is given by the Fock vacuum in the fermionic basis. Although the
vacuum state is separable in the fermionic basis this does not have to hold for the computational basis,
since the Jordan-Wigner transformation is a global unitary transformation. To draw conclusions about the
entanglement properties of the ground state one has to study the ground state in the computational basis.

3.1.2 Expectation values of Pauli operators

In order to calculate the three-particle [98] and four-particle reduced density matrices of the ground state
|0⟩ of our system one has to trace out all particles but three and four, respectively. Alternatively one can
choose a local operator basis on each system, which is not to be traced out and calculate the one-point up
to four-point correlators to recover the reduced density matrix. For the reduced states on the three particles
i, j and k and the four particles i, j, k and l this would yield

ϱijk =
1

8


m,n,o

⟨σm
i σ

n
j σ

o
k⟩|0⟩σm

i σ
n
j σ

o
k and (3.13)

ϱijkl =
1

16


m,n,o,p

⟨σm
i σ

n
j σ

o
kσ

p
l ⟩|0⟩σm

i σ
n
j σ

o
kσ

p
l , (3.14)
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where each of the summations m, n, o and p run over {x, y, z, 0}. In order to calculate the expectation values

⟨σα1
i1
. . . σαk

ik
⟩|0⟩ one needs to express the Pauli operators in terms of the fermionic operators η†k and ηk. It is

σx
l = (cl + c†l )

l−1
i=1

(c†i + ci)(c
†
i − ci),

σz
l = −(c†l + cl)(c

†
l − cl),

σy
l = −i(c†l − cl)

l−1
i=1

(c†i + ci)(c
†
i − ci) (3.15)

and thus the Pauli operators are products of

Al = cl + c†l =
1√
L


q


η†−q + ηq


(αq + iβq)e

iφql, (3.16)

Bl = cl − c†l =
1√
L


q


−η†−q + ηq


(αq − iβq)e

iφql, (3.17)

which are linear in the creation and annihilation operators η†i and ηi, respectively. The expectation values
of arbitrary tensor products of

σx
l = Al

l−1
i=1

AiBi,

σz
l = −AiBi,

σy
l = −iBl

l−1
i=1

AiBi, (3.18)

are then monomials in the fermionic creation and annihilation operators. These can be evaluated using the
Wick theorem, which states the equality

⟨O1 · · · On⟩|0⟩ = ⟨O1O2⟩|0⟩⟨O3 · · · On⟩|0⟩ − ⟨O1O3⟩|0⟩⟨O2O4 · · · On⟩|0⟩ + ⟨O1O4⟩|0⟩ · · · , (3.19)

where Oi can be any operator Aj or Bk. Successive application of the theorem reduces the expectation values
in (3.13) and its four-particle counterpart (3.14) to products of the two-point expectation values ⟨AlAk⟩|0⟩,
⟨AlBk⟩|0⟩ and ⟨BlBk⟩|0⟩. Using Eqs. (3.16) and (3.17) and setting r = k − l one can calculate these to be

⟨AlAk⟩|0⟩ = δlk (3.20)

⟨AlBk⟩|0⟩ =
2

π

 π

0

dφ(cosφr (1 + λ cosφ)− γλ sinφ sinφr)
1

Λφ
(3.21)

⟨BlBk⟩|0⟩ = −δlk (3.22)

in the thermodynamic limit. For finite L Eq. (3.21) is given by

⟨AlBk⟩|0⟩ =
1

L


q

1

Λq
(cos rφq(1 + λ cosφq)− γλ sinφq sin rφq). (3.23)

To evaluate ⟨σm
i σ

n
j σ

o
k⟩|0⟩ and ⟨σm

i σ
n
j σ

o
kσ

p
l ⟩|0⟩ we express the Pauli operators in terms of Aj or Bk. Then

proceed with the general scheme by Ref. [99]. Reorder the operators with respect to the fermionic commu-
tation relations, such that all Al are in front of the Bl and both are in ascending order. After this step the
expressions look like

± ⟨Ai1 ...AikBj1 ...Bjk⟩|0⟩. (3.24)
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Applying the Wick theorem iteratively one obtains the following Pfaffian

± pf



0 ⟨Ai1Ai2⟩|0⟩ ... ⟨Ai1Aik⟩|0⟩ ⟨Ai1Bj1⟩|0⟩ ... ⟨Ai1Bjk⟩|0⟩
−⟨Ai1Ai2⟩|0⟩ 0 ⟨Ai2Aik⟩|0⟩ ⟨Ai2Bj1⟩|0⟩ ⟨Ai2Bjk⟩|0⟩

...
...

...
. . . ⟨Aik−1

Aik⟩|0⟩ ⟨Aik−1
Bj1⟩|0⟩ ⟨Aik−1

Bjk⟩|0⟩
0 ⟨AikBj1⟩|0⟩ ... ⟨AikBjk⟩|0⟩

0 ... ⟨Bj1Bjk⟩|0⟩
...

. . . ⟨Bjk−1
Bjk⟩|0⟩
0


. (3.25)

Note that the upper left and the lower right k × k block of this Pfaffian are zero, since we have i1 < i2 <
· · · < ik and j1 < j2 < · · · < jk together with (3.20) and (3.22). Such a Pfaffian can be expressed as

pf


0 M

−MT 0


= (−1)

k(k−1)
2 detM (3.26)

and therefore we have

⟨Ai1 ...AikBj1 ...Bjk⟩|0⟩ = (−1)
k(k−1)

2


Gj1−i1 ... Gjk−i1
...

...
Gj1−ik ... Gjk−ik

 . (3.27)

where Gk−l = ⟨AlBk⟩|0⟩.
A list of all non-zero expectation values of the four-site Pauli operators ⟨σm

i σ
n
j σ

o
kσ

p
l ⟩|0⟩ can be found in

Appendix B.

3.2 Genuine multiparticle entanglement in reduced states

Now that we have the three and four particle reduced density matrices of the ground state of the transverse
XY -model available, we can investigate these with respect to the question whether these states are genuine
multiparticle entangled. That is especially the question, how the spatial distribution of the three, respectively
particles within the chain affects the amount of genuine multiparticle entanglement they share. To measure
the genuine multiparticle entanglement we use the genuine multiparticle negativity [15] given by Eq. (1.30) as
entanglement monotone. Furthermore, we apply a separability algorithm to three-particle states not detected
by our entanglement monotone to prove their biseparability. That way we obtain a complete picture of the
distribution of genuine multiparticle entanglement in the chain.

In the following, we focus on the transverse Ising model (γ = 1), but our approach can be straightforwardly
extended to the XY -model.

3.2.1 Separability verification

In our work we supplement the genuine multiparticle negativity [15] with a separability algorithm [56, 57].
The idea of the algorithm is to decompose ϱ into two biseparable parts

ϱ = (1− p)ϱa + pϱb, (3.28)

such that ϱb is a statistical mixture of pure separable states and ϱa is within the ball of separable states
around the completely mixed state [100]. The algorithm is performed iteratively such that the purity of ϱa
is decreased with each successful step until ϱa lies within the set of separable states proving the separability
of ϱ.

Given an input state ϱ, we define ϱ = ϱ0 and iterate the following procedure:
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Figure 3.2: The genuine negativity Nρ (for L → ∞) as a function of λ for three- and four-particle reduced
states in different spatial arrangements. On the left the values for three (III) or four (IIII) consecutive
particles are shown. On the right hand side, spatial arrangements for three and four particles, which contain
a single vacancy (denoted by 0) are shown. Here, II0I denotes a three-particle reduced state in the qubits
{i, i + 1, i + 3} and II0II denotes a four-particle reduced state in the qubits {i, i + 1, i + 3, i + 4} etc. (see
text for further details).

• Find a pure biseparable state |ψk⟩, which has large overlap with
√
ϱk. It will add to the part ϱb in the

decomposition (3.28). We take random states and choose the one with the largest overlap.

• Choose 0 ≤ εk ≤ 1, such that ϱk+1 = 1
1−εk

(ϱk − εk|ψk⟩⟨ψk|) is positive semidefinite. This ensures that

ϱ is indeed a convex combination of all |ψk⟩⟨ψk| and ϱk+1. Note that the algorithm seems to be more
reliable if εk is significantly smaller than the smallest eigenvalue of ϱ.

• Check whether tr(ϱk+1
2) < 1

7 and thus if ϱk+1 is separable for some bipartition [100].

• If this is the case, than the algorithm finishes and ϱ is separable, else continue until some maximal
iteration number is reached.

In practice the algorithm performs good on all full rank states if, however, the state has eigenvalues close to
zero it fails to detect separable states as such. This is due to the fact that ρ0 is initially close to the border
of separable states and hence during iterations ρk might leave the set of separable states. In such a case the
algorithm cannot bring back ρk into the separable ball around the completely mixed state and the algorithm
does not detect the state as separable.

Using local filtering one can significantly improve the algorithms ability to detect separable states with
small eigenvalues. The idea is to apply invertible local matrices to the state ϱ →→ F1⊗F2⊗F3ϱF†

1 ⊗F†
2 ⊗F†

3 ,
such that the smallest eigenvalue of the normalised new state increases. This new states is then more likely to
be detected by the algorithm if it is separable. Since both states are connected by invertible local operations
the separability of one state implies the separability of the other. Using this modification we can on the one
hand decrease the number of iterations the algorithm needs to show the separability of a separable state. On
the other hand we are able to detect separable states, which are not detected by the unmodified algorithm.

3.2.2 Entanglement in three-qubit and four-qubit states

Let us start with the three-particle marginals of the ground state of the Ising model. Consider the particles
i, j and k in the systems ground state. For the Ising model we can always set i to be zero, since the XY -
Hamiltonian is translationally invariant and has periodic boundary conditions. The spatial arrangement of
the particles is then completely described by (α, β) = (j− i, k− j), where (α, β) and (β, α) lead to the same
reduced states due to mirror symmetry and hence one can choose α ≤ β without loss of generality.

As a first task, we determined explicitly the reduced three-qubit states using the methods of Ref. [94–97],
detailed expressions are given in Section 3.1.2. Evaluating the genuine multiparticle negativity for different
spatial constellations in the thermodynamic limit L → ∞ we find that for (1, 1) and (1, 2) the reduced
marginals of the ground state are genuine multiparticle entangled in the vicinity of λ = 1 (see Fig. 3.2) and
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Figure 3.3: The number of iteration steps of the separability algorithm needed to show separability is shown
with respect to the coupling parameter λ for the particle constellations (1, 3) (right) as well as for (2, 2) (left).
For most cases the algorithm converges in less than 104 steps proving the separability of the respective states.
For λ = 0 we know that the reduced state is pure and separable. For λ → 0 the underlying state has small
eigenvalues. Here the algorithm does not prove separability, even though these states are separable as well.

no entanglement is found if one separates the particles further. As the criterion of PPT mixtures is in general
only a sufficient criterion for entanglement, the question arises whether for the separated configurations the
reduced states are indeed biseparable. Concerning this point, it it first worth mentioning that so far no
example of a genuinely entangled three-qubit state, which cannot be detected by the PPT mixture approach
is known. In our case, we can show even explicitly, using the algorithm for proving separability from
Ref. [56, 57] that the states are separable if the qubits are separated further (see Fig. 3.3). Using these novel
results we also conclude that the genuine three-particle entanglement in the ground state stays short ranged
and falls off to zero. It answers a discussion recently raised in Ref. [48]:In this reference, lower bounds on the
entanglement were computed and no entanglement in the configuration (1, 2) was found, so it remained open,
whether this or other configurations were separable. This makes us confident that the genuine multiparticle
negativity is a well-suited tool for our analysis.

As in the three-particle case, the density matrices of four particles i < j < k < l depend on the spacing
between the particles α = j − i, β = k − j and δ = l − k and the coupling parameter λ only. Here we may
choose α ≤ δ due to symmetry.

We find that there are three spatial arrangements with non-zero genuine negativity. These are the
tightest packed constellations (1, 1, 1) and the constellations (1, 1, 2) and (1, 2, 1). Further separated constel-
lations yield a zero genuine negativity. We observe that with increasing separation the four-particle genuine
negativity decreases with increasing separation. This is similar to the three particle case. On the other
hand, the genuine negativity for the four-particle arrangements with one intermediate particle (1, 1, 2) and
(1, 2, 1) is much larger than the comparable three-particle case (1, 2) (see Fig. 3.2). Taking into account
that for the tightest conformations (1, 1) and (1, 1, 1), respectively, the values are quite close to each other,
the four-particle genuine multiparticle entanglement seems to be more uniformly distributed throughout the
system.

3.3 Finite-size scaling

If one instead of the genuine multiparticle negativity plots its first derivative with respect to the coupling
parameter λ (see Fig. 3.4), one observes a divergence, which indicates that the system undergoes a phase
transition. We study it in more detail using the finite size scaling analysis [101, 102]. This analysis is based
on the idea that close to the phase transition at λc the behaviour of a diverging quantity P (L)(λ) for finite
system sizes L is governed by the system size L and a rescaled variable L/ξ only, with ξ being the correlation
length. In the case of a logarithmic singularity of P (L)(λ), the finite-size scaling ansatz asserts the existence
of a function Q, such that for finite L and λ close to the critical value [102]

P (L)(λ)− P (L)(λ0) ∼ Q(L
1
ν |λ− λc|)−Q(L

1
ν |λ0 − λc|). (3.29)
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Figure 3.4: In the thermodynamic limit the first derivative of the genuine negativity with respect to λ
diverges at the quantum phase transition. For finite chain length L = 11 (dotted line), L = 41 (dashed
dotted line) and L = 101 in (dashed line) there is a minimum in the vicinity of the critical point λc = 1,
which gets smaller for increasing L, diverging in the limit L→ ∞. The subplot shows the genuine negativity
depending on λ for different chain lengths in a larger region around the critical point.

Here ν is the critical exponent, which governs the divergence of the correlation length ξ ∼ |λ − λc|−ν close
to the critical value as L→ ∞. For the ansatz to consistently recover

P (∞)(λ) ∼ C∞ ln |λ− λc| as λ→ λc (3.30)

in the thermodynamic limit, one sets Q(z) ∼ C∞ ln z for z → ∞. Provided that Q(z) = const. as z → 0

P (L)(λc(L)) ∼ −C∞
ν

lnL+ const. (3.31)

the minimum in P (L) at the pseudo-critical value diverges with the system size L, such that the Eqs. (3.30)
and (3.31) allow to determine the critical exponent ν.

3.3.1 Scaling for three and four particles

For the two-particle entanglement, it was already shown that finite-size scaling holds [30]. In the multiparticle
case, the quantity of interest is the derivative of the multiparticle negativity. So we vary the particle number

L, keeping the arrangement (1, 1) fixed, and study the three-particle genuine negativity N
(L)
ρ together with

its first derivative ∂λN
(L)
ρ (see Fig. 3.4). One observes a logarithmic divergence of ∂λN

(∞)
ρ at λc = 1. This

is where the quantum phase transition occurs. There is distinct minimum in ∂λN
(L)
ρ for finite system sizes

L at λc(L), which we take to be the pseudo-critical value. We find that it approaches the critical value like
λc(L)− λc ∼ L−κ with a shift exponent κ = 2.19 1.

Fitting the expected behaviour to our data as done in Fig. 3.5, one recovers the critical exponent, which
is known to be ν = 1, since

∂λN
(∞)
ϱ = 0.170 ln(|λ− λc|) + 0.267 (3.32)

∂λN
(L)
ϱ (λc(L)) = −0.170 lnL+ 0.191 , (3.33)

for sufficiently big L. We performed the same analysis on the genuine negativity for the arrangements (1, 2)
and observed similar qualitative results. Note that the numerical accuracy of the fitting procedure is higher
than the displayed accuracy, a more detailed discussion is given in the next parapraph.

The finite-size scaling analysis shows that the behaviour of the genuine multiparticle entanglement close
to the critical point is governed by the quantum phase transition. A divergent behaviour alone may be
expected from the results of Ref. [33], as the reduced two-particle density matrix of the ground state itself is

1In many systems the shift exponent κ equals the inverse of critical exponent ν of the diverging correlation length [102]. In
our case, however, this turns not out to be the case.
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Figure 3.5: Evaluation of the minima for different chain lengths and the divergence in the thermodynamic
limit (circles) of the first derivative of the genuine negativity for three consecutive particles shows the
behaviour expected (lines) from the scaling ansatz for a logarithmic divergence. In the upper graph the
divergence of the genuine negativity is plotted with respect to the coupling parameter λ close to the critical
point λc = 1. The lower plot shows that minimum at the pseudo-critical value λc(L) scales linear with the
logarithm of the chain length L.

non-analytical 2. Indeed many investigations of lower bounds on genuine multiparticle entanglement show
this behaviour [43–49]. On the flip side none of these investigations allowed one to draw conclusions with
respect to the critical attributes of the system. The finite-size scaling, however, shows that multiparticle
entanglement faithfully represents important properties of the spin system at the critical point, moreover, it
may be used for the extrapolation of critical exponents from finite-size numerical simulations.

The finite-size scaling analysis for four consecutive particles (1, 1, 1) yields results similar to the three-
particle case but is more subjected to numerical errors due to error propagation. For separations (1, 2, 1)
and (1, 1, 2) the first derivative of the genuine negativity shows a qualitatively similar scaling behaviour as
in the case where all four particles are in succession.

The scaling analysis in the case of four closely packed particles (1, 1, 1) is along the line of the three-
particle case. It yields similar results as in the three-particle case (see Fig. 3.6)

∂λN
(∞)
ϱ = 0.20 ln(|λ− λc|) + 0.36 (3.34)

∂λL
(L)
ϱ (λc(L)) = −0.20 lnL+ 0.27. (3.35)

The negative quotient of the logarithmic prefactors again give way to the expected critical exponent of the
diverging correlation length ν = 1. Due to numerical precision, however, the determination of the position
and value of the minima was more subtle than in the three particle case. Specifically, a faithful determination
of the position of the minima was impossible for L > 33 due to numerical inaccuracies, which we discuss in
the next section in this Appendix. The determination of the absolute value of the minima, however, suffered
less from these problems and made it possible to confirm the expected scaling.

3.3.2 Discussion of numerical precision

For the derivation of our results we make use of the genuine negativity [15], which is implemented via
semidefinite programming. It provides an upper bound of how far the numerical value obtained and the
global optimum are apart. One can take this bound as a conservative error for the genuine negativity. In
our calculations the absolute error of the genuine negativity is of the order of 10−14. This error is negligible
if one considers the genuine negativity itself. For the finite-size scaling analysis, however, this error has to
be taken into account. Recall that in the scaling analysis one has to extract several minima of the first

2But note that the argument of Ref. [33] in the strict sense concerns only entanglement in k-particle marginals of a ground
state of an k-body Hamiltonian.
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Figure 3.6: Evaluation of the minima for different chain lengths and the divergence in the thermodynamic
limit (circles) of the first derivative of the genuine negativity for four consecutive particles shows the scaling
behaviour expected (lines) from the scaling ansatz for a logarithmic divergence. On top the genuine negativity
is plotted with respect to λ diverging logarithmically at the critical point. The mid plot confirms the ansatz
made with respect the L-dependence of position of the minima and the lower plot shows, the predicted
behaviour of the value of the minima with respect to different chain length.

derivative of the genuine negativity. The first derivative is approximated with the central finite difference
method

f ′ ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
(3.36)

and the forward and backward finite differences close to the divergence

f ′ ≈ −25f(x) + 48f(x+ h)− 36f(x+ 2h) + 16f(x+ 3h)− 3f(x+ 4h)

12h

f ′ ≈ +25f(x)− 48f(x− h) + 36f(x− 2h)− 16f(x− 3h) + 3f(x− 4h)

12h
. (3.37)

We found h = 10−7 to give us optimal results. The absolute error of the genuine negativity, results in an
absolute leading error in the first derivative. It is of the order of 10−7 and hence the overall precision in
estimating the position and absolute value of the minimum in the first derivative of the genuine negativity is
limited. This directly influences how well one can perform the finite-size scaling analysis. In the case of three
(1, 1) and four (1, 1, 1) consecutive particles one can find the position of these minima with sufficient high
precision up to L = 33 particles and their values up to L = 100 particles, which is sufficient for the finite-size
scaling analysis. For a larger number of particles, however, the errors of the positions and values of the
minima caused growing errors in the coefficients of the fitting functions. This finally makes the extraction
of the critical exponent ν impossible. Hence, we omitted a quantitative finite-size scaling analysis in these
cases.

3.4 Conclusions

Using the Ising model in a transverse magnetic field, we investigated the connection between genuine mul-
tiparticle entanglement and quantum phase transitions. We identified the configurations of three and four
particles where entanglement is present and showed that the derivative of the genuine multiparticle negativ-
ity diverges logarithmically at the critical points. We further confirmed that this quantity obeys a finite-size
scaling behaviour close to the quantum phase transition.

Besides its fundamental interest, there are several consequences and applications of our work. First,
as our method allows the direct study of multiparticle entanglement, it can be used to complete existing
indirect results on multiparticle entanglement. To give an example, in Ref. [34] the existence of multiparticle
entanglement in the one-dimensional XYZ-model was concluded indirectly from monogamy relations, and
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possible connections to phase transitions were found. Our approach allows one to verify these results in a
direct manner. Similarly in Ref. [98] the two-partite negativities for different splittings of three particles in
the XY -model were studied, our methods can now decide whether these bipartite quantities are connected
to genuine multiparticle entanglement. Further, in Ref. [49] certain three-particle reduced states could
neither be detected as genuine multiparticle entangled nor shown to be biseparable. We expect that an
application of our method would solve this issue. Second, our results demonstrate the usefulness of the
genuine multiparticle negativity to study many-body systems. This makes it applicable to further systems,
such as dynamical phase transitions [103], quenching dynamics, or the study of symmetry breaking [49].



36 CHAPTER 3. GENUINE MULTIPARTICLE ENTANGLEMENT IN SPIN CHAINS



Chapter 4

Generalised stabiliser formalism

It is possible to commit no mistakes and still lose. That is not a weakness; that is life.
David Kemper

In this chapter a generalisation to the stabiliser formalism defined in Section 1.4.1 will be discussed.
Therefore, stabiliser groups and subgroups thereof will be considered as symmetry groups and stabilised
states, which are invariant under the action of these symmetry groups shall be introduced. Finally, a
method will be provided to identify and classify these symmetry groups with respect to LC-equivalence.

The chapter is organised as follows: First, we introduce the notion of stabilised states and discuss
relations to the stabiliser formalism. Second, we provide an efficient method to generate subgroups of a
stabiliser group. Finally, we classify the symmetry groups with respect to LC-equivalence and introduce a
method to obtain all classes.

4.1 Stabilised states

Recall from Paragraph 1.4.1 that the main idea of the stabiliser formalism was to use a maximal commuting
subgroup S of the n-qubit Pauli group

Gn = {ασj1 ⊗ σj2 ⊗ · · · ⊗ σjn |jk ∈ {0, 1, 2, 3}, α ∈ {1,−1, i,−i}} , (4.1)

to define the corresponding stabiliser state |ψS⟩ as common eigenstate to eigenvalue +1 for all elements of
the subgroup.

Contrary to an unique eigenstate stabilised states define a family of mixed states: the stabilised states,
which share S as a symmetry group. ϱS is stabilised with respect to S, iff

sϱSs† = ϱS (4.2)

for all s ∈ S.
For a given stabiliser group S let {g1, g2, . . . , gn} be a set of generators. Corresponding to this set there

are common eigenstates
gi|a1a2 . . . an⟩ = ai|a1a2 . . . an⟩, ai ∈ {+,−} , (4.3)

which form the stabiliser basis in the n-qubit Hilbert space. In this case the following holds true:

Lemma 4.1. ϱS is diagonal in the basis {|a1a2 . . . an⟩}.
Proof. Each operator can be expressed with respect to the stabiliser basis as

ϱS =


a1,...,an,b1...,bn∈{±}
Fa1...an,b1...bn |a1 . . . an⟩⟨b1 . . . bn|, (4.4)

where Fa1...an,b1...bn = ⟨a1 . . . an|ϱSb1 . . . bn⟩ are the coefficients of ϱS in the given basis. Due to the symmetry
giϱSgi† = ϱS one has

aibiFa1...an,b1...bn |a1 . . . an⟩⟨b1 . . . bn| = Fa1...an,b1...bn |a1 . . . an⟩⟨b1 . . . bn|. (4.5)

37
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This equation is satisfied if ai = bi = ±1 for all i or Fa1...an,b1...bn = 0 else. That is equivalent to: all
off-diagonal elements Fa1...an,b1...bn vanish.

In this case stabilised states are simply diagonal in the basis of common eigenvectors of the stabiliser
group. This also includes graph-diagonal states, which have been introduced in Section 2.2.1.

4.1.1 Stabilised states of stabiliser subgroups

If one sticks to the idea to use symmetries to define state families, then there is a quite natural extension to
the formalism introduced above.

Consider subgroups of stabiliser groups, then the definition of stabilised states can be extended to these
subgroups. Let S be a stabiliser group and T be some subgroup of S then ϱT is stabilised by T , iff

tϱT t
† = ϱT (4.6)

for all t ∈ T . Henceforth, non-maximal commuting subgroups of the Pauli group will be referred to as
stabiliser subgroups.

If we denote SS the set of all state stabilised by S and by ST the set of states stabilised by T , then
SS ⊂ ST . Or in terms of symmetry one might say that the symmetry group S contains the symmetry group
T . In other words: the symmetry group T puts fewer constraints onto the set of T symmetric states ST

than S.
Note that since T ⊂ S ⊂ Gn, T is an Abelian subgroup of the n-qubit Pauli group. Furthermore, one

can still find a set of algebraic independent generators {g1, . . . , gk} with k < n, such that the generators
generate T . Since all the generators commute the subgroup has |T | = 2k elements.

Lemma 4.2. For each subgroup T of S the set of generators {g1, . . . , gk} of T can be extended to a generator
set {g1, . . . , gk, gk+1, . . . , gn} of S.

Proof. Let T be a subgroup of the stabiliser group S and {g1, . . . , gk} be a generator set of T .
One can find generators {gk+1, . . . , gn} by the following itterative procedure.

1. Choose gk+1 ∈ S/T arbitrary. Then the generators in {g1, . . . , gk+1} generate a new subgroup T ′ of S
with 2k+1 elements.

2. If k + 1 = n, then T ′ ⊂ S and |T ′| = |S|. That is T ′ = S hence the generator set {g1, . . . , gk+1}
generates S. If k + 1 < n then denote T ′ ≡ T and proceed the iteration.

Let T be a subgroup of the stabiliser group S and ϱT be stabilised by T . In this case we cannot use the
Projectors onto the stabiliser states of S to describe the state as done in Lemma 4.1. There is, however,
another canonical way to describe the set of T -stabilised states as a multi-parameter family.

Therefore, consider as basis in operator space the n-fold tensor product B = P⊗n of the single qubit
operator basis P = {σi}3i=0. Then every state ϱ can be expressed in terms of this basis as

ϱ =
1

2n


i1...in

tr(ϱσi1 ⊗ · · · ⊗ σin)σi1 ⊗ · · · ⊗ σin . (4.7)

Similar to the proof of Lemma 4.1 one can show that

tr(ϱb) = 0 (4.8)

for all b ∈ B/BT , where
BT = {b ∈ B| [b, t] = 0 for all t ∈ T} . (4.9)

Corollary. Let ϱT be stabilised by T , then ϱT can be written as

ϱT =
1

2n


b∈BT

pbb, (4.10)

where the pb are real and BT = {b ∈ B| [b, t] = 0 for all t ∈ T}.
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Example 4.1. A prominent example of such a state family are the well known two-qubit X-states [104–106].
The density matrices of these states have non-vanishing entries only on the diagonal and anti-diagonal. That
is the only non-vanishing coefficients in Eq. (4.10) appear in front of 1⊗1, 1⊗σz, σz ⊗1, σz ⊗σz, σx ⊗σx,
σx ⊗ σy, σy ⊗ σx and σy ⊗ σy.

Now consider the two-qubit stabiliser subgroup T generated by the single generator t1 = σz ⊗ σz. The
states stabilised by T are exactly the two-qubit X-states, since the non-vanishing coefficients in Eq. 4.10 are
given by

BT = {1⊗ 1,1⊗ σz, σz ⊗ 1, σz ⊗ σz, σx ⊗ σx, σx ⊗ σy, σy ⊗ σx, σy ⊗ σy} . (4.11)

Note that X-states first have been algebraically described using the set BT by Rau [107]. Moreover, he
extended this description to generalised n-qubit X-states [108]. In the framework of stabilised states these

generalised X-states are stabilised by the stabiliser subgroup generated by

gi = Z(1)Z(i+1)

n−1

i=1
.

The novelty of our approach is that certain widely used state classes such as graph-diagonal states or
X-states arise naturally as stabilised states, offering a single framework to characterise and study these
states.

4.2 Efficient generation of subgroups

As a direct consequence of Lemma 4.2 every possible subgroup T ⊂ S arises from a suitable generator set of
S by removing some of its generators.

This procedure is quite inefficient, since many generator sets obtained this way will generate the same
subgroup. Hence, a method to obtain generator sets, which uniquely correspond to a subgroup will be
developed.

At first, let {g1, . . . , gn} be a fixed set of generators of S. Since the gi generate S all other possible
generator sets {g̃1, . . . , g̃n} can be expressed with respect to {gi}ni=1 as

g̃1 = ga11
1 ga12

2 . . . ga1n
n

g̃2 = ga21
1 ga22

2 . . . ga2n
n

...

g̃n = gan1
1 gan2

2 . . . gann
n , (4.12)

where the matrix A = (aij) ∈ GF (2)n×n is a matrix over the Galois field of two elements. Note that the
g̃i generate S, iff A is invertible. If on the other hand A is not invertible, then the generators {g̃i}ni=1 are
algebraic dependent and generates a subgroup T of S.

If one identifies the generator change with the corresponding matrices, then one can write any generator
change as

{gi}n A→ {g̃i}n , (4.13)

where {gi}n ≡ {gi}ni=1.
Using this notation a composition of multiple generator changes correspond to left-multiplication of the

corresponding matrices. That is

{gi}n A→ {g̃i}n B→ {g′i}
n
= {gi}n BA→ {g′i}

n
. (4.14)

Before we proceed we review the notion of the row-reduced echelon form of a matrix [109]. To each
matrix A ∈ Fm×n over a finite field there corresponds a matrix in row-reduced echelon form (RREF). For
each matrix there is only one matrix in RREF, which can be attained by a sequence of elementary matrix
operations. These are:

1. Interchange of two rows.

2. Multiplication of a row by a nonzero scalar.

3. Addition of a scalar multiple of one row to another one.



40 CHAPTER 4. GENERALISED STABILISER FORMALISM

Note that in the case of the field GF (2) the second operation can be omitted, since the only non-zero scalar
is unity. The RREF is then defined by the following properties:

1. Each non-zero row has 1 as first non-zero entry.

2. All other entries in the column of such a leading 1 are zero.

3. Any row consisting of zeros only occurs at the bottom of the matrix.

4. A leading 1 in a lower row must occur to the right of its above counterpart.

As an example 
0 1 0 1
0 0 1 0


(4.15)

is in RREF. Furthermore, a matrix A is invertible, iff its RREF is the identity matrix.

Let A be any matrix corresponding to a generator change {gi}n A→ {g̃i}n. In this case the interchange of
two rows i and j corresponds to an exchange of g̃i ↔ g̃j in the new generator set. Moreover, an addition of
a scalar multiple of row i to row j either leaves the generators as they are if the scalar was 0 or transforms
g̃j → g̃ig̃j .

An important observation is:

Corollary. Neither of the elementary operations applied to a matrix, which corresponds to a generator
change, changes the set generated by the corresponding generators.

We can now come back to the problem to find an efficient method to generate all possible subgroups of
S. The original method to do so was the following:

1. Consider all possible generator sets of S. As we have shown that corresponds to the set of all possible
invertible matrices A ∈ GF (2)n×n.

2. Consider all possible ways to remove a generator. That corresponds to to the set of all possible
non-invertible diagonal matrices B ∈ GF (2)n×n.

Combining these two steps yield the set of all non-invertible matrices in GF (2)n×n. For each of these
matrices there is a subgroup T of S generated by the corresponding generators.

Still there are many generator sets generating the same subgroup. To circumvent this ambiguity we use
the fact that each of the corresponding matrices can be transformed into the RREF without changing the
generated subgroup. As a direct consequence two generators generate the same subgroup, if the correspond-
ing matrices have the same RREF. Furthermore, if two generators generate the same subgroup, then the
corresponding generator matrices have the same RREF. In conclusion:

Corollary. Each subgroup T of S is in one to one correspondence with a matrix A ∈ GF (2)n×n in RREF.
If A = 1n, then T = S. For all other A in RREF the corresponding subgroup T is a proper subgroup of S.

We can summarise our results in the following efficient method to find all possible subgroups of S and
corresponding generator sets:

1. First, we fix a generator set {gi}n of S.

2. Second, we write down the set R = {A ∈ GF (2)n×n|A is in RREF} of all possible row reduced echelon
matrices.

3. Last, each A ∈ R labels a subgroup TA of S, which is generated by

t1 = ga11
1 ga12

2 . . . ga1n
n

...

tk = gak1
1 gak2

2 . . . gakn
n , (4.16)

where k is the number of non-zero rows in A.



4.3. LC-EQUIVALENT SUBGROUPS 41

Example 4.2. To illustrate the method consider the example of the 3-qubit star graph stabiliser, which
we discussed in Section 1.4.1. There n = 3 and we fix the generators to be g1 = XZZ, g2 = ZX1 and
g3 = Z1X. Next, we list all possible 3× 3 matrices in GF (2), which are in RREF:

1. 1 0 0
0 1 0
0 0 1


2. 1 0 0

0 1 0
0 0 0


3. 1 0 0

0 1 1
0 0 0


4. 1 0 1

0 1 0
0 0 0



5. 1 0 1
0 1 1
0 0 0


6. 1 0 0

0 0 1
0 0 0


7. 1 1 0

0 0 1
0 0 0


8. 0 1 0

0 0 1
0 0 0



9. 1 0 0
0 0 0
0 0 0


10. 1 0 1

0 0 0
0 0 0


11. 1 1 0

0 0 0
0 0 0


12. 1 1 1

0 0 0
0 0 0



13. 0 1 0
0 0 0
0 0 0


14. 0 1 1

0 0 0
0 0 0


15. 0 0 1

0 0 0
0 0 0



According to Eq. (4.16) the generators of the corresponding subgroups read:

1.

t1 = XZZ

t2 = ZX1

t3 = Z1X

2.

t1 = XZZ

t2 = ZX1

3.

t1 = XZZ

t2 = 1XX

4.

t1 = Y ZY

t2 = ZX1

5.

t1 = Y ZY

t2 = 1XX

6.

t1 = XZZ

t2 = Z1X

7.

t1 = Y Y Z

t2 = Z1X

8.

t1 = ZX1

t2 = Z1X

9.

t1 = XZZ

10.

t1 = Y ZY

11.

t1 = Y Y Z

12.

t1 = XY Y

13.

t1 = ZX1

14.

t1 = 1XX

15.

t1 = Z1X

4.3 LC-equivalent subgroups

As already pointed out for stabiliser states in Section 1.4.2 many stabiliser states are equivalent with respect
to a local Clifford (LC) operation, which can also be seen as a local basis change1. Furthermore, each
stabiliser group is LC-equivalent to a group corresponding to a graph state [61].

1Note, however, that if two stabiliser groups are LU equivalent (local basis change), they are not necessarily LC equivalent
[29].
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Here the LC-classification of stabiliser groups using invariants as discussed in Ref. [27] is extended to
stabiliser subgroups.

Let T and T ′ be two stabiliser subgroups. They are said to be LC-equivalent, iff there exists an element

of the Local Clifford group U ∈ C


n
1 , such that

UTU† = T ′. (4.17)

In that case the corresponding sets of stabilised states are also equivalent. That is

U†STU = ST ′ . (4.18)

To find all possible LC-equivalence classes within the stabiliser subgroups one starts by considering the
set of LC-inequivalent graphs2, since LC-equivalent stabiliser groups would yield LC-equivalent stabiliser
subgroups.

The classification of graphs with respect to LC-equivalence has been achieved up to n = 7 [61] and n = 8
[110].

Let the number of qubits n be fixed, Gn be the set of all LC-inequivalent n-vertex graphs and consider
the corresponding LC-inequivalent stabiliser groups Si. From these one generates all possible subgroups

T (k) =

T

(k)
i


using the method introduced in the last paragraph. Here the superscript (k) denotes the

number of algebraic independent generators generating the subgroup.
Let T and T ′ be two subgroups in T (k), then there are four possibilities concerning the LC-equivalence

of these subgroups:

1. Both subgroups originate from the same stabiliser group and are LC-inequivalent.

2. Both subgroups originate from the same stabiliser group and are LC-equivalent.

3. Both subgroups originate from different stabiliser groups and are LC-inequivalent.

4. Both subgroups originate from different stabiliser groups and are LC-equivalent.

In fact for the LC-classification it is not of relevance, if the subgroups originate from the same or different
subgroups.

To classify the subgroups in T (k) with respect to LC-equivalence we adapt Theorem 1 of Ref. [27]. In
this theorem invariants are provided, which characterise LC-equivalence classes of stabiliser groups. These
invariants are based on the notion of the support of group elements. Let g = ±n

i=1 σαi
, αi ∈ {0, . . . , 3} be

any group element of the n-qubit Pauli group, then the support of this element is given by

supp(g) :=

i ∈ {1, . . . , n}|σ(i)

αi
= 1


. (4.19)

Lemma 4.3. Let T, T ′ ∈ T (k) be two stabiliser subgroups. Then T and T ′ are LC-equivalent, iff there are
generator sets {g1, . . . , gk} for T and {g′1, . . . , g′k} for T ′, such that

supp(gi) = supp(g′i) and supp(glgm) = supp(g′lg
′
m) (4.20)

for all i = 1, . . . , k, 1 ≤ l < m ≤ k.

Proof. To prove this lemma we adopt the proof of Theorem 1 of Ref. [27].
Denote by g(l) the l-th tensor component of g. From Eqs. (4.19) and (4.20) it follows that

g
(l)
i = 1⇔ g

′(l)
i = 1

g
(l)
i = g

(l)
j ⇔ g

′(l)
i = g

′(l)
j . (4.21)

This implies the existence of some permutation πl of {x, y, z}, such that

g
(l)
i = 1 ⇔ g

′(l)
i = 1

g
(l)
i = σα ⇔ g

′(l)
i = σπl(α) for all α ∈ {x, y, z} . (4.22)

2By slight abuse of notation we use the phrase graph and sometimes refer to the corresponding stabiliser group.
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Recall that the Clifford group C1 is the group of all operations, which map σα to σπ(α), where α ∈ {x, y, z},
u = ±1 and π is some permutation of {x, y, z}.

Hence there is for each tensor component l a local Clifford operation mapping g
(l)
i to g

′(l)
i for all i.

The tensor product of these one-qubit Clifford operations then map gi to g′i for all i. Furthermore, the
invertability of these operation ensures the existence of a Clifford operation mapping g′i to gi for all i.

We have just shown that {g1, . . . , gk} and {g′1, . . . , g′k} are LC-equivalent. The LC-equivalence of the
generated groups directly follows.

Example 4.3. As an example consider the two subgroups generated by

t1 = XZZ and t2 = ZX1 (4.23)

and
t′1 = Y ZY and t′2 = ZX1 (4.24)

respectively. For these we have

supp(t1) = ∅, supp(t2) = {3} and supp(t1t2) = ∅ (4.25)

and
supp(t′1) = ∅, supp(t′2) = {3} and supp(t′1t

′
2) = ∅ (4.26)

respectively. According to Lemma 4.3 these two generator sets are LC-equivalent and indeed the permutation
X ↔ Y on the first and Z ↔ Y on the third qubit maps the generator set {t1, t2} to {t′1, t′2}.

4.3.1 LC-classification of subgroups

To provide an unambiguous LC-classification of all possible stabilising subgroups it is convenient to remove
qubit-permutational equivalent subgroups3. That is, two stabilising subgroups T and T ′ are considered
qubit-permutational equivalent if there exists a qubit-permutation Π, such that T = Π(T ′) = {Π(t)|t ∈ T ′}.

Taking this into account one finds all possible LC-equivalent4 stabilising subgroups on n qubits as follows:

1. Let Gn be the set of all LC inequivalent n-qubit graphs.

2. For a fixed k < n generate all subgroups T (k) with k generators using the method introduced in Section
4.2.

3. Within the set T (k) find all qubit-permutational and LC-equivalent subgroups:

(a) Consider all possible generator sets G of T
(k)
1 ∈ T (k). These correspond to invertible k×k matrices

over the finite field GF (2) as showed in Section 4.2.

(b) Add to G all generator sets, which can be achieved by permutation of qubits.

(c) Choose an arbitrary generator set {t′1, . . . , t′k} of T ′.

(d) T and T ′ are LC-equivalent, iff for at least one generator set {t1, . . . , tk} ∈ G

supp(ti) = supp(t′i) and supp(tltm) = supp(t′lt
′
m). (4.27)

(e) Remove T1 and all T ′, which are LC-equivalent from T (k) and start anew until {Ti} = ∅.

Example 4.4. Consider the case of n = 3 and k = 2. For n = 3 there is just one LC-equivalence class.
The graph representing this group is the three-vertex linear graph and the corresponding stabiliser group is
generated by g1 = XZ1, g2 = ZXZ and g3 = 1ZX.

All possible subgroups in T (2) are then given by:

1. {111, XZ1, Y Y Z,ZXZ},

2. {111, X1X,Y XY,ZXZ},
3This is done since qubit-permutations corresponds merely to a relabelling of the qubits.
4By a slight abuse of notation LC-equivalent also refers to qubit-permutational equivalent subgroups.
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3. {111, XZ1, Y XY,ZY Y },

4. {111, X1X,Y Y Z,ZY Y },

5. {111,1ZX, Y XY, Y Y Z},

6. {111,1ZX,ZXZ,ZY Y },

7. {111,1ZX,X1X,XZ1}.

Performing the third step of the procedure above one finds two qubit-permutational and LC-inequivalent
classes: the first contains the subgroups 1-6 and the second class contains solely the subgroup 7.

Using the method above gives a full characterisation of the qubit-permutational and LC-equivalent sym-
metry groups. In Appendix C we listed all LC-inequivalent subgroups for n ≤ 6 and k ≤ 4. Each class is
thereby represented by one of its members.

Note that the symmetry group LC-equivalent to the symmetry group of the generalised X-states also
appear in this list. For n = 2, n = 3, n = 4 and n = 5 the classes are represented by

{11, XZ} , (4.28)

{111,1ZX,X1X,XZ1} , (4.29)

{1111,11XX,1X1X,1XX1, Z11X,Z1X1, ZX11, ZXXX} and (4.30)

{11111,111XX,11X1X,11XX1,1X11X,1X1X1,1XX11,1XXXX,
Z111X,Z11X1, Z1X11, Z1XXX,ZX111, ZX1XX,ZXX1X,ZXXX1} (4.31)

respectively.

4.4 Conclusions

In summary we have generalised the stabiliser formalism bidirectionally. First, arbitrary Abelian subgroups
of the n-qubit Pauli group have been considered as symmetry group instead of maximal Abelian ones. Second,
the notion of stabilised states have been introduced. These include states such as those diagonal in a stabiliser
basis [61] and generalised n-qubit X-states [108]. Furthermore, an efficient method to obtain symmetry
groups from maximal Abelian subgroups of the n-qubit Pauli group was provided and the subgroups were
classified with respect to equivalence under qubit-permutation and local Clifford operations.

Still there are many open questions, which might be worth studying in the future. Recall that within
the graph state formalism stabiliser groups of two graphs are LC-equivalent if the corresponding graphs can
be transformed into each other by local complementation [26, 61, 111]. Naturally, the question arises, if
there is a way to relate graphs or operations thereof to stabiliser subgroups and whether this correspondence
can be used to obtain the LC-equivalence classes. Furthermore, it would be interesting to extend the LC-
classification to a LU-classification to completely remove the ambiguity of basis change.

It is worth to note that stabilised states are a useful theoretical laboratory. They provide multi-parameter
state families, which are described by there symmetries. These symmetries restrict the state space, in which
the stabilised states can live in. It would be interesting to investigate certain aspects such as genuine
multiparticle entanglement on this restricted space, which are hard to grasp on the full state space. Finally,
the question remains whether stabilised states can be used for quantum tasks beyond those, where graph
states have already proven to be useful.



Chapter 5

Semidefinite programming

The aim of science is not to open the door to infinite wisdom, but to set some limit on infinite
error.
Bertold Brecht

This chapter discusses a numerical and theoretical tool of convex optimisation theory for a problem
known as semidefinite programming (SDP) [68]. In semidefinite programming problems one minimises a
linear function subjected to positive semidefinite constraints: an optimisation, which appears quite naturally
in quantum information processing.

To mention but a few examples semidefinite programming is used to obtain the maximum fidelity of a
positive partial transpose distillation protocol [112]. In Ref. [113], semidefinite programming is applied to
design operational criteria that distinguish entangled from separable quantum states. Another approach uses
it to optimise over a certain set of entanglement witnesses [114] to create sufficient separability tests. In the
framework of quantum state discrimination semidefinite programming is used to design optimal strategies and
measurements to discriminate between non-orthogonal quantum states [115, 116]. Further, it was shown in
Ref. [117] that finding a completely positive trace-preserving linear map that maximises the fidelity between
the map itself and certain desired transformations can be cast into a SDP.

This chapter is organised as follows: First, we will review the basic definition of the primal and dual
semidefinite optimisation problem and the main result of duality theory connecting both of them. Second,
we show in detail how to implement the (renormalised) genuine multiparticle negativity with the semidefinite
programming framework CVXOPT and provide some technical remarks on how semidefinite programming
can be used in quantum mechanics. Finally, we discuss how one can exploit the symmetries of a problem to
reduce the computational effort of a semidefinite problem and therefore the time a solver needs to find the
optimal solution.

5.1 Semidefinite program

We start by recalling the notion of a semidefinite programming problem as introduced in Ref. [68]. Note
that in the literature one often refers to a semidefinite programming problem as semidefinite program or
semidefinite problem. Let x⃗ ∈ Rm be the variable and c⃗ ∈ Rm be the problem vector. In a semidefinite
program (SDP) one wants to minimise the linear function f(x⃗) = c⃗T x⃗ with respect to the constraint that
F (x⃗) = F0 +


i xiFi is positive semidefinite1, where Fi = FT

i ∈ Rn×n are symmetric matrices. In a more
compact notion one writes the semidefinite program or primal problem2 as

min
x⃗

c⃗T x⃗ (5.1)

s.t. F (x⃗) = F0 +
m
i=1

xiFi ≥ 0.

1One also writes F (x⃗) ≥ 0 for this condition.
2The phrase primal problem might be used if it is clear, which kind of convex optimisation problem is meant. In our case,

primal problem refers to a semidefinite programming problem. It may also indicate that the corresponding dual problem is of
importance.

45



46 CHAPTER 5. SEMIDEFINITE PROGRAMMING

This optimisation is called convex, since the feasible region {x⃗|F (x⃗) ≥ 0}, the set of all feasible points,
{x⃗ ∈ Rm|F (x⃗) ≥ 0}, is convex and the function being minimised is linear and hence convex. That is for all
feasible x⃗ and y⃗ and for all 0 ≤ λ ≤ 1, the point λx⃗+ (1− λ)y⃗ is again feasible

F (λx⃗+ (1− λ)y⃗) = λF (x⃗) + (1− λ)F (y⃗) ≥ 0. (5.2)

Using the primal problem, one derives the dual semidefinite program, also referred to as dual problem3 by

max
Z

[−tr (F0Z)] (5.3)

s.t. tr (FiZ) = ci for all i = 1, . . . ,m,

Z ≥ 0,

where Z = ZT ∈ Rn×n is subjected to m equality constraints tr(FiZ) = ci and the positive semidefiniteness
condition Z ≥ 0. As in the primal case, a point Z is called feasible if it satisfies all the constraints of the
dual optimisation, i.e., tr (FiZ) = ci and Z ≥ 0.

Note at this point that the dual problem is also a semidefinite program4. Moreover, the dual problem
lower bounds the primal problem and conversely the primal problem upper bounds the dual one, i.e., c⃗T x⃗ ≥
−tr(F0Z) for all feasible points x⃗ and Z. To see this consider the feasible points x⃗ and Z. Since the product
of two positive symmetric matrices is also positive

tr (ZF (x⃗)) ≥ 0. (5.4)

Using tr (FiZ) = ci the left hand side of Eq. (5.4) is then given by the difference of the primal an dual
objective

0 ≤ tr (ZF (x⃗)) =

m
i=1

tr(ZFixi) + tr(ZF0) = c⃗T x⃗+ tr(F0Z). (5.5)

Then, the duality gap η := tr(ZF (x⃗)) denotes the violation of this inequality.
Consider now the optimal value of the primal and dual semidefinite program

p∗ = inf

c⃗T x⃗|F (x⃗) ≥ 0


(5.6)

d∗ = sup

−tr(F0Z)|Z = ZT ≥ 0, tr(FiZ) = ci, i = 1, . . . ,m


. (5.7)

Then, for any feasible point Z and x⃗

−tr(ZF0) ≤ p∗ (5.8)

d∗ ≤ c⃗T x⃗ (5.9)

⇒ d∗ ≤ p∗, (5.10)

respectively. That is, every feasible point x⃗ of the primal problem provides a natural upper bound, whereas
every feasible dual point Z provides a natural lower bound to the optimal values of both problems.

In convex optimisation theory two questions arise. The first one is, under which conditions the primal
and dual objectives are equal, p∗ = d∗, and whether the primal and dual optimal sets

Xopt =

x⃗|F (x⃗) ≥ 0 and c⃗T x⃗ = p∗


and (5.11)

Zopt = {Z|Z ≥ 0, tr(ZFi) = ci, i = 1, . . . ,m and − trF0Z = d∗} (5.12)

are non-empty. The following theorem answers these questions:

Theorem 5.1 (Strong duality theorem). The primal and dual objectives are equal, p∗ = d∗, if either:

1. The primal problem as given by Eq. (5.1) is strictly feasible, i.e., there exists an x⃗ with F (x⃗) > 0.

2. The dual problem as given by Eq. (5.3) is strictly feasible, i.e., there exists a Z with Z = ZT > 0 and
tr(FiZ) = ci for all i = 1, . . . ,m.

The optimal sets Xopt and Zopt are non-empty if both conditions hold.

A proof can be found in [118].

3Technically, the primal and dual problem should be defined using inf and sup, respectively. Here, however, it is assumed,
that strictly feasible points x⃗ and Z satisfying F (x⃗) > 0, Z > 0 and tr(FiZ) = ci exist. In this case inf and sup can be replaced
by min and max, since Theorem 5.1 ensures the non-emptiness of the optimal sets. Hence, inf and sup will be used only if it
cannot be avoided.

4It can be transformed into the form given by Eq. (5.1) as shown in Ref. [68].
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5.2 Central path following algorithm

One of the main features of semidefinite programming next to Theorem 5.1 is the fact that there exit
numerical methods to approximately solve the semidefinite program as given by Eq. (5.1) with certified
precision. Most of the solvers are based on so-called interior point methods, the main ideas of which we
sketch here. For a complete discussion on the subject we refer the reader to Refs. [68, 119] and references
therein.

For the rest of this section, the case, where the feasible sets of the primal and dual problem are non-empty
and the primal and dual objectives are equal p∗ = d∗, is considered. The main idea of interior point methods
is to generate a sequence of feasible points x⃗(k) and Z(k), where x(k) is said to be a suboptimal point and
the dual point Z(k) upper bounds the distance to the unknown primal objective in terms of the duality gap
η(k) = c⃗T x⃗(k) + tr(F0Z

(k)) by

c⃗T x⃗(k) − p∗ ≤ η(k). (5.13)

The points are chosen in such a way that with each step of iteration the duality gap η(k) decreases and the
primal and dual objective converge to the optimum as shown in Fig. 5.1. The iteration terminates if some
pre-specified fault tolerance η(l) < ϵ is reached. The duality gap then not only signals the exit condition but
also guarantees that c⃗T x⃗(l) − p∗ is not greater than ϵ.

1 2 10
0

p∗ = d∗

k

c⃗T x⃗(k)

−tr(F0Z
(k))

Figure 5.1: Primal-dual numerical algorithms generate a sequence of feasible primal x⃗(k) and dual Z(k)

points, such that the primal and dual objective converge to the optimal value and the duality gap decreases.

A canonical way of generating a sequence of points is to stay close to the so-called central path [68].
That is a special path running through the feasible set5, which leads to the optimal set. Note that most
algorithms that solve semidefinite problems generate a sequence of points following this path. In practice
these algorithms need between 5 and 50 steps to converge quite independent of the problem size. Note
that the time needed to compute one step of the iteration scales with the number of variables m and the
dimension of Fi and hence directly influences the overall computationally effort.

To introduce the central path, we first need to consider the barrier function

φ(x⃗) =


log detF (x⃗)−1 if F (x⃗) > 0

∞ else.
(5.14)

This function is finite inside the strictly feasible region and diverges as it approaches the boundary of
{x⃗|F (x⃗) ≥ 0}. Furthermore, it is strictly convex and has an unique minimiser x⃗∗, which one refers to as

5In that sense, “central” refers to all points but the optimal on the path being strictly feasible.
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analytic center
x⃗∗ = argmin

F (x⃗)≥0

φ(x⃗). (5.15)

Using the function in Eq. (5.14), one defines the central path x⃗∗(γ) by

x⃗∗(γ) = argmin log(det[F (x⃗)−1]) (5.16)

s.t. F (x⃗) > 0,

c⃗T x⃗ = γ,

(5.17)

where p∗ < γ < p̄ = sup

c⃗T x⃗|F (x⃗) > 0


. This path passes through the analytic center x⃗∗ and converges to

an optimal point as γ → p∗. The idea of so-called path-following algorithms is then to generate points on or
close to the central path converging towards a sub-optimal point.

5.3 Implementing the renormalised genuine multiparticle negativ-
ity using CVXOPT

Up to this point, the basic notions of semidefinite programming have been reviewed. A brief introduction on
the usage of two common convex optimisation frameworks can be found in the Appendix D.1. In this section,
the steps needed to parse the convex optimisation problem defining the renormalised genuine multiparticle
negativity as given by Eq. (2.1) using CVXOPT shall be discussed. Furthermore, we discuss the possibility
to include symmetries of a quantum state to further improve the performance of the (renormalised) genuine
multiparticle negativity.

Recall that for any quantum state ϱ, the renormalised genuine multiparticle negativity is given by

Ng(ϱ) = − inftr (ϱW) (5.18)

subjected to: W = Pm +QTm
m ,

0 ≤ Pm

0 ≤ Qm ≤ 1 for all partitions m|m̄.

As opposed to the YALMIP implementation, which was done by Jungnitsch in Ref. [69], we have to manually
parse the SDP and therefore have to transform it into the standard form given by Eq. (5.1). That is, the
semidefinite constraints have to be provided in the form of real symmetric matrices Fi instead of complex
Hermitian ones. Furthermore, we have to bring the optimisation goal into the form c⃗T x⃗ and preferably
resolve the equality W = Pm +QTm

m for speed up.
To reformulate the SDP in Eq. (5.18) accordingly one has to perform two steps. First, one has to find a

suitable operator basis, such that one can identify the optimisation variable x⃗ and the problem vector c⃗ of
the problem. Second, one has to reformulate the constraints in terms of symmetric real matrices.

Before these steps are performed, rewrite Eq. (5.18) by explicitly using the equality Qm = (W − Pm)Tm

and hence eliminating Qm as free variable. That is

Ng(ϱ) = − inftr (ϱW) (5.19)

s.t. 0 ≤ Pm,

0 ≤ (W − Pm)Tm ≤ 1 for all partitions m.

The first step is done by choosing a Hermitian operator basis σi, i = 1, . . . ,K, such that tr (σiσj) = δij .

In this basis ϱ =


i ϱ
(i)σi with ϱ

(i) = tr(ϱσi), W =


i w
(i)σi and Pm =


i p

(i)
m σi.

In this representation the optimisation variables are given by w(i) and p
(i)
m for all partitions m and i =

1, . . . ,K. Writing these variables into the separate vectors x⃗w =

w(1), . . . ., w(K)


and x⃗m =


p
(1)
m , . . . ., p

(K)
m


for all partitions m, one can define the problem vector x⃗ by concatenating all these vectors into a single one.
That is for three particles A, B and C

x⃗ = (x⃗w, x⃗A, x⃗B , x⃗C) , (5.20)
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where the subscripts A, B and C denote the three inequivalent partitions A|BC, B|AC and C|AB. Given
x⃗ in the form above, it is possible to identify the problem vector from the given optimisation objective

tr(Wϱ) =

i

w(i)ϱ(i). (5.21)

That is the problem vector c⃗ is given by the concatenation of c⃗w =

ϱ(1), . . . ., ϱ(K)


and c⃗m = 0⃗ for all

partitions m

c⃗ = (c⃗w, c⃗A, c⃗B , c⃗C) . (5.22)

Using x⃗ and c⃗ induced by the choice of the basis above yields

tr(Wϱ) =

i

w(i)ϱ(i) = c⃗T x⃗. (5.23)

In the second step the positivity constraints of the Hermitian complex matrices are replaced by positivity
constraints of real symmetric ones. Note that the complex Hermitian operators W and Pm forming the
semidefinite constraints are linear functions of x⃗. To highlight this dependence we also denote these operators
by W(x⃗) and Pm(x⃗).

Consider an arbitrary complex Hermitian operator A ∈ Ck×k. Every such operator can be decomposed
into a real symmetric and an imaginary anti-symmetric part A = R+ iI, with R, I ∈ Ck×k.

Recall that A is positive semidefinite if and only if for all x⃗ = x⃗R + ix⃗I ∈ Ck

x⃗†Ax⃗ = x⃗TRRx⃗R + 2x⃗TI Ix⃗R + x⃗TI Rx⃗I ≥ 0, (5.24)

where we have used x⃗TI Ix⃗R = −x⃗TRIx⃗I . One can define a linear map, mapping the real and imaginary part
of any Hermitian A to a real symmetric operator φ(A) ∈ R2k×2k. That is

φ(A) :=


R −I
I R


. (5.25)

If one considers r⃗ ∈ R2k with the first k entries labeled by r⃗R ∈ Rk and the second k by r⃗I ∈ Rk, then φ(A)
is positive if and only if

r⃗Tφ(A)r⃗ = r⃗TRRr⃗R + 2r⃗TI Ir⃗R + r⃗TI Rr⃗I ≥ 0. (5.26)

Hence, the positivity constraints of any Hermitian operator can be reformulated as positivity constraint of
a real symmetric operator.

Corollary. A Hermitian operator A ∈ Ck×k is positive (semi)definite if and only if the real symmetric
operator φ(A) ∈ R2k×2k is positive (semi)definite.

Further, since φ is a linear mapping and A(x⃗) is linear in x⃗, φ(A(x⃗)) is also linear in x⃗.

Summarizing the last two steps, the SDP given in Eq. (5.18) can be reformulated in the standard form
as given by Eq. (5.1). That is

Ng(ϱ) = − inf c⃗T x⃗ (5.27)

s.t. 0 ≤ φ(Pm(x⃗)),

0 ≤ φ

[W(x⃗)− Pm(x⃗)]

Tm


≤ 1 for m ∈ {A,B,C} ,

where the constraints are given by real symmetric matrices, which are linear in the variable vector x⃗.

According to the discussion in this section the complete CVXOPT code implementing the renormalised
genuine multiparticle negativity can be found in Listing D.7. The main part of the program is given by the
function gmn in lines 76 to 208, which parses and solves the SDP given by Eq. (5.27).
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5.3.1 Exploiting symmetries

This paragraph discusses, how a general class of symmetries of a state can be used to reduce the number of
variables in the semidefinite program given in Eq. (5.27).

In Ref. [15], the authors noted that for any graph-diagonal state6 the semidefinite program defining the
genuine multiparticle negativity (GMN) can be reformulated as linear program, which drastically reduces the
computational effort necessary to solve the optimisation, which also holds true for the renormalised GMN.
Furthermore, for states, which are permutationally invariant the computational effort can be drastically
reduced as shown in Ref. [120].

The gain in exploiting such symmetries is twofold. The obvious reason is to speed up the run-time
needed to compute the (renormalised) genuine multiparticle negativity for a given state. The other less
obvious reason is that by reducing the problem to the necessary minimum, it in general requires less memory
during computation than the standard implementation. This might even allow to compute the (renormalised)
genuine multiparticle negativity for large systems, which usually do not fit into the computer memory and
hence would require a computer cluster to be computed or would be practically not computable.

Let H = Ck =
n

i=1 C
ki ,
n

i=1 ki = k be the finite dimensional multiparticle Hilbert space of the whole
system. Any mixed state is given by a positive semidefinite operator ϱ ∈ Ck×k with trϱ = 1. Further,
consider the set of linear operations ϕ : Ck×k →→ Ck×k, which are positive7, i.e., ϕ(A) ≥ 0 if A ≥ 0,
and trace class preserving, i.e., tr(ϕ(ϱ)) ≤ 1 for any mixed state ϱ. Then the dual ϕ∗ of ϕ is given by
tr(φ(A†)B) = tr(A†ϕ∗(B)) for all A,B ∈ Ck×k.

Define such an operation ϕ to be a symmetry of a state ϱ iff ϕ(ϱ) = ϱ. Such a symmetry may be used to
further restrict the set of operators Pm and Qm in the definition of the genuine multiparticle negativity as
given by Eq. (5.18).

Lemma 5.2. Let ϱ be a mixed state, ϕ be a symmetry of ϱ and let O ⊂ Ck×k denote the set of all positive
Hermitian operators.

If ϕ commutes with all partial transpositions Tm of the system [ϕ, Tm] = 0, i.e., ϕ(ATm) = ϕ(A)Tm for
all A ∈ Ck×k, then the renormalised genuine multiparticle negativity as given in Eq. (5.18) equals

Ng(ϱ) = − inftr (ϱW) (5.28)

subjected to: W = Pm +QTm
m

0 ≤ Pm, Pm ∈ ϕ∗(O)

0 ≤ Qm ≤ 1, Qm ∈ ϕ∗(O) for all partitions m|m̄.

Proof. To prove this statement it suffices to show that the optima in Eqs. (5.18) and (5.28) are equal.
Let W = Pm + QTm

m be an optimal point of Eq. (5.18). Now map Pm and Qm to P̃m = ϕ∗(Pm) and
Q̃m = ϕ∗(Qm). ϕ is assumed to be positive. By definition of the dual, ϕ∗ is positive as well. Hence, P̃m ≥ 0
and Q̃m ≥ 0. Since tr(ϕ(ϱ)) ≤ 1 and Qm ≤ 1,

tr (ϱ(1− ϕ∗(Qm))) = tr(ϱ)− tr(ϕ(ϱ)Qm) ≥ tr(ϱ)− tr(ϕ(ϱ)) ≥ 0 (5.29)

for all density operators ϱ. That is Q̃m ≤ 1. Using ϕ∗(QTm
m ) = ϕ∗(Qm)Tm it follows that W̃ = P̃m + Q̃Tm

m =
ϕ∗(W ) is a witness of the optimisation given in Eq. (5.28). Furthermore, it yields the same value as the
renormalised genuine negativity as given in Eq. (5.18)

tr (ϱW ) = tr (ϕ(ϱ)W ) = tr (ϱϕ∗(W )) = tr(ϱW̃ ). (5.30)

Conversely, every optimal witness of Eq. (5.28) naturally satisfies the constraints of the optimisation given
in Eq. (5.18) and hence provides a witness of the original optimisation with the same value. It follows that
both semidefinite programs yield the same optimum.

Remark 5.1. In case the image ϕ∗(O) is a proper subspace of O, any orthogonal operator basis in ϕ∗(O)
has less elements than any other orthogonal operator basis in O. Hence the optimisation given by Eq. (5.28)

6At this point it suffices to note that a graph-diagonal state ϱ is invariant under a certain commutative group G consisting
of local unitary transformations. I.e., g†ϱg = ϱ for all g ∈ G.

7For the most general type of quantum operations one demands complete positivity. That is ϕ⊗1n is positive for all identity
maps 1n ∈ Cn×n. Here we do not need this stronger assumption and therefore demand positivity only.
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has less independent variables to optimise over than the original problem given by Eq. (5.27). Given a
suitably designed implementation this can lead to a considerable speed up of the numerical calculation of
the (renormalised) genuine multiparticle negativity.

Moreover, if a state has several symmetries ϕi such that Lemma 5.2 can be applied, then the operators
Pm and Qm can be assumed to lie in the intersection of all subspaces ϕ∗

i (O). That is

Pm, Qm ∈

i

ϕ∗
i (O). (5.31)

Example 5.1. As an example consider the n-qubit Hilbert space H = ⊗n
i=1C2 and an arbitrary stabiliser

subgroup T = {1, g} generated by a single generator g8 as introduced in Paragraph 4.1.1.
We use g to define a projection onto the T -symmetric subspace, the space of operators satisfying A = g†Ag

for all A ∈ Ck×k, which includes the set of T -stabilised states. This projection is given by the linear mapping

ϕT (A) :=
1

2
(A+ g†Ag). (5.32)

Its positivity follows from the fact that g†Ag is positive for all A ≥ 0 and it is trace class preserving since
the trace is cyclic and g†g = 1. Furthermore, due to the tensor product structure of g, ϕg commutes with
all possible transpositions Tm and hence satisfies all requirements of the Lemma above.

Lemma 5.2 then states that given a state ϱT , with ϱT = ϕT (ϱT ), i.e., a T -stabilised state, we can perform
the optimisation according to Eq. (5.28). That is Pm, Qm ∈ ϕ∗

T (O) ⊂ O can be chosen to be Hermitian
operators, such that A = ϕ∗

T (A) = 1
2 (A + gAg†) for all Pm, Qm. To determine a suitable basis of ϕ∗

T (O)
consider the orthogonal Hermitian operator basis

B = {a1 ⊗ a2 ⊗ · · · ⊗ an|ai ∈ {12, σx, σy, σz}} , (5.33)

which we used already in Paragraph 4.1.1. Since our mapping ϕT is linear, ϕ∗
T (O) is given by the span of

ϕ∗
T (B).
Recall that for each A ∈ B, either g†Ag = A and thus ϕ∗

T (A) = A or g†Ag = −A9 and thus ϕ∗
T (A) = 0.

Then BT = {A ∈ B| [A, g] = 0 for all g ∈ T} is a Hermitian operator basis of ϕ∗
T (O). Rephrased: The

operators Pm and Qm can be chosen to be invariant under the symmetry group T .
In case g ̸= 1 the basis BT has strictly fewer elements than B and hence the semidefinite program given

by Eq. (5.28) has fewer variables than the original optimisation problem given by Eq. (5.18), which results
in a noticeable speed up.

Example 5.2. Recall the two-qubit X-states, which have been introduced in Example 4.1. These states are
stabilised by the stabiliser subgroup T generated by the single generator t1 = σz ⊗σz. In the two qubit case
there are only two operators P and Q to optimise to compute the genuine multiparticle negativity, which
coincides with the bipartite negativity in this case. According to our discussion the operators P and Q can
be expressed using the set

BT = {1⊗ 1,1⊗ σz, σz ⊗ 1, σz ⊗ σz, σx ⊗ σx, σx ⊗ σy, σy ⊗ σx, σy ⊗ σy} . (5.34)

That is P =


b∈BT
pbb and Q =


b∈BT

qbb. Hence, one has to optimise over 8 free parameters per operator,
which is half the number of variables one would usually have.

Remark 5.2. In a more general scenario, we consider the case, where a state ϱ is invariant under an arbitrary
stabiliser subgroup T . I.e., ϕg(ϱ) = ϱ for all t ∈ T . In this case the projection onto the T -symmetric subspace
is given by

ϕT (A) :=
1

|T |

t∈T

t†At, (5.35)

where |T | is the cardinality of the subgroup. In this case by a similar reasoning as in the example above one
can show, that ϕT satisfies all conditions of Lemma 5.2. As a consequence one may without loss of generality
chose the operators Pm and Qm from the subspace spanned by

BT = {A ∈ B| [A, t] = 0 for all t ∈ T} . (5.36)

8In fact the following discussion holds true for all finite groups generated by a local unitary transformation g of H, which
satisfies gg = 1. Note that the arguments may be modified, such that the reasoning holds also true if gk = 1.

9For the single Pauli matrices σx, σy and σz we have σaσbσa = σa if a = b and σaσbσa = −σb otherwise.
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It follows that for all stabilised states one may speed up the calculation of the (renormalised) genuine multi-
particle negativity by choosing a suitable operator basis and hence reducing the total number of parameters
in the optimisation.

Example 5.3. Similar to the line of thoughts in the last example it follows that if a state ϱ is invariant
under transposition ϱ = ϱT , the map

ϕ(A) :=
1

2
(A+AT ) (5.37)

induces a restriction of Pm and Qm to be real symmetric instead of Hermitian complex. This effectively
reduces the number of parameters by a factor of two.

5.4 Conclusions

In this chapter the basic concepts and notions of semidefinite programming were reviewed: a special problem
in convex optimisation theory, where a linear target function is optimised over a convex set defined by the
positivity of a linear matrix. We outlined the main idea of the so-called central path following algorithms,
which aim to numerically compute suboptimal points, which are certified to be only ε-suboptimal.

In semidefinite programming one is originally restricted to real symmetric matrices, whereas in quantum
mechanics we usually deal with Hermitian operators. Therefore a way to set the positivity condition of
a Hermitian complex matrix in one to one correspondence with the positivity condition of a specific real
symmetric matrix on an enlarged real matrix space was provided. Following, this correspondence was
used to implement the renormalised genuine multiparticle negativity using CVXOPT. Finally, a method
how symmetries of a state can be used to possibly reduce the number of parameters in the semidefinite
program defining the (renormalised) genuine multiparticle negativity was shown. We then showed that this
method can be applied to reduce the computational effort to compute the genuine multiparticle negativity
for stabilised states.



Conclusions

In this thesis, we pointed out the usefulness of the genuine multiparticle negativity to quantify entangle-
ment. We showed that it can be characterised in an analytical way and used to study genuine multiparticle
entanglement in many-body systems. Furthermore, we generalised the stabiliser formalism and pointed
out a connection between its inherent symmetries and the optimisation defining the genuine multiparticle
negativity. In detail, the following results were obtained:

A) We have shown that the renormalised genuine multiparticle negativity can be expressed in two equivalent
ways: as an optimisation over suitable normalised fully decomposable witnesses and as a mixed convex
roof of the minimal bipartite negativity. Using this duality, we obtained an exact algebraic prescription
of the genuine multiparticle negativity for the n-qubit GHZ-diagonal and four-qubit cluster-diagonal
states.

B) Furthermore, we investigated the connection between genuine multiparticle entanglement and quantum
phase transitions in the one-dimensional Ising model in a transverse magnetic field. We identified spatial
distributions of three and four particles, where entanglement is present, showed that the derivative of
the genuine multiparticle negativity diverges logarithmically at the critical points and confirmed that
finite-size scaling holds close to the quantum phase transition.

C) Finally, we generalised the stabiliser formalism by introducing stabilised states. These include states,
which are diagonal in a stabiliser basis [61] and the generalised n-qubit X-states [108]. Further, the
stabiliser subgroups were characterised with respect to equivalence under qubit-permutations and local
Clifford operations. Subsequently, we provided a general method to use symmetries to simplify the
optimisation defining the genuine multiparticle negativity. Applying this method to the stabilised states,
we showed how the quantification of entanglement using the genuine multiparticle negativity can be
speed up.

There are several questions arising, which might be investigated in the future.

A) Since the method to obtain the analytic expression of the genuine multiparticle negativity is quite
general, it should be possible to find closed expressions for other highly symmetric state families such
as other graph-diagonal states [61] or states with U ⊗ U ⊗ U symmetry [87]. Additionally, it would be
desirable to obtain an operational interpretation for the genuine multiparticle negativity: Because the
bipartite logarithmic negativity is the upper bound for distillable entanglement [51], one may speculate
that the genuine multiparticle negativity is connected to the distillation rate of genuine multiparticle
entangled states. Also, the measure may be related to SLOCC-classes in the multiparticle case and
the dimensionality of multiparticle entanglement [88, 89]. Furthermore, recall that the shareability of
quantum correlations among many parties is limited and these restrictions are known as monogamy
relations [90–93]. For example, for a three-qubit system the bipartite entanglement of the splitting
A|BC as measured by the concurrence is given by the entanglement in the reduced marginals plus the
three-tangle τ3 as a genuine tripartite contribution, C2

A|BC = C2
AB + C2

AC + τ3 [90]. As a future project
it would be desirable to derive relations, which correlate the genuine multiparticle negativity with the
bipartite negativities of the system and its parts.

B) In many-body systems, our methods allow the direct study of genuine multiparticle entanglement. Hence,
it can be used to complete existing indirect results on multiparticle entanglement. To give an example,
in Ref. [34] the existence of multiparticle entanglement in the one-dimensional XYZ-model was con-
cluded indirectly from monogamy relations and possible connections to phase transitions were found.
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Our approach allows to verify these results in a direct manner. Similarly, in Ref. [98] the two-partite
negativities for different splittings of three particles in the XY -model were studied. Our methods can
now decide, whether these bipartite quantities are connected to genuine multiparticle entanglement. Fur-
ther, in Ref. [49] certain three-particle reduced states could neither be detected as genuine multiparticle
entangled nor shown to be biseparable. We expect that an application of our method would solve this is-
sue. Additionally, our results demonstrate the usefulness of the genuine multiparticle negativity to study
many-body systems. This makes it applicable to further systems, such as dynamical phase transitions
[103], quenching dynamics or the study of symmetry breaking [49].

C) Since stabilised states are easily characterised by their symmetries, many properties of these states can be
studied solely on the basis of the related symmetry groups. Recall that within the graph state formalism
stabiliser groups of two graphs are LC-equivalent if the corresponding graphs can be transformed into
each other by local complementation [26, 61, 111]. Naturally, the question arises if there is a way to
relate graphs or operations thereof to stabiliser subgroups and whether this correspondence can be used to
obtain the LC-equivalence classes. Furthermore, it would be interesting to extend the LC-classification to
a LU-classification to completely remove the ambiguity of local basis change. It would be also interesting
to investigate certain aspects such as genuine multiparticle entanglement of stabilised states, which are
hard to grasp on the full state space. Finally, the question remains whether stabilised states can be used
for quantum tasks other than those, for which graph states have already proven to be useful.



Appendix A

Characterizing the GMN

I thought up an ending for my book. “And he lives happily ever after, till the end of his days.”
Bilbo Baggins

A.1 Proof of Theorem 2.1

To start, we recall some notions of semidefinite programing [68]. The primal problem of an SDP reads

inf
x⃗
c⃗T x⃗ (A.1)

s.t. F (x⃗) = F0 +

i

xiFi ≥ 0,

where c⃗, x⃗ ∈ Rn and Fi = F †
i ∈ Cm×m. The scalar product c⃗T x⃗ is the linear function to minimise and the

linear matrix inequality F (x⃗) ≥ 0, understood in terms of positive semi-definiteness holds all the constraints
of the optimisation. The dual problem to this primal problem is given by

sup
Z

[−tr (F0Z)] (A.2)

s.t. tr (FiZ) = ci for all i = 1, . . . , n,

Z ≥ 0.

A point x⃗ or Z is called feasible if it meets the constraints of the primal F (x⃗) ≥ 0 or dual, respectively Z ≥ 0
and tr(FiZ) = ci. For any pair of feasible points both problems are connected to each other via −trF0Z ≤
c⃗T x⃗. Moreover, if at least one of the problems is strictly feasible, i.e., that either a primal point x⃗ satisfying
F (x⃗) > 0 or a dual point Z satisfying Z > 0 and tr(FiZ) = ci exists, Theorem 3.1 of Ref. [68] ensures that
both problems yield the same optimum supZ {−tr(F0Z)|Z ≥ 0 and tr(FiZ) = ci} = inf x⃗


c⃗T x⃗|F (x⃗) ≥ 0


.

The idea of the proof goes as follows. Using our renormalised GMN as given by Eq. (2.1) as the primal
problem of a SDP we show that the corresponding dual problem is given by the left-hand-side of Eq. (2.2).
Equality then follows by showing strict feasibility of the primal problem. We start the proof by rewriting
the semidefinite program (2.1) as

Ng(ϱ) = − inf tr (ϱW) (A.3)

s.t. 0 ≤ Pm,

0 ≤ (W − Pm)Tm ≤ 1 for all partitions m.

For the sake of readability we write down the proof by assuming a quantum system composed of three parts
A, B and C. A generalisation to larger particle numbers is straightforward.

We choose a Hermitian operator basis σi, i = 1, . . . ,K, such that tr (σiσj) = δij . In this basis ϱ =
i ϱ

(i)σi, W =


i w
(i)σi and Pm =


i p

(i)
m σi for m ∈ {A,B,C}. We gather the components of this
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decompositions in the vectors

x⃗w =

w(1), . . . ., w(K)


, x⃗m =


p(1)m , . . . ., p(K)

m


,

c⃗w =

ϱ(1), . . . ., ϱ(K)


, c⃗m = 0⃗, (A.4)

where x⃗w are the coefficients of W, x⃗m are the coefficients of Pm and c⃗w as well as the c⃗m characterise parts
of the optimisation goal. If we merge these vectors into

x⃗ = (x⃗w, x⃗A, x⃗B , x⃗C) and c⃗ = (c⃗w, c⃗A, c⃗B , c⃗C) , (A.5)

we can rewrite the SDP (A.3) as

− inf
x⃗
c⃗T x⃗ (A.6)

s.t. F (x) = F0 +

i

xiFi ≥ 0,

where F (x⃗) has the following block-diagonal form

F (x⃗) = diag(PA, PB , PC | (W − PA)
TA , (W − PB)

TB , (W − PC)
TC |

1− (W − PA)
TA ,1− (W − PB)

TB ,1− (W − PC)
TC ). (A.7)

Here the vertical lines “|” are introduced for notational convenience in order to to split the block-diagonal
matrix F (x⃗) into three parts, each of which consists of three sub blocks. The first represents the constraint
0 ≤ Pm, the second ensures 0 ≤ (W−Pm)Tm (equivalent to 0 ≤ Qm) and the last one bounds (W−Pm)Tm ≤ 1

(equivalent to QM ≤ 1) for all m ∈ {A,B,C}. According to F (x⃗) = F0 +


i xiFi = F0 +


j(x⃗w)jFw,j +
m


j(x⃗m)jFm,j , we have:

F0 = diag (0, 0, 0 | 0, 0, 0 | 1,1,1) ,
Fw,j = diag


0, 0, 0 | σTA

j , σTB
j , σTC

j | − σTB
j ,−σTB

j ,−σTC
j


,

FA,j = diag

σj , 0, 0 | − σTA

j , 0, 0 | σTA
j , 0, 0


,

FB,j = diag

0, σj , 0 | 0,−σTB

j , 0 | 0, σTB
j , 0


,

FC,j = diag

0, 0, σj | 0, 0,−σTC

j | 0, 0, σTC
j


. (A.8)

The dual problem as given in Eq. (A.2) involves the calculation of tr (F0Z) and tr (FiZ). To do so we
can make use of the block-diagonal structure of the Fi and write the corresponding diagonal blocks of Z into
a new block-diagonal matrix

Zbd = diag

ZA, ZB , ZC | Z+

A , Z
+
B , Z

+
C | Z−

A , Z
−
B , Z

−
C


. (A.9)

Note that the positivity of Z ensures the positivity of each block in Zbd. On the other hand if the blocks in
Zbd are positive so is Zbd. We can now evaluate −tr (F0Z) = −tr (F0Zbd) to write down the dual objective

− sup
Z≥0


−tr


Z−
A


− tr


Z−
B


− tr


Z−
C


= inf

Z≥0


m

tr

Z−
m


. (A.10)

The constraints tr (FiZ) = ci can be evaluated similarly and split up into two types tr (Fw,jZ) = ϱj and
tr (Fm,jZ) = 0. In detail, they read 

m

tr

σTm
j Z+

m


− tr


σTm
j Z−

m


= ϱ(j), (A.11)

tr

σjZm


− tr


σTm
j Z+

m


+ tr


σTm
j Z−

m


= 0, (A.12)
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with m ∈ {A,B,C}. If we multiply Eq. (A.12) by σj and sum over all j it immediately follows that

Zm = Z+
m

Tm − Z−
m

Tm . (A.13)

Eq. (A.11) multiplied by σj and summed over j together with Eq. (A.13) yields

ϱ =

m

Z+
m

Tm − Z−
m

Tm =

m

Zm. (A.14)

Actually, the dual problem optimises in state space, which can be made apparent by introducing the following
notation. Let pm = tr(Zm) and ϱm = Zm/tr(Zm), then the constraint given by Eq. (A.14) corresponds to
an optimisation over all possible convex combinations ϱ =


m pmϱm of mixed quantum states ϱm. By

introducing ϱ±m = Z±
m/tr(Zm) the constraint given by Eq. (A.13) can be rewritten as ϱTm

m = ϱ+m − ϱ−m. The
dual problem is then given by

inf pAtr

ϱ−A

+ pBtr


ϱ−B

+ pCtr


ϱ−C


s.t. ϱ = pAϱA + pBϱB + pCϱC is a decomposition of ϱ and

ϱTm
m = ϱ+m − ϱ−m for all m ∈ {A,B,C}with ϱ± ≥ 0, (A.15)

which means that given a density matrix ϱ one minimises


m pmtr (ϱ−m) over all decompositions ϱ =
m pmϱm and respective splittings of the partial transposition ϱTm

m into a difference of two positive semidef-
inite operators ϱTm

m = ϱ+m − ϱ−m.
Note that one can split this optimisation into two steps. First, one has to optimise over all mixed state

decompositions of ϱ, where each term in the decomposition is assigned to a certain bipartition. For a fixed
decomposition ϱ =


m pmϱm one still has to minimise


m pm tr (ϱ−m) over


m Nm with Nm = {ϱ±m ≥

0|ϱTm
m = ϱ+m + ϱ−m}. This can be decomposed into the separate minimisation of each tr (ϱ−m) over Nm. If one

compares these single optimisations to the bipartite negativity [50, 51] of the respective partition

Nm(ϱ) = inf

tr

ϱ−

|ϱTm = ϱ+ − ϱ−, ϱ± ≥ 0


, (A.16)

then minNm tr (ϱ−m) = Nm(ϱm). Hence we can rewrite the dual problem as given in Eq. (A.15) by

min pANA(ϱA) + pBNB(ϱB) + pCNC(ϱC),

s.t. ϱ = pAϱA + pBϱB + pCϱC .

Here we replaced the infimum by a minimum, since one optimises a continuous function over a closed and
bounded set.

To finish this proof we still have to show that the primal problem is strictly feasible such that both
problems have the same optimal value. We find that W = Pm +QTm

m with Qm = Pm = 1/2 > 0 is a strictly
feasible point for the primal problem given by Eq. (2.1). Hence, the genuine multiparticle negativity equals
the dual optimisation problem

Ng(ϱ) = min
ϱ=


m pmϱm


m

pmNm(ϱm). (A.17)

A.2 Proof of Theorem 2.6

Within this proof we will shorten the Dirac notation by setting |αβγδ⟩⟨αβγδ| = |αβγδ⟩⟨·|. First, recall that
a four-qubit cluster-diagonal state is biseparable iff the following inequalities are satisfied [85]:

Fαβγδ ≤ 1

2


ij

Fᾱijδ + Fαijδ̄ + Fαijδ and (A.18)

Fαβγδ + Fᾱµνδ̄ ≤ 1

2


ij

Fαijδ + Fᾱijδ + Fαijδ̄ + Fᾱijδ̄. (A.19)
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Furthermore, Lemma 2 in Ref. [85] states that the density matrix

ϱbs =
1

2
(|ijkl⟩⟨·|+ |αβγδ⟩⟨·|) (A.20)

is biseparable, unless i ̸= α and l ̸= δ both hold at the same time.
We now prove that the maximal violation of the relations (A.18) and (A.19) [this corresponds to the

negative of the expectation values of some witness in Eqs. (2.29)] is an upper bound on the GMN. There are
three cases:

Case one: None of the inequalities (A.18) and (A.19) is violated. In this case we already know that the
state is biseparable [85] and hence Ng(ϱ) = 0, which coincides with the right-hand-side of (2.32) in this case.

Case two: The largest violation occurs in inequality (A.18). We can assume that it occurs for α = β =
γ = δ = +, for other indices the reasoning is similar. Using


ijkl Fijkl = 1 and the fact that all other

inequalities are less violated we obtain

F++++ − 1

2


ij

F+ij+ + F−ij+ + F+ij− ≥ F++++ + F−µν− − 1

2
, (A.21)

for µ, ν arbitrary. Adding 1
2


ijkl Fijkl =

1
2 on both sides yields

F−µν− ≤ F−µν̄− + F−µ̄ν− + F−µ̄ν̄−. (A.22)

Now consider the state σ ∼µν F−µν−|−µν−⟩⟨·|. One can check that σ does not violate any of the inequalities

(A.18) and (A.19), so it is biseparable. We choose F ent
++++ = 2F++++−ij F+ij++F−ij++F+ij−, which is

two times the violation of inequality (A.18). Then we can decompose ϱ into a genuine multiparticle entangled
part with weight F ent

++++ and a biseparable rest. This rest consists of a convex combination of biseparable
states as in Eq. (A.20) and the biseparable state σ

ϱ = F ent
++++|++++⟩⟨·| +


ij,ij ̸=++

F+ij+ (|++++⟩⟨·|+ |+ ij+⟩⟨·|)

+

ij

F+ij− (|++++⟩⟨·|+ |+ ij−⟩⟨·|) +

ij

F−ij+ (|++++⟩⟨·|+ | − ij+⟩⟨·|)

+

ij

F−ij−| − ij−⟩⟨·|. (A.23)

Since only the first part is not biseparable and the GMN is convex Ng(


m pmϱm) ≤ 
m pmNg(ϱm), we

obtain

Ng(ϱ) ≤ F ent
++++Ng(|++++⟩⟨·|) = 1

2


2Fαβγδ −


ij

Fαijδ + Fᾱijδ + Fαijδ̄


(A.24)

which corresponds to the right-hand side of Eq. (2.32) in this case.
Case three: The largest violation occurs in Eq. (A.19). Without loss of generality for α = β = γ = δ = +

and µ = ν = −. Relating the inequalities (A.18) and (A.19) with each other as in the second case we obtain

F+−−+ ≥


ij,ij ̸=−−
F+ij+ = F++ and F−−−− ≥


ij,ij ̸=−−

F−ij− = F−−. (A.25)

As a direct consequence we can split each of F++++ and F−−−− into two non-negative parts

F++++ = F̃++++ + F++, and F−−−− = F̃−−−− + F−−. (A.26)

With this definition of F̃++++ and F̃−−−− we can write

ϱ =F̃++++|++++⟩⟨·|+ F̃−−−−| − − −−⟩⟨·|
+

ij

F−ij+| − ij+⟩⟨·|+ F+ij−|+ ij−⟩⟨·|+ σ1, (A.27)
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where the state

σ1 =


ij,ij ̸=++

F+ij+(|++++⟩⟨·|+ |+ ij+⟩⟨·|)

+


ij,ij ̸=−−
F−ij−(| − − −−⟩⟨·|+ | − ij−⟩⟨·|) (A.28)

is biseparable. With these replacements the largest violation of inequality (A.19) is given by

V ≡ 1

2
F̃++++ +

1

2
F̃−−−− − 1

2


ij

F+ij− + F−ij+. (A.29)

One can decompose F̃++++ and F̃−−−− further into two non-negative parts

F̃++++ = F ent
++++ + F bs

++++ and F̃−−−− = F ent
−−−− + F bs

−−−−, (A.30)

such that

F bs
++++ + F bs

−−−− =


ij F+ij− + F−ij+ and
1

2
F ent
++++ +

1

2
F ent
−−−− = V. (A.31)

Using this decomposition of the coefficients one can write σ2 = F bs
++++|++++⟩⟨·|+F bs

−−−−+


ij F+ij−|+
ij−⟩⟨·| + F−ij+| − ij+⟩⟨·| as a convex combination of biseparable states of the form in Eq. (A.20). We can
then split ϱ into a genuinely multiparticle entangled part and a biseparable rest σ1 + σ2

ϱ = F ent
++++|++++⟩⟨·|+ F ent

−−−−| − − −−⟩⟨·|+ σ1 + σ2. (A.32)

In this case this yields the last expected estimate on the GMN

Ng(ϱ) ≤ F ent
++++Ng(|++++⟩) + F ent

−−−−Ng(| − − −−⟩) = V (A.33)

So the maximal violation of the negative expectation values of the witnesses from Eqs. (2.27) and (2.28)
gives upper bounds on the GMN, which proves the claim. As in the case of GHZ-diagonal states, the bound
holds for both possible normalisations of the GMN.
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Appendix B

Expectation values of four-site
operator basis in the XY-model

A list of all non-zero expectation values of the four-site Pauli operators ⟨σm
i σ

n
j σ

o
kσ

p
l ⟩|0⟩ is presented here. The

three site expectation values are omitted, since they are already contained in those of four sites. Note that
there are 80 non-vanishing expectation values out of 256. This is due to several symmetries the Hamiltonian
possesses, which carry over to its ground state. Namely the Hamiltonian is translationally invariant and
thus just the spacings α = j − i, β = k − j and δ = k − l between the local sites enter the final expectation
values. Furthermore, it is invariant under global x-flip σx

i → −σx
i for all i and under global y-flip. Hence

the only contribution to the four site Pauli operators are those, in which σx and σy appear an even number
of times. The exact numerical value finally depends on ⟨AlBk⟩|0⟩ = Gk−l only.
It is

⟨1111⟩|0⟩ = 1,

⟨σz
i 111⟩|0⟩ = −G0,

⟨σz
i σ

z
j11⟩|0⟩ = G2

0 −GαG−α. (B.1)

Similarly it is ⟨1σz
j11⟩|0⟩ = ⟨11σz

k1⟩|0⟩ = ⟨111σz
l ⟩|0⟩ = −G0. As for the tensor product of two σz operators

⟨σz
i 1σ

z
k1⟩|0⟩ = G2

0 − Gα+βG−α−β , ⟨σz
i 11σ

z
l ⟩|0⟩ = G2

0 − Gα+β+δG−α−β−δ, ⟨1σz
jσ

z
k1⟩|0⟩ = G2

0 − GβG−β ,

⟨1σz
j1σ

z
j ⟩|0⟩ = G2

0 −Gβ+δG−β−δ, ⟨11σz
kσ

z
l ⟩|0⟩ = G2

0 −GδG−δ.

⟨σz
i σ

z
jσ

z
k1⟩|0⟩ = −


G0 Gα Gα+β

G−α G0 Gβ

G−α−β G−β G0

 . (B.2)

To get the expectation values of the other possible permutations of the above operator one simply has to
perform the following replacements (applied from left to right) ⟨σz

i σ
z
j1σ

z
l ⟩|0⟩ : β → β+δ, ⟨σz

i 1σ
z
kσ

z
l ⟩|0⟩ : β →

δ ∧ α→ α+ β and ⟨1σz
jσ

z
kσ

z
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σz
i σ

z
jσ

z
kσ

z
l ⟩|0⟩ =


G0 Gα Gα+β Gα+β+δ

G−α G0 Gβ Gβ+δ

G−α−β G−β G0 Gδ

G−α−β−δ G−β−δ G−δ G0

 . (B.3)

⟨σx
i σ

x
j 11⟩|0⟩ = (−1)α


G−1 ... Gα−2

...
...

G−α ... G−1

 , (B.4)

⟨σx
i 1σ

x
k1⟩|0⟩ : α → α + β, ⟨σx

i 11σ
x
l ⟩|0⟩ : α → α + β + δ, ⟨1σx

j σ
x
k1⟩|0⟩ : α → β, ⟨1σx

j 1σ
x
l ⟩|0⟩ : α → β + δ,

⟨11σx
kσ

x
l ⟩|0⟩ : α→ δ.

61
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⟨σx
i σ

x
j σ

z
k1⟩|0⟩ = (−1)α+1


G−1 ... Gα−2 Gα+β−1

...
...

...
G−α ... G−1 Gβ

G−α−β ... G−β−1 G0

 , (B.5)

⟨σx
i σ

x
j 1σ

z
l ⟩|0⟩ : β → β + δ, ⟨σx

i 1σ
x
kσ

z
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σx

j σ
x
kσ

z
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σx
i σ

z
jσ

x
k1⟩|0⟩ = (−1)α+β



G−1 ... Gα−2 Gα ... Gα+β−2

...
...

...
...

G−α+1 ... G0 G2 ... Gβ

G−α−1 ... G−2 G0 ... Gβ−2

...
...

...
...

G−α−β ... G−β−1 G−β+1 ... G−1


, (B.6)

⟨σx
i σ

z
j1σ

x
l ⟩|0⟩ : β → β + δ, ⟨σx

i 1σ
z
kσ

x
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σx

j σ
z
kσ

x
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σz
i σ

x
j σ

x
k1⟩|0⟩ = (−1)β+1


G0 Gα ... Gα+β−1

G−α−1 G−1 ... Gβ−2

...
...

...
G−α−β G−β ... G−1

 , (B.7)

⟨σz
i σ

x
j 1σ

x
l ⟩|0⟩ : β → β + δ, ⟨σz

i 1σ
x
kσ

x
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σz

jσ
x
kσ

x
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σy
i σ

y
j 11⟩|0⟩ = (−1)α


G1 ... Gα

...
...

G−α+2 ... G1

 , (B.8)

⟨σy
i 1σ

y
k1⟩|0⟩ : α → α + β, ⟨σy

i 11σ
y
l ⟩|0⟩ : α → α + β + δ, ⟨1σy

j σ
y
k1⟩|0⟩ : α → β, ⟨1σy

j 1σ
y
l ⟩|0⟩ : α → β + δ,

⟨11σy
kσ

y
l ⟩|0⟩ : α→ δ.

⟨σy
i σ

y
j σ

z
k1⟩|0⟩ = (−1)α+1


G1 ... Gα Gα+β

...
...

...
G−α+2 ... G1 Gβ+1

G−α−β+1 ... G−β G0

 , (B.9)

⟨σy
i σ

y
j 1σ

z
l ⟩|0⟩ : β → β + δ, ⟨σy

i 1σ
y
kσ

z
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σy

j σ
y
kσ

z
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σy
i σ

z
jσ

y
k1⟩|0⟩ = (−1)α+β



G1 ... Gα−1 Gα+1 ... Gα+β

...
...

...
...

G−α+2 ... G0 G2 ... Gβ+1

G−α ... G−2 G0 ... Gβ−1

...
...

...
...

G−α−β+2 ... G−β G−β+2 ... G1


, (B.10)

⟨σy
i σ

z
j1σ

y
l ⟩|0⟩ : β → β + δ, ⟨σy

i 1σ
z
kσ

y
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σy

j σ
z
kσ

y
l ⟩|0⟩ : β → δ ∧ α→ β.

⟨σz
i σ

y
j σ

y
k1⟩|0⟩ = (−1)β+1


G0 Gα+1 ... Gα+β

G−α G1 ... Gβ

...
...

...
G−α−β+1 G−β+2 ... G1

 , (B.11)

⟨σz
i σ

y
j 1σ

y
l ⟩|0⟩ : β → β + δ, ⟨σz

i 1σ
y
kσ

y
l ⟩|0⟩ : β → δ ∧ α→ α+ β, ⟨1σz

jσ
y
kσ

y
l ⟩|0⟩ : β → δ ∧ α→ β.
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⟨σx
i σ

x
j σ

z
kσ

z
l ⟩|0⟩ = (−1)α



G−1 ... Gα−2 Gα+β−1 Gα+β+δ−1

...
...

...
...

G−α ... G−1 Gβ Gβ+δ

G−α−β ... G−β−1 G0 Gδ

G−α−β−δ ... G−β−δ−1 G−δ G0


(B.12)

⟨σz
i σ

z
jσ

x
kσ

x
l ⟩|0⟩ = (−1)δ



G0 Gα Gα+β ... Gα+β+δ−1

G−α G0 Gβ ... Gβ+δ−1

G−α−β−1 G−β−1 G−1 ... Gδ−2

...
...

...
...

G−α−β−δ G−β−δ G−δ ... G−1


(B.13)

⟨σz
i σ

x
j σ

x
kσ

z
l ⟩|0⟩ = (−1)β



G0 Gα ... Gα+β−1 Gα+β+δ

G−α−1 G−1 ... Gβ−2 Gβ+δ−1

...
...

...
...

G−α−β G−β ... G−1 Gδ

G−α−β−δ G−β−δ ... G−δ−1 G0


(B.14)

⟨σx
i σ

z
jσ

z
kσ

x
l ⟩|0⟩ =

(−1)α+β+δ



G−1 ... Gα−2 Gα ... Gα+β−2 Gα+β ... Gα+β+δ−2

...
...

...
...

...
...

G−α+1 ... G0 G2 ... Gβ Gβ+2 ... Gβ+δ

G−α−1 ... G−2 G0 ... Gβ−2 Gβ ... Gβ+δ−2

...
...

...
...

...
...

G−α−β+1 ... G−β G−β+2 ... G0 G2 ... Gδ

G−α−β−1 ... G−β−2 G−β ... G−2 G0 ... Gδ−2

...
...

...
...

...
...

G−α−β−δ ... G−β−δ−1 G−β−δ+1 ... G−δ−1 G−δ+1 ... G−1



(B.15)
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z
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z
l ⟩|0⟩ = (−1)α



G1 ... Gα Gα+β Gα+β+δ

...
...

...
...

G−α+2 ... G1 Gβ+1 Gβ+δ+1

G−α−β+1 ... G−β G0 Gδ

G−α−β−δ+1 ... G−β−δ G−δ G0


(B.16)
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l ⟩|0⟩ = (−1)δ



G0 Gα Gα+β+1 ... Gα+β+δ

G−α G0 Gβ+1 ... Gβ+δ

G−α−β G−β G1 ... Gδ

...
...

...
...

G−α−β−δ+1 G−β−δ+1 G−δ+2 ... G1


(B.17)
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y
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z
l ⟩|0⟩ = (−1)β



G0 Gα+1 ... Gα+β Gα+β+δ

G−α G1 ... Gβ Gβ+δ

...
...

...
...

G−α−β+1 G−β+2 ... G1 Gδ+1

G−α−β−δ G−β−δ+1 ... G−δ G0


(B.18)
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⟨σy
i σ

z
jσ

z
kσ

y
l ⟩|0⟩ =

(−1)α+β+δ



G1 ... Gα−1 Gα+1 ... Gα+β−1 Gα+β+1 ... Gα+β+δ

...
...

...
...

...
...

G−α+2 ... G0 G2 ... Gβ Gβ+2 ... Gβ+δ+1

G−α ... G−2 G0 ... Gβ−2 Gβ ... Gβ+δ−1

...
...

...
...

...
...

G−α−β+2 ... G−β G−β+2 ... G0 G2 ... Gδ+1

G−α−β ... G−β−2 G−β ... G−2 G0 ... Gδ−1

...
...

...
...

...
...

G−α−β−δ+2 ... G−β−δ G−β−δ+2 ... G−δ G−δ+2 ... G1



(B.19)
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

G−1 ... Gα−2 Gα ... Gα+β−2 Gα+β+δ−1

...
...

...
...

...
G−α+1 ... G0 G2 ... Gβ Gβ+δ+1

G−α−1 ... G−2 G0 ... Gβ−2 Gβ+δ−1

...
...

...
...

...
G−α−β ... G−β−1 G−β+1 ... G−1 Gδ

G−α−β−δ ... G−β−δ−1 G−β−δ+1 ... G−δ−1 G0


(B.20)
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x
l ⟩|0⟩ = (−1)β+δ+1



G0 Gα ... Gα+β−1 Gα+β+1 ... Gα+β+δ−1

G−α−1 G−1 ... Gβ−2 Gβ ... Gβ+δ−2

...
...

...
...

...
G−α−β+1 G−β+1 ... G0 G2 ... Gδ

G−α−β−1 G−β−1 ... G−2 G0 ... Gδ−2

...
...

...
...

...
G−α−β−δ G−β−δ ... G−δ−1 G−δ+1 ... G−1


(B.21)
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G1 ... Gα−1 Gα+1 ... Gα+β Gα+β+δ

...
...

...
...

...
G−α+2 ... G0 G2 ... Gβ+1 Gβ+δ+1

G−α ... G−2 G0 ... Gβ−1 Gβ+δ−1

...
...

...
...

...
G−α−β+2 ... G−β G−β+2 ... G1 Gδ+1

G−α−β−δ+1 ... G−β−δ−1 G−β−δ+1 ... G−δ G0


(B.22)
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G0 Gα+1 ... Gα+β−1 Gα+β+1 ... Gα+β+δ

G−α G1 ... Gβ−1 Gβ+1 ... Gβ+δ

...
...

...
...

...
G−α−β+1 G−β+2 ... G0 G2 ... Gδ+1

G−α−β−1 G−β ... G−2 G0 ... Gδ−1

...
...

...
...

...
G−α−β−δ+1 G−β−δ−2 ... G−δ G−δ+2 ... G1


(B.23)
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

G−1 ... Gα−2 Gα+β ... Gα+β+δ−1

...
...

...
...

G−α ... G−1 Gβ+1 ... Gβ+δ

G−α−β ... G−β−1 G1 ... Gδ

...
...

...
...

G−α−β−δ+1 ... G−β−δ G−δ+2 ... G1
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(B.24)
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G1 ... Gα Gα+β ... Gα+β+δ−1

...
...

...
...

G−α+2 ... G1 Gβ+1 ... Gβ+δ

G−α−β ... G−β−1 G−1 ... Gδ−2

...
...

...
...

G−α−β−δ+1 ... G−β−δ G−δ ... G−1


(B.25)
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

G−1 ... Gα−1 Gα+β ... Gα+β+δ−2

...
...

...
...

G−α+1 ... G1 Gβ+2 ... Gβ+δ

G−α−β ... G−β G1 ... Gδ−1

...
...

...
...

G−α−β−δ ... G−β−δ G−δ+1 ... G−1


(B.26)
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

G1 ... Gα−1 Gα+β ... Gα+β+δ

...
...

...
...

G−α+1 ... G−1 Gβ ... Gβ+δ

G−α−β ... G−β−2 G−1 ... Gδ−1

...
...

...
...

G−α−β−δ+2 ... G−β−δ G−δ+1 ... G1
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(B.27)
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

G−1 ... Gα−2 Gα+β−1 ... Gα+β+δ−2

...
...

...
...

G−α ... G−1 Gβ ... Gβ+δ−1

G−α−β−1 ... G−β−2 G−1 ... Gδ−2

...
...

...
...

G−α−β−δ ... G−β−δ−1 G−δ ... G−1


(B.28)
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G1 ... Gα Gα+β+1 ... Gα+β+δ

...
...

...
...

G−α+2 ... G1 Gβ+2 ... Gβ+δ+1

G−α−β+1 ... G−β G1 ... Gδ

...
...

...
...

G−α−β−δ+2 ... G−β−δ+1 G−δ+2 ... G1


(B.29)
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Appendix C

LC-classification of stabiliser
subgroups

Here all LC and qubit-permutational inequivalent classes of stabiliser subgroups up to six qubits are given.
Each class may contain several equivalent subgroups. Here, one representative of each is given.

C.1 Two qubits

In the case of two qubits there is one LC-inequivalent graph with generators:

1. {XZ,ZX}.

In the case subgroups with one generator are considered there are only one class:

1. {11, XZ}

C.2 Three qubits

In the case of three qubits there is one LC-inequivalent graph with generators:

1. {XZ1, ZXZ,1ZX}.

In the case subgroups with one generator are considered there are two classes:

1. {111, XZ1}

2. {111, Y Y Z}

In case subgroups with two generators are considered there are two classes:

1. {111, XZ1, Y Y Z,ZXZ}

2. {111,1ZX,X1X,XZ1}

C.3 Four qubits

In the case of four qubits there are two LC-inequivalent graphs with generators:

1. {XZZZ,ZX11, Z1X1, Z11X},

2. {XZ11, ZXZ1,1ZXZ,11ZX}.

In case subgroups with one generator are considered there are three classes:
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1. {1111, XZZZ}

2. {1111,1XX1}

3. {1111, X1XZ}

In case subgroups with two generators are considered there are six classes:

1. {1111,1X1X,Y Y ZZ, Y ZZY }

2. {1111, XZZZ, Y Y Y Y, ZXXX}

3. {1111,1X1X,Z1X1, ZXXX}

4. {1111,11ZX,X1XZ,X1Y Y }

5. {1111, XZZX, Y Y 1X,ZXZ1}

6. {1111,1ZXZ,X1XZ,XZ11}

In case subgroups with three generators are considered there are six classes:

1. {1111,1XX1, XY Y Z,XZZZ, Y Y ZZ, Y ZY Z,Z1X1, ZX11}

2. {1111,1X1X,XY ZY,XZZZ, Y Y Y Y, Y ZY Z,Z1X1, ZXXX}

3. {1111,11XX,1X1X,1XX1, Z11X,Z1X1, ZX11, ZXXX}

4. {1111,1ZXZ,X1XZ,XZ11, Y XY Z, Y Y Z1, ZXZ1, ZY Y Z}

5. {1111,1ZXZ,X1Y Y,XZZX, Y XXY, Y Y 1X,ZXZ1, ZY Y Z}

6. {1111,11ZX,XZ11, XZZX, Y Y 1X,Y Y Z1, ZX1X,ZXZ1}

C.4 Five qubits

In the case of five qubits there are four LC-inequivalent graphs with generators:

1. {XZZZZ,ZX111, Z1X11, Z11X1, Z111X},

2. {XZ111, ZXZ11,1ZXZ1,11ZXZ,111ZX},

3. {XZ111, ZXZ1Z,1ZXZ1,11ZX1,1Z11X},

4. {XZ11Z,ZXZ11,1ZXZ1,11ZXZ,Z11ZX}.

In case subgroups with one generator are considered there are six classes:

1. {11111, XXXXX}

2. {11111,111XX}

3. {11111,1XXXX}

4. {11111, X1X1X}

5. {11111, XZZZZ, Y Y ZZZ,ZX111}

6. {11111, XZZZZ, Y Y ZY Y,ZX1XX}

In case subgroups with two generators are considered there are 12 classes:

1. {11111,11X1X,1X11X,1XX11}

2. {11111,11XX1,1X11X,1XXXX}
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3. {11111,1XXXX,Z111X,ZXXX1}
4. {11111,11ZX1, X1XZ1, X1Y Y 1}
5. {11111, XXXXX,Y Y 1X1, ZZX1X}
6. {11111, X111X,Y Y Z1Z,ZY Z1Y }
7. {11111, XZZX1, Y XXY 1, ZY Y Z1}
8. {11111,11XZX,X1Y Y 1, X1ZXX}
9. {11111, XXY 1Y, Y 1Y XX,ZX1XZ}
10. {11111,111ZX,X1X1X,X1XZ1}
11. {11111,1ZXZ1, X1X1X,XZ1ZX}
12. {11111,1ZXZ1, X111X,XZXZX}
In case subgroups with three generators are considered there are 26 classes:

1. {11111,1XX11, XY Y ZZ,XZZZZ, Y Y ZZZ, Y ZY ZZ,Z1X11, ZX111}
2. {11111,111XX,1XX11,1XXXX,Y Y Y Y Z, Y Y Y ZY, Y ZZY Z, Y ZZZY }
3. {11111,1XXXX,XY ZY Z,XZY ZY, Y Y Y Y Z, Y ZZZY,Z1X11, ZX1XX}
4. {11111,11XX1,1X1X1,1XX11, Z11X1, Z1X11, ZX111, ZXXX1}
5. {11111,11X1X,1X1X1,1XXXX,Z11X1, Z1XXX,ZX111, ZXX1X}
6. {11111,1ZXZ1, X1XZ1, XZ111, Y XY Z1, Y Y Z11, ZXZ11, ZY Y Z1}
7. {11111,1XZZX,1Y Y 1X,1ZXZ1, Y 1Y XX, Y XXY 1, Y Y 1X1, Y ZZY X}
8. {11111,1ZX1X,X1X1X,XZ111, Y XXXY, Y Y 1XZ,ZX1XZ,ZY XXY }
9. {11111,1XZZX,X1Y Y 1, XXXXX,Y Y 1X1, Y ZZY X,ZY Y Z1, ZZX1X}
10. {11111,1ZXZ1, X1Y Y Z,XZZXZ, Y XXXY, Y Y 1Y Y,ZXZZX,ZY Y 1X}
11. {11111,1X1Y Y,X1XZZ,XXXXX,Y 1Y XX, Y XY ZZ,Z1ZY Y,ZXZ11}
12. {11111,1ZY Y Z,X1Y Y Z,XZ111, Y XXY Z, Y Y Z11, ZXZ11, ZY XY Z}
13. {11111,1ZY Y Z,X1Y Y Z,XZ111, Y XY Z1, Y Y 1XZ,ZX1XZ,ZY Y Z1}
14. {11111,1XZZX,XY 1Y X,XZZX1, Y 1Y XX, Y XXY 1, ZY Y Z1, ZZX1X}
15. {11111,11ZXZ,XZ111, XZZXZ, Y Y 1XZ, Y Y Z11, ZX1XZ,ZXZ11}
16. {11111,11ZY Y,XZ111, XZZY Y, Y XXXY, Y XY Z1, ZY XXY,ZY Y Z1}
17. {11111,11ZXZ,1ZX1X,1ZY XY,X1X1X,X1Y XY,XZ111, XZZXZ}
18. {11111,111ZX,XZ111, XZ1ZX, Y Y Z11, Y Y ZZX,ZXZ11, ZXZZX}
19. {11111,111ZX,XZ111, XZ1ZX, Y Y 1XZ, Y Y 1Y Y,ZX1XZ,ZX1Y Y }
20. {11111,11ZX1, X111X,X1ZXX,Y X1XY, Y XZ1Y,ZX1XZ,ZXZ1Z}
21. {11111,111ZX,1ZX1X,1ZXZ1, X1X1X,X1XZ1, XZ111, XZ1ZX}
22. {11111,11ZX1,1ZXZ1,1ZY Y 1, X1XZ1, X1Y Y 1, XZ111, XZZX1}
23. {11111,1Z11X,X111X,XZ111, Y XZ1Y, Y Y Z1Z,ZXZ1Z,ZY Z1Y }
24. {11111,11XZX,1Z11X,1ZXZ1, X111X,X1XZ1, XZ111, XZXZX}
25. {11111,1Y Y 1X,XXY 1Y,XZ11Z, Y 1X1Y, Y Y Z1Z,ZXZ11, ZZX1X}
26. {11111,1X1Y Y,1Y XXY,1ZXZ1, Y 1X1Y, Y XXY 1, Y Y 1X1, Y Z1ZY }
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In case subgroups with four generators are considered there are 17 classes:

1. {11111, 11XX1, 1X1X1, 1XX11, XY Y ZZ,XY ZY Z,XZY Y Z,XZZZZ, Y Y Y Y Z, Y Y ZZZ, Y ZY ZZ, Y ZZY Z,Z11X1, Z1X11, ZX111, ZXXX1}

2. {11111, 11XX1, 1X11X, 1XXXX,XY Y Y Y,XY ZZY,XZY Y Z,XZZZZ, Y Y Y ZY, Y Y ZY Y, Y ZY ZZ, Y ZZY Z,Z11X1, Z1X11, ZX1XX,ZXX1X}

3. {11111, 111XX, 11X1X, 11XX1, 1X11X, 1X1X1, 1XX11, 1XXXX,Z111X,Z11X1, Z1X11, Z1XXX,ZX111, ZX1XX,ZXX1X,ZXXX1}

4. {11111, 11ZXZ, 1ZXZ1, 1ZY Y Z,X1XZ1, X1Y Y Z,XZ111, XZZXZ, Y XXY Z, Y XY Z1, Y Y 1XZ, Y Y Z11, ZX1XZ,ZXZ11, ZY XY Z,ZY Y Z1}

5. {11111, 11ZXZ, 1ZXZ1, 1ZY Y Z,XXXXX,XXY 1Y,XY 1Y X,XY ZZY, Y 1X1Y, Y 1Y XX, Y Z1ZY, Y ZZY X,ZX1XZ,ZXZ11, ZY XY Z,ZY Y Z1}

6. {11111, 11ZXZ, 1ZXZ1, 1ZY Y Z,X1XZ1, X1Y Y Z,XZ111, XZZXZ, Y XXXY, Y XY 1X,Y Y 1Y Y, Y Y ZZX,ZX1Y Y, ZXZZX,ZY XXY,ZY Y 1X}

7. {11111, 111ZX, 1ZX1X, 1ZXZ1, X1X1X,X1XZ1, XZ111, XZ1ZX, Y XY 1X,Y XY Z1, Y Y Z11, Y Y ZZX,ZXZ11, ZXZZX,ZY Y 1X,ZY Y Z1}

8. {11111, 111ZX, 1ZX1X, 1ZXZ1, X1X1X,X1XZ1, XZ111, XZ1ZX, Y XXXY, Y XXY Z, Y Y 1XZ, Y Y 1Y Y, ZX1XZ,ZX1Y Y, ZY XXY,ZY XY Z}

9. {11111, 111ZX, 1ZYXY, 1ZY Y Z,X1Y XY,X1Y Y Z,XZ111, XZ1ZX, Y XXXY, Y XXY Z, Y Y Z11, Y Y ZZX,ZXZ11, ZXZZX,ZY XXY,ZY XY Z}

10. {11111, 111ZX, 1ZYXY, 1ZY Y Z,X1Y XY,X1Y Y Z,XZ111, XZ1ZX, Y XY 1X,Y XY Z1, Y Y 1XZ, Y Y 1Y Y, ZX1XZ,ZX1Y Y, ZY Y 1X,ZY Y Z1}

11. {11111, 111ZX, 11ZXZ, 11ZY Y,XZ111, XZ1ZX,XZZXZ,XZZY Y, Y Y 1XZ, Y Y 1Y Y, Y Y Z11, Y Y ZZX,ZX1XZ,ZX1Y Y, ZXZ11, ZXZZX}

12. {11111, 11ZX1, 1ZXZ1, 1ZY Y 1, X1XZ1, X1Y Y 1, XZ111, XZZX1, Y XXY Z, Y XY ZZ, Y Y 1XZ, Y Y Z1Z,ZX1XZ,ZXZ1Z,ZY XY Z,ZY Y ZZ}

13. {11111, 11XZX, 1Z11X, 1ZXZ1, X111X,X1XZ1, XZ111, XZXZX, Y XY ZZ, Y XZ1Y, Y Y Y ZY, Y Y Z1Z,ZXY ZY,ZXZ1Z,ZY Y ZZ,ZY Z1Y }

14. {11111, 11ZX1, 1Z11X, 1ZZXX,X111X,X1ZXX,XZ111, XZZX1, Y X1XY, Y XZ1Y, Y Y 1XZ, Y Y Z1Z,ZX1XZ,ZXZ1Z,ZY 1XY,ZY Z1Y }

15. {11111, 11XZX, 11Y Y X, 11ZX1, 1Z11X, 1ZXZ1, 1ZY Y 1, 1ZZXX,X111X,X1XZ1, X1Y Y 1, X1ZXX,XZ111, XZXZX,XZY Y X,XZZX1}

16. {11111, 11ZXZ, 1ZXZ1, 1ZY Y Z,X1XZZ,X1Y Y 1, XZ11Z,XZZX1, Y XXY 1, Y XY ZZ, Y Y 1X1, Y Y Z1Z,ZX1XZ,ZXZ11, ZY XY Z,ZY Y Z1}

17. {11111, 1XZZX, 1Y XXY, 1ZY Y Z,X1XZZ,XXY 1Y,XY 1Y X,XZZX1, Y 1Y XX, Y XXY 1, Y Y Z1Z, Y Z1ZY,Z1ZY Y, ZX1XZ,ZY Y Z1, ZZX1X}
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C.5 Six qubits

In the case of five qubits there are four LC-inequivalent graphs with generators:

1. {XZZZZZ,ZX1111, Z1X111, Z11X11, Z111X1, Z1111X},

2. {X1111Z,1X111Z,11X11Z,111XZ1,111ZXZ,ZZZ1ZX},

3. {X1111Z,1X111Z,11X1Z1,111XZ1,11ZZXZ,ZZ11ZX},

4. {XZ1111, ZX111Z,1ZXZ11,11ZXZ1,111ZX1,1Z111X},

5. {XZ1111, ZXZ111,1ZXZ1Z,11ZXZ1,111ZX1,11Z11X},

6. {XZ1111, ZXZ111,1ZXZ11,11ZXZ1,111ZXZ,1111ZX},

7. {X1111Z,1X1Z11,11XZ1Z,1ZZXZ1,111ZXZ,Z1Z1ZX},

8. {XZ1111, ZXZZ11,1ZXZ1Z,1ZZXZ1,111ZX1,11Z11X},

9. {XZ11ZZ,ZXZ111,1ZXZ11,11ZXZ1, Z11ZX1, Z1111X},

10. {XZ111Z,ZXZ111,1ZXZ11,11ZXZ1,111ZXZ,Z111ZX},

11. {XZZ11Z,ZXZ1Z1, ZZXZ11,11ZXZZ,1Z1ZXZ,Z11ZZX}.

In case subgroups with one generator are considered there are 5 classes:

1. {111111, XZZZZZ}

2. {111111, ZX1111}

3. {111111, ZX11XX}

4. {111111, Y ZZ1ZY }

5. {111111, X11ZX1}

In case subgroups with two generators are considered there are 34 classes:

1. {111111, XZZZZZ, Y Y ZZZZ,ZX1111}

2. {111111, XZZZZZ, Y Y ZZY Y,ZX11XX}

3. {111111, XZZZZZ, Y Y Y Y Y Y, ZXXXXX}

4. {111111,1XX111, Z1X111, ZX1111}

5. {111111,1X111X,Z1X111, ZXX11X}

6. {111111,1XX1XX,Z1X111, ZX11XX}

7. {111111,1X1XXX,Z1X111, ZXXXXX}

8. {111111,1XXXX1, Z1X1XX,ZX1X1X}

9. {111111,1X111Z, Y Y Z1ZX, Y ZZ1ZY }

10. {111111,1X111Z,X11ZX1, XX1ZXZ}

11. {111111, X11ZX1, Y Y ZZY Y,ZY Z1ZY }

12. {111111, XX1ZXZ, Y ZZZY X,ZY Z1ZY }

13. {111111,1X1ZX1, X11ZX1, XX1111}

14. {111111, X11XZZ, Y Y ZX1X,ZY Z1ZY }
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15. {111111,1X1ZX1, X11XZZ,XX1Y Y Z}

16. {111111,1X1ZX1, X11Y Y 1, XX1XZ1}

17. {111111, XXX11Z, Y ZY 1ZX,ZY Z1ZY }

18. {111111,1X111Z,X1XZXZ,XXXZX1}

19. {111111,1X1ZX1, X1XZXZ,XXX11Z}

20. {111111,111XZ1, X11Y Y 1, X11ZX1}

21. {111111,1X111Z, Y Y 11ZX, Y Z11ZY }

22. {111111, X1ZZX1, Y Y ZZY Y,ZY 11ZY }

23. {111111, X11XZZ, Y Y 1X1X,ZY 11ZY }

24. {111111, X1XZ11, Y XXZ1Z,ZX111Z}

25. {111111, XZXZ1X,Y Y XZ1Y, ZX111Z}

26. {111111, X1XZ11, Y XX1XZ,ZX1ZXZ}

27. {111111, XZXZ1X,Y Y X1XY,ZX1ZXZ}

28. {111111, X1Y Y Z1, Y XY Y ZZ,ZX111Z}

29. {111111, XZY Y ZX, Y Y Y Y ZY,ZX111Z}

30. {111111, X1Y Y Z1, Y XY XY Z,ZX1ZXZ}

31. {111111, XZY Y ZX, Y Y Y XY Y,ZX1ZXZ}

32. {111111,1ZXZ11, X1X1X1, XZ1ZX1}

33. {111111,11ZXZ1, Y Y 111Z, Y Y ZXZZ}

34. {111111, XZ1ZX1, Y Y 1Y Y 1, ZX1XZ1}

We also did the characterisation for k = 3 and k = 4 generators, which consist of 120 and 166 classes,
respectively. For k = 5 the characterisation is already quite demanding and beyond the scope of our Python
script. At this point we will refrain from listing all these classes.



Appendix D

Semidefinite programming with
Python and MATLAB

D.1 Optimisation frameworks

These frameworks are usually integrated into more versatile numerical computing environments or general
purpose scripting languages. Here one package for MATLAB v8.21 [121] and one module for Python v2.7.32

and Sage v6.03 [122], respectively shall be presented. For MATLAB the usage of the framework YALMIP
v3 [123, 124] as for Python/Sage the usage of CVXOPT v1.1.6 [125] is introduced. As for the mentioned
solvers we will briefly discuss SeDuMi v1.3 [126] and SDPT3 v4.0 [127, 128], which can be used by YALMIP
and DSDP5 v5.8 [129], and CONELP [125], which can be accessed by CVXOPT.

In order to discuss the usage of the two optimisation packages a purely academical example of a
semidefinite program will be provided. That is, the maximum eigenvalues of four symmetric matrices
A1, A2, A3, A4 ∈ Rm×m are computed using semidefinite programming. This can be done using the fol-
lowing SDP:

min
x

4
i=1

xi (D.1)

s.t. xi1m −Ai ≥ 0 for all i = 1, . . . , 4.

Here the optimum will converge to the sum of the maximal eigenvalues, whereas the optimal point will yields
the individual maximal eigenvalues x⃗∗i = λmax(Ai). Comparing Eq. (D.1) to the standard formulation of the
primal problem as given in Eq. (5.1), we identify

c = (1, 1, 1, 1),

F0 = −
4

i=1

Ai,

F1 = 1m ⊕Om ⊕Om ⊕Om,

F2 = Om ⊕ 1m ⊕Om ⊕Om,

F3 = Om ⊕Om ⊕ 1m ⊕Om,

F4 = Om ⊕Om ⊕Om ⊕ 1m, (D.2)

1MATLAB is a non-free, closed source mathematical environment, which is widely used for numerical computations.
2Python is a cross platform, free, open source, general purpose and high-level programming language that has code readability

as its main paradigm.
3Sage is a cross platform, free and open source mathematics software, which aims to be an alternative to Mathematica and

Matlab. It is based on the Python scripting language, but also includes other scripting languages (such as R) and a graphical
user interface.
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where Om ∈ Rm×m is the null matrix. Consider the case, where Ak ∈ Rm×m is a matrix having k on the
diagonal and anti-diagonal and zero elsewhere. That is in the case m = 5

Ak =


k 0 0 0 k
0 k 0 k 0
0 0 k 0 0
0 k 0 k 0
k 0 0 0 k

 . (D.3)

Independent of m the largest eigenvalue of Ak is equal to 2k. Hence, the optimal point of the SDP given by
Eq. (D.1) is x⃗ = (2, 4, 6, 8) and thus c⃗T x⃗ = 20.

D.1.1 CVXOPT / CONELP & DSDP5.8

CVXOPT is a free Python module for convex optimisation. It can be used directly from within the Python
command line as module, executed from within a Python script or used from within the free and open source
Sage mathematics framework. Although one might stress that the later does require some care, since Sage
has modified some part of the Python. Note that CVXOPT can also be used for more general optimisation
problems, such as quadratic programming. However, these problems are not covered in this paragraph.

To illustrate the features, syntax and performance of CVXOPT three versions of the semidefinite program
as given by Eq. (D.1) with m = 50, m = 250 and m = 500 will be implemented using the standard solver
CONELP and the external solver DSDP5 to numerically calculate the optimum. Observe that the run-time
of our programs strongly depends on how the problem is parsed before given to a solver as can be seen in
Tab. D.1. In this context parsing refers to the process of transforming an SDP as given in Eq. (5.1) into a
form, which can be passed to a solver.

To illustrate this process and give some general guidelines4. First, the natural implementation is chosen,
where all constraints are collected in one large block-diagonal matrix as given by Eq. (D.2). Second, the
block structure is used to implement each block as an independent constraint, which speeds up the run-time
of the solvers. Last, the fact that the matrices Ai are sparse5 is exploited to further boost the performance
of the external solver DSDP5.

The complete source code of the natural implementation is provided in Listing D.1 for m = 50. At
this point, the implementation and syntax shall be discussed in detail: lines 1 to 4 contain the header of
the Python script. There the modules cvxopt, numpy, scipy.linalg are imported and references to the public
objects matrix, solvers, array, eye, zero, block_diag are created6. In lines 7 to 14 the matrices F0 to F4 [see
Eqs. (D.2)] are initialised as numpy.array. Then the problem vector c⃗ is set to (1, 1, 1, 1) in line 17 using the
matrix class of CVXOPT. One finishes parsing the problem by setting the semidefinite constraints in lines
19 and 21. The matrices in G and h correspond to the constraint h ≥ G(x⃗) =


iGixi. Compare this to

F (x) ≥ 0 then h = F0 and Gi = −Fi
7. Note that h is a list containing the matrix F0 and G is a list containing

one matrix made of all Gi. That is the i-th row of this matrix is given by the concatenation of the rows of
Gi = −Fi ( list(g.flatten())). Finally, lines 24 and 25 call the standard SDP solver CONELP8 and print the
point x⃗ solving the problem.

Listing D.1: Natural implementation: CVXOPT & standard solver

1 import numpy , cvxopt , scipy.linalg

2 from cvxopt import matrix , solvers

3 from numpy import array , eye , zeros

4 from scipy.linalg import block_diag

5

6 # Initialize problem matrices.

7 m = 50

4Unrelated to the discussion at hand, the author recommends reading Ref. [130] solely for admiration, since it is clearly one
of best written papers ever published.

5Note that a matrix is said to be sparse if it is primarily populated with zeros. If a matrix is not sparse, it is said to be dense.
Furthermore, linear algebra packages offer special algorithms to process sparse matrices, providing a significant performance
boost compared to dense matrices.

6In that way array instead of numpy.array can be used as done for instance in line 8 in Listing D.1.
7The signs in front of Fi are easily forgotten, which causes parsing of a different SDP.
8Here “standard” refers to CVXOPT.
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8 A = array ([[1. i f i==j or i+j==9 else 0. for i in range(m)] for j in range(m)])
9 O = zeros((m,m))

10 F0 = -block_diag (1*A, 2*A, 3*A, 4*A)

11 F1 = block_diag(eye(m), O, O, O)

12 F2 = block_diag(O, eye(m), O, O)

13 F3 = block_diag(O, O, eye(m), O)

14 F4 = block_diag(O, O, O, eye(m))

15

16 # Set problem vector c.

17 c = matrix ([1. ,1. ,1. ,1.])

18 # Set variable part in the semidefinite constraint F(x) >=0.

19 G = [ matrix ([ l i s t (g.flatten ()) for g in [-F1,-F2 ,-F3 ,-F4]]) ]

20 # Set constant part F0 in semidefinite constraint F(x) >=0.

21 h = [ matrix(F0) ]

22

23 # Start solver and print solution x.

24 sol = solvers.sdp(c, Gs=G, hs=h)

25 print sol[’x’]

A more advanced approach to implement the semidefinite program for m = 50 is given in Listing D.2.
In this implementation the block-diagonal structure of F (x⃗) is explicitly used. That is the single constraint
F (x⃗) ≥ 0 with F0, . . . , F4 as given in Eqs. (D.2) is split up into


j δijxj1m −Ai ≥ 0, i = 1, . . . , 4. We parse

these in lines 12 to 16, where the i-th item in G and h correspond to the constraint


j δijxj1m − Ai ≥ 09.
Note that the for all practical purposes, the run-time of the program shortens considerably as can be seen in
Tab. D.1, where the run-times of all implementations are given relative to the fastest implementation, which
is given by the code in Listing D.3.

Listing D.2: Exploiting the block-diagonal structure: CVXOPT & standard solver

1 import numpy , cvxopt

2 from cvxopt import matrix , solvers

3 from numpy import array , eye , zeros

4

5 m = 50

6 A = array ([[1. i f i==j or i+j==9 else 0. for i in range(m)] for j in range(m)])
7 O = zeros((m,m))

8 F = eye(m)

9

10 c = matrix ([1. ,1. ,1. ,1.])

11 # Use block -diagonal structure of F(x) >=0. Each block encodes separate constraints.

12 G = [ matrix ([ l i s t (g.flatten ()) for g in [-F,O,O,O]]) ]

13 G += [ matrix ([ l i s t (g.flatten ()) for g in [O,-F,O,O]]) ]

14 G += [ matrix ([ l i s t (g.flatten ()) for g in [O,O,-F,O]]) ]

15 G += [ matrix ([ l i s t (g.flatten ()) for g in [O,O,O,-F]]) ]

16 h = [ matrix (-1*A), matrix (-2*A), matrix (-3*A), matrix (-4*A) ]

17

18 sol = solvers.sdp(c, Gs=G, hs=h)

19 print sol[’x’]

In the last example, two minor modifications to the program given by Listing D.2 are introduced. First,
the solver DSDP5 is used instead of the standard solver CONELP in line 23 by providing the additional
argument solver=’dsdp’ in the function solvers.sdp. Since this solver has its own default settings the step
monitor and the intended accuracy goal have to be set to the same value as the ones CONELP uses in lines
6 and 7 to achieve comparability between the run-times of both solvers. Furthermore, the matrices in G have
to be provided not as dense matrices (matrix) but as sparse ones (sparse). The main advantage of doing so
is that a suitable solver can make use of the sparsity to reduce the total run-time.

Listing D.3: Using sparsity: CVXOPT & DSDP

1 import numpy , cvxopt

2 from cvxopt import matrix , sparse , solvers

3 from numpy import array , eye , zeros

4

5 # Enable step monitor and set exit condition.

6 solvers.options[’DSDP_Monitor ’] = 1

9Each of the constraints is parsed as discussed in the previous implementation.
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7 solvers.options[’DSDP_GapTolerance ’] = 1e-8

8

9 m = 50

10 A = array ([[1. i f i==j or i+j==9 else 0. for i in range(m)] for j in range(m)])
11 O = zeros((m,m))

12 F = eye(m)

13

14 c = matrix ([1. ,1. ,1. ,1.])

15 # Use sparse matrices.

16 G = [ sparse ([ l i s t (g.flatten ()) for g in [-F,O,O,O]]) ]

17 G += [ sparse ([ l i s t (g.flatten ()) for g in [O,-F,O,O]]) ]

18 G += [ sparse ([ l i s t (g.flatten ()) for g in [O,O,-F,O]]) ]

19 G += [ sparse ([ l i s t (g.flatten ()) for g in [O,O,O,-F]]) ]

20 h = [ matrix (-1*A), matrix (-2*A), matrix (-3*A), matrix (-4*A) ]

21

22 # Use alternative solver DSDP.

23 sol = solvers.sdp(c, Gs=G, hs=h, solver=’dsdp’)

24 print sol[’x’]

A comparison of the run-time of all three versions for m = 50, m = 250 and m = 500 using both
available solvers is given in Tab. D.1. Clearly, the natural implementation runs slowest independent of the
solver used. Hence, it is crucial to explicitly exploit the block-diagonal structure of a problem. That is to
provide semidefinite constraints within each diagonal block independently if possible as we have done in the
code given in Listing D.2. No matter what solver used the code in Listing D.2 gives a huge advantage with
respect to the run-time of the program.

Furthermore, one may try to make use of sparse matrices as we have shown in the code in Listing D.3.
The standard solver CONELP, however, shows no improvement of the run-time and thus does not seem
to make use of sparse matrices. As for the solver DSDP5 the explicit use of sparse matrices shortens the
run-time of the SDP by roughly 6% for m = 50, 16% for m = 250 and 26% for m = 500 compared to the
run times of the code given in Listing D.2 using the same solver.

The data in Tab. D.1 also shows that the advantage of exploiting the block-diagonal and sparse structure
of the problem strongly depends on the size of the problem and the solver used. Whereas for m = 50 the
code in Listing D.3 using the solver DSDP5 runs roughly 19 times faster than the code given in Listing D.1
using CONELP, the speed up increases to 39 times for m = 500. That is the run-times scale differently with
m and increase slowest for the code given in Listing D.3 using the solver DSDP5.

Remark D.1. We conclude this paragraph with some general remarks about the use of CVXOPT and the
solvers CONELP and DSDP5. As can be seen from the examples provided in Listings D.1, D.2 and D.3 the
usage of CVXOPT is quite demanding with respect to parsing the problem10. It is up to the programmer
to explicitly exploit all the given structure to reduce the computational power needed to solve a given
semidefinite program. Specifically, if the problem is large, it is often necessary to exploit all the structure
for the SDP to fit into the memory and thus be numerically feasible. On the one hand this requires a lot
of work, but on the other hand a program written within CVXOPT exploiting all the given structure often
leads to fast running programs.

Note that if one wants to exploit sparsity, then one has to rely on the solver DSDP5. Programs passed
to this alternative solver often require less memory during run-time and have a remarkable performance
compared to CONELP. On the downside this solver does not come along with the CVXOPT package and
has to be installed manually11.

As for the standard solver CONELP the usage is recommended only in the cases, where the involved
matrices are dense or DSDP5 runs into numerical problems12, i.e., if time is no concern13 and reliability is
required.

10Badly written code can have a severe effect on the run-time.
11Most Linux distributions provide a repository package providing this solver. On Debian/Ubuntu operating systems it can

be installed using the command line $ apt-get install dsdp.
12In certain instances, it might occur that a solver runs into numerical problems. That usually means that the algorithm

fails to provide a new iteration step at some point and then stops.
13That also includes the case, where the SDP has very few variables with small constraints. That is n,m ∈ N as given in

Eq. (5.1) are of the order of a few hundred.
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Solver
Code CONELP DSDP5 CONELP DSDP5 CONELP DSDP5
Listing D.1 2.80s 0.76s 170s 48s 1100s 310s
Listing D.2 0.29s 0.16s 19s 7.3s 94s 38s
Listing D.3 0.29s 0.15s 19s 6.1s 96s 28s

m = 50 m = 250 m = 500

Table D.1: This table shows the performance of the three implementations (see Listings D.1, D.2 and D.3)
of the SDP given by Eq. (D.1) for different sizes m × m of the semidefinite constraint using the native
solver CONELP of CVXOPT and the third party solver DSDP5. To get a good estimate on the run-time
the run-times are averaged using 100 runs using the Linux command line $ time for i in {1..100}; do python

script.py; done. The times given here include the overhead of calling Python, loading the modules and
parsing the SDP.

D.1.2 YALMIP / SeDuMi & SDPT3

In this paragraph the MATLAB framework for semidefinite programming called YALMIP shall be discussed.
Compared to the Python framework CVXOPT, which we discussed previously, it offers a quite natural syntax
to formulate semidefinite programs and includes a parser, which translates the problems to be forwarded to
a solver. Furthermore, it provides compatibility to a large number of different solvers, a complete discussion
of which is beyond the scope of this thesis. Therefore, solely the semidefinite program solvers SeDuMi
and SDPT3 are considered. As in the previous paragraph we formulate the SDP given in Eq. (D.1) in
three different ways. First, we formulate it naturally. Second, we explicitly make use of the block-diagonal
structure and split the single large semidefinite constraint into four. Finally, we try if one of the solvers can
make use of the sparsity of the matrices.

The code of the natural implementation is given in Listing D.414. Note that the first eight lines of the
code are essentially similar to lines 6 to 14 in Listing D.1. I.e., they set up the matrices involved in defining
the semidefinite constraints. Compared to CVXOPT, however, YALMIP offers a very natural syntax to
formulate a SDP. Variables are introduced by calling sdpvar u v w x. Then one sets the linear function to be
minimised by objective = u+v+w+x and finally the constraints constraints = [F0+u*F1+v*F2+w*F3+x*F4>=0]. Upon
calling the solver in line 18 YALMIP invokes its included parser. This automatically does all the low level
problem setting done in lines 17, 19 and 21 in Listing D.1 in the natural CVXOPT code manually and
solves the SDP. On the one hand side this is quite convenient as it saves a lot of time and makes the
code more readable. On the other hand one has no direct influence on the parser, which might lead to
otherwise avoidable bottlenecks. In this example we use the solver SeDuMi. A different solver can be used
by uncommenting line 16 and commenting line 17.

Listing D.4: Natural Implementation: YALMIP & SeDuMi/SDPT3

1 % Initialize problem matrices

2 m = 50;

3 A = zeros(m,m); for i=1:50 , A(i,i)=1.; A(i,51-i)=1.; end
4 F0 = blkdiag(-1*A,-2*A,-3*A,-4*A);
5 F1 = blkdiag(eye(m),zeros(m,m),zeros(m,m),zeros(m,m));
6 F2 = blkdiag(zeros(m,m),eye(m),zeros(m,m),zeros(m,m));
7 F3 = blkdiag(zeros(m,m),zeros(m,m),eye(m),zeros(m,m));
8 F4 = blkdiag(zeros(m,m),zeros(m,m),zeros(m,m),eye(m));
9

10 % Initialize SDP

11 sdpvar u v w x

12 objective = u+v+w+x;

13 constraints = [F0+u*F1+v*F2+w*F3+x*F4 >=0];

14

15 % Set options , start solver and print solution; Uncomment next line and comment the

following to set SeDuMi as solver

16 %options = sdpsettings(’verbose ’,1,’solver ’,’sedumi ’,’showprogress ’,1);

17 options = sdpsettings(’verbose ’,1,’solver ’,’sdpt3’,’showprogress ’,1);

18 sol = solvesdp(constraints ,objective ,options)

14All code provided in this paragraph can be executed from within MATLAB after the inclusion of YALMIP, SeDuMi and
SDPT3.



78 APPENDIX D. SEMIDEFINITE PROGRAMMING WITH PYTHON AND MATLAB

19 solution = double ([u,v,w,x])

Using YALMIP, it is then easy to provide the semidefinite constraints in the diagonal blocks of our
problem as independent constraints. As can be seen in Listing D.5, we first provide the m×m matrices in
lines 2 and 3 to formulate the four independent constraints given as in line 7.

Listing D.5: Exploiting block-diagonal structure: YALMIP & SeDuMi/SDPT3

1 m = 50;

2 A = zeros(m,m); for i=1:50 , A(i,i)=1.; A(i,51-i)=1.; end
3 F = eye(m);
4

5 sdpvar u v w x

6 objective = u+v+w+x;

7 constraints = [u*F-1*A>=0, v*F-2*A>=0, w*F-3*A>=0, x*F-4*A>=0];

8

9 %options = sdpsettings(’verbose ’,1,’solver ’,’sedumi ’,’showprogress ’,1);

10 options = sdpsettings(’verbose ’,1,’solver ’,’sdpt3’,’showprogress ’,1);

11 sol = solvesdp(constraints ,objective ,options)

12 solution = double ([u,v,w,x])

Our last code given in Listing D.6 is a slight alteration of the one given in Listing D.5. The main difference
is that all matrices are explicitly defined as sparse matrices. Note that this is in principle not necessary,
since YALMIP detects sparsity itself. This case was nonetheless included to highlight the differences between
CVXOPT and YALMIP in the following discussion.

Listing D.6: Using sparsity: YALMIP & SeDuMi/SDPT3

1 m = 50;

2 A = sparse ([1:1:m 1:1:m] ,[1:1:m m:-1:1],ones (1,2*m),m,m);

3 F = speye(m,m); % Sparse mxm identity matrix

4 O = sparse(m,m); % Sparse mxm null matrix

5

6 sdpvar u v w x

7 objective = u+v+w+x;

8 constraints = [u*F-1*A>=O, v*F-2*A>=O, w*F-3*A>=O, x*F-4*A>=O];

9

10 %options = sdpsettings(’verbose ’,1,’solver ’,’sedumi ’,’showprogress ’,1);

11 options = sdpsettings(’verbose ’,1,’solver ’,’sdpt3’,’showprogress ’,1);

12 sol = solvesdp(constraints ,objective ,options)

13 solution = double ([u,v,w,x])

Similarly to the last paragraph the run-times of our programs were averaged over several runs, whereas
the time YALMIP needed to parse the problem was not taken into account. Here, however, we did not show
the run-times for different m, since the qualitative behaviour is the same. The results of the performance
tests for both solvers (SeDuMi and SDPT3) are given in Tab. D.2.

The solver SeDuMi shows qualitatively a similar behaviour as the CVXOPT solver CONELP (see
Tab. D.1). Its run-time is long if the natural implementation is used and significantly decreases if we
split the large constraint into four smaller ones exploiting the block-diagonal structure of the semidefinite
constraint used in the natural implementation. Our tests shows that the explicit use of sparse matrices can
be omitted, since sparsity is automatically detected by the parser and used by SeDuMi [126]. Overall the
run-time of SeDuMi is better than that of CONELP, which is to be expected with respect to the sparsity of
our constraints. Compared to DSDP5, however, SeDuMi is noticeably slower.

As for the second solver SDPT3 our tests show an unexpected behaviour as can be seen in Tab. D.2.
Contrary to SeDuMi, CONELP and DSDP5, its run-time is best and comparable to the fastest run-time
of DSDP5 if the natural implementation is used. This leads to the conclusion that the parser detects the
block-diagonal structure and the sparsity in this case, both of which boost the performance of SDPT3 [127].
If we explicitly provide the four independent constraints, the parser seems to be unable to fully exploit the
problem structure, which leads to an increased run-time of this solver as shown in Tab. D.2.

Remark D.2. Let us conclude this paragraph with some general remarks about YALMIP and the solvers
SeDuMi and SDPT3. First, note that the solver SDPT3 has a good performance compared to SeDuMi and
is almost as fast as DSDP5 to solve our problem. For larger problems, however, the run-times of DSDP5
scale slightly better than the run-times of SDPT3.
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Solver
Code SeDuMi SDPT3
Listing D.4 0.72s 0.17s
Listing D.5 0.24s 0.20s
Listing D.6 0.24s 0.20s

m = 50

Table D.2: This table shows the performance of the three implementations (see Listings D.4, D.5 and D.6)
of the SDP given by Eq. (D.1) using SeDuMi and SDPT3. Here, the time the solver needed to solve the
problem as provided by the output of the function solvesdp was averaged over several runs. The time the
parser needs to translate the problem is not included.

First, as already mentioned in the last paragraph in certain instances it might occur that a solver runs
into numerical problems. In this case SeDuMi should be used, since its algorithm is more robust.

Second, independent of the solver used YALMIP offers a very intuitive and natural syntax to formulate
semidefinite problems. This in general saves a lot of programming time compared to CVXOPT, where one
needs to manually parse the problem. Although it might occur that the problem structure cannot fully be
exploited. In this case, the gain in run-time can justify the use of CVXOPT.

As for the included parser, one should be aware that it does not always behave the way one might expect.
That is dependent on the solver different formulations of a SDP can lead to either an increase or decrease of
the run-time. Finally, it is worth mentioning that CVXOPT used together with DSDP5 performs best and
has the lowest memory requirements in our experience. Hence it is a good choice if large scale semidefinite
programs are to be solved. If on the other hand it is foreseeable that the run-time is small, then it might be
faster to use the more natural syntax of YALMIP.

D.2 GMN implementation using CVXOPT

Before the CVXOPT implementation of the renormalised genuine multiparticle negativity is sketched, note
that the corresponding code is optimised for speed and hence may lack readability.

Assuming H = Cn, the concatenation of the following sets has been chosen as operator basis: Altogether,
{Eii}ni=1, {Eij + Eji}ni=1,i<j and {−iEij + iEji}ni=1,i<j , where Eij ∈ Cn×n with (Eij)kl = δikδjl. There are

n2 elements in this basis and thus W and all Pm are described by n2 independent variables each.
According to the chosen basis, the coefficients ϱ(i) are given in lines 99, 104 and 105 in Listing D.7. From

these entries the problem vector is build in line 108 according to Eq. (5.22).
The positivity constraints 0 ≤ φ(Pm(x⃗)) of Pm are then parsed in lines 133 to 148. Note that in this

part the sparse matrices are constructed directly from the values and positions of the non-vanishing entries.

The constraints 0 ≤ φ

[W(x⃗)− Pm(x⃗)]

Tm


≤ 1 are parsed in lines 159 to 166. Especially important for

this step is the action of the partial transposition, which changes the position of some off-diagonal elements
as calculated in lines 166 to 179.

The function then ends by calling the solver DSDP5 in lines 203 and CONELP in line 205, respectively.

Listing D.7: Implementation of the (renormalised) genuine multiparticle negativity using CVXOPT

1 #This program implements the (renormalized) genuine multiparticle negativity using cvxopt

2 # Copyright (C) 2014 Martin Hofmann

3 #

4 # This program is free software: you can redistribute it and/or modify

5 # it under the terms of the GNU General Public License as published by

6 # the Free Software Foundation , either version 3 of the License , or

7 # (at your option) any later version.

8 #

9 # This program is distributed in the hope that it will be useful ,

10 # but WITHOUT ANY WARRANTY; without even the implied warranty of

11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 # GNU General Public License for more details.

13 #

14 # You should have received a copy of the GNU General Public License
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15 # along with this program. If not , see <http ://www.gnu.org/licenses/>.

16

17

18 #### load modules and import classes and functions ####

19 # Modules needed for the partial transposition and problem creation

20 import numpy as np

21 from numpy import array , dtype , r_, reshape , transpose

22 # Modules needed for the sdp solver

23 import cvxopt

24 # To use dsdp from within sage comment line above and uncomment 2 lines below

25 #import imp

26 #cvxopt = imp.load_module(’cvxopt ’, None , ’/usr/lib/python2 .7/dist -packages/cvxopt ’, (’’,

’’, 5))

27 from cvxopt.base import spmatrix

28 from cvxopt import solvers

29

30

31 #### set solver options ####

32 # Set options for standard sdp solver

33 solvers.options["show_progress"] = False

34 solvers.options["abstol"] = 1.e-12

35 solvers.options["reltol"] = 1.e-12

36 solvers.options["feastol"] = 1.e-8

37 solvers.options[’maxiters ’] = 100

38

39 # Set options for dsdp solver

40 solvers.options[’DSDP_Monitor ’] = 0 # integer (default: 0)

41 solvers.options[’DSDP_MaxIts ’] = 100 # positive integer

42 solvers.options[’DSDP_GapTolerance ’] = 1e-12 # scalar (default: 1e-5).

43

44

45 #### definition of partial transposition ####

46 def ptranspose(state , dim , subsys):

47 """ Partial transpose.

48 Returns the partial transpose of the state

49 wrt. the subsystems listed in the vector sys.

50 """

51 # The original partial transposition function

52 # was provided by Ville Bergholm (see http ://qit.sourceforge.net/)

53 # and licenced under the terms of the GPL3.

54 nsys = len(dim)

55 s = state

56 orig_d = s.shape

57 # which systems to transpose

58 subsys = array( l i s t ( set(range(nsys)).intersection( set(subsys))), int)
59

60 # swap the transposed dimensions

61 perm = np.arange (2 * nsys) # identity permutation

62 perm[r_[subsys , subsys + nsys]] = perm[r_[subsys + nsys , subsys ]]

63

64 # flat matrix into tensor , partial transpose , back into a flat matrix

65 res = s.reshape(dim + dim).transpose(perm).reshape(orig_d)

66

67 return res

68

69

70 #### define real and imaginary part ####

71 def real(_x): return _x.real

72 def imag(_x): return _x.imag

73

74

75 #### define the (renormalized) genuine multiparticle negativity ####

76 def gmn(rho ,dim ,renormalized=True , solver=’dsdp’):

77 """(renormalized) genuine multiparticle negativity.

78 Returns the (renormalized) genuine multiparticle negativity (GMN) of the state rho

79

80 Parameters : rho : rho array

81 A density matrix whose (renormalized) GMN is to be computed

82 dim : (n1 ,n2 ,...,n_k) tuple
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83 A tuple containing the dimensions of the subsystems

84 renormalized : {True ,False} boolean

85 A boolean wheather to compute the renormalize GMN

86 introduced in Ref. [1] or the original version in Ref. [2]

87 [1] M. Hofmann et al. arXiv :1401.2424 (2014).

88 [2] B. Jungnitsch et al. PRL 106, 190502 (2011).

89 solver : {’conelp ’,’dsdp ’} string

90 A string which solver to use

91 The cvxopt standard conelp [3] or dsdp5 [4]

92 [3] M.S. Andersen et al. abel.ee.ucla.edu/cvxopt (2012).

93 [4] S.J. Benson and Y. Ye. www.mcs.anl.gov/hs/software/DSDP/

(2005).

94 """

95

96 nsys = len(dim)

97 n = int(np.prod(dim))
98 # c is set to minimize tr(rho*W)

99 cd = map(real ,rho.diagonal ().tolist ())
100 cr = []

101 ci = []

102 for j in range(n):
103 for i in range(j+1,n):
104 cr+=[2* real(rho[i][j])]

105 ci+=[-2* imag(rho[i][j])]

106 cpm = (2**(nsys -1) -1)*[0. for i in xrange(n**2)]
107

108 c = cvxopt.matrix(array(cd+cr+ci+cpm),tc=’d’)

109 del cd, cr , ci , cpm

110

111 # initialization of the lists holding the semidefinite constraints

112 G = []

113 h = []

114

115 #Introduce the constraints on the P_M: 0 <= P_M (<=1)

116 #y coordinates

117 X = []

118 #x coordinates for diagonal part

119 for d in range(n):
120 X.extend ([d*(2*n+1) ,(d+n)*(1+2*n)])

121 #x coordinates for offdiag real part

122 for x in range(0,n-1):
123 for y in range(x+1,n):
124 X.extend ([x+2*n*y, y+2*n*x, x+2*n*y+2*n*n+n, y+2*n*x+2*n*n+n])

125 #x coordinates for offdiag imag part

126 for x in range(0,n-1):
127 for y in range(x+1,n):
128 X.extend ([x+2*n*y+n, y+2*n*x+n, x+2*n*y+2*n*n, y+2*n*x+2*n*n])

129

130 # values for sparse matrices of both constraints

131 Valle1 = n*[1 ,1]+n*(n-1) /2*[1 ,1 ,1 ,1]+n*(n-1)/2*[1,-1,-1,1]

132 Valge0 = n*[-1,-1]+n*(n-1)/2*[-1,-1,-1,-1]+n*(n-1)/2*[-1,1,1,-1]

133

134 for i in range(1 ,2**(nsys -1)):
135 #y coordinates

136 Y = []

137 for j in range(n):
138 Y.extend (2*[j+i*n*n])

139 for j in range(n,n*n):
140 Y.extend (4*[j+i*n*n])

141

142 # do not upper bound P_m if renormalized genuine mutliparticle negativity is used

143 i f not renormalized:

144 G += [ cvxopt.spmatrix(Valle1 , X, Y, (4*n*n,n*n*2**( nsys -1))) ]

145 h += [ cvxopt.matrix( np.eye (2*n) , tc=’d’ ) ]

146

147 G += [ cvxopt.spmatrix(Valge0 , X, Y, (4*n*n,n*n*2**( nsys -1))) ]

148 h += [ cvxopt.matrix( np.zeros ((2*n,2*n)) , tc=’d’ ) ]

149

150 #In this part we introduce the constraints 0<=(W-P_M)^(T_M) <=1
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151 XY = [None for i in xrange(n*(n-1)/2)]
152

153 YW = []

154 for j in range(n):
155 YW.extend (2*[j])

156 for j in range(n,n*n):
157 YW.extend (4*[j])

158

159 for i in range(1 ,2**(nsys -1)):
160 temp = map( int , np.binary_repr(i,nsys))

161 subsys = []

162 for index , j in enumerate(temp):
163 i f j==1:

164 subsys.append(index)

165

166 #create dummy array

167 z = np.zeros((n,n), dtype= int)
168 for x in range(0,n):
169 for y in range(x+1,n):
170 z[x][y] = y + n*x- x*(x+1)/2 -x

171

172 #transpose dummy array partially

173 z = ptranspose(z,dim ,subsys)

174

175 #get posisitions of elements after partial transposition

176 for x in xrange(n):
177 for y in xrange(n):
178 i f z[x,y]:

179 XY[z[x,y]-1] = (x,y)

180

181 #x coordinates

182 X = []

183 for d in range(n):
184 X.extend ([d*(1+2*n),(d+n)*(1+2*n)])

185 for x,y in XY:

186 X.extend ([x+2*n*y, y+2*n*x, x+2*n*y+2*n*n+n, y+2*n*x+2*n*n+n])

187 for x,y in XY:

188 X.extend ([x+2*n*y+n, y+2*n*x+n, x+2*n*y+2*n*n, y+2*n*x+2*n*n])

189 X = 2*X

190

191 #y coordinates

192 Y = YW +[y+i*n*n for y in YW]

193

194 G += [ cvxopt.spmatrix(Valle1+Valge0 , X, Y, (4*n*n,n*n*2**(nsys -1))) ]

195 h += [ cvxopt.matrix( np.eye (2*n) , tc=’d’ ) ]

196

197 G += [ cvxopt.spmatrix(Valge0+Valle1 , X, Y, (4*n*n,n*n*2**(nsys -1))) ]

198 h += [ cvxopt.matrix( np.zeros ((2*n,2*n)) , tc=’d’ ) ]

199

200 del X, Y, YW, XY, Valle1 , Valge0 , z

201 # Use either standard solver of cvxopt or the external solver dsdp

202 i f solver == ’dsdp’:

203 sol = solvers.sdp(c, Gs=G, hs=h, solver="dsdp")

204 e l i f solver == ’’:

205 sol = solvers.sdp(c, Gs=G, hs=h)

206 else :
207 return "invalid choice of solver"

208 return -(c.T*sol[’x’])[0]

209

210

211 #### Example usage ####

212 # three qubit W state

213 print ’Initialize three qubit W state ’

214 W = 1/np.sqrt (3)*np.array ([0,1,1,0,1,0,0,0])

215 rho = np.outer(W,W.conjugate ())

216 # calculate GMN

217 print ’The GMN is given by:’, gmn(rho ,(2,2,2),False ,’’)

218 # calculate renormalized GMN

219 print ’The renormalized GMN is given by:’, gmn(rho ,(2,2,2),True ,’dsdp’)
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Reichmann, Michael Och-Reichmann und Jasmin Reichmann, Daniela Lehmann, Margit Steinleitner und
all den Umzugshelfern. All meinen Freunden, die mir so lieb sind, und insbesondere Henrik Grundmann
und Eva Bär-Grundmann die mich in Siegen besucht haben. Meiner wunderbaren Familie danke ich für all
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