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Zusammenfassung

In den achtziger Jahren des letzten Jahrhunderts wurde die α-Invariante ver-

wendet, um sphärische Verschlingungsabbildungen zu studieren, d.h. stetige

Abbildungen zweier Sphären Sp, Sq in den euklidischen Raum R
m mit disjunk-

ten Bildern. Man beachte, dass Selbstdurchdringungen der einzelnen Kompo-

nenten durchaus erlaubt sind. Es stellte sich heraus, dass α in einem gewissen

Dimensionsbereich (2p+ 2q ≤ 3m− 5) Verschlingungsabbildungen klassifiziert,

d.h. bis auf Homotopie durch Verschlingungsabbildungen.

In der vorliegenden Arbeit untersuchen wir verallgemeinerte Verschlingungs-

abbildungen, d.h. stetige Abbildungen zweier kompakter Mannigfaltigkeiten

Mm undNn mit disjunkten Bildern in eine Zielmannigfaltigkeit vom TypQq×R.

Die durch den zweiten Faktor gegebene affine Struktur macht es uns möglich,

eine α verallgemeinernde Version αw zu definieren, die zusätzlich eine Wichtung

durch gewisse Doppelnebenklassen von π1(Q) für jede Zusammenhangskompo-

nente der α repräsentierenden Schnittmannigfaltigkeit vornimmt. Wir weisen

nach, dass αw invariant ist bis auf basispunkterhaltende Verschlingungshomo-

topie.

Weiterhin zeigt sich, dass die Invariante αw den basispunkterhaltenden Ver-

schlingungshomotopietyp vollständig bestimmt, wenn 1 ≤ m,n und m+ n = q

gilt. Für andere Dimensionsbereiche können viele durch αw unterscheidbare

Verschlingungsabbildungen angegeben werden.

Beim Übergang zu basispunktfreier Verschlingungshomotopie, welche die na-

türlichere Relation bzgl. Verschlingungsabbildungen zu sein scheint, verändern
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sich die für die Wichtungen verwendeten Systeme von Doppelnebenklassen, so

dass im Allgemeinen eine “Liftung” von αw zu einer Invarianten bzgl. ba-

sispunktfreier Verschlingungshomotopie unmöglich ist. Allerdings treten diese

Probleme nicht auf, wenn π1(M) = 1 = π1(N) erfüllt (z.B. höherdimensionale

Sphären oder geeignete Tori) oder π1(Q) abelsch ist. In beiden Fällen läßt sich

eine Liftung α̃w definieren, die im Dimensionsbereich m + n = q für m,n ≥ 1

klassifizierend ist.
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Abstract

In the eighties of the last century the generalized linking number α was used to

study spherical link maps in the euclidean space R
m, i.e. maps of two spheres

Sp, Sq with disjoint images. It turned out that in a certain dimension range

(2p + 2q ≤ 3m − 5) α classifies link maps up to link homotopy, i.e. homotopy

through link maps.

In the present thesis we investigate generalized link maps, i.e. continuous

maps of two compact manifolds Mm and Nn, resp., with disjoint images into

a manifold of type Q × R. Because of the affine structure given by the second

factor we are able to construct a refinement αw of α. The refinement is based on

a weighting of each path component of the intersection manifold representing

α by double cosets of π1(Q). We prove that αw is invariant up to base point

preserving link homotopy.

Furthermore we can show that in the dimension range where 1 ≤ m,n and

m + n = q holds our invariant determines the link homotopy type completely.

For other dimension settings we construct many examples with different link

homotopy type.

Consider now the relation of base point free link homotopy, which seems to

be more natural for link maps. We are faced with the problem that a (free)

link homotopy changes the target group of αw. Thus a “lifting” of αw to an

invariant concerning base point free link homotopy fails in general. But there

are no problems if π1(M) = 1 = π1(N) (i.e. for higher dimensional spheres

or appropriate tori) or abelian fundamental group of Q. In both cases we can
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define a lifting α̃w, which classifies in the dimension range where 1 ≤ m,n and

m+ n = q holds.
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1 Introduction

Let M3 be a 3-dimensional manifold. A link map f is a map

f = f1 ⊔ f2 ⊔ . . . ⊔ fr : S1 ⊔ S1 ⊔ . . . ⊔ S1 →M3,

such that fi(S
1) ∩ fj(S

1) = ∅, i 6= j, 1 ≤ i, j ≤ r. Two link maps f , g are said

to be link homotopic if there is a continuous one-parameter family of link maps

Ft, such that F0 = f and F1 = g. John Milnor introduced the relation of

link homotopy to study linking phenomena in 3-dimensional manifolds, i.e. to

ignore completely all knotting phenomena of each component, [Mil54]. But in

spite of this crude relation it seems to be not easy to give a classification of link

maps. Milnor was able to give a classification for two and three component

link maps in the case where M3 = R
3. Furthermore he gave an algorithm which

tells us whether a given link map with an arbitrary number of components is

trivial up to link homotopy.

Later P. Scott [Sco68] studied link maps f : Sp ⊔ Sq → Sm, whose link ho-

motopy classes he denoted by LMm
p,q. He extended the classical linking number

lk of a two component link in R
3 to the α-invariant in higher dimensions:

α : LMm
p,q → πp+q(S

m−1),

which is represented by the difference map

φ : Sp × Sq → Sm−1,

(x, y) 7→ f(x)−f(y)
‖f(x)−f(y)‖

.
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2 Chapter 1 : Introduction

Note that if p, q ≤ m − 2 the Puppe-sequence implies that [Sp × Sq, Sm−1] =

πp+q(S
m−1). Scott obtained the first classification results in the dimension

range p, q ≤ m− 3, p+ 2q ≤ 2m− 4 using the α-invariant.

The α-invariant was the starting point to a whole series of papers by different

authors: W.S. Massey & D. Rolfsen [MR85], R. Fenn & D. Rolfsen

[Fen86], P. Kirk [Kir90, Kir88] and U. Koschorke [Kos88, Kos90, Kos92]

and V. Nezhinskij [Nez91]. The most general result currently available in

higher dimensional link homotopy with two components is the classification

exact sequence of U. Koschorke established in [Kos90]. Applying this one

gets the classification result of α in the 2-metastable range 2p + 2q ≤ 3m − 5

provided either p ≥ m − 2, or 3q + 3 ≤ 2m holds. N. Habegger & U.

Kaiser [HK98] were able to remove the last restrictions and showed that the

classification range of α is exact the 2-metastable range.

In [Kos88] U. Koschorke extended the definition of the α-invariant to ge-

neralized link maps:

f = f1 ⊔ f2 : Mm ⊔Nn → Sq,

where Mm and Nn are arbitrary manifolds of dimension m and n, resp., with

some additional structure. He chooses a (relative) bordism F1 for f1 and defined

α(f) to be the bordism class of the coincidence manifold S := (F1 × f2)
−1(△)

with additional structure, where F1 × f2 : M × N → Sq × Sq is approximated

to be transverse to the diagonal △ := {(x, x) : x ∈ Sq} ⊂ Sq×Sq. It turns out

that α(f) is invariant up to link homotopy and in fact equal to the homotopy

class of the difference map φ provided m,n ≤ q − 2.

But by the lack of a relative bordism of f1 there is no general definition of α

for link maps:

f = f1 ⊔ f2 : Mm ⊔Nn → Qq,

if the target space Qq is an arbitrary manifold.

In the present thesis we investigate the case where the target space has more

structure and is of the form Qq × R. Then there is a standard bordism of

f1 required in the definition of α: Pull f1 in the positive R-direction until it
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is completely over f2 according to the R-factor. The coincidence manifold S

consists of a finite number of path components Si. We construct a Wall-type

refinement of α which we call αw. Here the subscript w indicates a “weighting”

of each path component Si. We will assign to each Si a certain double coset [ω]

related to an element ωi ∈ π1(Q, ∗) (compare chapter 3.2). The double cosets

depend on the subgroups induced by the homotopy classes of f1 and f2. Let

Ω∗ be one of the graded bordism rings: N∗ (unoriented), ΩSO
∗ (oriented) or Ωfr

∗

(stably framed). Then we get the following:

Theorem 3.18. Let M , N and Q, resp., be pointed manifolds of dimensions m,

n and q, resp., representing elements in Ω∗. Furthermore let f : M⊔N → Q×R

be a based link map. Then

αw(f) :=
∑

[Si][ωi]

is invariant up to base point preserving link homotopy.

A very similar construction was defined by R. Schneiderman [Sch03] for

classical links in 3-manifolds.

Define BLM(σ1,σ2) to be the set of all base point preserving link homotopy

classes of based link maps f = f1⊔f2 such that σ1 = [f1] ∈ [(M, ∗1), (Q×R, ∗̄1)]

and σ2 = [f2] ∈ [(N, ∗2), (Q×R, ∗̄2)] where ∗̄1 6= ∗̄2. Let F be an oriented surface

and f : S1⊔S1 → F × I an oriented link map. Denote by Λ(σ̄1,σ̄2) =< [pr ◦f1] >

\π1(F, ∗)/ < [pr ◦f2] > the target group of αw in this case (pr : F × I → F is

the projection onto the first factor). Using a standard form of two-component

link maps in F × I we can use our invariant αw to prove the following theorem:

Theorem 4.4. If F is an oriented, compact, connected surface. Then αw is a

bijective map between the set BLM(σ1,σ2) of classes of base point preserving link

maps up to base point preserving link homotopy and Λ(σ̄1,σ̄2).

It is easy to see that the result holds if we replace oriented by unoriented link

maps.



4 Chapter 1 : Introduction

The construction of our standard form can be extended to higher dimensions,

i.e. to link maps f = f1 ⊔ f2 : Mm ⊔Nn → Qq ×R. Roughly speaking consider

σ1 ∈ [(M, ∗1), (Q×R, ∗̄1)] and σ2 ∈ [(N, ∗2), (Q×R, ∗̄2)], ∗̄1 = (∗, t1), ∗̄2 = (∗, t2)

with t1 > t2. Then represent σi by a map f 0
i ⊂ Q× {ti} for i = 1, 2, such that

both are embedded near the base point. Now perform a “finger move” along a

prescribed loop τ in Q× (t2, t1) and wrap around the meridian sphere MS of a

point near the image of the base point ∗1 by a map prescribed by g ∈ πn(Sq−m).

The result is a link map f ′ = f 0
1 ⊔ f

′
2 with the same homotopy classes of its

components and αw(f ′) = [E∞ ◦ PT−1(g)][γ] (the finger move is a homotopy

of f 0
2 , so it does not change the homotopy class of f 0

2 ). Here PT denotes the

collapse map in the Pontrjagin-Thom construction (compare section 2.2). This

construction can be extended to a finite number of elements τi and gi. This

results in

Lemma 5.3. If 1 ≤ m ≤ q − 1 and 1 ≤ n ≤ 2(q −m) − 1 the invariant αw is

onto. So αw distinguishes between many (based) link homotopy classes of two-

component framed link maps.

If the dimensions of M and N are “dual” to each other we are able to prove

the classification result:

Theorem 5.4. Assume that m,n ≥ 1 and m+ n = q. Then αw is a bijection,

i.e. αw is a full invariant of BLM(σ1,σ2).

Up to this time we studied only base point preserving link homotopy. But

base point free link homotopy seems to be the more natural relation. What

happens if we want to construct an extension of αw to base point free link

homotopy? In general the problem is that we are faced with a changing of the

target Λ(σ̄1,σ̄2) if we compute αw for two different based representatives of a free

link homotopy class. But it is not hard to see that there is some functorial

description of this changing (compare Proposition 6.3). So we can establish a

necessary condition for link maps to be link homotopic. Denote by f b a fixed

based representative of the link map f . By a basing construction along loops
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which represent (γ1, γ2) ∈ π1(Q, ∗) × π2(Q, ∗) we can change a based link map

gb to other based representatives of g which we call gb
(γ1,γ2)

.

Proposition 6.4. If αw(f b) 6= αw(gb
(γ1,γ2)) holds for all (γ1, γ2) ∈ π1(Q, ∗) ×

π1(Q, ∗). Then maps f and g cannot be link homotopic.

On the other side if π1(Q, ∗) is an abelian group or if the induced subgroups

f1#(π1(M, ∗1)) and f2#(π1(N, ∗2)) are contained in the centralizer of π1(Q, ∗)

the target Λ(σ̄1,σ̄2) of αw does not change under a free link homotopy between

based maps. That is why we can lift our invariant αw to α̃w which is invariant

for based link maps up to (free) link homotopy. Applying α̃w we can extend the

classification results to base point free free link homotopy:

Theorem 6.6. Let m + n = q ≥ 2 and M , N and Q, resp., be stably framed

manifolds of dimension m,n ≥ 1 and q, resp. Furthermore assume that π1(Q, ∗)

is abelian or π1(M, ∗1) = 1 = π1(N, ∗2). Then the invariant α̃w is a bijection

between LMQ
M,N and Ωfr

n+m−q[Λ(σ̄1,σ̄2)]/ ∼. The same is true in the case of two

oriented circles in F × I, where F denotes an oriented surface with abelian

fundamental group.

This result is an extension of results of U. Dahlmeier [Dah94] and in some

sense of U. Koschorke [Kos03a].

We want to conclude this introduction with some remarks on future devel-

opments based on the construction of αw. To get a better understanding of

what αw is really measuring we can try to give a certain over-crossing inter-

pretation of αw with relations to new results of U. Koschorke [Kos03b] in

Nielsen coincidence theory. His new approaches seem to be very fruitful in many

directions.

The thesis is organized as follows. In chapter 2 we recapitulate some basic

facts and notations from differential topology to the convenience of the reader.

The invariant αw for based link maps will be constructed in chapter 3, where we

also prove the invariance of αw up to based point preserving link homotopy and

establish some symmetry relations. In chapter 4 we discuss link maps in classical
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dimensions and give a proof of the classification theorem for BLM(σ1,σ2). The

construction used in this proof will be extended in chapter 5 to give many exam-

ples of link homotopy classes in higher dimensions. The proof of Theorem 5.4

can be found in section 5.4. In the concluding chapter 6 we study the relation

to base point free link homotopy and prove Proposition 6.4 and Theorem 6.6.



2 Basics and background in

differential topology

In the first chapter we want to give a short overview about some basics of

differential topology. We describe some well-known constructions and facts

which we will use frequently.

2.1 Manifolds and differentials

Mm will always denote a C∞-differentiable (smooth) manifold of dimension

m. If f : M → M ′ is a C∞-differentiable (smooth) map, then Tf : TM →

TM ′ stands for the induced map on the tangential bundles, i.e. Tf(x, v) =

(f(x), dfx(v)) for x ∈ M and v ∈ Tx(M), where dfx : TxM → Tf(x)M
′ denotes

the differential of f in x.

Let Mm be an orientable (smooth) manifold. Then an orientation of Mm

corresponds to an orientation of the tangent bundle of Mm, i.e. for every point

x ∈ M there is a neighborhood x ∈ U and a m-tuple s1, ..., sm of sections in

TM |U , so that the ordered set [s1(y), ..., sm(y)] determines an orientation of

TyM for each y ∈ U . If we now consider a product manifold P = M × N of

oriented manifolds we will equip P with the following canonical orientation in-

duced by M and N : Assume that the ordered basis v1, . . . , vm ∈ TxM represents

the local orientation in x and the ordered basis w1, . . . , wn ∈ TyN represents the

local orientation in y. Then the n+m-tuple (v1, . . . , vm, w1, . . . , wn) determines

a local orientation of T(x,y)(M×N). It is easy to see that these local orientations

induce an orientation of P . The unit interval I = [0, 1] will always be given the

7



8 Chapter 2 : Basics and background in topology

orientation which is determined by a nonzero vector in positive direction.

In later chapters we will often make use of the orientation convention for the

boundary ∂M of an oriented manifold M described in [MS74]: Let v1, . . . , vm

be an oriented basis of TxM for x ∈ ∂M ⊂M such that v1 points “outwards” of

M and v2, . . . , vm ∈ Tx(∂M). The ordered basis v2, . . . , vm now determines the

required orientation of Tx(∂M). This orientation of ∂M will be called “induced”

by the orientation of M .

Lemma and Definition 2.1. Two m-dimensional manifolds M1, M2 will be

called bordant if there is a m+1-dimensional manifold W with ∂W = M1 ∪M2.

If M1 and M2 are oriented, then M1 and M2 are said to be oriented bordant

if ∂W with its induced orientation is orientation preserving diffeomorphic to

M1 ⊔ −M2. This relation is obviously an equivalence relation (compare e.g.

[MS74], §17). The bordism classes of (unoriented) m-dimensional manifolds will

be denoted by Nm whereas oriented bordism classes of dimension m are usually

denoted by ΩS0
m (compare [Sto58]).

To illustrate the geometry of framed bordism structures we will first describe

bordism theory in a very restrictive nature - for submanifolds of a given manifold

Nn.

Lemma and Definition 2.2. Consider all triples [i,M, F ], where i : M →֒ N

is an embedding and F is a framing of the normal bundle of i, i.e. a ho-

motopy class of a n-m tuple (v1, . . . , vn−m) of linear independent sections of

ν(i : M →֒ N). Then i(M) is said to be a framed submanifold of N . Two

framed submanifolds M1, M2 of N will be called framed bordant if the subset

M1 × [0, ε] ∪ M2 × [1 − ε, 1] can be extended to a framed submanifold W of

N×I, such that ∂W = M1×{0}∪M2×{1} = W ∩ (N ×{0}∪N×{1}) and W

satisfies the following framing condition: If (vi
1, . . . , v

i
n−m) are the framings of

Mi and (w1, . . . , wn−m) is the framing of W , then we have wj(x, t) = (v1
j (x), 0)

for t ∈ [0, ε] and wj(x, t) = (v2
j (x), 0) for t ∈ [1− ε, 1]. We refer to eΩfr

m (N) as

the set of all framed bordism classes of triples [i,M, F ]. Again it is not hard to

prove that this relation is an equivalence relation.
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If there is given an embedding j : N →֒ N ′ then j induces a map j∗ :

eΩfr
m (N) → eΩfr

m (N ′) by j[i,M, F ] = [j ◦ i,M, T j(F )]. If there is no confusion

we abbreviate [i,M, F ] by [M,F ] or even [M ].

Consider now an oriented manifold M without boundary. Equip M × I with

the product orientation induced by M and I. So we get the trivial oriented

bordism withM×{1} = −M andM×{0} = M if the dimension ofm is odd, and

reversed if m is even (where = means diffeomorphic by an orientation preserving

diffeomorphism). This can easily be seen, e.g. rotate the first vector v1 to e (in

the plane spanned by v1 and e), where e represents the canonical orientation of

I and v1, . . . , vm is an oriented basis of TxM in the case of x ∈M × {1}.

According to our orientation convention we use the following convention of

framing the boundary of a manifold M with ∂M 6= ∅. Let M →֒ N be an

embedding framed by (v1, . . . , vn−m). Then a framing of ∂M can be obtained by

(n, v1, . . . , vn−m), where n is the “outward pointing” normal vector of ∂M ⊂M .

This convention is useful because for x ∈ M the tangent space TxN will be

oriented by an oriented basis of TxM followed by a framing in x. If x ∈ ∂M

then an oriented basis of Tx(∂M), where ∂M carries the induced orientation,

followed by the induced framing of ∂M gives the same orientation of TxN as

above.

2.2 Pontrjagin-Thom construction

In what follows we will often make use of the Pontrjagin-Thom construction,

a key tool to connect differential topology and homotopy theory, developed

by Pontrjagin [Pon38, Pon59] and Thom [Tho54] in the 1950’s. Pontrjagin

introduced framed bordism to study homotopy classes of spheres. But it has

turned out to be easier to enumerate homotopy classes by quite different, more

algebraic methods. So the solutions in homotopy theory lead to interesting

consequences in manifold theory.

We give a brief description: Let f : Nn → Sn−m represent an element of

[Nn, Sn−m]. Approximate f by a smooth map with regular value 0 ∈ Sn−m =
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R
n−m ∪ {∞}. Then M = f−1(0) is a m-dimensional submanifold of N . A

canonical framing of M is given by the restriction of Tf to TN |M . This map

factors through TM and gives a fiberwise isomorphism of vector bundles:

ν(M →֒ N)
df

ν(0 →֒ Sn−m)

M
f

0.

Here we use the canonical framing of 0 ∈ Sn−m = R
n−m∪{∞} by (e1, . . . , en−m).

On the other hand there is a collapse map PT : N → Sn−m defined by ν(M →֒

Figure 2.1. Collapsing map of Pontrjagin and Thom

0

Sn−mNn

f
Mm

N) ∋ (p, v) 7→ v ∈ R
n−m ∪ {∞} = Sn−m (see figure 2.1.) and PT is constant

∞ outside a tubular neighborhood (identified with ν(M →֒ N)) of M . Now

Pontrjagin proved that both constructions are inverse to each other:

Theorem 2.3 (Pontrjagin). The collapse map induces a bijection

PT : eΩfr
m (N)←→ [N, Sn−m].

For a proof see [Mil65] or [DK01]. �

Remark 2.4. If we replace N by the (canonically framed) sphere of dimension

n we get on the right side the n-th homotopy group of Sn−m. Since πn(Sn−m)

is an abelian group eΩfr
m (Sn) inherits an abelian group structure. This is given

by disjoint union :

[M1] + [M2] := M1 ⊔M2 ⊂ Sn#Sn.
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To see this we have to remember the group structure of πn(Sn−m). Let ∗ be the

point∞ in all Spheres. Represent two elements α, β ∈ πn(Sn−m) by maps f1, f2 :

(Sn, ∗)→ (Sn−m, ∗) and let ν : (Sn, ∗)→ (Sn, ∗)∨ (Sn, ∗) be a comultiplication

on Sn. Then the composition

(Sn, ∗)
ν
−→ (Sn, ∗) ∨ (Sn, ∗)

(f1,f2)
−→ (Sn−m, ∗)

leads to a well-defined element α+β := [(f1, f2)◦ν] ∈ πn(Sn−m) (compare [SZ94],

16.3.14). Under PT−1 this is exactly M1 ⊔M2 ⊂ Sn#Sn (connected sum along

the equator). Now let d : Sn → Sn be a map of deg(d) = −1. Then we have

(f1, f1 ◦d)◦ν ≃ c by the definition of a comultiplication, where c is the constant

map Sn → ∗ ∈ Sn−m. We deduce with M1 := f−1
1 (0) and M2 := (f1 ◦ d)

−1(0)

that [M1] + [M2] = 0. It follows −[M1] = [M2]. But M2 = −M1, because

d|M1 defines an orientation reversing diffeomorphism. Therefore we proved

that −[M1] = [−M1]. �

So we can produce an inverse of a bordism class [M ] by changing the orienta-

tion of M , or equivalently the orientation of the framing, e.g. by reflecting the

first section in the framing.

2.3 Generalization to stable framings and

orientations

To remove the restriction to normally framed manifolds as submanifolds of other

manifolds we need to remove the reference to the embedding into a sphere. This

can be done by the concept of stable (tangential) framings:

Definition 2.5. A stable tangential framing of a m-dimensional manifold M is

an equivalence class of trivializations of TM ⊕ εk where εk is the trivial bundle

M ×R
k. Two trivializations

ϕ1 : TM ⊕ εk1 ∼= εm+k1 ϕ2 : TM ⊕ εk2 ∼= εm+k2
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are considered to be equivalent if there exists some K >> 0 large such that the

direct sum trivializations ϕ1 ⊕ IdεK−k1 and ϕ2 ⊕ IdεK−k2 are homotopic.

Remark 2.6. A very similar definition can be given for a stable normal framing

as equivalence class of trivializations of the normal bundle of an embedding of

M into a sphere of large dimension.

For all embeddings of Mm into Sn we have the canonical splitting

TSn|M ∼= TM ⊕ ν(M →֒ Sn).

Furthermore we know that all manifolds can be embedded into a sphere of large

dimension (again 2m or 2m−1 are enough: compare e.g. [Ada93] or the original

papers by Whitney [Whi44] and Haefliger/Hirsch [HH63]). We put these

facts together to obtain:

Theorem 2.7 (8.13, [DK01]). There is a one-to-one correspondence between

stable tangential framings and stable normal framings of a manifold M. More

precisely:

(1) Let i : M →֒ Sk be an embedding. Then stable framing of TM determines

a stable framing of ν(i) and conversely.

(2) Let ij : M →֒ Skj be embeddings for j = 1, 2. For K >> 0 large there

exists a canonical identification (up to homotopy)

ν(i1)⊕ ε
K−k1 ∼= ν(i2)⊕ ε

K−k2.

This means that a stable framing of ν(i1) determines a framing of ν(i2)

and vice versa.

The suspension for a pointed topological space (X, ∗) is defined by

SX = X × I/∼,
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where ∼ collapses ∗ × I ∪ (X × {0, 1}) to a point. Remember the fact that

SSn = Sn+1. The suspension is not only defined for topological spaces, but also

for maps f : (X, ∗)→ (Y, ∗). If we factor f × Id : X × I → Y × I through the

obvious subspaces we obtain the suspension

Sf : [X, Y ]→ [SX, SY ].

This yields an operator on T OP0. In the case where X is the n-dimensional

sphere, we get the suspension homomorphism E : πn(Y ) → πn+1(SY ). This

leads to the following theorem which is the starting point for the investigation

of stabilization in homotopy theory:

Theorem 2.8 (Freudenthal suspension theorem). Suppose that Y is an

(n− 1)-connected space (n ≥ 2). Then the suspension homomorphism

E : πk(Y )→ πk+1(SY )

is an isomorphism if k < 2n− 1 and an epimorphism if k = 2n− 1.

A proof of can be found e.g. in the book of G. W. Whitehead [Whi78], chapter

VII, section 7. �

Remark 2.9. In the case where Y = Sn the result can be extended to n = 1:

π1(S
1) ∼= π2(S

2).

Let us consider the canonical embedding of Sn as equator of Sn+1 = SSn.

The normal bundle ν(Sn ⊂ Sn+1) has a canonical trivial framing induced by

the framing of R
n ⊂ R

n+1, where we choose en+1 as the framing vector in each

point. If we have a smooth map f : Sk → Sn then the suspension Ef is smooth

away from the base point (Sn = R
n ∪ {∞} with base point ∞). Clearly, the

manifold M := f−1(0) = Ef−1(0) ⊂ Sk ⊂ Sk+1 has a canonical splitting of the

normal bundle: ν(M ⊂ Sn+1) ∼= ν(M ⊂ Sn) ⊕ ε. Thus a framing of M ⊂ Sn

together with the canonical framing of Sn ⊂ Sn+1 yields a framing of M ⊂ Sn+1.
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This establishes a correspondence between the suspension operation and the

stabilization of a normal (or tangential) framing:

Theorem 2.10 (Pontrjagin, [Pon59]). The stable k-stem πS
k is isomorphic

to the the abelian group Ωfr
k of bordism classes of stable tangentially framed

k-dimensional smooth, oriented compact manifolds without boundary.

Remark 2.11. The theorem was generalized by Thom [Tho54] to the case of

other bordism structures. This is based on the following idea: The classifying

bundle for trivial m-dimensional bundles is the trivial bundle εm over a point

{∗}. The Thom space of a bundle ξ over a compact base space is the one-point-

compactification of the total space of ξ. So collapse map PT constructed above

is nothing else but the Gauß map of ν(M →֒ Sn) extended to all of Sn to the

Thom space of the total space of the classifying bundle: All points outside a

tubular neighborhood of M →֒ Sn will be mapped to the extra point of the

compactification of R
n−m ∪ {∞} = Sn−m. To add this extra point was a stroke

of genius of René Thom. BSO(k) and BO(k), resp., are the classifying spaces

for oriented and unoriented k-plane bundles. We denote the Thom spaces of the

universal bundles over this spaces by MSO(k) and MO(k), resp. This leads to

a generalization of 2.10 to oriented and unoriented bordism groups.

Theorem 2.12 (Thom, [Tho54]). For k > n+1 the collapse map PT defines

an isomorphism of groups:

ΩSO
n
∼= πn+k(MSO(k)) Nn

∼= πn+k(MO(k)),

where ΩSO
n and Nn are the oriented and unoriented, resp., bordism classes of

dimension n.

A very beautiful and compact discussion of the Pontrjagin-Thom construction

can be find in the books of Milnor [Mil65], [MS74], and Davis / Kirk [DK01].



3 The weighted linking number αw

In this chapter we construct αw and prove the invariance of αw under base point

preserving link homotopy. Some symmetry relations of αw will be discussed in

the last section. If not stated otherwise throughout this work we will concentrate

on the dimension range: 1 ≤ m,n ≤ q − 1, i.e. on link maps with codimension

at least two.

3.1 Link maps and link homotopy

Let M , N and P , Q be closed, connected manifolds representing elements of

Ω∗ of dimension m, n, p, q (Ω∗ stands for one of the bordism rings Ωfr
∗ , ΩSO

∗ or

N∗). Pick base points ∗1 ∈M , ∗2 ∈ N and ∗̄1 6= ∗̄2 ∈ Q× R.

Definition 3.1. A map f = f1 ⊔ f2 : M ⊔ N → P is called a link map if the

two manifolds M and N have disjoint images, i.e. f1(M) ∩ f2(N) = ∅.

We write

BLMQ
N.M := {f1 ⊔ f2 : M ⊔N → Q×R | f a link map, fi(∗i) = ∗̄i, i = 1, 2}

for the set of all based link maps of M and N in Q× R and

LMQ
N.M := {f1 ⊔ f2 : M ⊔N → Q×R | f a link map}

for the set of all link maps of M and N in Q×R.

15
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Definition 3.2. Two link maps f, g ∈ BLMQ
M,N are link homotopic up to base

point preserving link homotopy if there is a (continuous) map

F : (M ⊔N)× I → Q× R,

such that Ft := F |(M ⊔N)× {t} is a based link map. The base point free

version of link homotopy is given by a map as before, but Ft is not assumed to

be base point preserving. (Based) link homotopy is obviously an equivalence

relation. The equivalence classes will be denoted by

BLMQ
M,N and LMQ

M,N .

Remark 3.3. There is an obvious map forget : BLMQ
M,N → LMQ

M,N which

forgets the base points. The role of base points will be studied in more detail

in chapter 6.

Remark 3.4. Embed Q×R into an R
k (e.g. k ≥ 2q + 2 is sufficient; compare

[Whi44]), the Riemannian metric induced by this embedding induces a topology

on the space of all maps g : M⊔N → Q×R, the compact open topology. In this

topology we can always approximate our link maps by smooth maps (compare

[Hir76]).

Remark and Definition 3.5. Let f : (M, ∗1) → (N, ∗2) be a map. In most

cases of our constructions we want to approximate f by a smooth map h which

is transverse to an (embedded) submanifold A ⊂ N\{∗2}. Furthermore we want

h to be base point preserving, i.e. h(∗1) = ∗2. This can be done by the following

construction: First consider a neighborhood U of ∗1 and a diffeomorphism h :

(U, ∗1) → (Rm, 0). Then define V := h−1(B1(0)), where B1(0) is the open ball

of radius 1 around 0. Now let λ : R
m → R be a smooth function which is

1 on B1(0) and 0 for x ∈ R
m \ B2(0) (compare e.g. section 2, chapter 2 in

[Hir76], these functions are used to construct partitions of unity). We construct
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a deformation d : R
m × I → R

m by

d(x) :=






(1− t)x ‖x‖< 1,

x− λ(x) tx
‖x‖

‖x‖≥ 1.

The homotopy H̄t := h−1 ◦ dt ◦ h : U → U is the identity outside of h−1(B2(0))

and deforms h−1(B1(0)) to ∗1. Extend H̄ to all of M by the identity to get a

deformation H of M with H1(V ) = ∗1. Then f ◦H is a homotopy from f to a

map f ′ := f ◦H1 with f ′(V ) = ∗2. Therefore f ′|V is smooth and transverse to A

because f(∗1)∩A = ∅. Now make f ′ transverse to A. This can be done without

changing f ′ in a neighborhood of ∗1 (compare e.g. [GG80], Corollary 4.12).

Such a base point preserving approximation will be called b-approximation of

f .

We need one more technical detail about transverse approximations: We want

to restrict ourself to such approximations f ′ that will be homotopic to f in N

such that the base point left fixed.

Lemma and Definition 3.6. Let f : (M, ∗1) → (Q, ∗2) be a map. Then

there is a b-approximation f ′ of f , such that f ′ is transverse to an (embedded)

submanifold A ⊂ Q \ {∗2} and b-homotopic to f . A map f ′ is b-homotopic to f

if there is a homotopy H : M × I → Q such that H0(x) = f(x), H1(x) = f ′(x)

and Ht(∗1) = ∗2. The map f ′ will be called a bh-approximation of f .

Proof. To prove this, embed Q into an R
k by i (compare Remark 3.4) and

let N(Q) ⊂ R
k be a tubular neighborhood of Q. So we have a retraction

r : N(Q) → Q. Now take a b-approximation f ′ (transverse to A) of f such

that all straight lines connecting f(x) to f ′(x) are contained in N(Q). Then we

define

H : M × I → R
k,

(x, t) 7→ tf(x) + (1− t)f ′(x).

Now r ◦H is a required homotopy of f to f ′.
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Definition 3.7. A link map f will be called trivial up to (based) link homotopy

if there exists a link homotopy of f to a constant map const which maps M and

N to ∗̄1 and ∗̄2, respectively. In the base point free case the choice of ∗̄1 and ∗̄2

gives no restriction in our setting because Q is connected and we can find (non

intersecting) paths to any other choice of base points (dimQ = q ≥ 2).

In the next Lemma we show that our based link homotopy classes do not

depend on the special choice of our base points ∗̄1, ∗̄2 ∈ Q.

Lemma 3.8. Let ∗̄′1, ∗̄
′
2 be any other choice pair of distinct base points in Q.

If BLMQ
N,M(∗̄1, ∗̄2) denotes the base point preserving link homotopy classes with

f1(∗) = ∗̄1 and f2(∗) = ∗̄2. Then we get a bijection:

BLMQ
M,N(∗̄1, ∗̄2)←→ BLMQ

M,N (∗̄′1, ∗̄
′
2).

Proof. Let X := {∗̄1, ∗̄2, ∗̄
′
1, ∗̄

′
2}. If two points of X are equal we can show

the bijection of both BLMQ
M,N (∗̄1, ∗̄2) and BLMQ

M,N(∗̄′1, ∗̄
′
2) to the link classes

related to a third pair different from the set above.

So let us assume that #X = 4. Choose z ∈ BLMQ
M,N (∗̄1, ∗̄2) and f ∈ z.

Because Q was assumed to be connected there is a path γ from ∗̄1 to ∗̄′1. A

small tubular neighborhood of γ is diffeomorphic to Dq+1 by a map d with

d(∗̄1) = (0, .., 0,−1/2) and d(∗̄′1) = (0, . . . , 0, 1/2). Consider the homeomor-

phism h of Dq+1 which changes only the q + 1-th component as shown in fig-

ure 3.1. (h(0, .., 0,−1/2) = (0, . . . , 0, 1/2) which is the identity on the boundary

of Dq+1. The composition h′ = d−1 ◦ h ◦ d (d identifies the tubular neigh-

borhood of γ with Dq+1) can be extended by the identity to a homeomorphism

of Q. But f ′ := h′ ◦ f represents an element z′ ∈ BLMQ
M,N(∗̄′1, ∗̄2). The map

h′ : [f ] 7→ [h′ ◦f ] is a well-defined map. For let g ∈ z and H be a link homotopy

connecting f and g, then the Homotopy h′ ◦H connects f ′ and g′. h′ is clearly

bijective. An inverse to h′ is given by a composition with h′−1. In the same way

we have a bijection changing ∗̄2 to ∗̄′2. �
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Figure 3.1. Deformation h

R

R
q

Dq+1

∗̄1

∗̄′1

Because of Lemma 3.8 we are free to choose the base points ∗̄1, ∗̄2 to suit our

needs. We will make use of this frequently in the next chapters and we will

write often BLMQ
M,N for BLMQ

M,N (∗̄1, ∗̄2).

3.2 Definition of αw

Let Ω∗ be one of the graded bordism rings Ωfr
∗ (stably framed), ΩSO

∗ (oriented)

or N∗ (unoriented). More over let M , N and Q be closed manifolds representing

elements of Ω∗ of dimension m, n and q. Pick base points ∗1 ∈M , ∗2 ∈ N and

∗ ∈ Q. In the following we will discuss homotopy classes of based link maps

mapping the base points of M and N to ∗̄1 := (∗, 1), ∗̄2 := (∗,−1) ∈ Q×R, resp.

Because of lemma 3.8 this is no restriction. Furthermore let (∗, 0) be a base

point of Q×R. A first partition of the set BLMQ
M,N is given by the homotopy

classes of f1 : (M, ∗1)→ (Q×R, ∗̄1) and f2(N, ∗2)→ (Q×R, ∗̄2). Let us write

BLM(σ1,σ2) for all link homotopy classes of based link maps f = f1 ⊔ f2 with

[f1] = σ1 and [f2] = σ2. Thus we have:

BLMQ
M,N =

.⋃
(σ1,σ2)∈G1×G2

BLM(σ1,σ2),

where G1 := [(M, ∗1), (Q×R, ∗̄1)] and G2 := [(N, ∗2), (Q× R, ∗̄2)].

Now consider a representative f = f1⊔f2 with [f ] ∈ BLM(σ1,σ2) as aforemen-

tioned. Let F1 : M × I → Q × R be a homotopy, where F1(x, 0) = f1(x) and
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pr′2 ◦F1(M×{1}) ⊂ R>f2 :=] max{(pr′2 ◦f2)(x) | x ∈ N},∞[. Here pr′2 : Q×R→

R denotes the projection to the second factor. The diagonal △ of (Q × R)2,

defined as the set {(x, x) | x ∈ (Q×R)}, is an q+1-dimensional submanifold of

(Q×R)2 diffeomorphic to Q×R. Choose a smooth bh-approximation F of the

product map F1 × f2 : (M × I)×N → (Q×R)× (Q×R), which is transverse

to the diagonal △. Such a map always exists (remark 3.5 and lemma 3.6; note

that we cannot assume F to be a product of two maps!). The homotopy given

by F according to lemma 3.6 will be denoted by HF .

The preimage S := F−1(∆) is a proper submanifold of M × I ×N . Because

f1(M) ∩ f2(N) = ∅ and pr′2 ◦F1(M × {1}) ⊂ R>f2 no point of ∂(M × I × N)

will be mapped to △. That is why S is a closed manifold and represents an

element of Ωn+m−q (the induced structure on S will be explained in more detail

in 3.10). Since both M × I and N are compact, the coincidence manifold S is

compact and thus has only finitely many path components Si.

If ωi ∈ π1(Q, ∗) then [ωi] denotes a certain double coset space in π1(Q, ∗).

Our aim is to assign a “weight” [ωi] to each Si. This leads to a refinement of

the classical α-invariant.

Let us now explain the construction of [ωi]. Choose a point si ∈ Si together

with a path β : I → (M × I)×N , which connects (∗1, 0, ∗2) to si. Then F ◦ β

is a path in (Q× R)2 connecting (∗̄1, ∗̄2) to F (si) ∈ △. We define:

β̄1 := pr1 ◦F (β) and β̄2 := pr2 ◦F (β),

where pri : (Q × R) × (Q × R) → (Q × R), (x1, x2) 7→ xi for i = 1, 2, are the

canonical projections to the first and second factor, resp.

This yields an element ω̄i connecting ∗̄1 to ∗̄2 as follows: First go along β̄1 to

the image s̃i := pr1 ◦F (si) ∈ (Q×R). Then go to ∗̄2 along β̄−1
2 (note that F was

assumed to be a b-Approximation). We define ωi to be the image of ω̄i under

pr′1 : Q × R → Q, (q, t) 7→ q, i.e. ωi ∈ π1(Q, ∗) because pr′1(∗̄1) = pr′1(∗̄2) = ∗̄.

By summing up over all path components Si of S we get an element of the

group ring Ωp+q−n [π1(Q, ∗)]. The group ring consists of all finite formal sums
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Figure 3.2. Definition of ω̄i if F1 × f2 is already transverse to △

Q×R

∗̄1 := ∗ × {1}

∗̄2 := ∗ × {−1}

∗̄ :== ∗ × {0}

F (β1)

F1(M × I)

S̃i ∋ s̃i

f2(β2)
f2(N)

t

of [S]ω, where [S] denotes the bordism class of S in Ωp+q−n and ω ∈ π1(Q, ∗).

If for example F1× f2 is already transverse to △ ∈ (Q×R)2, then ω̄i is equal

to F1(β1) · f2(β
−1
2 ), where β = (β1, β2) : I → (M × I)×N as defined above (see

figure 3.2.).

Since there is no canonical choice of β we have to reduce ωi to a coset space

of π1(Q, ∗). Let us explain this in more detail. Assume β ′ is another choice of

a path in M × I × N connecting (∗1, 0, ∗2) to si. Then β ′ differs from β by a

closed loop: β ′ = β ′ · β−1 · β =: γ · β (figure 3.3.). Now the image of γ under

Figure 3.3. Difference between two choices of β

(Q× R)2

△
(M × I)×N

β

γ

∗̄1

∗̄2

si s̄i

F

F1×f2 leads to a path γ̄ which is homotopic to F (γ) rel {0, 1} by HF restricted

to γ (HF is a b-approximation; thus HF leaves the base point of γ fixed). For
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γ̄ = (γ̄1, γ̄2) : (M × I)×N → (Q× R)2 this results in:

β̄ ′
1 · (β̄

′
2)

−1 = (pr1 ◦F )(β ′) · (pr2 ◦F )(β ′−1
) = (pr1 ◦F )(γ · β) · (pr2 ◦F )(β−1 · γ−1)

= (pr1 ◦F )(γ) · (pr1 ◦F )(β) · (pr2 ◦F )(β−1) · (pr2 ◦F )(γ−1)

≃ (pr1 ◦H
F
1 )(γ) · (pr1 ◦F )(β) · (pr2 ◦F )(β−1) · (pr2 ◦H

F
1 )(γ−1)

= F1(γ̃1) · β̄1 · β̄
−1
2 · f2(γ̃

−1
2 )

≃ f1(prM(γ̃1)) · ω̄i · f2(γ̃
−1
2 ).

(3.1)

Here prM : M × I → M, (m, t) 7→ m denotes the canonical projection onto M

which is a homotopy equivalence. Thus the quotient of (Q, ∗) which we have to

choose for ωi seems to be (pr′1 ◦f1)#(π1(M, ∗1))\π1(Q, ∗)/(pr′1 ◦f2)#(π1(N, ∗2)).

But the subgroup (pr′1 ◦f1)#(π1(M, ∗1)) does only depend on the homotopy

class [f1] = σ1 ∈ [(M, ∗1), (Q × R, (∗, 1)]. This follows easily because any base

point preserving homotopyH of f1 to f ′
1 yields f1#(π1(M, ∗1)) = f ′

1#(π1(M, ∗1)).

Therefore we write σ̄1 for (pr′1 ◦f1)#(π1(M, ∗1)) (a subgroup of π1(Q, ∗)). Like-

wise let σ̄2 be the subgroup of π1(Q, ∗) according to (pr′1 ◦f2)#(π1(N, ∗2)). Now

we have collected all information to formulate the central

Definition 3.9. Let Λ(σ̄1,σ̄2) denote the double coset space

σ̄1\π1(Q)/σ̄2. Then the weighted linking number αw will be defined by:

αw : BLM(σ1,σ2) → Ωp+q−n

[
Λ(σ̄1,σ̄2)

]
,

f1 ⊔ f2 7→
∑

i

[Si][ωi].

In section 3.3 we will prove that αw is well-defined.

Remark 3.10 (S with structure according to Ω∗). We want to look clo-

sely at the coincidence manifold S. How can we get a canonical orientation or

stable framing from our setting? The answer is given by the following sequence
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of canonical bundle isomorphisms over S which we will discuss below:

T (M × I ×N)|S ∼= TS ⊕ ν(S,M × I ×N)

∼= TS ⊕ (F |S)∗(ν(△, (Q× R)× (Q× R)))

∼= TS ⊕ (F |S)∗(pr∗1(T (Q× R)))

∼= TS ⊕ ((pr1 ◦F )|S)∗(T (Q× R))

(3.2)

2nd row: The heart of equation 3.2 is the isomorphism between the normal

bundle of S and the pullback of the normal bundle of △. This is based on

the fact that F is transverse to △. Therefore we obtain a vector bundle map

between the two normal bundles induced by the differential T (F ):

T (M × I ×N)|S
/
TS

ν

T (F )
T ((Q×R)2)|△

/
T△

ν

S
F △.

Because of the universal property of the induced bundle we get the desired

canonical isomorphism.

3rd row: This is given by the following canonical isomorphism:

ψ : pr∗1(T (Q×R)) → ν(△, (Q× R)2),

((x, x), (x, v)) 7→ ((x, x), (v,−v)),
(3.3)

where x ∈ Q× R and v ∈ Tx(Q× R).

Let I ⊂ R be equipped with the standard orientation and let M , N and Q×R

be oriented. Then we orient S or TS such that the image of the orientations on

the right side under the isomorphism of 3.2 gives the orientation on the left.

To get a stable normal framing we first observe that stable normal framings

are in 1-1 correspondence with stable tangential framings (see 2.7).

If we have trivializations TN⊕εk1 ∼= εn+k1, TM⊕εk2 ∼= εm+k2 and T (Q×R)⊕

εk3 ∼= εq+1+k3, the Whitney sum with a trivial bundle εk of large dimension k ≥
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{k1 +k2, k3} on both sides in equation 3.2 will produce canonical isomorphisms:

T (M × I ×N)⊕ εk ∼= pr∗1(TM)⊕ εk1 ⊕ pr∗2(TI)⊕ pr∗3(TN)⊕ εk−k1

∼= pr∗1(TM ⊕ ε
k1)⊕ ε1 ⊕ pr∗3(TN ⊕ ε

k−k1)

∼= εm+k1 ⊕ ε1 ⊕ εn+k−k1 ∼= εm+n+1+k

(3.4)

and

TS ⊕ (F1 ◦ pr1 |S)∗(T (Q× R))⊕ εk

= TS ⊕ ((pr1 ◦F )|S) ∗ (T (Q× R)⊕ εk3)⊕ εk−k3

∼= TS ⊕ εq+1+k3 ⊕ εk−k3

∼= TS ⊕ εq+1+k.

(3.5)

This yields a stable tangential framing of S if we take the induced subbundle

isomorphism in (3.4) and make use of equation (3.2).

Remark 3.11. If F1 × f2 is already transverse to △, we can replace F by

F1 × f2. This results in

TS ⊕ ((F1 × f2) ◦ pr1)
∗(T (Q×R))

∼= TS ⊕ ((pr1 ◦F1)|S)∗(T (Q× R)),

or, equivalently, in

TS ⊕ ((F1 × f2) ◦ pr2)
∗(T (Q×R))

∼= TS ⊕ ((pr2 ◦f2)|S)∗(T (Q× R)).

The second isomorphism will give the same orientation as in the first case. Using

the canonical identification pr∗2(T (Q×R)) ∼= ν(△) is exactly the same map:

((x, x), (x, v)) 7→ ((x, x), (v,−v)),

where x ∈ (Q× R) and v ∈ Tx(Q×R).
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Remark 3.12. In order to understand the geometric meaning of the above

description, choose embeddings i1 : M →֒ Sl1 , i2 : N →֒ Sl2 and i3 : (Q×R) →֒

Sl3. (By the embedding theorem of Whitney [Whi44] it is sufficient to take

ki twice the dimensions of M , N , Q × R.) Now there is a map for each pair

p, q ∈ N:

R
p+1 × R

q+1 ⊃ e : Sp ×Bq+1 →֒ Sp+q+1 = R
p+q+1 ∪ {∞},

(x, y) 7→ ((1 + ǫy1)x, εy2, . . . , εyq + 1),

where ǫ > 0 is small enough (e.g. 1/2) to ensure that we get an embed-

ding. The normal bundle given by this embedding has a canonical framing

by the outer normal vectors (see figure 3.4.). Consider the restriction of

Figure 3.4. Kervaire embedding of Sp × Bq+1 in Sp+q+1 = R
p+q+1 ∪ {∞}

R
p+1

R
q

2ε

e(Sp ×Bq+1)

e to ē : Sl1 × (I × Sl2) → Sl1+l2+1, where I × Sl2 is a collar of ∂Bl2+1 ⊂

Bl2+1. We take the composition of i1 × Id × i2 and ē to get an embedding

i : M × I ×N →֒ Sl1 × I × Sl2 →֒ Sl1+l2+1. Now choose a framing of M →֒ Sl1 ,

N →֒ Sl2 by (v1, . . . , vl1−m) and (w1, . . . , wl2−n), resp., such that these framings

correspond to the given stable tangential framings in Remark 3.10. Thus we

obtain a canonical framing of the normal bundle of i(M × I × N) ⊂ Sl1+l2+1

by (v1, . . . , vl1−m, w1, . . . , wl2−n). Likewise a normal framing z1, . . . , zl3−(q+1) of

Q× R →֒ Sl3 leads to a canonical framing (z1, . . . , zl3−(q+1), z1, . . . , zl3−(q+1), n
′)

of (Q×R)2 →֒ S2l3+1. The normal bundle of S ⊂M × I ×N →֒ Sl1+l2+1 is the

Whitney sum of ν(S →֒ M × I × N) and ν(M × I × N →֒ Sl1+l2+2)|S. So S
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receives a (stable) framing in Sl1+l2+1 by a framing of S ⊂M × I ×N together

with the framing (v1, . . . , vl1−m, w1, . . . , wl2−n) above. Now by transversality we

have the vector bundle map (fiberwise isomorphism):

TF : ν(S →֒ M × I ×N) −→ ν(△, (Q× R)2).

So the inverse of the differential dF transports a frame over F (s) ∈ △ ⊂ (Q×R)2

to a frame over s ∈ S ⊂M × I ×N .

Eventually a framing of incl2 : (Q × R) →֒ (Q × R)2 (embedded canonically

as the second factor) leads to a framing of △ ⊂ (Q×R)2, because

ν(incl2 : (Q× R) →֒ (Q× R)2) ∼= ν(△ →֒ (Q×R)2),

((0, x), (v, 0)) 7→ ((x, x), (v,−v)),

the same map as in (3.3). But now it is clear, that

ν((Q×R) →֒ S2l3+1) ∼= ν((Q× R) →֒ (Q×R)2)⊕ ν((Q× R)2 →֒ S2l3+1).

So we choose a framing on incl2(Q × R), such that the result of putting it

together with the given framing of (Q × R)2 is equal to the given stabilized

framing of Q×R.

Both descriptions are dual to each other up to a fixed sign, i.e. the induced

stable normal framing of S described above corresponds via Theorem 2.7 to the

stable tangential framing which we get by equation (3.4) and (3.5) up to a fixed

sign.
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3.3 Homotopy invariance of αw

In this section we will prove that αw is a well-defined map of BLMQ
M,N , i.e. αw

is link homotopy invariant. The proof is very technical and will be given in

three steps:

• independence of the choices of β and si,

• independence of the choice of F1 and the transverse approximation of F1,

• (based) link homotopy invariance of αw.

Lemma 3.13. Let S = ∪Si be the decomposition of the coincidence manifold

S into path components. Then the value of αw(f1 ⊔ f2) ∈ σ̄1\π1(Q)/σ̄2 does not

depend on the choices of si ∈ Si and βi in M × I ×N connecting (∗1, 0, ∗2) to

si ∈ Si.

Proof. It is enough to prove the statement for one path component Si of

S. Choose si ∈ Si. By the computation in (3.1) we proved that two distinct

paths in M × I × N connecting (∗1, 0, ∗2) to si yield the same coset space in

σ̄1\π1(Q)/σ̄2. So it remains to show the following: If s′i ∈ Si is another point

then we construct a special path β ′ to s′i with [ω′
i] = [ωi] ∈ σ̄1\π1(Q)/σ̄2, where

ω̄i comes from β beeing a path from (∗1, 0, ∗2) to si. To do this we choose a

path δ in Si connecting si to s′i and define β ′ := β · δ. We compute:

ω̄′
i = (pr1 ◦F )(β · δ) · (pr2 ◦F )(δ−1 · β−1)

= (pr1 ◦F )(β) · (pr1 ◦F )(δ) · (pr2 ◦F )(δ−1) · (pr2 ◦F )(β−1)

= (pr1 ◦F )(β) · (pr1 ◦F )(δ) · (pr1 ◦F )(δ−1) · (pr2 ◦F )(β−1)

= (pr1 ◦F )(β) · (pr1 ◦F )(δ · δ−1) · (pr2 ◦F )(β−1)

≃ (pr1 ◦F )(β) · (pr2 ◦F )(β−1) = ω̄i.

(3.6)

Note that the third equality holds because F (δ) ∈ △, i.e. (pr1 ◦F )(δ) =

(pr2 ◦F )(δ).
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Figure 3.5. ω̄′
i ≃ ω̄i rel {0, 1}.

∗̄1

∗̄2

F (β)F (δ)

s̄i

s̄′i
(Q× R)2

△

Remark 3.14. It could be concluded mistakenly that our “weighting” could

be trivial, i.e. the weights are equal for all path components: Because M and

N are connected, choose a path δ connecting si ∈ Si to sj ∈ Sj (i 6= j) in

M × I ×N . Then the computation in (3.6) shows that [ωj ] = [ωi]. But in this

case the proof is wrong. It is essential for the third equality in (3.6) that δ is a

path in Si.

The next lemma is the heart of the proof of the invariance of αw. Before we

state the lemma we introduce the following notation: If F1 is a homotopy of f1

to compute αw(f1⊔f2) we will write αw(F1, f2) for the value computed by using

F1. If H is an bh-approximation of F1 × f2 to compute αw(F1, f2), then αw(H)

indicates that we use H to compute αw(F1, f2).

Lemma 3.15 (independence of homotopy of f1). Let F1, F
′
1 : M × I →

Q×R be homotopies of f1, such that the following terms are complied: F1(x, 0) =

F ′
1(x, 0) = f1(x) and F1(M × {1}), F

′
1(M × {1}) ⊂ Q × R>f2. Then it follows

that

αw(F1, f2) = αw(F ′
1, f2).

Proof. In a first step we observe that the value of αw is independent from the

choice of smooth bh-approximations of F1×f2 transverse to△. Suppose we have

two sufficiently good bh-approximations H0 ⋔ △ and H1 ⋔ △ of F1 × f2. We

know that H0(x) = H1(x) = (F1×f2)(∗1, 0, ∗2) for all x in a small neighborhood

of (∗1, 0, ∗2) (compare 3.5). Because H0 and H1 are h-Approximations, there

is a b-homotopy h : ((M × I) × N) × I → (Q × R)2 from H0 to H1, e.g.
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deform H0 to F1 × f2 and then F1 × f2 to H1 by the homotopies given in

lemma 3.6. Furthermore we can assume ht(x) := h(x, t) = H0(x) for t ∈ [0, ε]

and ht(x) = H1(x) for t ∈ [1− ε, 1] (ε sufficiently small; technical reasons).

Let h̄ be an approximation of h, smooth and transverse to △ - the diagonal of

(Q×R)2. Note that h is already smooth and transverse to △ in a neighborhood

U1 of (∗1, 0, ∗2)×I and U2 of the boundary part ((M×I)×N)×{0, 1}. Therefore

we can assume that h̄(x) = h(x) for x ∈ Ū ′
1 ∪ Ū

′
2, where U ′

i ⊂ Ui are open with

Ū ′
i ⊂ Ui for i = 1, 2 ([GG80], Corollary 4.12).

Now we use the preimage S̄ = h̄−1(△) to establish a bordism between the

coincidence manifolds S0 := h̄−1
0 (△) = H−1

0 (△) and S1 := h̄−1
1 (△) = H−1

1 (△).

There are three different types of path components of S̄ (see figure 3.6.):

• closed components in the interior of (M × I)×N × I,

• components with boundary only in (M × I)×N × {0} (or only in (M ×

I)×N × {1}),

• path components with boundary in both ends.

In the case of unoriented link maps it is clear that S0 and S1 represent closed

(unoriented) manifolds to compute αw(H0) and αw(H1), resp., and S̄ yields an

(unoriented) bordism between them. If we consider oriented or framed link

maps we have to care about the structures of S0 and S1. So let S̄i be the

path components of S̄. Further we denote by S0
i,1, . . . , S

0
i,ki

and S1
i,1, . . . , S

1
i,li

the

boundary components of S̄i which belong to S0 and S1, respectively. Consider

the orientation equation (3.2) to calculate αw. An analogous equation can be

deduced for S̄:

ϕ : T (M × I ×N × I)|S̄ ∼= T S̄ ⊕ (pr1 ◦h̄)|S̄
∗(T (Q× R)).

Remember that we orient T S̄ such that ϕ is an orientation preserving isomor-

phism of the fiber over s ∈ S̄. Now we use the orientation convention described

in section 2.1. Let S̄0
i,j, S̄

1
i,j′ be the boundary components of S̄i equipped with
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Figure 3.6. Types of path components of S̄.

S1
11 S1

12

S1
31

S0
31

S̄1 ∈ type 2

S̄2 ∈ type 1

S̄3 ∈ type 3

(M × I)×N

I

the orientation induced by S̄i. In view of definition 2.1 it is clear, that

[ ki⋃

j=1

S̄0
i,j

]
= −

[ li⋃

j′=1

S̄1
i,j′

]
∈ ΩSO

n+m−q.

Now we use our assumption on h̄ near the boundary: h̄t(x) = ht(x) = H0(x),

t ∈ [0, ε] and h̄t(x) = ht(x) = H1(x), t ∈ [1 − ε, 1]. This ensures that the

isomorphism ϕ restricted to the boundary of T (M×I×N×I) is still orientation

preserving, if we orient ∂(M × I ×N × I) and ∂S̄ with induced orientations of

M×I×N×I and S̄, resp. To verify this let v1, . . . , vn+m+2 be an oriented basis

of the tangent space Tx(M × I × N × I) over x ∈ M × I × N × {i}, i = 0, 1,

and s1, . . . , sn+m−q+1, n1, . . . , nq+1 an oriented basis of TxS̄ ⊕ (pr1 ◦h̄)|
∗
x(T (Q ×

R)) induced by ϕ. Rotating the first vector “outwards” leads to the induced

orientation of M × I × N × {i} (see section 2.1). But the same is true for

S̄i, i = 0, 1, because this rotation can be done by a rotating only vectors of

s1, . . . , sm+n−q+1 (n1, . . . , nq+1 are all tangent vectors of the boundary M × I ×

N × {i} because the differential vanishes in the direction of the last factor!).

If we speak of S0
i,j and S1

i,j′ as oriented, we fit out these manifolds with the

orientation induced by equation (3.2) for S0 and S1, resp.,

ψi : T (M × I ×N)|Si ∼= TSi ⊕ (pr1 ◦Hi)
∗(T (Q×R)), for i = 0, 1.
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Note that H0(x) = ht(x) for all x ∈M × I ×N and t ∈ [0, ε], so it follows that

the differential involved in ψ0 is simply ϕ|(TM × I × N × {0}). The same is

true for ψ1. Again following the orientation convention discussed in section 2.1

we conclude that either S0 carries the same orientation as S̄0 or S1 carries the

same orientation of S̄1. This is due to the fact that if we use the orientation

conventions for products and boundaries then M × I ×N ×{0} = ±M × I ×N

and M × I × N × {1} = ∓M × I × N . The upper sign in both equations is

true if n+m is odd and the lower sign is true if n+m is even (where = means

orientation preserving diffeomorphic). This yields:

ki∑

j=1

[S0
i,j] = ±

ki∑

j=1

[S̄0
i,j] = ∓

li∑

j′=1

[S̄1
i,j′] =

li∑

j′=1

[S1
i,j′] (3.7)

in ΩSO
n+m−q.

The same argument works in the stably framed category. Here we use equa-

tions (3.4) and (3.5) which shows that our induced stable (tangential) framing

of the coincidence manifold S depends only on the isomorphism described by

equation (3.2) and the stable framings of M , N and Q. Because of our framing

conventions in section 2.1 and remark 2.4 it is easy to see that stable (nor-

mal) framings induced on the boundary components M × I × N × {0} and

M × I × N × {1} behaves in a same manner as orientations described above.

So we establish equation (3.7) in the framed case Ωfr
n+m−q.

This proves the first part of step one. Now we want to look at the weightings:

Claim 3.16. Let [ω0
i,j] = [ω0

i,j′] = [ω1
i,j′′] =: [ωi] for all j, j′ ∈ ki and j′′ ∈ li.

Then it follows:

0 =

(
∑

i

([S0
i ] + [−S1

i ])

)
[ωi] =

∑

i

(( ki∑

j=1

[S0
i,j ][ω

0
i,j]
)
−
( li∑

j′=1

[S1
i,j′][ω

1
i,j′]
))

= αw(H0)− αw(H1).

(3.8)
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So we have shown that αw(F1, f2) is a well-defined notation: αw does not depend

on the bh-approximation of F1 × f2.

Proof (Proof of claim 3.16). To simplify notations we first assume that

S is connected with ∂S = S0
1 ∪S

0
2 ∪S

1
1 (the generalization to more components

of S and ∂S can be proven analogously).

According to the construction of ω0
1, we have a representative ω̄0

1 : I → Q×R

connecting ∗̄1 and ∗̄2: ω̄0
1 = (pr1 ◦H0)(β) · (pr2 ◦H0)(β

−1), where β : I →

M × I × N connects (∗1, 0, ∗2) to s0
1. Now choose s1

1 ∈ S
1 and a path δ : I →

(M × I × N) × I with δ(0) = s0
1 and δ(1) = s1

1 (such a path exists because S

is path connected). Consider the homotopy h′ : {0, 1} × I → (M × I ×N)× I

given by h′t(1) = δ(t) and h′t(0) = (β(0), t). Because i : {0, 1} →֒ I is a

Figure 3.7. h′ · h′′, where h′′ is restricted to h′1(I).

β(0) = (∗1, 0, ∗2) β(1) = s0
1

δ(t) = ht(1)

h′′

I

M × I ×N

h′t(0)

(closed) cofibration we can extend h to all of I. The canonical deformation h′′

of (M × I ×N)× I to (M × I ×N)×{1} restricted to h′1(I) yields a homotopy

to β ′ : I → (M × I ×N) × {1}, where β ′(0) = (β(0), 1) and β ′(1) = δ(1) = s1
1.

The composition is h′ · h′′ is depicted in figure 3.7.. By lemma 3.13 the path

β ′ as a path in M × I × N is a possible choice to compute [ω1
1]. Becasue

the homotopy h̄ was assumed to be base point preserving and constant in a

neighborhood U ′
1 ⊃ (∗1, 0, ∗2)×I, the image of h′ ·h′′ under h̄ yields a homotopy

of H0(β) · H0(β
−1) to H1(β

′) · H1(β
′−1) rel {0, 1}. It follows [ω0

1] = [ω1
1] by

projection to (Q, ∗).

In figure 3.8. the two different cases are shown. The proof of the second case,

i.e. [ω0
1] = [ω0

2] follows similarly and will be omitted.
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Figure 3.8. Homotopy of ω̄1
1 to ω̄0

1 and ω̄1
1, resp., if both H0 and H1 are product

maps

s1
1

s1
2

s1
1

s0
1

Intersection in H0 and H1 Intersection only in H1

H0
H0

H0
H0 H1

H1
H1

H1

f2 f2

∗̄1

∗̄2

∗̄1

∗̄2

In step two we show the independence of the choice of F1 in the computation

of αw. To prove this let F1 and F ′
1 be two different homotopies of f1. We

construct the “composition” F of F1 and F ′
1 in the following way:

F : M × I → Q×R, F (x, t) :=





F ′
1(x,−2t+ 1) if 0 ≤ t ≤ 1/2,

F1(x, 2(t− 1/2)) if 1/2 ≤ t ≤ 1.

Here comes the special structure Q×R in the game. Because of the R-factor we

can pull down the image of f2 away from the image of F by a homotopy H such

that Ht(x) = f2(x) for t ∈ [0, ǫ] (ǫ > 0; only for technical reasons which later

becomes clear). This means, that H1(f2) ⊂ Q×] min{pr2(F (M × I))},−∞[,

where pr2 : Q × R → R is the canonical projection to the second factor. To

get our coincidence manifold we have to bh-approximate F × H by a smooth

map h̄ which is transverse to △. Note that the base point of M × I × N

is now (∗1, 1/2, ∗2). For our purpose we need a map h̄ such that h̄0 is a bh-

approximation of F ×H .

Claim 3.17. There is a choice for h̄ as above which is constant in the last factor

of (M × I ×N)× I on [0, ε′].

Proof (Proof of the claim). The idea of the prove is similar to the proof
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of lemma 3.6. First we bh-approximate F × H0 by a map g : M × I × N →

(Q×R)2 which is transverse to △. Next we embed (Q×R)2 by i into R
k where

k large and choose a tubular neighborhood N(i((Q × R)2)) with a retraction

r : N(i((Q × R)2))→ i((Q× R)2). Now we consider a partition of unity λ1, λ2

subordinated to the cover [0, ε), (ε′, 1] of I, 0 < ε′ < ε < 1, such that λ1(t) = 1

for t ∈ [0, ε′] and λ2(t) = 1 for t ∈ [ǫ, 1]. We define

h : (M × I ×N)× I −→ (Q×R)2

(x, t) 7→ λ1(t)g(x) + λ2(t)(F ×H)(x).

We know that r◦h|(M×I×N× [0, ε′]) is already transverse to △: Tg(x)(T (M×

I × N)) = Tr◦h(x,t)(T (M × I ×N × I)) and g was assumed to be transverse to

△. Finally we choose h̄ ∈ C∞(M × I × N × I), such that h̄ is a smooth bh-

approximation of r ◦h which is transverse to △ with h̄t(x) := h̄(x, t) = g(x) for

t ∈ [0, ε′] (this restriction is possible, compare again corollary 4.12. in [GG80]).

The map h̄ now plays a similar role as h̄ defined in the first step.

The preimage S̄ := h̄−1(△) is a m+n+2−q−1 = m+n−q+1-dimensional

manifold. BecauseH(N×I)∩F (M×{0, 1}) = ∅ andH(N×{1})∩F (M×I) = ∅,

we can assume that ∂S̄ ⊂ M × I × N × {0}. By construction we establish

h̄0(x) = g(x). Note that g(M × [1/2, 1]×N) is a bh-approximation to compute

αw(F1, f2) whereas g(M × [0, 1/2]×N) allows to compute αw(−F ′
1, f2):

αw(−F ′
1, f2) := αw(F ′

1 ◦ (IdM ×r × IdN), f2).

Here r denotes an orientation reversing diffeomorphism on I. Thus S̄ is an

(unoriented) bordism between S and S ′, the coincidence manifolds contributing

to αw(F1, f2) and αw(−F ′
1, f2). If we are dealing with unoriented manifolds

there is no difference between αw(F ′
1, f2) and αw(−F ′

1, f2). Thus S̄ leads to

equation (3.7), where Ω∗ = N∗.

In the case of oriented or framed manifolds we have to be more carefully. As
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in the first step we use the following equation to fix orientations:

ϕ : T (M × I ×N × I)|S̄ ∼= T S̄ ⊕ (pr1 ◦h̄)
∗(T (Q× R)).

The coincidence manifold S̄ carries the orientation such that ϕ is orientation

preserving with respect to the product orientations on M × I × N × I and

Q × R, resp.(compare again section 2.1). Now Ŝ and Ŝ ′ will be S and S ′,

resp., oriented as boundaries of S̄ whereas S and S ′ denote the manifolds with

orientation obtained by the equations to calculate αw(F1, f2) and αw(−F ′
1, f2),

resp. (compare eq. (3.2)):

T (M × I ×N)|S ∼= TS ⊕ ((pr1 ◦h̄0)|S) ∗ (T (Q× R)) (3.9)

and

T (M × I ×N)|S ′ ∼= TS ′ ⊕ ((pr1 ◦h̄0)|S
′) ∗ (T (Q× R)). (3.10)

Because Ŝ ∪ Ŝ ′ ⊂M × I ×N × {0}, we conclude that either both are equipped

with orientations different from S and S ′, resp., or both are equipped with

the same orientation (compare step one - both located in the same boundary

component M × I ×N × {0}).

On the other hand one can show that αw(F ′
1, f2) = −αw(−F ′

1, f2). For the

differential T h̄0|(T (M × I ×N ×{0})) = Tg is involved to establish the bundle

isomorphism ϕ (see equation (3.2)). That is the reason why replacing F ′
1 by

−F ′
1 := F ′

1 ◦ r, where r is orientation reversing, leads to an orientation reversing

isomorphism. To correct this we have to change the orientation of S ′.

Again we denote the path components of S̄ by S̄i. The boundary components

of S̄i with induced orientation by S̄ will be denoted by S̄i,j ⊂ Ŝ and Ŝ ′
i,j′ ⊂ Ŝ ′.

Summarizing the facts we deduce:

∑
[Si,j] = ±

∑
[Ŝi,j] = ∓

∑
[Ŝ ′

i,j′] = −
∑

[S ′
i,j] (3.11)
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as classes in ΩSO
n+m−q. Again the same is true for framed manifolds (compare

step one for an explanation).

Notice that we needed the result of step one, i.e. that the values of αw do not

depend on the transverse approximation. By our approximation h̄ we used two

special bh-approximations h̄0|(M × [1/2, 1]× N × {0}) and h̄0|(M × [0, 1/2]×

N × {0}) to compute αw(F1, f2) and αw(−F ′
1, f2), respectively.

Showing that the chosen weightings (as double cosets in σ̄1\π1(Q, ∗)/σ̄2) for

the boundary components of each path component S̄i are the same enables us

to finish the proof as in step one. Assuming this fact for a moment we obtain

together with (3.11):

∀i :
∑

j

[Si,j][ωi,j] = −
∑

j′

[S ′
i,j′][ωi,j′]

=⇒ αw(F1, f2) = −αw(−F ′
1, f2) = αw(F ′

1, f2).

As in step one we have to study to different cases: We have to show that

• [ωi,j] = [ωi,j′], i.e. Ŝi,j ∪ Ŝi,j′ ⊂ ∂S̄i, and

• [ωi,j] = [ω′
j,j′], i.e. Ŝi,j ∪ Ŝ

′
i,j′ ⊂ ∂S̄i.

It is enough to prove this for the following situation: S̄i = Ŝ1 ∪ Ŝ2 ∪ Ŝ
′
1.

We wish to show that [ω1] = [ω2] = [ω′
1], i.e. all boundary components of Ŝi

contribute to αw with the same weighting. Let β be a path described in the

construction of αw to compute ω1 ∈ (Q, ∗). To simplify notations we call the

canonical inclusion of β into M × I × N × {0} ⊂ M × I × N × I by β again,

i.e. β(0) = (∗1, 1/2, ∗2, 0) and β(1) = (s1, 0) ∈ Ŝ1.

Now a similar argument as in step one shows that we can construct a ho-

motopy H̄ of ω̄1 to some ω̄′
1 rel {0, 1}, where ω′

1 := pr′1 ◦ω̄
′
1 is a closed loop

which can be used to compute the double coset according to S ′
1. Recall that

pr′1 : Q × R → Q is the canonical projection onto the first factor. Then the

assertion then follows.

We start with a path δ in S̄1 which connects s1 to s′1 (S̄1 is connected).

Now extend the homotopy h′t : {0, 1} → M × I × N × I given by h′t(0) =
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h′0(0) = (∗1, 0, ∗2, 0) and h′t(1) = δ(t) to all of I. We can do this because

{0, 1} →֒ I is a cofibration (and thus has the homotopy extension property). A

second homotopy h′′ is given along the canonical projection of M×I×N ×I to

M×I×N×{0} restricted to h′1(I). The result of the homotopy h′ ·h′′ is the path

(h′ · h′′)1(I), where h′ · h′′ denotes the usual composition of homotopies (which

means to apply h′ first). Now we have to deform (h′ ·h′′)1(I) rel {0, 1} to a path

in M× [0, 1/2]×N×{0} because only this part contributes to weightings for S ′
1.

This can easily be done by the canonical deformation h′′′ of M × I×N ×{0} to

M× [0, 1/2]×N×{0} (start and end point are located in M× [0, 1/2]×N×{0}

already). The homotopy induced by h′ ·h′′ ·h′′′ under (pr1 ◦h̄) and (pr2 ◦h̄) yields

the desired homotopy H̄. Here pri : (Q × R)2 → (Q × R), i = 1, 2, denote the

canonical projections onto the first and second factor, resp. Both homotopies

Figure 3.9. a): Homotopy H̄ of ω̄ to ω̄′ if h̄ is a product map and F1×f2 ⋔ △,
F ′

1 × f2 ⋔ △; b): h′ in M × I ×N × I

(∗1, 1
2
,∗2,0)

∗̄1

∗̄2

δ̄

F1(β1)

f2(β2)

h′

s′1

s1

M × I ×N

I

Homotopy
induced by h′′

Homotopy
induced by h′′′

s′1s1

f1

H1(N)

δ

F ′
1

F1

a) b)

are depicted in figure 3.9. to give a better understanding of the construction.

On the left hand side of figure 3.9. you can see (pr1 ◦h̄)(h
′ · h′′ · h′′′) on β and

(pr2 ◦h̄)(h
′ · h′′ · h′′′) on β−1 if h̄ is a product map and F1 × f2, F

′
1 × f2 are

already transverse to △. We will make use of the splitting β = (β1, β2) : I →

(M × I)× (N × {0}). The sequence of homotopies can be described as follows:

First pull the end of F (β1)(1) = f2(β2)(1) along δ̄ = (pr1 ◦h̄)(δ) to s′1 (pull
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both paths afterwards - which is exactly the homotopy extension induced by

the canonical retraction of I × I to (0 × I) ∪ (I × 0) ∪ (1 × I) showing that

{0, 1} →֒ I is a cofibration). Let us write β ′
1 and β ′

2 for the paths which are the

result of this homotopy. Then the homotopy induced by h′′ in (M × I ×N)× I

(sketched on the right hand side of figure 3.9.) only deforms β ′
2 to the dotted

red path. Finally the homotopy h′′′ induces a homotopy of β ′
1 to the dotted blue

path.

The second assertion [ω1] = [ω2] is modeled on the same construction. The

only difference is that the last homotopy to move our path to M × [0, 1/2] ×

N × {0} has to be changed. In this case we have to deform M × I × N × {0}

to M × [1/2, 1]×N × {0}. But again this is no problem because start and end

point are both in M × [1/2, 1]× N × {0}. This finishes the proof of this very

technical lemma.

Theorem 3.18. The map αw is a well-defined invariant for based link maps

f1 ⊔ f2 : M ⊔N → Q× R up to base point preserving link homotopy.

Proof. From lemma 3.15 it follows directly that the map αw is a well-defined.

Thus it remains to show that αw does not change if we deform f1⊔ f2 by a base

point preserving link homotopy. Because I is compact every link homotopy of

f1 ⊔ f2 can be decomposed into a (finite) sequence of homotopies where only

one component will be deformed in the complement of the other one (compare

e.g. Lemma 2.40, [Pil97]).

So let H be a base point preserving deformation of f1 to f ′
1 in the complement

of f2. We choose further homotopies F1 and F ′
1 to calculate αw. If we consider

F ′
1 ·H (composition of the deformations) lemma 3.15 shows that

αw(f1 ⊔ f2) = αw(F1, f2) = αw(F ′
1 ·H, f2) = αw(F ′

1, f2) = αw(f ′
1 ⊔ f2).

The third equality is due to the fact that H has no intersection with f2 and H

was assumed to be base point preserving.

In a second step let us deform f2 in the complement of f1 by a base point



3.3 : Homotopy invariance of αw 39

preserving homotopy H . Then we can use lemma 3.15 again together with the

symmetry relation (3.12), which will be established in section 3.4:

αw(f1 ⊔ f2) = ι(ᾱw(f2 ⊔ f1)) = ι(ᾱw(F2, f1)) = ι(ᾱw(F ′
2 ·H, f1)) =

= ι(ᾱw(f ′
2 ⊔ f1)) = αw(f1 ⊔ f

′
2).

Here ι : Ωm+n−q[Λ(σ̄1,σ̄2)] → Ωm+n−q[Λ(σ̄2,σ̄1)] denotes an homomorphism of

free abelian groups which maps [S][ω]S to (−1)(m+1)(n+1)+q [S][ω−1]. ᾱw is

constructed in the same way as αw but using a homotopy down to f ′
1 with

pr2(f
′
1(M)) ⊂ R<f2 , compare section 3.4 where we discuss ι and ᾱw in more

detail.
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3.4 Symmetry relations of αw

In this section we discuss some symmetry relations of αw. First there is no

canonical choice to pull the image of f1 in the positive or negative direction ac-

cording to the R-factor. It is surely no surprise that we obtain another invariant

ᾱw if we pull down f1 by a homotopy F̄1 : M × I → Q× R, such that

(pr′2 ◦F̄1)(M × {1}) ⊂ R<f2 :=] min{pr′2(f2(x)) | x ∈ N},−∞[,

pr′2 : Q × R → R is the projection onto the second factor (clearly, min exists

because N is compact). The proof that ᾱw is well-defined up to (based) link

homotopy of f1 in the complement of f2 can be modeled on the very same proof

for αw in the previous section.

Now we will detect relations between αw and ᾱw. Let us compare αw(f1⊔ f2)

and ᾱw(f2 ⊔ f1). Intuitively it seems to be clear that there should not be great

differences between them. We can manifest this in the following theorem:

Theorem 3.19. Let f1 ⊔ f2 : M ⊔ N → Q × R be a link map and define

σ̄1 := (pr′1 ◦f1)#(π1(M, ∗1)), σ̄2 := (pr′1 ◦f2)#(π1(N, ∗2)). Then the following

symmetry relation holds:

αw(f1 ⊔ f2) = ι(ᾱw(f2 ⊔ f1)), (3.12)

where ι : Ωn+m−q[Λ(σ̄1,σ̄2)] → Ωn+m−q[Λ(σ̄2,σ̄1)] is a homomorphism of abelian

groups induced by ι([S][g]) = (−1)(n+1)(m+1)+q [S][g−1].

Proof. It is easy to find homotopies F1 of f1 and F2 of f2 to pull first f1 into

Q×R>f2 and then f2 into Q×R>F1. For example we may choose m ∈ R, such

that min{pr′2 ◦f1(M)} + m ∈ R>f2 and max{pr′2(f2(N)} −m ∈ R<f1. This is

possible since both M and N are compact. Now define F1 : M × I → Q×R by

F1(x, t) :=





f1(x) + (0, m4
3
(t− 1

4
)) if t ∈ [1

4
, 1],

f1(x) if t ∈ [0, 1
4
].
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The equality of F1 and f1 in [0, 1
4
] is only for technical reasons and will be used

later. A map F2 : N × I → (Q × R)2 can be defined in a similar manner:

F2(x, s) = f2 − (0, m4
3
(t − 1

4
)) for t ∈ [1

4
, 1]. The homotopies can be described

by pulling f1 up in the positive R-direction and pull f2 down in the negative

R-direction.

In view of lemma 3.15, we can use these homotopies to calculate αw(f1 ⊔ f2)

and ᾱw(f2⊔f1), respectively. To do this we consider a smooth bh-approximation

H of

F1 × F2 : (M × I)× (N × I)→ (Q×R)× (Q× R)

transverse to the diagonal △ ⊂ (Q×R)× (Q×R). Similar as in step two of the

proof of lemma 3.15 we can assume that in a collar of V1 := (M × I)×N ×{0}

and V2 := M × {0} ×N × I we have:

H(m, t, n, s) = h1(m, t, n) for s ∈ [0, ε]

H(m, t, n, s) = h2(m,n, s) for t ∈ [0, ε],

where h1 and h2 are smooth bh-approximations of F1 × f2 and f1 × F2 resp.

transverse to △. We can see this as follows: First bh-approximate F1 × f2 by a

smooth map h1 transverse to △. Then consider

H1 : M × I ×N × [0, ε] → (Q× R)2,

(m, t, n, s) 7→ h1(m, t, n).

The map H1 is homotopic to F1 ×F2 restricted to M × I ×N × [0, ε]. Thus we

can apply a partition of unity argument to extend H1 to all of M × I ×N × I.

Now a construction of H2 can be done in the same way. A second partition of

unity argument can be used to define H̄, such that H̄ restricted to M × [ε +

δ, 1]×N × [0, ǫ] is equal to H1 and H restricted to M × [0, ε]×N × [ε+ δ, 1] is

equal to H2. Now bh-approximate H̄ by a smooth map H which is transverse

to △ ⊂ (Q × R)2. Furthermore we can assume that on M × [ε + δ, 1] × N ×

[0, ǫ]∪M × [0, ε]×N × [ε+ δ, 1] our approximation H is equal to H̄. This can

be done according to the following observation: If we have a compact space X
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and a smooth map f : X → Y transverse to A ⊂ Y and a map F : X × I → Y ,

with F (x, t) = f(x) for t ∈ [0, ε], then F |(X × [0, ε]) is also transverse to A.

Now let S̄ be the n+m+1−q-dimensional coincidence manifold S̄ := H−1(△)

with orientation induced by an analogous equation to (3.2):

ϕ : T (M × I ×N × I)|S̄ ∼= T S̄ ⊕ (pr1 ◦H)∗(T (Q× R)).

Because

f1(M) ∩ f2(N) = F1(M × {1}) ∩ f2(N) = f1(M) ∩ F2(N × {1}) = ∅,

we know that S̄ has only boundary components S1 ⊂ V1 and S2 ⊂ V2, ∂S̄ =

S1 ∪ S2. Again by S̄1 and S̄2 we denote the manifolds S1 and S2, resp., with

induced orientations. This yields

[S̄1] = [−S̄2]. (3.13)

Now ϕ establishes a canonical isomorphism restricted to the tangent bundle

T (M×I×N×{0}) over S̄1. This is the same isomorphism as in the computation

of αw(F1, f2) given by h1. If we now compare S̄1 to S1 with induced orientation

by the orientation preserving isomorphism:

ϕ| : T (M × I ×N × {0})|S1 ∼= TS1 ⊕ (pr1 ◦h1)
∗(T (Q× R)),

we conclude:

[S1] =






[S̄1] if n+m even,

−[S̄1] if n+m odd.

(3.14)

In the first case we know that M × I × N with product orientation is orienta-

tion preserving diffeomorphic to M × I ×N × {0} with orientation induced as

boundary of M × I × N × I with product orientation (compare discussion in

section 2.1). In the second case the reverse is true.

In a next step we consider Ŝ2 := S2 equipped with the orientation induced
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by:

ϕ| : T (M × {0} ×N × I)|S2 ∼= TS2 ⊕ (pr1 ◦h2)
∗(T (Q× R)),

but M × {0} ×N × I equipped with product orientation. A similar argument

as above shows that:

[Ŝ2] =






[S̄2] if m odd,

−[S̄2] if m even.

(3.15)

Consider now the map h̄2 : (N × I) ×M → (Q × R) × (Q × R), which is the

composition:

(N × I)×M
s1−→M × (N × I)

h2−→ (Q×R)2 s2−→ (Q× R)2.

Here s1, s2 are the obvious maps which swap the first and second factors in

the respective manifolds. The orientation equation (3.2) can be used to com-

pute ᾱw(f2 ⊔ f1). The coincidence manifold is clearly homeomorphic to S2 by

interchanging the coordinates. The orientation induced by h̄2 differs from the

orientation of Ŝ2 by the factor (−1)m(n+1)+q+1. The first part (−1)m(n+1) is

the result of interchanging the tangent vectors in the product orientation of

M × (N × I). The second part (−1)q+1 comes from s2 and the canonical iso-

morphism ψ described in equation (3.3). Summarizing the results above we

obtain:

[S1] = (−1)m+n[S̄1] = (−1)m+n+1[S̄2] = (−1)n[Ŝ2]

= (−1)n+m(n+1)+q+1[S2] = (−1)(m+1)(n+1)+q [S2].

This proves the result in the case of oriented link maps. We proceed with a

similar computation for the framed case.

Now let us concentrate on the weightings. Let S̄i be the path components

of S̄. Again we have to deal with two types of boundary components: Two

boundary components of S̄i belong either to S1 or S2, or the second case where

a boundary component is contained in S1 and S2, resp. We assume that S̄

consists of one path component with three boundary components S1
1 , S

1
2 ⊂ S1
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and S2
1 ⊂ S2. The proof is easily finished if we can show that [ω1

1] = [ω1
2] and

[ω1
1] = [(ω2

1)
−1].

We start with a path β in M × I × N × {0} which yields ω̄1
1 ⊂ Q × R to

compute αw(f1 ⊔ f2). Then choose a path δ ⊂ S̄ ⊂ M × I ×N × I connecting

s1
1 ∈ S

1
1 to s1

2 ∈ S
1
1 (we assumed S̄ to be connected). β · δ can be deformed to

β · δ′ ∈M × I ×N × {0}. So we can conclude:

ω̄1
1 = β1 · β2 = (pr1 ◦H)(β) · (pr2 ◦H)(β−1)

≃ (pr1 ◦H)(β · δ′) · (pr2 ◦H)(δ′
−1
· β−1) = ω̄1

2,

and thus [ω1
1] = [ω1

2]. Finally let us compare the weightings for s1
1 and s2

1. Again

Figure 3.10. Comparison of αw(f1 ⊔ f2) and ᾱw(f2 ⊔ f1)

F1(β1)

F2(β2)

F1

F2

∗̄1

∗̄2

f1

f2

a similar argument as in the proof of lemma 3.15 will be successful. We have

to show that [ω1
1] is equal to [(ω2

1)
−1] ∈ λ(σ̄2, σ̄1). But this could easily realized

by a special choice of the path β to compute ω1
1. Let δ be a path connecting s1

1

and s2
1. Because M × I × N × {0} is a deformation retract of M × I × N × I

we can deform β · δ canonically along the projection to the second factor to

β ′ · δ′. In figure 3.10. a situation is shown where F1 × F2 is already transverse
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to △ ⊂ (Q×R)2. But now we can compute

ω̄1
1 = (pr1 ◦H)(β) · (pr2 ◦H)(β−1) ≃ (pr1 ◦H)(β ′ · δ′) · (pr2 ◦H)(δ′

−1
· β ′−1

).

Thus ω̄2
1 := (pr2 ◦H)(β ′ · δ′) · (pr1 ◦H)(δ′−1 · β ′−1) yields (ω̄2

1)
−1 = ω̄1

1. This

completes the proof.

In the second part of this section we will investigate the difference between

αw(f1 ⊔ f2) and ᾱw(f1 ⊔ f2). To do this let us first define a kind of intersection

pairing of based homotopy classes in Q.

First we choose σ1 ∈ [(M, ∗1), (Q, ∗)] and σ2 ∈ [(N, ∗2), (Q, ∗)]. Now we

represent σ1 and σ2 by maps f1 and f2 and deform the product map f1 × f2 to

a smooth map H ⋔ △ ⊂ (Q × Q) (base point preserving; if n + m < q then

∗ should be the only intersection point). Now define for each path component

Si ⊂ S = (f1 × f2)
−1(△), which does not contain (∗1, ∗2), an element of ω ∈

π1(Q, ∗) in the same way as in the construction of the weighted linking number

αw. Choose a path β in M × N connecting (∗1, ∗2) to si ∈ Si. Then go along

(pr1 ◦H)(β) to H(si). Afterwards go back to ∗ along (pr2 ◦H)(β−1). Summing

up over all path components of S we can give the following:

Definition 3.20. For Mm, Nn, and Qq with prescribed base points, we define:

I : [(M, ∗1), (Q, ∗)]× [(N, ∗2), (Q, ∗)]→ Ωn+m−q[Λ(σ1, σ2)]

(σ1, σ2) 7→
∑

[Si][ωi],

where Si are the path components of S, the coincidence manifold of σ1 and

σ2, and ωi ∈ π1(Q, ∗) as described above. I(σ1, σ2) will be called the weighted

intersection number of the based homotopy classes σ1 and σ2.

Remark 3.21. That I is well-defined follows in the same manner as in the case

of αw: If f ′
1 and f ′

2 are a another pair representing σ1 and σ2, resp., we can find

homotopies of f1 to f ′
1 and f2 to f ′

2. These homotopies can be used to establish

the claimed bordism between the two intersection manifolds in M × N . The

homotopies can be used to change the classes of the ωi too.
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Remark 3.22. If we consider Q to be even dimensional with dimQ = 2k and

both M and N are spheres of dimension k, the intersection pairing I is exactly

the paring of Wall in [Wal99], which he used to study the homotopy type of

compact manifolds of even dimensions.

Remark 3.23. In a recent paper Schneiderman [Sch03] studied weighted

(self) linking numbers for knots and two-component links in 3-manifolds in

terms of intersections of immersed surfaces in 4-manifolds. He used these linking

numbers and self-linking numbers to find complete obstructions for the existence

of singular concordances which have all singularities paired by Whitney disks.

We want to use the intersection pairing I to measure the difference between

αw and ᾱw:

Theorem 3.24. Let f1 ⊔ f2 : M ⊔ N → Q × R be a based link map with

fi(∗i) = ∗̄i = (∗, (−1)i+1) ∈ Q × R, and σi = [fi] the based homotopy class of

each component. Then the following holds:

I(pr1∗(σ1), pr1∗(σ2)) = αw(f1 ⊔ f2)− ᾱw(f1 ⊔ f2).

Proof. To prove this theorem take the homotopy H1 := F1 for f1 as in the

proof of Theorem 3.19. Choose a similar homotopy H2 to pull down f1 (as for

f2 in the very same proof). Notice that we choose m ∈ R large enough, i.e. such

that Q × {0} ⊂ H1(M × I) ∪H2(M × I). Now put both homotopies together

to produce a map H : M × I → Q× R:

F (x, t) :=





H1(x, 2(t− 1/2)) for 1/2 ≤ t ≤ 1,

H2(x,−2t+ 1) for 0 ≤ t ≤ 1/2.

It should be clear that the weighted intersection number αw(F, f2) is equal to

αw(f1 ⊔ f2)− ᾱw(f1 ⊔ f2). The minus sign comes from the orientation reversing

map r : I → I, t 7→ −2t + 1. We have to find an identification of αw(F, f2)

with I(pr1∗(σ1), pr1∗(σ2)). This is based on the fact that pr1 ◦f1(M) × {0} ⊂
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F (M × I). We choose the canonical homotopy H from f2 to pr1 ◦f2 (with

H(x, t) = H(x, 0), t ∈ [0, ε] and H(x, t) = H(x, 1) for t ∈ [1 − ε, 1]). Now bh-

approximate (pr1 ◦f1)× (pr1 ◦f2) smooth and transverse to △ ⊂ Q2. A second

bh-approximation can be chosen to make F × H transverse to △ ⊂ (Q × R)2.

Put both approximations together with a partition of unity argument. An

approximation H̄ of the resulting map transverse to △ gives rise to the required

formula.

For H̄ is equal to a smooth approximation of (pr1 ◦f1)×(pr1 ◦f2) transverse to

△, the n+n−q+1-dimensional manifold S̄ := H̄−1(△) ⊂M×I×N×I produces

a bordism S̄ between S0 - the intersection manifold of αw(F, f2) - and S1 which

denotes the intersection manifold of I(pr1∗([f1]), pr1∗([f2])) (see figure 3.11.).

If we now take a path component of S̄i we denote the components of αw by

Figure 3.11. Identification of αw(F, f2) = αw(f1 ⊔ f2) − ᾱw(f1 ⊔ f2) and
I(pr1∗(σ1), pr1∗(σ2))

F (β1)
f2(β2)

β ′
1 β ′

2

F

H
ω̄0

i,1 = F (β1) · f2(β
−1
2 )

ω̄1
i,1 = β1

′ · β2
′−1

S0
i,j and components of I(pr1∗(σ1), pr1∗(σ2)) by S1

i,j′. It is not hrd to see that a

choice of ω0
i,1 can be deformed using H̄ to give a possible path for a weighting

of S1
i,j. Using H and the canonical deformation F1(x, t) = (f1(x)1, tf1(x)2) of

f1 to the image pr1 ◦f1(M) × {0} ⊂ Q × {0}, we get a homotopy of ω0
i,1 to a

possible weighting ω1
i,j′ of S1

i,j′ for all j′ (see figure 3.11.).



4 The classical dimension setting

In this chapter we want to concentrate on the case where M and N are both

closed, connected, oriented, one-dimensional manifolds: oriented circles with

base points ∗i, i = 1, 2. We define I := [−2, 2]. Furthermore let F be a

connected, compact, oriented surface. Because F × int(I) is diffeomorphic to

F ×R we can apply all results and constructions from chapter 3.

We will study based link maps:

f1 ⊔ f2 : S1 ⊔ S1 → F × I, f1(S
1) ∩ f2(S

1) = ∅,

where fi(∗i) = ∗̄i, i = 1, 2, with ∗̄i := (∗, (−1)i+11).

Then define σ1 := [f1] and σ2 := [f2] as elements of π1(F × I, ∗̄1) and π1(F ×

I, ∗̄2), resp. Following the notations of section 3.2 the classes of based link maps

up to base point preserving link homotopy (with prescribed homotopy classes of

f1 and f2) will be denoted by BLM(σ1,σ2).

Next we will use the notation σ̄i := [pri ◦fi] ∈ π1(F, ∗). The induced sub-

groups (pri ◦fi)#(π1(S
1, ∗i))) are generated by σ̄i. Because ΩS0

0
∼= Z our invari-

ant - see section 3.2 - takes values in the following free group:

αw : BLM(σ1,σ2) −→ ZJ〈σ̄1〉\π1(F, ∗)/〈σ̄2〉K.

This target group will be denoted as in chapter 3 by ZJΛ(σ̄1,σ̄2)K. In most cases

the cyclic groups 〈σ̄1〉 and 〈σ̄2〉 are not normal subgroups of π1(F, ∗) and hence

there is no multiplicative structure in ZJΛ(σ̄1,σ̄2)K.

The reason for studying base point preserving link homotopy is of technical

48
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nature. In chapter 6 we will see that in the classical dimension setting it is

possible to extend the result to the more natural case of base point free link

homotopy in some cases.

Before we state the main result of this chapter let us take a look at the

3-manifolds which came up with F × I.

Definition 4.1. A handle body with n handles is a 3-manifold M , which con-

tains a collection {D1, . . . , Dn} of pairwise disjoint, properly embedded 2-cells

such that the result of cutting M along ∪Di is a 3-ball.

Lemma 4.2. Suppose Mi (i = 1, 2) are handle bodies with ni handles. Then

M1 is homeomorphic to M2 iff n1 = n2 and both M1 and M2 are orientable or

nonorientable.

Proof. Compare e.g. Hempel [Hem76], Theorem 2.2.

Lemma 4.3. Let F be a compact, connected, orientable surface of genus g. If

∂F 6= ∅ and has r components the manifold F × I is homeomorphic to a 3-ball

with 2g + r − 1 (3-dim.) handles. If ∂F = ∅ then F × I is the thickening of a

2-sphere with g (2-dim.) handles.

Proof. The proof is an easy consequence of the classification theorem of sur-

faces. If ∂F = ∅ the result is clear. If ∂F has r > 0 components F is homeo-

morphic to a 2-sphere with g (2-dim.) handles - denoted by Fg - and r holes. If

Figure 4.1. Surface F with genus g and r holes

g times

r − 1 times

we cut a hole in Fg we obtain a disc with 2g handles. Cut another hole is the
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same as adding an (untwisted) band, so F is homeomorphic to the surface in

figure 4.1.. If we take a thickening of the surface we get a 3-ball with 2g+ r− 1

handles. �

Now we will state the main result of chapter 3:

Theorem 4.4. Let F be an oriented, compact, connected surface. Then αw is

a bijection between the set BLM(σ1,σ2) of base point preserving link homotopy

classes of based link maps and ZJΛ(σ̄1,σ̄2)K.

The proof will be given in section 4.1. Before we are going to prove the result

let us compute some simple examples.

Example 4.5. Let F = D2 the 2-dimensional disc with boundary. Then

π1(F, ∗) = 1 and the only pair of (σ1, σ2) is (1, 1). So αw is the well-known

linking number in D × I which is homotopy equivalent to R
3.

Example 4.6. If F = B2 \ {0}, the 2-dimensional annulus, then F × I is equal

to the full torus. So all subgroups are normal in the abelian group π1(F×I) = Z.

If σ̄1 = m and σ̄2 = n then ZJΛ(σ̄1,σ̄2)K = ZJZK if n = m = 0 and ZJΛ(σ̄1,σ̄2)K
∼=

ZJmZ\Z/nZK ∼= ZJZgcd(m,n)K otherwise.

Example 4.7. Let F = T be the 2-dimensional torus. π1(F, ∗) = Z ⊕ Z is

abelian. Therefore all subgroups are normal in π1(F, ∗). For σ̄1 = (m,n) and

σ̄2 = (m′, n′) we get ZJΛ(σ̄1,σ̄2)K
∼= ZJ(m,n)Z)\Z ⊕ Z/(m′, n′)Z)K ∼= ZJZ ⊕

Z/(m,n)Z + (m′, n′)ZK in the case where (m,n), (m′, n′) 6= (0, 0). If for example

(m′, n′) = (0, 0) and m,n > 0, gcd(m,n) = 1 we obtain Z⊕Z/(m,n)Z as factor

group. This group is abelian, finitely generated and torsion-free. So it follows

that it is a free abelian group G. The rank of G is smaller or equal to 2, so we

obtain G = Z or G = Z⊕ Z.

Remark 4.8. The generalization of the examples above to handle bodies with

more than one hole shows a much more complicated algebra. Let Bn := B2 \

{x1, x2, . . . , xn}, xi 6= xj ∈
◦

B2, ∀i 6= j. Then π1(Bn) = Z ∗Z ∗ · · · ∗Z (n-times),
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the free group with n generators. Now define g := σ̄1 and h := σ̄2. This yields

ZJΛ(g,h)K = ZJ〈g〉\Z ∗ Z ∗ · · · ∗ Z/〈h〉K. To decide whether two given double

cosets are the same is a kind of the well-known word problem. It seems to be

possible to tackle this problem algorithmic (compare e.g. [MKS76]).

Example 4.9. Let L = l1 ⊔ l2 be the link in picture 4.2. a). We will not

distinguish between li : S1 → F × I and the image of this map.

Figure 4.2. Example for a computation of αw

∗̄2

∗0

∗̄1

e1, e2, e3 gives the
orientation of F×
I : positive sign
for intersection

negative sign for in-
tersection

The pattern indicates the
homotopy of f1.

a) projection of l1 ⊔ l2 to F × {0}

l2

l1

α

β

b)

e1

e3
−e2

e1

e3
e2

F × I is oriented such that the restriction to F × {0} has locally the canonical

orientation of R
2 and the third vector is given by the inner normal vector of

F × {0} ⊂ F × I. To compute αw is as easy as to compute αw for any classical

link in regular projection (all crossings of l1 and l2 have to be transversal). Just

pull l1 over all of l2. Locally we can describe the homotopy by l1× Id. If l1 was

under l2 we get an intersection point s̄i. s̄i corresponds to exactly one point si

of the intersection manifold S ⊂ S1× I×S1 (S is a set of isolated points). Now

it is easy to read off the weightings for these intersections. Just follow l1 from

the base point to s̄i, then go along l2 to the base point of l2. The projection of

this curve to F is closed and represents [ωi].

It remains to compute the orientation signs of the intersections. To do this we

consider the local orientations of F ×I in figure 4.2. b) above: [e1, e3,−e2]. The

orientation vectors (e1, e3) and −e2 are the images of the canonical orientation

vectors in the product T (S1 × I), TS1 under T (l1 × Id) and T l2, resp., in the
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tangent space Ts̄i
(F × I). In the first summand of the isomorphism ϕ

ϕ : T (S1 × I × S1)|si
∼= Tsi

Si ⊕ ((pr1 ◦(l1 × Id× l2))|si
)∗(T (F × I))

we get (e1, 0) = 1
2
(e1,−e1) mod T△, (e3, 0) = 1

2
(e3,−e3) mod T△ and

(0,−e2) = 1
2
(e2,−e2) mod T△ as an orientation basis of ν(△, S1 × I × S1).

This yields the basis 1
2
(e1, e3,−e2) in Ts̄i

(F × I). After a rotation we obtain the

canonical oriented basis of T (F × I). So Tsi
S will be oriented with a plus sign.

In the second picture on the right hand side we get e1, e3, e2 under ϕ as a basis

of Ts̄i
(F × I) and therefore a minus sign in this case.

Now it is easy to see that for the link shown in figure 4.2. a) we compute

αw(l1 ⊔ l2) = [1]− [β−2].

4.1 Proof of the classification result

In this section we want to show that αw is able to distinguish all elements in

BLM(σ1,σ2). Consider F × I embedded in R
3 such that a small neighborhood

of {∗} × I is equal to B2 × I and oriented by the canonical orientation of R
3 :

[e1, e2, e3]. If F × I carries the opposite orientation, we have to make a minor

change in the construction below. We will point out it.

Choose representatives f 0
1 ∈ σ1 and f 0

2 ∈ σ2 in F × {1} and F × {−1}, resp.,

in general position. Next we define a special meridian m1 of f1. To do this let

p1 : [0, 1]→ F × I, t 7→ (∗,−1+ t), and p2 be the path in F × I, which starts in

(∗, 0) and ends near (∗, 1) below the beginning of f 0
1 . Now m1 is constructed as

follows: Start in (∗,−1) and go along p1 · p2, afterwards traverse the boundary

of a normal disc of f 0
1 . Finally we have to go back to (∗,−1) along (p1 · p2)

−1.

The direction on the boundary of the normal disk will be chosen such that the

linking number with f 0
1 is +1, compare in figure 4.3. (If F × I has opposite

orientation, we have to choose the path which has linking number −1 with f2

!). This construction leads to a link map f 0
1 ⊔ f̄2, where f̄2 := f 0

2 · m
1. Now

αw can be computed as in example 4.9. Push f 0
1 over f 0

2 . We get a plus sign
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Figure 4.3. Orientation of the meridian m1

∗̄1

m1

f 0
1

for the intersection s and the weighting for s is computed by following f 0
1 in

orientation direction to s, then down to (∗,−1) along the second half of m1. In

the case of m1 this path is homotopic to [0, 1] ∋ t 7→ (∗, 1− 2t) ∈ F × I. But

this path projects to c, the constant path [0, 1] ∋ t → ∗ ∈ Q. Thus we have

αw(f 0
1 ⊔ (f 0

2 ·m
1)) = [1].

Following the notation of Milnor in [Mil54] mγ denotes γ−1 ·m1 · γ for γ ∈

π1(Q, ∗). A representative for this meridian is given as follows: Go along p1 ·

g−1 ·p2, traverse the boundary of the normal disk and then along (p1 ·g
−1 ·p2)

−1

back to (∗,−1) (here g is a representative of γ in Q × {0}, see figure 4.4. a)).

We obtain αw(f 0
1 ⊔ (f 0

2 ·m
γ)) = [γ].

To construct a link map with αw = [−γ] choose f̄2 = f 0
2 ·m

−γ := f 0
2 · (m

γ)−1.

Therefore the intersection s will change the sign but the weighting of s in π1(F, ∗)

will be the same. Keep in mind thatm−γ = γ−1·(m1)−1·γ andmγ−1
= γ ·m1·γ−1

are represented by paths with same images in F × I but oriented in opposite

direction. It follows αw(f 0
1 ⊔ (f 0

2 ·m
γ−1

)) = [γ−1] 6= [−γ] = αw(f 0
1 ⊔ (f 0

2 ·m
−γ)).

Consider the link f 0
1 ⊔ f

0
2 · m

γ1 · mγ2 . For each meridian mγ1 and mγ2 we get

an intersection s1 and s2, resp. In order to compute the weighting for s2, we

do not care about the path representing mγ2 because mγ2 is trivial in π1(F, ∗̄2).

We get αw(f 0
1 ⊔ f

0
2 ·m

γ1 ·mγ2) = [γ1] + [γ2].

Lemma 4.10. The above construction has a canonical well-defined extension

to a map

ϕ : ZJπ1(F, ∗)K→ BLM(σ1,σ2)

which leads to the following commutative diagram:
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Figure 4.4. Construction of canonical links with prescribed αw-Invariant

F × I

∗̄1

∗̄2

∗F × t g

p1

p2

= γ ∈ π1(F, ∗)

f2

f 0
1

f 0
2 ·m

γ

a) b)

ZJπ1(F, ∗)K
ϕ

pr

BLM(σ1,σ2)

αw

ZJ〈σ̄1〉\π1(F, ∗)/〈σ̄2〉K.

Proof. First let g and h be two different representatives of γ ∈ π1(F, ∗).

Because g ∼ h rel {0, 1} in F × I, we conclude that f 0
2 ·m

g ∼ f 0
2 ·m

h rel {0, 1}

in the complement of f 0
1 . Thus f 0

1 ⊔ f
0
2 ·m

g and f 0
1 ⊔ f

0
2 ·m

h are link homotopic.

Next we have mγ ∼ 1 in π1(F × I, ∗2). Therefore the resulting link map is in

BLM(σ1,σ2) too.

Now the canonical extension ϕ is given by ϕ(γ1+γ2) = [f 0
1 ⊔f

0
2 ·m

γ1 ·mg2]. To

prove that ϕ is well-defined we only have to show [f 0
1 ⊔f

0
2 ·m

γ2 ·mγ1 ] = [f 0
1 ⊔f

0
2 ·

mγ1 ·mγ2 ] (both will have the same αw invariant [γ2]+[γ1] = [γ1]+[γ2]). Consider

the link group G(f 0
1 ) := π1(M)/[π1(M)] where M := (F × I) \ f 0

1 (S1) and [G]

denotes the commutator subgroup ofG. Theorem 3 in [Mil54] states that if l and

l′ represent conjugate elements in G(f 0
1 ) then f 0

1⊔l ∼ f 0
1⊔l

′ up to link homotopy.

But we find f 0
2 ·m

γ2 ·mγ1 = f 0
2 ·m

γ1 ·mγ2 · [m−γ2, m−γ1 ] = f 0
2 ·m

γ1 ·mγ2 ∈ G(f 0
1 ),

which completes the proof.

Remark 4.11. The result of theorem 3 in [Mil54] is the reason to introduce the

exponential law for meridians: mγ1+γ2 := mγ1 ·mγ2 , where γ1, γ2 ∈ π(F, ∗). A
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very similar homotopy showing that mγ1 ·mγ2 = mγ2 ·mγ1 is given in chapter 5,

figure 5.2., for meridians in higher dimensions.

Corollary 4.12. The invariant αw is surjective.

Now let us consider the operation of < σ̄1 > and < σ̄2 > by multiplication

on the left and right, respectively. We find that elements in the same orbit will

be mapped to the same elements in BLM(σ1,σ2) via ϕ.

Lemma 4.13. Let n,m ∈ N0 and γ ∈ π1(F, ∗) and σ̄i = [pri ◦fi] ∈ π(F, ∗).

a) ϕ(σ̄n
1 · γ) = ϕ(γ),

b) ϕ(γ · σ̄m
2 ) = ϕ(γ).

Proof. a) Let g be a representative of γ. We will construct a link homotopy:

f 0
1 ⊔ (f 0

2 ·m
γ) = f 0

1 ⊔ (f 0
2 · g

−1 ·m1 · g)

∼ f 0
1 ⊔ (f 0

2 · (f
0
2 · g)

−1 ·m1 · (f 0
2 · g)) = f 0

1 ⊔ (f 0
2 ·m

σ̄1·γ).

This homotopy is given by moving the meridian mγ around f 0
1 in opposite di-

rection to the orientation of f 0
1 . If we have to pass a crossing of the immersion

f 0
1 we can pull down the branch of f1 on which we move around (see figure 4.5.).

We indicate in figure 4.5. that the result extends to all elements of the group

ZJΛ(σ̄1,σ̄2)K. Intersections of mγ with the rest of the second component do not

matter because we are working in the category of link homotopy where selfin-

tersections are allowed.

To finish the proof of a) we observe that in the case of σ̄−1
1 we have to move mγ

around f 0
1 in orientation direction.

b) Let again g be a representative of γ. Here we can construct a link homotopy

from f 0
1 ⊔ f

0
2 ·m

γ to f 0
1 ⊔ f

0
2 ·m

γ·σ̄2 which is dual to the link homotopy described

above. Just pull down the meridian mγ and extend this to a link homotopy

(for more than one meridian this can be done simultaneously because the link

homotopy take place in small tubular neighborhood of mγ ∪ D, where D is a

normal disk to f 0
1 ). This yields a representative (mγ−1

· f 0
1 ) ⊔ f 0

2 . Here mγ−1
is
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Figure 4.5. Link homotopy of f 0
1 ⊔ (f 0

2 ·m
1 ·mγ) to f 0

1 ⊔ (f 0
2 ·m

σ̄1 ·mγ)

a) f 0
1 ⊔ (f 0

2 ·m
1 ·mγ)

b) move m1 around
f 0

1 . If we meet a
crossing pull down the
branch of the merid-
ian. Selfintersections
of f2 are allowed.

c) f 0
1 ⊔ (f 0

2 ·m
σ̄1 ·mγ)

g

a meridian of f 0
2 (see figure 4.6.). Now we can apply a) to move the meridian

mγ−1
around f 0

2 in orientation direction of f 0
2 . This results in (mγ−1·σ̄−1

2 ·f 0
1 )⊔f 0

2 .

Now pull mγ−1·σ̄−1
2 up and extend this to a link homotopy to get f 0

1 ⊔(f 0
2 ·m

γ·σ̄2).

The whole link homotopy is sketched in a sequence of pictures in figure 4.6..

Figure 4.6. Link homotopy of f 0
1 ⊔ (f 0

2 ·m
1 ·mγ) to f 0

1 ⊔ (f 0
2 ·m

1 ·mγ·σ̄2)) dual
to the homotopy in figure 4.5.

f 0
1 ⊔ (f 0

2 ·m
1 ·mγ) (mγ−1

·m1 · f 0
1 ) ⊔ f 0

2

“dual” move of mγ−1f 0
1 ⊔ (f 0

2 ·m
1 ·mγ·σ̄2)
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Proof (Proof of Theorem 4.4.). Lemma 4.10 shows that the surjectivity

of αw holds. It remains to show that αw is injective. Let [f1 ⊔ f2] = g ∈

BLM(σ1,σ2). First there is a homotopy of f1 to f 0
1 because both are in the

same based homotopy class. This homotopy can be decomposed into a series of

isotopies and local crossing changes of f1 and therefore it can be extended to

a link homotopy of f1 ⊔ f2 to f 0
1 ⊔ f

′
2, where we have a regular projection P of

f 0
1 ⊔f

′
2 to F ×{0}. Denote by s̄i the intersection points in the regular projection

P , where f ′
2 is “over” f 0

1 . Deform f ′
2 to f ′′

2 · m1 · · · · · mn with f ′′
2 ⊂ F × {0}

and m1, . . . , mn are meridians of f 0
1 (compare figure 4.7.). The meridians can

be moved near the starting point of f 0
1 . Now there is a second homotopy of

Figure 4.7. Deformation of f = f1 ⊔ f2 into standard form

a) f1 ⊔ f2 b) f 0
1 ⊔ f

′
2

d) c)

e)
pictures c) - e) illustrate the
deformation of f ′

2

to f ′′
2 ·m1·m2 and f 0

2 ·m1·m2.

f ′′
2 to f 0

2 , because mi ∼ 1 in π1(F × I, ∗̄2). In view of lemma 4.13 we can

define ϕ̄ : ZJΛ(σ̄1,σ̄2)K → BLM(σ1,σ2) by ϕ̄(
∑
ng[g]) := ϕ(

∑
ngg). But our link

homotopy constrcucted above f1 ⊔ f2 ∼ f 0
1 ⊔ (f 0

2 ·m1 · · · · ·mn) =: f̄ implies the
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fact that ϕ̄ ◦ αw = IdBLM(σ1,σ2)
. It follows that αw is injective. This completes

the proof of theorem 4.4.

Remark 4.14. The result of Theorem 4.4 can be obtained also for framed link

maps in classical dimensions. We will see this in the next chapter where we

describe a generalization of the construction above.



5 Results in higher dimensions

In this chapter we want to give a generalization of the construction of the last

chapter to the higher dimensions in the case of framed link maps. First we

assume n+m−q ≥ 0. This is no restriction because in other cases our invariant

απ is zero and BLM(σ1,σ2) consists of exactly one element. To understand it let

us consider two link maps f, g ∈ BLMQ
M,N , f = f1 ⊔ f2 and g = g1 ⊔ g2. Next

we Choose a homotopy of f1 to f ′
1 ⊂ Q × (]R>g2,∞[∩]R>f2 ,∞[). Because of

the dimension range we can avoid the image of f2. In the same way deform g1

in the complement of g2. Then, we clearly have: (f ′
1 ⊔ f2) ∼ (g′1 ⊔ g2) by a link

homotopy. �

5.1 Construction of link maps in standard form

We start with a based link map

f 0 = f 0
1 ⊔ f

0
2 : Mm ⊔Nn → Qq × R,

of framed manifolds of indicated dimensions with f 0
1 (M) ⊂ Q×(1/2, 1], f 0

1 (∗1) =

(∗, 1) =: ∗̄1 and f 0
2 (N) ⊂ [−1,−1/2), f 0

2 (∗2) = (∗,−1) =: ∗̄2, where ∗ ∈ Q

denotes the base point of Q and (∗, 0) = ∗̄ the base point of Q × R, resp.

This map is surely αw-trivial, that means αw(f 0) = 0. f 0
1 ⊔ f

0
2 can be used to

construct a map

ϕ : πn(Sq−m)× π1(Q, ∗) −→ BLM(σ1 ,σ2)

(g, τ) 7→ [(g, τ)(f 0)],

59
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where the operation on f 0 is given in the following way. Take a point x0 ∈ N

near ∗2 and a path α2 connecting x0 and ∗2 such that f 0
2 (α2) ⊂ Bǫ(∗̄2) ⊂ Q×R

(Q × R with Riemannian metric). Consider f 0
2 (x0) =: (x1, t) and γ : t 7→

(x1, t) ∈ Q × R, t ∈ [−1, 1]. Deform f 0
1 (by a based link homotopy) such that

the intersection with γ is exactly the point (x1, 1/2). Furthermore assume that

f 0
1 looks like (Dm × Dq−m) × [−δ, δ] →֒ Q × R, where Dm × {0} × {0} is the

image of a small ball in M and δ > 0 small, in a neighborhood of (x1, 1/2).

MSq−m := ∂(Dq−m × [−δ, δ]) is the meridian sphere of (x1, 1/2), see figure 5.1.

on the left. A second path α1 is chosen on M , connecting ∗1 to f−1
1 (x1, 1/2),

such that f1(α1) ⊂ Bε(∗̄1).

Now let B be the n-dimensional “balloon” - the wedge of (Sn, ∗) and (I, 1),

with ∗ and 1 being identified. In addition let us consider N ∪x0 B, the wedge

of N and B, with x0 and 0 ∈ I being identified. Together with a small open

neighborhood Ux0 of x0 we will use an orientation preserving diffeomorphism

h : Ux0 → Bn
3 (0) ⊂ R

n to construct a map b : N → N ∪x0 B. Outside of Ux0

the map b is defined to be the identity. For x ∈ U we set:

b(x) :=





h−1(h(x · (‖x‖−2) · 3)) ∈ N if 2 ≤ ‖h(x)‖< 3,

‖h(x)‖−1 ∈ I if 1 ≤ ‖h(x)‖< 2,

h(x) · 1/(1− ‖x‖) ∈ R
n ∪∞ = Sn otherwise, ∞ = ∗ ∈ Sn.

(see figure 5.1. on the right). Furthermore we can assume that the framing on

Sn ⊂ N is trivial up to a sign because it results from a framing over the con-

tractible space Ux0 . (A framing on Ux0 is a continuous map of Ux0 to GL(n,R),

which has two path components).

The operation (g, τ)(f 0) is the composition of b and the map which mapsN by

f 0
2 , the thread of B to a path from f2(x0) to the base point of the meridian sphere

MSm−q and Sn to the meridian sphere MSq−m by g. The map of the thread

is given as follows: Move along γ from f 0
2 (x0) to (x1, 0), then follow a loop in

Q×{0} representing τ−1 and up to (x1, 1/2), end in the base point ofMSq−m (see

figure 5.1.). This construction leads to an element of (g, τ)(f 0) ∈ BLMQ
M,N .
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Figure 5.1. construction of (g, τ)(f 0)

g

τ

f1(M)

f2(N)

−1

0

1

∗̄1 = f1(∗1)

∗̄2 = f2(∗2)

Sn

MSq−m

N ∪x0 B

f2(x0) = (x1, t)

Ux0

f1(α1)

f2(α2)

We want to compute απ((g, τ)(f 0)). Use the canonical homotopy along the

second component of Q×R to pull the image of f 0
1 above (g, τ)(f 0

2 ). In the disk

neighborhood (Dm ×Dq−m)× [−ǫ, ǫ] of (x1, 1/2) this homotopy is given by:

H : Dm × [0, 1] → (Dm ×Dq−m)× [−ǫ, ǫ]

(x, t) 7→ (x, 0,−ε+ 2tε).

So it is easy to see that the only intersection point of H with (g, τ)(f 0
2 ) can be

the north pole of the meridian sphere MSm−q. We know that απ is independent

from the choice of a transverse approximation of the product map

H × (g, τ)(f 0
2 ) : M × I ×N → (Q×R)× (Q× R)

to the diagonal △ in the target space. We approximate g by a map g′ which

has the north pole NP ∈ Sq−m as regular value. If NP 6∈ g′(Sn), then it is

clear that [g] = 0 ∈ πn(Sn); deform g(x) to the base point (south pole) along

geodesics (without crossing NP ). Hence (g, τ)(f 0) ∼ f 0 by a link homotopy,

which pulls the balloon along τ .

On the other hand if g′(Sn) ∩ NP 6= ∅ we know that H × (g′, τ)(f 0
2 ) is

transversal to△. This is due to the fact, that H is locally an embedding around
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NP , which means that the tangent space of H in NP is m+1-dimensional. The

tangent space of the meridian MS in NP is actual the normal space of H in

NP . Since g′ has NP as regular value, the tangent space Tx(S
n), x ∈ g′−1(Sn),

will be mapped onto TNPMSq−m.

The preimage S := (H × (g′, τ)(f 0
2 ))−1(△) is equal to {x} × {t} × S ′ and

homeomorphic to S ′ ⊂ Sn →֒ N ∪x0 B. Let us now examine the structure of S:

Claim 5.1. The bordism class [S ′] ∈ Ωfr
n+m−q, S

′ ⊂ N together with [τ ] ∈

Λ(σ̄1,σ̄2) is equal to the value of απ((g, τ)f 0), at least up to a fixed sign.

Proof. First note that a framing of M × I × N restricted to the preimage

(H × (g′, τ)(f 0
2 ))−1(△) is trivial up to a sign. That is way both the framing of

M over NP and the framing over Sn ⊂ N could also be assumed to be trivial

up to a sign (Ux0 is a small contractible neighborhood of x0 and S ⊂ Ux0). In

regard to Remark 3.12 this implicates the following: The induced framing on

(H × (g′, τ)(f 0
2 ))−1(△) depends only (up to sign) on the vector bundle map

TF : ν(S →֒ M × I ×N)→ ν(△, (Q× R
2)),

which transports a framing of △ to the required framing of S. So the stable

framing of S is (±) the result of:

(Tf2)
−1 : ν(NP ∈MS)→ ν(S ′ ⊂ N).

But this is given - again up to sign - by the Pontrjagin-Thom-Construction. �

Lemma 5.2. If n ≥ 1 the construction above can be easily extended to the

abelian group πn(Sq−m)Jπ1(Q, ∗)K of all finite formal linear combinations
∑

(g, τ),

where τ ∈ π1(Q, ∗) and g ∈ πn(Sq−m). The extension will be denoted by ϕ again.

This yields the commutative diagram:

πn(Sq−m)Jπ1(Q, ∗)K
ϕ

proj±E∞◦PT

BLM(σ1 ,σ2)

απ

Ωfr
n+m−qJ〈σ̄1〉\π1(Q, ∗)/〈σ̄2〉K

(5.1)
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Proof. For each pair (g, τ) choose a point x ∈ N near ∗2 and a path α con-

necting x to ∗2. Finally choose a path α from x to (x1, 0). It is clear that for

n ≥ 2 the resulting link map (g, τ)(f 0) does not depend on the choice of x and

α as long as we make our choice in a small neighborhood of ∗2. We can move

around our “balloon” threads to any other position of our choice outside all

other wedge points (selfintersections are allowed). Hence we get

ϕ((g1, τ1) + (g2, τ2)) = (g2, τ2)((g1, τ1)f
0) = (g1, τ1)((g2, τ2)f

0).

In the case of n = 1 (and therefore m = q − 1: m ≤ q − 1 and n +m ≥ q), we

have to be more carefully. In this case (N = S1) our balloons are loops that we

paste to S1. So we have to show that loops pasted in different order yield to

the same link map:

(f 0
1 ⊔ (f 0

2 ·m1 ·m2)) ∼ (f 0
1 ⊔ (f 0

2 ·m2 ·m1 · [m
−1
1 , m−1

2 ])) ∼ (f 0
1 ⊔ (f 0

2 ·m2 ·m1))

up to link homotopy (mi are meridians of f1). Here we use a generalization of

Milnor’s link homotopy used in Lemma 4.10 for the case m = n = 1: He showed

that the commutator [m−1
1 , m−1

2 ] is trivial in the link group of f1 (compare

[Mil54]). Consider a small tubular neighborhood Dq+1 of m1 ∪m2 ∪ N1 ∪ N2,

where N1 and N2 are the normal disks of m1 and m2, respectively. The sequence

of pictures in figure 5.2. illustrate the desired link homotopy. You can think of

the pictures as cuttings of Dq+1 ∩ ({0} × Dq−m+2), where {0} ∈ Dm−1. Only

a a restriction to one dimension of the image f 0
1 (Dm) is lying in this ball. In

the construction above m1 is exactly over m2 so move m2 somewhat to the left.

Remember that f1 was locally embedded. Notice that the “finger” moved in this

homotopy may have more intersections with f1, but this is no problem because

selfintersections are allowed.

Because PT is an isomorphism from the stable stem πs
n+m−q to the bordism

class of stably framed n+m−q dimensional manifolds we obtain some interesting

consequences in conjunction to the suspension theorem of Freudenthal 2.8 and
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Figure 5.2. Link homotopy to deform the commutator of two meridians of f 0
1

to a point

a) tubular nbhd. of
m1 ∪m2 ∪N1 ∪N2 b) [m−1

1 , m−1
2 ]. Perform a “finger move” on f 0

1 as
seen in the picture right above. All other parts
of the finger are in other dimensions, where
more intersection with f 0

1 can occure.

c) pull the “finger”
back and the commu-
tator to a point

remark 2.9.

Lemma 5.3. If 1 ≤ n ≤ 2(q −m) − 1 and 1 ≤ m ≤ q − 1 the invariant αw is

onto. As a consequence αw distinguishes many different (based) link homotopy

classes.

Proof. This follows easily from the suspension theorem of Freudenthal 2.8. In

the given dimension range the suspension E∞ is surjective, and because of the

commutative diagram (5.1) we conclude that αw is onto.

5.2 The special case m + n = q

Theorem 5.4. Let m + n = q and n,m > 0. Then αw is a bijection and

therfore a full invariant of BLM(σ1,σ2).

Proof. In view of lemma 5.3 we have to show that αw is injective for n,m ≥ 1.
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In a first step we establish a result similar to lemma 4.13 in higher dimensions:

a) ϕ(g, τ) = ϕ(g, σ · τ) for σ ∈ σ̄1 = (pr′1 ◦f1)#(π1(M, ∗1)),

b) ϕ(g, τ) = ϕ(g, τ · σ) for σ ∈ σ̄2 = (pr′1 ◦f2)#(π1(N, ∗2)).
(5.2)

a) As well as in the proof of lemma 4.13 we choose a path γ in M whose

image under pr′1 ◦f
0
1 represents σ. We can assume that γ starts and ends in x0.

Then we approximate f 0
1 by a local embedding near γ. This is possible without

changing f 0
1 near f 0

1
−1

(x1, 1/2). Furthermore we deform f 0
1 in a small tubular

neighborhood of γ ∈ M such that f 0
1 (γ(I)) ⊂ Q × {1/2} and f 0

1 (M \ U(γ)) ⊂

Q× (1/2, 2], where U(γ) is a small neighborhood of γ in M .

Now we move the meridian sphere MSq−m along γ−1. Thus the thread will

be changed to τ · γ−1. Each time where γ−1 has a selfintersection pull down

the branch where you going along. In this way we come back with MSq−m to

(x1, 1/2) and by a rotation we can assume that the wedge point coincides to the

south pole. We choose the meridian sphere so small that it does not meet f 0
1

anywhere. So we changed f 0
1 ⊔ (g, τ)f 0

2 by a link homotopy to f 0
1 ⊔ (g, σ · τ)f 0

2 .

That proves equation a).

In the same way it is possible to construct a link homotopy to deform the

balloon along a prescribed path in f 0
2 (N) representing σ. Thus b) follows.

In this case we have to choose paths disjoint from the wedge points of all other

balloons. There are only difficulties for n = 1 or n = 1. Consider first the case

where n = 1. We can use the same “dual move” argument as in lemma 4.13.

Use finger moves on f 0
1 (M) to perform these “dual moves”.

As in the proof of theorem 4.4 the results above give rise to a map

ϕ̄ : Λ(σ̄1,σ̄2) → BLM(σ1,σ2),
∑
ng[g] 7→ ϕ(

∑
ngg).

To complete the proof of theorem 5.4 we deform f = f1 ⊔ f2 into the standard

form. First let us assume that n ≤ m. Thus we have 2n = q < q+1. Therefore

we can bh-approximate f2 by a smooth map f ′
2 without selfintersections, [GG80].
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Now choose an base point preserving isotopy of f ′
2 to f ′′

2 , such that f ′′
2 (N) ⊂

Q × [−1/2,−∞). We extend this isotopy to all of Q × RR (isotopy extension

property, compare [Hir76]).

Because of the R-factor there is a standard b-homotopy F : M × I → Q× R

with Ft(x) = f1(x), t ∈ [0, ε], and F1(x) = f 0
1 (x), t ∈ [1−ε, 1]. We approximate

F |[δ, 1 − δ], δ < ε, smooth, transverse to f ′′
2 and with normal crossings, i.e.

the k-fold product map F k : (M × I)k → (Q × R)k is transverse to the k-fold

diagonal of the target space for all k ∈ N . Remember that maps with normal

crossings are dense in the space of all maps ([GG80], §3, prop 3.2).

This results in a 0-dimensional compact coincidence manifold, i.e. a finite

number of points x1, . . . , xn. Because we assumed M × I to be connected we

can find paths γi which connect xi to some point x̄ ∈ M × {1} near ∗1 × {1}.

Furthermore we can deform the paths γi such that the images are disjoint from

all selfintersections of F ifm < q−1. This is due to the fact that the double point

manifold S2 := (F×F )−1(△) ⊂ (M×I)2 is of dimension 2(m+1)−(q+1) < m

and so the dimension of the projection to the first factor is smaller than m. If

m = q − 1 holds the paths can only have intersection points with F . Now

Figure 5.3. finger moves along F (γi)

finger move on f2

along F (γi)
F (xi)

∗̄1
x̄

F (γi)

f 0
1

f1

F

f ′′
2

perform finger moves on f2 along F (γi) to F (x̄) (compare figure 5.3.). Because

this is done in a neighborhood of embedded parts of F these finger moves are

link homotopies for f1 ⊔ f
′′
2 . If m = q − 1 it is possible that the paths meet

selfintersections of F . But we can perform crossing changes on f1 to have a link

homotopy in this case too.

Next deform f1 along F to f 0
1 outside a small neighborhood of ∗̄1 which
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contains F (x̄). Afterwards we can deform f ′′
2 to f 0

2 and pull the end of the

fingers afterwards. In a last step collapse the fingers outside the meridians (the

finger tips) to paths and move the ends of the paths to points near ∗̄2 along paths

in the image of f 0
2 . That way we have produced the standard form described in

the construction. This will complete the proof of theorem 5.4. �



6 Base point free link homotopy

In this last chapter we want to discuss the more natural relation of base point

free link maps up to link homotopy. We will see that in some cases the restric-

tion to the base point preserving link homotopy was only because of technical

reasons.

Let us denote the element of BLMQ
M,N which maps M to ∗̄1 and N to ∗̄2

by tr. If we consider LMQ
M,N as topological space induced by the compact

open topology of maps, we know that BLMQ
M,N is a closed subset of LMQ

M,N .

Choose tr as base points for both spaces. This yields the homotopy sequence

(of homotopy sets of the pair (LMQ
M,N ,BLM

Q
M,N)):

· · · π1(LM
Q
M,N ,BLM

Q
M,N)

δ∗
π0(BLM

Q
M,N , tr)

forg∗
π0(LM

Q
M,N , tr).

Here δ∗ is the boundary homomorphism and forg is the obvious map forgetting

the base points. It is clear that BLMQ
M,N = π0(BLM

Q
M,N , tr) and LMQ

M,N =

π0(LM
Q
M,N , tr) holds (note that in our dimension range q + 1 > 2). To each

link map f1 ⊔ f2 ∈ LM
Q
M.N with fi(∗i) = xi, it is easy to find a link homotopy

to a map g1 ⊔ g2 ∈ LM
Q
M.N , such that gi(∗i) = ∗̄i, i = 1, 2. For instance we

can choose a path γ1 connecting x1 to ∗̄1 which does not intersect f2(N) (again

notice that n ≤ q− 1). So we can do a finger move on f1 along γ1 (an therefore

in the complement of f2) such that the resulting map g1 maps ∗1 to ∗̄1. We

conclude that forg∗ is surjective.

Exactness in the middle means ker(forg∗) = im(δ∗) as subsets of BLMQ
M,N .

Thus the elements w and z of BLMQ
M,N will be identified under forg∗ if there

are representatives f = f1 ⊔ f2 ∈ w and g = g1 ⊔ g2 ∈ z such that f ∼ g by

68
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a base point free link homotopy. Let us consider what happens if we deform

the first component f1 in the complement of f2 to f ′
1 by a link homotopy F .

First observe that f1#(π1(M)) changes to f ′
1#(π1(M)). The path γ(t) = F (∗1, t)

leads to an automorphism of π1(Q, ∗̄1) which induces an isomorphism between

f1#(π1(M)) and f ′
1#(π1(M)) by τ 7→ [γ−1] · τ · [γ]. That means that the target

of αw changes:

Lemma 6.1. Let f = f1⊔f2 : M⊔N → Q×R be a based link map with σi = [fi].

Furthermore let f ′
1 : (M, ∗1)→ (Q×R, ∗̄1) be a map in the complement of f2 and

F a base point free link homotopy from f1 ⊔ f2 to f ′
1 ⊔ f2 with γ(t) := F (∗1, t),

which leaves f2 fixed. Then

αw(f1 ⊔ f2) = γ∗(αw(f ′
1 ⊔ f2)),

where

γ∗ : Ωn+m−qJΛ(σ̄1,σ̄2)K → Ωn+m−qJΛ(σ̄′

1,σ̄2)K
∑

[Si][ωi] 7→
∑

[Si][(pr′1 ◦γ) · ωi].

Proof. The proof goes along the lines of the proof that αw does not change if

we deform f1 ⊔ f2 by a link homotopy of f1 in the complement of f2. We start

with a (base point free) homotopy of F1 of f1 which satisfies the conditions to

compute αw(f1 ⊔ f2). A second homotopy F ′
1 is chosen to compute αw(f ′

1 ⊔ f2).

Now the product homotopy F · F ′ deforms f1 to f ′
1 in the complement of f2.

Now we have two different homotopies to calculate αw(f1 ⊔ f2). According to

lemma 3.15 this yields

αw(F1, f2) = αw(F · F ′
1, f2).

In a second step we want to compare αw(F · F ′
1, f2) with αw(F ′

1, f2). The co-

incidence manifolds (with structures) in both computations will be the same

because F (M × I) ∩ f2(N) = ∅. So it remains to show the claimed translation

for our weightings. But this is not hard to see: Consider M × I = V1 ∪ V2 :=

M × [0, 1/2] ∪ M × [1/2, 1], where V1 and V2 correspond to F and F ′
1, resp.
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Let Si be a path component of the coincidence manifold S = H−1(△). Here

H denotes a smooth bh-approximation of F · F ′
1 (Note that the approximation

has to be constant near the base point f1(∗1) and also near f ′
1(∗1). This is no

crucial restriction.) Let β be a path connecting (∗1, 0, ∗2) to si ∈ Si (compare

figure 6.1.). We can deform β in canonical projection direction in M × I ×N

Figure 6.1. Translation of weightings

(∗1, 0, ∗2)

(∗1,
1
2
, ∗2)

∗̄1

γ

si

f2(si)

f2

δ

β ′

β ′
1

β1

β

b)a)

N

M

I

F ′
1

F

to obtain a composition of two paths: δ · β ′. The path δ connects (∗1, 0, ∗2)

to (∗1,
1
2
, ∗2) whereas β ′ is a path connecting (∗1,

1
2
, ∗2) to si. Therefore by our

construction one gets:

ω̄1
i = β1 · β2 = (pr1 ◦H)(β) · (pr2 ◦H)(β−1)

= (pr1 ◦H)(δ · β ′) · (pr2 ◦H)(β ′−1
· δ−1)

∼= γ · (pr1 ◦H)(β ′) · (pr2 ◦H)(β ′−1) = γ · ω̄2
i ,

where ω̄1
i and ω̄2

i are used to compute the weightings in αw(F · F ′
1, f2) and

αw(F ′
1, f2), respectively. This completes the proof of the lemma.

Similar to a deformation of f1 in the complement of f2 we can deform f2 in the

complement of f1. Using the symmetry relation established in Theorem 3.19, it

is easy to show the following

Lemma 6.2. Let f = f1⊔f2 : M⊔N → Q×R be a based link map with σi = [fi].
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Furthermore let f ′
2 : (N, ∗2) → (Q × R, ∗̄2) be a map in the complement of f1

and F a base point free link homotopy of f1 ⊔ f2 to f1 ⊔ f
′
2 with γ(t) := F (∗2, t),

which leaves f1 fixed. Then

αw(f1 ⊔ f2) = γ∗(αw(f1 ⊔ f
′
2)),

where γ∗(
∑

[Si][ωi]) :=
∑

[Si][ωi ·(pr′1 ◦γ)] and pr′1 : Q×R→ Q is the projection

to the first factor.

Recall that any (base point free) link homotopy F of f1 ⊔ f2 splits into ho-

motopies Fi of one component in the complement of the other one. This can be

done such that Fi is a base point free homotopy of based maps (push the base

point of M and N to ∗̄1 and ∗̄2, resp., after each deformation Fi).

Similar to the base point preserving case we have the splitting

LMQ
M,N =

⋃
LM(σfr

1 ,σ
fr
2 ),

where σfr
1 and σfr

2 are the free homotopy classes of f1 and f2, respectively.

Putting these facts together we can establish the following functorial description:

Proposition 6.3. Choose free homotopy classes σfr
1 ∈ [M,Q] and σfr

2 ∈ [N,Q].

Consider the category C with objects
⋃
BLM(σ1,σ2), where forg∗(σi) = σfr

i , i.e.

by forgetting the base point σi is mapped to σfr
i . The morphisms in C are

base point free link homotopies. Then αw induces a functor between C and the

category AB. The objects of AB are abelian groups and the morphisms are

isomorphisms between them. In particular we have the following commutative

diagram:

f = f1 ⊔ f2

H

αw Ωn+m−qJΛ(σ̄1,σ̄2K

αw(H)

g = g1 ⊔ g2
αw Ωn+m−qJΛ(σ̄′

1,σ̄′

2
K,

where f ∈ BLM(σ1,σ2) and g ∈ BLM(σ′

1,σ′

2) are based link maps and H is a base

point free link homotopy of f to g and αw(H) is the isomorphism induced by the

trace of ∗1 and ∗2 under H. �
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Given a link map f we denote by f b a fixed based representative of the

(free) link homotopy class of f . All based representatives (up to based link

homotopy) can be constructed in the following way: Choose γ1 ∈ π1(Q, ∗̄1) and

γ2 ∈ π1(Q, ∗̄2). Then define f b
(γ1,γ2) as the result of the free link homotopy which

pushes ∗1 along a loop representing γ1 and ∗2 along a loop representing γ2.

Because we assumed that m,n ≤ q − 1, both homotopies can be chosen such

that there is no intersection with the other component.

Let us compare two given (base point free) link maps f and g. In view of

Proposition 6.3 we have the following

Proposition 6.4. If αw(f b) 6= αw(gb
(γ1,γ2)) for all elements (γ1, γ2) ∈ π1(Q, ∗̄1)×

π1(Q, ∗̄2). Then f and g are not link homotopic.

Proof. Choose basings f b and gb. These basings together with te link ho-

motopy of f to g yield a base point free link homotopy of f b to gb. Now by

Proposition 6.3 we know that there is an element (γ1, γ2) ∈ π1(Q, ∗)× π1(Q, ∗),

such that αw(f b) = αw(gb
(γ1,γ2)

).

Consider now the case where π1(Q, ∗) is an abelian group, or more generally

where σ̄1 and σ̄2 are subgroups of the centralizer of π1(Q, ∗). Then the target

of αw does not change, i.e. f1#(π1(M, ∗1)) = f ′
1#(π1(M, ∗1)) if f1 ∼ f ′

1 in the

complement of f2. So our invariant αw lifts to an invariant α̃w of base point free

link maps:

Theorem 6.5. Let f = f1⊔f2 : Mm×Nn → Qq×R be a link map of manifolds

with given structures (1 ≤ m,n ≤ q−1). Furthermore let σ̄1 and σ̄2 be subgroups

of the center of π1(Q, ∗). Pick a base point preserving representative f b of its link

homotopy class. We define
∑

[Si][ωi] ∼
∑

[Si][ω
′
i] iff there are γ1, γ2 ∈ π1(Q, ∗),

such that [ωi] = [γ1 · ω
′
i · γ2] for all i. Then the orbit

[αw(f b
1 ⊔ f

b
2)] ∈ Ωn+m−qJΛ(σ̄1,σ̄2)K/ ∼

with respect to the relation described above depends only on the base point free

link homotopy class of f and is called the α̃w-invariant of f . �
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In view of the remark at the beginning of this chapter we can state the

following classification theorem:

Theorem 6.6. Let m+n = q ≥ 2 and M , N and Q stably framed manifolds of

dimension m,n ≥ 1 and q, resp. Furthermore assume that π1(Q, ∗) is abelian

or π1(M, ∗1) = 1 = π1(N, ∗2). Then the invariant α̃w is a bijection between

LMQ
M,N and Ωfr

0 [Λ(σ̄1,σ̄2)]/ ∼. The same is true in the case of two oriented

circles in F ×I, where F is an oriented surface with abelian fundamental group.

�

(compare Theorem 4.4 and 5.4).

Theorem 6.6 extends in some sense results of Dahlmeier [Dah94], Satz I, and

U. Koschorke [Kos03a].
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Comment. Math. Helv. 28 (1954), 17–86 (French).



[Wal99] C.T.C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical

Surveys and Monographs. 69. Providence, RI: American Mathemati-

cal Society (AMS), 1999 (English).

[Whi44] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space,

Ann. of Math. (1944), 220–246 (English).

[Whi78] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in

Mathematics. 61. Berlin-Heidelberg-New York: Springer-Verlag. XXI,

1978.

77


	Zusammenfassung
	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	2 Basics and background in topology
	2.1 Manifolds and differentials
	2.2 Pontrjagin-Thom construction
	2.3 Stable framings and orientations

	3 The weighted linking number a_w
	3.1 Link maps and link homotopy
	3.2 Definition of a_w
	3.3 Homotopy invariance of a_w
	3.4 Symmetry relations of a_w

	4 The classical dimension setting
	4.1 Proof of the classification result

	5 Results in higher dimensions
	5.1 Construction of link maps in standard form
	5.2 The special case m+n=q

	6 Base point free link homotopy
	Bibliography

