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Abstract

Jacobi forms of lattice index, whose theory can be viewed as extension of the
theory of classical Jacobi forms, play an important role in various theories,
like the theory of orthogonal modular forms or the theory of vertex operator
algebras. Every Jacobi form of lattice index has a theta expansion which
implies, for index of odd rank, a connection to half integral weight modular
forms and then via Shimura lifting to modular forms of integral weight, and
implies a direct connection to modular forms of integral weight if the rank is
even. The aim of this thesis is to develop a Hecke theory for Jacobi forms of
lattice index extending the Hecke theory for the classical Jacobi forms, and
to study how the indicated relations to elliptic modular forms behave under
Hecke operators. After defining Hecke operators as double coset operators,
we determine their action on the Fourier coefficients of Jacobi forms, and
we determine the multiplicative relations satisfied by the Hecke operators,
i.e. we study the structural constants of the algebra generated by the Hecke
operators. As a consequence we show that the vector space of Jacobi forms
of lattice index has a basis consisting of simultaneous eigenforms for our
Hecke operators, and we discover the precise relation between our Hecke
algebras and the Hecke algebras for modular forms of integral weight. The
latter supports the expectation that there exist equivariant isomorphisms
between spaces of Jacobi forms of lattice index and spaces of integral weight
modular forms. We make this precise and prove the existence of such liftings
in certain cases. Moreover, we give further evidence for the existence of such
liftings in general by studying numerical examples.
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Zusammenfassung

Jacobiformen von Gitterindex, deren Theorie als Erweiterung der Theo-
rie klassischer Jacobiformen betrachtet werden kann, spielen in unter-
schiedlichen Theorien, wie der Theorie der Modulformen auf orthogonalen
Gruppen oder der Theorie der Vertexoperatoralgebren, eine bedeutende
Rolle. Jede Jacobiform mit Gitterindex hat eine Theta-Entwicklung, die
bei ungeradem Index eine Verbindung zu Modulformen von halbganzen
Gewichten herstellt und daher via Shimura-Liftung eine Beziehung zu Mod-
ulformen ganzen Gewichts impliziert, und bei geradem Index eine direkte
Verbindung zu Moldulformen ganzzahligen Gewicht suggeriert.

Das Ziel dieser Dissertation ist, eine Hecke-Theorie für Jacobiformen
mit Gitterindex zu entwickeln, indem die Hecke-Theorie für die klassischen
Jacobiformen erweitert wird, und zu untersuchen, wie sich die angedeuteten
Beziehungen zu elliptischen Moldulformen unter Hecke-Operatoren verhal-
ten.

Nachdem die Hecke-Operatoren als Doppelnebenklassen-Operatoren
definiert werden, wird deren Wirkung auf die Fourier-Koeffizienten der Ja-
cobiformen und diemultiplikativenRelationen, welche vonHecke-Operatoren
erfüllt werden, untersucht, indem z.B. die Struktur-Konstanten der Algebra
berechnet werden, die von den Hecke-Operatoren erzeugt werden.

Daraufhin wird gezeigt, dass der Vektorraum der Jacobiformen mit
Gitterindex über eine Basis von simultanen Eigenformen für die Hecke-
Operatoren verfügt und es wird die präzise Beziehung zwischen der Hecke-
Algebra und der Hecke-Algebra für Moldulformen ganzzahligen Gewichts
aufgezeigt.

Letztgenannte Beziehung stützt die Erwartung, dass äquivariante Iso-
morphismen zwischen den Räumen der Jacobiformen mit Gitterindex und
Räumen Moldulformen ganzzahligen Gewichts existieren. Es erfolgt eine
Präzisierung und der Beweis, dass solche Liftungen in bestimmten Fällen

v
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existieren. Zudem geben wir weitere Argumente für die Existenz solcher
Liftungen im allgemeunen Fall durch das Studium numerischer Beispiele.
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Introduction and Statement of
Results

Jacobi forms of scalar index are a mixture of modular forms and elliptic
functions. They have an arithmetic theory very analogous to the usual theory
of modular forms; this began with Maass’s proof of the Saito-Kurokawa
conjecture and was developed systematically by Martin Eichler and Don
Zagier in the monograph “The Theory of Jacobi Forms” [EZ85].

Because they have two variables, Jacobi forms have associated to them
two characteristic integers: the weight, which describes the transformation
properties of the form with respect to the modular group SL2(Z), and the
index, which describes the transformation properties in the elliptic variable.
We shall use Jk,m for the space of Jacobi forms on SL2(Z) of weight k and
index m. The basic features of the theory of Jacobi forms of scalar index are:

• Jk,m is finite-dimensional.

• There exists a Hecke theory for Jacobi forms of scalar index, i.e., for each
positive number ` relative prime to m, there exists a natural Hecke opera-
tor T(`) on Jk,m, and the space Jk,m has a basis consisting of simultaneous
eigenforms with respect to all T(`).

• There exists a natural notion of Jacobi Eisenstein series and Jacobi cusp
forms.

• There exists a Petersson scalar product < φ,ψ > on the space of Jacobi
cusp forms.

xiii
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• A perfect correspondence with elliptic modular forms of integer weight:
the result of the paper of Skoruppa and Zagier [SZ88] is a relation between
Jacobi forms of weight k and index m on the one hand and ordinary elliptic
modular forms of weight 2k−2 and level m. Indeed, they proved that Jk,m

is isomorphic as module over the Hecke algebra to a natural subspace
of the space M2k−2(m) of modular forms of weight 2k−2 on Γ0(m). More
precisely, the lifting from Jk,m to M2k−2(m) is constructed as follows:

Let φ ∈ Jk,m, then φ has a Fourier expansion of the form

φ(τ, z)= ∑
d≤0,r

d≡r2 mod 4m

Cφ(d, r)q
r2−d
4m ζr.

Let D < 0 be a fundamental discriminant and r be an integer
with D ≡ r mod 4m, then

SD,r(τ) :φ→
∞∑
`=0

(
coefficient of q

r2−D
4m ζr in φ | T(`)

)
e2πi`τ (1)

maps Jk,m to a certain subspace of M2k−2(m), and the maps SD,r

commute with the action of the Hecke operators. (This is not
quite true, since one would need here to define T(`) for gcd(`,m)>
1 which is not a part of the common theory.)

Jacobi forms of lattice index, which can be viewed as a generalization
of the classical ones if one consider 2m as a Gram matrix of the lattice
(Z, (x, y) → 2mxy), have been studied in [Zie89], [BK93], [CG11], [Sko07],
[Boy11], [Bri04], and other authors. Recall that an integral lattice over Z is
a pair L = (L,β), where L is a free Z-module of a finite rank, and β : L×L →Z

is a non-degenerate symmetric and Z-bilinear. We shall use L#, lev(L), rk(L)

and det(L) to denote the dual, the level, the rank, and the determinant of the
lattice, respectively. Also, for each r ∈ L#, we shall use Nr for the smallest
positive integer such that Nr · r ∈ L.

Suppose that L is even and positive definite, i.e., such that β(x, x) is even
and strictly positive unless x = 0. A Jacobi form φ(τ, z) of weight k ∈N and
index L = (L,β) is a holomorphic function of a variable τ in the complex upper
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half plane H and a variable z ∈ L⊗ZC that satisfies certain transformation
laws (see Definition 2.4.1) and has a Fourier expansion of the form:

φ(τ, z)= ∑
D≤0,r∈L#

D≡β(r) mod Z

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
,

The starting point for the current thesis is the expectation that there
should be lifting for Jacobi forms of lattice index to elliptic modular forms.
However, there is currently not even a Hecke theory for these forms.

In this thesis, I shall focus on Hecke operators acting on the vector space
of Jacobi forms of lattice index. I shall use these operators and the arithmetic
properties of Jacobi forms to give examples of correspondences with elliptic
modular forms. More precisely, we will discuss correspondences supporting
the mentioned expectation of the following sense:

Jacobi forms of weight k
and index L

correspondence←−−−−−−−−−−→
if rk(L)≡1 mod 2

Elliptic modular forms of weight
k1 := 2k−1−rk(L)

Jacobi forms of weight k
and index L

correspondence←−−−−−−−−−−→
if rk(L)≡0 mod 2

Elliptic modular forms of weight
k2 := k− rk(L)

2

The main results of this thesis can be subdivided as follows:

1. A Hecke theory for Jacobi forms of lattice index (chapter 2 and
chapter 3): In this part we develop a systematic Hecke theory for Jacobi
forms of lattice index along the lines of Hecke’s theory of modular forms.

1.a. Explicit description of the action ofHecke operators (section 2.5,
section 2.6 and section 2.7: Let L = (L,β) be a positive definite even lat-
tice over Z. We set

∆(L)=
(−1)b

rk(L)
2 c2det(L) if rk(L) is odd,

(−1)b
rk(L)

2 cdet(L) if rk(L) is even.

For a ∈N and n ∈Q such that n ·∆(L) ∈Z, we set

χL(n,a) :=
(

n·∆(L)

a

)
, χL(a) := χL(1,a)=

(
∆(L)

a

)
.
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where
(·
·
)
is the usual Kronecker symbol (see chapter 1).

Let JL(Z) be the Jacobi group of L (to be defined in section 2.2), and k ∈N
be a positive integer. For each ` ∈N with gcd(`, lev(L))= 1 we define a double
coset Hecke operator T0(`) on the vector space of Jacobi forms of weight k
and index L in the following way:

φ 7→ T0(`)φ := `k−2−rk(L)∑
A
φ
∣∣
k,L A,

where A runs over a complete set of representatives for JL(Z)\JL(Z)
(
`−1 0
0 `

)
JL(Z).

Then, we define the Hecke operator T(`) on Jk,L as follows:

1. If rk(L) is odd, we set k1 := 2k−rk(L)−1 and

T(`) := ∑
d2|`, d>0

dk1−2 T0( `
d2 ).

2. If rk(L) is even, we set k2 := k− rk(L)
2 and

T(`) := ∑
d,s>0

sd2|`, s square-free

χL(s)(sd2)k2−2 T0( `
sd2 ).

The operators T0(`) and T(`) are well-defined and map Jacobi forms of weight
k and index L to Jacobi forms of the same weight and same rank. For rk(L)= 1

the operator T(`) equals the Hecke operator for classical Jacobi forms as
e.g. in [SZ88] and [EZ85].

Next, we describe the action of these operators on Jacobi forms in terms
of Fourier coefficients and give their commutation relations.

Theorem (see Theorem 2.6.1). Let L = (L,β) be a positive definite even lattice
over Z of odd rank. Let φ be a Jacobi form of weight k and index L = (L,β)

with Fourier expansion

φ(τ, z)= ∑
D≤0,r∈L#

D≡β(r) mod Z

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.

Let ` ∈N with gcd(`, lev(L))= 1, and let(
T(`)φ

)
(τ, z)= ∑

D≤0,r∈L#

D≡β(r) mod Z

CT(`)φ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.
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Then one has

CT(`)φ(D, r)=∑
a

ak1/2−1%(D,a)Cφ

(
`2

a2 D,`a′r
)
.

The sum is over those a | `2 such that a2 | `2lev(L)D, and a′ is an integer
such that aa′ ≡ 1 (mod lev(L)). Moreover, %(D,a) equals f ·χL(D/ f 2,a/ f 2) if
gcd(lev(L)D,a)= f 2 with f ∈N, and it equals 0 if gcd(lev(L)D,a) is not a perfect
square.

Theorem (see Theorem 2.6.3). In the same notations as in the preceding
theorem assume the rank of L is even. Then one has

CT(`)φ(D, r)= ∑
a|`2,lev(L)D

ak2−1χL(a)Cφ

(
`2

a2 D,`a′r
)
.

Using this explicit description of the action of the operator T(`) on Jacobi
forms of lattice index in terms of Fourier expansion, we can determine their
multiplicative properties.

Theorem (see Theorem 2.7.11 and Theorem 2.7.4). Let `1,`2 ∈N such that
`1,`2 coprime to lev(L). We have the following multiplicative relation:

T(`1) ·T(`2)=


∑

d|`1,`2

dk1−1T
(
`1`2
d2

)
If rk(L) is odd,∑

d|`1
2,`2

2
χL(d)dk2−1T

(
`1`2

d

)
If rk(L) is even.

As an easy consequence of these theorems we obtain an important insight
into the arithmetic proprieties of Jacobi eigenforms of lattice index. More
precisely, let L = (L,β) again be an even positive definite lattice over Z, and
consider a Jacobi form φ of weight k and index L = (L,β) with Fourier coef-
ficients Cφ(D, r), which is an eigenfunction of all T(`) with gcd(`, lev(L))= 1,
say, T(`)φ=λ(`)φ.

Theorem (see Theorem 2.7.17 and Theorem 2.7.9). Let r ∈ L# and lev(r) is
the smallest positive integer such that lev(r)β(r) ∈ Z, and D ≤ 0 such that
D ≡β(r) mod Z and lev(r)D is a square-free integer. Then
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1. if rk(L) is odd, one has

∏
p-lev(L)

(
1−χL(D, p)pk1/2−1−s

)−1 ∑
`∈N

gcd(`,lev(L))=1

Cφ(`2D,`r)`−s

= Cφ(D, r)
∏

p-lev(L)

(
1−λ(p)p−s + pk1−1−2s

)−1
,

2. if rk(L) is even, one has
( ∑

`|lev(L)D
gcd(`,lev(L))=1

χL(`)`k2−1−s
) ∑

`≥1
gcd(`,lev(L))=1

Cφ

(
`2D,`r

)
`−s

= Cφ(D, r)
∏

p-lev(L)

1+χL(p)pk2−1−s

1− (λ(p)− pk2−1χL(p)
)
p−s + p2(k2−1−s)

.

The products are over all primes p not dividing lev(L).

Note that the right-hand sides of these identities are nothing else than
Cφ(D, r) L(s,φ), where we set L(s,φ) =∑`λ(`)`−s (all sums are taken over `
coprime to lev(L)). If the φ in the first identity lifts to an elliptic modular
form f of weight k1 = 2k−1−rk(L) then L(s,φ) should be (up to a finite number
of Euler factors) the L-series of f . We observe that the right-hand side of
the first identity has indeed the right shape.

The right-hand of the second identity looks, at the first glance, slightly
more complicated. However, if we think of an elliptic modular form of weight
k2 = k− rk(L)

2 with nebentypus, say, χLξ, and with Hecke eigenvalues γ(`), then∑
` ξ(`)γ(`2)`−s (again taken over all ` coprime to lev(L)) equals L(s,φ) if we

replace λ(p) with ξ(p)γ(p2). This suggests, for each ξ and suitable levels m,
the existence of maps from Mk2(m,χLξ) to Jk,L such that T(`2) on the left
corresponds to ξ(`)T(`) on the Jacobi form side. We shall construct in this
thesis examples for such maps.

1.b. Basis of simultaneous Hecke eigenforms (chapter 3): It is easy
to see (for weights greater than rk(L)

2 +2) that the space of Jacobi forms is a
direct sum of the subspaces spanned by Eisenstein series and cusp forms,
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which will be introduced in section 3.3. We shall prove that our Hecke
operators T(`) (` coprime to lev(L)) leave these subspaces invariant, and
are Hermitian with respect to a suitably defined Petersson scalar product
on the subspace of cusp forms. Also, we shall prove that the orthogonal
group O(DL) of the discriminant module DL of L acts naturally on the spaces
of Jacobi forms with index L, and that the corresponding operators W(α)

(α ∈O(DL)) are Hermitian too and commute with Hecke operators. By the
spectral theory of such operators, one has the following theorem.

Theorem (see Theorem 3.2.13). The space of Jacobi cusp forms Sk,L has a
basis of simultaneous eigenforms for all operators T(`) (gcd(`, lev(L))= 1) and
for all operators W(α)(α ∈O(DL)).

Let DL = (L#/L,β) be the associated discriminant module with the lattice
L (see Definition 1.2.10). We set Iso(DL) := {x ∈ L#/L

∣∣ β(x) ∈Z} . Let k be a
positive integer with k > rk(L)

2 +2. For each r ∈ Iso(DL), we define a Jacobi
Eisenstein series of weight k and index L, in terms of Jacobi theta series
ϑL,r which are naturally associated to L (see section 2.3), as follows:

Ek,L,r := 1
2

∑
A∈SL2(Z)∞\SL2(Z)

ϑL,r+L
∣∣
k,L A.

We shall use JEis
k,L for the subspace in Jk,L that spanned by all Eisenstein

series Ek,L,r.

Theorem (see Theorem 3.3.18). The series

Ek,L,x,ξ := ∑
d∈Z×

Nx

ξ(d)Ek,L,dx,

where x runs through a set of representatives for the orbits in the orbit space
Iso(DL)

/
Z×

lev(L), and ξ runs through all primitive Dirichlet characters mod F
with F | Nx such that ξ(−1)= (−1)k, form a basis of Hecke eigenforms of JEis

k,L .
More precisely:

T(`)Ek,L,x,ξ =σξ,ξk1−1(`)Ek,L,x,ξ if rk(L) is odd,

T(`)Ek,L,x,ξ = ξ(`)σ
ξ,χL

k2−1(`2)Ek,L,x,ξ if rk(L) is even,
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for all ` ∈N such that gcd(`, lev(L))= 1. Here, k1 = 2k−1− rk(L), k2 = k− rk(L)
2 ,

and for any two Dirichlet characters ξ and χ we use

σ
ξ,χ
k (`) :=∑

d|`
ξ
(
`
d
)
χ(d)dk.

Note that this theorem supports the interpretations of the last theorem
in 1.a, which we proposed at the end of that section. See Remark 3.3.19 for
a detailed discussion.

2. Lifting to Elliptic Modular Forms (chapter 4): A natural question
in view of the preceding theorems is whether we can construct in general
a relation between Jacobi forms of lattice index of odd rank and elliptic
modular forms which extends the work of Skoruppa and Zagier [SZ88] for
the case of scalar index (see Equation (1)). For obtaining at least partially
such lifts we apply two methods:

2.a. Lifting via Shimura correspondence for half integral weight
(section 4.1): We know that every Jacobi form of lattice index has a theta
expansion which implies, for odd rank index, a connection to half integral
weight modular forms. We can try to use the Shimura correspondence for
half integral weight forms to map Jacobi forms of lattice index to modular
forms of integral weight.

For this let L be of odd rank, and k be a positive integer such that 2k−
rk(L)−1 ≥ 2. Let x ∈ L# and D ∈Q such that D ≡ β(x) mod Z. Assuming that
Nx

2D is a square free negative integer, where Nx is the smallest positive
integer such that Nxx ∈ L. For a Jacobi cusp form φ ∈ Sk,L, set

SD,x(φ)=
∞∑
`=1

(∑
a|`

ak−d rk(L)
2 e−1χL(D,a)Cφ

(
`2

a2 D, `a x
))
e (`τ) ,

S
ξ

D,x(φ)= ∑
s mod Nx

D≡β(sx) mod Z

ξ(s)
(
SD,sx(φ)⊗ξ),

where ξ(·) =
(

(−1)kNx
2

·

)
, and SD,sx(φ)⊗ ξ denotes the function obtained from

SD,sx(φ) by multiplying its n-th Fourier coefficient by ξ(n).
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Theorem (See Theorem 4.1.4). S
ξ

D,x(φ) is an elliptic modular form of weight
2k−1− rk(L) on Γ0(lev(L)N2

x /2), and, in fact, a cusp form if 2k−1− rk(L) > 2.
Moreover, one has

T(p)S ξ
D,x(φ)= ξ(p)S ξ

D,x(T(p)φ) (2)

for all primes p with gcd(p, lev(L))= 1

Indeed, this theorem supports the interpretations of the last theorem
in 1.a. Namely, ifSD,x takes Jk,L to ellipticmodular forms on Γ0(lev(L)/2), then
the twisted versionS

ξ
D,x takes Jk,L to ellipticmodular forms on Γ0(Nx

2 lev(L)/2),
which we proved indeed. If in addition, SD,x commutes with Hecke operators,
we deduce for S

ξ
D,x the relation (2), which is again what we proved.

2.b. Lifting via stable isomorphisms between lattices (section 4.2):
Two even lattices L1 = (L1,β1) and L2 = (L2,β2), are said to be stably iso-

morphic if and only if there exists even unimodular lattices U1,U2 such that
L1 ⊕U1

∼= L2 ⊕U2. If L1,L2 are stably isomorphic, then one can show that
there is an isomorphism

IL2,L1 : Jk+drk(L2)/2e,L2 −→ Jk+drk(L1)/2e,L1

(see Theorem 4.2.2 and Theorem 4.2.4). Note that stably isomorphic lattices
have the same level and determinant. We shall show that this isomorphism
commutes with the Hecke operators T(`) (see Theorem 4.2.4). Also, we obtain
the following important result:

Theorem (see Theorem 4.2.5). If the lattice L = (L,β) is stably isomorphic to
the lattice

(
Z, (x, y) 7→ det(L)xy

)
, then there is a Hecke-equivariant isomorphism

Jk,L
∼=−−→M2k−1−rk(L)

(
lev(L)/4

)− ,

where M2k−1−rk(L)
(
lev(L)/4

)
is the Certain Space inside M2k−1−rk(L)

(
lev(L)/4

)
which was introduced in [SZ88, 3], and where the "−" sign denotes the sub-
space of all f ∈M2k−1−rk(L)

(
lev(L)/4

)
such that f |Wlev(L)/4 =−(−1)k/2 f .
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3. Lifting from elliptic modular forms (section 5.1): We saw above
that, for even rank index, we expect liftings from spaces Mk2(m,χLξ) to Jk,L

in the sense that T(`2) corresponds to ξ(`)T(`). We shall study this in the
case that the determinant of the lattice L = (L,β) is an odd prime. In this
case we shall explicitly construct a lifting

S : M
k− rk(L)

2

(
lev(L),χL

)→ Jk,L

(see Theorem 5.1.2). The map S will turn out to be surjective. However, in
general, it will not be injective, but we shall see that we can restrict S to a
natural subspace of M

k− rk(L)
2

(
lev(L),χL

)
, invariant under all T(`2), so that we

obtain an isomorphism.
To complete the picture, we will discuss briefly the relation between the

Hecke operators on Jacobi forms and the Hecke operators on the vector-
valued components (see section 5.2). We also construct some numerical
examples using the method of theta blocks (see section 6.1).



Chapter 1

Preliminaries

We denote by N,Z,Q,R, and C the set of all strictly positive natural numbers,
the ring of rational integers, the rational number field, the real number
field, and the complex number field. Also we put S1 = {z ∈C, |z| = 1}. For a
prime number p, Qp denotes the field of p-adic numbers, while Zp denotes
the subring of p-adic integers. This should not to be confused with the ring
of integers modulo p which we denote by Zp :=Z/pZ.

For complex valued function f , f denotes its complex conjugate. We set
i =p−1. We shall always take the branch of the square root having argument
in (−π/2,π/2]. Thus for z ∈C\{0}, we definepz = z

1
2 so that−π/2< arg(z1/2)≤π/2,

and we set
p

0 = 0. The function p
z on the complex plane takes positive

reals to positive reals, complex numbers in the upper half-plane to the
first quadrant, and complex numbers in the lower half-plane to the fourth
quadrant. Its restriction to C\R≤0 is holomorphic. Further, we put zk/2 = (

p
z)k

for every k ∈Z.

Let n be an integer, with prime factorization u · p1
e1 · · · pk

ek , where u =±1

and the pi are primes. Let a be an integer. The Kronecker symbol
(a

n

)
is

defined to be
(a

n

) = (au)∏k
i=1

(
a
pi

)
e i . For odd pi, the number

(
a
pi

)
is simply the

usual Legendre symbol. This leaves the case when pi = 2. We define
(a

2

)
to

be 0 if a is even, 1 if a ≡±1 (mod 8), and −1 if a ≡±3 (mod 8). The quantity

1



1. Preliminaries

(a
u

)
is 1 when u = 1. When u =−1, we define it by

( a

−1

)
=
−1 if a < 0

1 if a > 0
.

These definitions extend the Legendre symbol for all pair of integers a,n.
Let p be a prime number. The p-adic order or p-adic valuation for Z is

defined as ordp :Z→N by:

ordp(n)=
max{v ∈N, pv|n} if n 6= 0

∞ if n = 0

It follows that one can write n = pordp(n).np where np ∈Z with gcd(np, p)= 1.
Let H be a subgroup of finite index in the group G, and f is a function on G

which is H-right invariant. We use ∑g∈G/H f (g) (by slight abuse of language)
as notation for ∑g∈R f (g), where R is a complete set of representatives for
G/H.

Given two integers b 6= 0,a. By b || a we mean that b | a and gcd(a, a
b ) = 1.

In sums of the forms
∑
b|a

or
∑

ab=`
it is understood that the summation is over

positive divisors only. By bxc we mean the function max {n ∈Z |n ≤ x} and
similarly dxe =min {n ∈Z |n ≥ x}. By δ we mean the logical Kronecker delta,
that is the Boolean function which has as argument a logical expression with

δ
(
logical expression

)
:=
1 if the logical expression is a true expression,

0 otherwise .

For example, given two integers c,d. δ (c | d) is equal to 1 if c divides d
and is equal to 0 otherwise. For two integers a,b, we will use the symbol
(a,b) := gcd(a,b) to denote the greatest common divisor of a and b. We shall
use er (x) for e2πix/r. We set e (x) := e1 (x), and Γ :=SL2(Z).

The symbol ":=" means that the expression on the right is the definition
of what is on the left.

Let R denote a commutative ring with identity element 1= 1R . We set

R[G]= {ϕ : G → R |ϕ(g) 6= 0 only for finitely many g ∈G
}
.

2



1.1. Elliptic Modular Forms

The elements of ϕ ∈ R[G] have finite support, i.e.,

support(ϕ) := {g ∈G |ϕ(g) 6= 0
}

is a finite set. Given α ∈ R and ϕ,ψ ∈ R[G] we define

(αϕ)(g) :=αϕ(g),

(ϕ+ψ)(g) :=ϕ(g)+ψ(g),

(ϕ.ψ)(g) := ∑
h∈G

ϕ(h)ψ(h−1 g)= ∑
h1,h2∈G,h1h2=g

ϕ(h1)ψ(h2). (1.1)

Since ϕ and ψ have finite support, the sums in Equation (1.1) are finite.
Given g ∈G we define the Kronecker-delta δg ∈ R[G] by

δg(h) :=
1 if h = g,

0 if h 6= g.

Theorem 1.0.1 ([Kri, Theorem 1.1]). Let R be a commutative unitary ring
and G a group with identity element e. Then R[G] is an associative R-algebra
with δe as its identity element. The mappings δg, g ∈G, form a basis of the
R-module R[G] and satisfy

δg ·δh = δgh for g,h ∈G.

The algebra R[G] is commutative if and only if G is abelian.

1.1 Elliptic Modular Forms
In this section we recall notations from the theory of modular forms that are
going to be used in the rest of the thesis.

Let H := {τ ∈C | Im(τ)> 0} denote the upper half plane (the Poincaré half
plane). We shall use G :=GL+

2 (Q) for the group of rational 2 by 2 matrices
with positive determinant. We have a natural action of GL+

2 (Q) on the upper
half plane. It is given by

(A,τ) 7→ Aτ= aτ+b
cτ+d

(A = (a b
c d
)
,τ ∈H). (1.2)

3



1. Preliminaries

Definition 1.1.1. We write ãGL+
2 (Q) for the metaplectic cover of GL+

2 (Q), that
is the elements (A,w(τ)), where A ∈ GL+

2 (Q) and w : H→ C is a holomorphic
function on H satisfying

w(τ)2 = det(A)−
1
2 (cτ+d)

with the following group law(
(A,w(τ)), (B,v(τ))

) 7→ (A,w(τ))(B,v(τ))= (AB,w(Bτ)v(τ)). (1.3)

The application (A,w(τ)) 7→ A defines a homomorphism P : ãGL+
2 (Q) →

GL+
2 (Q). For a subgroup Γ′ of GL+

2 (Q), we let Γ̃′ = P−1(Γ′) be the inverse image
of Γ′ under P. It is known that âSL2(Z) is generated by

T̃ = ((1 1
0 1
)
,1
)
, S̃ = ((0 −1

1 0
)
,
p
τ
)
.

For A = (a b
c d
) ∈ GL+

2 (Q), we let Ã = (A,
√

det(A)−
1
2 (cτ+d)

) ∈ãGL+
2 (Q). Note

that A 7→ Ã is not a group homomorphism.

Definition 1.1.2. A congruence subgroup of SL2(Z) is any subgroup that
contains

Γ(N)= ker(SL2(Z)→SL2(Z/NZ),γ 7→ γ mod N)

for some N. The smallest such N is the level of Γ. For example,

Γ1(N)= {(a b
c d
) ∈SL2(Z) :

(a b
c d
)≡ (1 ∗

0 1
)

(mod N)
}

and
Γ0(N)= {(a b

c d
) ∈SL2(Z) :

(a b
c d
)≡ (∗ ∗

0 ∗
)

(mod N)
}

are congruence subgroups of level N. One has Γ(N)⊂Γ1(N)⊂Γ0(N)⊂SL2(Z).

Definition 1.1.3. Let N be a positive integer with 4 | N. We set

Γ0(N)∗ = {(A, j(A,τ)) | A ∈Γ0(N)},

where for each A = (a b
c d
) ∈Γ0(N), the automorphic factor j(A,τ) is defined by

j(A,τ) := ε−1
d

( c
d

)p
cτ+d (τ ∈H).

4



1.1. Elliptic Modular Forms

Lemma 1.1.4. Γ0(N)∗ is a subgroup of ãGL+
2 (Q).

Definition 1.1.5 (Petersson Slash Operator). Let k ∈ 1
2Z. We define the

weight k right action of ãGL+
2 (Q) on the set of functions f : H→ C as follows:

For τ ∈H and Ã = (A,w(τ)) ∈ãGL+
2 (Q), we set

(
f
∣∣
k Ã
)
(τ) := w(τ)−2k f (Aτ). (1.4)

In particular,

f
∣∣
kγ1γ2 = f

∣∣
kγ1
∣∣
kγ2 for all γ1,γ2 ∈ãGL+

2 (Q).

Note that for integral k this action factors into an action of GL+
2 (Q), which

is nothing else than the usual
∣∣
k-action of GL+

2 (Q) given by

(
f
∣∣
k A
)
(τ) := det(A)

k
2 (cτ+d)−k f (Aτ),

with c,d, again, the lower row of A.

Definition 1.1.6 (Dirichlet Characters). Let N be a positive integer , and χ̃

a character of (Z/NZ)×. For any integer n, we put

χ(n)=
χ̃(n mod N) if (n, N)= 1,

0 if (n, N) 6= 1,

then χ is mapping of Z into C satisfying

(i) χ(mn)= χ(m)χ(n)

(ii) χ(m)= χ(n) i f m ≡ n mod N

(iii) χ(n) 6= 0 if and only if (n, N)= 1.

We called such a mapping χ of Z into C a Dirichlet character mod N, and we
call N the modulus of χ. We call the Dirichlet character corresponding to
the trivial character of (Z/NZ)× the trivial character mod N. For a Dirichlet
character χ mod N, we define the complex conjugate χ̄ by χ̄(n)= χ(n) (n ∈Z).
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1. Preliminaries

If χ is a Dirichlet character mod N and A = (a b
c d
) ∈ Γ0(N), we set χ(A) :=

χ(d). The map A 7→ χ(A) defines a character of Γ0(N) which we denote by the
same symbol χ.

Definition 1.1.7. Given a Dirichlet character χ, we define the Dirichlet
L-series of χ by

L(χ, s) :=
∞∑

n=1
χ(n)n−s = ∏

p prime
(1−χ(p)p−s)−1.

Let N ∈N. We set

LN(χ, s) :=
∞∑

n=1
gcd(n,N)=1

χ(n)n−s = L(χ, s)
∏

p prime
p|N

(1−χ(p)p−s).

Definition 1.1.8 (Elliptic Modular Forms). Let k ∈ 1
2Z, N a positive integer.

If k ∈ 1
2 +Z, we assume that 4 | N. Let Γ be a congruence group of level N, and

χ be a character of Γ of finite order with Γ(N)⊂ ker(χ). An elliptic modular
form of weight k for Γ with character χ is a holomorphic function f :H→C

such that the following holds true:

1. For all A ∈Γ one has
f
∣∣
k A = χ(A) f if k ∈Z, and f

∣∣
k(A, j(A,τ))= χ(A) f if k ∈ 1

2 +Z.

2. The function f is holomorphic at all cusps.

The condition (2) means that f |kα̃ for any α̃ ∈ãGL+
2 (Q) has a Fourier expan-

sion (
f |kα̃
)
(τ)=

∞∑
n=0

a f |kα̃(n)e (2πinτ/h) for some h ∈N.

If a f |kα̃(0) = 0 for all α̃ ∈ãGL+
2 (Q), then f is called a cusp form. The C-vector

space of elliptic modular forms of weight k ∈Z (resp. k ∈ 1
2 +Z) and character

χ for Γ is denoted by Mk(Γ,χ) (resp. Mk(N,χ)). The subspace of cusp forms
will be denoted by Sk(Γ,χ) (resp. Sk(N,χ)).

Remarks 1.1.9.
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1.1. Elliptic Modular Forms

1. If k ∈ 1
2 +Z, then it is obvious that Mk(N,χ)= 0 if χ is an odd character,

that is χ(−1) = −1. Henceforth we will be assuming χ to be an even
character.

2. If χ is trivial character, we write Mk(Γ,χ) (resp. Mk(N,χ)) simply by
Mk(Γ) (resp. Mk(N)). Similarly, we write Sk(Γ,χ) (resp. Sk(N,χ)) simply
by Sk(Γ) (resp. Sk(N)).

3. Since
(1 1

0 1
) ∈Γ0(N), the condition (2) in Definition 1.1.8 means that every

modular form f of weight k ∈Z on Γ0(N) has a Fourier expansion of the
form

f (τ)= ∑
n≥0

a f (n)e (nτ) . (1.5)

1.1.1 Operators on the Space of Elliptic Modular
Forms

At the beginning we introduce the Hecke operators and state some of their
properties. For ` ∈N we define the Hecke operator

T(`) : Mk(Γ0(N),χ)→ Mk(Γ0(N),χ)

by

f 7→ T(`) f := ` k
2−1 ∑

ad|`

d−1∑
b=0

χ(a) f |k
(a b

0 d
)
. (1.6)

If f ∈ Mk(Γ0(N),χ) has a Fourier expansion

f (τ)= ∑
n≥0

a f (n)e (nτ) ,

then
(T(`) f )(τ)= ∑

n≥0
aT(`) f (n)e (nτ) ,

where
aT(`) f (n)= ∑

d|`,n
χ(d)dk−1a f (`n/d2). (1.7)

In particular, T(`) f is again a modular form, and is a cusp form if f is one.
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1. Preliminaries

Definition 1.1.10. A modular form f ∈ Mk(Γ0(N),χ) is called a Hecke eigen-
function for the operator T(`) if there exists λ(`, f ) ∈C with T(`) f =λ(`, f ) f .

Proposition 1.1.11. Suppose that f (τ)=∑n≥0 a f (n)e (nτ) ∈ Mk(Γ0(N),χ) is an
eigenfunction for all Hecke operators T(`) with eigenvalues λ(`, f ). Then,

1. If f (τ) is non constant, then a f (1) 6= 0.

2. If f (z) is a normalized, i.e., a f (1)= 1, then λ(`, f )= a f (`).

3. If a f (0) 6= 0, then λ(`, f )=∑a|`χ(a)ak−1.

Proof. See e.g. [Kob93, Proposition 40].

Proposition 1.1.12. The operators T(`) on Mk(Γ0(N),χ) satisfy the formal
power series

∞∑
n=1

T(`)`−s = ∏
pprime

(
1−T(p)p−s +χ(p)pk−1−2s). (1.8)

Proof. See e.g. [Kob93, Proposition 36].

Theorem 1.1.13 ([Shi73, Theorem 1.7]). Let k ∈Z be an odd integer. Let

f (τ)=
∞∑

n=0
a f (n)e (nτ) ∈ Mk/2(N,χ).

For each prime number p there is a Hecke operator T(p2) acting on Mk/2(N,χ).
The action of T(p2) in terms of Fourier expansion is given as follows:

(T(p2) f )(τ)=
∞∑

n=0
aT(p2) f (n)e (nτ) ,

where

aT(p2) f (n)= a f (p2n)+χ(p)
(−1

p

)λ(n
p

)
pλ−1a f (n)+χ(p2)pk−2a f (n/p2), (1.9)

and λ= (k−1)/2 and a f (n/p2)= 0 whenever p2 - n.
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1.1. Elliptic Modular Forms

There are other important operators on the space of elliptic modular
forms of integral weight. Let f (τ)=∑n≥0 a f (n)e (nτ) ∈ Mk(Γ0(N),χ), d ∈N, and
ψ is a Dirichlet character modulo a positive integer M. We set

( f |Ud)(τ) :=∑
n≥0

a f (dn)e (nτ) , (1.10)

( f |Vd)(τ) :=∑
n≥0

a f (n)e (ndτ) (1.11)

( f ⊗ψ)(τ) :=∑
n≥0

ψ(n)a f (n)e (nτ) . (1.12)

Theorem 1.1.14. One has

1. f |Vd and f |Ud are elements of Sk(Γ0(dN),χ). If d|N, then f |Ud is an
element of Sk(Γ0(N),χ).

2. f ⊗ψ is an element of Mk(Γ0(NM2),χψ2).

Proof. Assertion (1) can be found in [DS06, 5.6]. For (2) we refer the reader
to [Kob93, Proposition 17 (P.127)].

1.1.2 Atkin-Lehner Theory of Newforms
Now, we recall some facts of the Atkin-Lehner theory of newforms from
[AL70]. Let N be a posiitve integer, and Q||N. We define the Atkin-Lehner
operator WN

Q : Mk(Γ0(N))→ Mk(Γ0(N)) by the |k-action of any matrix

WN
Q =
(
Qa b
Nc Qd

)
, a,b, c,d ∈Z, and det(WN

Q )=Q.

Note that the different choice of a,b, c,d do not effect the |k-action of WN
Q on

Mk(Γ0(N)). Also, we define the operator WN : Mk(Γ0(N))→ Mk(Γ0(N)) ("Fricke
involution") by the |k-action of the matrix

WN =
(

0 −1

N 0

)
.

We define the subspace Sold
k (Γ0(N)) in Sk(Γ0(N)) by:

Sold
k (Γ0(N))= ⊕

M|N
M 6=N

⊕
d|M

N

Sk(Γ0(N))
∣∣Vd.
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1. Preliminaries

The subspace Snew
k (Γ0(N)) in Sk(Γ0(N)) is defined to be the orthogonal com-

plement of Sold
k (Γ0(N)) with respect to the Petersson inner product. Note that

these subspaces are preserved under T(`) for (`, N)= 1.

An element f of Snew
k (Γ0(N)) is called a newform if it is a normalized

eigenfunction under all Hecke operators T(`) and under all operators WN
pv

for pv||N and WN .

Theorem 1.1.15. Let f (τ)=∑n≥0 a f (n)e (nτ) ∈ Snew
k (Γ0(N)) be a newform. Then,

1. T(`) f = a f (`) f for all ` ∈N.

2. If p||N, then a f (p)=−wp pk/2−1, where wp ∈ {±1} is such that f |WN
p = wp f .

Proof. See e.g. [AL70, Theorem 3].

1.2 Lattices and Finite Quadratic Modules
In this section we will recall basics of the theory of finite quadratic modules,
and lattices. The basic references in this section are [Sko14],[Ser93], and
[Nik80].

Let R be a commutative ring with unity 1, and M, N be R-modules where
M is free of a finite rank. A map β : M × M → N is called a symmetric R-
bilinear form if

β(x, y)=β(y, x), β(x+ y, z)=β(x, z)+β(y, z), β(λx, z)=λβ(x, z),

for all x, y, z ∈ M, λ ∈ R. If N = R we say that β is integral. Moreover, it is
called non-degenerate if β(x, y)= 0 for all y in M is only possible for x = 0.

Let {e1, e2, · · · , em} be an R-basis for M, i.e., M = Re1⊗·· ·⊗Ren. Let x, y ∈ M
with x =∑i xi e i, y=∑i yi e i for xi, yi ∈ R. The values of β are determined by its
values β(e i, e j) on all pairs of basis elements, since β(x, y)=∑i, j xi yjβ(e i, e j).

The matrix F = (β(e i, e j)
)

i, j ∈Matm(N) is called the Gram matrix of β with
respect to the basis {e1, e2, · · · , em}. Thus the bilinear form can be written
using matrix multiplication as β(x, y)= x̃TF ỹ, where, for any x =∑i xi e i ∈ M
we use x̃ = (x1, x2, · · · , xm)T . Let F ′ be another matrix representing for β with
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1.2. Lattices and Finite Quadratic Modules

respect to a basis {e′1, e′2, · · · , e′m}, then F ′ = X TF X , where X denotes the matrix
of the basis change.

1.2.1 Finite Quadratic Modules over Z

Definition 1.2.1. A finite quadratic module over Z is a pair (M,Q), where
M is a finite abelian group (i.e. a finite Z-module), and where Q : M →Q/Z is
a non-degenerate quadratic form of M, i.e.,

1. Q(ax)= a2Q(x) for all a ∈Z and for all x ∈ M.

2. The symmetric function β : M×M →Q/Z given by (x, y) 7→Q(x+ y)−Q(x)−
Q(y) is Z-bilinear and non-degenerate.

The map β is called the bilinear form associated to Q.

Definition 1.2.2. Let (M,Q) and (M′,Q′) be two finite quadratic modules. A
Z-linear map σ : M → M′ is called isometry if σ is injective and

Q′(σ(x))=Q(x)

for all x ∈ M. If such isometric σ : M → M′ exist, we say that M and M′ are
isometric, and Q is R-equivalent to Q′ (we write Q ∼R Q′).

Theorem 1.2.3. Any finite quadratic module (M,Q) is isomorphic to a direct
sum of finite quadratic modules of the following forms:

1. Aa
pr = (Zpr , ax2

pr ) for some odd prime p and a ∈Z such that gcd(a, p)= 1.

2. Aa
2r = (Z2r , ax2

2r+1 ) for some a ∈Z such that gcd(a,2)= 1.

3. B2r = (Z2r ×Z2r , x2+xy+y2

2r ).

4. C2r = (Z2r ×Z2r , xy
2r ).

Proof. A proof can be found in [Sko14, Chapter 1].
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1.2.2 Integral Lattices

Definition 1.2.4 (Lattice). Let R be a commutative ring with unity 1, and
L, N be R-modules where L is free of a finite rank. Let β : L×L → N be
a symmetric non-degenerate bilinear form. The pair L = (L,β) is called a
lattice over R. The lattice L is called integral if the associated bilinear form
is integral, i.e, β(L,L)⊆ R.

Remark 1.2.5. Throughout this thesis we will consider only integral lattices
over R = Z. Thus for sake of simplicity we shall refer to them simply as
integral lattices.

Definition 1.2.6 (Positive Definite Lattice). An integral lattice L = (L,β) is
called positive definite if and only if β(x, x)> 0 for all x ∈ L such that x 6= 0.

Definition 1.2.7 (Even Lattice). An integral lattice L = (L,β) is called even
if β(x, x) is even for all x ∈ L, otherwise L is called odd.

Notation Let (L,β) be an even lattice. For every x ∈ L we set

β(x) := 1
2β(x, x).

Definition 1.2.8. Let L = (L,β) be an even positive definite lattice. If S is a
ring extension of Z we consider β via linear continuation as a bilinear form
on L⊗S, which we shall denote by the same letter. In particular, we shall
use the notation LS = (L⊗Z S,β) for the "S-version" of L, which is a lattice
over S.

Definition 1.2.9 (Dual Lattice). Let L = (L,β) be an integral Lattice. We
define its dual L# := (L#,β), where

L# = {y ∈ L⊗ZQ :β(y, x) ∈Z for all x ∈ L
}
.

It is well-known that L# is again a free Z−module of the same rank as L. If
L# = L, then L is called unimodular .
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1.2. Lattices and Finite Quadratic Modules

Definition 1.2.10 (The Discriminant Form). Let L = (L,β) be an even lattice.
L contained in L# and L#/L is a finite abelian group. Since L is integral and
even, the reduction of β modulo Z induces a bilinear form on L#/L. We set

DL := (L#/L, x+L 7→β(x)+Z)

and we call it the discriminant form associated with the lattice L.

Note that the lattice L, which shall be considered in this thesis, is non-
degenerate (by definition), thus its Gram matrix F (with respect to given
basis) is symmetric and invertible. Moreover, F can be written in the form

MTFM = diag(1, · · · ,1︸ ︷︷ ︸
n+

,−1, · · · ,−1︸ ︷︷ ︸
n−

)

with suitable M in GLrk(L)(R). By Sylvesterís law of inertia the numbers n+
and n− of +1 and −1’s on the diagonal do not depend on the particular choice
of M. We define the signature of L by

sign(L) := n+−n−.

Lemma 1.2.11 ( Milgram’s formula). The bilinear form on L#/L determines
sign(L) mod 8 by Milgram’s formula:∑

x∈L#/L
e
(
β(x)
)=√det(L)e

(
sign(L)/8

)
. (1.13)

Remarks 1.2.12.

1. According to [Wal63, Theorem 6], any finite quadratic module can be
obtained as the discriminant form of an even lattice.

2. Let F be a Gram matrix of the even positive definite lattice L. In many
cases, it is useful to identify L with Zrk(L), and L# with F−1Zrk(L). Thus
we may write

DL = (F−1Zrk(L)/Zrk(L), x 7→ 1
2 xTFx).

Definition 1.2.13. Let F be a Gram matrix corresponding to a basis of L.
We set:

det(L) := ∣∣L#/L∣∣= ∣∣det(F)
∣∣.
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Note that if β is a positive definite then det(F)> 0 and sign(L)= rk(L).

Definition 1.2.14 (Level of a Lattice). Let L = (L,β) be an integral lattice.
We define the level of the lattice L to be the smallest positive integer lev(L)

such that lev(L) ·β(x) ∈Z for all x ∈ L#.

For given x ∈ L#, we use lev(x) for the smallest positive integer such that
lev(x) ·β(x) ∈Z. It is obvious that lev(L)= l.c.m

(
lev(x)

)
x∈L#/L.

Definition 1.2.15. We set

∆(L)=
(−1)b

rk(L)
2 cdet(L) if rk(L)≡ 0 mod 2,

(−1)b
rk(L)

2 c2det(L) if rk(L)≡ 1 mod 2.
(1.14)

Lemma 1.2.16. One has ∆(L)≡ 0,1 mod 4, and if rk(L) is odd, then ∆(L) and
lev(L) are both divisible by 4. In particular the application a 7→

(
∆(L)

a

)
define

Dirichlet character modulo |∆(L) |.

Proof. Follows from the Jordan decomposition of DLZ2
.

Notation Let L = (L,β) be an integral lattice. We shall use NL to denote the
set of all positive integer ` ∈N with (`, lev(L))= 1.

14



Chapter 2

Hecke Theory of Jacobi Forms
of Lattice Index

Jacobi forms are interesting for their arithmetic properties, which are re-
flected by the theory of Hecke operators which we shall develop in this
chapter. First, we shall state and prove some lemmas on lattices and Gauss
sums, then we shall recall the definition of the Jacobi group, and the Jacobi
forms of lattice index, then we construct a collection of extremely important
and fundamental linear operators acting on the vector space of Jacobi forms
of lattice index, called the Hecke operators. These operators extend the
classical theory of Hecke operators for the scalar index Jacobi forms that
developed in [EZ85].

In this chapter we will use the notation L = (L,β) to denote a positive
definite even lattice over Z. We shall use lev(L), rk(L), and det(L) to denote the
level, the rank, and the determinant of the lattice L, as defined in section 1.2
respectively.

2.1 Some Lemmas on Lattices and Gauss
Sums

Here, we shall state and prove some lemmas which we will need later in
section 2.6 and section 2.7 when we discuss the action of Hecke operators on

15



2. Hecke Theory of Jacobi Forms of Lattice Index

Jacobi forms of lattice index in terms of Fourier coefficients. First, we state
the main results of this section:

2.1.1 The Main Results of this Section
Definition 2.1.1. For a ∈N and n ∈Q such that n ·∆(L) ∈Z, we set

χL(n,a) :=
(

n·∆(L)

a

)
, χL(a) := χL(1,a)=

(
∆(L)

a

)
.

Definition 2.1.2. For integers a, c ∈Z where a is positive, we set

W (c,a) :=∑
t|a
µ (a/t) t1−rk(L)#

{
x ∈ L

/
tL | c ≡β(x) mod t

}
. (2.1)

WI(c,a) := ∑
b|a

a/b=perfect square

bd rk(L)
2 e−1W (c,b). (2.2)

WII(c,a) :=∑
b|a
χL(b)b− rk(L)

2 W
(
c,

a
b

)
. (2.3)

Here, µ is the Möbius function.

Proposition 2.1.3. Assuming that rk(L) is odd.

1. For a ∈NL and c ∈Z, one has

WI(c,a)= χL(a)
(

c/ f 2

a/ f 2

)
f δ
(
gcd(c,a)= f 2, f ∈N). (2.4)

2. If x ∈NL such that x2 divides c and a, then

x ·WI(c/x2,a/x2)=WI(c,a). (2.5)

Proposition 2.1.4. Assuming that rk(L) is even. For integers a ∈ NL and
c ∈Z one has

WII(c,a)= χL(a)a− rk(L)
2 +1δ(a | c). (2.6)

The rest of this section is devoted to the proof of the preceding proposi-
tions.
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2.1. Some Lemmas on Lattices and Gauss Sums

2.1.2 Proofs
To prove Proposition 2.1.3 and Proposition 2.1.4 we need the following series
of definitions and lemmas.

Definition 2.1.5. Let a,b ∈Z, c ∈N. The generalized Gauss sum G(a,b, c) is
defined by:

G(a,b, c)=
c−1∑
n=0

e
(

an2+bn
c

)
. (2.7)

Definition 2.1.6. For any odd integer a, we set: ε(a)= 1 if a ≡ 1 (mod 4) and
ε(a)= i if a ≡ 3 (mod 4).

Lemma 2.1.7 ([BEW98]). Let p be an odd prime integer, v ∈N be a positive
integer, and a ∈Z. One has

G(a,0, pv)=
ε(pv−ordp(a))p

v+ordp(a)
2

(
a/pordp(a)

pv−ordp(a)

)
if v > ordp(a),

pv if v ≤ ordp(a).
(2.8)

Lemma 2.1.8. Let t = 2v for some positive integer v, a be an odd integer, and
b ∈Z. The sum G(a,b, t) has the value

t
1
2 (1+ i)

(−t

a

)
ε(a)et

(
− āb2

4

)
if t > 2 and b ≡ 0 mod 2 where ā ∈Z such that āa ≡ 1 mod 4t, has the value t if
t = 2 and b 6≡ 0 mod 2, and is 0 otherwise.

Proof. Follows from [BEW98, Theorem 1.2.2].

Lemma 2.1.9. Let t = 2v for some positive integer v, and d be an odd integer.
One has ∑

x,y mod t
et
(
d(x2 + xy+ y2)

)=−t
(−t

3

)
. (2.9)

Proof. One has∑
x,y mod t

et
(
d(x2 + xy+ y2)

)= ∑
x mod t

et
(
dx2) ∑

y mod t
et
(
d(xy+ y2)

)
= ∑

x mod t
et
(
dx2) ·G(d,dx, t).

17



2. Hecke Theory of Jacobi Forms of Lattice Index

First, we assmue that t 6= 2. By Lemma 2.1.8, the right-hand side (RHS) of
the above equation equals

RHS= ∑
x mod t

et
(
dx2)×

t
1
2 (1+ i)

(−t
d

)
ε(d)et

(
−d2 d̄x2

4

)
if x ≡ 0 mod 2,

0 otherwise,

where d̄ is an integer such that d̄d ≡ 1 mod 4t. Thus∑
x,y mod t

et
(
d(x2 + xy+ y2)

)= ∑
x mod t

x≡0 mod 2

et
(
dx2)t 1

2 (1+ i)
(−t

d

)
ε(d)et

(
−d2 d̄x2

4

)
= t

1
2 (1+ i)

(−t

d

)
ε(d)

∑
x mod t

x≡0 mod 2

et
(3

4 dx2).
By replacing x

2 with y we see, using Lemma 2.1.8, that∑
x mod t

x≡0 mod 2

et
(3

4 dx2)= 1
2

∑
y mod t

et
(
3d y2)= 1

2 t
1
2 (1+ i)

(−t

3d

)
ε(3d).

Inserting this into the last formula for ∑x,y mod t et
(
d(x2 + xy+ y2)

)
, we obtain

the claimed result. Now we assume that t = 2. One has∑
x,y mod 2

e2
(
d(x2 + xy+ y2)

)= ∑
x mod 2

e2
(
dx2) ·G(d,dx,2)= 2

∑
x mod 2
x odd

e2
(
dx2)=−2

(−2

3

)
.

The proof is complete.

Lemma 2.1.10. Let t = 2v for some positive integer v, and d be an odd integer.
One has ∑

x,y mod t
et (dxy)= t. (2.10)

Proof. One has∑
x,y mod t

et (dxy)=
∑

x,y mod t
x≡0 mod t

et (dxy)+
∑

x,y mod t
x 6≡0 mod t

et (dxy)

= ∑
x(t)

x≡0 mod t

t+0= t

as stated in the lemma.
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2.1. Some Lemmas on Lattices and Gauss Sums

Definition 2.1.11. For integers `, c ∈Z, the Ramanujan sum G`(c) is defined
as follows:

G`(c)= ∑
d mod `
(d,`)=1

e` (cd). (2.11)

It is known that the Ramanujan sum G`(c) is multiplicative when consid-
ered as a function of ` for a fixed value of c.

Definition 2.1.12. For integers `, c ∈Z where ` is positive and odd, we set

F(c,`)=ε(`)
∑

d mod `

(d
`

)
e` (cd) . (2.12)

Lemma 2.1.13. The function F(c,`) for fixed c is multiplicative in `, i.e.,

F(c,`1`2)= F(c,`1)F(c,`2) (2.13)

for all c ∈Z and odd positive integers `1,`2 such that (`1,`2)= 1.

Proof. Let `1,`2 be two relatively prime integers. Any integer d mod `1`2

can be written with the Chinese Remainder Theorem as d = b2`1 + b1`2,

where b1 runs through integers mod `1 and b2 runs mod `2. Then

F(c,`1`2)= ε(`1`2)
∑

d mod `1`2

( d

`1`2

)
e`1`2 (cd)

= ε(`1`2)
∑

b1 mod `1

∑
b2 mod `2

(
b2`1+b1`2

`1`2

)
e`1`2 (c(b2`1 +b1`2))

= ε(`1`2)
∑

b1 mod `1

(
b2`1+b1`2

`1

)
e`1`2 (cb1`2)

∑
b2 mod `2

(
b2`1+b1`2

`2

)
e`1`2 (cb2`1)

= ε(`1`2)
∑

b1 mod `1

(
b1`2

`1

)
e`1 (cb1)

∑
b2 mod `2

(
b2`1

`2

)
e`2 (cb2)

= ε(`1`2)
(
`2

`1

)(
`1

`2

) ∑
b1 mod `1

(
b1

`1

)
e`1 (cb1)

∑
b2 mod `2

(
b2

`2

)
e`2 (cb2)

= ε(`1`2)ε(`1)−1ε(`2)−1
(
`2

`1

)(
`1

`2

)
F(c,`1)F(c,`2).

Using the quadratic reciprocity, we see that ε(`1`2)ε(`1)−1ε(`2)−1
(
`2
`1

)(
`1
`2

)
=

1. Namely, ε(`1`2)ε(`1)−1ε(`2)−1 equals +1 if `1 ≡ `2 mod 4 and −1 other-
wise, where by quadratic reciprocity equals

(
`2
`1

)(
`1
`2

)
. It follows F(c,`1`2)

= F(c,`1)F(c,`2).
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2. Hecke Theory of Jacobi Forms of Lattice Index

Lemma 2.1.14 ([BEW98],[And87]). Let p be an odd prime, v ∈N be an odd
positive integer, and c ∈Z. One has

F(c, pv)= pv− 1
2

(
−c/pv−1

p

)
δ(pv−1‖c). (2.14)

Recall that L = (L,β) denotes a positive definite even lattice over Z.

Definition 2.1.15. For integers `, s ∈Z where ` is positive, we set

SL(s,`) := ∑
x∈L/`L

e`
(
sβ(x)

)
. (2.15)

Lemma 2.1.16. Let s ∈Z, `1,`2 ∈NL such that gcd(`1,`2)= 1. One has

SL(s,`1`2)=SL(s`2,`1)SL(s`1,`2). (2.16)

Proof. For `1,`2 ∈NL with gcd(`1,`2)= 1 we have a Z-module homomorphism

ϕ : L/`2L⊕L/`1L → L/`1`2L

given by
ϕ(x+`2L, y+`1L)= `1x+`2 y+`1`2L.

ϕ is surjective: Let z ∈ L. Since gcd(`1,`2)= 1, then there are h,k ∈Z such that
1= `1h+`2k, so z = `1hz+`2kz. Thus ϕ(hz+`1`2L,kz+`1`2L)= z+`1`2L.
ϕ is injective: ϕ(x+`2L, y+`1L) = 0+`1`2L if and only if `1x+`2 y ∈ `1`2L,
that is `1x+`2 y= `1`2z for some z ∈ L, which implies `2 y= `1(x−`2z). Write
x =∑i aivi, y=∑i bivi and z =∑i civi, where {vi | 1≤ i ≤ rk(L)} is a basis for L.
Then

`2bi = `1(ai −`2ci) (1≤ i ≤ rk(L)).

Since gcd(`1,`2) = 1, we have `1|bi. Thus y = `1 g for some g ∈ L, so `2 y =
`1`2 g ∈ `1`2L. In a similar way we find that `1x ∈ `1`2L. Thus

SL(s,`1`2)= ∑
x∈L/`1`2L

e`1`2

(
sβ(x)

)
= ∑

x1∈L/`2L

∑
x2∈L/`1L

e`1`2

(
sβ(`1x1 +`2x2)

)
= ∑

x1∈L/`2L
e`2

(
s`1β(x1)

) ∑
x2∈L/`1L

e`1

(
s`2β(x2)

)
=SL(s`1,`2)SL(s`2,`1)

as stated in the lemma.
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2.1. Some Lemmas on Lattices and Gauss Sums

Lemma 2.1.17. Let p ∈NL be a prime number, v ∈N, and s ∈Z. Assume that
p - s. One has

SL(s, pv)=
ε (pv)rk(L)

(
(2s)rk(L) det(L)

pv

)
pv rk(L)

2 if p 6= 2,(
2v

det(L)

)
2v rk(L)

2 if p = 2.

Proof. Since there is one-to-one correspondence between the cosets of L/pvL
and the cosets of Lp/pvLp, where Lp = L⊗Zp, we have in particular that
SL(s, pv)=SLZp

(s, pv). First we assume that p is odd. Then every lattice over
Zp is isomorphic to a direct sum of lattices of rank 1 (See e.g. [Sko14]), so we
can find u1,u2, · · · ,urk(L) p-adic units such that β(

∑
i xi e i) ∼ u1x2

1 +u2x2
2 +·· ·+

urk(L)x2
rk(L), which is integrally equivalent using [Cas08, Lemma 3.4] to

β(
∑

i
xi e i)∼ x2

1 + x2
2 +·· ·+

rk(L)∏
i=1

uix2
rk(L).

When x1, x2, · · · , xrk(L) run through Zpv ,∑rk(L)
i=1 xi e i runs through Lp/pvLp. Thus

one can write

SL(s, pv)=
( ∑

x mod pv
epv
(
sx2))rk(L)−1( ∑

x mod pv
epv

(
s

rk(L)∏
i=1

uix2
))

.

By using Lemma 2.1.7, which gives a closed formula for the above Gauss
sums, we obtain

SL(s, pv)= (ε(pv)
)rk(L) (pv) rk(L)

2

(∏rk(L)
i=1 ui

pv

)( s

pv

)rk(L)
.

The identity
(∏rk(L)

i=1 ui

pv

)
=
(

2rk(L) det(L)

pv

)
completes the proof for odd p. Now, we

assmue that p = 2. Since p = 2 ∈NL (det(L) is odd and rk(L) is even), then by
[Cas08, Lemma 4.1], one has

β(
∑

i
xi e i)∼

(
a1x2

2 + x2x1 +b1x1
2)

+·· ·+ (a rk(L)
2

xrk(L)
2 + xrk(L)xrk(L)−1 +b rk(L)

2
xrk(L)−1

2),
where for each i, the numbers ai = bi ∈ {0,1}. Thus

SL(s,2v)=
( ∑

x,y mod 2v
e2v (sxy)

)r1( ∑
x,y mod 2v

e2v
(
s(x2 + xy+ y2)

))r2
,
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2. Hecke Theory of Jacobi Forms of Lattice Index

where r1, r2 ∈N with rk(L)= 2r1 +2r2. By Lemma 2.1.8 we can write

SL(s,2v)=
(
−
(−2v

−1

)
2v
)r1 ( −(−2v

3

)
2v
)r2

,

which is equal to

SL(s,2v)= (−1)
rk(L)

2
(
2v) rk(L)

2

( −2v

det(L)

)
= (2v) rk(L)

2

(
2v

det(L)

)
,

where for deducing the second formula form the first we used (−1)
rk(L)

2 det(L)≡
1 mod 4. Now, the proof is complete.

Remark 2.1.18. Obviously, for a prime p ∈NL, v ∈N, and arbitrary s ∈Z, one
has

SL(s, pv)= pt·rk(L)SL(s/pt, pv−t),

where t :=min(v,ordp(s)). More precisely

1. If p 6= 2 :

SL(s, pv)= (ε(pv−t))rk(L)
(

2rk(L) det(L)

pv−t

)(
pv+t) rk(L)

2

(
s/pt

pv−t

)rk(L)
.

2. If p = 2:
SL(s,2v)= (2v+t) rk(L)

2

(
2v+t

det(L)

)
.

Definition 2.1.19. For t ∈N and c ∈Z we set:

BL(c, t)= t1−rk(L)#
{
x ∈ L

/
tL | c ≡β(x) mod t

}
. (2.17)

Lemma 2.1.20. For integers a ∈NL and c ∈Z, we have

W (c,a)= a−rk(L) ∑
d mod a
(d,a)=1

ea (−cd)SL(d,a). (2.18)

Proof. We have

W (c,a)=∑
t|a
µ (a/t)BL(c, t)

=∑
t|a
µ (a/t) t−rk(L) ∑

x∈L/tL

∑
d mod t

et
(
d(β(x)− c)

)
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2.1. Some Lemmas on Lattices and Gauss Sums

=∑
t|a
µ (a/t) t−rk(L)∑

s|t

∑
d mod t

s
(d, t

s )=1

e t
s
(−cd)

∑
x∈L/tL

et
(
sdβ(x)

)
.

Here, for deducing the third formula from the second identity, we replaced
the sum over d mod t by the sum ∑s|t

∑
d mod t,(d,t)=s and then replace d by ds.

According to Remark 2.1.18, ∑x∈L/tL et
(
sdβ(x)

)= srk(L)SL(d, t/s). This means
that

W (c,a)=∑
t|a
µ (a/t)

∑
g|t

g−rk(L) ∑
d mod g
(d,g)=1

eg (−cd)SL(d, g).

Thus using ∑
t|a
µ(

a
t

)
∑
g|t

f (g)= f (a)

for any arithmetic function f , one obtains

W (c,a)=a−rk(L) ∑
d mod a
(d,a)=1

ea (−cd)SL(d,a)

as stated in the proposition.

Lemma 2.1.21. For all c ∈Z and a1,a2 ∈NL such that (a1,a2)= 1 one has

W (c,a1a2)=W (c,a1)W (c,a2). (2.19)

Proof. By Lemma 2.1.20 one has

W (c,a1a2)=(a1a2)−rk(L) ∑
d mod a1a2
(d,a1a2)=1

ea1a2 (−cd)SL(d,a1a2).

By Chinese Remainder Theorem Z×
a1a2

∼= Z×
a1

×Z×
a2
. Thus, when b1 runs

through a complete system of representatives for the primitive residue classes
modulo a1, and b2 runs through a complete system of representatives for
the primitive residue classes modulo a2, then d = b2a1+b1a2 runs through a
complete system of representatives for the primitive residue classes modulo
a1a2. It follows

SL(d,a1a2)=SL(da1,a2)SL(da2,a1)=SL(a1
2b2,a2)SL(a2

2b1,a1)
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2. Hecke Theory of Jacobi Forms of Lattice Index

=SL(b2,a2)SL(b1,a1),

where the first identity follows from Lemma 2.1.16 and the last one from
Lemma 2.1.17. This gives

W (c,a1a2)= (a1a2)−rk(L) ∑
d mod a1a2
(d,a1a2)=1

ea1a2 (−cd)SL(d,a1a2)

= a1
−rk(L) ∑

b1 mod a1
(b1,a1)=1

ea1 (−cb1)SL(b1,a1) a2
−rk(L) ∑

b2 mod a2
(b2,a2)=1

ea2 (−cb2)SL(b2,a2)

=W (c,a1)W (c,a2)

as stated in the lemma.

Lemma 2.1.22. Let a ∈NL, and c ∈Z.

1. We have W (c,a)=∏pv||a W (c, pv). The p-components W (c, pv) are given as
follows:

W
(
c, pv)= pb−v·rk(L)

2 cχL(pv)×
Gpv(−c) if v ·rk(L) is even,

pv
(

c/pv−1

pv

)
δ(pv−1‖c) if v ·rk(L) is odd.

(2.20)

2. Let x,b ∈N such that x2 | gcd(c,a) and gcd(b,a)= 1, then

x2−rk(L) ·W (bc/x2,a/x2)=
(b

a

)rk(L)
W (c,a). (2.21)

Proof. According to Lemma 2.1.21 one has W (c,a)=∏pv||a W (c, pv). The com-
ponents W (c, pv) given by Lemma 2.1.20 as

W
(
c, pv)= (pv)−rk(L) ∑

d mod pv

(d,pv)=1

epv (−cd)SL(d, pv).

If p is odd, then, by Lemma 2.1.17 which gives a closed formula for SL(d, pv),
one has

W
(
c, pv)= ε(pv)rk(L)

(
2rk(L) det(L)

pv

)
p− v·rk(L)

2
∑

d mod pv

(d,pv)=1

epv (−cd)
(

d

pv

)rk(L)
.

24



2.1. Some Lemmas on Lattices and Gauss Sums

Now, Equation (2.20) follows from this by Lemma 2.1.14 if rk(L) is odd, and
by Definition 2.1.11 if rk(L) is even.

Assuming that p = 2. One has lev(L) is odd, and rk(L) is even. By using
Lemma 2.1.17, we obtain

W
(
c,2v)= 2− v·rk(L)

2

(
2v

det(L)

) ∑
d mod 2v

e2v (−cd) .

The identity χL(2v)=
(

2v

det(L)

)
and Definition 2.1.11 complete the proof of the

Equation (2.20). The second statement is just a corollary of the first one.

Lemma 2.1.23. The function WI(c,a) for fixed c, is multiplicative in a, i.e.,

WI(c,a1a2)=WI(c,a1)WI(c,a2) (2.22)

for all c ∈Z and odd positive integers a1,a2 such that (a1,a2)= 1.

Proof. By Equation (2.2) one has

WI(c,a1a2)= ∑
b|a1a2

a1a2/b=perfect square

bd rk(L)
2 e−1W (c,b).

Denote the set of divisors of a ∈N by Div(a). Then since a1 and a2 are coprime
there is a bijection Div(a1)×Div(a2) → Div(a1a2) given by (b1,b2) 7→ b1b2. It
follows that

WI(c,a1a2)= ∑
b1|a1

a1/b1=perfect square

∑
b2|a2

a2/b2=perfect square

(b1b2)d
rk(L)

2 e−1W (c,b1b2)

= ∑
b1|a1

a1/b1=perfect square

b
d rk(L)

2 e−1
1 W (c,b1)

∑
b2|a2

a2/b2=perfect square

b
d rk(L)

2 e−1
2 W (c,b2)

=WI(c,a1)WI(c,a2)

as stated in the lemma.

Now, we are ready to prove Proposition 2.1.3 and Proposition 2.1.4.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Proof of Proposition 2.1.3. By Lemma 2.1.23 we have

WI(c,a)= ∏
pv||a

WI(c, pv),

where
WI(c, pv)= ∑

α|pv

pv/α=perfect square

αd rk(L)
2 e−1W (c,α).

By using Lemma 2.1.22, which gives an explicit formula for W (c,α), one has

WI(c, pv)= ∑
α|pv

pv/α=perfect square

χL(α)×
α

− 1
2 Gα(−c) if v is even,

(α/p)
1
2

(
pc/α
α

)
δ(α‖pc) if v is odd.

First, we assume that v is even. It is well-known that

Gα(−c)= µ
(

α
(α,c)

)
ϕ
(

α
(α,c)

)ϕ(α),

where µ is the Möbius function and ϕ is Euler’s totient function. Inserting
this into the last formula for WI(c, pv) gives

WI(c, pv)= ∑
α|pv

α=perfect square

α− 1
2 Gα(−c)

=δ(ordp(c)≡ 0 mod 2
) ∑

α|pmin(v,ordp(c))

α=perfect square

α− 1
2ϕ(α)

=δ(ordp(c)≡ 0 mod 2
)(

1+ϕ(p)
min(v,ordp(c))/2∑

r=1
pr−1
)

=δ(ordp(c)≡ 0 mod 2
)

pmin(v,ordp(c))/2

=
(

c/ f 2

pv/ f 2

)
f δ
(
gcd(c, pv)= f 2, f ∈N).

Now, we assume that v is odd. One has

WI(c, pv)= χL(pv)
∑
α|pv

α6=perfect square

(α/p)
1
2

(pc/α

α

)
δ(α‖pc)

=χL(pv)
∑

x|pv−1,c
x=perfect square

(
c/x

pv

)
x

1
2 .

26



2.2. Jacobi Groups of Integral Lattice

The inner sum in the last equation is empty or contains exactly one term

∑
x|pv−1,c

x=perfect square

(
c/x

pv

)
x

1
2 =
(

c/pordp(c)

pv

)
p

ordp(c)
2 δ
(
ordp(c)< v and ordp(c) is even

)

=
(

c/ f 2

pv/ f 2

)
f δ
(
gcd(c, pv)= f 2, f ∈N) .

Now, the proof is complete.

Proof of Proposition 2.1.4. By Lemma 2.1.22, one has

WII(c,a)=∑
b|a
χL(b)b− rk(L)

2 W (c,
a
b

)

=∑
b|a
χL(b)b− rk(L)

2 (a/b)−
rk(L)

2 χL (a/b)G a
b
(−c)

= χL(a)a− rk(L)
2
∑
b|a

G a
b
(−c)= χL(a)a− rk(L)

2 +1δ(a | c).

Here in the last step we used the well-known property of the Ramanujan
sum

∑
b|a

G a
b
(−c)= ∑

d (mod a)
ea (−dc)= aδ(a | c).

2.2 Jacobi Groups of Integral Lattice
In this section we define the Jacobi group of an integral lattice (Z-Lattice),
and study its properties. To define the Jacobi group, we need first to de-
fine the Heisenberg group. Indeed, there are two constructions called the
Heisenberg group. If K is a field of characteristic not equal to 2 and V is a
2n-dimensional vector space over K with symplectic form β : V ×V → k, one
of these groups is V ×K with the operation (v,a) ·(w,b)= (v+w,a+b+ 1

2β(v,w))

and is usually called the polarized Heisenberg group. The other group is the
subgroup of GLn+2(K) consisting of matrices with 1s along the diagonal and
0s elsewhere, except for the top row and rightmost column. This construction
has the advantage of working over K of arbitrary characteristic, but uses
coordinates. It is usually called the classical Heisenberg group. Here we
define a Jacobi group using a Heisenberg group in the classical sense, but
instead of using coordinates we will use a symmetric bilinear form.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Aswementioned in the beginning of this chapter, we shall use the notation
L = (L,β) to denote a positive definite even lattice over Z. Also, we shall use
lev(L), rk(L), and det(L) to denote the level, the rank, and the determinant of
the lattice L, respectively.

Definition 2.2.1 (Heisenberg Group). The Heisenberg group associated
with L = (L,β) is defined by

HL(Q) :=
{
(x, y,ξ) : x, y ∈ L⊗Q,ξ ∈ S1

}
, (2.23)

with the composition law

(x1, y1,ξ1)(x2, y2,ξ2)= (x1 + x2, y1 + y2,ξ1ξ2e
(
β(x1, y2)

))
. (2.24)

We consider the subgroup

HL(Z) :=
{

(x, y,1) : x, y ∈ L
}
. (2.25)

Note that HL(Q) is defined in [Boy11] using the decomposition law

(x1, y1,ξ1)(x2, y2,ξ2)= (x1 + x2, y1 + y2,ξ1ξ2e
(1

2 (β(x1, y2)−β(x2, y1))
))

.

In particular, it is easy to switch from one version to the other. The proposi-
tions in the rest of this section could be deduced from [Boy11, Section 3.4].
However, for the convenience of the reader, we give independent proofs.

Proposition 2.2.2. The composition law 2.24 defines a group structure on
the set HL(Q).

Proof. The neutral element is (0,0,1). For an element (x, y,ξ) ∈ HL(Q), the
inverse element equals (−x,−y,ξ−1e

(
β(x, y)

)
).

For (x1, y1,ξ1), (x2, y2,ξ2), (x3, y3,ξ3) ∈ HL(Q), the associativity follows from

((x1, y1,ξ1) (x2, y2,ξ2)) (x3, y3,ξ3)

=(x1 + x2, y1 + y2,ξ1ξ2e
(
β(x1, y2)

))
(x3, y3,ξ3)

=(x1 + x2 + x3, y1 + y2 + y3,ξ1ξ2ξ3e
(
β(x1, y2)

)
e
(
β(x1 + x2, y3)

))
=(x1 + x2 + x3, y1 + y2 + y3,ξ1ξ2ξ3e

(
β(x2, y3)

)
e
(
β(x1, y2 + y3)

))
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2.2. Jacobi Groups of Integral Lattice

=(x1, y1,ξ1)
(
x2 + x3, y2 + y3,ξ2ξ3e

(
β(x2, y3)

))
=(x1, y1,ξ1) ((x2, y2,ξ2)(x3, y3,ξ3)) .

Now, the proof is complete.

Proposition 2.2.3. The group SL2(Q) acts on the group HL(Q) from right via(
(x, y,ξ), A

)→ (x, y,ξ)A :=
((

x, y
)
A,ξe

(1
2β
(
(x, y)A

)− 1
2β(x, y)

))
. (2.26)

Here, (x, y)A stands for the formal multiplication of the row vector (x, y) and
A. i.e., if A = (a b

c d
)
, then (x, y)A := (ax+ cy,bx+d y).

Proof. We need to check the group axioms, and that, for given A ∈SL2(Q),

the map ((x, y,ξ), A)→ (x, y,ξ)A is a group homomorphism of HL(Q). For fixed
hi = (x, y,ξ) ∈ HL(Q), and A1 =

(
a1 b1
c1 d1

)
, A2 =

(
a2 b2
c2 d2

)
∈ SL2(Q) we clearly have

(x, y,ξ)1 = (x, y,ξ), and(
(x, y,ξ)A1

)A2 = ((x, y)A1,ξe
(1

2β ((x, y)A1)− 1
2β(x, y)

))A2

= ((x, y)A1A2,ξe
(1

2β ((x, y)A1A2)− 1
2β ((x, y))

))
= (x, y,ξ)A1 A2 .

Similarly, for h1,h2 ∈ HL(Q), one has hA1
1 hA1

2 = (h1h2)A1 , which can be verified
easily.

Definition 2.2.4 (Jacobi Group). We define the Jacobi group JL(Q) as a
semi-direct product of SL2(Q) and HL(Q)

JL(Q) :=SL2(Q)nHL(Q).

i.e.,
JL(Q)=

{
(A,h) : A ∈SL2(Q),h ∈ HL(Q)

}
,

with the group operation(
A,h
)(

A′,h′)= (AA′,hA′
h′). (2.27)

Also, we set
JL(Z) :=SL2(Z)nHL(Z).
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2. Hecke Theory of Jacobi Forms of Lattice Index

Remarks 2.2.5. There exist canonical monomorphisms HL(Q) → JL(Q) and
SL2(Q) → JL(Q), given by

h 7→ (1SL2(Q),h), h ∈ HL(Q)

A 7→ (A,1HL(Q)), A ∈SL2(Q)

where 1HL(Q) = (0,0,1) (resp. 1SL2(Q) =
(1 0

0 1
)
) is the identity element of HL(Q)

(resp. SL2(Q)). These monomorphisms are so natural that we will treat
HL(Q) and SL2(Q) as subgroups of JL(Q) under these inclusions.

Using this identification, we have, in particular, for h ∈ HL(Q) and A ∈
SL2(Q) that

A−1hA = hA. (2.28)

Definition 2.2.6. For A ∈SL2(Q) and τ ∈H we set

J(A,τ)= cτ+d (A = (a b
c d
)
).

It is easy to see that the map J : SL2(Q)×H→ H satisfies the following
multiplicative property:

J(A,Bτ)J(B,τ)= J(AB,τ).

Proposition 2.2.7. The group JL(Q) acts from the left on H× (L ⊗Z C) as
follows: ((

A, (λ,µ,ξ)
)
, (τ, z)

) 7→ (A, (λ,µ,ξ)
)
(τ, z) := (Aτ, z+λτ+µ

J(A,τ)

)
. (2.29)

Proof. It is obvious that
((1 0

0 1
)
, (0,0,1)

)
(τ, z)= (τ, z). Let

(
A1, (λ1,µ1,ξ1)

)
,
(
A2, (λ2,µ2,ξ2)

)
∈ JL(Q). One has(

A1, (λ1,µ1,ξ1)
)((

A2, (λ2,µ2,ξ2)
)
(τ, z)
)

=(A1, (λ1,µ1,ξ1)
)(

A2τ,
(
z+λ2τ+µ2

)
J(A2,τ)−1)

=
(
(A1A2)τ,

z+λ2τ+µ2 +J(A2,τ)λ1A2τ+J(A2,τ)µ1

J(A2,τ)J(A1, A2τ)

)
=
(
(A1A2)τ,

(
z+ ((λ1,µ1)A2(λ2,µ2)

)
(τ,1)t

)
J(A1A2,τ)−1

)
=(A1A2, (λ1,µ1,ξ1)A2(λ2,µ2,ξ2)

)
(τ, z)

=((A1, (λ1,µ1,ξ1)
)(

A2, (λ2,µ2,ξ2)
))

(τ, z)

which completes the proof.
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2.2. Jacobi Groups of Integral Lattice

Proposition 2.2.8 (Jacobi slash operators). Let k be a positive integer.
The group JL(Q) acts from the right on Hol(H× (L⊗ZC)) via(

φ, (A,h)
) 7→φ

∣∣
k,L(A,h) := (φ

∣∣
k,L A)

∣∣
k,Lh, (2.30)

where
(i) For all A = (a b

c d
) ∈SL2(Q)(
φ
∣∣
k,L A
)
(τ, z) :=φ(Aτ, z

J(A,τ)

)
J(A,τ)−ke

(−cβ(z)
J(A,τ)

)
. (2.31)

(ii) For all (x, y,ξ) ∈ HL(Q)(
φ
∣∣
k,L(x, y,ξ)

)
(τ, z) := ξφ(τ, z+ xτ+ y)e

(
τβ(x)+β(x, z)

)
. (2.32)

Proof. It is obvious that φ
∣∣
k,L
(1 0

0 1
) = φ. Let A = ( ∗ ∗

cA ∗
)
,B = ( ∗ ∗

cB ∗
) ∈ SL2(Q).

According to Equation (2.31) one sees that:((
φ
∣∣
k,L A
)∣∣

k,LB
)
(τ, z)=

((
φ
∣∣
k,L A
)(

Bτ, z
J(B,τ)

))
J(B,τ)−ke

(−cBβ(z)
J(B,τ)

)
=φ
(
ABτ, z

J(A,Bτ)J(B,τ)

)
J(A,Bτ)−ke

(−cAβ(z/J(B,τ))
J(A,Bτ)

)
J(B,τ)−ke

(−cBβ(z)
J(B,τ)

)
=φ
(
ABτ, z

J(AB,τ)

)
J(AB,τ)−ke

(
−( cA

J(A,Bτ)J(B,τ)2 +
cB

J(B,τ)

)
β(z)
)
.

Using that cA
J(A,Bτ)J(B,τ)2 +

cB
J(B,τ) = cAB

J(AB,τ) , where AB = ( ∗ ∗
cAB ∗

)
, we obtain(

φ
∣∣
k,L A
)∣∣

k,LB =φ∣∣k,L AB. (2.33)

From Equation (2.32) it is clear that φ
∣∣
k,L(0,0,1)=φ. For h1 = (x1, y1,ξ1) and

h2 = (x2, y2,ξ2) ∈ HL(Q) one has((
φ
∣∣
k,Lh1

)∣∣
k,Lh2

)
(τ, z)= ξ2

((
φ
∣∣
k,Lh1

)
(τ, z+ x2τ+ y2)

)
e
(
τβ(x2)+β(x2, z)

)
= ξ1ξ2φ(τ, z+ x2τ+ y2 + x1τ+ y1)

× e
(
τβ(x1)+β(x1, z+ x2τ+ y2)+τβ(x2)+β(x2, z)

)
= ξ1ξ2e

(
β(x1, y2)

)
φ(τ, z+ (x1 + x2)τ+ (y1 + y2))

× e
(
τβ(x1 + x2)+β(x1 + x2, z)

)
= (φ∣∣k,Lh1h2

)
(τ, z).

Namely, we proved that

φ
∣∣
k,Lh1

∣∣
k,Lh2 =φ

∣∣
k,Lh1h2. (2.34)
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It is left to show the group axioms. Using Remarks 2.2.5, one has(
φ
∣∣
k,LhA−1)∣∣

k,L A = (φ∣∣k,L A
)∣∣

k,Lh. (2.35)

Thus, for all (A1,h1), (A2,h2) ∈ JL(Q), one has

φ
∣∣
k,L
(
(A1,h1)(A2,h2)

)=φ∣∣k,L
(
A1A2,hA2

1 h2
)=φ∣∣k,L A1A2

∣∣
k,LhA2

1 h2

=φ∣∣k,L A1
∣∣
k,L A2

∣∣
k,LhA2

1

∣∣
k,Lh2 =φ

∣∣
k,L A1

∣∣
k,Lh1

∣∣
k,L A2

∣∣
k,Lh2

=φ∣∣k,L(A1,h1)
∣∣
k,L(A2,h2),

where the first identity follows from Definition 2.2.4, the third from Equation
(2.33) and Equation (2.34), and the fourth from Equation (2.35).

Remarks 2.2.9. We have the following remarks:

1. We can write out the action of the Jacobi slash operator on Jacobi forms
more explicitly as(
φ
∣∣
k,L(A,h)

)
(τ, z)= ξJ(A,τ)−ke

(−cβ(z+xτ+y)
J(A,τ) +τβ(x)+β(x, z)

)
φ ((A,h) (τ, z))

for all (A,h) ∈ JL(Q) with h = (x, y,ξ) and A = (∗ ∗
c ∗ ).

2. We can extend the definition of the slash operator to the case of half
integral weight k ∈ 1

2Z by replacing SL2(Q) with its metaplectic coverâSL2(Q). The group âSL2(Q) acts on the group HL(Q) from right via(
(x, y,ξ), (A,w)

) 7→ (x, y,ξ)(A,w),

where
(x, y,ξ)(A,w) :=

(
(x, y)A,ξe

(1
2β((x, y)A)− 1

2β(x, y)
))

If we put JL(Q) := âSL2(Q)nHL(Q), then the group JL(Q) acts from the
right on Hol(H× (L⊗ZC)) via(

φ, ((A,w),h)
) 7→φ

∣∣
k,L((A,w),h)= (φ

∣∣
k,L(A,w)

∣∣
k,Lh,

where for all Ã = (A,w) ∈âSL2(Q)(
φ
∣∣
k,L Ã
)
(τ, z) :=φ(Aτ, z

w(τ)2
)
w(τ)−2ke

(−cβ(z)
w(τ)2

)
. (2.36)
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2.3 Theta Series
Let L be an even positive definite lattice over Z. Let DL = (L#/L,β) be the
associated discriminant form. Let {δx}x∈L#/L denote the stranded basis of
C[L#/L], so that δxδy = δx+y. By J·|·K we denote the associated scalar product
on C[L#/L] that satisfies

J
∑

x∈L#/L
fxδx|

∑
x∈L#/L

gxδxK=
∑

x∈L#/L
fx gx (2.37)

We denote by ρL theWeil representation ρL : âSL2(Z)→GL(C[L#/L]) associated
with L. The action of the generators of the group âSL2(Z) on the standard
basis of C[L#/L] is given as follows:

ρL
(
T̃
)
δx = e

(
β(x)
)
δx (2.38)

ρL
(
S̃
)
δx = i−

rk(L)
2p

|L#/L|
∑

y∈L#/L
e
(−β(x, y)

)
δy. (2.39)

It is known that ρL factors through S̃L2(Zlev(L)) (for details see [Str11]).

Proposition 2.3.1. For A = (a b
c d
) ∈Γ0(lev(L)) and γ ∈ L#/L one has

ρL(A,
p

cτ+d)δγ =
vθ(A)e

(
bdβ(γ)

)
χL(d)δdγ if rk(L)≡ 1 mod 2,

e
(
bdβ(γ)

)
χL(d)δdγ if rk(L)≡ 0 mod 2,

(2.40)

where vθ(A) := ( cd)ε(d)−1 is the theta multiplier system (cf. [Shi73]).

Proof. For the proof and the discussion about the character χL see [McG03,
Lemma 4.6], [Bor99, Theorem 5.4],[Ebe12, corollary 3.1],[Boy11, 3.35], and
the discussion on [Ebe12, page 94].

Definition 2.3.2 (Jacobi theta series). Let x ∈ L#. We define the Jacobi theta
series ϑL,x(τ, z)

(
(τ, z) ∈H×L⊗ZC

)
by

ϑL,x(τ, z) := ∑
r∈L#

r≡x (mod L)

e
(
τβ(r)+β(r, z)

)
. (2.41)

Theorem 2.3.3 ([Boy11, 3.34]). The Jacobi theta series has the following
transformation laws:
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2. Hecke Theory of Jacobi Forms of Lattice Index

(i) ϑL,x
∣∣ rk(L)

2 ,L
T̃ = e

(
β(x)
)
ϑL,x.

(ii) ϑL,x
∣∣ rk(L)

2 ,L
S̃ = i−

rk(L)
2p

|L#/L|
∑

y∈L#/L e
(−β(x, y)

)
ϑL,y.

Theorem 2.3.4. The vector-valued function

ΘL(τ, z)= ∑
x∈L#/L

ϑL,x(τ, z)δx (2.42)

has the following transformation formula

ΘL
∣∣ rk(L)

2 ,L
Ã = ρL(Ã)ΘL, (2.43)

for all A ∈âSL2(Z).

Proof. The transformation formula for ΘL under âSL2(Z) follows from Theo-
rem 2.3.3 and the formulas for ρL in Equation (2.38) and Equation (2.39).

2.4 Jacobi Forms of Lattice Index
Jacobi forms whose indices are positive definite half-integral matrices have
been studied in [BK93], [CG11],[Sko07],[Boy11], [Bri04], and by other au-
thors. Here, we will restrict ourselves to Jacobi forms whose indices are
positive definite integral matrices. For some facts that are important for us
or cannot be found in the literature, we will work out a proof.

Definition 2.4.1 (Jacobi Form of Lattice Index). For a positive integer k,
and a positive definite even lattice L = (L,β), the space Jk,L of Jacobi forms of
weight k and index L consists of all holomorphic functions φ(τ, z) of variable
τ in the complex upper half plane H and a variable z ∈ L⊗ZC which satisfies
the following properties:

(i) For all A = (a b
c d
) ∈SL2(Z), one has

φ
∣∣
k,L A =φ. (2.44)

(ii) For all (x, y,1) ∈ HL(Z), one has

φ
∣∣
k,L(x, y,1)=φ. (2.45)
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(iii) The function φ has a Fourier expansion of the form

φ(τ, z)= ∑
n∈Z,r∈L#

n≥β(r)

cφ(n, r)e
(
nτ+β(r, z)

)
. (2.46)

Remarks 2.4.2.

1. Let G be a symmetric integral positive definite matrix of size n with
an even diagonal. Set L = (Zn, (x, y) 7→ xtG y). If we identify Zn ⊗C with
Cn (via the map z⊗ c 7→ zc), then the space Jk,L is nothing else but the
space of Jacobi forms of weight k and of matrix index G which have
been studied in literature.

2. Let m be a positive integer, L = (2mZ, (x, y) 7→ xy
2m ). The space Jk,L is

nothing else but the space of Jacobi forms of weight k and scalar index
m which have been studied in [EZ85].

Proposition 2.4.3. Let φ be a Jacobi form of weight k and index L with a
Fourier development

φ(τ, z)= ∑
n∈Z,r∈L#

n≥β(r)

cφ(n, r)e
(
nτ+β(r, z)

)
.

Then cφ(n, r) depends only on n−β(r) and on r mod L. Moreover, one has

cφ (n, r)= (−1)kcφ (n,−r) .

Proof. Let (λ,0,1) ∈ HL(Z). By the definition of Jacobi forms, we have

φ=φ∣∣k,L(λ,0,1).

Thus, using the Jacobi slash operator, we obtain

φ(τ, z)=φ(τ, z+λτ)e
(
τβ(λ)+β(z,λ)

)=∑
n,r

cφ(n, r)e
((

n+β(λ, r)+β(λ)
)
τ+β(z,λ)

)
.

By replacing r with r−λ, and replacing n with n−β(λ, r)+β(λ), we can write

φ(τ, z)=∑
n,r

cφ
(
n−β(λ, r)+β(λ), r−λ)e(nτ+β(r, z)

)
,
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and hence cφ (n, r) = cφ
(
n−β(λ, r)+β(λ), r−λ) , i.e., cφ (n, r) = cφ

(
n′, r′
)
when-

ever r′ ≡ r (mod L) and n−β(r) = n′−β(r′) as stated in the proposition. The
relation cφ (n, r)= (−1)kcφ (n,−r) follows directly by applying the transforma-
tion law of Jacobi forms to

(−1 0
0 −1
) ∈SL2(Z).

Definition 2.4.4. Let φ=∑n,r cφ(n, r)e
(
nτ+β(r, z)

)
be a Jacobi form of index

L = (L,β). For D ≤ 0 and r ∈ L# with D ≡β(r) (mod Z) we set

Cφ (D, r) := cφ
(
β(r)−D, r

)
. (2.47)

Remark 2.4.5. It is clear from the previous Proposition 2.4.3 that

Cφ (D, r)= Cφ (D, r mod L) .

Thus every Jacobi form φ of weight k and index L has a Fourier expansion

φ(τ, z)= ∑
(D,r)∈supp(L)

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
,

where

supp(L) :=
{
(D, r)

∣∣∣ r ∈ L#,D ∈Q≤0 such that β(r)≡ D mod Z
}

.

Definition 2.4.6 (Jacobi cusp form). A Jacobi form φ is called a cusp form
if Cφ(0, r)= 0 for all r such that β(r) ∈Z. By Sk,L, we denote the subspace of
Jacobi forms in Jk,L consisting of cusp forms.

Proposition 2.4.7. Let φ ∈ Jk,L be a Jacobi form of weight k and index
L = (L,β). Then φ can be written as a sum

φ(τ, z)= ∑
x∈L#/L

hx(τ)ϑL,x(τ, z), (2.48)

where
hx(τ)= ∑

D∈Q
(D,x)∈supp(L)

Cφ (D, x)e (−Dτ) . (2.49)

Proof. According to Remark 2.4.5 we can write

φ(τ, z)= ∑
(D,r)∈supp(L)

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.
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2.4. Jacobi Forms of Lattice Index

Since Cφ (D, r)= Cφ (D, r mod L), we can split up the sum over r ∈ L# into cosets

φ(τ, z)= ∑
x∈L#/L

∑
r∈L#

r≡x mod L

∑
(D,r)∈supp(L)

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
,

which can be reordered as follows:

φ(τ, z)= ∑
x∈L#/L

( ∑
D∈Q≤0

D≡β(x) mod Z

Cφ (D, x)e (−Dτ)
)( ∑

r∈L#

r≡x mod L

e
(
τβ(r)+β(r, z)

))
.

Now, the proof is complete.

Remark 2.4.8. Combining Proposition 2.4.7 with the equation ϑL,x(τ,−z) =
ϑL,−x(τ, z) and φ(τ, z)=(−1)k φ(τ,−z) we deduce the symmetry property:

hx(τ)= (−1)kh−x(τ) (x ∈ L#/L). (2.50)

Proposition 2.4.9. Let φ=∑x∈L#/L hxϑL,x ∈ Jk,L. For each x ∈ L#/L the func-
tion hx satisfies the following transformation laws:

hx
∣∣
k− rk(L)

2 ,L
T̃ = e

(−β(x)
)
hx, (2.51)

hx
∣∣
k− rk(L)

2 ,L
S̃ = i

rk(L)
2p

|L#/L|
∑

y∈L#/L
e
(
β(x, y)

)
hy. (2.52)

Proof. By Proposition 2.4.7

(
hx
∣∣
k− rk(L)

2 ,L
T̃
)
(τ)= hx(τ+1)= ∑

(D,r)∈supp(L)
Cφ (D, x)e (−Dτ)e (−D) .

Since D ≡β(x) mod Z, it follows that e (−D)= e
(−β(x)

)
. Thus

(
hx
∣∣
k− rk(L)

2 ,L
T̃
)
(τ)= e

(−β(x)
)
hx(τ).

For the second we have, using Definition 2.4.1 and the definition of the slash
operator, the following equation:

φ(τ, z)= (φ∣∣k,LS
)
(τ, z)= ∑

x∈L#/L

((
hx
∣∣
k− rk(L)

2 ,L
S̃
)
(τ)
)((
ϑL,x
∣∣ rk(L)

2 ,L
S̃
)
(τ, z)
)
.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Using the transformation laws of the theta functions from Theorem 2.3.3,
we can write

φ(τ, z)= ∑
y∈L#/L

ϑL,y(τ, z)
∑

x∈L#/L

i−
rk(L)

2p
|L#/L|

e
(−β(x, y)

)(
hx
∣∣
k− rk(L)

2 ,L
S̃
)
(τ).

For fixed τ, the functions ϑL,y(τ, z) (y ∈ L#/L) are linearly independent (see
[Boy11], [Kri91, p. 609]), thus we have

hy(τ)= ∑
x∈L#/L

i−
rk(L)

2p
|L#/L|

e
(−β(x, y)

)(
hx
∣∣
k− rk(L)

2 ,L
S̃
)
(τ). (2.53)

Now, if we apply
∣∣
k− rk(L)

2 ,L
S̃ on both sides of Equation (2.53), we see, using

S̃2 = (−1, i), that(
hy
∣∣
k,LS̃
)
(τ)= ∑

x∈L#/L

i−
rk(L)

2p
|L#/L|

e
(−β(x, y)

)(
hx
∣∣
k− rk(L)

2 ,L
(−1, i)

)
(τ)

=(−1)−k+ rk(L)
2
∑

x∈L#/L

i−
rk(L)

2p
|L#/L|

e
(
β(−x, y)

)
hx(τ).

Replace x by −x and using hx = (−1)kh−x (see Remark 2.4.8) we obtain the
claimed formula.

2.5 Hecke Operators on the Space of Jacobi
Forms

As can be seen in Skoruppa and Zagier’s paper [SZ88], the main result of the
theory of Jacobi forms is the relation between Jacobi forms of weight k and
index m on the one hand, and ordinary elliptic modular forms of weight 2k−2

and level m on the other. The lifting from Jk,m to M2k−2(m) is constructed as
follows: Let φ ∈ Jk,m, then φ has a Fourier expansion of the form

φ(τ, z)= ∑
d≤0,r

d≡r2 mod 4m

Cφ(d, r)q
r2−d
4m ζr.

Let D < 0 be a fundamental discriminant and r be an integer with D ≡
r mod 4m, then

Sm,D,r(τ) :φ→
∞∑
`=0

(
coefficient of q

r2−D
4m ζr in φ | T(`)

)
e2πi`τ (2.54)
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2.5. Hecke Operators on the Space of Jacobi Forms

maps Jk,m to a certain subspace of M2k−2(m). The maps Sm,D,r commute with
the action of the Hecke operators T(`). (Equation (2.54) is not quite true,
since one would need here to define T(`) for gcd(`,m)> 1, which is not a part
of the common theory.)

The current thesis is based on the expectation that there should be lifting
for Jacobi forms of lattice index to elliptic modular forms. However, a Hecke
theory for these forms currently does not even exist.

Here, we shall construct such a theory and use our Hecke operators to give
examples of correspondences with elliptic modular forms. More precisely,
we will discuss correspondences supporting the mentioned expectation in
the following sense:

Jacobi forms of weight k
and index L

correspondence←−−−−−−−−−−→
if rk(L)≡1 mod 2

elliptic modular forms of
weight 2k−1−rk(L)

Jacobi forms of weight k
and index L

correspondence←−−−−−−−−−−→
if rk(L)≡0 mod 2

elliptic modular forms of
weight k− rk(L)

2

First, we state some basic information regarding the Hecke algebra asso-
ciated with Γ = SL2(Z) . For this we follow essentially [Miy06, 4] and [Kri,
5].

Definition 2.5.1. For each A ∈Mat(2,Z) we set

gcd(A) := g.c.d. of entries of A.

We say that A is primitive if gcd(A)= 1.

Definition 2.5.2. For ` in N we set

M (`) := {A ∈Mat(2,Z)
∣∣ det A = `} ,

Mpr(`) := {A ∈M (`)
∣∣ A is primitive

}
.

It is clear that M (1) = Γ. Also note that M :=⋃`∈NM (`) is closed under
matrix multiplication.

Theorem 2.5.3 (The Elementary Divisor Theorem for 2×2 Matrices). For
given A ∈M , there exist U,V ∈Γ, such that

U AV =
(

gcd(A) 0
0 det(A)/gcd(A)

)
.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Proof. See e.g. [Kri, Theorem 2.3]

Theorem 2.5.4. Let ` ∈N. A complete set of coset representatives for the left
cosets of Γ in M (`) is given by

∆` =
{

M = (a b
0 d
) ∣∣ a,b,d ∈Z,a,d ≥ 0,ad = ` and 0≤ b < d

}
.

Moreover, a complete set of coset representatives for the left cosets of Γ in
Γ
(1 0

0 `

)
Γ is given by

∆
pr
`

= {M ∈∆`
∣∣ gcd(M)= 1

}
.

Proof. See e.g. [Miy06, Equation (4.5.24) and Equation (4.5.25)].

For developing our Hecke theory for lattice index Jacobi forms we extend
ideas of [SZ87] which introduced there in the case of scalar index Jacobi
forms. Let L = (L,β) be again a positive definite even lattice over Z. Let ` ∈N
such that gcd(`, lev(L))= 1. The set

JL(Z)
(
`−1 0
0 `

)
JL(Z)= {g1

((
`−1 0
0 `

)
, (0,0,1)

)
g2 : g1, g2 ∈ JL(Z)

}
(2.55)

is a double coset in JL(Q). The Jacobi group JL(Z) acts on the double coset
JL(Z)

(
`−1 0
0 `

)
JL(Z) by left multiplication, partitioning it into orbits. A typical

orbit is JL(Z)g with a representative g, and JL(Z)
∖

JL(Z)
(
`−1 0
0 `

)
JL(Z) is thus

a disjoint union ⋃i JL(Z)g i for some choice of representatives g i.

Definition 2.5.5. Let ` be a positive integer with gcd(`, lev(L)) = 1. We follow
[SZ87] and define a double coset operator T0 (`) on the vector space of Jacobi
forms of weight k and index L as follows:

T0 (`)φ := `k−2−rk(L) ∑
g∈JL(Z)

∖
JL(Z)

(
`−1 0
0 `

)
JL(Z)

φ
∣∣
k,L g (φ ∈ Jk,L), (2.56)

where the sum in Equation (2.56) runs over a complete set of representatives
g for JL(Z)\JL(Z)

(
`−1 0
0 `

)
JL(Z).

Proposition 2.5.6. The operator T0 (`) given by Equation (2.56) is well de-
fined, maps Jk,L to Jk,L, and maps Sk,L to Sk,L.
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2.5. Hecke Operators on the Space of Jacobi Forms

Proof. Let φ ∈ Jk,L, A ∈ JL(Z), and B ∈ JL(Z)
(
`−1 0
0 `

)
JL(Z). One has

φ
∣∣
k,L AB =φ∣∣k,L A

∣∣
k,LB =φ∣∣k,LB.

Hence, each term in Equation (2.56) does not depend on the choice of the
representative B, but only on the JL(Z)-orbit of B. Note that the sum in
Equation (2.56) is finite (see Lemma 2.6.5). We want to show that the space
of Jacobi forms of weight k and index L is invariant under the operator
T0 (`). Any A ∈ JL(Z) permutes the orbit space JL(Z)

∖
JL(Z)

(
`−1 0
0 `

)
JL(Z) by

right multiplication. That is, the map

γ∗ : JL(Z)
∖

JL(Z)
(
`−1 0
0 `

)
JL(Z)→ JL(Z)

∖
JL(Z)

(
`−1 0
0 `

)
JL(Z)

given by
JL(Z)B 7→ JL(Z)BA

is well-defined and bijective. So if {Bi} is a set of orbit representatives for the
orbit space JL(Z)

∖
JL(Z)

(
`−1 0
0 `

)
JL(Z) then {Bi A} is a set of orbit representatives

for JL(Z)
∖

JL(Z)
(
`−1 0
0 `

)
JL(Z) as well. Thus(

T0 (`)φ
)∣∣

k,L A = `k−2−rk(L) ∑
BA∈JL(Z)

∖
JL(Z)

(
`−1 0
0 `

)
JL(Z)

φ
∣∣
k,LBA = T0 (`)φ,

which means that T0 (`)φ transforms like a Jacobi form of weight k and index
L = (L,β). It is left to show that(

T0 (`)φ
)∣∣

k,L A (A ∈SL2(Z))

has the correct Fourier development. Theorem 2.6.8 in the next pages will
describe the Fourier development of this operator. Indeed, it shows also that
this operator maps cusp forms to cusp forms.

Definition 2.5.7 (The Operator T(`)). For all ` ∈N with gcd(`, lev(L)) = 1,
we define the Hecke operator T(`) : Jk,L → Jk,L in the following way:

1. If rk(L) is odd:

φ 7→ T(`)φ := ∑
d2|`,d>0

d2k−rk(L)−3 T0( `
d2 )φ. (2.57)
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2. Hecke Theory of Jacobi Forms of Lattice Index

2. If rk(L) is even:

φ 7→ T(`)φ := ∑
d,s>0

sd2|`, s square-free

χL(s)(sd2)k− rk(L)
2 −2 T0( `

sd2 )φ. (2.58)

Our main goal now is to describe the action of these operators in terms
of Fourier coefficients, and to give their commutation relations.

2.6 The Action of Hecke Operators on
Fourier Coefficients

In this section we describe the action of the operators T0(`) and T(`) on Jacobi
forms in terms of Fourier development (see Theorem 2.6.8,Theorem 2.6.1,
and Theorem 2.6.3). In the first subsection we state the main results of this
section. The second subsection deals with the proof of the theorems.

2.6.1 The Main Results of this Section
Theorem 2.6.1. Let L = (L,β) be a positive definite even lattice of odd rank.
Let φ be a Jacobi form of weight k and index L = (L,β) with a Fourier expansion

φ(τ, z)= ∑
D≤0,r∈L#

D≡β(r) mod Z

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.

Let ` ∈N with gcd(`, lev(L))= 1, and let(
T(`)φ

)
(τ, z)= ∑

D≤0,r∈L#

D≡β(r) mod Z

CT(`)φ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.

Then one has

CT(`)φ(D, r)=∑
a

ak−d rk(L)
2 e−1%(D,a)Cφ

(
`2

a2 D,`a′r
)
. (2.59)

The sum in Equation (2.59) is over those a | `2 such that a2 | `2lev(L)D, and
a′ is an integer such that aa′ ≡ 1 (mod lev(L)). Moreover, %(D,a) equals f ·
χL(D/ f 2,a/ f 2) if gcd(lev(L)D,a) = f 2 with f ∈N, and it equals 0 if gcd(lev(L)D,a)

is not a perfect square.
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2.6. The Action of Hecke Operators on Fourier Coefficients

Remark 2.6.2. Assume that lev(r)D is a square-free. Then Equation (2.59)
simplifies to

CT(`)φ(D, r)=∑
a|`

ak−d rk(L)
2 e−1χL(D,a)Cφ

(
`2

a2 D, `a r
)

(2.60)

Theorem 2.6.3. Let L = (L,β) be a positive definite even lattice of even rank.
Let φ be a Jacobi form of weight k and index L = (L,β) with a Fourier expansion

φ(τ, z)= ∑
D≤0,r∈L#

D≡β(r) mod Z

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.

Let ` ∈N with gcd(`, lev(L))= 1, and let
(
T(`)φ

)
(τ, z)= ∑

D≤0,r∈L#

D≡β(r) mod Z

CT(`)φ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.

Then one has

CT(`)φ(D, r)= ∑
a|`2,lev(L)D

ak− rk(L)
2 −1χL(a)Cφ

(
`2

a2 D,`a′r
)
, (2.61)

where a′ is an integer such that aa′ ≡ 1 (mod lev(L)).

Remark 2.6.4. Note that the conditions a2|`2 lev(L)D and β(r) ≡ D mod Z

imply that `2

a2 D ≡β(`a′r) mod Z. Thus the coefficients Cφ

(
`2

a2 D,`a′r
)
in Theo-

rem 2.6.3 and Theorem 2.6.1 are well-defined.

2.6.2 Proofs
First we describe the action of the operator T0(`) on Jacobi forms in term of
Fourier expansion, then we use this description to prove Theorem 2.6.1 and
Theorem 2.6.3. To do this we need the following lemmas:

Lemma 2.6.5. Let ` ∈NL. The finite set of all elements (M,h), where M runs
through a complete set of representatives for Γ

∖
Γ
(
`−1 0
0 `

)
Γ and h runs through a

complete set of representatives for (HL(Z)∩M−1HL(Z)M)\HL(Z), is a complete
set of cosets representatives for JL(Z)\JL(Z)

(
`−1 0
0 `

)
JL(Z).
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2. Hecke Theory of Jacobi Forms of Lattice Index

Proof. Let γ : JL(Z))
((
`−1 0
0 `

)
,1
)
JL(Z)→Γ

(
`−1 0
0 `

)
Γ be the canonicalmap (M,h) 7→

M, and let γ∗ : JL(Z)
∖

JL(Z)
((
`−1 0
0 `

)
,1
)
JL(Z)→Γ

∖
Γ
(
`−1 0
0 `

)
Γ be the induced map.

First we show that each coset in the fibre γ−1∗ (ΓM) contains an element of
the form (M,h), where h ∈ HL(Z). Each class in the fibre γ−1∗ (ΓM) has a repre-
sentative g = (A,h1)

((
`−1 0
0 `

)
, (0,0,1)

)
(B,h2), where (A,h1), (B,h2) ∈ JL(Z) with

M = A
(
`−1 0
0 `

)
B. Write A = (a b

c d
)
and h1 = (λ1,µ1,1). Since (12, (−dλ1,bλ1,1)) ∈

JL(Z), one has
(
M, (0,`µ1,1)Bh2

)
g−1 = (12, (−dλ1,bλ1,1)

) ∈ JL(Z). The existence
now is clear, since (0,`µ1,1)Bh2 ∈ HL(Z). Let M ∈ Γ∖Γ(`−1 0

0 `

)
Γ and h1,h2 ∈

HL(Z). The two classes JL(Z)(M,h1) and JL(Z)(M,h2) are equal if and only if
(M,h1)(M,h2)−1 ∈ JL(Z). This is equivalent, by the Jacobi group multiplica-
tion operation (see Definition 2.2.4), to

(
h1h2

−1)M−1 = Mh1h2
−1M−1 ∈ HL(Z).

Since h1h2
−1 ∈ HL(Z), we obtain h1h2

−1 ∈ (M−1HL(Z)M
)∩HL(Z). Thus the two

classes JL(Z)(M,h1) and JL(Z)(M,h2) are equal if and only if

h1 ≡ h2 mod
(
M−1HL(Z)M

)∩HL(Z).

We still need to show that this set of representatives is finite. In the view of
the well-known fact that Γ

∖
Γ
(
`−1 0
0 `

)
Γ is finite ( see Theorem 2.5.4), it is enough

to show that (HL(Z)∩ M−1HL(Z)M)\HL(Z) is finite. But this is immediate,
since {

(`λ,`µ,1)
∣∣ λ,µ ∈ L

}⊆ HL(Z)∩M−1HL(Z)M.

Now the proof is complete.

Lemma 2.6.6. Let φ be a Jacobi form of weight k and index L = (L,β). For
each ` ∈NL, the action of the operator T0(`) on φ can be written as follows:

T0(`)φ= `k−2−2rk(L) ∑
(λ,µ)∈(L/`L)×(L/`L)

∑
M∈ 1

`∆
pr
`2

φ
∣∣
k,LM

∣∣
k,L(λ,µ,1). (2.62)

Proof. Note, first of all, that 1
`
∆

pr
`2 is a system of representatives for Γ

∖
Γ
(
`−1 0
0 `

)
Γ.

Let S be a subgroup of finite index in HL(Z), which contained in the subgroup
HL(Z)∩M−1HL(Z)M (M ∈ 1

`
∆

pr
`2). Then, using Lemma 2.6.5, we can write

T0(`)φ= `k−2−rk(L) ∑
M∈ 1

`∆
pr
`2

∑
h∈S\HL(Z)

C(M)−1 ·φ∣∣k,L(M,h). (2.63)
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where
C(M) := [HL(Z)∩M−1HL(Z)M : S].

We show that we can in fact choose

S = {(`λ,`µ,1)
∣∣ λ,µ ∈ L

}
.

Indeed, let h = (`λ,`µ,1) ∈ S. Clearly h ∈ HL(Z). Moreover, for M =
(

a
`

b
`

0 d
`

)
∈

1
`
∆

pr
`2, we have, using Proposition 2.2.3, that

h =
(
(dλ,−bλ+aµ,1)

(
a
`

b
`

0 d
`

)
,1
)
= (dλ,−bλ+aµ,1)M .

Thus h ∈ HL(Z)∩M−1HL(Z)M. We still have to show that C(M) = `rk(L). It is
clear that for all A ∈Γ we have C(AM)= C(M). We also have C(MA)= C(M),

since the function

HL(Z)∩M−1HL(Z)M/S → HL(Z)∩ A−1M−1HL(Z)MA/S

gS 7→ A−1 gAS

is a bijection. Namely C(M)= C(AMB) for any A,B ∈ Γ. By the elementary
divisor theorem (see Theorem 2.5.3), we can find matrices A,B ∈Γ such that
AMB = 1

`

(1 0
0 `2

)= ( 1
` 0
0 `

)
. Thus

C(M)= C(AMB)= C
((

1
` 0
0 `

))
= [L×`L : `L×`L]= `rk(L).

This proves the lemma.

Definition 2.6.7 (notation). Let L = (L,β) be a lattice over Z, and let a be a
positive integer such that (a, lev(L))= 1. We shall use a′ to denote an integer
such that aa′ ≡ 1 mod lev(L).

Theorem 2.6.8. Let φ be a Jacobi form of weight k and index L = (L,β) with
Fourier expansion

φ(τ, z)= ∑
(D,r)∈supp(L)

Cφ(D, r)e
(
(β(r)−D)τ+β(r, z)

)
.
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Let ` ∈N be a positive integer such that gcd(`, lev(L))= 1, and let(
T0(`)φ

)
(τ, z)= ∑

(D,r)∈supp(L)
CT0(`)φ(D, r)e

(
(β(r)−D)τ+β(r, z)

)
.

Then
CT0(`)φ(D, r)=∑

a
ak−2W

(
lev(L)2D,a

)
Cφ

(
`2

a2 D,`a′r
)
, (2.64)

where a runs over the positive divisors of `2 with a2|`2lev(L)D, a′ is an inte-
ger such that aa′ ≡ 1 mod lev(L), and the function W

(
lev(L)2D,a

)
is given by

Equation (2.1), i.e.,

W
(
lev(L)2D,a

)=∑
t|a
µ(

a
t

)t1−rk(L)#
{
x ∈ L

/
tL | lev(L)2D ≡β(x) mod t

}
.

Proof. By Lemma 2.6.6 we write the definition of T0(`) as

T0(`)φ= `k−2∑
M
φ
∣∣
k,L

1
`

M
∣∣
k,LA`,

where the sum is over all M ∈∆pr
`2 and

∣∣
k,LA` is the operator which acts on

any function ψ that transforms like a Jacobi form by

ψ
∣∣
k,LA` = `−2rk(L) ∑

(λ,µ)∈L/`L×L/`L
ψ
∣∣
k,L(λ,µ,1).

First, we do the usual computation of the action of the upper triangular
representatives for the left SL2(Z)-cosets. For that we set

φ|T0(`) :=φ1|A`,

where
φ1 := `k−2 ∑

ad|`2

∑
b mod d

gcd(a,b,c)=1

φ
∣∣
k,L

1
`

(a b
0 d
)
. (2.65)

To get rid of the condition gcd(a,b,d)= 1 in Equation (2.65) we use the identity∑
δ|g
µ(δ)=δ(g = 1),

where µ here is the Möbius function. This gives

φ1(τ, z)=`−2 ∑
ad=`2

ak ∑
δ|(a,d)

µ(δ)
∑
b(d)

b≡0(δ)

∑
n∈N,r∈L#

cφ(n, r)e
(
n aτ+b

d +β(z, `r
d )
)
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2.6. The Action of Hecke Operators on Fourier Coefficients

= ∑
ad=`2

ak−1 ∑
δ|(a,d)

µ(δ)
δ

∑
n∈Z,r∈L#

d
δ
|n

cφ(n, r)e
(
n aτ

d +β(z, `r
d )
)
.

To simplify the previous formula, we set

Λ(α,β) := ∑
δ|α,αδ−1|β

µ(δ)/δ (α,β ∈Z).

This gives

φ1(τ, z)= ∑
ad=`2

ak−1 ∑
n∈Z,r∈L#

d
(a,d) |n

Λ
(
(a,d), n

d/(a,d)

)
cφ(n, r)e

(
n aτ

d +β(z, `r
d )
)
.

Replacing na
d with n and r`

d with r allowing us to write

φ1(τ, z)= ∑
ad=`2

ak−1 ∑
r∈L#,r∈ `

d L#

n∈Z, a
(a,d) |n,a|dn

Λ
(
(a,d), n

a/(a,d)

)
cφ
(dn

a , `a r
)
e
(
nτ+β(r, z)

)

= ∑
ad=`2

ak−1 ∑
n∈ a

(a,d)Z

r∈ a
`L#

Λ
(
(a,d), n

a/(a,d)

)
cφ
(
`2

a2 n, `a r
)
e
(
nτ+β(r, z)

)
.

This gives the Fourier development of φ1. We still must apply the averaging
operator A`. We can factor A` as `−2rk(L)(A1,` ◦A2,`), where for any function
ψ that transforms like a Jacobi form we set

ψ
∣∣
k,LA1,` := ∑

µ∈L/`L
ψ
∣∣
k,L(0,µ,1), ψ

∣∣
k,LA2,` := ∑

λ∈L/`L
ψ
∣∣
k,L(λ,0,1).

Thus to compute the action of T0(`) we still need apply A1,` and A2,`. For
that we set

φ2(τ, z) :=
(
φ1
∣∣
k,LA1,`

)
(τ, z)= ∑

µ∈L/`L
φ1(τ, z+µ).

Using the last formula of the Fourier expansion of φ1, one has

φ2(τ, z)= ∑
ad=`2

ak−1 ∑
dn≡0(a)
r∈ a

`L#

Λ
(
(a,d), n

a/(a,d)

)
cφ
(
`2

a2 n, `a r
)
e
(
nτ+β(r, z)

) ∑
µ∈L/`L

e
(
β(µ, r)

)
.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Note that the inner sum in the last formula equals [L : `L]δ(r ∈ L#). This
gives

φ2(τ, z)= `rk(L) ∑
ad=`2

ak−1 ∑
n∈N,dn≡0(a)

r∈ a
`L#∩L#

Λ
(
(a,d), n

a/(a,d)

)
cφ
(
`2

a2 n, `a r
)
e
(
nτ+β(r, z)

)
,

i.e., φ2 is obtained from φ1 by omitting all terms with r 6∈ L#. Now, we apply
the operator A2,`.(

T0(`)φ
)
(τ, z)=`−2rk(L) ∑

λ∈L/`L
φ2
∣∣
k,L(λ,0,1)(τ, z)

=`−2rk(L) ∑
λ∈L/`L

φ2(τ, z+λτ)e
(
τβ(λ)+β(z,λ)

)
.

Inserting the Fourier expansion of phi2(τ, z+λτ) in the last equation gives
(
T0(`)φ

)
(τ, z)= ∑

ad=`2

ak−1

`rk(L)

∑
λ∈L/`L

n∈N,dn≡0(a),r∈ a
`L#∩L#

(
Λ
(
(a,d), n

a/(a,d)

)
cφ
(
`2

a2 n, `a r
)

e
(
(n+β(λ, r)+β(λ))τ+β(z,λ+ r)

))
.

By replacing r with r−λ, and replacing n with n−β(λ, r)+β(λ), we can rewrite
the previous expansion of T0(`)φ as follows:

(
T0(`)φ

)
(τ, z)= ∑

(D,r)∈supp(L)
CT0(`)φ(D, r)e

(
(β(r)−D)τ+β(r, z)

)
,

with

CT0(`)φ(D, r)=∑
a|`2

ak−1

`rk(L)

∑
λ

Λ
( (a,`)2

a , (a,`)2

a2 (β(r−λ)−D)
)
Cφ

(
`2

a2 D, `a (r−λ)
)
,

where λ runs through L/`L such that β(r−λ)≡ D mod a2

(a,`)2Z and r−λ ∈ a
(a,`) L

#.
Let a′ be an integer such that a′a ≡ 1 (mod lev(L)), and s = (a,`)

a (r−λ). Since ` ∈
NL, the condition a

(a,`) s ≡ r mod L is equivalent to the equation s ≡ (`,a)a′r mod

L and the terms Cφ

(
`2

a2 D, `
(a,`) s

)
equal Cφ

(
`2

a2 D,`a′r
)
. Thus

CT0(`)φ(D, r)=∑
a|`2

ak−1`−rk(L)ψ(`,a, r,D)Cφ

(
`2

a2 D,`a′r
)
,
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2.6. The Action of Hecke Operators on Fourier Coefficients

where

ψ(`,a, r,D) := ∑
λ∈L/`L, r−λ∈ a

(a,`) L#

β(r−λ)≡D mod a2

(a,`)2
Z

Λ
(

(a,`)2
a , (a,`)2

a2 (β(r−λ)−D)
)
. (2.66)

It remains to simplify Equation (2.66). Recall that

Λ(α,β)= ∑
δ|α,αδ−1|β

µ(δ)/δ= 1
α

∑
δ|(α,β)

µ(α
δ

)δ.

One has

ψ(`,a, r,D)= ∑
λ∈L/`L, r−λ∈ a

(a,`) L#

β(r−λ)≡D mod a2

(a,`)2
Z

a
(a,`)2

∑
δ|( (a,`)2

a , (a,`)2

a2 β(r−λ)− (a,`)2

a2 D)

µ
(

(a,`)2
aδ

)
δ.

After reordering the summations in the above formula we see that

ψ(`,a, r,D)= a
(a,`)2

∑
δ| (a,`)2

a

µ
( (a,`)2

aδ
)
δ
(`(a,`)

aδ
)rk(L) ∑

s∈L#
/
δL, a

(a,`) s≡r mod L
(a,`)2

a2 D≡β(s) mod δ

1.

Inserting this into the last formula for CT0(`)φ(D, r) gives

CT0(`)φ(D, r)=∑
a|`2

ak−2Cφ

(
`2

a2 D,`a′r
)( a

(a,`)

)2−rk(L) ∑
t| (a,`)2

a

µ
( (a,`)2

at
)
BL
( (a,`)2

a2 D, r, t
)
,

(2.67)

where, Cφ

(
`2

a2 D,`a′r
)= 0 unless `2

a2 D−β(`a′r) is an integer, and

BL
( (a,`)2

a2 D, r, t
)= t1−rk(L)#

{
v ∈ L

/
tL | (a,`)2

a2 D ≡β ( (a,`)a′r+v
)

mod t
}

.

Since ` ∈NL, `
2

a2 D−β(`a′r) is an integer if and only if a2 | `2lev(L)D. To simplify
BL
( (a,`)2

a2 D, r, t
)
we can therefore assume that the last condition is fulfilled. Let

b be an integer such that 1= aa′+lev(L)b. For each t such that t | (a,`)2
a , one has

β(v)−lev(L)bβ
(
(a,`)a′r+v

)= aa′β(v)+lev(L)bβ((a,`)a′r)+lev(L)bβ((a,`)a′r,v)≡
0 mod t. Thus we obtain

BL
( (a,`)2

a2 D, r, t
)= t1−rk(L)#

{
v ∈ L

/
tL | Nb(a,`)2

a2 D ≡β (v) mod t
}

.
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2. Hecke Theory of Jacobi Forms of Lattice Index

Inserting this in Equation (2.67) gives

CT0(`)φ(D, r)= ∑
a|`2

a2|`2lev(L)D

ak−2Cφ

(
`2

a2 D,`a′r
)( a

(a,`)

)2−rk(L)
W
( (a,`)2

a2 lev(L)bD, (a,`)2
a
)
,

where the function W is given by Equation (2.1). Note that the equation
aa′ + lev(L)b = 1 implies that

(lev(L)b

a

)rk(L)
=
(

lev(L)2

a

)rk(L)
. Thus by Equation

(2.21) we have
( a

(a,`)

)2−rk(L)
W
( (a,`)2

a2 lev(L)bD, (a,`)2
a
)=W (lev(L)2D,a).

Inserting this into the last formula of CT0(`)φ(D, r), gives the claimed formula
and completes the proof.

Proof of Theorem 2.6.1. Recall that for odd rank lattice L = (L,β), the
operator T(`) and T0(`) are related by (see Definition 2.5.7)

T(`)= ∑
d2|`, d>0

d2k−rk(L)−3T0(`/d2). (2.68)

Thus by Equation (2.68), one has

CT(`)φ(D, r)= ∑
s|`

`/s=perfect square

(`/s)k−2−b rk(L)
2 cCT0(s)φ(D, r).

By using Theorem 2.6.8, which describes the action of the operators T0(`) on
Fourier coefficients, we can write

CT(`)φ(D, r)= ∑
s|`

`
s =perfect square

(`/s)k−2−b rk(L)
2 c∑

g|s2

g2|s2lev(L)D

gk−2W
(
lev(L)2D, g

)
Cφ

( s2

g2 D, sg′r
)
.

(2.69)

We want to simplify Equation (2.69). For that, we set a := g `
s and b := a

g = `
s .

When s runs over all positive divisors of ` such that `
s is a perfect-square and

g runs over the positive divisors of s2 such that g2 | s2lev(L)D, then a runs
over all positive divisors of `2 and b runs over all positive divisors of gcd(a, `

2

a ).
Moreover, if b′ is an integer such that bb′ ≡ 1 mod lev(L), we set a′ := b′g′. It
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2.6. The Action of Hecke Operators on Fourier Coefficients

is obvious that aa′ ≡ 1 mod lev(L) and Cφ

(
`2

a2 D,`a′r
)= Cφ

( s2

g2 D, sg′r
)
. Thus we

can reorder the summation in Equation (2.69) as follows:

CT(`)φ(D, r)= ∑
a|`2

a2|`2 lev(L)D

Cφ

(
`2

a2 D,`a′r
)
ak−2 ∑

b|(a, `
2
a )

b=perfect square

b−b rk(L)
2 cW

(
lev(L)2D, a

b
)
.

To complete the proof, we need to simplify the inner sum in the last equa-
tion. Setting x = a

(a,`) , then (a, `
2

a )= a/x2. The condition a|`2 and a2|`2 lev(L)D

implies that lev(L)2D
x2 ∈Z. By using Lemma 2.1.22, we obtain

W
(
lev(L)2D, a

b
)= x2−rk(L)W

(
lev(L)2D/x2, a

bx2

)
.

Thus ∑
b|(a, `

2
a ),b=perfect square

b−b rk(L)
2 cW

(
lev(L)2D, a

b
)=a1−d rk(L)

2 e x ·WI
(
lev(L)2D/x2,a/x2)

=a1−d rk(L)
2 e WI

(
lev(L)2D,a

)
,

where in the last step we used Proposition 2.1.3 (see Equation (2.5)). Insert-
ing this into the last formula of CT(`)φ(D, r) gives

CT(`)φ(D, r)= ∑
a|`2

a2|`2 lev(L)D

ak−1−d rk(L)
2 eWI

(
lev(L)2D,a

)
Cφ

(
`2

a2 D,`a′r
)
,

Again, by using Proposition 2.1.3 and gcd(lev(L),a)= 1, we obtain the claimed
formula.

Proof of Theorem 2.6.3. Recall that for even rk(L) the operators T(`) and
T0(`) are related as follows (see Definition 2.5.7):

T(`) := ∑
d,s>0

sd2|`, s square-free

χL(s)(sd2)k− rk(L)
2 −2 T0( `

sd2 ). (2.70)

Using Equation (2.70) and Theorem 2.6.8, which gives a closed formula for
the action of T0(`) in terms of Fourier coefficients, we can write

CT(`)φ(D, r)= `k− rk(L)
2 −2 ∑

`1|`
`/`1= perfect square

∑
s|`1

s is square free
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2. Hecke Theory of Jacobi Forms of Lattice Index

× ∑
d|(`1/s)2

s2d2|`1
2 lev(L)D

χL(s)(`1/s)
rk(L)

2 +2−kdk−2W (lev(L)2D,d)Cφ

( `1
2

s2d2 D, `1
s d′r
)
.

We want to simplify the above equation. Similarly as in the proof of the pre-
ceding theorem (see proof of Theorem 2.6.1), we can reorder the summation
as follows (the substitutions here are a := s`

`1
d, b := a/d = s`/`1):

CT(`)φ(D, r)= ∑
a|`2

a2|`2 lev(L)D

ak−2Cφ

(
`2

a2 D,`a′r
) ∑

b|(a, `
2
a )

b− rk(L)
2 W
(
lev(L)2D, a

b
) ∑

s|b
s square-free

sb= perfect square

χL(s).

The inner sum ∑s χL(s) contains exactly one term. In fact, it equals χL(b)

(since χL(s)= χL(b)). This gives

CT(`)φ(D, r)= ∑
a|`2

a2|`2 lev(L)D

ak−2Cφ

(
`2

a2 D,`a′r
) ∑

b|(a, `
2
a )

χL(b)b− rk(L)
2 W
(
lev(L)2D, a

b
)
.

Setting x := a
(a,`) , one has (a, `

2

a )= a
x2 . The conditions (`, lev(L))= 1, a | `2, and

a2 | `2 lev(L)D imply that lev(L)2D
x2 ∈Z. Thus

CT(`)φ(D, r)= ∑
a|`2

a2|`2 lev(L)D

ak−2Cφ

(
`2

a2 D,`a′r
)
x2−rk(L)WII

( lev(L)2D
x2 , a

x2

)

= ∑
a|gcd(`2,lev(L)D)

ak− rk(L)
2 −1χL(a)Cφ

(
`2

a2 D,`a′r
)
,

where the first identity follows from Equation (2.21) and Equation (2.5), and
the second using Proposition 2.1.4. Now, the proof is complete.

2.7 Hecke Operators and Euler Products
The eigenfunctions for the Hecke operators T(`) (` ∈NL) correspond naturally
to Dirichlet series having Euler product expansions. These Dirichlet series,
the L-functions of eigenfunctions, will express the connection between Jacobi
forms and elliptic modular forms.
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2.7. Hecke Operators and Euler Products

Definition 2.7.1. A Jacobi form φ ∈ Jk,L is called a Hecke eigenfunction for
the operator T(`) if there exists λ(`,φ) ∈C with

T(`)φ=λ(`,φ)φ.

The number λ(`)=λ(`,φ) known as the eigenvalue of T(`) with corresponding
eigenfunction φ.

Definition 2.7.2. Let φ be a Jacobi form of weight k and index L = (L,β)

which is an eigenfunction of the Hecke operators T(`) for all ` ∈ NL. The
formal L-function of φ in s is defined as follows:

L(s,φ)= ∑
`∈NL

λ(`)`−s. (2.71)

Definition 2.7.3. Let φ be a Jacobi form of weight k and index L = (L,β)

which is an eigenfunction of the Hecke operator T(`) for ` ∈NL. For a pair
(D, r) ∈Supp(L) such that lev(r)D is a square free integer, we set

F(s,D, r,φ) := ∑
`∈NL

Cφ(`2D,`r)`−s. (2.72)

2.7.1 Even Rank Lattices Case

In this subsection we assume that the rank of the lattice L = (L,β) is even.
First, we will study the multiplicative properties of the operator T(`), then
we shall use these multiplicative properties to determine the Euler product
of the L-functions.

According to Theorem 2.6.3, the operator T(`) acts on each φ ∈ Jk,L in
terms of Fourier of coefficients as follows:

CT(`)φ(D, r)= ∑
a|`2,lev(L)D

ak− rk(L)
2 −1χL(a)Cφ

(
`2

a2 D,`a′r
)
, (2.73)

Recall that for any positive integer a we use a′ to denote an integer such that
aa′ ≡ 1 mod lev(L).
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2. Hecke Theory of Jacobi Forms of Lattice Index

Theorem 2.7.4. The Hecke operators T(`) on Jk,L satisfy the following mul-
tiplicative relation:

T(m) ·T(n)= ∑
d|m2,n2

dk− rk(L)
2 −1χL(d)T

(mn
d
)

(2.74)

for every m,n ∈NL.

To prove Theorem 2.7.4 we need the following lemmas.

Lemma 2.7.5. Let m,n ∈NL be coprime positive integers. Then one has

T(m)T(n)= T(mn).

Proof. Let φ ∈ Jk,L. By Equation (2.73) one has

CT(m)(T(n)φ)(D, r)= ∑
a|(m2,∆)

∑
b|(n2,m2∆/a2)

(ab)k2−1χL(ab)Cφ

(n2m2

a2b2 D,nma′b′r
)
,

where k2 = k− rk(L)
2 , and ∆= lev(L)D. First we will prove that

(n2,∆)= (n2,m2∆/a2) (2.75)

for all a|(m2,∆). Clearly if d|(n2,m2∆/a2), then d|m2∆, and as d|n2, we have
(d,m2) = 1. It follows that d | (n2,∆), i.e., (n2,m2∆/a2) | (n2,∆). Conversely,
suppose that d|(n2,∆). Since a | m2 we have (d,a) = 1. Now d|m2∆ = a2 m2∆

a2 ,
and thus d|m2∆

a2 . This shows that (n2,∆)|(n2,m2∆/a2). Thus Equation (2.75)
holds true and (m2n2,∆) = (m2,∆)(n2,∆) = (m2,∆)(n2,m2∆/a2), where the two
factors (m2,∆) and (n2,m2∆/a2) are coprime. Therefore when a runs over
positive divisors of (m2,∆) and b runs over positive divisors of (n2,m2∆/a2),
then ab runs over all positive divisors of (m2n2,∆). This gives

CT(m)(T(n)φ)(D, r)= ∑
g|(m2n2,∆)

gk2−1χL(g)Cφ

(n2m2

g2 D,nmg′r
)= CT(mn)φ(D, r).

Now, the proof is complete.

Lemma 2.7.6. Let r be a positive integer. For a prime p ∈NL one has

T(pr) ·T(p)= T(pr+1)+ pk− rk(L)
2 −1χL(p)T(pr)+ p2(k− rk(L)

2 −1)T(pr−1). (2.76)
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Proof. Let φ ∈ Jk,L. Then, by Equation (2.73), the action of the left-hand
side of Equation (2.76) on φ in terms of Fourier coefficients is given by

CT(pr)(T(p)φ)(D, x)= ∑
a|(p2r ,∆)

ak2−1χL(a)CT(p)φ( p2r

a2 ∆, pra′x)

= ∑
a|(p2r ,∆)

∑
b|(p2, p2r

a2 ∆)

(ab)k2−1χL(ab)Cφ( p2r+2

a2b2 ∆, pr+1a′b′x)

=∑
e

N(e)ek2−1χL(e)Cφ( p2r+2

e2 ∆, pr+1e′x),

where k2 = k− rk(L)
2 , ∆= lev(L)D, and N(e) is the number of ways of writing e

as ab in the preceding sum. If such a decomposition exists then e | p2a and
hence a = e

(e,p2)δ for some integer δ; writing down the conditions on a and
b = e/a we find formula

N(e)= number of divisors δ of
(
∆, p2, e,∆ p2

e , p2r+2

e
)
,

where N(e)= 0 unless e|(∆p2, p2r+2), e2|∆p2r+2. The action of the right-hand
side of Equation (2.76) on φ is given by∑

d|p2r ,p2
dk2−1χL(d)CT(pr+1/d)φ(D, x)

= ∑
d|p2r ,p2

∑
a|(p2r+2/d2,∆)

(ad)k2−1χL(ad)Cφ( p2r+2

a2d2 ∆, pr+1a′d′x)

=∑
e

N"(e)ek2−1χL(e)Cφ( p2r+2

e2 ∆, pr+1e′x),

where now N"(e) counts the decomposition of e as ad satisfying the conditions
in the sum; from e|∆d we find that e

(∆,e) divides d, and writing d as e
(∆,e)δ we

obtain for N"(e) the same formula as for N(e). Thus the action of both sides
of Equation (2.76) are equal and the proof is complete.

Lemma 2.7.7. Let r, s be positive integers. For each prime p ∈NL one has

T(pr)T(ps)= ∑
d|p2r ,p2s

dk− rk(L)
2 −1χL(d)T(pr+s/d)

=
2min(r,s)∑

v=0
pv(k− rk(L)

2 −1)χL(pv)T(pr+s−v). (2.77)
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Proof. We fix r and prove Equation (2.77) inductively for prime powers ps.
It is obvious that Equation (2.77) holds true for s = 0 since T(pr)T(p0)= T(pr).
For s = 1 we refer to Lemma 2.7.6. Assume that s ≥ 2 and Equation (2.77)
has been proven for 1, p, · · · , ps. We want to prove it for ps+1. By definition of
T(ps+1) and Lemma 2.7.6

T(pr)T(ps+1)=T(pr)T(ps)T(p)− pk2−1χL(p)T(pr)T(ps)

− p2(k2−1)T(pr)T(ps−1),

where k2 = k− rk(L)
2 . By inductive hypothesis we obtain

T(pr)T(ps+1)=
min(2r,2s)∑

v=0
pv(k2−1)χL(pv)T(pr+s−v)T(p)

− pk2−1χL(p)
min(2r,2s)∑

v=0
pv(k2−1)χL(pv)T(pr+s−v)

− p2(k2−1)
min(2r,2s−2)∑

v=0
pv(k2−1)χL(pv)T(pr+s−1−v).

Again, using Lemma 2.7.6, we obtain

T(pr)T(ps+1)=
min(2r,2s)∑

v=0
pv(k2−1)χL(pv)T(pr+s+1−v)

+ p2(k2−1)
min(2r,2s)∑

v>min(2r,2s−2)
pv(k2−1)χL(pv)T(pr+s−1−v).

If s > r, then the second sum in the right-hand of the above equality is empty
and the desired formula follows since min(2r,2s)=min(2r,2(s+1)).

If s ≤ r, then this second sum contains exactly two terms (v ∈ {2s−1,2s}).
Thus

T(pr)T(ps+1)=
min(2r,2s)∑

v=0
pv(k2−1)χL(pv)T(pr+s+1−v)

+ p(2s+1)(k2−1)χL(p)T(pr−s)+ p(2s+2)(k2−1)T(pr−s+1)

=
min(2r,2(s+1))∑

v=0
pv(k2−1)χL(pv)T(pr+s+1−v)

which is what we wanted.
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2.7. Hecke Operators and Euler Products

Proof of Theorem 2.7.4. Let m =∏p pr and n =∏p ps be the expressions as
powers of prime numbers. Then by Lemma 2.7.5

∑
d|m2,n2

dk− rk(L)
2 −1χL(d)T

(mn
d
)=∏

p

(2min(r,s)∑
v=0

pv(k− rk(L)
2 −1)χL(pv)T(pr+s−v)

)
.

Therefore we have only to prove Theorem 2.7.4 when m and n are powers of
a prime p. For this we refer to Lemma 2.7.7. Now, the proof is complete.

As an easy consequence of this theorem, we obtain an important insight
into the arithmetic proprieties of the eigenfunctions.

Proposition 2.7.8. Let φ be a Jacobi form of weight k and index L = (L,β)

which is an eigenfunction of the Hecke operators T(`) for all ` ∈NL. For each
prime number p ∈NL we set:

gp(φ) :=λ(p)− pk− rk(L)
2 −1χL(p).

The L-function L(s,φ) has the product expansion of the form

L(s,φ)= Llev(L)(s−k+ rk(L)
2 +1,χL)

Llev(L)(2s−2k+rk(L)+2,χ2
L)

∏
p∈NL

p prime

(
1− gp(φ)p−s + p2(k− rk(L)

2 −1−s)
)−1

.

Proof. Since λ(`1) ·λ(`2)=λ(`1`2) if (`1,`2)= 1, we can write

L(s,φ)= ∏
p∈NL, pprime

Lp(s,φ),

where for a prime p, the p-local zeta function of φ is given by

Lp(s,φ)=
∞∑

v=0

λ(pv)
pvs .

One has, using Theorem 2.7.4, the following multiplicative relation:

λ(p) ·λ(pv)=λ(pv+1)+ pk− rk(L)
2 −1χL(p)λ(pv)+ p2(k− rk(L)

2 −1)λ(pv−1).

Thus

λ(p)Lp(s,φ)
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2. Hecke Theory of Jacobi Forms of Lattice Index

=λ(p)+
∞∑

v=1

λ(p)λ(pv)
(pv)s

=λ(p)+
∞∑

v=1

λ(pv+1)
(pv)s + pk− rk(L)

2 −1χL(p)
∞∑

v=1

λ(pv)
(pv)s + p2(k− rk(L)

2 −1)
∞∑

v=1

λ(pv−1)
(pv)s

=λ(p)+ (Lp(s,φ)−1− λ(p)
ps

)
ps + pk− rk(L)

2 −1χL(p)
(
Lp(s,φ)−1

)
+ p2(k− rk(L)

2 −1) p−sLp(s,φ).

Hence

Lp(s,φ)=(1+ pk− rk(L)
2 −1−sχL(p)

)(
1+ pk− rk(L)

2 −1−sχL(p)−λ(p)p−s + p2(k− rk(L)
2 −1−s))−1

=1−p2(k− rk(L)
2 −1−s)

χL(p)2

1−pk− rk(L)
2 −1−s

χL(p)

(
1− (λ(p)− pk− rk(L)

2 −1χL(p)
)
p−s + p2(k− rk(L)

2 −1−s))−1

as stated in the proposition.

Theorem 2.7.9. For each r ∈ L# and D ≤ 0 such that D ≡ β(r) mod Z and
lev(r)D is a square-free integer. Setting k2 := k− rk(L)

2 , one has( ∑
`|lev(L)D

(`,lev(L))=1

χL(`)`k2−1−s
) ∑

`≥1
(`,lev(L))=1

Cφ

(
`2D,`r

)
`−s

= Cφ(D, r)
∏

p-lev(L)

1+χL(p)pk2−1−s

1− (λ(p)− pk2−1χL(p)
)
p−s + p2(k2−1−s)

.

The products are over all primes p not dividing lev(L).

Proof. According to Theorem 2.6.3 if lev(r)D is square-free, we have∑
a|`,lev(L)D

ak− rk(L)
2 −1χL(a)Cφ

(
`2

a2 D,`a′r
)=λ(`)Cφ(D, r). (2.78)

Thus by Definition 2.7.2 of the Lfunction of φ , one has

Cφ(D, r)
∑
`∈NL

λ(`)`−s = ∑
`∈NL

∑
a|`

ak− rk(L)
2 −1χL(a)δ(a | lev(L)D)Cφ

(
`2

a2 D, `a r
)
`−s

=
( ∑
`∈NL

`k− rk(L)
2 −1χL(`)δ(` | lev(L)D)`−s

)( ∑
`∈NL

Cφ

(
`2D,`r

)
`−s
)
.

Now, Proposition 2.7.8,which describes L(s,φ) as an Euler product, completes
the proof.
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2.7. Hecke Operators and Euler Products

Remark 2.7.10. If we think of an elliptic modular form of weight k2 =
k− rk(L)

2 , with nebentypus, say, χLξ, and with Hecke eigenvalues γ(`), then∑
` ξ(`)γ(`2)`−s (taken over all ` coprime to lev(L)) equals L(φ, s) if we replace

λ(p) by ξ(p)γ(p2). This suggests, for each ξ and suitable levels m, the existence
of maps from M

k− rk(L)
2

(m,χLξ) to Jk,L such that T(`2) on the left corresponds to
ξ(`)T(`) on the Jacobi form side. We shall construct in this thesis examples
for such maps.

2.7.2 Odd Rank Lattices Case

In this subsection we assume that the rank of the lattice L = (L,β) is odd.

Theorem 2.7.11. The Hecke operators T(`) on Jk,L satisfy the following mul-
tiplicative relation:

T(m) ·T(n)= ∑
d|m,n

d2k−rk(L)−2T
(

mn
d2

)
(2.79)

for every m,n ∈NL.

To prove this theorem we need the following lemmas

Lemma 2.7.12. Let r be a positive integer. For a prime p ∈NL one has

T(pr)T(p)= T(pr+1)+ p2k−rk(L)−2T(pr−1). (2.80)

Proof. The action of the left-hand side of Equation (2.80) in terms of Fourier
coefficients is given by Theorem 2.6.1 as follows:

CT(pr)(T(p)φ)(D, s)=∑
a

∑
b

(ab)k−d rk(L)
2 e−1%(D,a)%( p2r

a2 D,b)Cφ

( p2r p2

a2b2 D, pr p(ab)′r
)
.

In the first sum a runs over all positive divisors of p2r such that a2 | p2r lev(L)D.
In the second sum b runs over all positive divisors of p2 such that b2 |
p2r+2

a2 lev(L)D. We set h := k−d rk(L)
2 e−1, and ∆ := lev(L)D. The previous equation

can be written as
CT(pr)(T(p)φ)(D, s)=Ω1 +Ω2 +Ω3,
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2. Hecke Theory of Jacobi Forms of Lattice Index

where

Ω1 =
∑

a|p2r
ah%(D,a)Cφ

( p2r+2

a2 D, pr+1a′s
)
δ(a2|p2r+2D),

Ω2 =
∑

a|p2r
(ap)h%(D,a)%( p2r

a2 D, p)Cφ

( p2r

a2 D, pra′s
)
δ(a2|p2r∆),

Ω3 =
∑

a|p2r
(ap2)h%(D,a)%( p2r

a2 D, p2)Cφ

( p2r−2

a2 D, pr−1a′s
)
δ(a2|p2r−2∆).

The first sum can be written as Ω1 = CT(pr+1)φ(D, s)− A1 −B1, where

A1 = p(2r+1)h%(D, p2r+1)Cφ

( D
p2r , pr+1(p2r+1)′s

)
δ(p2r|∆),

B1 = p(2r+2)h%(D, p2r+2)Cφ

( D
p2r+2 , pr+1(p2r+2)′s

)
δ(p2r+2|∆).

Also, the third sum Ω3 can be written as Ω3 = A3 +B3 +C3, where

A3 =p(2r+1)h%(D, p2r−1)%( D
p2r−2 , p2)Cφ( D

p2r , pr+1(p2r+1)′s)δ(p2r|∆),

B3 =p(2r+2)h%(D, p2r)%( D
p2r , p2)Cφ( D

p2r+2 , pr+1(p2r+2)′s)δ(p2r+2|∆)

C3 =
∑

a|p2r−2
(ap2)h%(D,a)%( p2r

a2 D, p2)Cφ

( p2r−2

a2 D, pr−1a′s
)
δ(a2|p2r−2∆).

The condition p2r|∆ in A3 implies that %(D, p2r−1)= 0, and then A3 = 0. The
condition a2|p2r−2∆ in C3 implies that ( p2r

a2 ∆, p2)= p2, %( p2r

a2 D, p2)= p, and then
C3 = p2k−rk(L)−2CT(pr−1φ)(D, s). Inserting this into the last formula of Ω3 gives

Ω3 = p2k−rk(L)−2CT(pr−1φ)(D, s)+B3.

In fact, the condition p2r+2|∆ in B3 and B1 implies that %(D, p2r)%( D
p2r , p2) =

pr p = %(D, p2r+2), and then B1 = B3. Thus

CT(pr)(T(p)φ)(D, s)=Ω1 +Ω2 +Ω3

= CT(pr−1φ)(D, s)+ p2k−rk(L)−2CT(pr−1φ)(D, s)+Ω2 − A1.

To complete the proof we still need to show that Ω2 = A1. It is obvious that
both A1 and Ω2 are 0 unless ordp(∆)= 2r. If ordp(∆)= 2r, then the sum over a
in Ω2 contains exactly one term (a = p2r), i.e.,

Ω2 = p(2r+2)h%(D, p2r)%( D
p2r , p)Cφ( D

p2r , pr+1(p2r+1)′s)δ(ordp(∆)= 2r).

Since ordp(∆)= 2r, one has %(D, p2r)%( D
p2r , p)= pr = %(D, p2r+1), and then A1 =

Ω2. The proof is complete.
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Lemma 2.7.13. Let m,n ∈NL be coprime positive integers. Then one has

T(m)T(n)= T(mn).

Proof. We omit the proof, which is similar to the proof of Lemma 2.7.5.

Proof of Theorem 2.7.11. Let m =∏p pr and n =∏p ps be the expressions
as powers of prime numbers. Then by Lemma 2.7.13 one has

∑
d|m,n

d2k−rk(L)−2T
(

mn
d2

)
=∏

p

(min(r,s)∑
v=0

pv(2k−rk(L)−2)T(pr+s−2v)
)
.

Therefore we have only to prove Theorem 2.7.11 when m = pr and n = ps are
powers of a prime p. We fix r and prove inductively for prime powers ps. For
s = 1 we refer to Lemma 2.7.12. Assume that s ≥ 2 and the equation

T(pr)T(ps)=
min(r,s)∑

v=0
pv(2k−rk(L)−2)T(pr+s−2v)

has been proven for 1, p, · · · , ps. We want to prove it for ps+1. One has

T(pr)T(ps+1)= T(pr)
(
T(ps)T(p)− p2k−rk(L)−2T(ps−1)

)
=

min(r,s)∑
v=0

pv(2k−rk(L)−2)T(pr+s−2v)T(p)+ p2k−rk(L)−2
min(r,s−1)∑

v=0
pv(2k−rk(L)−2)T(pr+s−1−2v),

again, by using Lemma 2.7.12, we obtain

T(pr)T(ps+1)=
min(r,s)∑

v=0
pv(2k−rk(L)−2)T(pr+s+1−2v)

+
min(r,s)∑

v>min(r,s−1)
2v+1≤r+s

p(v+1)(2k−rk(L)−2)T(pr+s−1−2v),

where the second sum contains exactly one term (v = s) if r > s, and is empty
otherwise. This gives

T(pr)T(ps+1)=
min(r,s)∑

v=0
pv(2k−rk(L)−2)T(pr+s+1−2v)+ p(s+1)(2k−rk(L)−2)T(pr−s−1)

=
min(r,s+1)∑

v=0
pv(2k−rk(L)−2)T(pr+s+1−2v).

Now, the proof is complete.
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Lemma 2.7.14. Let (D, r) ∈ supp(L). If lev(r)D is a square-free integer, then
for all ` ∈NL we have the following multiplicative relation:

Cφ

(
`2D,`r

)=Cφ(D, r)
∑
a|`

ak−d rk(L)
2 e−1χL(D,a)µ(a)λ(`/a). (2.81)

Proof. By Remark 2.6.2 we have∑
a|`

ak−d rk(L)
2 e−1χL(D,a)Cφ

(
`2

a2 D, `a r
)=λ(`)Cφ(D, r). (2.82)

Now, the claimed formula follows from this via Möbius inversion.

Proposition 2.7.15. Let φ be a Jacobi form of weight k and index L = (L,β)

which is an eigenfunction of the Hecke operators T(`) for all ` ∈NL. One has
the product expansion of the form

L(s,φ)= ∏
p∈NL

p prime

(
1− p−sλ(p)+ p2k−rk(L)−2−2s)−1. (2.83)

Proof. Since λ(m) ·λ(n)=λ(mn) if (m,n)= 1, we can write

L(s,φ)= ∏
p∈NL

p prime

Lp(s,φ),

where for a prime p, the p-local L-function of φ is given by

Lp(s,φ)=
∞∑

v=0
λ(pv)p−vs.

By Theorem 2.7.11, we have

λ(p)Lp(s,φ)

=λ(p)+
∞∑

v=1

λ(p)λ(pv)
pvs

=λ(p)+ ps
∞∑

v=1

λ(pv+1)
p(v+1)s + p(2k−1−rk(L))−1−s

∞∑
v=1

λ(pv−1)
p(v−1)s

=λ(p)+ (−1− λ(p)
ps

)
ps + psLp(s,φ)+ p(2k−1−rk(L))−1−sLp(s,φ).

This gives Lp(s,φ)= (1− p−sλ(p)+ p2(k− rk(L)
2 −1−s))−1, which completes the proof.
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Remark 2.7.16. If the φ in Proposition 2.7.15 lifts to an elliptic modular form
f of weight k1 = 2k−1− rk(L), then L(s,φ) should be (up to a finite number
of Euler factors) the L-series of f . We observe that the right-hand side of
Equation (2.83) has indeed the right shape (compare with Equation (1.8)).

Theorem 2.7.17. Let (D, r) ∈Supp(L) such that lev(r)D is a square-free integer.
One has the following factorization:

Llev(L)
(
s−k+drk(L)/2e+1,χL(D, ·))F(s,D, r,φ)= Cφ(D, r) L(s,φ). (2.84)

Proof. By Lemma 2.7.14 one has

F(s,D, r,φ)= ∑
`∈NL

Cφ(`2D,`r)`−s

=Cφ(D, r)
∑
`∈NL

(∑
δ|`
δk−d rk(L)

2 e−1χL(D,δ)µ(δ)λ(`/δ)
)
`−s,

which can be written using the Dirichlet convolution as

F(s,D, r,φ)=Cφ(D, r)
( ∑
`∈NL

`k−d rk(L)
2 e−1χL(D,`)µ(`)`−s

)( ∑
`∈NL

λ(`)`−s
)

=Cφ(D, r) L(s,φ) Llev(L)
(
s−k+d rk(L)

2 e+1,χL(D, ·))−1.

In the last step we applied the Möbius inversion to pull out the reciprocal of
the Dirichlet L-function.
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Chapter 3

Basis of Simultaneous
Eigenforms

The aim of this chapter is to show that there exist bases of simultaneous
Hecke eigenforms (i.e., bases consisting of functions, which are eigenforms to
all Hecke operators T(`) (` coprime to lev(L))) both of the subspace of Jacobi
cusp forms Sk,L and of the subspace of Jacobi-Eisenstein series Ek,L (to be
defined in section 3.3). To that end we will define a scalar product on Sk,L,
called the Petersson Inner Product, and show that all Hecke operators are
Hermitian with respect to that product. The rest will follow readily via some
linear algebra.

3.1 The Action of the Orthogonal Group
Let L = (L,β) be a positive definite even lattice. Let DL = (L#/L,β) be the
associated discriminant form. The orthogonal group O(DL) consists of all
automorphisms α of L#/L such that β◦α=β.

Proposition 3.1.1. O(DL) acts on Jk,L from left as follows:

(α,φ) 7→W(α)φ,

where, for
φ(τ, z)= ∑

x∈L#/L
hx(τ)ϑL,x(τ, z),
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3. Basis of Simultaneous Eigenforms

we set (
W(α)φ

)
(τ, z) := ∑

x∈L#/L
hα(x)(τ)ϑL,x(τ, z).

Proof. We prove, first of all, that W(α)φ is a Jacobi form of weight k and
index L = (L,β). The action of W(α) maps the collection of tuples (hx)x∈L#/L

into itself by the permutation
(
hx
)
x∈L#/L 7→ (hα(x)

)
x∈L#/L. Since β◦α = β, it is

clear that the matrix representations in Proposition 2.4.9 are preserved
under this permutation, i.e., for each α ∈O(DL)(

W(α)φ
)
(τ, z)= ∑

x∈L#/L
hα(x)(τ)ϑL,x(τ, z)

is a Jacobi form of weight k and index L = (L,β). Next, we prove the group
axioms. Let 1 ∈O(DL) denote the trivial automorphism. It is clear that(

W(1)φ
)
(τ, z)=φ(τ, z).

For α,γ ∈O(DL) we have (
W(α)

(
W(γ)φ

))
(τ, z)

= ∑
x∈L#/L

hα(γ(x))(τ)ϑL,x(τ, z)

= ∑
x∈L#/L

h(αγ)(x)(τ)ϑL,x(τ, z)

= (W(αγ)φ
)
(τ, z).

Now, the proof is complete.

Theorem 3.1.2. The action of the orthogonal group on the vector space of
Jacobi forms commutes with the action of the Hecke operators T(`) (` ∈NL),i.e.,

T(`)
(
W(α)φ

)=W(α)
(
T(`)φ

)
(φ ∈ Jk,L)

for all ` ∈NL and α ∈O(DL).

Proof. For each pair (D, x) ∈ supp(L) we have the identity CW(α)φ(D, x) =
Cφ(D,α(x)). If rk(L) is even, one has

CW(α)(T(`)φ)(D, x)= CT(`)φ(D,α(x))
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= ∑
a|gcd(`2,lev(L)D)

ak−1− rk(L)
2 χL(a)Cφ

(
`2

a2 D,`a′α(x)
)

= ∑
a|gcd(`2,lev(L)D)

ak−1− rk(L)
2 χL(a)CW(α)φ

(
`2

a2 D,`a′x
)

= CT(`)(W(α)φ)(D, x).

The case of odd rank lattices can be proved exactly in the same way, so we
will omit its proof.

3.2 Jacobi Cusp Forms and Hecke Operators
For τ ∈H, z ∈ L⊗ZC, let τ = u+ iv and z = x+ i y be the decompositions into
real and imaginary parts. We define a volume element on H× (L⊗ZC) by

dVL,(τ,z) := v−rk(L)−2dudvdxdy.

The volume element dVL,(τ,z) is invariant under the action of JL(Q) on H×
(L⊗ZC) (see e.g. [Zie89, p. 202]).

Definition 3.2.1. Let φ and ψ be
∣∣
k,L-invariant under a subgroup Λ of JL(Z)

of finite index. We set

ωφ,ψ(τ, z) :=φ(τ, z)ψ(τ, z)vke−4πβ(y).v−1
. (3.1)

Lemma 3.2.2. One has ω
φ
∣∣

k,L g,ψ
∣∣

k,L g
(τ, z) = ωφ,ψ(g(τ, z)) for all g ∈ JL(Q). In

particular the function ωφ,ψ(τ, z) is Λ-invariant (i.e., ωφ,ψ(M(τ, z))=ωφ,ψ(τ, z)

for all M ∈ Λ).

Proof. See e.g. [Bri04, Lemma 2.23].

Definition 3.2.3. We set

FJL(Z) =
{
(τ, z) ∈H×(L⊗C) | τ ∈ FΓ, z in a fundamental mesh for L⊗C/τL+L

}
/
{
(τ, z) 7→ (τ,−z)

}
,

where
FΓ := {τ ∈H | −1/2≤Reτ≤ 1/2, and |τ| ≥ 1}

denotes the classical fundamental domain for the operation of Γ=SL2(Z).
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Lemma 3.2.4. FJL(Z) is a fundamental domain of the action of JL(Z) on
H× (L⊗ZC)

Proof. See e.g. [Bri04, Remark 2.25].

Definition 3.2.5. Let φ and ψ be
∣∣
k,L-invariant under a subgroup Λ of finite

index in JL(Z). Suppose that φ or ψ is a cusp form. We define the Petersson
scalar product of φ and ψ with respect to Λ by

<φ,ψ>Λ:= 1
[JL(Z):Λ]

∫
FΛ

ωφ,ψ(τ, z)dVL,(τ,z), (3.2)

where FΛ denotes a fundamental domain of the action of Λ on H× (L⊗ZC).

Remark 3.2.6. Writing JL(Z)=∪MΛM as decompositions into classes, then

<φ,ψ>Λ= 1
[JL(Z):Λ]

∑
M∈Λ\JL(Z)

∫
MFJL(Z)

ωφ,ψ(τ, z)dVL,(τ,z). (3.3)

Proposition 3.2.7. The integral in (3.2) is absolutely convergent. The scalar
product (3.2) does not depend on the choice of the fundamental domain FΛ.
Moreover, the scalar product (3.2) is positive definite.

Proof. See e.g. [Zie89, p 202-203].

Proposition 3.2.8. The scalar product (3.2) does not depend on the choice
of Λ, i.e., if Λ′ is another subgroup of finite index in JL(Z) such that φ and ψ

are
∣∣
k,L-invariant under Λ′, then

<φ,ψ>Λ=<φ,ψ>Λ′ .

Proof. Let FΛ∪Λ′ be a fundamental domain of the action of Λ∪Λ′. Write
Λ∪Λ′ =∪vΛMv =∪v′Λ

′Mv′ as decompositions into classes. Then

FΛ :=⋃
v

MvFΛ∪Λ′ , FΛ′ :=⋃
v′

Mv′FΛ∪Λ′

are fundamental domains of the action of Λ and Λ′ respectively. This gives

<φ,ψ>Λ= 1
[JL(Z) :Λ]

∫
FΛ

ωφ,ψ(τ, z)dVL,(τ,z)
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= 1
[JL(Z) :Λ]

∑
v

∫
MvFΛ∪Λ′

ωφ,ψ(τ, z)dVL,(τ,z)

= [Λ∪Λ′ :Λ]
[JL(Z) :Λ]

[JL(Z) :Λ∪Λ′]
[JL(Z) :Λ∪Λ′]

∫
FΛ∪Λ′

ωφ,ψ(τ, z)dVL,(τ,z)

= 1
[JL(Z) :Λ∪Λ′][Λ∪Λ′ :Λ′]

∑
v′

∫
Mv′FΛ∪Λ′

ωφ,ψ(τ, z)dVL,(τ,z)

= 1
[JL(Z) :Λ′]

∫
FΛ′

ωφ,ψ(τ, z)dVL,(τ,z)

=<φ,ψ>Λ′

which completes the proof.

Definition 3.2.9 (Notation). Since <φ,ψ>Λ does not depend on the choice
of Λ (see Proposition 3.2.8), we often write it simply <φ,ψ>.

Proposition 3.2.10. Let

φ= ∑
x∈L#/L

hxϑL,x , ψ= ∑
x∈L#/L

gxϑL,x

be two Jacobi forms in Jk,L and at least one of φ and ψ is a cusp form, then

<φ(τ, z),ψ(τ, z)>= 2− rk(L)
2
(
det(L)

)−1
2
∫

SL2(Z)\H

∑
x∈L#/L

hx(τ)gx(τ)vk− rk(L)
2 −2dudv.

(3.4)

In other words, the Petersson scalar product of φ andψ is equal (up to constant)
to the Petersson product in the usual sense of the vector-valued modular forms
~h = (hx)x∈L#/L and ~g = (gx)x∈L#/L of weight k− rk(L)

2 .

Remark 3.2.11. Note that∑x∈L#/L hx(τ)gx(τ)vk− rk(L)
2 −2 is invariant under SL2(Z),

which follows from the fact the Weil representation ρL is unitary.

Proof of Proposition 3.2.10. In the scalar index case, a proof can be found
in [EZ85, P.61]. For the higher-rank case, one can prove (using the computa-
tions in [BK93, P.504]) the following statement: in a fixed fiber (τ ∈H fixed),
the scalar product of ϑL,µ,ϑL,λ (µ,λ ∈ L#/L) is equal to∫

(L⊗ZC)
/

(L+τL)
ϑL,µ(τ, z)ϑL,λ(τ, z)e−4πβ(y).v−1

dxdy
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3. Basis of Simultaneous Eigenforms

= 2− rk(L)
2
(
det(L)

)−1
2 v

rk(L)
2 δ(µ−λ ∈ L). (3.5)

Hence, the proposition immediately follows from the above statement.

Now, we state the main results of this section.

Theorem 3.2.12. Let φ and ψ be Jacobi forms of weight k and index L = (L,β)

such that one of them at least is a Jacobi cusp form. Then for each ` ∈NL we
have

< T(`)φ,ψ>JL(Z)=<φ,T(`)ψ>JL(Z) . (3.6)

Theorem 3.2.13. The space of Jacobi cusp forms Sk,L has a basis of simul-
taneous eigenforms for all operators T(`) and all operators W(α) (` ∈NL,α ∈
O(DL)).

The rest of this section deals with the proof of the theorems. For that, we
need the following lemmas:

Lemma 3.2.14. Let g ∈ JL(Q). Assuming that φ,ψ,φ
∣∣
k,L g,ψ

∣∣
k,L g−1 are

∣∣
k,L-

invariant under a subgroup Λg of finite index in JL(Z). Then

<φ∣∣k,L g,ψ>Λg=<φ,ψ
∣∣
k,L g−1 >Λg .

Proof. Recall that the Petersson scalar product of φ,ψ is independent of the
choice of the fundamental domain (see Proposition 3.2.7). Thus

<φ∣∣k,L g,ψ>Λg=
1

[JL(Z) :Λg]

∫
FΛg

ω
φ
∣∣

k,L g,ψ
(τ, z) dVL,(τ,z)

= 1
[JL(Z) :Λg]

∫
g−1FΛg

ω
φ
∣∣

k,L g,ψ
(g−1(τ, z)) dVL,g−1(τ,z).

The volume element dVL,(τ,z) is invariant under the action of JL(Q) (see e.g.
[Zie89, p. 202]). Using this and Lemma 3.2.2 we obtain

<φ∣∣k,L g,ψ>Λg=
1

[JL(Z) :Λg]

∫
FΛg

ω
φ,ψ
∣∣

k,L g−1(τ, z) dVL,(τ,z) =<φ,ψ
∣∣
k,L g−1 >Λg .

The proof is complete.
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3.2. Jacobi Cusp Forms and Hecke Operators

Lemma 3.2.15. Let g ∈ JL(Q). Then JL(Z) and JL(Z)∩ g−1JL(Z)g are com-
mensurable.

Proof. One has

JL(Z)gJL(Z)= ⋃
s∈(JL(Z)∩g−1 JL(Z)g)\JL(Z)

JL(Z)gs

as a disjoint union, and

[JL(Z) : JL(Z)∩ g−1JL(Z)g]= #
(
JL(Z)\JL(Z)gJL(Z)

)
.

Write g = (A, x). Let γ : JL(Z)gJL(Z)→ΓAΓ be the canonical map (M,h) 7→ M,
and let γ∗ : JL(Z)

∖
JL(Z)gJL(Z) → Γ

∖
ΓAΓ be the induced map. Each class

in the fibre γ−1∗ (SL2(Z)M) has a representative of the form (M, xB1 h), where
h ∈ HL(Z) and B1 ∈ A−1ΓM∩Γ. Write x = (λ,µ,ξ). Let N be a positive integer
such that (Nλ, Nµ,1) ∈ HL(Z), ` ∈N such that `M ∈GL2(Z), let B2 ∈ A−1ΓM∩Γ
with B1 ≡ B2 mod `N, then
(
M, xB1 h

)(
M, xB2 h

)−1 = (1,(xB1(xB2)−1)M−1)= (1,(λ,µ,1)(B1−B2)M−1) ∈ JL(Z).

Thus (M, xB2 h) is also a representative of the same coset. The number of
such possibilities mod `N is finite since A−1ΓM∩Γ mod `N⊆ SL2(Z/`NZ). Let
M ∈Γ∖ΓAΓ, B ∈ A−1ΓM∩Γ, and h1,h2 ∈ HL(Z). The two classes JL(Z)(M, xBh1)

and JL(Z)(M, xBh2) are equal if and only if

h1 ≡ h2 mod
(
(M, xB)−1HL(Z)(M, xB)

)
∩HL(Z).

Hence in the view of the well-known fact that Γ
∖
ΓAΓ is finite, and A−1ΓM∩

Γ mod `N is finite, it is enough to show that

(HL(Z)∩ (M, xB)−1HL(Z)(M, xB))\HL(Z)

is finite. But this is immediate, since{
(`Nλ,`Nµ,1)

∣∣ λ,µ ∈ L
}
⊆ HL(Z)∩ ((M, xB)−1HL(Z)(M, xB)

)
.

Now, the proof is complete.
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3. Basis of Simultaneous Eigenforms

Proof of Theorem 3.2.12. By Definition 2.5.7, the operator T(`) can be
written as a linear combination of the double coset Hecke operator T0 (`), so
it suffices to prove that

< T0 (`)φ,ψ>JL(Z)=<φ,T0 (`)ψ>JL(Z) . (3.7)

For each g ∈ JL(Z)\JL(Z)
(
`−1 0
0 `

)
JL(Z) we set Λg := (g−1JL(Z)g)∩ (gJL(Z)g−1)∩

JL(Z). By Lemma 3.2.15 we conclude that Λg is a subgroup of finite index
in JL(Z). Moreover, by [Zie89, Lemma 1.4], we see that φ, ψ, φ

∣∣
k,L g, ψ

∣∣
k,L g−1

are
∣∣
k,L-invariant under Λg. The intersection

Λ= ⋂
g∈JL(Z)\JL(Z)

(
`−1 0
0 `

)
JL(Z)

Λg

is a subgroup of finite index in JL(Z). This gives

< T0 (`)φ,ψ>JL(Z) =< T0 (`)φ,ψ>Λ
= `k−2−rk(L) ∑

g∈JL(Z)\JL(Z)
(
`−1 0
0 `

)
JL(Z)

<φ∣∣k,L g,ψ>Λ

= `k−2−rk(L) ∑
g∈JL(Z)\JL(Z)

(
`−1 0
0 `

)
JL(Z)

<φ,ψ
∣∣
k,L g−1 >Λ

=<φ,`k−2−rk(L) ∑
g∈JL(Z)\JL(Z)

(
`−1 0
0 `

)
JL(Z)

ψ
∣∣
k,L g−1 >Λ

=<φ,T0 (`)ψ>JL(Z) .

The first identity follows from the fact that <,> is independent of the choice
of Λ (see Proposition 3.2.8), the second from the bilinearity of <,>, the third
from Lemma 3.2.14, the fourth from the anti-linearity of <,> in the second
argument, the last from the fact that JL(Z)

(
`−1 0
0 `

)
JL(Z)=JL(Z)

(
` 0
0 `−1

)
JL(Z).

Thus for each ` ∈NL, the operators T0(`) T(`) is a self-adjoint operator with
respect to the Petersson scalar product.

We recall a lemma from basic linear algebra.

Lemma 3.2.16. Let V be a finite-dimensional complex vector space equipped
with a positive definite Hermitian form <,>.
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1. Let f : V → V be a linear map which is Hermitian; in other words, if
v,w ∈ V then <f(v),w> = <v, f(w)>. Then V has a basis consisting of
eigenvectors for f .

2. Let f1, f2, · · · be a sequence of Hermitian operators sending V to V which
commute with each other. Then V has a basis consisting of vectors that
are eigenvectors for all of the f i.

Proof of Theorem 3.2.13. It is known from [BS14] that the space Sk,L is a
finite-dimensional Hilbert space under the Petersson scalar product. If α ∈
O(DL), then the action of W(α) permutes the functions hx (x ∈ L#/L). It follows
from Proposition 3.2.10 that W(α) is Hermitian. Also by Theorem 3.2.12,
we see if ` ∈NL then T(`) is Hermitian with respect to the Petersson scalar
product. Therefore, we can apply Lemma 3.2.16 to the set of T(`) (` ∈NL) and
to the set of W(α) (α ∈O(DL)). The first part of Lemma 3.2.16 says that there
exist eigenforms which form an orthonormal basis for Sk,L. These need not be
simultaneous eigenforms for all T(`),W(α). However, since the operators T(`)

(resp. W(α)) commute with each other, the second part of Lemma 3.2.16 shows
that Sk,L has an orthonormal basis consisting of simultaneous eigenforms.
Each of these can be multiplied by a constant factor to get a new basis of
simultaneous normalized eigenforms.

3.3 Jacobi-Eisenstein Series and Hecke
Operators

As in the usual theory of modular forms, we will obtain an example of the
Jacobi form of lattice index by constructing Jacobi-Eisenstein series.

Let L = (L,β) be an even positive definite lattice over Z. Recall that each
φ ∈ Jk,L has Fourier expansion

φ(τ, z)= ∑
(D,r)∈supp(L)

Cφ(D, r)e
(
nτ+β(r, z)

)
(τ, z) ∈ h× (L⊗ZC).
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3. Basis of Simultaneous Eigenforms

The Jacobi form φ is called a cusp form if Cφ(0, r)= 0 for all r such that β(r) ∈Z.
By Sk,L as before, we mean the subspace of Jacobi forms in Jk,L consisting of
cusp forms.

Definition 3.3.1. Let DL be the associated discriminant form with L. We
set

Iso
(
DL
)

:= {x ∈ L#/L
∣∣ β(x) ∈Z} .

Definition 3.3.2. For r ∈ L#, we set

gL,r(τ, z) := e
(
τβ(r)+β(r, z)

)
. (3.8)

Definition 3.3.3. We set

JL(Z)∞ :=
{((1 n

0 1
)
, (0,µ,1)

)
;n ∈Z,µ ∈ L

}
. (3.9)

Proposition 3.3.4. Let γ∞ = ((a b
0 d
)
, (0,µ,1)

) ∈ JL(Z)∞. For each r ∈ Iso
(
DL
)

and k ∈N, the function gL,r satisfies the following:

gL,r
∣∣
k,Lγ∞ = gL,r (3.10)

gL,r
∣∣
k,L − I2 = (−1)k gL,−r (3.11)

Proof. The following identity proves Equation (3.10):(
gL,r
∣∣
k,Lγ∞

)
(τ, z)= (gL,r

∣∣
k,L A)(τ, z+µ)= gL,r

(
Aτ, z+µ

w(τ)2
)

= gL,r(τ, z+µ)= gL,r(τ, z).

One also has(
gL,r
∣∣
k,L
(−1 0

0 −1
))

(τ, z)= (−1)ke
(
τβ(r)+β(r,−z)

)= (−1)k gL,−r(τ, z)

which proves Equation (3.11).

Definition 3.3.5 (Jacobi-Eisenstein series). Let k ∈N with k > rk(L)
2 +2. For

r ∈ Iso
(
DL
)
we define the Jacobi-Eisenstein series of weight k and index L as

follows:
Ek,L,r := 1

2

∑
γ∈JL(Z)∞\JL(Z)

gL,r
∣∣
k,Lγ. (3.12)

74



3.3. Jacobi-Eisenstein Series and Hecke Operators

Proposition 3.3.6. For each r ∈ Iso
(
DL
)
, k ∈ N with k > rk(L)

2 +2, the series
Ek,L,r is absolutely uniformly convergent on compact sets.

Proof. See e.g. [BK93, P.503].

Lemma 3.3.7. The sum in Equation (3.12) is independent of the choice of
coset representatives for JL(Z)∞\JL(Z).

Proof. Let γ∞ ∈ JL(Z)∞,γ ∈ JL(Z). One has

gL,r
∣∣
k,Lγ∞γ= gL,r

∣∣
k,Lγ∞

∣∣
k,Lγ= gL,r

∣∣
k,Lγ.

Hence, each term in Equation (3.12) does not depend on the choice of the
representative, but only on the JL(Z)∞-orbit of γ.

Proposition 3.3.8. The series Ek,L,r given by Definition 3.3.5 transforms like
a Jacobi form of weight k and index L. Moreover, one has Ek,L,r = (−1)kEk,L,−r.

Proof. Any A ∈ JL(Z) permutes JL(Z)∞\JL(Z) by right multiplication, i.e. the
map

ψ : JL(Z)∞\JL(Z)→ JL(Z)∞\JL(Z), JL(Z)∞γ 7→ JL(Z)∞γA

is bijective. Thus one has

Ek,L,r
∣∣
k,L A =1

2

∑
γ∈JL(Z)∞\JL(Z)

gL,r
∣∣
k,LγA

=1
2

∑
γA∈JL(Z)∞\JL(Z)

gL,r
∣∣
k,LγA

=Ek,L,r.

Hence, Ek,L,r transforms like a Jacobi form of weight k and index L. The
equality Ek,L,r = (−1)kEk,L,−r follows from Equation (3.11).

Proposition 3.3.9. One has

<φ,Ek,L,r >= 0 (3.13)

for all φ ∈ Sk,L.
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Proof. according to [BK93, Lemma 1], there is λk,r ∈C such that<φ,Ek,L,r >=
λk,rCφ(0, r). Since φ is a cusp form, we have Cφ(0, r) = 0. Thus <φ,Ek,L,r >=
0.

To write the Jacobi-Eisenstein series in more explicit form, we need to
find a set of coset representatives for JL(Z)∞\JL(Z). One can take the set{(

A, (λ,0,1)A
)
| A ∈SL2(Z)∞\SL2(Z),λ ∈ L

}
(3.14)

as a complete set of coset representatives for JL(Z)∞\JL(Z) (see [BK93,
P.504]).

Proposition 3.3.10. The series Ek,L,r given by Definition 3.3.5 can be written
in terms of theta series as follows:

Ek,L,r = 1
2

∑
A∈SL2(Z)∞\SL2(Z)

ϑL,r
∣∣
k,L A. (3.15)

Proof. As a set of coset representatives for JL(Z)∞\JL(Z) we take the set
which is given by Equation (3.14). One has

Ek,L,r = 1
2

∑
A∈SL2(Z)∞\SL2(Z)

∑
λ∈L

gL,r
∣∣
k,L(λ,0,1)

∣∣
k,L A.

This can be written, using the definition of the slash operator and Defini-
tion 3.3.1 of the function gL,r, as

Ek,L,r(τ, z)=1
2

∑
A∈SL2(Z)∞\SL2(Z)

∑
λ∈L

e
(
Aτβ(r+λ)+β(r+λ, z

wA(τ)2 )
)
e
(−cβ(z)

wA(τ)2

)
wA(τ)−2k

=1
2

∑
A∈SL2(Z)∞\SL2(Z)

( ∑
λ∈L

gk,L,r+λ
)∣∣

k,L A(τ, z).

Comparing the inner sum with Definition 2.3.2 of the theta series, we see
that ∑λ∈L gk,L,r+λ =ϑL,r. Now, the proof is complete.

Definition 3.3.11. Let φ be a Jacobi form of weight k and index L = (L,β).
The singular term of φ is defined as(

singular-term(φ)
)
(τ, z) := ∑

s∈L#

β(s)≡0 mod Z

Cφ(0, s)e
(
τβ(s)+β(s, z)

)
. (3.16)
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Proposition 3.3.12. The singular term of the series Ek,L,r is given by
(
singular-term(Ek,L,r)

)
(τ, z)= 1

2

(
ϑL,r(τ, z)+ (−1)kϑL,−r(τ, z)

)
= ∑

s∈L#

β(s)≡0 mod Z

CEk,L,r (0, s)e
(
τβ(s)+β(s, z)

)
, (3.17)

where
CEk,L,r (0, s)= 1

2

(
δ(s ≡ r mod L)+ (−1)kδ(s ≡−r mod L)

)
. (3.18)

Remark 3.3.13 (and Definition). If φ ∈ Jk,L, then

φ− ∑
r∈Iso

(
DL
)Cφ(0, r)Ek,L,r ∈ Sk,L.

Thus, in the view of Proposition 3.3.9, we may write

Jk,L = Sk,L ⊕ JEis
k,L,

where JEis
k,L is the Jacobi-Eisenstein subspace of the space of the Jacobi

forms of weight k and index L = (L,β) which consists of all functions Ek,L,r

(r ∈ Iso
(
DL
)
).

Proof of Proposition 3.3.12. As a complete system of coset representa-
tives for SL2(Z)∞\SL2(Z) one takes the set{

A = (a b
c d
) ∈SL2(Z) | (c,d)= 1

}
.

Thus we can split the sum (3.15) into two parts, according to whether c = 0

or not. If c = 0, then these terms give a contribution of the singular term,
which is

singular-term(Ek,L,r)= 1
2

(
ϑL,r + (−1)kϑL,−r

)
.

Now, Definition 2.3.2 of the theta function completes the proof.

Lemma 3.3.14. The dimension of the vector space of the Jacobi-Eisenstein
series is given by

dim JEis
k,L = 1

2

(
|Iso
(
DL
) |+ (−1)k#

{
r ∈ Iso

(
DL
) ∣∣∣ 2r ∈ L

})
. (3.19)
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Proof. If k is even, then Ek,L,r = Ek,L,−r. In this case, the space of Ja-
cobi Eisenstein series is spanned by Ek,L,s where s runs through a set ∆
of representatives for Iso(DL) modulo the action of {±1}. One has |∆| = 1

2#{r ∈
Iso(DL) | 2r 6∈ L}+#{r ∈ Iso(DL) | 2r ∈ L}. If k is odd, then Ek,L,r =−Ek,L,−r, and
Ek,L,r = 0 if 2r ∈ L. In this case, JEis

k,L is spanned by Ek,L,s where s runs through
∆
∖{

r ∈∆ | 2r ∈ L
}
. The linearity independence of the Jacobi theta series im-

plies that singular-term(Ek,L,s) = 1
2

(
ϑL,s + (−1)kϑL,−s

)
, where s is as above, are

linearly independent. Thus Ek,L,s are linearly independent.

Remark 3.3.15. For even k, the dimension formula (3.19) can also be found
in [Bru02, p.26].

Definition 3.3.16 (Notation). For each positive integer F, we use Pr(F) to
denote the set of all primitive Dirichlet characters mod F.

We now state our main results of this section

Definition 3.3.17. Let k ∈N such that k > rk(L)
2 +2. We set

Ek,L,x,ξ := ∑
d∈Z×

Nx

ξ(d)Ek,L,dx.

Here x ∈RIso where RIso is a set of representatives for the orbits in the orbit
space Iso(DL)

/
Z×

lev(L), Nx is the smallest positive integer such that Nxx ∈ L,
and ξ is a primitive Dirichlet character modulo F with F | Nx and ξ(−1)= (−1)k.

Theorem 3.3.18. In the same notations as in Definition 3.3.17, the series
Ek,L,x,ξ, where x runs through the set RIso and ξ runs through all primitive
Dirichlet characters mod F with F | Nx such that ξ(−1)= (−1)k, form a basis
of Hecke eigenforms of JEis

k,L. More precisely, for all ` ∈N with gcd(`, lev(L))= 1,
one has

T(`)Ek,L,x,ξ =λ(`,Ek,L,x,ξ) Ek,L,x,ξ, (3.20)

where

λ(`,Ek,L,x,ξ) :=


σ
ξ,ξ
2k−rk(L)−2(`) if rk(L) is odd,

ξ(`)σ
ξ,χL

k− rk(L)
2 −1

(`2) if rk(L) is even.

Here, for any two Dirichlet characters ξ and χ we set σξ,χk (`) :=∑d|` ξ
(
`
d
)
χ(d)dk.
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Remark 3.3.19. Note that Theorem 3.3.18 is in complete accordance with
Remark 2.7.16 and Remark 2.7.10. More precisely, let N,h be two positive
integers where h ≥ 3. For any two Dirichlet characters ξ modulo u and χ

modulo v such that uv = N and ξχ(−1)= (−1)h and ξ is primitive, we consider
the Eisenstein series

Eξ,χ
h (τ)=

∞∑
n=0

σ
ξ,χ
h−1(n)qn,

where σξ,χh−1(0)= 1
2 L(1−h,χ) or = 0 according to whether u = 1 (ξ is the trivial

character modulo 1) or not. It is known that Eξ,χ
h ∈ Mh(Γ0(N),ξχ) (see e.g.

[DS06, Theorem 4.5.1]).
Let k, x,ξ as in Theorem 3.3.18. We set

S (Ek,L,x,ξ)(τ) := ∑
`∈NL

λ(`,Ek,L,x,ξ)e (`τ) .

Then, for odd rk(L), one has

S (Ek,L,x,ξ)=Eξ,ξ
2k−rk(L)−1 ⊗ϕ,

where ϕ(·) :=
(

lev(L)2

·

)
. Also, for even rk(L), it is obvious that

ξ(`)λ(`,Ek,L,x,ξ)= the `2-th coefficient of E
ξ,χL

k− rk(L)
2

.

To prove Theorem 3.3.18 we need the following lemma:

Lemma 3.3.20. In the same notations as in Definition 3.3.17, one has∑
x∈RIso

∑
F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= dim JEis

k,L. (3.21)

Proof. First, we assume that k is even. If −1 ∈ StabZ×
lev(L)

(x), i.e. if Orb(x)

consists of elements s such that 2s ∈ L, then∑
F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
=ϕ(Nx)= |Orb(x)|.

If −1 6∈StabZ×
lev(L)

(x) (Nx 6= 1,2), then half of the characters are even and half of
them are odd. Thus∑

F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= 1

2ϕ(Nx)= 1
2 |Orb(x)|.
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3. Basis of Simultaneous Eigenforms

We therefore conclude by the Orbit-Stabilizer theorem that∑
x∈RIso

∑
F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= 1

2

∑
x∈RIso
2x 6∈L

|Orb(x)|+ ∑
x∈RIso
2x∈L

|Orb(x)|

= 1
2#
{

x ∈ Iso
(
DL
) ∣∣∣ 2x 6∈ L

}
+#
{

x ∈ Iso
(
DL
) ∣∣∣ 2x ∈ L

}
= 1

2

(
|Iso
(
DL
) |+ (−1)k#

{
x ∈ Iso

(
DL
) ∣∣∣ 2x ∈ L

})
= dim JEis

k,L.

Now, we assume that k is odd. One has ξ(−1) = −1. Since there is no odd
characters modulo 1 or 2, and Nx 6∈ {1,2} (2x 6∈ L). This gives∑

F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= 1

2ϕ(Nx)= 1
2 |Orb(x)|.

We therefore conclude∑
x∈RIso

∑
F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= 1

2

∑
x∈RIso
2x 6∈L

|Orb(x)|

= 1
2#
{

x ∈ Iso
(
DL
) ∣∣∣ 2x 6∈ L

}
= 1

2

(
|Iso
(
DL
) |+ (−1)k#

{
x ∈ Iso

(
DL
) ∣∣∣ 2x ∈ L

})
= dim JEis

k,L.

Now, the proof is complete.

Proof of Theorem 3.3.18. From Lemma 3.3.20 we have∑
x∈RIso

∑
F|Nx

#
{
ξ ∈Pr(F)

∣∣∣ ξ(−1)= (−1)k
}
= dim JEis

k,L.

To prove that the set of series
{
Ek,L,x,ξ

}
x,ξ is a basis for JEis

k,L we still need to
show that they are linearly independent. Recall that each Jacobi-Eisenstein
series Ek,L,x,ξ is determined by its singular-term, which is given by

singular-term
(
Ek,L,x,ξ

)= ∑
d∈Z×

Nx

ξ(d)ϑL,dx,

or equivalently by its Fourier coefficients CEk,L,x,ξ(0, s) (β(s)≡ 0 mod Z), which
are given by

CEk,L,x,ξ(0, s)= ∑
d∈Z×

Nx

ξ(d)CEk,L,dx(0, s)=Ξx,ξ(s), (3.22)
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3.3. Jacobi-Eisenstein Series and Hecke Operators

where

Ξx,ξ(s)=
ξ(d) if s ≡ dx for some d mod Nx with (d, Nx)= 1,

0 otherwise.

It suffices to check the linear independence at the singular-parts. If a linear
combination ∑

ξ,x
gξ,x singular-term

(
Ek,L,x,ξ

)= 0 (gξ,x ∈C),

then the linearity independence of the Jacobi theta series gives∑
F|Nx

∑
ξ∈Pr(F)

gξ,xξ(s)= 0 (sx ∈Orb(x)). (3.23)

Now, let L2(Z×
Nx

,C) the Hilbert space of functions Z×
Nx

→C, with inner prod-
uct 〈g,h〉 = 1

|Z×
Nx

|
∑

g∈Z×
Nx

f (g)h(g). We can view Hom(Z×
Nx

,C×) as a subset of
L2(Z×

Nx
,C). The elements of Hom(Z×

Nx
,C×) are pairwise orthogonal under this

inner product. It follows that Hom(Z×
Nx

,C×) is a linearly independent subset
of L2(Z×

Nx
,C). Thus by the orthogonality relations for such characters we see

that each coefficient gξ,x in Equation (3.23) is 0, which proves the linearly
independent part.

To describe the action of our Hecke operators on this series, recall that
the space of the Jacobi-Eisenstein series is invariant under all operators
T(`) (` ∈NL), since it is the orthogonal complement of Sk,L in Jk,L with respect
to the Petersson scalar product (see Proposition 3.3.6) and the operators
T(`) for ` ∈NL are Hermitian (see Theorem 3.2.12). So to verify Equation
(3.20) it suffices to check the action of the operators on the Fourier coefficient
CEk,L,x,ξ(0, s). Thus, if rk(L) is even, one has

CT(`)Ek,L,x,ξ(0, s)=∑
a|`2

ak− rk(L)
2 −1χL(a)CEk,L,x,ξ

(
0,`a′s

)
=∑

a|`2
ak− rk(L)

2 −1χL(a)ξ(`a′)CEk,L,x,ξ(0, s)

=
( ∑

a|`2
χL(a)ξ(`)ξ

(
`2

a

)
ak− rk(L)

2 −1
)
CEk,L,x,ξ(0, s),
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3. Basis of Simultaneous Eigenforms

where the first identity follows from Theorem 2.6.3, and the second by Equa-
tion (3.22). Similarly, if rk(L) is odd one has

CT(`)Ek,L,x,ξ(0, s)=∑
d|`

d2k−rk(L)−2 CEk,L,x,ξ (0,`gs) ,

where g here is an integer such that gd2 ≡ 1 mod lev(L). Since CEk,L,x,ξ (0,`gs)=
ξ(`g)CEk,L,x,ξ (0, s), one obtains

CT(`)Ek,L,x,ξ(0, s)=
(∑

d|`
ξ(d)ξ

(
`
d
)
d2k−rk(L)−2

)
CEk,L,x,ξ(0, s),

as stated in the theorem.
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Chapter 4

Lifting to Elliptic Modular
Forms

A natural question in view chapter 2 , in particular, Proposition 2.7.15, is
whether we can construct in general a relation between Jacobi forms of
lattice index of odd rank and elliptic modular forms which extends the work
of Skoruppa and Zagier [SZ88] for the case of scalar index. In this chapter
we shall prove certain results which suggest that there should be indeed
such relations.

4.1 Lifting via Shimura Correspondence for
Half Integral Weight

For positive integers N,λ and an even Dirichlet character χ mod 4N let
Sλ+ 1

2
(4N,χ) be the space of cusp forms of weight λ+ 1

2 on Γ0(4N) and char-
acter χ (see Definition 1.1.8). For f (τ) =∑∞

n=0 a f (n)e (nτ) ∈ Sλ+ 1
2
(N,χ) and a

square-free positive integer t, we set

St( f )(τ)=
∞∑

n=1
At(n)e (nτ) , (4.1)

where At(n) is determined by the relation
∞∑

n=1
At(n)n−s = L(s−λ+1,χ(λ)

t )
∞∑

m=1
a f (tm2)m−s, (4.2)
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4. Lifting to Elliptic Modular Forms

and χ(λ)
t (m)= χ(m)

(−1
m

)λ( t
m

)
. Note that χ(λ)

t is a character mod 4Nt.

Theorem 4.1.1 ([Shi73, p. 458],[Niw75, 3]). Suppose f ∈ Sλ+ 1
2
(4N,χ) . Then

St( f ) ∈
M2λ(Γ0(2N),χ2) if λ= 1,

S2λ(Γ0(2N),χ2) if λ> 1.

Moreover, St commutes with Hecke operators, i.e.,

St(T(p2) f )= T(p)St( f ).

Remark 4.1.2. In [Shi73] Shimura proved the cited theorem apart from the
fact that St( f ) has a level 2N, which only conjectured. The latter was proven
by Niwa in [Niw75, 3] and later by Cipra in [Cip83].

We know that every Jacobi form of lattice index has a theta expansion
which implies, for odd rank index, a connection to half integral weight
modular forms. We can try to use the Shimura correspondence for half
integral weight forms to map Jacobi forms of lattice index to modular forms
of integral weight.

Definition 4.1.3. Let L be of odd rank, and k be a positive integer. For
φ ∈ Sk,L, x ∈ L#, and D0 ∈Q such that D0 ≡β(x) mod Z, set

SD0,x(φ) :=
∞∑
`=1

(∑
a|`

ak−d rk(L)
2 e−1χL(D0,a)Cφ

(
`2

a2 D0, `a x
))
e (`τ) .

S
ξ

D0,x(φ) := ∑
s mod Nx

D0≡β(sx) mod Z

ξ(s)
(
SD0,sx(φ)⊗ξ),

with ξ(·) =
(

(−1)kNx
2

·

)
where Nx is the order of x + L ∈ L#/L (Nxx ∈ L), and

SD0,sx(φ)⊗ ξ denotes the function obtained from SD0,sx(φ) by multiplying
its n-th Fourier coefficient by ξ(n).

Theorem 4.1.4. Let the notations be as in Definition 4.1.3. Assume that
2k−rk(L)−1≥ 2, and Nx

2D0 is a square free negative integer. Then S
ξ

D0,x(φ)
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4.1. Lifting via Shimura Correspondence for Half Integral Weight

is an elliptic modular form of weight 2k−1−rk(L) on Γ0(lev(L)Nx
2/2), and, in

fact, a cusp form if 2k−1−rk(L)> 2. Moreover, one has

T(p)S ξ
D0,x(φ)= ξ(p)S ξ

D0,x(T(p)φ) (4.3)

for all primes p with gcd(p, lev(L))= 1.

Proof. By Proposition 2.4.7, φ can be written as a sum

φ(τ, z)= ∑
r∈L#/L

hr(τ)ϑL,r(τ, z),

where
hr(τ)= ∑

D∈Q
(D,r)∈supp(L)

Cφ (D, r)e (−Dτ) .

For x ∈ L#, we set
Fφ(τ) := ∑

s mod Nx

ξ(s)hsx(Nx
2τ). (4.4)

According to Proposition 2.4.7, which gives a closed formula for the Fourier
expansion of hsx, we see that

Fφ(τ)= ∑
D∈Q

( ∑
s mod Nx

(D,sx)∈supp(L)

ξ(s)Cφ(D, sx)
)
e
(−DNx

2τ
)
. (4.5)

Let A = (a b
c d
) ∈Γ0(lev(L)Nx

2). One has

j(A,τ)−2(k− rk(L)
2 )Fφ(Aτ)= j(A,τ)−2(k− rk(L)

2 ) ∑
s mod Nx

ξ(s)hsx
(
Nx

2 aτ+b
cτ+d
)

= j(A,τ)−2(k− rk(L)
2 ) ∑

s mod Nx

ξ(s)hsx
(
BNx

2τ
)
,

where B :=
(

a Nx
2b

c/Nx
2 d

)
∈Γ0(lev(L)). It is obvious that j(A,τ)= j(B, Nx

2τ). Thus

j(A,τ)−2(k− rk(L)
2 )Fφ(Aτ)= ∑

s mod Nx

ξ(s)
(

(−1)k2det(L)

d

)
hasx(Nx

2τ)

=
(

Nx
22det(L)

d

) ∑
s mod Nx

ξ(as)hasx(Nx
2τ)=

(
2det(L)

d

)
Fφ(τ),

where the first identity follows from Theorem 2.3.4 and Proposition 2.3.1,
and the second identity using that ad ≡ 1 mod 4. Thus Fφ defines an element
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4. Lifting to Elliptic Modular Forms

in S
k− rk(L)

2

(
lev(L)Nx

2,ψ
)
, where ψ(·) =

(2det(L)

·

)
(a quadratic character). Set

λ = k−d rk(L)
2 e, t = −Nx

2D0, and ψ(λ)
t (m) = ψ(m)

(−1
m

)λ( t
m

) = ξ(m)χL(D0,m). One
has

S
ξ

D0,x(φ)(τ)= ∑
s mod Nx

(D0,sx)∈supp(L)

ξ(s)
(
SD0,sx(φ)⊗ξ)(τ)

= ∑
s mod Nx

(D0,sx)∈supp(L)

ξ(s)
∞∑
`=1

ξ(`)
(∑

a|`
ak−d rk(L)

2 e−1χL(D0,a)Cφ

(
`2

a2 D0, `a sx
))
e (`τ)

=
∞∑
`=1

(∑
a|`

ak−d rk(L)
2 e−1ψ(λ)

t (a)
∑

s mod Nx
(D0,sx)∈supp(L)

ξ( `a s)Cφ

(
`2

a2 D0, `a sx
))
e (`τ) .

Now, inserting the Fourier expansion of the Fφ as given in Equation (4.5)
gives

S
ξ

D0,x(φ)(τ)=
∞∑
`=1

(∑
a|`

aλ−1ψ(λ)
t (a)cFφ(t `

2

a2 )
)
e (`τ)=St(Fφ)(τ).

Thus by Shimura correspondence (see Theorem 4.1.1), we obtain

S
ξ

D0,x(φ) ∈
M2k−rk(L)−1(Γ0(lev(L)Nx

2/2)) if k = rk(L)+3
2 ,

S2k−rk(L)−1(Γ0(lev(L)Nx
2/2)) if k > rk(L)+3

2 .

Moreover, for each prime integer p ∈NL

T(p)S ξ
D0,x(φ)= T(p)St(Fφ)=St(T(p2)Fφ)=St(Fξ(p)(T(p)φ))= ξ(p)S ξ

D0,x(T(p)φ)

as stated in the theorem.

Remark 4.1.5. In fact, Theorem 4.1.4 supports our expectations. Namely,
if SD0,x takes Jk,L to elliptic modular forms on Γ0(lev(L)/2), then the twisted
version S

ξ
D0,x takes Jk,L to elliptic modular forms on Γ0(Nx

2 lev(L)/2), which
we proved indeed. If in addition, SD0,x commutes with Hecke operators, we
deduce for S

ξ
D0,x the relation (4.3), which is again what we proved.
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4.2. Lifting via Stable Isomorphisms between Lattices

4.2 Lifting via Stable Isomorphisms between
Lattices

For lattices L1 = (L1,β1),L2 = (L2,β2) over Z we define their orthogonal sum
by L1 ⊕L2 := (L1 ⊕L2, f ), where f (x1 ⊕ x2, y1 ⊕ y2)= β1(x1, y1) + β2(x2, y2). If G1

and G2 are Gram matrices associated to L1 and L2 respectively, then the
block sum G1 ⊕G2 is a Gram matrix associated to L1 ⊕L2. Two even lattices
L1 and L2 are said to be stably isomorphic if and only if there exists even
unimodular lattices U1 and U2 such that L1 ⊕U1

∼= L2 ⊕U2.

We shall show in this section that Jacobi form whose index is stably
isomorphic to a rank one even lattice lift to elliptic modular forms. For this
we need the following theorems:

Theorem 4.2.1 ([Nik80, Theorem 1.3.1]). Two even integral lattices L1 and
L2 are stably isomorphic if and only if their discriminant modules DL1 and
DL2 are isomorphic.

Theorem 4.2.2 ([BS14, Theorem 2.3]). Let L1 and L2 be two even positive
definite lattices over Z. Assume that j : DL2

∼=−→ DL1 is an isomorphism of finite
quadratic modules. Then the map

I j : J
k+d rk(L2)

2 e,L2
−→ J

k+d rk(L1)
2 e,L1

given by

φ(τ, z)= ∑
r∈L2

#/L2

hr(τ)ϑL2,r(τ, z) 7→ I j(φ)= ∑
r∈L2

#/L2

hr(τ)ϑL1, j−1(r)(τ, z)

is an isomorphism.

Remark 4.2.3. In terms of Fourier coefficients we have

CI j(φ)(D, s)= Cφ(D, j(s)). (4.6)

Here by abuse of language, we use Cφ(D, j(s)) for Cφ(D, s′), where s′+L =
j(s+L). Recall that Cφ(D, s) depends only D and on s mod L.
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4. Lifting to Elliptic Modular Forms

It is an interesting question whether the isomorphism of Theorem 4.2.2
commutes with Hecke operators. We shall show that is the case.

Theorem 4.2.4. The isomorphism

I j : J
k+d rk(L2)

2 e,L2

∼=−→ J
k+d rk(L1)

2 e,L1
,

which is defined in Theorem 4.2.2, commutes with the Hecke operators T(`),
i.e.,

T(`)I j = I jT(`) (4.7)

for all ` ∈NL.

Proof. Let φ be a Jacobi form of index (L2,β2) and of weight k + d rk(L2)
2 e.

According to Remark 4.2.3 we have the identity

CI j(φ)(D, s)= Cφ(D, j(s)) (4.8)

for all (D, s) ∈ supp(L). We will prove Equation (4.7) for Jacobi forms of even
rank lattices; the case of odd rank lattices can be verified similarly. One has

CI j(T(`)φ)(D, s)=CT(`)φ(D, j(s))

=∑
a

ak−1χL(a)Cφ

(
`2

a2 D,`a′ j(s)
)

=∑
a

ak−1χL(a)CI j(φ)
(
`2

a2 D,`a′s
)

=CT(`)(I j(φ))(D, s).

Here the third identity follows from Equation (4.8).

The main result of this section is the following:

Theorem 4.2.5. If the lattice L = (L,β) is stably isomorphic to the lattice(
Z, (x, y) 7→ det(L)xy

)
, then there is a Hecke-equivariant isomorphism

Jk,L
∼=−−→M2k−1−rk(L)

(
lev(L)/4

)− , (4.9)

where M2k−1−rk(L)
(
lev(L)/4

)
is the Certain Space inside M2k−1−rk(L)

(
lev(L)/4

)
which was introduced in [SZ88, 3], and where the "−" sign denotes the sub-
space of all f ∈M2k−1−rk(L)

(
lev(L)/4

)
such that f |Wlev(L)/4 =−(−1)k/2 f .
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4.2. Lifting via Stable Isomorphisms between Lattices

Proof. Since L = (L,β) is stably isomorphic to the lattice B = (Z, (x, y) 7→
det(L)xy

)
, then according to Theorem 4.2.1 and Theorem 4.2.4, there is an

isomorphism Jk,L
∼=−−→ J

k−d rk(L)
2 e+1,B

which commutes with the action of the
Hecke operators. Now, the result follows by applying the main theorem
of [SZ88] on the vector space J

k−d rk(L)
2 e+1,B

and the fact that in this case
lev(L)= 2det(L).
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Chapter 5

Lifting from Elliptic Modular
Forms

Recall that we use the notation L = (L,β) to denote a positive definite even
lattice over Z. We shall use lev(L), rk(L), and det(L) to denote the level,
the rank, and the determinant of the lattice L, as defined at section 1.2
respectively.

We observed in the previous chapters that the multiplicative properties
of Jacobi forms of weight k and index L are similar to the multiplicative
properties of elliptic modular forms of weight k− rk(L)

2 if the rank rk(L) is
even. In this chapter we will provide some examples of this relation between
the two vector spaces.

The first obvious example is the case of Jacobi forms whose indexes are
unimodular lattices. Let L be unimodular, and φ ∈ Jk,L. The function φ has an
expansion φ(τ, z)= h0(τ)ϑL,0(τ, z), where h0(τ) ∈ M

k− rk(L)
2

(SL2(Z)). The Fourier
expansion of h0 is given by h0(τ) =∑n≥0 ah0(n)e (nτ) , with ah0(n) := Cφ(−n,0).

For every positive integer ` one has

CT(`)φ(−n,0)= ∑
a|`2,n

ak− rk(L)
2 −1Cφ

(−`2

a2 n,0
)= aT(`2)h0

(n).

Namely
(T(`)φ)(τ, z)= (T(`2)h0)(τ)ϑL,0(τ, z)

which support the mentioned expectation.
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5. Lifting from Elliptic Modular Forms

5.1 Jacobi Forms of Prime Discriminant and
Hecke Operators

In this section we assume that the determinant of the lattice L = (L,β) is
an odd prime p. It is known from Lemma 1.2.16 that rk(L) is even and
(−1)

rk(L)
2 p ≡ 1 mod 4. The application a 7→ χ(a) := χL(a)= (ap) defines a Dirichlet

character modulo p. According to Theorem 1.2.3 there is an isomorphism ϕ :

DL
∼=→ (Z/pZ, x 7→ αx2

p ), where α ∈Z with gcd(α, p)= 1. We know from Milgram’s
formula that ∑

x∈L#/L
e
(
β(x)
)=p

p e
(
rk(L)/8

)
. (5.1)

By Lemma 2.1.7, which gives the well-known formula for Gauss sum, the
left-hand side of Equation (5.1) is equal to∑

x∈L#/L
e
(
β(x)
)= χ(α)ε(p)

p
p,

where, as usual, ε(p)=
√(−4

p

)
. Thus we find that e

(
rk(L)/8

)= χ(α)ε(p). In fact,
we obtain the following table for rk(L) modulo 8:

p ≡ 1 mod 4 p ≡ 3 mod 4

χ(α)= 1 0 2
χ(α)=−1 4 6

Table 5.1: rk(L) modulo 8

For a positive even integer k we set k2 := k− rk(L)
2 . We shall explicitly construct

a map
S : Mk2

(
p,χ
)→ Jk,L.

Note that Mk2

(
p,χ
) = 0 unless k is even. The map S will turn out to be

surjective. However, in general, it will not be injective, but we shall see that
we can restrict S to a natural subspace of Mk2

(
p,χ
)
, invariant under all

T(`2), so that we obtain an isomorphism.

Definition 5.1.1. For t ∈ {±1} and k ∈Nwe shall use M t
k

(
p,χ
)
for the subspace

of elliptic modular forms f of integral weight k on Γ0 (p) with nebentypus χ
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5.1. Jacobi Forms of Prime Discriminant and Hecke Operators

whose Fourier expansion is of the form

f (τ)= ∑
n≥0

χ(−n)6=−t

a f (n)qn. (5.2)

It is known that Mk
(
p,χ
) = M+1

k

(
p,χ
)⊕

M−1
k

(
p,χ
)
(see e.g. [BB03, p.3]).

Moreover, it is easy to see that the spaces M±1
k

(
p,χ
)
are invariant under

the action of the Hecke operators T(`2) for all positive integers ` such that
(`, p)= 1.

Theorem 5.1.2. Let k be an even positive integer, and k2 := k− rk(L)
2 . The

applications
f 7→ 1

2

∑
A∈Γ0(p)\SL2(Z)

Θ
∣∣
k,L A, (5.3)

where
Θ(τ, z) := ( f

∣∣
k2

Wp)(τ)ϑL,0(τ, z),

and
φ 7→ (−1)

rk(L)
2 h0|k2Wp, (5.4)

define maps S : Mχ(α)
k2

(
p,χ
)→ Jk,L and Ω : Jk,L → Mχ(α)

k2

(
p,χ
)
respectively. The

maps S and Ω are mutually inverse isomorphisms.

To prove this theorem, we will need the next lemmas.

Lemma 5.1.3. The application Ω defined by Equation (5.4) maps Jk,L to
Mχ(α)

k2

(
p,χ
)
.

Proof. Given φ=∑x∈L#/L hxϑL,x ∈ Jk,L then we deduce by Theorem 2.3.4 that
h0 ∈ Mk2

(
p,χ
)
. Since the Fricke involution is an automorphism of Mk2

(
p,χ
)
,

then h0|k2Wp also belongs to the same vector space. For showing that Ω(φ) is
indeed in the right subspace, we write Wp = S

( p 0
0 1

)
. So that

Ω(φ)(τ)= (−1)
rk(L)

2

(
h0|k2 S|k2

( p 0
0 1

))
(τ).

Applying the transformation laws fromProposition 2.4.9 and Proposition 2.2.8,
we obtain

Ω(φ)(τ)= i
−rk(L)

2 p(k2−1)/2 ∑
x∈L#/L

hx(pτ).
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5. Lifting from Elliptic Modular Forms

Now, inserting the Fourier expansion of the hx as given in Proposition 2.4.7
gives

Ω(φ)(τ)= i
−rk(L)

2 p(k2−1)/2 ∑
n≥0

∑
x∈L#/L

−n/p≡β(x) mod Z

Cφ(−n/p, x)e (nτ) .

Then the n-th Fourier expansion of Ω(φ) is 0 unless there exists an x ∈
L# such that −n/p ≡ β(x) mod Z. But this condition equivalent, in view of
the isomorphism DL ∼= (Z/pZ, t 7→ αt2

p ), to the exists of t ∈ Z such that −n ≡
αt2 mod p, i.e., it is equivalent to

(−n
p

)
=
(
α
p

)
or p | n, i.e. equivalent to

(−n
p

)
6=

−
(
α
p

)
. Thus Ω(φ) ∈ Mχ(α)

k2

(
p,χ
)
.

Lemma 5.1.4. The application S defined by Equation (5.3) is well-defined.
(i.e. the sum on the right does not depend on the choice of the representative
A.)

Proof. For G = (a b
c d
) ∈Γ0(p), one has

Θ
∣∣
k,LG = ( f

∣∣
k2

WpG) ϑL,0
∣∣ rk(L)

2
G.

Now By Theorem 2.3.4 and Proposition 2.3.1 we have

ϑL,0
∣∣ rk(L)

2
G = χ(d)ϑL,0.

Moreover, f
∣∣
k2

WpG = χ(d) f
∣∣
k2

Wp since f
∣∣
k2

Wp is in Mk2

(
p,χ
)
(see preceding

proof.). Now, the identity χ(d)2 = 1 completes the proof.

Proposition 5.1.5. Let k be an even positive integer, k2 := k− rk(L)
2 , and f =∑

n∈Na f (n)e (nτ) ∈ Mk2

(
p,χ
)
. Then S ( f ) ∈ Jk,L. Moreover, if f ∈ Mχ(α)

k2

(
p,χ
)
then

S ( f )(τ, z)= ∑
x∈L#/L

hx, f (τ)ϑL,x(τ, z),

with
hx, f (τ)= ∑

D∈Q,D≤0
D≡β(x) mod Z

CS ( f ) (D, x)e (−Dτ) , (5.5)

where

CS ( f ) (D, x)= i
rk(L)

2 p
1−k2

2

1+δ(x 6∈ L)
a f (−pD).
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5.1. Jacobi Forms of Prime Discriminant and Hecke Operators

Proof. First, we want to show that S ( f ) is a Jacobi form of weight k and
index L. Any B ∈SL2(Z) permutes Γ0(p)\SL2(Z) by right multiplication. That
is, the map

ϕ :Γ0(p)\SL2(Z)→Γ0(p)\SL2(Z) given by Γ0(p)A 7→Γ0(p)AB

is well defined and bijective. So if {A i} is a set of representatives for Γ0(p)\SL2(Z)

then {A iB} is a set of representatives for Γ0(p)\SL2(Z) as well. Thus

S ( f )
∣∣
k,LB = 1

2

∑
AB∈Γ0(p)\SL2(Z)

Θ
∣∣
k,L AB =S ( f ).

Let (λ,µ,1) ∈ HL(Z), the identity

ϑL,0(τ, z+λτ+µ)e
(
τβ(λ)+β(λ, z)

)=ϑL,0(τ, z)

implies that S ( f )
∣∣
k,L(λ,µ,1)=S ( f ). Therefore S ( f ) transforms like a Jacobi

form of weight k and index L = (L,β). Now, we want to prove the claimed
expansion, which also implies the holomorphicity of S ( f ) at infinity. As a
set of representatives for Γ0(p)\SL2(Z) we take the elements(

1 0

0 1

)
, ST j =

(
0 −1

1 j

)
for 0≤ j < p.

Therefore
2S ( f )=Θ+ ∑

j mod p

(
f
∣∣
k2

WpST j)(ϑL,0| rk(L)
2

ST j).
By applying the transformation laws of the Jacobi theta series (see Theo-
rem 2.3.3) and WP ST j =

(−1 − j
0 −p

)
, we obtain

2S ( f )(τ, z)=Θ(τ, z)+ i
rk(L)

2 p− k2
2 − 1

2
∑

j mod p
f
(τ+ j

p
) ∑

x∈L#/L
ϑL,x(τ, z)e

(
jβ(x)

)
=Θ(τ, z)+ i

rk(L)
2 p

1−k2
2
∑

x∈L#/L
ϑL,x(τ, z)

∑
n≥0

−n/p≡β(x) mod Z

a f (n)e
(

nτ
p

)
,

where, in the second identity, we used∑
j mod p

e
(
( n

p +β(x)) j
)
= p δ(− n

p ≡β(x) mod Z).
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5. Lifting from Elliptic Modular Forms

If f ∈ Mχ(α)
k2

(
p,χ
)
then by [Kri91, P.672] one has(

f |k2 Wp
)
(τ)= i

rk(L)
2 p

1−k2
2

∑
n∈N

n≡0 mod p

a f (n)e
(

nτ
p

)
. (5.6)

Inserting this into the last formula for S ( f ) gives

S ( f )(τ, z)= ∑
x∈L#/L

ϑL,x(τ, z)
∑
n≥0

−n/p≡β(x) mod Z

i
rk(L)

2 p
1−k2

2

1+δ(x 6∈ L)
a f (n)e

(
nτ
p

)
.

Now, the proof is complete.

Proof of Theorem 5.1.2. Let f ∈ Mχ(α)
k2

(
p,χ
)
, and let φ ∈ Jk,L with an expan-

sion ∑
x∈L#/L

hx(τ)ϑL,x(τ, z).

By virtue of Lemma 5.1.3 and Proposition 5.1.5 we have only to prove that

S (Ω(φ))=φ and Ω(S ( f ))= f .

By Equation (5.3) and Equation (5.4) we have

S (Ω(φ))= (−1)
rk(L)

2 S (h0|k2Wp)= ∑
x∈L#/L

hx,h0|k2Wp (τ)ϑL,x(τ, z),

where

hx,h0|k2Wp (τ)= (−1)
rk(L)

2 p
1−k2

2
i

rk(L)
2

1+δ(x 6∈ L)

∑
n≥0

−n/p≡β(x) mod Z

ah0|k2Wp (n)e (nτ/p)

= 1
1+δ(x 6∈ L)

∑
n≥0

−n/p≡β(x) mod Z

∑
y∈L#/L

−n/p≡β(y) mod Z

Cφ(−n/p, y)e (nτ/p).

Since det(L) = lev(L) = p is an odd prime and k is even, the condition β(x) ≡
β(y) mod Z is equivalent to Cφ(−n/p, y)= Cφ(−n/p, x). Thus

hx,h0|k2Wp (τ)= #{y ∈ L#/L | β(y)≡β(x) mod Z}
1+δ(x 6∈ L)

hx = hx.

Thus the claimed identity S (Ω(φ))=φ holds true. Also the second claimed
identity Ω(S ( f ))= f holds true since

Ω(S ( f ))= (−1)
rk(L)

2 h0, f |k2Wp = (−1)
rk(L)

2 f |k2Wp
2 = f .

Now, the proof is complete.
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5.1. Jacobi Forms of Prime Discriminant and Hecke Operators

Theorem 5.1.6. The isomorphism S : Mχ(α)
k2

(
p,χ
)→ Jk,L, which is defined

in Theorem 5.1.2, commutes with the action of the Hecke operators. More
precisely, for each f ∈ Mχ(α)

k2

(
p,χ
)
and ` ∈NL, one has

T(`) (S ( f ))=S
(
T(`2) f

)
.

Proof. Using the explicit action of the operator T(`) on Fourier coefficients
(see Theorem 2.6.3, one has

CT(`)S ( f )(D, x)= ∑
a|`2,pD

ak2−1 χL(a)CS ( f )
(
`2

a2 D,`a′x
)
,

where a′ ∈Z with aa′ ≡ 1 mod p, and

CS ( f )
(
`2

a2 D,`a′x
)= i

rk(L)
2 p

1−k2
2

1+δ(`a′x 6∈ L)
a f (− `2

a2 pD) (see Proposition 5.1.5).

Since (`, p)= 1, δ(`a′x 6∈ L) = δ(x 6∈ L). This gives

CT(`)S ( f )(D, x)= i
rk(L)

2 p
1−k2

2

1+δ(x 6∈ L)

∑
a|`2,pD

ak2−1 χL(a)a f (− `2

a2 pD).

Now by using Equation (1.7)), which gives a closed formula for the action of
Hecke operators on modular forms of integral weights in terms of Fourier
coefficients, we obtain

CT(`)S ( f )(D, x)= i
rk(L)

2 p
1−k2

2

1+δ(x 6∈ L)
aT(`2) f (−pD)= CS (T(`2) f )(D, x)

as claimed in the theorem.

Example 5.1.7. Consider the Gram matrix F = (2 1
1 2
)
. One has detF = 3.

The application a 7→ χ(a) := (3a) defines a Dirichlet Character mod 3. Let
L = (Z2, (x, y) 7→ xtF y). One has DL ∼= (Z3, x 7→αx2/3), where α ∈Z with (α,3)= 1.
By Table 5.1 we have χ(α)=+1 (since rk(L)= 2). The vector space M3(3,χ) is
two dimensional as can be easily seen by running the following Sage session

Listing 5.1: Sage input

e = DirichletGroup(3, RationalField()).gen()

M=ModularForms(e,3,prec=20);print M
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5. Lifting from Elliptic Modular Forms

Listing 5.2: Sage output

Modular Forms space of dimension 2, character [-1] and weight 3

over Rational Field

The theta function θ(τ) :=ϑL,0(τ,0)=∑x,y∈Z qx2+xy+y2 is an element of M1(3,χ)

(see Proposition 2.3.1 and Theorem 2.3.4). Clearly A := θ3 ∈ M3
(
3,χ
)
. Also,

by using modular derivative ( see e.g. [Lan76, Sec. 10.5]) we see that
B := θE2−12q d

dqθ ∈ M3
(
3,χ
)

(E2(τ)= 1−24
∑

n≥1σ1(n)qn). The functions A and
B are linearly independent. Since M3

(
3,χ
)
is two-dimensional (see Listing 5.1

and Listing 5.2), A and B form a basis. The first Fourier coefficients of A
and B are

A =1+18q+108q2 +234q3 +234q4 +864q5 +756q6 +900q7+
+1836q8 +2178q9 +O(q10),

B =1−90q−216q2 −738q3 −1170q4 −1728q5 −2160q6 −4500q7

−3672q8 −6570q9 +O(q10),

which can be computed using the following Sage (a computer algebra system
[S+11]) code

Listing 5.3: Sage input

ec = lambda n : sum([d for d in divisors(n) if 1 == gcd(3,d)])

R.<q> = PowerSeriesRing(ZZ)

E = 1 + 12 * sum( [ec(n)*q^n for n in range( 1, 11)]) + O(q^10)

th = sum( q^(x^2+x*y+y^2) for x in range(-19,20) for y in range

(-19,20)) + O(q^10)

E2 = 1 - 24*sum( sigma(n)*q^n for n in range( 1, 11)) + O(q^10)

# Note E*th == th^3

A = th^3

B = -12*(q*th.derivative() - 1/12 * E2*th)

print "A= ",A

print "B= ",B

Listing 5.4: Sage output

A= 1 + 18*q + 108*q^2 + 234*q^3 + 234*q^4 + 864*q^5 + 756*q^6 +

900*q^7 + 1836*q^8 + 2178*q^9 + O(q^10)
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5.1. Jacobi Forms of Prime Discriminant and Hecke Operators

B= 1 - 90*q - 216*q^2 - 738*q^3 - 1170*q^4 - 1728*q^5 - 2160*q^6

-4500*q^7 - 3672*q^8 - 6570*q^9 + O(q^10)

Next, we would like to find the Hecke eigenfunctions with respect to all Hecke
operators T(`) (` ∈N with gcd(`,3) = 1). Let `= 2. For all f =∑n≥1 a f (n)qn ∈
M3
(
3,χ
)
one has

aT(2) f (n)= a f (2n)−4a f (n/2)δ(n is even). (5.7)

Thus we find T(2)A = −3+108q+O(q2), and T(2)B = −3−216q+O(q2). The
matrix M(2) of the action of T(2) satisfies (T(2)A,T(2)B) = (A,B)M(2), i.e.,
M(2) =

(
− 3

2 − 9
2

− 3
2

3
2

)
. The eigenvalues of M(2) are {3,−3}. The normalized eigen-

functions are

e3 := A−B
108 = q+3q2 +9q3 +13q4 +24q5 +27q6 +50q7 +51q8 +O(q9),

e−3 :=3A+B
2 = 1−9q+27q2 −9q3 −117q4 +216q5 +27q6 −450q7 +459q8O(q9).

Of course, by Equation (5.7) for the Hecke action we deduce that

e−3 = 1−9
∑
n≥1

(∑
d|n

d2χ(d)
)
qn, e3 =

∑
n≥1

(∑
d|n

d2χ(n/d)
)
qn.

It is obvious that

f + :=9e3 +e−3 = 1+9
∑
n≥1

(∑
d|n

d2(χ(n/d)−χ(d))
)
qn

=1+54q2 +72q3 +432q5 +270q6 +918q8 +720q9 +O(q10)

is in the subspace M+1
3
(
3,χ
)
, and

f − :=9e3 −e−3 =−1+18
∑
n≥1

(∑
d|n

d2(χ(n/d)+χ(d))
)
qn

=−1+18q+90q3 +234q4 +216q6 +900q7 +738q9 +O(q10)

is in the subspace M−1
3
(
3,χ
)
. Since M3

(
3,χ
) = M+1

3
(
3,χ
)⊕ M−1

3
(
3,χ
)
is two

dimensional, we observe that f ± are Hecke eigenforms for all Hecke opera-
tors T(`) (gcd(`,3) = 1). The corresponding eigenvalue λ(`, f +) of f + equals∑

a|`χ(a)a2 (using Proposition 1.1.11). Now we construct the Jacobi form
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5. Lifting from Elliptic Modular Forms

S ( f +) ∈ J4,L using Proposition 5.1.5. Note that dim J4,L = 1. Thus S ( f +) is a
Hecke eigenfunction for all Hecke operators T(`) (gcd(`,3) = 1) with Hecke
eigenvalues λ(`,S ( f +)) given by the equation

λ(`,S ( f +))CS ( f +)(D,0)= ∑
a|`2

a2χL(a)CS ( f +)
(
`2

a2 D,0
)
.

If we choose D = 0, then CS ( f +)(0,0)= constant ·a f +(0) 6= 0 and

λ(`,S ( f +))= ∑
a|`2

a2χL(a)=λ(`2, f +)

as claimed.

5.2 Operators on the Vector-Valued
Components

In this section we recall the definition of the vector-valued modular forms
associated with Weil representation. Then we define Hecke operators T(`)

on these forms. Next, we relate these operators to the ones which developed
in [BS07]. Again, we shall use L = (L,β) to denote an even positive definite
lattice overZ (see section 1.2), and ρL for theWeil representation ρL : âSL2(Z)→
GL(C[L#/L]) associated with L (see section 2.3).

Definition 5.2.1. A vector-valued function h :H→C[L#/L] is a vector-valued
modular form on âSL2(Z) of weight k ∈ 1

2Z and type ρL if

1. h |k Ã = ρL(Ã)h for all Ã ∈âSL2(Z).

2. f is holomorphic on H and at the cusp ∞.

We shall use Mk(ρL) to denote the vector space of all such vector-valued
modular forms.

Let h ∈ Mk(ρL). We denote the components of h by hx, so that

h = ∑
x∈L#/L

hxδx.
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The invariance of h under |k (
(1 1

0 1
)
,1) implies that e

(
β(x)
)
hx are periodic with

period 1. Thus each hx has a Fourier expansion

hx =
∑

D∈Q
(D,x)∈supp(L)

Ch (D, x)e (−Dτ) . (5.8)

Recall that the vector-valued Jacobi theta series

Θ= ∑
x∈L#/L

ϑL,xδx

is a vector-valued modular form of weight rk(L)
2 and type ρL (see Theo-

rem 2.3.3).
For a positive integer k it is well-known from [BS14] that M

k− rk(L)
2

(ρL) is
isomorphic to Jk,L as C-linear spaces via the correspondence

J · | ΘK : M
k− rk(L)

2
(ρL)→ Jk,L given by h 7→ Jh | ΘK. (5.9)

Definition 5.2.2. Let ` ∈ N such that gcd(`, lev(L)) = 1. We define a Hecke
operator T(`) acting on the vector space M

k− rk(L)
2

(ρL) via

JT(`)h | ΘK := T(`)Jh | ΘK (h ∈ M
k− rk(L)

2
(ρL)). (5.10)

It is obvious from the definition that for all pairs (D, x) ∈ supp(L) one has

CT(`)h (D, x)= CT(`)Jh | ΘK (D, x) , (5.11)

where the Fourier coefficients CT(`)Jh | ΘK (D, x) of the Jacobi form T(`)Jh | ΘK
are given by Theorem 2.6.3 for even rank lattice, and by Theorem 2.6.1 for odd
rank lattice. Moreover, the operator T(`) on M

k− rk(L)
2

(ρL) has a multiplicative
property as in Theorem 2.7.11 for odd rk(L) and as in Theorem 2.7.4 for even
rk(L).

The main result of [BS07] is a well-defined double coset operator acting
on the space of vector-valued modular forms of weight k and type ρL. In the
next lines we will recall their construction briefly and then we shall show
the relation between our Hecke operators T(`) and those operators.
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5. Lifting from Elliptic Modular Forms

In the rest of this section we assume that rk(L) is even. It is well known
that ρL factor through SL2(Z). Moreover, it is trivial on the subgroup Γ(lev(L)).
Recall that the map

ϕ : SL2(Z)/Γ(lev(L))→SL2(Zlev(L)) given by AΓ(lev(L)) 7→ A mod lev(L)

is an isomorphism of groups. Therefore, ρL factor through the finite group
SL2(Zlev(L)). Let N be a positive integer. We set

Q(N)=
{
(M, r) ∈GL2(ZN)×ZN

×;det(M)≡ r2 mod N
}
.

with a product defined component-wise. For (M, r) ∈ Q(N) the assignment
(M, r) 7→ (M

( r 0
0 r
)−1 , r) defines an isomorphism Q(N)∼=SL2(ZN)×ZN

×.

Proposition 5.2.3. Let (M, r) ∈Q(lev(L)). Then (M, r) acts on C[DL] by Weil
representation ρL as follows:

ρL ((M, r)) ·δγ = χL(r)ρL

(
ϕ−1(M

( r 0
0 r
)−1)
)
·δγ

for all γ ∈ DL.

Proof. See [BS07, (3.5)] and [BS07, Proposition 3.3].

Definition 5.2.4 ([BS07, Definition 4.1]). Consider theHecke pair (Q(lev(L)),Γ)

in sense [Shi71]. For each (M, r) ∈Q(lev(L)), the corresponding double cosets
decompose into a finite union of left cosets

Γ(M, r)Γ= ⋃
γ∈Γ\ΓMΓ

Γ(γ, r).

We define the corresponding double coset Hecke operator H (M, r) that is
acting on the vector space of vector-valued modular forms Mk(ρL) by

h
∣∣H (M, r)= ∑

γ∈Γ\ΓMΓ
ρL(γ, r)−1h

∣∣
k,L det(γ)−

1
2γ. (5.12)

Remark 5.2.5. The operatorH (M, r) is exactly the operator T(M, r) in [BS07,
Definition 4.1] but without the normalization term.

Now we are ready to introduce our result:

102



5.2. Operators on the Vector-Valued Components

Theorem 5.2.6. Let L = (L,β) be an even positive definite lattice of even rank.
Let ` ∈N such that (`, lev(L))= 1. For h ∈ Mk(ρL) one has

T(`)h = `k−2 ∑
`′|`

`/`′=�

∑
s|`′

s is square-free

χL(s) h
∣∣H (( (`′/s)2 0

0 1

)
,`′/s
)
. (5.13)

Proof. We omit the proof, which is similar to the proof of Theorem 2.6.3.

Remark 5.2.7. Here, in the last part of this section, we restricted ourselves
to lattices of even rank. A similar treatment for lattices of odd rank can be
done by replacing SL2(Z) with its metaphoric cover âSL2(Z), the double coset
Hecke operator H with the one which is defined in [BS07, 4.21], and χL with
the character which is defined in [McG03, Lemma 4.5].
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Chapter 6

Appendix

6.1 Examples Using the Method of Theta
Blocks

The Fourier expansion of theta blocks can be computed from the Dedekind
eta function

η(τ) := q
1
24
∏
n∈N

(1− qn)= ∑
n∈Z

(24

n

)
qn2

, q = e2πiτ (6.1)

which is a modular form of weight 1
2 with a multiplier system on SL2(Z), and

the Jacobi theta function (a Jacobi form of weight and index 1
2 )

ϑ(τ, z)=∑
r∈Z

(−4

r

)
q

r2
8 ζ

r
2 . (6.2)

Theorem 6.1.1 (The construction method [GSZ]). Let α : L →Zm be an iso-
metric embedding into the m-fold orthogonal sum of Z. Then the function

ϑ(τ,α1(z))ϑ(τ,α2(z)) . . .ϑ(τ,αm(z))η(τ)t (6.3)

defines an element of Jk,L, where αi is the i-th coordinate function of α,t ∈N
such that t+3m ≡ 0 (mod 24), and k = t+m

2 .

Gram Matrix Jacobi form weight(2 1
1 2
)

ϑ(τ, z2)ϑ(τ, z1)ϑ(τ, z1 + z2)η(τ)15 9
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(2 1
1 4
)

ϑ(τ, z2)ϑ(τ, z2)ϑ(τ, z2)ϑ(τ, z1)ϑ(τ, z1 + z2)η(τ)9 7 2 0 0
0 2 0
0 0 2

 ϑ(τ, z3)ϑ(τ, z3)ϑ(τ, z1 + z2)ϑ(τ, z1 − z2)η(τ)12 8

Table 6.1: Examples of Jacobi forms using the method of Theta Blocks

Note that in the first row of Table 6.1 we used the embedding (z1, z2) 7→
(z1, z2, z1+z2), in the second rowwe used the embedding (z1, z2) 7→ (z1, z2, z2, z2, z1+
z2), in the third we used the embedding (z1, z2, z3) 7→ (z3, z3, z1 + z2, z1 − z2).

Lemma 6.1.2. The maximal even sub-lattice Zm
ev in Zm is

Zm
ev =
{
(x1, x2, . . . , xm) |∑

i
xi ∈ 2Z

}
(m ≥ 1). (6.4)

Proof. We observe that Zm
ev is even. Assuming that Zm

ev is not the maximal
even sub-lattice in Zm,i.e., there exists an even lattice such that Zm

ev ⊂ L ⊆Zm.
Let z = (z1, · · · , zm) be an element in L which is not in Zm

ev, i.e.,
∑

i zi is odd.
Then one has ztz = z2

1 +·· ·+ z2
m is odd. This contradicts the assumption that

L is even. Hence, the assumption is false and the lemma is true.

One has|Zm
ev

#/Zm
ev| = 4 (since Zm

ev ⊆index2 Z
m =Zm# ⊆index2 Z

m
ev

#) . As a set of
coset representatives of Zm

ev
#/Zm

ev we take the set

∆=
{
[0]= (0,0, · · · ,0),

[1]= (1
2 , 1

2 , · · · ,−1
2 ),

[2]= (0,0, · · · ,1),

[3]= (1
2 , 1

2 , · · · , 1
2 )
}
.

We have DZm
ev = (Zm

ev
#/Zm

ev,Q : x+Zm
ev 7→ xtx

2 mod Z). Let t ∈N such that t+3m ≡ 0

(mod 24). Set k := t+m
2 . According to Theorem 6.1.1, the product

Θk,Zm
ev(τ, (z1, · · · , zm)) :=ϑ(τ, z1)ϑ(τ, z2) . . .ϑ(τ, zm)η(τ)t (6.5)

belongs to Jk,Zm
ev . It is easy to see that the function Θk,Zm

ev given by Equation
(6.5) has an expansion of the form

Θk,Zm
ev(τ, z)= ∑

x=(x1,··· ,xm)∈ 1
2Z

m
hx(τ)e

(
β(x, z)+β(x)τ

)
,
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where
hx(τ)=

( −4

(2x1)···(2xm)

)
η(τ)t.

Note that Θk,Zm
ev is a cusp form (since hx equal 0 or ±ηt, which are all cusp

forms).
For odd m we observe that

[0]≡0 · [1] mod Zm
ev,

[1]≡1 · [1] mod Zm
ev,

[2]≡2 · [1] mod Zm
ev,

[3]≡3 · [1] mod Zm
ev.

Thus Zm
ev

#/Zm
ev =< [1]>∼=Z4 (By ϕ : [x]+Zm

ev 7→ x+4Z). Moreover, if we endow Z4

with the quadratic form Q : x+4Z 7→ mx2

8 mod Z, then Q ◦ϕ=Q, i.e.,

DZm
ev
∼= (Z4, x+4Z 7→ mx2

8
mod Z) (6.6)

as finite quadratic modules. We consider for each of these odd m (m = 1,3,5,7)
the smallest t ∈N such that t ≡−3m mod 24

m 1 3 5 7
t 21 15 9 3

k = t+m
2 11 9 7 5

2k−m−1 20 14 8 2
dim M2k−m−1(Γ0(2)) 6 4 3 1
dimS2k−m−1(Γ0(2)) 4 2 1 0
dimSnew

2k−m−1(Γ0(2)) 2 2 1 0
dim Jk,Zm

ev 1 1 1 1

Table 6.2

Note that the last line in Table 6.2 is obtained by using Jk,Zm
ev
∼= Mk−m

2

(
(Z4, x+

4Z 7→ −mx2

8 mod Z)
)
(using also Equation (6.6)) and the dimension formula for

the vector-valued modular form as in [ES95, p.12]. (For m = 7 we need an
additional argument, e.g. dim J9,Z7

ev
= 1 and dim J5,Z7

ev
·E4 ⊆ J9,Z7

ev
). Note also
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that Θ5,Z7
ev
is a cusp form, but its hx equal 0 or

hx(8τ)=±η(8τ)3 =±
∞∑

n≥1

(−4

n

)
nqn2

which are "trivial" cusp forms of weight 3/2 in the sense of [Shi73, Proposition
2.2] and therefore, in the view of [Shi73, (c) p.478] and Remark 2.7.16, Θ5,Z7

ev

should lift to an Eisenstein series. This is in complete accordance with the
fact that M2(Γ0(2))=C(E2(τ)−2E2(2τ)).

From Table 6.2 we see that all Θk,Zm
ev (m = 1,3,5,7) are Hecke eigenfunc-

tions. We calculate the first eigenvalues λ(`,Θk,Zm
ev) of T(`):

Table 6.3: The first eigenvalues λ(`,Θk,Zm
ev)

` λ(`,Θ11,Z1
ev

) λ(`,Θ9,Z3
ev

) λ(`,Θ7,Z5
ev

) λ(`,Θ5,Z7
ev

)

1 1 1 1 1

3 −53028 −1836 12 4

5 −5556930 3990 −210 6

7 −44496424 −433432 1016 8

9 1649707317 1776573 −2043 13

11 6320674932 1619772 1092 12

13 −33124973098 −10878466 1382 14

15 294672884040 −7325640 −2520 24

17 −722355252174 60569298 14706 18

19 −1312620671860 −243131740 −39940 20

21 2359556371872 795781152 12192 32

23 3379752742152 −606096456 68712 24

25 11805984696775 −1204783025 −34025 31

27 −25848278533800 −334611000 −50760 40

29 −29378097714810 5258639310 −102570 30

31 131976476089952 −1824312928 227552 32

33 −335172750294096 −2973901392 13104 48

35 247263513418320 −1729393680 −213360 48

Continued on next page
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Table 6.3 – continued from previous page
` λ(`,Θ11,Z1

ev
) λ(`,Θ9,Z3

ev
) λ(`,Θ7,Z5

ev
) λ(`,Θ5,Z7

ev
)

37 −466464103652194 −3005875402 160526 38

39 1756551073440744 19972863576 16584 56

41 1889447681239482 −49704880758 10842 42

43 −4323507451065388 58766693084 −630748 44

45 −9167308081056810 7088526270 429030 78

47 12103384387771536 −42095878032 472656 48

49 −9418963436585367 90974288217 208713 57

51 38305054312282872 −111205231128 176472 72

53 −30593935900444338 −181140755706 −1494018 54

55 −35123548149878760 6462890280 −229320 72

57 69605648987392080 446389874640 −479280 80

59 9908742512283780 206730587820 2640660 60

61 −91638145794467098 −124479015058 827702 62

63 −73406076253134408 −770023588536 −2075688 104

65 184073156757469140 −43405079340 −290220 84

67 −103349440678278244 95665133588 −126004 68

69 −179221528410836256 1112793093216 824544 96

71 285448322456957592 −371436487128 −1414728 72

73 875008267167254042 −1800576064726 980282 74

75 −626047756500584700 2211981633900 −408300 124

77 −281247431740443168 −702061017504 1109472 96

79 −1081394522969090320 1557932091920 −3566800 80

81 −546708732286707639 −2218085399079 3858921 121

83 −665085275193888948 2492790917604 5672892 84

85 4014077571463265820 241671499020 −3088260 108

87 1557861765620944680 −9654861773160 −1230840 120

89 −2020985164277790390 2994235754490 −11951190 90

91 1473942847957201552 4715075275312 1404112 112

93 −6998448574097974656 3349438535808 2730624 128

Continued on next page
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Table 6.3 – continued from previous page
` λ(`,Θ11,Z1

ev
) λ(`,Θ9,Z3

ev
) λ(`,Θ7,Z5

ev
) λ(`,Θ5,Z7

ev
)

95 7294141190078989800 −970095642600 8387400 120

97 −12825578365118067934 4382492665058 8682146 98

99 10427263683698877444 2877643201356 −2230956 156

The first column in Table 6.3 (m = 1) is covered by Theorem 4.2.5, i.e., Θ11,Z1
ev

lift to elliptic modular form f of weight 20 on Γ0(2) with f | W2 = − f . To
determine this f , we use Sage to find the generators of Snew

20 (Γ0(2)). Recall
that the dimSnew

20 (Γ0(2))= 2 (see Table 6.2)

Listing 6.1: Sage input

f,g=Newforms(2,20)

print "f=",f.qexp(12)

print "g=",g.qexp(12)

Listing 6.2: Sage input

f= q - 512*q^2 - 13092*q^3 + 262144*q^4 + 6546750*q^5 + 6703104*q

^6 +96674264*q^7 - 134217728*q^8 - 990861003*q^9 - 3351936000*

q^10 +11799694452*q^11 + O(q^12)

g= q + 512*q^2 - 53028*q^3 + 262144*q^4 - 5556930*q^5 - 27150336*

q^6 -44496424*q^7 + 134217728*q^8 + 1649707317*q^9 -

2845148160*q^10 +6320674932*q^11 + O(q^12)

According to Theorem 1.1.15, the newform f ∈ Snew
20 (Γ0(2)) given by (see List-

ing 6.2)

f (τ)=q+512q2 −53028q3 +262144q4 −5556930q5 −27150336q6 −44496424q7

+134217728q8 +1649707317q9 −2845148160q10 +O(q11)

is a normalized Hecke eigenfunction. We compute its Atkin-Lehner eigen-
value. Again, using Theorem 1.1.15 one has

f |W2 =−21− 20
2 a f (2) f =− f .
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In fact, one has λ(`, f )=λ(`,Θ11,Z1
ev

) for all odd ` as follows from Theorem 4.2.5
and as can be verified numerically by comparing the eigenvalues λ(`, f )= a f (`)

of f with the eigenvalues λ(`,Θ11,Z5
ev

) from Table 6.3.
Recall that if the Θk,Zm

ev lifts to an elliptic modular form f of weight
k1 = 2k − 1− m then L(s,Θk,Zm

ev) = ∑` is odd λ(`,Θk,Zm
ev)`−s should be (up to a

finite number of Euler factors) the L-series of f (see Remark 2.7.16).
• m = 3: The vector space S14(Γ0(2)) is of dimension 2. The generators of

this space are

g1 =q−300q3 +4096q4 −26730q5 +98304q6 −184600q7

+854973q9 −1966080q10 +2042172q11 +O(q12),

g2 =q2 +24q3 −480q5 −300q6 +3888q7 +4096q8

−14400q9 −26730q10 +6600q11 +O(q12),

which can be easily seen by running the following Sage session

Listing 6.3: Sage input

S=CuspForms(2,14,prec=12)

print S

g1,g2=S.gens()

print "g1=",g1

print "g2=",g2

Next, we would like to find the Hecke eigenfunctions with respect to all
Hecke operators T(`) (` ∈ N with gcd(`,2) = 1). Let ` = 3. Using Sage, we
compute the matrix M(3) of the action of T(3), i.e. the matrix M(3) which
satisfies (T(3)g1,T(3)g2)= (g1, g3)M(3). One has

M(3)=
(
−300 98304

24 −300

)
.

The eigenvalues of M(3) are {1236,−1836}, and the corresponding eigenfunc-
tions are

f ± := g1 ±64g2.

The first Fourier coefficients of f + and f − are:

f −(τ) :=q−64q2 −1836q3 +4096q4 +3990q5 +117504q6 −433432q7
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−262144q8 +1776573q9 −255360q10 +1619772q11 +O(q12)

f +(τ) :=q+64q2 +1236q3 +4096q4 −57450q5 +79104q6 +64232q7

+262144q8 −66627q9 −3676800q10 +2464572q11 +O(q12).

In fact, f + , f − ∈ Snew
14 (Γ0(2))(since Sold

14 (Γ0(2))= 0). Also we can verify this by
running the following Sage session

Listing 6.4: Sage input

f_minus,f_plus=Newforms(2,14)

print "f-=",f_minus.qexp(12)

print "f+=",f_plus.qexp(12)

Listing 6.5: Sage input

f-= q - 64*q^2 - 1836*q^3 + 4096*q^4 + 3990*q^5 + 117504*q^6

-433432*q^7 - 262144*q^8 + 1776573*q^9 - 255360*q^10 +

1619772*q^11 +O(q^12)

f+= q + 64*q^2 + 1236*q^3 + 4096*q^4 - 57450*q^5 + 79104*q^6 +

64232*q^7 + 262144*q^8 - 66627*q^9 - 3676800*q^10 + 2464572*q

^11 + O(q^12)

By the implementation of Sage, it is guarantied that f ± =∑n a f ±(n)qn are
simultaneous normalized eigenfunctions for all Hecke operators T(`) with
eigenvalues λ(`, f ±)= a f ±(`).

The function f − has Atkin-Lehner eigenvalue equals 1, and for each odd `
we observe that the eigenvalue λ(`, f −) of f − equals λ(`,Θ9,Z3

ev
) from Table 6.3.

• m = 5: The cuspidal subspace S8(Γ0(2)) is of dimension 1. The genera-
tor of this subspace is f (τ) = η(τ)8η(2τ)8 = q

∏∞
n=1(1− qn)8(1− q2n)8. The first

coefficients of f are

f (τ)=q−8q2 +12q3 +64q4 −210q5 −96q6 +1016q7 −512q8 −2043q9

+1680q10 +1092q11 +O(q12).

Since dimS8(Γ0(2))= 1, the function f is a normalized Hecke eigenfunction
with respect to the operator T(`). In fact, f has Atkin-Lehner eigenvalue
equals 1, and for odd ` the Hecke eigenvalue λ(`, f ) equals λ(`,Θ7,Z5

ev
). This
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can be verified by comparing the eigenvalues λ(`, f ) with λ(`,Θ7,Z5
ev

) from
Table 6.3.

• m = 7: The vector space M2(Γ0(2)) is of dimension 1. The generator of
this space is

f (τ)=24(E2(τ)−2E2(2τ))= 1+24
∑
`≥1

( ∑
d|`

d is odd

d
)
q`

=1+24q+24q2 +96q3 +24q4 +144q5 +96q6 +192q7 +24q8 +312q9

+144q10 +288q11 +O(q12).

The function f has Atkin-Lehner eigenvalue equals −sign(a f (2))=−1. Since
dim M2(Γ0(2))= 1, the function f (τ) is a Hecke eigenfunction with eigenvalues
λ(`, f ) = ∑d|`

(d
4

)
d. In fact, one has λ(`, f ) = λ(`,Θ5,Z7

ev
) for all odd positive

integers ` which can be verified by comparing the eigenvalues λ(`, f ) with
λ(`,Θ5,Z7

ev
) from Table 6.3.

6.1.1 Final remarks
It is obvious that the previous examples support our expectations in sec-
tion 4.1. Namely, that the function SD0,x given by Definition 4.1.3 take Jacobi
cusp forms of weight k and index L (rk(L) is odd) to elliptic modular forms
of weight 2k−1− rk(L) on Γ0(lev(L)/2). In fact, the level is determined by
our examples to be lev(L)/4 instead of lev(L)/2. Moreover, we observe that
the elliptic modular forms that are lifts of Jacobi forms have Atkin-Lehner
eigenvalue equal to −

(rk(L)

2

)
. Thus we conjecture the following:

Conjecture 6.1.3. Let L be a positive definite even odd rank lattice over Z.
Setting εL = −1 if rk(L) ≡ 1 or 3 mod8, and 1 otherwise. There is a Hecke-
equivariant isomorphism

Jk,L
∼=−−→M2k−1−rk(L)

(
lev(L)/4

)εL ,

where M2k−1−rk(L)
(
lev(L)/4

)
is the Certain Space inside M2k−1−rk(L)

(
lev(L)/4

)
which was introduced in [SZ88, 3], and where the "εL" denotes the subspace
of all f ∈M2k−1−rk(L)

(
lev(L)/4

)
such that f |Wlev(L)/4 = εL(−1)k/2 f .
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