Citation link: http://dx.doi.org/10.25819/ubsi/10281
DC FieldValueLanguage
crisitem.author.orcid0000-0002-0465-3696-
crisitem.author.orcid0000-0002-6182-3444-
crisitem.author.orcid0000-0002-3974-8847-
crisitem.author.orcid0000-0002-9292-5064-
crisitem.author.orcid0000-0002-2263-6363-
dc.contributor.authorRemalli, Nagarjuna-
dc.contributor.authorMünch, Mathias-
dc.contributor.authorHasan, Mohsin-
dc.contributor.authorKishore, K Nanda-
dc.contributor.authorStern, Felix-
dc.contributor.authorBaak, Nikolas-
dc.contributor.authorWalther, Frank-
dc.contributor.authorSambandam, Manjini-
dc.contributor.authorKlapprott, Steffen-
dc.contributor.authorRajulapati, Koteswararao V-
dc.contributor.authorBrandt, Robert-
dc.date.accessioned2023-02-22T10:09:25Z-
dc.date.available2023-02-22T10:09:25Z-
dc.date.issued2022de
dc.descriptionFinanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikelde
dc.description.abstractDespite of the well-known fact that high strength steels are exhibiting low temperature creep deformation, its rate controlling mechanism is yet to be understood. The strain hardening theory and the exhaustion creep model were proposed almost seven decades ago to unravel the low temperature creep mechanism in a single phase homogeneous isotropic material. However, their applicability to low temperature creep deformation in a technical material like a modern high strength steel is still a matter of investigation owing to their nature of multi-phase, in-homogeneous, and an-isotropic behavior. The authors have grabbed this chance to experimentally validate the exhaustion creep model based on low temperature creep tests of the SAE 9254 spring steel.en
dc.identifier.doihttp://dx.doi.org/10.25819/ubsi/10281-
dc.identifier.urihttps://dspace.ub.uni-siegen.de/handle/ubsi/2474-
dc.identifier.urnurn:nbn:de:hbz:467-24748-
dc.language.isoende
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Materials Research and Technology ; 21, S. 2309–2315. - https://doi.org/10.1016/j.jmrt.2022.09.131de
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherMartensitic steelen
dc.subject.otherLow temperature creepen
dc.subject.otherExhaustion creep modelen
dc.subject.otherDislocation glideen
dc.subject.otherSlip localizationen
dc.subject.otherStrain induced phase transformationen
dc.subject.otherMartensitischer Stahlde
dc.subject.otherKriechen bei niedriger Temperaturde
dc.subject.otherModell des Erschöpfungskriechensde
dc.subject.otherVersetzungsgleitende
dc.subject.otherLokalisierung von Schlupfde
dc.subject.otherDehnungsinduzierte Phasenumwandlungde
dc.subject.swbMartensitischer Stahlde
dc.subject.swbKriechverhaltende
dc.titleOn the low temperature creep controlling mechanism in a high strength spring steelen
dc.typeArticlede
item.fulltextWith Fulltext-
ubsi.publication.affiliationDepartment Maschinenbaude
ubsi.source.doi10.1016/j.jmrt.2022.09.131-
ubsi.source.issn2214-0697-
ubsi.source.issued2022de
ubsi.source.issuenumber21de
ubsi.source.pagefrom2309de
ubsi.source.pageto2315de
ubsi.source.placeRio de Janeirode
ubsi.source.publisherElsevierde
ubsi.source.titleJournal of materials research and technologyde
ubsi.subject.ghbsZLQde
Appears in Collections:Geförderte Open-Access-Publikationen
Files in This Item:
File Description SizeFormat
On_the_low_temperature_creep_controlling_mechanism.pdf1.51 MBAdobe PDFThumbnail
View/Open

This item is protected by original copyright

Show simple item record

Page view(s)

261
checked on Nov 23, 2024

Download(s)

94
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons