Citation link: https://doi.org/10.1016/j.jmrt.2023.06.175
DC FieldValueLanguage
crisitem.author.orcid0000-0001-8926-2346-
crisitem.author.orcid0000-0003-0896-7083-
dc.contributor.authorKhosravani, Mohammad Reza-
dc.contributor.authorFrohn-Sörensen, Peter-
dc.contributor.authorEngel, Bernd-
dc.contributor.authorReinicke, Tamara-
dc.date.accessioned2023-12-12T08:18:51Z-
dc.date.available2023-12-12T08:18:51Z-
dc.date.issued2023de
dc.descriptionFinanziert aus dem DFG-geförderten Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikelde
dc.description.abstractTechnical advances in additive manufacturing (AM), also known as three-dimensional (3D) printing, have led to applications of this technology in creation of end-use items. Consequently, performance and the mechanical strength of AMed parts have become of significant importance. In this research, fracture behavior and crack propagation of AMed cracked plates are investigated. To this aim, the stereolithography (SLA) technique is used to fabricate square plate specimens with a hole in the center and radial cracks that started at the perimeter of the central hole. Here, full range of mixed-mode fracture (from pure mode I to pure mode II) are obtained by altering the angle between the crack and the applied load. We used the finite element method to determine stress intensity factors. This study deals with a series of experiments on 3D-printed cracked plates to study mixed-mode fracture and crack propagation in brittle fracture of SLA 3D-printed components. Additionally, the digital image correlation technique was used to determine strain field on the surface of the specimens. As SLA is one of the most commonly used concepts in polymer 3D printing and has garnered significant attention for fabrication of complex structural elements, the outcomes of this study are useful for next developments and innovative designs of 3D-printed polymeric components.de
dc.identifier.doihttps://doi.org/10.1016/j.jmrt.2023.06.175de
dc.identifier.urihttps://dspace.ub.uni-siegen.de/handle/ubsi/2571-
dc.identifier.urnurn:nbn:de:hbz:467-25712-
dc.language.isoende
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of materials research and technology ; 25, S. 3177-3188. - https://doi.org/10.1016/j.jmrt.2023.06.175de
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherAdditive manufacturingen
dc.subject.otherMixed mode I/IIen
dc.subject.otherFractureen
dc.subject.otherSLAen
dc.subject.otherDICen
dc.subject.otherAdditive Fertigungde
dc.titleMixed mode brittle fracture of stereolithographic 3D-printed partsen
dc.typeArticlede
item.fulltextWith Fulltext-
ubsi.publication.affiliationDepartment Maschinenbaude
ubsi.source.doi10.1016/j.jmrt.2023.06.175-
ubsi.source.issn2214-0697-
ubsi.source.issued2023de
ubsi.source.issuenumber25de
ubsi.source.pagefrom3177de
ubsi.source.pageto3188de
ubsi.source.publisherElsevierde
ubsi.source.titleJournal of materials research and technologyde
Appears in Collections:Geförderte Open-Access-Publikationen
Files in This Item:

This item is protected by original copyright

Show simple item record

Page view(s)

207
checked on Nov 23, 2024

Download(s)

46
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons