Remalli, NagarjunaNagarjunaRemalliMünch, MathiasMathiasMünchHasan, MohsinMohsinHasanKishore, K NandaK NandaKishoreStern, FelixFelixSternBaak, NikolasNikolasBaakWalther, FrankFrankWaltherSambandam, ManjiniManjiniSambandamKlapprott, SteffenSteffenKlapprottRajulapati, Koteswararao VKoteswararao VRajulapatiBrandt, RobertRobertBrandt2023-02-222023-02-222022https://dspace.ub.uni-siegen.de/handle/ubsi/2474Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für ZeitschriftenartikelDespite of the well-known fact that high strength steels are exhibiting low temperature creep deformation, its rate controlling mechanism is yet to be understood. The strain hardening theory and the exhaustion creep model were proposed almost seven decades ago to unravel the low temperature creep mechanism in a single phase homogeneous isotropic material. However, their applicability to low temperature creep deformation in a technical material like a modern high strength steel is still a matter of investigation owing to their nature of multi-phase, in-homogeneous, and an-isotropic behavior. The authors have grabbed this chance to experimentally validate the exhaustion creep model based on low temperature creep tests of the SAE 9254 spring steel.enAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/620 Ingenieurwissenschaften und zugeordnete TätigkeitenMartensitic steelLow temperature creepExhaustion creep modelDislocation glideSlip localizationStrain induced phase transformationMartensitischer StahlKriechen bei niedriger TemperaturModell des ErschöpfungskriechensVersetzungsgleitenLokalisierung von SchlupfDehnungsinduzierte PhasenumwandlungOn the low temperature creep controlling mechanism in a high strength spring steelArticleMartensitischer StahlKriechverhaltenurn:nbn:de:hbz:467-24748