Zitierlink: http://dx.doi.org/10.25819/ubsi/9966
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Bibliometric_study_on_the_use_of_machine_learning.pdf5.34 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Dokumentart: Article
Titel: Bibliometric study on the use of machine learning as resolution technique for Facility Layout Problems
AutorInn(en): Burggräf, Peter 
Wagner, Johannes 
Heinbach, Benjamin 
Institut: Fakultät IV - Naturwissenschaftlich-Technische Fakultät 
Schlagwörter: Bibliometrische Studie, Anlagenlayoutprobleme, Bibliometric Study, Facility Layout Problems
DDC-Sachgruppe: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Notation: ZHX
Erscheinungsjahr: 2021
Publikationsjahr: 2021
Auch erschienen: IEEE Access ; vol. 9, S. 22569-22586. - DOI: https://doi.org/10.1109/ACCESS.2021.3054563
Zusammenfassung: 
Facility Layout Problems (FLP) are concerned with finding efficient factory layouts. Numerous resolution approaches are known in literature for layout optimization. Among those, intelligent approaches are less researched than solutions from exact or approximating approaches. The recent surge of research interest in Artificial Intelligence, and specifically Machine Learning (ML) techniques, presages an increase of such techniques' usage in FLP. However, previous reviews on FLP research induce that, to date, this trend has not yet emerged. Utilizing a systematic literature review coupled with a k-Means based clustering algorithm, we analyzed 25 relevant publication full-texts from an original sample of 1,425 papers. Our findings corroborate the statement that ML techniques have attracted substantially less research interest than most other resolution approaches. While a few papers used Unsupervised Learning algorithms directly as a solution to the FLP, Supervised and Reinforcement Learning were found to be practically irrelevant. ML usage was significantly higher in FLP-adjacent planning tasks such as group technology. Drawing from experiences with other NP-hard combinatorial optimization problems in manufacturing research, we conclude that Reinforcement Learning is most promising to bridge the evident gap between FLP and ML research. Our study further contributes to FLP research by extending established classification frameworks.
Beschreibung: 
Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/9966
URN: urn:nbn:de:hbz:467-19528
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/1952
Enthalten in den Sammlungen:Geförderte Open-Access-Publikationen

Diese Ressource ist urheberrechtlich geschützt.

Zur Langanzeige

Seitenansichten

403
checked on 25.11.2024

Download(s)

247
checked on 25.11.2024

Google ScholarTM

Prüfe

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.