Citation link:
Files in This Item:
Dokument Type: Article
metadata.dc.title: Machine learning-based prediction of missing components for assembly - a case study at an engineer-to-order manufacturer
Authors: Steinberg, Fabian 
Burggräf, Peter 
Wagner, Johannes 
Heinbach, Benjamin 
Institute: Department Maschinenbau 
Free keywords: Production control, Assembly, Prediction methods, Lead time reduction, Machine learning, Supervised learning, Classification algorithms, Regression analysis, Data analysis, Produktionssteuerung, Montage, Vorhersagemethoden, Reduzierung der Durchlaufzeit, Maschinelles Lernen, Überwachtes Lernen, Algorithmen zur Klassifizierung, Regressionsanalyse, Datenanalyse
Dewey Decimal Classification: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Clases: ZHX
Issue Date: 2021
Publish Date: 2022
Source: IEEE Access ; Vol. 9 (2021), S. 105926-105938. -
For manufacturing companies, especially for machine and plant manufacturers, the assembly of products in time has an essential impact on meeting delivery dates. Often missing individual components lead to a delayed assembly start, hereinafter referred to as assembly start delayers. Identifying the assembly start delayers early in the production process can help to set countermeasures to meet the required delivery dates. In order to achieve this, we set up 24 prediction models on four different levels of detail utilizing different machine learning-algorithms - six prediction models on every level of detail - and applying a case-based research approach in order to identify the model with the highest model quality. The modeling approach on the four levels of detail is different. The models on the coarsest level of detail predict assembly start delayers utilizing a classification approach. The models on the three finer levels of detail predict assembly start delayers via a regression of different lead times and subsequent postprocessing operations to identify the assembly start delayers. After training of the 24 prediction models based on a real data set of a machine and plant manufacturer and evaluating their model quality, the classification model utilizing a Gradient Boosting classifier showed best results. Thus, performing a binary classification to identify assembly start delayers was the best modelling approach. With the achieved results, our study is a first approach to predict assembly start delayers and gives insights in the performance of different modeling approaches in the area of a production planning and control.
Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
URN: urn:nbn:de:hbz:467-22235
Appears in Collections:Publikationen aus der Universität Siegen

This item is protected by original copyright

Show full item record

Page view(s)

checked on Feb 3, 2023


checked on Feb 3, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.