Zitierlink: http://dx.doi.org/10.25819/ubsi/10134
Dateien zu dieser Ressource:
Dokumentart: Article
Titel: Machine learning-based prediction of missing components for assembly - a case study at an engineer-to-order manufacturer
AutorInn(en): Steinberg, Fabian 
Burggräf, Peter 
Wagner, Johannes 
Heinbach, Benjamin 
Institut: Department Maschinenbau 
Schlagwörter: Production control, Assembly, Prediction methods, Lead time reduction, Machine learning, Supervised learning, Classification algorithms, Regression analysis, Data analysis, Produktionssteuerung, Montage, Vorhersagemethoden, Reduzierung der Durchlaufzeit, Maschinelles Lernen, Überwachtes Lernen, Algorithmen zur Klassifizierung, Regressionsanalyse, Datenanalyse
DDC-Sachgruppe: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Notation: ZHX
Erscheinungsjahr: 2021
Publikationsjahr: 2022
Auch erschienen: IEEE Access ; Vol. 9 (2021), S. 105926-105938. - https://dx.doi.org/10.1109/ACCESS.2021.3075620
Zusammenfassung: 
For manufacturing companies, especially for machine and plant manufacturers, the assembly of products in time has an essential impact on meeting delivery dates. Often missing individual components lead to a delayed assembly start, hereinafter referred to as assembly start delayers. Identifying the assembly start delayers early in the production process can help to set countermeasures to meet the required delivery dates. In order to achieve this, we set up 24 prediction models on four different levels of detail utilizing different machine learning-algorithms - six prediction models on every level of detail - and applying a case-based research approach in order to identify the model with the highest model quality. The modeling approach on the four levels of detail is different. The models on the coarsest level of detail predict assembly start delayers utilizing a classification approach. The models on the three finer levels of detail predict assembly start delayers via a regression of different lead times and subsequent postprocessing operations to identify the assembly start delayers. After training of the 24 prediction models based on a real data set of a machine and plant manufacturer and evaluating their model quality, the classification model utilizing a Gradient Boosting classifier showed best results. Thus, performing a binary classification to identify assembly start delayers was the best modelling approach. With the achieved results, our study is a first approach to predict assembly start delayers and gives insights in the performance of different modeling approaches in the area of a production planning and control.
Beschreibung: 
Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/10134
URN: urn:nbn:de:hbz:467-22235
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/2223
Enthalten in den Sammlungen:Geförderte Open-Access-Publikationen

Diese Ressource ist urheberrechtlich geschützt.

Zur Langanzeige

Seitenansichten

327
checked on 24.11.2024

Download(s)

152
checked on 24.11.2024

Google ScholarTM

Prüfe

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.