Citation Link: https://nbn-resolving.org/urn:nbn:de:hbz:467-2853
Neuartige DEPFET-RNDR-Detektoren im experimentellen Betrieb
Source Type
Doctoral Thesis
Author
Institute
Issue Date
2007
Abstract
Topic of this thesis is the experimental investigation on semiconductor radiation-detectors, which are based on the DEPFET-concept. The DEPFET is the active element of a detectorsystem, which is is able to determine the amounts of charges indirect and with a very low noise value. The main topic is the analysis of the detector's physical mechanisms in dynamical operating modes. Such mechanisms are, for example, the process of the charge measurement, the dependencies of the detector-intrinsic amplification or the investigations on impact-ionization.
The main part of the work deals with simulations and measurements on DEPFET-RNDR-structures. By using this novel DEPFET-variant the indirect readout is used to measure collected charge arbitrarily often. Taking the mean-value all of these measurements the statistical uncertainty of the overall charge measurement is reduced. With the method a sub-electron noise value can be reached, so that discrete numbers of collected electrons can be determined. The big advantage of the concept shows up, by using it as an optical photon-detector. By this means the amount of singe optical photons, which interacted in the detector, can be measured that precise, that the exact number of photons can be determined. This was experimentally proven for numbers of photons as high as 500.
The main part of the work deals with simulations and measurements on DEPFET-RNDR-structures. By using this novel DEPFET-variant the indirect readout is used to measure collected charge arbitrarily often. Taking the mean-value all of these measurements the statistical uncertainty of the overall charge measurement is reduced. With the method a sub-electron noise value can be reached, so that discrete numbers of collected electrons can be determined. The big advantage of the concept shows up, by using it as an optical photon-detector. By this means the amount of singe optical photons, which interacted in the detector, can be measured that precise, that the exact number of photons can be determined. This was experimentally proven for numbers of photons as high as 500.
File(s)![Thumbnail Image]()
Loading...
Name
woelfel.pdf
Size
6.34 MB
Format
Adobe PDF
Checksum
(MD5):5816b127f8d19f332946211a9b39ab68
Owning collection