Citation Link: https://doi.org/10.25819/ubsi/726
Hochtemperaturoxidationsstudien zum Wasserdampfeinfluss auf thermisch wachsende Chromoxidschichten
Alternate Title
Effect of water vapour on high-temperature corrosion on thermally grown chromia scales
Source Type
Doctoral Thesis
Author
Institute
Issue Date
2019
Abstract
Most high temperature alloys rely on the formation of a protective chromia scale during service. In this thesis the kinetic data of oxidation is strongly connected to a microstructural analysis and to stress measurements of the Cr2O3 layer formed on Cr, Ni-25Cr, Fe-10Cr and Fe-18Cr. The alloys were exposed to different dry and wet atmospheres with different oxygen and water vapour contents. Samples with different thicknesses were oxidized for 24 hours in the temperature range from 700°C - 1000°C. Thermogravimetric data were obtained using a microbalance system. The microstructures of oxidized samples were analysed using various experimental techniques such as scanning electron microscopy, X-ray diffraction and transmission electron backscatter diffraction in conjunction with transmission electron microscopy analysis.
Significant differences in the oxidation rates, observed during oxidation experiments, can be explained by different atmospheric conditions and compressive stresses within the scales. Obviously, the defect structure of chromia changes depending on the factors mentioned above. The differences of chromia growth in dry and water vapour containing atmospheres are a result of interactions between chromia and various gas species, such as hydrogen and hydroxide and also protons. It can be concluded that some oxidation phenomena cannot be explained by classical oxidation theory. However, it is reasonable to assume that water vapour influences the point defect structure in the chromia scale notably. As an important consequence of the precisely adjusted gas compositions, the effects of the oxygen partial pressure and the water vapour addition on the oxidation behaviour and the corresponding defect structure of chromia have been studied thoroughly and systematically.
Significant differences in the oxidation rates, observed during oxidation experiments, can be explained by different atmospheric conditions and compressive stresses within the scales. Obviously, the defect structure of chromia changes depending on the factors mentioned above. The differences of chromia growth in dry and water vapour containing atmospheres are a result of interactions between chromia and various gas species, such as hydrogen and hydroxide and also protons. It can be concluded that some oxidation phenomena cannot be explained by classical oxidation theory. However, it is reasonable to assume that water vapour influences the point defect structure in the chromia scale notably. As an important consequence of the precisely adjusted gas compositions, the effects of the oxygen partial pressure and the water vapour addition on the oxidation behaviour and the corresponding defect structure of chromia have been studied thoroughly and systematically.
File(s)![Thumbnail Image]()
Loading...
Name
Dissertation_Dirk_Simon.pdf
Size
34.45 MB
Format
Adobe PDF
Checksum
(MD5):6119f26fc13e5cedfa11f70cbd72371e
Owning collection