Citation Link: https://doi.org/10.25819/ubsi/3777
Strömende Materie - elementarisierte Zugänge zur Physik fluiddynamischer Phänomene
Alternate Title
Flowing matter - elementary approaches to physics of fluid dynamic phenomena
Source Type
Doctoral Thesis
Institute
Issue Date
2020
Abstract
Abstract
One of the purposes of this PhD thesis is to make structure-forming phenomena in space (like Crab Nebula) accessible to students by linking these to physical models. However, developing such models takes a lot of time, which is limited for most teachers because of their regular school duties. For this reason, specially adapted visual models for fluid dynamic phenomena, such as the Rayleigh-Taylor-Instability, were developed in this thesis. The models are both designed as simple as possible and described in easy-to-follow instructions in order to make it possible for teachers to reproduce them for school operations effortlessly. The subject of fluid dynamics was chosen because it can explain a great number of structure-forming phenomena in the universe.
The challenge in creating these physical models is the difference in scale between those models and the relevant phenomena in space. In order to transfer the physical processes to the physical models, the \glqq similitude\grqq~concept is applied. Learners might already know this term from geometry, here it is expanded to include physical similarity. The occurring ratio is expressed by using dimensionless indicators, such as the Reynolds number. Those indicators can be determined by dimension analysis.
The thesis also contains a brief overview of the similitude concept in connection with dimension analysis in order to determine dimensionless indicators. With this background knowledge, teachers are able to create models by themselves for their students. This thesis includes not only descriptions of physical models, but also contains some examples for useful applications of similitude in theoretical considerations.
Several physical models were tested. For this purpose, two groups (9th grade) were tested on different teaching concepts. Similar learning content was imparted in ex-cathedra teaching and alternatively in carousel workshops using the designed physical models. No significant influence on learning gain and/or situational interest could be determined between the two teaching concepts. The only difference particularly worth mentioning was that the students who attended carousel workshops achieved their results independently and proactively.
One of the purposes of this PhD thesis is to make structure-forming phenomena in space (like Crab Nebula) accessible to students by linking these to physical models. However, developing such models takes a lot of time, which is limited for most teachers because of their regular school duties. For this reason, specially adapted visual models for fluid dynamic phenomena, such as the Rayleigh-Taylor-Instability, were developed in this thesis. The models are both designed as simple as possible and described in easy-to-follow instructions in order to make it possible for teachers to reproduce them for school operations effortlessly. The subject of fluid dynamics was chosen because it can explain a great number of structure-forming phenomena in the universe.
The challenge in creating these physical models is the difference in scale between those models and the relevant phenomena in space. In order to transfer the physical processes to the physical models, the \glqq similitude\grqq~concept is applied. Learners might already know this term from geometry, here it is expanded to include physical similarity. The occurring ratio is expressed by using dimensionless indicators, such as the Reynolds number. Those indicators can be determined by dimension analysis.
The thesis also contains a brief overview of the similitude concept in connection with dimension analysis in order to determine dimensionless indicators. With this background knowledge, teachers are able to create models by themselves for their students. This thesis includes not only descriptions of physical models, but also contains some examples for useful applications of similitude in theoretical considerations.
Several physical models were tested. For this purpose, two groups (9th grade) were tested on different teaching concepts. Similar learning content was imparted in ex-cathedra teaching and alternatively in carousel workshops using the designed physical models. No significant influence on learning gain and/or situational interest could be determined between the two teaching concepts. The only difference particularly worth mentioning was that the students who attended carousel workshops achieved their results independently and proactively.
File(s)![Thumbnail Image]()
Loading...
Name
Dissertation_Mueller_Lenka_Stroemende Materie.pdf
Size
35.73 MB
Format
Adobe PDF
Checksum
(MD5):f1669fce73a59c3ebdbab951eebb0f8d
Owning collection