Citation link: http://dx.doi.org/10.25819/ubsi/10122
Files in This Item:
Dokument Type: Article
metadata.dc.title: Methods to enhance the automation of operational modal analysis
Authors: Wiemann, Marcel 
Bonekemper, Lukas 
Kraemer, Peter 
Institute: Department Maschinenbau 
Free keywords: Automated operational modal analysis, Covariance-driven stochastic subspace identification, Stabilization diagram, Structural health monitoring, Three-dimensional stability plots, Mode extraction, Automatisierte Betriebsmodalanalyse, Kovarianzgetriebene stochastische Unterraumidentifikation, Stabilitätsdiagramm, Dreidimensionale Stabilitätsplots, Modeextraktion
Dewey Decimal Classification: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Clases: WBF
WFB
WCW
Issue Date: 2020
Publish Date: 2022
Source: Vibroengineering PROCEDIA, Vol. 31 (2020), S. 46-51. - https://doi.org/10.21595/vp.2020.21443
Abstract: 
The vibration-based damage detection and the monitoring of modal data are currently based on different Operational Modal Analysis (OMA) approaches. For the continuous monitoring of modal quantities, different techniques for automated feature extraction are known. Especially in recent years several research groups and companies have been working on the automatic interpretation of stability plots. Nevertheless, many questions regarding data pre-processing for OMA in time or frequency domain are still unanswered. The present paper deals with issues regarding effective pre-processing methods for OMA based on Covariance-Stochastic Subspace Identification. In this context, the orthogonality of matrices after model order reduction, etc. are referred. This includes, for example, a comparison between the classical calculation of the reduced-order matrices and a procedure that preserves the orthogonality of these matrices. A method known from the signal denoising and image processing is also successful used to extract and select the modes. The mode extraction method is validated with an innovative three-dimensional stability plot. This paper does not claim to solve all tasks of an automated OMA, but it contributes the calculation of clean, easy to interpret, stability plots, which should facilitate the automatic evaluation in the future. The effectiveness of the algorithms is demonstrated by means of simulated (3DOF-StateSpace) and measured data of a laboratory structure described in [1]. Afterwards the results and the future works on the topic are discussed.
Description: 
Finanziert aus dem DFG-geförderten Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/10122
URN: urn:nbn:de:hbz:467-22112
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/2211
License: http://creativecommons.org/licenses/by/4.0/
Appears in Collections:Publikationen aus der Universität Siegen

This item is protected by original copyright

Show full item record

Page view(s)

60
checked on Aug 20, 2022

Download(s)

13
checked on Aug 20, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons