Citation link: http://dx.doi.org/10.25819/ubsi/10568
Files in This Item:
File Description SizeFormat
Dissertation_HozhabrPour_Hawzhin.pdf4.81 MBAdobe PDFThumbnail
View/Open
Dokument Type: Doctoral Thesis
metadata.dc.title: Anomaly detection and event recognition in cars based on multimodal sensor data interpretation
Other Titles: Anomalieerkennung und Ereigniserkennung in Autos basierend auf der Interpretation multimodaler Sensordaten
Authors: Hozhabr Pour, Hawzhin 
Institute: Department Elektrotechnik - Informatik 
Free keywords: Anomaly detection, Multimodal car sensor data, Machine learning, Deep learning, Time-series data, Erkennung von Anomalien, Multimodale Auto-Sensordaten, Maschinelles Lernen, Mehrschichtiges Lernen, Zeitreihendaten
Dewey Decimal Classification: 004 Informatik
GHBS-Clases: TVUC
ZQS
TUH
Issue Date: 2023
Publish Date: 2024
Abstract: 
The benefits of analyzing driving behavior extend across various sectors, including insurance, transportation planning, and autonomous vehicle development. Insurance companies can customize policies based on individual risk profiles, promoting safer driving habits. In fleet management, the analysis assists in risk control, regulatory compliance, and enhancing customer satisfaction. Additionally, i...
DOI: http://dx.doi.org/10.25819/ubsi/10568
URN: urn:nbn:de:hbz:467-27864
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/2786
Appears in Collections:Hochschulschriften

This item is protected by original copyright

Show full item record

Page view(s)

266
checked on Apr 7, 2025

Download(s)

177
checked on Apr 7, 2025

Google ScholarTM

Check