Citation Link: https://nbn-resolving.org/urn:nbn:de:hbz:467-3603
Mineralogisch-chemische Untersuchungen zur Archäometrie elamischer Keramiken aus Khouzestan, Iran
Alternate Title
Mineralogical-chemical investigations to the archaeometry of elamite ceramic(s) from Khouzestan, Iran
Source Type
Doctoral Thesis
Author
Institute
Issue Date
2008
Abstract
The main purpose of our identification is the characterization of old ceramics' textures and the determination of the technical process, as well as the crystallization sequences, during ceramic fabrication in the ancient world. The origin of the material examined is related to areas of the Elamite period (1500 B.C.) in the south-west of Iran. Examinations in the area of material science are absolutely necessary for ancient ceramics as the process by which they were created, can be categorised as function of their chemical-mineralogical composition.
Many ceramics' constituents were classified as Ca-rich ceramics. They will be classified in the system SiO2-Al2O3-(CaO+MgO). The main paragenesis is Diopside-Gehlenite-Anorthite-Quartz. In some cases, the Ca variation depends on the calcareous rocks which have been used in the pottery production. The crystalline phase composition was determined by quantitative X-Ray diffraction measurements with the Rietveld refinement method. The results have been matched with microscopic methods in order to come to a chemical-petrological conclusion about phase segregation. Quartz, Calcite and Pyroxene are the main temper constituents. Feldspars and Calcite are flux materials in the ceramic body. Kaolinitization and sericitization prove a high dehydration during the fabrication process which favored with respect to the K+/Al3+ ratios. The element distribution of the grain-interface-matrix structure was determined by EDX-measurements and enhanced with the physico-chemical properties of these structures. SFM measurements were carried out at adequate points: here either AFM with the use of pulsed force mode or scattering and absorption properties with SNOM were studied. The firing temperature during the process was also studied by thermoanalytical methods and is approximately 900-1010°C.
Examinations determine also that local raw material has been used for ceramic fabrication and the technology in this region was also local technology.
Many ceramics' constituents were classified as Ca-rich ceramics. They will be classified in the system SiO2-Al2O3-(CaO+MgO). The main paragenesis is Diopside-Gehlenite-Anorthite-Quartz. In some cases, the Ca variation depends on the calcareous rocks which have been used in the pottery production. The crystalline phase composition was determined by quantitative X-Ray diffraction measurements with the Rietveld refinement method. The results have been matched with microscopic methods in order to come to a chemical-petrological conclusion about phase segregation. Quartz, Calcite and Pyroxene are the main temper constituents. Feldspars and Calcite are flux materials in the ceramic body. Kaolinitization and sericitization prove a high dehydration during the fabrication process which favored with respect to the K+/Al3+ ratios. The element distribution of the grain-interface-matrix structure was determined by EDX-measurements and enhanced with the physico-chemical properties of these structures. SFM measurements were carried out at adequate points: here either AFM with the use of pulsed force mode or scattering and absorption properties with SNOM were studied. The firing temperature during the process was also studied by thermoanalytical methods and is approximately 900-1010°C.
Examinations determine also that local raw material has been used for ceramic fabrication and the technology in this region was also local technology.
File(s)![Thumbnail Image]()
Loading...
Name
emami.pdf
Size
20.13 MB
Format
Adobe PDF
Checksum
(MD5):876fc4ae98fc7a1d285228134fd59770
Owning collection