Please use this identifier to cite or link to this item: https://nbn-resolving.org/urn:nbn:de:hbz:467-4712
Files in This Item:
File Description SizeFormat
schupp.pdf1,59 MBAdobe PDFThumbnail
View/Open
Dokument Type: Doctoral Thesis
Title: Approximative bedingte Unabhängigkeit in Finanzzeitreihen
Authors: Schupp, Petra 
Institute: Statistik, Risikoanalyse & Computing 
Free keywords: Value at Risk, stochastic volatility series
Dewey Decimal Classification: 510 Mathematik
GHBS-Clases: TKQ
Issue Date: 2010
Publish Date: 2010
Abstract: 
Stochastische Volatilitätszeitreihen sind häufig verwendete Modelle für Finanzzeitreihen, da auf Finanzmärkten keine konstante Volatilität beobachtet wird. Bedeutende Spezialfälle stellen hierbei GARCH-Zeitreihen dar, in denen die Volatilität als gewichtete Summe der quadrierten vorhergehenden Beobachtungen modelliert wird. Solche Zeitreihen werden in der Finanzliteratur als geeignete Modelle für kurzfristige, z.B. tägliche Renditen angesehen. Oftmals wird jedoch von Seiten des Bankenaufsichtsrechts eine Risikomessung auf Basis einer längerfristigen Haltedauer wie z.B. von 10-Tages-Renditen gefordert.

Die Promotionsarbeit stellt zunächst den Prognosebegriff für stochastische Volatilitätszeitreihen heraus. Im Anschluss daran liefert das Hauptresultat, dass n aufeinander folgende Folgenglieder von bestimmten stochastischen Volatilitätszeitreihen, insbesondere GARCH(1,1)-Zeitreihen, approximativ bedingt unabhängig und identisch verteilt (iid) gegeben der Vergangenheit sind. Als Maß für den Fehler dieser Approximation wird der Variationsabstand verwendet. Des Weiteren wird der Zusammenhang von GARCH(1,1)- und allgemeinen stochastischen Volatilitätszeitreihen untersucht, der Parameter der bedingten iid Approximation eingeführt und ausführlich untersucht. In der Finanzwirtschaft wird eine Quantifizierung des Risikos größtenteils über den Value at Risk (VaR) vorgenommen. Als Anwendung des Hauptresultats erfolgt die Prognose einer obere Schranke des n-Tages VaR einer stochastischen Volatilitätszeitreihe. Anschließend wird dieser prognostizierte VaR durch Backtesting also mittels statistischer Tests validiert. Zuletzt werden die theoretischen Resultate durch Simulationen und reale Datensätze beispielhaft erläutert.
URN: urn:nbn:de:hbz:467-4712
urn:nbn:de:hbz:467-4712
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/471
License: https://dspace.ub.uni-siegen.de/static/license.txt
Appears in Collections:Hochschulschriften

This item is protected by original copyright

Show full item record

Page view(s)

69
checked on Oct 31, 2020

Download(s)

16
checked on Oct 31, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.