Zitierlink: https://nbn-resolving.org/urn:nbn:de:hbz:467-727
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
aslan.pdf1.66 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Dokumentart: Doctoral Thesis
Titel: The concept of energy in nonparametric statistics: Goodness-of-Fit problems and deconvolution
AutorInn(en): Aslan, Berkan 
Institut: Fachbereich 7, Physik 
Schlagwörter: Goodness-of-Fit, two-sample problem, deconvolution
DDC-Sachgruppe: 530 Physik
GHBS-Notation: UDXM
Erscheinungsjahr: 2004
Publikationsjahr: 2005
Zusammenfassung: 
In this thesis the concept of energy is introduced from physics into statistics.
The energy of samples, which are drawn from statistical distributions, is defined in
a similar way as for discrete charge density distributions in electrostatics.
A system of two sets of point charges with opposite sign is in a state of minimum
energy if they are equally distributed. This property is used to construct new
nonparametric, multivariate Goodness-of-Fit tests, to check whether two samples
belong to the same parent distribution and to deconvolute distributions distorted
by measurement.
The statistical minimum energy configuration does not depend on the application
of the one-over-distance power law of the electrostatic potential. To increase the
power of the new approach other monotonic decreasing distance functions may be
chosen. We prove that the new energy technique is applicable to all distance functions
which have positive Fourier transforms. The proposed approach is binning-free.
It is especially powerfull in multidimensional applications and superior to most of
the common statistical methods in many concrete situations.

In dieser Arbeit wird das Energiekonzept aus der Physik in die Statistik übertragen.
Die Energie von Stichproben, die aus statistischen Verteilungen gezogen
werden, wird in ähnlicher Weise definiert wie für elektrostatische Punktladungen.
Ein System von zwei Punktladungsmengen mit entgegengesetztem Vorzeichen
befindet sich im Zustand minimaler Energie, wenn sie der gleichen Verteilung folgen.
Dieses Konzept wird zur Konstruktion von neuen nichtparametrischen, mehrdimensionalen
Anpassungstests verwendet. Weiterhin wurde das Energieverfahren auf das
Zwei-Stichproben Problem und die Entfaltung angewandt.
Das statistische Minimum Konzept der Energie hängt nicht von der Abstandsfunktion
des elektrostatischen Potentials ab. Um die Güte der entwickelten Methoden
zu erhöhen, können andere monoton fallende Abstandsfunktionen gewählt werden.
Wir zeigen, dass das Verfahren für alle Abstandsfunktionen anwendbar ist, die
eine positive Fouriertransformierte haben. Die vorgeschlagene Methode benötigt
keine Intervallbildung. Sie hat ihre Stärken bei mehrdimensionalen Problemstellungen
und ist hier herkömmlichen Verfahren in vielen konkreten Anwendungen
überlegen.
URN: urn:nbn:de:hbz:467-727
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/72
Lizenz: https://dspace.ub.uni-siegen.de/static/license.txt
Enthalten in den Sammlungen:Hochschulschriften

Diese Ressource ist urheberrechtlich geschützt.

Zur Langanzeige

Seitenansichten

503
checked on 25.11.2024

Download(s)

150
checked on 25.11.2024

Google ScholarTM

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.